Sample records for mitochondrial membrane potential

  1. Induced mitochondrial membrane potential for modeling solitonic conduction of electrotonic signals

    PubMed Central

    Poznanski, R. R.; Cacha, L. A.; Ali, J.; Rizvi, Z. H.; Yupapin, P.; Salleh, S. H.; Bandyopadhyay, A.

    2017-01-01

    A cable model that includes polarization-induced capacitive current is derived for modeling the solitonic conduction of electrotonic potentials in neuronal branchlets with microstructure containing endoplasmic membranes. A solution of the nonlinear cable equation modified for fissured intracellular medium with a source term representing charge ‘soakage’ is used to show how intracellular capacitive effects of bound electrical charges within mitochondrial membranes can influence electrotonic signals expressed as solitary waves. The elastic collision resulting from a head-on collision of two solitary waves results in localized and non-dispersing electrical solitons created by the nonlinearity of the source term. It has been shown that solitons in neurons with mitochondrial membrane and quasi-electrostatic interactions of charges held by the microstructure (i.e., charge ‘soakage’) have a slower velocity of propagation compared with solitons in neurons with microstructure, but without endoplasmic membranes. When the equilibrium potential is a small deviation from rest, the nonohmic conductance acts as a leaky channel and the solitons are small compared when the equilibrium potential is large and the outer mitochondrial membrane acts as an amplifier, boosting the amplitude of the endogenously generated solitons. These findings demonstrate a functional role of quasi-electrostatic interactions of bound electrical charges held by microstructure for sustaining solitons with robust self-regulation in their amplitude through changes in the mitochondrial membrane equilibrium potential. The implication of our results indicate that a phenomenological description of ionic current can be successfully modeled with displacement current in Maxwell’s equations as a conduction process involving quasi-electrostatic interactions without the inclusion of diffusive current. This is the first study in which solitonic conduction of electrotonic potentials are generated by

  2. Induced mitochondrial membrane potential for modeling solitonic conduction of electrotonic signals.

    PubMed

    Poznanski, R R; Cacha, L A; Ali, J; Rizvi, Z H; Yupapin, P; Salleh, S H; Bandyopadhyay, A

    2017-01-01

    A cable model that includes polarization-induced capacitive current is derived for modeling the solitonic conduction of electrotonic potentials in neuronal branchlets with microstructure containing endoplasmic membranes. A solution of the nonlinear cable equation modified for fissured intracellular medium with a source term representing charge 'soakage' is used to show how intracellular capacitive effects of bound electrical charges within mitochondrial membranes can influence electrotonic signals expressed as solitary waves. The elastic collision resulting from a head-on collision of two solitary waves results in localized and non-dispersing electrical solitons created by the nonlinearity of the source term. It has been shown that solitons in neurons with mitochondrial membrane and quasi-electrostatic interactions of charges held by the microstructure (i.e., charge 'soakage') have a slower velocity of propagation compared with solitons in neurons with microstructure, but without endoplasmic membranes. When the equilibrium potential is a small deviation from rest, the nonohmic conductance acts as a leaky channel and the solitons are small compared when the equilibrium potential is large and the outer mitochondrial membrane acts as an amplifier, boosting the amplitude of the endogenously generated solitons. These findings demonstrate a functional role of quasi-electrostatic interactions of bound electrical charges held by microstructure for sustaining solitons with robust self-regulation in their amplitude through changes in the mitochondrial membrane equilibrium potential. The implication of our results indicate that a phenomenological description of ionic current can be successfully modeled with displacement current in Maxwell's equations as a conduction process involving quasi-electrostatic interactions without the inclusion of diffusive current. This is the first study in which solitonic conduction of electrotonic potentials are generated by polarization

  3. UCP2 muscle gene transfer modifies mitochondrial membrane potential.

    PubMed

    Marti, A; Larrarte, E; Novo, F J; Garcia, M; Martinez, J A

    2001-01-01

    The aim of this work was to evaluate the effect of uncoupling protein 2 (UCP2) muscle gene transfer on mitochondrial activity. Five week-old male Wistar rats received an intramuscular injection of plasmid pXU1 containing UCP2 cDNA in the right tibialis anterior muscles. Left tibialis anterior muscles were injected with vehicle as control. Ten days after DNA injection, tibialis anterior muscles were dissected and muscle mitochondria isolated and analyzed. There were two mitochondrial populations in the muscle after UCP2 gene transfer, one of low fluorescence and complexity and the other, showing high fluorescence and complexity. UCP2 gene transfer resulted in a 3.6 fold increase in muscle UCP2 protein levels compared to control muscles assessed by Western blotting. Furthermore, a significant reduction in mitochondria membrane potential assessed by spectrofluorometry and flow cytometry was observed. The mitochondria membrane potential reduction might account for a decrease in fluorescence of the low fluorescence mitochondrial subpopulation. It has been demonstrated that UCP2 muscle gene transfer in vivo is associated with a lower mitochondria membrane potential. Our results suggest the potential involvement of UCP2 in uncoupling respiration. International Journal of Obesity (2001) 25, 68-74

  4. Stabilization of mitochondrial membrane potential prevents doxorubicin-induced cardiotoxicity in isolated rat heart

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Montaigne, David; Marechal, Xavier; Baccouch, Riadh

    2010-05-01

    The present study was undertaken to examine the effects of doxorubicin on left ventricular function and cellular energy state in intact isolated hearts, and, to test whether inhibition of mitochondrial membrane potential dissipation would prevent doxorubicin-induced mitochondrial and myocardial dysfunction. Myocardial contractile performance and mitochondrial respiration were evaluated by left ventricular tension and its first derivatives and cardiac fiber respirometry, respectively. NADH levels, mitochondrial membrane potential and glucose uptake were monitored non-invasively via epicardial imaging of the left ventricular wall of Langendorff-perfused rat hearts. Heart performance was reduced in a time-dependent manner in isolated rat hearts perfused with Krebs-Henseleit solutionmore » containing 1 muM doxorubicin. Compared with controls, doxorubicin induced acute myocardial dysfunction (dF/dt{sub max} of 105 +- 8 mN/s in control hearts vs. 49 +- 7 mN/s in doxorubicin-treated hearts; *p < 0.05). In cardiac fibers prepared from perfused hearts, doxorubicin induced depression of mitochondrial respiration (respiratory control ratio of 4.0 +- 0.2 in control hearts vs. 2.2 +- 0.2 in doxorubicin-treated hearts; *p < 0.05) and cytochrome c oxidase kinetic activity (24 +- 1 muM cytochrome c/min/mg in control hearts vs. 14 +- 3 muM cytochrome c/min/mg in doxorubicin-treated hearts; *p < 0.05). Acute cardiotoxicity induced by doxorubicin was accompanied by NADH redox state, mitochondrial membrane potential, and glucose uptake reduction. Inhibition of mitochondrial permeability transition pore opening by cyclosporine A largely prevented mitochondrial membrane potential dissipation, cardiac energy state and dysfunction. These results suggest that in intact hearts an impairment of mitochondrial metabolism is involved in the development of doxorubicin cardiotoxicity.« less

  5. [Relationship between mitochondrial DNA copy number, membrane potential of human embryo and embryo morphology].

    PubMed

    Zhao, H; Teng, X M; Li, Y F

    2017-11-25

    Objective: To explore the relationship between the embryo with the different morphological types in the third day and its mitochondrial copy number, the membrane potential. Methods: Totally 117 embryos with poor development after normal fertilization and were not suitable transferred in the fresh cycle and 106 frozen embryos that were discarded voluntarily by infertility patients with in vitro fertilization-embryo transfer after successful pregnancy were selected. According to evaluation of international standard in embryos, all cleavage stage embryos were divided into class Ⅰ frozen embryo group ( n= 64), class Ⅱ frozen embryo group ( n= 42) and class Ⅲ fresh embryonic group (not transplanted embryos; n= 117). Real-time PCR and confocal microscopy methods were used to detect mitochondrial DNA (mtDNA) copy number and the mitochondrial membrane potential of a single embryo. The differences between embryo quality and mtDNA copy number and membrane potential of each group were compared. Results: The copy number of mtDNA and the mitochondrial membrane potential in class Ⅲ fresh embryonic group [(1.7±1.0)×10(5) copy/μl, 1.56±0.32] were significantly lower than those in class Ⅰ frozen embryo group [(3.4±1.7)×10(5) copy/μl, 2.66±0.21] and class Ⅱ frozen embryo group [(2.6±1.2)×10(5) copy/μl, 1.80±0.32; all P< 0.05]. The copy number of mtDNA and the mitochondrial membrane potential in classⅠ frozen embryo group were significantly higher than those in classⅡ frozen embryo group (both P< 0.05). Conclusion: The mtDNA copy number and the mitochondrial membrane potential of embryos of the better quality embryo are higher.

  6. A nontoxic, photostable and high signal-to-noise ratio mitochondrial probe with mitochondrial membrane potential and viscosity detectivity

    NASA Astrophysics Data System (ADS)

    Chen, Yanan; Qi, Jianguo; Huang, Jing; Zhou, Xiaomin; Niu, Linqiang; Yan, Zhijie; Wang, Jianhong

    2018-01-01

    Herein, we reported a yellow emission probe 1-methyl-4-(6-morpholino-1, 3-dioxo-1H-benzo[de]isoquinolin-2(3H)-yl) pyridin-1-ium iodide which could specifically stain mitochondria in living immortalized and normal cells. In comparison to the common mitochondria tracker (Mitotracker Deep Red, MTDR), this probe was nontoxic, photostable and ultrahigh signal-to-noise ratio, which could real-time monitor mitochondria for a long time. Moreover, this probe also showed high sensitivity towards mitochondrial membrane potential and intramitochondrial viscosity change. Consequently, this probe was used for imaging mitochondria, detecting changes in mitochondrial membrane potential and intramitochondrial viscosity in physiological and pathological processes.

  7. MitoQ regulates autophagy by inducing a pseudo-mitochondrial membrane potential

    PubMed Central

    Sun, Chao; Liu, Xiongxiong; Di, Cuixia; Wang, Zhenhua; Mi, Xiangquan; Liu, Yang; Zhao, Qiuyue; Mao, Aihong; Chen, Weiqiang; Gan, Lu; Zhang, Hong

    2017-01-01

    ABSTRACT During the process of oxidative phosphorylation, protons are pumped into the mitochondrial intermembrane space to establish a mitochondrial membrane potential (MMP). The electrochemical gradient generated allows protons to return to the matrix through the ATP synthase complex and generates ATP in the process. MitoQ is a lipophilic cationic drug that is adsorbed to the inner mitochondrial membrane; however, the cationic moiety of MitoQ remains in the intermembrane space. We found that the positive charges in MitoQ inhibited the activity of respiratory chain complexes I, III, and IV, reduced proton production, and decreased oxygen consumption. Therefore, a pseudo-MMP (PMMP) was formed via maintenance of exogenous positive charges. Proton backflow was severely impaired, leading to a decrease in ATP production and an increase in AMP production. Excess AMP activates AMP kinase, which inhibits the MTOR (mechanistic target of rapamycin) pathway and induces macroautophagy/autophagy. Therefore, we conclude that MitoQ increases PMMP via proton displacement with exogenous positive charges. In addition, PMMP triggered autophagy in hepatocellular carcinoma HepG2 cells via modification of mitochondrial bioenergetics pathways. PMID:28121478

  8. MitoQ regulates autophagy by inducing a pseudo-mitochondrial membrane potential.

    PubMed

    Sun, Chao; Liu, Xiongxiong; Di, Cuixia; Wang, Zhenhua; Mi, Xiangquan; Liu, Yang; Zhao, Qiuyue; Mao, Aihong; Chen, Weiqiang; Gan, Lu; Zhang, Hong

    2017-04-03

    During the process of oxidative phosphorylation, protons are pumped into the mitochondrial intermembrane space to establish a mitochondrial membrane potential (MMP). The electrochemical gradient generated allows protons to return to the matrix through the ATP synthase complex and generates ATP in the process. MitoQ is a lipophilic cationic drug that is adsorbed to the inner mitochondrial membrane; however, the cationic moiety of MitoQ remains in the intermembrane space. We found that the positive charges in MitoQ inhibited the activity of respiratory chain complexes I, III, and IV, reduced proton production, and decreased oxygen consumption. Therefore, a pseudo-MMP (PMMP) was formed via maintenance of exogenous positive charges. Proton backflow was severely impaired, leading to a decrease in ATP production and an increase in AMP production. Excess AMP activates AMP kinase, which inhibits the MTOR (mechanistic target of rapamycin) pathway and induces macroautophagy/autophagy. Therefore, we conclude that MitoQ increases PMMP via proton displacement with exogenous positive charges. In addition, PMMP triggered autophagy in hepatocellular carcinoma HepG2 cells via modification of mitochondrial bioenergetics pathways.

  9. Mitochondrial decay in hepatocytes from old rats: Membrane potential declines, heterogeneity and oxidants increase

    PubMed Central

    Hagen, Tory M.; Yowe, David L.; Bartholomew, James C.; Wehr, Carol M.; Do, Katherine L.; Park, Jin-Y.; Ames, Bruce N.

    1997-01-01

    Mitochondrial function during aging was assessed in isolated rat hepatocytes to avoid the problem of differential lysis when old, fragile mitochondria are isolated. Rhodamine 123, a fluorescent dye that accumulates in mitochondria on the basis of their membrane potential, was used as a probe to determine whether this key function is affected by aging. A marked fluorescent heterogeneity was observed in hepatocytes from old (20–28 months) but not young (3–5 months) rats, suggesting age-associated alterations in mitochondrial membrane potential, the driving force for ATP synthesis. Three distinct cell subpopulations were separated by centrifugal elutriation; each exhibited a unique rhodamine 123 fluorescence pattern, with the largest population from old rats having significantly lower fluorescence than that seen in young rats. This apparent age-associated alteration in mitochondrial membrane potential was confirmed by measurements with radioactive tetraphenylphosphonium bromide. Cells from young rats had a calculated membrane potential of −154 mV, in contrast to that of the three subpopulations from old rats of −70 mV (the largest population), −93 mV, and −154 mV. Production of oxidants was examined using 2′,7′dichlorofluorescin, a dye that forms a fluorescent product upon oxidation. The largest cell subpopulation and a minor one from old animals produced significantly more oxidants than cells from young rats. To investigate the molecular cause(s) for the heterogeneity, we determined the levels of an age-associated mtDNA deletion. No significant differences were seen in the three subpopulations, indicating that the mitochondrial decay is due to other mutations, epigenetic changes, or both. PMID:9096346

  10. Dietary Tocotrienol/γ-Cyclodextrin Complex Increases Mitochondrial Membrane Potential and ATP Concentrations in the Brains of Aged Mice

    PubMed Central

    Schloesser, Anke; Esatbeyoglu, Tuba; Piegholdt, Stefanie; Dose, Janina; Ikuta, Naoko; Okamoto, Hinako; Ishida, Yoshiyuki; Terao, Keiji; Matsugo, Seiichi; Rimbach, Gerald

    2015-01-01

    Brain aging is accompanied by a decrease in mitochondrial function. In vitro studies suggest that tocotrienols, including γ- and δ-tocotrienol (T3), may exhibit neuroprotective properties. However, little is known about the effect of dietary T3 on mitochondrial function in vivo. In this study, we monitored the effect of a dietary T3/γ-cyclodextrin complex (T3CD) on mitochondrial membrane potential and ATP levels in the brain of 21-month-old mice. Mice were fed either a control diet or a diet enriched with T3CD providing 100 mg T3 per kg diet for 6 months. Dietary T3CD significantly increased mitochondrial membrane potential and ATP levels compared to those of controls. The increase in MMP and ATP due to dietary T3CD was accompanied by an increase in the protein levels of the mitochondrial transcription factor A (TFAM). Furthermore, dietary T3CD slightly increased the mRNA levels of superoxide dismutase, γ-glutamyl cysteinyl synthetase, and heme oxygenase 1 in the brain. Overall, the present data suggest that T3CD increases TFAM, mitochondrial membrane potential, and ATP synthesis in the brains of aged mice. PMID:26301044

  11. Dimethyl sulfoxide damages mitochondrial integrity and membrane potential in cultured astrocytes.

    PubMed

    Yuan, Chan; Gao, Junying; Guo, Jichao; Bai, Lei; Marshall, Charles; Cai, Zhiyou; Wang, Linmei; Xiao, Ming

    2014-01-01

    Dimethyl sulfoxide (DMSO) is a polar organic solvent that is used to dissolve neuroprotective or neurotoxic agents in neuroscience research. However, DMSO itself also has pharmacological and pathological effects on the nervous system. Astrocytes play a central role in maintaining brain homeostasis, but the effect and mechanism of DMSO on astrocytes has not been studied. The present study showed that exposure of astrocyte cultures to 1% DMSO for 24 h did not significantly affect cell survival, but decreased cell viability and glial glutamate transporter expression, and caused mitochondrial swelling, membrane potential impairment and reactive oxygen species production, and subsequent cytochrome c release and caspase-3 activation. DMSO at concentrations of 5% significantly inhibited cell variability and promoted apoptosis of astrocytes, accompanied with more severe mitochondrial damage. These results suggest that mitochondrial impairment is a primary event in DMSO-induced astrocyte toxicity. The potential cytotoxic effects on astrocytes need to be carefully considered during investigating neuroprotective or neurotoxic effects of hydrophobic agents dissolved by DMSO.

  12. Dimethyl Sulfoxide Damages Mitochondrial Integrity and Membrane Potential in Cultured Astrocytes

    PubMed Central

    Yuan, Chan; Gao, Junying; Guo, Jichao; Bai, Lei; Marshall, Charles; Cai, Zhiyou; Wang, Linmei; Xiao, Ming

    2014-01-01

    Dimethyl sulfoxide (DMSO) is a polar organic solvent that is used to dissolve neuroprotective or neurotoxic agents in neuroscience research. However, DMSO itself also has pharmacological and pathological effects on the nervous system. Astrocytes play a central role in maintaining brain homeostasis, but the effect and mechanism of DMSO on astrocytes has not been studied. The present study showed that exposure of astrocyte cultures to 1% DMSO for 24 h did not significantly affect cell survival, but decreased cell viability and glial glutamate transporter expression, and caused mitochondrial swelling, membrane potential impairment and reactive oxygen species production, and subsequent cytochrome c release and caspase-3 activation. DMSO at concentrations of 5% significantly inhibited cell variability and promoted apoptosis of astrocytes, accompanied with more severe mitochondrial damage. These results suggest that mitochondrial impairment is a primary event in DMSO-induced astrocyte toxicity. The potential cytotoxic effects on astrocytes need to be carefully considered during investigating neuroprotective or neurotoxic effects of hydrophobic agents dissolved by DMSO. PMID:25238609

  13. MSL1 is a mechanosensitive ion channel that dissipates mitochondrial membrane potential and maintains redox homeostasis in mitochondria during abiotic stress

    PubMed Central

    Lee, Chun Pong; Maksaev, Grigory; Jensen, Gregory S.; Murcha, Monika W.; Wilson, Margaret E.; Fricker, Mark; Hell, Ruediger; Haswell, Elizabeth S.; Millar, A. Harvey; Sweetlove, Lee

    2016-01-01

    Mitochondria must maintain tight control over the electrochemical gradient across their inner membrane to allow ATP synthesis while maintaining a redox-balanced electron transport chain and avoiding excessive reactive oxygen species production. However, there is a scarcity of knowledge about the ion transporters in the inner mitochondrial membrane that contribute to control of membrane potential. We show that loss of MSL1, a member of a family of mechanosensitive ion channels related to the bacterial channel MscS, leads to increased membrane potential of Arabidopsis mitochondria under specific bioenergetic states. We demonstrate that MSL1 localises to the inner mitochondrial membrane. When expressed in E. coli, MSL1 forms a stretch-activated ion channel with a slight preference for anions and provides protection against hypo-osmotic shock. In contrast, loss of MSL1 in Arabidopsis did not prevent swelling of isolated mitochondria in hypo-osmotic conditions. Instead, our data suggest that ion transport by MSL1 leads to dissipation of mitochondrial membrane potential when it becomes too high. The importance of MSL1 function was demonstrated by the observation of a higher oxidation state of the mitochondrial glutathione pool in msl1-1 mutants under moderate heat- and heavy-metal-stress. Furthermore, we show that MSL1 function is not directly implicated in mitochondrial membrane potential pulsing but is complementary and appears to be important under similar conditions. PMID:27505616

  14. MSL1 is a mechanosensitive ion channel that dissipates mitochondrial membrane potential and maintains redox homeostasis in mitochondria during abiotic stress.

    PubMed

    Lee, Chun Pong; Maksaev, Grigory; Jensen, Gregory S; Murcha, Monika W; Wilson, Margaret E; Fricker, Mark; Hell, Ruediger; Haswell, Elizabeth S; Millar, A Harvey; Sweetlove, Lee J

    2016-12-01

    Mitochondria must maintain tight control over the electrochemical gradient across their inner membrane to allow ATP synthesis while maintaining a redox-balanced electron transport chain and avoiding excessive reactive oxygen species production. However, there is a scarcity of knowledge about the ion transporters in the inner mitochondrial membrane that contribute to control of membrane potential. We show that loss of MSL1, a member of a family of mechanosensitive ion channels related to the bacterial channel MscS, leads to increased membrane potential of Arabidopsis mitochondria under specific bioenergetic states. We demonstrate that MSL1 localises to the inner mitochondrial membrane. When expressed in Escherichia coli, MSL1 forms a stretch-activated ion channel with a slight preference for anions and provides protection against hypo-osmotic shock. In contrast, loss of MSL1 in Arabidopsis did not prevent swelling of isolated mitochondria in hypo-osmotic conditions. Instead, our data suggest that ion transport by MSL1 leads to dissipation of mitochondrial membrane potential when it becomes too high. The importance of MSL1 function was demonstrated by the observation of a higher oxidation state of the mitochondrial glutathione pool in msl1-1 mutants under moderate heat- and heavy-metal-stress. Furthermore, we show that MSL1 function is not directly implicated in mitochondrial membrane potential pulsing, but is complementary and appears to be important under similar conditions. © 2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd.

  15. VDAC electronics: 1. VDAC-hexo(gluco)kinase generator of the mitochondrial outer membrane potential.

    PubMed

    Lemeshko, Victor V

    2014-05-01

    The simplest mechanism of the generation of the mitochondrial outer membrane potential (OMP) by the VDAC (voltage-dependent anion channel)-hexokinase complex (VHC), suggested earlier, and by the VDAC-glucokinase complex (VGC), was computationally analyzed. Even at less than 4% of VDACs bound to hexokinase, the calculated OMP is high enough to trigger the electrical closure of VDACs beyond the complexes at threshold concentrations of glucose. These results confirmed our previous hypothesis that the Warburg effect is caused by the electrical closure of VDACs, leading to global restriction of the outer membrane permeability coupled to aerobic glycolysis. The model showed that the inhibition of the conductance and/or an increase in the voltage sensitivity of a relatively small fraction of VDACs by factors like tubulin potentiate the electrical closure of the remaining free VDACs. The extrusion of calcium ions from the mitochondrial intermembrane space by the generated OMP, positive inside, might increase cancer cell resistance to death. Within the VGC model, the known effect of induction of ATP release from mitochondria by accumulated glucose-6-phosphate in pancreatic beta cells might result not only of the known effect of GK dissociation from the VDAC-GK complex, but also of a decrease in the free energy of glucokinase reaction, leading to the OMP decrease and VDAC opening. We suggest that the VDAC-mediated electrical control of the mitochondrial outer membrane permeability, dependent on metabolic conditions, is a fundamental physiological mechanism of global regulation of mitochondrial functions and of cell death. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Altered Mitochondrial Membrane Potential, Mass, and Morphology in the Mononuclear Cells of Humans with Type 2 Diabetes

    PubMed Central

    Widlansky, Michael E.; Wang, Jingli; Shenouda, Sherene M.; Hagen, Tory M.; Smith, Anthony R.; Kizhakekuttu, Tinoy J.; Kluge, Matthew A.; Weihrauch, Dorothee; Gutterman, David D.; Vita, Joseph A.

    2010-01-01

    Mitochondrial membrane hyperpolarization and morphological changes are important in inflammatory cell activation. Despite the pathophysiological relevance, no valid and reproducible method for measuring mitochondrial homeostasis in human inflammatory cells is currently available. This study's purpose was to define and validate reproducible methods for measuring relevant mitochondrial perturbations and to determine whether these methods could discern mitochondrial perturbations in type 2 diabetes mellitus (T2DM), a condition associated with altered mitochondrial homeostasis. We employed 5,5',6,6'-tetrachloro-1,1'3,3'-tetraethylbenzamidazol-carboncyanine (JC-1) to estimate mitochondrial membrane potential (ψm) and acridine orange 10-nonyl bromide (NAO) to assess mitochondrial mass in human mononuclear cells isolated from blood. Both assays were reproducible. We validated our findings by electron microscopy and pharmacological manipulation of ψm. We measured JC-1 and NAO fluorescence in the mononuclear cells of 27 T2DM patients and 32 controls. Mitochondria were more polarized (P=0.02) and mitochondrial mass was lower in T2DM (P=0.008). Electron microscopy demonstrated diabetic mitochondria were smaller, more spherical, and occupied less cellular area in T2DM. Mitochondrial superoxide production was higher in T2DM (P=0.01). Valid and reproducible measurements of mitochondrial homeostasis can be made in human mononuclear cells using these fluorophores. Further, potential clinically relevant perturbations in mitochondrial homeostasis in T2DM human mononuclear cells can be detected. PMID:20621033

  17. Mitochondrial Ca2+ and membrane potential, an alternative pathway for Interleukin 6 to regulate CD4 cell effector function

    PubMed Central

    Yang, Rui; Lirussi, Dario; Thornton, Tina M; Jelley-Gibbs, Dawn M; Diehl, Sean A; Case, Laure K; Madesh, Muniswamy; Taatjes, Douglas J; Teuscher, Cory; Haynes, Laura; Rincón, Mercedes

    2015-01-01

    IL-6 plays an important role in determining the fate of effector CD4 cells and the cytokines that these cells produce. Here we identify a novel molecular mechanism by which IL-6 regulates CD4 cell effector function. We show that IL-6-dependent signal facilitates the formation of mitochondrial respiratory chain supercomplexes to sustain high mitochondrial membrane potential late during activation of CD4 cells. Mitochondrial hyperpolarization caused by IL-6 is uncoupled from the production of ATP by oxidative phosphorylation. However, it is a mechanism to raise the levels of mitochondrial Ca2+ late during activation of CD4 cells. Increased levels of mitochondrial Ca2+ in the presence of IL-6 are used to prolong Il4 and Il21 expression in effector CD4 cells. Thus, the effect of IL-6 on mitochondrial membrane potential and mitochondrial Ca2+ is an alternative pathway by which IL-6 regulates effector function of CD4 cells and it could contribute to the pathogenesis of inflammatory diseases. DOI: http://dx.doi.org/10.7554/eLife.06376.001 PMID:25974216

  18. Withaferin-A Induces Apoptosis in Osteosarcoma U2OS Cell Line via Generation of ROS and Disruption of Mitochondrial Membrane Potential.

    PubMed

    Zhang, Hui-Liang; Zhang, Hong

    2017-01-01

    Withaferin-A (WF-A) is a well-known dietary compound isolated from Withania sominifera . It has tremendous pharmacological potential and has been shown to exhibit antiproliferative activity against several types of cancerous cells. Currently, the main focus of anti-cancer therapeutic development is to identify apoptosis inducing drug-like molecules. Osteosarcoma is a rare type of osteocancer, affecting human. The present study therefore focused on the evaluation of antitumor potential of WF-A against several osteosarcoma cell lines. MTT assay was used to evaluate WF-A against osteosarcoma cell lines and to calculate the IC 50 . DAPI staining was used to confirm the apoptosis inducing potential of WF-A. Mitochondrial membrane potential, reactive oxygen species (ROS) assay, and Western blotting were used to confirm the basis of apoptosis. The results revealed that that WF-A exhibited strong antiproliferative activity against all the cells lines, with IC 50 ranging from 0.32 to 7.6 μM. The lowest IC 50 (0.32 μM) was observed against U2OS cell line and therefore it was selected for further analysis. DAPI staining indicated that WF-A exhibited antiproliferative activity via induction of apoptosis. Moreover, WF-A induced ROS-mediated reduction in mitochondrial membrane potential ΔΨm) in a dose-dependent manner and activation of caspase-3 in osteosarcoma cells. We propose that WF-A may prove a potent therapeutic agent for inducing apoptosis in osteosarcoma cell lines via generation of ROS and disruption of mitochondrial membrane potential. WF-A exhibits strong anticancer activity against osteosarcoma cell linesAntiproliferative activity of WF-A is via induction of apoptosisWF-A induced ROS-mediated reduction in mitochondrial membrane potentialWF-A induced expression of caspase-3 in osteosarcoma cells. Abbreviations used: WA: Withaferin A; ROS: Reactive oxygen species; OS: Osteosarcoma; MMP: Mitochondrial membrane potential.

  19. The Involvement of Mitochondrial Membrane Potential in Cross-Resistance Between Radiation and Docetaxel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuwahara, Yoshikazu; Department of Pathology, Institute of Development, Aging and Cancer, Tohoku University, Sendai; Roudkenar, Mehryar Habibi

    2016-11-01

    Purpose: To understand the molecular mechanisms underlying cancer cell radioresistance, clinically relevant radioresistant (CRR) cells that continue to proliferate during exposure to 2 Gy/day X-rays for more than 30 days were established. A modified high-density survival assay for anticancer drug screening revealed that CRR cells were resistant to an antimicrotubule agent, docetaxel (DTX). The involvement of reactive oxygen species (ROS) from mitochondria (mtROS) in the cross-resistance to X-rays and DTX was studied. Methods and Materials: Sensitivity to anticancer agents was determined by a modified high-density cell survival or water-soluble tetrazolium salt assay. DTX-induced mtROS generation was determined by MitoSOX redmore » staining. JC-1 staining was used to visualize mitochondrial membrane potential. DTX-induced DNA double-strand breaks were determined by γ-H2AX staining. To obtain mitochondrial DNA-lacking (ρ{sup 0}) cells, the cells were cultured for 3 to 4 weeks in medium containing ethidium bromide. Results: Treatment with DTX increased mtROS in parental cells but not in CRR cells. DTX induced DNA double-strand breaks in parental cells. The mitochondrial membrane potential of CRR cells was lower in CRR cells than in parental cells. Depletion of mtDNA induced DTX resistance in parental cells. Treatment with dimethyl sulfoxide also induced DTX resistance in parental cells. Conclusions: The mitochondrial dysfunction observed in CRR cells contributes to X-ray and DTX cross-resistance. The activation of oxidative phosphorylation in CRR cells may represent an effective approach to overcome radioresistant cancers. In general, the overexpression of β-tubulin or multidrug efflux pumps is thought to be involved in DTX resistance. In the present study, we discovered another DTX resistant mechanism by investigating CRR cells.« less

  20. The anti-cancer agent guttiferone-A permeabilizes mitochondrial membrane: Ensuing energetic and oxidative stress implications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pardo-Andreu, Gilberto L., E-mail: gilbertopardo@infomed.sld.cu; Departamento de Fisica e Quimica, Faculdade de Ciencias Farmaceuticas de Ribeirao Preto, Universidade de Sao Paulo, Av. Cafe s/n, 14040-903 Ribeirao Preto, SP; Nunez-Figueredo, Yanier

    Guttiferone-A (GA) is a natural occurring polyisoprenylated benzophenone with cytotoxic action in vitro and anti-tumor action in rodent models. We addressed a potential involvement of mitochondria in GA toxicity (1-25 {mu}M) toward cancer cells by employing both hepatic carcinoma (HepG2) cells and succinate-energized mitochondria, isolated from rat liver. In HepG2 cells GA decreased viability, dissipated mitochondrial membrane potential, depleted ATP and increased reactive oxygen species (ROS) levels. In isolated rat-liver mitochondria GA promoted membrane fluidity increase, cyclosporine A/EGTA-insensitive membrane permeabilization, uncoupling (membrane potential dissipation/state 4 respiration rate increase), Ca{sup 2+} efflux, ATP depletion, NAD(P)H depletion/oxidation and ROS levels increase. Allmore » effects in cells, except mitochondrial membrane potential dissipation, as well as NADPH depletion/oxidation and permeabilization in isolated mitochondria, were partly prevented by the a NAD(P)H regenerating substrate isocitrate. The results suggest the following sequence of events: 1) GA interaction with mitochondrial membrane promoting its permeabilization; 2) mitochondrial membrane potential dissipation; 3) NAD(P)H oxidation/depletion due to inability of membrane potential-sensitive NADP{sup +} transhydrogenase of sustaining its reduced state; 4) ROS accumulation inside mitochondria and cells; 5) additional mitochondrial membrane permeabilization due to ROS; and 6) ATP depletion. These GA actions are potentially implicated in the well-documented anti-cancer property of GA/structure related compounds. - Graphical abstract: Guttiferone-A permeabilizes mitochondrial membrane and induces cancer cell death Display Omitted Highlights: > We addressed the involvement of mitochondria in guttiferone (GA) toxicity toward cancer cells. > GA promoted membrane permeabilization, membrane potential dissipation, NAD(P)H depletion, ROS accumulation and ATP depletion. > These

  1. Profiling of the Tox21 Chemical Collection for Mitochondrial Function to Identify Compounds that Acutely Decrease Mitochondrial Membrane Potential

    PubMed Central

    Attene-Ramos, Matias S.; Huang, Ruili; Michael, Sam; Witt, Kristine L.; Richard, Ann; Tice, Raymond R.; Simeonov, Anton; Austin, Christopher P.

    2014-01-01

    Background: Mitochondrial dysfunction has been implicated in the pathogenesis of a variety of disorders including cancer, diabetes, and neurodegenerative and cardiovascular diseases. Understanding whether different environmental chemicals and druglike molecules impact mitochondrial function represents an initial step in predicting exposure-related toxicity and defining a possible role for such compounds in the onset of various diseases. Objectives: We sought to identify individual chemicals and general structural features associated with changes in mitochondrial membrane potential (MMP). Methods: We used a multiplexed [two end points in one screen; MMP and adenosine triphosphate (ATP) content] quantitative high throughput screening (qHTS) approach combined with informatics tools to screen the Tox21 library of 10,000 compounds (~ 8,300 unique chemicals) at 15 concentrations each in triplicate to identify chemicals and structural features that are associated with changes in MMP in HepG2 cells. Results: Approximately 11% of the compounds (913 unique compounds) decreased MMP after 1 hr of treatment without affecting cell viability (ATP content). In addition, 309 compounds decreased MMP over a concentration range that also produced measurable cytotoxicity [half maximal inhibitory concentration (IC50) in MMP assay/IC50 in viability assay ≤ 3; p < 0.05]. More than 11% of the structural clusters that constitute the Tox21 library (76 of 651 clusters) were significantly enriched for compounds that decreased the MMP. Conclusions: Our multiplexed qHTS approach allowed us to generate a robust and reliable data set to evaluate the ability of thousands of drugs and environmental compounds to decrease MMP. The use of structure-based clustering analysis allowed us to identify molecular features that are likely responsible for the observed activity. Citation: Attene-Ramos MS, Huang R, Michael S, Witt KL, Richard A, Tice RR, Simeonov A, Austin CP, Xia M. 2015. Profiling of the Tox

  2. Toxins in Botanical Dietary Supplements: Blue Cohosh Components Disrupt Cellular Respiration and Mitochondrial Membrane Potential

    PubMed Central

    Datta, Sandipan; Mahdi, Fakhri; Ali, Zulfiqar; Jekabsons, Mika B.; Khan, Ikhlas A.; Nagle, Dale G.; Zhou, Yu-Dong

    2014-01-01

    Certain botanical dietary supplements have been associated with idiosyncratic organ-specific toxicity. Similar toxicological events, caused by drug-induced mitochondrial dysfunction, have forced the withdrawal or U.S. FDA “Black Box” warnings of major pharmaceuticals. To assess the potential mitochondrial liability of botanical dietary supplements, extracts from 352 authenticated plant samples used in traditional Chinese, Ayurvedic, and Western herbal medicine were evaluated for the ability to disrupt cellular respiration. Blue cohosh (Caulophyllum thalictroides) methanol extract exhibited mitochondriotoxic activity. Used by some U.S. midwives to help induce labor, blue cohosh has been associated with perinatal stroke, acute myocardial infarction, congestive heart failure, multiple organ injury, and neonatal shock. The potential link between mitochondrial disruption and idiosyncratic herbal intoxication prompted further examination. The C. thalictroides methanol extract and three saponins, cauloside A (1), saponin PE (2), and cauloside C (3) exhibited concentration- and time-dependent mitochondriotoxic activities. Upon treatment, cell respiration rate rapidly increased and then dramatically decreased within minutes. Mechanistic studies revealed that C. thalictroides constituents impair mitochondrial function by disrupting membrane integrity. These studies provide a potential etiological link between this mitochondria-sensitive form of cytotoxicity and idiosyncratic organ damage. PMID:24328138

  3. The Force Exerted by the Membrane Potential During Protein Import into the Mitochondrial Matrix

    NASA Technical Reports Server (NTRS)

    Shariff, Karim; Ghosal, Sandip; Matouschek, Andreas

    2002-01-01

    The electrostatic force exerted on a targeting sequence by the electrical potential across the inner mitochondrial membrane is calculated and found to vary from 1.4 pN to 2.2 pN (per unit elementary charge) as the radius of the inner membrane pore (assumed aqueous) is varied from 12 to 6.5 Angstroms, its measured range. Since the pore is not very much wider than the distance between water molecules, the full shielding effect of water may not be present; the extreme case of a nonaqueous pore gives a force of 3.1 pN per unit charge, which represents an upper limit. When applied to mitochondrial import experiments on the protein harness, these results imply that a force of 11 plus or minus 4 pN is sufficient to catalyze the unfolding of harness during import. Comparison of these results with unfolding forces measured using atomic force microscopy suggests that the two are not inconsistent.

  4. The force exerted by the membrane potential during protein import into the mitochondrial matrix

    NASA Technical Reports Server (NTRS)

    Shariff, Karim; Ghosal, Sandip; Matouschek, Andreas

    2004-01-01

    The force exerted on a targeting sequence by the electrical potential across the inner mitochondrial membrane is calculated on the basis of continuum electrostatics. The force is found to vary from 3.0 pN to 2.2 pN (per unit elementary charge) as the radius of the inner membrane pore (assumed aqueous) is varied from 6.5 to 12 A, its measured range. In the present model, the decrease in force with increasing pore width arises from the shielding effect of water. Since the pore is not very much wider than the distance between water molecules, the full shielding effect of water may not be present; the extreme case of a purely membranous pore without water gives a force of 3.2 pN per unit charge, which should represent an upper limit. When applied to mitochondrial import experiments on the protein barnase, these results imply that forces between 11 +/- 2 pN and 13.5 +/- 2.5 pN catalyze the unfolding of barnase in those experiments. A comparison of these results with unfolding forces measured using atomic force microscopy is made.

  5. Effect of mitochondrial apoptotic activation through the mitochondrial membrane permeability transition pore on yak meat tenderness during postmortem aging.

    PubMed

    Wang, Lin-Lin; Han, Ling; Ma, Xiu-Li; Yu, Qun-Li; Zhao, Suo-Nan

    2017-11-01

    The effect of membrane permeability transition pore dependent mitochondrial apoptotic activation on yak meat tenderness was investigated. Results indicate that MPTP opening increased significantly and the mitochondrial membrane potential decreased markedly in the early aging process (P<0.05). Cytochrome c was released from the mitochondria to the cytoplasm via the MPTP in the early period. Meanwhile, the activation of procaspase-9 occurred earlier than that of procaspase-3. Cyclosporin A suppressed the MPTP opening, depolarization of the mitochondrial membrane potential, activities of caspase-9 and caspase-3, apoptosis rate, myofibril fragmentation index, reactive oxygen species generation, and Ca 2+ levels. These results demonstrated that MPTP mediated the release of cytochrome c in the mitochondrial apoptotic pathway. Furthermore, yak meat tenderness was improved by mitochondrial apoptotic pathway during aging. MPTP opening may be influenced by the ROS generation and Ca 2+ overloading in yak meat during postmortem aging. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Bovine adenovirus 3 core protein precursor pVII localizes to mitochondria, and modulates ATP synthesis, mitochondrial Ca2+ and mitochondrial membrane potential.

    PubMed

    Anand, Sanjeev K; Gaba, Amit; Singh, Jaswant; Tikoo, Suresh K

    2014-02-01

    Viruses modulate the functions of mitochondria by translocating viral proteins to the mitochondria. Subcellular fractionation and sensitivity to proteinase K/Triton X-100 treatment of mitochondrial fractions of bovine adenovirus (BAdV)-3-infected/transfected cells suggested that core protein pVII localizes to the mitochondria and contains a functional mitochondrial localization signal. Moreover, mitochondrial localization of BAdV-3 pVII appears to help in the retention of mitochondrial Ca(2+), inducing a significant increase in the levels of ATP and maintaining the mitochondrial membrane potential (MMP) in transfected cells. In contrast, mitochondrial localization of BAdV-3 pVII has no significant effect on the levels of cytoplasmic Ca(2+) and reactive oxygen species production in the transfected cells. Consistent with these results, expression of pVII in transfected cells treated with staurosporine decreased significantly the activation of caspase-3. Our results suggested that BAdV-3 pVII localizes to mitochondria, and interferes with apoptosis by inhibiting loss of the MMP and by increasing mitochondrial Ca(2+) and ATP production.

  7. Mitochondrial calcium ion and membrane potential transients follow the pattern of epileptiform discharges in hippocampal slice cultures.

    PubMed

    Kovács, Richard; Kardos, Julianna; Heinemann, Uwe; Kann, Oliver

    2005-04-27

    Emerging evidence suggests that mitochondrial dysfunction contributes to the pathophysiology of epilepsy. Recurrent mitochondrial Ca2+ ion load during seizures might act on mitochondrial membrane potential (DeltaPsim) and proton motive force. By using electrophysiology and confocal laser-scanning microscopy, we investigated the effects of epileptiform activity, as induced by low-Mg2+ ion perfusion in hippocampal slice cultures, on changes in DeltaPsim and in mitochondrial Ca2+ ion concentration ([Ca2+]m). The mitochondrial compartment was identified by monitoring DeltaPsim in the soma and dendrites of patched CA3 pyramidal cells using the mitochondria-specific voltage-sensitive dye rhodamine-123 (Rh-123). Interictal activity was accompanied by localized mitochondrial depolarization that was restricted to a few mitochondria in small dendrites. In contrast, robust Rh-123 release into the cytosol was observed during seizure-like events (SLEs), indicating simultaneous depolarization of mitochondria. This was critically dependent on Ca2+ ion uptake and extrusion, because inhibition of the mitochondrial Ca2+ ion uniporter by Ru360 and the mitochondrial Na+/Ca2+ ion exchanger by 7-chloro-5-(2-chlorophenyl)-1,5-dihydro-4,1-benzothiazepin-2(3H)-one but not the inhibitor of mitochondrial permeability transition pore, cyclosporin A, decreased the SLE-associated mitochondrial depolarization. The Ca2+ ion dependence of simultaneous mitochondrial depolarization suggested enhanced Ca2+ ion cycling across mitochondrial membranes during epileptiform activity. Indeed, [Ca2+]m fluctuated during interictal activity in single dendrites, and these fluctuations spread over the entire mitochondrial compartment during SLEs, as revealed using mitochondria-specific dyes (rhod-2 and rhod-ff) and spatial frequency-based image analysis. These findings strengthen the hypothesis that epileptic activity results in Ca2+ ion-dependent changes in mitochondrial function that might contribute to the

  8. Abnormal permeability of inner and outer mitochondrial membranes contributes independently to mitochondrial dysfunction in the liver during acute endotoxemia.

    PubMed

    Crouser, Elliott D; Julian, Mark W; Huff, Jennifer E; Joshi, Mandar S; Bauer, John A; Gadd, Martha E; Wewers, Mark D; Pfeiffer, Douglas R

    2004-02-01

    This study was designed to determine the role played by the mitochondrial permeability transition in the pathogenesis of mitochondrial damage and dysfunction in a representative systemic organ during the acute phase of endotoxemia. A well-established, normotensive feline model was employed to determine whether pretreatment with cyclosporine A, a potent inhibitor of the mitochondrial permeability transition, normalizes mitochondrial ultrastructural injury and dysfunction in the liver during acute endotoxemia. The Ohio State University Medical Center research laboratory. Random source, adult, male conditioned cats. Hemodynamic resuscitation and maintenance of acid-base balance and tissue oxygen availability were provided, as needed, to minimize the potentially confounding effects of tissue hypoxia and/or acidosis on the experimental results. Treatment groups received isotonic saline vehicle (control; n = 6), lipopolysaccharide (3.0 mg/kg, intravenously; n = 8), or cyclosporine A (6.0 mg/kg, intravenously; n = 6) or tacrolimus (FK506, 0.1 mg/kg, intravenously; n = 4) followed in 30 mins by lipopolysaccharide (3.0 mg/kg, intravenously). Liver samples were obtained 4 hrs posttreatment, and mitochondrial ultrastructure, function, and cytochrome c, Bax, and ceramide contents were assessed. As expected, significant mitochondrial injury was apparent in the liver 4 hrs after lipopolysaccharide treatment, despite maintenance of regional tissue oxygen availability. Namely, mitochondria demonstrated high-amplitude swelling and exhibited altered respiratory function. Cyclosporine A pretreatment attenuated lipopolysaccharide-induced mitochondrial ultrastructural abnormalities and normalized mitochondrial respiratory control, reflecting protection against inner mitochondrial membrane damage. However, an abnormal permeability of outer mitochondrial membranes to cytochrome c was observed in all lipopolysaccharide-treated groups and was associated with increased mitochondrial

  9. Protein Composition of Trypanosoma brucei Mitochondrial Membranes

    PubMed Central

    Acestor, Nathalie; Panigrahi, Aswini K.; Ogata, Yuko; Anupama, Atashi; Stuart, Kenneth D.

    2010-01-01

    Mitochondria consist of four compartments, outer membrane, intermembrane space, inner membrane and matrix; each harboring specific functions and structures. In this study, we used mass spectrometry (LC-MS/MS) to characterize the protein composition of Trypanosoma brucei mitochondrial membranes, which were enriched by different biochemical fractionation techniques. The analyses identified 202 proteins that contain one or more transmembrane domain(s) and/or positive GRAVY scores. Of these, various criteria were used to assign 72 proteins to mitochondrial membranes with high confidence, and 106 with moderate to low confidence. The sub-cellular localization of a selected subset of 13 membrane assigned proteins was confirmed by tagging and immunofluorescence analysis. While most proteins assigned to mitochondrial membrane have putative roles in metabolic, energy generating, and transport processes, ~50% have no known function. These studies result in a comprehensive profile of the composition and sub-organellar location of proteins in the T. brucei mitochondrion thus, providing useful information on mitochondrial functions. PMID:19834910

  10. [Effect of 3-bromopyruvate on mitochondrial membrane potential and apoptosis of human breast carcinoma SK-BR-3 cells].

    PubMed

    Zhang, Yuanyuan; Liu, Zhe; Zhang, Qianwen; Chao, Zhenhua; Zhang, Pei; Xia, Fei; Jiang, Chenchen; Liu, Hao; Jiang, Zhiwen

    2013-09-01

    To study the effect of glycolysis inhibitor 3-bromopyruvate (3-BrPA) in inducing apoptosis of human breast carcinoma cells SK-BR-3 and the possible mechanism. MTT assay was used to detect the growth inhibition induced by 3-BrPA in breast cancer cells SK-BR-3. The apoptotic cells were detected by flow cytometry with propidium iodide (PI). ATP levels in the cells were detected by ATP assay kit, and DHE fluorescent probe technique was used to determine superoxide anion levels; the mitochondrial membrane potential was assessed using JC-1 staining assay. MTT assay showed that the proliferation of SK-BR-3 cells was inhibited by 3-BrPA in a time- and concentration-dependent manner. Exposure to 80, 160, and 320 µmol·L(-1) 3-BrPA for 24 h resulted in cell apoptosis rates of 6.7%, 22.3%, and 79.6%, respectively, and the intracellular ATP levels of SK-BR-3 cells treated with 80, 160, 320 µmol·L(-1) 3-BrPA for 5 h were 87.7%, 60.6%, and 23.7% of the control levels. 3-BrPA at 160 µmol·L(-1) increased reactive oxygen levels and lowered mitochondrial membrane potential of SK-BR-3 cells. 3-BrPA can inhibit cell proliferation, reduce the mitochondrial membrane potential and induce apoptosis in SK-BR-3 cells, the mechanism of which may involve a reduced ATP level by inhibiting glycolysis and increasing the reactive oxygen level in the cells.

  11. The Human Mitochondrial DNA Depletion Syndrome Gene MPV17 Encodes a Non-selective Channel That Modulates Membrane Potential.

    PubMed

    Antonenkov, Vasily D; Isomursu, Antti; Mennerich, Daniela; Vapola, Miia H; Weiher, Hans; Kietzmann, Thomas; Hiltunen, J Kalervo

    2015-05-29

    The human MPV17-related mitochondrial DNA depletion syndrome is an inherited autosomal recessive disease caused by mutations in the inner mitochondrial membrane protein MPV17. Although more than 30 MPV17 gene mutations were shown to be associated with mitochondrial DNA depletion syndrome, the function of MPV17 is still unknown. Mice deficient in Mpv17 show signs of premature aging. In the present study, we used electrophysiological measurements with recombinant MPV17 to reveal that this protein forms a non-selective channel with a pore diameter of 1.8 nm and located the channel's selectivity filter. The channel was weakly cation-selective and showed several subconductance states. Voltage-dependent gating of the channel was regulated by redox conditions and pH and was affected also in mutants mimicking a phosphorylated state. Likewise, the mitochondrial membrane potential (Δψm) and the cellular production of reactive oxygen species were higher in embryonic fibroblasts from Mpv17(-/-) mice. However, despite the elevated Δψm, the Mpv17-deficient mitochondria showed signs of accelerated fission. Together, these observations uncover the role of MPV17 as a Δψm-modulating channel that apparently contributes to mitochondrial homeostasis under different conditions. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  12. The Human Mitochondrial DNA Depletion Syndrome Gene MPV17 Encodes a Non-selective Channel That Modulates Membrane Potential*

    PubMed Central

    Antonenkov, Vasily D.; Isomursu, Antti; Mennerich, Daniela; Vapola, Miia H.; Weiher, Hans; Kietzmann, Thomas; Hiltunen, J. Kalervo

    2015-01-01

    The human MPV17-related mitochondrial DNA depletion syndrome is an inherited autosomal recessive disease caused by mutations in the inner mitochondrial membrane protein MPV17. Although more than 30 MPV17 gene mutations were shown to be associated with mitochondrial DNA depletion syndrome, the function of MPV17 is still unknown. Mice deficient in Mpv17 show signs of premature aging. In the present study, we used electrophysiological measurements with recombinant MPV17 to reveal that this protein forms a non-selective channel with a pore diameter of 1.8 nm and located the channel's selectivity filter. The channel was weakly cation-selective and showed several subconductance states. Voltage-dependent gating of the channel was regulated by redox conditions and pH and was affected also in mutants mimicking a phosphorylated state. Likewise, the mitochondrial membrane potential (Δψm) and the cellular production of reactive oxygen species were higher in embryonic fibroblasts from Mpv17−/− mice. However, despite the elevated Δψm, the Mpv17-deficient mitochondria showed signs of accelerated fission. Together, these observations uncover the role of MPV17 as a Δψm-modulating channel that apparently contributes to mitochondrial homeostasis under different conditions. PMID:25861990

  13. Topological Transitions in Mitochondrial Membranes controlled by Apoptotic Proteins

    NASA Astrophysics Data System (ADS)

    Hwee Lai, Ghee; Sanders, Lori K.; Mishra, Abhijit; Schmidt, Nathan W.; Wong, Gerard C. L.; Ivashyna, Olena; Schlesinger, Paul H.

    2010-03-01

    The Bcl-2 family comprises pro-apoptotic proteins, capable of permeabilizing the mitochondrial membrane, and anti-apoptotic members interacting in an antagonistic fashion to regulate programmed cell death (apoptosis). They offer potential therapeutic targets to re-engage cellular suicide in tumor cells but the extensive network of implicated protein-protein interactions has impeded full understanding of the decision pathway. We show, using synchrotron x-ray diffraction, that pro-apoptotic proteins interact with mitochondrial-like model membranes to generate saddle-splay (negative Gaussian) curvature topologically required for pore formation, while anti-apoptotic proteins can deactivate curvature generation by molecules drastically different from Bcl-2 family members and offer evidence for membrane-curvature mediated interactions general enough to affect very disparate systems.

  14. Mitochondrial shape governs BAX-induced membrane permeabilization and apoptosis.

    PubMed

    Renault, Thibaud T; Floros, Konstantinos V; Elkholi, Rana; Corrigan, Kelly-Ann; Kushnareva, Yulia; Wieder, Shira Y; Lindtner, Claudia; Serasinghe, Madhavika N; Asciolla, James J; Buettner, Christoph; Newmeyer, Donald D; Chipuk, Jerry E

    2015-01-08

    Proapoptotic BCL-2 proteins converge upon the outer mitochondrial membrane (OMM) to promote mitochondrial outer membrane permeabilization (MOMP) and apoptosis. Here we investigated the mechanistic relationship between mitochondrial shape and MOMP and provide evidence that BAX requires a distinct mitochondrial size to induce MOMP. We utilized the terminal unfolded protein response pathway to systematically define proapoptotic BCL-2 protein composition after stress and then directly interrogated their requirement for a productive mitochondrial size. Complementary biochemical, cellular, in vivo, and ex vivo studies reveal that Mfn1, a GTPase involved in mitochondrial fusion, establishes a mitochondrial size that is permissive for proapoptotic BCL-2 family function. Cells with hyperfragmented mitochondria, along with size-restricted OMM model systems, fail to support BAX-dependent membrane association and permeabilization due to an inability to stabilize BAXα9·membrane interactions. This work identifies a mechanistic contribution of mitochondrial size in dictating BAX activation, MOMP, and apoptosis. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Mitofusins and the mitochondrial permeability transition: the potential downside of mitochondrial fusion

    PubMed Central

    Papanicolaou, Kyriakos N.; Phillippo, Matthew M.

    2012-01-01

    Mitofusins (Mfn-1 and Mfn-2) are transmembrane proteins that bind and hydrolyze guanosine 5′-triphosphate to bring about the merging of adjacent mitochondrial membranes. This event is necessary for mitochondrial fusion, a biological process that is critical for organelle function. The broad effects of mitochondrial fusion on cell bioenergetics have been extensively studied, whereas the local effects of mitofusin activity on the structure and integrity of the fusing mitochondrial membranes have received relatively little attention. From the study of fusogenic proteins, theoretical models, and simulations, it has been noted that the fusion of biological membranes is associated with local perturbations on the integrity of the membrane that present in the form of lipidic holes which open on the opposing bilayers. These lipidic holes represent obligate intermediates that make the fusion process thermodynamically more favorable and at the same time induce leakage to the fusing membranes. In this perspectives article we present the relevant evidence selected from a spectrum of membrane fusion/leakage models and attempt to couple this information with observations conducted with cardiac myocytes or mitochondria deficient in Mfn-1 and Mfn-2. More specifically, we argue in favor of a situation whereby mitochondrial fusion in cardiac myocytes is coupled with outer mitochondrial membrane destabilization that is opportunistically employed during the process of mitochondrial permeability transition. We hope that these insights will initiate research on this new hypothesis of mitochondrial permeability transition regulation, a poorly understood mitochondrial function with significant consequences on myocyte survival. PMID:22636681

  16. Reconstitution of the protein insertion machinery of the mitochondrial inner membrane.

    PubMed Central

    Haucke, V; Schatz, G

    1997-01-01

    We have reconstituted the protein insertion machinery of the yeast mitochondrial inner membrane into proteoliposomes. The reconstituted proteoliposomes have a distinct morphology and protein composition and correctly insert the ADP/ATP carrier (AAC) and Tim23p, two multi-spanning integral proteins of the mitochondrial inner membrane. The reconstituted system requires a membrane potential, but not Tim44p or mhsp70, both of which are required for the ATP-driven translocation of proteins into the matrix. The protein insertion machinery can thus operate independently of the energy-transducing Tim44p-mhsp70 complex. PMID:9303300

  17. Dihydroartemisinin Induces Apoptosis in Human Bladder Cancer Cell Lines Through Reactive Oxygen Species, Mitochondrial Membrane Potential, and Cytochrome C Pathway

    PubMed Central

    Poupel, Farhad; Aghaei, Mahmoud; Movahedian, Ahmad; Jafari, Seyyed Mehdi; Shahrestanaki, Mohammad Keyvanloo

    2017-01-01

    Background: Dihydroartemisinin (DHA) is a semisynthetic derivative of artemisinin and has antiproliferative effect. However, such effects of DHA have not yet been revealed for bladder cancer cells. Methods: We used as bladder cancer cell lines to examine the effect of DHA on the cell viability, cell apoptosis, and monitoring of mitochondrial membrane potential (ΔΨm) changes. Furthermore, the effect of DHA on the reactive oxygen species (ROS) production and cytochrome c release were also detected. We employed MTT assay to investigate the cell proliferation effect of DHA on the EJ-138 and HTB-9 human bladder cancer cells. Annexin/PI staining, caspase-3 activity assay, Bcl-2/Bax protein expression, mitochondrial membrane potential assay, cytochrome c release, and ROS analysis were used for apoptosis detection. Results: DHA significantly reduced cell viability in a dose-dependent manner. Cytotoxicity of DHA was suppressed by N-acetylcysteine. The growth inhibition effect of DHA was related to the induction of cell apoptosis, which were manifested by annexin V-FITC staining, activation of caspase-3. DHA also increased ROS generation, cytochrome c release, and loss of mitochondrial transmembrane potential (ΔΨm) in cells. In addition, the downregulation of regulatory protein Bcl-2 and upregulation of Bax protein by DHA were also observed. Conclusions: These findings demonstrated that DHA induces apoptosis through mitochondrial signaling pathway. These suggest that DHA may be a potential agent for induction of apoptosis in human bladder cancer cells. PMID:29114376

  18. Mechanisms Underlying the Essential Role of Mitochondrial Membrane Lipids in Yeast Chronological Aging

    PubMed Central

    Medkour, Younes; Dakik, Paméla; McAuley, Mélissa; Mohammad, Karamat; Mitrofanova, Darya

    2017-01-01

    The functional state of mitochondria is vital to cellular and organismal aging in eukaryotes across phyla. Studies in the yeast Saccharomyces cerevisiae have provided evidence that age-related changes in some aspects of mitochondrial functionality can create certain molecular signals. These signals can then define the rate of cellular aging by altering unidirectional and bidirectional communications between mitochondria and other organelles. Several aspects of mitochondrial functionality are known to impact the replicative and/or chronological modes of yeast aging. They include mitochondrial electron transport, membrane potential, reactive oxygen species, and protein synthesis and proteostasis, as well as mitochondrial synthesis of iron-sulfur clusters, amino acids, and NADPH. Our recent findings have revealed that the composition of mitochondrial membrane lipids is one of the key aspects of mitochondrial functionality affecting yeast chronological aging. We demonstrated that exogenously added lithocholic bile acid can delay chronological aging in yeast because it elicits specific changes in mitochondrial membrane lipids. These changes allow mitochondria to operate as signaling platforms that delay yeast chronological aging by orchestrating an institution and maintenance of a distinct cellular pattern. In this review, we discuss molecular and cellular mechanisms underlying the essential role of mitochondrial membrane lipids in yeast chronological aging. PMID:28593023

  19. Withaferin-A induces apoptosis in osteosarcoma U2OS cell line via generation of ROS and disruption of mitochondrial membrane potential.

    PubMed

    Li, A-X; Sun, M; Li, X

    2017-03-01

    Withaferin-A (WF-A) is a well-known dietary compound isolated from Withania somnifera. It has marked pharmacological potential and has been shown to exhibit antiproliferative activity against several types of cancerous cells. Currently, the main focus of anti-cancer therapeutic development is to identify apoptosis-inducing drug-like molecules. Osteosarcoma is a rare type of bone cancer affecting humans. The objective of the present study was therefore to evaluate the antitumor potential of WF-A against several osteosarcoma cell lines. MTT assay was used to evaluate WF-A against osteosarcoma cell lines and to calculate the IC50. DAPI staining was used to confirm the apoptosis-inducing potential of WF-A. Mitochondrial membrane potential, reactive oxygen species (ROS) assay, and Western blotting were used to confirm the basis of apoptosis. The results of the present study revealed that WF-A exhibited strong antiproliferative activity against all the cells lines, with IC50 ranging from 0.32 to 7.6 µM. The lowest IC50 (0.32 µM) was observed against U2OS cell line and, therefore, it was selected for further analysis. DAPI staining indicated that WF-A exhibited antiproliferative activity via induction of apoptosis. Moreover, WF-A induced a ROS-mediated reduction in mitochondrial membrane potential in a dose-dependent manner and activation of caspase-3 in osteosarcoma cells. We suggest that WF-A may prove a potent therapeutic agent for inducing apoptosis in osteosarcoma cell lines via generation of ROS and disruption of mitochondrial membrane potential.

  20. Ethanol Influences on Bax Translocation, Mitochondrial Membrane Potential, and Reactive Oxygen Species Generation are Modulated by Vitamin E and Brain-Derived Neurotrophic Factor

    PubMed Central

    Heaton, Marieta Barrow; Paiva, Michael; Siler-Marsiglio, Kendra

    2011-01-01

    Background This study investigated ethanol influences on intracellular events which predispose developing neurons toward apoptosis, and the capacity of the antioxidant α-tocopherol (vitamin E) and the neurotrophin brain-derived neurotrophic factor (BDNF) to modulate these effects. Assessments were made of the following: (1) ethanol-induced translocation of the pro-apoptotic Bax protein to the mitochondrial membrane, a key upstream event in the initiation of apoptotic cell death; (2) disruption of the mitochondrial membrane potential (MMP) as a result of ethanol exposure, an important process in triggering the apoptotic cascade; and (3) generation of damaging reactive oxygen species (ROS) as a function of ethanol exposure. Methods These interactions were investigated in cultured postnatal day 8 neonatal rat cerebellar granule cells, a population vulnerable to developmental ethanol exposure in vivo and in vitro. Bax mitochondrial translocation was analyzed via subcellular fractionation followed by Western blot, and mitochondrial membrane integrity was determined using the lipophilic dye, JC-1, which exhibits potential-dependent accumulation in the mitochondrial membrane as a function of the MMP. Results Brief ethanol exposure in these preparations precipitated Bax translocation, but both vitamin E and BDNF reduced this effect to control levels. Ethanol treatment also resulted in a disturbance of the MMP, and this effect was blunted by the antioxidant and the neurotrophin. ROS generation was enhanced by a short ethanol exposure in these cells, but the production of these harmful free radicals was diminished to control levels by co-treatment with either vitamin E or BDNF. Conclusions These results indicate that both antioxidants and neurotrophic factors have the potential to ameliorate ethanol neurotoxicity, and suggest possible interventions which could be implemented in preventing or lessening the severity of the damaging effects of ethanol in the developing central

  1. Models of plasma membrane organization can be applied to mitochondrial membranes to target human health and disease with polyunsaturated fatty acids.

    PubMed

    Raza Shaikh, Saame; Brown, David A

    2013-01-01

    Bioactive n-3 polyunsaturated fatty acids (PUFA), abundant in fish oil, have potential for treating symptoms associated with inflammatory and metabolic disorders; therefore, it is essential to determine their fundamental molecular mechanisms. Recently, several labs have demonstrated the n-3 PUFA docosahexaenoic acid (DHA) exerts anti-inflammatory effects by targeting the molecular organization of plasma membrane microdomains. Here we briefly review the evidence that DHA reorganizes the spatial distribution of microdomains in several model systems. We then emphasize how models on DHA and plasma membrane microdomains can be applied to mitochondrial membranes. We discuss the role of DHA acyl chains in regulating mitochondrial lipid-protein clustering, and how these changes alter several aspects of mitochondrial function. In particular, we summarize effects of DHA on mitochondrial respiration, electron leak, permeability transition, and mitochondrial calcium handling. Finally, we conclude by postulating future experiments that will augment our understanding of DHA-dependent membrane organization in health and disease. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. The mitochondrial outer membrane protein hFis1 regulates mitochondrial morphology and fission through self-interaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Serasinghe, Madhavika N.; Mitochondrial Research and Innovation Group, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642; Yoon, Yisang

    2008-11-15

    Mitochondrial fission in mammals is mediated by at least two proteins, DLP1/Drp1 and hFis1. DLP1 mediates the scission of mitochondrial membranes through GTP hydrolysis, and hFis1 is a putative DLP1 receptor anchored at the mitochondrial outer membrane by a C-terminal single transmembrane domain. The cytosolic domain of hFis1 contains six {alpha}-helices ({alpha}1-{alpha}6) out of which {alpha}2-{alpha}5 form two tetratricopeptide repeat (TPR) folds. In this study, by using chimeric constructs, we demonstrated that the cytosolic domain contains the necessary information for hFis1 function during mitochondrial fission. By using transient expression of different mutant forms of the hFis1 protein, we found thatmore » hFis1 self-interaction plays an important role in mitochondrial fission. Our results show that deletion of the {alpha}1 helix greatly increased the formation of dimeric and oligomeric forms of hFis1, indicating that {alpha}1 helix functions as a negative regulator of the hFis1 self-interaction. Further mutational approaches revealed that a tyrosine residue in the {alpha}5 helix and the linker between {alpha}3 and {alpha}4 helices participate in hFis1 oligomerization. Mutations causing oligomerization defect greatly reduced the ability to induce not only mitochondrial fragmentation by full-length hFis1 but also the formation of swollen ball-shaped mitochondria caused by {alpha}1-deleted hFis1. Our data suggest that oligomerization of hFis1 in the mitochondrial outer membrane plays a role in mitochondrial fission, potentially through participating in fission factor recruitment.« less

  3. Phytol shows anti-angiogenic activity and induces apoptosis in A549 cells by depolarizing the mitochondrial membrane potential.

    PubMed

    Sakthivel, Ravi; Malar, Dicson Sheeja; Devi, Kasi Pandima

    2018-06-13

    In the present study, the antiproliferative activity of phytol and its mechanism of action against human lung adenocarcinoma cell line A549 were studied in detail. Results showed that phytol exhibited potent antiproliferative activity against A549 cells in a dose and time-dependent manner with an IC 50 value of 70.81 ± 0.32 μM and 60.7 ± 0.47 μM at 24 and 48 h, respectively. Phytol showed no adverse toxic effect in normal human lung cells (L-132), but mild toxic effect was observed when treated with maximum dose (67 and 84 μM). No membrane-damaging effect was evidenced by PI staining and SEM analysis. The results of mitochondrial membrane potential analysis, cell cycle analysis, FT-IR and Western blotting analysis clearly demonstrated the molecular mechanism of phytol as induction of apoptosis in A549 cells, as evidenced by formation of shrinked cell morphology with membrane blebbing, depolarization of mitochondrial membrane potential, increased cell population in the sub-G0 phase, band variation in the DNA and lipid region, downregulation of Bcl-2, upregulation of Bax and the activation of caspase-9 and -3. In addition, phytol inhibited the CAM vascular growth as evidenced by CAM assay, which positively suggests that phytol has anti-angiogenic potential. Taken together, these findings clearly demonstrate the mode of action by which phytol induces cell death in A549 lung adenocarcinoma cells. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  4. Mitochondrial rhodanese: membrane-bound and complexed activity.

    PubMed

    Ogata, K; Volini, M

    1990-05-15

    We have proposed that phosphorylated and dephosphorylated forms of the mitochondrial sulfurtransferase, rhodanese, function as converter enzymes that interact with membrane-bound iron-sulfur centers of the electron transport chain to modulate the rate of mitochondrial respiration (Ogata, K., Dai, X., and Volini, M. (1989) J. Biol. Chem. 204, 2718-2725). In the present studies, we have explored some structural aspects of the mitochondrial rhodanese system. By sequential extraction of lysed mitochondria with phosphate buffer and phosphate buffer containing 20 mM cholate, we have shown that 30% of the rhodanese activity of bovine liver is membrane-bound. Resolution of cholate extracts on Sephadex G-100 indicates that part of the bound rhodanese is complexed with other mitochondrial proteins. Tests with the complex show that it forms iron-sulfur centers when incubated with the rhodanese sulfur-donor substrate thiosulfate, iron ions, and a reducing agent. Experiments on the rhodanese activity of rat liver mitochondria give similar results. Taken together, the findings indicate that liver rhodanese is in part bound to the mitochondrial membrane as a component of a multiprotein complex that forms iron-sulfur centers. The findings are consistent with the role we propose for rhodanese in the modulation of mitochondrial respiratory activity.

  5. The Non-structural Protein of Crimean-Congo Hemorrhagic Fever Virus Disrupts the Mitochondrial Membrane Potential and Induces Apoptosis*

    PubMed Central

    Barnwal, Bhaskar; Karlberg, Helen; Mirazimi, Ali; Tan, Yee-Joo

    2016-01-01

    Viruses have developed distinct strategies to overcome the host defense system. Regulation of apoptosis in response to viral infection is important for virus survival and dissemination. Like other viruses, Crimean-Congo hemorrhagic fever virus (CCHFV) is known to regulate apoptosis. This study, for the first time, suggests that the non-structural protein NSs of CCHFV, a member of the genus Nairovirus, induces apoptosis. In this report, we demonstrated the expression of CCHFV NSs, which contains 150 amino acid residues, in CCHFV-infected cells. CCHFV NSs undergoes active degradation during infection. We further demonstrated that ectopic expression of CCHFV NSs induces apoptosis, as reflected by caspase-3/7 activity and cleaved poly(ADP-ribose) polymerase, in different cell lines that support CCHFV replication. Using specific inhibitors, we showed that CCHFV NSs induces apoptosis via both intrinsic and extrinsic pathways. The minimal active region of the CCHFV NSs protein was determined to be 93–140 amino acid residues. Using alanine scanning, we demonstrated that Leu-127 and Leu-135 are the key residues for NSs-induced apoptosis. Interestingly, CCHFV NSs co-localizes in mitochondria and also disrupts the mitochondrial membrane potential. We also demonstrated that Leu-127 and Leu-135 are important residues for disruption of the mitochondrial membrane potential by NSs. Therefore, these results indicate that the C terminus of CCHFV NSs triggers mitochondrial membrane permeabilization, leading to activation of caspases, which, ultimately, leads to apoptosis. Given that multiple factors contribute to apoptosis during CCHFV infection, further studies are needed to define the involvement of CCHFV NSs in regulating apoptosis in infected cells. PMID:26574543

  6. Mitochondrial fusion through membrane automata.

    PubMed

    Giannakis, Konstantinos; Andronikos, Theodore

    2015-01-01

    Studies have shown that malfunctions in mitochondrial processes can be blamed for diseases. However, the mechanism behind these operations is yet not sufficiently clear. In this work we present a novel approach to describe a biomolecular model for mitochondrial fusion using notions from the membrane computing. We use a case study defined in BioAmbient calculus and we show how to translate it in terms of a P automata variant. We combine brane calculi with (mem)brane automata to produce a new scheme capable of describing simple, realistic models. We propose the further use of similar methods and the test of other biomolecular models with the same behaviour.

  7. Assembly of β-barrel proteins in the mitochondrial outer membrane.

    PubMed

    Höhr, Alexandra I C; Straub, Sebastian P; Warscheid, Bettina; Becker, Thomas; Wiedemann, Nils

    2015-01-01

    Mitochondria evolved through endosymbiosis of a Gram-negative progenitor with a host cell to generate eukaryotes. Therefore, the outer membrane of mitochondria and Gram-negative bacteria contain pore proteins with β-barrel topology. After synthesis in the cytosol, β-barrel precursor proteins are first transported into the mitochondrial intermembrane space. Folding and membrane integration of β-barrel proteins depend on the mitochondrial sorting and assembly machinery (SAM) located in the outer membrane, which is related to the β-barrel assembly machinery (BAM) in bacteria. The SAM complex recognizes β-barrel proteins by a β-signal in the C-terminal β-strand that is required to initiate β-barrel protein insertion into the outer membrane. In addition, the SAM complex is crucial to form membrane contacts with the inner mitochondrial membrane by interacting with the mitochondrial contact site and cristae organizing system (MICOS) and shares a subunit with the endoplasmic reticulum-mitochondria encounter structure (ERMES) that links the outer mitochondrial membrane to the endoplasmic reticulum (ER). Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Interchangeable adaptors regulate mitochondrial dynamin assembly for membrane scission

    PubMed Central

    Koirala, Sajjan; Guo, Qian; Kalia, Raghav; Bui, Huyen T.; Eckert, Debra M.; Frost, Adam; Shaw, Janet M.

    2013-01-01

    Mitochondrial fission is mediated by the dynamin-related GTPases Dnm1/Drp1 (yeast/mammals), which form spirals around constricted sites on mitochondria. Additional membrane-associated adaptor proteins (Fis1, Mdv1, Mff, and MiDs) are required to recruit these GTPases from the cytoplasm to the mitochondrial surface. Whether these adaptors participate in both GTPase recruitment and membrane scission is not known. Here we use a yeast strain lacking all fission proteins to identify the minimal combinations of GTPases and adaptors sufficient for mitochondrial fission. Although Fis1 is dispensable for fission, membrane-anchored Mdv1, Mff, or MiDs paired individually with their respective GTPases are sufficient to divide mitochondria. In addition to their role in Drp1 membrane recruitment, MiDs coassemble with Drp1 in vitro. The resulting heteropolymer adopts a dramatically different structure with a narrower diameter than Drp1 homopolymers assembled in isolation. This result demonstrates that an adaptor protein alters the architecture of a mitochondrial dynamin GTPase polymer in a manner that could facilitate membrane constriction and severing activity. PMID:23530241

  9. Direct Membrane Association Drives Mitochondrial Fission by the Parkinson Disease-associated Protein α-Synuclein*♦

    PubMed Central

    Nakamura, Ken; Nemani, Venu M.; Azarbal, Farnaz; Skibinski, Gaia; Levy, Jon M.; Egami, Kiyoshi; Munishkina, Larissa; Zhang, Jue; Gardner, Brooke; Wakabayashi, Junko; Sesaki, Hiromi; Cheng, Yifan; Finkbeiner, Steven; Nussbaum, Robert L.; Masliah, Eliezer; Edwards, Robert H.

    2011-01-01

    The protein α-synuclein has a central role in Parkinson disease, but the mechanism by which it contributes to neural degeneration remains unknown. We now show that the expression of α-synuclein in mammalian cells, including neurons in vitro and in vivo, causes the fragmentation of mitochondria. The effect is specific for synuclein, with more fragmentation by α- than β- or γ-isoforms, and it is not accompanied by changes in the morphology of other organelles or in mitochondrial membrane potential. However, mitochondrial fragmentation is eventually followed by a decline in respiration and neuronal death. The fragmentation does not require the mitochondrial fission protein Drp1 and involves a direct interaction of synuclein with mitochondrial membranes. In vitro, synuclein fragments artificial membranes containing the mitochondrial lipid cardiolipin, and this effect is specific for the small oligomeric forms of synuclein. α-Synuclein thus exerts a primary and direct effect on the morphology of an organelle long implicated in the pathogenesis of Parkinson disease. PMID:21489994

  10. Effect of Nanosecond RF Pulses on Mitochondrial Membranes

    NASA Astrophysics Data System (ADS)

    Zharkova, L. P.; Romanchenko, I. V.; Bol'shakov, M. A.; Rostov, V. V.

    2017-12-01

    Effect of nanosecond RF pulses on the state of isolated mitochondria and their membranes is investigated. Mitochondrial suspensions are exposed to periodic RF pulses with durations from 4 to 25 ns, frequencies from 0.6 to 1.0 GHz, amplitudes from 0.1 to 36 kV/cm, and pulse repetition frequencies 8-25 Hz. The integrity of the mitochondrial membranes is estimated from their resistance to electric current. The possibility of opening of protein pores with nonspecific permeability is determined from a change in the mitochondrial volume by registration of optical density of organelle suspension.

  11. The MEF2 gene is essential for yeast longevity, with a dual role in cell respiration and maintenance of mitochondrial membrane potential.

    PubMed

    Callegari, Sylvie; McKinnon, Ross A; Andrews, Stuart; de Barros Lopes, Miguel A

    2011-04-20

    The Saccharomyces cerevisiae MEF2 gene is a mitochondrial protein translation factor. Formerly believed to catalyze peptide elongation, evidence now suggests its involvement in ribosome recycling. This study confirms the role of the MEF2 gene for cell respiration and further uncovers a slow growth phenotype and reduced chronological lifespan. Furthermore, in comparison with cytoplasmic ρ(0) strains, mef2Δ strains have a marked reduction of the inner mitochondrial membrane potential and mitochondria show a tendency to aggregate, suggesting an additional role for the MEF2 gene in maintenance of mitochondrial health, a role that may also be shared by other mitochondrial protein synthesis factors. Copyright © 2011 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  12. [Changes in polarization of myometrial cells plasma and internal mitochondrial membranes under calixarenes action as inhibitors of plasma membrane Na+, K+-ATPase].

    PubMed

    Danylovych, H V; Danylovych, Iu V; Kolomiiets', O V; Kosterin, S O; Rodik, R V; Cherenok, S O; Kal'chenko, V I; Chunikhin, O Iu; Horchev, V F; Karakhim, S O

    2012-01-01

    The influence of supramolecular macrocyclic compounds--calix[4]arenes C-97, C-99, C-107, which are ouabainomymetic high affinity inhibitors of Na+, K(+)-ATPase, on the polarization level of plasmic and mitochondrial membranes of rat uterine smooth muscle cells was investigated. The influence of these compounds on the myocytes characteristic size was studied. By using a confocal microscopy and specific for mitochondrial MitoTracker Orange CM-H2TMRos dye it was proved that the potential-sensitive fluorescent probe DiOC6(3) interacts with mitochondria. Artificial potential collapse of plasmic membrane in this case was modeled by myocytes preincubation with ouabain (1 mM). Further experiments performed using the method of flow cytometry with DiOC6(3) have shown that the compounds C-97, C-99 and C-107 at concentration 50-100 nM caused depolarization of the plasma membrane (at the level of 30% relative to control values) in conditions of artificial collapse of mitochondrial potential by myocytes preincubation in the presence of 5 mM of sodium azide. Under artificial sarcolemma depolarization by ouabain, calixarenes C-97, C-99 and C-107 at 100 nM concentrations caused a transient increase of mitochondrial membrane potential, that is 40% of the control level and lasted about 5 minutes. Calixarenes C-99 and C-107 caused a significant increase in fluorescence of myocytes in these conditions, which was confirmed by confocal microscopy too. It was proved by photon correlation spectroscopy method that the C-99 and C-107 caused an increase of characteristic size of myocytes.

  13. Influence of Glucose Deprivation on Membrane Potentials of Plasma Membranes, Mitochondria and Synaptic Vesicles in Rat Brain Synaptosomes.

    PubMed

    Hrynevich, Sviatlana V; Pekun, Tatyana G; Waseem, Tatyana V; Fedorovich, Sergei V

    2015-06-01

    Hypoglycemia can cause neuronal cell death similar to that of glutamate-induced cell death. In the present paper, we investigated the effect of glucose removal from incubation medium on changes of mitochondrial and plasma membrane potentials in rat brain synaptosomes using the fluorescent dyes DiSC3(5) and JC-1. We also monitored pH gradients in synaptic vesicles and their recycling by the fluorescent dye acridine orange. Glucose deprivation was found to cause an inhibition of K(+)-induced Ca(2+)-dependent exocytosis and a shift of mitochondrial and plasma membrane potentials to more positive values. The sensitivity of these parameters to the energy deficit caused by the removal of glucose showed the following order: mitochondrial membrane potential > plasma membrane potential > pH gradient in synaptic vesicles. The latter was almost unaffected by deprivation compared with the control. The pH-dependent dye acridine orange was used to investigate synaptic vesicle recycling. However, the compound's fluorescence was shown to be enhanced also by the mixture of mitochondrial toxins rotenone (10 µM) and oligomycin (5 µg/mL). This means that acridine orange can presumably be partially distributed in the intermembrane space of mitochondria. Glucose removal from the incubation medium resulted in a 3.7-fold raise of acridine orange response to rotenone + oligomycin suggesting a dramatic increase in the mitochondrial pH gradient. Our results suggest that the biophysical characteristics of neuronal presynaptic endings do not favor excessive non-controlled neurotransmitter release in case of hypoglycemia. The inhibition of exocytosis and the increase of the mitochondrial pH gradient, while preserving the vesicular pH gradient, are proposed as compensatory mechanisms.

  14. [Effect of DNA polymerase beta on apoptosis and mitochondrial membrane potential induced by hydroquinone, a metabolite of benzene].

    PubMed

    Chen, Chen; Yang, Mo; Zhang, Zun-zhen; Wu, Mei; Deng, Wen-wen

    2011-12-01

    To explore the effect and mechanism of DNA polymerase β expression level on cell apoptosis and mitochondrial membrane potential induced by hydroquinone. Polβ wild-type cells (polβ+/+), polβ overexpressed cells (polβ oe) and polβ null cells (polβ-/-) were applied as a model cell system, The effect of cell apoptosis and mitochondrial membrane potential induced by different doses of hydroquinone were analyzed by flow cytometry. The ROS and ·OH assay kit were used to examine the cellular ROS and ·OH level. The activity of cellular SOD and GSH-Px were tested by Chemiluminescence method after exposed to different concentrations of hydroquinone. With the dose of hydroquinone increased, the rate of apoptosis and falling of mitochondrial membrane potential (ΔΨm) in cells were increased compared with the control. When compared with polβ+/+ cells, the rate of apoptosis in polβ-/- cells exposed to 20.00, 40.00, 80.00 µmol/L hydroquinone increased and the rate of apoptosis in polβ oe cells exposed to 10.00, 20.00, 40.00, 80.00 µmol/L hydroquinone decreased (P < 0.05). Compared with polβ+/+ cells (20.60% ± 0.57%, 37.95% ± 0.64%, 44.50% ± 1.27%, 57.55% ± 1.06%), the rate of cell which undergone mitochondrial depolarization in polβ-/- cells treated with 10.00, 20.00, 40.00, 80.00 µmol/L hydroquinone (33.60% ± 1.55%, 46.05% ± 1.77%, 52.75% ± 2.05%, 75.20% ± 0.56%) increased. The rate of cell which undergone mitochondrial depolarization in polβ oe cells exposed to 10.00, 20.00, 40.00, 80.00 µmol/L hydroquinone (16.05% ± 1.20%, 29.80% ± 1.21%, 35.15% ± 1.06%, 53.80% ± 0.85%) decreased (P < 0.05). When compared with polβ+/+ cells, fluorescent intensity of polβ-/- cells treated with different dosages of hydroquinone increased, while which of polβ oe cells decreased (P < 0.05). Compared with polβ+/+ cells, ·OH level of polβ-/- cells treated with 20.00, 40.00 µmol/L hydroquinone significantly enhanced, while which of polβ oe cells decreased

  15. In vitro and in vivo activation of mitochondrial membrane permeability transition pore using triiodothyronine.

    PubMed

    Endlicher, R; Drahota, Z; Červinková, Z

    2016-06-20

    Using a novel method for evaluating mitochondrial swelling (Drahota et al. 2012a) we studied the effect of calcium (Ca(2+)), phosphate (P(i)), and triiodothyronine (T(3)) on the opening of mitochondrial membrane permeability transition pore and how they interact in the activation of swelling process. We found that 0.1 mM P(i), 50 microM Ca(2+) and 25 microM T(3) when added separately increase the swelling rate to about 10 % of maximal values when all three factors are applied simultaneously. Our findings document that under experimental conditions in which Ca(2+) and P(i) are used as activating factors, the addition of T(3) doubled the rate of swelling. T(3) has also an activating effect on mitochondrial membrane potential. The T(3) activating effect was also found after in vivo application of T(3). Our data thus demonstrate that T(3) has an important role in opening the mitochondrial membrane permeability pore and activates the function of the two key physiological swelling inducers, calcium and phosphate ions.

  16. Evaluation of epididymis storage temperature and cryopreservation conditions for improved mitochondrial membrane potential, membrane integrity, sperm motility and in vitro fertilization in bovine epididymal sperm.

    PubMed

    Nichi, M; Rijsselaere, T; Losano, Jda; Angrimani, Dsr; Kawai, Gkv; Goovaerts, Igf; Van Soom, A; Barnabe, V H; De Clercq, Jbp; Bols, Pej

    2017-04-01

    The maintaining of the epididymis at lower temperatures during storage and transport improves sperm quality. Our study aimed to test whether epididymis storage temperature (post-mortem) and sperm cryopreservation affect sperm kinetics, membrane integrity, mitochondrial potential and fertility capacity. Thirty-six epididymides were collected from 18 bulls after slaughter and divided into two groups: at 4 or 34°C for 2-3 hr. The sperm was collected from the epididymis cauda. The evaluation consisted of computer-assisted sperm analysis (CASA), SYBR14/PI/JC1 to evaluate membrane integrity, mitochondrial membrane potential (MMP) and measurement of lipid peroxidation (TBARS). The sperm was then frozen using an automatic device. After thawing, sperm samples were evaluated by the same variables and further in vitro fertilization rates. Cryopreservation negatively affected sperm motility in samples stored at 4 and 34°C. Nevertheless, the 4°C samples yielded higher rates of blastocyst formation. Pre-freeze sperm motility, progressive motility and velocity were higher in sperm from epididymis stored at 4°C while post-thaw sperm motility, progressive motility and velocity remained the same among samples from epididymis stored at 4 or 34°C. However, with regard to the kinetic patterns, samples collected from epididymis stored at 34°C had lower values when compared to those stored at 4°C prior the cryopreservation process. Our results indicate that epididymis handling conditions after cryopreservation may affect sperm quality after thawing, especially due to compromised MMP in sperm collected from epididymis stored at higher temperatures. © 2016 Blackwell Verlag GmbH.

  17. [The effects of electromagnetic pulse on fluidity and lipid peroxidation of mitochondrial membrane].

    PubMed

    Wang, Changzhen; Cong, Jianbo; Xian, Hong; Cao, Xiaozhe; Sun, Cunpu; Wu, Ke

    2002-08-01

    To study the effects of intense electromagnetic pulse(EMP) on the biological effects of mitochondrial membrane. Rat liver mitochondrial suspension was exposed to EMP at 60 kV/m level. The changes of membrane lipid fluidity and membrane protein mobility were detected by ESR and spin label technique. Malondialdehyde(MDA) was detected by spectrophotometer. The mobility of membrane protein decreased significantly(P < 0.05). Correlation time (tau c) of control group was (0.501 +/- 0.077) x 10(-9)s, and tau c of EMP group was (0.594 +/- 0.049) x 10(-9)s, indicating that the mobility of protein was restricted. The fluidity of mitochondrial membrane increased significantly(P < 0.05) at the same time. Order parameter(S) of mitochondrial membrane lipid in control group was 0.63 +/- 0.01, while S of EMP group was 0.61 +/- 0.01(P < 0.05). MDA decreased significantly. The mobility and lipid peroxidation of mitochondrial membrane may be disturbed after EMP exposure.

  18. Deoxycholic acid modulates cell death signaling through changes in mitochondrial membrane properties[S

    PubMed Central

    Sousa, Tânia; Castro, Rui E.; Pinto, Sandra N.; Coutinho, Ana; Lucas, Susana D.; Moreira, Rui; Rodrigues, Cecília M. P.; Prieto, Manuel; Fernandes, Fábio

    2015-01-01

    Cytotoxic bile acids, such as deoxycholic acid (DCA), are responsible for hepatocyte cell death during intrahepatic cholestasis. The mechanisms responsible for this effect are unclear, and recent studies conflict, pointing to either a modulation of plasma membrane structure or mitochondrial-mediated toxicity through perturbation of mitochondrial outer membrane (MOM) properties. We conducted a comprehensive comparative study of the impact of cytotoxic and cytoprotective bile acids on the membrane structure of different cellular compartments. We show that DCA increases the plasma membrane fluidity of hepatocytes to a minor extent, and that this effect is not correlated with the incidence of apoptosis. Additionally, plasma membrane fluidity recovers to normal values over time suggesting the presence of cellular compensatory mechanisms for this perturbation. Colocalization experiments in living cells confirmed the presence of bile acids within mitochondrial membranes. Experiments with active isolated mitochondria revealed that physiologically active concentrations of DCA change MOM order in a concentration- and time-dependent manner, and that these changes preceded the mitochondrial permeability transition. Importantly, these effects are not observed on liposomes mimicking MOM lipid composition, suggesting that DCA apoptotic activity depends on features of mitochondrial membranes that are absent in protein-free mimetic liposomes, such as the double-membrane structure, lipid asymmetry, or mitochondrial protein environment. In contrast, the mechanism of action of cytoprotective bile acids is likely not associated with changes in cellular membrane structure. PMID:26351365

  19. Proteomic mapping of cytosol-facing outer mitochondrial and ER membranes in living human cells by proximity biotinylation

    PubMed Central

    Hung, Victoria; Lam, Stephanie S; Udeshi, Namrata D; Svinkina, Tanya; Guzman, Gaelen; Mootha, Vamsi K; Carr, Steven A; Ting, Alice Y

    2017-01-01

    The cytosol-facing membranes of cellular organelles contain proteins that enable signal transduction, regulation of morphology and trafficking, protein import and export, and other specialized processes. Discovery of these proteins by traditional biochemical fractionation can be plagued with contaminants and loss of key components. Using peroxidase-mediated proximity biotinylation, we captured and identified endogenous proteins on the outer mitochondrial membrane (OMM) and endoplasmic reticulum membrane (ERM) of living human fibroblasts. The proteomes of 137 and 634 proteins, respectively, are highly specific and highlight 94 potentially novel mitochondrial or ER proteins. Dataset intersection identified protein candidates potentially localized to mitochondria-ER contact sites. We found that one candidate, the tail-anchored, PDZ-domain-containing OMM protein SYNJ2BP, dramatically increases mitochondrial contacts with rough ER when overexpressed. Immunoprecipitation-mass spectrometry identified ribosome-binding protein 1 (RRBP1) as SYNJ2BP’s ERM binding partner. Our results highlight the power of proximity biotinylation to yield insights into the molecular composition and function of intracellular membranes. DOI: http://dx.doi.org/10.7554/eLife.24463.001 PMID:28441135

  20. Structural features and lipid binding domain of tubulin on biomimetic mitochondrial membranes

    PubMed Central

    Hoogerheide, David P.; Noskov, Sergei Y.; Jacobs, Daniel; Bergdoll, Lucie; Silin, Vitalii; Worcester, David L.; Abramson, Jeff; Nanda, Hirsh; Rostovtseva, Tatiana K.; Bezrukov, Sergey M.

    2017-01-01

    Dimeric tubulin, an abundant water-soluble cytosolic protein known primarily for its role in the cytoskeleton, is routinely found to be associated with mitochondrial outer membranes, although the structure and physiological role of mitochondria-bound tubulin are still unknown. There is also no consensus on whether tubulin is a peripheral membrane protein or is integrated into the outer mitochondrial membrane. Here the results of five independent techniques—surface plasmon resonance, electrochemical impedance spectroscopy, bilayer overtone analysis, neutron reflectometry, and molecular dynamics simulations—suggest that α-tubulin’s amphipathic helix H10 is responsible for peripheral binding of dimeric tubulin to biomimetic “mitochondrial” membranes in a manner that differentiates between the two primary lipid headgroups found in mitochondrial membranes, phosphatidylethanolamine and phosphatidylcholine. The identification of the tubulin dimer orientation and membrane-binding domain represents an essential step toward our understanding of the complex mechanisms by which tubulin interacts with integral proteins of the mitochondrial outer membrane and is important for the structure-inspired design of tubulin-targeting agents. PMID:28420794

  1. Calcium transport across the inner mitochondrial membrane: molecular mechanisms and pharmacology

    PubMed Central

    Csordás, György; Várnai, Peter; Golenár, Tünde; Sheu, Shey-Shing; Hajnóczky, György

    2011-01-01

    Growing evidence supports that mitochondrial calcium uptake is important for cell metabolism, signaling and survival. However, both the molecular nature of the mitochondrial Ca2+ transport sites and the calcium signals they respond to remained elusive. Recent RNA interference studies have identified new candidate proteins for Ca2+ uptake across the inner mitochondrial membrane, including LETM1, MCU, MICU1 and NCLX. The sensitivity of these factors to several drugs has been tested and in parallel, some new inhibitors of mitochondrial Ca2+ uptake have been described. This paper provides an update on the pharmacological aspects of the molecular mechanisms of the inner mitochondrial membrane Ca2+ transport. PMID:22123069

  2. Crystal structure of mitochondrial respiratory membrane protein complex II.

    PubMed

    Sun, Fei; Huo, Xia; Zhai, Yujia; Wang, Aojin; Xu, Jianxing; Su, Dan; Bartlam, Mark; Rao, Zihe

    2005-07-01

    The mitochondrial respiratory Complex II or succinate:ubiquinone oxidoreductase (SQR) is an integral membrane protein complex in both the tricarboxylic acid cycle and aerobic respiration. Here we report the first crystal structure of Complex II from porcine heart at 2.4 A resolution and its complex structure with inhibitors 3-nitropropionate and 2-thenoyltrifluoroacetone (TTFA) at 3.5 A resolution. Complex II is comprised of two hydrophilic proteins, flavoprotein (Fp) and iron-sulfur protein (Ip), and two transmembrane proteins (CybL and CybS), as well as prosthetic groups required for electron transfer from succinate to ubiquinone. The structure correlates the protein environments around prosthetic groups with their unique midpoint redox potentials. Two ubiquinone binding sites are discussed and elucidated by TTFA binding. The Complex II structure provides a bona fide model for study of the mitochondrial respiratory system and human mitochondrial diseases related to mutations in this complex.

  3. Copper effects on key metabolic enzymes and mitochondrial membrane potential in gills of the estuarine crab Neohelice granulata at different salinities.

    PubMed

    Lauer, Mariana Machado; de Oliveira, Camila Bento; Yano, Natalia Lie Inocencio; Bianchini, Adalto

    2012-11-01

    The estuarine crab Neohelice granulata was exposed (96 h) to a sublethal copper concentration under two different physiological conditions (hyperosmoregulating crabs: 2 ppt salinity, 1 mg Cu/L; isosmotic crabs: 30 ppt salinity, 5 mg Cu/L). After exposure, gills (anterior and posterior) were dissected and activities of enzymes involved in glycolysis (hexokinase, phosphofructokinase, pyruvate kinase, lactate dehydrogenase), Krebs cycle (citrate synthase), and mitochondrial electron transport chain (cytochrome c oxidase) were analyzed. Membrane potential of mitochondria isolated from anterior and posterior gill cells was also evaluated. In anterior gills of crabs acclimated to 2 ppt salinity, copper exposure inhibited hexokinase, phosphofructokinase, pyruvate kinase, and citrate synthase activity, increased lactate dehydrogenase activity, and reduced the mitochondrial membrane potential. In posterior gills, copper inhibited hexokinase and pyruvate kinase activity, and increased citrate synthase activity. In anterior gills of crabs acclimated to 30 ppt salinity, copper exposure inhibited phosphofructokinase and citrate synthase activity, and increased hexokinase activity. In posterior gills, copper inhibited phosphofructokinase and pyruvate kinase activity, and increased hexokinase and lactate dehydrogenase activity. Copper did not affect cytochrome c oxidase activity in either anterior or posterior gills of crabs acclimated to 2 and 30 ppt salinity. These findings indicate that exposure to a sublethal copper concentration affects the activity of enzymes involved in glycolysis and Krebs cycle, especially in anterior (respiratory) gills of hyperosmoregulating crabs. Changes observed indicate a switch from aerobic to anaerobic metabolism, characterizing a situation of functional hypoxia. In this case, reduced mitochondrial membrane potential would suggest a decrease in ATP production. Although gills of isosmotic crabs were also affected by copper exposure, changes

  4. Ocean acidification impacts on sperm mitochondrial membrane potential bring sperm swimming behaviour near its tipping point.

    PubMed

    Schlegel, Peter; Binet, Monique T; Havenhand, Jonathan N; Doyle, Christopher J; Williamson, Jane E

    2015-04-01

    Broadcast spawning marine invertebrates are susceptible to environmental stressors such as climate change, as their reproduction depends on the successful meeting and fertilization of gametes in the water column. Under near-future scenarios of ocean acidification, the swimming behaviour of marine invertebrate sperm is altered. We tested whether this was due to changes in sperm mitochondrial activity by investigating the effects of ocean acidification on sperm metabolism and swimming behaviour in the sea urchin Centrostephanus rodgersii. We used a fluorescent molecular probe (JC-1) and flow cytometry to visualize mitochondrial activity (measured as change in mitochondrial membrane potential, MMP). Sperm MMP was significantly reduced in ΔpH -0.3 (35% reduction) and ΔpH -0.5 (48% reduction) treatments, whereas sperm swimming behaviour was less sensitive with only slight changes (up to 11% decrease) observed overall. There was significant inter-individual variability in responses of sperm swimming behaviour and MMP to acidified seawater. We suggest it is likely that sperm exposed to these changes in pH are close to their tipping point in terms of physiological tolerance to acidity. Importantly, substantial inter-individual variation in responses of sperm swimming to ocean acidification may increase the scope for selection of resilient phenotypes, which, if heritable, could provide a basis for adaptation to future ocean acidification. © 2015. Published by The Company of Biologists Ltd.

  5. Minimal models of electric potential oscillations in non-excitable membranes.

    PubMed

    Perdomo, Guillermo; Hernández, Julio A

    2010-01-01

    Sustained oscillations in the membrane potential have been observed in a variety of cellular and subcellular systems, including several types of non-excitable cells and mitochondria. For the plasma membrane, these electrical oscillations have frequently been related to oscillations in intracellular calcium. For the inner mitochondrial membrane, in several cases the electrical oscillations have been attributed to modifications in calcium dynamics. As an alternative, some authors have suggested that the sustained oscillations in the mitochondrial membrane potential induced by some metabolic intermediates depends on the direct effect of internal protons on proton conductance. Most theoretical models developed to interpret oscillations in the membrane potential integrate several transport and biochemical processes. Here we evaluate whether three simple dynamic models may constitute plausible representations of electric oscillations in non-excitable membranes. The basic mechanism considered in the derivation of the models is based upon evidence obtained by Hattori et al. for mitochondria and assumes that an ionic species (i.e., the proton) is transported via passive and active transport systems between an external and an internal compartment and that the ion affects the kinetic properties of transport by feedback regulation. The membrane potential is incorporated via its effects on kinetic properties. The dynamic properties of two of the models enable us to conclude that they may represent alternatives enabling description of the generation of electrical oscillations in membranes that depend on the transport of a single ionic species.

  6. Apoptosis of leukemia K562 and Molt-4 cells induced by emamectin benzoate involving mitochondrial membrane potential loss and intracellular Ca2+ modulation.

    PubMed

    Yun, Xinming; Rao, Wenbing; Xiao, Ciying; Huang, Qingchun

    2017-06-01

    Leukemia threatens millions of people's health and lives, and the pesticide-induced leukemia has been increasingly concerned because of the etiologic exposure. In this paper, cytotoxic effect of emamectin benzoate (EMB), an excellent natural-product insecticide, was evaluated through monitoring cell viability, cell apoptosis, mitochondrial membrane potential and intracellular Ca 2+ concentration ([Ca 2+ ] i ) in leukemia K562 and Molt-4 cells. Following the exposure to EMB, cell viability was decreased and positive apoptosis of K562 and Molt-4 cells was increased in a concentration- and time- dependent fashion. In the treatment of 10μM EMB, apoptotic cells accounted for 93.0% to K562 cells and 98.9% to Molt-4 cells based on the control, meanwhile, 63.47% of K562 cells and 81.15% of Molt-4 cells exhibited late apoptotic and necrotic features with damaged cytoplasmic membrane. 48h exposure to 10μM EMB increased significantly the great number of cells with mitochondrial membrane potential (MMP) loss, and the elevation of [Ca 2+ ] i level was peaked and persisted within 70s in K562 cells whilst 50s in Molt-4 cells. Moreover, a stronger cytotoxicity of EMB was further observed than that of imatinib. The results authenticate the efficacious effect of EMB as a potential anti-leukemia agent and an inconsistency with regard to insecticide-induced leukemia. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Constriction of the mitochondrial inner compartment is a priming event for mitochondrial division

    PubMed Central

    Cho, Bongki; Cho, Hyo Min; Jo, Youhwa; Kim, Hee Dae; Song, Myungjae; Moon, Cheil; Kim, Hyongbum; Kim, Kyungjin; Sesaki, Hiromi; Rhyu, Im Joo; Kim, Hyun; Sun, Woong

    2017-01-01

    Mitochondrial division is critical for the maintenance and regulation of mitochondrial function, quality and distribution. This process is controlled by cytosolic actin-based constriction machinery and dynamin-related protein 1 (Drp1) on mitochondrial outer membrane (OMM). Although mitochondrial physiology, including oxidative phosphorylation, is also important for efficient mitochondrial division, morphological alterations of the mitochondrial inner-membrane (IMM) have not been clearly elucidated. Here we report spontaneous and repetitive constriction of mitochondrial inner compartment (CoMIC) associated with subsequent division in neurons. Although CoMIC is potentiated by inhibition of Drp1 and occurs at the potential division spots contacting the endoplasmic reticulum, it appears on IMM independently of OMM. Intra-mitochondrial influx of Ca2+ induces and potentiates CoMIC, and leads to K+-mediated mitochondrial bulging and depolarization. Synergistically, optic atrophy 1 (Opa1) also regulates CoMIC via controlling Mic60-mediated OMM–IMM tethering. Therefore, we propose that CoMIC is a priming event for efficient mitochondrial division. PMID:28598422

  8. Role of mitochondrial permeability transition pores in mitochondrial autophagy.

    PubMed

    Rodriguez-Enriquez, Sara; He, Lihua; Lemasters, John J

    2004-12-01

    During autophagy, cells rid themselves of damaged and superfluous mitochondria, as well as other organelles. This activation of mitochondrial turnover could be the result of changes in the physiological state of mitochondria. Confocal microscopy and fluorescence techniques indicate that onset of mitochondrial permeability transition is one such change. The mitochondrial permeability transition is a reversible phenomenon whereby the mitochondrial inner membrane becomes freely permeable to solutes of less than 1500 Da. At onset of the mitochondrial permeability transition, mitochondria depolarize, uncouple, and undergo large amplitude swelling due to opening of permeability transition pores, which may form by aggregation of damaged, misfolded membrane proteins. When injurious cellular stresses occur, cells may protect themselves using autophagy to remove damaged mitochondria and mutated mitochondrial DNA. Ca(2+) overloading, reactive oxygen and nitrogen species, decreased mitochondrial membrane potential, and oxidation of pyridine nucleotides and glutathione all promote mitochondrial damage and onset of the mitochondrial permeability transition. The mitochondrial permeability transition is also associated with necrosis and apoptosis after a variety of stimuli. This review emphasizes the role of the mitochondrial permeability transition as a key event in mitochondrial autophagy.

  9. Tom7 modulates the dynamics of the mitochondrial outer membrane translocase and plays a pathway-related role in protein import.

    PubMed Central

    Hönlinger, A; Bömer, U; Alconada, A; Eckerskorn, C; Lottspeich, F; Dietmeier, K; Pfanner, N

    1996-01-01

    The preprotein translocase of the outer mitochondrial membrane is a multi-subunit complex with receptors and a general import pore. We report the molecular identification of Tom7, a small subunit of the translocase that behaves as an integral membrane protein. The deletion of TOM7 inhibited the mitochondrial import of the outer membrane protein porin, whereas the import of preproteins destined for the mitochondrial interior was impaired only slightly. However, protein import into the mitochondrial interior was strongly inhibited when it occurred in two steps: preprotein accumulation at the outer membrane in the absence of a membrane potential and subsequent further import after the re-establishment of a membrane potential. The delay of protein import into tom7delta mitochondria seemed to occur after the binding of preproteins to the outer membrane receptor sites. A lack of Tom7 stabilized the interaction between the receptors Tom20 and Tom22 and the import pore component Tom40. This indicated that Tom7 exerts a destabilizing effect on part of the outer membrane translocase, whereas Tom6 stabilizes the interaction between the receptors and the import pore. Synthetic growth defects of the double mutants tom7delta tom20delta and tom7delta tom6delta provided genetic evidence for the functional relationship of Tom7 with Tom20 and Tom6. These results suggest that (i) Tom7 plays a role in sorting and accumulation of the preproteins at the outer membrane, and (ii) Tom7 and Tom6 perform complementary functions in modulating the dynamics of the outer membrane translocase. Images PMID:8641278

  10. Simultaneous evaluation of superoxide content and mitochondrial membrane potential in stallion semen samples provides additional information about sperm quality.

    PubMed

    Johannisson, A; Figueiredo, M I; Al-Kass, Z; Morrell, J M

    2018-05-01

    An improved fertility prediction for stallions is of importance for equine breeding. Here, we investigate the potential of a combined staining of stallion spermatozoa for superoxide and mitochondrial membrane potential (MMP) for this purpose. Semen samples were analysed immediately after arrival at the laboratory, as well as after 24 h. Superoxide was measured by MitoSOXRed, while MMP was measured with JC-1. Menadione was used to stimulate superoxide production. In addition, other parameters of sperm quality, namely motility, membrane integrity, chromatin integrity, sperm kinematics and Hoechst 33258 exclusion were measured and correlated to superoxide production and MMP. Both bivariate correlations between measured parameters as well as multivariate analysis were performed. Measured values in the superoxide/MMP assay did not correlate with other parameters. However, there was a strong negative correlation (r = 0.96 after 0 h, r = 0.95 after 24 h) between membrane integrity and chromatin integrity. Moderate positive correlations were found between motility parameters and membrane integrity, as well as moderate negative correlations between motility parameters and chromatin integrity. The multivariate analysis revealed that membrane integrity, chromatin integrity and motility contributed to the first principal component, while the second was influenced by superoxide/MMP parameters as well as sperm kinematics. Storage of samples for 24 h decreased motility, chromatin integrity and membrane integrity. In conclusion, combined measurement of superoxide and MMP provides additional information not obtained by other assays of sperm quality. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. High fat diet-induced modifications in membrane lipid and mitochondrial-membrane protein signatures precede the development of hepatic insulin resistance in mice

    PubMed Central

    Kahle, M.; Schäfer, A.; Seelig, A.; Schultheiß, J.; Wu, M.; Aichler, M.; Leonhardt, J.; Rathkolb, B.; Rozman, J.; Sarioglu, H.; Hauck, S.M.; Ueffing, M.; Wolf, E.; Kastenmueller, G.; Adamski, J.; Walch, A.; Hrabé de Angelis, M.; Neschen, S.

    2014-01-01

    Objective Excess lipid intake has been implicated in the pathophysiology of hepatosteatosis and hepatic insulin resistance. Lipids constitute approximately 50% of the cell membrane mass, define membrane properties, and create microenvironments for membrane-proteins. In this study we aimed to resolve temporal alterations in membrane metabolite and protein signatures during high-fat diet (HF)-mediated development of hepatic insulin resistance. Methods We induced hepatosteatosis by feeding C3HeB/FeJ male mice an HF enriched with long-chain polyunsaturated C18:2n6 fatty acids for 7, 14, or 21 days. Longitudinal changes in hepatic insulin sensitivity were assessed via the euglycemic-hyperinsulinemic clamp, in membrane lipids via t-metabolomics- and membrane proteins via quantitative proteomics-analyses, and in hepatocyte morphology via electron microscopy. Data were compared to those of age- and litter-matched controls maintained on a low-fat diet. Results Excess long-chain polyunsaturated C18:2n6 intake for 7 days did not compromise hepatic insulin sensitivity, however, induced hepatosteatosis and modified major membrane lipid constituent signatures in liver, e.g. increased total unsaturated, long-chain fatty acid-containing acyl-carnitine or membrane-associated diacylglycerol moieties and decreased total short-chain acyl-carnitines, glycerophosphocholines, lysophosphatidylcholines, or sphingolipids. Hepatic insulin sensitivity tended to decrease within 14 days HF-exposure. Overt hepatic insulin resistance developed until day 21 of HF-intervention and was accompanied by morphological mitochondrial abnormalities and indications for oxidative stress in liver. HF-feeding progressively decreased the abundance of protein-components of all mitochondrial respiratory chain complexes, inner and outer mitochondrial membrane substrate transporters independent from the hepatocellular mitochondrial volume in liver. Conclusions We assume HF-induced modifications in membrane lipid

  12. Simultaneous evaluation of substrate-dependent oxygen consumption rates and mitochondrial membrane potential by TMRM and safranin in cortical mitochondria.

    PubMed

    Chowdhury, Subir Roy; Djordjevic, Jelena; Albensi, Benedict C; Fernyhough, Paul

    2015-12-08

    Mitochondrial membrane potential (mtMP) is critical for maintaining the physiological function of the respiratory chain to generate ATP. The present study characterized the inter-relationship between mtMP, using safranin and tetramethyl rhodamine methyl ester (TMRM), and mitochondrial respiratory activity and established a protocol for functional analysis of mitochondrial bioenergetics in a multi-sensor system. Coupled respiration was decreased by 27 and 30-35% in the presence of TMRM and safranin respectively. Maximal respiration was higher than coupled with Complex I- and II-linked substrates in the presence of both dyes. Safranin showed decreased maximal respiration at a higher concentration of carbonyl cyanide-4-(trifluoromethoxy)phenylhydrazone (FCCP) compared with TMRM. FCCP titration revealed that maximal respiration in the presence of glutamate and malate was not sustainable at higher FCCP concentrations as compared with pyruvate and malate. Oxygen consumption rate (OCR) and mtMP in response to mitochondrial substrates were higher in isolated mitochondria compared with tissue homogenates. Safranin exhibited higher sensitivity to changes in mtMP than TMRM. This multi-sensor system measured mitochondrial parameters in the brain of transgenic mice that model Alzheimer's disease (AD), because mitochondrial dysfunction is believed to be a primary event in the pathogenesis of AD. The coupled and maximal respiration of electron transport chain were decreased in the cortex of AD mice along with the mtMP compared with age-matched controls. Overall, these data demonstrate that safranin and TMRM are suitable for the simultaneous evaluation of mtMP and respiratory chain activity using isolated mitochondria and tissue homogenate. However, certain care should be taken concerning the selection of appropriate substrates and dyes for specific experimental circumstances. © 2016 Authors.

  13. Biochemical studies of membrane bound Plasmodium falciparum mitochondrial L-malate:quinone oxidoreductase, a potential drug target.

    PubMed

    Hartuti, Endah Dwi; Inaoka, Daniel Ken; Komatsuya, Keisuke; Miyazaki, Yukiko; Miller, Russell J; Xinying, Wang; Sadikin, Mohamad; Prabandari, Erwahyuni Endang; Waluyo, Danang; Kuroda, Marie; Amalia, Eri; Matsuo, Yuichi; Nugroho, Nuki B; Saimoto, Hiroyuki; Pramisandi, Amila; Watanabe, Yoh-Ichi; Mori, Mihoko; Shiomi, Kazuro; Balogun, Emmanuel Oluwadare; Shiba, Tomoo; Harada, Shigeharu; Nozaki, Tomoyoshi; Kita, Kiyoshi

    2018-03-01

    Plasmodium falciparum is an apicomplexan parasite that causes the most severe malaria in humans. Due to a lack of effective vaccines and emerging of drug resistance parasites, development of drugs with novel mechanisms of action and few side effects are imperative. To this end, ideal drug targets are those essential to parasite viability as well as absent in their mammalian hosts. The mitochondrial electron transport chain (ETC) of P. falciparum is one source of such potential targets because enzymes, such as L-malate:quinone oxidoreductase (PfMQO), in this pathway are absent humans. PfMQO catalyzes the oxidation of L-malate to oxaloacetate and the simultaneous reduction of ubiquinone to ubiquinol. It is a membrane protein, involved in three pathways (ETC, the tricarboxylic acid cycle and the fumarate cycle) and has been shown to be essential for parasite survival, at least, in the intra-erythrocytic asexual stage. These findings indicate that PfMQO would be a valuable drug target for development of antimalarial with novel mechanism of action. Up to this point in time, difficulty in producing active recombinant mitochondrial MQO has hampered biochemical characterization and targeted drug discovery with MQO. Here we report for the first time recombinant PfMQO overexpressed in bacterial membrane and the first biochemical study. Furthermore, about 113 compounds, consisting of ubiquinone binding site inhibitors and antiparasitic agents, were screened resulting in the discovery of ferulenol as a potent PfMQO inhibitor. Finally, ferulenol was shown to inhibit parasite growth and showed strong synergism in combination with atovaquone, a well-described anti-malarial and bc 1 complex inhibitor. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Spermatozoa with high mitochondrial membrane potential and low tyrosine phosphorylation preferentially bind to oviduct explants in the water buffalo (Bubalus bubalis).

    PubMed

    Saraf, Kaustubh Kishor; Kumaresan, Arumugam; Chhillar, Shivani; Nayak, Samiksha; Lathika, Sreela; Datta, Tirtha Kumar; Gahlot, Subhash Chand; Karan, Prabha; Verma, Kiran; Mohanty, Tushar Kumar

    2017-05-01

    Although it is understood that spermatozoa are subjected to selection processes to form a functional sperm reservoir in the oviduct, the mechanism remains obscure. With the aim to understand the sperm selection process in the oviduct, in the present in vitro study, we analyzed mitochondrial membrane potential and tyrosine phosphorylation status in oviduct-explants bound and unbound spermatozoa. Frozen semen from Murrah buffalo bulls (n=10) used under progeny testing programme were utilized for the study. Oviduct explants were prepared by overnight culture of epithelial cells in TCM- 199 and washed spermatozoa were added to the oviduct explants and incubated for 4h. Mitochondrial membrane potential (MMP) and tyrosine phosphorylation status of bound and unbound spermatozoa were assessed at 1h and 4h of incubation. The proportion of spermatozoa with high MMP was significantly higher (P<0.001) among the bound spermatozoa (range 84.67-96.56%) compared to unbound (range 8.70-21.03%) spermatozoa. The proportion of tyrosine phosphorylated spermatozoa was significantly higher (P<0.001) among unbound population as compared to bound population. The proportion of spermatozoa displaying tyrosine phosphorylation at acrosomal area was significantly (P<0.05) lower in bound sperm population compared to unbound population. It was inferred that spermatozoa with high MMP and low tyrosine phosphorylation were preferred for oviduct-explants binding in the buffalo. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Modeling cardiac action potential shortening driven by oxidative stress-induced mitochondrial oscillations in guinea pig cardiomyocytes.

    PubMed

    Zhou, Lufang; Cortassa, Sonia; Wei, An-Chi; Aon, Miguel A; Winslow, Raimond L; O'Rourke, Brian

    2009-10-07

    Ischemia-induced shortening of the cardiac action potential and its heterogeneous recovery upon reperfusion are thought to set the stage for reentrant arrhythmias and sudden cardiac death. We have recently reported that the collapse of mitochondrial membrane potential (DeltaPsi(m)) through a mechanism triggered by reactive oxygen species (ROS), coupled to the opening of sarcolemmal ATP-sensitive potassium (K(ATP)) channels, contributes to electrical dysfunction during ischemia-reperfusion. Here we present a computational model of excitation-contraction coupling linked to mitochondrial bioenergetics that incorporates mitochondrial ROS-induced ROS release with coupling between the mitochondrial energy state and electrical excitability mediated by the sarcolemmal K(ATP) current (I(K,ATP)). Whole-cell model simulations demonstrate that increasing the fraction of oxygen diverted from the respiratory chain to ROS production triggers limit-cycle oscillations of DeltaPsi(m), redox potential, and mitochondrial respiration through the activation of a ROS-sensitive inner membrane anion channel. The periods of transient mitochondrial uncoupling decrease the cytosolic ATP/ADP ratio and activate I(K,ATP), consequently shortening the cellular action potential duration and ultimately suppressing electrical excitability. The model simulates emergent behavior observed in cardiomyocytes subjected to metabolic stress and provides a new tool for examining how alterations in mitochondrial oxidative phosphorylation will impact the electrophysiological, contractile, and Ca(2+) handling properties of the cardiac cell. Moreover, the model is an important step toward building multiscale models that will permit investigation of the role of spatiotemporal heterogeneity of mitochondrial metabolism in the mechanisms of arrhythmogenesis and contractile dysfunction in cardiac muscle.

  16. SB203580 enhances the RV-induced loss of mitochondrial membrane potential and apoptosis in A549 cells

    NASA Astrophysics Data System (ADS)

    Li, Hai-yang; Zhuang, Cai-ping; Wang, Xiao-ping; Chen, Tong-sheng

    2012-03-01

    Resveratrol (RV), a naturally occurring phytoalexin, is known to possess a wide spectrum of chemopreventive and chemotherapeutic effects in various stages of human tumors. p38, a member of the mitogen-activated protein kinase (MAPK) superfamily, is always activated by some extracellular stimulus to regulate many cellular signal transduction pathways, such as apoptosis, proliferation, and inflammation and so on. In this report, we assessed the effect of SB203580, a specific inhibitor of p38 MAPK signaling pathway, on the RV-induced apoptosis in human lung adenocarcinoma (A549) cells. CCK-8 assay showed that pretreatment with SB203580 significantly enhanced the cytotoxicity of RV, which was further verified by analyzing the phosphatidylserine externalization using flow cytometry. In order to further confirm whether SB203580 accelerated apoptosis via the intrinsic apoptosis pathway, we analyzed the dysfunction of mitochondrial membrane potential (Δψm) of cells stained with rhodamine 123 by using flow cytometry after treatment with RV in the absence and presence of SB203580. Our data for the first time reported that p38 inhibitor SB203580 enhanced the RV-induced apoptosis via a mitochondrial pathway.

  17. Accelerated recovery of mitochondrial membrane potential by GSK-3β inactivation affords cardiomyocytes protection from oxidant-induced necrosis.

    PubMed

    Sunaga, Daisuke; Tanno, Masaya; Kuno, Atsushi; Ishikawa, Satoko; Ogasawara, Makoto; Yano, Toshiyuki; Miki, Takayuki; Miura, Tetsuji

    2014-01-01

    Loss of mitochondrial membrane potential (ΔΨm) is known to be closely linked to cell death by various insults. However, whether acceleration of the ΔΨm recovery process prevents cell necrosis remains unclear. Here we examined the hypothesis that facilitated recovery of ΔΨm contributes to cytoprotection afforded by activation of the mitochondrial ATP-sensitive K+ (mKATP) channel or inactivation of glycogen synthase kinase-3β (GSK-3β). ΔΨm of H9c2 cells was determined by tetramethylrhodamine ethyl ester (TMRE) before or after 1-h exposure to antimycin A (AA), an inducer of reactive oxygen species (ROS) production at complex III. Opening of the mitochondrial permeability transition pore (mPTP) was determined by mitochondrial loading of calcein. AA reduced ΔΨm to 15 ± 1% of the baseline and induced calcein leak from mitochondria. ΔΨm was recovered to 51 ± 3% of the baseline and calcein-loadable mitochondria was 6 ± 1% of the control at 1 h after washout of AA. mKATP channel openers improved the ΔΨm recovery and mitochondrial calcein to 73 ± 2% and 30 ± 7%, respectively, without change in ΔΨm during AA treatment. Activation of the mKATP channel induced inhibitory phosphorylation of GSK-3β and suppressed ROS production, LDH release and apoptosis after AA washout. Knockdown of GSK-3β and pharmacological inhibition of GSK-3β mimicked the effects of mKATP channel activation. ROS scavengers administered at the time of AA removal also improved recovery of ΔΨm. These results indicate that inactivation of GSK-3β directly or indirectly by mKATP channel activation facilitates recovery of ΔΨm by suppressing ROS production and mPTP opening, leading to cytoprotection from oxidant stress-induced cell death.

  18. Anaplasma phagocytophilum inhibits human neutrophil apoptosis via upregulation of bfl-1, maintenance of mitochondrial membrane potential and prevention of caspase 3 activation.

    PubMed

    Ge, Yan; Yoshiie, Kiyotaka; Kuribayashi, Futoshi; Lin, Mingqun; Rikihisa, Yasuko

    2005-01-01

    The inhibition of neutrophil apoptosis plays a central role in human granulocytic anaplasmosis. Intracellular signalling pathways through which the obligatory intracellular bacterium Anaplasma phagocytophilum inhibits the spontaneous apoptosis of human peripheral blood neutrophils were investigated. bfl-1 mRNA levels in uninfected neutrophils after 12 h in culture were reduced to approximately 5-25% of 0 h levels, but remained high in infected neutrophils. The eukaryotic RNA synthesis inhibitor, actinomycin D, prevented the maintenance of bfl-1 mRNA levels by A. phagocytophilum. Differences in mcl-1, bax, bcl-w, bad or bak mRNA levels in infected versus uninfected neutrophils were not remarkable. By using mitochondrial fluorescent dyes, Mitotracker Red and JC-1, it was found that most uninfected neutrophils lost mitochondrial membrane potential after 10-12 h incubation, whereas A. phagocytophilum-infected neutrophils maintained high membrane potential. Caspase 3 activity and the degree of apoptosis were lower in dose-dependent manner in A. phagocytophilum-infected neutrophils at 16 h post infection, as compared to uninfected neutrophils. Anti-active caspase 3 antibody labelling showed less positively stained population in infected neutrophils compared to those in uninfected neutrophils after 12 h incubation. These results suggest that A. phagocytophilum inhibits human neutrophil apoptosis via transcriptional upregulation of bfl-1 and inhibition of mitochondria-mediated activation of caspase 3.

  19. Radiosensitization by fullerene-C60 dissolved in squalene on human malignant melanoma through lipid peroxidation and enhanced mitochondrial membrane potential

    NASA Astrophysics Data System (ADS)

    Kato, Shinya; Kimura, Masatsugu; Miwa, Nobuhiko

    2014-04-01

    We examined fullerene-C60 dissolved in squalene (C60/Sqe) for the ability to potentiate the radiosensitization under X-ray irradiation on human malignant melanoma HMV-II cells, which were treated with C60/Sqe and thereafter irradiated with X-ray. The cell proliferation for C60/Sqe was inhibited more markedly than for Sqe alone. Meanwhile, cell proliferation was almost unaltered for C60/squalane (Sqa) or Sqa, a hydrogenated form of Sqe, as compared to no-additive control. Thus radiosensitization of C60/Sqe is attributed to peroxidation of unsaturated bonds of squalene by X-ray-excited C60 in contrast to squalane. The fluorescence images of HMV-II cells stained with Rhodamine123, an indicator for mitochondrial membrane potential, were monitored for 6 h after X-ray irradiation. C60/Sqe obviously exhibited more augmented fluorescence intensity on perinuclear region of HMV-II cells than Sqe alone. TBARS assay showed that the lipid peroxidation level as malondialdehyde-equivalent increased by combination of C60/Sqe and X-ray dose-dependently on X-ray doses. C60/Sqe exhibited lipid peroxidation more markedly by 1.2-fold than Sqe alone. Thus the level of lipid peroxidation of squalene was sufficiently higher in C60/Sqe than in Sqe in the absence of C60 under X-ray irradiation, suggesting the combination of C60/Sqe and X-ray irradiation induced radiosensitization on HMV-II cells by peroxidation of absorbed Sqe in mitochondrial membrane via oxidative stress mediated by fullerene-C60.

  20. Comparative kinetics of damage to the plasma and mitochondrial membranes by intra-cellularly synthesized and externally-provided photosensitizers using multi-color FACS.

    PubMed

    Haupt, Sara; Malik, Zvi; Ehrenberg, Benjamin

    2014-01-01

    Photodynamic therapy (PDT) of cancer involves inflicting lethal damage to the cells of malignant tumors, primarily by singlet oxygen that is generated following light-absorption in a photosensitizer molecule. Dysfunction of cells is manifested in many ways, including peroxidation of cellular components, membrane rupture, depolarization of electric potentials, termination of mitochondrial activity, onset of apoptosis and necrosis and eventually cell lysis. These events do not necessarily occur in linear fashion and different types of damage to cell components occur, most probably, in parallel. In this report we measured the relative rates of damage to two cellular membranes: the plasma membrane and the mitochondrial membrane. We employed photosensitizers of diverse hydrophobicities and used different incubation procedures, which lead to their different intra-cellular localizations. We monitored the damage that was inflicted on these membranes, by employing optical probes of membrane integrity, in a multi-color FACS experiment. The potentiometric indicator JC-1 monitored the electric cross-membrane potential of the mitochondria and the fluorometric indicator Draq7 monitored the rupture of the plasma membrane. We show that the electric depolarization of the mitochondrial membrane and the damage to the enveloping plasma membrane proceed with different kinetics that reflect the molecular character and intracellular location of the sensitizer: PpIX that is synthesized in the cells from ALA causes rapid mitochondrial damage and very slow damage to the plasma membrane, while externally added PpIX has an opposite effect. The hydrophilic sensitizer HypS4 can be taken up by the cells by different incubation conditions, and these affect its intracellular location, and as a consequence either the plasma membrane or the mitochondria is damaged first. A similar correlation was found for additional extracellularly-provided photosensitizers HP and PpIX.

  1. Zinc and calcium alter the relationship between mitochondrial respiration, ROS and membrane potential in rainbow trout (Oncorhynchus mykiss) liver mitochondria.

    PubMed

    Sharaf, Mahmoud S; Stevens, Don; Kamunde, Collins

    2017-08-01

    At excess levels, zinc (Zn) disrupts mitochondrial functional integrity and induces oxidative stress in aquatic organisms. Although much is known about the modulation of Zn toxicity by calcium (Ca) in fish, their interactions at the mitochondrial level have scarcely been investigated. Here we assessed the individual and combined effects of Zn and Ca on the relationship between mitochondrial respiration, ROS and membrane potential (ΔΨ mt ) in rainbow trout liver mitochondria. We tested if cation uptake through the mitochondrial calcium uniporter (MCU) is a prerequisite for Zn- and/or Ca-induced alteration of mitochondrial function. Furthermore, using our recently developed real-time multi-parametric method, we investigated the changes in respiration, ΔΨ mt , and reactive oxygen species (ROS, as hydrogen peroxide (H 2 O 2 )) release associated with Ca-induced mitochondrial depolarization imposed by transient and permanent openings of the mitochondrial permeability transition pore (mPTP). We found that independent of the MCU, Zn precipitated an immediate depolarization of the ΔΨ mt that was associated with relatively slow enhancement of H 2 O 2 release, inhibition of respiration and reversal of the positive correlation between ROS and ΔΨ mt . In contrast, an equitoxic dose of Ca caused transient depolarization, and stimulation of both respiration and H 2 O 2 release, effects that were completely abolished when the MCU was blocked. Contrary to our expectation that mitochondrial transition ROS Spike (mTRS) would be sensitive to both Zn and Ca, only Ca suppressed it. Moreover, Zn and Ca in combination immediately depolarized the ΔΨ mt , and caused transient and sustained stimulation of respiration and H 2 O 2 release, respectively. Lastly, we uncovered and characterized an mPTP-independent Ca-induced depolarization spike that was associated with exposure to moderately elevated levels of Ca. Importantly, we showed the stimulation of ROS release associated with

  2. The mitochondrial outer membrane protein MDI promotes local protein synthesis and mtDNA replication.

    PubMed

    Zhang, Yi; Chen, Yong; Gucek, Marjan; Xu, Hong

    2016-05-17

    Early embryonic development features rapid nuclear DNA replication cycles, but lacks mtDNA replication. To meet the high-energy demands of embryogenesis, mature oocytes are furnished with vast amounts of mitochondria and mtDNA However, the cellular machinery driving massive mtDNA replication in ovaries remains unknown. Here, we describe a Drosophila AKAP protein, MDI that recruits a translation stimulator, La-related protein (Larp), to the mitochondrial outer membrane in ovaries. The MDI-Larp complex promotes the synthesis of a subset of nuclear-encoded mitochondrial proteins by cytosolic ribosomes on the mitochondrial surface. MDI-Larp's targets include mtDNA replication factors, mitochondrial ribosomal proteins, and electron-transport chain subunits. Lack of MDI abolishes mtDNA replication in ovaries, which leads to mtDNA deficiency in mature eggs. Targeting Larp to the mitochondrial outer membrane independently of MDI restores local protein synthesis and rescues the phenotypes of mdi mutant flies. Our work suggests that a selective translational boost by the MDI-Larp complex on the outer mitochondrial membrane might be essential for mtDNA replication and mitochondrial biogenesis during oogenesis. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.

  3. Membrane stability and mitochondrial activity of human-ejaculated spermatozoa during in vitro experimental infection with Escherichia coli, Staphylococcus haemolyticus and Bacteroides ureolyticus.

    PubMed

    Fraczek, M; Piasecka, M; Gaczarzewicz, D; Szumala-Kakol, A; Kazienko, A; Lenart, S; Laszczynska, M; Kurpisz, M

    2012-10-01

    The aim of the study was to examine an in vitro effect of the three bacterial strains (Escherichia coli, Staphylococcus haemolyticus and Bacteroides ureolyticus) on ejaculated spermatozoa with reference to sperm membrane integrity and mitochondrial activity. The study was carried out on swim-up-separated spermatozoa from 12 normozoospermic volunteers. Sperm plasma membrane stability was evaluated by the LIVE/DEAD Sperm Viability Kit and by the merocyanine 540 test. Mitochondrial activity was evaluated using the JC-1 test as well as the NADH-dependent NBT assay. The percentage of dead cells was significantly higher in spermatozoa treated with B. ureolyticus as compared to that of control spermatozoa (P < 0.01). All the bacterial strains applied affected sperm plasma membrane architecture measured by M540 test (P < 0.01). Moreover, the presence of E. coli or B. ureolyticus was connected with significant decrease in both the number of cells with high mitochondrial transmembrane potential (ΔΨm) and the cells with normal oxidoreductive function of mitochondria (P < 0.05 as compared to untreated cells). To conclude, the contact of bacteria with ejaculated spermatozoa can be a reason for severe injury of sperm membrane stability and mitochondrial activity with potential consequences for male fertility. © 2012 Blackwell Verlag GmbH.

  4. Mitochondrial AAA proteases--towards a molecular understanding of membrane-bound proteolytic machines.

    PubMed

    Gerdes, Florian; Tatsuta, Takashi; Langer, Thomas

    2012-01-01

    Mitochondrial AAA proteases play an important role in the maintenance of mitochondrial proteostasis. They regulate and promote biogenesis of mitochondrial proteins by acting as processing enzymes and ensuring the selective turnover of misfolded proteins. Impairment of AAA proteases causes pleiotropic defects in various organisms including neurodegeneration in humans. AAA proteases comprise ring-like hexameric complexes in the mitochondrial inner membrane and are functionally conserved from yeast to man, but variations are evident in the subunit composition of orthologous enzymes. Recent structural and biochemical studies revealed how AAA proteases degrade their substrates in an ATP dependent manner. Intersubunit coordination of the ATP hydrolysis leads to an ordered ATP hydrolysis within the AAA ring, which ensures efficient substrate dislocation from the membrane and translocation to the proteolytic chamber. In this review, we summarize recent findings on the molecular mechanisms underlying the versatile functions of mitochondrial AAA proteases and their relevance to those of the other AAA+ machines. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. Gradual changes in permeability of inner mitochondrial membrane precede the mitochondrial permeability transition.

    PubMed

    Balakirev, M Y; Zimmer, G

    1998-08-01

    Some compounds are known to induce solute-nonselective permeability of the inner mitochondrial membrane (IMM) in Ca2+-loaded mitochondria. Existing data suggest that this process, following the opening of a mitochondrial permeability transition pore, is preceded by different solute-selective permeable states of IMM. At pH 7, for instance, the K0.5 for Ca2+-induced pore opening is 16 microM, a value 80-fold above a therapeutically relevant shift of intracellular Ca2+ during ischemia in vivo. The present work shows that in the absence of Ca2+, phenylarsine oxide and tetraalkyl thiuram disulfides (TDs) are able to induce a complex sequence of IMM permeability changes. At first, these agents activated an electrogenic K+ influx into the mitochondria. This K+-specific pathway had K0.5 = 35 mM for K+ and was inhibited by bromsulfalein with Ki = 2.5 microM. The inhibitors of mitochondrial KATP channel, ATP and glibenclamide, did not inhibit K+ transport via this pathway. Moreover, 50 microM glibenclamide induced by itself K+ influx into the mitochondria. After the increase in K+ permeability of IMM, mitochondria become increasingly permeable to protons. Mechanisms of H+ leak and nonselective permeability increase could also be different depending on the type of mitochondrial permeability transition (MPT) inducer. Thus, permeabilization of mitochondria induced by phenylarsine oxide was fully prevented by ADP and/or cyclosporin A, whereas TD-induced membrane alterations were insensitive toward these inhibitors. It is suggested that MPT in vivo leading to irreversible apoptosis is irrelevant in reversible ischemia/reperfusion injury. Copyright 1998 Academic Press.

  6. Dissecting Stop Transfer versus Conservative Sorting Pathways for Mitochondrial Inner Membrane Proteins in Vivo*

    PubMed Central

    Park, Kwangjin; Botelho, Salomé Calado; Hong, Joonki; Österberg, Marie; Kim, Hyun

    2013-01-01

    Mitochondrial inner membrane proteins that carry an N-terminal presequence are sorted by one of two pathways: stop transfer or conservative sorting. However, the sorting pathway is known for only a small number of proteins, in part due to the lack of robust experimental tools with which to study. Here we present an approach that facilitates determination of inner membrane protein sorting pathways in vivo by fusing a mitochondrial inner membrane protein to the C-terminal part of Mgm1p containing the rhomboid cleavage region. We validated the Mgm1 fusion approach using a set of proteins for which the sorting pathway is known, and determined sorting pathways of inner membrane proteins for which the sorting mode was previously uncharacterized. For Sdh4p, a multispanning membrane protein, our results suggest that both conservative sorting and stop transfer mechanisms are required for insertion. Furthermore, the sorting process of Mgm1 fusion proteins was analyzed under different growth conditions and yeast mutant strains that were defective in the import motor or the m-AAA protease function. Our results show that the sorting of mitochondrial proteins carrying moderately hydrophobic transmembrane segments is sensitive to cellular conditions, implying that mitochondrial import and membrane sorting in the physiological environment may be dynamically tuned. PMID:23184936

  7. Tumor Necrosis Factor–Related Apoptosis-Inducing Ligand Alters Mitochondrial Membrane Lipids

    PubMed Central

    Sandra, Ferry; Esposti, Mauro Degli; Ndebele, Kenneth; Gona, Philimon; Knight, David; Rosenquist, Magnus; Khosravi-Far, Roya

    2010-01-01

    Tumor necrosis factor–related apoptosis-inducing ligand (TRAIL) has been shown to have selective antitumor activity. TRAIL induces ubiquitous pathways of cell death in which caspase activation is mediated either directly or via the release of apoptogenic factors from mitochondria; however, the precise components of the mitochondrial signaling pathway have not been well defined. Notably, mitochondria constitute an important target in overcoming resistance to TRAIL in many types of tumors. Bid is considered to be fundamental in engaging mitochondria during death receptor–mediated apoptosis, but this action is dependent on mitochondrial lipids. Here, we report that TRAIL signaling induces an alteration in mitochondrial membrane lipids, particularly cardiolipin. This occurs independently of caspase activation and primes mitochondrial membranes to the proapoptotic action of Bid. We unveil a link between TRAIL signaling and alteration of membrane lipid homeostasis that occurs in parallel to apical caspase activation but does not take over the mode of cell death because of the concurrent activation of caspase-8. In particular, TRAIL-induced alteration of mitochondrial lipids follows an imbalance in the cellular homeostasis of phosphatidylcholine, which results in an elevation in diacylglycerol (DAG). Elevated DAG in turn activates the δ isoform of phospholipid-dependent serine/threonine protein kinase C, which then accelerates the cleavage of caspase-8. We also show that preservation of phosphatidylcholine homeostasis by inhibition of lipid-degrading enzymes almost completely impedes the activation of pro-caspase-9 while scarcely changing the activation of caspase-8. PMID:16166305

  8. Nobiletin attenuates neurotoxic mitochondrial calcium overload through K+ influx and ΔΨm across mitochondrial inner membrane.

    PubMed

    Lee, Ji Hyung; Amarsanaa, Khulan; Wu, Jinji; Jeon, Sang-Chan; Cui, Yanji; Jung, Sung-Cherl; Park, Deok-Bae; Kim, Se-Jae; Han, Sang-Heon; Kim, Hyun-Wook; Rhyu, Im Joo; Eun, Su-Yong

    2018-05-01

    Mitochondrial calcium overload is a crucial event in determining the fate of neuronal cell survival and death, implicated in pathogenesis of neurodegenerative diseases. One of the driving forces of calcium influx into mitochondria is mitochondria membrane potential (ΔΨ m ). Therefore, pharmacological manipulation of ΔΨ m can be a promising strategy to prevent neuronal cell death against brain insults. Based on these issues, we investigated here whether nobiletin, a Citrus polymethoxylated flavone, prevents neurotoxic neuronal calcium overload and cell death via regulating basal ΔΨ m against neuronal insult in primary cortical neurons and pure brain mitochondria isolated from rat cortices. Results demonstrated that nobiletin treatment significantly increased cell viability against glutamate toxicity (100 µM, 20 min) in primary cortical neurons. Real-time imaging-based fluorometry data reveal that nobiletin evokes partial mitochondrial depolarization in these neurons. Nobiletin markedly attenuated mitochondrial calcium overload and reactive oxygen species (ROS) generation in glutamate (100 µM)-stimulated cortical neurons and isolated pure mitochondria exposed to high concentration of Ca 2+ (5 µM). Nobiletin-induced partial mitochondrial depolarization in intact neurons was confirmed in isolated brain mitochondria using a fluorescence microplate reader. Nobiletin effects on basal ΔΨ m were completely abolished in K + -free medium on pure isolated mitochondria. Taken together, results demonstrate that K + influx into mitochondria is critically involved in partial mitochondrial depolarization-related neuroprotective effect of nobiletin. Nobiletin-induced mitochondrial K + influx is probably mediated, at least in part, by activation of mitochondrial K + channels. However, further detailed studies should be conducted to determine exact molecular targets of nobiletin in mitochondria.

  9. Metabolic Remodeling Precedes Mitochondrial Outer Membrane Permeabilization in Human Glioma Xenograft Cells

    PubMed Central

    Ponnala, Shivani; Chetty, Chandramu; Veeravalli, Krishna Kumar; Dinh, Dzung H.; Klopfenstein, Jeffrey D.; Rao, Jasti S.

    2011-01-01

    Glioma cancer cells adapt to changing microenvironment and shift from mitochondrial oxidative phosphorylation to aerobic glycolysis for their metabolic needs irrespective of oxygen availability. In the present study, we show that silencing MMP-9 in combination with uPAR/cathepsin B switch glioma cells glycolytic metabolism to oxidative phosphorylation (OXPHOS) and generate reactive oxygen species (ROS) to predispose glioma cells to mitochondrial outer membrane permeabilization. shRNA for MMP-9 and uPAR (pMU) as well as shRNA for MMP-9 and cathepsin B (pMC) activated complexes of mitochondria involved in OXPHOS and inhibited glycolytic hexokinase expression. The decreased interaction of hexokinase 2 with mitochondria in the treated cells indicated the inhibition of glycolysis activation. Overexpression of Akt reversed the pMU- and pMC-mediated glycolysis to OXPHOS switch. OXPHOS un-coupler oligomycin A altered the expression levels of the Bcl-2 family of proteins; treatment with pMU or pMC reversed this effect and induced mitochondrial outer membrane permeabilization. In addition, our results show changes in mitochondrial pore transition to release cytochrome c due to change in the VDAC-Bcl-XL and BAX-BAK interaction with pMU and pMC treatments. Taken together, our results suggest that pMU and pMC treatments switch glioma cells from glycolytic to OXPHOS pathway through an inhibitory effect on Akt, ROS induction, and an increase of cytosolic cytochrome c accumulation. These results demonstrate the potential of pMU and pMC as therapeutic candidates for treatment of glioma. PMID:22076676

  10. Metabolic remodeling precedes mitochondrial outer membrane permeabilization in human glioma xenograft cells.

    PubMed

    Ponnala, Shivani; Chetty, Chandramu; Veeravalli, Krishna Kumar; Dinh, Dzung H; Klopfenstein, Jeffrey D; Rao, Jasti S

    2012-02-01

    Glioma cancer cells adapt to changing microenvironment and shift from mitochondrial oxidative phosphorylation to aerobic glycolysis for their metabolic needs irrespective of oxygen availability. In the present study, we show that silencing MMP-9 in combination with uPAR/cathepsin B switch the glycolytic metabolism of glioma cells to oxidative phosphorylation (OXPHOS) and generate reactive oxygen species (ROS) to predispose glioma cells to mitochondrial outer membrane permeabilization. shRNA for MMP-9 and uPAR (pMU) as well as shRNA for MMP-9 and cathepsin B (pMC) activated complexes of mitochondria involved in OXPHOS and inhibited glycolytic hexokinase expression. The decreased interaction of hexokinase 2 with mitochondria in the treated cells indicated the inhibition of glycolysis activation. Overexpression of Akt reversed the pMU- and pMC-mediated OXPHOS to glycolysis switch. The OXPHOS un-coupler oligomycin A altered the expression levels of the Bcl-2 family of proteins; treatment with pMU or pMC reversed this effect and induced mitochondrial outer membrane permeabilization. In addition, our results show changes in mitochondrial pore transition to release cytochrome c due to changes in the VDAC-Bcl-XL and BAX-BAK interaction with pMU and pMC treatments. Taken together, our results suggest that pMU and pMC treatments switch glioma cells from the glycolytic to the OXPHOS pathway through an inhibitory effect on Akt, ROS induction and an increase of cytosolic cytochrome c accumulation. These results demonstrate the potential of pMU and pMC as therapeutic candidates for the treatment of glioma.

  11. The presequence pathway is involved in protein sorting to the mitochondrial outer membrane.

    PubMed

    Wenz, Lena-Sophie; Opaliński, Lukasz; Schuler, Max-Hinderk; Ellenrieder, Lars; Ieva, Raffaele; Böttinger, Lena; Qiu, Jian; van der Laan, Martin; Wiedemann, Nils; Guiard, Bernard; Pfanner, Nikolaus; Becker, Thomas

    2014-06-01

    The mitochondrial outer membrane contains integral α-helical and β-barrel proteins that are imported from the cytosol. The machineries importing β-barrel proteins have been identified, however, different views exist on the import of α-helical proteins. It has been reported that the biogenesis of Om45, the most abundant signal-anchored protein, does not depend on proteinaceous components, but involves direct insertion into the outer membrane. We show that import of Om45 occurs via the translocase of the outer membrane and the presequence translocase of the inner membrane. Assembly of Om45 in the outer membrane involves the MIM machinery. Om45 thus follows a new mitochondrial biogenesis pathway that uses elements of the presequence import pathway to direct a protein to the outer membrane. © 2014 The Authors.

  12. Nitric oxide partitioning into mitochondrial membranes and the control of respiration at cytochrome c oxidase

    NASA Astrophysics Data System (ADS)

    Shiva, Sruti; Brookes, Paul S.; Patel, Rakesh P.; Anderson, Peter G.; Darley-Usmar, Victor M.

    2001-06-01

    An emerging and important site of action for nitric oxide (NO) within cells is the mitochondrial inner membrane, where NO binds to and inhibits members of the electron transport chain, complex III and cytochrome c oxidase. Although it is known that inhibition of cytochrome c oxidase by NO is competitive with O2, the mechanisms that underlie this phenomenon remain unclear, and the impact of both NO and O2 partitioning into biological membranes has not been considered. These properties are particularly interesting because physiological O2 tensions can vary widely, with NO having a greater inhibitory effect at low O2 tensions (<20 μM). In this study, we present evidence for a consumption of NO in mitochondrial membranes in the absence of substrate, in a nonsaturable process that is O2 dependent. This consumption modulates inhibition of cytochrome c oxidase by NO and is enhanced by the addition of exogenous membranes. From these data, it is evident that the partition of NO into mitochondrial membranes has a major impact on the ability of NO to control mitochondrial respiration. The implications of this conclusion are discussed in the context of mitochondrial lipid:protein ratios and the importance of NO as a regulator of respiration in pathophysiology.

  13. Crystallization of Mitochondrial Respiratory Complex II from Chicken Heart: a Membrane Protein Complex Diffracting to 2.0 Å.

    PubMed Central

    Huang, Li-shar; Borders, Toni M.; Shen, John T.; Wang, Chung-Jen; Berry, Edward

    2006-01-01

    Synopsis A multi-subunit mitochondrial membrane protein complex involved in the Krebs Cycle and respiratory chain has been crystallized in a form suitable for near-atomic resolution structure determination. A procedure is presented for preparation of diffraction-quality crystals of a vertebrate mitochondrial respiratory Complex II. The crystals have the potential to diffract to at least 2.0 Å with optimization of post-crystal-growth treatment and cryoprotection. This should allow determination of the structure of this important and medically relevant membrane protein complex at near-atomic resolution and provide great detail of the mode of binding of substrates and inhibitors at the two substrate-binding sites. PMID:15805592

  14. Localization of MRP-1 to the outer mitochondrial membrane by the chaperone protein HSP90β.

    PubMed

    Roundhill, Elizabeth; Turnbull, Doug; Burchill, Susan

    2016-05-01

    Overexpression of plasma membrane multidrug resistance-associated protein 1 (MRP-1) in Ewing's sarcoma (ES) predicts poor outcome. MRP-1 is also expressed in mitochondria, and we have examined the submitochondrial localization of MRP-1 and investigated the mechanism of MRP-1 transport and role of this organelle in the response to doxorubicin. The mitochondrial localization of MRP-1 was examined in ES cell lines by differential centrifugation and membrane solubilization by digitonin. Whether MRP-1 is chaperoned by heat shock proteins (HSPs) was investigated by immunoprecipitation, immunofluorescence microscopy, and HSP knockout using small hairpin RNA and inhibitors (apoptozole, 17-AAG, and NVPAUY). The effect of disrupting mitochondrial MRP-1-dependent efflux activity on the cytotoxic effect of doxorubicin was investigated by counting viable cell number. Mitochondrial MRP-1 is glycosylated and localized to the outer mitochondrial membrane, where it is coexpressed with HSP90. MRP-1 binds to both HSP90 and HSP70, although only inhibition of HSP90β decreases expression of MRP-1 in the mitochondria. Disruption of mitochondrial MRP-1-dependent efflux significantly increases the cytotoxic effect of doxorubicin (combination index, <0.9). For the first time, we have demonstrated that mitochondrial MRP-1 is expressed in the outer mitochondrial membrane and is a client protein of HSP90β, where it may play a role in the doxorubicin-induced resistance of ES.-Roundhill, E., Turnbull, D., Burchill, S. Localization of MRP-1 to the outer mitochondrial membrane by the chaperone protein HSP90β. © FASEB.

  15. Zinc oxide nanoparticles mediated cytotoxicity, mitochondrial membrane potential and level of antioxidants in presence of melatonin.

    PubMed

    Sruthi, S; Millot, N; Mohanan, P V

    2017-10-01

    Zinc oxide nanoparticles (ZnO NPs) are widely used in a variety of products and are currently being investigated for biomedical applications. However, they have the potential to interact with macromolecules like proteins, lipids and DNA within the cells which makes the safe biomedical application difficult. The toxicity of the ZnO NP is mainly attributed reactive oxygen species (ROS) generation. Different strategies like iron doping, polymer coating and external supply of antioxidants have been evaluated to minimize the toxic potential of ZnO NPs. Melatonin is a hormone secreted by the pineal gland with great antioxidant properties. The melatonin is known to protect cells from ROS inducing external agents like lipopolysaccharides. In the present study, the protective effect of melatonin on ZnO NPs mediated toxicity was evaluated using C6 glial cells. The Cytotoxicity, mitochondrial membrane potential and free radical formation were measured to study the effect of melatonin. Antioxidant assays were done on mice brain slices, incubated with melatonin and ZnO NPs. The results of the study reveal that, instead of imparting a protective effect, the melatonin pre-treatment enhanced the toxicity of ZnO NPs. Melatonin increased antioxidant enzymes in brain slices. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Evidence of proteolipid domain formation in an inner mitochondrial membrane mimicking model.

    PubMed

    Cheniour, Mouhedine; Brewer, Jonathan; Bagatolli, Luis; Marcillat, Olivier; Granjon, Thierry

    2017-05-01

    Mitochondrial creatine kinase (mtCK) is highly abundant in mitochondria; its quantity is equimolecular to the Adenylic Nucleotide Translocator and represents 1% of the mitochondrial proteins. It is a multitask protein localized in the mitochondria intermembrane space where it binds to the specific cardiolipin (CL) phospholipid. If mtCK was initially thought to be exclusively implicated in energy transfer between mitochondria and cytosol through a mechanism referred to as the phosphocreatine shuttle, several recent studies suggested an additional role in maintaining mitochondria membrane structure. To further characterized mtCK binding process we used multiphoton excitation fluorescence microscopy coupled with Giant Unilamellar Vesicles (GUV) and laurdan as fluorescence probe. We gathered structural and dynamical information on the molecular events occurring during the binding of mtCK to the mitochondria inner membrane. We present the first visualization of mtCK-induced CL segregation on a bilayer model forming micrometer-size proteolipid domains at the surface of the GUV. Those microdomains, which only occurred when CL is included in the lipid mixture, were accompanied by the formation of protein multimolecular assembly, vesicle clamping, and changes in both vesicle curvature and membrane fluidity CONCLUSION: Those results highlighted the importance of the highly abundant mtCK in the lateral organization of the mitochondrial inner membrane. Microdomains were induced in mitochondria-mimicking membranes composed of natural phospholipids without cholesterol and/or sphingolipids differing from the proposed cytoplasmic membrane rafts. Those findings as well as membrane curvature modification were discussed in relation with protein-membrane interaction and protein cluster involvement in membrane morphology. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Non-toxic fluorescent phosphonium probes to detect mitochondrial potential.

    PubMed

    Šarić, Ana; Crnolatac, Ivo; Bouillaud, Frédéric; Sobočanec, Sandra; Mikecin, Ana-Matea; Mačak Šafranko, Željka; Delgeorgiev, Todor; Piantanida, Ivo; Balog, Tihomir; Petit, Patrice X

    2017-03-22

    We evaluated our phosphonium-based fluorescent probes for selective staining of mitochondria. Currently used probes for monitoring mitochondrial membrane potential show varying degrees of interference with cell metabolism, photo-induced damage and probe binding. Here presented probes are characterised by highly efficient cellular uptake and specific accumulation in mitochondria. Fluorescent detection of the probes was accomplished using flow cytometry and confocal microscopy imaging of yeast and mammalian cells. Toxicity analysis (impedimetry-xCELLigence for the cellular proliferation and Seahorse technology for respiratory properties) confirms that these dyes exhibit no-toxicity on mitochondrial or cellular functioning even for long time incubation. The excellent chemical and photophysical stability of the dyes makes them promising leads toward improved fluorescent probes. Therefore, the probes described here offer to circumvent the problems associated with existing-probe's limitations.

  18. Non-toxic fluorescent phosphonium probes to detect mitochondrial potential

    NASA Astrophysics Data System (ADS)

    Šarić, Ana; Crnolatac, Ivo; Bouillaud, Frédéric; Sobočanec, Sandra; Mikecin, Ana-Matea; Mačak Šafranko, Željka; Delgeorgiev, Todor; Piantanida, Ivo; Balog, Tihomir; Petit, Patrice X.

    2017-03-01

    We evaluated our phosphonium-based fluorescent probes for selective staining of mitochondria. Currently used probes for monitoring mitochondrial membrane potential show varying degrees of interference with cell metabolism, photo-induced damage and probe binding. Here presented probes are characterised by highly efficient cellular uptake and specific accumulation in mitochondria. Fluorescent detection of the probes was accomplished using flow cytometry and confocal microscopy imaging of yeast and mammalian cells. Toxicity analysis (impedimetry—xCELLigence for the cellular proliferation and Seahorse technology for respiratory properties) confirms that these dyes exhibit no-toxicity on mitochondrial or cellular functioning even for long time incubation. The excellent chemical and photophysical stability of the dyes makes them promising leads toward improved fluorescent probes. Therefore, the probes described here offer to circumvent the problems associated with existing-probe’s limitations.

  19. Mitochondrial ATP is required for the maintenance of membrane integrity in stallion spermatozoa, whereas motility requires both glycolysis and oxidative phosphorylation.

    PubMed

    Davila, M Plaza; Muñoz, P Martin; Bolaños, J M Gallardo; Stout, T A E; Gadella, B M; Tapia, J A; da Silva, C Balao; Ferrusola, C Ortega; Peña, F J

    2016-12-01

    To investigate the hypothesis that oxidative phosphorylation is a major source of ATP to fuel stallion sperm motility, oxidative phosphorylation was suppressed using the mitochondrial uncouplers CCCP and 2,4,-dinitrophenol (DNP) and by inhibiting mitochondrial respiration at complex IV using sodium cyanide or at the level of ATP synthase using oligomycin-A. As mitochondrial dysfunction may also lead to oxidative stress, production of reactive oxygen species was monitored simultaneously. All inhibitors reduced ATP content, but oligomycin-A did so most profoundly. Oligomycin-A and CCCP also significantly reduced mitochondrial membrane potential. Sperm motility almost completely ceased after the inhibition of mitochondrial respiration and both percentage of motile sperm and sperm velocity were reduced in the presence of mitochondrial uncouplers. Inhibition of ATP synthesis resulted in the loss of sperm membrane integrity and increased the production of reactive oxygen species by degenerating sperm. Inhibition of glycolysis by deoxyglucose led to reduced sperm velocities and reduced ATP content, but not to loss of membrane integrity. These results suggest that, in contrast to many other mammalian species, stallion spermatozoa rely primarily on oxidative phosphorylation to generate the energy required for instance to maintain a functional Na + /K + gradient, which is dependent on an Na + -K + antiporter ATPase, which relates directly to the noted membrane integrity loss. Under aerobic conditions, however, glycolysis also provides the energy required for sperm motility. © 2016 Society for Reproduction and Fertility.

  20. A mitochondrial-focused genetic interaction map reveals a scaffold-like complex required for inner membrane organization in mitochondria

    PubMed Central

    Hoppins, Suzanne; Collins, Sean R.; Cassidy-Stone, Ann; Hummel, Eric; DeVay, Rachel M.; Lackner, Laura L.; Westermann, Benedikt; Schuldiner, Maya

    2011-01-01

    To broadly explore mitochondrial structure and function as well as the communication of mitochondria with other cellular pathways, we constructed a quantitative, high-density genetic interaction map (the MITO-MAP) in Saccharomyces cerevisiae. The MITO-MAP provides a comprehensive view of mitochondrial function including insights into the activity of uncharacterized mitochondrial proteins and the functional connection between mitochondria and the ER. The MITO-MAP also reveals a large inner membrane–associated complex, which we term MitOS for mitochondrial organizing structure, comprised of Fcj1/Mitofilin, a conserved inner membrane protein, and five additional components. MitOS physically and functionally interacts with both outer and inner membrane components and localizes to extended structures that wrap around the inner membrane. We show that MitOS acts in concert with ATP synthase dimers to organize the inner membrane and promote normal mitochondrial morphology. We propose that MitOS acts as a conserved mitochondrial skeletal structure that differentiates regions of the inner membrane to establish the normal internal architecture of mitochondria. PMID:21987634

  1. Soy lecithin interferes with mitochondrial function in frozen-thawed ram spermatozoa.

    PubMed

    Del Valle, I; Gómez-Durán, A; Holt, W V; Muiño-Blanco, T; Cebrián-Pérez, J A

    2012-01-01

    Egg yolk and milk are the 2 major membrane cryoprotectants commonly used in freezing media for the long-term preservation of semen (alone or in combination with others). However, in recent years, there have been increasing arguments against the use of egg yolk or milk because of the risk of introducing diseases through the use of cryopreserved semen. In this study, we analyzed the protective effect of lecithin as an alternative to egg yolk for the cryopreservation of ram semen, using a range of functional markers for sperm viability, motility, apoptosis, and mitochondrial functionality analyses (mitochondrial inner membrane surface [MIMS], mitochondrial inner membrane potential [MIMP], and cell membrane potential) as methods of assessment in samples diluted in 3 different media: Tris-citrate-glucose as control and 2 media supplemented with soy lecithin or egg yolk. The results showed that lecithin was able to effectively protect certain sperm quality characteristics against freezing-induced damage. However, lecithin induced loss of mitochondrial membrane potential or mitochondrial loss that was not reflected by modifications in sperm motility in fresh semen. MIMS and MIMP values decreased in thawed lecithin-treated samples, concomitant with a lower (P < .05) percentage of total and progressively motile cells, compared with those in egg yolk-containing samples. Further incubation of thawed samples revealed changes in motility and mitochondrial functionality that otherwise would not have been detected. These results indicated that lecithin may have affected the inner mitochondrial membrane in frozenthawed spermatozoa and confirmed that sublethal damages that seriously affect sperm functionality, not detected by classic sperm quality analyses, can be evidenced by changes in the inner mitochondrial membrane surface. These findings strengthen the relationship between mitochondrial membrane potential and motility and show that the mitochondrial alterations induced by the

  2. Distinct Pathways Mediate the Sorting of Tail-anchored Mitochondrial Outer Membrane Proteins

    USDA-ARS?s Scientific Manuscript database

    Little is known about the biogenesis of tail-anchored (TA) proteins localized to the mitochondrial outer membrane in plant cells. To address this issue, we screened all of the (>500) known and predicted TA proteins in Arabidopsis for those annotated, based on Gene Ontology, to possess mitochondrial...

  3. Cisplatin impairs rat liver mitochondrial functions by inducing changes on membrane ion permeability: prevention by thiol group protecting agents.

    PubMed

    Custódio, José B A; Cardoso, Carla M P; Santos, Maria S; Almeida, Leonor M; Vicente, Joaquim A F; Fernandes, Maria A S

    2009-05-02

    Cisplatin (CisPt) is the most important platinum anticancer drug widely used in the treatment of head, neck, ovarian and testicular cancers. However, the mechanisms by which CisPt induces cytotoxicity, namely hepatotoxicity, are not completely understood. The goal of this study was to investigate the influence of CisPt on rat liver mitochondrial functions (Ca(2+)-induced mitochondrial permeability transition (MPT), mitochondrial bioenergetics, and mitochondrial oxidative stress) to better understand the mechanism underlying its hepatotoxicity. The effect of thiol group protecting agents and some antioxidants against CisPt-induced mitochondrial damage was also investigated. Treatment of rat liver mitochondria with CisPt (20nmol/mg protein) induced Ca(2+)-dependent mitochondrial swelling, depolarization of membrane potential (DeltaPsi), Ca(2+) release, and NAD(P)H fluorescence intensity decay. These effects were prevented by cyclosporine A (CyA), a potent and specific inhibitor of the MPT. In the concentration range of up to 40nmol/mg protein, CisPt slightly inhibited state 3 and stimulated state 2 and state 4 respiration rates using succinate as respiratory substrate. The respiratory indexes, respiratory control ratio (RCR) and ADP/O ratios, the DeltaPsi, and the ADP phosphorylation rate were also depressed. CisPt induced mitochondrial inner membrane permeabilization to protons (proton leak) but did not induce significant changes on mitochondrial H(2)O(2) generation. All the effects induced by CisPt on rat liver mitochondria were prevented by thiol group protecting agents namely, glutathione (GSH), dithiothreitol (DTT), N-acetyl-L-cysteine (NAC) and cysteine (CYS), whereas superoxide-dismutase (SOD), catalase (CAT) and ascorbate (ASC) were without effect. In conclusion, the anticancer drug CisPt: (1) increases the sensitivity of mitochondria to Ca(2+)-induced MPT; (2) interferes with mitochondrial bioenergetics by increasing mitochondrial inner membrane

  4. Loss of Prohibitin Membrane Scaffolds Impairs Mitochondrial Architecture and Leads to Tau Hyperphosphorylation and Neurodegeneration

    PubMed Central

    Merkwirth, Carsten; Morbin, Michela; Brönneke, Hella S.; Jordan, Sabine D.; Rugarli, Elena I.; Langer, Thomas

    2012-01-01

    Fusion and fission of mitochondria maintain the functional integrity of mitochondria and protect against neurodegeneration, but how mitochondrial dysfunctions trigger neuronal loss remains ill-defined. Prohibitins form large ring complexes in the inner membrane that are composed of PHB1 and PHB2 subunits and are thought to function as membrane scaffolds. In Caenorhabditis elegans, prohibitin genes affect aging by moderating fat metabolism and energy production. Knockdown experiments in mammalian cells link the function of prohibitins to membrane fusion, as they were found to stabilize the dynamin-like GTPase OPA1 (optic atrophy 1), which mediates mitochondrial inner membrane fusion and cristae morphogenesis. Mutations in OPA1 are associated with dominant optic atrophy characterized by the progressive loss of retinal ganglion cells, highlighting the importance of OPA1 function in neurons. Here, we show that neuron-specific inactivation of Phb2 in the mouse forebrain causes extensive neurodegeneration associated with behavioral impairments and cognitive deficiencies. We observe early onset tau hyperphosphorylation and filament formation in the hippocampus, demonstrating a direct link between mitochondrial defects and tau pathology. Loss of PHB2 impairs the stability of OPA1, affects mitochondrial ultrastructure, and induces the perinuclear clustering of mitochondria in hippocampal neurons. A destabilization of the mitochondrial genome and respiratory deficiencies manifest in aged neurons only, while the appearance of mitochondrial morphology defects correlates with tau hyperphosphorylation in the absence of PHB2. These results establish an essential role of prohibitin complexes for neuronal survival in vivo and demonstrate that OPA1 stability, mitochondrial fusion, and the maintenance of the mitochondrial genome in neurons depend on these scaffolding proteins. Moreover, our findings establish prohibitin-deficient mice as a novel genetic model for tau pathologies

  5. Mitochondrial cardiolipin/phospholipid trafficking: the role of membrane contact site complexes and lipid transfer proteins.

    PubMed

    Schlattner, Uwe; Tokarska-Schlattner, Malgorzata; Rousseau, Denis; Boissan, Mathieu; Mannella, Carmen; Epand, Richard; Lacombe, Marie-Lise

    2014-04-01

    Historically, cellular trafficking of lipids has received much less attention than protein trafficking, mostly because its biological importance was underestimated, involved sorting and translocation mechanisms were not known, and analytical tools were limiting. This has changed during the last decade, and we discuss here some progress made in respect to mitochondria and the trafficking of phospholipids, in particular cardiolipin. Different membrane contact site or junction complexes and putative lipid transfer proteins for intra- and intermembrane lipid translocation have been described, involving mitochondrial inner and outer membrane, and the adjacent membranes of the endoplasmic reticulum. An image emerges how cardiolipin precursors, remodeling intermediates, mature cardiolipin and its oxidation products could migrate between membranes, and how this trafficking is involved in cardiolipin biosynthesis and cell signaling events. Particular emphasis in this review is given to mitochondrial nucleoside diphosphate kinase D and mitochondrial creatine kinases, which emerge to have roles in both, membrane junction formation and lipid transfer. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  6. Mitochondrial matrix delivery using MITO-Porter, a liposome-based carrier that specifies fusion with mitochondrial membranes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yasuzaki, Yukari; Yamada, Yuma; Harashima, Hideyoshi, E-mail: harasima@pharm.hokudai.ac.jp

    2010-06-25

    Mitochondria are the principal producers of energy in cells of higher organisms. It was recently reported that mutations and defects in mitochondrial DNA (mtDNA) are associated with various mitochondrial diseases including a variety of neurodegenerative and neuromuscular diseases. Therefore, an effective mitochondrial gene therapy and diagnosis would be expected to have great medical benefits. To achieve this, therapeutic agents need to be delivered into the innermost mitochondrial space (mitochondrial matrix), which contains the mtDNA pool. We previously reported on the development of MITO-Porter, a liposome-based carrier that introduces macromolecular cargos into mitochondria via membrane fusion. In this study, we providemore » a demonstration of mitochondrial matrix delivery and the visualization of mitochondrial genes (mtDNA) in living cells using the MITO-Porter. We first prepared MITO-Porter containing encapsulated propidium iodide (PI), a fluorescent dye used to stain nucleic acids to detect mtDNA. We then confirmed the emission of red-fluorescence from PI by conjugation with mtDNA, when the carriers were incubated in the presence of isolated rat liver mitochondria. Finally, intracellular observation by confocal laser scanning microscopy clearly verified that the MITO-Porter delivered PI to the mitochondrial matrix.« less

  7. Multiple Lines of Evidence Localize Signaling, Morphology, and Lipid Biosynthesis Machinery to the Mitochondrial Outer Membrane of Arabidopsis[W][OA

    PubMed Central

    Duncan, Owen; Taylor, Nicolas L.; Carrie, Chris; Eubel, Holger; Kubiszewski-Jakubiak, Szymon; Zhang, Botao; Narsai, Reena; Millar, A. Harvey; Whelan, James

    2011-01-01

    The composition of the mitochondrial outer membrane is notoriously difficult to deduce by orthology to other organisms, and biochemical enrichments are inevitably contaminated with the closely associated inner mitochondrial membrane and endoplasmic reticulum. In order to identify novel proteins of the outer mitochondrial membrane in Arabidopsis (Arabidopsis thaliana), we integrated a quantitative mass spectrometry analysis of highly enriched and prefractionated samples with a number of confirmatory biochemical and cell biology approaches. This approach identified 42 proteins, 27 of which were novel, more than doubling the number of confirmed outer membrane proteins in plant mitochondria and suggesting novel functions for the plant outer mitochondrial membrane. The novel components identified included proteins that affected mitochondrial morphology and/or segregation, a protein that suggests the presence of bacterial type lipid A in the outer membrane, highly stress-inducible proteins, as well as proteins necessary for embryo development and several of unknown function. Additionally, proteins previously inferred via orthology to be present in other compartments, such as an NADH:cytochrome B5 reductase required for hydroxyl fatty acid accumulation in developing seeds, were shown to be located in the outer membrane. These results also revealed novel proteins, which may have evolved to fulfill plant-specific requirements of the mitochondrial outer membrane, and provide a basis for the future functional characterization of these proteins in the context of mitochondrial intracellular interaction. PMID:21896887

  8. Phylogenetic Analysis of Mitochondrial Outer Membrane β-Barrel Channels

    PubMed Central

    Wojtkowska, Małgorzata; Jąkalski, Marcin; Pieńkowska, Joanna R.; Stobienia, Olgierd; Karachitos, Andonis; Przytycka, Teresa M.; Weiner, January; Kmita, Hanna; Makałowski, Wojciech

    2012-01-01

    Transport of molecules across mitochondrial outer membrane is pivotal for a proper function of mitochondria. The transport pathways across the membrane are formed by ion channels that participate in metabolite exchange between mitochondria and cytoplasm (voltage-dependent anion-selective channel, VDAC) as well as in import of proteins encoded by nuclear genes (Tom40 and Sam50/Tob55). VDAC, Tom40, and Sam50/Tob55 are present in all eukaryotic organisms, encoded in the nuclear genome, and have β-barrel topology. We have compiled data sets of these protein sequences and studied their phylogenetic relationships with a special focus on the position of Amoebozoa. Additionally, we identified these protein-coding genes in Acanthamoeba castellanii and Dictyostelium discoideum to complement our data set and verify the phylogenetic position of these model organisms. Our analysis show that mitochondrial β-barrel channels from Archaeplastida (plants) and Opisthokonta (animals and fungi) experienced many duplication events that resulted in multiple paralogous isoforms and form well-defined monophyletic clades that match the current model of eukaryotic evolution. However, in representatives of Amoebozoa, Chromalveolata, and Excavata (former Protista), they do not form clearly distinguishable clades, although they locate basally to the plant and algae branches. In most cases, they do not posses paralogs and their sequences appear to have evolved quickly or degenerated. Consequently, the obtained phylogenies of mitochondrial outer membrane β-channels do not entirely reflect the recent eukaryotic classification system involving the six supergroups: Chromalveolata, Excavata, Archaeplastida, Rhizaria, Amoebozoa, and Opisthokonta. PMID:22155732

  9. The oncolytic peptide LTX-315 kills cancer cells through Bax/Bak-regulated mitochondrial membrane permeabilization.

    PubMed

    Zhou, Heng; Forveille, Sabrina; Sauvat, Allan; Sica, Valentina; Izzo, Valentina; Durand, Sylvère; Müller, Kevin; Liu, Peng; Zitvogel, Laurence; Rekdal, Øystein; Kepp, Oliver; Kroemer, Guido

    2015-09-29

    LTX-315 has been developed as an amphipathic cationic peptide that kills cancer cells. Here, we investigated the putative involvement of mitochondria in the cytotoxic action of LTX-315. Subcellular fractionation of LTX-315-treated cells, followed by mass spectrometric quantification, revealed that the agent was enriched in mitochondria. LTX-315 caused an immediate arrest of mitochondrial respiration without any major uncoupling effect. Accordingly, LTX-315 disrupted the mitochondrial network, dissipated the mitochondrial inner transmembrane potential, and caused the release of mitochondrial intermembrane proteins into the cytosol. LTX-315 was relatively inefficient in stimulating mitophagy. Cells lacking the two pro-apoptotic multidomain proteins from the BCL-2 family, BAX and BAK, were less susceptible to LTX-315-mediated killing. Moreover, cells engineered to lose their mitochondria (by transfection with Parkin combined with treatment with a protonophore causing mitophagy) were relatively resistant against LTX-315, underscoring the importance of this organelle for LTX-315-mediated cytotoxicity. Altogether, these results support the notion that LTX-315 kills cancer cells by virtue of its capacity to permeabilize mitochondrial membranes.

  10. The oncolytic peptide LTX-315 kills cancer cells through Bax/Bak-regulated mitochondrial membrane permeabilization

    PubMed Central

    Zhou, Heng; Forveille, Sabrina; Sauvat, Allan; Sica, Valentina; Izzo, Valentina; Durand, Sylvère; Müller, Kevin; Liu, Peng; Zitvogel, Laurence; Rekdal, Øystein; Kepp, Oliver; Kroemer, Guido

    2015-01-01

    LTX-315 has been developed as an amphipathic cationic peptide that kills cancer cells. Here, we investigated the putative involvement of mitochondria in the cytotoxic action of LTX-315. Subcellular fractionation of LTX-315-treated cells, followed by mass spectrometric quantification, revealed that the agent was enriched in mitochondria. LTX-315 caused an immediate arrest of mitochondrial respiration without any major uncoupling effect. Accordingly, LTX-315 disrupted the mitochondrial network, dissipated the mitochondrial inner transmembrane potential, and caused the release of mitochondrial intermembrane proteins into the cytosol. LTX-315 was relatively inefficient in stimulating mitophagy. Cells lacking the two pro-apoptotic multidomain proteins from the BCL-2 family, BAX and BAK, were less susceptible to LTX-315-mediated killing. Moreover, cells engineered to lose their mitochondria (by transfection with Parkin combined with treatment with a protonophore causing mitophagy) were relatively resistant against LTX-315, underscoring the importance of this organelle for LTX-315-mediated cytotoxicity. Altogether, these results support the notion that LTX-315 kills cancer cells by virtue of its capacity to permeabilize mitochondrial membranes. PMID:26378049

  11. Detergent-resistant membrane subfractions containing proteins of plasma membrane, mitochondrial, and internal membrane origins.

    PubMed

    Mellgren, Ronald L

    2008-04-24

    HEK293 cell detergent-resistant membranes (DRMs) isolated by the standard homogenization protocol employing a Teflon pestle homogenizer yielded a prominent opaque band at approximately 16% sucrose upon density gradient ultracentrifugation. In contrast, cell disruption using a ground glass tissue homogenizer generated three distinct DRM populations migrating at approximately 10%, 14%, and 20% sucrose, named DRM subfractions A, B, and C, respectively. Separation of the DRM subfractions by mechanical disruption suggested that they are physically associated within the cellular environment, but can be dissociated by shear forces generated during vigorous homogenization. All three DRM subfractions possessed cholesterol and ganglioside GM1, but differed in protein composition. Subfraction A was enriched in flotillin-1 and contained little caveolin-1. In contrast, subfractions B and C were enriched in caveolin-1. Subfraction C contained several mitochondrial membrane proteins, including mitofilin and porins. Only subfraction B appeared to contain significant amounts of plasma membrane-associated proteins, as revealed by cell surface labeling studies. A similar distribution of DRM subfractions, as assessed by separation of flotillin-1 and caveolin-1 immunoreactivities, was observed in CHO cells, in 3T3-L1 adipocytes, and in HEK293 cells lysed in detergent-free carbonate. Teflon pestle homogenization of HEK293 cells in the presence of the actin-disrupting agent latrunculin B generated DRM subfractions A-C. The microtubule-disrupting agent vinblastine did not facilitate DRM subfraction separation, and DRMs prepared from fibroblasts of vimentin-null mice were present as a single major band on sucrose gradients, unless pre-treated with latrunculin B. These results suggest that the DRM subfractions are interconnected by the actin cytoskeleton, and not by microtubes or vimentin intermediate filaments. The subfractions described may prove useful in studying discrete protein

  12. Mucuna pruriens and Its Major Constituent L-DOPA Recover Spermatogenic Loss by Combating ROS, Loss of Mitochondrial Membrane Potential and Apoptosis

    PubMed Central

    Singh, Akhand Pratap; Sarkar, Saumya; Tripathi, Muktanand; Rajender, Singh

    2013-01-01

    Background The Ayurvedic medicinal system claims Mucuna pruriens (MP) to possess pro-male fertility, aphrodisiac and adaptogenic properties. Some scientific evidence also supports its pro-male fertility properties; however, the mechanism of its action is not yet clear. The present study aimed at demonstrating spermatogenic restorative efficacy of MP and its major constituent L-DOPA (LD), and finding the possible mechanism of action thereof in a rat model. Methodology/Findings Ethinyl estradiol (EE) was administered at a rate of 3 mg/kg body weight (BW)/day for a period of 14 days to generate a rat model with compromised spermatogenesis. MP and LD were administered in two separate groups of these animals starting 15th day for a period of 56 days, and the results were compared with an auto-recovery (AR) group. Sperm count and motility, testis histo-architecture, level of reactive oxygen species (ROS), mitochondrial membrane potential (MMP), apoptosis, peripheral hormone levels and testicular germ cell populations were analysed, in all experimental groups. We observed efficient and quick recovery of spermatogenesis in MP and LD groups in comparison to the auto-recovery group. The treatment regulated ROS level, apoptosis, and mitochondrial membrane potential (MMP), recovered the hypothalamic-pituitary-gonadal axis and the number of testicular germ cells, ultimately leading to increased sperm count and motility. Conclusion/Significance M. pruriens efficiently recovers the spermatogenic loss induced due to EE administration. The recovery is mediated by reduction in ROS level, restoration of MMP, regulation of apoptosis and eventual increase in the number of germ cells and regulation of apoptosis. The present study simplified the complexity of mechanism involved and provided meaningful insights into MP/LD mediated correction of spermatogenic impairment caused by estrogens exposure. This is the first study demonstrating that L-DOPA largely accounts for pro

  13. Mucuna pruriens and its major constituent L-DOPA recover spermatogenic loss by combating ROS, loss of mitochondrial membrane potential and apoptosis.

    PubMed

    Singh, Akhand Pratap; Sarkar, Saumya; Tripathi, Muktanand; Rajender, Singh

    2013-01-01

    The Ayurvedic medicinal system claims Mucuna pruriens (MP) to possess pro-male fertility, aphrodisiac and adaptogenic properties. Some scientific evidence also supports its pro-male fertility properties; however, the mechanism of its action is not yet clear. The present study aimed at demonstrating spermatogenic restorative efficacy of MP and its major constituent L-DOPA (LD), and finding the possible mechanism of action thereof in a rat model. Ethinyl estradiol (EE) was administered at a rate of 3 mg/kg body weight (BW)/day for a period of 14 days to generate a rat model with compromised spermatogenesis. MP and LD were administered in two separate groups of these animals starting 15(th) day for a period of 56 days, and the results were compared with an auto-recovery (AR) group. Sperm count and motility, testis histo-architecture, level of reactive oxygen species (ROS), mitochondrial membrane potential (MMP), apoptosis, peripheral hormone levels and testicular germ cell populations were analysed, in all experimental groups. We observed efficient and quick recovery of spermatogenesis in MP and LD groups in comparison to the auto-recovery group. The treatment regulated ROS level, apoptosis, and mitochondrial membrane potential (MMP), recovered the hypothalamic-pituitary-gonadal axis and the number of testicular germ cells, ultimately leading to increased sperm count and motility. M. pruriens efficiently recovers the spermatogenic loss induced due to EE administration. The recovery is mediated by reduction in ROS level, restoration of MMP, regulation of apoptosis and eventual increase in the number of germ cells and regulation of apoptosis. The present study simplified the complexity of mechanism involved and provided meaningful insights into MP/LD mediated correction of spermatogenic impairment caused by estrogens exposure. This is the first study demonstrating that L-DOPA largely accounts for pro-spermatogenic properties of M. pruriens. The manuscript bears CDRI

  14. The tRNA(Gly) T10003C mutation in mitochondrial haplogroup M11b in a Chinese family with diabetes decreases the steady-state level of tRNA(Gly), increases aberrant reactive oxygen species production, and reduces mitochondrial membrane potential.

    PubMed

    Li, Wei; Wen, Chaowei; Li, Weixing; Wang, Hailing; Guan, Xiaomin; Zhang, Wanlin; Ye, Wei; Lu, Jianxin

    2015-10-01

    Mitochondrial diabetes originates mainly from mutations located in maternally transmitted, mitochondrial tRNA-coding genes. In a genetic screening program of type 2 diabetes conducted with a Chinese Han population, we found one family with suggestive maternally transmitted diabetes. The proband's mitochondrial genome was analyzed using DNA sequencing. Total 42 known nucleoside changes and 1 novel variant were identified, and the entire mitochondrial DNA sequence was assigned to haplogroup M11b. Phylogenetic analysis showed that a homoplasmic mutation, 10003T>C transition, occurred at the highly conserved site in the gene encoding tRNA(Gly). Using a transmitochondrial cybrid cell line harboring this mutation, we observed that the steady-state level of tRNA(Gly) significantly affected and the amount of tRNA(Gly) decreased by 97%, production of reactive oxygen species was enhanced, and mitochondrial membrane potential, mtDNA copy number and cellular oxygen consumption rate were remarkably decreased compared with wild-type cybrid cells. The homoplasmic 10003T>C mutation in the mitochondrial tRNA(Gly) gene suggested to be as a pathogenesis-related mutation which might contribute to the maternal inherited diabetes in the Han Chinese family.

  15. Polyhydroxybutyrate targets mammalian mitochondria and increases permeability of plasmalemmal and mitochondrial membranes.

    PubMed

    Elustondo, Pia A; Angelova, Plamena R; Kawalec, Michał; Michalak, Michał; Kurcok, Piotr; Abramov, Andrey Y; Pavlov, Evgeny V

    2013-01-01

    Poly(3-hydroxybutyrate) (PHB) is a polyester of 3-hydroxybutyric acid (HB) that is ubiquitously present in all organisms. In higher eukaryotes PHB is found in the length of 10 to 100 HB units and can be present in free form as well as in association with proteins and inorganic polyphosphate. It has been proposed that PHB can mediate ion transport across lipid bilayer membranes. We investigated the ability of PHB to interact with living cells and isolated mitochondria and the effects of these interactions on membrane ion transport. We performed experiments using a fluorescein derivative of PHB (fluo-PHB). We found that fluo-PHB preferentially accumulated inside the mitochondria of HeLa cells. Accumulation of fluo-PHB induced mitochondrial membrane depolarization. This membrane depolarization was significantly delayed by the inhibitor of the mitochondrial permeability transition pore - Cyclosporin A. Further experiments using intact cells as well as isolated mitochondria confirmed that the effects of PHB directly linked to its ability to facilitate ion transport, including calcium, across the membranes. We conclude that PHB demonstrates ionophoretic properties in biological membranes and this effect is most profound in mitochondria due to the selective accumulation of the polymer in this organelle.

  16. Mutations in valosin-containing protein (VCP) decrease ADP/ATP translocation across the mitochondrial membrane and impair energy metabolism in human neurons

    PubMed Central

    Arber, Charles; Bartolome, Fernando; de Vicente, Macarena; Houlden, Henry

    2017-01-01

    Mutations in the gene encoding valosin-containing protein (VCP) lead to multisystem proteinopathies including frontotemporal dementia. We have previously shown that patient-derived VCP mutant fibroblasts exhibit lower mitochondrial membrane potential, uncoupled respiration, and reduced ATP levels. This study addresses the underlying basis for mitochondrial uncoupling using VCP knockdown neuroblastoma cell lines, induced pluripotent stem cells (iPSCs), and iPSC-derived cortical neurons from patients with pathogenic mutations in VCP. Using fluorescent live cell imaging and respiration analysis we demonstrate a VCP mutation/knockdown-induced dysregulation in the adenine nucleotide translocase, which results in a slower rate of ADP or ATP translocation across the mitochondrial membranes. This deregulation can explain the mitochondrial uncoupling and lower ATP levels in VCP mutation-bearing neurons via reduced ADP availability for ATP synthesis. This study provides evidence for a role of adenine nucleotide translocase in the mechanism underlying altered mitochondrial function in VCP-related degeneration, and this new insight may inform efforts to better understand and manage neurodegenerative disease and other proteinopathies. PMID:28360103

  17. Mutations in valosin-containing protein (VCP) decrease ADP/ATP translocation across the mitochondrial membrane and impair energy metabolism in human neurons.

    PubMed

    Ludtmann, Marthe H R; Arber, Charles; Bartolome, Fernando; de Vicente, Macarena; Preza, Elisavet; Carro, Eva; Houlden, Henry; Gandhi, Sonia; Wray, Selina; Abramov, Andrey Y

    2017-05-26

    Mutations in the gene encoding valosin-containing protein (VCP) lead to multisystem proteinopathies including frontotemporal dementia. We have previously shown that patient-derived VCP mutant fibroblasts exhibit lower mitochondrial membrane potential, uncoupled respiration, and reduced ATP levels. This study addresses the underlying basis for mitochondrial uncoupling using VCP knockdown neuroblastoma cell lines, induced pluripotent stem cells (iPSCs), and iPSC-derived cortical neurons from patients with pathogenic mutations in VCP Using fluorescent live cell imaging and respiration analysis we demonstrate a VCP mutation/knockdown-induced dysregulation in the adenine nucleotide translocase, which results in a slower rate of ADP or ATP translocation across the mitochondrial membranes. This deregulation can explain the mitochondrial uncoupling and lower ATP levels in VCP mutation-bearing neurons via reduced ADP availability for ATP synthesis. This study provides evidence for a role of adenine nucleotide translocase in the mechanism underlying altered mitochondrial function in VCP-related degeneration, and this new insight may inform efforts to better understand and manage neurodegenerative disease and other proteinopathies. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. Quantitative measurement of mitochondrial membrane potential in cultured cells: calcium-induced de- and hyperpolarization of neuronal mitochondria

    PubMed Central

    Gerencser, Akos A; Chinopoulos, Christos; Birket, Matthew J; Jastroch, Martin; Vitelli, Cathy; Nicholls, David G; Brand, Martin D

    2012-01-01

    Mitochondrial membrane potential (ΔΨM) is a central intermediate in oxidative energy metabolism. Although ΔΨM is routinely measured qualitatively or semi-quantitatively using fluorescent probes, its quantitative assay in intact cells has been limited mostly to slow, bulk-scale radioisotope distribution methods. Here we derive and verify a biophysical model of fluorescent potentiometric probe compartmentation and dynamics using a bis-oxonol-type indicator of plasma membrane potential (ΔΨP) and the ΔΨM probe tetramethylrhodamine methyl ester (TMRM) using fluorescence imaging and voltage clamp. Using this model we introduce a purely fluorescence-based quantitative assay to measure absolute values of ΔΨM in millivolts as they vary in time in individual cells in monolayer culture. The ΔΨP-dependent distribution of the probes is modelled by Eyring rate theory. Solutions of the model are used to deconvolute ΔΨP and ΔΨM in time from the probe fluorescence intensities, taking into account their slow, ΔΨP-dependent redistribution and Nernstian behaviour. The calibration accounts for matrix:cell volume ratio, high- and low-affinity binding, activity coefficients, background fluorescence and optical dilution, allowing comparisons of potentials in cells or cell types differing in these properties. In cultured rat cortical neurons, ΔΨM is −139 mV at rest, and is regulated between −108 mV and −158 mV by concerted increases in ATP demand and Ca2+-dependent metabolic activation. Sensitivity analysis showed that the standard error of the mean in the absolute calibrated values of resting ΔΨM including all biological and systematic measurement errors introduced by the calibration parameters is less than 11 mV. Between samples treated in different ways, the typical equivalent error is ∼5 mV. PMID:22495585

  19. The mitochondria targeted antioxidant MitoQ protects against fluoroquinolone-induced oxidative stress and mitochondrial membrane damage in human Achilles tendon cells.

    PubMed

    Lowes, Damon A; Wallace, Carol; Murphy, Michael P; Webster, Nigel R; Galley, Helen F

    2009-04-01

    Tendinitis and tendon rupture during treatment with fluoroquinolone antibiotics is thought to be mediated via oxidative stress. This study investigated whether ciprofloxacin and moxifloxacin cause oxidative stress and mitochondrial damage in cultured normal human Achilles' tendon cells and whether an antioxidant targeted to mitochondria (MitoQ) would protect against such damage better than a non-mitochondria targeted antioxidant. Human tendon cells from normal Achilles' tendons were exposed to 0-0.3 mM antibiotic for 24 h and 7 days in the presence of 1 microM MitoQ or an untargeted form, idebenone. Both moxifloxacin and ciprofloxacin resulted in up to a 3-fold increase in the rate of oxidation of dichlorodihydrofluorescein, a marker of general oxidative stress in tenocytes (p<0.0001) and loss of mitochondrial membrane permeability (p<0.001). In cells treated with MitoQ the oxidative stress was less and mitochondrial membrane potential was maintained. Mitochondrial damage to tenocytes during fluoroquinolone treatment may be involved in tendinitis and tendon rupture.

  20. miR-27 regulates mitochondrial networks by directly targeting the mitochondrial fission factor.

    PubMed

    Tak, Hyosun; Kim, Jihye; Jayabalan, Aravinth Kumar; Lee, Heejin; Kang, Hoin; Cho, Dong-Hyung; Ohn, Takbum; Nam, Suk Woo; Kim, Wook; Lee, Eun Kyung

    2014-11-28

    Mitochondrial morphology is dynamically regulated by forming small, fragmented units or interconnected networks, and this is a pivotal process that is used to maintain mitochondrial homeostasis. Although dysregulation of mitochondrial dynamics is related to the pathogenesis of several human diseases, its molecular mechanism is not fully elucidated. In this study, we demonstrate the potential role of miR-27 in the regulation of mitochondrial dynamics. Mitochondrial fission factor (MFF) mRNA is a direct target of miR-27, whose ectopic expression decreases MFF expression through binding to its 3'-untranslated region. Expression of miR-27 results in the elongation of mitochondria as well as an increased mitochondrial membrane potential and mitochondrial ATP level. Our results suggest that miR-27 is a novel regulator affecting morphological mitochondrial changes by targeting MFF.

  1. Mitochondrial membrane permeabilization and cell death during myocardial infarction: roles of calcium and reactive oxygen species

    PubMed Central

    Webster, Keith A

    2013-01-01

    Excess generation of reactive oxygen species (ROS) and cytosolic calcium accumulation play major roles in the initiation of programmed cell death during acute myocardial infarction. Cell death may include necrosis, apoptosis and autophagy, and combinations thereof. During ischemia, calcium handling between the sarcoplasmic reticulum and myofilament is disrupted and calcium is diverted to the mitochondria causing swelling. Reperfusion, while essential for survival, reactivates energy transduction and contractility and causes the release of ROS and additional ionic imbalance. During acute ischemia–reperfusion, the principal death pathways are programmed necrosis and apoptosis through the intrinsic pathway, initiated by the opening of the mitochondrial permeability transition pore and outer mitochondrial membrane permeabilization, respectively. Despite intense investigation, the mechanisms of action and modes of regulation of mitochondrial membrane permeabilization are incompletely understood. Extrinsic apoptosis, necroptosis and autophagy may also contribute to ischemia–reperfusion injury. In this review, the roles of dysregulated calcium and ROS and the contributions of Bcl-2 proteins, as well as mitochondrial morphology in promoting mitochondrial membrane permeability change and the ensuing cell death during myocardial infarction are discussed. PMID:23176689

  2. A novel motif in the yeast mitochondrial dynamin Dnm1 is essential for adaptor binding and membrane recruitment

    PubMed Central

    Bui, Huyen T.; Karren, Mary A.; Bhar, Debjani

    2012-01-01

    To initiate mitochondrial fission, dynamin-related proteins (DRPs) must bind specific adaptors on the outer mitochondrial membrane. The structural features underlying this interaction are poorly understood. Using yeast as a model, we show that the Insert B domain of the Dnm1 guanosine triphosphatase (a DRP) contains a novel motif required for association with the mitochondrial adaptor Mdv1. Mutation of this conserved motif specifically disrupted Dnm1–Mdv1 interactions, blocking Dnm1 recruitment and mitochondrial fission. Suppressor mutations in Mdv1 that restored Dnm1–Mdv1 interactions and fission identified potential protein-binding interfaces on the Mdv1 β-propeller domain. These results define the first known function for Insert B in DRP–adaptor interactions. Based on the variability of Insert B sequences and adaptor proteins, we propose that Insert B domains and mitochondrial adaptors have coevolved to meet the unique requirements for mitochondrial fission of different organisms. PMID:23148233

  3. Brain mitochondrial iron accumulates in Huntington's disease, mediates mitochondrial dysfunction, and can be removed pharmacologically.

    PubMed

    Agrawal, Sonal; Fox, Julia; Thyagarajan, Baskaran; Fox, Jonathan H

    2018-05-20

    Mitochondrial bioenergetic dysfunction is involved in neurodegeneration in Huntington's disease (HD). Iron is critical for normal mitochondrial bioenergetics but can also contribute to pathogenic oxidation. The accumulation of iron in the brain occurs in mouse models and in human HD. Yet the role of mitochondria-related iron dysregulation as a contributor to bioenergetic pathophysiology in HD is unclear. We demonstrate here that human HD and mouse model HD (12-week R6/2 and 12-month YAC128) brains accumulated mitochondrial iron and showed increased expression of iron uptake protein mitoferrin 2 and decreased iron-sulfur cluster synthesis protein frataxin. Mitochondria-enriched fractions from mouse HD brains had deficits in membrane potential and oxygen uptake and increased lipid peroxidation. In addition, the membrane-permeable iron-selective chelator deferiprone (1 μM) rescued these effects ex-vivo, whereas hydrophilic iron and copper chelators did not. A 10-day oral deferiprone treatment in 9-week R6/2 HD mice indicated that deferiprone removed mitochondrial iron, restored mitochondrial potentials, decreased lipid peroxidation, and improved motor endurance. Neonatal iron supplementation potentiates neurodegeneration in mouse models of HD by unknown mechanisms. We found that neonatal iron supplementation increased brain mitochondrial iron accumulation and potentiated markers of mitochondrial dysfunction in HD mice. Therefore, bi-directional manipulation of mitochondrial iron can potentiate and protect against markers of mouse HD. Our findings thus demonstrate the significance of iron as a mediator of mitochondrial dysfunction and injury in mouse models of human HD and suggest that targeting the iron-mitochondrial pathway may be protective. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. Mitochondrial neuronal uncoupling proteins: a target for potential disease-modification in Parkinson's disease

    PubMed Central

    2012-01-01

    This review gives a brief insight into the role of mitochondrial dysfunction and oxidative stress in the converging pathogenic processes involved in Parkinson's disease (PD). Mitochondria provide cellular energy in the form of ATP via oxidative phosphorylation, but as an integral part of this process, superoxides and other reactive oxygen species are also produced. Excessive free radical production contributes to oxidative stress. Cells have evolved to handle such stress via various endogenous anti-oxidant proteins. One such family of proteins is the mitochondrial uncoupling proteins (UCPs), which are anion carriers located in the mitochondrial inner membrane. There are five known homologues (UCP1 to 5), of which UCP4 and 5 are predominantly expressed in neural cells. In a series of previous publications, we have shown how these neuronal UCPs respond to 1-methyl-4-phenylpyridinium (MPP+; toxic metabolite of MPTP) and dopamine-induced toxicity to alleviate neuronal cell death by preserving ATP levels and mitochondrial membrane potential, and reducing oxidative stress. We also showed how their expression can be influenced by nuclear factor kappa-B (NF-κB) signaling pathway specifically in UCP4. Furthermore, we previously reported an interesting link between PD and metabolic processes through the protective effects of leptin (hormone produced by adipocytes) acting via UCP2 against MPP+-induced toxicity. There is increasing evidence that these endogenous neuronal UCPs can play a vital role to protect neurons against various pathogenic stresses including those associated with PD. Their expression, which can be induced, may well be a potential therapeutic target for various drugs to alleviate the harmful effects of pathogenic processes in PD and hence modify the progression of this disease. PMID:23210978

  5. Lipid-Loving ANTs: Molecular Simulations of Cardiolipin Interactions and the Organization of the Adenine Nucleotide Translocase in Model Mitochondrial Membranes

    PubMed Central

    2016-01-01

    The exchange of ADP and ATP across the inner mitochondrial membrane is a fundamental cellular process. This exchange is facilitated by the adenine nucleotide translocase, the structure and function of which are critically dependent on the signature phospholipid of mitochondria, cardiolipin (CL). Here we employ multiscale molecular dynamics simulations to investigate CL interactions within a membrane environment. Using simulations at both coarse-grained and atomistic resolutions, we identify three CL binding sites on the translocase, in agreement with those seen in crystal structures and inferred from nuclear magnetic resonance measurements. Characterization of the free energy landscape for lateral lipid interaction via potential of mean force calculations demonstrates the strength of interaction compared to those of binding sites on other mitochondrial membrane proteins, as well as their selectivity for CL over other phospholipids. Extending the analysis to other members of the family, yeast Aac2p and mouse uncoupling protein 2, suggests a degree of conservation. Simulation of large patches of a model mitochondrial membrane containing multiple copies of the translocase shows that CL interactions persist in the presence of protein–protein interactions and suggests CL may mediate interactions between translocases. This study provides a key example of how computational microscopy may be used to shed light on regulatory lipid–protein interactions. PMID:27786441

  6. Lipid-Loving ANTs: Molecular Simulations of Cardiolipin Interactions and the Organization of the Adenine Nucleotide Translocase in Model Mitochondrial Membranes.

    PubMed

    Hedger, George; Rouse, Sarah L; Domański, Jan; Chavent, Matthieu; Koldsø, Heidi; Sansom, Mark S P

    2016-11-15

    The exchange of ADP and ATP across the inner mitochondrial membrane is a fundamental cellular process. This exchange is facilitated by the adenine nucleotide translocase, the structure and function of which are critically dependent on the signature phospholipid of mitochondria, cardiolipin (CL). Here we employ multiscale molecular dynamics simulations to investigate CL interactions within a membrane environment. Using simulations at both coarse-grained and atomistic resolutions, we identify three CL binding sites on the translocase, in agreement with those seen in crystal structures and inferred from nuclear magnetic resonance measurements. Characterization of the free energy landscape for lateral lipid interaction via potential of mean force calculations demonstrates the strength of interaction compared to those of binding sites on other mitochondrial membrane proteins, as well as their selectivity for CL over other phospholipids. Extending the analysis to other members of the family, yeast Aac2p and mouse uncoupling protein 2, suggests a degree of conservation. Simulation of large patches of a model mitochondrial membrane containing multiple copies of the translocase shows that CL interactions persist in the presence of protein-protein interactions and suggests CL may mediate interactions between translocases. This study provides a key example of how computational microscopy may be used to shed light on regulatory lipid-protein interactions.

  7. Betaine is a positive regulator of mitochondrial respiration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Icksoo, E-mail: icksoolee@dankook.ac.kr

    2015-01-09

    Highlights: • Betaine enhances cytochrome c oxidase activity and mitochondrial respiration. • Betaine increases mitochondrial membrane potential and cellular energy levels. • Betaine’s anti-tumorigenic effect might be due to a reversal of the Warburg effect. - Abstract: Betaine protects cells from environmental stress and serves as a methyl donor in several biochemical pathways. It reduces cardiovascular disease risk and protects liver cells from alcoholic liver damage and nonalcoholic steatohepatitis. Its pretreatment can rescue cells exposed to toxins such as rotenone, chloroform, and LiCl. Furthermore, it has been suggested that betaine can suppress cancer cell growth in vivo and in vitro.more » Mitochondrial electron transport chain (ETC) complexes generate the mitochondrial membrane potential, which is essential to produce cellular energy, ATP. Reduced mitochondrial respiration and energy status have been found in many human pathological conditions including aging, cancer, and neurodegenerative disease. In this study we investigated whether betaine directly targets mitochondria. We show that betaine treatment leads to an upregulation of mitochondrial respiration and cytochrome c oxidase activity in H2.35 cells, the proposed rate limiting enzyme of ETC in vivo. Following treatment, the mitochondrial membrane potential was increased and cellular energy levels were elevated. We propose that the anti-proliferative effects of betaine on cancer cells might be due to enhanced mitochondrial function contributing to a reversal of the Warburg effect.« less

  8. miR-27 regulates mitochondrial networks by directly targeting the mitochondrial fission factor

    PubMed Central

    Tak, Hyosun; Kim, Jihye; Jayabalan, Aravinth Kumar; Lee, Heejin; Kang, Hoin; Cho, Dong-Hyung; Ohn, Takbum; Nam, Suk Woo; Kim, Wook; Lee, Eun Kyung

    2014-01-01

    Mitochondrial morphology is dynamically regulated by forming small, fragmented units or interconnected networks, and this is a pivotal process that is used to maintain mitochondrial homeostasis. Although dysregulation of mitochondrial dynamics is related to the pathogenesis of several human diseases, its molecular mechanism is not fully elucidated. In this study, we demonstrate the potential role of miR-27 in the regulation of mitochondrial dynamics. Mitochondrial fission factor (MFF) mRNA is a direct target of miR-27, whose ectopic expression decreases MFF expression through binding to its 3′-untranslated region. Expression of miR-27 results in the elongation of mitochondria as well as an increased mitochondrial membrane potential and mitochondrial ATP level. Our results suggest that miR-27 is a novel regulator affecting morphological mitochondrial changes by targeting MFF. PMID:25431021

  9. Polyhydroxybutyrate Targets Mammalian Mitochondria and Increases Permeability of Plasmalemmal and Mitochondrial Membranes

    PubMed Central

    Elustondo, Pia A.; Angelova, Plamena R.; Kawalec, Michał; Michalak, Michał; Kurcok, Piotr; Abramov, Andrey Y.; Pavlov, Evgeny V.

    2013-01-01

    Poly(3-hydroxybutyrate) (PHB) is a polyester of 3-hydroxybutyric acid (HB) that is ubiquitously present in all organisms. In higher eukaryotes PHB is found in the length of 10 to 100 HB units and can be present in free form as well as in association with proteins and inorganic polyphosphate. It has been proposed that PHB can mediate ion transport across lipid bilayer membranes. We investigated the ability of PHB to interact with living cells and isolated mitochondria and the effects of these interactions on membrane ion transport. We performed experiments using a fluorescein derivative of PHB (fluo-PHB). We found that fluo-PHB preferentially accumulated inside the mitochondria of HeLa cells. Accumulation of fluo-PHB induced mitochondrial membrane depolarization. This membrane depolarization was significantly delayed by the inhibitor of the mitochondrial permeability transition pore - Cyclosporin A. Further experiments using intact cells as well as isolated mitochondria confirmed that the effects of PHB directly linked to its ability to facilitate ion transport, including calcium, across the membranes. We conclude that PHB demonstrates ionophoretic properties in biological membranes and this effect is most profound in mitochondria due to the selective accumulation of the polymer in this organelle. PMID:24086638

  10. Phytochemicals prevent mitochondrial membrane permeabilization and protect SH-SY5Y cells against apoptosis induced by PK11195, a ligand for outer membrane translocator protein.

    PubMed

    Wu, Yuqiu; Shamoto-Nagai, Masayo; Maruyama, Wakako; Osawa, Toshihiko; Naoi, Makoto

    2017-01-01

    Epidemiological studies present the beneficial effects of dietary habits on prevention of aging-associated decline of brain function. Phytochemicals, the second metabolites of food, protect neuronal cells from cell death in cellular models of neurodegenerative disorders, and the neuroprotective activity has been ascribed to the anti-oxidant and anti-inflammatory functions. In this paper, the cellular mechanism of neuroprotection by phytochemicals was investigated, using the cellular model of mitochondrial apoptosis induced by PK11195, a ligand of outer membrane translocator protein, in SH-SY5Y cells. PK11195 induced mitochondrial membrane permeabilization with rapid transit production of superoxide (superoxide flashes) and calcium release from mitochondria, and activated apoptosis signal pathway. Study on the structure-activity relationship of astaxanthin, ferulic acid derivatives, and sesame lignans revealed that these phytochemicals inhibited mitochondrial membrane permeabilization and protected cells from apoptosis. Ferulic acid derivatives and sesame lignans inhibited or enhanced the mitochondrial pore formation and cell death by PK11195 according to their amphiphilic properties, not directly depending on the antioxidant activity. Regulation of pore formation at mitochondrial membrane is discussed as a novel mechanism behind neuroprotective activity of phytochemicals in aging and age-associated neurodegenerative disorders, and also behind dual functions of phytochemicals in neuronal and cancer cells.

  11. The mitochondrial-targeted antioxidant, MitoQ, increases liver mitochondrial cardiolipin content in obesogenic diet-fed rats.

    PubMed

    Fouret, Gilles; Tolika, Evanthia; Lecomte, Jérôme; Bonafos, Béatrice; Aoun, Manar; Murphy, Michael P; Ferreri, Carla; Chatgilialoglu, Chryssostomos; Dubreucq, Eric; Coudray, Charles; Feillet-Coudray, Christine

    2015-10-01

    Cardiolipin (CL), a unique mitochondrial phospholipid, plays a key role in several processes of mitochondrial bioenergetics as well as in mitochondrial membrane stability and dynamics. The present study was designed to determine the effect of MitoQ, a mitochondrial-targeted antioxidant, on the content of liver mitochondrial membrane phospholipids, in particular CL, and its fatty acid composition in obesogenic diet-fed rats. To do this, twenty-four 6week old male Sprague Dawley rats were randomized into three groups of 8 animals and fed for 8weeks with either a control diet, a high fat diet (HF), or a HF diet with MitoQ (HF+MitoQ). Phospholipid classes and fatty acid composition were assayed by chromatographic methods in liver and liver mitochondria. Mitochondrial bioenergetic function was also evaluated. While MitoQ had no or slight effects on total liver fatty acid composition and phospholipid classes and their fatty acid composition, it had major effects on liver mitochondrial phospholipids and mitochondrial function. Indeed, MitoQ both increased CL synthase gene expression and CL content of liver mitochondria and increased 18:2n-6 (linoleic acid) content of mitochondrial phospholipids by comparison to the HF diet. Moreover, mitochondrial CL content was positively correlated to mitochondrial membrane fluidity, membrane potential and respiration, as well as to ATP synthase activity, while it was negatively correlated to mitochondrial ROS production. These findings suggest that MitoQ may decrease pathogenic alterations to CL content and profiles, thereby preserving mitochondrial function and attenuating the development of some of the features of metabolic syndrome in obesogenic diet-fed rats. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Yeast mitochondria: an overview of mitochondrial biology and the potential of mitochondrial systems biology.

    PubMed

    Malina, Carl; Larsson, Christer; Nielsen, Jens

    2018-08-01

    Mitochondria are dynamic organelles of endosymbiotic origin that are essential components of eukaryal cells. They contain their own genetic machinery, have multicopy genomes and like their bacterial ancestors they consist of two membranes. However, the majority of the ancestral genome has been lost or transferred to the nuclear genome of the host, preserving only a core set of genes involved in oxidative phosphorylation. Mitochondria perform numerous biological tasks ranging from bioenergetics to production of protein co-factors, including heme and iron-sulfur clusters. Due to the importance of mitochondria in many cellular processes, mitochondrial dysfunction is implicated in a wide variety of human disorders. Much of our current knowledge on mitochondrial function and dysfunction comes from studies using Saccharomyces cerevisiae. This yeast has good fermenting capacity, rendering tolerance to mutations that inactivate oxidative phosphorylation and complete loss of mitochondrial DNA. Here, we review yeast mitochondrial metabolism and function with focus on S. cerevisiae and its contribution in understanding mitochondrial biology. We further review how systems biology studies, including mathematical modeling, has allowed gaining new insight into mitochondrial function, and argue that this approach may enable us to gain a holistic view on how mitochondrial function interacts with different cellular processes.

  13. [Cyclosporin A causes oxidative stress and mitochondrial dysfunction in renal tubular cells].

    PubMed

    Pérez de Hornedo, J; de Arriba, G; Calvino, M; Benito, S; Parra, T

    2007-01-01

    Reactive oxygen species (ROS) have been implicated in cyclosporin A (CsA) nephrotoxicity. As mitochondria are one of the main sources of ROS in cells, we evaluated the role of CsA in mitochondrial structure and function in LLC-PK1 cells. We incubated cells with CsA 1 microM for 24 hours and studies were performed with flow citometry and confocal microscopy. We studied mitochondrial NAD(P)H content, superoxide anion (O2.-) production (MitoSOX Red), oxidation of cardiolipin of inner mitochondrial membrane (NAO) and mitochondrial membrane potential (DIOC2(3)). Also we analyzed the intracellular ROS synthesis (H2DCF-DA) and reduced glutation (GSH) of cells. Our results showed that CsA decreased NAD(P)H and membrane potential, and increased O2.- in mitochondria. CsA also provoked oxidation of cardiolipin. Furthermore, CsA increased intracellular ROS production and decreased GSH content. These results suggest that CsA has crucial effects in mitochondria. CsA modified mitochondrial physiology through the decrease of antioxidant mitochondrial compounds as NAD(P)H and the dissipation of mitochondrial membrane potential and increase of oxidants as O2.-. Also, CsA alters lipidic structure of inner mitochondrial membrane through the oxidation of cardiolipin. These effects trigger a chain of events that favour intracellular synthesis of ROS and depletion of GSH that can compromise cellular viability. Nephrotoxic cellular effects of CsA can be explained, at least in part, through its influence on mitochondrial functionalism.

  14. Profiling of the Tox21 Chemical Collection for Mitochondrial Function: I. Compounds that Decrease Mitochondrial Membrane Potential

    EPA Science Inventory

    Mitochondrial dysfunction has been implicated in the pathogenesis of a variety of disorders including cancer, diabetes, and neurodegenerative and cardiovascular diseases. Understanding how different environmental chemicals and drug-like molecules impact mitochondrial function rep...

  15. Mitochondrial aquaporin-8 knockdown in human hepatoma HepG2 cells causes ROS-induced mitochondrial depolarization and loss of viability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marchissio, Maria Julia; Francés, Daniel Eleazar Antonio; Carnovale, Cristina Ester

    Human aquaporin-8 (AQP8) channels facilitate the diffusional transport of H{sub 2}O{sub 2} across membranes. Since AQP8 is expressed in hepatic inner mitochondrial membranes, we studied whether mitochondrial AQP8 (mtAQP8) knockdown in human hepatoma HepG2 cells impairs mitochondrial H{sub 2}O{sub 2} release, which may lead to organelle dysfunction and cell death. We confirmed AQP8 expression in HepG2 inner mitochondrial membranes and found that 72 h after cell transfection with siRNAs targeting two different regions of the human AQP8 molecule, mtAQP8 protein specifically decreased by around 60% (p < 0.05). Studies in isolated mtAQP8-knockdown mitochondria showed that H{sub 2}O{sub 2} release, assessedmore » by Amplex Red, was reduced by about 45% (p < 0.05), an effect not observed in digitonin-permeabilized mitochondria. mtAQP8-knockdown cells showed an increase in mitochondrial ROS, assessed by dichlorodihydrofluorescein diacetate (+ 120%, p < 0.05) and loss of mitochondrial membrane potential (− 80%, p < 0.05), assessed by tetramethylrhodamine-coupled quantitative fluorescence microscopy. The mitochondria-targeted antioxidant MitoTempol prevented ROS accumulation and dissipation of mitochondrial membrane potential. Cyclosporin A, a mitochondrial permeability transition pore blocker, also abolished the mtAQP8 knockdown-induced mitochondrial depolarization. Besides, the loss of viability in mtAQP8 knockdown cells verified by MTT assay, LDH leakage, and trypan blue exclusion test could be prevented by cyclosporin A. Our data on human hepatoma HepG2 cells suggest that mtAQP8 facilitates mitochondrial H{sub 2}O{sub 2} release and that its defective expression causes ROS-induced mitochondrial depolarization via the mitochondrial permeability transition mechanism, and cell death. -- Highlights: ► Aquaporin-8 is expressed in mitochondria of human hepatoma HepG2 cells. ► Aquaporin-8 knockdown impairs mitochondrial H{sub 2}O{sub 2} release and increases ROS.

  16. Mitochondrial-dependent Autoimmunity in Membranous Nephropathy of IgG4-related Disease

    PubMed Central

    Buelli, Simona; Perico, Luca; Galbusera, Miriam; Abbate, Mauro; Morigi, Marina; Novelli, Rubina; Gagliardini, Elena; Tentori, Chiara; Rottoli, Daniela; Sabadini, Ettore; Saito, Takao; Kawano, Mitsuhiro; Saeki, Takako; Zoja, Carlamaria; Remuzzi, Giuseppe; Benigni, Ariela

    2015-01-01

    The pathophysiology of glomerular lesions of membranous nephropathy (MN), including seldom-reported IgG4-related disease, is still elusive. Unlike in idiopathic MN where IgG4 prevails, in this patient IgG3 was predominant in glomerular deposits in the absence of circulating anti-phospholipase A2 receptor antibodies, suggesting a distinct pathologic process. Here we documented that IgG4 retrieved from the serum of our propositus reacted against carbonic anhydrase II (CAII) at the podocyte surface. In patient's biopsy, glomerular CAII staining increased and co-localized with subepithelial IgG4 deposits along the capillary walls. Patient's IgG4 caused a drop in cell pH followed by mitochondrial dysfunction, excessive ROS production and cytoskeletal reorganization in cultured podocytes. These events promoted mitochondrial superoxide-dismutase-2 (SOD2) externalization on the plasma membrane, becoming recognizable by complement-binding IgG3 anti-SOD2. Among patients with IgG4-related disease only sera of those with IgG4 anti-CAII antibodies caused low intracellular pH and mitochondrial alterations underlying SOD2 externalization. Circulating IgG4 anti-CAII can cause podocyte injury through processes of intracellular acidification, mitochondrial oxidative stress and neoantigen induction in patients with IgG4 related disease. The onset of MN in a subset of patients could be due to IgG4 antibodies recognizing CAII with consequent exposure of mitochondrial neoantigen in the context of multifactorial pathogenesis of disease. PMID:26137589

  17. Role of Pterocarpus santalinus against mitochondrial dysfunction and membrane lipid changes induced by ulcerogens in rat gastric mucosa.

    PubMed

    Narayan, Shoba; Devi, R S; Devi, C S Shyamala

    2007-11-20

    Free radicals produced by ulcerogenic agents affect the TCA cycle enzymes located in the outer membrane of the mitochondria. Upon induction with ulcerogens, peroxidation of membrane lipids bring about alterations in the mitochondrial enzyme activity. This indicates an increase in the permeability levels of the mitochondrial membrane. The ability of PSE to scavenge the reactive oxygen species results in restoration of activities of TCA cycle enzymes. NSAIDs interfere with the mitochondrial beta-oxidation of fatty acids in vitro and in vivo, resulting in uncoupling of mitochondrial oxidative phosphorylation process. This usually results in diminished cellular ATP production. The recovery of gastric mucosal barrier function through maintenance of energy metabolism results in maintenance of ATP levels, as observed in this study upon treatment with PSE. Membrane integrity altered by peroxidation is known to have a modified fatty acid composition, a disruption of permeability, a decrease in electrical resistance, and increase in flip-flopping between monolayers and inactivated cross-linked proteins. The severe depletion of arachidonic acid in ulcer induced groups was prevented upon treatment with PSE. The acid inhibitory property of the herbal extract enables the maintenance of GL activity upon treatment with PSE. The ability to prevent membrane peroxidation has been traced to the presence of active constituents in the PSE. In essence, PSE has been found to prevent mitochondrial dysfunction, provide mitochondrial cell integrity, through the maintenance of lipid bilayer by its ability to provide a hydrophobic character to the gastric mucosa, further indicating its ability to reverse the action of NSAIDs and mast cell degranulators in gastric mucosa.

  18. Role of charge screening and delocalization for lipophilic cation permeability of model and mitochondrial membranes.

    PubMed

    Trendeleva, Tatiana A; Sukhanova, Evgenia I; Rogov, Anton G; Zvyagilskaya, Renata A; Seveina, Inna I; Ilyasova, Tatiana M; Cherepanov, Dmitry A; Skulachev, Vladimir P

    2013-09-01

    The effects of the mitochondria-targeted lipophilic cation dodecyltriphenylphosphonium (C12TPP, the charge is delocalized and screened by bulky hydrophobic residues) and those of lipophilic cations decyltriethylammonium bromide and cetyltrimethylammonium bromide (C10TEA and C16TMA, the charges are localized and screened by less bulky residues) on bilayer planar phospholipid membranes and tightly-coupled mitochondria from the yeast Yarrowia lipolytica have been compared. In planar membranes, C12TPP was found to generate a diffusion potential as if it easily penetrates these membranes. In the presence of palmitate, C12TPP induced H(+) permeability like plastoquinonyl decyltriphenilphosphonium that facilitates transfer of fatty acid anions (Severin et al., PNAS, 2010, 107, 663-668). C12TPP was shown to stimulate State 4 respiration of mitochondria and caused a mitochondrial membrane depolarization with a half-maximal effect at 6μM. Besides, C12TPP profoundly potentiated the uncoupling effect of endogenous or added fatty acids. C10TEA and C16TMA inhibited State 4 respiration and decreased the membrane potential, though at much higher concentrations than C12TPP, and they did not promote the uncoupling action of fatty acids. These relationships were modeled by molecular dynamics. They can be explained by different membrane permeabilities for studied cations, which in turn are due to different availabilities of the positive charge in these cations to water dipoles. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. RNS60, a charge-stabilized nanostructure saline alters Xenopus Laevis oocyte biophysical membrane properties by enhancing mitochondrial ATP production

    PubMed Central

    Choi, Soonwook; Yu, Eunah; Kim, Duk-Soo; Sugimori, Mutsuyuki; Llinás, Rodolfo R

    2015-01-01

    We have examined the effects of RNS60, a 0.9% saline containing charge-stabilized oxygen nanobubble-based structures. RNS60 is generated by subjecting normal saline to Taylor–Couette–Poiseuille (TCP) flow under elevated oxygen pressure. This study, implemented in Xenopus laevis oocytes, addresses both the electrophysiological membrane properties and parallel biological processes in the cytoplasm. Intracellular recordings from defolliculated X. laevis oocytes were implemented in: (1) air oxygenated standard Ringer's solution, (2) RNS60-based Ringer's solution, (3) RNS10.3 (TCP-modified saline without excess oxygen)-based Ringer's, and (4) ONS60 (saline containing high pressure oxygen without TCP modification)-based Ringer's. RNS60-based Ringer's solution induced membrane hyperpolarization from the resting membrane potential. This effect was prevented by: (1) ouabain (a blocker of the sodium/potassium ATPase), (2) rotenone (a mitochondrial electron transfer chain inhibitor preventing usable ATP synthesis), and (3) oligomycin A (an inhibitor of ATP synthase) indicating that RNS60 effects intracellular ATP levels. Increased intracellular ATP levels following RNS60 treatment were directly demonstrated using luciferin/luciferase photon emission. These results indicate that RNS60 alters intrinsic the electrophysiological properties of the X. laevis oocyte membrane by increasing mitochondrial-based ATP synthesis. Ultrastructural analysis of the oocyte cytoplasm demonstrated increased mitochondrial length in the presence of RNS60-based Ringer's solution. It is concluded that the biological properties of RNS60 relate to its ability to optimize ATP synthesis. PMID:25742953

  20. Mitochondrial ryanodine-sensitive Ca2+ channels of rat liver.

    PubMed

    Kupynyak, N I; Ikkert, O V; Shlykov, S G; Babich, L G; Manko, V V

    2017-01-01

    To examine ryanodine-sensitive Ca 2+ channels in mitochondria of rat hepatocytes and their role in energy state of the cells via investigation of the ryanodine effect on mitochondrial membrane potential. Oxygen consumption was measured by polarography using the Clark electrode. The substrates of oxidation such as pyruvate (5mM), α-ketoglutarate (5mM), or succinate (5mM) were used. Oxidative phosphorylation was stimulated by the addition of adenosine diphosphate (200nM). Mitochondrial membrane potential was measured using a voltage-sensitive fluorescent probe tetramethylrhodamine-methyl-ester (0.1μM) and was analyzed by a flow cytometer. To evaluate the intact mitochondria, we used carbonil cyanide m-chlorophenyl hydrazone (CCCP, 10μM). Changes in the ionized calcium concentration in rat liver mitochondria were measured using a fluorescent probe Fluo-4 AM. Effect of ryanodine on oxygen consumption of rat liver mitochondria depends on the oxidation substrate and the incubation time. Oxidation of pyruvate in the presence of ryanodine (0.05μM) decreased the membrane potential of rat liver mitochondria by 38.4%. At higher concentrations, ryanodine (0.1μM or 1μM) led to decrease of membrane potential by 51.7% and 42.8%, respectively. In contrast, oxidation of α-ketoglutarate in the presence of ryanodine (0.05μM) increased mitochondrial membrane potential by 16.8%. However, at higher concentrations, ryanodine (0.1μM or 1μM) triggered a decreasing of membrane potential by 42.5% and 31.0%, respectively. Therefore, ryanodine at various concentrations (0.05μM, 0.1μM, or 1μM) causes differential effects on Ca 2+ concentration in the mitochondria matrix under oxidation of pyruvate or α-ketoglutarate. The data suggest the presence of ryanodine receptors in mitochondrial membrane of rat hepatocytes. Their inhibition with higher concentrations of ryanodine leads to decreasing of intra-mitochondrial Ca 2+ concentration and affecting the energy state of mictochondria

  1. Regulation of Mitochondrial Dynamics and Autophagy by the Mitochondria-Associated Membrane.

    PubMed

    Tagaya, Mitsuo; Arasaki, Kohei

    2017-01-01

    Mitochondria are powerhouses and central to metabolism in cells. They are highly dynamic organelles that continuously fuse, divide, and move along the cytoskeleton to form the mitochondrial network. The fusion and fission are catalyzed by four dynamin-related GTPases in mammals that are controlled by a variety of protein-protein interactions and posttranslational modifications. Mitochondrial dynamics and metabolism are linked and regulate each other. Starvation induces mitochondrial elongation, which enables the mitochondria to produce energy more efficiently and to escape from autophagic degradation. Damaged portions of mitochondria are removed from the healthy parts by division, and subsequently degraded via a specific mode of autophagy termed mitophagy. Recent studies shed light on the contribution of the endoplasmic reticulum to mitochondrial dynamics and the cooperation of the two organelles for the progression of autophagy including mitophagy. A subdomain of the endoplasmic reticulum apposed to mitochondria is called the mitochondria-associated membrane (MAM), which comprises a unique set of proteins that interact with mitochondrial proteins. Here we review our current understanding of the molecular mechanisms of mitochondrial dynamics and mitochondria-related processes in the context of the interaction with the endoplasmic reticulum.

  2. Piracetam improves mitochondrial dysfunction following oxidative stress

    PubMed Central

    Keil, Uta; Scherping, Isabel; Hauptmann, Susanne; Schuessel, Katin; Eckert, Anne; Müller, Walter E

    2005-01-01

    Mitochondrial dysfunction including decrease of mitochondrial membrane potential and reduced ATP production represents a common final pathway of many conditions associated with oxidative stress, for example, hypoxia, hypoglycemia, and aging. Since the cognition-improving effects of the standard nootropic piracetam are usually more pronounced under such pathological conditions and young healthy animals usually benefit little by piracetam, the effect of piracetam on mitochondrial dysfunction following oxidative stress was investigated using PC12 cells and dissociated brain cells of animals treated with piracetam. Piracetam treatment at concentrations between 100 and 1000 μM improved mitochondrial membrane potential and ATP production of PC12 cells following oxidative stress induced by sodium nitroprusside (SNP) and serum deprivation. Under conditions of mild serum deprivation, piracetam (500 μM) induced a nearly complete recovery of mitochondrial membrane potential and ATP levels. Piracetam also reduced caspase 9 activity after SNP treatment. Piracetam treatment (100–500 mg kg−1 daily) of mice was also associated with improved mitochondrial function in dissociated brain cells. Significant improvement was mainly seen in aged animals and only less in young animals. Moreover, the same treatment reduced antioxidant enzyme activities (superoxide dismutase, glutathione peroxidase, and glutathione reductase) in aged mouse brain only, which are elevated as an adaptive response to the increased oxidative stress with aging. In conclusion, therapeutically relevant in vitro and in vivo concentrations of piracetam are able to improve mitochondrial dysfunction associated with oxidative stress and/or aging. Mitochondrial stabilization and protection might be an important mechanism to explain many of piracetam's beneficial effects in elderly patients. PMID:16284628

  3. Cryotolerance of stallion spermatozoa is related to ROS production and mitochondrial membrane potential rather than to the integrity of sperm nucleus.

    PubMed

    Yeste, M; Estrada, E; Rocha, L G; Marín, H; Rodríguez-Gil, J E; Miró, J

    2015-03-01

    Although cryopreservation of stallion spermatozoa allows long-term preservation of spermatozoa from particular stallions and facilitates international trade, it is understood to inflict damages on sperm cells that may finally reduce their fertilizing ability. In addition, individual differences are known to exist in the sperm ability to withstand freeze-thawing protocols. To date, these differences have mainly been reported on the basis of sperm motility and membrane integrity. For this reason, the present work sought to determine differences between good (good freezability ejaculates: GFE) and poor (poor freezability ejaculates: PFE) freezability stallion ejaculates in other sperm parameters, including peroxide and superoxide levels, potential of mitochondrial membrane and nuclear integrity. With this purpose, a total of 24 stallion ejaculates were cryopreserved and classified into two groups (GFE vs. PFE), depending on their sperm membrane integrity and motility after freeze-thawing. From the total of 24 ejaculates, 13 were classified as GFE and the other 11 were classified as PFE. Apart from differences in sperm membrane permeability and lipid disorder after freeze-thawing, GFE presented significantly (p < 0.05) higher percentages of viable spermatozoa with high content of peroxides and of superoxides than PFE. In contrast, and despite cryopreservation of stallion spermatozoa increasing DNA fragmentation and disrupting disulphide bonds in sperm head proteins, no significant differences between GFE and PFE were seen. We can thus conclude that good and poor freezability stallion ejaculates differ in their reactive oxygen species levels after cryopreservation, but not in the damage extent on sperm nucleus. © 2014 American Society of Andrology and European Academy of Andrology.

  4. Positive Feedback Amplifies the Response of Mitochondrial Membrane Potential to Glucose Concentration in Clonal Pancreatic Beta Cells.

    PubMed

    Gerencser, Akos A; Mookerjee, Shona A; Jastroch, Martin; Brand, Martin D

    2017-05-01

    Analysis of the cellular mechanisms of metabolic disorders, including type 2 diabetes mellitus, is complicated by the large number of reactions and interactions in metabolic networks. Metabolic control analysis with appropriate modularization is a powerful method for simplifying and analyzing these networks. To analyze control of cellular energy metabolism in adherent cell cultures of the INS-1 832/13 pancreatic β-cell model we adapted our microscopy assay of absolute mitochondrial membrane potential (ΔψM) to a fluorescence microplate reader format, and applied it in conjunction with cell respirometry. In these cells the sensitive response of ΔψM to extracellular glucose concentration drives glucose-stimulated insulin secretion. Using metabolic control analysis we identified the control properties that generate this sensitive response. Force-flux relationships between ΔψM and respiration were used to calculate kinetic responses to ΔψM of processes both upstream (glucose oxidation) and downstream (proton leak and ATP turnover) of ΔψM. The analysis revealed that glucose-evoked ΔψM hyperpolarization is amplified by increased glucose oxidation activity caused by factors downstream of ΔψM. At high glucose, the hyperpolarized ΔψM is stabilized almost completely by the action of glucose oxidation, whereas proton leak also contributes to the homeostatic control of ΔψM at low glucose. These findings suggest a strong positive feedback loop in the regulation of β-cell energetics, and a possible regulatory role of proton leak in the fasting state. Analysis of islet bioenergetics from published cases of type 2 diabetes suggests that disruption of this feedback can explain the damaged bioenergetic response of β-cells to glucose. This article is part of a Special Issue entitled: Oxidative Stress and Mitochondrial Quality in Diabetes/Obesity and Critical Illness Spectrum of Diseases - edited by P. Hemachandra Reddy. Copyright © 2016 Elsevier B.V. All rights

  5. Reduction in Autophagy by (-)-Epigallocatechin-3-Gallate (EGCG): a Potential Mechanism of Prevention of Mitochondrial Dysfunction After Subarachnoid Hemorrhage.

    PubMed

    Chen, Ying; Huang, Liyong; Zhang, Huiyong; Diao, Xiling; Zhao, Shuyang; Zhou, Wenke

    2017-01-01

    Mitochondrial dysfunction and subsequent autophagy, which are common features in central nervous system (CNS) disorders, were found to contribute to neuronal cell injury after subarachnoid hemorrhage (SAH). (-)-Epigallocatechin-3-gallate (EGCG), the main biological active of tea catechin, is well known for its beneficial effects in the treatment of CNS diseases. Here, the ability of EGCG to rescue cellular injury and mitochondrial function following the improvement of autophagic flux after SAH was investigated. As expected, EGCG-protected mitochondrial function depended on the inhibition of cytosolic Ca 2+ concentration ([Ca 2+ ] i ) influx via voltage-gated calcium channels (VGCCs) and, consequently, mitochondrial Ca 2+ concentration ([Ca 2+ ] m ) overload via mitochondrial Ca 2+ uniporter (MCU). The attenuated [Ca 2+ ] i and [Ca 2+ ] m levels observed in the EGCG-treated group likely lessened oxyhemoglobin (OxyHb)-induced mitochondrial dysfunction, including mitochondrial membrane potential depolarization, mitochondrial membrane permeability transition pore (mPTP) opening, reactive oxygen species (ROS), and cytochrosome c (cyt c) releasing. Subsequently, EGCG can restore the disrupted autophagy flux after SAH both at the initiation and formation stages by regulating Atg5, LC3B, and Becn-1 (Beclin-1) mRNA expressions. Thus, precondition EGCG resulted in autophagosomes and more autolysosomes compared with SAH group. As a result, EGCG pre-treatment increased the neurological score and decreased cell death. This study suggested that the mitochondrial dysfunction and abnormal autophagy flux synergistically contribute to SAH pathogenesis. Thus, EGCG can be regarded as a new pharmacological agent that targets both mitochondria and altered autophagy in SAH therapy.

  6. Agmatine effects on mitochondrial membrane potential and NF-κB activation protect against rotenone-induced cell damage in human neuronal-like SH-SY5Y cells.

    PubMed

    Condello, Salvatore; Currò, Monica; Ferlazzo, Nadia; Caccamo, Daniela; Satriano, Joseph; Ientile, Riccardo

    2011-01-01

    Agmatine, an endogenous arginine metabolite, has been proposed as a novel neuromodulator that plays protective roles in the CNS in several models of cellular damage. However, the mechanisms involved in these protective effects in neurodegenerative diseases are poorly understood. The present study was undertaken to investigate the effects of agmatine on cell injury induced by rotenone, commonly used in establishing in vivo and in vitro models of Parkinson's disease, in human-derived dopaminergic neuroblastoma cell line (SH-SY5Y). We report that agmatine dose-dependently suppressed rotenone-induced cellular injury through a reduction of oxidative stress. Similar effects were obtained by spermine, suggesting a scavenging effect for these compounds. However, unlike spermine, agmatine also prevented rotenone-induced nuclear factor-κB nuclear translocation and mitochondrial membrane potential dissipation. Furthermore, rotenone-induced increase in apoptotic markers, such as caspase 3 activity, Bax expression and cytochrome c release, was significantly attenuated with agmatine treatment. These findings demonstrate mitochondrial preservation with agmatine in a rotenone model of apoptotic cell death, and that the neuroprotective action of agmatine appears because of suppressing apoptotic signalling mechanisms. Thus, agmatine may have therapeutic potential in the treatment of Parkinson's disease by protecting dopaminergic neurons.

  7. Analysis of the effects of polyphenols on human spermatozoa reveals unexpected impacts on mitochondrial membrane potential, oxidative stress and DNA integrity; implications for assisted reproductive technology.

    PubMed

    Aitken, R J; Muscio, L; Whiting, S; Connaughton, H S; Fraser, B A; Nixon, B; Smith, N D; De Iuliis, G N

    2016-12-01

    The need to protect human spermatozoa from oxidative stress during assisted reproductive technology, has prompted a detailed analysis of the impacts of phenolic compounds on the functional integrity of these cells. Investigation of 16 individual compounds revealed a surprising variety of negative effects including: (i) a loss of mitochondrial membrane potential (Δψm) via mechanisms that were not related to opening of the permeability transition pore but associated with a reduction in thiol expression, (ii) a decline in intracellular reduced glutathione, (iii) the stimulation of pro-oxidant activity including the induction of ROS generation from mitochondrial and non-mitochondrial sources, (iv) stimulation of lipid peroxidation, (v) the generation of oxidative DNA damage, and (vi) impaired sperm motility. For most of the polyphenolic compounds examined, the loss of motility was gradual and highly correlated with the induction of lipid peroxidation (r=0.889). The exception was gossypol, which induced a rapid loss of motility due to its inherent alkylating activity; one consequence of which was a marked reduction in carboxymethyl lysine expression on the sperm tail; a post-translational modification that is known to play a key role in the regulation of sperm movement. The only polyphenols that did not appear to have adverse effects on spermatozoa were resveratrol, genistein and THP at doses below 100μM. These compounds could, therefore, have some therapeutic potential in a clinical setting. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Effects of Insecticides on the Fluidity of Mitochondrial Membranes of the Diamondback Moth, Plutella xylostella, Resistant and Susceptible to Avermectin

    PubMed Central

    Hu, J.; Liang, P.; Shi, X.; Gao, X.

    2008-01-01

    The effects of various insecticides on the fluidity of mitochondrial membranes and cross-resistance were investigated in the diamondback moth, Plutella xylostella (L.) (Lepidoptera: Plutellidae) using strains that were both resistant and susceptible to avermectin. The resistant strain of P. xylostella, AV-R, developed 1078-fold resistance to avermetins with a high level of cross-resistance to the analogs of avermectins, ivermectin and emamectin benzoate. It had more than 1000 times greater resistance when compared with the avermectin-susceptible strain, XH-S. Mitochondrial membrane fluidity was measured by detecting fluorescence polarization using DPH (1,6-Diphenyl -1,3,5-hexatriene) as the fluorescence probe. Abamectin, emamectin benzoate, ivermectin, cypermethrin and fenvalerate decreased the fluidity of mitochondrial membranes in the XH-S strain at 25°C. However, fipronil and acephate did not change the fluidity of mitochondrial membrane when the concentration of these insecticides was 1×10-4 mol/L. Membrane fluidity increased as the temperature increased. The thermotropic effect on the polarization value of DPH increased as the insecticide concentration was increased. There was a significant difference of mitochondrial membrane fluidity between both XH-S and AV-R when temperature was less than 25°C and no difference was observed when the temperature was more than 25°C. The low-dose abamectin (0.11 mg/L) in vivo treatment caused a significant change of membrane fluidity in the XH-S strain and no change in the AV-R strain. However, a high-dose abamectin (11.86 mg/L) resulted in 100% mortality of the XH-S strain. In vivo treatment may cause a significant change of membrane fluidity in the AV-R strain PMID:20345311

  9. Mitochondrial Dysfunction in Chemotherapy-Induced Peripheral Neuropathy (CIPN)

    PubMed Central

    Canta, Annalisa; Pozzi, Eleonora; Carozzi, Valentina Alda

    2015-01-01

    The mitochondrial dysfunction has a critical role in several disorders including chemotherapy-induced peripheral neuropathies (CIPN). This is due to a related dysregulation of pathways involving calcium signalling, reactive oxygen species and apoptosis. Vincristine is able to affect calcium movement through the Dorsal Root Ganglia (DRG) neuronal mitochondrial membrane, altering its homeostasis and leading to abnormal neuronal excitability. Paclitaxel induces the opening of the mitochondrial permeability transition pore in axons followed by mitochondrial membrane potential loss, increased reactive oxygen species generation, ATP level reduction, calcium release and mitochondrial swelling. Cisplatin and oxaliplatin form adducts with mitochondrial DNA producing inhibition of replication, disruption of transcription and morphological abnormalities within mitochondria in DRG neurons, leading to a gradual energy failure. Bortezomib is able to modify mitochondrial calcium homeostasis and mitochondrial respiratory chain. Moreover, the expression of a certain number of genes, including those controlling mitochondrial functions, was altered in patients with bortezomib-induced peripheral neuropathy. PMID:29056658

  10. ATPase-deficient mitochondrial inner membrane protein ATAD3A disturbs mitochondrial dynamics in dominant hereditary spastic paraplegia

    PubMed Central

    Cooper, Helen M.; Yang, Yang; Ylikallio, Emil; Khairullin, Rafil; Woldegebriel, Rosa; Lin, Kai-Lan; Euro, Liliya; Palin, Eino; Wolf, Alexander; Trokovic, Ras; Isohanni, Pirjo; Kaakkola, Seppo; Auranen, Mari; Lönnqvist, Tuula; Wanrooij, Sjoerd

    2017-01-01

    Abstract De novo mutations in ATAD3A (ATPase family AAA-domain containing protein 3A) were recently found to cause a neurological syndrome with developmental delay, hypotonia, spasticity, optic atrophy, axonal neuropathy, and hypertrophic cardiomyopathy. Using whole-exome sequencing, we identified a dominantly inherited heterozygous variant c.1064G > A (p.G355D) in ATAD3A in a mother presenting with hereditary spastic paraplegia (HSP) and axonal neuropathy and her son with dyskinetic cerebral palsy, both with disease onset in childhood. HSP is a clinically and genetically heterogeneous disorder of the upper motor neurons. Symptoms beginning in early childhood may resemble spastic cerebral palsy. The function of ATAD3A, a mitochondrial inner membrane AAA ATPase, is yet undefined. AAA ATPases form hexameric rings, which are catalytically dependent on the co-operation of the subunits. The dominant-negative patient mutation affects the Walker A motif, which is responsible for ATP binding in the AAA module of ATAD3A, and we show that the recombinant mutant ATAD3A protein has a markedly reduced ATPase activity. We further show that overexpression of the mutant ATAD3A fragments the mitochondrial network and induces lysosome mass. Similarly, we observed altered dynamics of the mitochondrial network and increased lysosomes in patient fibroblasts and neurons derived through differentiation of patient-specific induced pluripotent stem cells. These alterations were verified in patient fibroblasts to associate with upregulated basal autophagy through mTOR inactivation, resembling starvation. Mutations in ATAD3A can thus be dominantly inherited and underlie variable neurological phenotypes, including HSP, with intrafamiliar variability. This finding extends the group of mitochondrial inner membrane AAA proteins associated with spasticity. PMID:28158749

  11. Mitochondrial and Plasma Membrane Pools of Stomatin-Like Protein 2 Coalesce at the Immunological Synapse during T Cell Activation

    PubMed Central

    Christie, Darah A.; Kirchhof, Mark G.; Vardhana, Santosh; Dustin, Michael L.; Madrenas, Joaquín

    2012-01-01

    Stomatin-like protein 2 (SLP-2) is a member of the stomatin – prohibitin – flotillin – HflC/K (SPFH) superfamily. Recent evidence indicates that SLP-2 is involved in the organization of cardiolipin-enriched microdomains in mitochondrial membranes and the regulation of mitochondrial biogenesis and function. In T cells, this role translates into enhanced T cell activation. Although the major pool of SLP-2 is associated with mitochondria, we show here that there is an additional pool of SLP-2 associated with the plasma membrane of T cells. Both plasma membrane-associated and mitochondria-associated pools of SLP-2 coalesce at the immunological synapse (IS) upon T cell activation. SLP-2 is not required for formation of IS nor for the re-localization of mitochondria to the IS because SLP-2-deficient T cells showed normal re-localization of these organelles in response to T cell activation. Interestingly, upon T cell activation, we found the surface pool of SLP-2 mostly excluded from the central supramolecular activation complex, and enriched in the peripheral area of the IS where signalling TCR microclusters are located. Based on these results, we propose that SLP-2 facilitates the compartmentalization not only of mitochondrial membranes but also of the plasma membrane into functional microdomains. In this latter location, SLP-2 may facilitate the optimal assembly of TCR signalosome components. Our data also suggest that there may be a net exchange of membrane material between mitochondria and plasma membrane, explaining the presence of some mitochondrial proteins in the plasma membrane. PMID:22623988

  12. Melatonin: A Mitochondrial Targeting Molecule Involving Mitochondrial Protection and Dynamics

    PubMed Central

    Tan, Dun-Xian; Manchester, Lucien C.; Qin, Lilan; Reiter, Russel J.

    2016-01-01

    Melatonin has been speculated to be mainly synthesized by mitochondria. This speculation is supported by the recent discovery that aralkylamine N-acetyltransferase/serotonin N-acetyltransferase (AANAT/SNAT) is localized in mitochondria of oocytes and the isolated mitochondria generate melatonin. We have also speculated that melatonin is a mitochondria-targeted antioxidant. It accumulates in mitochondria with high concentration against a concentration gradient. This is probably achieved by an active transportation via mitochondrial melatonin transporter(s). Melatonin protects mitochondria by scavenging reactive oxygen species (ROS), inhibiting the mitochondrial permeability transition pore (MPTP), and activating uncoupling proteins (UCPs). Thus, melatonin maintains the optimal mitochondrial membrane potential and preserves mitochondrial functions. In addition, mitochondrial biogenesis and dynamics is also regulated by melatonin. In most cases, melatonin reduces mitochondrial fission and elevates their fusion. Mitochondrial dynamics exhibit an oscillatory pattern which matches the melatonin circadian secretory rhythm in pinealeocytes and probably in other cells. Recently, melatonin has been found to promote mitophagy and improve homeostasis of mitochondria. PMID:27999288

  13. Increased localization of APP-C99 in mitochondria-associated ER membranes causes mitochondrial dysfunction in Alzheimer disease.

    PubMed

    Pera, Marta; Larrea, Delfina; Guardia-Laguarta, Cristina; Montesinos, Jorge; Velasco, Kevin R; Agrawal, Rishi R; Xu, Yimeng; Chan, Robin B; Di Paolo, Gilbert; Mehler, Mark F; Perumal, Geoffrey S; Macaluso, Frank P; Freyberg, Zachary Z; Acin-Perez, Rebeca; Enriquez, Jose Antonio; Schon, Eric A; Area-Gomez, Estela

    2017-11-15

    In the amyloidogenic pathway associated with Alzheimer disease (AD), the amyloid precursor protein (APP) is cleaved by β-secretase to generate a 99-aa C-terminal fragment (C99) that is then cleaved by γ-secretase to generate the β-amyloid (Aβ) found in senile plaques. In previous reports, we and others have shown that γ-secretase activity is enriched in mitochondria-associated endoplasmic reticulum (ER) membranes (MAM) and that ER-mitochondrial connectivity and MAM function are upregulated in AD We now show that C99, in addition to its localization in endosomes, can also be found in MAM, where it is normally processed rapidly by γ-secretase. In cell models of AD, however, the concentration of unprocessed C99 increases in MAM regions, resulting in elevated sphingolipid turnover and an altered lipid composition of both MAM and mitochondrial membranes. In turn, this change in mitochondrial membrane composition interferes with the proper assembly and activity of mitochondrial respiratory supercomplexes, thereby likely contributing to the bioenergetic defects characteristic of AD. © 2017 The Authors. Published under the terms of the CC BY 4.0 license.

  14. Architecture Mapping of the Inner Mitochondrial Membrane Proteome by Chemical Tools in Live Cells.

    PubMed

    Lee, Song-Yi; Kang, Myeong-Gyun; Shin, Sanghee; Kwak, Chulhwan; Kwon, Taejoon; Seo, Jeong Kon; Kim, Jong-Seo; Rhee, Hyun-Woo

    2017-03-15

    The inner mitochondrial membrane (IMM) proteome plays a central role in maintaining mitochondrial physiology and cellular metabolism. Various important biochemical reactions such as oxidative phosphorylation, metabolite production, and mitochondrial biogenesis are conducted by the IMM proteome, and mitochondria-targeted therapeutics have been developed for IMM proteins, which is deeply related for various human metabolic diseases including cancer and neurodegenerative diseases. However, the membrane topology of the IMM proteome remains largely unclear because of the lack of methods to evaluate it in live cells in a high-throughput manner. In this article, we reveal the in vivo topological direction of 135 IMM proteins, using an in situ-generated radical probe with genetically targeted peroxidase (APEX). Owing to the short lifetime of phenoxyl radicals generated in situ by submitochondrial targeted APEX and the impermeability of the IMM to small molecules, the solvent-exposed tyrosine residues of both the matrix and intermembrane space (IMS) sides of IMM proteins were exclusively labeled with the radical probe in live cells by Matrix-APEX and IMS-APEX, respectively and identified by mass spectrometry. From this analysis, we confirmed 58 IMM protein topologies and we could determine the topological direction of 77 IMM proteins whose topology at the IMM has not been fully characterized. We also found several IMM proteins (e.g., LETM1 and OXA1) whose topological information should be revised on the basis of our results. Overall, our identification of structural information on the mitochondrial inner-membrane proteome can provide valuable insights for the architecture and connectome of the IMM proteome in live cells.

  15. SK2 channels regulate mitochondrial respiration and mitochondrial Ca2+ uptake.

    PubMed

    Honrath, Birgit; Matschke, Lina; Meyer, Tammo; Magerhans, Lena; Perocchi, Fabiana; Ganjam, Goutham K; Zischka, Hans; Krasel, Cornelius; Gerding, Albert; Bakker, Barbara M; Bünemann, Moritz; Strack, Stefan; Decher, Niels; Culmsee, Carsten; Dolga, Amalia M

    2017-05-01

    Mitochondrial calcium ([Ca 2+ ] m ) overload and changes in mitochondrial metabolism are key players in neuronal death. Small conductance calcium-activated potassium (SK) channels provide protection in different paradigms of neuronal cell death. Recently, SK channels were identified at the inner mitochondrial membrane, however, their particular role in the observed neuroprotection remains unclear. Here, we show a potential neuroprotective mechanism that involves attenuation of [Ca 2+ ] m uptake upon SK channel activation as detected by time lapse mitochondrial Ca 2+ measurements with the Ca 2+ -binding mitochondria-targeted aequorin and FRET-based [Ca 2+ ] m probes. High-resolution respirometry revealed a reduction in mitochondrial respiration and complex I activity upon pharmacological activation and overexpression of mitochondrial SK2 channels resulting in reduced mitochondrial ROS formation. Overexpression of mitochondria-targeted SK2 channels enhanced mitochondrial resilience against neuronal death, and this effect was inhibited by overexpression of a mitochondria-targeted dominant-negative SK2 channel. These findings suggest that SK channels provide neuroprotection by reducing [Ca 2+ ] m uptake and mitochondrial respiration in conditions, where sustained mitochondrial damage determines progressive neuronal death.

  16. SK2 channels regulate mitochondrial respiration and mitochondrial Ca2+ uptake

    PubMed Central

    Honrath, Birgit; Matschke, Lina; Meyer, Tammo; Magerhans, Lena; Perocchi, Fabiana; Ganjam, Goutham K; Zischka, Hans; Krasel, Cornelius; Gerding, Albert; Bakker, Barbara M; Bünemann, Moritz; Strack, Stefan; Decher, Niels; Culmsee, Carsten; Dolga, Amalia M

    2017-01-01

    Mitochondrial calcium ([Ca2+]m) overload and changes in mitochondrial metabolism are key players in neuronal death. Small conductance calcium-activated potassium (SK) channels provide protection in different paradigms of neuronal cell death. Recently, SK channels were identified at the inner mitochondrial membrane, however, their particular role in the observed neuroprotection remains unclear. Here, we show a potential neuroprotective mechanism that involves attenuation of [Ca2+]m uptake upon SK channel activation as detected by time lapse mitochondrial Ca2+ measurements with the Ca2+-binding mitochondria-targeted aequorin and FRET-based [Ca2+]m probes. High-resolution respirometry revealed a reduction in mitochondrial respiration and complex I activity upon pharmacological activation and overexpression of mitochondrial SK2 channels resulting in reduced mitochondrial ROS formation. Overexpression of mitochondria-targeted SK2 channels enhanced mitochondrial resilience against neuronal death, and this effect was inhibited by overexpression of a mitochondria-targeted dominant-negative SK2 channel. These findings suggest that SK channels provide neuroprotection by reducing [Ca2+]m uptake and mitochondrial respiration in conditions, where sustained mitochondrial damage determines progressive neuronal death. PMID:28282037

  17. Visual and functional demonstration of growing Bax-induced pores in mitochondrial outer membranes

    PubMed Central

    Gillies, Laura A; Du, Han; Peters, Bjoern; Knudson, C. Michael; Newmeyer, Donald D.; Kuwana, Tomomi

    2015-01-01

    Bax induces mitochondrial outer membrane permeabilization (MOMP), a critical step in apoptosis in which proteins are released into the cytoplasm. To resolve aspects of the mechanism, we used cryo-electron microscopy (cryo-EM) to visualize Bax-induced pores in purified mitochondrial outer membranes (MOMs). We observed solitary pores that exhibited negative curvature at their edges. Over time, the pores grew to ∼100–160 nm in diameter after 60–90 min, with some pores measuring more than 300 nm. We confirmed these results using flow cytometry, which we used to monitor the release of fluorescent dextrans from isolated MOM vesicles. The dextran molecules were released gradually, in a manner constrained by pore size. However, the release rates were consistent over a range of dextran sizes (10–500 kDa). We concluded that the pores were not static but widened dramatically to release molecules of different sizes. Taken together, the data from cryo-EM and flow cytometry argue that Bax promotes MOMP by inducing the formation of large, growing pores through a mechanism involving membrane-curvature stress. PMID:25411335

  18. Mitochondrial modulators in experimental Huntington's disease: reversal of mitochondrial dysfunctions and cognitive deficits.

    PubMed

    Mehrotra, Arpit; Kanwal, Abhinav; Banerjee, Sanjay Kumar; Sandhir, Rajat

    2015-06-01

    Huntington's disease (HD) is a chronic neurodegenerative condition involving impaired mitochondrial functions. The present study evaluates the therapeutic potential of combined administration of mitochondrial modulators: alpha-lipoic acid and acetyl-l-carnitine on mitochondrial dysfunctions in 3-NP-induced HD. Our results reveal 3-NP administration resulted in compromise of mitochondrial functions in terms of: (1) impaired activity of mitochondrial respiratory chain enzymes, altered cytochrome levels, reduced histochemical staining of complex-II and IV, reduced in-gel activity of complex-I to V, and reduced mRNA expression of respiratory chain complexes; (2) enhanced mitochondrial oxidative stress indicated by increased malondialdehyde, protein carbonyls, reactive oxygen species and nitrite levels, along with decreased Mn-superoxide dismutase and catalase activity; (3) mitochondrial structural changes measured by mitochondrial swelling, reduced mitochondrial membrane potential and ultra-structure changes; (4) increased cytosolic cytochrome c levels, caspase-3 and -9 activity along with altered expression of apoptotic proteins (AIF, Bim, Bad, and Bax); and (5) impaired cognitive functions assessed using Morris water maze and Y-maze. Combination of mitochondrial modulators (alpha-lipoic acid + acetyl-l-carnitine) on the other hand ameliorated 3-NP-induced mitochondrial dysfunctions, oxidative stress, histologic alterations, and behavioral deficits, suggesting their therapeutic efficacy in the management of HD. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Mitochondrial nucleoid interacting proteins support mitochondrial protein synthesis.

    PubMed

    He, J; Cooper, H M; Reyes, A; Di Re, M; Sembongi, H; Litwin, T R; Gao, J; Neuman, K C; Fearnley, I M; Spinazzola, A; Walker, J E; Holt, I J

    2012-07-01

    Mitochondrial ribosomes and translation factors co-purify with mitochondrial nucleoids of human cells, based on affinity protein purification of tagged mitochondrial DNA binding proteins. Among the most frequently identified proteins were ATAD3 and prohibitin, which have been identified previously as nucleoid components, using a variety of methods. Both proteins are demonstrated to be required for mitochondrial protein synthesis in human cultured cells, and the major binding partner of ATAD3 is the mitochondrial ribosome. Altered ATAD3 expression also perturbs mtDNA maintenance and replication. These findings suggest an intimate association between nucleoids and the machinery of protein synthesis in mitochondria. ATAD3 and prohibitin are tightly associated with the mitochondrial membranes and so we propose that they support nucleic acid complexes at the inner membrane of the mitochondrion.

  20. Effects of mitochondrial poisons on glutathione redox potential and carotid body chemoreceptor activity.

    PubMed

    Gomez-Niño, A; Agapito, M T; Obeso, A; Gonzalez, C

    2009-01-01

    Low oxygen sensing in chemoreceptor cells involves the inhibition of specific plasma membrane K(+) channels, suggesting that mitochondria-derived reactive oxygen species (ROS) link hypoxia to K(+) channel inhibition, subsequent cell depolarization and activation of neurotransmitter release. We have used several mitochondrial poisons, alone and in combination with the antioxidant N-acetylcysteine (NAC), and quantify their capacity to alter GSH/GSSG levels and glutathione redox potential (E(GSH)) in rat diaphragm. Selected concentrations of mitochondrial poisons with or without NAC were tested for their capacity to activate neurotransmitter release in chemoreceptor cells and to alter ATP levels in intact rat carotid body (CB). We found that rotenone (1 microM), antimycin A (0.2 microg/ml) and sodium azide (5mM) decreased E(GSH); NAC restored E(GSH) to control values. At those concentrations mitochondrial poisons activated neurotransmitter release from CB chemoreceptor cells and decreased CB ATP levels, NAC being ineffective to modify these responses. Additional experiments with 3-nitroprionate (5mM), lower concentrations of rotenone and dinitrophenol revealed variable relationships between E(GSH) and chemoreceptor cell neurotransmitter release responses and ATP levels. These findings indicate a lack of correlation between mitochondrial-generated modifications of E(GSH) and chemoreceptor cells activity. This lack of correlation renders unlikely that alteration of mitochondrial production of ROS is the physiological pathway chemoreceptor cells use to signal hypoxia.

  1. Optogenetic control of mitochondrial metabolism and Ca2+ signaling by mitochondria-targeted opsins.

    PubMed

    Tkatch, Tatiana; Greotti, Elisa; Baranauskas, Gytis; Pendin, Diana; Roy, Soumitra; Nita, Luliaoana I; Wettmarshausen, Jennifer; Prigge, Matthias; Yizhar, Ofer; Shirihai, Orian S; Fishman, Daniel; Hershfinkel, Michal; Fleidervish, Ilya A; Perocchi, Fabiana; Pozzan, Tullio; Sekler, Israel

    2017-06-27

    Key mitochondrial functions such as ATP production, Ca 2+ uptake and release, and substrate accumulation depend on the proton electrochemical gradient (ΔμH + ) across the inner membrane. Although several drugs can modulate ΔμH + , their effects are hardly reversible, and lack cellular specificity and spatial resolution. Although channelrhodopsins are widely used to modulate the plasma membrane potential of excitable cells, mitochondria have thus far eluded optogenetic control. Here we describe a toolkit of optometabolic constructs based on selective targeting of channelrhodopsins with distinct functional properties to the inner mitochondrial membrane of intact cells. We show that our strategy enables a light-dependent control of the mitochondrial membrane potential (Δψ m ) and coupled mitochondrial functions such as ATP synthesis by oxidative phosphorylation, Ca 2+ dynamics, and respiratory metabolism. By directly modulating Δψ m , the mitochondria-targeted opsins were used to control complex physiological processes such as spontaneous beats in cardiac myocytes and glucose-dependent ATP increase in pancreatic β-cells. Furthermore, our optometabolic tools allow modulation of mitochondrial functions in single cells and defined cell regions.

  2. Molecular Dynamics Simulations of Creatine Kinase and Adenine Nucleotide Translocase in Mitochondrial Membrane Patch*

    PubMed Central

    Karo, Jaanus; Peterson, Pearu; Vendelin, Marko

    2012-01-01

    Interaction between mitochondrial creatine kinase (MtCK) and adenine nucleotide translocase (ANT) can play an important role in determining energy transfer pathways in the cell. Although the functional coupling between MtCK and ANT has been demonstrated, the precise mechanism of the coupling is not clear. To study the details of the coupling, we turned to molecular dynamics simulations. We introduce a new coarse-grained molecular dynamics model of a patch of the mitochondrial inner membrane containing a transmembrane ANT and an MtCK above the membrane. The membrane model consists of three major types of lipids (phosphatidylcholine, phosphatidylethanolamine, and cardiolipin) in a roughly 2:1:1 molar ratio. A thermodynamics-based coarse-grained force field, termed MARTINI, has been used together with the GROMACS molecular dynamics package for all simulated systems in this work. Several physical properties of the system are reproduced by the model and are in agreement with known data. This includes membrane thickness, dimension of the proteins, and diffusion constants. We have studied the binding of MtCK to the membrane and demonstrated the effect of cardiolipin on the stabilization of the binding. In addition, our simulations predict which part of the MtCK protein sequence interacts with the membrane. Taken together, the model has been verified by dynamical and structural data and can be used as the basis for further studies. PMID:22241474

  3. Measurement of the Absolute Magnitude and Time Courses of Mitochondrial Membrane Potential in Primary and Clonal Pancreatic Beta-Cells

    PubMed Central

    Gerencser, Akos A.; Mookerjee, Shona A.; Jastroch, Martin; Brand, Martin D.

    2016-01-01

    The aim of this study was to simplify, improve and validate quantitative measurement of the mitochondrial membrane potential (ΔψM) in pancreatic β-cells. This built on our previously introduced calculation of the absolute magnitude of ΔψM in intact cells, using time-lapse imaging of the non-quench mode fluorescence of tetramethylrhodamine methyl ester and a bis-oxonol plasma membrane potential (ΔψP) indicator. ΔψM is a central mediator of glucose-stimulated insulin secretion in pancreatic β-cells. ΔψM is at the crossroads of cellular energy production and demand, therefore precise assay of its magnitude is a valuable tool to study how these processes interplay in insulin secretion. Dispersed islet cell cultures allowed cell type-specific, single-cell observations of cell-to-cell heterogeneity of ΔψM and ΔψP. Glucose addition caused hyperpolarization of ΔψM and depolarization of ΔψP. The hyperpolarization was a monophasic step increase, even in cells where the ΔψP depolarization was biphasic. The biphasic response of ΔψP was associated with a larger hyperpolarization of ΔψM than the monophasic response. Analysis of the relationships between ΔψP and ΔψM revealed that primary dispersed β-cells responded to glucose heterogeneously, driven by variable activation of energy metabolism. Sensitivity analysis of the calibration was consistent with β-cells having substantial cell-to-cell variations in amounts of mitochondria, and this was predicted not to impair the accuracy of determinations of relative changes in ΔψM and ΔψP. Finally, we demonstrate a significant problem with using an alternative ΔψM probe, rhodamine 123. In glucose-stimulated and oligomycin-inhibited β-cells the principles of the rhodamine 123 assay were breached, resulting in misleading conclusions. PMID:27404273

  4. Measurement of the Absolute Magnitude and Time Courses of Mitochondrial Membrane Potential in Primary and Clonal Pancreatic Beta-Cells.

    PubMed

    Gerencser, Akos A; Mookerjee, Shona A; Jastroch, Martin; Brand, Martin D

    2016-01-01

    The aim of this study was to simplify, improve and validate quantitative measurement of the mitochondrial membrane potential (ΔψM) in pancreatic β-cells. This built on our previously introduced calculation of the absolute magnitude of ΔψM in intact cells, using time-lapse imaging of the non-quench mode fluorescence of tetramethylrhodamine methyl ester and a bis-oxonol plasma membrane potential (ΔψP) indicator. ΔψM is a central mediator of glucose-stimulated insulin secretion in pancreatic β-cells. ΔψM is at the crossroads of cellular energy production and demand, therefore precise assay of its magnitude is a valuable tool to study how these processes interplay in insulin secretion. Dispersed islet cell cultures allowed cell type-specific, single-cell observations of cell-to-cell heterogeneity of ΔψM and ΔψP. Glucose addition caused hyperpolarization of ΔψM and depolarization of ΔψP. The hyperpolarization was a monophasic step increase, even in cells where the ΔψP depolarization was biphasic. The biphasic response of ΔψP was associated with a larger hyperpolarization of ΔψM than the monophasic response. Analysis of the relationships between ΔψP and ΔψM revealed that primary dispersed β-cells responded to glucose heterogeneously, driven by variable activation of energy metabolism. Sensitivity analysis of the calibration was consistent with β-cells having substantial cell-to-cell variations in amounts of mitochondria, and this was predicted not to impair the accuracy of determinations of relative changes in ΔψM and ΔψP. Finally, we demonstrate a significant problem with using an alternative ΔψM probe, rhodamine 123. In glucose-stimulated and oligomycin-inhibited β-cells the principles of the rhodamine 123 assay were breached, resulting in misleading conclusions.

  5. The acylphloroglucinols hyperforin and myrtucommulone A cause mitochondrial dysfunctions in leukemic cells by direct interference with mitochondria.

    PubMed

    Wiechmann, Katja; Müller, Hans; Fischer, Dagmar; Jauch, Johann; Werz, Oliver

    2015-11-01

    The acylphloroglucinols hyperforin (Hypf) and myrtucommulone A (MC A) induce death of cancer cells by triggering the intrinsic/mitochondrial pathway of apoptosis, accompanied by a loss of the mitochondrial membrane potential and release of cytochrome c. However, the upstream targets and mechanisms leading to these mitochondrial events in cancer cells remain elusive. Here we show that Hypf and MC A directly act on mitochondria derived from human leukemic HL-60 cells and thus, disrupt mitochondrial functions. In isolated mitochondria, Hypf and MC A efficiently impaired mitochondrial viability (EC50 = 0.2 and 0.9 µM, respectively), caused loss of the mitochondrial membrane potential (at 0.03 and 0.1 µM, respectively), and suppressed mitochondrial ATP synthesis (IC50 = 0.2 and 0.5 µM, respectively). Consequently, the compounds activated the adenosine monophosphate-activated protein kinase (AMPK) in HL-60 cells, a cellular energy sensor involved in apoptosis of cancer cells. Side by side comparison with the protonophore CCCP and the ATP synthase inhibitor oligomycin suggest that Hypf and MC A act as protonophores that primarily dissipate the mitochondrial membrane potential by direct interaction with the mitochondrial membrane. Together, Hypf and MC A abolish the mitochondrial proton motive force that on one hand impairs mitochondrial viability and on the other cause activation of AMPK due to lowered ATP levels which may further facilitate the intrinsic mitochondrial pathway of apoptosis.

  6. Impaired Bioenergetics in Mutant Mitochondrial DNA Determines Cell Fate During Seizure-Like Activity.

    PubMed

    Kovac, Stjepana; Preza, Elisavet; Houlden, Henry; Walker, Matthew C; Abramov, Andrey Y

    2018-04-27

    Mutations in genes affecting mitochondrial proteins are increasingly recognised in patients with epilepsy, but the factors determining cell fate during seizure activity in these mutations remain unknown. Fluorescent dye imaging techniques were applied to fibroblast cell lines from patients suffering from common mitochondrial mutations and to age-matched controls. Using live cell imaging techniques in fibroblasts, we show that fibroblasts with mutations in the mitochondrial genome had reduced mitochondrial membrane potential and NADH pools and higher redox indices, indicative of respiratory chain dysfunction. Increasing concentrations of ferutinin, a Ca 2+ ionophore, led to oscillatory Ca 2+ signals in fibroblasts resembling dynamic Ca 2+ changes that occur during seizure-like activity. Co-monitoring of mitochondrial membrane potential (ΔΨ m ) changes induced by ferutinin showed accelerated membrane depolarisation and cell collapse in fibroblasts with mutations in the mitochondrial genome when compared to controls. Ca 2+ flash photolysis using caged Ca 2+ confirmed impaired Ca 2+ handling in fibroblasts with mitochondrial mutations. Findings indicate that intracellular Ca 2+ levels cannot be compensated during periods of hyperexcitability, leading to Ca 2+ overload and subsequent cell death in mitochondrial diseases.

  7. Inner Mitochondrial Membrane Disruption Links Apoptotic and Agonist-Initiated Phosphatidylserine Externalization in Platelets.

    PubMed

    Choo, Hyo-Jung; Kholmukhamedov, Andaleb; Zhou, ChengZing; Jobe, Shawn

    2017-08-01

    Phosphatidylserine exposure mediates platelet procoagulant function and regulates platelet life span. Apoptotic, necrotic, and integrin-mediated mechanisms have been implicated as intracellular determinants of platelet phosphatidylserine exposure. Here, we investigate (1) the role of mitochondrial events in platelet phosphatidylserine exposure initiated by these distinct stimuli and (2) the cellular interactions of the procoagulant platelet in vitro and in vivo. Key mitochondrial events were examined, including cytochrome c release and inner mitochondrial membrane (IMM) disruption. In both ABT-737 (apoptotic) and agonist (necrotic)-treated platelets, phosphatidylserine externalization was temporally correlated with IMM disruption. Agonist stimulation resulted in rapid cyclophilin D-dependent IMM disruption that coincided with phosphatidylserine exposure. ABT-737 treatment caused rapid cytochrome c release, eventually followed by caspase-dependent IMM disruption that again closely coincided with phosphatidylserine exposure. A nonmitochondrial and integrin-mediated mechanism has been implicated in the formation of a novel phosphatidylserine-externalizing platelet subpopulation. Using image cytometry, this subpopulation is demonstrated to be the result of the interaction of an aggregatory platelet and a procoagulant platelet rather than indicative of a novel intracellular mechanism regulating platelet phosphatidylserine externalization. Using electron microscopy, similar interactions between aggregatory and procoagulant platelets are demonstrated in vitro and in vivo within a mesenteric vein hemostatic thrombus. Platelet phosphatidylserine externalization is closely associated with the mitochondrial event of IMM disruption identifying a common pathway in phosphatidylserine-externalizing platelets. The limited interaction of procoagulant platelets and integrin-active aggregatory platelets identifies a potential mechanism for procoagulant platelet retention within the

  8. Distinct Pathways Mediate the Sorting of Tail-anchored Mitochondrial Outer Membrane Proteins

    USDA-ARS?s Scientific Manuscript database

    Little is known about the biogenesis of tail-anchored (TA) proteins localized to the mitochondrial outer membrane in plant cells. To address this issue, we screened all of the (>600) known and predicted TA proteins in Arabidopsis thaliana for those annotated, based on Gene Ontology, to possess mitoc...

  9. The Spectrum of Mitochondrial Ultrastructural Defects in Mitochondrial Myopathy

    PubMed Central

    Vincent, Amy E.; Ng, Yi Shiau; White, Kathryn; Davey, Tracey; Mannella, Carmen; Falkous, Gavin; Feeney, Catherine; Schaefer, Andrew M.; McFarland, Robert; Gorman, Grainne S.; Taylor, Robert W.; Turnbull, Doug M.; Picard, Martin

    2016-01-01

    Mitochondrial functions are intrinsically linked to their morphology and membrane ultrastructure. Characterizing abnormal mitochondrial structural features may thus provide insight into the underlying pathogenesis of inherited and acquired mitochondrial diseases. Following a systematic literature review on ultrastructural defects in mitochondrial myopathy, we investigated skeletal muscle biopsies from seven subjects with genetically defined mtDNA mutations. Mitochondrial ultrastructure and morphology were characterized using two complimentary approaches: transmission electron microscopy (TEM) and serial block face scanning EM (SBF-SEM) with 3D reconstruction. Six ultrastructural abnormalities were identified including i) paracrystalline inclusions, ii) linearization of cristae and abnormal angular features, iii) concentric layering of cristae membranes, iv) matrix compartmentalization, v) nanotunelling, and vi) donut-shaped mitochondria. In light of recent molecular advances in mitochondrial biology, these findings reveal novel aspects of mitochondrial ultrastructure and morphology in human tissues with implications for understanding the mechanisms linking mitochondrial dysfunction to disease. PMID:27506553

  10. Ca2+ and mitochondrial ROS: Both hero and villain in membrane repair.

    PubMed

    Cooper, Sandra T

    2017-09-05

    Membrane repair is a symphony of signaling, conducted principally by the steep influx of Ca 2+ through an injured membrane. In this issue of Science Signaling , Horn et al reveal unique interplay between Ca 2+ influx and mitochondrially generated reactive oxygen species (mtROS) to enhance actin-mediated wound closure for survival of injured mammalian muscle and nonmuscle cells. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  11. Using Förster-Resonance Energy Transfer to Measure Protein Interactions Between Bcl-2 Family Proteins on Mitochondrial Membranes.

    PubMed

    Pogmore, Justin P; Pemberton, James M; Chi, Xiaoke; Andrews, David W

    2016-01-01

    The Bcl-2 family of proteins regulates the process of mitochondrial outer membrane permeabilization, causing the release of cytochrome c and committing a cell to apoptosis. The majority of the functional interactions between these proteins occur at, on, or within the mitochondrial outer membrane, complicating structural studies of the proteins and complexes. As a result most in vitro studies of these protein-protein interactions use truncated proteins and/or detergents which can cause artificial interactions. Herein, we describe a detergent-free, fluorescence-based, in vitro technique to study binding between full-length recombinant Bcl-2 family proteins, particularly cleaved BID (cBID) and BCL-XL, on the membranes of purified mitochondria.

  12. Impaired cortical mitochondrial function following TBI precedes behavioral changes

    PubMed Central

    Watson, William D.; Buonora, John E.; Yarnell, Angela M.; Lucky, Jessica J.; D’Acchille, Michaela I.; McMullen, David C.; Boston, Andrew G.; Kuczmarski, Andrew V.; Kean, William S.; Verma, Ajay; Grunberg, Neil E.; Cole, Jeffrey T.

    2014-01-01

    Traumatic brain injury (TBI) pathophysiology can be attributed to either the immediate, primary physical injury, or the delayed, secondary injury which begins minutes to hours after the initial injury and can persist for several months or longer. Because these secondary cascades are delayed and last for a significant time period post-TBI, they are primary research targets for new therapeutics. To investigate changes in mitochondrial function after a brain injury, both the cortical impact site and ipsilateral hippocampus of adult male rats 7 and 17 days after a controlled cortical impact (CCI) injury were examined. State 3, state 4, and uncoupler-stimulated rates of oxygen consumption, respiratory control ratios (RCRs) were measured and membrane potential quantified, and all were significantly decreased in 7 day post-TBI cortical mitochondria. By contrast, hippocampal mitochondria at 7 days showed only non-significant decreases in rates of oxygen consumption and membrane potential. NADH oxidase activities measured in disrupted mitochondria were normal in both injured cortex and hippocampus at 7 days post-CCI. Respiratory and phosphorylation capacities at 17 days post-CCI were comparable to naïve animals for both cortical and hippocampus mitochondria. However, unlike oxidative phosphorylation, membrane potential of mitochondria in the cortical lining of the impact site did not recover at 17 days, suggesting that while diminished cortical membrane potential at 17 days does not adversely affect mitochondrial capacity to synthesize ATP, it may negatively impact other membrane potential-sensitive mitochondrial functions. Memory status, as assessed by a passive avoidance paradigm, was not significantly impaired until 17 days after injury. These results indicate pronounced disturbances in cortical mitochondrial function 7 days after CCI which precede the behavioral impairment observed at 17 days. PMID:24550822

  13. Glycogen synthase kinase 3-mediated voltage-dependent anion channel phosphorylation controls outer mitochondrial membrane permeability during lipid accumulation.

    PubMed

    Martel, Cecile; Allouche, Maya; Esposti, Davide Degli; Fanelli, Elena; Boursier, Céline; Henry, Céline; Chopineau, Joel; Calamita, Giuseppe; Kroemer, Guido; Lemoine, Antoinette; Brenner, Catherine

    2013-01-01

    Nonalcoholic steatosis is a liver pathology characterized by fat accumulation and severe metabolic alterations involving early mitochondrial impairment and late hepatocyte cell death. However, mitochondrial dysfunction mechanisms remain elusive. Using four models of nonalcoholic steatosis, i.e., livers from patients with fatty liver disease, ob/ob mice, mice fed a high-fat diet, and in vitro models of lipotoxicity, we show that outer mitochondrial membrane permeability is altered and identified a posttranslational modification of voltage-dependent anion channel (VDAC), a membrane channel and NADH oxidase, as a cause of early mitochondrial dysfunction. Thus, in nonalcoholic steatosis VDAC exhibits reduced threonine phosphorylation, which increases the influx of water and calcium into mitochondria, sensitizes the organelle to matrix swelling, depolarization, and cytochrome c release without inducing cell death. This also amplifies VDAC enzymatic and channel activities regulation by calcium and modifies its interaction with proteic partners. Moreover, lipid accumulation triggers a rapid lack of VDAC phosphorylation by glycogen synthase kinase 3 (GSK3). Pharmacological and genetic manipulations proved GSK3 to be responsible for VDAC phosphorylation in normal cells. Notably, VDAC phosphorylation level correlated with steatosis severity in patients. VDAC acts as an early sensor of lipid toxicity and its GSK3-mediated phosphorylation status controls outer mitochondrial membrane permeabilization in hepatosteatosis. Copyright © 2012 American Association for the Study of Liver Diseases.

  14. Common effects of lithium and valproate on mitochondrial functions: protection against methamphetamine-induced mitochondrial damage.

    PubMed

    Bachmann, Rosilla F; Wang, Yun; Yuan, Peixiong; Zhou, Rulun; Li, Xiaoxia; Alesci, Salvatore; Du, Jing; Manji, Husseini K

    2009-07-01

    Accumulating evidence suggests that mitochondrial dysfunction plays a critical role in the progression of a variety of neurodegenerative and psychiatric disorders. Thus, enhancing mitochondrial function could potentially help ameliorate the impairments of neural plasticity and cellular resilience associated with a variety of neuropsychiatric disorders. A series of studies was undertaken to investigate the effects of mood stabilizers on mitochondrial function, and against mitochondrially mediated neurotoxicity. We found that long-term treatment with lithium and valproate (VPA) enhanced cell respiration rate. Furthermore, chronic treatment with lithium or VPA enhanced mitochondrial function as determined by mitochondrial membrane potential, and mitochondrial oxidation in SH-SY5Y cells. In-vivo studies showed that long-term treatment with lithium or VPA protected against methamphetamine (Meth)-induced toxicity at the mitochondrial level. Furthermore, these agents prevented the Meth-induced reduction of mitochondrial cytochrome c, the mitochondrial anti-apoptotic Bcl-2/Bax ratio, and mitochondrial cytochrome oxidase (COX) activity. Oligoarray analysis demonstrated that the gene expression of several proteins related to the apoptotic pathway and mitochondrial functions were altered by Meth, and these changes were attenuated by treatment with lithium or VPA. One of the genes, Bcl-2, is a common target for lithium and VPA. Knock-down of Bcl-2 with specific Bcl-2 siRNA reduced the lithium- and VPA-induced increases in mitochondrial oxidation. These findings illustrate that lithium and VPA enhance mitochondrial function and protect against mitochondrially mediated toxicity. These agents may have potential clinical utility in the treatment of other diseases associated with impaired mitochondrial function, such as neurodegenerative diseases and schizophrenia.

  15. Substrate-dependent changes in mitochondrial function, intracellular free calcium concentration and membrane channels in pancreatic beta-cells.

    PubMed

    Duchen, M R; Smith, P A; Ashcroft, F M

    1993-08-15

    Microfluorimetric and patch-clamp techniques have been combined to determine the relationship between changes in mitochondrial metabolism, the activity of KATP channels and changes in intracellular free calcium concentration ([Ca2+]i) in isolated pancreatic beta-cells in response to glucose, ketoisocaproic acid (KIC) and the electron donor couple tetramethyl p-phenylenediamine (TMPD) and ascorbate. Exposure of cells to 20 mM glucose raised NAD(P)H autofluorescence after a delay of 28 +/- 1 s (mean +/- S.E.M., n = 30). The mitochondrial inner membrane potential, delta psi m (monitored using rhodamine 123 fluorescence), hyperpolarized with a latency of 49 +/- 6 s (n = 17), and the [Ca2+]i rose after 129 +/- 13 s (n = 5). The amplitudes of the metabolic changes were graded appropriately with glucose concentration over the range 2.5-20 mM. All variables responded to KIC with shorter latencies: NAD(P)H autofluorescence rose after a delay of 20 +/- 3 s (n = 5) and rhodamine 123 changed after 21 +/- 3 s (n = 6). The electron donor couple, TMPD with ascorbate, rapidly hyperpolarized delta psi m and raised [Ca2+]i. When [Ca2+]i was raised by sustained exposure to 20 mM glucose, TMPD had no further effect. TMPD also decreased whole-cell KATP currents and depolarized the cell membrane, measured with the perforated patch configuration. These data are consistent with a central role for mitochondrial oxidative phosphorylation in coupling changes in glucose concentration with the secretion of insulin.

  16. Tristetraprolin inhibits mitochondrial function through suppression of α-Synuclein expression in cancer cells

    PubMed Central

    Vo, Mai-Tram; Choi, Seong Hee; Lee, Ji-Heon; Hong, Chung Hwan; Kim, Jong Soo; Lee, Unn Hwa; Chung, Hyung-Min; Lee, Byung Ju; Park, Jeong Woo; Cho, Wha Ja

    2017-01-01

    Mitochondrial dynamics play critical roles in maintaining mitochondrial functions. Here, we report a novel mechanism for regulation of mitochondrial dynamics mediated by tristetraprolin (TTP), an AU-rich element (ARE)-binding protein. Overexpression of TTP resulted in elongated mitochondria, down-regulation of mitochondrial oxidative phosphorylation, reduced membrane potential, cytochrome c release, and increased apoptotic cell death in cancer cells. TTP overexpression inhibited the expression of α-Synuclein (α-Syn). TTP bound to the ARE within the mRNA 3′-untranslated regions (3′-UTRs) of α-Syn and enhanced the decay of α-Syn mRNA. Overexpression of α-Syn without the 3′-UTR restored TTP-induced defects in mitochondrial morphology, mitochondrial oxidative phosphorylation, membrane potential, and apoptotic cell death. Taken together, our data demonstrate that TTP acts as a regulator of mitochondrial dynamics through enhancing degradation of α-Syn mRNA in cancer cells. This finding will increase understanding of the molecular basis of mitochondrial dynamics. PMID:28410208

  17. Elevated hydrostatic pressures induce apoptosis and oxidative stress through mitochondrial membrane depolarization in PC12 neuronal cells: A cell culture model of glaucoma.

    PubMed

    Tök, Levent; Nazıroğlu, Mustafa; Uğuz, Abdülhadi Cihangir; Tök, Ozlem

    2014-10-01

    Despite the importance of oxidative stress and apoptosis through mitochondrial depolarization in neurodegenerative diseases, their roles in etiology of glaucoma are poorly understood. We aimed to investigate whether oxidative stress and apoptosis formation are altered in rat pheochromocytoma-derived cell line-12 (PC12) neuronal cell cultures exposed to elevated different hydrostatic pressures as a cell culture model of glaucoma. Cultured PC12 cells were subjected to 0, 15 and 70 mmHg hydrostatic pressure for 1 and 24 h. Then, the following values were analyzed: (a) cell viability; (b) lipid peroxidation and intracellular reactive oxygen species production; (c) mitochondrial membrane depolarization; (d) cell apoptosis; (e) caspase-3 and caspase-9 activities; (f) reduced glutathione (GSH) and glutathione peroxidase (GSH-Px). The hydrostatic pressures (15 and 70 mmHg) increased oxidative cell damage through a decrease of GSH and GSH-Px values, and increasing mitochondrial membrane potential. Additionally, 70 mmHg hydrostatic pressure for 24 h indicated highest apoptotic effects, as demonstrated by plate reader analyses of apoptosis, caspase-3 and -9 values. The present data indicated oxidative stress, apoptosis and mitochondrial changes in PC12 cell line during different hydrostatic pressure as a cell culture model of glaucoma. This findings support the view that mitochondrial oxidative injury contributes early to glaucomatous optic neuropathy.

  18. Eukaryote-wide sequence analysis of mitochondrial β-barrel outer membrane proteins.

    PubMed

    Imai, Kenichiro; Fujita, Naoya; Gromiha, M Michael; Horton, Paul

    2011-01-28

    The outer membranes of mitochondria are thought to be homologous to the outer membranes of Gram negative bacteria, which contain 100's of distinct families of β-barrel membrane proteins (BOMPs) often forming channels for transport of nutrients or drugs. However, only four families of mitochondrial BOMPs (MBOMPs) have been confirmed to date. Although estimates as high as 100 have been made in the past, the number of yet undiscovered MBOMPs is an open question. Fortunately, the recent discovery of a membrane integration signal (the β-signal) for MBOMPs gave us an opportunity to look for undiscovered MBOMPs. We present the results of a comprehensive survey of eukaryotic protein sequences intended to identify new MBOMPs. Our search employs recent results on β-signals as well as structural information and a novel BOMP predictor trained on both bacterial and mitochondrial BOMPs. Our principal finding is circumstantial evidence suggesting that few MBOMPs remain to be discovered, if one assumes that, like known MBOMPs, novel MBOMPs will be monomeric and β-signal dependent. In addition to this, our analysis of MBOMP homologs reveals some exceptions to the current model of the β-signal, but confirms its consistent presence in the C-terminal region of MBOMP proteins. We also report a β-signal independent search for MBOMPs against the yeast and Arabidopsis proteomes. We find no good candidates MBOMPs in yeast but the Arabidopsis results are less conclusive. Our results suggest there are no remaining MBOMPs left to discover in yeast; and if one assumes all MBOMPs are β-signal dependent, few MBOMP families remain undiscovered in any sequenced organism.

  19. Eukaryote-wide sequence analysis of mitochondrial β-barrel outer membrane proteins

    PubMed Central

    2011-01-01

    Background The outer membranes of mitochondria are thought to be homologous to the outer membranes of Gram negative bacteria, which contain 100's of distinct families of β-barrel membrane proteins (BOMPs) often forming channels for transport of nutrients or drugs. However, only four families of mitochondrial BOMPs (MBOMPs) have been confirmed to date. Although estimates as high as 100 have been made in the past, the number of yet undiscovered MBOMPs is an open question. Fortunately, the recent discovery of a membrane integration signal (the β-signal) for MBOMPs gave us an opportunity to look for undiscovered MBOMPs. Results We present the results of a comprehensive survey of eukaryotic protein sequences intended to identify new MBOMPs. Our search employs recent results on β-signals as well as structural information and a novel BOMP predictor trained on both bacterial and mitochondrial BOMPs. Our principal finding is circumstantial evidence suggesting that few MBOMPs remain to be discovered, if one assumes that, like known MBOMPs, novel MBOMPs will be monomeric and β-signal dependent. In addition to this, our analysis of MBOMP homologs reveals some exceptions to the current model of the β-signal, but confirms its consistent presence in the C-terminal region of MBOMP proteins. We also report a β-signal independent search for MBOMPs against the yeast and Arabidopsis proteomes. We find no good candidates MBOMPs in yeast but the Arabidopsis results are less conclusive. Conclusions Our results suggest there are no remaining MBOMPs left to discover in yeast; and if one assumes all MBOMPs are β-signal dependent, few MBOMP families remain undiscovered in any sequenced organism. PMID:21272379

  20. Gemini surfactants mediate efficient mitochondrial gene delivery and expression.

    PubMed

    Cardoso, Ana M; Morais, Catarina M; Cruz, A Rita; Cardoso, Ana L; Silva, Sandra G; do Vale, M Luísa; Marques, Eduardo F; Pedroso de Lima, Maria C; Jurado, Amália S

    2015-03-02

    Gene delivery targeting mitochondria has the potential to transform the therapeutic landscape of mitochondrial genetic diseases. Taking advantage of the nonuniversal genetic code used by mitochondria, a plasmid DNA construct able to be specifically expressed in these organelles was designed by including a codon, which codes for an amino acid only if read by the mitochondrial ribosomes. In the present work, gemini surfactants were shown to successfully deliver plasmid DNA to mitochondria. Gemini surfactant-based DNA complexes were taken up by cells through a variety of routes, including endocytic pathways, and showed propensity for inducing membrane destabilization under acidic conditions, thus facilitating cytoplasmic release of DNA. Furthermore, the complexes interacted extensively with lipid membrane models mimicking the composition of the mitochondrial membrane, which predicts a favored interaction of the complexes with mitochondria in the intracellular environment. This work unravels new possibilities for gene therapy toward mitochondrial diseases.

  1. Mitochondria-associated endoplasmic reticulum membranes allow adaptation of mitochondrial metabolism to glucose availability in the liver.

    PubMed

    Theurey, Pierre; Tubbs, Emily; Vial, Guillaume; Jacquemetton, Julien; Bendridi, Nadia; Chauvin, Marie-Agnès; Alam, Muhammad Rizwan; Le Romancer, Muriel; Vidal, Hubert; Rieusset, Jennifer

    2016-04-01

    Mitochondria-associated endoplasmic reticulum membranes (MAM) play a key role in mitochondrial dynamics and function and in hepatic insulin action. Whereas mitochondria are important regulators of energy metabolism, the nutritional regulation of MAM in the liver and its role in the adaptation of mitochondria physiology to nutrient availability are unknown. In this study, we found that the fasted to postprandial transition reduced the number of endoplasmic reticulum-mitochondria contact points in mouse liver. Screening of potential hormonal/metabolic signals revealed glucose as the main nutritional regulator of hepatic MAM integrity both in vitro and in vivo Glucose reduced organelle interactions through the pentose phosphate-protein phosphatase 2A (PP-PP2A) pathway, induced mitochondria fission, and impaired respiration. Blocking MAM reduction counteracted glucose-induced mitochondrial alterations. Furthermore, disruption of MAM integrity mimicked effects of glucose on mitochondria dynamics and function. This glucose-sensing system is deficient in the liver of insulin-resistant ob/ob and cyclophilin D-KO mice, both characterized by chronic disruption of MAM integrity, mitochondrial fission, and altered mitochondrial respiration. These data indicate that MAM contribute to the hepatic glucose-sensing system, allowing regulation of mitochondria dynamics and function during nutritional transition. Chronic disruption of MAM may participate in hepatic mitochondrial dysfunction associated with insulin resistance. © The Author (2016). Published by Oxford University Press on behalf of Journal of Molecular Cell Biology, IBCB, SIBS, CAS. All rights reserved.

  2. Bacterial Origin of a Mitochondrial Outer Membrane Protein Translocase

    PubMed Central

    Harsman, Anke; Niemann, Moritz; Pusnik, Mascha; Schmidt, Oliver; Burmann, Björn M.; Hiller, Sebastian; Meisinger, Chris; Schneider, André; Wagner, Richard

    2012-01-01

    Mitochondria are of bacterial ancestry and have to import most of their proteins from the cytosol. This process is mediated by Tom40, an essential protein that forms the protein-translocating pore in the outer mitochondrial membrane. Tom40 is conserved in virtually all eukaryotes, but its evolutionary origin is unclear because bacterial orthologues have not been identified so far. Recently, it was shown that the parasitic protozoon Trypanosoma brucei lacks a conventional Tom40 and instead employs the archaic translocase of the outer mitochondrial membrane (ATOM), a protein that shows similarities to both eukaryotic Tom40 and bacterial protein translocases of the Omp85 family. Here we present electrophysiological single channel data showing that ATOM forms a hydrophilic pore of large conductance and high open probability. Moreover, ATOM channels exhibit a preference for the passage of cationic molecules consistent with the idea that it may translocate unfolded proteins targeted by positively charged N-terminal presequences. This is further supported by the fact that the addition of a presequence peptide induces transient pore closure. An in-depth comparison of these single channel properties with those of other protein translocases reveals that ATOM closely resembles bacterial-type protein export channels rather than eukaryotic Tom40. Our results support the idea that ATOM represents an evolutionary intermediate between a bacterial Omp85-like protein export machinery and the conventional Tom40 that is found in mitochondria of other eukaryotes. PMID:22778261

  3. Effect of garlic-derived organosulfur compounds on mitochondrial function and integrity in isolated mouse liver mitochondria.

    PubMed

    Caro, Andres A; Adlong, Luke W; Crocker, Samuel J; Gardner, Michael W; Luikart, Emily F; Gron, Liz U

    2012-10-17

    The objectives of this work were to evaluate the direct effects of diallysulfide (DAS) and diallyldisulfide (DADS), two major organosulfur compounds of garlic oil, on mitochondrial function and integrity, by using isolated mouse liver mitochondria in a cell-free system. DADS produced concentration-dependent mitochondrial swelling over the range 125-1000μM, while DAS was ineffective. Swelling experiments performed with de-energized or energized mitochondria showed similar maximal swelling amplitudes. Cyclosporin A (1μM), or ethylene glycol-bis(2-aminoethylether)-N,N,N',N'-tetraacetic acid (EGTA, 1mM) were ineffective in inhibiting DADS-induced mitochondrial swelling. DADS produced a minor (12%) decrease in mitochondrial membrane protein thiols, but did not induce clustering of mitochondrial membrane proteins. Incubation of mitochondria with DADS (but not DAS) produced an increase in the oxidation rate of 2',7' dichlorofluorescein diacetate (DCFH-DA), together with depletion of reduced glutathione (GSH) and increased lipid peroxidation. DADS (but not DAS) produced a concentration-dependent dissipation of the mitochondrial membrane potential, but did not induce cytochrome c release. DADS-dependent effects, including mitochondrial swelling, DCFH-DA oxidation, lipid peroxidation and loss of mitochondrial membrane potential, were inhibited by antioxidants and iron chelators. These results suggest that DADS causes direct impairment of mitochondrial function as the result of oxidation of the membrane lipid phase initiated by the GSH- and iron-dependent generation of oxidants. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  4. Sensitization of U937 leukemia cells to doxorubicin by the MG132 proteasome inhibitor induces an increase in apoptosis by suppressing NF-kappa B and mitochondrial membrane potential loss

    PubMed Central

    2014-01-01

    Background The resistance of cancerous cells to chemotherapy remains the main limitation for cancer treatment at present. Doxorubicin (DOX) is a potent antitumor drug that activates the ubiquitin-proteasome system, but unfortunately it also activates the Nuclear factor kappa B (NF-кB) pathway leading to the promotion of tumor cell survival. MG132 is a drug that inhibits I kappa B degradation by the proteasome-avoiding activation of NF-кB. In this work, we studied the sensitizing effect of the MG132 proteasome inhibitor on the antitumor activity of DOX. Methods U937 human leukemia cells were treated with MG132, DOX, or both drugs. We evaluated proliferation, viability, apoptosis, caspase-3, -8, and −9 activity and cleavage, cytochrome c release, mitochondrial membrane potential, the Bcl-2 and Bcl-XL antiapoptotic proteins, senescence, p65 phosphorylation, and pro- and antiapoptotic genes. Results The greatest apoptosis percentage in U937 cells was obtained with a combination of MG132 + DOX. Likewise, employing both drugs, we observed a decrease in tumor cell proliferation and important caspase-3 activation, as well as mitochondrial membrane potential loss. Therefore, MG132 decreases senescence, p65 phosphorylation, and the DOX-induced Bcl-2 antiapoptotic protein. The MG132 + DOX treatment induced upregulation of proapoptotic genes BAX, DIABLO, NOXA, DR4, and FAS. It also induced downregulation of the antiapoptotic genes BCL-XL and SURVIVIN. Conclusion MG132 sensitizes U937 leukemia cells to DOX-induced apoptosis, increasing its anti-leukemic effectiveness. PMID:24495648

  5. Mitochondrial mechanisms of neural cell death and neuroprotective interventions in Parkinson's disease.

    PubMed

    Fiskum, Gary; Starkov, Anatoly; Polster, Brian M; Chinopoulos, Christos

    2003-06-01

    Mitochondrial dysfunction, due to either environmental or genetic factors, can result in excessive production of reactive oxygen species, triggering the apoptotic death of dopaminergic cells in Parkinson's disease. Mitochondrial free radical production is promoted by the inhibition of electron transport at any point distal to the sites of superoxide production. Neurotoxins that induce parkinsonian neuropathology, such as MPP(+) and rotenone, stimulate superoxide production at complex I of the electron transport chain and also stimulate free radical production at proximal redox sites including mitochondrial matrix dehydrogenases. The oxidative stress caused by elevated mitochondrial production of reactive oxygen species promotes the expression and (or) intracellular distribution of the proapoptotic protein Bax to the mitochondrial outer membrane. Interactions between Bax and BH3 death domain proteins such as tBid result in Bax membrane integration, oligomerization, and permeabilization of the outer membrane to intermembrane proteins such as cytochrome c. Once released into the cytosol, cytochrome c together with other proteins activates the caspase cascade of protease activities that mediate the biochemical and morphological alterations characteristic of apoptosis. In addition, loss of mitochondrial cytochrome c stimulates mitochondrial free radical production, further promoting cell death pathways. Excessive mitochondrial Ca(2+) accumulation can also release cytochrome c and promote superoxide production through a mechanism distinctly different from that of Bax. Ca(2+) activates a mitochondrial inner membrane permeability transition causing osmotic swelling, rupture of the outer membrane, and complete loss of mitochondrial structural and functional integrity. While amphiphilic cations, such as dibucaine and propranolol, inhibit Bax-mediated cytochrome c release, transient receptor potential channel inhibitors inhibit mitochondrial swelling and cytochrome c release

  6. Rotenone-sensitive mitochondrial potential in Phytomonas serpens: electrophoretic Ca(2+) accumulation.

    PubMed

    Moysés, Danuza Nogueira; Barrabin, Hector

    2004-06-07

    Phytomonas sp. are flagellated trypanosomatid plant parasites that cause diseases of economic importance in plantations of coffee, oil palm, cassava and coconuts. Here we investigated Ca(2+) uptake by the vanadate-insensitive compartments using permeabilized Phytomonas serpens promastigotes. This uptake occurs at a rate of 1.13+/-0.23 nmol Ca(2+) mg x protein(-1) min(-1). It is completely abolished by the H(+) ionophore FCCP and by valinomycin and nigericin. It is also inhibited by 2 microM ruthenium red, which, at this low concentration, is known to inhibit the mitochondrial calcium uniport. Furthermore, salicylhydroxamic acid (SHAM) and propylgallate, specific inhibitors of the alternative oxidase in plant and parasite mitochondria, are also effective as inhibitors of the Ca(2+) transport. These compounds abolish the membrane potential that is monitored with safranine O. Rotenone, an inhibitor of NADH-CoQ oxidoreductase, can also dissipate 100% of the membrane potential. It is suggested that the mitochondria of P. serpens can be energized via oxidation of NADH in a pathway involving the NADH-CoQ oxidoreductase and the alternative oxidase to regenerate the ubiquinone. The electrochemical H(+) gradient can be used to promote Ca(2+) uptake by the mitochondria.

  7. Disruption of the outer mitochondrial membrane as a result of large amplitude swelling: the impact of irreversible permeability transition.

    PubMed

    Petit, P X; Goubern, M; Diolez, P; Susin, S A; Zamzami, N; Kroemer, G

    1998-04-10

    Upon induction of permeability transition with different agents (Ca2+, tert-butyl hydroperoxide, atractyloside), mouse hepatocyte mitochondria manifest a disruption of outer membrane integrity leading to the release of cytochrome c and apoptosis-inducing factor (AIF), two proteins which are involved in programmed cell death (apoptosis). Chelation of Ca2+ shortly (within 2 min) after its addition to isolated mitochondria reestablished the mitochondrial transmembrane potential (deltapsi(m)), prevented induction of large amplitude swelling and release of both cytochrome c and AIF. In contrast, late Ca2+ chelation (10 min after addition of Ca2+) failed to affect these parameters. Cytochrome c appears to be released through a mechanically damaged outer mitochondrial membrane rather than via a specific release mechanism. These findings clarify the mechanisms through which irreversible permeability transition occurs with subsequent large amplitude swelling culminating in the release of intermembrane proteins from mitochondria. Moreover, they confirm the hypothesis formulated by Skulachev [FEBS Lett. 397 (1996) 7-10 and Q. Rev. Biophys. 29 (1996) 169-2021 linking permeability transition to activation of the apoptogenic catabolic enzymes.

  8. Mitochondrial Targeted Coenzyme Q, Superoxide, and Fuel Selectivity in Endothelial Cells

    PubMed Central

    Fink, Brian D.; O'Malley, Yunxia; Dake, Brian L.; Ross, Nicolette C.; Prisinzano, Thomas E.; Sivitz, William I.

    2009-01-01

    Background Previously, we reported that the “antioxidant” compound “mitoQ” (mitochondrial-targeted ubiquinol/ubiquinone) actually increased superoxide production by bovine aortic endothelial (BAE) cell mitochondria incubated with complex I but not complex II substrates. Methods and Results To further define the site of action of the targeted coenzyme Q compound, we extended these studies to include different substrate and inhibitor conditions. In addition, we assessed the effects of mitoquinone on mitochondrial respiration, measured respiration and mitochondrial membrane potential in intact cells, and tested the intriguing hypothesis that mitoquinone might impart fuel selectivity in intact BAE cells. In mitochondria respiring on differing concentrations of complex I substrates, mitoquinone and rotenone had interactive effects on ROS consistent with redox cycling at multiple sites within complex I. Mitoquinone increased respiration in isolated mitochondria respiring on complex I but not complex II substrates. Mitoquinone also increased oxygen consumption by intact BAE cells. Moreover, when added to intact cells at 50 to 1000 nM, mitoquinone increased glucose oxidation and reduced fat oxidation, at doses that did not alter membrane potential or induce cell toxicity. Although high dose mitoquinone reduced mitochondrial membrane potential, the positively charged mitochondrial-targeted cation, decyltriphenylphosphonium (mitoquinone without the coenzyme Q moiety), decreased membrane potential more than mitoquinone, but did not alter fuel selectivity. Therefore, non-specific effects of the positive charge were not responsible and the quinone moiety is required for altered nutrient selectivity. Conclusions In summary, the interactive effects of mitoquinone and rotenone are consistent with redox cycling at more than one site within complex I. In addition, mitoquinone has substrate dependent effects on mitochondrial respiration, increases repiration by intact cells

  9. Mitochondrial targeted coenzyme Q, superoxide, and fuel selectivity in endothelial cells.

    PubMed

    Fink, Brian D; O'Malley, Yunxia; Dake, Brian L; Ross, Nicolette C; Prisinzano, Thomas E; Sivitz, William I

    2009-01-01

    Previously, we reported that the "antioxidant" compound "mitoQ" (mitochondrial-targeted ubiquinol/ubiquinone) actually increased superoxide production by bovine aortic endothelial (BAE) cell mitochondria incubated with complex I but not complex II substrates. To further define the site of action of the targeted coenzyme Q compound, we extended these studies to include different substrate and inhibitor conditions. In addition, we assessed the effects of mitoquinone on mitochondrial respiration, measured respiration and mitochondrial membrane potential in intact cells, and tested the intriguing hypothesis that mitoquinone might impart fuel selectivity in intact BAE cells. In mitochondria respiring on differing concentrations of complex I substrates, mitoquinone and rotenone had interactive effects on ROS consistent with redox cycling at multiple sites within complex I. Mitoquinone increased respiration in isolated mitochondria respiring on complex I but not complex II substrates. Mitoquinone also increased oxygen consumption by intact BAE cells. Moreover, when added to intact cells at 50 to 1000 nM, mitoquinone increased glucose oxidation and reduced fat oxidation, at doses that did not alter membrane potential or induce cell toxicity. Although high dose mitoquinone reduced mitochondrial membrane potential, the positively charged mitochondrial-targeted cation, decyltriphenylphosphonium (mitoquinone without the coenzyme Q moiety), decreased membrane potential more than mitoquinone, but did not alter fuel selectivity. Therefore, non-specific effects of the positive charge were not responsible and the quinone moiety is required for altered nutrient selectivity. In summary, the interactive effects of mitoquinone and rotenone are consistent with redox cycling at more than one site within complex I. In addition, mitoquinone has substrate dependent effects on mitochondrial respiration, increases repiration by intact cells, and alters fuel selectivity favoring glucose over

  10. Radiation inactivation method provides evidence that membrane-bound mitochondrial creatine kinase is an oligomer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quemeneur, E.; Eichenberger, D.; Goldschmidt, D.

    1988-06-30

    Lyophilized suspensions of rabbit heart mitochondria have been irradiated with varying doses of gamma rays. Mitochondrial creatine kinase activity was inactivated exponentially with a radiation inactivation size of 352 or 377 kDa depending upon the initial medium. These values are in good agreement with the molecular mass previously deduced from by permeation experiments: 357 kDa. This is the first direct evidence showing that the native form of mitochondrial creatine kinase is associated to the inner membrane as an oligomer, very likely an octamer.

  11. Mitochondrial-targeted DNA delivery using a DF-MITO-Porter, an innovative nano carrier with cytoplasmic and mitochondrial fusogenic envelopes

    NASA Astrophysics Data System (ADS)

    Yamada, Yuma; Kawamura, Eriko; Harashima, Hideyoshi

    2012-08-01

    Mitochondrial gene therapy has the potential for curing a variety of diseases that are associated with mitochondrial DNA mutations and/or defects. To achieve this, it will be necessary to deliver therapeutic agents into the mitochondria in diseased cells. A number of mitochondrial drug delivery systems have been reported to date. However, reports of mitochondrial-targeted DNA delivery are limited. To achieve this, the therapeutic agent must be taken up by the cell (1), after which, the multi-processes associated with intracellular trafficking must be sophisticatedly regulated so as to release the agent from the endosome and deliver it to the cytosol (2) and to pass through the mitochondrial membrane (3). We report herein on the mitochondrial delivery of oligo DNA as a model therapeutic using a Dual Function (DF)-MITO-Porter, an innovative nano carrier designed for mitochondrial delivery. The critical structural elements of the DF-MITO-Porter include mitochondria-fusogenic inner envelopes and endosome-fusogenic outer envelopes, modified with octaarginine which greatly assists in cellular uptake. Inside the cell, the carrier passes through the endosomal and mitochondrial membranes via step-wise membrane fusion. When the oligo DNA was packaged in the DF-MITO-Porter, cellular uptake efficiency was strongly enhanced. Intracellular observation using confocal laser scanning microscopy showed that the DF-MITO-Porter was effectively released from endosomes. Moreover, the findings confirmed that the mitochondrial targeting activity of the DF-MITO-Porter was significantly higher than that of a carrier without outer endosome-fusogenic envelopes. These results support the conclusion that mitochondrial-targeted DNA delivery using a DF-MITO-Porter can be achieved when intracellular trafficking is optimally regulated.

  12. Reconstitution of proapoptotic BAK function in liposomes reveals a dual role for mitochondrial lipids in the BAK-driven membrane permeabilization process.

    PubMed

    Landeta, Olatz; Landajuela, Ane; Gil, David; Taneva, Stefka; Di Primo, Carmelo; Sot, Begoña; Valle, Mikel; Frolov, Vadim A; Basañez, Gorka

    2011-03-11

    BAK is a key effector of mitochondrial outer membrane permeabilization (MOMP) whose molecular mechanism of action remains to be fully dissected in intact cells, mainly due to the inherent complexity of the intracellular apoptotic machinery. Here we show that the core features of the BAK-driven MOMP pathway can be reproduced in a highly simplified in vitro system consisting of recombinant human BAK lacking the carboxyl-terminal 21 residues (BAKΔC) and tBID in combination with liposomes bearing an appropriate lipid environment. Using this minimalist reconstituted system we established that tBID suffices to trigger BAKΔC membrane insertion, oligomerization, and pore formation. Furthermore, we demonstrate that tBID-activated BAKΔC permeabilizes the membrane by forming structurally dynamic pores rather than a large proteinaceous channel of fixed size. We also identified two distinct roles played by mitochondrial lipids along the molecular pathway of BAKΔC-induced membrane permeabilization. First, using several independent approaches, we showed that cardiolipin directly interacts with BAKΔC, leading to a localized structural rearrangement in the protein that "primes" BAKΔC for interaction with tBID. Second, we provide evidence that selected curvature-inducing lipids present in mitochondrial membranes specifically modulate the energetic expenditure required to create the BAKΔC pore. Collectively, our results support the notion that BAK functions as a direct effector of MOMP akin to BAX and also adds significantly to the growing evidence indicating that mitochondrial membrane lipids are actively implicated in BCL-2 protein family function.

  13. Mitochondrial Glutathione: Regulation and Functions.

    PubMed

    Calabrese, Gaetano; Morgan, Bruce; Riemer, Jan

    2017-11-20

    Mitochondrial glutathione fulfills crucial roles in a number of processes, including iron-sulfur cluster biosynthesis and peroxide detoxification. Recent Advances: Genetically encoded fluorescent probes for the glutathione redox potential (E GSH ) have permitted extensive new insights into the regulation of mitochondrial glutathione redox homeostasis. These probes have revealed that the glutathione pools of the mitochondrial matrix and intermembrane space (IMS) are highly reduced, similar to the cytosolic glutathione pool. The glutathione pool of the IMS is in equilibrium with the cytosolic glutathione pool due to the presence of porins that allow free passage of reduced glutathione (GSH) and oxidized glutathione (GSSG) across the outer mitochondrial membrane. In contrast, limited transport of glutathione across the inner mitochondrial membrane ensures that the matrix glutathione pool is kinetically isolated from the cytosol and IMS. In contrast to the situation in the cytosol, there appears to be extensive crosstalk between the mitochondrial glutathione and thioredoxin systems. Further, both systems appear to be intimately involved in the removal of reactive oxygen species, particularly hydrogen peroxide (H 2 O 2 ), produced in mitochondria. However, a detailed understanding of these interactions remains elusive. We postulate that the application of genetically encoded sensors for glutathione in combination with novel H 2 O 2 probes and conventional biochemical redox state assays will lead to fundamental new insights into mitochondrial redox regulation and reinvigorate research into the physiological relevance of mitochondrial redox changes. Antioxid. Redox Signal. 27, 1162-1177.

  14. The reaction pathway of membrane-bound rat liver mitochondrial monoamine oxidase

    PubMed Central

    Houslay, Miles D.; Tipton, Keith F.

    1973-01-01

    1. A preparation of a partly purified mitochondrial outer-membrane fraction suitable for kinetic investigations of monoamine oxidase is described. 2. An apparatus suitable for varying the O2 concentration in a spectrophotometer cuvette is described. 3. The reaction catalysed by the membrane-bound enzyme is shown to proceed by a double-displacement (Ping Pong) mechanism, and a formal mechanism is proposed. 4. KCN, NaN3, benzyl cyanide and 4-cyanophenol are shown to be reversible inhibitors of the enzyme. 5. The non-linear reciprocal plot obtained with impure preparations of benzylamine, which is typical of high substrate inhibition, is shown to be due to aldehyde contamination of the substrate. PMID:4778271

  15. Differential effect of amyloid beta peptides on mitochondrial axonal trafficking depends on their state of aggregation and binding to the plasma membrane.

    PubMed

    Zhang, Liang; Trushin, Sergey; Christensen, Trace A; Tripathi, Utkarsh; Hong, Courtney; Geroux, Rachel E; Howell, Kyle G; Poduslo, Joseph F; Trushina, Eugenia

    2018-06-01

    Inhibition of mitochondrial axonal trafficking by amyloid beta (Aβ) peptides has been implicated in early pathophysiology of Alzheimer's Disease (AD). Yet, it remains unclear whether the loss of motility inevitably induces the loss of mitochondrial function, and whether restoration of axonal trafficking represents a valid therapeutic target. Moreover, while some investigations identify Aβ oligomers as the culprit of trafficking inhibition, others propose that fibrils play the detrimental role. We have examined the effect of a panel of Aβ peptides with different mutations found in familial AD on mitochondrial motility in primary cortical mouse neurons. Peptides with higher propensity to aggregate inhibit mitochondrial trafficking to a greater extent with fibrils inducing the strongest inhibition. Binding of Aβ peptides to the plasma membrane was sufficient to induce trafficking inhibition where peptides with reduced plasma membrane binding and internalization had lesser effect on mitochondrial motility. We also found that Aβ peptide with Icelandic mutation A673T affects axonal trafficking of mitochondria but has very low rates of plasma membrane binding and internalization in neurons, which could explain its relatively low toxicity. Inhibition of mitochondrial dynamics caused by Aβ peptides or fibrils did not instantly affect mitochondrial bioenergetic and function. Our results support a mechanism where inhibition of axonal trafficking is initiated at the plasma membrane by soluble low molecular weight Aβ species and is exacerbated by fibrils. Since trafficking inhibition does not coincide with the loss of mitochondrial function, restoration of axonal transport could be beneficial at early stages of AD progression. However, strategies designed to block Aβ aggregation or fibril formation alone without ensuring the efficient clearance of soluble Aβ may not be sufficient to alleviate the trafficking phenotype. Copyright © 2018 The Authors. Published by

  16. Differential effect of amyloid beta peptides on mitochondrial axonal trafficking depends on their state of aggregation and binding to the plasma membrane

    PubMed Central

    Zhang, Liang; Trushin, Sergey; Christensen, Trace A.; Tripathi, Utkarsh; Hong, Courtney; Geroux, Rachel E.; Howell, Kyle G.; Poduslo, Joseph F.; Trushina, Eugenia

    2018-01-01

    Inhibition of mitochondrial axonal trafficking by amyloid beta (Aβ) peptides has been implicated in early pathophysiology of Alzheimer’s Disease (AD). Yet, it remains unclear whether the loss of motility inevitably induces the loss of mitochondrial function, and whether restoration of axonal trafficking represents a valid therapeutic target. Moreover, while some investigations identify Aβ oligomers as the culprit of trafficking inhibition, others propose that fibrils play the detrimental role. We have examined the effect of a panel of Aβ peptides with different mutations found in familial AD on mitochondrial motility in primary cortical mouse neurons. Peptides with higher propensity to aggregate inhibit mitochondrial trafficking to a greater extent with fibrils inducing the strongest inhibition. Binding of Aβ peptides to the plasma membrane was sufficient to induce trafficking inhibition where peptides with reduced plasma membrane binding and internalization had lesser effect on mitochondrial motility. We also found that Aβ peptide with Icelandic mutation A673T affects axonal trafficking of mitochondria but has very low rates of plasma membrane binding and internalization in neurons, which could explain its relatively low toxicity. Inhibition of mitochondrial dynamics caused by Aβ peptides or fibrils did not instantly affect mitochondrial bioenergetic and function. Our results support a mechanism where inhibition of axonal trafficking is initiated at the plasma membrane by soluble low molecular weight Aβ species and is exacerbated by fibrils. Since trafficking inhibition does not coincide with the loss of mitochondrial function, restoration of axonal transport could be beneficial at early stages of AD progression. However, strategies designed to block Aβ aggregation or fibril formation alone without ensuring the efficient clearance of soluble Aβ may not be sufficient to alleviate the trafficking phenotype. PMID:29477640

  17. Solubilization conditions for bovine heart mitochondrial membranes allow selective purification of large quantities of respiratory complexes I, III, and V.

    PubMed

    Shimada, Satoru; Maeda, Shintaro; Hikita, Masahide; Mieda-Higa, Kaoru; Uene, Shigefumi; Nariai, Yukiko; Shinzawa-Itoh, Kyoko

    2018-04-24

    Ascertaining the structure and functions of mitochondrial respiratory chain complexes is essential to understanding the biological mechanisms of energy conversion; therefore, numerous studies have examined these complexes. A fundamental part of that research involves devising a method for purifying samples with good reproducibility; the samples obtained need to be stable and their constituents need to retain the same structure and functions they possess when in mitochondrial membranes. Submitochondrial bovine heart particles were isolated using differential centrifugation to adjust to a membrane concentration of 46.0% (w/v) or 31.5% (w/v) based on weight. After 0.7% (w/v) deoxycholic acid, 0.4% (w/v) decyl maltoside, and 7.2% (w/v) potassium chloride were added to the mitochondrial membranes, those membranes were solubilized. At a membrane concentration of 46%, complex V was selectively solubilized, whereas at a concentration of 31.5% (w/v), complexes I and III were solubilized. Two steps-sucrose density gradient centrifugation and anion-exchange chromatography on a POROS HQ 20 μm column-enabled selective purification of samples that retained their structure and functions. These two steps enabled complexes I, III, and V to be purified in two days with a high yield. Complexes I, III, and V were stabilized with n-decyl-β-D-maltoside. A total of 200 mg-300 mg of those complexes from one bovine heart (1.1 kg muscle) was purified with good reproducibility, and the complexes retained the same functions they possessed while in mitochondrial membranes. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  18. Three-dimensional organization of the endoplasmic reticulum membrane around the mitochondrial constriction site in mammalian cells revealed by using focused-ion beam tomography.

    PubMed

    Ohta, Keisuke; Okayama, Satoko; Togo, Akinobu; Nakamura, Kei-Ichiro

    2014-11-01

    The endoplasmic reticulum (ER) and mitochondria associate at multiple contact sites to form specific domains known as mitochondria-ER associated membranes (MAMs) that play a role in the regulation of various cellular processes such as Ca2+ transfer, autophagy, and inflammation. Recently, it has been suggested that MAMs are also involved in mitochondrial dynamics, especially fission events. Cytological analysis showed that ER tubules were frequently located close to each other in mitochondrial fission sites that accumulate fission-related proteins. Three-dimensional (3D) imaging of ER-mitochondrial contacts in yeast mitochondria by using cryo-electron tomography also showed that ER tubules were attached near the constriction site, which is considered to be a fission site1). MAMs have been suggested to play a role in the initiation of mitochondrial fission, although the molecular relationships between MAMs and the mitochondrial fission process have not been established. Although an ER-mitochondrial membrane association has also been observed at the fission site in mammalian mitochondria, the detailed organization of MAMs around mammalian mitochondria remains to be established. To visualize the 3D distribution of the ER-mitochondrial contacts around the mitochondria, especially around the constriction site in mammalian cells, we attempted 3D structural analysis of the mammalian cytoplasm using high-resolution focused ion-beam scanning electron microscopy (FIB-SEM) tomography, and observed the distribution pattern of ER contacts around the mammalian mitochondrial constriction site.Rat hepatocytes and HeLa cells were used. Liver tissue was obtained from male rats (Wistar, 6W) fixed by transcardial perfusion of 2% paraformaldehyde and 2.5% glutaraldehyde in 0.1 M cacodylate buffer (pH 7.4) under deep anesthesia. HeLa cells were fixed with the same fixative. The specimens were then stained en bloc to enhance membrane contrast and embedded in epoxy resin2). The surface of

  19. DJ-1 KNOCK-DOWN IMPAIRS ASTROCYTE MITOCHONDRIAL FUNCTION

    PubMed Central

    LARSEN, N. J.; AMBROSI, G.; MULLETT, S. J.; BERMAN, S. B.; HINKLE, D. A.

    2012-01-01

    Mitochondrial dysfunction has long been implicated in the pathogenesis of Parkinson’s disease (PD). PD brain tissues show evidence for mitochondrial respiratory chain Complex I deficiency. Pharmacological inhibitors of Complex I, such as rotenone, cause experimental parkinsonism. The cytoprotective protein DJ-1, whose deletion is sufficient to cause genetic PD, is also known to have mitochondria-stabilizing properties. We have previously shown that DJ-1 is over-expressed in PD astrocytes, and that DJ-1 deficiency impairs the capacity of astrocytes to protect co-cultured neurons against rotenone. Since DJ-1 modulated, astrocyte-mediated neuroprotection against rotenone may depend upon proper astrocytic mitochondrial functioning, we hypothesized that DJ-1 deficiency would impair astrocyte mitochondrial motility, fission/fusion dynamics, membrane potential maintenance, and respiration, both at baseline and as an enhancement of rotenone-induced mitochondrial dysfunction. In astrocyte-enriched cultures, we observed that DJ-1 knock-down reduced mitochondrial motility primarily in the cellular processes of both untreated and rotenone treated cells. In these same cultures, DJ-1 knock-down did not appreciably affect mitochondrial fission, fusion, or respiration, but did enhance rotenone-induced reductions in the mitochondrial membrane potential. In neuron–astrocyte co-cultures, astrocytic DJ-1 knock-down reduced astrocyte process mitochondrial motility in untreated cells, but this effect was not maintained in the presence of rotenone. In the same co-cultures, astrocytic DJ-1 knock-down significantly reduced mitochondrial fusion in the astrocyte cell bodies, but not the processes, under the same conditions of rotenone treatment in which DJ-1 deficiency is known to impair astrocyte-mediated neuroprotection. Our studies therefore demonstrated the following new findings: (i) DJ-1 deficiency can impair astrocyte mitochondrial physiology at multiple levels, (ii) astrocyte

  20. Control mechanisms in mitochondrial oxidative phosphorylation☆

    PubMed Central

    Hroudová, Jana; Fišar, Zdeněk

    2013-01-01

    Distribution and activity of mitochondria are key factors in neuronal development, synaptic plasticity and axogenesis. The majority of energy sources, necessary for cellular functions, originate from oxidative phosphorylation located in the inner mitochondrial membrane. The adenosine-5’- triphosphate production is regulated by many control mechanism–firstly by oxygen, substrate level, adenosine-5’-diphosphate level, mitochondrial membrane potential, and rate of coupling and proton leak. Recently, these mechanisms have been implemented by “second control mechanisms,” such as reversible phosphorylation of the tricarboxylic acid cycle enzymes and electron transport chain complexes, allosteric inhibition of cytochrome c oxidase, thyroid hormones, effects of fatty acids and uncoupling proteins. Impaired function of mitochondria is implicated in many diseases ranging from mitochondrial myopathies to bipolar disorder and schizophrenia. Mitochondrial dysfunctions are usually related to the ability of mitochondria to generate adenosine-5’-triphosphate in response to energy demands. Large amounts of reactive oxygen species are released by defective mitochondria, similarly, decline of antioxidative enzyme activities (e.g. in the elderly) enhances reactive oxygen species production. We reviewed data concerning neuroplasticity, physiology, and control of mitochondrial oxidative phosphorylation and reactive oxygen species production. PMID:25206677

  1. Control mechanisms in mitochondrial oxidative phosphorylation.

    PubMed

    Hroudová, Jana; Fišar, Zdeněk

    2013-02-05

    Distribution and activity of mitochondria are key factors in neuronal development, synaptic plasticity and axogenesis. The majority of energy sources, necessary for cellular functions, originate from oxidative phosphorylation located in the inner mitochondrial membrane. The adenosine-5'- triphosphate production is regulated by many control mechanism-firstly by oxygen, substrate level, adenosine-5'-diphosphate level, mitochondrial membrane potential, and rate of coupling and proton leak. Recently, these mechanisms have been implemented by "second control mechanisms," such as reversible phosphorylation of the tricarboxylic acid cycle enzymes and electron transport chain complexes, allosteric inhibition of cytochrome c oxidase, thyroid hormones, effects of fatty acids and uncoupling proteins. Impaired function of mitochondria is implicated in many diseases ranging from mitochondrial myopathies to bipolar disorder and schizophrenia. Mitochondrial dysfunctions are usually related to the ability of mitochondria to generate adenosine-5'-triphosphate in response to energy demands. Large amounts of reactive oxygen species are released by defective mitochondria, similarly, decline of antioxidative enzyme activities (e.g. in the elderly) enhances reactive oxygen species production. We reviewed data concerning neuroplasticity, physiology, and control of mitochondrial oxidative phosphorylation and reactive oxygen species production.

  2. BIOCHEMICAL AND ULTRASTRUCTURAL PROPERTIES OF A MITOCHONDRIAL INNER MEMBRANE FRACTION DEFICIENT IN OUTER MEMBRANE AND MATRIX ACTIVITIES

    PubMed Central

    Chan, T. L.; Greenawalt, John W.; Pedersen, Peter L.

    1970-01-01

    Treatment of the inner membrane matrix fraction of rat liver mitochondria with the nonionic detergent Lubrol WX solubilized about 70% of the total protein and 90% or more of the following matrix activities: malate dehydrogenase, glutamate dehydrogenase, and isocitrate dehydrogenase (NADP). The Lubrol-insoluble fraction was enriched in cytochromes, phospholipids, and a Mg++-stimulated ATPase activity. Less than 2% of the total mitochondrial activity of monoamine oxidase, an outer membrane marker, or adenylate kinase, an intracristal space marker could be detected in this inner membrane fraction. Electron micrographs of negatively stained preparations showed vesicles (≤0.4 µ diameter) literally saturated on the periphery with the 90 A ATPase particles. These inner membrane vesicles, which appeared for the most part to be inverted with respect to the normal inner membrane configuration in intact mitochondria, retained the succinicoxidase portion of the electron-transport chain, an intact phosphorylation site II with a high affinity for ADP, and the capacity to accumulate Ca++. A number of biochemical properties characteristic of intact mitochondria and the inner membrane matrix fraction, however, were either absent or markedly deficient in the inner membrane vesicles. These included stimulation of respiration by either ADP or 2,4-dinitrophenol, oligomycin-sensitive ADP-ATP exchange activity, atractyloside sensitivity of adenine nucleotide requiring reactions, and a stimulation of the Mg++-ATPase by 2,4-dinitrophenol. PMID:4254678

  3. Effect of Single Layer Centrifugation on reactive oxygen species and sperm mitochondrial membrane potential in cooled stallion semen.

    PubMed

    Morrell, J M; Lagerqvist, A; Humblot, P; Johannisson, A

    2016-04-06

    Additional means are needed for evaluating the quality of stallion spermatozoa in semen doses for AI. Mitochondrial membrane potential (ΔΨm) has been linked to fertility in some species, but is rarely used in the evaluation of cooled stallion semen; metabolic activity may be associated with reactive oxygen species production (ROS). In the present study, ΔΨm and ROS production were measured in doses of cooled stallion semen. The effect of colloid centrifugation on these parameters was also investigated. In this case, colloid centrifugation involves centrifuging a sperm sample through a silane-coated silica colloid formulation to retrieve the most robust spermatozoa. High and low ΔΨm in cooled stallion semen varied between stallions and between ejaculates, but was not affected by single-layer centrifugation (SLC). The SLC-selected spermatozoa produced significantly less hydrogen peroxide than controls (P < 0.001), which could explain the increased longevity and retention of fertilising capacity seen in previous studies. For SLC samples, ΔΨm was positively associated with viable spermatozoa that were not producing reactive oxygen species (r = 0.49; P < 0.001) and negatively associated with ROS production (for superoxide: r = -0.4, P < 0.01; for hydrogen peroxide: r = -0.39, P < 0.05). There was no clear association between ΔΨm and ROS production in control samples.

  4. Mitochondrial respiration is sensitive to cytoarchitectural breakdown.

    PubMed

    Kandel, Judith; Angelin, Alessia A; Wallace, Douglas C; Eckmann, David M

    2016-11-07

    An abundance of research suggests that cellular mitochondrial and cytoskeletal disruption are related, but few studies have directly investigated causative connections between the two. We previously demonstrated that inhibiting microtubule and microfilament polymerization affects mitochondrial motility on the whole-cell level in fibroblasts. Since mitochondrial motility can be indicative of mitochondrial function, we now further characterize the effects of these cytoskeletal inhibitors on mitochondrial potential, morphology and respiration. We found that although they did not reduce mitochondrial inner membrane potential, cytoskeletal toxins induced significant decreases in basal mitochondrial respiration. In some cases, basal respiration was only affected after cells were pretreated with the calcium ionophore A23187 in order to stress mitochondrial function. In most cases, mitochondrial morphology remained unaffected, but extreme microfilament depolymerization or combined intermediate doses of microtubule and microfilament toxins resulted in decreased mitochondrial lengths. Interestingly, these two particular exposures did not affect mitochondrial respiration in cells not sensitized with A23187, indicating an interplay between mitochondrial morphology and respiration. In all cases, inducing maximal respiration diminished differences between control and experimental groups, suggesting that reduced basal respiration originates as a largely elective rather than pathological symptom of cytoskeletal impairment. However, viability experiments suggest that even this type of respiration decrease may be associated with cell death.

  5. Rapeseed oil-rich diet alters in vitro menadione and nimesulide hepatic mitochondrial toxicity.

    PubMed

    Monteiro, João P; Silva, Ana M; Jurado, Amália S; Oliveira, Paulo J

    2013-10-01

    Diet-induced changes in the lipid composition of mitochondrial membranes have been shown to influence physiological processes. However, the modulation effect of diet on mitochondrially-active drugs has not yet received the deserved attention. Our hypothesis is that modulation of membrane dynamics by diet impacts drug-effects on liver mitochondrial functioning. In a previous work, we have shown that a diet rich in rapeseed oil altered mitochondrial membrane composition and bioenergetics in Wistar rats. In the present work, we investigated the influence of the modified diet on hepatic mitochondrial activity of two drugs, menadione and nimesulide, and FCCP, a classic protonophore, was used for comparison. The results showed that the effects of menadione and nimesulide were less severe on liver mitochondria for rats fed the modified diet than on rats fed the control diet. A specific effect on complex I seemed to be involved in drug-induced mitochondria dysfunction. Liver mitochondria from the modified diet group were more susceptible to nimesulide effects on MPT induction. The present work demonstrates that diet manipulation aimed at modifying mitochondrial membrane properties alters the toxicity of mitochondria active agents. This work highlights that diet may potentiate mitochondrial pharmacologic effects or increase drug-induced liabilities. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. The actions of mdivi-1, an inhibitor of mitochondrial fission, on rapidly activating delayed-rectifier K⁺ current and membrane potential in HL-1 murine atrial cardiomyocytes.

    PubMed

    So, Edmund Cheung; Hsing, Chung-Hsi; Liang, Chia-Hua; Wu, Sheng-Nan

    2012-05-15

    Mdivi-1 is an inhibitor of dynamin related protein 1- (drp1)-mediated mitochondrial fission. However, the mechanisms through which this compound interacts directly with ion currents in heart cells remain unknown. In this study, its effects on ion currents and membrane potential in murine HL-1 cardiomyocytes were investigated. In whole-cell recordings, the addition of mdivi-1 decreased the amplitude of tail current (I(tail)) for the rapidly activating delayed-rectifier K⁺ current (I(Kr)) in a concentration-dependent manner with an IC₅₀ value at 11.6 μM, a value that resembles the inhibition requirement for mitochondrial division. It shifted the activation curve of I(tail) to depolarized voltages with no change in the gating charge. However, mdivi-1 did not alter the rate of recovery from current inactivation. In cell-attached configuration, mdivi-1 inside the pipette suppressed the activity of acetylcholine-activated K⁺ channels without modifying the single-channel conductance. Mdivi-1 (30 μM) slightly depressed the peak amplitude of Na⁺ current with no change in the overall current-voltage relationship. Under current-clamp recordings, addition of mdivi-1 resulted in prolongation for the duration of action potentials (APs) and to increase the firing of spontaneous APs in HL-1 cells. Similarly, in pituitary GH₃ cells, mdivi-1 was effective in directly suppressing the amplitude of ether-à-go-go-related gene-mediated K⁺ current. Therefore, the lengthening of AP duration and increased firing of APs caused by mdivi-1 can be primarily explained by its inhibition of these K⁺ channels enriched in heart cells. The observed effects of mdivi-1 on ion currents were direct and not associated with its inhibition of mitochondrial division. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Osmotic tolerance of equine spermatozoa and the effects of soluble cryoprotectants on equine sperm motility, viability, and mitochondrial membrane potential.

    PubMed

    Ball, B A; Vo, A

    2001-01-01

    Osmotic stress attributed to differences in the relative permeability of cryoprotectants, such as glycerol and water, appears to be an important factor in cryodamage. The objective of this study was to characterize the osmotic tolerance of equine spermatozoa, and to evaluate the effects of addition and removal of cryoprotectants from equine spermatozoa on their motility, and membrane and acrosomal integrity, as well as their mitochondrial membrane potential. Equine spermatozoa had a limited osmotic tolerance to anisosmotic conditions. Although the addition of increasing concentrations of glycerol decreased the motility and viability of equine spermatozoa, the rapid removal of glycerol by dilution in isosmotic media resulted in an even greater decline in motility and viability compared with spermatozoa maintained under anisosmotic conditions. Likewise, the addition and rapid removal of 1.0 M glycerol, ethylene glycol, dimethylsulfoxide, or propylene glycol resulted in a significant decline in sperm motility and viability. Among these cryoprotectants, ethylene glycol had the least detrimental effect on either viability or motility of spermatozoa following the rapid addition and removal of these cryoprotectants. These data demonstrate that equine spermatozoa have a limited osmotic tolerance compared with published reports for mouse or human spermatozoa, and appear to be more similar to boar spermatozoa in their osmotic tolerance. Of the 4 cryoprotectants evaluated in equine spermatozoa, the addition and removal of glycerol resulted in a more marked osmotic stress as indicated by alterations in motility, viability, and acrosomal integrity. These data suggest that alternative cryoprotectants should be considered for cryopreservation of equine spermatozoa in order to reduce osmotic stress associated with the addition of these agents during semen freezing.

  8. Molecular insights into the m-AAA protease-mediated dislocation of transmembrane helices in the mitochondrial inner membrane.

    PubMed

    Lee, Seoeun; Lee, Hunsang; Yoo, Suji; Kim, Hyun

    2017-12-08

    Protein complexes involved in respiration, ATP synthesis, and protein import reside in the mitochondrial inner membrane; thus, proper regulation of these proteins is essential for cell viability. The m -AAA protease, a conserved hetero-hexameric AAA (ATPase associated with diverse cellular activities) protease, composed of the Yta10 and Yta12 proteins, regulates mitochondrial proteostasis by mediating protein maturation and degradation. It also recognizes and mediates the dislocation of membrane-embedded substrates, including foreign transmembrane (TM) segments, but the molecular mechanism involved in these processes remains elusive. This study investigated the role of the TM domains in the m -AAA protease by systematic replacement of one TM domain at a time in yeast. Our data indicated that replacement of the Yta10 TM2 domain abolishes membrane dislocation for only a subset of substrates, whereas replacement of the Yta12 TM2 domain impairs membrane dislocation for all tested substrates, suggesting different roles of the TM domains in each m -AAA protease subunit. Furthermore, m -AAA protease-mediated membrane dislocation was impaired in the presence of a large downstream hydrophilic moiety in a membrane substrate. This finding suggested that the m -AAA protease cannot dislocate large hydrophilic domains across the membrane, indicating that the membrane dislocation probably occurs in a lipid environment. In summary, this study highlights previously underappreciated biological roles of TM domains of the m -AAA proteases in mediating the recognition and dislocation of membrane-embedded substrates. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. σ-1 Receptor at the Mitochondrial-Associated Endoplasmic Reticulum Membrane Is Responsible for Mitochondrial Metabolic Regulation

    PubMed Central

    Marriott, Karla-Sue C.; Prasad, Manoj; Thapliyal, Veena

    2012-01-01

    The mitochondria-associated endoplasmic reticulum (ER) membrane (MAM) is a small section of the outer mitochondrial membrane tethered to the ER by lipid and protein filaments. One such MAM protein is the σ-1 receptor, which contributes to multiple signaling pathways. We found that short interfering RNA-mediated knockdown of σ-1 reduced pregnenolone synthesis by 95% without affecting expression of the inner mitochondrial membrane resident enzyme, 3-β-hydroxysteroid dehydrogenase 2. To explore the underlying mechanism of this effect, we generated a series of σ-receptor ligands: 5,6-dimethoxy-3-methyl-N-phenyl-N-(3-(piperidin-1-yl)propyl)benzofuran-2-carboxamide (KSCM-1), 3-methyl-N-phenyl-N-(3-(piperidin-1-yl)propyl)benzofuran-2-carboxamide (KSCM-5), and 6-methoxy-3-methyl-N-phenyl-N-(3-(piperidin-1-yl) propyl)benzofuran-2-carboxamide (KSCM-11) specifically bound to σ-1 in the nanomolar range, whereas KSCM-5 and KSCM-11 also bound to σ-2. Treatment of cells with the KSCM ligands led to decreased cell viability, with KSCM-5 having the most potent effect followed by KSCM-11. KSCM-1 increased σ-1 expression by 4-fold and progesterone synthesis, whereas the other compounds decreased progesterone synthesis. These differences probably are caused by ligand molecular structure. For example, KSCM-1 has two methoxy substituents at C-5 and C-6 of the benzofuran ring, whereas KSCM-11 has one at C-6. KSCM ligands or σ-1 knockdown did not alter the expression of ER resident enzymes that synthesize steroids. However, coimmunoprecipitation of the σ-1 receptor pulled down voltage-dependent anion channel 2 (VDAC2), whose expression was enhanced by KSCM-1. VDAC2 plays a key role in cholesterol transport into the mitochondria, suggesting that the σ-1 receptor at the MAM coordinates with steroidogenic acute regulatory protein for cholesterol trafficking into the mitochondria for metabolic regulation. PMID:22923735

  10. Biogenesis of a Mitochondrial Outer Membrane Protein in Trypanosoma brucei: TARGETING SIGNAL AND DEPENDENCE ON A UNIQUE BIOGENESIS FACTOR.

    PubMed

    Bruggisser, Julia; Käser, Sandro; Mani, Jan; Schneider, André

    2017-02-24

    The mitochondrial outer membrane (OM) contains single and multiple membrane-spanning proteins that need to contain signals that ensure correct targeting and insertion into the OM. The biogenesis of such proteins has so far essentially only been studied in yeast and related organisms. Here we show that POMP10, an OM protein of the early diverging protozoan Trypanosoma brucei , is signal-anchored. Transgenic cells expressing variants of POMP10 fused to GFP demonstrate that the N-terminal membrane-spanning domain flanked by a few positively charged or neutral residues is both necessary and sufficient for mitochondrial targeting. Carbonate extraction experiments indicate that although the presence of neutral instead of positively charged residues did not interfere with POMP10 localization, it weakened its interaction with the OM. Expression of GFP-tagged POMP10 in inducible RNAi cell lines shows that its mitochondrial localization depends on pATOM36 but does not require Sam50 or ATOM40, the trypanosomal analogue of the Tom40 import pore. pATOM36 is a kinetoplastid-specific OM protein that has previously been implicated in the assembly of OM proteins and in mitochondrial DNA inheritance. In summary, our results show that although the features of the targeting signal in signal-anchored proteins are widely conserved, the protein machinery that mediates their biogenesis is not. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. Indirubin-3'-oxime impairs mitochondrial oxidative phosphorylation and prevents mitochondrial permeability transition induction.

    PubMed

    Varela, Ana T; Gomes, Ana P; Simões, Anabela M; Teodoro, João S; Duarte, Filipe V; Rolo, Anabela P; Palmeira, Carlos M

    2008-12-01

    Indirubin, a red colored 3,2'-bisindole isomer, is a component of Indigo naturalis and is an active ingredient used in traditional Chinese medicine for the treatment of chronic diseases. The family of indirubin derivatives, such as indirubin-3'-oxime, has been suggested for various therapeutic indications. However, potential toxic interactions such as indirubin effects on mitochondrial bioenergetics are still unknown. This study evaluated the action of indirubin-3'-oxime on the function of isolated rat liver mitochondria contributing to a better understanding of the biochemical mechanisms underlying the multiple effects of indirubin. Indirubin-3'-oxime incubated with isolated rat liver mitochondria, at concentrations above 10microM, significantly depresses the phosphorylation efficiency of mitochondria as inferred from the decrease in the respiratory control and ADP/O ratios, the perturbations in mitochondrial membrane potential and in the phosphorylative cycle induced by ADP. Furthermore, indirubin-3'-oxime at up to 25microM stimulates the rate of state 4 respiration and inhibits state 3 respiration. The increased lag phase of repolarization was associated with a direct inhibition of the mitochondrial ATPase. Indirubin-3'-oxime significantly inhibited the activity of complex II and IV thus explaining the decreased FCCP-stimulated mitochondrial respiration. Mitochondria pre-incubated with indirubin-3'-oxime exhibits decreased susceptibility to calcium-induced mitochondrial permeability transition. This work shows for the first time multiple effects of indirubin-3'-oxime on mitochondrial bioenergetics thus indicating a potential mechanism for indirubin-3'-oxime effects on cell function.

  12. Human mitochondrial pyruvate carrier 2 as an autonomous membrane transporter.

    PubMed

    Nagampalli, Raghavendra Sashi Krishna; Quesñay, José Edwin Neciosup; Adamoski, Douglas; Islam, Zeyaul; Birch, James; Sebinelli, Heitor Gobbi; Girard, Richard Marcel Bruno Moreira; Ascenção, Carolline Fernanda Rodrigues; Fala, Angela Maria; Pauletti, Bianca Alves; Consonni, Sílvio Roberto; de Oliveira, Juliana Ferreira; Silva, Amanda Cristina Teixeira; Franchini, Kleber Gomes; Leme, Adriana Franco Paes; Silber, Ariel Mariano; Ciancaglini, Pietro; Moraes, Isabel; Dias, Sandra Martha Gomes; Ambrosio, Andre Luis Berteli

    2018-02-22

    The active transport of glycolytic pyruvate across the inner mitochondrial membrane is thought to involve two mitochondrial pyruvate carrier subunits, MPC1 and MPC2, assembled as a 150 kDa heterotypic oligomer. Here, the recombinant production of human MPC through a co-expression strategy is first described; however, substantial complex formation was not observed, and predominantly individual subunits were purified. In contrast to MPC1, which co-purifies with a host chaperone, we demonstrated that MPC2 homo-oligomers promote efficient pyruvate transport into proteoliposomes. The derived functional requirements and kinetic features of MPC2 resemble those previously demonstrated for MPC in the literature. Distinctly, chemical inhibition of transport is observed only for a thiazolidinedione derivative. The autonomous transport role for MPC2 is validated in cells when the ectopic expression of human MPC2 in yeast lacking endogenous MPC stimulated growth and increased oxygen consumption. Multiple oligomeric species of MPC2 across mitochondrial isolates, purified protein and artificial lipid bilayers suggest functional high-order complexes. Significant changes in the secondary structure content of MPC2, as probed by synchrotron radiation circular dichroism, further supports the interaction between the protein and ligands. Our results provide the initial framework for the independent role of MPC2 in homeostasis and diseases related to dysregulated pyruvate metabolism.

  13. Characterization of hydrophobic interaction and antioxidant properties of the phenothiazine nucleus in mitochondrial and model membranes.

    PubMed

    Borges, Marcelo B D; Dos Santos, Carolina G; Yokomizo, César H; Sood, Rohit; Vitovic, Pavol; Kinnunen, Paavo K J; Rodrigues, Tiago; Nantes, Iseli L

    2010-09-01

    The antioxidant properties of the phenothiazine nucleus (PHT) associated with mitochondrial membranes and liposomes were investigated. PHT exhibited hydrophobic interaction with lipid bilayers, as shown by the quenching of excited states of 1-palmitoyl-2[10-pyran-1-yl)]-decanoyl-sn-glycero-3-phophocholine (PPDPC) incorporated in phosphatidylcholine/phosphatidylethanolamine/cardiolipin liposomes, observed even in high ionic strength; and by the spectral changes of PHT following the addition of mitochondrial membranes. Inserted into bilayers, 5 microM PHT was able to protect lipids and cytochrome c against pro-oxidant agents and exhibited spectral changes suggestive of oxidative modifications promoted by the trapping of the reactive species. In this regard, PHT exhibited the ability to scavenge DPPH (2,2-diphenyl-1-picryl-hydrazyl-hydrate) free radical. PHT was also able to protect rat liver mitochondria against peroxide- and iron-induced oxidative damage and consequent swelling. At the concentration range in which the antioxidant properties were observed, PHT did not cause alterations in the membrane structure and function. This study contributes to the comprehension of the correlation structure and function of phenothiazines and antioxidant properties.

  14. Mitochondrial shaping cuts.

    PubMed

    Escobar-Henriques, Mafalda; Langer, Thomas

    2006-01-01

    A broad range of cellular processes are regulated by proteolytic events. Proteolysis has now also been established to control mitochondrial morphology which results from the balanced action of fusion and fission. Two out of three known core components of the mitochondrial fusion machinery are under proteolytic control. The GTPase Fzo1 in the outer membrane of mitochondria is degraded along two independent proteolytic pathways. One controls mitochondrial fusion in vegetatively growing cells, the other one acts upon mating factor-induced cell cycle arrest. Fusion also depends on proteolytic processing of the GTPase Mgm1 by the rhomboid protease Pcp1 in the inner membrane of mitochondria. Functional links of AAA proteases or other proteolytic components to mitochondrial dynamics are just emerging. This review summarises the current understanding of regulatory roles of proteolytic processes for mitochondrial plasticity.

  15. CaMKII determines mitochondrial stress responses in heart

    PubMed Central

    Joiner, Mei-ling A.; Koval, Olha M.; Jingdong, Li; He, B. Julie; Allamargot, Chantal; Gao, Zhan; Luczak, Elizabeth D.; Hall, Duane D.; Fink, Brian D.; Chen, Biyi; Yang, Jinying; Moore, Steven A.; Scholz, Thomas D.; Strack, Stefan; Mohler, Peter J.; Sivitz, William I.; Song, Long-Sheng; Anderson, Mark E.

    2012-01-01

    Myocardial cell death is initiated by excessive mitochondrial Ca2+ entry, causing Ca2+ overload, mitochondrial permeability transition pore (mPTP) opening and dissipation of the mitochondrial inner membrane potential (ΔΨm)1,2. However, the signaling pathways that control mitochondrial Ca2+ entry through the inner membrane mitochondrial Ca2+ uniporter (MCU)3–5 are not known. The multifunctional Ca2+ and calmodulin-dependent protein kinase II (CaMKII) is activated in ischemia reperfusion (I/R), myocardial infarction (MI) and neurohumoral injury, common causes of myocardial death and heart failure, suggesting CaMKII could couple disease stress to mitochondrial injury. Here we show that CaMKII promotes mPTP opening and myocardial death by increasing MCU current (IMCU). Mitochondrial-targeted CaMKII inhibitory protein or cyclosporin A (CsA), an mPTP antagonist with clinical efficacy in I/R injury6, equivalently prevent mPTP opening, ΔΨm deterioration and diminish mitochondrial disruption and programmed cell death in response to I/R injury. Mice with myocardial and mitochondrial-targeted CaMKII inhibition are resistant to I/R injury, MI and neurohumoral injury, suggesting pathological actions of CaMKII are substantially mediated by increasing IMCU. Our findings identify CaMKII activity as a central mechanism for mitochondrial Ca2+ entry and suggest mitochondrial-targeted CaMKII inhibition could prevent or reduce myocardial death and heart failure dysfunction in response to common experimental forms of pathophysiological stress. PMID:23051746

  16. Multi-Parametric Analysis and Modeling of Relationships between Mitochondrial Morphology and Apoptosis

    PubMed Central

    Reis, Yara; Wolf, Thomas; Brors, Benedikt; Hamacher-Brady, Anne; Eils, Roland; Brady, Nathan R.

    2012-01-01

    Mitochondria exist as a network of interconnected organelles undergoing constant fission and fusion. Current approaches to study mitochondrial morphology are limited by low data sampling coupled with manual identification and classification of complex morphological phenotypes. Here we propose an integrated mechanistic and data-driven modeling approach to analyze heterogeneous, quantified datasets and infer relations between mitochondrial morphology and apoptotic events. We initially performed high-content, multi-parametric measurements of mitochondrial morphological, apoptotic, and energetic states by high-resolution imaging of human breast carcinoma MCF-7 cells. Subsequently, decision tree-based analysis was used to automatically classify networked, fragmented, and swollen mitochondrial subpopulations, at the single-cell level and within cell populations. Our results revealed subtle but significant differences in morphology class distributions in response to various apoptotic stimuli. Furthermore, key mitochondrial functional parameters including mitochondrial membrane potential and Bax activation, were measured under matched conditions. Data-driven fuzzy logic modeling was used to explore the non-linear relationships between mitochondrial morphology and apoptotic signaling, combining morphological and functional data as a single model. Modeling results are in accordance with previous studies, where Bax regulates mitochondrial fragmentation, and mitochondrial morphology influences mitochondrial membrane potential. In summary, we established and validated a platform for mitochondrial morphological and functional analysis that can be readily extended with additional datasets. We further discuss the benefits of a flexible systematic approach for elucidating specific and general relationships between mitochondrial morphology and apoptosis. PMID:22272225

  17. Loss of Drp1 function alters OPA1 processing and changes mitochondrial membrane organization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moepert, Kristin; Hajek, Petr; Frank, Stephan

    2009-08-01

    RNAi mediated loss of Drp1 function changes mitochondrial morphology in cultured HeLa and HUVEC cells by shifting the balance of mitochondrial fission and fusion towards unopposed fusion. Over time, inhibition of Drp1 expression results in the formation of a highly branched mitochondrial network along with 'bulge'-like structures. These changes in mitochondrial morphology are accompanied by a reduction in levels of Mitofusin 1 (Mfn1) and 2 (Mfn2) and a modified proteolytic processing of OPA1 isoforms, resulting in the inhibition of cell proliferation. In addition, our data imply that bulge formation is driven by Mfn1 action along with particular proteolytic short-OPA1 (s-OPA1)more » variants: Loss of Mfn2 in the absence of Drp1 results in an increase of Mfn1 levels along with processed s-OPA1-isoforms, thereby enhancing continuous 'fusion' and bulge formation. Moreover, bulge formation might reflect s-OPA1 mitochondrial membrane remodeling activity, resulting in the compartmentalization of cytochrome c deposits. The proteins Yme1L and PHB2 appeared not associated with the observed enhanced OPA1 proteolysis upon RNAi of Drp1, suggesting the existence of other OPA1 processing controlling proteins. Taken together, Drp1 appears to affect the activity of the mitochondrial fusion machinery by unbalancing the protein levels of mitofusins and OPA1.« less

  18. SLP-2 interacts with prohibitins in the mitochondrial inner membrane and contributes to their stability.

    PubMed

    Da Cruz, Sandrine; Parone, Philippe A; Gonzalo, Philippe; Bienvenut, Willy V; Tondera, Daniel; Jourdain, Alexis; Quadroni, Manfredo; Martinou, Jean-Claude

    2008-05-01

    Stomatin is a member of a large family of proteins including prohibitins, HflK/C, flotillins, mechanoreceptors and plant defense proteins, that are thought to play a role in protein turnover. Using different proteomic approaches, we and others have identified SLP-2, a member of the stomatin gene family, as a component of the mitochondria. In this study, we show that SLP-2 is strongly associated with the mitochondrial inner membrane and that it interacts with prohibitins. Depleting HeLa cells of SLP-2 lead to increased proteolysis of prohibitins and of subunits of the respiratory chain complexes I and IV. Further supporting the role of SLP-2 in regulating the stability of specific mitochondrial proteins, we found that SLP-2 is up-regulated under conditions of mitochondrial stress leading to increased protein turnover. These data indicate that SLP-2 plays a role in regulating the stability of mitochondrial proteins including prohibitins and subunits of respiratory chain complexes.

  19. Ebselen protects mitochondrial function and oxidative stress while inhibiting the mitochondrial apoptosis pathway after acute spinal cord injury.

    PubMed

    Jia, Zhi-Qiang; Li, San-Qiang; Qiao, Wei-Qiang; Xu, Wen-Zhong; Xing, Jian-Wu; Liu, Jian-Tao; Song, Hui; Gao, Zhong-Yang; Xing, Bing-Wen; He, Xi-Jing

    2018-05-04

    Ebselen is a fat-soluble small molecule and organic selenium compound that regulates the activity of glutathione peroxidase to alleviate mitochondrial oxidative stress and improve mitochondrial function. In the present study, we aimed to investigate the effects of ebselen on mitochondrial oxidative stress response, mitochondrial apotosis, and motor behaviors after spinal cord injury (SCI). We found that ebselen significantly increased the BBB score in motor behavior, thus suggesting a rescue effect of ebselen on motor function after SCI in rats. Meanwhile, we revealed that ebselen can increase glutathione (GSH) content as well as superoxide dismutase (SOD) and catalase (CAT) activities after SCI-this suggests ebselen has an antioxidant effect. Furthermore, the ATP content and Na + -K + -ATPase activity in mitochondria were increased by ebselen after SCI, while the mitochondrial membrane potential (MMP) was decreased by ebselen. The Cytochrome C and Smac release from mitochondria were reduced by ebselen after SCI, thus indicating improved membrane permeability by ebselen. Moreover, the alterations in caspase-3, Bax and Bcl-2 protein expression, as well as the proportion of cell apoptosis were improved by ebselen treatment, which together suggested that ebselen has an inhibitory effect on mitochondrial apotosis pathways after SCI. Taken together, our results suggest that ebselen can inhibit secondary damage caused by spinal cord injury. Indeed it plays a neuroprotective role in spinal cord injury perhaps by improving mitochondrial function and inhibiting the mitochondrial apoptosis pathway. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Mitochondrial uncoupling proteins in unicellular eukaryotes.

    PubMed

    Jarmuszkiewicz, Wieslawa; Woyda-Ploszczyca, Andrzej; Antos-Krzeminska, Nina; Sluse, Francis E

    2010-01-01

    Uncoupling proteins (UCPs) are members of the mitochondrial anion carrier protein family that are present in the mitochondrial inner membrane and mediate free fatty acid (FFA)-activated, purine nucleotide (PN)-inhibited proton conductance. Since 1999, the presence of UCPs has been demonstrated in some non-photosynthesising unicellular eukaryotes, including amoeboid and parasite protists, as well as in non-fermentative yeast and filamentous fungi. In the mitochondria of these organisms, UCP activity is revealed upon FFA-induced, PN-inhibited stimulation of resting respiration and a decrease in membrane potential, which are accompanied by a decrease in membranous ubiquinone (Q) reduction level. UCPs in unicellular eukaryotes are able to divert energy from oxidative phosphorylation and thus compete for a proton electrochemical gradient with ATP synthase. Our recent work indicates that membranous Q is a metabolic sensor that might utilise its redox state to release the PN inhibition of UCP-mediated mitochondrial uncoupling under conditions of phosphorylation and resting respiration. The action of reduced Q (QH2) could allow higher or complete activation of UCP. As this regulatory feature was demonstrated for microorganism UCPs (A. castellanii UCP), plant and mammalian UCP1 analogues, and UCP1 in brown adipose tissue, the process could involve all UCPs. Here, we discuss the functional connection and physiological role of UCP and alternative oxidase, two main energy-dissipating systems in the plant-type mitochondrial respiratory chain of unicellular eukaryotes, including the control of cellular energy balance as well as preventive action against the production of reactive oxygen species. Copyright © 2009 Elsevier B.V. All rights reserved.

  1. The clinical maze of mitochondrial neurology

    PubMed Central

    DiMauro, Salvatore; Schon, Eric A.; Carelli, Valerio; Hirano, Michio

    2014-01-01

    Mitochondrial diseases involve the respiratory chain, which is under the dual control of nuclear and mitochondrial DNA (mtDNA). The complexity of mitochondrial genetics provides one explanation for the clinical heterogeneity of mitochondrial diseases, but our understanding of disease pathogenesis remains limited. Classification of Mendelian mitochondrial encephalomyopathies has been laborious, but whole-exome sequencing studies have revealed unexpected molecular aetiologies for both typical and atypical mitochondrial disease phenotypes. Mendelian mitochondrial defects can affect five components of mitochondrial biology: subunits of respiratory chain complexes (direct hits); mitochondrial assembly proteins; mtDNA translation; phospholipid composition of the inner mitochondrial membrane; or mitochondrial dynamics. A sixth category—defects of mtDNA maintenance—combines features of Mendelian and mitochondrial genetics. Genetic defects in mitochondrial dynamics are especially important in neurology as they cause optic atrophy, hereditary spastic paraplegia, and Charcot–Marie–Tooth disease. Therapy is inadequate and mostly palliative, but promising new avenues are being identified. Here, we review current knowledge on the genetics and pathogenesis of the six categories of mitochondrial disorders outlined above, focusing on their salient clinical manifestations and highlighting novel clinical entities. An outline of diagnostic clues for the various forms of mitochondrial disease, as well as potential therapeutic strategies, is also discussed. PMID:23835535

  2. Melanoma Inhibition by Anthocyanins Is Associated with the Reduction of Oxidative Stress Biomarkers and Changes in Mitochondrial Membrane Potential.

    PubMed

    Diaconeasa, Zoriţa; Ayvaz, Huseyin; Ruginǎ, Dumitriţa; Leopold, Loredana; Stǎnilǎ, Andreea; Socaciu, Carmen; Tăbăran, Flaviu; Luput, Lavinia; Mada, Diana Carla; Pintea, Adela; Jefferson, Andrew

    2017-12-01

    Anthocyanins are water soluble pigments which have been proved to exhibit health benefits. Several studies have investigated their effects on several types of cancer, but little attention has been given to melanoma. The phytochemical content of nine different berry samples was assessed by liquid chromatography followed by electrospray ionization mass spectrometry (LC-ESI + -MS). Twenty-six anthocyanins were identified, after a previous C 18 Sep-pak clean-up procedure. Chokeberry and red grape anthocyanins rich extracts (C-ARE and RG-ARE) were selected to be tested on normal and melanoma cell lines, due to their different chemical pattern. C-ARE composition consists of cyanidin aglycone glycosylated with different sugars; while RG-ARE contains glucosylated derivatives of five different aglycones. Both C-ARE and RG-ARE anthocyanins reduced proliferation, increased oxidative stress biomarkers and diminished mitochondrial membrane potential in melanoma cells, having no negative influence on normal cells. A synergistic response may be attributed to the five different aglycones present in RG-ARE, which proved to exert greater effects on melanoma cells than the mixture of cyanidin derivatives with different sugars (C-ARE). In conclusion, C-ARE and RG-ARE anthocyanins may inhibit melanoma cell proliferation and increase the level of oxidative stress, with opposite effect on normal cells. Therefore, anthocyanins might be recommended as active ingredients for cosmetic and nutraceutical industry. Graphical Abstract ᅟ.

  3. Ethanol Influences on Bax Associations with Mitochondrial Membrane Proteins in Neonatal Rat Cerebellum

    PubMed Central

    Heaton, Marieta Barrow; Siler-Marsiglio, Kendra; Paiva, Michael; Kotler, Alexandra; Rogozinski, Jonathan; Kubovec, Stacey; Coursen, Mary; Madorsky, Vladimir

    2012-01-01

    These studies investigated interactions taking place at the mitochondrial membrane in neonatal rat cerebellum following ethanol exposure, and focused on interactions between pro-apoptotic Bax and proteins of the permeability transition pore (PTP), voltage-dependent anion channel (VDAC), and adenine nucleotide translocator (ANT), of the outer and inner mitochondrial membranes, respectively. Cultured cerebellar granule cells were used to assess the role of these interactions in ethanol neurotoxicity. Analyses were made at the age of maximal cerebellar ethanol vulnerability (P4), compared to the later age of relative resistance (P7), to determine whether differential ethanol sensitivity was mirrored by differences in these molecular interactions. We found that following ethanol exposure, Bax pro-apoptotic associations with both VDAC and ANT were increased, particularly at the age of greater ethanol sensitivity, and these interactions were sustained at this age for at least two hours post-exposure. Since Bax:VDAC interactions disrupt protective VDAC interactions with mitochondrial hexokinase (HXK), we also assessed VDAC:HXK associations following ethanol treatment, and found such interactions were altered by ethanol treatment, but only at two-hours post-exposure, and only in the P4, ethanol-sensitive cerebellum. Ethanol neurotoxicity in cultured neuronal preparations was abolished by pharmacological inhibition of both VDAC and ANT interactions with Bax, but not by a Bax channel blocker. Therefore, we conclude that at this age, within the constraints of our experimental model, a primary mode of Bax-induced initiation of the apoptosis cascade following ethanol insult involves interactions with proteins of the PTP complex, and not channel formation independent of PTP constituents. PMID:22767450

  4. BH3-only proteins are tail-anchored in the outer mitochondrial membrane and can initiate the activation of Bax.

    PubMed

    Wilfling, F; Weber, A; Potthoff, S; Vögtle, F-N; Meisinger, C; Paschen, S A; Häcker, G

    2012-08-01

    During mitochondrial apoptosis, pro-apoptotic BH3-only proteins cause the translocation of cytosolic Bcl-2-associated X protein (Bax) to the outer mitochondrial membrane (OMM) where it is activated to release cytochrome c from the mitochondrial intermembrane space, but the mechanism is under dispute. We show that most BH3-only proteins are mitochondrial proteins that are imported into the OMM via a C-terminal tail-anchor domain in isolated yeast mitochondria, independently of binding to anti-apoptotic Bcl-2 proteins. This C-terminal domain acted as a classical mitochondrial targeting signal and was sufficient to direct green fluorescent protein to mitochondria in human cells. When expressed in mouse fibroblasts, these BH3-only proteins localised to mitochondria and were inserted in the OMM. The BH3-only proteins Bcl-2-interacting mediator of cell death (Bim), tBid and p53-upregulated modulator of apoptosis sensitised isolated mitochondria from Bax/Bcl-2 homologous antagonist/killer-deficient fibroblasts to cytochrome c-release by recombinant, extramitochondrial Bax. For Bim, this activity is shown to require the C-terminal-targeting signal and to be independent of binding capacity to and presence of anti-apoptotic Bcl-2 proteins. Bim further enhanced Bax-dependent killing in yeast. A model is proposed where OMM-tail-anchored BH3-only proteins permit passive 'recruitment' and catalysis-like activation of extra-mitochondrial Bax. The recognition of C-terminal membrane-insertion of BH3-only proteins will permit the development of a more detailed concept of the initiation of mitochondrial apoptosis.

  5. Effect of Overproduction of Mitochondrial Uncoupling Protein 2 on Cos7 Cells: Induction of Senescent-like Morphology and Oncotic Cell Death.

    PubMed

    Nishio, Koji; Ma, Qian

    2016-01-01

    The maintenance of mitochondrial membrane potential is essential for cell growth and survival. Mitochondrial uncoupling protein 2 plays the most important roles in uncoupling oxidative phosphorylation and decreasing mitochondrial O2- production by regulating the mitochondrial membrane potential. We propose that mouse UCP2 has two glycine-rich motifs, motif 1: EGIRGLWKG (170-178) and a known Walker A-like motif 2: EGPRAFYKG (264-272). These motifs seem to be important for the function of UCP2. We investigated the biological effects of overproduced-UCP2 and its physiological consequence in Cos7 cells. We introduced several amino acid changes in the motif 1. The expression vectors of the green fluorescent protein (GFP)-fused UCP2 and mutant UCP2 were constructed and expressed in Cos7 cells. The UCP2-GFP-expressed cells significantly down-regulated the mitochondrial membrane potentials and induced the enlarged cell shapes. Next we generated the stably UCP2-GFP-expressed Cos7 cells by selection with the antibiotic Genecitin (G418). Within the first few weeks following G418-selection, the stably UCP2-GFP-expressed cells could not divide well and gradually manifested the irregular and enlarged senescent-like cell morphology. The UCP2/K177E- or UCP2/G174L-expressed cells did not induce the enlarged cell shapes. Hence, UCP2/K177E and UCP2/G174L produced the functional incompetence of the glycine-rich motif 1. The senescent-like cells significantly decreased the mitochondrial membrane potentials and finally died nearly one month. Overproduction of UCP2 irreversibly reduces the mitochondrial membrane potentials and induces the senescent-like morphology and finally oncotic cell death in Cos7 cells. These changes seem to occur from the irreversible metabolic changes following total loss of cellular ATP.

  6. Mitochondrial-Based Therapeutics for the Treatment of Spinal Cord Injury: Mitochondrial Biogenesis as a Potential Pharmacological Target

    PubMed Central

    Scholpa, Natalie E.

    2017-01-01

    Spinal cord injury (SCI) is characterized by an initial trauma followed by a progressive cascade of damage referred to as secondary injury. A hallmark of secondary injury is vascular disruption leading to vasoconstriction and decreased oxygen delivery, which directly reduces the ability of mitochondria to maintain homeostasis and leads to loss of ATP-dependent cellular functions, calcium overload, excitotoxicity, and oxidative stress, further exacerbating injury. Restoration of mitochondria dysfunction during the acute phases of secondary injury after SCI represents a potentially effective therapeutic strategy. This review discusses the past and present pharmacological options for the treatment of SCI as well as current research on mitochondria-targeted approaches. Increased antioxidant activity, inhibition of the mitochondrial permeability transition, alternate energy sources, and manipulation of mitochondrial morphology are among the strategies under investigation. Unfortunately, many of these tactics address single aspects of mitochondrial dysfunction, ultimately proving largely ineffective. Therefore, this review also examines the unexplored therapeutic efficacy of pharmacological enhancement of mitochondrial biogenesis, which has the potential to more comprehensively improve mitochondrial function after SCI. PMID:28935700

  7. Mitochondrial-Based Therapeutics for the Treatment of Spinal Cord Injury: Mitochondrial Biogenesis as a Potential Pharmacological Target.

    PubMed

    Scholpa, Natalie E; Schnellmann, Rick G

    2017-12-01

    Spinal cord injury (SCI) is characterized by an initial trauma followed by a progressive cascade of damage referred to as secondary injury. A hallmark of secondary injury is vascular disruption leading to vasoconstriction and decreased oxygen delivery, which directly reduces the ability of mitochondria to maintain homeostasis and leads to loss of ATP-dependent cellular functions, calcium overload, excitotoxicity, and oxidative stress, further exacerbating injury. Restoration of mitochondria dysfunction during the acute phases of secondary injury after SCI represents a potentially effective therapeutic strategy. This review discusses the past and present pharmacological options for the treatment of SCI as well as current research on mitochondria-targeted approaches. Increased antioxidant activity, inhibition of the mitochondrial permeability transition, alternate energy sources, and manipulation of mitochondrial morphology are among the strategies under investigation. Unfortunately, many of these tactics address single aspects of mitochondrial dysfunction, ultimately proving largely ineffective. Therefore, this review also examines the unexplored therapeutic efficacy of pharmacological enhancement of mitochondrial biogenesis, which has the potential to more comprehensively improve mitochondrial function after SCI. U.S. Government work not protected by U.S. copyright.

  8. Loss of mitochondrial transmembrane potential and caspase-9 activation during apoptosis induced by the novel styryl-lactone goniothalamin in HL-60 leukemia cells.

    PubMed

    Inayat-Hussain, S H; Annuar, B O; Din, L B; Ali, A M; Ross, D

    2003-08-01

    Styryl-lactones such as goniothalamin represent a new class of compounds with potential anti-cancer properties. In this study, we investigated the mechanisms of goniothalamin (GTN), a plant styryl-lactone induced apoptosis in human promyelocytic leukemia HL-60 cells. This plant extract resulted in apoptosis in HL-60 cells as assessed by the externalisation of phosphatidylserine. Using the mitochondrial membrane dye (DIOC(6)) in conjunction with flow cytometry, we found that GTN treated HL-60 cells demonstrated a loss of mitochondrial transmembrane potential (Deltapsi(m)). Further immunoblotting on these cells showed activation of initiator caspase-9 and the executioner caspases-3 and -7. Pretreatment with the pharmacological caspase inhibitor, benzyloxycarbonyl-Val-Ala-Asp fluoromethyl ketone (Z-VAD.FMK) abrogated apoptosis as assessed by all of the apoptotic features in this study. In summary, our results demonstrate that goniothalamin-induced apoptosis occurs via the mitochondrial pathway in a caspase dependent manner.

  9. Early ionic and membrane potential changes caused by the pesticide rotenone in striatal cholinergic interneurons.

    PubMed

    Bonsi, P; Calabresi, P; De Persis, C; Papa, M; Centonze, D; Bernardi, G; Pisani, A

    2004-01-01

    Mitochondrial metabolism impairment has been implicated in the pathogenesis of several neurodegenerative disorders. In the present work, we combined electrophysiological recordings and microfluorometric measurements from cholinergic interneurons obtained from a rat neostriatal slice preparation. Acute application of the mitochondrial complex I inhibitor rotenone produced an early membrane hyperpolarization coupled to a fall in input resistance, followed by a late depolarizing response. Current-voltage relationship showed a reversal potential of -80 +/- 3 mV, suggesting the involvement of a potassium (K+) current. Simultaneous measurement of intracellular sodium [Na+]i or calcium [Ca2+]i concentrations revealed a striking correlation between [Na+]i elevation and the early membrane hyperpolarization, whereas a significant [Ca2+]i rise matched the depolarizing phase. Interestingly, ion and membrane potential changes were mimicked by ouabain, inhibitor of the Na+-K+ATPase, and were insensitive to tetrodotoxin (TTX) or to a combination of glutamate receptor antagonists. The rotenone effects were partially reduced by blockers of ATP-sensitive K+ channels, glibenclamide and tolbutamide, and largely attenuated by a low Na+-containing solution. Morphological analysis of the rotenone effects on striatal slices showed a significant decrease in the number of choline acetyltransferase (ChAT) immunoreactive cells. These results suggest that rotenone rapidly disrupts the ATP content, leading to a decreased Na+-K+ATPase function and, therefore, to [Na+]i overload. In turn, the hyperpolarizing response might be generated both by the opening of ATP-sensitive K+ channels and by Na+-activated K+ conductances. The increase in [Ca2+]i occurs lately and does not seem to influence the early events.

  10. Indirubin-3'-oxime impairs mitochondrial oxidative phosphorylation and prevents mitochondrial permeability transition induction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Varela, Ana T.; Gomes, Ana P.; Simoes, Anabela M.

    2008-12-01

    Indirubin, a red colored 3,2'-bisindole isomer, is a component of Indigo naturalis and is an active ingredient used in traditional Chinese medicine for the treatment of chronic diseases. The family of indirubin derivatives, such as indirubin-3'-oxime, has been suggested for various therapeutic indications. However, potential toxic interactions such as indirubin effects on mitochondrial bioenergetics are still unknown. This study evaluated the action of indirubin-3'-oxime on the function of isolated rat liver mitochondria contributing to a better understanding of the biochemical mechanisms underlying the multiple effects of indirubin. Indirubin-3'-oxime incubated with isolated rat liver mitochondria, at concentrations above 10{mu}M, significantly depressesmore » the phosphorylation efficiency of mitochondria as inferred from the decrease in the respiratory control and ADP/O ratios, the perturbations in mitochondrial membrane potential and in the phosphorylative cycle induced by ADP. Furthermore, indirubin-3'-oxime at up to 25{mu}M stimulates the rate of state 4 respiration and inhibits state 3 respiration. The increased lag phase of repolarization was associated with a direct inhibition of the mitochondrial ATPase. Indirubin-3'-oxime significantly inhibited the activity of complex II and IV thus explaining the decreased FCCP-stimulated mitochondrial respiration. Mitochondria pre-incubated with indirubin-3'-oxime exhibits decreased susceptibility to calcium-induced mitochondrial permeability transition. This work shows for the first time multiple effects of indirubin-3'-oxime on mitochondrial bioenergetics thus indicating a potential mechanism for indirubin-3'-oxime effects on cell function.« less

  11. Mature DIABLO/Smac Is Produced by the IMP Protease Complex on the Mitochondrial Inner Membrane

    PubMed Central

    Burri, Lena; Strahm, Yvan; Hawkins, Christine J.; Gentle, Ian E.; Puryer, Michelle A.; Verhagen, Anne; Callus, Bernard; Vaux, David; Lithgow, Trevor

    2005-01-01

    DIABLO/Smac is a mitochondrial protein that can promote apoptosis by promoting the release and activation of caspases. To do so, DIABLO/Smac must first be processed by a mitochondrial protease and then released into the cytosol, and we show this in an intact cellular system. We propose that the precursor form of DIABLO/Smac enters the mitochondria through a stop-transfer pathway and is processed to its active form by the inner membrane peptidase (IMP) complex. Catalytic subunits of the mammalian IMP complex were identified based on sequence conservation and functional complementation, and the novel sequence motif RX5P in Imp1 and NX5S in Imp2 distinguish the two catalytic subunits. DIABLO/Smac is one of only a few specific proteins identified as substrates for the IMP complex in the mitochondrial intermembrane space. PMID:15814844

  12. Mangiferin protects mitochondrial function by preserving mitochondrial hexokinase-II in vessel endothelial cells.

    PubMed

    Song, Junna; Li, Yi; Song, Junmei; Hou, Fangjie; Liu, Baolin; Li, Aiying

    2017-07-01

    Hexokinase-II (HK-II) confers protection against cell death and this study was designed to investigate the effect of mangiferin on the regulation of mitochondrial HK-II. In vessel endothelial cells, saturated fatty acid palmitate (PA) stimulation induced HK-II detachment from mitochondria due to cellular acidification. Mangiferin reduced lactate accumulation by improving pyruvate dehydrogenase activity, promoted Akt translocation to HK-II and prevented HK-II detachment from mitochondria. Knockdown of Akt2 diminished the protective effect of mangiferin on mitochondrial HK-II, confirming the role of Akt in the regulation of HK-II. Mangiferin prevented mitochondrial permeability transition pore opening, restored mitochondrial membrane potential and thereby protected cell from apoptosis. In high-fat diet fed mice, oral administration of mangiferin induced Akt phosphorylation, increased HK-II binding to mitochondria and resultantly protected vessel endothelial function, demonstrating its protective effect on endothelial integrity in vivo. This finding provided a novel strategy for the protection of mitochondrial function in the endothelium. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Preprotein transport machineries of yeast mitochondrial outer membrane are not required for Bax-induced release of intermembrane space proteins.

    PubMed

    Sanjuán Szklarz, Luiza K; Kozjak-Pavlovic, Vera; Vögtle, F-Nora; Chacinska, Agnieszka; Milenkovic, Dusanka; Vogel, Sandra; Dürr, Mark; Westermann, Benedikt; Guiard, Bernard; Martinou, Jean-Claude; Borner, Christoph; Pfanner, Nikolaus; Meisinger, Chris

    2007-04-20

    The mitochondrial outer membrane contains protein import machineries, the translocase of the outer membrane (TOM) and the sorting and assembly machinery (SAM). It has been speculated that TOM or SAM are required for Bax-induced release of intermembrane space (IMS) proteins; however, experimental evidence has been scarce. We used isolated yeast mitochondria as a model system and report that Bax promoted an efficient release of soluble IMS proteins while preproteins were still imported, excluding an unspecific damage of mitochondria. Removal of import receptors by protease treatment did not inhibit the release of IMS proteins by Bax. Yeast mutants of each Tom receptor and the Tom40 channel were not impaired in Bax-induced protein release. We analyzed a large collection of mutants of mitochondrial outer membrane proteins, including SAM, fusion and fission components, but none of these components was required for Bax-induced protein release. The released proteins included complexes up to a size of 230 kDa. We conclude that Bax promotes efficient release of IMS proteins through the outer membrane of yeast mitochondria while the inner membrane remains intact. Inactivation of the known protein import and sorting machineries of the outer membrane does not impair the function of Bax at the mitochondria.

  14. Low-molecular-mass peptides from the venom of the Amazonian viper Bothrops atrox protect against brain mitochondrial swelling in rat: potential for neuroprotection.

    PubMed

    Martins, N M; Ferreira, D A S; Carvalho Rodrigues, M A; Cintra, A C O; Santos, N A G; Sampaio, S V; Santos, A C

    2010-08-01

    The neurodegenerative diseases are important causes of morbidity and mortality in Western countries. Common mechanisms of toxicity involving mitochondrial damage have been suggested; however, a definitive treatment has not yet been found. Therefore, there has been great interest in the development of mitochondria-targeted protective compounds for the treatment of neuropathies. Animal toxins represent a promising source of new molecules with neuroprotective activity and potential to originate new drugs. We present here the effects of a low-molecular-mass peptides fraction (Ba-V) from Bothrops atrox snake venom, on rat brain mitochondrial function. Ba-V did not induce the mitochondrial swelling and moreover, was as effective as cyclosporin A (CsA) to inhibit the calcium/phosphate-induced swelling, which indicates its potential to prevent the mitochondrial permeability transition (MPT). The membrane electrochemical potential, the oxygen consumption during states-3 and -4 respirations as well as the respiratory control ratio (RCR) were not affected by Ba-V. Additionally, Ba-V did not induce reactive oxygen species (ROS) generation. Interestingly, Ba-V did not protect against the generation of ROS induced by t-BOH, which suggests a protection mechanism other than ROS scavenging. Given the important role of the mitochondrial damage and, more specifically, of MPT, in the development of neuropathies, Ba-V might be useful in the future strategies for the treatment of these diseases. Copyright 2010 Elsevier Ltd. All rights reserved.

  15. Tagging and tracking individual networks within a complex mitochondrial web with photoactivatable GFP.

    PubMed

    Twig, Gilad; Graf, Solomon A; Wikstrom, Jakob D; Mohamed, Hibo; Haigh, Sarah E; Elorza, Alvaro; Deutsch, Motti; Zurgil, Naomi; Reynolds, Nicole; Shirihai, Orian S

    2006-07-01

    Assembly of mitochondria into networks supports fuel metabolism and calcium transport and is involved in the cellular response to apoptotic stimuli. A mitochondrial network is defined as a continuous matrix lumen whose boundaries limit molecular diffusion. Observation of individual networks has proven challenging in live cells that possess dense populations of mitochondria. Investigation into the electrical and morphological properties of mitochondrial networks has therefore not yielded consistent conclusions. In this study we used matrix-targeted, photoactivatable green fluorescent protein to tag single mitochondrial networks. This approach, coupled with real-time monitoring of mitochondrial membrane potential, permitted the examination of matrix lumen continuity and fusion and fission events over time. We found that adjacent and intertwined mitochondrial structures often represent a collection of distinct networks. We additionally found that all areas of a single network are invariably equipotential, suggesting that a heterogeneous pattern of membrane potential within a cell's mitochondria represents differences between discrete networks. Interestingly, fission events frequently occurred without any gross morphological changes and particularly without fragmentation. These events, which are invisible under standard confocal microscopy, redefine the mitochondrial network boundaries and result in electrically disconnected daughter units.

  16. Composition-dependent Membrane Disruption by the Proapoptotic Protein PB1F2 from HK97 Influenza A Virus.

    PubMed

    Wang, Yujuan; Yang, Jing; Wang, Jiarong; Zhu, Lei; Wang, Junfeng

    2018-06-22

    PB1F2 is a proapoptotic protein encoded by an alternative reading frame in the influenza A virus. Its accumulation accelerates mitochondrial fragmentation by decreasing the mitochondrial membrane potential following translocation into the mitochondrial inner membrane space, but the mechanistic underpinnings remain unclear. Herein, the PB1F2 from HK97 was expressed and purified in soluble form. The interaction between PB1F2 and the mitochondrial membrane were investigated using three membrane mimics, liposomes, bicelles and nanodiscs. We show that the interactions between PB1F2 and membrane mimics depend on lipid type and are time- and dose-dependent. The primary membrane target of PB1F2 is phosphatidylcholine, the lipid that forms the major component of mitochondrial inner membranes. PB1F2 disrupts the integrity of lipid membranes by forming micelle-like PB1F2-lipid assemblies. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  17. Positive Feedback Amplifies the Response of Mitochondrial Membrane Potential to Glucose Concentration in Clonal Pancreatic Beta Cells

    PubMed Central

    GERENCSER, Akos A.; MOOKERJEE, Shona A.; JASTROCH, Martin; BRAND, Martin D.

    2016-01-01

    Analysis of the cellular mechanisms of metabolic disorders, including type 2 diabetes mellitus, is complicated by the large number of reactions and interactions in metabolic networks. Metabolic control analysis with appropriate modularization is a powerful method for simplifying and analyzing these networks. To analyze control of cellular energy metabolism in adherent cell cultures of the INS-1 832/13 pancreatic β-cell model we adapted our microscopy assay of absolute mitochondrial membrane potential (ΔψM) to a fluorescence microplate reader format, and applied it in conjunction with cell respirometry. In these cells the sensitive response of ΔψM to extracellular glucose concentration drives glucose-stimulated insulin secretion. Using metabolic control analysis we identified the control properties that generate this sensitive response. Force-flux relationships between ΔψM and respiration were used to calculate kinetic responses to ΔψM of processes both upstream (glucose oxidation) and downstream (proton leak and ATP turnover) of ΔψM. The analysis revealed that glucose-evoked ΔψM hyperpolarization is amplified by increased glucose oxidation activity caused by factors downstream of ΔψM. At high glucose, the hyperpolarized ΔψM is stabilized almost completely by the action of glucose oxidation, whereas proton leak also contribute to the homeostatic control of ΔψM at low glucose. These findings suggest a strong positive feedback loop in the regulation of β-cell energetics, and a possible regulatory role of proton leak in the fasting state. Analysis of islet bioenergetics from published cases of type 2 diabetes suggests that disruption of this feedback can explain the damaged bioenergetic response of β-cells to glucose. PMID:27771512

  18. By improving regional cortical blood flow, attenuating mitochondrial dysfunction and sequential apoptosis galangin acts as a potential neuroprotective agent after acute ischemic stroke.

    PubMed

    Li, Shaojing; Wu, Chuanhong; Zhu, Li; Gao, Jian; Fang, Jing; Li, Defeng; Fu, Meihong; Liang, Rixin; Wang, Lan; Cheng, Ming; Yang, Hongjun

    2012-11-09

    Ischemic stroke is a devastating disease with a complex pathophysiology. Galangin is a natural flavonoid isolated from the rhizome of Alpina officinarum Hance, which has been widely used as an antioxidant agent. However, its effects against ischemic stroke have not been reported and its related neuroprotective mechanism has not really been explored. In this study, neurological behavior, cerebral infarct volumes and the improvement of the regional cortical blood flow (rCBF) were used to evaluate the therapeutic effect of galangin in rats impaired by middle cerebral artery occlusion (MCAO)-induced focal cerebral ischemia. Furthermore, the determination of mitochondrial function and Western blot of apoptosis-related proteins were performed to interpret the neuroprotective mechanism of galangin. The results showed that galangin alleviated the neurologic impairments, reduced cerebral infarct at 24 h after MCAO and exerted a protective effect on the mitochondria with decreased production of mitochondrial reactive oxygen species (ROS). These effects were consistent with improvements in the membrane potential level (Dym), membrane fluidity, and degree of mitochondrial swelling in a dose-dependent manner. Moreover, galangin significantly improved the reduced rCBF after MCAO. Western blot analysis revealed that galangin also inhibited apoptosis in a dose-dependent manner concomitant with the up-regulation of Bcl-2 expression, down-regulation of Bax expression and the Bax/Bcl-2 ratio, a reduction in cytochrome c release from the mitochondria to the cytosol, the reduced expression of activated caspase-3 and the cleavage of poly(ADP-ribose) polymerase (PARP). All these data in this study demonstrated that galangin might have therapeutic potential for ischemic stroke and play its protective role through the improvement in rCBF, mitochondrial protection and inhibiting caspase-dependent mitochondrial cell death pathway for the first time.

  19. tRNAs and proteins use the same import channel for translocation across the mitochondrial outer membrane of trypanosomes.

    PubMed

    Niemann, Moritz; Harsman, Anke; Mani, Jan; Peikert, Christian D; Oeljeklaus, Silke; Warscheid, Bettina; Wagner, Richard; Schneider, André

    2017-09-12

    Mitochondrial tRNA import is widespread, but the mechanism by which tRNAs are imported remains largely unknown. The mitochondrion of the parasitic protozoan Trypanosoma brucei lacks tRNA genes, and thus imports all tRNAs from the cytosol. Here we show that in T. brucei in vivo import of tRNAs requires four subunits of the mitochondrial outer membrane protein translocase but not the two receptor subunits, one of which is essential for protein import. The latter shows that it is possible to uncouple mitochondrial tRNA import from protein import. Ablation of the intermembrane space domain of the translocase subunit, archaic translocase of the outer membrane (ATOM)14, on the other hand, while not affecting the architecture of the translocase, impedes both protein and tRNA import. A protein import intermediate arrested in the translocation channel prevents both protein and tRNA import. In the presence of tRNA, blocking events of single-channel currents through the pore formed by recombinant ATOM40 were detected in electrophysiological recordings. These results indicate that both types of macromolecules use the same import channel across the outer membrane. However, while tRNA import depends on the core subunits of the protein import translocase, it does not require the protein import receptors, indicating that the two processes are not mechanistically linked.

  20. Mitochondrial lipids in neurodegeneration.

    PubMed

    Aufschnaiter, Andreas; Kohler, Verena; Diessl, Jutta; Peselj, Carlotta; Carmona-Gutierrez, Didac; Keller, Walter; Büttner, Sabrina

    2017-01-01

    Mitochondrial dysfunction is a common feature of many neurodegenerative diseases, including proteinopathies such as Alzheimer's or Parkinson's disease, which are characterized by the deposition of aggregated proteins in the form of insoluble fibrils or plaques. The distinct molecular processes that eventually result in mitochondrial dysfunction during neurodegeneration are well studied but still not fully understood. However, defects in mitochondrial fission and fusion, mitophagy, oxidative phosphorylation and mitochondrial bioenergetics have been linked to cellular demise. These processes are influenced by the lipid environment within mitochondrial membranes as, besides membrane structure and curvature, recruitment and activity of different proteins also largely depend on the respective lipid composition. Hence, the interaction of neurotoxic proteins with certain lipids and the modification of lipid composition in different cell compartments, in particular mitochondria, decisively impact cell death associated with neurodegeneration. Here, we discuss the relevance of mitochondrial lipids in the pathological alterations that result in neuronal demise, focussing on proteinopathies.

  1. A single cell high content assay detects mitochondrial dysfunction in iPSC-derived neurons with mutations in SNCA.

    PubMed

    Little, Daniel; Luft, Christin; Mosaku, Olukunbi; Lorvellec, Maëlle; Yao, Zhi; Paillusson, Sébastien; Kriston-Vizi, Janos; Gandhi, Sonia; Abramov, Andrey Y; Ketteler, Robin; Devine, Michael J; Gissen, Paul

    2018-06-13

    Mitochondrial dysfunction is implicated in many neurodegenerative diseases including Parkinson's disease (PD). Induced pluripotent stem cells (iPSCs) provide a unique cell model for studying neurological diseases. We have established a high-content assay that can simultaneously measure mitochondrial function, morphology and cell viability in iPSC-derived dopaminergic neurons. iPSCs from PD patients with mutations in SNCA and unaffected controls were differentiated into dopaminergic neurons, seeded in 384-well plates and stained with the mitochondrial membrane potential dependent dye TMRM, alongside Hoechst-33342 and Calcein-AM. Images were acquired using an automated confocal screening microscope and single cells were analysed using automated image analysis software. PD neurons displayed reduced mitochondrial membrane potential and altered mitochondrial morphology compared to control neurons. This assay demonstrates that high content screening techniques can be applied to the analysis of mitochondria in iPSC-derived neurons. This technique could form part of a drug discovery platform to test potential new therapeutics for PD and other neurodegenerative diseases.

  2. Imaging Mitochondrial Redox Potential and Its Possible Link to Tumor Metastatic Potential

    PubMed Central

    Li, Lin Z.

    2012-01-01

    Cellular redox states can regulate cell metabolism, growth, differentiation, motility, apoptosis, signaling pathways, and gene expressions etc. Growing body of literature suggest importance of redox status for cancer progression. While most studies on redox state were done on cells and tissue lysates, it is important to understand the role of redox state in tissue in vivo/ex vivo and image its heterogeneity. Redox scanning is a clinically-translatable method for imaging tissue mitochondrial redox potential with a submillimeter resolution. Redox scanning data in mouse models of human cancers demonstrate a correlation between mitochondrial redox state and tumor metastatic potential. I will discuss the significance of this correlation and possible directions for future research. PMID:22895837

  3. A Mitochondrial Membrane Exopolyphosphatase Is Modulated by, and Plays a Role in, the Energy Metabolism of Hard Tick Rhipicephalus (Boophilus) microplus Embryos

    PubMed Central

    Campos, Eldo; Façanha, Arnoldo R.; Costa, Evenilton P.; Fraga, Amanda; Moraes, Jorge; da Silva Vaz, Itabajara; Masuda, Aoi; Logullo, Carlos

    2011-01-01

    The physiological roles of polyphosphates (polyP) recently found in arthropod mitochondria remain obscure. Here, the relationship between the mitochondrial membrane exopolyphosphatase (PPX) and the energy metabolism of hard tick Rhipicephalus microplus embryos are investigated. Mitochondrial respiration was activated by adenosine diphosphate using polyP as the only source of inorganic phosphate (Pi) and this activation was much greater using polyP3 than polyP15. After mitochondrial subfractionation, most of the PPX activity was recovered in the membrane fraction and its kinetic analysis revealed that the affinity for polyP3 was 10 times stronger than that for polyP15. Membrane PPX activity was also increased in the presence of the respiratory substrate pyruvic acid and after addition of the protonophore carbonyl cyanide-p-trifluoromethoxyphenylhydrazone. Furthermore, these stimulatory effects disappeared upon addition of the cytochrome oxidase inhibitor potassium cyanide and the activity was completely inhibited by 20 μg/mL heparin. The activity was either increased or decreased by 50% upon addition of dithiothreitol or hydrogen peroxide, respectively, suggesting redox regulation. These results indicate a PPX activity that is regulated during mitochondrial respiration and that plays a role in adenosine-5′-triphosphate synthesis in hard tick embryos. PMID:21747692

  4. Independent evolution of functionally exchangeable mitochondrial outer membrane import complexes

    PubMed Central

    Dimmer, Kai S

    2018-01-01

    Assembly and/or insertion of a subset of mitochondrial outer membrane (MOM) proteins, including subunits of the main MOM translocase, require the fungi-specific Mim1/Mim2 complex. So far it was unclear which proteins accomplish this task in other eukaryotes. Here, we show by reciprocal complementation that the MOM protein pATOM36 of trypanosomes is a functional analogue of yeast Mim1/Mim2 complex, even though these proteins show neither sequence nor topological similarity. Expression of pATOM36 rescues almost all growth, mitochondrial biogenesis, and morphology defects in yeast cells lacking Mim1 and/or Mim2. Conversely, co-expression of Mim1 and Mim2 restores the assembly and/or insertion defects of MOM proteins in trypanosomes ablated for pATOM36. Mim1/Mim2 and pATOM36 form native-like complexes when heterologously expressed, indicating that additional proteins are not part of these structures. Our findings indicate that Mim1/Mim2 and pATOM36 are the products of convergent evolution and arose only after the ancestors of fungi and trypanosomatids diverged. PMID:29923829

  5. Mitochondrial benzodiazepine receptor linked to inner membrane ion channels by nanomolar actions of ligands.

    PubMed Central

    Kinnally, K W; Zorov, D B; Antonenko, Y N; Snyder, S H; McEnery, M W; Tedeschi, H

    1993-01-01

    The mitochrondrial benzodiazepine receptor (mBzR) binds a subset of benzodiazepines and isoquinoline carboxamides with nanomolar affinity and consists of the voltage-dependent anion channel, the adenine nucleotide translocator, and an 18-kDa protein. The effect of ligands of the mBzR on two inner mitochondrial membrane channel activities was determined with patch-clamp techniques. The relative inhibitory potencies of the drugs resemble their binding affinities for the mBzR. Ro5-4864 and protoporphyrin IX inhibit activity of the multiple conductance channel (MCC) and the mitochondrial centum-picosiemen (mCtS) channel activities at nanomolar concentrations. PK11195 inhibits mCtS activity at similar levels. Higher concentrations of protoporphyrin IX induce MCC but possibly not mCtS activity. Clonazepam, which has low affinity for mBzR, is at least 500 times less potent at both channel activities. Ro15-1788, which also has a low mBzR affinity, inhibits MCC at very high concentrations (16 microM). The findings indicate an association of these two channel activities with the proteins forming the mBzR complex and are consistent with an interaction of inner and outer membrane channels. PMID:7679505

  6. Mutations in FBXL4 Cause Mitochondrial Encephalopathy and a Disorder of Mitochondrial DNA Maintenance

    PubMed Central

    Bonnen, Penelope E.; Yarham, John W.; Besse, Arnaud; Wu, Ping; Faqeih, Eissa A.; Al-Asmari, Ali Mohammad; Saleh, Mohammad A.M.; Eyaid, Wafaa; Hadeel, Alrukban; He, Langping; Smith, Frances; Yau, Shu; Simcox, Eve M.; Miwa, Satomi; Donti, Taraka; Abu-Amero, Khaled K.; Wong, Lee-Jun; Craigen, William J.; Graham, Brett H.; Scott, Kenneth L.; McFarland, Robert; Taylor, Robert W.

    2013-01-01

    Nuclear genetic disorders causing mitochondrial DNA (mtDNA) depletion are clinically and genetically heterogeneous, and the molecular etiology remains undiagnosed in the majority of cases. Through whole-exome sequencing, we identified recessive nonsense and splicing mutations in FBXL4 segregating in three unrelated consanguineous kindreds in which affected children present with a fatal encephalopathy, lactic acidosis, and severe mtDNA depletion in muscle. We show that FBXL4 is an F-box protein that colocalizes with mitochondria and that loss-of-function and splice mutations in this protein result in a severe respiratory chain deficiency, loss of mitochondrial membrane potential, and a disturbance of the dynamic mitochondrial network and nucleoid distribution in fibroblasts from affected individuals. Expression of the wild-type FBXL4 transcript in cell lines from two subjects fully rescued the levels of mtDNA copy number, leading to a correction of the mitochondrial biochemical deficit. Together our data demonstrate that mutations in FBXL4 are disease causing and establish FBXL4 as a mitochondrial protein with a possible role in maintaining mtDNA integrity and stability. PMID:23993193

  7. Altered mitochondrial function and oxidative stress in leukocytes of anorexia nervosa patients.

    PubMed

    Victor, Victor M; Rovira-Llopis, Susana; Saiz-Alarcon, Vanessa; Sangüesa, Maria C; Rojo-Bofill, Luis; Bañuls, Celia; Falcón, Rosa; Castelló, Raquel; Rojo, Luis; Rocha, Milagros; Hernández-Mijares, Antonio

    2014-01-01

    Anorexia nervosa is a common illness among adolescents and is characterised by oxidative stress. The effects of anorexia on mitochondrial function and redox state in leukocytes from anorexic subjects were evaluated. A multi-centre, cross-sectional case-control study was performed. Our study population consisted of 20 anorexic patients and 20 age-matched controls, all of which were Caucasian women. Anthropometric and metabolic parameters were evaluated in the study population. To assess whether anorexia nervosa affects mitochondrial function and redox state in leukocytes of anorexic patients, we measured mitochondrial oxygen consumption, membrane potential, reactive oxygen species production, glutathione levels, mitochondrial mass, and complex I and III activity in polymorphonuclear cells. Mitochondrial function was impaired in the leukocytes of the anorexic patients. This was evident in a decrease in mitochondrial O2 consumption (P<0.05), mitochondrial membrane potential (P<0.01) and GSH levels (P<0.05), and an increase in ROS production (P<0.05) with respect to control subjects. Furthermore, a reduction of mitochondrial mass was detected in leukocytes of the anorexic patients (P<0.05), while the activity of mitochondrial complex I (P<0.001), but not that of complex III, was found to be inhibited in the same population. Oxidative stress is produced in the leukocytes of anorexic patients and is closely related to mitochondrial dysfunction. Our results lead us to propose that the oxidative stress that occurs in anorexia takes place at mitochondrial complex I. Future research concerning mitochondrial dysfunction and oxidative stress should aim to determine the physiological mechanism involved in this effect and the physiological impact of anorexia.

  8. Membrane potential and human erythrocyte shape.

    PubMed Central

    Gedde, M M; Huestis, W H

    1997-01-01

    Altered external pH transforms human erythrocytes from discocytes to stomatocytes (low pH) or echinocytes (high pH). The process is fast and reversible at room temperature, so it seems to involve shifts in weak inter- or intramolecular bonds. This shape change has been reported to depend on changes in membrane potential, but control experiments excluding roles for other simultaneously varying cell properties (cell pH, cell water, and cell chloride concentration) were not reported. The present study examined the effect of independent variation of membrane potential on red cell shape. Red cells were equilibrated in a set of solutions with graduated chloride concentrations, producing in them a wide range of membrane potentials at normal cell pH and cell water. By using assays that were rapid and accurate, cell pH, cell water, cell chloride, and membrane potential were measured in each sample. Cells remained discoid over the entire range of membrane potentials examined (-45 to +45 mV). It was concluded that membrane potential has no independent effect on red cell shape and does not mediate the membrane curvature changes known to occur in red cells equilibrated at altered pH. Images FIGURE 2 FIGURE 9 PMID:9138568

  9. A Metabotropic-Like Flux-Independent NMDA Receptor Regulates Ca2+ Exit from Endoplasmic Reticulum and Mitochondrial Membrane Potential in Cultured Astrocytes.

    PubMed

    Montes de Oca Balderas, Pavel; Aguilera, Penélope

    2015-01-01

    Astrocytes were long thought to be only structural cells in the CNS; however, their functional properties support their role in information processing and cognition. The ionotropic glutamate N-methyl D-aspartate (NMDA) receptor (NMDAR) is critical for CNS functions, but its expression and function in astrocytes is still a matter of research and debate. Here, we report immunofluorescence (IF) labeling in rat cultured cortical astrocytes (rCCA) of all NMDAR subunits, with phenotypes suggesting their intracellular transport, and their mRNA were detected by qRT-PCR. IF and Western Blot revealed GluN1 full-length synthesis, subunit critical for NMDAR assembly and transport, and its plasma membrane localization. Functionally, we found an iCa2+ rise after NMDA treatment in Fluo-4-AM labeled rCCA, an effect blocked by the NMDAR competitive inhibitors D(-)-2-amino-5-phosphonopentanoic acid (APV) and Kynurenic acid (KYNA) and dependent upon GluN1 expression as evidenced by siRNA knock down. Surprisingly, the iCa2+ rise was not blocked by MK-801, an NMDAR channel blocker, or by extracellular Ca2+ depletion, indicating flux-independent NMDAR function. In contrast, the IP3 receptor (IP3R) inhibitor XestosponginC did block this response, whereas a Ryanodine Receptor inhibitor did so only partially. Furthermore, tyrosine kinase inhibition with genistein enhanced the NMDA elicited iCa2+ rise to levels comparable to those reached by the gliotransmitter ATP, but with different population dynamics. Finally, NMDA depleted the rCCA mitochondrial membrane potential (mΔψ) measured with JC-1. Our results demonstrate that rCCA express NMDAR subunits which assemble into functional receptors that mediate a metabotropic-like, non-canonical, flux-independent iCa2+ increase.

  10. Overexpression of mitochondrial sirtuins alters glycolysis and mitochondrial function in HEK293 cells.

    PubMed

    de Moura, Michelle Barbi; Uppala, Radha; Zhang, Yuxun; Van Houten, Bennett; Goetzman, Eric S

    2014-01-01

    SIRT3, SIRT4, and SIRT5 are mitochondrial deacylases that impact multiple facets of energy metabolism and mitochondrial function. SIRT3 activates several mitochondrial enzymes, SIRT4 represses its targets, and SIRT5 has been shown to both activate and repress mitochondrial enzymes. To gain insight into the relative effects of the mitochondrial sirtuins in governing mitochondrial energy metabolism, SIRT3, SIRT4, and SIRT5 overexpressing HEK293 cells were directly compared. When grown under standard cell culture conditions (25 mM glucose) all three sirtuins induced increases in mitochondrial respiration, glycolysis, and glucose oxidation, but with no change in growth rate or in steady-state ATP concentration. Increased proton leak, as evidenced by oxygen consumption in the presence of oligomycin, appeared to explain much of the increase in basal oxygen utilization. Growth in 5 mM glucose normalized the elevations in basal oxygen consumption, proton leak, and glycolysis in all sirtuin over-expressing cells. While the above effects were common to all three mitochondrial sirtuins, some differences between the SIRT3, SIRT4, and SIRT5 expressing cells were noted. Only SIRT3 overexpression affected fatty acid metabolism, and only SIRT4 overexpression altered superoxide levels and mitochondrial membrane potential. We conclude that all three mitochondrial sirtuins can promote increased mitochondrial respiration and cellular metabolism. SIRT3, SIRT4, and SIRT5 appear to respond to excess glucose by inducing a coordinated increase of glycolysis and respiration, with the excess energy dissipated via proton leak.

  11. Orphan nuclear receptor TR3 acts in autophagic cell death via mitochondrial signaling pathway.

    PubMed

    Wang, Wei-jia; Wang, Yuan; Chen, Hang-zi; Xing, Yong-zhen; Li, Feng-wei; Zhang, Qian; Zhou, Bo; Zhang, Hong-kui; Zhang, Jie; Bian, Xue-li; Li, Li; Liu, Yuan; Zhao, Bi-xing; Chen, Yan; Wu, Rong; Li, An-zhong; Yao, Lu-ming; Chen, Ping; Zhang, Yi; Tian, Xu-yang; Beermann, Friedrich; Wu, Mian; Han, Jiahuai; Huang, Pei-qiang; Lin, Tianwei; Wu, Qiao

    2014-02-01

    Autophagy is linked to cell death, yet the associated mechanisms are largely undercharacterized. We discovered that melanoma, which is generally resistant to drug-induced apoptosis, can undergo autophagic cell death with the participation of orphan nuclear receptor TR3. A sequence of molecular events leading to cellular demise is launched by a specific chemical compound, 1-(3,4,5-trihydroxyphenyl)nonan-1-one, newly acquired from screening a library of TR3-targeting compounds. The autophagic cascade comprises TR3 translocation to mitochondria through interaction with the mitochondrial outer membrane protein Nix, crossing into the mitochondrial inner membrane through Tom40 and Tom70 channel proteins, dissipation of mitochondrial membrane potential by the permeability transition pore complex ANT1-VDAC1 and induction of autophagy. This process leads to excessive mitochondria clearance and irreversible cell death. It implicates a new approach to melanoma therapy through activation of a mitochondrial signaling pathway that integrates a nuclear receptor with autophagy for cell death.

  12. Interrelated roles for Mcl-1 and BIM in regulation of TRAIL-mediated mitochondrial apoptosis.

    PubMed

    Han, Jie; Goldstein, Leslie A; Gastman, Brian R; Rabinowich, Hannah

    2006-04-14

    The current study demonstrates a novel cross-talk mechanism between the TRAIL receptor death signaling pathway and the mitochondria. This newly identified pathway is regulated at the mitochondrial outer membrane by a complex between the prosurvival Bcl-2 member, Mcl-1 and the BH3-only protein, Bim. Under non-apoptotic conditions, Bim is sequestered by Mcl-1. Direct degradation of Mcl-1 by TRAIL-activated caspase-8 or caspase-3 produces Mcl-1-free Bim that mediates a Bax-dependent apoptotic cascade. Using Mcl-1 or Bim RNAi, we demonstrate that a loss in Mcl-1 expression significantly enhances the mitochondrial apoptotic response to TRAIL that is now mediated by freed Bim. Whereas overexpression of Mcl-1 contributes to the preservation of the mitochondrial membrane potential, Mcl-1 knockdown facilitates the Bim-mediated dissipation of this potential. Loss of Mcl-1 contributes to an increased level of caspase activity downstream of the mitochondrial response to TRAIL. Furthermore, the Mcl-1 expression level at the mitochondrial outer membrane determines the release efficiency for the apoptogenic proteins cytochrome c, Smac, and HtrA2 in response to Bim. These are the first findings to demonstrate the involvement of Bim in the TRAIL-mediated mitochondrial cascade. They also suggest that Mcl-1 may serve as a direct substrate for TRAIL-activated caspases implying the existence of a novel TRAIL/caspase-8/Mcl-1/Bim communication mechanism between the extrinsic and the intrinsic apoptotic pathways.

  13. Assessment of mitochondrial membrane potential in HEI-OC1 and LLC-PK1 cells treated with gentamicin and mitoquinone.

    PubMed

    Ng, Maria Raye Anne V; Antonelli, Patrick J; Joseph, Jerin; Dirain, Carolyn Ojano

    2015-04-01

    To determine the effects of concurrent treatment with gentamicin and the mitochondria-targeted antioxidant mitoquinone (MitoQ; which may prevent gentamicin ototoxicity) on change in the mitochondrial membrane potential (Δψ(m)), a precursor of apoptosis. Prospective and controlled. Academic research laboratory. LLC-PK1 (Lilly Laboratories Culture-Pig Kidney Type 1) and HEI-OC1 (House Ear Institute Organ of Corti 1) cells-renal and auditory cell lines, respectively-were used in this study. Δψ(m) was assessed by flow cytometry through the MitoProbe JC-1 Kit for Flow Cytometry in untreated LLC-PK1 and HEI-OC1 cells and cells exposed to low- (100µM) or high- (2000µM) dose gentamicin for 24 hours, with and without 0.5µM each of MitoQ or idebenone (IDB; an untargeted ubiquinone). Δψ(m) was not different in untreated LLC-PK1 cells and cells coincubated with low-dose gentamicin and MitoQ or IDB (P > .05). In HEI-OC1 cells, coincubation with low-dose gentamicin and MitoQ decreased Δψ(m) (P = .002). Coincubation of LLC-PK1 cells with high-dose gentamicin and DMSO, MitoQ, or IDB depolarized Δψ(m) (P < .0001), with MitoQ depolarizing the Δψ(m) to a greater extent than that of IDB (P = .03). In contrast, HEI-OC1 cells demonstrated a hyperpolarized Δψ(m) when coincubated with high-dose gentamicin and DMSO, MitoQ, or IDB (P < .001). The combination of gentamicin and MitoQ holds the potential to disrupt Δψ(m). This suggests a heightened need to monitor for toxicity in patients receiving both agents. © American Academy of Otolaryngology—Head and Neck Surgery Foundation 2014.

  14. Mitochondrial Protein Synthesis, Import, and Assembly

    PubMed Central

    Fox, Thomas D.

    2012-01-01

    The mitochondrion is arguably the most complex organelle in the budding yeast cell cytoplasm. It is essential for viability as well as respiratory growth. Its innermost aqueous compartment, the matrix, is bounded by the highly structured inner membrane, which in turn is bounded by the intermembrane space and the outer membrane. Approximately 1000 proteins are present in these organelles, of which eight major constituents are coded and synthesized in the matrix. The import of mitochondrial proteins synthesized in the cytoplasm, and their direction to the correct soluble compartments, correct membranes, and correct membrane surfaces/topologies, involves multiple pathways and macromolecular machines. The targeting of some, but not all, cytoplasmically synthesized mitochondrial proteins begins with translation of messenger RNAs localized to the organelle. Most proteins then pass through the translocase of the outer membrane to the intermembrane space, where divergent pathways sort them to the outer membrane, inner membrane, and matrix or trap them in the intermembrane space. Roughly 25% of mitochondrial proteins participate in maintenance or expression of the organellar genome at the inner surface of the inner membrane, providing 7 membrane proteins whose synthesis nucleates the assembly of three respiratory complexes. PMID:23212899

  15. Atypical mitochondrial fission upon bacterial infection

    PubMed Central

    Stavru, Fabrizia; Palmer, Amy E.; Wang, Chunxin; Youle, Richard J.; Cossart, Pascale

    2013-01-01

    We recently showed that infection by Listeria monocytogenes causes mitochondrial network fragmentation through the secreted pore-forming toxin listeriolysin O (LLO). Here, we examine factors involved in canonical fusion and fission. Strikingly, LLO-induced mitochondrial fragmentation does not require the traditional fission machinery, as Drp1 oligomers are absent from fragmented mitochondria following Listeria infection or LLO treatment, as the dynamin-like protein 1 (Drp1) receptor Mff is rapidly degraded, and as fragmentation proceeds efficiently in cells with impaired Drp1 function. LLO does not cause processing of the fusion protein optic atrophy protein 1 (Opa1), despite inducing a decrease in the mitochondrial membrane potential, suggesting a unique Drp1- and Opa1-independent fission mechanism distinct from that triggered by uncouplers or the apoptosis inducer staurosporine. We show that the ER marks LLO-induced mitochondrial fragmentation sites even in the absence of functional Drp1, demonstrating that the ER activity in regulating mitochondrial fission can be induced by exogenous agents and that the ER appears to regulate fission by a mechanism independent of the canonical mitochondrial fission machinery. PMID:24043775

  16. Mitochondrial dysfunction-associated OPA1 cleavage contributes to muscle degeneration: preventative effect of hydroxytyrosol acetate.

    PubMed

    Wang, X; Li, H; Zheng, A; Yang, L; Liu, J; Chen, C; Tang, Y; Zou, X; Li, Y; Long, J; Liu, J; Zhang, Y; Feng, Z

    2014-11-13

    Mitochondrial dysfunction contributes to the development of muscle disorders, including muscle wasting, muscle atrophy and degeneration. Despite the knowledge that oxidative stress closely interacts with mitochondrial dysfunction, the detailed mechanisms remain obscure. In this study, tert-butylhydroperoxide (t-BHP) was used to induce oxidative stress on differentiated C2C12 myotubes. t-BHP induced significant mitochondrial dysfunction in a time-dependent manner, accompanied by decreased myosin heavy chain (MyHC) expression at both the mRNA and protein levels. Consistently, endogenous reactive oxygen species (ROS) overproduction triggered by carbonyl cyanide 4-(trifluoromethoxy) phenylhydrazone (FCCP), a mitochondrial oxidative phosphorylation inhibitor, was accompanied by decreased membrane potential and decreased MyHC protein content. However, the free radical scavenger N-acetyl-L-cysteine (NAC) efficiently reduced the ROS level and restored MyHC content, suggesting a close association between ROS and MyHC expression. Meanwhile, we found that both t-BHP and FCCP promoted the cleavage of optic atrophy 1 (OPA1) from the long form into short form during the early stages. In addition, the ATPase family gene 3-like 2, a mitochondrial inner membrane protease, was also markedly increased. Moreover, OPA1 knockdown in myotubes was accompanied by decreased MyHC content, whereas NAC failed to prevent FCCP-induced MyHC decrease with OPA1 knockdown, suggesting that ROS might affect MyHC content by modulating OPA1 cleavage. In addition, hydroxytyrosol acetate (HT-AC), an important compound in virgin olive oil, could significantly prevent t-BHP-induced mitochondrial membrane potential and cell viability loss in myotubes. Specifically, HT-AC inhibited t-BHP-induced OPA1 cleavage and mitochondrial morphology changes, accompanied by improvement on mitochondrial oxygen consumption capacity, ATP productive potential and activities of mitochondrial complex I, II and V. Moreover, both

  17. Mitochondrial metals as a potential therapeutic target in neurodegeneration

    PubMed Central

    Grubman, A; White, A R; Liddell, J R

    2014-01-01

    Transition metals are critical for enzyme function and protein folding, but in excess can mediate neurotoxic oxidative processes. As mitochondria are particularly vulnerable to oxidative damage due to radicals generated during ATP production, mitochondrial biometal homeostasis must therefore be tightly controlled to safely harness the redox potential of metal enzyme cofactors. Dysregulation of metal functions is evident in numerous neurological disorders including Alzheimer's disease, stroke, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis and Friedrich's ataxia. This review describes the mitochondrial metal defects in these disorders and highlights novel metal-based therapeutic approaches that target mitochondrial metal homeostasis in neurological disorders. Linked Articles This article is part of a themed issue on Mitochondrial Pharmacology: Energy, Injury & Beyond. To view the other articles in this issue visit http://dx.doi.org/10.1111/bph.2014.171.issue-8 PMID:24206195

  18. Proteolytic cleavage by the inner membrane peptidase (IMP) complex or Oct1 peptidase controls the localization of the yeast peroxiredoxin Prx1 to distinct mitochondrial compartments.

    PubMed

    Gomes, Fernando; Palma, Flávio Romero; Barros, Mario H; Tsuchida, Eduardo T; Turano, Helena G; Alegria, Thiago G P; Demasi, Marilene; Netto, Luis E S

    2017-10-13

    Yeast Prx1 is a mitochondrial 1-Cys peroxiredoxin that catalyzes the reduction of endogenously generated H 2 O 2 Prx1 is synthesized on cytosolic ribosomes as a preprotein with a cleavable N-terminal presequence that is the mitochondrial targeting signal, but the mechanisms underlying Prx1 distribution to distinct mitochondrial subcompartments are unknown. Here, we provide direct evidence of the following dual mitochondrial localization of Prx1: a soluble form in the intermembrane space and a form in the matrix weakly associated with the inner mitochondrial membrane. We show that Prx1 sorting into the intermembrane space likely involves the release of the protein precursor within the lipid bilayer of the inner membrane, followed by cleavage by the inner membrane peptidase. We also found that during its import into the matrix compartment, Prx1 is sequentially cleaved by mitochondrial processing peptidase and then by octapeptidyl aminopeptidase 1 (Oct1). Oct1 cleaved eight amino acid residues from the N-terminal region of Prx1 inside the matrix, without interfering with its peroxidase activity in vitro Remarkably, the processing of peroxiredoxin (Prx) proteins by Oct1 appears to be an evolutionarily conserved process because yeast Oct1 could cleave the human mitochondrial peroxiredoxin Prx3 when expressed in Saccharomyces cerevisiae Altogether, the processing of peroxiredoxins by Imp2 or Oct1 likely represents systems that control the localization of Prxs into distinct compartments and thereby contribute to various mitochondrial redox processes. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. Phosphorylation of Mitochondrial Polyubiquitin by PINK1 Promotes Parkin Mitochondrial Tethering

    PubMed Central

    Shiba-Fukushima, Kahori; Arano, Taku; Matsumoto, Gen; Inoshita, Tsuyoshi; Yoshida, Shigeharu; Ishihama, Yasushi; Ryu, Kwon-Yul; Nukina, Nobuyuki; Hattori, Nobutaka; Imai, Yuzuru

    2014-01-01

    The kinase PINK1 and the E3 ubiquitin (Ub) ligase Parkin participate in mitochondrial quality control. The phosphorylation of Ser65 in Parkin's ubiquitin-like (UBl) domain by PINK1 stimulates Parkin activation and translocation to damaged mitochondria, which induces mitophagy generating polyUb chain. However, Parkin Ser65 phosphorylation is insufficient for Parkin mitochondrial translocation. Here we report that Ser65 in polyUb chain is also phosphorylated by PINK1, and that phosphorylated polyUb chain on mitochondria tethers Parkin at mitochondria. The expression of Tom70MTS-4xUb SE, which mimics phospho-Ser65 polyUb chains on the mitochondria, activated Parkin E3 activity and its mitochondrial translocation. An E3-dead form of Parkin translocated to mitochondria with reduced membrane potential in the presence of Tom70MTS-4xUb SE, whereas non-phospho-polyUb mutant Tom70MTS-4xUb SA abrogated Parkin translocation. Parkin binds to the phospho-polyUb chain through its RING1-In-Between-RING (IBR) domains, but its RING0-linker is also required for mitochondrial translocation. Moreover, the expression of Tom70MTS-4xUb SE improved mitochondrial degeneration in PINK1-deficient, but not Parkin-deficient, Drosophila. Our study suggests that the phosphorylation of mitochondrial polyUb by PINK1 is implicated in both Parkin activation and mitochondrial translocation, predicting a chain reaction mechanism of mitochondrial phospho-polyUb production by which rapid translocation of Parkin is achieved. PMID:25474007

  20. Expression of a plant virus non-structural protein in Saccharomyces cerevisiae causes membrane proliferation and altered mitochondrial morphology.

    PubMed

    Rubino, L; Di Franco, A; Russo, M

    2000-01-01

    Carnation Italian ringspot tombusvirus encodes a protein, referred to as 36K, that possesses a mitochondrial targeting signal and two transmembrane segments which are thought to anchor this protein to the outer membrane of the mitochondrial envelope of infected plant cells. To determine the topology of the virus protein inserted in the cell membrane, as well as the sequence requirements for targeting and insertion, an in vivo system was set up in which this could be analysed in the absence of productive virus infection. The 36K protein was expressed in the yeast Saccharomyces cerevisiae in native form or fused to the green fluorescent protein. Using a fluorescence microscope, large green-fluorescing cytoplasmic aggregates were visible which stained red when cells were treated with the vital stain MitoTracker, which is specific for mitochondria. These aggregates were shown by electron microscopy to be composed of either mitochondria or membranes. The latter type was particularly abundant for the construct in which the green fluorescent protein was fused at the N terminus of the 36K protein. Immunoelectron microscopy demonstrated that the viral protein is present in the anomalous aggregates and Western blot analysis of protein extracts showed 36K to be resistant to alkaline, urea or salt extraction, a property of integral membrane proteins.

  1. Mitochondrial dysfunction is involved in the toxic activity of boric acid against Saprolegnia.

    PubMed

    Ali, Shimaa E; Thoen, Even; Evensen, Øystein; Wiik-Nielsen, Jannicke; Gamil, Amr A A; Skaar, Ida

    2014-01-01

    There has been a significant increase in the incidence of Saprolegnia infections over the past decades, especially after the banning of malachite green. Very often these infections are associated with high economic losses in salmonid farms and hatcheries. The use of boric acid to control the disease has been investigated recently both under in vitro and in vivo conditions, however its possible mode of action against fish pathogenic Saprolegnia is not known. In this study, we have explored the transformation in Saprolegnia spores/hyphae after exposure to boric acid (1 g/L) over a period 4-24 h post treatment. Using transmission electron microscopy (TEM), early changes in Saprolegnia spores were detected. Mitochondrial degeneration was the most obvious sign observed following 4 h treatment in about 20% of randomly selected spores. We also investigated the effect of the treatment on nuclear division, mitochondrial activity and function using confocal laser scanning microscopy (CLSM). Fluorescence microscopy was also used to test the effect of treatment on mitochondrial membrane potential and formation of reactive oxygen species. Additionally, the viability and proliferation of treated spores that correlated to mitochondrial enzymatic activity were tested using an MTS assay. All obtained data pointed towards changes in the mitochondrial structure, membrane potential and enzymatic activity following treatment. We have found that boric acid has no effect on the integrity of membranes of Saprolegnia spores at concentrations tested. It is therefore likely that mitochondrial dysfunction is involved in the toxic activity of boric acid against Saprolegnia spp.

  2. Mitochondrial Dysfunction Is Involved in the Toxic Activity of Boric Acid against Saprolegnia

    PubMed Central

    Ali, Shimaa E.; Thoen, Even; Evensen, Øystein; Wiik-Nielsen, Jannicke; Gamil, Amr A. A.; Skaar, Ida

    2014-01-01

    There has been a significant increase in the incidence of Saprolegnia infections over the past decades, especially after the banning of malachite green. Very often these infections are associated with high economic losses in salmonid farms and hatcheries. The use of boric acid to control the disease has been investigated recently both under in vitro and in vivo conditions, however its possible mode of action against fish pathogenic Saprolegnia is not known. In this study, we have explored the transformation in Saprolegnia spores/hyphae after exposure to boric acid (1 g/L) over a period 4–24 h post treatment. Using transmission electron microscopy (TEM), early changes in Saprolegnia spores were detected. Mitochondrial degeneration was the most obvious sign observed following 4 h treatment in about 20% of randomly selected spores. We also investigated the effect of the treatment on nuclear division, mitochondrial activity and function using confocal laser scanning microscopy (CLSM). Fluorescence microscopy was also used to test the effect of treatment on mitochondrial membrane potential and formation of reactive oxygen species. Additionally, the viability and proliferation of treated spores that correlated to mitochondrial enzymatic activity were tested using an MTS assay. All obtained data pointed towards changes in the mitochondrial structure, membrane potential and enzymatic activity following treatment. We have found that boric acid has no effect on the integrity of membranes of Saprolegnia spores at concentrations tested. It is therefore likely that mitochondrial dysfunction is involved in the toxic activity of boric acid against Saprolegnia spp. PMID:25354209

  3. Bitter taste receptor agonists alter mitochondrial function and induce autophagy in airway smooth muscle cells.

    PubMed

    Pan, Shi; Sharma, Pawan; Shah, Sushrut D; Deshpande, Deepak A

    2017-07-01

    Airway remodeling, including increased airway smooth muscle (ASM) mass, is a hallmark feature of asthma and COPD. We previously identified the expression of bitter taste receptors (TAS2Rs) on human ASM cells and demonstrated that known TAS2R agonists could promote ASM relaxation and bronchodilation and inhibit mitogen-induced ASM growth. In this study, we explored cellular mechanisms mediating the antimitogenic effect of TAS2R agonists on human ASM cells. Pretreatment of ASM cells with TAS2R agonists chloroquine and quinine resulted in inhibition of cell survival, which was largely reversed by bafilomycin A1, an autophagy inhibitor. Transmission electron microscope studies demonstrated the presence of double-membrane autophagosomes and deformed mitochondria. In ASM cells, TAS2R agonists decreased mitochondrial membrane potential and increased mitochondrial ROS and mitochondrial fragmentation. Inhibiting dynamin-like protein 1 (DLP1) reversed TAS2R agonist-induced mitochondrial membrane potential change and attenuated mitochondrial fragmentation and cell death. Furthermore, the expression of mitochondrial protein BCL2/adenovirus E1B 19-kDa protein-interacting protein 3 (Bnip3) and mitochondrial localization of DLP1 were significantly upregulated by TAS2R agonists. More importantly, inhibiting Bnip3 mitochondrial localization by dominant-negative Bnip3 significantly attenuated cell death induced by TAS2R agonist. Collectively the TAS2R agonists chloroquine and quinine modulate mitochondrial structure and function, resulting in ASM cell death. Furthermore, Bnip3 plays a central role in TAS2R agonist-induced ASM functional changes via a mitochondrial pathway. These findings further establish the cellular mechanisms of antimitogenic effects of TAS2R agonists and identify a novel class of receptors and pathways that can be targeted to mitigate airway remodeling as well as bronchoconstriction in obstructive airway diseases. Copyright © 2017 the American Physiological

  4. Caloric restriction improves efficiency and capacity of the mitochondrial electron transport chain in Saccharomyces cerevisiae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Joon-Seok; Choi, Kyung-Mi; Lee, Cheol-Koo, E-mail: cklee2005@korea.ac.kr

    2011-06-03

    Highlights: {yields} Calorie restriction (CR) increases electron transport chain (ETC) at both RNA and protein level. {yields} CR enhances mitochondrial membrane potential, and, regardless of ages, reduces reactive oxygen species. {yields} CR increases both efficiency and capacity of the ETC. {yields} CR induces intensive modulation at mitochondrial ETC where might be a major site leading to extension of lifespan. -- Abstract: Caloric restriction (CR) is known to extend lifespan in a variety of species; however, the mechanism remains unclear. In this study, we found that CR potentiated the mitochondrial electron transport chain (ETC) at both the transcriptional and translational levels.more » Indeed, mitochondrial membrane potential (MMP) was increased by CR, and, regardless of ages, overall reactive oxygen species (ROS) generation was decreased by CR. With these changes, overall growth rate of cells was maintained under various CR conditions, just like cells under a non-restricted condition. All of these data support increased efficiency and capacity of the ETC by CR, and this change might lead to extension of lifespan.« less

  5. Loss of mitochondrial exo/endonuclease EXOG affects mitochondrial respiration and induces ROS-mediated cardiomyocyte hypertrophy.

    PubMed

    Tigchelaar, Wardit; Yu, Hongjuan; de Jong, Anne Margreet; van Gilst, Wiek H; van der Harst, Pim; Westenbrink, B Daan; de Boer, Rudolf A; Silljé, Herman H W

    2015-01-15

    Recently, a locus at the mitochondrial exo/endonuclease EXOG gene, which has been implicated in mitochondrial DNA repair, was associated with cardiac function. The function of EXOG in cardiomyocytes is still elusive. Here we investigated the role of EXOG in mitochondrial function and hypertrophy in cardiomyocytes. Depletion of EXOG in primary neonatal rat ventricular cardiomyocytes (NRVCs) induced a marked increase in cardiomyocyte hypertrophy. Depletion of EXOG, however, did not result in loss of mitochondrial DNA integrity. Although EXOG depletion did not induce fetal gene expression and common hypertrophy pathways were not activated, a clear increase in ribosomal S6 phosphorylation was observed, which readily explains increased protein synthesis. With the use of a Seahorse flux analyzer, it was shown that the mitochondrial oxidative consumption rate (OCR) was increased 2.4-fold in EXOG-depleted NRVCs. Moreover, ATP-linked OCR was 5.2-fold higher. This increase was not explained by mitochondrial biogenesis or alterations in mitochondrial membrane potential. Western blotting confirmed normal levels of the oxidative phosphorylation (OXPHOS) complexes. The increased OCR was accompanied by a 5.4-fold increase in mitochondrial ROS levels. These increased ROS levels could be normalized with specific mitochondrial ROS scavengers (MitoTEMPO, mnSOD). Remarkably, scavenging of excess ROS strongly attenuated the hypertrophic response. In conclusion, loss of EXOG affects normal mitochondrial function resulting in increased mitochondrial respiration, excess ROS production, and cardiomyocyte hypertrophy. Copyright © 2015 the American Physiological Society.

  6. Identification of a glycoprotein from rat liver mitochondrial inner membrane and demonstration of its origin in the endoplasmic reticulum.

    PubMed

    Chandra, N C; Spiro, M J; Spiro, R G

    1998-07-31

    Employing antisera against various subfractions of rat liver mitochondria (mitoplast, inner membrane, intermembrane, and matrix) as well as metabolically radiolabeled BRL-3A rat liver cells, we undertook a search for the presence of glycoproteins in this major cellular compartment for which little information in regard to glycoconjugates was available. Subsequent to [35S]methionine labeling of BRL-3A cells, a peptide:N-glycosidase-sensitive protein (45 kDa) was observed by SDS-polyacrylamide gel electrophoresis of the inner membrane immunoprecipitate, which was reduced to a molecular mass of 42 kDa by this enzyme. The 45-kDa protein was readily labeled with [2-3H]mannose, and indeed the radioactivity of the inner membrane immunoprecipitate was almost exclusively present in this component. Moreover, antisera directed against mitochondrial NADH-ubiquinone oxidoreductase (complex I) or F1F0-ATPase (complex V) also precipitated a 45-kDa protein from BRL-3A cell lysates as the predominant mannose-radiolabeled constituent. Endo-beta-N-acetylglucosaminidase completely removed the radiolabel from this glycoprotein, and the released oligosaccharides were of the partially trimmed polymannose type (Glc1Man9GlcNAc to Man8GlcNAc). Cycloheximide as well as tunicamycin resulted in total inhibition of radiolabeling of the inner membrane glycoprotein, and moreover, pulse-chase studies employing metrizamide density gradient centrifugation demonstrated that the glycoprotein was initially present in the endoplasmic reticulum (ER) and subsequently appeared in a mitochondrial location. Early movement of the glycoprotein to the mitochondria after synthesis in the ER was also evident from the limited processing undergone by its N-linked oligosaccharides; this stood in contrast to lysosomal glycoproteins in which we noted extensive conversion to complex oligosaccharides. Our findings suggest that the 45-kDa glycoprotein migrates from ER to mitochondria by the previously observed contact

  7. [Change in the lipid composition of the inner mitochondrial membranes in rat organs during adaptation to heat].

    PubMed

    Zubareva, E V; Seferova, R I; Denisova, N A

    1991-01-01

    Under conditions of adaptation to heating lipid composition in mitochondrial membranes of rat inner tissues was altered as follows: an increase in relative concentration of plasmalogenous forms of phospholipids (kidney, heart) and in content of saturated fatty acids (liver tissue), a decrease in the index of fatty acids unsaturation and in the ratio of fatty acids omega-3/omega-6. The alterations observed enabled the membranes to keep sufficient amount of liquidity essential for functional activity of mitochondria in heating.

  8. NITRIC OXIDE, MITOCHONDRIAL HYPERPOLARIZATION AND T-CELL ACTIVATION

    PubMed Central

    Nagy, Gyorgy; Koncz, Agnes; Fernandez, David; Perl, Andras

    2007-01-01

    T lymphocyte activation is associated with nitric oxide (NO) production that plays an essential role in multiple T cell functions. NO acts as a messenger, activating soluble guanyl cyclase and participating in the transduction signaling pathways involving cyclic GMP. NO modulates mitochondrial events that are involved in apoptosis and regulates mitochondrial membrane potential and mitochondrial biogenesis in many cell types, including lymphocytes. Mitochondrial hyperpolarization (MHP), an early and reversible event during both T lymphocyte activation and apoptosis, is regulated by NO. Here, we discuss recent evidence that NO-induced MHP represents a molecular switch in multiple T cell signaling pathways. Overproduction of NO in systemic lupus erythematosus (SLE) induces mitochondrial biogenesis and alters Ca2+ signaling. Thus, while NO plays a physiological role in lymphocyte cell signaling, its overproduction may disturb normal T cell function, contributing to the pathogenesis of autoimmunity. PMID:17462531

  9. Direct effect of Taxol on free radical formation and mitochondrial permeability transition.

    PubMed

    Varbiro, G; Veres, B; Gallyas, F; Sumegi, B

    2001-08-15

    To elucidate the potential role of mitochondria in Taxol-induced cytotoxicity, we studied its direct mitochondrial effects. In Percoll-gradient purified liver mitochondria, Taxol induced large amplitude swelling in a concentration-dependent manner in the microM range. Opening of the permeability pore was also confirmed by the access of mitochondrial matrix enzymes for membrane impermeable substrates in Taxol-treated mitochondria. Taxol induced the dissipation of mitochondrial membrane potential (DeltaPsi) determined by Rhodamine123 release and induced the release of cytochrome c from the intermembrane space. All these effects were inhibited by 2.5 microM cyclosporine A. Taxol significantly increased the formation of reactive oxygen species (ROS) in both the aqueous and the lipid phase as determined by dihydrorhodamine123 and resorufin derivative. Cytochrome oxidase inhibitor CN(-), azide, and NO abrogated the Taxol-induced mitochondrial ROS formation while inhibitors of the other respiratory complexes and cyclosporine A had no effect. We confirmed that the Taxol-induced collapse of DeltaPsi and the induction of ROS production occurs in BRL-3A cells. In conclusion, Taxol-induced adenine nucleotide translocase-cyclophilin complex mediated permeability transition, and cytochrome oxidase mediated ROS production. Because both cytochrome c release and mitochondrial ROS production can induce suicide pathways, the direct mitochondrial effects of Taxol may contribute to its cytotoxicity.

  10. HBCDD-induced sustained reduction in mitochondrial membrane potential, ATP and steroidogenesis in peripubertal rat Leydig cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fa, Svetlana; Pogrmic-Majkic, Kristina; Samardzija, Dragana

    Hexabromocyclododecane (HBCDD), a brominated flame retardant added to various consumer products, is a ubiquitous environmental contaminant. We have previously shown that 6-hour exposure to HBCDD disturbs basal and human chorionic gonadotropin (hCG)-induced steroidogenesis in rat Leydig cells. Reduction in mitochondrial membrane potential (ΔΨm) and cAMP production was also observed. Here, we further expanded research on the effect of HBCDD on Leydig cells by using a prolonged exposure scenario. Cells were incubated in the presence of HBCDD during 24 h and then treated with HBCDD + hCG for additional 2 h. Results showed that HBCDD caused a sustained reduction in ATPmore » level after 24 h of exposure, which persisted after additional 2-hour treatment with HBCDD + hCG. cAMP and androgen accumulations measured after 2 h of HBCDD + hCG treatment were also inhibited. Real-time PCR analysis showed significant inhibition in the expression of genes for steroidogenic enzymes, luteinizing hormone receptor, regulatory and transport proteins, and several transcription factors under both treatment conditions. Western blot analysis revealed a decreased level of 30 kDa steroidogenic acute regulatory protein (StAR) after HBCDD + hCG treatment. In addition, HBCDD decreased the conversion of 22-OH cholesterol to pregnenolone and androstenedione to testosterone, indicating loss of the activity of cytochrome P450C11A1 (CYP11A1) and 17β-hydroxysteroid dehydrogenase (HSD17β). Cell survival was not affected, as confirmed by cytotoxicity and trypan blue tests or DNA fragmentation analysis. In summary, our data showed that HBCDD inhibits ATP supply, most likely through a decrease in ΔΨm, and targets multiple sites in the steroidogenic pathway in Leydig cells. - Highlights: • HBCDD causes a sustained reduction in ΔΨm and ATP level in Leydig cells. • Prolonged HBCDD exposure decreases hCG-supported steroidogenesis in Leydig cells. • HBCDD targets StAR, HSD17β and CYP11A1 in

  11. Pharmacologic Effects on Mitochondrial Function

    ERIC Educational Resources Information Center

    Cohen, Bruce H.

    2010-01-01

    The vast majority of energy necessary for cellular function is produced in mitochondria. Free-radical production and apoptosis are other critical mitochondrial functions. The complex structure, electrochemical properties of the inner mitochondrial membrane (IMM), and genetic control from both mitochondrial DNA (mtDNA) and nuclear DNA (nDNA) are…

  12. TIMMDC1/C3orf1 functions as a membrane-embedded mitochondrial complex I assembly factor through association with the MCIA complex.

    PubMed

    Guarani, Virginia; Paulo, Joao; Zhai, Bo; Huttlin, Edward L; Gygi, Steven P; Harper, J Wade

    2014-03-01

    Complex I (CI) of the electron transport chain, a large membrane-embedded NADH dehydrogenase, couples electron transfer to the release of protons into the mitochondrial inner membrane space to promote ATP production through ATP synthase. In addition to being a central conduit for ATP production, CI activity has been linked to neurodegenerative disorders, including Parkinson's disease. CI is built in a stepwise fashion through the actions of several assembly factors. We employed interaction proteomics to interrogate the molecular associations of 15 core subunits and assembly factors previously linked to human CI deficiency, resulting in a network of 101 proteins and 335 interactions (edges). TIMMDC1, a predicted 4-pass membrane protein, reciprocally associated with multiple members of the MCIA CI assembly factor complex and core CI subunits and was localized in the mitochondrial inner membrane, and its depletion resulted in reduced CI activity and cellular respiration. Quantitative proteomics demonstrated a role for TIMMDC1 in assembly of membrane-embedded and soluble arms of the complex. This study defines a new membrane-embedded CI assembly factor and provides a resource for further analysis of CI biology.

  13. Mitochondrial permeability transition pore: a promising target for the treatment of Parkinson's disease.

    PubMed

    Rasheed, Md Zeeshan; Tabassum, Heena; Parvez, Suhel

    2017-01-01

    Among the neurodegenerative diseases (ND), Parkinson's disease affects 6.3 million people worldwide characterized by the progressive loss of dopaminergic neurons in substantia nigra. The mitochondrial permeability transition pore (mtPTP) is a non-selective voltage-dependent mitochondrial channel whose opening modifies the permeability properties of the mitochondrial inner membrane. It is recognized as a potent pharmacological target for diseases associated with mitochondrial dysfunction and excessive cell death including ND such as Parkinson's disease (PD). Imbalance in Ca 2+ concentration, change in mitochondrial membrane potential, overproduction of reactive oxygen species (ROS), or mutation in mitochondrial genome has been implicated in the pathophysiology of the opening of the mtPTP. Different proteins are released by permeability transition including cytochrome c which is responsible for apoptosis. This review aims to discuss the importance of PTP in the pathophysiology of PD and puts together different positive as well as negative aspects of drugs such as pramipexole, ropinirole, minocyclin, rasagilin, and safinamide which act as a blocker or modifier for mtPTP. Some of them may be detrimental in their neuroprotective nature.

  14. Ethanol induced hepatic mitochondrial dysfunction is attenuated by all trans retinoic acid supplementation.

    PubMed

    Nair, Saritha S; Prathibha, P; Rejitha, S; Indira, M

    2015-08-15

    Alcoholics have reduced vitamin A levels in serum since vitamin A and ethanol share the same metabolic pathway. Vitamin A supplementation has an additive effect on ethanol induced toxicity. Hence in this study, we assessed the impact of supplementation of all trans retinoic acid (ATRA), an active metabolite of vitamin A on ethanol induced disruptive alterations in liver mitochondria. Male Sprague Dawley rats were grouped as follows: I: Control; II: Ethanol (4 g/kg b.wt./day); III: ATRA (100 μg/kg b.wt./day); and IV: Ethanol (4 g/kg b.wt./day)+ATRA (100 μg/kg b.wt./day). Duration of the experiment was 90 days, after which the animals were sacrificed for the study. The key enzymes of energy metabolism, reactive oxygen species, mitochondrial membrane potential and hepatic mRNA expressions of Bax, Bcl-2, c-fos and c-jun were assessed. Ethanol administration increased the reactive oxygen species generation in mitochondria. It also decreased the activities of the enzymes of citric acid cycle and oxidative phosphorylation. ATP content and mitochondrial membrane potential were decreased and cytosolic cytochrome c was increased consequently enhancing apoptosis. All these alterations were altered significantly on ATRA supplementation along with ethanol. These results were reinforced by our histopathological studies. ATRA supplementation to ethanol fed rats, led to reduction in oxidative stress, decreased calcium overload in the matrix and increased mitochondrial membrane potential, which might have altered the mitochondrial energy metabolism and elevated ATP production thereby reducing the apoptotic alterations. Hence ATRA supplementation seemed to be an effective intervention against alcohol induced mitochondrial dysfunction. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Protein translocation channel of mitochondrial inner membrane and matrix-exposed import motor communicate via two-domain coupling protein.

    PubMed

    Banerjee, Rupa; Gladkova, Christina; Mapa, Koyeli; Witte, Gregor; Mokranjac, Dejana

    2015-12-29

    The majority of mitochondrial proteins are targeted to mitochondria by N-terminal presequences and use the TIM23 complex for their translocation across the mitochondrial inner membrane. During import, translocation through the channel in the inner membrane is coupled to the ATP-dependent action of an Hsp70-based import motor at the matrix face. How these two processes are coordinated remained unclear. We show here that the two domain structure of Tim44 plays a central role in this process. The N-terminal domain of Tim44 interacts with the components of the import motor, whereas its C-terminal domain interacts with the translocation channel and is in contact with translocating proteins. Our data suggest that the translocation channel and the import motor of the TIM23 complex communicate through rearrangements of the two domains of Tim44 that are stimulated by translocating proteins.

  16. Mitochondrial protection by low doses of insulin-like growth factor- I in experimental cirrhosis.

    PubMed

    Pérez, Raquel; García-Fernández, María; Díaz-Sánchez, Matías; Puche, Juan E; Delgado, Gloria; Conchillo, Marian; Muntané, Jordi; Castilla-Cortázar, Inma

    2008-05-07

    To characterize the mitochondrial dysfunction in experimental cirrhosis and to study whether insulin-like growth factor-I (IGF- I) therapy (4 wk) is able to induce beneficial effects on damaged mitochondria leading to cellular protection. Wistar rats were divided into three groups: Control group, untreated cirrhotic rats and cirrhotic rats treated with IGF- I treatment (2 microg/100 g bw/d). Mitochondrial function was analyzed by flow cytometry in isolated hepatic mitochondria, caspase 3 activation was assessed by Western blot and apoptosis by TUNEL in the three experimental groups. Untreated cirrhotic rats showed a mitochondrial dysfunction characterized by a significant reduction of mitochondrial membrane potential (in status 4 and 3); an increase of intramitochondrial reactive oxigen species (ROS) generation and a significant reduction of ATPase activity. IGF- I therapy normalized mitochondrial function by increasing the membrane potential and ATPase activity and reducing the intramitochondrial free radical production. Activity of the electron transport complexes I and III was increased in both cirrhotic groups. In addition, untreated cirrhotic rats showed an increase of caspase 3 activation and apoptosis. IGF- I therapy reduced the expression of the active peptide of caspase 3 and resulted in reduced apoptosis. These results show that IGF- I exerts a mitochondrial protection in experimental cirrhosis leading to reduced apoptosis and increased ATP production.

  17. Role of Mitochondrial Ca2+ in the Regulation of Cellular Energetics

    PubMed Central

    Glancy, Brian; Balaban, Robert S.

    2012-01-01

    Calcium is an important signaling molecule involved in the regulation of many cellular functions. The large free energy in the Ca2+ ion membrane gradients make Ca2+ signaling inherently sensitive to the available cellular free energy, primarily in the form of ATP. In addition, Ca2+ regulates many cellular ATP consuming reactions such as muscle contraction, exocytosis, biosynthesis and neuronal signaling. Thus, Ca2+ becomes a logical candidate as a signaling molecule to modulate ATP hydrolysis and synthesis during changes in numerous forms of cellular work. Mitochondria are the primary source of aerobic energy production in mammalian cells and also maintain a large Ca2+ gradient across their inner membrane providing a signaling potential for this molecule. The demonstrated link between cytosolic and mitochondrial [Ca2+], identification of transport mechanisms as well as proximity of mitochondria to Ca2+ release sites further supports the notion that Ca2+ can be an important signaling molecule in the energy metabolism interplay of the cytosol with the mitochondria. Here we review sites within the mitochondria where Ca2+ plays a role in the regulation of ATP generation and potentially contributes to the orchestration of the cellular metabolic homeostasis. Early work on isolated enzymes pointed to several matrix dehydrogenases that are stimulated by Ca2+, which were confirmed in the intact mitochondrion as well as cellular and in vivo systems. However, studies in these intact systems suggested a more expansive influence of Ca2+ on mitochondrial energy conversion. Numerous non-invasive approaches monitoring NADH, mitochondrial membrane potential, oxygen consumption and workloads suggest significant Ca2+ effects on other elements of NADH generation as well as downstream elements of oxidative phosphorylation including the F1FO-ATPase and the cytochrome chain. These other potential elements of Ca2+ modification of mitochondrial energy conversion will be the focus of this

  18. Cell-permeable, mitochondrial-targeted, peptide antioxidants.

    PubMed

    Szeto, Hazel H

    2006-04-21

    Cellular oxidative injury has been implicated in aging and a wide array of clinical disorders including ischemia-reperfusion injury; neurodegenerative diseases; diabetes; inflammatory diseases such as atherosclerosis, arthritis, and hepatitis; and drug-induced toxicity. However, available antioxidants have not proven to be particularly effective against many of these disorders. A possibility is that some of the antioxidants do not reach the relevant sites of free radical generation, especially if mitochondria are the primary source of reactive oxygen species (ROS). The SS (Szeto-Schiller) peptide antioxidants represent a novel approach with targeted delivery of antioxidants to the inner mitochondrial membrane. The structural motif of these SS peptides centers on alternating aromatic residues and basic amino acids (aromatic-cationic peptides). These SS peptides can scavenge hydrogen peroxide and peroxynitrite and inhibit lipid peroxidation. Their antioxidant action can be attributed to the tyrosine or dimethyltyrosine residue. By reducing mitochondrial ROS, these peptides inhibit mitochondrial permeability transition and cytochrome c release, thus preventing oxidant-induced cell death. Because these peptides concentrate >1000-fold in the inner mitochondrial membrane, they prevent oxidative cell death with EC50 in the nM range. Preclinical studies support their potential use for ischemia-reperfusion injury and neurodegenerative disorders. Although peptides have often been considered to be poor drug candidates, these small peptides have excellent "druggable" properties, making them promising agents for many diseases with unmet needs.

  19. A novel method for determining human ex vivo submaximal skeletal muscle mitochondrial function

    PubMed Central

    Hey-Mogensen, Martin; Gram, Martin; Jensen, Martin Borch; Lund, Michael Taulo; Hansen, Christina Neigaard; Scheibye-Knudsen, Morten; Bohr, Vilhelm A; Dela, Flemming

    2015-01-01

    Abstract Despite numerous studies, there is no consensus about whether mitochondrial function is altered with increased age. The novelty of the present study is the determination of mitochondrial function at submaximal activity rates, which is more physiologically relevant than the ex vivo functionality protocols used previously. Muscle biopsies were taken from 64 old or young male subjects (aged 60–70 or 20–30 years). Aged subjects were recruited as trained or untrained. Muscle biopsies were used for the isolation of mitochondria and subsequent measurements of DNA repair, anti-oxidant capacity and mitochondrial protein levels (complexes I–V). Mitochondrial function was determined by simultaneous measurement of oxygen consumption, membrane potential and hydrogen peroxide emission using pyruvate + malate (PM) or succinate + rotenone (SR) as substrates. Proton leak was lower in aged subjects when determined at the same membrane potential and was unaffected by training status. State 3 respiration was lower in aged untrained subjects. This effect, however, was alleviated in aged trained subjects. H2O2 emission with PM was higher in aged subjects, and was exacerbated by training, although it was not changed when using SR. However, with a higher manganese superoxide dismuthase content, the trained aged subjects may actually have lower or similar mitochondrial superoxide emission compared to the untrained subjects. We conclude that ageing and the physical activity level in aged subjects are both related to changes in the intrinsic functionality of the mitochondrion in skeletal muscle. Both of these changes could be important factors in determining the metabolic health of the aged skeletal muscle cell. Key points The present study utilized a novel method aiming to investigate mitochondrial function in human skeletal muscle at submaximal levels and at a predefined membrane potential. The effect of age and training status was investigated using a cross

  20. MitoQ improves mitochondrial dysfunction in heart failure induced by pressure overload.

    PubMed

    Ribeiro Junior, Rogério Faustino; Dabkowski, Erinne Rose; Shekar, Kadambari Chandra; O Connell, Kelly A; Hecker, Peter A; Murphy, Michael P

    2018-03-01

    Heart failure remains a major public-health problem with an increase in the number of patients worsening from this disease. Despite current medical therapy, the condition still has a poor prognosis. Heart failure is complex but mitochondrial dysfunction seems to be an important target to improve cardiac function directly. Our goal was to analyze the effects of MitoQ (100 µM in drinking water) on the development and progression of heart failure induced by pressure overload after 14 weeks. The main findings are that pressure overload-induced heart failure in rats decreased cardiac function in vivo that was not altered by MitoQ. However, we observed a reduction in right ventricular hypertrophy and lung congestion in heart failure animals treated with MitoQ. Heart failure also decreased total mitochondrial protein content, mitochondrial membrane potential in the intermyofibrillar mitochondria. MitoQ restored membrane potential in IFM but did not restore mitochondrial protein content. These alterations are associated with the impairment of basal and stimulated mitochondrial respiration in IFM and SSM induced by heart failure. Moreover, MitoQ restored mitochondrial respiration in heart failure induced by pressure overload. We also detected higher levels of hydrogen peroxide production in heart failure and MitoQ restored the increase in ROS production. MitoQ was also able to improve mitochondrial calcium retention capacity, mainly in the SSM whereas in the IFM we observed a small alteration. In summary, MitoQ improves mitochondrial dysfunction in heart failure induced by pressure overload, by decreasing hydrogen peroxide formation, improving mitochondrial respiration and improving mPTP opening. Published by Elsevier Inc.

  1. Nutritional Ketosis and Mitohormesis: Potential Implications for Mitochondrial Function and Human Health

    PubMed Central

    Villamena, Frederick A.

    2018-01-01

    Impaired mitochondrial function often results in excessive production of reactive oxygen species (ROS) and is involved in the etiology of many chronic diseases, including cardiovascular disease, diabetes, neurodegenerative disorders, and cancer. Moderate levels of mitochondrial ROS, however, can protect against chronic disease by inducing upregulation of mitochondrial capacity and endogenous antioxidant defense. This phenomenon, referred to as mitohormesis, is induced through increased reliance on mitochondrial respiration, which can occur through diet or exercise. Nutritional ketosis is a safe and physiological metabolic state induced through a ketogenic diet low in carbohydrate and moderate in protein. Such a diet increases reliance on mitochondrial respiration and may, therefore, induce mitohormesis. Furthermore, the ketone β-hydroxybutyrate (BHB), which is elevated during nutritional ketosis to levels no greater than those resulting from fasting, acts as a signaling molecule in addition to its traditionally known role as an energy substrate. BHB signaling induces adaptations similar to mitohormesis, thereby expanding the potential benefit of nutritional ketosis beyond carbohydrate restriction. This review describes the evidence supporting enhancement of mitochondrial function and endogenous antioxidant defense in response to nutritional ketosis, as well as the potential mechanisms leading to these adaptations. PMID:29607218

  2. Hypomyelinating leukodystrophy-associated missense mutation in HSPD1 blunts mitochondrial dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miyamoto, Yuki; Eguchi, Takahiro; Kawahara, Kazuko

    Myelin-forming glial cells undergo dynamic morphological changes in order to produce mature myelin sheaths with multiple layers. In the central nervous system (CNS), oligodendrocytes differentiate to insulate neuronal axons with myelin sheaths. Myelin sheaths play a key role in homeostasis of the nervous system, but their related disorders lead not only to dismyelination and repeated demyelination but also to severe neuropathies. Hereditary hypomyelinating leukodystrophies (HLDs) are a group of such diseases affecting oligodendrocytes and are often caused by missense mutations of the respective responsible genes. Despite increasing identification of gene mutations through advanced nucleotide sequencing technology, studies on the relationshipsmore » between gene mutations and their effects on cellular and subcellular aberrance have not followed at the same rapid pace. In this study, we report that an HLD4-associated (Asp-29-to-Gly) mutant of mitochondrial heat shock 60-kDa protein 1 (HSPD1) causes short-length morphologies and increases the numbers of mitochondria due to their aberrant fission and fusion cycles. In experiments using a fluorescent dye probe, this mutation decreases the mitochondrial membrane potential. Also, mitochondria accumulate in perinuclear regions. HLD4-associated HSPD1 mutant blunts mitochondrial dynamics, probably resulting in oligodendrocyte malfunction. This study constitutes a first finding concerning the relationship between disease-associated HSPD1 mutation and mitochondrial dynamics, which may be similar to the relationship between another disease-associated HSPD1 mutation (MitCHAP-60 disease) and aberrant mitochondrial dynamics. - Highlights: • The HLD4 mutant of HSPD1 decreases mitochondrial fission frequency. • The HLD4 mutant decreases mitochondrial fusion frequency. • Mitochondria harboring the HLD4 mutant exhibit slow motility. • The HLD4 mutant of HSPD1 decreases mitochondrial membrane potential. • HLD4-related

  3. Vitamin E protects against the mitochondrial damage caused by cyclosporin A in LLC-PK1 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arriba, G. de; Seccion de Nefrologia del Hospital Universitario de Guadalajara; Departamento de Medicina de la Universidad de Alcala de Henares

    Cyclosporin A (CsA) has nephrotoxic effects known to involve reactive oxygen species (ROS), since antioxidants prevent the kidney damage induced by this drug. Given that mitochondria are among the main sources of intracellular ROS, the aims of our study were to examine the mitochondrial effects of CsA in the porcine renal endothelial cell line LLC-PK1 and the influence of the antioxidant Vitamin E (Vit E). Following the treatment of LLC-PK1 cells with CsA, we assessed the mitochondrial synthesis of superoxide anion, permeability transition pore opening, mitochondrial membrane potential, cardiolipin peroxidation, cytochrome c release and cellular apoptosis, using flow cytometry andmore » confocal microscopy procedures. Similar experiments were done after Vit E preincubation of cells. CsA treatment increased superoxide anion in a dose-dependent way. CsA opened the permeability transition pores, caused Bax migration to mitochondria, and decreased mitochondrial membrane potential and cardiolipin content. Also CsA released cytochrome c into cytosol and provoked cellular apoptosis. Vit E pretreatment inhibited the effects that CsA induced on mitochondrial structure and function in LLC-PK1 cells and avoided apoptosis. CsA modifies mitochondrial LLC-PK1 cell physiology with loss of negative electrochemical gradient across the inner mitochondrial membrane and increased lipid peroxidation. These features are related to apoptosis and can explain the cellular damage that CsA induces. As Vit E inhibited these effects, our results suggest that they were mediated by an increase in ROS production by mitochondria.« less

  4. Calcium and mitochondrial metabolism in ceramide-induced cardiomyocyte death

    PubMed Central

    Parra, Valentina; Moraga, Francisco; Kuzmicic, Jovan; López-Crisosto, Camila; Troncoso, Rodrigo; Torrealba, Natalia; Criollo, Alfredo; Díaz-Elizondo, Jessica; Rothermel, Beverly A.; Quest, Andrew F.G.; Lavandero, Sergio

    2014-01-01

    Ceramides are important intermediates in the biosynthesis and degradation of sphingolipids that regulatenumerous cellular processes, including cell cycle progression, cell growth, differentiation and death. In cardiomyocytes, ceramides induce apoptosis by decreasing mitochondrial membrane potential and promoting cytochrome-c release. Ca2+ overload is a common feature of all types of cell death. The aim of this study was to determine the effect of ceramides on cytoplasmic Ca2+ levels, mitochondrial function and cardiomyocyte death. Our data show that C2-ceramide induces apoptosis and necrosis in cultured cardiomyocytes by a mechanism involving increased Ca2+ influx, mitochondrial network fragmentation and loss of the mitochondrial Ca2+ buffer capacity. These biochemical events increase cytosolic Ca2+ levels and trigger cardiomyocyte death via the activation of calpains. PMID:23602992

  5. Multifunctional Mitochondrial AAA Proteases

    PubMed Central

    Glynn, Steven E.

    2017-01-01

    Mitochondria perform numerous functions necessary for the survival of eukaryotic cells. These activities are coordinated by a diverse complement of proteins encoded in both the nuclear and mitochondrial genomes that must be properly organized and maintained. Misregulation of mitochondrial proteostasis impairs organellar function and can result in the development of severe human diseases. ATP-driven AAA+ proteins play crucial roles in preserving mitochondrial activity by removing and remodeling protein molecules in accordance with the needs of the cell. Two mitochondrial AAA proteases, i-AAA and m-AAA, are anchored to either face of the mitochondrial inner membrane, where they engage and process an array of substrates to impact protein biogenesis, quality control, and the regulation of key metabolic pathways. The functionality of these proteases is extended through multiple substrate-dependent modes of action, including complete degradation, partial processing, or dislocation from the membrane without proteolysis. This review discusses recent advances made toward elucidating the mechanisms of substrate recognition, handling, and degradation that allow these versatile proteases to control diverse activities in this multifunctional organelle. PMID:28589125

  6. Multifunctional Mitochondrial AAA Proteases.

    PubMed

    Glynn, Steven E

    2017-01-01

    Mitochondria perform numerous functions necessary for the survival of eukaryotic cells. These activities are coordinated by a diverse complement of proteins encoded in both the nuclear and mitochondrial genomes that must be properly organized and maintained. Misregulation of mitochondrial proteostasis impairs organellar function and can result in the development of severe human diseases. ATP-driven AAA+ proteins play crucial roles in preserving mitochondrial activity by removing and remodeling protein molecules in accordance with the needs of the cell. Two mitochondrial AAA proteases, i-AAA and m-AAA, are anchored to either face of the mitochondrial inner membrane, where they engage and process an array of substrates to impact protein biogenesis, quality control, and the regulation of key metabolic pathways. The functionality of these proteases is extended through multiple substrate-dependent modes of action, including complete degradation, partial processing, or dislocation from the membrane without proteolysis. This review discusses recent advances made toward elucidating the mechanisms of substrate recognition, handling, and degradation that allow these versatile proteases to control diverse activities in this multifunctional organelle.

  7. Mitochondrial protection by low doses of insulin-like growth factor-Iin experimental cirrhosis

    PubMed Central

    Pérez, Raquel; García-Fernández, María; Díaz-Sánchez, Matías; Puche, Juan E; Delgado, Gloria; Conchillo, Marian; Muntané, Jordi; Castilla-Cortázar, Inma

    2008-01-01

    AIM: To characterize the mitochondrial dysfunction in experimental cirrhosis and to study whether insulin-like growth factor-I(IGF-I) therapy (4 wk) is able to induce beneficial effects on damaged mitochondria leading to cellular protection. METHODS: Wistar rats were divided into three groups: Control group, untreated cirrhotic rats and cirrhotic rats treated with IGF-Itreatment (2 μg/100 g bw/d). Mitochondrial function was analyzed by flow cytometry in isolated hepatic mitochondria, caspase 3 activation was assessed by Western blot and apoptosis by TUNEL in the three experimental groups. RESULTS: Untreated cirrhotic rats showed a mitochondrial dysfunction characterized by a significant reduction of mitochondrial membrane potential (in status 4 and 3); an increase of intramitochondrial reactive oxigen species (ROS) generation and a significant reduction of ATPase activity. IGF-Itherapy normalized mitochondrial function by increasing the membrane potential and ATPase activity and reducing the intramitochondrial free radical production. Activity of the electron transport complexes Iand III was increased in both cirrhotic groups. In addition, untreated cirrhotic rats showed an increase of caspase 3 activation and apoptosis. IGF-Itherapy reduced the expression of the active peptide of caspase 3 and resulted in reduced apoptosis. CONCLUSION: These results show that IGF-Iexerts a mitochondrial protection in experimental cirrhosis leading to reduced apoptosis and increased ATP production. PMID:18461658

  8. Synthesis and evaluation of 2-(3-arylureido)pyridines and 2-(3-arylureido)pyrazines as potential modulators of Aβ-induced mitochondrial dysfunction in Alzheimer's disease.

    PubMed

    Elkamhawy, Ahmed; Park, Jung-Eun; Hassan, Ahmed H E; Pae, Ae Nim; Lee, Jiyoun; Park, Beoung-Geon; Roh, Eun Joo

    2018-01-20

    A series of 2-(3-arylureido)pyridines and 2-(3-benzylureido)pyridines were synthesized and evaluated as potential modulators for amyloid beta (Aβ)-induced mitochondrial dysfunction in Alzheimer's disease (AD). The blocking activities of forty one small molecules against Aβ-induced mitochondrial permeability transition pore (mPTP) opening were evaluated by JC-1 assay which measures the change of mitochondrial membrane potential (ΔΨm). The inhibitory activity of twenty five compounds against Aβ-induced mPTP opening was superior to that of the standard cyclosporin A (CsA). Six hit compounds have been identified as likely safe in regards to mitochondrial and cellular safety and subjected to assessment for their protective effect against Aβ-induced deterioration of ATP production and cytotoxicity. Among them, compound 7fb has been identified as a lead compound protecting neuronal cells against 67% of neurocytotoxicity and 43% of suppression of mitochondrial ATP production induced by 5 μM concentrations of Aβ. Using CDocker algorithm, a molecular docking model presented a plausible binding mode for these compounds with cyclophilin D (CypD) receptor as a major component of mPTP. Hence, this report presents compound 7fb as a new nonpeptidyl mPTP blocker which would be promising for further development of Alzheimer's disease (AD) therapeutics. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  9. Modulation of mitochondrial ion transport by inorganic polyphosphate - essential role in mitochondrial permeability transition pore.

    PubMed

    Baev, Artyom Y; Negoda, Alexander; Abramov, Andrey Y

    2017-02-01

    Inorganic polyphosphate (polyP) is a biopolymer of phosphoanhydride-linked orthophosphate residues. PolyP is involved in multiple cellular processes including mitochondrial metabolism and cell death. We used artificial membranes and isolated mitochondria to investigate the role of the polyP in mitochondrial ion transport and in activation of PTP. Here, we found that polyP can modify ion permeability of de-energised mitochondrial membranes but not artificial membranes. This permeability was selective for Ba 2+ and Ca 2+ but not for other monovalent and bivalent cations and can be blocked by inhibitors of the permeability transition pore - cyclosporine A or ADP. Lower concentrations of polyP modulate calcium dependent permeability transition pore opening. Increase in polyP concentrations and elongation chain length of the polymer causes calcium independent swelling in energized conditions. Physiologically relevant concentrations of inorganic polyP can regulate calcium dependent as well calcium independent mitochondrial permeability transition pore opening. This raises the possibility that cytoplasmic polyP can be an important contributor towards regulation of the cell death.

  10. Effect of tributyltin on trout blood cells: changes in mitochondrial morphology and functionality.

    PubMed

    Tiano, Luca; Fedeli, Donatella; Santoni, Giorgio; Davies, Ian; Falcioni, Giancarlo

    2003-05-12

    The aquatic environment is the largest sink for the highly toxic organotin compounds, particularly as one of the main sources is the direct release of organotins from marine antifouling paints. The aim of this study was to investigate the mitochondrial toxicity and proapoptotic activity of tributyltin chloride (TBTC) in teleost leukocytes and nucleated erythrocytes, by means of electron microscopy investigation and mitochondrial membrane potential evaluation, in order to provide an early indicator of aquatic environmental pollution. Erythrocytes and leukocytes were obtained from an inbred strain of rainbow trout (Oncorhynchus mykiss). Transmission electronic micrographs of trout red blood cells (RBC) incubated in the presence of TBTC at 1 and 5 microM for 60 min showed remarkable mitochondrial morphological changes. TBTC-mediated toxicity involved alteration of the cristae ultrastructure and mitochondrial swelling, in a dose-dependent manner. Both erythrocytes and leukocytes displayed a consistent drop in mitochondrial membrane potential following TBTC exposure at concentrations >1 microM. The proapoptotic effect of TBTC on fish blood cells, and involvement of mitochondrial pathways was also investigated by verifying the release of cytochrome c, activation of caspase-3 and the presence of "DNA laddering". Although mitochondrial activity was much more strongly affected in erythrocytes, leukocytes incubated in the presence of TBTC showed the characteristic features of apoptosis after only 1 h of incubation. Longer exposures, up to 12 h, were required to trigger an apoptotic response in erythrocytes.

  11. Osthole attenuates spinal cord ischemia-reperfusion injury through mitochondrial biogenesis-independent inhibition of mitochondrial dysfunction in rats.

    PubMed

    Zhou, Yue-fei; Li, Liang; Feng, Feng; Yuan, Hua; Gao, Da-kuan; Fu, Luo-an; Fei, Zhou

    2013-12-01

    Osthole, the main bioactive compounds isolated from the traditional Chinese medical herb broad Cnidium monnieri (L.) cusson, has been shown to exert spectrum of pharmacologic activities. The aim of this study was to investigate the potential neuroprotective effects of osthole against spinal cord ischemia-reperfusion injury in rats. Osthole was administrated at the concentration of 0.1, 1, 10, 50, or 200 mg/kg (intraperitoneally) 1 h before spinal cord ischemia. The effects on spinal cord injury were measured by spinal cord water content, infarct volume, hematoxylin and eosin staining, and neurologic assessment. Mitochondria were purified from injured spinal cord tissue to determine mitochondrial function. We found that treatment with osthole (10 and 50 mg/kg) significantly decreased spinal cord water content and infarct volume, preserved normal motor neurons, and improved neurologic functions. These protective effects can be also observed even if the treatment was delayed to 4 h after reperfusion. Osthole treatment preserved mitochondrial membrane potential level, reduced reactive oxygen species production, increased adenosine triphosphate generation, and inhibited cytochrome c release in mitochondrial samples. Moreover, osthole increased mitochondria respiratory chain complex activities in spinal cord tissue, with no effect on mitochondrial DNA content and the expression of mitochondrial-specific transcription factors. All these findings demonstrate the neuroprotective effect of osthole in spinal cord ischemia-reperfusion injury model and suggest that oshtole-induced neuroprotection was mediated by mitochondrial biogenesis-independent inhibition of mitochondrial dysfunction. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Real-time detection of intracellular reactive oxygen species and mitochondrial membrane potential in THP-1 macrophages during ultrasonic irradiation for optimal sonodynamic therapy.

    PubMed

    Sun, Xin; Xu, Haobo; Shen, Jing; Guo, Shuyuan; Shi, Sa; Dan, Juhua; Tian, Fang; Tian, Yanfeng; Tian, Ye

    2015-01-01

    Reactive oxygen species (ROS) elevation and mitochondrial membrane potential (MMP) loss have been proven recently to be involved in sonodynamic therapy (SDT)-induced macrophage apoptosis and necrosis. This study aims to develop an experimental system to monitor intracellular ROS and MMP in real-time during ultrasonic irradiation in order to achieve optimal effect in SDT. Cultured THP-1 derived macrophages were incubated with 5-aminolevulinic acid (ALA), and then sonicated at different intensities. Intracellular ROS elevation and MMP loss were detected in real-time by fluorospectrophotometer using fluorescence probe DCFH-DA and jc-1, respectively. Ultrasound at low intensities (less than 0.48W/cm(2)) had no influence on ROS and MMP in macrophages, whereas at an intensity of 0.48W/cm(2), ROS elevation and MMP loss were observed during ultrasonic irradiation. These effects were strongly enhanced in the presence of ALA. Quantitative analysis showed that ROS elevation and MMP loss monotonically increased with the rise of ultrasonic intensity between 0.48 and 1.16W/cm(2). SDT at 0.48 and 0.84W/cm(2) induced mainly apoptosis in THP-1 macrophages while SDT at 1.16W/cm(2) mainly cell necrosis. This study supports the validity and potential utility of real-time ROS and MMP detection as a dosimetric tool for the determination of optimal SDT. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Measurement of mitochondrial Ca2+ transport mediated by three transport proteins: VDAC1, the Na+/Ca2+ exchanger, and the Ca2+ uniporter.

    PubMed

    Ben-Hail, Danya; Palty, Raz; Shoshan-Barmatz, Varda

    2014-02-01

    Ca(2+) is a ubiquitous cellular signal, with changes in intracellular Ca(2+) concentration not only stimulating a number of intercellular events but also triggering cell death pathways, including apoptosis. Mitochondrial Ca(2+) uptake and release play pivotal roles in cellular physiology by regulating intracellular Ca(2+) signaling, energy metabolism and cell death. Ca(2+) transport across the inner and outer mitochondrial membranes is mediated by several proteins, including channels, antiporters, and a uniporter. In this article, we present the background to several methods now established for assaying mitochondrial Ca(2+) transport activity across both mitochondrial membranes. The first of these is Ca(2+) transport mediated by the outer mitochondrial protein, the voltage-dependent anion-selective channel protein 1 (VDAC1, also known as porin 1), both as a purified protein reconstituted into a planar lipid bilayer (PLB) or into liposomes and as a mitochondrial membrane-embedded protein. The second method involves isolated mitochondria for assaying the activity of an inner mitochondrial membrane transport protein, the mitochondrial Ca(2+) uniporter (MCU) that transports Ca(2+) and is powered by the steep mitochondrial membrane potential. In the event of Ca(2+) overload, this leads to opening of the mitochondrial permeability transition pore (MPTP) and cell death. The third method describes how Na(+)-dependent mitochondrial Ca(2+) efflux mediated by mitochondrial NCLX, a member of the Na(+)/Ca(2+) exchanger superfamily, can be assayed in digitonin-permeabilized HEK-293 cells. The Ca(2+)-transport assays can be performed under various conditions and in combination with inhibitors, allowing detailed characterization of the transport activity of interest.

  14. Lost region in amyloid precursor protein (APP) through TALEN-mediated genome editing alters mitochondrial morphology.

    PubMed

    Wang, Yajie; Wu, Fengyi; Pan, Haining; Zheng, Wenzhong; Feng, Chi; Wang, Yunfu; Deng, Zixin; Wang, Lianrong; Luo, Jie; Chen, Shi

    2016-02-29

    Alzheimer's disease (AD) is characterized by amyloid-β (Aβ) deposition in the brain. Aβ plaques are produced through sequential β/γ cleavage of amyloid precursor protein (APP), of which there are three main APP isoforms: APP695, APP751 and APP770. KPI-APPs (APP751 and APP770) are known to be elevated in AD, but the reason remains unclear. Transcription activator-like (TAL) effector nucleases (TALENs) induce mutations with high efficiency at specific genomic loci, and it is thus possible to knock out specific regions using TALENs. In this study, we designed and expressed TALENs specific for the C-terminus of APP in HeLa cells, in which KPI-APPs are predominantly expressed. The KPI-APP mutants lack a 12-aa region that encompasses a 5-aa trans-membrane (TM) region and 7-aa juxta-membrane (JM) region. The mutated KPI-APPs exhibited decreased mitochondrial localization. In addition, mitochondrial morphology was altered, resulting in an increase in spherical mitochondria in the mutant cells through the disruption of the balance between fission and fusion. Mitochondrial dysfunction, including decreased ATP levels, disrupted mitochondrial membrane potential, increased ROS generation and impaired mitochondrial dehydrogenase activity, was also found. These results suggest that specific regions of KPI-APPs are important for mitochondrial localization and function.

  15. Protein translocation channel of mitochondrial inner membrane and matrix-exposed import motor communicate via two-domain coupling protein

    PubMed Central

    Banerjee, Rupa; Gladkova, Christina; Mapa, Koyeli; Witte, Gregor; Mokranjac, Dejana

    2015-01-01

    The majority of mitochondrial proteins are targeted to mitochondria by N-terminal presequences and use the TIM23 complex for their translocation across the mitochondrial inner membrane. During import, translocation through the channel in the inner membrane is coupled to the ATP-dependent action of an Hsp70-based import motor at the matrix face. How these two processes are coordinated remained unclear. We show here that the two domain structure of Tim44 plays a central role in this process. The N-terminal domain of Tim44 interacts with the components of the import motor, whereas its C-terminal domain interacts with the translocation channel and is in contact with translocating proteins. Our data suggest that the translocation channel and the import motor of the TIM23 complex communicate through rearrangements of the two domains of Tim44 that are stimulated by translocating proteins. DOI: http://dx.doi.org/10.7554/eLife.11897.001 PMID:26714107

  16. Interaction of Mitochondria with the Endoplasmic Reticulum and Plasma Membrane in Calcium Homeostasis, Lipid Trafficking and Mitochondrial Structure.

    PubMed

    Szymański, Jędrzej; Janikiewicz, Justyna; Michalska, Bernadeta; Patalas-Krawczyk, Paulina; Perrone, Mariasole; Ziółkowski, Wiesław; Duszyński, Jerzy; Pinton, Paolo; Dobrzyń, Agnieszka; Więckowski, Mariusz R

    2017-07-20

    Studying organelles in isolation has been proven to be indispensable for deciphering the underlying mechanisms of molecular cell biology. However, observing organelles in intact cells with the use of microscopic techniques reveals a new set of different junctions and contact sites between them that contribute to the control and regulation of various cellular processes, such as calcium and lipid exchange or structural reorganization of the mitochondrial network. In recent years, many studies focused their attention on the structure and function of contacts between mitochondria and other organelles. From these studies, findings emerged showing that these contacts are involved in various processes, such as lipid synthesis and trafficking, modulation of mitochondrial morphology, endoplasmic reticulum (ER) stress, apoptosis, autophagy, inflammation and Ca 2 + handling. In this review, we focused on the physical interactions of mitochondria with the endoplasmic reticulum and plasma membrane and summarized present knowledge regarding the role of mitochondria-associated membranes in calcium homeostasis and lipid metabolism.

  17. Pharmacological NAD-Boosting Strategies Improve Mitochondrial Homeostasis in Human Complex I-Mutant Fibroblasts.

    PubMed

    Felici, Roberta; Lapucci, Andrea; Cavone, Leonardo; Pratesi, Sara; Berlinguer-Palmini, Rolando; Chiarugi, Alberto

    2015-06-01

    Mitochondrial disorders are devastating genetic diseases for which efficacious therapies are still an unmet need. Recent studies report that increased availability of intracellular NAD obtained by inhibition of the NAD-consuming enzyme poly(ADP-ribose) polymerase (PARP)-1 or supplementation with the NAD-precursor nicotinamide riboside (NR) ameliorates energetic derangement and symptoms in mouse models of mitochondrial disorders. Whether these pharmacological approaches also improve bioenergetics of human cells harboring mitochondrial defects is unknown. It is also unclear whether the same signaling cascade is prompted by PARP-1 inhibitors and NR supplementation to improve mitochondrial homeostasis. Here, we show that human fibroblasts mutant for the NADH dehydrogenase (ubiquinone) Fe-S protein 1 (NDUFS1) subunit of respiratory complex I have similar ATP, NAD, and mitochondrial content compared with control cells, but show reduced mitochondrial membrane potential. Interestingly, mutant cells also show increased transcript levels of mitochondrial DNA but not nuclear DNA respiratory complex subunits, suggesting activation of a compensatory response. At variance with prior work in mice, however, NR supplementation, but not PARP-1 inhibition, increased intracellular NAD content in NDUFS1 mutant human fibroblasts. Conversely, PARP-1 inhibitors, but not NR supplementation, increased transcription of mitochondrial transcription factor A and mitochondrial DNA-encoded respiratory complexes constitutively induced in mutant cells. Still, both NR and PARP-1 inhibitors restored mitochondrial membrane potential and increased organelle content as well as oxidative activity of NDUFS1-deficient fibroblasts. Overall, data provide the first evidence that in human cells harboring a mitochondrial respiratory defect exposure to NR or PARP-1, inhibitors activate different signaling pathways that are not invariantly prompted by NAD increases, but equally able to improve energetic

  18. Mitochondrial myopathies.

    PubMed

    DiMauro, Salvatore

    2006-11-01

    Our understanding of mitochondrial diseases (defined restrictively as defects of the mitochondrial respiratory chain) is expanding rapidly. In this review, I will give the latest information on disorders affecting predominantly or exclusively skeletal muscle. The most recently described mitochondrial myopathies are due to defects in nuclear DNA, including coenzyme Q10 deficiency and mutations in genes controlling mitochondrial DNA abundance and structure, such as POLG, TK2, and MPV17. Barth syndrome, an X-linked recessive mitochondrial myopathy/cardiopathy, is associated with decreased amount and altered structure of cardiolipin, the main phospholipid of the inner mitochondrial membrane, but a secondary impairment of respiratory chain function is plausible. The role of mutations in protein-coding genes of mitochondrial DNA in causing isolated myopathies has been confirmed. Mutations in tRNA genes of mitochondrial DNA can also cause predominantly myopathic syndromes and--contrary to conventional wisdom--these mutations can be homoplasmic. Defects in the mitochondrial respiratory chain impair energy production and almost invariably involve skeletal muscle, causing exercise intolerance, cramps, recurrent myoglobinuria, or fixed weakness, which often affects extraocular muscles and results in droopy eyelids (ptosis) and progressive external ophthalmoplegia.

  19. A flavivirus protein M-derived peptide directly permeabilizes mitochondrial membranes, triggers cell death and reduces human tumor growth in nude mice.

    PubMed

    Brabant, Magali; Baux, Ludwig; Casimir, Richard; Briand, Jean Paul; Chaloin, Olivier; Porceddu, Mathieu; Buron, Nelly; Chauvier, David; Lassalle, Myriam; Lecoeur, Hervé; Langonné, Alain; Dupont, Sylvie; Déas, Olivier; Brenner, Catherine; Rebouillat, Dominique; Muller, Sylviane; Borgne-Sanchez, Annie; Jacotot, Etienne

    2009-10-01

    Dengue viruses belong to the Flavivirus family and are responsible for hemorrhagic fever in Human. Dengue virus infection triggers apoptosis especially through the expression of the small membrane (M) protein. Using isolated mitochondria, we found that synthetic peptides containing the C-terminus part of the M ectodomain caused apoptosis-related mitochondrial membrane permeabilization (MMP) events. These events include matrix swelling and the dissipation of the mitochondrial transmembrane potential (DeltaPsi(m)). Protein M Flavivirus sequence alignments and helical wheel projections reveal a conserved distribution of charged residues. Moreover, when combined to the cell penetrating HIV-1 Tat peptide transduction domain (Tat-PTD), this sequence triggers a caspase-dependent cell death associated with DeltaPsi(m) loss and cytochrome c release. Mutational approaches coupled to functional screening on isolated mitochondria resulted in the selection of a protein M derived sequence containing nine residues with potent MMP-inducing properties on isolated mitochondria. A chimeric peptide composed of a Tat-PTD linked to the 9-mer entity triggers MMP and cell death. Finally, local administration of this chimeric peptide induces growth inhibition of xenograft prostate PC3 tumors in immuno-compromised mice, and significantly enhances animal survival. Together, these findings support the notion of using viral genomes as valuable sources to discover mitochondria-targeted sequences that may lead to the development of new anticancer compounds.

  20. Calcium-Induced Mitochondrial Permeability Transitions: Parameters of Ca2+ Ion Interactions with Mitochondria and Effects of Oxidative Agents.

    PubMed

    Golovach, Nina G; Cheshchevik, Vitali T; Lapshina, Elena A; Ilyich, Tatsiana V; Zavodnik, Ilya B

    2017-04-01

    We evaluated the parameters of Ca 2+ -induced mitochondrial permeability transition (MPT) pore formations, Ca 2+ binding constants, stoichiometry, energy of activation, and the effect of oxidative agents, tert-butyl hydroperoxide (tBHP), and hypochlorous acid (HOCl), on Ca 2+ -mediated process in rat liver mitochondria. From the Hill plot of the dependence of MPT rate on Ca 2+ concentration, we determined the order of interaction of Ca 2+ ions with the mitochondrial sites, n = 3, and the apparent K d = 60 ± 12 µM. We also found the apparent Michaelis-Menten constant, K m , for Ca 2+ interactions with mitochondria to be equal to 75 ± 20 µM, whereas that in the presence of 300 µM tBHP was 120 ± 20 µM. Using the Arrhenius plots of the temperature dependences of apparent mitochondrial swelling rate at various Ca 2+ concentrations, we calculated the activation energy of the MPT process. ΔE a was 130 ± 20 kJ/mol at temperatures below the break point of the Arrhenius plot (30-34 °C) and 50 ± 9 kJ/mol at higher temperatures. Ca 2+ ions induced rapid mitochondrial NADH depletion and membrane depolarization. Prevention of the pore formation by cyclosporin A inhibited Ca 2+ -dependent mitochondrial depolarization and Mg 2+ ions attenuated the potential dissipation. tBHP (10-150 µM) dose-dependently enhanced the rate of MPT opening, whereas the effect of HOCl on MPT depended on the ratio of HOCl/Ca 2+ . The apparent K m of tBHP interaction with mitochondria in the swelling reaction was found to be K m = 11 ± 3 µM. The present study provides evidence that three calcium ions interact with mitochondrial site with high affinity during MPT. Ca 2+ -induced MPT pore formations due to mitochondrial membrane protein denaturation resulted in membrane potential dissipation. Oxidants with different mechanisms, tBHP and HOCl, reduced mitochondrial membrane potential and oxidized mitochondrial NADH in EDTA-free medium and had an effect on

  1. Tongluo Xingnao Effervescent Tablet preserves mitochondrial energy metabolism and attenuates cognition deficits in APPswe/PS1De9 mice.

    PubMed

    Dai, Yuan; Ma, Tao; Ren, Xiangyi; Wei, Jiangping; Fu, Wenjun; Ma, Yuntong; Xu, Shijun; Zhang, Zhanjun

    2016-09-06

    Tongluo Xingnao Effervescent Tablet (TXET), a traditional Chinese herbal formula composed of Ligusticum chuanxiong hor, Scutellaria baicalensis Georgi and Angelica sinensis, has been widely used to treat Alzheimer's disease (AD) and related dementias for decades in China. In the present study, we investigated the effects of TXET on mitochondrial function, energy metabolism and cognitive amelioration in the APPswe/PS1De9 transgenetic mouse model of AD. The energy charge and phosphocreatine, activity of the mitochondrial electron transport chain complexes, mitochondrial membrane potential, activity of Na(+)-K(+) ATPase and the expression levels of Bcl-2 and Bax in the brains were measured, respectively. TXET exhibits significant protection on mitochondrial function and energy supply in addition to ameliorating cognitive decline in APPswe/PS1De9 mice. TXET rescues mitochondrial function by increasing the mitochondrial membrane potential, energy charge levels, activity of respiratory chain complexes and Na(+)-K(+) ATPase activity. These findings suggest that TXET may attenuate cognition impairment through the restoration of mitochondrial function and energy metabolism in the brains in APPswe/PS1De9 mice. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  2. CLC-Nt1, a putative chloride channel protein of tobacco, co-localizes with mitochondrial membrane markers.

    PubMed Central

    Lurin, C; Güclü, J; Cheniclet, C; Carde, J P; Barbier-Brygoo, H; Maurel, C

    2000-01-01

    The voltage-dependent chloride channel (CLC) family of membrane proteins has cognates in animals, yeast, bacteria and plants, and chloride-channel activity has been assigned to most of the animal homologues. Lack of evidence of CLC functions in plants prompted us to characterize the cellular localization of the tobacco CLC-Nt1 protein. Specific polyclonal antibodies were raised against an N-terminal polypeptide of CLC-Nt1. These antibodies were used to probe membrane proteins prepared by various cell-fractionation methods. These included aqueous two-phase partitioning (for plasma membranes), free-flow electrophoresis (for vacuolar and plasma membranes), intact vacuole isolation, Percoll-gradient centrifugation (for plastids and mitochondria) and stepped, linear, sucrose-density-gradient centrifugation (for mitochondria). Each purified membrane fraction was characterized with specific marker enzyme activities or antibodies. Our studies ruled out the possibility that the major cell localization of CLC-Nt1 was the vacuolar or plasma membranes, the endoplasmic reticulum, the Golgi apparatus or the plastids. In contrast, we showed that the tobacco CLC-Nt1 specifically co-localized with the markers of the mitochondrial inner membrane, cytochrome c oxidase and NAD9 protein. CLC-Nt1 may correspond to the inner membrane anion channel ('IMAC') described previously in animal and plant mitochondria. PMID:10816421

  3. CLC-Nt1, a putative chloride channel protein of tobacco, co-localizes with mitochondrial membrane markers.

    PubMed

    Lurin, C; Güclü, J; Cheniclet, C; Carde, J P; Barbier-Brygoo, H; Maurel, C

    2000-06-01

    The voltage-dependent chloride channel (CLC) family of membrane proteins has cognates in animals, yeast, bacteria and plants, and chloride-channel activity has been assigned to most of the animal homologues. Lack of evidence of CLC functions in plants prompted us to characterize the cellular localization of the tobacco CLC-Nt1 protein. Specific polyclonal antibodies were raised against an N-terminal polypeptide of CLC-Nt1. These antibodies were used to probe membrane proteins prepared by various cell-fractionation methods. These included aqueous two-phase partitioning (for plasma membranes), free-flow electrophoresis (for vacuolar and plasma membranes), intact vacuole isolation, Percoll-gradient centrifugation (for plastids and mitochondria) and stepped, linear, sucrose-density-gradient centrifugation (for mitochondria). Each purified membrane fraction was characterized with specific marker enzyme activities or antibodies. Our studies ruled out the possibility that the major cell localization of CLC-Nt1 was the vacuolar or plasma membranes, the endoplasmic reticulum, the Golgi apparatus or the plastids. In contrast, we showed that the tobacco CLC-Nt1 specifically co-localized with the markers of the mitochondrial inner membrane, cytochrome c oxidase and NAD9 protein. CLC-Nt1 may correspond to the inner membrane anion channel ('IMAC') described previously in animal and plant mitochondria.

  4. β-Lapachone attenuates mitochondrial dysfunction in MELAS cybrid cells.

    PubMed

    Jeong, Moon Hee; Kim, Jin Hwan; Seo, Kang-Sik; Kwak, Tae Hwan; Park, Woo Jin

    2014-11-21

    Mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes (MELAS) is a mitochondrial disease caused by mutations in the mitochondrial genome. This study investigated the efficacy of β-lapachone (β-lap), a natural quinone compound, in rescuing mitochondrial dysfunction in MELAS cybrid cells. β-Lap significantly restored energy production and mitochondrial membrane potential as well as normalized the elevated ROS level in MELAS cybrid cells. Additionally, β-lap reduced lactic acidosis and restored glucose uptake in the MELAS cybrid cells. Finally, β-lap activated Sirt1 by increasing the intracellular NAD(+)/NADH ratio, which was accompanied by increased mtDNA content. Two other quinone compounds (idebenone and CoQ10) that have rescued mitochondrial dysfunction in previous studies of MELAS cybrid cells had a minimal effect in the current study. Taken together, these results demonstrated that β-lap may provide a novel therapeutic modality for the treatment of MELAS. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Noninvasive probes of mitochondrial molecular motors

    NASA Astrophysics Data System (ADS)

    Nawarathna, Dharmakeerthna; Claycomb, James

    2005-03-01

    We report on a noninvasive method of probing mitochondrial molecular motors using nonlinear dielectric spectroscopy. It has been found previously that enzymes in the plasma membrane, particularly H+ ATPase, result in a strong low frequency (less than 100 Hz) nonlinear harmonic response. In this study, we find evidence that molecular motors located in the inner membranes of mitochondria cause the generation of harmonics at relatively high frequencies (1 - 30 kHz). In particular, we find that potassium cyanide (KCN), a respiratory inhibitor that binds to cytochrome c oxidase and thus prevents transport of protons across the mitochondrial inner membrane, suppresses the harmonic response. We observe this behavior in yeast (S. cerevisiae), a eucaryote that typically contains about 300 mitochondria, and B. indicas, a procaryote believed to be related to the ancient ancestor of mitochondria. Our current modeling efforts are focusing on a Brownian ratchet model of the F0 unit of ATP synthase, a remarkable molecular turbine driven by the proton gradient across the mitochondrial inner membrane.

  6. Phenyl-alpha-tert-butyl nitrone reverses mitochondrial decay in acute Chagas' disease.

    PubMed

    Wen, Jian-Jun; Bhatia, Vandanajay; Popov, Vsevolod L; Garg, Nisha Jain

    2006-12-01

    In this study, we investigated the mechanism(s) of mitochondrial functional decline in acute Chagas' disease. Our data show a substantial decline in respiratory complex activities (39 to 58%) and ATP (38%) content in Trypanosoma cruzi-infected murine hearts compared with normal controls. These metabolic alterations were associated with an approximately fivefold increase in mitochondrial reactive oxygen species production rate, substantial oxidative insult of mitochondrial membranes and respiratory complex subunits, and >60% inhibition of mtDNA-encoded transcripts for respiratory complex subunits in infected myocardium. The antioxidant phenyl-alpha-tert-butyl nitrone (PBN) arrested the oxidative damage-mediated loss in mitochondrial membrane integrity, preserved redox potential-coupled mitochondrial gene expression, and improved respiratory complex activities (47 to 95% increase) and cardiac ATP level (>or=40% increase) in infected myocardium. Importantly, PBN resulted twofold decline in mitochondrial reactive oxygen species production rate in infected myocardium. Taken together, our data demonstrate the pathological significance of oxidative stress in metabolic decay and energy homeostasis in acute chagasic myocarditis and further suggest that oxidative injuries affecting mitochondrial integrity-dependent expression and activity of the respiratory complexes initiate a feedback cycle of electron transport chain inefficiency, increased reactive oxygen species production, and energy homeostasis in acute chagasic hearts. PBN and other mitochondria-targeted antioxidants may be useful in altering mitochondrial decay and oxidative pathology in Chagas' disease.

  7. Sex differences in the regulation of spatially distinct cardiac mitochondrial subpopulations.

    PubMed

    Ribeiro, Rogério Faustino; Ronconi, Karoline Sousa; Morra, Elis Aguiar; Do Val Lima, Patrícia Ribeiro; Porto, Marcella Leite; Vassallo, Dalton Valentim; Figueiredo, Suely Gomes; Stefanon, Ivanita

    2016-08-01

    Spatially distinct mitochondrial subpopulation may mediate myocardial pathology through permeability transition pore opening (MPTP). The goal of this study was to assess sex differences on the two spatially distinct mitochondrial subpopulations: subsarcolemmal mitochondria (SSM) and intermyofibrillar mitochondria (IFM) based on morphology, membrane potential, mitochondrial function, oxidative phosphorylation, and MPTP. Aged matched Wistar rats were used to study SSM and IFM. Mitochondrial size was larger in SSM than in IFM in both genders. However, SSM internal complexity, yield, and membrane potential were higher in male than in female. The maximal rate of mitochondrial respiration, states 3 and 4, using glutamate + malate as substrate, were higher in IFM and SSM in the male group compared to female. The respiratory control ratio (RCR-state3/state 4), was not different in both SSM and IFM with glutamate + malate. The ADP:O ratio was found higher in IFM and SSM from female compared to males. When pyruvate was used, state 3 was found unchanged in both IFM and SSM, state 4 was also greater in male IFM compared to female. The RCR increased in the SSM while IFM remained the same. State 4 was higher in male SSM while in the IFM remained the same. The IFM presented a higher Ca(2+) retention capacity compared with SSM, however, there was a greater sensitivity to Ca(2+)-induced MPTP in SSM and IFM in the male group compared to female. In conclusion, our data show that spatially distinct mitochondrial subpopulations have sex-based differences in oxidative phosphorylation, morphology, and calcium retention capacity.

  8. Analysis of functional domains of rat mitochondrial Fis1, the mitochondrial fission-stimulating protein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jofuku, Akihiro; Ishihara, Naotada; Mihara, Katsuyoshi

    2005-07-29

    In yeast, mitochondrial-fission is regulated by the cytosolic dynamin-like GTPase (Dnm1p) in conjunction with a peripheral protein, Mdv1p, and a C-tail-anchored outer membrane protein, Fis1p. In mammals, a dynamin-related protein (Drp1) and Fis1 are involved in the mitochondrial-fission reaction as Dnm1 and Fis1 orthologues, respectively. The involvement of other component(s), such as the Mdv1 homologue, and the mechanisms regulating mitochondrial-fission remain unclear. Here, we identified rat Fis1 (rFis1) and analyzed its structure-function relationship. Blue-native-polyacrylamide gel electrophoresis revealed that rFis1 formed a {approx}200-kDa complex in the outer mitochondrial membrane. Its expression in HeLa cells promoted extensive mitochondrial fragmentation, and gene knock-downmore » by RNAi induced extension of the mitochondrial networks. Taking advantage of these properties, we analyzed functional domains of rFis1. These experiments revealed that the N-terminal and C-terminal segments are both essential for oligomeric rFis1 interaction, and the middle TPR-like domains regulate proper oligomer assembly. Any mutations that disturb the proper oligomeric assembly compromise mitochondrial division-stimulating activity of rFis1.« less

  9. Integrins engage mitochondrial function for signal transduction by a mechanism dependent on Rho GTPases

    PubMed Central

    Werner, Erica; Werb, Zena

    2002-01-01

    We show here the transient activation of the small GTPase Rac, followed by a rise in reactive oxygen species (ROS), as necessary early steps in a signal transduction cascade that lead to NFκB activation and collagenase-1 (CL-1)/matrix metalloproteinase-1 production after integrin-mediated cell shape changes. We show evidence indicating that this constitutes a new mechanism for ROS production mediated by small GTPases. Activated RhoA also induced ROS production and up-regulated CL-1 expression. A Rac mutant (L37) that prevents reorganization of the actin cytoskeleton prevented integrin-induced CL-1 expression, whereas mutations that abrogate Rac binding to the neutrophil NADPH membrane oxidase in vitro (H26 and N130) did not. Instead, ROS were produced by integrin-induced changes in mitochondrial function, which were inhibited by Bcl-2 and involved transient membrane potential loss. The cells showing this transient decrease in mitochondrial membrane potential were already committed to CL-1 expression. These results unveil a new molecular mechanism of signal transduction triggered by integrin engagement where a global mitochondrial metabolic response leads to gene expression rather than apoptosis. PMID:12119354

  10. Integrins engage mitochondrial function for signal transduction by a mechanism dependent on Rho GTPases.

    PubMed

    Werner, Erica; Werb, Zena

    2002-07-22

    We show here the transient activation of the small GTPase Rac, followed by a rise in reactive oxygen species (ROS), as necessary early steps in a signal transduction cascade that lead to NFkappaB activation and collagenase-1 (CL-1)/matrix metalloproteinase-1 production after integrin-mediated cell shape changes. We show evidence indicating that this constitutes a new mechanism for ROS production mediated by small GTPases. Activated RhoA also induced ROS production and up-regulated CL-1 expression. A Rac mutant (L37) that prevents reorganization of the actin cytoskeleton prevented integrin-induced CL-1 expression, whereas mutations that abrogate Rac binding to the neutrophil NADPH membrane oxidase in vitro (H26 and N130) did not. Instead, ROS were produced by integrin-induced changes in mitochondrial function, which were inhibited by Bcl-2 and involved transient membrane potential loss. The cells showing this transient decrease in mitochondrial membrane potential were already committed to CL-1 expression. These results unveil a new molecular mechanism of signal transduction triggered by integrin engagement where a global mitochondrial metabolic response leads to gene expression rather than apoptosis.

  11. SMG-1 kinase attenuates mitochondrial ROS production but not cell respiration deficits during hyperoxia.

    PubMed

    Resseguie, Emily A; Brookes, Paul S; O'Reilly, Michael A

    Supplemental oxygen (hyperoxia) used to treat individuals in respiratory distress causes cell injury by enhancing the production of toxic reactive oxygen species (ROS) and inhibiting mitochondrial respiration. The suppressor of morphogenesis of genitalia (SMG-1) kinase is activated during hyperoxia and promotes cell survival by phosphorylating the tumor suppressor p53 on serine 15. Here, we investigate whether SMG-1 and p53 blunt this vicious cycle of progressive ROS production and decline in mitochondrial respiration seen during hyperoxia. Human lung adenocarcinoma A549 and H1299 or colon carcinoma HCT116 cells were depleted of SMG-1, UPF-1, or p53 using RNA interference, and then exposed to room air (21% oxygen) or hyperoxia (95% oxygen). Immunoblotting was used to evaluate protein expression; a Seahorse Bioanalyzer was used to assess cellular respiration; and flow cytometry was used to evaluate fluorescence intensity of cells stained with mitochondrial or redox sensitive dyes. Hyperoxia increased mitochondrial and cytoplasmic ROS and suppressed mitochondrial respiration without changing mitochondrial mass or membrane potential. Depletion of SMG-1 or its cofactor, UPF1, significantly enhanced hyperoxia-induced mitochondrial but not cytosolic ROS abundance. They did not affect mitochondrial mass, membrane potential, or hyperoxia-induced deficits in mitochondrial respiration. Genetic depletion of p53 in A549 cells and ablation of the p53 gene in H1299 or HCT116 cells revealed that SMG-1 influences mitochondrial ROS through activation of p53. Our findings show that hyperoxia does not promote a vicious cycle of progressive mitochondrial ROS and dysfunction because SMG-1-p53 signaling attenuates production of mitochondrial ROS without preserving respiration. This suggests antioxidant therapies that blunt ROS production during hyperoxia may not suffice to restore cellular respiration.

  12. Molecular identity of cardiac mitochondrial chloride intracellular channel proteins.

    PubMed

    Ponnalagu, Devasena; Gururaja Rao, Shubha; Farber, Jason; Xin, Wenyu; Hussain, Ahmed Tafsirul; Shah, Kajol; Tanda, Soichi; Berryman, Mark; Edwards, John C; Singh, Harpreet

    2016-03-01

    Emerging evidences demonstrate significance of chloride channels in cardiac function and cardioprotection from ischemia-reperfusion (IR) injury. Unlike mitochondrial potassium channels sensitive to calcium (BKCa) and ATP (KATP), molecular identity of majority of cardiac mitochondrial chloride channels located at the inner membrane is not known. In this study, we report the presence of unique dimorphic chloride intracellular channel (CLIC) proteins namely CLIC1, CLIC4 and CLIC5 as abundant CLICs in the rodent heart. Further, CLIC4, CLIC5, and an ortholog present in Drosophila (DmCLIC) localize to adult cardiac mitochondria. We found that CLIC4 is enriched in the outer mitochondrial membrane, whereas CLIC5 is present in the inner mitochondrial membrane. Also, CLIC5 plays a direct role in regulating mitochondrial reactive oxygen species (ROS) generation. Our study highlights that CLIC5 is localized to the cardiac mitochondria and directly modulates mitochondrial function. Copyright © 2016 Elsevier B.V. and Mitochondria Research Society. All rights reserved.

  13. Mitochondrial pyruvate transport: a historical perspective and future research directions

    PubMed Central

    McCommis, Kyle S.; Finck, Brian N.

    2015-01-01

    Pyruvate is the end-product of glycolysis, a major substrate for oxidative metabolism, and a branching point for glucose, lactate, fatty acid and amino acid synthesis. The mitochondrial enzymes that metabolize pyruvate are physically separated from cytosolic pyruvate pools and rely on a membrane transport system to shuttle pyruvate across the impermeable inner mitochondrial membrane (IMM). Despite long-standing acceptance that transport of pyruvate into the mitochondrial matrix by a carrier-mediated process is required for the bulk of its metabolism, it has taken almost 40 years to determine the molecular identity of an IMM pyruvate carrier. Our current understanding is that two proteins, mitochondrial pyruvate carriers MPC1 and MPC2, form a hetero-oligomeric complex in the IMM to facilitate pyruvate transport. This step is required for mitochondrial pyruvate oxidation and carboxylation – critical reactions in intermediary metabolism that are dysregulated in several common diseases. The identification of these transporter constituents opens the door to the identification of novel compounds that modulate MPC activity, with potential utility for treating diabetes, cardiovascular disease, cancer, neurodegenerative diseases, and other common causes of morbidity and mortality. The purpose of the present review is to detail the historical, current and future research investigations concerning mitochondrial pyruvate transport, and discuss the possible consequences of altered pyruvate transport in various metabolic tissues. PMID:25748677

  14. Calcium and mitochondrial metabolism in ceramide-induced cardiomyocyte death.

    PubMed

    Parra, Valentina; Moraga, Francisco; Kuzmicic, Jovan; López-Crisosto, Camila; Troncoso, Rodrigo; Torrealba, Natalia; Criollo, Alfredo; Díaz-Elizondo, Jessica; Rothermel, Beverly A; Quest, Andrew F G; Lavandero, Sergio

    2013-08-01

    Ceramides are important intermediates in the biosynthesis and degradation of sphingolipids that regulate numerous cellular processes, including cell cycle progression, cell growth, differentiation and death. In cardiomyocytes, ceramides induce apoptosis by decreasing mitochondrial membrane potential and promoting cytochrome-c release. Ca(2+) overload is a common feature of all types of cell death. The aim of this study was to determine the effect of ceramides on cytoplasmic Ca(2+) levels, mitochondrial function and cardiomyocyte death. Our data show that C2-ceramide induces apoptosis and necrosis in cultured cardiomyocytes by a mechanism involving increased Ca(2+) influx, mitochondrial network fragmentation and loss of the mitochondrial Ca(2+) buffer capacity. These biochemical events increase cytosolic Ca(2+) levels and trigger cardiomyocyte death via the activation of calpains. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. AMPK Activation Prevents and Reverses Drug-Induced Mitochondrial and Hepatocyte Injury by Promoting Mitochondrial Fusion and Function

    PubMed Central

    Taniane, Caitlin; Farrell, Geoffrey; Arias, Irwin M.; Lippincott-Schwartz, Jennifer; Fu, Dong

    2016-01-01

    Mitochondrial damage is the major factor underlying drug-induced liver disease but whether conditions that thwart mitochondrial injury can prevent or reverse drug-induced liver damage is unclear. A key molecule regulating mitochondria quality control is AMP activated kinase (AMPK). When activated, AMPK causes mitochondria to elongate/fuse and proliferate, with mitochondria now producing more ATP and less reactive oxygen species. Autophagy is also triggered, a process capable of removing damaged/defective mitochondria. To explore whether AMPK activation could potentially prevent or reverse the effects of drug-induced mitochondrial and hepatocellular damage, we added an AMPK activator to collagen sandwich cultures of rat and human hepatocytes exposed to the hepatotoxic drugs, acetaminophen or diclofenac. In the absence of AMPK activation, the drugs caused hepatocytes to lose polarized morphology and have significantly decreased ATP levels and viability. At the subcellular level, mitochondria underwent fragmentation and had decreased membrane potential due to decreased expression of the mitochondrial fusion proteins Mfn1, 2 and/or Opa1. Adding AICAR, a specific AMPK activator, at the time of drug exposure prevented and reversed these effects. The mitochondria became highly fused and ATP production increased, and hepatocytes maintained polarized morphology. In exploring the mechanism responsible for this preventive and reversal effect, we found that AMPK activation prevented drug-mediated decreases in Mfn1, 2 and Opa1. AMPK activation also stimulated autophagy/mitophagy, most significantly in acetaminophen-treated cells. These results suggest that activation of AMPK prevents/reverses drug-induced mitochondrial and hepatocellular damage through regulation of mitochondrial fusion and autophagy, making it a potentially valuable approach for treatment of drug-induced liver injury. PMID:27792760

  16. Elastocapillary Instability in Mitochondrial Fission

    NASA Astrophysics Data System (ADS)

    Gonzalez-Rodriguez, David; Sart, Sébastien; Babataheri, Avin; Tareste, David; Barakat, Abdul I.; Clanet, Christophe; Husson, Julien

    2015-08-01

    Mitochondria are dynamic cell organelles that constantly undergo fission and fusion events. These dynamical processes, which tightly regulate mitochondrial morphology, are essential for cell physiology. Here we propose an elastocapillary mechanical instability as a mechanism for mitochondrial fission. We experimentally induce mitochondrial fission by rupturing the cell's plasma membrane. We present a stability analysis that successfully explains the observed fission wavelength and the role of mitochondrial morphology in the occurrence of fission events. Our results show that the laws of fluid mechanics can describe mitochondrial morphology and dynamics.

  17. Mitochondrial oxidative stress and dysfunction induced by isoniazid: study on isolated rat liver and brain mitochondria.

    PubMed

    Ahadpour, Morteza; Eskandari, Mohammad Reza; Mashayekhi, Vida; Haj Mohammad Ebrahim Tehrani, Kamaleddin; Jafarian, Iman; Naserzadeh, Parvaneh; Hosseini, Mir-Jamal

    2016-01-01

    Isoniazid (INH or isonicotinic hydrazide) is used for the treatment and prophylaxis of tuberculosis. Liver and brain are two important target organs in INH toxicity. However, the exact mechanisms behind the INH hepatotoxicity or neurotoxicity have not yet been completely understood. Considering the mitochondria as one of the possible molecular targets for INH toxicity, the aim of this study was to evaluate the mechanisms of INH mitochondrial toxicity on isolated mitochondria. Mitochondria were isolated by differential ultracentrifugation from male Sprague-Dawley rats and incubated with different concentrations of INH (25-2000 μM) for the investigation of mitochondrial parameters. The results indicated that INH could interact with mitochondrial respiratory chain and inhibit its activity. Our results showed an elevation in mitochondrial reactive oxygen species (ROS) formation, lipid peroxidation and mitochondrial membrane potential collapse after exposure of isolated liver mitochondria in INH. However, different results were obtained in brain mitochondria. Noteworthy, significant glutathione oxidation, adenosine triphosphate (ATP) depletion and lipid peroxidation were observed in higher concentration of INH, as compared to liver mitochondria. In conclusion, our results suggest that INH may initiate its toxicity in liver mitochondria through interaction with electron transfer chain, lipid peroxidation, mitochondrial membrane potential decline and cytochrome c expulsion which ultimately lead to cell death signaling.

  18. The human T-cell leukemia virus type 1 p13II protein: effects on mitochondrial function and cell growth

    PubMed Central

    D’Agostino, DM; Silic-Benussi, M; Hiraragi, H; Lairmore, MD; Ciminale, V

    2011-01-01

    p13II of human T-cell leukemia virus type 1 (HTLV-1) is an 87-amino-acid protein that is targeted to the inner mitochondrial membrane. p13II alters mitochondrial membrane permeability, producing a rapid, membrane potential-dependent influx of K+. These changes result in increased mitochondrial matrix volume and fragmentation and may lead to depolarization and alterations in mitochondrial Ca2+ uptake/retention capacity. At the cellular level, p13II has been found to interfere with cell proliferation and transformation and to promote apoptosis induced by ceramide and Fas ligand. Assays carried out in T cells (the major targets of HTLV-1 infection in vivo) demonstrate that p13II-mediated sensitization to Fas ligand-induced apoptosis can be blocked by an inhibitor of Ras farnesylation, thus implicating Ras signaling as a downstream target of p13II function. PMID:15761473

  19. N-terminal functional domain of Gasdermin A3 regulates mitochondrial homeostasis via mitochondrial targeting.

    PubMed

    Lin, Pei-Hsuan; Lin, Hsien-Yi; Kuo, Cheng-Chin; Yang, Liang-Tung

    2015-06-24

    The epidermis forms a critical barrier that is maintained by orchestrated programs of proliferation, differentiation, and cell death. Gene mutations that disturb this turnover process may cause skin diseases. Human GASDERMIN A (GSDMA) is frequently silenced in gastric cancer cell lines and its overexpression has been reported to induce apoptosis. GSDMA has also been linked with airway hyperresponsiveness in genetic association studies. The function of GSDMA in the skin was deduced by dominant mutations in mouse gasdermin A3 (Gsdma3), which caused skin inflammation and hair loss. However, the mechanism for the autosomal dominance of Gsdma3 mutations and the mode of Gsdma3's action remain unanswered. We demonstrated a novel function of Gsdma3 in modulating mitochondrial oxidative stress. We showed that Gsdma3 is regulated by intramolecular fold-back inhibition, which is disrupted by dominant mutations in the C-terminal domain. The unmasked N-terminal domain of Gsdma3 associates with Hsp90 and is delivered to mitochondrial via mitochondrial importer receptor Tom70, where it interacts with the mitochondrial chaperone Trap1 and causes increased production of mitochondrial reactive oxygen species (ROS), dissipation of mitochondrial membrane potential, and mitochondrial permeability transition (MPT). Overexpression of the C-terminal domain of Gsdma3 as well as pharmacological interventions of mitochondrial translocation, ROS production, and MPT pore opening alleviate the cell death induced by Gsdma3 mutants. Our results indicate that the genetic mutations in the C-terminal domain of Gsdma3 are gain-of-function mutations which unmask the N-terminal functional domain of Gsdma3. Gsdma3 regulates mitochondrial oxidative stress through mitochondrial targeting. Since mitochondrial ROS has been shown to promote epidermal differentiation, we hypothesize that Gsdma3 regulates context-dependent response of keratinocytes to differentiation and cell death signals by impinging on

  20. G2019S leucine-rich repeat kinase 2 causes uncoupling protein-mediated mitochondrial depolarization

    PubMed Central

    Papkovskaia, Tatiana D.; Chau, Kai-Yin; Inesta-Vaquera, Francisco; Papkovsky, Dmitri B.; Healy, Daniel G.; Nishio, Koji; Staddon, James; Duchen, Michael R.; Hardy, John; Schapira, Anthony H.V.; Cooper, J. Mark

    2012-01-01

    The G2019S leucine rich repeat kinase 2 (LRRK2) mutation is the most common genetic cause of Parkinson's disease (PD), clinically and pathologically indistinguishable from idiopathic PD. Mitochondrial abnormalities are a common feature in PD pathogenesis and we have investigated the impact of G2019S mutant LRRK2 expression on mitochondrial bioenergetics. LRRK2 protein expression was detected in fibroblasts and lymphoblasts at levels higher than those observed in the mouse brain. The presence of G2019S LRRK2 mutation did not influence LRRK2 expression in fibroblasts. However, the expression of the G2019S LRRK2 mutation in both fibroblast and neuroblastoma cells was associated with mitochondrial uncoupling. This was characterized by decreased mitochondrial membrane potential and increased oxygen utilization under basal and oligomycin-inhibited conditions. This resulted in a decrease in cellular ATP levels consistent with compromised cellular function. This uncoupling of mitochondrial oxidative phosphorylation was associated with a cell-specific increase in uncoupling protein (UCP) 2 and 4 expression. Restoration of mitochondrial membrane potential by the UCP inhibitor genipin confirmed the role of UCPs in this mechanism. The G2019S LRRK2-induced mitochondrial uncoupling and UCP4 mRNA up-regulation were LRRK2 kinase-dependent, whereas endogenous LRRK2 levels were required for constitutive UCP expression. We propose that normal mitochondrial function was deregulated by the expression of G2019S LRRK2 in a kinase-dependent mechanism that is a modification of the normal LRRK2 function, and this leads to the vulnerability of selected neuronal populations in PD. PMID:22736029

  1. Protective Effects of Myricetin on Acute Hypoxia-Induced Exercise Intolerance and Mitochondrial Impairments in Rats

    PubMed Central

    Zou, Dan; Liu, Peng; Chen, Ka; Xie, Qi; Liang, Xinyu; Bai, Qian; Zhou, Qicheng; Liu, Kai; Zhang, Ting; Zhu, Jundong; Mi, Mantian

    2015-01-01

    Purpose Exercise tolerance is impaired in hypoxia. The aim of this study was to evaluate the effects of myricetin, a dietary flavonoid compound widely found in fruits and vegetables, on acute hypoxia-induced exercise intolerance in vivo and in vitro. Methods Male rats were administered myricetin or vehicle for 7 days and subsequently spent 24 hours at a barometric pressure equivalent to 5000 m. Exercise capacity was then assessed through the run-to-fatigue procedure, and mitochondrial morphology in skeletal muscle cells was observed by transmission electron microscopy (TEM). The enzymatic activities of electron transfer complexes were analyzed using an enzyme-linked immuno-sorbent assay (ELISA). mtDNA was quantified by real-time-PCR. Mitochondrial membrane potential was measured by JC-1 staining. Protein expression was detected through western blotting, immunohistochemistry, and immunofluorescence. Results Myricetin supplementation significantly prevented the decline of run-to-fatigue time of rats in hypoxia, and attenuated acute hypoxia-induced mitochondrial impairment in skeletal muscle cells in vivo and in vitro by maintaining mitochondrial structure, mtDNA content, mitochondrial membrane potential, and activities of the respiratory chain complexes. Further studies showed that myricetin maintained mitochondrial biogenesis in skeletal muscle cells under hypoxic conditions by up-regulating the expressions of mitochondrial biogenesis-related regluators, in addition, AMP-activated protein kinase(AMPK) plays a crucial role in this process. Conclusions Myricetin may have important applications for improving physical performance under hypoxic environment, which may be attributed to the protective effect against mitochondrial impairment by maintaining mitochondrial biogenesis. PMID:25919288

  2. The cyclophilin D/Drp1 axis regulates mitochondrial fission contributing to oxidative stress-induced mitochondrial dysfunctions in SH-SY5Y cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiao, Anqi; Gan, Xueqi; Chen, Ruiqi

    Oxidative stress plays a central role in the pathogenesis of various neurodegenerative diseases. Increasing evidences have demonstrated that structural abnormalities in mitochondria are involved in oxidative stress related nerve cell damage. And Drp1 plays a critical role in mitochondrial dynamic imbalance insulted by oxidative stress-derived mitochondria. However, the status of mitochondrial fusion and fission pathway and its relationship with mitochondrial properties such as mitochondrial membrane permeability transition pore (mPTP) have not been fully elucidated. Here, we demonstrated for the first time the role of Cyclophilin D (CypD), a crucial component for mPTP formation, in the regulation of mitochondrial dynamics inmore » oxidative stress treated nerve cell. We observed that CypD-mediated phosphorylation of Drp1 and subsequently augmented Drp1 recruitment to mitochondria and shifts mitochondrial dynamics toward excessive fission, which contributes to the mitochondrial structural and functional dysfunctions in oxidative stress-treated nerve cells. CypD depletion or over expression accompanies mitochondrial dynamics/functions recovery or aggravation separately. We also demonstrated first time the link between the CypD to mitochondrial dynamics. Our data offer new insights into the mechanism of mitochondrial dynamics which contribute to the mitochondrial dysfunctions, specifically the role of CypD in Drp1-mediated mitochondrial fission. The protective effect of CsA, or other molecules affecting the function of CypD hold promise as a potential novel therapeutic strategy for governing oxidative stress pathology via mitochondrial pathways. - Highlights: • Demonstrated first time the link between the mPTP to mitochondrial dynamics. • The role of Cyclophilin D in the regulation of Drp1-mediated mitochondrial fission. • CsA as a potential target for governing oxidative stress related neuropathology.« less

  3. Caspase-8-mediated intracellular acidification precedes mitochondrial dysfunction in somatostatin-induced apoptosis.

    PubMed

    Liu, D; Martino, G; Thangaraju, M; Sharma, M; Halwani, F; Shen, S H; Patel, Y C; Srikant, C B

    2000-03-31

    Activation of initiator and effector caspases, mitochondrial changes involving a reduction in its membrane potential and release of cytochrome c (cyt c) into the cytosol, are characteristic features of apoptosis. These changes are associated with cell acidification in some models of apoptosis. The hierarchical relationship between these events has, however, not been deciphered. We have shown that somatostatin (SST), acting via the Src homology 2 bearing tyrosine phosphatase SHP-1, exerts cytotoxic action in MCF-7 cells, and triggers cell acidification and apoptosis. We investigated the temporal sequence of apoptotic events linking caspase activation, acidification, and mitochondrial dysfunction in this system and report here that (i) SHP-1-mediated caspase-8 activation is required for SST-induced decrease in pH(i). (ii) Effector caspases are induced only when there is concomitant acidification. (iii) Decrease in pH(i) is necessary to induce reduction in mitochondrial membrane potential, cyt c release and caspase-9 activation and (iv) depletion of ATP ablates SST-induced cyt c release and caspase-9 activation, but not its ability to induce effector caspases and apoptosis. These data reveal that SHP-1-/caspase-8-mediated acidification occurs at a site other than the mitochondrion and that SST-induced apoptosis is not dependent on disruption of mitochondrial function and caspase-9 activation.

  4. Continuous Modeling of Calcium Transport Through Biological Membranes

    NASA Astrophysics Data System (ADS)

    Jasielec, J. J.; Filipek, R.; Szyszkiewicz, K.; Sokalski, T.; Lewenstam, A.

    2016-08-01

    In this work an approach to the modeling of the biological membranes where a membrane is treated as a continuous medium is presented. The Nernst-Planck-Poisson model including Poisson equation for electric potential is used to describe transport of ions in the mitochondrial membrane—the interface which joins mitochondrial matrix with cellular cytosis. The transport of calcium ions is considered. Concentration of calcium inside the mitochondrion is not known accurately because different analytical methods give dramatically different results. We explain mathematically these differences assuming the complexing reaction inside mitochondrion and the existence of the calcium set-point (concentration of calcium in cytosis below which calcium stops entering the mitochondrion).

  5. Mitochondrial membrane potential and reactive oxygen species in liquid stored and cryopreserved turkey (Meleagris gallopavo) spermatozoa.

    PubMed

    Slowinska, M; Liszewska, E; Judycka, S; Konopka, M; Ciereszko, A

    2018-06-01

    The extensive use of artificial insemination in turkeys has led to the development of in vitro semen storage. However, fertility rates from liquid stored and frozen/thawed turkey semen are still unsatisfactory. The aim of the study was to assess spermatozoa viability, mitochondrial membrane potential (MMP), and reactive oxygen species production (ROS) in liquid stored and cryopreserved turkey semen with the use of flow cytometry. Moreover, motility and adenosine triphosphate (ATP) content in sperm were monitored at the same time to link flow cytometry data with sperm movement and energetics. Liquid storage led to a decrease in sperm motility (80.6 vs. 55.6%, for fresh and stored for 48 h), live sperm with an intact MMP (59.9 vs. 30.5% for fresh and stored for 48 h), and a 20-fold decrease in ATP content after 24 h of storage. A 3-fold increase in ROS+ sperm was observed after 48 h of storage (9.3 vs. 26.8% for fresh and stored for 48 h). Semen equilibration before cryopreservation affected only ATP content. However, freezing/thawing led to a dramatic decrease in all of the studied semen quality parameters. A 5-fold decrease in live sperm with intact MMP (59.8 vs. 11.9%) and a 7-fold increase in sperm ROS+ (10.8 vs. 74.4%) were recorded between fresh and frozen/thawed semen. The results strongly suggested that a significant loss of MMP and a disturbance in sperm ATP production during semen storage can be the main reason for the decline in sperm motility. The disturbance of mitochondria activity during storage seems to be associated with the increase in oxidative stress in turkey semen. Turkey sperm mitochondria also appear to be very sensitive to cryodamage. Diminished energy production in turkey spermatozoa, visible as the low percentage of sperm with an intact MMP and low level of ATP after freezing/thawing, which is associated with high ROS generation, could be responsible for the low fertilizing ability of cryopreserved turkey semen.

  6. Melatonin and human mitochondrial diseases

    PubMed Central

    Sharafati-Chaleshtori, Reza; Shirzad, Hedayatollah; Rafieian-Kopaei, Mahmoud; Soltani, Amin

    2017-01-01

    Mitochondrial dysfunction is one of the main causative factors in a wide variety of complications such as neurodegenerative disorders, ischemia/reperfusion, aging process, and septic shock. Decrease in respiratory complex activity, increase in free radical production, increase in mitochondrial synthase activity, increase in nitric oxide production, and impair in electron transport system and/or mitochondrial permeability are considered as the main factors responsible for mitochondrial dysfunction. Melatonin, the pineal gland hormone, is selectively taken up by mitochondria and acts as a powerful antioxidant, regulating the mitochondrial bioenergetic function. Melatonin increases the permeability of membranes and is the stimulator of antioxidant enzymes including superoxide dismutase, glutathione peroxidase, glutathione reductase, and catalase. It also acts as an inhibitor of lipoxygenase. Melatonin can cause resistance to oxidation damage by fixing the microsomal membranes. Melatonin has been shown to retard aging and inhibit neurodegenerative disorders, ischemia/reperfusion, septic shock, diabetes, cancer, and other complications related to oxidative stress. The purpose of the current study, other than introducing melatonin, was to present the recent findings on clinical effects in diseases related to mitochondrial dysfunction including diabetes, cancer, gastrointestinal diseases, and diseases related to brain function. PMID:28400824

  7. Protective Effect of Bendavia (SS-31) Against Oxygen/Glucose-Deprivation Stress-Induced Mitochondrial Damage in Human Brain Microvascular Endothelial Cells.

    PubMed

    Imai, Takahiko; Mishiro, Keisuke; Takagi, Toshinori; Isono, Aoi; Nagasawa, Hideko; Tsuruma, Kazuhiro; Shimazawa, Masamitsu; Hara, Hideaki

    2017-01-01

    Mitochondria play a key role in cell survival by perfoming functions such as adenosine tri-phosphate (ATP) synthesis, regulation of apoptotic cell death, calcium storage. Hypoxic conditions induce mitochondrial dysfunction, which leads to endothelial injury in cerebral ischemia. Functional disorders include the following: collapse of mitochondrial membrane potential, reduction of ATP synthesis, and generation of reactive oxygen species (ROS). Bendavia, a novel tetra-peptide, has been reported to restrict the uncoupling of the mitochondrial membrane chain, protect the synthesis of ATP, and inhibit ROS generation. In the present study, we investigated whether bendavia protects mitochondria under hypoxic and starved conditions by using human brain microvascular endothelial cells (HBMVECs). After pre-treatment with bendavia, we exposed HBMVECs to oxygen glucose deprivation (OGD) for 6 h. We then assessed cell viability, the level of caspase-3/7 activity, ROS generation, mitochondrial membrane potential, ATP contents, and the number of mitochondria. Bendavia recovered cell viability and reduced the caspase-3/7 activity induced by OGDinduced damage. Bendavia also recovered mitochondrial functions. These results suggest that bendavia protects mitochondrial function against OGD-induced injury and inhibits apoptosis in HBMVECs. Consequently, our findings indicate that bendavia might become the new therapeutic drug of choice to target mitochondria in case of cerebral ischemia. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  8. A systematic study of mitochondrial toxicity of environmental chemicals using quantitative high throughput screening

    PubMed Central

    Attene-Ramos, Matias S.; Huang, Ruili; Sakamuru, Srilatha; Witt, Kristine L.; Beeson, Gyda C.; Shou, Louie; Schnellmann, Rick G.; Beeson, Craig C.; Tice, Raymond R.; Austin, Christopher P.; Xia, Menghang

    2014-01-01

    A goal of the Tox21 program is to transit toxicity testing from traditional in vivo models to in vitro assays that assess how chemicals affect cellular responses and toxicity pathways. A critical contribution of the NIH Chemical Genomics center (NCGC) to the Tox21 program is the implementation of a quantitative high throughput screening (qHTS) approach, using cell- and biochemical-based assays to generate toxicological profiles for thousands of environmental compounds. Here, we evaluated the effect of chemical compounds on mitochondrial membrane potential in HepG2 cells by screening a library of 1,408 compounds provided by the National Toxicology Program (NTP) in a qHTS platform. Compounds were screened over 14 concentrations, and results showed that 91 and 88 compounds disrupted mitochondrial membrane potential after treatment for one or five h, respectively. Seventy-six compounds active at both time points were clustered by structural similarity, producing 11 clusters and 23 singletons. Thirty-eight compounds covering most of the active chemical space were more extensively evaluated. Thirty-six of the 38 compounds were confirmed to disrupt mitochondrial membrane potential using a fluorescence plate reader and 35 were confirmed using a high content imaging approach. Among the 38 compounds, 4 and 6 induced LDH release, a measure of cytotoxicity, at 1 or 5 h, respectively. Compounds were further assessed for mechanism of action (MOA) by measuring changes in oxygen consumption rate, which enabled identification of 20 compounds as uncouplers. This comprehensive approach allows for evaluation of thousands of environmental chemicals for mitochondrial toxicity and identification of possible MOAs. PMID:23895456

  9. Ionizing radiation accelerates Drp1-dependent mitochondrial fission, which involves delayed mitochondrial reactive oxygen species production in normal human fibroblast-like cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kobashigawa, Shinko, E-mail: kobashin@nagasaki-u.ac.jp; Suzuki, Keiji; Yamashita, Shunichi

    2011-11-04

    Highlights: Black-Right-Pointing-Pointer We report first time that ionizing radiation induces mitochondrial dynamic changes. Black-Right-Pointing-Pointer Radiation-induced mitochondrial fission was caused by Drp1 localization. Black-Right-Pointing-Pointer We found that radiation causes delayed ROS from mitochondria. Black-Right-Pointing-Pointer Down regulation of Drp1 rescued mitochondrial dysfunction after radiation exposure. -- Abstract: Ionizing radiation is known to increase intracellular level of reactive oxygen species (ROS) through mitochondrial dysfunction. Although it has been as a basis of radiation-induced genetic instability, the mechanism involving mitochondrial dysfunction remains unclear. Here we studied the dynamics of mitochondrial structure in normal human fibroblast like cells exposed to ionizing radiation. Delayed mitochondrial O{submore » 2}{sup {center_dot}-} production was peaked 3 days after irradiation, which was coupled with accelerated mitochondrial fission. We found that radiation exposure accumulated dynamin-related protein 1 (Drp1) to mitochondria. Knocking down of Drp1 expression prevented radiation induced acceleration of mitochondrial fission. Furthermore, knockdown of Drp1 significantly suppressed delayed production of mitochondrial O{sub 2}{sup {center_dot}-}. Since the loss of mitochondrial membrane potential, which was induced by radiation was prevented in cells knocking down of Drp1 expression, indicating that the excessive mitochondrial fission was involved in delayed mitochondrial dysfunction after irradiation.« less

  10. Signal presequences increase mitochondrial permeability and open the multiple conductance channel.

    PubMed

    Kushnareva, Y E; Campo, M L; Kinnally, K W; Sokolove, P M

    1999-06-01

    We have reported that the signal presequence of cytochrome oxidase subunit IV from Neurospora crassa increases the permeability of isolated rat liver mitochondria [P. M. Sokolove and K. W. Kinnally (1996) Arch. Biochem. Biophys. 336, 69] and regulates the behavior of the mutiple conductance channel (MCC) of yeast inner mitochondrial membrane [T. A. Lohret and K. W. Kinnally (1995) J. Biol. Chem. 270, 15950]. Here we examine in greater detail the action of a number of mitochondrial presequences from various sources and of several control peptides on the permeability of isolated rat liver mitochondria and on MCC activity monitored via patch-clamp techniques in both mammalian mitoplasts and a reconstituted yeast system. The data indicate that the ability to alter mitochondrial permeability is a property of most, but not all, signal peptides. Furthermore, it is clear that, although signal peptides are characterized by positive charge and the ability to form amphiphilic alpha helices, these two characteristics are not sufficient to guarantee mitochondrial effects. Finally, the results reveal a strong correlation between peptide effects on the permeability of isolated mitochondria and on MCC activity: peptides that induced swelling of mouse and rat mitochondria also activated the quiescent MCC of mouse mitoplasts and induced flickering of active MCC reconstituted from yeast mitochondrial membranes. Moreover, relative peptide efficacies were very similar for mitochondrial swelling and both types of patch-clamp experiments. We propose that patch-clamp recordings of MCC activity and the high-amplitude swelling induced by signal peptides reflect the opening of a single channel. Based on the selective responsiveness of that channel to signal peptides and the dependence of its opening in isolated mitochondria on membrane potential, we further suggest that the channel is involved in the mitochondrial protein import process. Copyright 1999 Academic Press.

  11. The Pro-Apoptotic BH3-Only Protein Bim Interacts with Components of the Translocase of the Outer Mitochondrial Membrane (TOM)

    PubMed Central

    Frank, Daniel O.; Dengjel, Jörn; Wilfling, Florian; Kozjak-Pavlovic, Vera; Häcker, Georg; Weber, Arnim

    2015-01-01

    The pro-apoptotic Bcl-2-family protein Bim belongs to the BH3-only proteins known as initiators of apoptosis. Recent data show that Bim is constitutively inserted in the outer mitochondrial membrane via a C-terminal transmembrane anchor from where it can activate the effector of cytochrome c-release, Bax. To identify regulators of Bim-activity, we conducted a search for proteins interacting with Bim at mitochondria. We found an interaction of Bim with Tom70, Tom20 and more weakly with Tom40, all components of the Translocase of the Outer Membrane (TOM). In vitro import assays performed on tryptically digested yeast mitochondria showed reduced Bim insertion into the outer mitochondrial membrane (OMM) indicating that protein receptors may be involved in the import process. However, RNAi against components of TOM (Tom40, Tom70, Tom22 or Tom20) by siRNA, individually or in combination, did not consistently change the amount of Bim on HeLa mitochondria, either at steady state or upon de novo-induction. In support of this, the individual or combined knock-downs of TOM receptors also failed to alter the susceptibility of HeLa cells to Bim-induced apoptosis. In isolated yeast mitochondria, lack of Tom70 or the TOM-components Tom20 or Tom22 alone did not affect the import of Bim into the outer mitochondrial membrane. In yeast, expression of Bim can sensitize the cells to Bax-dependent killing. This sensitization was unaffected by the absence of Tom70 or by an experimental reduction in Tom40. Although thus the physiological role of the Bim-TOM-interaction remains unclear, TOM complex components do not seem to be essential for Bim insertion into the OMM. Nevertheless, this association should be noted and considered when the regulation of Bim in other cells and situations is investigated. PMID:25875815

  12. The pro-apoptotic BH3-only protein Bim interacts with components of the translocase of the outer mitochondrial membrane (TOM).

    PubMed

    Frank, Daniel O; Dengjel, Jörn; Wilfling, Florian; Kozjak-Pavlovic, Vera; Häcker, Georg; Weber, Arnim

    2015-01-01

    The pro-apoptotic Bcl-2-family protein Bim belongs to the BH3-only proteins known as initiators of apoptosis. Recent data show that Bim is constitutively inserted in the outer mitochondrial membrane via a C-terminal transmembrane anchor from where it can activate the effector of cytochrome c-release, Bax. To identify regulators of Bim-activity, we conducted a search for proteins interacting with Bim at mitochondria. We found an interaction of Bim with Tom70, Tom20 and more weakly with Tom40, all components of the Translocase of the Outer Membrane (TOM). In vitro import assays performed on tryptically digested yeast mitochondria showed reduced Bim insertion into the outer mitochondrial membrane (OMM) indicating that protein receptors may be involved in the import process. However, RNAi against components of TOM (Tom40, Tom70, Tom22 or Tom20) by siRNA, individually or in combination, did not consistently change the amount of Bim on HeLa mitochondria, either at steady state or upon de novo-induction. In support of this, the individual or combined knock-downs of TOM receptors also failed to alter the susceptibility of HeLa cells to Bim-induced apoptosis. In isolated yeast mitochondria, lack of Tom70 or the TOM-components Tom20 or Tom22 alone did not affect the import of Bim into the outer mitochondrial membrane. In yeast, expression of Bim can sensitize the cells to Bax-dependent killing. This sensitization was unaffected by the absence of Tom70 or by an experimental reduction in Tom40. Although thus the physiological role of the Bim-TOM-interaction remains unclear, TOM complex components do not seem to be essential for Bim insertion into the OMM. Nevertheless, this association should be noted and considered when the regulation of Bim in other cells and situations is investigated.

  13. Validation of the use of an artificial mitochondrial reporter DNA vector containing a Cytomegalovirus promoter for mitochondrial transgene expression.

    PubMed

    Yamada, Yuma; Ishikawa, Takuya; Harashima, Hideyoshi

    2017-08-01

    Mitochondria have their own gene expression system that is independent of the nuclear system, and control cellular functions in cooperation with the nucleus. While a number of useful technologies for achieving nuclear transgene expression have been reported, only a few have focused on mitochondria. In this study, we validated the utility of an artificial mitochondrial DNA vector with a virus promoter on mitochondrial transgene expression. We designed and constructed pCMV-mtLuc (CGG) that contains a CMV promotor derived from Cytomegalovirus and an artificial mitochondrial genome with a NanoLuc (Nluc) luciferase gene that records adjustments to the mitochondrial codon system. Nluc luciferase activity measurements showed that the pCMV-mtLuc (CGG) efficiently produced the Nluc luciferase protein in human HeLa cells. Moreover, we optimized the mitochondrial transfection of pCMV-mtLuc (CGG) using a MITO-Porter system, a liposome-based carrier for mitochondrial delivery via membrane fusion. As a result, we found that transfection of pCMV-mtLuc (CGG) by MITO-Porter modified with the KALA peptide (cationic amphipathic cell-penetrating peptide) showed a high mitochondrial transgene expression. The developed mitochondrial transgene expression system represents a potentially useful tool for the fields of nanoscience and nanotechnology for controlling the intracellular microenvironment via the regulation of mitochondrial function and promises to open additional innovative research fields of study. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Ketamine Causes Mitochondrial Dysfunction in Human Induced Pluripotent Stem Cell-Derived Neurons

    PubMed Central

    Ito, Hiroyuki; Uchida, Tokujiro; Makita, Koshi

    2015-01-01

    Purpose Ketamine toxicity has been demonstrated in nonhuman mammalian neurons. To study the toxic effect of ketamine on human neurons, an experimental model of cultured neurons from human induced pluripotent stem cells (iPSCs) was examined, and the mechanism of its toxicity was investigated. Methods Human iPSC-derived dopaminergic neurons were treated with 0, 20, 100 or 500 μM ketamine for 6 and 24 h. Ketamine toxicity was evaluated by quantification of caspase 3/7 activity, reactive oxygen species (ROS) production, mitochondrial membrane potential, ATP concentration, neurotransmitter reuptake activity and NADH/NAD+ ratio. Mitochondrial morphological change was analyzed by transmission electron microscopy and confocal microscopy. Results Twenty-four-hour exposure of iPSC-derived neurons to 500 μM ketamine resulted in a 40% increase in caspase 3/7 activity (P < 0.01), 14% increase in ROS production (P < 0.01), and 81% reduction in mitochondrial membrane potential (P < 0.01), compared with untreated cells. Lower concentration of ketamine (100 μM) decreased the ATP level (22%, P < 0.01) and increased the NADH/NAD+ ratio (46%, P < 0.05) without caspase activation. Transmission electron microscopy showed enhanced mitochondrial fission and autophagocytosis at the 100 μM ketamine concentration, which suggests that mitochondrial dysfunction preceded ROS generation and caspase activation. Conclusions We established an in vitro model for assessing the neurotoxicity of ketamine in iPSC-derived neurons. The present data indicate that the initial mitochondrial dysfunction and autophagy may be related to its inhibitory effect on the mitochondrial electron transport system, which underlies ketamine-induced neural toxicity. Higher ketamine concentration can induce ROS generation and apoptosis in human neurons. PMID:26020236

  15. Erythropoietin activates SIRT1 to protect human cardiomyocytes against doxorubicin-induced mitochondrial dysfunction and toxicity.

    PubMed

    Cui, Lan; Guo, Jiabin; Zhang, Qiang; Yin, Jian; Li, Jin; Zhou, Wei; Zhang, Tingfen; Yuan, Haitao; Zhao, Jun; Zhang, Li; Carmichael, Paul L; Peng, Shuangqing

    2017-06-05

    The hormone erythropoietin (EPO) has been demonstrated to protect against chemotherapy drug doxorubicin (DOX)-induced cardiotoxicity, but the underlying mechanism remains obscure. We hypothesized that silent mating type information regulation 2 homolog 1 (SIRT1), an NAD + -dependent protein deacetylase that activates peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α), plays a crucial role in regulating mitochondrial function and mediating the beneficial effect of EPO. Our study in human cardiomyocyte AC16 cells showed that DOX-induced cytotoxicity and mitochondrial dysfunction, as manifested by decreased mitochondrial DNA (mtDNA) copy number, mitochondrial membrane potential, and increased mitochondrial superoxide accumulation, can be mitigated by EPO pretreatment. EPO was found to upregulate SIRT1 activity and protein expression to reverse DOX-induced acetylation of PGC-1α and suppression of a suite of PGC-1α-activated genes involved in mitochondrial function and biogenesis, such as nuclear respiratory factor-1 (NRF1), mitochondrial transcription factor A (TFAM), citrate synthase (CS), superoxide dismutase 2 (SOD2), cytochrome c oxidase IV (COXIV), and voltage-dependent anion channel (VDAC). Silencing of SIRT1 via small RNA interference sensitized AC16 cells to DOX-induced cytotoxicity and reduction in mtDNA copy number. Although with SIRT1 silenced, EPO could reverse to some extent DOX-induced mitochondrial superoxide accumulation, loss of mitochondrial membrane potential and ATP depletion, it failed to normalize protein expression of PGC-1α and its downstream genes. Taken together, our results indicated that EPO may activate SIRT1 to enhance mitochondrial function and protect against DOX-induced cardiotoxicity. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Cyclophilin D is required for mitochondrial removal by autophagy in cardiac cells

    PubMed Central

    Carreira, Raquel S.; Lee, Youngil; Ghochani, Mariam; Gustafsson, Åsa B.; Gottlieb, Roberta A.

    2013-01-01

    Autophagy is a highly regulated intracellular degradation process by which cells remove cytosolic long-lived proteins and damaged organelles. The mitochondrial permeability transition (MPT) results in mitochondrial depolarization and increased reactive oxygen species production, which can trigger autophagy. Therefore, we hypothesized that the MPT may have a role in signaling autophagy in cardiac cells. Mitochondrial membrane potential was lower in HL-1 cells subjected to starvation compared to cells maintained in full medium. Mitochondrial membrane potential was preserved in starved cells treated with cyclosporin A (CsA), suggesting the MPT pore is associated with starvation-induced depolarization. Starvation-induced autophagy in HL-1 cells, neonatal rat cardiomyocytes and adult mouse cardiomyocytes was inhibited by CsA. Starvation failed to induce autophagy in CypD-deficient murine cardiomyocytes, whereas in myocytes from mice overexpressing CypD the levels of autophagy were enhanced even under fed conditions. Collectively, these results demonstrate a role for CypD and the MPT in the initiation of autophagy. We also analyzed the role of the MPT in the degradation of mitochondria by biochemical analysis and electron microscopy. HL-1 cells subjected to starvation in the presence of CsA had higher levels of mitochondrial proteins (by Western blot), more mitochondria and less autophagosomes (by electron microscopy) then cells starved in the absence of CsA. Our results suggest a physiologic function for CypD and the MPT in the regulation of starvation-induced autophagy. Starvation-induced autophagy regulated by CypD and the MPT may represent a homeostatic mechanism for cellular and mitochondrial quality control. PMID:20364102

  17. Mitochondrial O-GlcNAc Transferase (mOGT) Regulates Mitochondrial Structure, Function, and Survival in HeLa Cells*

    PubMed Central

    Sacoman, Juliana L.; Dagda, Raul Y.; Burnham-Marusich, Amanda R.; Dagda, Ruben K.; Berninsone, Patricia M.

    2017-01-01

    O-Linked N-acetylglucosamine transferase (OGT) catalyzes O-GlcNAcylation of target proteins and regulates numerous biological processes. OGT is encoded by a single gene that yields nucleocytosolic and mitochondrial isoforms. To date, the role of the mitochondrial isoform of OGT (mOGT) remains largely unknown. Using high throughput proteomics, we identified 84 candidate mitochondrial glycoproteins, of which 44 are novel. Notably, two of the candidate glycoproteins identified (cytochrome oxidase 2 (COX2) and NADH:ubiquinone oxidoreductase core subunit 4 (MT-ND4)) are encoded by mitochondrial DNA. Using siRNA in HeLa cells, we found that reducing endogenous mOGT expression leads to alterations in mitochondrial structure and function, including Drp1-dependent mitochondrial fragmentation, reduction in mitochondrial membrane potential, and a significant loss of mitochondrial content in the absence of mitochondrial ROS. These defects are associated with a compensatory increase in oxidative phosphorylation per mitochondrion. mOGT is also critical for cell survival; siRNA-mediated knockdown of endogenous mOGT protected cells against toxicity mediated by rotenone, a complex I inhibitor. Conversely, reduced expression of both nucleocytoplasmic (ncOGT) and mitochondrial (mOGT) OGT isoforms is associated with increased mitochondrial respiration and elevated glycolysis, suggesting that ncOGT is a negative regulator of cellular bioenergetics. Last, we determined that mOGT is probably involved in the glycosylation of a restricted set of mitochondrial targets. We identified four proteins implicated in mitochondrial biogenesis and metabolism regulation as candidate substrates of mOGT, including leucine-rich PPR-containing protein and mitochondrial aconitate hydratase. Our findings suggest that mOGT is catalytically active in vivo and supports mitochondrial structure, health, and survival, whereas ncOGT predominantly regulates cellular bioenergetics. PMID:28100784

  18. A reversible component of mitochondrial respiratory dysfunction in apoptosis can be rescued by exogenous cytochrome c

    PubMed Central

    Mootha, Vamsi K.; Wei, Michael C.; Buttle, Karolyn F.; Scorrano, Luca; Panoutsakopoulou, Vily; Mannella, Carmen A.; Korsmeyer, Stanley J.

    2001-01-01

    Multiple apoptotic pathways release cytochrome c from the mitochondrial intermembrane space, resulting in the activation of downstream caspases. In vivo activation of Fas (CD95) resulted in increased permeability of the mitochondrial outer membrane and depletion of cytochrome c stores. Serial measurements of oxygen consumption, NADH redox state and membrane potential revealed a loss of respiratory state transitions. This tBID-induced respiratory failure did not require any caspase activity. At early time points, re-addition of exogenous cytochrome c markedly restored respiratory functions. Over time, however, mitochondria showed increasing irreversible respiratory dysfunction as well as diminished calcium buffering. Electron microscopy and tomographic reconstruction revealed asymmetric mitochondria with blebs of herniated matrix, distended inner membrane and partial loss of cristae structure. Thus, apoptogenic redistribution of cytochrome c is responsible for a distinct program of mitochondrial respiratory dysfunction, in addition to the activation of downstream caspases. PMID:11179211

  19. Calcium-dependent nonspecific permeability of the inner mitochondrial membrane is not induced in mitochondria of the yeast Endomyces magnusii.

    PubMed

    Deryabina, Y I; Isakova, E P; Shurubor, E I; Zvyagilskaya, R A

    2004-09-01

    Mitochondria of the yeast Endomyces magnusii were examined for the presence of a Ca2+- and phosphate-induced permeability of the inner mitochondrial membrane (pore). For this purpose, coupled mitochondria were incubated under conditions known to induce the permeability transition pore in animal mitochondria, i.e., in the presence of high concentrations of Ca2+ and P(i), prooxidants (t-butylhydroperoxide), oxaloacetate, atractyloside (an inhibitor of ADP/ATP translocator), SH-reagents, by depletion of adenine nucleotide pools, and deenergization of the mitochondria. Large amplitude swelling, collapse of the membrane potential, and efflux of the accumulated Ca2+ were used as parameters for demonstrating pore induction. E. magnusii mitochondria were highly resistant to the above-mentioned substances. Deenergization of mitochondria or depletion of adenine nucleotide pools have no effect on low-amplitude swelling or the other parameters. Cyclosporin A, a specific inhibitor of the nonspecific permeability transition in animal mitochondria, did not affect the parameters measured. It is thus evident that E. magnusii mitochondria lack a functional Ca2+-dependent pore, or possess a pore differently regulated as compared to that of mammalian mitochondria.

  20. Alcohol dehydrogenase accentuates ethanol-induced myocardial dysfunction and mitochondrial damage in mice: role of mitochondrial death pathway.

    PubMed

    Guo, Rui; Ren, Jun

    2010-01-18

    Binge drinking and alcohol toxicity are often associated with myocardial dysfunction possibly due to accumulation of the ethanol metabolite acetaldehyde although the underlying mechanism is unknown. This study was designed to examine the impact of accelerated ethanol metabolism on myocardial contractility, mitochondrial function and apoptosis using a murine model of cardiac-specific overexpression of alcohol dehydrogenase (ADH). ADH and wild-type FVB mice were acutely challenged with ethanol (3 g/kg/d, i.p.) for 3 days. Myocardial contractility, mitochondrial damage and apoptosis (death receptor and mitochondrial pathways) were examined. Ethanol led to reduced cardiac contractility, enlarged cardiomyocyte, mitochondrial damage and apoptosis, the effects of which were exaggerated by ADH transgene. In particular, ADH exacerbated mitochondrial dysfunction manifested as decreased mitochondrial membrane potential and accumulation of mitochondrial O(2) (*-). Myocardium from ethanol-treated mice displayed enhanced Bax, Caspase-3 and decreased Bcl-2 expression, the effect of which with the exception of Caspase-3 was augmented by ADH. ADH accentuated ethanol-induced increase in the mitochondrial death domain components pro-caspase-9 and cytochrome C in the cytoplasm. Neither ethanol nor ADH affected the expression of ANP, total pro-caspase-9, cytosolic and total pro-caspase-8, TNF-alpha, Fas receptor, Fas L and cytosolic AIF. Taken together, these data suggest that enhanced acetaldehyde production through ADH overexpression following acute ethanol exposure exacerbated ethanol-induced myocardial contractile dysfunction, cardiomyocyte enlargement, mitochondrial damage and apoptosis, indicating a pivotal role of ADH in ethanol-induced cardiac dysfunction possibly through mitochondrial death pathway of apoptosis.

  1. Use of human cancer cell lines mitochondria to explore the mechanisms of BH3 peptides and ABT-737-induced mitochondrial membrane permeabilization.

    PubMed

    Buron, Nelly; Porceddu, Mathieu; Brabant, Magali; Desgué, Diana; Racoeur, Cindy; Lassalle, Myriam; Péchoux, Christine; Rustin, Pierre; Jacotot, Etienne; Borgne-Sanchez, Annie

    2010-03-31

    Current limitations of chemotherapy include toxicity on healthy tissues and multidrug resistance of malignant cells. A number of recent anti-cancer strategies aim at targeting the mitochondrial apoptotic machinery to induce tumor cell death. In this study, we set up protocols to purify functional mitochondria from various human cell lines to analyze the effect of peptidic and xenobiotic compounds described to harbour either Bcl-2 inhibition properties or toxic effects related to mitochondria. Mitochondrial inner and outer membrane permeabilization were systematically investigated in cancer cell mitochondria versus non-cancerous mitochondria. The truncated (t-) Bid protein, synthetic BH3 peptides from Bim and Bak, and the small molecule ABT-737 induced a tumor-specific and OMP-restricted mitochondrio-toxicity, while compounds like HA-14.1, YC-137, Chelerythrine, Gossypol, TW-37 or EM20-25 did not. We found that ABT-737 can induce the Bax-dependent release of apoptotic proteins (cytochrome c, Smac/Diablo and Omi/HtrA2 but not AIF) from various but not all cancer cell mitochondria. Furthermore, ABT-737 addition to isolated cancer cell mitochondria induced oligomerization of Bax and/or Bak monomers already inserted in the mitochondrial membrane. Finally immunoprecipatations indicated that ABT-737 induces Bax, Bak and Bim desequestration from Bcl-2 and Bcl-xL but not from Mcl-1L. This study investigates for the first time the mechanism of action of ABT-737 as a single agent on isolated cancer cell mitochondria. Hence, this method based on MOMP (mitochondrial outer membrane permeabilization) is an interesting screening tool, tailored for identifying Bcl-2 antagonists with selective toxicity profile against cancer cell mitochondria but devoid of toxicity against healthy mitochondria.

  2. New insights into the targeting of a subset of tail-anchored proteins to the outer mitochondrial membrane

    PubMed Central

    Marty, Naomi J.; Teresinski, Howard J.; Hwang, Yeen Ting; Clendening, Eric A.; Gidda, Satinder K.; Sliwinska, Elwira; Zhang, Daiyuan; Miernyk, Ján A.; Brito, Glauber C.; Andrews, David W.; Dyer, John M.; Mullen, Robert T.

    2014-01-01

    Tail-anchored (TA) proteins are a unique class of functionally diverse membrane proteins defined by their single C-terminal membrane-spanning domain and their ability to insert post-translationally into specific organelles with an Ncytoplasm-Corganelle interior orientation. The molecular mechanisms by which TA proteins are sorted to the proper organelles are not well-understood. Herein we present results indicating that a dibasic targeting motif (i.e., -R-R/K/H-X{X≠E}) identified previously in the C terminus of the mitochondrial isoform of the TA protein cytochrome b5, also exists in many other A. thaliana outer mitochondrial membrane (OMM)-TA proteins. This motif is conspicuously absent, however, in all but one of the TA protein subunits of the translocon at the outer membrane of mitochondria (TOM), suggesting that these two groups of proteins utilize distinct biogenetic pathways. Consistent with this premise, we show that the TA sequences of the dibasic-containing proteins are both necessary and sufficient for targeting to mitochondria, and are interchangeable, while the TA regions of TOM proteins lacking a dibasic motif are necessary, but not sufficient for localization, and cannot be functionally exchanged. We also present results from a comprehensive mutational analysis of the dibasic motif and surrounding sequences that not only greatly expands the functional definition and context-dependent properties of this targeting signal, but also led to the identification of other novel putative OMM-TA proteins. Collectively, these results provide important insight to the complexity of the targeting pathways involved in the biogenesis of OMM-TA proteins and help define a consensus targeting motif that is utilized by at least a subset of these proteins. PMID:25237314

  3. Impaired Mitochondrial Dynamics Underlie Axonal Defects in Hereditary Spastic Paraplegias.

    PubMed

    Denton, Kyle; Mou, Yongchao; Xu, Chong-Chong; Shah, Dhruvi; Chang, Jaerak; Blackstone, Craig; Li, Xue-Jun

    2018-05-02

    Mechanisms by which long corticospinal axons degenerate in hereditary spastic paraplegia (HSP) are largely unknown. Here, we have generated induced pluripotent stem cells (iPSCs) from patients with two autosomal recessive forms of HSP, SPG15 and SPG48, which are caused by mutations in the ZFYVE26 and AP5Z1 genes encoding proteins in the same complex, the spastizin and AP5Z1 proteins, respectively. In patient iPSC-derived telencephalic glutamatergic and midbrain dopaminergic neurons, neurite number, length and branching are significantly reduced, recapitulating disease-specific phenotypes. We analyzed mitochondrial morphology and noted a significant reduction in both mitochondrial length and their densities within axons of these HSP neurons. Mitochondrial membrane potential was also decreased, confirming functional mitochondrial defects. Notably, mdivi-1, an inhibitor of the mitochondrial fission GTPase DRP1, rescues mitochondrial morphology defects and suppresses the impairment in neurite outgrowth and late-onset apoptosis in HSP neurons. Furthermore, knockdown of these HSP genes causes similar axonal defects, also mitigated by treatment with mdivi-1. Finally, neurite outgrowth defects in SPG15 and SPG48 cortical neurons can be rescued by knocking down DRP1 directly. Thus, abnormal mitochondrial morphology caused by an imbalance of mitochondrial fission and fusion underlies specific axonal defects and serves as a potential therapeutic target for SPG15 and SPG48.

  4. Cardiomyocyte mitochondrial oxidative stress and cytoskeletal breakdown in the heart with a primary volume overload.

    PubMed

    Yancey, Danielle M; Guichard, Jason L; Ahmed, Mustafa I; Zhou, Lufang; Murphy, Michael P; Johnson, Michelle S; Benavides, Gloria A; Collawn, James; Darley-Usmar, Victor; Dell'Italia, Louis J

    2015-03-15

    Left ventricular (LV) volume overload (VO) results in cardiomyocyte oxidative stress and mitochondrial dysfunction. Because mitochondria are both a source and target of ROS, we hypothesized that the mitochondrially targeted antioxidant mitoubiquinone (MitoQ) will improve cardiomyocyte damage and LV dysfunction in VO. Isolated cardiomyocytes from Sprague-Dawley rats were exposed to stretch in vitro and VO of aortocaval fistula (ACF) in vivo. ACF rats were treated with and without MitoQ. Isolated cardiomyocytes were analyzed after 3 h of cyclical stretch or 8 wk of ACF with MitoSox red or 5-(and-6)-chloromethyl-2',7'-dichlorodihydrofluorescein diacetate to measure ROS and with tetramethylrhodamine to measure mitochondrial membrane potential. Transmission electron microscopy and immunohistochemistry were used for cardiomyocyte structural assessment. In vitro cyclical stretch and 8-wk ACF resulted in increased cardiomyocyte mitochondrial ROS production and decreased mitochondrial membrane potential, which were significantly improved by MitoQ. ACF had extensive loss of desmin and β₂-tubulin that was paralleled by mitochondrial disorganization, loss of cristae, swelling, and clustering identified by mitochondria complex IV staining and transmission electron microscopy. MitoQ improved mitochondrial structural damage and attenuated desmin loss/degradation evidenced by immunohistochemistry and protein expression. However, LV dilatation and fractional shortening were unaffected by MitoQ treatment in 8-wk ACF. In conclusion, although MitoQ did not affect LV dilatation or function in ACF, these experiments suggest a connection of cardiomyocyte mitochondria-derived ROS production with cytoskeletal disruption and mitochondrial damage in the VO of ACF.

  5. Cardiomyocyte mitochondrial oxidative stress and cytoskeletal breakdown in the heart with a primary volume overload

    PubMed Central

    Yancey, Danielle M.; Guichard, Jason L.; Ahmed, Mustafa I.; Zhou, Lufang; Murphy, Michael P.; Johnson, Michelle S.; Benavides, Gloria A.; Collawn, James; Darley-Usmar, Victor

    2015-01-01

    Left ventricular (LV) volume overload (VO) results in cardiomyocyte oxidative stress and mitochondrial dysfunction. Because mitochondria are both a source and target of ROS, we hypothesized that the mitochondrially targeted antioxidant mitoubiquinone (MitoQ) will improve cardiomyocyte damage and LV dysfunction in VO. Isolated cardiomyocytes from Sprague-Dawley rats were exposed to stretch in vitro and VO of aortocaval fistula (ACF) in vivo. ACF rats were treated with and without MitoQ. Isolated cardiomyocytes were analyzed after 3 h of cyclical stretch or 8 wk of ACF with MitoSox red or 5-(and-6)-chloromethyl-2′,7′-dichlorodihydrofluorescein diacetate to measure ROS and with tetramethylrhodamine to measure mitochondrial membrane potential. Transmission electron microscopy and immunohistochemistry were used for cardiomyocyte structural assessment. In vitro cyclical stretch and 8-wk ACF resulted in increased cardiomyocyte mitochondrial ROS production and decreased mitochondrial membrane potential, which were significantly improved by MitoQ. ACF had extensive loss of desmin and β2-tubulin that was paralleled by mitochondrial disorganization, loss of cristae, swelling, and clustering identified by mitochondria complex IV staining and transmission electron microscopy. MitoQ improved mitochondrial structural damage and attenuated desmin loss/degradation evidenced by immunohistochemistry and protein expression. However, LV dilatation and fractional shortening were unaffected by MitoQ treatment in 8-wk ACF. In conclusion, although MitoQ did not affect LV dilatation or function in ACF, these experiments suggest a connection of cardiomyocyte mitochondria-derived ROS production with cytoskeletal disruption and mitochondrial damage in the VO of ACF. PMID:25599572

  6. Enhanced oxidative stress and aberrant mitochondrial biogenesis in human neuroblastoma SH-SY5Y cells during methamphetamine induced apoptosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, C.-W.; Ping, Y.-H.; Department of Education and Research, Taipei City Hospital, Taipei, Taiwan

    2007-05-01

    Methamphetamine (METH) is an abused drug that may cause psychiatric and neurotoxic damage, including degeneration of monoaminergic terminals and apoptosis of non-monoaminergic cells in Brain. The cellular and molecular mechanisms underlying these METH-induced neurotoxic effects remain to be clarified. In this study, we performed a time course assessment to investigate the effects of METH on intracellular oxidative stress and mitochondrial alterations in a human dopaminergic neuroblastoma SH-SY5Y cell line. We characterized that METH induces a temporal sequence of several cellular events including, firstly, a decrease in mitochondrial membrane potential within 1 h of the METH treatment, secondly, an extensive declinemore » in mitochondrial membrane potential and increase in the level of reactive oxygen species (ROS) after 8 h of the treatment, thirdly, an increase in mitochondrial mass after the drug treatment for 24 h, and finally, a decrease in mtDNA copy number and mitochondrial proteins per mitochondrion as well as the occurrence of apoptosis after 48 h of the treatment. Importantly, vitamin E attenuated the METH-induced increases in intracellular ROS level and mitochondrial mass, and prevented METH-induced cell death. Our observations suggest that enhanced oxidative stress and aberrant mitochondrial biogenesis may play critical roles in METH-induced neurotoxic effects.« less

  7. VDAC electronics: 3. VDAC-Creatine kinase-dependent generation of the outer membrane potential in respiring mitochondria.

    PubMed

    Lemeshko, Victor V

    2016-07-01

    Mitochondrial energy in cardiac cells has been reported to be channeled into the cytosol through the intermembrane contact sites formed by the adenine nucleotide translocator, creatine kinase and VDAC. Computational analysis performed in this study showed a high probability of the outer membrane potential (OMP) generation coupled to such a mechanism of energy channeling in respiring mitochondria. OMPs, positive inside, calculated at elevated concentrations of creatine are high enough to restrict ATP release from mitochondria, to significantly decrease the apparent K(m,ADP) for state 3 respiration and to maintain low concentrations of Ca(2+) in the mitochondrial intermembrane space. An inhibition by creatine of Ca(2+)-induced swelling of isolated mitochondria and other protective effects of creatine reported in the literature might be explained by generated positive OMP. We suggest that VDAC-creatine kinase-dependent generation of OMP represents a novel physiological factor controlling metabolic state of mitochondria, cell energy channeling and resistance to death. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Metformin improves cardiac function in mice with heart failure after myocardial infarction by regulating mitochondrial energy metabolism.

    PubMed

    Sun, Dan; Yang, Fei

    2017-04-29

    To investigate whether metformin can improve the cardiac function through improving the mitochondrial function in model of heart failure after myocardial infarction. Male C57/BL6 mice aged about 8 weeks were selected and the anterior descending branch was ligatured to establish the heart failure model after myocardial infarction. The cardiac function was evaluated via ultrasound after 3 days to determine the modeling was successful, and the mice were randomly divided into two groups. Saline group (Saline) received the intragastric administration of normal saline for 4 weeks, and metformin group (Met) received the intragastric administration of metformin for 4 weeks. At the same time, Shame group (Sham) was set up. Changes in cardiac function in mice were detected at 4 weeks after operation. Hearts were taken from mice after 4 weeks, and cell apoptosis in myocardial tissue was detected using TUNEL method; fresh mitochondria were taken and changes in oxygen consumption rate (OCR) and respiratory control rate (RCR) of mitochondria in each group were detected using bio-energy metabolism tester, and change in mitochondrial membrane potential (MMP) of myocardial tissue was detected via JC-1 staining; the expressions and changes in Bcl-2, Bax, Sirt3, PGC-1α and acetylated PGC-1α in myocardial tissue were detected by Western blot. RT-PCR was used to detect mRNA levels in Sirt3 in myocardial tissues. Metformin improved the systolic function of heart failure model rats after myocardial infarction and reduced the apoptosis of myocardial cells after myocardial infarction. Myocardial mitochondrial respiratory function and membrane potential were decreased after myocardial infarction, and metformin treatment significantly improved the mitochondrial respiratory function and mitochondrial membrane potential; Metformin up-regulated the expression of Sirt3 and the activity of PGC-1α in myocardial tissue of heart failure after myocardial infarction. Metformin decreases the

  9. Ionizing radiation induces mitochondrial reactive oxygen species production accompanied by upregulation of mitochondrial electron transport chain function and mitochondrial content under control of the cell cycle checkpoint.

    PubMed

    Yamamori, Tohru; Yasui, Hironobu; Yamazumi, Masayuki; Wada, Yusuke; Nakamura, Yoshinari; Nakamura, Hideo; Inanami, Osamu

    2012-07-15

    Whereas ionizing radiation (Ir) instantaneously causes the formation of water radiolysis products that contain some reactive oxygen species (ROS), ROS are also suggested to be released from biological sources in irradiated cells. It is now becoming clear that these ROS generated secondarily after Ir have a variety of biological roles. Although mitochondria are assumed to be responsible for this Ir-induced ROS production, it remains to be elucidated how Ir triggers it. Therefore, we conducted this study to decipher the mechanism of Ir-induced mitochondrial ROS production. In human lung carcinoma A549 cells, Ir (10 Gy of X-rays) induced a time-dependent increase in the mitochondrial ROS level. Ir also increased mitochondrial membrane potential, mitochondrial respiration, and mitochondrial ATP production, suggesting upregulation of the mitochondrial electron transport chain (ETC) function after Ir. Although we found that Ir slightly enhanced mitochondrial ETC complex II activity, the complex II inhibitor 3-nitropropionic acid failed to reduce Ir-induced mitochondrial ROS production. Meanwhile, we observed that the mitochondrial mass and mitochondrial DNA level were upregulated after Ir, indicating that Ir increased the mitochondrial content of the cell. Because irradiated cells are known to undergo cell cycle arrest under control of the checkpoint mechanisms, we examined the relationships between cell cycle and mitochondrial content and cellular oxidative stress level. We found that the cells in the G2/M phase had a higher mitochondrial content and cellular oxidative stress level than cells in the G1 or S phase, regardless of whether the cells were irradiated. We also found that Ir-induced accumulation of the cells in the G2/M phase led to an increase in cells with a high mitochondrial content and cellular oxidative stress level. This suggested that Ir upregulated mitochondrial ETC function and mitochondrial content, resulting in mitochondrial ROS production, and that

  10. Superresolution Imaging Identifies That Conventional Trafficking Pathways Are Not Essential for Endoplasmic Reticulum to Outer Mitochondrial Membrane Protein Transport.

    PubMed

    Salka, Kyle; Bhuvanendran, Shivaprasad; Wilson, Kassandra; Bozidis, Petros; Mehta, Mansi; Rainey, Kristin; Sesaki, Hiromi; Patterson, George H; Jaiswal, Jyoti K; Colberg-Poley, Anamaris M

    2017-02-02

    Most nuclear-encoded mitochondrial proteins traffic from the cytosol to mitochondria. Some of these proteins localize at mitochondria-associated membranes (MAM), where mitochondria are closely apposed with the endoplasmic reticulum (ER). We have previously shown that the human cytomegalovirus signal-anchored protein known as viral mitochondria-localized inhibitor of apoptosis (vMIA) traffics from the ER to mitochondria and clusters at the outer mitochondrial membrane (OMM). Here, we have examined the host pathways by which vMIA traffics from the ER to mitochondria and clusters at the OMM. By disruption of phosphofurin acidic cluster sorting protein 2 (PACS-2), mitofusins (Mfn1/2), and dynamin related protein 1 (Drp1), we find these conventional pathways for ER to the mitochondria trafficking are dispensable for vMIA trafficking to OMM. Instead, mutations in vMIA that change its hydrophobicity alter its trafficking to mitochondria. Superresolution imaging showed that PACS-2- and Mfn-mediated membrane apposition or hydrophobic interactions alter vMIA's ability to organize in nanoscale clusters at the OMM. This shows that signal-anchored MAM proteins can make use of hydrophobic interactions independently of conventional ER-mitochondria pathways to traffic from the ER to mitochondria. Further, vMIA hydrophobic interactions and ER-mitochondria contacts facilitate proper organization of vMIA on the OMM.

  11. Sls1p is a membrane-bound regulator of transcription-coupled processes involved in Saccharomyces cerevisiae mitochondrial gene expression.

    PubMed Central

    Bryan, Anthony C; Rodeheffer, Matthew S; Wearn, Christopher M; Shadel, Gerald S

    2002-01-01

    Mitochondrial translation is largely membrane-associated in S. cerevisiae. Recently, we discovered that the matrix protein Nam1p binds the amino-terminal domain of yeast mtRNA polymerase to couple translation and/or RNA-processing events to transcription. To gain additional insight into these transcription-coupled processes, we performed a genetic screen for genes that suppress the petite phenotype of a point mutation in mtRNA polymerase (rpo41-R129D) when overexpressed. One suppressor identified in this screen was SLS1, which encodes a mitochondrial membrane protein required for assembly of respiratory-chain enzyme complexes III and IV. The mtRNA-processing defects associated with the rpo41-R129D mutation were corrected in the suppressed strain, linking Sls1p to a pathway that includes mtRNA polymerase and Nam1p. This was supported by the observation that SLS1 overexpression rescued the petite phenotype of a NAM1 null mutation. In contrast, overexpression of Nam1p did not rescue the petite phenotype of a SLS1 null mutation, indicating that Nam1p and Sls1p are not functionally redundant but rather exist in an ordered pathway. On the basis of these data, a model in which Nam1p coordinates the delivery of newly synthesized transcripts to the membrane, where Sls1p directs or regulates their subsequent handling by membrane-bound factors involved in translation, is proposed. PMID:11805046

  12. Cardiolipin effects on membrane structure and dynamics.

    PubMed

    Unsay, Joseph D; Cosentino, Katia; Subburaj, Yamunadevi; García-Sáez, Ana J

    2013-12-23

    Cardiolipin (CL) is a lipid with unique properties solely found in membranes generating electrochemical potential. It contains four acyl chains and tends to form nonlamellar structures, which are believed to play a key role in membrane structure and function. Indeed, CL alterations have been linked to disorders such as Barth syndrome and Parkinson's disease. However, the molecular effects of CL on membrane organization remain poorly understood. Here, we investigated the structure and physical properties of CL-containing membranes using confocal microscopy, fluorescence correlation spectroscopy, and atomic force microscopy. We found that the fluidity of the lipid bilayer increased and its mechanical stability decreased with CL concentration, indicating that CL decreases the packing of the membrane. Although the presence of up to 20% CL gave rise to flat, stable bilayers, the inclusion of 5% CL promoted the formation of flowerlike domains that grew with time. Surprisingly, we often observed two membrane-piercing events in atomic force spectroscopy experiments with CL-containing membranes. Similar behavior was observed with a lipid mixture mimicking the mitochondrial outer membrane composition. This suggests that CL promotes the formation of membrane areas with apposed double bilayers or nonlamellar structures, similar to those proposed for mitochondrial contact sites. All together, we show that CL induces membrane alterations that support the role of CL in facilitating bilayer structure remodeling, deformation, and permeabilization.

  13. Human biallelic MFN2 mutations induce mitochondrial dysfunction, upper body adipose hyperplasia, and suppression of leptin expression.

    PubMed

    Rocha, Nuno; Bulger, David A; Frontini, Andrea; Titheradge, Hannah; Gribsholt, Sigrid Bjerge; Knox, Rachel; Page, Matthew; Harris, Julie; Payne, Felicity; Adams, Claire; Sleigh, Alison; Crawford, John; Gjesing, Anette Prior; Bork-Jensen, Jette; Pedersen, Oluf; Barroso, Inês; Hansen, Torben; Cox, Helen; Reilly, Mary; Rossor, Alex; Brown, Rebecca J; Taylor, Simeon I; McHale, Duncan; Armstrong, Martin; Oral, Elif A; Saudek, Vladimir; O'Rahilly, Stephen; Maher, Eamonn R; Richelsen, Bjørn; Savage, David B; Semple, Robert K

    2017-04-19

    MFN2 encodes mitofusin 2, a membrane-bound mediator of mitochondrial membrane fusion and inter-organelle communication. MFN2 mutations cause axonal neuropathy, with associated lipodystrophy only occasionally noted, however homozygosity for the p.Arg707Trp mutation was recently associated with upper body adipose overgrowth. We describe similar massive adipose overgrowth with suppressed leptin expression in four further patients with biallelic MFN2 mutations and at least one p.Arg707Trp allele. Overgrown tissue was composed of normal-sized, UCP1-negative unilocular adipocytes, with mitochondrial network fragmentation, disorganised cristae, and increased autophagosomes. There was strong transcriptional evidence of mitochondrial stress signalling, increased protein synthesis, and suppression of signatures of cell death in affected tissue, whereas mitochondrial morphology and gene expression were normal in skin fibroblasts. These findings suggest that specific MFN2 mutations cause tissue-selective mitochondrial dysfunction with increased adipocyte proliferation and survival, confirm a novel form of excess adiposity with paradoxical suppression of leptin expression, and suggest potential targeted therapies.

  14. Low testosterone levels are related to oxidative stress, mitochondrial dysfunction and altered subclinical atherosclerotic markers in type 2 diabetic male patients.

    PubMed

    Rovira-Llopis, Susana; Bañuls, Celia; de Marañon, Aranzazu M; Diaz-Morales, Noelia; Jover, Ana; Garzon, Sandra; Rocha, Milagros; Victor, Victor M; Hernandez-Mijares, Antonio

    2017-07-01

    Low testosterone levels in men are associated with type 2 diabetes and cardiovascular risk. However, the role of testosterone in mitochondrial function and leukocyte-endothelium interactions is unknown. Our aim was to evaluate the relationship between testosterone levels, metabolic parameters, oxidative stress, mitochondrial function, inflammation and leukocyte-endothelium interactions in type 2 diabetic patients. The study was performed in 280 male type 2 diabetic patients and 50 control subjects. Anthropometric and metabolic parameters, testosterone levels, reactive oxygen species (ROS) production, mitochondrial membrane potential, TNFα, adhesion molecules and leukocyte-endothelium cell interactions were evaluated. Testosterone levels were lower in diabetic patients. Total and mitochondrial ROS were increased and mitochondrial membrane potential, SOD and GSR expression levels were reduced in diabetic patients. TNFα, ICAM-1 and VCAM-1 levels, leukocyte rolling flux and adhesion were all enhanced in diabetic patients, while rolling velocity was reduced. Testosterone levels correlated negatively with glucose, HOMA-IR, HbA1c, triglycerides, nonHDL-c, ApoB, hs-CRP and AIP, and positively with HDL-c and ApoA1. The multivariable regression model showed that HDL-c, HOMA-IR and age were independently associated with testosterone. Furthermore, testosterone levels correlated positively with membrane potential and rolling velocity and negatively with ROS production, VCAM-1, rolling flux and adhesion. Our data highlight that low testosterone levels in diabetic men are related to impaired metabolic profile and mitochondrial function and enhanced inflammation and leukocyte-endothelium cell interaction, which leaves said patients at risk of cardiovascular events. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Gene-by-environment interactions that disrupt mitochondrial homeostasis cause neurodegeneration in C. elegans Parkinson's models.

    PubMed

    Kim, Hanna; Perentis, Rylee J; Caldwell, Guy A; Caldwell, Kim A

    2018-05-10

    Parkinson's disease (PD) is a complex multifactorial disorder where environmental factors interact with genetic susceptibility. Accumulating evidence suggests that mitochondria have a central role in the progression of neurodegeneration in sporadic and/or genetic forms of PD. We previously reported that exposure to a secondary metabolite from the soil bacterium, Streptomyces venezuelae, results in age- and dose-dependent dopaminergic (DA) neurodegeneration in Caenorhabditis elegans and human SH-SY5Y neurons. Initial characterization of this environmental factor indicated that neurodegeneration occurs through a combination of oxidative stress, mitochondrial complex I impairment, and proteostatic disruption. Here we present extended evidence to elucidate the interaction between this bacterial metabolite and mitochondrial dysfunction in the development of DA neurodegeneration. We demonstrate that it causes a time-dependent increase in mitochondrial fragmentation through concomitant changes in the gene expression of mitochondrial fission and fusion components. In particular, the outer mitochondrial membrane fission and fusion genes, drp-1 (a dynamin-related GTPase) and fzo-1 (a mitofusin homolog), are up- and down-regulated, respectively. Additionally, eat-3, an inner mitochondrial membrane fusion component, an OPA1 homolog, is also down regulated. These changes are associated with a metabolite-induced decline in mitochondrial membrane potential and enhanced DA neurodegeneration that is dependent on PINK-1 function. Genetic analysis also indicates an association between the cell death pathway and drp-1 following S. ven exposure. Metabolite-induced neurotoxicity can be suppressed by DA-neuron-specific RNAi knockdown of eat-3. AMPK activation by 5-amino-4-imidazole carboxamide riboside (AICAR) ameliorated metabolite- or PINK-1-induced neurotoxicity; however, it enhanced neurotoxicity under normal conditions. These studies underscore the critical role of mitochondrial

  16. Mitochondrial Ubiquitin Ligase in Cardiovascular Disorders.

    PubMed

    Yu, Tao; Zhang, Yinfeng; Li, Pei-Feng

    2017-01-01

    Mitochondrial dynamics play a critical role in cellular responses and physiological process. However, their dysregulation leads to a functional degradation, which results in a diverse array of common disorders, including cardiovascular disease. In this background, the mitochondrial ubiquitin ligase has been attracting substantial research interest in recent years. Mitochondrial ubiquitin ligase is localized in the mitochondrial outer membrane, where it plays an essential role in the regulation of mitochondrial dynamics and apoptosis. In this chapter, we provide a comprehensive overview of the functions of mitochondrial ubiquitin ligases identified hitherto, with a special focus on cardiovascular disorders.

  17. Mitochondrial Ceramide-Rich Macrodomains Functionalize Bax upon Irradiation

    PubMed Central

    Lee, Hyunmi; Rotolo, Jimmy A.; Mesicek, Judith; Penate-Medina, Tuula; Rimner, Andreas; Liao, Wen-Chieh; Yin, Xianglei; Ragupathi, Govind; Ehleiter, Desiree; Gulbins, Erich; Zhai, Dayong; Reed, John C.; Haimovitz-Friedman, Adriana; Fuks, Zvi; Kolesnick, Richard

    2011-01-01

    Background Evidence indicates that Bax functions as a “lipidic” pore to regulate mitochondrial outer membrane permeabilization (MOMP), the apoptosis commitment step, through unknown membrane elements. Here we show mitochondrial ceramide elevation facilitates MOMP-mediated cytochrome c release in HeLa cells by generating a previously-unrecognized mitochondrial ceramide-rich macrodomain (MCRM), which we visualize and isolate, into which Bax integrates. Methodology/Principal Findings MCRMs, virtually non-existent in resting cells, form upon irradiation coupled to ceramide synthase-mediated ceramide elevation, optimizing Bax insertion/oligomerization and MOMP. MCRMs are detected by confocal microscopy in intact HeLa cells and isolated biophysically as a light membrane fraction from HeLa cell lysates. Inhibiting ceramide generation using a well-defined natural ceramide synthase inhibitor, Fumonisin B1, prevented radiation-induced Bax insertion, oligomerization and MOMP. MCRM deconstruction using purified mouse hepatic mitochondria revealed ceramide alone is non-apoptogenic. Rather Bax integrates into MCRMs, oligomerizing therein, conferring 1–2 log enhanced cytochrome c release. Consistent with this mechanism, MCRM Bax isolates as high molecular weight “pore-forming” oligomers, while non-MCRM membrane contains exclusively MOMP-incompatible monomeric Bax. Conclusions/Significance Our recent studies in the C. elegans germline indicate that mitochondrial ceramide generation is obligate for radiation-induced apoptosis, although a mechanism for ceramide action was not delineated. Here we demonstrate that ceramide, generated in the mitochondrial outer membrane of mammalian cells upon irradiation, forms a platform into which Bax inserts, oligomerizes and functionalizes as a pore. We posit conceptualization of ceramide as a membrane-based stress calibrator, driving membrane macrodomain organization, which in mitochondria regulates intensity of Bax-induced MOMP, and is

  18. Role of membrane contact sites in protein import into mitochondria

    PubMed Central

    Horvath, Susanne E; Rampelt, Heike; Oeljeklaus, Silke; Warscheid, Bettina; van der Laan, Martin; Pfanner, Nikolaus

    2015-01-01

    Mitochondria import more than 1,000 different proteins from the cytosol. The proteins are synthesized as precursors on cytosolic ribosomes and are translocated by protein transport machineries of the mitochondrial membranes. Five main pathways for protein import into mitochondria have been identified. Most pathways use the translocase of the outer mitochondrial membrane (TOM) as the entry gate into mitochondria. Depending on specific signals contained in the precursors, the proteins are subsequently transferred to different intramitochondrial translocases. In this article, we discuss the connection between protein import and mitochondrial membrane architecture. Mitochondria possess two membranes. It is a long-standing question how contact sites between outer and inner membranes are formed and which role the contact sites play in the translocation of precursor proteins. A major translocation contact site is formed between the TOM complex and the presequence translocase of the inner membrane (TIM23 complex), promoting transfer of presequence-carrying preproteins to the mitochondrial inner membrane and matrix. Recent findings led to the identification of contact sites that involve the mitochondrial contact site and cristae organizing system (MICOS) of the inner membrane. MICOS plays a dual role. It is crucial for maintaining the inner membrane cristae architecture and forms contacts sites to the outer membrane that promote translocation of precursor proteins into the intermembrane space and outer membrane of mitochondria. The view is emerging that the mitochondrial protein translocases do not function as independent units, but are embedded in a network of interactions with machineries that control mitochondrial activity and architecture. PMID:25514890

  19. A cell death assay for assessing the mitochondrial targeting of proteins.

    PubMed

    Camara Teixeira, Daniel; Cordonier, Elizabeth L; Wijeratne, Subhashinee S K; Huebbe, Patricia; Jamin, Augusta; Jarecke, Sarah; Wiebe, Matthew; Zempleni, Janos

    2018-06-01

    The mitochondrial proteome comprises 1000 to 1500 proteins, in addition to proteins for which the mitochondrial localization is uncertain. About 800 diseases have been linked with mutations in mitochondrial proteins. We devised a cell survival assay for assessing the mitochondrial localization in a high-throughput format. This protocol allows us to assess the mitochondrial localization of proteins and their mutants, and to identify drugs and nutrients that modulate the mitochondrial targeting of proteins. The assay works equally well for proteins directed to the outer mitochondrial membrane, inner mitochondrial membrane mitochondrial and mitochondrial matrix, as demonstrated by assessing the mitochondrial targeting of the following proteins: carnitine palmitoyl transferase 1 (consensus sequence and R123C mutant), acetyl-CoA carboxylase 2, uncoupling protein 1 and holocarboxylase synthetase. Our screen may be useful for linking the mitochondrial proteome with rare diseases and for devising drug- and nutrition-based strategies for altering the mitochondrial targeting of proteins. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. Trimetazidine prevents palmitate-induced mitochondrial fission and dysfunction in cultured cardiomyocytes.

    PubMed

    Kuzmicic, Jovan; Parra, Valentina; Verdejo, Hugo E; López-Crisosto, Camila; Chiong, Mario; García, Lorena; Jensen, Michael D; Bernlohr, David A; Castro, Pablo F; Lavandero, Sergio

    2014-10-01

    Metabolic and cardiovascular disease patients have increased plasma levels of lipids and, specifically, of palmitate, which can be toxic for several tissues. Trimetazidine (TMZ), a partial inhibitor of lipid oxidation, has been proposed as a metabolic modulator for several cardiovascular pathologies. However, its mechanism of action is controversial. Given the fact that TMZ is able to alter mitochondrial metabolism, we evaluated the protective role of TMZ on mitochondrial morphology and function in an in vitro model of lipotoxicity induced by palmitate. We treated cultured rat cardiomyocytes with BSA-conjugated palmitate (25 nM free), TMZ (0.1-100 μM), or a combination of both. We evaluated mitochondrial morphology and lipid accumulation by confocal fluorescence microscopy, parameters of mitochondrial metabolism (mitochondrial membrane potential, oxygen consumption rate [OCR], and ATP levels), and ceramide production by mass spectrometry and indirect immunofluorescence. Palmitate promoted mitochondrial fission evidenced by a decrease in mitochondrial volume (50%) and an increase in the number of mitochondria per cell (80%), whereas TMZ increased mitochondrial volume (39%), and decreased mitochondrial number (56%), suggesting mitochondrial fusion. Palmitate also decreased mitochondrial metabolism (ATP levels and OCR), while TMZ potentiated all the metabolic parameters assessed. Moreover, pretreatment with TMZ protected the cardiomyocytes from palmitate-induced mitochondrial fission and dysfunction. TMZ also increased lipid accumulation in cardiomyocytes, and prevented palmitate-induced ceramide production. Our data show that TMZ protects cardiomyocytes by changing intracellular lipid management. Thus, the beneficial effects of TMZ on patients with different cardiovascular pathologies can be related to modulation of the mitochondrial morphology and function. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Glutamine-mediated protection from neuronal cell death depends on mitochondrial activity.

    PubMed

    Stelmashook, E V; Lozier, E R; Goryacheva, E S; Mergenthaler, P; Novikova, S V; Zorov, D B; Isaev, N K

    2010-09-27

    The specific aim of this study was to elucidate the role of mitochondria in a neuronal death caused by different metabolic effectors and possible role of intracellular calcium ions ([Ca(2+)](i)) and glutamine in mitochondria- and non-mitochondria-mediated cell death. Inhibition of mitochondrial complex I by rotenone was found to cause intensive death of cultured cerebellar granule neurons (CGNs) that was preceded by an increase in intracellular calcium concentration ([Ca(2+)](i)). The neuronal death induced by rotenone was significantly potentiated by glutamine. In addition, inhibition of Na/K-ATPase by ouabain also caused [Ca(2+)](i) increase, but it induced neuronal cell death only in the absence of glucose. Treatment with glutamine prevented the toxic effect of ouabain and decreased [Ca(2+)](i). Blockade of ionotropic glutamate receptors prevented neuronal death and significantly decreased [Ca(2+)](i), demonstrating that toxicity of rotenone and ouabain was at least partially mediated by activation of these receptors. Activation of glutamate receptors by NMDA increased [Ca(2+)](i) and decreased mitochondrial membrane potential leading to markedly decreased neuronal survival under glucose deprivation. Glutamine treatment under these conditions prevented cell death and significantly decreased the disturbances of [Ca(2+)](i) and changes in mitochondrial membrane potential caused by NMDA during hypoglycemia. Our results indicate that glutamine stimulates glutamate-dependent neuronal damage when mitochondrial respiration is impaired. However, when mitochondria are functionally active, glutamine can be used by mitochondria as an alternative substrate to maintain cellular energy levels and promote cell survival. (c) 2010 Elsevier Ireland Ltd. All rights reserved.

  2. Physical consequences of the mitochondrial targeting of single-walled carbon nanotubes probed computationally

    NASA Astrophysics Data System (ADS)

    Chistyakov, V. A.; Zolotukhin, P. V.; Prazdnova, E. V.; Alperovich, I.; Soldatov, A. V.

    2015-06-01

    Experiments by F. Zhou and coworkers (2010) [16] showed that mitochondria are the main target of the cellular accumulation of single-walled carbon nanotubes (SWCNTs). Our in silico experiments, based on geometrical optimization of the system consisting of SWCNT+proton within Density Functional Theory, revealed that protons can bind to the outer side of SWCNT so generating a positive charge. Calculation results allow one to propose the following mechanism of SWCNTs mitochondrial targeting. SWCNTs enter the space between inner and outer membranes of mitochondria, where the excess of protons has been formed by diffusion. In this compartment SWCNTs are loaded with protons and acquire positive charges distributed over their surface. Protonation of hydrophobic SWCNTs can also be carried out within the mitochondrial membrane through interaction with the protonated ubiquinone. Such "charge loaded" particles can be transferred as "Sculachev ions" through the inner membrane of the mitochondria due to the potential difference generated by the inner membrane. Physiological consequences of the described mechanism are discussed.

  3. Depletion of mitochondrial fission factor DRP1 causes increased apoptosis in human colon cancer cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Inoue-Yamauchi, Akane, E-mail: ainoyama@research.twmu.ac.jp; Oda, Hideaki

    2012-04-27

    Highlights: Black-Right-Pointing-Pointer DRP1 is required for mitochondrial fission in colon cancer cells. Black-Right-Pointing-Pointer DRP1 participates in inhibition of colon cancer cell apoptosis. Black-Right-Pointing-Pointer DRP1 can inhibit apoptosis through the regulation of cytochrome c release. -- Abstract: Mitochondria play a critical role in regulation of apoptosis, a form of programmed cell death, by releasing apoptogenic factors including cytochrome c. Growing evidence suggests that dynamic changes in mitochondrial morphology are involved in cellular apoptotic response. However, whether DRP1-mediated mitochondrial fission is required for induction of apoptosis remains speculative. Here, we show that siRNA-mediated DRP1 knockdown promoted accumulation of elongated mitochondria in HCT116more » and SW480 human colon cancer cells. Surprisingly, DRP1 down-regulation led to decreased proliferation and increased apoptosis of these cells. A higher rate of cytochrome c release and reductions in mitochondrial membrane potential were also revealed in DRP1-depleted cells. Taken together, our present findings suggest that mitochondrial fission factor DRP1 inhibits colon cancer cell apoptosis through the regulation of cytochrome c release and mitochondrial membrane integrity.« less

  4. The cyclophilin D/Drp1 axis regulates mitochondrial fission contributing to oxidative stress-induced mitochondrial dysfunctions in SH-SY5Y cells.

    PubMed

    Xiao, Anqi; Gan, Xueqi; Chen, Ruiqi; Ren, Yanming; Yu, Haiyang; You, Chao

    2017-01-29

    Oxidative stress plays a central role in the pathogenesis of various neurodegenerative diseases. Increasing evidences have demonstrated that structural abnormalities in mitochondria are involved in oxidative stress related nerve cell damage. And Drp1 plays a critical role in mitochondrial dynamic imbalance insulted by oxidative stress-derived mitochondria. However, the status of mitochondrial fusion and fission pathway and its relationship with mitochondrial properties such as mitochondrial membrane permeability transition pore (mPTP) have not been fully elucidated. Here, we demonstrated for the first time the role of Cyclophilin D (CypD), a crucial component for mPTP formation, in the regulation of mitochondrial dynamics in oxidative stress treated nerve cell. We observed that CypD-mediated phosphorylation of Drp1 and subsequently augmented Drp1 recruitment to mitochondria and shifts mitochondrial dynamics toward excessive fission, which contributes to the mitochondrial structural and functional dysfunctions in oxidative stress-treated nerve cells. CypD depletion or over expression accompanies mitochondrial dynamics/functions recovery or aggravation separately. We also demonstrated first time the link between the CypD to mitochondrial dynamics. Our data offer new insights into the mechanism of mitochondrial dynamics which contribute to the mitochondrial dysfunctions, specifically the role of CypD in Drp1-mediated mitochondrial fission. The protective effect of CsA, or other molecules affecting the function of CypD hold promise as a potential novel therapeutic strategy for governing oxidative stress pathology via mitochondrial pathways. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Defective mitochondrial dynamics is an early event in skeletal muscle of an amyotrophic lateral sclerosis mouse model.

    PubMed

    Luo, Guo; Yi, Jianxun; Ma, Changling; Xiao, Yajuan; Yi, Frank; Yu, Tian; Zhou, Jingsong

    2013-01-01

    Mitochondria are dynamic organelles that constantly undergo fusion and fission to maintain their normal functionality. Impairment of mitochondrial dynamics is implicated in various neurodegenerative disorders. Amyotrophic lateral sclerosis (ALS) is an adult-onset neuromuscular degenerative disorder characterized by motor neuron death and muscle atrophy. ALS onset and progression clearly involve motor neuron degeneration but accumulating evidence suggests primary muscle pathology may also be involved. Here, we examined mitochondrial dynamics in live skeletal muscle of an ALS mouse model (G93A) harboring a superoxide dismutase mutation (SOD1(G93A)). Using confocal microscopy combined with overexpression of mitochondria-targeted photoactivatable fluorescent proteins, we discovered abnormal mitochondrial dynamics in skeletal muscle of young G93A mice before disease onset. We further demonstrated that similar abnormalities in mitochondrial dynamics were induced by overexpression of mutant SOD1(G93A) in skeletal muscle of normal mice, indicating the SOD1 mutation drives ALS-like muscle pathology in the absence of motor neuron degeneration. Mutant SOD1(G93A) forms aggregates inside muscle mitochondria and leads to fragmentation of the mitochondrial network as well as mitochondrial depolarization. Partial depolarization of mitochondrial membrane potential in normal muscle by carbonyl cyanide p-trifluoromethoxyphenylhydrazone (FCCP) caused abnormalities in mitochondrial dynamics similar to that in the SOD1(G93A) model muscle. A specific mitochondrial fission inhibitor (Mdivi-1) reversed the SOD1(G93A) action on mitochondrial dynamics, indicating SOD1(G93A) likely promotes mitochondrial fission process. Our results suggest that accumulation of mutant SOD1(G93A) inside mitochondria, depolarization of mitochondrial membrane potential and abnormal mitochondrial dynamics are causally linked and cause intrinsic muscle pathology, which occurs early in the course of ALS and may

  6. Heme modulates Trypanosoma cruzi bioenergetics inducing mitochondrial ROS production.

    PubMed

    Nogueira, Natália P; Saraiva, Francis M S; Oliveira, Matheus P; Mendonça, Ana Paula M; Inacio, Job D F; Almeida-Amaral, Elmo E; Menna-Barreto, Rubem F; Laranja, Gustavo A T; Torres, Eduardo J Lopes; Oliveira, Marcus F; Paes, Marcia C

    2017-07-01

    Trypanosoma cruzi is the causative agent of Chagas disease and has a single mitochondrion, an organelle responsible for ATP production and the main site for the formation of reactive oxygen species (ROS). T. cruzi is an obligate intracellular parasite with a complex life cycle that alternates between vertebrate and invertebrate hosts, therefore the development of survival strategies and morphogenetic adaptations to deal with the various environments is mandatory. Over the years our group has been studying the vector-parasite interactions using heme as a physiological oxidant molecule that triggered epimastigote proliferation however, the source of ROS induced by heme remained unknown. In the present study we demonstrate the involvement of heme in the parasite mitochondrial metabolism, decreasing oxygen consumption leading to increased mitochondrial ROS and membrane potential. First, we incubated epimastigotes with carbonyl cyanide p-(trifluoromethoxy) phenylhydrazone (FCCP), an uncoupler of oxidative phosphorylation, which led to decreased ROS formation and parasite proliferation, even in the presence of heme, correlating mitochondrial ROS and T. cruzi survival. This hypothesis was confirmed after the mitochondria-targeted antioxidant ((2-(2,2,6,6 Tetramethylpiperidin-1-oxyl-4-ylamino)-2-oxoethyl) triphenylphosphonium chloride (MitoTEMPO) decreased both heme-induced ROS and epimastigote proliferation. Furthermore, heme increased the percentage of tetramethylrhodamine methyl ester (TMRM) positive parasites tremendously-indicating the hyperpolarization and increase of potential of the mitochondrial membrane (ΔΨm). Assessing the mitochondrial functional metabolism, we observed that in comparison to untreated parasites, heme-treated epimastigotes decreased their oxygen consumption, and increased the complex II-III activity. These changes allowed the electron flow into the electron transport system, even though the complex IV (cytochrome c oxidase) activity decreased

  7. Sulforaphane Inhibits Mitochondrial Permeability Transition and Oxidative Stress

    PubMed Central

    Greco, Tiffany; Shafer, Jonathan; Fiskum, Gary

    2012-01-01

    Exposure of mitochondria to oxidative stress and elevated Ca2+ promotes opening of the mitochondrial permeability transition pore (PTP), resulting in membrane depolarization, uncoupling of oxidative phosphorylation, and potentially cell death. This study tested the hypothesis that treatment of rats with sulforaphane (SFP), an activator of the Nrf2 pathway of antioxidant gene expression, increases the resistance of liver mitochondria to redox-regulated PTP opening and elevates mitochondrial levels of antioxidants. Rats were injected with SFP or drug vehicle and liver mitochondria were isolated 40 hr later. Respiring mitochondria actively accumulated added Ca2+, which was then released through PTP opening induced by agents that either cause an oxidized shift in the mitochondrial redox state or that directly oxidize protein thiol groups. SFP treatment of rats inhibited the rate of pro-oxidant-induced mitochondrial Ca2+ release and increased expression of the glutathione peroxidase/reductase system, thioredoxin, and malic enzyme. These results are the first to demonstrate that SFP treatment of animals increases liver mitochondrial antioxidant defenses and inhibits redox-sensitive PTP opening. This novel form of preconditioning could protect against a variety of pathologies that include oxidative stress and mitochondrial dysfunction in their etiologies. PMID:21986339

  8. Plant uncoupling mitochondrial proteins.

    PubMed

    Vercesi, Aníbal Eugênio; Borecký, Jiri; Maia, Ivan de Godoy; Arruda, Paulo; Cuccovia, Iolanda Midea; Chaimovich, Hernan

    2006-01-01

    Uncoupling proteins (UCPs) are membrane proteins that mediate purine nucleotide-sensitive free fatty acid-activated H(+) flux through the inner mitochondrial membrane. After the discovery of UCP in higher plants in 1995, it was acknowledged that these proteins are widely distributed in eukaryotic organisms. The widespread presence of UCPs in eukaryotes implies that these proteins may have functions other than thermogenesis. In this review, we describe the current knowledge of plant UCPs, including their discovery, biochemical properties, distribution, gene family, gene expression profiles, regulation of gene expression, and evolutionary aspects. Expression analyses and functional studies on the plant UCPs under normal and stressful conditions suggest that UCPs regulate energy metabolism in the cellular responses to stress through regulation of the electrochemical proton potential (Deltamu(H)+) and production of reactive oxygen species.

  9. Protective effects of physical exercise on MDMA-induced cognitive and mitochondrial impairment.

    PubMed

    Taghizadeh, Ghorban; Pourahmad, Jalal; Mehdizadeh, Hajar; Foroumadi, Alireza; Torkaman-Boutorabi, Anahita; Hassani, Shokoufeh; Naserzadeh, Parvaneh; Shariatmadari, Reyhaneh; Gholami, Mahdi; Rouini, Mohammad Reza; Sharifzadeh, Mohammad

    2016-10-01

    Debate continues about the effect of 3, 4-methylenedioxymethamphetamine (MDMA) on cognitive and mitochondrial function through the CNS. It has been shown that physical exercise has an important protective effect on cellular damage and death. Therefore, we investigated the effect of physical exercise on MDMA-induced impairments of spatial learning and memory as well as MDMA effects on brain mitochondrial function in rats. Male wistar rats underwent short-term (2 weeks) or long-term (4 weeks) treadmill exercise. After completion of exercise duration, acquisition and retention of spatial memory were evaluated by Morris water maze (MWM) test. Rats were intraperitoneally (I.P) injected with MDMA (5, 10, and 15mg/kg) 30min before the first training trial in 4 training days of MWM. Different parameters of brain mitochondrial function were measured including the level of ROS production, mitochondrial membrane potential (MMP), mitochondrial swelling, mitochondrial outermembrane damage, the amount of cytochrome c release from the mitochondria, and ADP/ATP ratio. MDMA damaged the spatial learning and memory in a dose-dependent manner. Brain mitochondria isolated from the rats treated with MDMA showed significant increase in ROS formation, collapse of MMP, mitochondrial swelling, and outer membrane damage, cytochrome c release from the mitochondria, and finally increased ADP/ATP ratio. This study also found that physical exercise significantly decreased the MDMA-induced impairments of spatial learning and memory and also mitochondrial dysfunction. The results indicated that MDMA-induced neurotoxicity leads to brain mitochondrial dysfunction and subsequent oxidative stress is followed by cognitive impairments. However, physical exercise could reduce these deleterious effects of MDMA through protective effects on brain mitochondrial function. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Decreased ATP synthesis is phenotypically expressed during increased energy demand in fibroblasts containing mitochondrial tRNA mutations.

    PubMed

    James, A M; Sheard, P W; Wei, Y H; Murphy, M P

    1999-01-01

    Mutations in the tRNA genes of mitochondrial DNA (mtDNA) cause the debilitating MELAS (mitochondrial, myopathy, encephalopathy, lactic acidosis and stroke-like episodes) and MERRF (myoclonic epilepsy and ragged-red fibres) syndromes. These mtDNA mutations affect respiratory chain function, apparently without decreasing cellular ATP concentration [Moudy et al. (1995) PNAS, 92, 729-733]. To address this issue, we investigated the role of mitochondrial ATP synthesis in fibroblasts from MELAS and MERRF patients. The maximum rate of mitochondrial ATP synthesis was decreased by 60-88%, as a consequence of the decrease in the proton electrochemical potential gradient of MELAS and MERRF mitochondria. However, in quiescent fibroblasts neither ATP concentration or the ATP/ADP ratio was affected by the lowered rate of ATP synthesis. We hypothesized that the low ATP demand of quiescent fibroblasts masked the mitochondrial ATP synthesis defect and that this defect might become apparent during higher ATP use. To test this we simulated high energy demand by titrating cells with gramicidin, an ionophore that stimulates ATP hydrolysis by the plasma membrane Na+/K+-ATPase. We found a threshold gramicidin concentration in control cells at which both the ATP/ADP ratio and the plasma membrane potential decreased dramatically, due to ATP demand by the Na+/K+-ATPase outstripping mitochondrial ATP synthesis. In MELAS and MERRF fibroblasts the corresponding threshold concentrations of gramicidin were 2-20-fold lower than those for control cells. This is the first demonstration that cells containing mtDNA mutations are particularly sensitive to increased ATP demand and this has several implications for how mitochondrial dysfunction contributes to disease pathophysiology. In particular, the increased susceptibility to plasma membrane depolarization will render neurons with dysfunctional mitochondria susceptible to excitotoxic cell death.

  11. Stomatin-Like Protein 2 Is Required for In Vivo Mitochondrial Respiratory Chain Supercomplex Formation and Optimal Cell Function

    PubMed Central

    Mitsopoulos, Panagiotis; Chang, Yu-Han; Wai, Timothy; König, Tim; Dunn, Stanley D.; Langer, Thomas

    2015-01-01

    Stomatin-like protein 2 (SLP-2) is a mainly mitochondrial protein that is widely expressed and is highly conserved across evolution. We have previously shown that SLP-2 binds the mitochondrial lipid cardiolipin and interacts with prohibitin-1 and -2 to form specialized membrane microdomains in the mitochondrial inner membrane, which are associated with optimal mitochondrial respiration. To determine how SLP-2 functions, we performed bioenergetic analysis of primary T cells from T cell-selective Slp-2 knockout mice under conditions that forced energy production to come almost exclusively from oxidative phosphorylation. These cells had a phenotype characterized by increased uncoupled mitochondrial respiration and decreased mitochondrial membrane potential. Since formation of mitochondrial respiratory chain supercomplexes (RCS) may correlate with more efficient electron transfer during oxidative phosphorylation, we hypothesized that the defect in mitochondrial respiration in SLP-2-deficient T cells was due to deficient RCS formation. We found that in the absence of SLP-2, T cells had decreased levels and activities of complex I-III2 and I-III2-IV1-3 RCS but no defects in assembly of individual respiratory complexes. Impaired RCS formation in SLP-2-deficient T cells correlated with significantly delayed T cell proliferation in response to activation under conditions of limiting glycolysis. Altogether, our findings identify SLP-2 as a key regulator of the formation of RCS in vivo and show that these supercomplexes are required for optimal cell function. PMID:25776552

  12. Mitochondrial Dysfunction in Lysosomal Storage Disorders

    PubMed Central

    de la Mata, Mario; Cotán, David; Villanueva-Paz, Marina; de Lavera, Isabel; Álvarez-Córdoba, Mónica; Luzón-Hidalgo, Raquel; Suárez-Rivero, Juan M.; Tiscornia, Gustavo; Oropesa-Ávila, Manuel

    2016-01-01

    Lysosomal storage diseases (LSDs) describe a heterogeneous group of rare inherited metabolic disorders that result from the absence or loss of function of lysosomal hydrolases or transporters, resulting in the progressive accumulation of undigested material in lysosomes. The accumulation of substances affects the function of lysosomes and other organelles, resulting in secondary alterations such as impairment of autophagy, mitochondrial dysfunction, inflammation and apoptosis. LSDs frequently involve the central nervous system (CNS), where neuronal dysfunction or loss results in progressive neurodegeneration and premature death. Many LSDs exhibit signs of mitochondrial dysfunction, which include mitochondrial morphological changes, decreased mitochondrial membrane potential (ΔΨm), diminished ATP production and increased generation of reactive oxygen species (ROS). Furthermore, reduced autophagic flux may lead to the persistence of dysfunctional mitochondria. Gaucher disease (GD), the LSD with the highest prevalence, is caused by mutations in the GBA1 gene that results in defective and insufficient activity of the enzyme β-glucocerebrosidase (GCase). Decreased catalytic activity and/or instability of GCase leads to accumulation of glucosylceramide (GlcCer) and glucosylsphingosine (GlcSph) in the lysosomes of macrophage cells and visceral organs. Mitochondrial dysfunction has been reported to occur in numerous cellular and mouse models of GD. The aim of this manuscript is to review the current knowledge and implications of mitochondrial dysfunction in LSDs. PMID:28933411

  13. Effect of Membrane Tension on the Electric Field and Dipole Potential of Lipid Bilayer Membrane

    PubMed Central

    Warshaviak, Dora Toledo; Muellner, Michael J.; Chachisvilis, Mirianas

    2011-01-01

    The dipole potential of lipid bilayer membrane controls the difference in permeability of the membrane to oppositely charged ions. We have combined molecular dynamics (MD) simulations and experimental studies to determine changes in electric field and electrostatic potential of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) lipid bilayer in response to applied membrane tension. MD simulations based on CHARMM36 force field showed that electrostatic potential of DOPC bilayer decreases by ~45 mV in the physiologically relevant range of membrane tension values (0 to 15 dyn/cm). The electrostatic field exhibits a peak (~0.8×109 V/m) near the water/lipid interface which shifts by 0.9 Å towards the bilayer center at 15 dyn/cm. Maximum membrane tension of 15 dyn/cm caused 6.4% increase in area per lipid, 4.7% decrease in bilayer thickness and 1.4% increase in the volume of the bilayer. Dipole-potential sensitive fluorescent probes were used to detect membrane tension induced changes in DOPC vesicles exposed to osmotic stress. Experiments confirmed that dipole potential of DOPC bilayer decreases at higher membrane tensions. These results are suggestive of a potentially new mechanosensing mechanism by which mechanically induced structural changes in the lipid bilayer membrane could modulate the function of membrane proteins by altering electrostatic interactions and energetics of protein conformational states. PMID:21722624

  14. Human REV3 DNA Polymerase Zeta Localizes to Mitochondria and Protects the Mitochondrial Genome.

    PubMed

    Singh, Bhupendra; Li, Xiurong; Owens, Kjerstin M; Vanniarajan, Ayyasamy; Liang, Ping; Singh, Keshav K

    2015-01-01

    To date, mitochondrial DNA polymerase γ (POLG) is the only polymerase known to be present in mammalian mitochondria. A dogma in the mitochondria field is that there is no other polymerase present in the mitochondria of mammalian cells. Here we demonstrate localization of REV3 DNA polymerase in the mammalian mitochondria. We demonstrate localization of REV3 in the mitochondria of mammalian tissue as well as cell lines. REV3 associates with POLG and mitochondrial DNA and protects the mitochondrial genome from DNA damage. Inactivation of Rev3 leads to reduced mitochondrial membrane potential, reduced OXPHOS activity, and increased glucose consumption. Conversely, inhibition of the OXPHOS increases expression of Rev3. Rev3 expression is increased in human primary breast tumors and breast cancer cell lines. Inactivation of Rev3 decreases cell migration and invasion, and localization of Rev3 in mitochondria increases survival and the invasive potential of cancer cells. Taken together, we demonstrate that REV3 functions in mammalian mitochondria and that mitochondrial REV3 is associated with the tumorigenic potential of cells.

  15. Drosophila mitochondrial topoisomerase III alpha affects the aging process via maintenance of mitochondrial function and genome integrity.

    PubMed

    Tsai, Han-Zen; Lin, Ren-Kuo; Hsieh, Tao-Shih

    2016-04-12

    Mitochondria play important roles in providing metabolic energy and key metabolites for synthesis of cellular building blocks. Mitochondria have additional functions in other cellular processes, including programmed cell death and aging. A previous study revealed Drosophila mitochondrial topoisomerase III alpha (Top3α) contributes to the maintenance of the mitochondrial genome and male germ-line stem cells. However, the involvement of mitochondrial Top3α in the mitochondrion-mediated aging process remains unclear. In this study, the M1L flies, in which Top3α protein lacks the mitochondrial import sequence and is thus present in cell nuclei but not in mitochondria, is used as a model system to examine the role of mitochondrial Top3α in the aging of fruit flies. Here, we reported that M1L flies exhibit mitochondrial defects which affect the aging process. First, we observed that M1L flies have a shorter life span, which was correlated with a significant reduction in the mitochondrial DNA copy number, the mitochondrial membrane potential, and ATP content compared with those of both wildtype and transgene-rescued flies of the same age. Second, we performed a mobility assay and electron microscopic analysis to demonstrate that the locomotion defect and mitophagy of M1L flies were enhanced with age, as compared with the controls. Finally, we showed that the correlation between the mtDNA deletion level and aging in M1L flies resembles what was reported in mammalian systems. The results reported here demonstrate that mitochondrial Top3α ablation results in mitochondrial genome instability and its dysfunction, thereby accelerating the aging process.

  16. Air pollution induces enhanced mitochondrial oxidative stress in cystic fibrosis airway epithelium.

    PubMed

    Kamdar, O; Le, Wei; Zhang, J; Ghio, A J; Rosen, G D; Upadhyay, D

    2008-10-29

    We studied the effects of airborne particulate matters (PM) on cystic fibrosis (CF) epithelium. We noted that PM enhanced human CF bronchial epithelial apoptosis, activated caspase-9 and PARP-1; and reduced mitochondrial membrane potential. Mitochondrial inhibitors (4,4-diisothiocyanatostilbene-2,2'disulfonic acid, rotenone and thenoyltrifluoroacetone) blocked PM-induced generation of reactive oxygen species and apoptosis. PM upregulated pro-apoptotic Bad, Bax, p53 and p21; and enhanced mitochondrial localization of Bax. The anti-apoptotic Bcl-2, Bcl-xl, Mcl-1 and Xiap remained unchanged; however, overexpression of Bcl-xl blocked PM-induced apoptosis. Accordingly, we provide the evidence that PM enhances oxidative stress and mitochondrial signaling mediated apoptosis via the modulation of Bcl family proteins in CF.

  17. Apoptotic transition of senescent cells accompanied with mitochondrial hyper-function

    PubMed Central

    Wang, Danli; Liu, Yang; Zhang, Rui; Zhang, Fen; Sui, Weihao; Chen, Li; Zheng, Ran; Chen, Xiaowen; Wen, Feiqiu; Ouyang, Hong-Wei; Ji, Junfeng

    2016-01-01

    Defined as stable cell-cycle arrest, cellular senescence plays an important role in diverse biological processes including tumorigenesis, organismal aging, and embryonic development. Although increasing evidence has documented the metabolic changes in senescent cells, mitochondrial function and its potential contribution to the fate of senescent cells remain largely unknown. Here, using two in vitro models of cellular senescence induced by doxorubicin treatment and prolonged passaging of neonatal human foreskin fibroblasts, we report that senescent cells exhibited high ROS level and augmented glucose metabolic rate concomitant with both morphological and quantitative changes of mitochondria. Furthermore, mitochondrial membrane potential depolarized at late stage of senescent cells which eventually led to apoptosis. Our study reveals that mitochondrial hyper-function contributes to the implementation of cellular senescence and we propose a model in which the mitochondrion acts as the key player in promoting fate-determination in senescent cells. PMID:27056883

  18. Sonodynamic action of pyropheophorbide-a methyl ester induces mitochondrial damage in liver cancer cells.

    PubMed

    Xu, Jing; Xia, Xinshu; Leung, Albert Wingnang; Xiang, Junyan; Jiang, Yuan; Yu, Heping; Bai, Dingqun; Li, Xiaohong; Xu, Chuanshan

    2011-05-01

    Sonodynamic therapy with pyropheophorbide-a methyl ester (MPPa) presents a promising aspect in treating liver cancer. The present study aims to investigate the mitochondrial damage of liver cancer cells induced by MPPa-mediated sonodynamic action. Mouse hepatoma cell line H(22) cells were incubated with MPPa (2 μM) for 20 h and then exposed to ultrasound with an intensity of 0.97 W/cm(2) for 8 s. Cytotoxicity was investigated 24h after sonodynamic action using MTT assay and light microscopy. Mitochondrial membrane potential (ΔΨm) was analyzed using flow cytometry with rhodamine 123 staining and ultrastructural changes were observed using transmission electron microscopy (TEM). The cytotoxicity of MPPa-mediated SDT on H(22) cell line was 73.00±3.42%, greater than ultrasound treatment alone (28.12±5.19%) significantly while MPPa treatment alone had no significant effect on H(22) cells. Moreover, after MPPa-mediated SDT cancer cells showed swollen mitochondria under TEM and a significant collapse of mitochondrial membrane potential. Our findings demonstrated that MPPa-mediated SDT could remarkably induce cell death of H(22) cells, and highlighted that mitochondrial damage might be an important cause of cell death induced by MPPa-mediated SDT. Copyright © 2010 Elsevier B.V. All rights reserved.

  19. Thermal acclimation in American alligators: Effects of temperature regime on growth rate, mitochondrial function, and membrane composition.

    PubMed

    Price, Edwin R; Sirsat, Tushar S; Sirsat, Sarah K G; Kang, Gurdeep; Keereetaweep, Jantana; Aziz, Mina; Chapman, Kent D; Dzialowski, Edward M

    2017-08-01

    We investigated the ability of juvenile American alligators (Alligator mississippiensis) to acclimate to temperature with respect to growth rate. We hypothesized that alligators would acclimate to cold temperature by increasing the metabolic capacity of skeletal muscles and the heart. Additionally, we hypothesized that lipid membranes in the thigh muscle and liver would respond to low temperature, either to maintain fluidity (via increased unsaturation) or to maintain enzyme reaction rates (via increased docosahexaenoic acid). Alligators were assigned to one of 3 temperature regimes beginning at 9 mo of age: constant warm (30°C), constant cold (20°C), and daily cycling for 12h at each temperature. Growth rate over the following 7 mo was highest in the cycling group, which we suggest occurred via high digestive function or feeding activity during warm periods and energy-saving during cold periods. The warm group also grew faster than the cold group. Heart and liver masses were proportional to body mass, while kidney was proportionately larger in the cold group compared to the warm animals. Whole-animal metabolic rate was higher in the warm and cycling groups compared to the cold group - even when controlling for body mass - when assayed at 30°C, but not at 20°C. Mitochondrial oxidative phosphorylation capacity in permeabilized fibers of thigh muscle and heart did not differ among treatments. Membrane fatty acid composition of the brain was largely unaffected by temperature treatment, but adjustments were made in the phospholipid headgroup composition that are consistent with homeoviscous adaptation. Thigh muscle cell membranes had elevated polyunsaturated fatty acids in the cold group relative to the cycling group, but this was not the case for thigh muscle mitochondrial membranes. Liver mitochondria from cold alligators had elevated docosahexaenoic acid, which might be important for maintenance of reaction rates of membrane-bound enzymes. Copyright © 2016

  20. Development of pharmacological strategies for mitochondrial disorders

    PubMed Central

    Kanabus, M; Heales, S J; Rahman, S

    2014-01-01

    Mitochondrial diseases are an unusually genetically and phenotypically heterogeneous group of disorders, which are extremely challenging to treat. Currently, apart from supportive therapy, there are no effective treatments for the vast majority of mitochondrial diseases. Huge scientific effort, however, is being put into understanding the mechanisms underlying mitochondrial disease pathology and developing potential treatments. To date, a variety of treatments have been evaluated by randomized clinical trials, but unfortunately, none of these has delivered breakthrough results. Increased understanding of mitochondrial pathways and the development of many animal models, some of which are accurate phenocopies of human diseases, are facilitating the discovery and evaluation of novel prospective treatments. Targeting reactive oxygen species has been a treatment of interest for many years; however, only in recent years has it been possible to direct antioxidant delivery specifically into the mitochondria. Increasing mitochondrial biogenesis, whether by pharmacological approaches, dietary manipulation or exercise therapy, is also currently an active area of research. Modulating mitochondrial dynamics and mitophagy and the mitochondrial membrane lipid milieu have also emerged as possible treatment strategies. Recent technological advances in gene therapy, including allotopic and transkingdom gene expression and mitochondrially targeted transcription activator-like nucleases, have led to promising results in cell and animal models of mitochondrial diseases, but most of these techniques are still far from clinical application. Linked Articles This article is part of a themed issue on Mitochondrial Pharmacology: Energy, Injury & Beyond. To view the other articles in this issue visit http://dx.doi.org/10.1111/bph.2014.171.issue-8 PMID:24116962

  1. C-Phycocyanin Confers Protection against Oxalate-Mediated Oxidative Stress and Mitochondrial Dysfunctions in MDCK Cells

    PubMed Central

    Farooq, Shukkur M.; Boppana, Nithin B.; Asokan, Devarajan; Sekaran, Shamala D.; Shankar, Esaki M.; Li, Chunying; Gopal, Kaliappan; Bakar, Sazaly A.; Karthik, Harve S.; Ebrahim, Abdul S.

    2014-01-01

    Oxalate toxicity is mediated through generation of reactive oxygen species (ROS) via a process that is partly dependent on mitochondrial dysfunction. Here, we investigated whether C-phycocyanin (CP) could protect against oxidative stress-mediated intracellular damage triggered by oxalate in MDCK cells. DCFDA, a fluorescence-based probe and hexanoyl-lysine adduct (HEL), an oxidative stress marker were used to investigate the effect of CP on oxalate-induced ROS production and membrane lipid peroxidation (LPO). The role of CP against oxalate-induced oxidative stress was studied by the evaluation of mitochondrial membrane potential by JC1 fluorescein staining, quantification of ATP synthesis and stress-induced MAP kinases (JNK/SAPK and ERK1/2). Our results revealed that oxalate-induced cells show markedly increased ROS levels and HEL protein expression that were significantly decreased following pre-treatment with CP. Further, JC1 staining showed that CP pre-treatment conferred significant protection from mitochondrial membrane permeability and increased ATP production in CP-treated cells than oxalate-alone-treated cells. In addition, CP treated cells significantly decreased the expression of phosphorylated JNK/SAPK and ERK1/2 as compared to oxalate-alone-treated cells. We concluded that CP could be used as a potential free radical-scavenging therapeutic strategy against oxidative stress-associated diseases including urolithiasis. PMID:24691130

  2. Effect of mitochondrial uncoupling and glycolysis inhibition on ram sperm functionality.

    PubMed

    Losano, Jda; Angrimani, Dsr; Dalmazzo, A; Rui, B R; Brito, M M; Mendes, C M; Kawai, Gkv; Vannucchi, C I; Assumpção, Meoa; Barnabe, V H; Nichi, M

    2017-04-01

    Studies have demonstrated the importance of mitochondria to sperm functionality, as the main source of ATP for cellular homoeostasis and motility. However, the role of mitochondria on sperm metabolism is still controversial. Studies indicate that, for some species, glycolysis may be the main mechanism for sperm energy production. For ram sperm, such pathway is not clear. Thus, we evaluated ram sperm in response to mitochondrial uncoupling and glycolysis inhibition aiming to assess the importance of each pathway for sperm functionality. Statistical analysis was performed by the SAS System for Windows, using the General Linear Model Procedure. Data were tested for residue normality and variance homogeneity. A p < .05 was considered significant. Groups treated with the mitochondrial uncoupler Carbonyl cyanide 3 chlorophenylhydrazone (CCCP) showed a decrease in the percentage of cells with low mitochondrial activity and high mitochondrial membrane potential. We also observed that the highest CCCP concentration promotes a decrease in sperm susceptibility to lipid peroxidation. Regardless the lack of effect of CCCP on total motility, this substance induced significant alterations on sperm kinetics. Besides the interference of CCCP on spermatic movement patterns, it was also possible to observe such an effect in samples treated with the inhibitor of glycolysis (2-deoxy-d-glucose, DOG). Furthermore, treatment with DOG also led to a dose-dependent increase in sperm susceptibility to lipid peroxidation. Based on our results, we suggest that the glycolysis appears to be as important as oxidative phosphorylation for ovine sperm kinetics as this mechanism is capable of maintaining full motility when most of the cells have a low mitochondrial membrane potential. Furthermore, we found that changes in the glycolytic pathway trough glycolysis inhibition are likely involved in mitochondrial dysfunction and sperm oxidative unbalance. © 2017 Blackwell Verlag GmbH.

  3. Targeted Modification of Mitochondrial ROS Production Converts High Glucose-Induced Cytotoxicity to Cytoprotection: Effects on Anesthetic Preconditioning.

    PubMed

    Sedlic, Filip; Muravyeva, Maria Y; Sepac, Ana; Sedlic, Marija; Williams, Anna Marie; Yang, Meiying; Bai, Xiaowen; Bosnjak, Zeljko J

    2017-01-01

    Contradictory reports on the effects of diabetes and hyperglycemia on myocardial infarction range from cytotoxicity to cytoprotection. The study was designed to investigate acute effects of high glucose-driven changes in mitochondrial metabolism and osmolarity on adaptive mechanisms and resistance to oxidative stress of isolated rat cardiomyocytes. We examined the effects of high glucose on several parameters of mitochondrial bioenergetics, including changes in oxygen consumption, mitochondrial membrane potential, and NAD(P)H fluorometry. Effects of high glucose on the endogenous cytoprotective mechanisms elicited by anesthetic preconditioning (APC) and the mediators of cell injury were also tested. These experiments included real-time measurements of reactive oxygen species (ROS) production and mitochondrial permeability transition pore (mPTP) opening in single cells by laser scanning fluorescence confocal microscopy, and cell survival assay. High glucose rapidly enhanced mitochondrial energy metabolism, observed by increase in NAD(P)H fluorescence intensity, oxygen consumption, and mitochondrial membrane potential. This substantially elevated production of ROS, accelerated opening of the mPTP, and decreased survival of cells exposed to oxidative stress. Abrogation of high glucose-induced mitochondrial hyperpolarization with 2,4 dinitrophenol (DNP) significantly, but not completely, attenuated ROS production to a level similar to hyperosmotic mannitol control. DNP treatment reversed high glucose-induced cytotoxicity to cytoprotection. Hyperosmotic mannitol treatment also induced cytoprotection. High glucose abrogated APC-induced mitochondrial depolarization, delay in mPTP opening and cytoprotection. In conclusion, high glucose-induced mitochondrial hyperpolarization abolishes APC and augments cell injury. Attenuation of high glucose-induced ROS production by eliminating mitochondrial hyperpolarization protects cardiomyocytes. J. Cell. Physiol. 232: 216-224, 2017

  4. Mdivi-1, mitochondrial fission inhibitor, impairs developmental competence and mitochondrial function of embryos and cells in pigs

    PubMed Central

    YEON, Ji-Yeong; MIN, Sung-Hun; PARK, Hyo-Jin; KIM, Jin-Woo; LEE, Yong-Hee; PARK, Soo-Yong; JEONG, Pil-Soo; PARK, Humdai; LEE, Dong-Seok; KIM, Sun-Uk; CHANG, Kyu-Tae; KOO, Deog-Bon

    2014-01-01

    Mitochondria are highly dynamic organelles that undergo constant fusion/fission as well as activities orchestrated by large dynamin-related GTPases. These dynamic mitochondrial processes influence mitochondrial morphology, size and function. Therefore, this study was conducted to evaluate the effects of mitochondrial fission inhibitor, mdivi-1, on developmental competence and mitochondrial function of porcine embryos and primary cells. Presumptive porcine embryos were cultured in PZM-3 medium supplemented with mdivi-1 (0, 10 and 50 μM) for 6 days. Porcine fibroblast cells were cultured in growth medium with mdivi-1 (0 and 50 μM) for 2 days. Our results showed that the rate of blastocyst production and cell growth in the mdivi-1 (50 μM) treated group was lower than that of the control group (P < 0.05). Moreover, loss of mitochondrial membrane potential in the mdivi-1 (50 μM) treated group was increased relative to the control group (P < 0.05). Subsequent evaluation revealed that the intracellular levels of reactive oxygen species (ROS) and the apoptotic index were increased by mdivi-1 (50 μM) treatment (P < 0.05). Finally, the expression of mitochondrial fission-related protein (Drp 1) was lower in the embryos and cells in the mdivi-1-treated group than the control group. Taken together, these results indicate that mdivi-1 treatment may inhibit developmental competence and mitochondrial function in porcine embryos and primary cells. PMID:25501014

  5. Preservation of mitochondrial functional integrity in mitochondria isolated from small cryopreserved mouse brain areas.

    PubMed

    Valenti, Daniela; de Bari, Lidia; De Filippis, Bianca; Ricceri, Laura; Vacca, Rosa Anna

    2014-01-01

    Studies of mitochondrial bioenergetics in brain pathophysiology are often precluded by the need to isolate mitochondria immediately after tissue dissection from a large number of brain biopsies for comparative studies. Here we present a procedure of cryopreservation of small brain areas from which mitochondrial enriched fractions (crude mitochondria) with high oxidative phosphorylation efficiency can be isolated. Small mouse brain areas were frozen and stored in a solution containing glycerol as cryoprotectant. Crude mitochondria were isolated by differential centrifugation from both cryopreserved and freshly explanted brain samples and were compared with respect to their ability to generate membrane potential and produce ATP. Intactness of outer and inner mitochondrial membranes was verified by polarographic ascorbate and cytochrome c tests and spectrophotometric assay of citrate synthase activity. Preservation of structural integrity and oxidative phosphorylation efficiency was successfully obtained in crude mitochondria isolated from different areas of cryopreserved mouse brain samples. Long-term cryopreservation of small brain areas from which intact and phosphorylating mitochondria can be isolated for the study of mitochondrial bioenergetics will significantly expand the study of mitochondrial defects in neurological pathologies, allowing large comparative studies and favoring interlaboratory and interdisciplinary analyses. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. Beneficial effect of the bioflavonoid quercetin on cholecystokinin-induced mitochondrial dysfunction in isolated rat pancreatic acinar cells.

    PubMed

    Weber, Heike; Jonas, Ludwig; Wakileh, Michael; Krüger, Burkhard

    2014-03-01

    The pathogenesis of acute pancreatitis (AP) is still poorly understood. Thus, a reliable pharmacological therapy is currently lacking. In recent years, an impairment of the energy metabolism of pancreatic acinar cells, caused by Ca(2+)-mediated depolarization of the inner mitochondrial membrane and a decreased ATP supply, has been implicated as an important pathological event. In this study, we investigated whether quercetin exerts protection against mitochondrial dysfunction. Following treatment with or without quercetin, rat pancreatic acinar cells were stimulated with supramaximal cholecystokinin-8 (CCK). CCK caused a decrease in the mitochondrial membrane potential (MMP) and ATP concentration, whereas the mitochondrial dehydrogenase activity was significantly increased. Quercetin treatment before CCK application exerted no protection on MMP but increased ATP to a normal level, leading to a continuous decrease in the dehydrogenase activity. The protective effect of quercetin on mitochondrial function was accompanied by a reduction in CCK-induced changes to the cell membrane. Concerning the molecular mechanism underlying the protective effect of quercetin, an increased AMP/ATP ratio suggests that the AMP-activated protein kinase system may be activated. In addition, quercetin strongly inhibited CCK-induced trypsin activity. The results indicate that the use of quercetin may be a therapeutic strategy for reducing the severity of AP.

  7. Sophora flavescens Aiton Decreases MPP+-Induced Mitochondrial Dysfunction in SH-SY5Y Cells.

    PubMed

    Kim, Hee-Young; Jeon, Hyongjun; Kim, Hyungwoo; Koo, Sungtae; Kim, Seungtae

    2018-01-01

    Sophora flavescens Aiton (SF) has been used to treat various diseases including fever and inflammation in China, South Korea and Japan. Several recent reports have shown that SF has anti-inflammatory and anti-apoptotic effects, indicating that it is a promising candidate for treatment of Parkinson's disease (PD). We evaluated the protective effect of SF against neurotoxin 1-methyl-4-phenylpyridinium ion (MPP + )-induced mitochondrial dysfunction in SH-SY5Y human neuroblastoma cells, an in vitro PD model. SH-SY5Y cells were incubated with SF for 24 h, after which they were treated with MPP + . MPP + -induced cytotoxicity and apoptosis were confirmed by 3-(4,5-dimethyl-thiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay and terminal deoxynucleotidyl transferase-mediated biotinylated UTP nick end labeling assay. MitoSOX red mitochondrial superoxide indicator, tetramethylrhodamine methyl ester perchlorate and Parkin, PTEN-induced putative kinase 1 (PINK1), and DJ-1 immunofluorescent staining were conducted to confirm the mitochondrial function. In addition, western blot was performed to evaluate apoptosis factors (Bcl-2, Bax, caspase-3 and cytochrome c) and mitochondrial function-related factors (Parkin, PINK1 and DJ-1). SF suppressed MPP + -induced cytotoxicity, apoptosis and collapse of mitochondrial membrane potential by inhibiting the increase of reactive oxidative species (ROS) and DNA fragmentation, and controlling Bcl-2, Bax, caspase-3 and cytochrome c expression. Moreover, it attenuated Parkin, PINK1 and DJ-1 expression from MPP + -induced decrease. SF effectively suppressed MPP + -induced cytotoxicity, apoptosis and mitochondrial dysfunction by regulating generation of ROS, disruption of mitochondrial membrane potential, mitochondria-dependent apoptosis and loss or mutation of mitochondria-related PD markers including Parkin, PINK1 and DJ-1.

  8. Stomatin-Like Protein 2 Binds Cardiolipin and Regulates Mitochondrial Biogenesis and Function▿

    PubMed Central

    Christie, Darah A.; Lemke, Caitlin D.; Elias, Isaac M.; Chau, Luan A.; Kirchhof, Mark G.; Li, Bo; Ball, Eric H.; Dunn, Stanley D.; Hatch, Grant M.; Madrenas, Joaquín

    2011-01-01

    Stomatin-like protein 2 (SLP-2) is a widely expressed mitochondrial inner membrane protein of unknown function. Here we show that human SLP-2 interacts with prohibitin-1 and -2 and binds to the mitochondrial membrane phospholipid cardiolipin. Upregulation of SLP-2 expression increases cardiolipin content and the formation of metabolically active mitochondrial membranes and induces mitochondrial biogenesis. In human T lymphocytes, these events correlate with increased complex I and II activities, increased intracellular ATP stores, and increased resistance to apoptosis through the intrinsic pathway, ultimately enhancing cellular responses. We propose that the function of SLP-2 is to recruit prohibitins to cardiolipin to form cardiolipin-enriched microdomains in which electron transport complexes are optimally assembled. Likely through the prohibitin functional interactome, SLP-2 then regulates mitochondrial biogenesis and function. PMID:21746876

  9. Specific ion effects on membrane potential and the permselectivity of ion exchange membranes.

    PubMed

    Geise, Geoffrey M; Cassady, Harrison J; Paul, Donald R; Logan, Bruce E; Hickner, Michael A

    2014-10-21

    Membrane potential and permselectivity are critical parameters for a variety of electrochemically-driven separation and energy technologies. An electric potential is developed when a membrane separates electrolyte solutions of different concentrations, and a permselective membrane allows specific species to be transported while restricting the passage of other species. Ion exchange membranes are commonly used in applications that require advanced ionic electrolytes and span technologies such as alkaline batteries to ammonium bicarbonate reverse electrodialysis, but membranes are often only characterized in sodium chloride solutions. Our goal in this work was to better understand membrane behaviour in aqueous ammonium bicarbonate, which is of interest for closed-loop energy generation processes. Here we characterized the permselectivity of four commercial ion exchange membranes in aqueous solutions of sodium chloride, ammonium chloride, sodium bicarbonate, and ammonium bicarbonate. This stepwise approach, using four different ions in aqueous solution, was used to better understand how these specific ions affect ion transport in ion exchange membranes. Characterization of cation and anion exchange membrane permselectivity, using these ions, is discussed from the perspective of the difference in the physical chemistry of the hydrated ions, along with an accompanying re-derivation and examination of the basic equations that describe membrane potential. In general, permselectivity was highest in sodium chloride and lowest in ammonium bicarbonate solutions, and the nature of both the counter- and co-ions appeared to influence measured permselectivity. The counter-ion type influences the binding affinity between counter-ions and polymer fixed charge groups, and higher binding affinity between fixed charge sites and counter-ions within the membrane decreases the effective membrane charge density. As a result permselectivity decreases. The charge density and polarizability

  10. An Essential Role for COPI in mRNA Localization to Mitochondria and Mitochondrial Function.

    PubMed

    Zabezhinsky, Dmitry; Slobodin, Boris; Rapaport, Doron; Gerst, Jeffrey E

    2016-04-19

    Nuclear-encoded mRNAs encoding mitochondrial proteins (mMPs) can localize directly to the mitochondrial surface, yet how mMPs target mitochondria and whether RNA targeting contributes to protein import into mitochondria and cellular metabolism are unknown. Here, we show that the COPI vesicle coat complex is necessary for mMP localization to mitochondria and mitochondrial function. COPI inactivation leads to reduced mMP binding to COPI itself, resulting in the dissociation of mMPs from mitochondria, a reduction in mitochondrial membrane potential, a decrease in protein import in vivo and in vitro, and severe deficiencies in mitochondrial respiration. Using a model mMP (OXA1), we observed that COPI inactivation (or mutation of the potential COPI-interaction site) led to altered mRNA localization and impaired cellular respiration. Overall, COPI-mediated mMP targeting is critical for mitochondrial protein import and function, and transcript delivery to the mitochondria or endoplasmic reticulum is regulated by cis-acting RNA sequences and trans-acting proteins. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  11. Resveratrol inhibits uveal melanoma tumor growth via early mitochondrial dysfunction.

    PubMed

    van Ginkel, Paul R; Darjatmoko, Soesiawati R; Sareen, Dhruv; Subramanian, Lalita; Bhattacharya, Saswati; Lindstrom, Mary J; Albert, Daniel M; Polans, Arthur S

    2008-04-01

    To test the efficacy of resveratrol, a nontoxic plant product, in the treatment of uveal melanoma. The effect of oral administration and peritumor injection of resveratrol was tested on tumor growth in two animal models of uveal melanoma. The mechanism of resveratrol action on uveal melanoma cells was studied in vitro in a cell-viability assay: with JC-1 dye, to measure mitochondrial membrane potential; by Western blot analysis, to analyze the cellular redistribution of cytochrome c and Smac/diablo; and in a fluorescence assay with specific substrates, to measure activation of different caspases. Resveratrol treatment inhibited tumor growth in animal models of uveal melanoma. Since oral administration resulted in relatively low bioavailability of resveratrol, the effect of increased local levels was tested by peritumor injection of the drug. This method resulted in tumor cell death and tumor regression. In vitro experiments with multiple uveal melanoma cell lines demonstrate that resveratrol causes a decrease in cell viability, resulting at least in part from an increase in apoptosis through a mitochondrial pathway. An early event in drug action is the direct targeting of mitochondria by resveratrol, which leads to a decrease in mitochondrial membrane potential and the eventual activation of caspase-3. These data suggest that resveratrol can inhibit tumor growth and can induce apoptosis via the intrinsic mitochondrial pathway and that by further increasing bioavailability of resveratrol the potency of the drug can be increased, leading to tumor regression. The nontoxic nature of the drug at levels needed for therapy make resveratrol an attractive candidate for the treatment of uveal melanoma.

  12. Resveratrol Improves the Mitochondrial Function and Fertilization Outcome of Bovine Oocytes

    PubMed Central

    TAKEO, Shun; SATO, Daichi; KIMURA, Koji; MONJI, Yasunori; KUWAYAMA, Takehito; KAWAHARA-MIKI, Ryoka; IWATA, Hisataka

    2013-01-01

    The aim of the present study was to address the effect of resveratrol-mediated upregulation of sirtuin 1 (SIRT1) during oocyte maturation on mitochondrial function, the developmental ability of oocytes and on mechanisms responsible for blockage of polyspermic fertilization. Oocytes collected from slaughterhouse-derived ovaries were cultured in TCM-199 medium supplemented with 10% FCS and 0 or 20 µM resveratrol (Res). We examined the effect of Res on SIRT1 expression in in vitro-matured oocytes (Exp 1); fertilization and developmental ability (Exp 2); mitochondrial DNA copy number (Mt number), ATP content and mitochondrial membrane potential in matured oocytes (Exp 3); and the time required for proteinase to dissolve the zona pellucida following in vitro fertilization (as a marker of zona pellucida hardening), as well as on the distribution of cortical granules before and after fertilization (Exp 4). In Exp 1, the 20 µM Res treatment upregulated protein expression of SIRT1 in oocytes. In Exp 2, Res treatment improved the ratio of normal fertilization and the total cell number of blastocysts. In Exp 3, Res treatment significantly increased the ATP content in matured oocytes. Additionally, Res increased the overall Mt number and mitochondrial membrane potential, but the effect was donor-dependent. In Exp 4, Res-induced zona hardening improved the distribution and exocytosis of cortical granules after in vitro fertilization. In conclusion, Res improved the quality of oocytes by improving mitochondrial quantity and quality. In addition, Res added to the maturation medium enhanced SIRT1 protein expression in oocytes and improved fertilization via reinforcement of the mechanisms responsible for blockage of polyspermic fertilization. PMID:24390595

  13. Recombinant Buckwheat Trypsin Inhibitor Induces Mitophagy by Directly Targeting Mitochondria and Causes Mitochondrial Dysfunction in Hep G2 Cells.

    PubMed

    Wang, Zhuanhua; Li, Shanshan; Ren, Rong; Li, Jiao; Cui, Xiaodong

    2015-09-09

    Mitochondria are essential targets for cancer chemotherapy and other disease treatments. Recombinant buckwheat trypsin inhibitor (rBTI), a member of the potato type I proteinase inhibitor family, was derived from tartary buckwheat extracts. Our results showed that rBTI directly targeted mitochondria and induced mitochondrial fragmentation and mitophagy. This occurs through enhanced depolarization of the mitochondrial membrane potential, increasing reactive oxygen species (ROS) generation associated with the rise of the superoxide dismutase and catalase activity and glutathione peroxidase (GSH) content, and changes in the GSH/oxidized glutathione ratio. Mild and transient ROS induced by rBTI were shown to be important signaling molecules required to induce Hep G2 mitophagy to remove dysfunctional mitochondria. Furthermore, rBTI could directly induce mitochondrial fragmentation. It was also noted that rBTI highly increased colocalization of mitochondria in treated cells compared to nontreated cells. Tom 20, a subunit of the translocase of the mitochondrial outer membrane complex responsible for recognizing mitochondrial presequences, may be the direct target of rBTI.

  14. Interaction of butylated hydroxyanisole with mitochondrial oxidative phosphorylation.

    PubMed

    Fusi, F; Sgaragli, G; Murphy, M P

    1992-03-17

    The antioxidant, butylated hydroxyanisole (BHA), has a number of effects on mitochondrial oxidative phosphorylation. In this study we apply the novel approach developed by Brand (Brand MD, Biochim Biophys Acta 1018: 128-133, 1990) to investigate the site of action of BHA on oxidative phosphorylation in rat liver mitochondria. Using this approach we show that BHA increases the proton leak through the mitochondrial inner membrane and that it also inhibits the delta p (proton motive force across the mitochondrial inner membrane) generating system, but has no effect on the phosphorylation system. This demonstrates that compounds having pleiotypic effects on mitochondrial oxidative phosphorylation in vitro can be analysed and their many effects distinguished. This approach is of general use in analysing many other compounds of pharmacological interest which interact with mitochondria. The implications of these results for the mechanism of interaction of BHA with mitochondrial oxidative phosphorylation are discussed.

  15. Roles of mitochondrial fragmentation and reactive oxygen species in mitochondrial dysfunction and myocardial insulin resistance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watanabe, Tomoyuki; Saotome, Masao, E-mail: msaotome@hama-med.ac.jp; Nobuhara, Mamoru

    Purpose: Evidence suggests an association between aberrant mitochondrial dynamics and cardiac diseases. Because myocardial metabolic deficiency caused by insulin resistance plays a crucial role in heart disease, we investigated the role of dynamin-related protein-1 (DRP1; a mitochondrial fission protein) in the pathogenesis of myocardial insulin resistance. Methods and Results: DRP1-expressing H9c2 myocytes, which had fragmented mitochondria with mitochondrial membrane potential (ΔΨ{sub m}) depolarization, exhibited attenuated insulin signaling and 2-deoxy-D-glucose (2-DG) uptake, indicating insulin resistance. Treatment of the DRP1-expressing myocytes with Mn(III)tetrakis(1-methyl-4-pyridyl)porphyrin pentachloride (TMPyP) significantly improved insulin resistance and mitochondrial dysfunction. When myocytes were exposed to hydrogen peroxide (H{sub 2}O{sub 2}),more » they increased DRP1 expression and mitochondrial fragmentation, resulting in ΔΨ{sub m} depolarization and insulin resistance. When DRP1 was suppressed by siRNA, H{sub 2}O{sub 2}-induced mitochondrial dysfunction and insulin resistance were restored. Our results suggest that a mutual enhancement between DRP1 and reactive oxygen species could induce mitochondrial dysfunction and myocardial insulin resistance. In palmitate-induced insulin-resistant myocytes, neither DRP1-suppression nor TMPyP restored the ΔΨ{sub m} depolarization and impaired 2-DG uptake, however they improved insulin signaling. Conclusions: A mutual enhancement between DRP1 and ROS could promote mitochondrial dysfunction and inhibition of insulin signal transduction. However, other mechanisms, including lipid metabolite-induced mitochondrial dysfunction, may be involved in palmitate-induced insulin resistance. - Highlights: • DRP1 promotes mitochondrial fragmentation and insulin-resistance. • A mutual enhancement between DRP1 and ROS ipromotes insulin-resistance. • Palmitate increases DRP1 expression and induces insulin

  16. Mitochondrial bioenergetics decay in aging: beneficial effect of melatonin.

    PubMed

    Paradies, Giuseppe; Paradies, Valeria; Ruggiero, Francesca M; Petrosillo, Giuseppe

    2017-11-01

    Aging is a biological process characterized by progressive decline in physiological functions, increased oxidative stress, reduced capacity to respond to stresses, and increased risk of contracting age-associated disorders. Mitochondria are referred to as the powerhouse of the cell through their role in the oxidative phosphorylation to generate ATP. These organelles contribute to the aging process, mainly through impairment of electron transport chain activity, opening of the mitochondrial permeability transition pore and increased oxidative stress. These events lead to damage to proteins, lipids and mitochondrial DNA. Cardiolipin, a phospholipid of the inner mitochondrial membrane, plays a pivotal role in several mitochondrial bioenergetic processes as well as in mitochondrial-dependent steps of apoptosis and in mitochondrial membrane stability and dynamics. Cardiolipin alterations are associated with mitochondrial bienergetics decline in multiple tissues in a variety of physiopathological conditions, as well as in the aging process. Melatonin, the major product of the pineal gland, is considered an effective protector of mitochondrial bioenergetic function. Melatonin preserves mitochondrial function by preventing cardiolipin oxidation and this may explain, at least in part, the protective role of this compound in mitochondrial physiopathology and aging. Here, mechanisms through which melatonin exerts its protective role against mitochondrial dysfunction associated with aging and age-associated disorders are discussed.

  17. Topography of succinate dehydrogenase in the mitochondrial inner membrane. A study using limited proteolysis and immunoblotting.

    PubMed Central

    Clarkson, G H; Neagle, J; Lindsay, J G

    1991-01-01

    The arrangement of the large (70,000-Mr) and small (30,000-Mr) subunits of succinate dehydrogenase in the mitochondrial inner membrane was investigated by immunoblot analysis of bovine heart mitochondria (right-side-out, outer membrane disrupted) or submitochondrial particles (inside-out) that had been subjected to surface-specific proteolysis. Both subunits were resistant to proteinase treatment provided that the integrity of the inner membrane was preserved, suggesting that neither subunit is exposed at the cytoplasmic surface of the membrane. The bulk of the small subunit appears to protrude into the matrix compartment, since the 30,000-Mr polypeptide is degraded extensively during limited proteolysis of submitochondrial particles without the appearance of an immunologically reactive membrane-associated fragment: moreover, a soluble 27,000-Mr peptide derived from this subunit is observed transiently on incubation with trypsin. Similar data obtained from the large subunit suggest that this polypeptide interacts with the matrix side of the inner membrane via two distinct domains; these are detected as stable membrane-associated fragments of 32,000 Mr and 27,000 Mr after treatment of submitochondrial particles with papain or proteinase K, although the 27,000-Mr fragment can be degraded further to low-Mr peptides with trypsin or alpha-chymotrypsin. A stable 32,000-34,000-Mr fragment is generated by a variety of specific and non-specific proteinases, indicating that it may be embedded largely within the lipid bilayer, or is inaccessible to proteolytic attack owing to its proximity to the surface of the intact membrane, possibly interacting with the hydrophobic membrane anchoring polypeptides of the succinate: ubiquinone reductase complex. Images Fig. 1. Fig. 2. Fig. 3. Fig. 4. Fig. 5. PMID:1996968

  18. The Permeability Transition Pore Controls Cardiac Mitochondrial Maturation and Myocyte Differentiation

    PubMed Central

    Hom, Jennifer R.; Quintanilla, Rodrigo A.; Hoffman, David L.; Karen L., de Mesy Bentley; Molkentin, Jeffery D.; Sheu, Shey-Shing; Porter, George A.

    2011-01-01

    SUMMARY Although mature myocytes rely on mitochondria as the primary source of energy, the role of mitochondria in the developing heart is not well known. Here, we find closure of the mitochondrial permeability transition pore (mPTP) drives maturation of mitochondrial structure and function and myocyte differentiation. Cardiomyocytes at embryonic day (E) 9.5, when compared to E13.5, displayed fragmented mitochondria with few cristae, a less polarized mitochondrial membrane potential, higher reactive oxygen species (ROS) levels, and an open mPTP. Pharmacologic and genetic closing of the mPTP yielded maturation of mitochondrial structure and function, lowered ROS, and increased myocyte differentiation (measured by counting Z-bands). Furthermore, myocyte differentiation was inhibited and enhanced with oxidant and antioxidant treatment, respectively, suggesting that redox signaling pathways lie downstream of mitochondria to regulate cardiac myocyte differentiation. PMID:21920313

  19. Mitochondrial endonuclease G mediates breakdown of paternal mitochondria upon fertilization.

    PubMed

    Zhou, Qinghua; Li, Haimin; Li, Hanzeng; Nakagawa, Akihisa; Lin, Jason L J; Lee, Eui-Seung; Harry, Brian L; Skeen-Gaar, Riley Robert; Suehiro, Yuji; William, Donna; Mitani, Shohei; Yuan, Hanna S; Kang, Byung-Ho; Xue, Ding

    2016-07-22

    Mitochondria are inherited maternally in most animals, but the mechanisms of selective paternal mitochondrial elimination (PME) are unknown. While examining fertilization in Caenorhabditis elegans, we observed that paternal mitochondria rapidly lose their inner membrane integrity. CPS-6, a mitochondrial endonuclease G, serves as a paternal mitochondrial factor that is critical for PME. We found that CPS-6 relocates from the intermembrane space of paternal mitochondria to the matrix after fertilization to degrade mitochondrial DNA. It acts with maternal autophagy and proteasome machineries to promote PME. Loss of cps-6 delays breakdown of mitochondrial inner membranes, autophagosome enclosure of paternal mitochondria, and PME. Delayed removal of paternal mitochondria causes increased embryonic lethality, demonstrating that PME is important for normal animal development. Thus, CPS-6 functions as a paternal mitochondrial degradation factor during animal development. Copyright © 2016, American Association for the Advancement of Science.

  20. De Novo Mutations in SLC25A24 Cause a Craniosynostosis Syndrome with Hypertrichosis, Progeroid Appearance, and Mitochondrial Dysfunction.

    PubMed

    Ehmke, Nadja; Graul-Neumann, Luitgard; Smorag, Lukasz; Koenig, Rainer; Segebrecht, Lara; Magoulas, Pilar; Scaglia, Fernando; Kilic, Esra; Hennig, Anna F; Adolphs, Nicolai; Saha, Namrata; Fauler, Beatrix; Kalscheuer, Vera M; Hennig, Friederike; Altmüller, Janine; Netzer, Christian; Thiele, Holger; Nürnberg, Peter; Yigit, Gökhan; Jäger, Marten; Hecht, Jochen; Krüger, Ulrike; Mielke, Thorsten; Krawitz, Peter M; Horn, Denise; Schuelke, Markus; Mundlos, Stefan; Bacino, Carlos A; Bonnen, Penelope E; Wollnik, Bernd; Fischer-Zirnsak, Björn; Kornak, Uwe

    2017-11-02

    Gorlin-Chaudhry-Moss syndrome (GCMS) is a dysmorphic syndrome characterized by coronal craniosynostosis and severe midface hypoplasia, body and facial hypertrichosis, microphthalmia, short stature, and short distal phalanges. Variable lipoatrophy and cutis laxa are the basis for a progeroid appearance. Using exome and genome sequencing, we identified the recurrent de novo mutations c.650G>A (p.Arg217His) and c.649C>T (p.Arg217Cys) in SLC25A24 in five unrelated girls diagnosed with GCMS. Two of the girls had pronounced neonatal progeroid features and were initially diagnosed with Wiedemann-Rautenstrauch syndrome. SLC25A24 encodes a mitochondrial inner membrane ATP-Mg/P i carrier. In fibroblasts from affected individuals, the mutated SLC25A24 showed normal stability. In contrast to control cells, the probands' cells showed mitochondrial swelling, which was exacerbated upon treatment with hydrogen peroxide (H 2 O 2 ). The same effect was observed after overexpression of the mutant cDNA. Under normal culture conditions, the mitochondrial membrane potential of the probands' fibroblasts was intact, whereas ATP content in the mitochondrial matrix was lower than that in control cells. However, upon H 2 O 2 exposure, the membrane potential was significantly elevated in cells harboring the mutated SLC25A24. No reduction of mitochondrial DNA copy number was observed. These findings demonstrate that mitochondrial dysfunction with increased sensitivity to oxidative stress is due to the SLC25A24 mutations. Our results suggest that the SLC25A24 mutations induce a gain of pathological function and link mitochondrial ATP-Mg/P i transport to the development of skeletal and connective tissue. Copyright © 2017 American Society of Human Genetics. All rights reserved.

  1. Sonic hedgehog pathway activation increases mitochondrial abundance and activity in hippocampal neurons

    PubMed Central

    Yao, Pamela J.; Manor, Uri; Petralia, Ronald S.; Brose, Rebecca D.; Wu, Ryan T. Y.; Ott, Carolyn; Wang, Ya-Xian; Charnoff, Ari; Lippincott-Schwartz, Jennifer; Mattson, Mark P.

    2017-01-01

    Mitochondria are essential organelles whose biogenesis, structure, and function are regulated by many signaling pathways. We present evidence that, in hippocampal neurons, activation of the Sonic hedgehog (Shh) signaling pathway affects multiple aspects of mitochondria. Mitochondrial mass was increased significantly in neurons treated with Shh. Using biochemical and fluorescence imaging analyses, we show that Shh signaling activity reduces mitochondrial fission and promotes mitochondrial elongation, at least in part, via suppression of the mitochondrial fission protein dynamin-like GTPase Drp1. Mitochondria from Shh-treated neurons were more electron-dense, as revealed by electron microscopy, and had higher membrane potential and respiratory activity. We further show that Shh protects neurons against a variety of stresses, including the mitochondrial poison rotenone, amyloid β-peptide, hydrogen peroxide, and high levels of glutamate. Collectively our data suggest a link between Shh pathway activity and the physiological properties of mitochondria in hippocampal neurons. PMID:27932496

  2. Dose Response of Endotoxin on Hepatocyte and Muscle Mitochondrial Respiration In Vitro

    PubMed Central

    Brandt, Sebastian; Porta, Francesca; Jakob, Stephan M.; Takala, Jukka; Djafarzadeh, Siamak

    2015-01-01

    Introduction. Results on mitochondrial dysfunction in sepsis are controversial. We aimed to assess effects of LPS at wide dose and time ranges on hepatocytes and isolated skeletal muscle mitochondria. Methods. Human hepatocellular carcinoma cells (HepG2) were exposed to placebo or LPS (0.1, 1, and 10 μg/mL) for 4, 8, 16, and 24 hours and primary human hepatocytes to 1 μg/mL LPS or placebo (4, 8, and 16 hours). Mitochondria from porcine skeletal muscle samples were exposed to increasing doses of LPS (0.1–100 μg/mg) for 2 and 4 hours. Respiration rates of intact and permeabilized cells and isolated mitochondria were measured by high-resolution respirometry. Results. In HepG2 cells, LPS reduced mitochondrial membrane potential and cellular ATP content but did not modify basal respiration. Stimulated complex II respiration was reduced time-dependently using 1 μg/mL LPS. In primary human hepatocytes, stimulated mitochondrial complex II respiration was reduced time-dependently using 1 μg/mL LPS. In isolated porcine skeletal muscle mitochondria, stimulated respiration decreased at high doses (50 and 100 μg/mL LPS). Conclusion. LPS reduced cellular ATP content of HepG2 cells, most likely as a result of the induced decrease in membrane potential. LPS decreased cellular and isolated mitochondrial respiration in a time-dependent, dose-dependent and complex-dependent manner. PMID:25649304

  3. Low-concentration exposure to glyphosate-based herbicide modulates the complexes of the mitochondrial respiratory chain and induces mitochondrial hyperpolarization in the Danio rerio brain.

    PubMed

    Pereira, Aline G; Jaramillo, Michael L; Remor, Aline P; Latini, Alexandra; Davico, Carla E; da Silva, Mariana L; Müller, Yara M R; Ammar, Dib; Nazari, Evelise M

    2018-06-11

    Glyphosate (N-phosphonomethyl-glycine) (GLY) is the active ingredient of the most used herbicides in the world. GLY is applied in formulated products known as glyphosate-based herbicides (GBH), which could induce effects that are not predicted by toxicity assays with pure GLY. This herbicide is classified as organophosphorus compound, which is known to induce neurotoxic effects. Although this compound is classified as non-neurotoxic by regulatory agencies, acute exposure to GBH causes neurological symptoms in humans. However, there is no consensus in relation to neurotoxic effects of GBH. Thus, the aim of this study was to investigate the neurotoxic effects of the GBH in the zebrafish Danio rerio, focusing on acute toxicity, the activity and transcript levels of mitochondrial respiratory chain complexes, mitochondrial membrane potential, reactive species (RS) formation, and behavioral repertoire. Adult zebrafish were exposed in vivo to three concentrations of GBH Scout ® , which contained GLY in formulation (fGLY) (0.065, 1.0 and 10.0 mg L -1 fGLY) for 7 d, and an in vitro assay was performed using also pure GLY. Our results show that GBH induced in zebrafish brain a decrease in cell viability, inhibited mitochondrial complex enzymatic activity, modulated gene expression related to mitochondrial complexes, induced an increase in RS production, promoted hyperpolarization of mitochondrial membrane, and induced behavioral impairments. Together, our data contributes to the knowledge of the neurotoxic effects of GBH. Mitochondrial dysfunction has been recognized as a relevant cellular response that should not be disregarded. Moreover, this study pointed to the mitochondria as an important target of GBH. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Mitoregulin: A lncRNA-Encoded Microprotein that Supports Mitochondrial Supercomplexes and Respiratory Efficiency.

    PubMed

    Stein, Colleen S; Jadiya, Pooja; Zhang, Xiaoming; McLendon, Jared M; Abouassaly, Gabrielle M; Witmer, Nathan H; Anderson, Ethan J; Elrod, John W; Boudreau, Ryan L

    2018-06-26

    Mitochondria are composed of many small proteins that control protein synthesis, complex assembly, metabolism, and ion and reactive oxygen species (ROS) handling. We show that a skeletal muscle- and heart-enriched long non-coding RNA, LINC00116, encodes a highly conserved 56-amino-acid microprotein that we named mitoregulin (Mtln). Mtln localizes to the inner mitochondrial membrane, where it binds cardiolipin and influences protein complex assembly. In cultured cells, Mtln overexpression increases mitochondrial membrane potential, respiration rates, and Ca 2+ retention capacity while decreasing mitochondrial ROS and matrix-free Ca 2+ . Mtln-knockout mice display perturbations in mitochondrial respiratory (super)complex formation and activity, fatty acid oxidation, tricarboxylic acid (TCA) cycle enzymes, and Ca 2+ retention capacity. Blue-native gel electrophoresis revealed that Mtln co-migrates alongside several complexes, including the complex I assembly module, complex V, and supercomplexes. Under denaturing conditions, Mtln remains in high-molecular-weight complexes, supporting its role as a sticky molecular tether that enhances respiratory efficiency by bolstering protein complex assembly and/or stability. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  5. Insight into mitochondrial structure and function from electron tomography.

    PubMed

    Frey, T G; Renken, C W; Perkins, G A

    2002-09-10

    In recent years, electron tomography has provided detailed three-dimensional models of mitochondria that have redefined our concept of mitochondrial structure. The models reveal an inner membrane consisting of two components, the inner boundary membrane (IBM) closely apposed to the outer membrane and the cristae membrane that projects into the matrix compartment. These two components are connected by tubular structures of relatively uniform size called crista junctions. The distribution of crista junction sizes and shapes is predicted by a thermodynamic model based upon the energy of membrane bending, but proteins likely also play a role in determining the conformation of the inner membrane. Results of structural studies of mitochondria during apoptosis demonstrate that cytochrome c is released without detectable disruption of the outer membrane or extensive swelling of the mitochondrial matrix, suggesting the formation of an outer membrane pore large enough to allow passage of holo-cytochrome c. The possible compartmentation of inner membrane function between the IBM and the cristae membrane is also discussed.

  6. Oxygen Glucose Deprivation in Rat Hippocampal Slice Cultures Results in Alterations in Carnitine Homeostasis and Mitochondrial Dysfunction

    PubMed Central

    Rau, Thomas F.; Lu, Qing; Sharma, Shruti; Sun, Xutong; Leary, Gregory; Beckman, Matthew L.; Hou, Yali; Wainwright, Mark S.; Kavanaugh, Michael; Poulsen, David J.; Black, Stephen M.

    2012-01-01

    Mitochondrial dysfunction characterized by depolarization of mitochondrial membranes and the initiation of mitochondrial-mediated apoptosis are pathological responses to hypoxia-ischemia (HI) in the neonatal brain. Carnitine metabolism directly supports mitochondrial metabolism by shuttling long chain fatty acids across the inner mitochondrial membrane for beta-oxidation. Our previous studies have shown that HI disrupts carnitine homeostasis in neonatal rats and that L-carnitine can be neuroprotective. Thus, this study was undertaken to elucidate the molecular mechanisms by which HI alters carnitine metabolism and to begin to elucidate the mechanism underlying the neuroprotective effect of L-carnitine (LCAR) supplementation. Utilizing neonatal rat hippocampal slice cultures we found that oxygen glucose deprivation (OGD) decreased the levels of free carnitines (FC) and increased the acylcarnitine (AC): FC ratio. These changes in carnitine homeostasis correlated with decreases in the protein levels of carnitine palmitoyl transferase (CPT) 1 and 2. LCAR supplementation prevented the decrease in CPT1 and CPT2, enhanced both FC and the AC∶FC ratio and increased slice culture metabolic viability, the mitochondrial membrane potential prior to OGD and prevented the subsequent loss of neurons during later stages of reperfusion through a reduction in apoptotic cell death. Finally, we found that LCAR supplementation preserved the structural integrity and synaptic transmission within the hippocampus after OGD. Thus, we conclude that LCAR supplementation preserves the key enzymes responsible for maintaining carnitine homeostasis and preserves both cell viability and synaptic transmission after OGD. PMID:22984394

  7. Protective activities of Vaccinium antioxidants with potential relevance to mitochondrial dysfunction and neurotoxicity.

    PubMed

    Yao, Yu; Vieira, Amandio

    2007-01-01

    Both the neurotransmitter dopamine (DA) and a neurotoxic metabolite, 6-hydroxy DA, can be oxidized to generate hydrogen peroxide and other reactive species (ROS). ROS promote oxidative stress and have been implicated in dopaminergic neurodegeneration, e.g., Parkinson's disease (PD). There is also evidence for a relation between catecholamine-mediated oxidative damage in dopaminergic neurons and the effects of these neurotransmitters on the redox state of cytochrome c (Cytc). In neurons and other cells, oxidative stress may be enhanced by abnormal release of Cytc and other mitochondrial proteins into the cytoplasm. Cytc release can result in apoptosis; but sub-apoptogenic-threshold release can also occur, and may be highly damaging in the presence of DA metabolites. Loss of mitochondrial membrane integrity, a pathological situation of relevance to several aging-related neurodegenerative disorders including PD, contributes to release of Cytc; and the level of such release is known to be indicative of the extent of mitochondrial dysfunction. In this context, we have used a Cytc-enhanced 6-hydroxy DA oxidation reaction to gauge dietary antioxidant activities. Anthocyanin-rich preparations of Vaccinium species (Vaccinium myrtillus, Vaccinium corymbosum, and Vaccinium oxycoccus) as well as a purified glycosylated anthocyanidin were compared. The most potent inhibition of oxidation was observed with V. myrtillus preparation: 50% inhibition with 7 microM of total anthocyanins. This activity was 1.5-4 times higher than that for the other preparations or for the purified anthocyanin. Ascorbate (Vitamin C), at up to 4-fold higher concentrations, did not result in significant inhibition in this assay. Antioxidant activity in the assay correlated strongly (r2>0.91, P<0.01) with reported Vaccinium content of anthocyanins and total cyanidins, but not quercetin or myricetin. The results provide evidence for the high potency of anthocyanins towards a potentially neurotoxic reaction

  8. Evidence of Distinct Channel Conformations and Substrate Binding Affinities for the Mitochondrial Outer Membrane Protein Translocase Pore Tom40*

    PubMed Central

    Kuszak, Adam J.; Jacobs, Daniel; Gurnev, Philip A.; Shiota, Takuya; Louis, John M.; Lithgow, Trevor; Bezrukov, Sergey M.; Rostovtseva, Tatiana K.; Buchanan, Susan K.

    2015-01-01

    Nearly all mitochondrial proteins are coded by the nuclear genome and must be transported into mitochondria by the translocase of the outer membrane complex. Tom40 is the central subunit of the translocase complex and forms a pore in the mitochondrial outer membrane. To date, the mechanism it utilizes for protein transport remains unclear. Tom40 is predicted to comprise a membrane-spanning β-barrel domain with conserved α-helical domains at both the N and C termini. To investigate Tom40 function, including the role of the N- and C-terminal domains, recombinant forms of the Tom40 protein from the yeast Candida glabrata, and truncated constructs lacking the N- and/or C-terminal domains, were functionally characterized in planar lipid membranes. Our results demonstrate that each of these Tom40 constructs exhibits at least four distinct conductive levels and that full-length and truncated Tom40 constructs specifically interact with a presequence peptide in a concentration- and voltage-dependent manner. Therefore, neither the first 51 amino acids of the N terminus nor the last 13 amino acids of the C terminus are required for Tom40 channel formation or for the interaction with a presequence peptide. Unexpectedly, substrate binding affinity was dependent upon the Tom40 state corresponding to a particular conductive level. A model where two Tom40 pores act in concert as a dimeric protein complex best accounts for the observed biochemical and electrophysiological data. These results provide the first evidence for structurally distinct Tom40 conformations playing a role in substrate recognition and therefore in transport function. PMID:26336107

  9. The seleno-organic compound ebselen impairs mitochondrial physiology and induces cell death in AR42J cells.

    PubMed

    Santofimia-Castaño, Patricia; Garcia-Sanchez, Lourdes; Ruy, Deborah Clea; Fernandez-Bermejo, Miguel; Salido, Gines M; Gonzalez, Antonio

    2014-09-17

    Ebselen is a seleno-organic compound that causes cell death in several cancer cell types. The mechanisms underlying its deleterious effects have not been fully elucidated. In this study, the effects of ebselen (1 μM-40 μM) on AR42J tumor cells have been examined. Cell viability was studied using AlamarBlue(®) test. Cell cycle phase determination was carried out by flow cytometry. Changes in intracellular free Ca(2+) concentration were followed by fluorimetry analysis of fura-2-loaded cells. Distribution of mitochondria, mitochondrial Ca(2+) concentration and mitochondrial membrane potential were monitored by confocal microscopy of cells loaded with Mitotracker Green™ FM, rhod-2 or TMRM respectively. Caspase-3 activity was calculated following the luorogenic substrate ACDEVD-AMC signal with a spectrofluorimeter. Results show that cell viability decreased in the presence of ebselen. An increase in the number of cells in the S-phase of the cell cycle was observed. Ebselen induced a concentration-dependent mobilization of Ca(2+) from agonist- and thapsigargin-sensitive Ca(2+) pools. Ebselen induced also a transient increase in mitochondrial Ca(2+) concentration, a progressive decrease of the mitochondrial membrane potential and a disruption of the mitochondrial network. Finally, a concentration-dependent increase in caspase-3 activity was detected. We conclude that ebselen exerts deleterious actions on the cells that involve the impairment of mitochondrial physiology and the activation of caspase-3-mediated apoptotic pathway. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  10. Ultrasteep Voltage Dependence in a Membrane Channel

    NASA Astrophysics Data System (ADS)

    Mangan, Patrick S.; Colombini, Marco

    1987-07-01

    A mechanism for regulating voltage-gated channels is presented. The treatment amplifies the effect of the applied membrane potential resulting in a dramatic increase in the channel's voltage dependence. Addition of a large polyvalent anion to the medium bathing a phospholipid bilayer containing the voltage-dependent channel from the mitochondrial outer membrane, VDAC, induced up to a 12-fold increase in the channel's voltage sensitivity. The highest polyvalent anion concentration tested resulted in an e-fold conductance change for a 0.36-mV change in membrane potential. On the low end, a concentration of 2 μ M resulted in a 50% increase in VDAC voltage dependence. A mechanism based on polyvalent anion accumulation in the access resistance region at the mouth of the pore is consistent with all findings. Perhaps the voltage dependence of voltage-gated channels is amplified in vivo by polyvalent ions. If so, the control of excitable phenomena may be under much finer regulation than that provided by membrane potential alone.

  11. Sophora flavescens Aiton Decreases MPP+-Induced Mitochondrial Dysfunction in SH-SY5Y Cells

    PubMed Central

    Kim, Hee-Young; Jeon, Hyongjun; Kim, Hyungwoo; Koo, Sungtae; Kim, Seungtae

    2018-01-01

    Sophora flavescens Aiton (SF) has been used to treat various diseases including fever and inflammation in China, South Korea and Japan. Several recent reports have shown that SF has anti-inflammatory and anti-apoptotic effects, indicating that it is a promising candidate for treatment of Parkinson’s disease (PD). We evaluated the protective effect of SF against neurotoxin 1-methyl-4-phenylpyridinium ion (MPP+)-induced mitochondrial dysfunction in SH-SY5Y human neuroblastoma cells, an in vitro PD model. SH-SY5Y cells were incubated with SF for 24 h, after which they were treated with MPP+. MPP+-induced cytotoxicity and apoptosis were confirmed by 3-(4,5-dimethyl-thiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay and terminal deoxynucleotidyl transferase-mediated biotinylated UTP nick end labeling assay. MitoSOX red mitochondrial superoxide indicator, tetramethylrhodamine methyl ester perchlorate and Parkin, PTEN-induced putative kinase 1 (PINK1), and DJ-1 immunofluorescent staining were conducted to confirm the mitochondrial function. In addition, western blot was performed to evaluate apoptosis factors (Bcl-2, Bax, caspase-3 and cytochrome c) and mitochondrial function-related factors (Parkin, PINK1 and DJ-1). SF suppressed MPP+-induced cytotoxicity, apoptosis and collapse of mitochondrial membrane potential by inhibiting the increase of reactive oxidative species (ROS) and DNA fragmentation, and controlling Bcl-2, Bax, caspase-3 and cytochrome c expression. Moreover, it attenuated Parkin, PINK1 and DJ-1 expression from MPP+-induced decrease. SF effectively suppressed MPP+-induced cytotoxicity, apoptosis and mitochondrial dysfunction by regulating generation of ROS, disruption of mitochondrial membrane potential, mitochondria-dependent apoptosis and loss or mutation of mitochondria-related PD markers including Parkin, PINK1 and DJ-1. PMID:29740311

  12. Melanogenesis inhibits respiration in B16-F10 melanoma cells whereas enhances mitochondrial cell content

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meira, Willian Vanderlei; Heinrich, Tassiele Andréa; Cadena, Silvia Maria Suter Correia

    Melanoma is a rare and aggressive skin tumor; the survival of patients diagnosed late is fairly low. This high mortality rate is due to the characteristics of the cells that allow them to be resistant to radiotherapy and conventional chemotherapy, besides of being able to evade the immune system. Melanin, the pigment responsible for skin, hair and eye color, seems to be involved in this resistance. The main function of melanin is to protect the cells against ultraviolet (UV) light by absorbing this radiation and reactive oxygen species (ROS) scavenging. But this pigment may have also a role as photosensitizer,more » because when it is irradiated with UVA light (320-400 nm), the generation of ROS was detected. Besides, the melanogenesis stimulation on B16-F10 cells resulted in cell cycle arrest, induction of a quiescent state, change in the expression of several proteins and alterations on ADP/ATP ratio. The present study aimed to investigate the influence of melanogenesis stimulation in mitochondrial function of B16-F10 melanoma cells. Therefore, we analyzed cells respiration, mitochondrial membrane potential (Δψ{sub m}) and mitochondria mass in B16-F10 melanoma cells stimulated with 0.4 mM L-tyrosine and 10 mM NH{sub 4}Cl. Our results showed that the induction of melanin synthesis was able to reduce significantly the oxygen consumption after 48 h of stimulation, without changes of mitochondrial membrane potential when compared to non-stimulated cells. Despite of respiration inhibition, the mitochondria mass was higher in cells with melanogenesis stimulation. We suggest that the stimulation in the melanin synthesis might be promoting the inhibition of electrons transport chain by some intermediate compound from the synthesis of the pigment and this effect could contribute to explain the entry in the quiescent state. - Highlights: • Melanoma pigmentation alters mitochondrial respiration. • Induction of melanin synthesis by 48 h do not change mitochondrial

  13. MicroRNA as biomarkers of mitochondrial toxicity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baumgart, Bethany R., E-mail: bethany.baumgart@bms

    Mitochondrial toxicity can be difficult to detect as most cells can tolerate reduced activity as long as minimal capacity for function is maintained. However, once minimal capacity is lost, apoptosis or necrosis occurs quickly. Identification of more sensitive, early markers of mitochondrial toxicity was the objective of this work. Rotenone, a mitochondrial complex I inhibitor, and 3-nitropropionic acid (3-NP), a mitochondrial complex II inhibitor, were administered daily to male Sprague–Dawley rats at subcutaneous doses of 0.1 or 0.3 mg/kg/day and intraperitoneal doses of 5 or 10 mg/kg/day, respectively, for 1 week. Samples of kidney, skeletal muscle (quadriceps femoris), and serummore » were collected for analysis of mitochondrial DNA (mtDNA) copy number and microRNA (miRNA) expression patterns. MtDNA was significantly decreased with administration of rotenone at 0.3 mg/kg/day and 3-NP at 5 and 10 mg/kg/day in the quadriceps femoris and with 3-NP at 10 mg/kg/day in the kidney. Additionally, rotenone and 3-NP treatment produced changes to miRNA expression that were similar in direction (i.e. upregulation, downregulation) to those previously linked to mitochondrial functions, such as mitochondrial damage and biogenesis (miR-122, miR-202-3p); regulation of ATP synthesis, abolished oxidative phosphorylation, and loss of membrane potential due to increased reactive oxygen species (ROS) production (miR-338-5p, miR-546, miR-34c); and mitochondrial DNA damage and depletion (miR-546). These results suggest that miRNAs may be sensitive biomarkers for early detection of mitochondrial toxicity. - Highlights: • MtDNA decreased after treatment with respiratory chain inhibitors rotenone and 3-NP. • Decrease in mtDNA is generally dose-related and indicative of mitochondrial toxicity. • Altered miRNA has reported roles in regulating mitochondrial function. • Induction of miR-338-5p in kidney and serum suggests potential as renal biomarker. • Induction of miR-122

  14. Mitochondrial protein import: Mia40 facilitates Tim22 translocation into the inner membrane of mitochondria.

    PubMed

    Wrobel, Lidia; Trojanowska, Agata; Sztolsztener, Malgorzata E; Chacinska, Agnieszka

    2013-03-01

    The mitochondrial intermembrane space assembly (MIA) pathway is generally considered to be dedicated to the redox-dependent import and biogenesis of proteins localized to the intermembrane space of mitochondria. The oxidoreductase Mia40 is a central component of the pathway responsible for the transfer of disulfide bonds to intermembrane space precursor proteins, causing their oxidative folding. Here we present the first evidence that the function of Mia40 is not restricted to the transport and oxidative folding of intermembrane space proteins. We identify Tim22, a multispanning membrane protein and core component of the TIM22 translocase of inner membrane, as a protein with cysteine residues undergoing oxidation during Tim22 biogenesis. We show that Mia40 is involved in the biogenesis and complex assembly of Tim22. Tim22 forms a disulfide-bonded intermediate with Mia40 upon import into mitochondria. Of interest, Mia40 binds the Tim22 precursor also via noncovalent interactions. We propose that Mia40 not only is responsible for disulfide bond formation, but also assists the Tim22 protein in its integration into the inner membrane of mitochondria.

  15. Biguanide-induced mitochondrial dysfunction yields increased lactate production and cytotoxicity of aerobically-poised HepG2 cells and human hepatocytes in vitro.

    PubMed

    Dykens, James A; Jamieson, Joseph; Marroquin, Lisa; Nadanaciva, Sashi; Billis, Puja A; Will, Yvonne

    2008-12-01

    As a class, the biguanides induce lactic acidosis, a hallmark of mitochondrial impairment. To assess potential mitochondrial impairment, we evaluated the effects of metformin, buformin and phenformin on: 1) viability of HepG2 cells grown in galactose, 2) respiration by isolated mitochondria, 3) metabolic poise of HepG2 and primary human hepatocytes, 4) activities of immunocaptured respiratory complexes, and 5) mitochondrial membrane potential and redox status in primary human hepatocytes. Phenformin was the most cytotoxic of the three with buformin showing moderate toxicity, and metformin toxicity only at mM concentrations. Importantly, HepG2 cells grown in galactose are markedly more susceptible to biguanide toxicity compared to cells grown in glucose, indicating mitochondrial toxicity as a primary mode of action. The same rank order of potency was observed for isolated mitochondrial respiration where preincubation (40 min) exacerbated respiratory impairment, and was required to reveal inhibition by metformin, suggesting intramitochondrial bio-accumulation. Metabolic profiling of intact cells corroborated respiratory inhibition, but also revealed compensatory increases in lactate production from accelerated glycolysis. High (mM) concentrations of the drugs were needed to inhibit immunocaptured respiratory complexes, supporting the contention that bioaccumulation is involved. The same rank order was found when monitoring mitochondrial membrane potential, ROS production, and glutathione levels in primary human hepatocytes. In toto, these data indicate that biguanide-induced lactic acidosis can be attributed to acceleration of glycolysis in response to mitochondrial impairment. Indeed, the desired clinical outcome, viz., decreased blood glucose, could be due to increased glucose uptake and glycolytic flux in response to drug-induced mitochondrial dysfunction.

  16. Avocado Oil Improves Mitochondrial Function and Decreases Oxidative Stress in Brain of Diabetic Rats.

    PubMed

    Ortiz-Avila, Omar; Esquivel-Martínez, Mauricio; Olmos-Orizaba, Berenice Eridani; Saavedra-Molina, Alfredo; Rodriguez-Orozco, Alain R; Cortés-Rojo, Christian

    2015-01-01

    Diabetic encephalopathy is a diabetic complication related to the metabolic alterations featuring diabetes. Diabetes is characterized by increased lipid peroxidation, altered glutathione redox status, exacerbated levels of ROS, and mitochondrial dysfunction. Although the pathophysiology of diabetic encephalopathy remains to be clarified, oxidative stress and mitochondrial dysfunction play a crucial role in the pathogenesis of chronic diabetic complications. Taking this into consideration, the aim of this work was to evaluate the effects of 90-day avocado oil intake in brain mitochondrial function and oxidative status in streptozotocin-induced diabetic rats (STZ rats). Avocado oil improves brain mitochondrial function in diabetic rats preventing impairment of mitochondrial respiration and mitochondrial membrane potential (ΔΨ m ), besides increasing complex III activity. Avocado oil also decreased ROS levels and lipid peroxidation and improved the GSH/GSSG ratio as well. These results demonstrate that avocado oil supplementation prevents brain mitochondrial dysfunction induced by diabetes in association with decreased oxidative stress.

  17. Galectin-1 and Galectin-3 induce mitochondrial apoptotic pathway in Jurkat cells

    NASA Astrophysics Data System (ADS)

    Vasil'eva, O. A.; Isaeva, A. V.; Prokhorenko, T. S.; Zima, A. P.; Novitsky, V. V.

    2016-08-01

    Cellular malignant transformation is often accompanied by increased gene expression of low-molecular proteins of lectins family-galectins. But it is unknown how galectins promote tumor growth and malignization. Galectins-1 and galectin-3 are thought to be possible immunoregulators exerting their effects by regulating the balance of CD4+ lymphocytes. In addition it is known that tumor cells overexpressing galectins are capable of escaping immunological control, causing apoptosis of lymphocytes. The aim of the study is to investigate the role of galectin-1 and galectin-3 in the implementation of mitochondrial apoptotic pathway in Jurkat cells. Methods: Jurkat cells were used as a model for the study of T-lymphocytes. Jurkat cells were activated with antibodies to CD3 and CD28 and cultured with recombinant galectin-1 and -3. Apoptosis of Jurkat cells and depolarization of the mitochondrial membrane were assessed by flow cytometry. It was found that galectin-1 and galectin-3 have a dose-dependent pro-apoptotic effect on Jurkat cells in vitro and enlarge the number of cells with decreased mitochondrial membrane potential compared with intact cells.

  18. β-sitosterol induces G1 arrest and causes depolarization of mitochondrial membrane potential in breast carcinoma MDA-MB-231 cells

    PubMed Central

    2013-01-01

    Backgrounds It is suggested that dietary phytosterols, such as β-sitosterol (ST), have cancer chemopreventive effects; however, studies are limited to support such claims. Here, we evaluated the efficacy of ST on three different human cancer cell lines including skin epidermoid carcinoma A431 cells, lung epithelial carcinoma A549 cells and breast adenocarcinoma MDA-MB-231. Methods Cell growth assay, cell cycle analysis, FACS, JC-1 staining, annexin V staining and immunoblotting were used to study the efficacy of ST on cancer cells. Results ST (30–90 μM) treatments for 48 h and 72 h did not show any significant effect on cell growth and death in A431 cells. Whereas similar ST treatments moderately inhibited the growth of A549 cells by up to 13% (p ≤ 0.05) in 48 h and 14% (p ≤ 0.05-0.0001) in 72 h. In MDA-MB-231 cells, ST caused a significant dose-dependent cell growth inhibition by 31- 63% (p ≤ 0.0001) in 48 h and 40-50% (p ≤ 0.0001) in 72 h. While exploring the molecular changes associated with strong ST efficacy in breast cancer cells, we observed that ST induced cell cycle arrest as well as cell death. ST caused G0/G1 cell cycle arrest which was accompanied by a decrease in CDK4 and cyclin D1, and an increase in p21/Cip1and p27/Kip1 protein levels. Further, cell death effect of ST was associated with induction of apoptosis. ST also caused the depolarization of mitochondrial membrane potential and increased Bax/Bcl-2 protein ratio. Conclusions These results suggest prominent in vitro anti-proliferative and pro-apoptotic effects of ST in MDA-MB-231 cells. This study provides valuable insight into the chemopreventive efficacy and associated molecular alterations of ST in breast cancer cells whereas it had only moderate efficacy on lung cancer cells and did not show any considerable effect on skin cancer cells. These findings would form the basis for further studies to understand the mechanisms and assess the potential utility of ST as a cancer

  19. Induction of necrosis and apoptosis to KB cancer cells by sanguinarine is associated with reactive oxygen species production and mitochondrial membrane depolarization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, M.-C.; Chan, C.-P.; Wang, Y.-J.

    2007-01-15

    Sanguinarine is a benzopheanthridine alkaloid present in the root of Sanguinaria canadensis L. and Chellidonium majus L. In this study, sanguinarine (2 and 3 {mu}M) exhibited cytotoxicity to KB cancer cells by decreasing MTT reduction to 83% and 52% of control after 24-h of exposure. Sanguinarine also inhibited the colony forming capacity (> 52-58%) and growth of KB cancer cells at concentrations higher than 0.5-1 {mu}M. Short-term exposure to sanguinarine (> 0.5 {mu}M) effectively suppressed the adhesion of KB cells to collagen and fibronectin (FN). Sanguinarine (2 and 3 {mu}M) induced evident apoptosis as indicated by an increase in sub-G0/G1more » populations, which was detected after 6-h of exposure. Only a slight increase in cells arresting in S-phase and G2/M was noted. Induction of KB cell apoptosis and necrosis by sanguinarine (2 and 3 {mu}M) was further confirmed by Annexin V-PI dual staining flow cytometry and the presence of DNA fragmentation. The cytotoxicity by sanguinarine was accompanied by an increase in production of reactive oxygen species (ROS) and depolarization of mitochondrial membrane potential as indicated by single cell flow cytometric analysis of DCF and rhodamine fluorescence. NAC (1 and 3 mM) and catalase (2000 U/ml) prevented the sanguinarine-induced ROS production and cytotoxicity, whereas dimethylthiourea (DMT) showed no marked preventive effect. These results suggest that sanguinarine has anticarcinogenic properties with induction of ROS production and mitochondrial membrane depolarization, which mediate cancer cell death.« less

  20. Mitochondria-targeted antioxidant mitotempo protects mitochondrial function against amyloid beta toxicity in primary cultured mouse neurons.

    PubMed

    Hu, Hongtao; Li, Mo

    2016-09-09

    Mitochondrial defects including excess reactive oxygen species (ROS) production and compromised ATP generation are featured pathology in Alzheimer's disease (AD). Amyloid beta (Aβ)-mediated mitochondrial ROS overproduction disrupts intra-neuronal Redox balance, in turn exacerbating mitochondrial dysfunction leading to neuronal injury. Previous studies have found the beneficial effects of mitochondria-targeted antioxidants in preventing mitochondrial dysfunction and neuronal injury in AD animal and cell models, suggesting that mitochondrial ROS scavengers hold promise for the treatment of this neurological disorder. In this study, we have determined that mitotempo, a novel mitochondria-targeted antioxidant protects mitochondrial function from the toxicity of Aβ in primary cultured neurons. Our results showed that Aβ-promoted mitochondrial superoxide production and neuronal lipid oxidation were significantly suppressed by the application of mitotempo. Moreover, mitotempo also demonstrated protective effects on mitochondrial bioenergetics evidenced by preserved mitochondrial membrane potential, cytochrome c oxidase activity as well as ATP production. In addition, the Aβ-induced mitochondrial DNA (mtDNA) depletion and decreased expression levels of mtDNA replication-related DNA polymerase gamma (DNA pol γ) and Twinkle were substantially mitigated by mitotempo. Therefore, our study suggests that elimination of excess mitochondrial ROS rescues mitochondrial function in Aβ-insulted neruons; and mitotempo has the potential to be a promising therapeutic agent to protect mitochondrial and neuronal function in AD. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. SR4 Uncouples Mitochondrial Oxidative Phosphorylation, Modulates AMP-dependent Kinase (AMPK)-Mammalian Target of Rapamycin (mTOR) Signaling, and Inhibits Proliferation of HepG2 Hepatocarcinoma Cells.

    PubMed

    Figarola, James L; Singhal, Jyotsana; Tompkins, Joshua D; Rogers, George W; Warden, Charles; Horne, David; Riggs, Arthur D; Awasthi, Sanjay; Singhal, Sharad S

    2015-12-18

    Mitochondrial oxidative phosphorylation produces most of the energy in aerobic cells by coupling respiration to the production of ATP. Mitochondrial uncouplers, which reduce the proton gradient across the mitochondrial inner membrane, create a futile cycle of nutrient oxidation without generating ATP. Regulation of mitochondrial dysfunction and associated cellular bioenergetics has been recently identified as a promising target for anticancer therapy. Here, we show that SR4 is a novel mitochondrial uncoupler that causes dose-dependent increase in mitochondrial respiration and dissipation of mitochondrial membrane potential in HepG2 hepatocarcinoma cells. These effects were reversed by the recoupling agent 6-ketocholestanol but not cyclosporin A and were nonexistent in mitochondrial DNA-depleted HepG2 cells. In isolated mouse liver mitochondria, SR4 similarly increased oxygen consumption independent of adenine nucleotide translocase and uncoupling proteins, decreased mitochondrial membrane potential, and promoted swelling of valinomycin-treated mitochondria in potassium acetate medium. Mitochondrial uncoupling in HepG2 cells by SR4 results in the reduction of cellular ATP production, increased ROS production, activation of the energy-sensing enzyme AMPK, and inhibition of acetyl-CoA carboxylase and mammalian target of rapamycin signaling pathways, leading to cell cycle arrest and apoptosis. Global analysis of SR4-associated differential gene expression confirms these observations, including significant induction of apoptotic genes and down-regulation of cell cycle, mitochondrial, and oxidative phosphorylation pathway transcripts at 24 h post-treatment. Collectively, our studies demonstrate that the previously reported indirect activation of AMPK and in vitro anticancer properties of SR4 as well as its beneficial effects in both animal xenograft and obese mice models could be a direct consequence of its mitochondrial uncoupling activity. © 2015 by The American

  2. SR4 Uncouples Mitochondrial Oxidative Phosphorylation, Modulates AMP-dependent Kinase (AMPK)-Mammalian Target of Rapamycin (mTOR) Signaling, and Inhibits Proliferation of HepG2 Hepatocarcinoma Cells*

    PubMed Central

    Figarola, James L.; Singhal, Jyotsana; Tompkins, Joshua D.; Rogers, George W.; Warden, Charles; Horne, David; Riggs, Arthur D.; Awasthi, Sanjay; Singhal, Sharad S.

    2015-01-01

    Mitochondrial oxidative phosphorylation produces most of the energy in aerobic cells by coupling respiration to the production of ATP. Mitochondrial uncouplers, which reduce the proton gradient across the mitochondrial inner membrane, create a futile cycle of nutrient oxidation without generating ATP. Regulation of mitochondrial dysfunction and associated cellular bioenergetics has been recently identified as a promising target for anticancer therapy. Here, we show that SR4 is a novel mitochondrial uncoupler that causes dose-dependent increase in mitochondrial respiration and dissipation of mitochondrial membrane potential in HepG2 hepatocarcinoma cells. These effects were reversed by the recoupling agent 6-ketocholestanol but not cyclosporin A and were nonexistent in mitochondrial DNA-depleted HepG2 cells. In isolated mouse liver mitochondria, SR4 similarly increased oxygen consumption independent of adenine nucleotide translocase and uncoupling proteins, decreased mitochondrial membrane potential, and promoted swelling of valinomycin-treated mitochondria in potassium acetate medium. Mitochondrial uncoupling in HepG2 cells by SR4 results in the reduction of cellular ATP production, increased ROS production, activation of the energy-sensing enzyme AMPK, and inhibition of acetyl-CoA carboxylase and mammalian target of rapamycin signaling pathways, leading to cell cycle arrest and apoptosis. Global analysis of SR4-associated differential gene expression confirms these observations, including significant induction of apoptotic genes and down-regulation of cell cycle, mitochondrial, and oxidative phosphorylation pathway transcripts at 24 h post-treatment. Collectively, our studies demonstrate that the previously reported indirect activation of AMPK and in vitro anticancer properties of SR4 as well as its beneficial effects in both animal xenograft and obese mice models could be a direct consequence of its mitochondrial uncoupling activity. PMID:26534958

  3. Laminar shear stress promotes mitochondrial homeostasis in endothelial cells.

    PubMed

    Wu, Li-Hong; Chang, Hao-Chun; Ting, Pei-Ching; Wang, Danny L

    2018-06-01

    Vascular endothelial cells (ECs) are constantly subjected to flow-induced shear stress that is crucial for endothelial functions. Laminar shear stress (LSS) exerts atheroprotection to ECs. Mitochondrial homeostasis is essential for cellular survival. However, the effects of LSS on mitochondrial homeostasis in ECs remain unclear. Mitochondrial homeostasis in ECs exposed to LSS was examined. Cultured human umbilical vein ECs were subjected to LSS (12 dynes/cm 2 ) generated by a parallel-plate flow chamber system. ECs subjected to LSS demonstrated an increment of mitochondria in tubular form coupled with the increase of fusion proteins (Mfn2, OPA1) and the decrease of fission protein (Fis1). An increase of both long- and short- OPA1 along with a higher protease YME1L level were observed. LSS triggered a rapid phosphorylation on S637 but a decrease on S616 of fission-controlled protein Drp1. Consistently, Drp1 translocation to mitochondria was decreased in sheared ECs, suggesting that LSS promotes mitochondrial fusion. Enhanced mitochondrial biogenesis in sheared ECs was shown by the increase of mitochondrial mass and its regulatory proeins (PGC1α, TFAM, Nrf1). LSS enhances the expression of mitochondrial antioxidant enzymes and improves mitochondrial functions indicated by the increase of mitochondrial membrane potential (ΔΨm) and ATP generation. TNFα treatment decreased mitochondrial tubular network and its functions in ECs. LSS mitigated TNFα-induced mitochondrial impairments in ECs. Our results clearly indicate that LSS promotes mitochondrial homeostasis and attenuates inflammation-induced mitochondrial impairments in ECs. Our results provide novel insights into the manner of mitochondrial dynamics and functions modulated by LSS that contribute to endothelial integrity. © 2017 Wiley Periodicals, Inc.

  4. Ectromelia Virus Affects Mitochondrial Network Morphology, Distribution, and Physiology in Murine Fibroblasts and Macrophage Cell Line

    PubMed Central

    Gregorczyk, Karolina P.; Wyżewski, Zbigniew; Szczepanowska, Joanna; Mielcarska, Matylda B.; Bossowska-Nowicka, Magdalena; Gieryńska, Małgorzata; Boratyńska-Jasińska, Anna; Niemiałtowski, Marek G.

    2018-01-01

    Mitochondria are multifunctional organelles that participate in numerous processes in response to viral infection, but they are also a target for viruses. The aim of this study was to define subcellular events leading to alterations in mitochondrial morphology and function during infection with ectromelia virus (ECTV). We used two different cell lines and a combination of immunofluorescence techniques, confocal and electron microscopy, and flow cytometry to address subcellular changes following infection. Early in infection of L929 fibroblasts and RAW 264.7 macrophages, mitochondria gathered around viral factories. Later, the mitochondrial network became fragmented, forming punctate mitochondria that co-localized with the progeny virions. ECTV-co-localized mitochondria associated with the cytoskeleton components. Mitochondrial membrane potential, mitochondrial fission–fusion, mitochondrial mass, and generation of reactive oxygen species (ROS) were severely altered later in ECTV infection leading to damage of mitochondria. These results suggest an important role of mitochondria in supplying energy for virus replication and morphogenesis. Presumably, mitochondria participate in transport of viral particles inside and outside of the cell and/or they are a source of membranes for viral envelope formation. We speculate that the observed changes in the mitochondrial network organization and physiology in ECTV-infected cells provide suitable conditions for viral replication and morphogenesis. PMID:29772718

  5. Ectromelia Virus Affects Mitochondrial Network Morphology, Distribution, and Physiology in Murine Fibroblasts and Macrophage Cell Line.

    PubMed

    Gregorczyk, Karolina P; Wyżewski, Zbigniew; Szczepanowska, Joanna; Toka, Felix N; Mielcarska, Matylda B; Bossowska-Nowicka, Magdalena; Gieryńska, Małgorzata; Boratyńska-Jasińska, Anna; Struzik, Justyna; Niemiałtowski, Marek G; Szulc-Dąbrowska, Lidia

    2018-05-16

    Mitochondria are multifunctional organelles that participate in numerous processes in response to viral infection, but they are also a target for viruses. The aim of this study was to define subcellular events leading to alterations in mitochondrial morphology and function during infection with ectromelia virus (ECTV). We used two different cell lines and a combination of immunofluorescence techniques, confocal and electron microscopy, and flow cytometry to address subcellular changes following infection. Early in infection of L929 fibroblasts and RAW 264.7 macrophages, mitochondria gathered around viral factories. Later, the mitochondrial network became fragmented, forming punctate mitochondria that co-localized with the progeny virions. ECTV-co-localized mitochondria associated with the cytoskeleton components. Mitochondrial membrane potential, mitochondrial fission⁻fusion, mitochondrial mass, and generation of reactive oxygen species (ROS) were severely altered later in ECTV infection leading to damage of mitochondria. These results suggest an important role of mitochondria in supplying energy for virus replication and morphogenesis. Presumably, mitochondria participate in transport of viral particles inside and outside of the cell and/or they are a source of membranes for viral envelope formation. We speculate that the observed changes in the mitochondrial network organization and physiology in ECTV-infected cells provide suitable conditions for viral replication and morphogenesis.

  6. Mitochondrial metabolic regulation by GRP78

    PubMed Central

    Prasad, Manoj; Pawlak, Kevin J.; Burak, William E.; Perry, Elizabeth E.; Marshall, Brendan; Whittal, Randy M.; Bose, Himangshu S.

    2017-01-01

    Steroids, essential for mammalian survival, are initiated by cholesterol transport by steroidogenic acute regulatory protein (StAR). Appropriate protein folding is an essential requirement of activity. Endoplasmic reticulum (ER) chaperones assist in folding of cytoplasmic proteins, whereas mitochondrial chaperones fold only mitochondrial proteins. We show that glucose regulatory protein 78 (GRP78), a master ER chaperone, is also present at the mitochondria-associated ER membrane (MAM), where it folds StAR for delivery to the outer mitochondrial membrane. StAR expression and activity are drastically reduced following GRP78 knockdown. StAR folding starts at the MAM region; thus, its cholesterol fostering capacity is regulated by GRP78 long before StAR reaches the mitochondria. In summary, GRP78 is an acute regulator of steroidogenesis at the MAM, regulating the intermediate folding of StAR that is crucial for its activity. PMID:28275724

  7. Monitoring sperm mitochondrial respiration response in a laser trap using ratiometric fluorescence

    NASA Astrophysics Data System (ADS)

    Mei, Adrian; Botvinick, Elliot; Berns, Michael

    2005-08-01

    Sperm motility is an important area in understanding male infertility. Various techniques, such as the Computer Assisted Sperm Analysis (CASA), have been used to understand sperm motility. Sperm motility is related to the energy (ATP) production of sperm. ATP is produced by the depolarization of the membrane potential of the inner membrane of the mitochondria. In this study, a mitochondrial dye, JC-1, has been used to monitor the energetics of the mitochondria. This fluorescent dye can emit at two different wavelengths, depending on the membrane potential of the mitochondria. It can fluoresce green at low membrane potential and red at high membrane potential. The ratio of the two colors (red/green) allows for an accurate measurement of the change of membrane potential. Various experiments were conducted to quantify the behavior of the dye within the sperm and the reaction of the sperm to trap. Sperm were trapped using laser tweezers. Results have shown that the ratio drops dramatically when sperm are trapped, indicating a depolarization of the membrane. The physiological response to this depolarization is yet to be determined, but the studies indicate that the sperm could have been slightly damaged by the laser. However, knowing that sperm depolarizes their membrane when trapped can help understand how sperm react to their environment and consequently help treat male infertility.

  8. Antimicrobial agent triclosan disrupts mitochondrial structure, revealed by super-resolution microscopy, and inhibits mast cell signaling via calcium modulation.

    PubMed

    Weatherly, Lisa M; Nelson, Andrew J; Shim, Juyoung; Riitano, Abigail M; Gerson, Erik D; Hart, Andrew J; de Juan-Sanz, Jaime; Ryan, Timothy A; Sher, Roger; Hess, Samuel T; Gosse, Julie A

    2018-06-15

    The antimicrobial agent triclosan (TCS) is used in products such as toothpaste and surgical soaps and is readily absorbed into oral mucosa and human skin. These and many other tissues contain mast cells, which are involved in numerous physiologies and diseases. Mast cells release chemical mediators through a process termed degranulation, which is inhibited by TCS. Investigation into the underlying mechanisms led to the finding that TCS is a mitochondrial uncoupler at non-cytotoxic, low-micromolar doses in several cell types and live zebrafish. Our aim was to determine the mechanisms underlying TCS disruption of mitochondrial function and of mast cell signaling. We combined super-resolution (fluorescence photoactivation localization) microscopy and multiple fluorescence-based assays to detail triclosan's effects in living mast cells, fibroblasts, and primary human keratinocytes. TCS disrupts mitochondrial nanostructure, causing mitochondria to undergo fission and to form a toroidal, "donut" shape. TCS increases reactive oxygen species production, decreases mitochondrial membrane potential, and disrupts ER and mitochondrial Ca 2+ levels, processes that cause mitochondrial fission. TCS is 60 × more potent than the banned uncoupler 2,4-dinitrophenol. TCS inhibits mast cell degranulation by decreasing mitochondrial membrane potential, disrupting microtubule polymerization, and inhibiting mitochondrial translocation, which reduces Ca 2+ influx into the cell. Our findings provide mechanisms for both triclosan's inhibition of mast cell signaling and its universal disruption of mitochondria. These mechanisms provide partial explanations for triclosan's adverse effects on human reproduction, immunology, and development. This study is the first to utilize super-resolution microscopy in the field of toxicology. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. OXPHOS-Dependent Cells Identify Environmental Disruptors of Mitochondrial Function

    EPA Science Inventory

    Mitochondrial dysfunction is associated with numerous chronic diseases including metabolic syndrome. Environmental chemicals can impair mitochondrial function through numerous mechanisms such as membrane disruption, complex inhibition and electron transport chain uncoupling. Curr...

  10. General anesthetics cause mitochondrial dysfunction and reduction of intracellular ATP levels

    PubMed Central

    Kishikawa, Jun-ichi; Inoue, Yuki; Fujikawa, Makoto; Nishimura, Kenji; Nakanishi, Atsuko; Tanabe, Tsutomu; Imamura, Hiromi

    2018-01-01

    General anesthetics are indispensable for effective clinical care. Although, the mechanism of action of general anesthetics remains controversial, lipid bilayers and proteins have been discussed as their targets. In this study, we focused on the relationship between cellular ATP levels and general anesthetics. The ATP levels of nematodes and cultured mammalian cells were decreased by exposure to three general anesthetics: isoflurane, pentobarbital, and 1-phenoxy-2-propanol. Furthermore, these general anesthetics abolished mitochondrial membrane potential, resulting in the inhibition of mitochondrial ATP synthesis. These results suggest that the observed decrease of cellular ATP level is a common phenomenon of general anesthetics. PMID:29298324

  11. Ex Vivo Cardiotoxicity of Antineoplastic Casiopeinas Is Mediated through Energetic Dysfunction and Triggered Mitochondrial-Dependent Apoptosis.

    PubMed

    Silva-Platas, Christian; Villegas, César A; Oropeza-Almazán, Yuriana; Carrancá, Mariana; Torres-Quintanilla, Alejandro; Lozano, Omar; Valero-Elizondo, Javier; Castillo, Elena C; Bernal-Ramírez, Judith; Fernández-Sada, Evaristo; Vega, Luis F; Treviño-Saldaña, Niria; Chapoy-Villanueva, Héctor; Ruiz-Azuara, Lena; Hernández-Brenes, Carmen; Elizondo-Montemayor, Leticia; Guerrero-Beltrán, Carlos E; Carvajal, Karla; Bravo-Gómez, María E; García-Rivas, Gerardo

    2018-01-01

    Casiopeinas are a group of copper-based antineoplastic molecules designed as a less toxic and more therapeutic alternative to cisplatin or Doxorubicin; however, there is scarce evidence about their toxic effects on the whole heart and cardiomyocytes. Given this, rat hearts were perfused with Casiopeinas or Doxorubicin and the effects on mechanical performance, energetics, and mitochondrial function were measured. As well, the effects of Casiopeinas-triggered cell death were explored in isolated cardiomyocytes. Casiopeinas III-Ea, II-gly, and III-ia induced a progressive and sustained inhibition of heart contractile function that was dose- and time-dependent with an IC 50 of 1.3 ± 0.2, 5.5 ± 0.5, and 10 ± 0.7  μ M, correspondingly. Myocardial oxygen consumption was not modified at their respective IC 50 , although ATP levels were significantly reduced, indicating energy impairment. Isolated mitochondria from Casiopeinas-treated hearts showed a significant loss of membrane potential and reduction of mitochondrial Ca 2+ retention capacity. Interestingly, Cyclosporine A inhibited Casiopeinas-induced mitochondrial Ca 2+ release, which suggests the involvement of the mitochondrial permeability transition pore opening. In addition, Casiopeinas reduced the viability of cardiomyocytes and stimulated the activation of caspases 3, 7, and 9, demonstrating a cell death mitochondrial-dependent mechanism. Finally, the early perfusion of Cyclosporine A in isolated hearts decreased Casiopeinas-induced dysfunction with reduction of their toxic effect. Our results suggest that heart cardiotoxicity of Casiopeinas is similar to that of Doxorubicin, involving heart mitochondrial dysfunction, loss of membrane potential, changes in energetic metabolites, and apoptosis triggered by mitochondrial permeability.

  12. Ex Vivo Cardiotoxicity of Antineoplastic Casiopeinas Is Mediated through Energetic Dysfunction and Triggered Mitochondrial-Dependent Apoptosis

    PubMed Central

    Silva-Platas, Christian; Villegas, César A.; Carrancá, Mariana; Lozano, Omar; Valero-Elizondo, Javier; Bernal-Ramírez, Judith; Fernández-Sada, Evaristo; Vega, Luis F.; Chapoy-Villanueva, Héctor; Ruiz-Azuara, Lena; Hernández-Brenes, Carmen; Guerrero-Beltrán, Carlos E.; Bravo-Gómez, María E.

    2018-01-01

    Casiopeinas are a group of copper-based antineoplastic molecules designed as a less toxic and more therapeutic alternative to cisplatin or Doxorubicin; however, there is scarce evidence about their toxic effects on the whole heart and cardiomyocytes. Given this, rat hearts were perfused with Casiopeinas or Doxorubicin and the effects on mechanical performance, energetics, and mitochondrial function were measured. As well, the effects of Casiopeinas-triggered cell death were explored in isolated cardiomyocytes. Casiopeinas III-Ea, II-gly, and III-ia induced a progressive and sustained inhibition of heart contractile function that was dose- and time-dependent with an IC50 of 1.3 ± 0.2, 5.5 ± 0.5, and 10 ± 0.7 μM, correspondingly. Myocardial oxygen consumption was not modified at their respective IC50, although ATP levels were significantly reduced, indicating energy impairment. Isolated mitochondria from Casiopeinas-treated hearts showed a significant loss of membrane potential and reduction of mitochondrial Ca2+ retention capacity. Interestingly, Cyclosporine A inhibited Casiopeinas-induced mitochondrial Ca2+ release, which suggests the involvement of the mitochondrial permeability transition pore opening. In addition, Casiopeinas reduced the viability of cardiomyocytes and stimulated the activation of caspases 3, 7, and 9, demonstrating a cell death mitochondrial-dependent mechanism. Finally, the early perfusion of Cyclosporine A in isolated hearts decreased Casiopeinas-induced dysfunction with reduction of their toxic effect. Our results suggest that heart cardiotoxicity of Casiopeinas is similar to that of Doxorubicin, involving heart mitochondrial dysfunction, loss of membrane potential, changes in energetic metabolites, and apoptosis triggered by mitochondrial permeability. PMID:29765507

  13. Metabolic Stress and Disorders Related to Alterations in Mitochondrial Fission or Fusion

    PubMed Central

    Babbar, Mansi; Sheikh, M. Saeed

    2014-01-01

    Mitochondrial morphology and metabolism play an important role in cellular homeostasis. Recent studies have shown that the fidelity of mitochondrial morphology is important in maintaining mitochondrial shape, number, size, membrane potential, ATP synthesis, mtDNA, motility, signaling, quality control, response to cellular stress, mitophagy and apoptosis. This article provides an overview of the current state of knowledge of the fission and fusion machinery with a focus on the mechanisms underlying the regulation of the mitochondrial morphology and cellular energy state. Several lines of evidence indicate that dysregulation of mitochondrial fission or fusion is associated with mitochondrial dysfunction, which in turn impacts mitophagy and apoptosis. Metabolic disorders are also associated with dysregulation of fission or fusion and the available lines of evidence point to a bidirectional interplay between the mitochondrial fission or fusion reactions and bioenergetics. Clearly, more in-depth studies are needed to fully elucidate the mechanisms that control mitochondrial fission and fusion. It is envisioned that the outcome of such studies will improve the understanding of the molecular basis of related metabolic disorders and also facilitate the development of better therapeutics. PMID:24533171

  14. Olive oil-supplemented diet alleviates acute heat stress-induced mitochondrial ROS production in chicken skeletal muscle.

    PubMed

    Mujahid, Ahmad; Akiba, Yukio; Toyomizu, Masaaki

    2009-09-01

    We have previously shown that avian uncoupling protein (avUCP) is downregulated on exposure to acute heat stress, stimulating mitochondrial reactive oxygen species (ROS) production and oxidative damage. In this study, we investigated whether upregulation of avUCP could attenuate oxidative damage caused by acute heat stress. Broiler chickens (Gallus gallus) were fed either a control diet or an olive oil-supplemented diet (6.7%), which has been shown to increase the expression of UCP3 in mammals, for 8 days and then exposed either to heat stress (34 degrees C, 12 h) or kept at a thermoneutral temperature (25 degrees C). Skeletal muscle mitochondrial ROS (measured as H(2)O(2)) production, avUCP expression, oxidative damage, mitochondrial membrane potential, and oxygen consumption were studied. We confirmed that heat stress increased mitochondrial ROS production and malondialdehyde levels and decreased the amount of avUCP. As expected, feeding birds an olive oil-supplemented diet increased the expression of avUCP in skeletal muscle mitochondria and decreased ROS production and oxidative damage. Studies on mitochondrial function showed that heat stress increased membrane potential in state 4, which was reversed by feeding birds an olive oil-supplemented diet, although no differences in basal proton leak were observed between control and heat-stressed groups. These results show that under heat stress, mitochondrial ROS production and olive oil-induced reduction of ROS production may occur due to changes in respiratory chain activity as well as avUCP expression in skeletal muscle mitochondria.

  15. α-MHC MitoTimer mouse: In vivo mitochondrial turnover model reveals remarkable mitochondrial heterogeneity in the heart

    PubMed Central

    Stotland, Aleksandr; Gottlieb, Roberta A.

    2016-01-01

    In order to maintain an efficient, energy-producing network in the heart, dysfunctional mitochondria are cleared through the mechanism of autophagy, which is closely linked with mitochondrial biogenesis; these, together with fusion and fission comprise a crucial process known as mitochondrial turnover. Until recently, the lack of molecular tools and methods available to researchers has impeded in vivo investigations of turnover. To investigate the process at the level of a single mitochondrion, our laboratory has developed the MitoTimer protein. Timer is a mutant of DsRed fluorescent protein characterized by transition from green fluorescence to a more stable red conformation over 48 h, and its rate of maturation is stable under physiological conditions. We fused the Timer cDNA with the inner mitochondrial membrane signal sequence and placed it under the control of a cardiac-restricted promoter. This construct was used to create the alpha-MHC-MitoTimer mice. Surprisingly, initial analysis of the hearts from these mice demonstrated a high degree of heterogeneity in the ratio of red-to-green fluorescence of MitoTimer in cardiac tissue. Further, scattered solitary mitochondria within cardiomyocytes display a much higher red-to-green fluorescence (red-shifted) relative to other mitochondria in the cell, implying a block in import of newly synthesized MitoTimer likely due to lower membrane potential. These red-shifted mitochondria may represent older, senescent mitochondria. Concurrently, the cardiomyocytes also contain a subpopulation of mitochondria that display a lower red-to-green fluorescence (green-shifted) relative to other mitochondria, indicative of germinal mitochondria that are actively engaged in import of newly-synthesized mito-targeted proteins. These mitochondria can be isolated and sorted from the heart by flow cytometry for further analysis. Initial studies suggest that these mice represent an elegant tool for the investigation of mitochondrial turnover

  16. Deceleration of Fusion–Fission Cycles Improves Mitochondrial Quality Control during Aging

    PubMed Central

    Meyer-Hermann, Michael; Osiewacz, Heinz D.

    2012-01-01

    Mitochondrial dynamics and mitophagy play a key role in ensuring mitochondrial quality control. Impairment thereof was proposed to be causative to neurodegenerative diseases, diabetes, and cancer. Accumulation of mitochondrial dysfunction was further linked to aging. Here we applied a probabilistic modeling approach integrating our current knowledge on mitochondrial biology allowing us to simulate mitochondrial function and quality control during aging in silico. We demonstrate that cycles of fusion and fission and mitophagy indeed are essential for ensuring a high average quality of mitochondria, even under conditions in which random molecular damage is present. Prompted by earlier observations that mitochondrial fission itself can cause a partial drop in mitochondrial membrane potential, we tested the consequences of mitochondrial dynamics being harmful on its own. Next to directly impairing mitochondrial function, pre-existing molecular damage may be propagated and enhanced across the mitochondrial population by content mixing. In this situation, such an infection-like phenomenon impairs mitochondrial quality control progressively. However, when imposing an age-dependent deceleration of cycles of fusion and fission, we observe a delay in the loss of average quality of mitochondria. This provides a rational why fusion and fission rates are reduced during aging and why loss of a mitochondrial fission factor can extend life span in fungi. We propose the ‘mitochondrial infectious damage adaptation’ (MIDA) model according to which a deceleration of fusion–fission cycles reflects a systemic adaptation increasing life span. PMID:22761564

  17. Biogenesis of mitochondrial carrier proteins: molecular mechanisms of import into mitochondria.

    PubMed

    Ferramosca, Alessandra; Zara, Vincenzo

    2013-03-01

    Mitochondrial metabolite carriers are hydrophobic proteins which catalyze the flux of several charged or hydrophilic substrates across the inner membrane of mitochondria. These proteins, like most mitochondrial proteins, are nuclear encoded and after their synthesis in the cytosol are transported into the inner mitochondrial membrane. Most metabolite carriers, differently from other nuclear encoded mitochondrial proteins, are synthesized without a cleavable presequence and contain several, poorly characterized, internal targeting signals. However, an interesting aspect is the presence of a positively charged N-terminal presequence in a limited number of mitochondrial metabolite carriers. Over the last few years the molecular mechanisms of import of metabolite carrier proteins into mitochondria have been thoroughly investigated. This review summarizes the present knowledge and discusses recent advances on the import and sorting of mitochondrial metabolite carriers. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. PGAM5 regulates PINK1/Parkin-mediated mitophagy via DRP1 in CCCP-induced mitochondrial dysfunction.

    PubMed

    Park, Yun Sun; Choi, Su Eun; Koh, Hyun Chul

    2018-03-01

    Mitochondrial dynamics and mitophagy are critical processes for regulating mitochondrial homeostasis. Phosphoglycerate mutase family member 5 (PGAM5) is a mitochondrial protein that plays crucial roles in apoptosis and necroptosis, but the roles of PGAM5 in mitochondrial dynamics and mitophagy remain unclear. In this study, we investigated the role of PGAM5 in carbonyl cyanide m-chlorophenylhydrazone (CCCP)-induced mitochondrial damage and the correlation between mitochondrial dynamics and mitophagy using SH-SY5Y cells. We found that CCCP decreased mitochondrial membrane potential, resulting in mitochondrial dysfunction. CCCP increased PGAM5, dynamin-related protein 1 (DRP1), and optic atrophy 1 (OPA1) expression of the mitochondrial fraction in a time-dependent manner. Knockdown of PGAM5 inhibited DRP1 translocation without a change in OPA1 expression in CCCP-treated cells. Furthermore, knockdown of PGAM5 and DRP1 significantly blocked the increase of PTEN-induced putative protein kinase 1 (PINK1) and Parkin expression in the mitochondrial fraction of CCCP-treated cells. Interestingly, CCCP did not alter PINK1/Parkin expression in the mitochondrial fraction of OPA1 knockdown cells. Inhibiting mitophagy by PGAM5 knockdown accelerated CCCP-induced apoptosis. CCCP treatment also results in PINK1 stabilization on the mitochondrial membrane, which subsequently increases Parkin recruitment from the cytosol to abnormal mitochondria. In addition, we found that CCCP increased the level of mitochondrial LC3II, indicating that Parkin recruitment of PINK1 is a result of mitophagy. We propose that activation of PGAM5 is associated with DRP1 recruitment and PINK1 stabilization, which contribute to the modulation of mitophagy in CCCP-treated cells with mitochondrial dysfunction. In conclusion, we demonstrated that PGAM5 regulates PINK1-Parkin-mediated mitophagy, which can exert a neuroprotective effect against CCCP-induced apoptosis. Copyright © 2017 Elsevier B.V. All rights

  19. Cranberry flavonoids prevent toxic rat liver mitochondrial damage in vivo and scavenge free radicals in vitro.

    PubMed

    Lapshina, Elena A; Zamaraeva, Maria; Cheshchevik, Vitali T; Olchowik-Grabarek, Ewa; Sekowski, Szymon; Zukowska, Izabela; Golovach, Nina G; Burd, Vasili N; Zavodnik, Ilya B

    2015-06-01

    The present study was undertaken for further elucidation of the mechanisms of flavonoid biological activity, focusing on the antioxidative and protective effects of cranberry flavonoids in free radical-generating systems and those on mitochondrial ultrastructure during carbon tetrachloride-induced rat intoxication. Treatment of rats with cranberry flavonoids (7 mg/kg) during chronic carbon tetrachloride-induced intoxication led to prevention of mitochondrial damage, including fragmentation, rupture and local loss of the outer mitochondrial membrane. In radical-generating systems, cranberry flavonoids effectively scavenged nitric oxide (IC50  = 4.4 ± 0.4 µg/ml), superoxide anion radicals (IC50  = 2.8 ± 0.3 µg/ml) and hydroxyl radicals (IC50  = 53 ± 4 µg/ml). The IC50 for reduction of 1,1-diphenyl-2-picrylhydrazyl radicals (DPPH) was 2.2 ± 0.3 µg/ml. Flavonoids prevented to some extent lipid peroxidation in liposomal membranes and glutathione oxidation in erythrocytes treated with UV irradiation or organic hydroperoxides as well as decreased the rigidity of the outer leaflet of the liposomal membranes. The hepatoprotective potential of cranberry flavonoids could be due to specific prevention of rat liver mitochondrial damage. The mitochondria-addressed effects of flavonoids might be related both to radical-scavenging properties and modulation of various mitochondrial events. Copyright © 2015 John Wiley & Sons, Ltd.

  20. Melatonin reverses H-89 induced spatial memory deficit: Involvement of oxidative stress and mitochondrial function.

    PubMed

    Sharif, Rojin; Aghsami, Mehdi; Gharghabi, Mehdi; Sanati, Mehdi; Khorshidahmad, Tina; Vakilzadeh, Gelareh; Mehdizadeh, Hajar; Gholizadeh, Shervin; Taghizadeh, Ghorban; Sharifzadeh, Mohammad

    2017-01-01

    Oxidative stress and mitochondrial dysfunction play indispensable role in memory and learning impairment. Growing evidences have shed light on anti-oxidative role for melatonin in memory deficit. We have previously reported that inhibition of protein kinase A by H-89 can induce memory impairment. Here, we investigated the effect of melatonin on H-89 induced spatial memory deficit and pursued their interactive consequences on oxidative stress and mitochondrial function in Morris Water Maze model. Rats received melatonin (50 and 100μg/kg/side) and H-89(10μM) intra-hippocampally 30min before each day of training. Animals were trained for 4 consecutive days, each containing one block from four trials. Oxidative stress indices, including thiobarbituric acid (TBARS), reactive oxygen species (ROS), thiol groups, and ferric reducing antioxidant power (FRAP) were assessed using spectrophotometer. Mitochondrial function was evaluated through measuring ROS production, mitochondrial membrane potential (MMP), swelling, outer membrane damage, and cytochrome c release. As expected from our previous report, H-89 remarkably impaired memory by increasing the escape latency and traveled distance. Intriguingly, H-89 significantly augmented TBARS and ROS levels, caused mitochondrial ROS production, swelling, outer membrane damage, and cytochrome c release. Moreover, H-89 lowered thiol, FRAP, and MMP values. Intriguingly, melatonin pre-treatment not only effectively hampered H-89-mediated spatial memory deficit at both doses, but also reversed the H-89 effects on mitochondrial and biochemical indices upon higher dose. Collectively, these findings highlight a protective role for melatonin against H-89-induced memory impairment and indicate that melatonin may play a therapeutic role in the treatment of oxidative- related neurodegenerative disorders. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Mammalian plasma membrane proteins as potential biomarkers and drug targets.

    PubMed

    Rucevic, Marijana; Hixson, Douglas; Josic, Djuro

    2011-06-01

    Defining the plasma membrane proteome is crucial to understand the role of plasma membrane in fundamental biological processes. Change in membrane proteins is one of the first events that take place under pathological conditions, making plasma membrane proteins a likely source of potential disease biomarkers with prognostic or diagnostic potential. Membrane proteins are also potential targets for monoclonal antibodies and other drugs that block receptors or inhibit enzymes essential to the disease progress. Despite several advanced methods recently developed for the analysis of hydrophobic proteins and proteins with posttranslational modifications, integral membrane proteins are still under-represented in plasma membrane proteome. Recent advances in proteomic investigation of plasma membrane proteins, defining their roles as diagnostic and prognostic disease biomarkers and as target molecules in disease treatment, are presented. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Spirulina platensis prevents high glucose-induced oxidative stress mitochondrial damage mediated apoptosis in cardiomyoblasts.

    PubMed

    Jadaun, Pratiksha; Yadav, Dhananjay; Bisen, Prakash Singh

    2018-04-01

    The current study was undertaken to study the effect of Spirulina platensis (Spirulina) extract on enhanced oxidative stress during high glucose induced cell death in H9c2 cells. H9c2 cultured under high glucose (33 mM) conditions resulted in a noteworthy increase in oxidative stress (free radical species) accompanied by loss of mitochondrial membrane potential, release of cytochrome c, increase in caspase activity and pro-apoptotic protein (Bax). Spirulina extract (1 μg/mL), considerably inhibited increased ROS and RNS levels, reduction in cytochrome c release, raise in mitochondrial membrane potential, decreased the over expression of proapoptotic protein Bax and suppressed the Bax/Bcl2 ratio with induced apoptosis without affecting cell viability. Overall results suggest that Spirulina extract plays preventing role against enhanced oxidative stress during high glucose induced apoptosis in cardiomyoblasts as well as related dysfunction in H9c2 cells.

  3. MICOS and phospholipid transfer by Ups2-Mdm35 organize membrane lipid synthesis in mitochondria.

    PubMed

    Aaltonen, Mari J; Friedman, Jonathan R; Osman, Christof; Salin, Bénédicte; di Rago, Jean-Paul; Nunnari, Jodi; Langer, Thomas; Tatsuta, Takashi

    2016-06-06

    Mitochondria exert critical functions in cellular lipid metabolism and promote the synthesis of major constituents of cellular membranes, such as phosphatidylethanolamine (PE) and phosphatidylcholine. Here, we demonstrate that the phosphatidylserine decarboxylase Psd1, located in the inner mitochondrial membrane, promotes mitochondrial PE synthesis via two pathways. First, Ups2-Mdm35 complexes (SLMO2-TRIAP1 in humans) serve as phosphatidylserine (PS)-specific lipid transfer proteins in the mitochondrial intermembrane space, allowing formation of PE by Psd1 in the inner membrane. Second, Psd1 decarboxylates PS in the outer membrane in trans, independently of PS transfer by Ups2-Mdm35. This latter pathway requires close apposition between both mitochondrial membranes and the mitochondrial contact site and cristae organizing system (MICOS). In MICOS-deficient cells, limiting PS transfer by Ups2-Mdm35 and reducing mitochondrial PE accumulation preserves mitochondrial respiration and cristae formation. These results link mitochondrial PE metabolism to MICOS, combining functions in protein and lipid homeostasis to preserve mitochondrial structure and function. © 2016 Aaltonen et al.

  4. Modulation of mitochondrial function and morphology by interaction of Omi/HtrA2 with the mitochondrial fusion factor OPA1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kieper, Nicole; Holmstroem, Kira M.; Ciceri, Dalila

    2010-04-15

    Loss of Omi/HtrA2 function leads to nerve cell loss in mouse models and has been linked to neurodegeneration in Parkinson's and Huntington's disease. Omi/HtrA2 is a serine protease released as a pro-apoptotic factor from the mitochondrial intermembrane space into the cytosol. Under physiological conditions, Omi/HtrA2 is thought to be involved in protection against cellular stress, but the cytological and molecular mechanisms are not clear. Omi/HtrA2 deficiency caused an accumulation of reactive oxygen species and reduced mitochondrial membrane potential. In Omi/HtrA2 knockout mouse embryonic fibroblasts, as well as in Omi/HtrA2 silenced human HeLa cells and Drosophila S2R+ cells, we found elongatedmore » mitochondria by live cell imaging. Electron microscopy confirmed the mitochondrial morphology alterations and showed abnormal cristae structure. Examining the levels of proteins involved in mitochondrial fusion, we found a selective up-regulation of more soluble OPA1 protein. Complementation of knockout cells with wild-type Omi/HtrA2 but not with the protease mutant [S306A]Omi/HtrA2 reversed the mitochondrial elongation phenotype and OPA1 alterations. Finally, co-immunoprecipitation showed direct interaction of Omi/HtrA2 with endogenous OPA1. Thus, we show for the first time a direct effect of loss of Omi/HtrA2 on mitochondrial morphology and demonstrate a novel role of this mitochondrial serine protease in the modulation of OPA1. Our results underscore a critical role of impaired mitochondrial dynamics in neurodegenerative disorders.« less

  5. Interspecific correlation between red blood cell mitochondrial ROS production, cardiolipin content and longevity in birds.

    PubMed

    Delhaye, Jessica; Salamin, Nicolas; Roulin, Alexandre; Criscuolo, François; Bize, Pierre; Christe, Philippe

    2016-12-01

    Mitochondrial respiration releases reactive oxygen species (ROS) as by-products that can damage the soma and may in turn accelerate ageing. Hence, according to "the oxidative stress theory of ageing", longer-lived organisms may have evolved mechanisms that improve mitochondrial function, reduce ROS production and/or increase cell resistance to oxidative damage. Cardiolipin, an important mitochondrial inner-membrane phospholipid, has these properties by binding and stabilizing mitochondrial inner-membrane proteins. Here, we investigated whether ROS production, cardiolipin content and cell membrane resistance to oxidative attack in freshly collected red blood cells (RBCs) are associated with longevity (range 5-35 years) in 21 bird species belonging to seven Orders. After controlling for phylogeny, body size and oxygen consumption, variation in maximum longevity was significantly explained by mitochondrial ROS production and cardiolipin content, but not by membrane resistance to oxidative attack. RBCs of longer-lived species produced less ROS and contained more cardiolipin than RBCs of shorter-lived species did. These results support the oxidative stress theory of ageing and shed light on mitochondrial cardiolipin as an important factor linking ROS production to longevity.

  6. Characterization of the targeting signal in mitochondrial β-barrel proteins

    PubMed Central

    Jores, Tobias; Klinger, Anna; Groß, Lucia E.; Kawano, Shin; Flinner, Nadine; Duchardt-Ferner, Elke; Wöhnert, Jens; Kalbacher, Hubert; Endo, Toshiya; Schleiff, Enrico; Rapaport, Doron

    2016-01-01

    Mitochondrial β-barrel proteins are synthesized on cytosolic ribosomes and must be specifically targeted to the organelle before their integration into the mitochondrial outer membrane. The signal that assures such precise targeting and its recognition by the organelle remained obscure. In the present study we show that a specialized β-hairpin motif is this long searched for signal. We demonstrate that a synthetic β-hairpin peptide competes with the import of mitochondrial β-barrel proteins and that proteins harbouring a β-hairpin peptide fused to passenger domains are targeted to mitochondria. Furthermore, a β-hairpin motif from mitochondrial proteins targets chloroplast β-barrel proteins to mitochondria. The mitochondrial targeting depends on the hydrophobicity of the β-hairpin motif. Finally, this motif interacts with the mitochondrial import receptor Tom20. Collectively, we reveal that β-barrel proteins are targeted to mitochondria by a dedicated β-hairpin element, and this motif is recognized at the organelle surface by the outer membrane translocase. PMID:27345737

  7. Improved quality of porcine embryos cultured with hyaluronan due to the modification of the mitochondrial membrane potential and reactive oxygen species level.

    PubMed

    Romek, Marek; Gajda, Barbara; Krzysztofowicz, Ewa; Kucia, Marcin; Uzarowska, Agnieszka; Smorag, Zdzislaw

    2017-10-15

    Although considerable progress has been made in pig embryo culture systems, the developmental competence and quality of the produced embryos are still lower than their in vivo-derived counterparts. Because hyaluronan (HA) regulates various cellular processes and possesses antioxidant properties, this glycosaminoglycan seems to be a promising supplement in culture media. However, until now, its beneficial influence on in vitro pig embryo development has been debatable. Hence, we aimed to investigate the effect of 0.25 mg/mL, 0.5 mg/mL and 1 mg/mL concentrations of HA on the developmental potential and quality of cultured porcine embryos. We found that 1 mg/mL HA supplementation significantly increased the obtained percentages of cleaved embryos to ∼95%, morulae to ∼87% and blastocysts to ∼77%. At 0.5 mg/mL and 1 mg/mL HA concentrations, we observed a significantly improved blastocyst quality, expressed as the total number of cells per blastocyst, number of cells in the inner cell mass, number of TUNEL-positive nuclei per blastocyst, the TUNEL index and the blastocyst diameter. Because the inner mitochondrial membrane potential (ΔΨm) and reactive oxygen species (ROS) level are important for proper embryo development, for the first time, we measured these two parameters in cultured embryos at various HA concentrations and during their development up to the expanded blastocyst stage. For blastocysts cultured with 1 mg/mL HA, the ΔΨm and ROS level were ∼1.6 and 2.7 times lower, respectively, than those of the control blastocysts. Both ΔΨm and the ROS level were increased in parallel during in vitro embryo development with and without HA, but this increase was less pronounced in the presence of HA. Hence, our quantitative data unequivocally show that supplementation of NCSU-23 culture medium with 1 mg/mL HA improves the developmental potential and quality of pig embryos. This effect results from a significant decrease in the ROS level induced by

  8. Methods to study the biogenesis of membrane proteins in yeast mitochondria.

    PubMed

    Weckbecker, Daniel; Herrmann, Johannes M

    2013-01-01

    The biogenesis of mitochondrial membrane proteins is an intricate process that relies on the import and submitochondrial sorting of nuclear-encoded preproteins and on the synthesis of mitochondrial translation products in the matrix. Subsequently, these polypeptides need to be inserted into the outer and the inner membranes of the organelle where many of them assemble into multisubunit complexes. In this chapter we provide established protocols to study these different processes experimentally using mitochondria of budding yeast. In particular, methods are described in detail to purify mitochondria, to study mitochondrial protein synthesis, to follow the import of radiolabeled preproteins into isolated mitochondria, and to assess membrane association and the aggregation of mitochondrial proteins by fractionation. These protocols and a list of dos and don'ts shall enable beginners and experienced scientists to address the targeting and assembly of mitochondrial membrane proteins.

  9. High-Dialysate-Glucose-Induced Oxidative Stress and Mitochondrial-Mediated Apoptosis in Human Peritoneal Mesothelial Cells

    PubMed Central

    Hung, Kuan-Yu; Liu, Shin-Yun; Yang, Te-Cheng; Liao, Tien-Ling; Kao, Shu-Huei

    2014-01-01

    Human peritoneal mesothelial cells (HPMCs) are a critical component of the peritoneal membrane and play a pivotal role in dialysis adequacy. Loss of HPMCs can contribute to complications in peritoneal dialysis. Compelling evidence has shown that high-dialysate glucose is a key factor causing functional changes and cell death in HPMCs. We investigated the mechanism of HPMC apoptosis induced by high-dialysate glucose, particularly the role of mitochondria in the maintenance of HPMCs. HPMCs were incubated at glucose concentrations of 5 mM, 84 mM, 138 mM, and 236 mM. Additionally, N-acetylcysteine (NAC) was used as an antioxidant to clarify the mechanism of high-dialysate-glucose-induced apoptosis. Exposing HPMCs to high-dialysate glucose resulted in substantial apoptosis with cytochrome c release, followed by caspase activation and poly(ADP-ribose) polymerase cleavage. High-dialysate glucose induced excessive reactive oxygen species production and lipid peroxidation as well as oxidative damage to DNA. Mitochondrial fragmentation, multiple mitochondrial DNA deletions, and dissipation of the mitochondrial membrane potential were also observed. The mitochondrial dysfunction and cell death were suppressed using NAC. These results indicated that mitochondrial dysfunction is one of the main causes of high-dialysate-glucose-induced HPMC apoptosis. PMID:24891925

  10. Fluctuation-driven mechanotransduction regulates mitochondrial-network structure and function

    NASA Astrophysics Data System (ADS)

    Bartolák-Suki, Erzsébet; Imsirovic, Jasmin; Parameswaran, Harikrishnan; Wellman, Tyler J.; Martinez, Nuria; Allen, Philip G.; Frey, Urs; Suki, Béla

    2015-10-01

    Cells can be exposed to irregular mechanical fluctuations, such as those arising from changes in blood pressure. Here, we report that ATP production, assessed through changes in mitochondrial membrane potential, is downregulated in vascular smooth muscle cells in culture exposed to monotonous stretch cycles when compared with cells exposed to a variable cyclic stretch that incorporates physiological levels of cycle-by-cycle variability in stretch amplitude. Variable stretch enhances ATP production by increasing the expression of ATP synthase’s catalytic domain, cytochrome c oxidase and its tyrosine phosphorylation, mitofusins and PGC-1α. Such a fluctuation-driven mechanotransduction mechanism is mediated by motor proteins and by the enhancement of microtubule-, actin- and mitochondrial-network complexity. We also show that, in aorta rings isolated from rats, monotonous stretch downregulates--whereas variable stretch maintains--physiological vessel-wall contractility through mitochondrial ATP production. Our results have implications for ATP-dependent and mechanosensitive intracellular processes.

  11. Mitochondrial dysfunction in brain cortex mitochondria of STZ-diabetic rats: effect of l-Arginine.

    PubMed

    Ortiz, M Del Carmen; Lores-Arnaiz, Silvia; Albertoni Borghese, M Florencia; Balonga, Sabrina; Lavagna, Agustina; Filipuzzi, Ana Laura; Cicerchia, Daniela; Majowicz, Monica; Bustamante, Juanita

    2013-12-01

    Mitochondrial dysfunction has been implicated in many diseases, including diabetes. It is well known that oxygen free radical species are produced endogenously by mitochondria, and also nitric oxide (NO) by nitric oxide synthases (NOS) associated to mitochondrial membranes, in consequence these organelles constitute main targets for oxidative damage. The aim of this study was to analyze mitochondrial physiology and NO production in brain cortex mitochondria of streptozotocin (STZ) diabetic rats in an early stage of diabetes and the potential effect of L-arginine administration. The diabetic condition was characterized by a clear hyperglycaemic state with loose of body weight after 4 days of STZ injection. This hyperglycaemic state was associated with mitochondrial dysfunction that was evident by an impairment of the respiratory activity, increased production of superoxide anion and a clear mitochondrial depolarization. In addition, the alteration in mitochondrial physiology was associated with a significant decrease in both NO production and nitric oxide synthase type I (NOS I) expression associated to the mitochondrial membranes. An increased level of thiobarbituric acid-reactive substances (TBARS) in brain cortex homogenates from STZ-diabetic rats indicated the presence of lipid peroxidation. L-arginine treatment to diabetic rats did not change blood glucose levels but significantly ameliorated the oxidative stress evidenced by lower TBARS and a lower level of superoxide anion. This effect was paralleled by improvement of mitochondrial respiratory function and a partial mitochondrial repolarization.In addition, the administration of L-arginine to diabetic rats prevented the decrease in NO production and NOSI expression. These results could indicate that exogenously administered L-arginine may have beneficial effects on mitochondrial function, oxidative stress and NO production in brain cortex mitochondria of STZ-diabetic rats.

  12. Motor neuron mitochondrial dysfunction in spinal muscular atrophy

    PubMed Central

    Miller, Nimrod; Shi, Han; Zelikovich, Aaron S.; Ma, Yong-Chao

    2016-01-01

    Spinal muscular atrophy (SMA), the leading genetic cause of infant mortality, predominantly affects high metabolic tissues including motor neurons, skeletal muscles and the heart. Although the genetic cause of SMA has been identified, mechanisms underlying tissue-specific vulnerability are not well understood. To study these mechanisms, we carried out a deep sequencing analysis of the transcriptome of spinal motor neurons in an SMA mouse model, in which we unexpectedly found changes in many genes associated with mitochondrial bioenergetics. Importantly, functional measurement of mitochondrial activities showed decreased basal and maximal mitochondrial respiration in motor neurons from SMA mice. Using a reduction-oxidation sensitive GFP and fluorescence sensors specifically targeted to mitochondria, we found increased oxidative stress level and impaired mitochondrial membrane potential in motor neurons affected by SMA. In addition, mitochondrial mobility was impaired in SMA disease conditions, with decreased retrograde transport but no effect on anterograde transport. We also found significantly increased fragmentation of the mitochondrial network in primary motor neurons from SMA mice, with no change in mitochondria density. Electron microscopy study of SMA mouse spinal cord revealed mitochondria fragmentation, edema and concentric lamellar inclusions in motor neurons affected by the disease. Intriguingly, these functional and structural deficiencies in the SMA mouse model occur during the presymptomatic stage of disease, suggesting a role in initiating SMA. Altogether, our findings reveal a critical role for mitochondrial defects in SMA pathogenesis and suggest a novel target for improving tissue health in the disease. PMID:27488123

  13. Sodium valproate induces mitochondrial respiration dysfunction in HepG2 in vitro cell model.

    PubMed

    Komulainen, Tuomas; Lodge, Tiffany; Hinttala, Reetta; Bolszak, Maija; Pietilä, Mika; Koivunen, Peppi; Hakkola, Jukka; Poulton, Joanna; Morten, Karl J; Uusimaa, Johanna

    2015-05-04

    Sodium valproate (VPA) is a potentially hepatotoxic antiepileptic drug. Risk of VPA-induced hepatotoxicity is increased in patients with mitochondrial diseases and especially in patients with POLG1 gene mutations. We used a HepG2 cell in vitro model to investigate the effect of VPA on mitochondrial activity. Cells were incubated in glucose medium and mitochondrial respiration-inducing medium supplemented with galactose and pyruvate. VPA treatments were carried out at concentrations of 0-2.0mM for 24-72 h. In both media, VPA caused decrease in oxygen consumption rates and mitochondrial membrane potential. VPA exposure led to depleted ATP levels in HepG2 cells incubated in galactose medium suggesting dysfunction in mitochondrial ATP production. In addition, VPA exposure for 72 h increased levels of mitochondrial reactive oxygen species (ROS), but adversely decreased protein levels of mitochondrial superoxide dismutase SOD2, suggesting oxidative stress caused by impaired elimination of mitochondrial ROS and a novel pathomechanism related to VPA toxicity. Increased cell death and decrease in cell number was detected under both metabolic conditions. However, immunoblotting did not show any changes in the protein levels of the catalytic subunit A of mitochondrial DNA polymerase γ, the mitochondrial respiratory chain complexes I, II and IV, ATP synthase, E3 subunit dihydrolipoyl dehydrogenase of pyruvate dehydrogenase, 2-oxoglutarate dehydrogenase and glutathione peroxidase. Our results show that VPA inhibits mitochondrial respiration and leads to mitochondrial dysfunction, oxidative stress and increased cell death, thus suggesting an essential role of mitochondria in VPA-induced hepatotoxicity. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  14. Biguanide-induced mitochondrial dysfunction yields increased lactate production and cytotoxicity of aerobically-poised HepG2 cells and human hepatocytes in vitro

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dykens, James A.; Jamieson, Joseph; Marroquin, Lisa

    2008-12-01

    As a class, the biguanides induce lactic acidosis, a hallmark of mitochondrial impairment. To assess potential mitochondrial impairment, we evaluated the effects of metformin, buformin and phenformin on: 1) viability of HepG2 cells grown in galactose, 2) respiration by isolated mitochondria, 3) metabolic poise of HepG2 and primary human hepatocytes, 4) activities of immunocaptured respiratory complexes, and 5) mitochondrial membrane potential and redox status in primary human hepatocytes. Phenformin was the most cytotoxic of the three with buformin showing moderate toxicity, and metformin toxicity only at mM concentrations. Importantly, HepG2 cells grown in galactose are markedly more susceptible to biguanidemore » toxicity compared to cells grown in glucose, indicating mitochondrial toxicity as a primary mode of action. The same rank order of potency was observed for isolated mitochondrial respiration where preincubation (40 min) exacerbated respiratory impairment, and was required to reveal inhibition by metformin, suggesting intramitochondrial bio-accumulation. Metabolic profiling of intact cells corroborated respiratory inhibition, but also revealed compensatory increases in lactate production from accelerated glycolysis. High (mM) concentrations of the drugs were needed to inhibit immunocaptured respiratory complexes, supporting the contention that bioaccumulation is involved. The same rank order was found when monitoring mitochondrial membrane potential, ROS production, and glutathione levels in primary human hepatocytes. In toto, these data indicate that biguanide-induced lactic acidosis can be attributed to acceleration of glycolysis in response to mitochondrial impairment. Indeed, the desired clinical outcome, viz., decreased blood glucose, could be due to increased glucose uptake and glycolytic flux in response to drug-induced mitochondrial dysfunction.« less

  15. Mitochondrial electron transport chain is involved in microcystin-RR induced tobacco BY-2 cells apoptosis.

    PubMed

    Huang, Wenmin; Li, Dunhai; Liu, Yongding

    2014-09-01

    Microcystin-RR (MC-RR) has been suggested to induce apoptosis in tobacco BY-2 cells through mitochondrial dysfunction including the loss of mitochondrial membrane potential (ΔΨm). To further elucidate the mechanisms involved in MC-RR induced apoptosis in tobacco BY-2 cells, we have investigated the role of mitochondrial electron transport chain (ETC) as a potential source for reactive oxygen species (ROS). Tobacco BY-2 cells after exposure to MC-RR (60mg/L) displayed apoptotic changes in association with an increased production of ROS and loss of ΔΨm. All of these adverse effects were significantly attenuated by ETC inhibitors including Rotenone (2μmol/L, complex I inhibitor) and antimycin A (0.01μmol/L, complex III inhibitor), but not by thenoyltrifluoroacetone (5μmol/L, complex II inhibitor). These results suggest that mitochondrial ETC plays a key role in mediating MC-RR induced apoptosis in tobacco BY-2 cells through an increased mitochondrial production of ROS. Copyright © 2014. Published by Elsevier B.V.

  16. Legionella pneumophila Secretes a Mitochondrial Carrier Protein during Infection

    PubMed Central

    Dolezal, Pavel; Aili, Margareta; Tong, Janette; Jiang, Jhih-Hang; Marobbio, Carlo M.; Lee, Sau fung; Schuelein, Ralf; Belluzzo, Simon; Binova, Eva; Mousnier, Aurelie; Frankel, Gad; Giannuzzi, Giulia; Palmieri, Ferdinando; Gabriel, Kipros; Naderer, Thomas; Hartland, Elizabeth L.; Lithgow, Trevor

    2012-01-01

    The Mitochondrial Carrier Family (MCF) is a signature group of integral membrane proteins that transport metabolites across the mitochondrial inner membrane in eukaryotes. MCF proteins are characterized by six transmembrane segments that assemble to form a highly-selective channel for metabolite transport. We discovered a novel MCF member, termed Legionella nucleotide carrier Protein (LncP), encoded in the genome of Legionella pneumophila, the causative agent of Legionnaire's disease. LncP was secreted via the bacterial Dot/Icm type IV secretion system into macrophages and assembled in the mitochondrial inner membrane. In a yeast cellular system, LncP induced a dominant-negative phenotype that was rescued by deleting an endogenous ATP carrier. Substrate transport studies on purified LncP reconstituted in liposomes revealed that it catalyzes unidirectional transport and exchange of ATP transport across membranes, thereby supporting a role for LncP as an ATP transporter. A hidden Markov model revealed further MCF proteins in the intracellular pathogens, Legionella longbeachae and Neorickettsia sennetsu, thereby challenging the notion that MCF proteins exist exclusively in eukaryotic organisms. PMID:22241989

  17. Molecular Chaperone Hsp70/Hsp90 Prepares the Mitochondrial Outer Membrane Translocon Receptor Tom71 for Preprotein Loading

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Jingzhi; Qian, Xinguo; Hu, Junbin

    2010-11-03

    The preproteins targeted to the mitochondria are transported through the translocase of the outer membrane complex. Tom70/Tom71 is a major surface receptor of the translocase of the outer membrane complex for mitochondrial preproteins. The preproteins are escorted to Tom70/Tom71 by molecular chaperones Hsp70 and Hsp90. Here we present the high resolution crystal structures of Tom71 and the protein complexes between Tom71 and the Hsp70/Hsp90 C terminus. The crystal structures indicate that Tom70/Tom71 may exhibit two distinct states. In the closed state, the N-terminal domain of Tom70/Tom71 partially blocks the preprotein-binding pocket. In the open state, the N-terminal domain moves away,more » and the preprotein-binding pocket is fully exposed. The complex formation between the C-terminal EEVD motif of Hsp70/Hsp90 and Tom71 could lock Tom71 in the open state where the preprotein-binding pocket of Tom71 is ready to receive preproteins. The interactions between Hsp70/Hsp90 and Tom71 N-terminal domain generate conformational changes that may increase the volume of the preprotein-binding pocket. The complex formation of Hsp70/Hsp90 and Tom71 also generates significant domain rearrangement within Tom71, which may position the preprotein-binding pocket closer to Hsp70/Hsp90 to facilitate the preprotein transfer from the molecular chaperone to Tom71. Therefore, molecular chaperone Hsp70/Hsp90 may function to prepare the mitochondrial outer membrane receptor Tom71 for preprotein loading.« less

  18. BID links ferroptosis to mitochondrial cell death pathways.

    PubMed

    Neitemeier, Sandra; Jelinek, Anja; Laino, Vincenzo; Hoffmann, Lena; Eisenbach, Ina; Eying, Roman; Ganjam, Goutham K; Dolga, Amalia M; Oppermann, Sina; Culmsee, Carsten

    2017-08-01

    Ferroptosis has been defined as an oxidative and iron-dependent pathway of regulated cell death that is distinct from caspase-dependent apoptosis and established pathways of death receptor-mediated regulated necrosis. While emerging evidence linked features of ferroptosis induced e.g. by erastin-mediated inhibition of the X c - system or inhibition of glutathione peroxidase 4 (Gpx4) to an increasing number of oxidative cell death paradigms in cancer cells, neurons or kidney cells, the biochemical pathways of oxidative cell death remained largely unclear. In particular, the role of mitochondrial damage in paradigms of ferroptosis needs further investigation. In the present study, we find that erastin-induced ferroptosis in neuronal cells was accompanied by BID transactivation to mitochondria, loss of mitochondrial membrane potential, enhanced mitochondrial fragmentation and reduced ATP levels. These hallmarks of mitochondrial demise are also established features of oxytosis, a paradigm of cell death induced by X c - inhibition by millimolar concentrations of glutamate. Bid knockout using CRISPR/Cas9 approaches preserved mitochondrial integrity and function, and mediated neuroprotective effects against both, ferroptosis and oxytosis. Furthermore, the BID-inhibitor BI-6c9 inhibited erastin-induced ferroptosis, and, in turn, the ferroptosis inhibitors ferrostatin-1 and liproxstatin-1 prevented mitochondrial dysfunction and cell death in the paradigm of oxytosis. These findings show that mitochondrial transactivation of BID links ferroptosis to mitochondrial damage as the final execution step in this paradigm of oxidative cell death. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  19. Deleterious variants in TRAK1 disrupt mitochondrial movement and cause fatal encephalopathy.

    PubMed

    Barel, Ortal; Malicdan, May Christine V; Ben-Zeev, Bruria; Kandel, Judith; Pri-Chen, Hadass; Stephen, Joshi; Castro, Inês G; Metz, Jeremy; Atawa, Osama; Moshkovitz, Sharon; Ganelin, Esther; Barshack, Iris; Polak-Charcon, Sylvie; Nass, Dvora; Marek-Yagel, Dina; Amariglio, Ninette; Shalva, Nechama; Vilboux, Thierry; Ferreira, Carlos; Pode-Shakked, Ben; Heimer, Gali; Hoffmann, Chen; Yardeni, Tal; Nissenkorn, Andreea; Avivi, Camila; Eyal, Eran; Kol, Nitzan; Glick Saar, Efrat; Wallace, Douglas C; Gahl, William A; Rechavi, Gideon; Schrader, Michael; Eckmann, David M; Anikster, Yair

    2017-03-01

    Cellular distribution and dynamics of mitochondria are regulated by several motor proteins and a microtubule network. In neurons, mitochondrial trafficking is crucial because of high energy needs and calcium ion buffering along axons to synapses during neurotransmission. The trafficking kinesin proteins (TRAKs) are well characterized for their role in lysosomal and mitochondrial trafficking in cells, especially neurons. Using whole exome sequencing, we identified homozygous truncating variants in TRAK1 (NM_001042646:c.287-2A > C), in six lethal encephalopathic patients from three unrelated families. The pathogenic variant results in aberrant splicing and significantly reduced gene expression at the RNA and protein levels. In comparison with normal cells, TRAK1-deficient fibroblasts showed irregular mitochondrial distribution, altered mitochondrial motility, reduced mitochondrial membrane potential, and diminished mitochondrial respiration. This study confirms the role of TRAK1 in mitochondrial dynamics and constitutes the first report of this gene in association with a severe neurodevelopmental disorder. © Published by Oxford University Press on behalf of the Guarantors of Brain 2017. This work is written by US Government employees and is in the public domain in the US.

  20. Measurement of Instantaneous Velocity Vectors of Organelle Transport: Mitochondrial Transport and Bioenergetics in Hippocampal Neurons

    PubMed Central

    Gerencser, Akos A.; Nicholls, David G.

    2008-01-01

    Impaired transport of mitochondria, in dendrites and axons of neurons, and bioenergetic deficit are increasingly recognized to be of pathological importance in neurodegenerative diseases. To study the relationship between transport and bioenergetics, we have developed what to our knowledge is a novel technique to quantify organelle velocity in cultured cells. The aim was to combine measurement of motion and bioenergetic parameters while minimizing photodynamic oxidative artifacts evoked by fluorescence excitation. Velocity determination from sequential fluorescence images is not trivial, and here we describe an application of “optical flow”, the flow of gray values in grayscale images, to this problem. Based on the principles of photon shot noise occurring in low light level fluorescence microscopy, we describe and validate here an optical flow-based, robust method to measure velocity vectors for organelles expressing fluorescent proteins. This method features instantaneous velocity determination from a pair of images by detecting motion of edges, with no assumptions about the separation or shapes of the objects in the image. Optical flow was used in combination with single mitochondrion assay of mitochondrial thiol redox status by mitochondrially targeted redox-sensitive green fluorescent protein and measurement of mitochondrial membrane potential by tetramethylrhodamine methyl ester. Mitochondrial populations of resting cultured hippocampal neurons were analyzed. It was found that mitochondria with more oxidized thiol redox status have lower membrane potentials and are smaller in size. These mitochondria are more motile than the average; however, mitochondrial motility is only slightly dependent on the observed bioenergetic parameters and is correlated the best to the size of the mitochondria. PMID:18757564

  1. 4-Hydroxytamoxifen induces slight uncoupling of mitochondrial oxidative phosphorylation system in relation to the deleterious effects of tamoxifen.

    PubMed

    Cardoso, Carla M P; Moreno, António J M; Almeida, Leonor M; Custódio, José B A

    2002-10-15

    The use of tamoxifen (TAM) has been questioned on the chemotherapy and chemoprevention of breast cancer due to several estrogen receptor-independent cytotoxic effects. As an alternative, its more active metabolite 4-hydroxytamoxifen (OHTAM) has been proposed with presumed lower side effects. In this work, the potential OHTAM toxicity on rat liver mitochondrial bioenergetics in relation to the multiple deleterious effects of TAM was evaluated. OHTAM, at concentrations lower than those putatively reached in tissues following the administration of TAM, does not induce significant perturbations on the respiratory control ratio (RCR), ADP/O, transmembrane potential (DeltaPsi), phosphorylative capacity and membrane integrity of mitochondria. However, at high concentrations, OHTAM depresses the DeltaPsi, RCR and ADP/O, affecting the phosphorylation efficiency, as also inferred from the DeltaPsi fluctuations and pH changes associated with ADP phosphorylation. Moreover, OHTAM, at concentrations that stimulate the rate of state 4 respiration in parallel to the decrease in the DeltaPsi and phosphorylation rate, causes mitochondrial swelling and stimulates both ATPase and citrate synthase activities. However, the OHTAM-observed effects, at high concentrations, are not significant relatively to the damaging effects promoted by TAM and suggest alterations to mitochondrial functions due to proton leak across the mitochondrial inner membrane.

  2. Influence of mitochondrial membrane potential of spermatozoa on in vitro fertilisation outcome.

    PubMed

    Marchetti, P; Ballot, C; Jouy, N; Thomas, P; Marchetti, C

    2012-04-01

    To determine whether the outcome of in vitro fertilisation (IVF) is influenced by the percentage of spermatozoa with functional mitochondria, a total of 91 random couples undergoing IVF were included. Mitochondrial function was determined by flow cytometry and expressed as percentage of spermatozoa. Conventional sperm parameters were studied by light microscopy. Reproductive outcome parameters were fertilisation rate, embryo quality and clinical pregnancy. It was found that the fertilisation rate was correlated with the percentage of spermatozoa (r = 0.24, P = 0.01) as well as with the percentage of highly motile spermatozoa. However, we did not find any relationship between the percentage of spermatozoa and embryo quality. Nevertheless, no patient who exhibited less than 64% of spermatozoa achieved pregnancy. It is concluded that determination of Δψ(m) provides accurate information to guide physicians to identify male patients for whom IVF will be unlikely to result in pregnancy. Therefore, we suggest that the percentage of spermatozoa may contribute to identify the most appropriate treatment for an individual patient. © 2011 Blackwell Verlag GmbH.

  3. Sodium and potassium conductance changes during a membrane action potential

    PubMed Central

    Bezanilla, Francisco; Rojas, Eduardo; Taylor, Robert E.

    1970-01-01

    1. A method for turning a membrane potential control system on and off in less than 10 μsec is described. This method was used to record membrane currents in perfused giant axons from Dosidicus gigas and Loligo forbesi after turning on the voltage clamp system at various times during the course of a membrane action potential. 2. The membrane current measured just after the capacity charging transient was found to have an almost linear relation to the controlled membrane potential. 3. The total membrane conductance taken from these current—voltage curves was found to have a time course during the action potential similar to that found by Cole & Curtis (1939). 4. The instantaneous current voltage curves were linear enough to make it possible to obtain a good estimate of the individual sodium and potassium channel conductances, either algebraically or by clamping to the sodium, or potassium, reversal potentials. Good general agreement was obtained with the predictions of the Hodgkin—Huxley equations. 5. We consider these results to constitute the first direct experimental demonstration of the conductance changes to sodium and potassium during the course of an action potential. PMID:5505231

  4. Sodium and potassium conductance changes during a membrane action potential.

    PubMed

    Bezanilla, F; Rojas, E; Taylor, R E

    1970-12-01

    1. A method for turning a membrane potential control system on and off in less than 10 musec is described. This method was used to record membrane currents in perfused giant axons from Dosidicus gigas and Loligo forbesi after turning on the voltage clamp system at various times during the course of a membrane action potential.2. The membrane current measured just after the capacity charging transient was found to have an almost linear relation to the controlled membrane potential.3. The total membrane conductance taken from these current-voltage curves was found to have a time course during the action potential similar to that found by Cole & Curtis (1939).4. The instantaneous current voltage curves were linear enough to make it possible to obtain a good estimate of the individual sodium and potassium channel conductances, either algebraically or by clamping to the sodium, or potassium, reversal potentials. Good general agreement was obtained with the predictions of the Hodgkin-Huxley equations.5. We consider these results to constitute the first direct experimental demonstration of the conductance changes to sodium and potassium during the course of an action potential.

  5. Electron cryomicroscopy structure of a membrane-anchored mitochondrial AAA protease.

    PubMed

    Lee, Sukyeong; Augustin, Steffen; Tatsuta, Takashi; Gerdes, Florian; Langer, Thomas; Tsai, Francis T F

    2011-02-11

    FtsH-related AAA proteases are conserved membrane-anchored, ATP-dependent molecular machines, which mediate the processing and turnover of soluble and membrane-embedded proteins in eubacteria, mitochondria, and chloroplasts. Homo- and hetero-oligomeric proteolytic complexes exist, which are composed of homologous subunits harboring an ATPase domain of the AAA family and an H41 metallopeptidase domain. Mutations in subunits of mitochondrial m-AAA proteases have been associated with different neurodegenerative disorders in human, raising questions on the functional differences between homo- and hetero-oligomeric AAA proteases. Here, we have analyzed the hetero-oligomeric yeast m-AAA protease composed of homologous Yta10 and Yta12 subunits. We combined genetic and structural approaches to define the molecular determinants for oligomer assembly and to assess functional similarities between Yta10 and Yta12. We demonstrate that replacement of only two amino acid residues within the metallopeptidase domain of Yta12 allows its assembly into homo-oligomeric complexes. To provide a molecular explanation, we determined the 12 Å resolution structure of the intact yeast m-AAA protease with its transmembrane domains by electron cryomicroscopy (cryo-EM) and atomic structure fitting. The full-length m-AAA protease has a bipartite structure and is a hexamer in solution. We found that residues in Yta12, which facilitate homo-oligomerization when mutated, are located at the interface between neighboring protomers in the hexamer ring. Notably, the transmembrane and intermembrane space domains are separated from the main body, creating a passage on the matrix side, which is wide enough to accommodate unfolded but not folded polypeptides. These results suggest a mechanism regarding how proteins are recognized and degraded by m-AAA proteases.

  6. The production of reactive oxygen species and the mitochondrial membrane potential are modulated during onion oil-induced cell cycle arrest and apoptosis in A549 cells.

    PubMed

    Wu, Xin-jiang; Stahl, Thorsten; Hu, Ying; Kassie, Fekadu; Mersch-Sundermann, Volker

    2006-03-01

    Protective effects of Allium vegetables against cancers have been shown extensively in experimental animals and epidemiologic studies. We investigated cell proliferation and the induction of apoptosis by onion oil extracted from Allium cepa, a widely consumed Allium vegetable, in human lung cancer A549 cells. GC/MS analysis suggested that propyl sulfides but not allyl sulfides are major sulfur-containing constituents of onion oil. Onion oil at 12.5 mg/L significantly induced apoptosis (13% increase of apoptotic cells) as indicated by sub-G1 DNA content. It also caused cell cycle arrest at the G2/M phase; 25 mg/L onion oil increased the percentage of G2/M cells almost 6-fold compared with the dimethyl sulfoxide control. The action of onion oil may occur via a reactive oxygen species-dependent pathway because cell cycle arrest and apoptosis were blocked by the antioxidants N-acetylcysteine and exogenous glutathione. Marked collapse of the mitochondrial membrane potential suggested that dysfunction of the mitochondria may be involved in the oxidative burst and apoptosis induced by onion oil. Expression of phospho-cdc2 and phospho-cyclin B1 were downregulated by onion oil, perhaps accounting for the G2/M arrest. Overall, these results suggest that onion oil may exert chemopreventive action by inducing cell cycle arrest and apoptosis in tumor cells.

  7. Improved antifouling potential of polyether sulfone polymeric membrane containing silver nanoparticles: self-cleaning membranes.

    PubMed

    Rana, Sidra; Nazar, Umair; Ali, Jafar; Ali, Qurat Ul Ain; Ahmad, Nasir M; Sarwar, Fiza; Waseem, Hassan; Jamil, Syed Umair Ullah

    2018-06-01

    A new strategy to enhance the antifouling potential of polyether sulfone (PES) membrane is presented. Chemically synthesized silver nanoparticles (AgNPs) were used to prepare a mixed-matrix PES membrane by the phase inversion technique. Primarily, AgNPs synthesis was confirmed by surface plasmon resonance at 410-430 nm using UV-Visible spectroscopy. X-ray diffraction analysis revealed that AgNPs were crystalline with a diameter of 21 ± 2 nm. Furthermore, PES membranes were characterized by energy dispersive X-ray spectroscopy to confirm the incorporation of AgNPs in membranes. Hydrophilicity of the membranes was enhanced, whereas roughness, mechanical strength and biofouling were relatively reduced after embedding the AgNPs. Antibacterial potential of AgNPs was evaluated for E. coli in the disc diffusion and colony-forming unit (CFU) count method. All of the membranes were assessed for antifouling activity by filtering a control dilution (10 6  CFU/ml) of E. coli and by counting CFU. Anti-biofouling activity of the membrane was observed with different concentrations of AgNPs. Maximum reduction (66%) was observed in membrane containing 1.5% of AgNPs. The addition of antibiotic ceftriaxone enhanced the antibacterial effect of AgNPs in PES membranes. Our practicable antifouling strategy may be applied to other polymeric membranes which may pave the new way to achieve sustainable and self-cleaning membrane reactors on large scale.

  8. Multitiered and Cooperative Surveillance of Mitochondrial Phosphatidylserine Decarboxylase 1.

    PubMed

    Ogunbona, Oluwaseun B; Onguka, Ouma; Calzada, Elizabeth; Claypool, Steven M

    2017-09-01

    Phosphatidylserine decarboxylase 1 (Psd1p), an ancient enzyme that converts phosphatidylserine to phosphatidylethanolamine in the inner mitochondrial membrane, must undergo an autocatalytic self-processing event to gain activity. Autocatalysis severs the protein into a large membrane-anchored β subunit that noncovalently associates with the small α subunit on the intermembrane space side of the inner membrane. Here, we determined that a temperature sensitive ( ts ) PSD1 allele is autocatalytically impaired and that its fidelity is closely monitored throughout its life cycle by multiple mitochondrial quality control proteases. Interestingly, the proteases involved in resolving misfolded Psd1 ts vary depending on its autocatalytic status. Specifically, the degradation of a Psd1 ts precursor unable to undergo autocatalysis requires the unprecedented cooperative and sequential actions of two inner membrane proteases, Oma1p and Yme1p. In contrast, upon heat exposure postautocatalysis, Psd1 ts β subunits accumulate in protein aggregates that are resolved by Yme1p acting alone, while the released α subunit is degraded in parallel by an unidentified protease. Importantly, the stability of endogenous Psd1p is also influenced by Yme1p. We conclude that Psd1p, the key enzyme required for the mitochondrial pathway of phosphatidylethanolamine production, is closely monitored at several levels and by multiple mitochondrial quality control mechanisms present in the intermembrane space. Copyright © 2017 American Society for Microbiology.

  9. Glutamate antagonism fails to reverse mitochondrial dysfunction in late phase of experimental neonatal asphyxia in rats.

    PubMed

    Reddy, Nagannathahalli Ranga; Krishnamurthy, Sairam; Chourasia, Tapan Kumar; Kumar, Ashok; Joy, Keerikkattil Paily

    2011-04-01

    Neonatal asphyxia is a primary contributor to neonatal mortality and neuro-developmental disorders. It progresses in two distinct phases, as initial primary process and latter as the secondary process. A dynamic relationship exists between excitotoxicity and mitochondrial dysfunction during the progression of asphyxic injury. Study of status of glutamate and mitochondrial function in tandem during primary and secondary processes may give new leads to the treatment of asphyxia. Neonatal asphyxia was induced in rat pups on the day of birth by subjecting them to two episodes (10min each) of anoxia, 24h apart by passing 100% N(2) into an enclosed chamber. The NMDA antagonist ketamine (20mg/kg/day) was administered either for 1 day or 7 days after anoxic exposure. Tissue glutamate and nitric oxide were estimated in the cerebral cortex, extra-cortex and cerebellum. The mitochondria from the above brain regions were used for the estimation of malondialdehyde, and activities of superoxide dismutase and succinate dehydrogenase. Mitochondrial membrane potential was evaluated by using Rhodamine dye. Anoxia during the primary process increased glutamate and nitric oxide levels; however the mitochondrial function was unaltered in terms of succinate dehydrogenase and membrane potential. Acute ketamine treatment reversed the increase in both glutamate and nitric oxide levels and partially attenuated mitochondrial function in terms of succinate dehydrogenase activity. The elevated glutamate and nitric oxide levels were maintained during the secondary process but however with concomitant loss of mitochondrial function. Repeated ketamine administration reversed glutamate levels only in the cerebral cortex, where as nitric oxide was decreased in all the brain regions. However, repeated ketamine administration was unable to reverse anoxia-induced mitochondrial dysfunction. The failure of glutamate antagonism in the treatment of asphyxia may be due to persistence of mitochondrial

  10. Measurement of Mitochondrial Cholesterol Import Using a Mitochondria-Targeted CYP11A1 Fusion Construct.

    PubMed

    Kennedy, Barry E; Charman, Mark; Karten, Barbara

    2017-01-01

    All animal membranes require cholesterol as an essential regulator of biophysical properties and function, but the levels of cholesterol vary widely among different subcellular compartments. Mitochondria, and in particular the inner mitochondrial membrane, have the lowest levels of cholesterol in the cell. Nevertheless, mitochondria need cholesterol for membrane maintenance and biogenesis, as well as oxysterol, steroid, and hepatic bile acid production. Alterations in mitochondrial cholesterol have been associated with a range of pathological conditions, including cancer, hepatosteatosis, cardiac ischemia, Alzheimer's, and Niemann-Pick Type C Disease. The mechanisms of mitochondrial cholesterol import are not fully elucidated yet, and may vary in different cell types and environmental conditions. Measuring cholesterol trafficking to the mitochondrial membranes is technically challenging because of its low abundance; for example, traditional pulse-chase experiments with isotope-labeled cholesterol are not feasible. Here, we describe improvements to a method first developed by the Miller group at the University of California to measure cholesterol trafficking to the inner mitochondrial membrane (IMM) through the conversion of cholesterol to pregnenolone. This method uses a mitochondria-targeted, ectopically expressed fusion construct of CYP11A1, ferredoxin reductase and ferredoxin. Pregnenolone is formed exclusively from cholesterol at the IMM, and can be analyzed with high sensitivity and specificity through ELISA or radioimmunoassay of the medium/buffer to reflect mitochondrial cholesterol import. This assay can be used to investigate the effects of genetic or pharmacological interventions on mitochondrial cholesterol import in cultured cells or isolated mitochondria.

  11. High glucose-induced excessive reactive oxygen species promote apoptosis through mitochondrial damage in rat cartilage endplate cells.

    PubMed

    Jiang, Zengxin; Lu, Wei; Zeng, Qingmin; Li, Defang; Ding, Lei; Wu, Jingping

    2018-04-16

    Diabetes mellitus (DM) is an important factor in intervertebral disc degeneration (IDD). Apoptosis of cartilage endplate (CEP) cells is one of the initiators of IDD. However, the effects of high glucose on CEP cells are still unknown. Therefore, we conducted the present study to evaluate the effects of high glucose on CEP cells and to identify the mechanisms of those effects. Rat CEP cells were isolated and cultured in 10% foetal bovine serum (FBS, normal control) or high-glucose medium (10% FBS + 0.1 M glucose or 10% FBS + 0.2 M glucose, experimental conditions) for 1 or 3 days. In addition, CEP cells were treated with 0.2 M glucose for 3 days in the presence or absence of alpha-lipoic acid (ALA, 0.15 M). Flow cytometry was performed to identify and quantify the degree of apoptosis. The expression of reactive oxygen species (ROS) was assessed by flow cytometry, and mitochondrial damage (mitochondrial membrane potential) was assessed by fluorescence microscopy. Furthermore, the expression levels of cleaved caspase-3, cleaved caspase-9, Bcl-2, Bax, and cytochrome c were evaluated by Western blotting. High glucose significantly increased apoptosis and ROS accumulation in CEP cells in a dose- and time-dependent manner. Meanwhile, a disrupted mitochondrial membrane potential was detected in rat CEP cells cultured in the two high glucose concentrations. Incubating in high glucose enhanced the expression levels of cleaved caspase-3, cleaved caspase-9, Bax, and cytochrome c but decreased the level of the anti-apoptotic protein Bcl-2. ALA inhibited the expression of cleaved caspase-3, cleaved caspase-9, Bax, and cytochrome c but enhanced the expression of Bcl-2. ALA also prevented disruption of the mitochondrial membrane potential in CEP cells. This study demonstrates that high glucose-induced excessive reactive oxygen species promote mitochondrial damage, thus causing apoptosis in rat CEP cells in a dose- and time-dependent manner. ALA could prevent

  12. The role of the mitochondrial ribosome in human disease: searching for mutations in 12S mitochondrial rRNA with high disruptive potential

    PubMed Central

    Smith, Paul M.; Elson, Joanna L.; Greaves, Laura C.; Wortmann, Saskia B.; Rodenburg, Richard J.T.; Lightowlers, Robert N.; Chrzanowska-Lightowlers, Zofia M.A.; Taylor, Robert W.; Vila-Sanjurjo, Antón

    2014-01-01

    Mutations of mitochondrial DNA are linked to many human diseases. Despite the identification of a large number of variants in the mitochondrially encoded rRNA (mt-rRNA) genes, the evidence supporting their pathogenicity is, at best, circumstantial. Establishing the pathogenicity of these variations is of major diagnostic importance. Here, we aim to estimate the disruptive effect of mt-rRNA variations on the function of the mitochondrial ribosome. In the absence of direct biochemical methods to study the effect of mt-rRNA variations, we relied on the universal conservation of the rRNA fold to infer their disruptive potential. Our method, named heterologous inferential analysis or HIA, combines conservational information with functional and structural data obtained from heterologous ribosomal sources. Thus, HIA's predictive power is superior to the traditional reliance on simple conservation indexes. By using HIA, we have been able to evaluate the disruptive potential for a subset of uncharacterized 12S mt-rRNA variations. Our analysis revealed the existence of variations in the rRNA component of the human mitoribosome with different degrees of disruptive power. In cases where sufficient information regarding the genetic and pathological manifestation of the mitochondrial phenotype is available, HIA data can be used to predict the pathogenicity of mt-rRNA mutations. In other cases, HIA analysis will allow the prioritization of variants for additional investigation. Eventually, HIA-inspired analysis of potentially pathogenic mt-rRNA variations, in the context of a scoring system specifically designed for these variants, could lead to a powerful diagnostic tool. PMID:24092330

  13. Novel roles for actin in mitochondrial fission

    PubMed Central

    Hatch, Anna L.; Gurel, Pinar S.; Higgs, Henry N.

    2014-01-01

    ABSTRACT Mitochondrial dynamics, including fusion, fission and translocation, are crucial to cellular homeostasis, with roles in cellular polarity, stress response and apoptosis. Mitochondrial fission has received particular attention, owing to links with several neurodegenerative diseases. A central player in fission is the cytoplasmic dynamin-related GTPase Drp1, which oligomerizes at the fission site and hydrolyzes GTP to drive membrane ingression. Drp1 recruitment to the outer mitochondrial membrane (OMM) is a key regulatory event, which appears to require a pre-constriction step in which the endoplasmic reticulum (ER) and mitochondrion interact extensively, a process termed ERMD (ER-associated mitochondrial division). It is unclear how ER–mitochondrial contact generates the force required for pre-constriction or why pre-constriction leads to Drp1 recruitment. Recent results, however, show that ERMD might be an actin-based process in mammals that requires the ER-associated formin INF2 upstream of Drp1, and that myosin II and other actin-binding proteins might be involved. In this Commentary, we present a mechanistic model for mitochondrial fission in which actin and myosin contribute in two ways; firstly, by supplying the force for pre-constriction and secondly, by serving as a coincidence detector for Drp1 binding. In addition, we discuss the possibility that multiple fission mechanisms exist in mammals. PMID:25217628

  14. Rebamipide suppresses diclofenac-induced intestinal permeability via mitochondrial protection in mice.

    PubMed

    Diao, Lei; Mei, Qiao; Xu, Jian-Ming; Liu, Xiao-Chang; Hu, Jing; Jin, Juan; Yao, Qiang; Chen, Mo-Li

    2012-03-14

    To investigate the protective effect and mechanism of rebamipide on small intestinal permeability induced by diclofenac in mice. Diclofenac (2.5 mg/kg) was administered once daily for 3 d orally. A control group received the vehicle by gavage. Rebamipide (100 mg/kg, 200 mg/kg, 400 mg/kg) was administered intragastrically once a day for 3 d 4 h after diclofenac administration. Intestinal permeability was evaluated by Evans blue and the FITC-dextran method. The ultrastructure of the mucosal barrier was evaluated by transmission electron microscopy (TEM). Mitochondrial function including mitochondrial swelling, mitochondrial membrane potential, mitochondrial nicotinamide adenine dinucleotide-reduced (NADH) levels, succinate dehydrogenase (SDH) and ATPase activities were measured. Small intestinal mucosa was collected for assessment of malondialdehyde (MDA) content and myeloperoxidase (MPO) activity. Compared with the control group, intestinal permeability was significantly increased in the diclofenac group, which was accompanied by broken tight junctions, and significant increases in MDA content and MPO activity. Rebamipide significantly reduced intestinal permeability, improved inter-cellular tight junctions, and was associated with decreases in intestinal MDA content and MPO activity. At the mitochondrial level, rebamipide increased SDH and ATPase activities, NADH level and decreased mitochondrial swelling. Increased intestinal permeability induced by diclofenac can be attenuated by rebamipide, which partially contributed to the protection of mitochondrial function.

  15. Brain cortex mitochondrial bioenergetics in synaptosomes and non-synaptic mitochondria during aging.

    PubMed

    Lores-Arnaiz, Silvia; Lombardi, Paulina; Karadayian, Analía G; Orgambide, Federico; Cicerchia, Daniela; Bustamante, Juanita

    2016-02-01

    Alterations in mitochondrial bioenergetics have been associated with brain aging. In order to evaluate the susceptibility of brain cortex synaptosomes and non-synaptic mitochondria to aging-dependent dysfunction, male Swiss mice of 3 or 17 months old were used. Mitochondrial function was evaluated by oxygen consumption, mitochondrial membrane potential and respiratory complexes activity, together with UCP-2 protein expression. Basal respiration and respiration driving proton leak were decreased by 26 and 33 % in synaptosomes from 17-months old mice, but spare respiratory capacity was not modified by aging. Succinate supported state 3 respiratory rate was decreased by 45 % in brain cortex non-synaptic mitochondria from 17-month-old mice, as compared with young animals, but respiratory control was not affected. Synaptosomal mitochondria would be susceptible to undergo calcium-induced depolarization in 17 months-old mice, while non-synaptic mitochondria would not be affected by calcium overload. UCP-2 was significantly up-regulated in both synaptosomal and submitochondrial membranes from 17-months old mice, compared to young animals. UCP-2 upregulation seems to be a possible mechanism by which mitochondria would be resistant to suffer oxidative damage during aging.

  16. Mitochondrial pharmacology: electron transport chain bypass as strategies to treat mitochondrial dysfunction.

    PubMed

    Atamna, Hani; Mackey, Jeanette; Dhahbi, Joseph M

    2012-01-01

    Mitochondrial dysfunction (primary or secondary) is detrimental to intermediary metabolism. Therapeutic strategies to treat/prevent mitochondrial dysfunction could be valuable for managing metabolic and age-related disorders. Here, we review strategies proposed to treat mitochondrial impairment. We then concentrate on redox-active agents, with mild-redox potential, who shuttle electrons among specific cytosolic or mitochondrial redox-centers. We propose that specific redox agents with mild redox potential (-0.1 V; 0.1 V) improve mitochondrial function because they can readily donate or accept electrons in biological systems, thus they enhance metabolic activity and prevent reactive oxygen species (ROS) production. These agents are likely to lack toxic effects because they lack the risk of inhibiting electron transfer in redox centers. This is different from redox agents with strong negative (-0.4 V; -0.2 V) or positive (0.2 V; 0.4 V) redox potentials who alter the redox status of redox-centers (i.e., become permanently reduced or oxidized). This view has been demonstrated by testing the effect of several redox active agents on cellular senescence. Methylene blue (MB, redox potential ≅10 mV) appears to readily cycle between the oxidized and reduced forms using specific mitochondrial and cytosolic redox centers. MB is most effective in delaying cell senescence and enhancing mitochondrial function in vivo and in vitro. Mild-redox agents can alter the biochemical activity of specific mitochondrial components, which then in response alters the expression of nuclear and mitochondrial genes. We present the concept of mitochondrial electron-carrier bypass as a potential result of mild-redox agents, a method to prevent ROS production, improve mitochondrial function, and delay cellular aging. Thus, mild-redox agents may prevent/delay mitochondria-driven disorders. Copyright © 2012 International Union of Biochemistry and Molecular Biology, Inc.

  17. Distinct Functional Roles of Cardiac Mitochondrial Subpopulations Revealed by a 3D Simulation Model

    PubMed Central

    Hatano, Asuka; Okada, Jun-ichi; Washio, Takumi; Hisada, Toshiaki; Sugiura, Seiryo

    2015-01-01

    Experimental characterization of two cardiac mitochondrial subpopulations, namely, subsarcolemmal mitochondria (SSM) and interfibrillar mitochondria (IFM), has been hampered by technical difficulties, and an alternative approach is eagerly awaited. We previously developed a three-dimensional computational cardiomyocyte model that integrates electrophysiology, metabolism, and mechanics with subcellular structure. In this study, we further developed our model to include intracellular oxygen diffusion, and determined whether mitochondrial localization or intrinsic properties cause functional variations. For this purpose, we created two models: one with equal SSM and IFM properties and one with IFM having higher activity levels. Using these two models to compare the SSM and IFM responses of [Ca2+], tricarboxylic acid cycle activity, [NADH], and mitochondrial inner membrane potential to abrupt changes in pacing frequency (0.25–2 Hz), we found that the reported functional differences between these subpopulations appear to be mostly related to local [Ca2+] heterogeneity, and variations in intrinsic properties only serve to augment these differences. We also examined the effect of hypoxia on mitochondrial function. Under normoxic conditions, intracellular oxygen is much higher throughout the cell than the half-saturation concentration for oxidative phosphorylation. However, under limited oxygen supply, oxygen is mostly exhausted in SSM, leaving the core region in an anoxic condition. Reflecting this heterogeneous oxygen environment, the inner membrane potential continues to decrease in IFM, whereas it is maintained to nearly normal levels in SSM, thereby ensuring ATP supply to this region. Our simulation results provide clues to understanding the origin of functional variations in two cardiac mitochondrial subpopulations and their differential roles in maintaining cardiomyocyte function as a whole. PMID:26039174

  18. A specific role of the yeast mitochondrial carriers MRS3/4p in mitochondrial iron acquisition under iron-limiting conditions.

    PubMed

    Mühlenhoff, Ulrich; Stadler, Jochen A; Richhardt, Nadine; Seubert, Andreas; Eickhorst, Thomas; Schweyen, Rudolf J; Lill, Roland; Wiesenberger, Gerlinde

    2003-10-17

    The yeast genes MRS3 and MRS4 encode two members of the mitochondrial carrier family with high sequence similarity. To elucidate their function we utilized genome-wide expression profiling and found that both deletion and overexpression of MRS3/4 lead to up-regulation of several genes of the "iron regulon." We therefore analyzed the two major iron-utilizing processes, heme formation and Fe/S protein biosynthesis in vivo, in organello (intact mitochondria), and in vitro (mitochondrial extracts). Radiolabeling of yeast cells with 55Fe revealed a clear correlation between MRS3/4 expression levels and the efficiency of these biosynthetic reactions indicating a role of the carriers in utilization and/or transport of iron in vivo. Similar effects on both heme formation and Fe/S protein biosynthesis were seen in organello using mitochondria isolated from cells grown under iron-limiting conditions. The correlation between MRS3/4 expression levels and the efficiency of the two iron-utilizing processes was lost upon detergent lysis of mitochondria. As no significant changes in the mitochondrial membrane potential were observed upon overexpression or deletion of MRS3/4, our results suggest that Mrs3/4p carriers are directly involved in mitochondrial iron uptake. Mrs3/4p function in mitochondrial iron transport becomes evident under iron-limiting conditions only, indicating that the two carriers do not represent the sole system for mitochondrial iron acquisition.

  19. Mechanistic perspective of mitochondrial fusion: tubulation vs. fragmentation.

    PubMed

    Escobar-Henriques, Mafalda; Anton, Fabian

    2013-01-01

    Mitochondrial fusion is a fundamental process driven by dynamin related GTPase proteins (DRPs), in contrast to the general SNARE-dependence of most cellular fusion events. The DRPs Mfn1/Mfn2/Fzo1 and OPA1/Mgm1 are the key effectors for fusion of the mitochondrial outer and inner membranes, respectively. In order to promote fusion, these two DRPs require post-translational modifications and proteolysis. OPA1/Mgm1 undergoes partial proteolytic processing, which results in a combination between short and long isoforms. In turn, ubiquitylation of mitofusins, after oligomerization and GTP hydrolysis, promotes and positively regulates mitochondrial fusion. In contrast, under conditions of mitochondrial dysfunction, negative regulation by proteolysis on these DRPs results in mitochondrial fragmentation. This occurs by complete processing of OPA1 and via ubiquitylation and degradation of mitofusins. Mitochondrial fragmentation contributes to the elimination of damaged mitochondria by mitophagy, and may play a protective role against Parkinson's disease. Moreover, a link of Mfn2 to Alzheimer's disease is emerging and mutations in Mfn2 or OPA1 cause Charcot-Marie-Tooth type 2A neuropathy or autosomal-dominant optic atrophy. Here, we summarize our current understanding on the molecular mechanisms promoting or inhibiting fusion of mitochondrial membranes, which is essential for cellular survival and disease control. This article is part of a Special Issue entitled: Mitochondrial dynamics and physiology. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Bax-mediated mitochondrial outer membrane permeabilization (MOMP), distinct from the mitochondrial permeability transition, is a key mechanism in diclofenac-induced hepatocyte injury: Multiple protective roles of cyclosporin A

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Siu, W.P.; Pun, Pamela Boon Li; Latchoumycandane, Calivarathan

    2008-03-15

    Diclofenac, a widely used nonsteroidal anti-inflammatory drug, has been associated with rare but severe cases of clinical hepatotoxicity. Diclofenac causes concentration-dependent cell death in human hepatocytes (after 24-48 h) by mitochondrial permeabilization via poorly defined mechanisms. To explore whether the cyclophilin D (CyD)-dependent mitochondrial permeability transition (mPT) and/or the mitochondrial outer membrane permeabilization (MOMP) was primarily involved in mediating cell death, we exposed immortalized human hepatocytes (HC-04) to apoptogenic concentrations of diclofenac (> 500 {mu}M) in the presence or absence of inhibitors of upstream mediators. The CyD inhibitor, cyclosporin A (CsA, 2 {mu}M) fully inhibited diclofenac-induced cell injury, suggesting thatmore » mPT was involved. However, CyD gene silencing using siRNA left the cells susceptible to diclofenac toxicity, and CsA still protected the CyD-negative cells from lethal injury. Diclofenac induced early (9 h) activation of Bax and Bak and caused mitochondrial translocation of Bax, indicating that MOMP was involved in cell death. Inhibition of Bax protein expression by using siRNA significantly protected HC-04 from diclofenac-induced cell injury. Diclofenac also induced early Bid activation (tBid formation, 6 h), which is an upstream mechanism that initiates Bax activation and mitochondrial translocation. Bid activation was sensitive to the Ca{sup 2+} chelator, BAPTA. In conclusion, we found that Bax/Bak-mediated MOMP is a key mechanism of diclofenac-induced lethal cell injury in human hepatocytes, and that CsA can prevent MOMP through inhibition of Bax activation. These data support our concept that the Ca{sup 2+}-Bid-Bax-MOMP axis is a critical pathway in diclofenac (metabolite)-induced hepatocyte injury.« less

  1. Improved Mitochondrial Function in Brain Aging and Alzheimer Disease – the New Mechanism of Action of the Old Metabolic Enhancer Piracetam

    PubMed Central

    Leuner, Kristina; Kurz, Christopher; Guidetti, Giorgio; Orgogozo, Jean-Marc; Müller, Walter E.

    2010-01-01

    Piracetam, the prototype of the so-called nootropic drugs’ is used since many years in different countries to treat cognitive impairment in aging and dementia. Findings that piracetam enhances fluidity of brain mitochondrial membranes led to the hypothesis that piracetam might improve mitochondrial function, e.g., might enhance ATP synthesis. This assumption has recently been supported by a number of observations showing enhanced mitochondrial membrane potential, enhanced ATP production, and reduced sensitivity for apoptosis in a variety of cell and animal models for aging and Alzheimer disease. As a specific consequence, substantial evidence for elevated neuronal plasticity as a specific effect of piracetam has emerged. Taken together, this new findings can explain many of the therapeutic effects of piracetam on cognition in aging and dementia as well as different situations of brain dysfunctions. PMID:20877425

  2. Ca2+ and Mg2+-enhanced reduction of arsenazo III to its anion free radical metabolite and generation of superoxide anion by an outer mitochondrial membrane azoreductase.

    PubMed

    Moreno, S N; Mason, R P; Docampo, R

    1984-12-10

    At the concentrations usually employed as a Ca2+ indicator, arsenazo III underwent a one-electron reduction by rat liver mitochondria to produce an azo anion radical as demonstrated by electron-spin resonance spectroscopy. Either NADH or NADPH could serve as a source of reducing equivalents for the production of this free radical by intact rat liver mitochondria. Under aerobic conditions, addition of arsenazo III to rat liver mitochondria produced an increase in electron flow from NAD(P)H to molecular oxygen, generating superoxide anion. NAD(P)H generated from endogenous mitochondrial NAD(P)+ by intramitochondrial reactions could not be used for the NAD(P)H azoreductase reaction unless the mitochondria were solubilized by detergent or anaerobiosis. In addition, NAD(P)H azoreductase activity was higher in the crude outer mitochondrial membrane fraction than in mitoplasts and intact mitochondria. The steady-state concentration of the azo anion radical and the arsenazo III-stimulated cyanide-insensitive oxygen consumption were enhanced by calcium and magnesium, suggesting that, in addition to an enhanced azo anion radical-stabilization by complexation with the metal ions, enhanced reduction of arsenazo III also occurred. Accordingly, addition of cations to crude outer mitochondrial membrane preparations increased arsenazo III-stimulated cyanide-insensitive O2 consumption, H2O2 formation, and NAD(P)H oxidation. Antipyrylazo III was much less effective than arsenazo III in increasing superoxide anion formation by rat liver mitochondria and gave a much weaker electron spin resonance spectrum of an azo anion radical. These results provide direct evidence of an azoreductase activity associated with the outer mitochondrial membrane and of a stimulation of arsenazo III reduction by cations.

  3. Adaptations Required for Mitochondrial Import following Mitochondrial to Nucleus Gene Transfer of Ribosomal Protein S101[w

    PubMed Central

    Murcha, Monika W.; Rudhe, Charlotta; Elhafez, Dina; Adams, Keith L.; Daley, Daniel O.; Whelan, James

    2005-01-01

    The minimal requirements to support protein import into mitochondria were investigated in the context of the phenomenon of ongoing gene transfer from the mitochondrion to the nucleus in plants. Ribosomal protein 10 of the small subunit is encoded in the mitochondrion in soybean and many other angiosperms, whereas in several other species it is nuclear encoded and thus must be imported into the mitochondrial matrix to function. When encoded by the nuclear genome, it has adopted different strategies for mitochondrial targeting and import. In lettuce (Lactuca sativa) and carrot (Daucus carota), Rps10 independently gained different N-terminal extensions from other genes, following transfer to the nucleus. (The designation of Rps10 follows the following convention. The gene is indicated in italics. If encoded in the mitochondrion, it is rps10; if encoded in the nucleus, it is Rps10.) Here, we show that the N-terminal extensions of Rps10 in lettuce and carrot are both essential for mitochondrial import. In maize (Zea mays), Rps10 has not acquired an extension upon transfer but can be readily imported into mitochondria. Deletion analysis located the mitochondrial targeting region to the first 20 amino acids. Using site directed mutagenesis, we changed residues in the first 20 amino acids of the mitochondrial encoded soybean (Glycine max) rps10 to the corresponding amino acids in the nuclear encoded maize Rps10 until import was achieved. Changes were required that altered charge, hydrophobicity, predicted ability to form an amphiphatic α-helix, and generation of a binding motif for the outer mitochondrial membrane receptor, translocase of the outer membrane 20. In addition to defining the changes required to achieve mitochondrial localization, the results demonstrate that even proteins that do not present barriers to import can require substantial changes to acquire a mitochondrial targeting signal. PMID:16040655

  4. Changes in mitochondrial dynamics during ceramide-induced cardiomyocyte early apoptosis.

    PubMed

    Parra, Valentina; Eisner, Veronica; Chiong, Mario; Criollo, Alfredo; Moraga, Francisco; Garcia, Alejandra; Härtel, Steffen; Jaimovich, Enrique; Zorzano, Antonio; Hidalgo, Cecilia; Lavandero, Sergio

    2008-01-15

    In cells, mitochondria are organized as a network of interconnected organelles that fluctuate between fission and fusion events (mitochondrial dynamics). This process is associated with cell death. We investigated whether activation of apoptosis with ceramides affects mitochondrial dynamics and promotes mitochondrial fission in cardiomyocytes. Neonatal rat cardiomyocytes were incubated with C(2)-ceramide or the inactive analog dihydro-C(2)-ceramide for up to 6 h. Three-dimensional images of cells loaded with mitotracker green were obtained by confocal microscopy. Dynamin-related protein-1 (Drp-1) and mitochondrial fission protein 1 (Fis1) distribution and levels were studied by immunofluorescence and western blot. Mitochondrial membrane potential (DeltaPsi(m)) and cytochrome c (cyt c) distribution were used as indexes of early activation of apoptosis. Cell viability and DNA fragmentation were determined by propidium iodide staining/flow cytometry, whereas cytotoxicity was evaluated by lactic dehydrogenase activity. To decrease the levels of the mitochondrial fusion protein mitofusin 2, we used an antisense adenovirus (AsMfn2). C(2)-ceramide, but not dihydro-C(2)-ceramide, promoted rapid fragmentation of the mitochondrial network in a concentration- and time-dependent manner. C(2)-ceramide also increased mitochondrial Drp-1 and Fis1 content, Drp-1 colocalization with Fis1, and caused early activation of apoptosis. AsMfn2 accentuated the decrease in DeltaPsi(m) and cyt c redistribution induced by C(2)-ceramide. Doxorubicin, which induces cardiomyopathy and apoptosis through ceramide generation, also stimulated mitochondrial fragmentation. Ceramides stimulate mitochondrial fission and this event is associated with early activation of cardiomyocyte apoptosis.

  5. Estimation of the membrane potential of cultured macrophages from the fast potential transient upon microelectrode entry

    PubMed Central

    Ince, C; Ypey, DL; Van Furth, R; Verveen, AA

    1983-01-01

    Analysis of membrane potential recordings upon microelectrode impalement of four types of macrophages (cell lines P388D1 and PU5-1.8, cultured mouse peritoneal macrophages, and cultured human monocytes) reveals that these cells have membrane potentials at least two times more negative than sustained potential values (E(s)) frequently reported. Upon microelectrode entry into the cell (P388D1), the recorded potential drops to a peak value (E(p)) (mean -37 mV for 50 cells, range -15 to -70 mV) within 2 ms, after which it decays to a depolarized potential (E(n)) (mean -12 mV) in about 20 ms. Thereafter, the membrane develops one or a series of slow hyperpolarizations before a final sustained membrane potential (E(s)) (mean -14 mV, range -5 to -40) is established. The mean value of the peak of the first hyperpolarization (E(h)) is -30 mV (range -10 to -55 mV). The initial fast peak transient, measured upon microelectrode entry, was first described and analyzed by Lassen et al. (Lassen, U.V., A.M. T. Nielson, L. Pape, and L. O. Simonsen, 1971, J. Membr. Biol. 6:269-288 for other change in the membrane potential from its real value before impalement to a sustained depolarized value. This was shown to be true for macrophages by two-electrode impalements of single cells. Values of E(p), E(n), E(h), E(s), and membrane resistance (R(m)) measured for the other macrophages were similar to those of P388D1. From these results we conclude that E(p) is a better estimate of the true membrane potential of macrophages than E(s), and that the slow hyperpolarizations upon impalement should be regarded as transient repolarizations back to the original membrane potentials. Thus, analysis of the initial fast impalement transient can be a valuable aid in the estimation of the membrane potential of various sorts of small isolated cells by microelectrodes. PMID:6833384

  6. Decreased Integrity, Content, and Increased Transcript Level of Mitochondrial DNA Are Associated with Keratoconus

    PubMed Central

    Hao, Xiao-Dan; Chen, Zhao-Li; Qu, Ming-Li; Zhao, Xiao-Wen; Li, Su-Xia; Chen, Peng

    2016-01-01

    Oxidative stress may play an important role in the pathogenesis of keratoconus (KC). Mitochondrial DNA (mtDNA) is involved in mitochondrial function, and the mtDNA content, integrity, and transcript level may affect the generation of reactive oxygen species (ROS) and be involved in the pathogenesis of KC. We designed a case-control study to research the relationship between KC and mtDNA integrity, content and transcription. One-hundred ninety-eight KC corneas and 106 normal corneas from Chinese patients were studied. Quantitative real-time PCR was used to measure the relative mtDNA content, transcript levels of mtDNA and related genes. Long-extension PCR was used to detect mtDNA damage. ROS, mitochondrial membrane potential and ATP were measured by respective assay kit, and Mito-Tracker Green was used to label the mitochondria. The relative mtDNA content of KC corneas was significantly lower than that of normal corneas (P = 9.19×10−24), possibly due to decreased expression of the mitochondrial transcription factor A (TFAM) gene (P = 3.26×10−3). In contrast, the transcript levels of mtDNA genes were significantly increased in KC corneas compared with normal corneas (NADH dehydrogenase subunit 1 [ND1]: P = 1.79×10−3; cytochrome c oxidase subunit 1 [COX1]: P = 1.54×10−3; NADH dehydrogenase subunit 1, [ND6]: P = 4.62×10−3). The latter may be the result of increased expression levels of mtDNA transcription-related genes mitochondrial RNA polymerase (POLRMT) (P = 2.55×10−4) and transcription factor B2 mitochondrial (TFB2M) (P = 7.88×10−5). KC corneas also had increased mtDNA damage (P = 3.63×10−10), higher ROS levels, and lower mitochondrial membrane potential and ATP levels compared with normal corneas. Decreased integrity, content and increased transcript level of mtDNA are associated with KC. These changes may affect the generation of ROS and play a role in the pathogenesis of KC. PMID:27783701

  7. Mic60/Mitofilin Overexpression Alters Mitochondrial Dynamics and Attenuates Vulnerability of Dopaminergic Cells to Dopamine and Rotenone

    PubMed Central

    Van Laar, Victor S.; Berman, Sarah B.; Hastings, Teresa G.

    2017-01-01

    Mitochondrial dysfunction has been implicated in Parkinson’s disease (PD) neuropathology. Mic60, also known as mitofilin, is a protein of the inner mitochondrial membrane and a key component of the mitochondrial contact site and cristae junction organizing system (MICOS). Mic60 is critical for maintaining mitochondrial membrane structure and function. We previously demonstrated that mitochondrial Mic60 protein is susceptible to both covalent modification and loss in abundance following exposure to dopamine quinone. In this study, we utilized neuronally-differentiated SH-SY5Y and PC12 dopaminergic cell lines to examine the effects of altered Mic60 levels on mitochondrial function and cellular vulnerability in response to PD-relevant stressors. Short hairpin RNA (shRNA)-mediated knockdown of endogenous Mic60 protein in neuronal SH-SY5Y cells significantly potentiated dopamine-induced cell death, which was rescued by co-expressing shRNA-insensitive Mic60. Conversely, in PC12 and SH-SY5Y cells, Mic60 overexpression significantly attenuated both dopamine- and rotenone-induced cell death as compared to controls. Mic60 overexpression in SH-SY5Y cells was also associated with increased mitochondrial respiration, and, following rotenone exposure, increased spare respiratory capacity. Mic60 knockdown cells exhibited suppressed respiration and, following rotenone treatment, decreased spare respiratory capacity. Mic60 overexpression also affected mitochondrial fission/fusion dynamics. PC12 cells overexpressing Mic60 exhibited increased mitochondrial interconnectivity. Further, both PC12 cells and primary rat cortical neurons overexpressing Mic60 displayed suppressed mitochondrial fission and increased mitochondrial length in neurites. These results suggest that altering levels of Mic60 in dopaminergic neuronal cells significantly affects both mitochondrial homeostasis and cellular vulnerability to the PD-relevant stressors dopamine and rotenone, carrying implications for PD

  8. ER-mediated stress induces mitochondrial-dependent caspases activation in NT2 neuron-like cells.

    PubMed

    Arduino, Daniela M; Esteves, A Raquel; Domingues, A Filipa; Pereira, Claudia M F; Cardoso, Sandra M; Oliveira, Catarina R

    2009-11-30

    Recent studies have revealed that endoplasmic reticulum (ER) disturbance is involved in the pathophysiology of neurodegenerative disorders, contributing to the activation of the ER stress-mediated apoptotic pathway. Therefore, we investigated here the molecular mechanisms underlying the ER-mitochondria axis, focusing on calcium as a potential mediator of cell death signals. Using NT2 cells treated with brefeldin A or tunicamycin, we observed that ER stress induces changes in the mitochondrial function, impairing mitochondrial membrane potential and distressing mitochondrial respiratory chain complex Moreover, stress stimuli at ER level evoked calcium fluxes between ER and mitochondria. Under these conditions, ER stress activated the unfolded protein response by an overexpression of GRP78, and also caspase-4 and-2, both involved upstream of caspase-9. Our findings show that ER and mitochondria interconnection plays a prominent role in the induction of neuronal cell death under particular stress circumstances.

  9. Data supporting mitochondrial morphological changes by SPG13-associated HSPD1 mutants.

    PubMed

    Miyamoto, Yuki; Megumi, Funakoshi-Tago; Hasegawa, Nanami; Eguchi, Takahiro; Tanoue, Akito; Tamura, Hiroomi; Yamauchi, Junji

    2016-03-01

    The data is related to the research article entitled "Hypomyelinating leukodystrophy-associated missense mutation in HSPD1 blunts mitochondrial dynamics" [1]. In addition to hypomyelinating leukodystrophy (HLD) 4 (OMIM no. 612233), it is known that spastic paraplegia (SPG) 13 (OMIM no. 605280) is caused by HSPD1's amino acid mutation. Two amino acid mutations Val-98-to-Ile (V98I) and Gln-461-to-Glu (Q461E) are associated with SPG13 [2]. In order to investigate the effects of HSPD1's V98I or Q461E mutant on mitochondrial morphological changes, we transfected each of the respective mutant-encoding genes into Cos-7 cells. Either of V98I or Q461E mutant exhibited increased number of mitochondria and short length mitochondrial morphologies. Using MitoTracker dye-incorporating assay, decreased mitochondrial membrane potential was also observed in both cases. The data described here supports that SPG13-associated HSPD1 mutant participates in causing aberrant mitochondrial morphological changes with decreased activities.

  10. Dual Functions of α-Ketoglutarate Dehydrogenase E2 in the Krebs Cycle and Mitochondrial DNA Inheritance in Trypanosoma brucei

    PubMed Central

    Sykes, Steven E.

    2013-01-01

    The dihydrolipoyl succinyltransferase (E2) of the multisubunit α-ketoglutarate dehydrogenase complex (α-KD) is an essential Krebs cycle enzyme commonly found in the matrices of mitochondria. African trypanosomes developmentally regulate mitochondrial carbohydrate metabolism and lack a functional Krebs cycle in the bloodstream of mammals. We found that despite the absence of a functional α-KD, bloodstream form (BF) trypanosomes express α-KDE2, which localized to the mitochondrial matrix and inner membrane. Furthermore, α-KDE2 fractionated with the mitochondrial genome, the kinetoplast DNA (kDNA), in a complex with the flagellum. A role for α-KDE2 in kDNA maintenance was revealed in α-KDE2 RNA interference (RNAi) knockdowns. Following RNAi induction, bloodstream trypanosomes showed pronounced growth reduction and often failed to equally distribute kDNA to daughter cells, resulting in accumulation of cells devoid of kDNA (dyskinetoplastic) or containing two kinetoplasts. Dyskinetoplastic trypanosomes lacked mitochondrial membrane potential and contained mitochondria of substantially reduced volume. These results indicate that α-KDE2 is bifunctional, both as a metabolic enzyme and as a mitochondrial inheritance factor necessary for the distribution of kDNA networks to daughter cells at cytokinesis. PMID:23125353

  11. Dual functions of α-ketoglutarate dehydrogenase E2 in the Krebs cycle and mitochondrial DNA inheritance in Trypanosoma brucei.

    PubMed

    Sykes, Steven E; Hajduk, Stephen L

    2013-01-01

    The dihydrolipoyl succinyltransferase (E2) of the multisubunit α-ketoglutarate dehydrogenase complex (α-KD) is an essential Krebs cycle enzyme commonly found in the matrices of mitochondria. African trypanosomes developmentally regulate mitochondrial carbohydrate metabolism and lack a functional Krebs cycle in the bloodstream of mammals. We found that despite the absence of a functional α-KD, bloodstream form (BF) trypanosomes express α-KDE2, which localized to the mitochondrial matrix and inner membrane. Furthermore, α-KDE2 fractionated with the mitochondrial genome, the kinetoplast DNA (kDNA), in a complex with the flagellum. A role for α-KDE2 in kDNA maintenance was revealed in α-KDE2 RNA interference (RNAi) knockdowns. Following RNAi induction, bloodstream trypanosomes showed pronounced growth reduction and often failed to equally distribute kDNA to daughter cells, resulting in accumulation of cells devoid of kDNA (dyskinetoplastic) or containing two kinetoplasts. Dyskinetoplastic trypanosomes lacked mitochondrial membrane potential and contained mitochondria of substantially reduced volume. These results indicate that α-KDE2 is bifunctional, both as a metabolic enzyme and as a mitochondrial inheritance factor necessary for the distribution of kDNA networks to daughter cells at cytokinesis.

  12. Enhanced Mitochondrial Transient Receptor Potential Channel, Canonical Type 3-Mediated Calcium Handling in the Vasculature From Hypertensive Rats.

    PubMed

    Wang, Bin; Xiong, Shiqiang; Lin, Shaoyang; Xia, Weijie; Li, Qiang; Zhao, Zhigang; Wei, Xing; Lu, Zongshi; Wei, Xiao; Gao, Peng; Liu, Daoyan; Zhu, Zhiming

    2017-07-15

    Mitochondrial Ca 2+ homeostasis is fundamental to the regulation of mitochondrial reactive oxygen species (ROS) generation and adenosine triphosphate production. Recently, transient receptor potential channel, canonical type 3 (TRPC3), has been shown to localize to the mitochondria and to play a role in maintaining mitochondrial calcium homeostasis. Inhibition of TRPC3 attenuates vascular calcium influx in spontaneously hypertensive rats (SHRs). However, it remains elusive whether mitochondrial TRPC3 participates in hypertension by increasing mitochondrial calcium handling and ROS production. In this study we demonstrated increased TRPC3 expression in purified mitochondria in the vasculature from SHRs, which facilitates enhanced mitochondrial calcium uptake and ROS generation compared with Wistar-Kyoto rats. Furthermore, inhibition of TRPC3 by its specific inhibitor, Pyr3, significantly decreased the vascular mitochondrial ROS production and H 2 O 2 synthesis and increased adenosine triphosphate content. Administration of telmisartan can improve these abnormalities. This beneficial effect was associated with improvement of the mitochondrial respiratory function through recovering the activity of pyruvate dehydrogenase in the vasculature of SHRs. In vivo, chronic administration of telmisartan suppressed TRPC3-mediated excessive mitochondrial ROS generation and vasoconstriction in the vasculature of SHRs. More importantly, TRPC3 knockout mice exhibited significantly ameliorated hypertension through reduction of angiotensin II-induced mitochondrial ROS generation. Together, we give experimental evidence for a potential mechanism by which enhanced TRPC3 activity at the cytoplasmic and mitochondrial levels contributes to redox signaling and calcium dysregulation in the vasculature from SHRs. Angiotensin II or telmisartan can regulate [Ca 2+ ] mito , ROS production, and mitochondrial energy metabolism through targeting TRPC3. © 2017 The Authors. Published on behalf of

  13. Indian Ginseng (Withania somnifera) supplementation ameliorates oxidative stress and mitochondrial dysfunctions in experimental model of stroke.

    PubMed

    Sood, Abhilasha; Mehrotra, Arpit; Dhawan, Devinder K; Sandhir, Rajat

    2018-04-18

    Stroke is an increasingly prevalent clinical condition and second leading cause of death globally. The present study evaluated the therapeutic potential of Indian Ginseng, also known as Withania somnifera (WS), supplementation on middle cerebral artery occlusion (MCAO) induced mitochondrial dysfunctions in experimental model of ischemic stroke. Stroke was induced in animals by occluding the middle cerebral artery, followed by reperfusion injury. Ischemia reperfusion injury resulted in increased oxidative stress indicated by increased reactive oxygen species and protein carbonyl levels; compromised antioxidant system; in terms of reduced superoxide dismutase and catalase activity, along with reduction in GSH levels and the redox ratio, impaired mitochondrial functions and enhanced expression of apoptosis markers. Ischemia reperfusion injury induced mitochondrial dysfunctions in terms of (i) reduced activity of the mitochondrial respiratory chain enzymes, (ii) reduced histochemical staining of complex-II and IV, (iii) reduced in-gel activity of mitochondrial complex-I to V, (iv) mitochondrial structural changes in terms of increased mitochondrial swelling, reduced mitochondrial membrane potential and ultrastructural changes. Additionally, an increase in the activity of caspase-3 and caspase-9 was also observed, along with altered expression of apoptotic proteins Bcl-2 and Bax in MCAO animals. MCAO animals also showed significant impairment in cognitive functions assessed using Y maze test. WS pre-supplementation, on the other hand ameliorated MCAO induced oxidative stress, mitochondrial dysfunctions, apoptosis and cognitive impairments. The results show protective effect of WS pre-supplementation in ischemic stroke and are suggestive of its potential application in stroke management.

  14. Ionic basis of membrane potentials of epithelial cells in rat small intestine

    PubMed Central

    Barry, R. J. C.; Eggenton, Jacqueline

    1972-01-01

    1. Potentials across the mucosal and serosal membranes of the epithelial cells of rat jejunum together with transmural potentials were recorded using everted sac preparations. 2. Ionic changes in either mucosal or serosal fluids affect mucosal or serosal membrane potentials respectively with comparable changes in the transmural potential. The contralateral membrane potential is relatively unaffected. 3. Replacement of mucosal sodium chloride by potassium chloride or lithium chloride had little effect on potentials, but its replacement by mannitol or Tris chloride increased the negativity of the mucosal potential, giving linear relationships against log10[Na]m with slopes of 41·4 and 30·7 mV respectively for tenfold change in [Na]m. 4. At constant [Na]m, potassium or lithium increased the mucosal potential by 25·7 and 19·8 mV respectively for tenfold concentration changes. 5. Qualitatively similar changes occurred in the serosal potential when the ionic composition of the serosal fluid was varied. 6. Mucosal potential changes in response to modifications of the ionic composition of the mucosal fluid were the same in the presence and absence of galactose. 7. Sodium and potassium diffusion potentials largely determine both the mucosal and serosal membrane potentials. For the mucosal membrane, PK:PNa is 1·26:1, and is probably higher for the serosal membrane. Chloride makes no significant contribution to membrane potentials. 8. Potentials generated by the electrogenic sodium pump are superimposed on diffusion potentials across the serosal membrane. PMID:4646579

  15. Drp1 guarding of the mitochondrial network is important for glucose-stimulated insulin secretion in pancreatic beta cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reinhardt, Florian; Schultz, Julia; Waterstradt, Rica

    Mitochondria form a tubular network in mammalian cells, and the mitochondrial life cycle is determined by fission, fusion and autophagy. Dynamin-related protein 1 (Drp1) has a pivotal role in these processes because it alone is able to constrict mitochondria. However, the regulation and function of Drp1 have been shown to vary between cell types. Mitochondrial morphology affects mitochondrial metabolism and function. In pancreatic beta cells mitochondrial metabolism is a key component of the glucose-induced cascade of insulin secretion. The goal of the present study was to investigate the action of Drp1 in pancreatic beta cells. For this purpose Drp1 wasmore » down-regulated by means of shDrp1 in insulin-secreting INS1 cells and mouse pancreatic islets. In INS1 cells reduced Drp1 expression resulted in diminished expression of proteins regulating mitochondrial fusion, namely mitofusin 1 and 2, and optic atrophy protein 1. Diminished mitochondrial dynamics can therefore be assumed. After down-regulation of Drp1 in INS1 cells and spread mouse islets the initially homogenous mitochondrial network characterised by a moderate level of interconnections shifted towards high heterogeneity with elongated, clustered and looped mitochondria. These morphological changes were found to correlate directly with functional alterations. Mitochondrial membrane potential and ATP generation were significantly reduced in INS1 cells after Drp1down-regulation. Finally, a significant loss of glucose-stimulated insulin secretion was demonstrated in INS1 cells and mouse pancreatic islets. In conclusion, Drp1 expression is important in pancreatic beta cells to maintain the regulation of insulin secretion. -- Highlights: •Down-regulation of Drp1 in INS1 cells reduces mitochondrial fusion protein expression. •Mitochondrial membrane potential in INS1 cells is diminished after Drp1 down-regulation. •Mitochondria become elongated after down-regulation of Drp1 in beta cells.

  16. Effects of Vinpocetine on mitochondrial function and neuroprotection in primary cortical neurons.

    PubMed

    Tárnok, K; Kiss, E; Luiten, P G M; Nyakas, C; Tihanyi, K; Schlett, K; Eisel, U L M

    2008-12-01

    Vinpocetine (ethyl apovincaminate), a synthetic derivative of the Vinca minor alkaloid vincamine, is widely used for the treatment of cerebrovascular-related diseases. One of the proposed mechanisms underlying its action is to protect against the cytotoxic effects of glutamate overexposure. Glutamate excitotoxicity leads to the disregulation of mitochondrial function and neuronal metabolism. As Vinpocetine has a binding affinity to the peripheral-type benzodiazepine receptor (PBR) involved in the mitochondrial transition pore complex, we investigated whether neuroprotection can be at least partially due to Vinpocetine's effects on PBRs. Neuroprotective effects of PK11195 and Ro5-4864, two drugs with selective and high affinity to PBR, were compared to Vinpocetine in glutamate excitotoxicity assays on primary cortical neuronal cultures. Vinpocetine exerted a neuroprotective action in a 1-50microM concentration range while PK11195 and Ro5-4864 were only slightly neuroprotective, especially in high (>25microM) concentrations. Combined pretreatment of neuronal cultures with Vinpocetine and PK11195 or Ro5-4864 showed increased neuroprotection in a dose-dependent manner, indicating that the different drugs may have different targets. To test this hypothesis, mitochondrial membrane potential (MMP) of cultured neurons was measured by flow cytometry. 25microM Vinpocetine reduced the decrease of mitochondrial inner membrane potential induced by glutamate exposure, but Ro5-4864 in itself was found to be more potent to block glutamate-evoked changes in MMP. Combination of Ro5-4864 and Vinpocetine treatment was found to be even more effective. In summary, the present results indicate that the neuroprotective action of vinpocetine in culture can not be explained by its effect on neuronal PBRs alone and that additional drug targets are involved.

  17. Synergistic effects of hydrogen peroxide and ethanol on cell viability loss in PC12 cells by increase in mitochondrial permeability transition.

    PubMed

    Lee, Chung Soo; Kim, Yun Jeong; Ko, Hyun Hee; Han, Eun Sook

    2005-07-15

    The promoting effect of ethanol against the cytotoxicity of hydrogen peroxide (H2O2) in differentiated PC12 cells was assessed by measuring the effect on the mitochondrial membrane permeability. Treatment of PC12 cells with H2O2 resulted in the nuclear damage, decrease in the mitochondrial transmembrane potential, cytosolic accumulation of cytochrome c, activation of caspase-3, increase in the formation of reactive oxygen species (ROS) and depletion of GSH. In PC12 cells and dopaminergic neuroblastoma SH-SY5Y cells, the promoting effect of ethanol on the H2O2-induced cell death was increased with exposure time. Ethanol promoted the nuclear damage, change in the mitochondrial membrane permeability, ROS formation and decrease in GSH contents due to H2O2 in PC12 cells. Catalase, carboxy-PTIO, Mn-TBAP, N-acetylcysteine, cyclosporin A and trifluoperazine inhibited the H2O2 and ethanol-induced mitochondrial dysfunction and cell injury. The results show that the ethanol treatment promotes the cytotoxicity of H2O2 against PC12 cells. Ethanol may enhance the H2O2-induced viability loss in PC12 cells by promoting the mitochondrial membrane permeability change, release of cytochrome c and subsequent activation of caspase-3, which is associated with the increased formation of ROS and depletion of GSH. The findings suggest that ethanol as a promoting agent for the formation of mitochondrial permeability transition may enhance the neuronal cell injury caused by oxidants.

  18. Neuroprotective Efficacy of Mitochondrial Antioxidant MitoQ in Suppressing Peroxynitrite-Mediated Mitochondrial Dysfunction Inflicted by Lead Toxicity in the Rat Brain.

    PubMed

    Maiti, Arpan Kumar; Saha, Nimai Chandra; More, Sunil S; Panigrahi, Ashish Kumar; Paul, Goutam

    2017-04-01

    Lead (Pb) is one of the most pollutant metals that accumulate in the brain mitochondria disrupting mitochondrial structure and function. Though oxidative stress mediated by reactive oxygen species remains the most accepted mechanism of Pb neurotoxicity, some reports suggest the involvement of nitric oxide ( • NO) and reactive nitrogen species in Pb-induced neurotoxicity. But the impact of Pb neurotoxicity on mitochondrial respiratory enzyme complexes remains unknown with no relevant report highlighting the involvement of peroxynitrite (ONOO - ) in it. Herein, we investigated these effects in in vivo rat model by oral application of MitoQ, a known mitochondria-specific antioxidant with ONOO - scavenging activity. Interestingly, MitoQ efficiently alleviated ONOO - -mediated mitochondrial complexes II, III and IV inhibition, increased mitochondrial ATP production and restored mitochondrial membrane potential. MitoQ lowered enhanced caspases 3 and 9 activities upon Pb exposure and also suppressed synaptosomal lipid peroxidation and protein oxidation accompanied by diminution of nitrite production and protein-bound 3-nitrotyrosine. To ascertain our in vivo findings on mitochondrial dysfunction, we carried out similar experiments in the presence of different antioxidants and free radical scavengers in the in vitro SHSY5Y cell line model. MitoQ provided better protection compared to mercaptoethylguanidine, N-nitro-L-arginine methyl ester and superoxide dismutase suggesting the predominant involvement of ONOO - compared to • NO and O 2 •- . However, dimethylsulphoxide and catalase failed to provide protection signifying the noninvolvement of • OH and H 2 O 2 in the process. The better protection provided by MitoQ in SHSY5Y cells can be attributed to the fact that MitoQ targets mitochondria whereas mercaptoethylguanidine, N-nitro-L-arginine methyl ester and superoxide dismutase are known to target mainly cytoplasm and not mitochondria. Taken together the results

  19. The Effects of NAD+ on Apoptotic Neuronal Death and Mitochondrial Biogenesis and Function after Glutamate Excitotoxicity

    PubMed Central

    Wang, Xiaowan; Li, Hailong; Ding, Shinghua

    2014-01-01

    NAD+ is an essential co-enzyme for cellular energy metabolism and is also involved as a substrate for many cellular enzymatic reactions. It has been shown that NAD+ has a beneficial effect on neuronal survival and brain injury in in vitro and in vivo ischemic models. However, the effect of NAD+ on mitochondrial biogenesis and function in ischemia has not been well investigated. In the present study, we used an in vitro glutamate excitotoxicity model of primary cultured cortical neurons to study the effect of NAD+ on apoptotic neuronal death and mitochondrial biogenesis and function. Our results show that supplementation of NAD+ could effectively reduce apoptotic neuronal death, and apoptotic inducing factor translocation after neurons were challenged with excitotoxic glutamate stimulation. Using different approaches including confocal imaging, mitochondrial DNA measurement and Western blot analysis of PGC-1 and NRF-1, we also found that NAD+ could significantly attenuate glutamate-induced mitochondrial fragmentation and the impairment of mitochondrial biogenesis. Furthermore, NAD+ treatment effectively inhibited mitochondrial membrane potential depolarization and NADH redistribution after excitotoxic glutamate stimulation. Taken together, our results demonstrated that NAD+ is capable of inhibiting apoptotic neuronal death after glutamate excitotoxicity via preserving mitochondrial biogenesis and integrity. Our findings provide insights into potential neuroprotective strategies in ischemic stroke. PMID:25387075

  20. Protosappanin B protects PC12 cells against oxygen-glucose deprivation-induced neuronal death by maintaining mitochondrial homeostasis via induction of ubiquitin-dependent p53 protein degradation.

    PubMed

    Zeng, Ke-Wu; Liao, Li-Xi; Zhao, Ming-Bo; Song, Fang-Jiao; Yu, Qian; Jiang, Yong; Tu, Peng-Fei

    2015-03-15

    Protosappanin B (PTB) is a bioactive dibenzoxocin derivative isolated from Caesalpinia sappan L. Here, we investigated the neuroprotective effects and the potential mechanisms of PTB on oxygen-glucose deprivation (OGD)-injured PC12 cells. Results showed that PTB significantly increased cell viability, inhibited cell apoptosis and up-regulated the expression of growth-associated protein 43 (a marker of neural outgrowth). Moreover, our study revealed that PTB effectively maintained mitochondrial homeostasis by up-regulation of mitochondrial membrane potential (MMP), inhibition of cytochrome c release from mitochondria and inactivation of mitochondrial caspase-9/3 apoptosis pathway. Further study showed that PTB significantly promoted cytoplasmic component degradation of p53 protein, a key negative regulator for mitochondrial function, resulting in a release of Bcl-2 from p53-Bcl-2 complex and an enhancing translocation of Bcl-2 to mitochondrial outer membrane. Finally, we found the degradation of p53 protein was induced by PTB via activation of a MDM2-dependent ubiquitination process. Taken together, our findings provided a new viewpoint of neuronal protection strategy for anoxia and ischemic injury with natural small molecular dibenzoxocin derivative by activating ubiquitin-dependent p53 protein degradation as well as increasing mitochondrial function. Copyright © 2015 Elsevier B.V. All rights reserved.