Sample records for mitochondrial sequence divergence

  1. Mitochondrial divergence between slow- and fast-aging garter snakes.

    PubMed

    Schwartz, Tonia S; Arendsee, Zebulun W; Bronikowski, Anne M

    2015-11-01

    Mitochondrial function has long been hypothesized to be intimately involved in aging processes--either directly through declining efficiency of mitochondrial respiration and ATP production with advancing age, or indirectly, e.g., through increased mitochondrial production of damaging free radicals with age. Yet we lack a comprehensive understanding of the evolution of mitochondrial genotypes and phenotypes across diverse animal models, particularly in species that have extremely labile physiology. Here, we measure mitochondrial genome-types and transcription in ecotypes of garter snakes (Thamnophis elegans) that are adapted to disparate habitats and have diverged in aging rates and lifespans despite residing in close proximity. Using two RNA-seq datasets, we (1) reconstruct the garter snake mitochondrial genome sequence and bioinformatically identify regulatory elements, (2) test for divergence of mitochondrial gene expression between the ecotypes and in response to heat stress, and (3) test for sequence divergence in mitochondrial protein-coding regions in these slow-aging (SA) and fast-aging (FA) naturally occurring ecotypes. At the nucleotide sequence level, we confirmed two (duplicated) mitochondrial control regions one of which contains a glucocorticoid response element (GRE). Gene expression of protein-coding genes was higher in FA snakes relative to SA snakes for most genes, but was neither affected by heat stress nor an interaction between heat stress and ecotype. SA and FA ecotypes had unique mitochondrial haplotypes with amino acid substitutions in both CYTB and ND5. The CYTB amino acid change (Isoleucine → Threonine) was highly segregated between ecotypes. This divergence of mitochondrial haplotypes between SA and FA snakes contrasts with nuclear gene-flow estimates, but correlates with previously reported divergence in mitochondrial function (mitochondrial oxygen consumption, ATP production, and reactive oxygen species consequences). Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Divergence, hybridization, and recombination in the mitochondrial genome of the human pathogenic yeast Cryptococcus gattii.

    PubMed

    Xu, Jianping; Yan, Zhun; Guo, Hong

    2009-06-01

    The inheritance of mitochondrial genes and genomes are uniparental in most sexual eukaryotes. This pattern of inheritance makes mitochondrial genomes in natural populations effectively clonal. Here, we examined the mitochondrial population genetics of the emerging human pathogenic fungus Cryptococcus gattii. The DNA sequences for five mitochondrial DNA fragments were obtained from each of 50 isolates belonging to two evolutionary divergent lineages, VGI and VGII. Our analyses revealed a greater sequence diversity within VGI than that within VGII, consistent with observations of the nuclear genes. The combined analyses of all five gene fragments indicated significant divergence between VGI and VGII. However, the five individual genealogies showed different relationships among the isolates, consistent with recent hybridization and mitochondrial gene transfer between the two lineages. Population genetic analyses of the multilocus data identified evidence for predominantly clonal mitochondrial population structures within both lineages. Interestingly, there were clear signatures of recombination among mitochondrial genes within the VGII lineage. Our analyses suggest historical mitochondrial genome divergence within C. gattii, but there is evidence for recent hybridization and recombination in the mitochondrial genome of this important human yeast pathogen.

  3. The complete mitochondrial genome of dhole Cuon alpinus: phylogenetic analysis and dating evolutionary divergence within Canidae.

    PubMed

    Zhang, Honghai; Chen, Lei

    2011-03-01

    The dhole (Cuon alpinus) is the only existent species in the genus Cuon (Carnivora: Canidae). In the present study, the complete mitochondrial genome of the dhole was sequenced. The total length is 16672 base pairs which is the shortest in Canidae. Sequence analysis revealed that most mitochondrial genomic functional regions were highly consistent among canid animals except the CSB domain of the control region. The difference in length among the Canidae mitochondrial genome sequences is mainly due to the number of short segments of tandem repeated in the CSB domain. Phylogenetic analysis was progressed based on the concatenated data set of 14 mitochondrial genes of 8 canid animals by using maximum parsimony (MP), maximum likelihood (ML) and Bayesian (BI) inference methods. The genera Vulpes and Nyctereutes formed a sister group and split first within Canidae, followed by that in the Cuon. The divergence in the genus Canis was the latest. The divarication of domestic dogs after that of the Canis lupus laniger is completely supported by all the three topologies. Pairwise sequence divergence data of different mitochondrial genes among canid animals were also determined. Except for the synonymous substitutions in protein-coding genes, the control region exhibits the highest sequence divergences. The synonymous rates are approximately two to six times higher than those of the non-synonymous sites except for a slightly higher rate in the non-synonymous substitution between Cuon alpinus and Vulpes vulpes. 16S rRNA genes have a slightly faster sequence divergence than 12S rRNA and tRNA genes. Based on nucleotide substitutions of tRNA genes and rRNA genes, the times since divergence between dhole and other canid animals, and between domestic dogs and three subspecies of wolves were evaluated. The result indicates that Vulpes and Nyctereutes have a close phylogenetic relationship and the divergence of Nyctereutes is a little earlier. The Tibetan wolf may be an archaic pedigree within wolf subspecies. The genetic distance between wolves and domestic dogs is less than that among different subspecies of wolves. The domestication of dogs was about 1.56-1.92 million years ago or even earlier.

  4. Tracking the origins of the cave bear (Ursus spelaeus) by mitochondrial DNA sequencing.

    PubMed Central

    Hänni, C; Laudet, V; Stehelin, D; Taberlet, P

    1994-01-01

    The different European populations of Ursus arctos, the brown bear, were recently studied for mitochondrial DNA polymorphism. Two clearly distinct lineages (eastern and western) were found, which may have diverged approximately 850,000 years ago. In this context, it was interesting to study the cave bear, Ursus spelaeus, a species which became extinct 20,000 years ago. In this study, we have amplified and sequenced a fragment of 139-bp in the mitochondrial DNA control region of a 40,000-year-old specimen of U. spelaeus. Phylogenetic reconstructions using this sequence and the European brown bear sequences already published suggest that U. spelaeus diverged from an early offshoot of U. arctos--i.e., approximately at the same time as the divergence of the two main lineages of U. arctos. This divergence probably took place at the earliest glaciation, likely due to geographic separation during the earlier Quaternary cold periods. This result is in agreement with the paleontological data available and suggests a good correspondence between molecular and morphological data. Images PMID:7991628

  5. Phylogenetic analyses of complete mitochondrial genome sequences suggest a basal divergence of the enigmatic rodent Anomalurus

    PubMed Central

    Horner, David S; Lefkimmiatis, Konstantinos; Reyes, Aurelio; Gissi, Carmela; Saccone, Cecilia; Pesole, Graziano

    2007-01-01

    Background Phylogenetic relationships between Lagomorpha, Rodentia and Primates and their allies (Euarchontoglires) have long been debated. While it is now generally agreed that Rodentia constitutes a monophyletic sister-group of Lagomorpha and that this clade (Glires) is sister to Primates and Dermoptera, higher-level relationships within Rodentia remain contentious. Results We have sequenced and performed extensive evolutionary analyses on the mitochondrial genome of the scaly-tailed flying squirrel Anomalurus sp., an enigmatic rodent whose phylogenetic affinities have been obscure and extensively debated. Our phylogenetic analyses of the coding regions of available complete mitochondrial genome sequences from Euarchontoglires suggest that Anomalurus is a sister taxon to the Hystricognathi, and that this clade represents the most basal divergence among sampled Rodentia. Bayesian dating methods incorporating a relaxed molecular clock provide divergence-time estimates which are consistently in agreement with the fossil record and which indicate a rapid radiation within Glires around 60 million years ago. Conclusion Taken together, the data presented provide a working hypothesis as to the phylogenetic placement of Anomalurus, underline the utility of mitochondrial sequences in the resolution of even relatively deep divergences and go some way to explaining the difficulty of conclusively resolving higher-level relationships within Glires with available data and methodologies. PMID:17288612

  6. Next-generation sequencing of the Trichinella murrelli mitochondrial genome allows comprehensive comparison of its divergence from the principal agent of human trichinellosis, Trichinella spiralis.

    PubMed

    Webb, Kristen M; Rosenthal, Benjamin M

    2011-01-01

    The mitochondrial genome's non-recombinant mode of inheritance and relatively rapid rate of evolution has promoted its use as a marker for studying the biogeographic history and evolutionary interrelationships among many metazoan species. A modest portion of the mitochondrial genome has been defined for 12 species and genotypes of parasites in the genus Trichinella, but its adequacy in representing the mitochondrial genome as a whole remains unclear, as the complete coding sequence has been characterized only for Trichinella spiralis. Here, we sought to comprehensively describe the extent and nature of divergence between the mitochondrial genomes of T. spiralis (which poses the most appreciable zoonotic risk owing to its capacity to establish persistent infections in domestic pigs) and Trichinella murrelli (which is the most prevalent species in North American wildlife hosts, but which poses relatively little risk to the safety of pork). Next generation sequencing methodologies and scaffold and de novo assembly strategies were employed. The entire protein-coding region was sequenced (13,917 bp), along with a portion of the highly repetitive non-coding region (1524 bp) of the mitochondrial genome of T. murrelli with a combined average read depth of 250 reads. The accuracy of base calling, estimated from coding region sequence was found to exceed 99.3%. Genome content and gene order was not found to be significantly different from that of T. spiralis. An overall inter-species sequence divergence of 9.5% was estimated. Significant variation was identified when the amount of variation between species at each gene is compared to the average amount of variation between species across the coding region. Next generation sequencing is a highly effective means to obtain previously unknown mitochondrial genome sequence. Particular to parasites, the extremely deep coverage achieved through this method allows for the detection of sequence heterogeneity between the multiple individuals that necessarily comprise such templates. Copyright © 2010 Elsevier B.V. All rights reserved.

  7. Phylogenetic position of avian nocturnal and diurnal raptors.

    PubMed

    Mahmood, Muhammad Tariq; McLenachan, Patricia A; Gibb, Gillian C; Penny, David

    2014-02-01

    We report three new avian mitochondrial genomes, two from widely separated groups of owls and a falcon relative (the Secretarybird). We then report additional progress in resolving Neoavian relationships in that the two groups of owls do come together (it is not just long-branch attraction), and the Secretarybird is the deepest divergence on the Accipitridae lineage. This is now agreed between mitochondrial and nuclear sequences. There is no evidence for the monophyly of the combined three groups of raptors (owls, eagles, and falcons), and again this is agreed by nuclear and mitochondrial sequences. All three groups (owls, accipitrids [eagles], and falcons) do appear to be members of the "higher land birds," and though there may not yet be full "consilience" between mitochondrial and nuclear sequences for the precise order of divergences of the eagles, falcons, and the owls, there is good progress on their relationships.

  8. Phylogenetic Position of Avian Nocturnal and Diurnal Raptors

    PubMed Central

    Mahmood, Muhammad Tariq; McLenachan, Patricia A.; Gibb, Gillian C.; Penny, David

    2014-01-01

    We report three new avian mitochondrial genomes, two from widely separated groups of owls and a falcon relative (the Secretarybird). We then report additional progress in resolving Neoavian relationships in that the two groups of owls do come together (it is not just long-branch attraction), and the Secretarybird is the deepest divergence on the Accipitridae lineage. This is now agreed between mitochondrial and nuclear sequences. There is no evidence for the monophyly of the combined three groups of raptors (owls, eagles, and falcons), and again this is agreed by nuclear and mitochondrial sequences. All three groups (owls, accipitrids [eagles], and falcons) do appear to be members of the “higher land birds,” and though there may not yet be full “consilience” between mitochondrial and nuclear sequences for the precise order of divergences of the eagles, falcons, and the owls, there is good progress on their relationships. PMID:24448983

  9. Inter- and intraspecific mitochondrial DNA variation in North American bears (Ursus)

    USGS Publications Warehouse

    Cronin, Matthew A.; Amstrup, Steven C.; Garner, Gerald W.; Vyse, Ernest R.

    1991-01-01

    We assessed mitochondrial DNA variation in North American black bears (Ursus americanus), brown bears (Ursus arctos), and polar bears (Ursus maritimus). Divergent mitochondrial DNA haplotypes (0.05 base substitutions per nucleotide) were identified in populations of black bears from Montana and Oregon. In contrast, very similar haplotypes occur in black bears across North America. This discordance of haplotype phylogeny and geographic distribution indicates that there has been maintenance of polymorphism and considerable gene flow throughout the history of the species. Intraspecific mitochondrial DNA sequence divergence in brown bears and polar bears is lower than in black bears. The two morphological forms of U. arctos, grizzly and coastal brown bears, are not in distinct mtDNA lineages. Interspecific comparisons indicate that brown bears and polar bears share similar mitochondrial DNA (0.023 base substitutions per nucleotide) which is quite divergent (0.078 base substitutions per nucleotide) from that of black bears. High mitochondrial DNA divergence within black bears and paraphyletic relationships of brown and polar bear mitochondrial DNA indicate that intraspecific variation across species' ranges should be considered in phylogenetic analyses of mitochondrial DNA.

  10. Mitochondrial-type hsp70 genes of the amitochondriate protists, Giardia intestinalis, Entamoeba histolytica and two microsporidians☆

    PubMed Central

    Arisue, Nobuko; Sánchez, Lidya B.; Weiss, Louis M.; Müller, Miklós; Hashimoto, Tetsuo

    2011-01-01

    Genes encoding putative mitochondrial-type heat shock protein 70 (mit-hsp70) were isolated and sequenced from amitochondriate protists, Giardia intestinalis, Entamoeba histolytica, and two microsporidians, Encephalitozoon hellem and Glugea plecoglossi. The deduced mit-hsp70 sequences were analyzed by sequence alignments and phylogenetic reconstructions. The mit-hsp70 sequence of these four amitochondriate protists were divergent from other mit-hsp70 sequences of mitochondriate eukaryotes. However, all of these sequences were clearly located within a eukaryotic mitochondrial clade in the tree including various type hsp70 sequences, supporting the emerging notion that none of these amitochondriate lineages are primitively amitochodrial, but lost their mitochondria secondarily in their evolutionary past. PMID:11880223

  11. Mitochondrial Genomes Reveal Slow Rates of Molecular Evolution and the Timing of Speciation in Beavers (Castor), One of the Largest Rodent Species

    PubMed Central

    Horn, Susanne; Durka, Walter; Wolf, Ronny; Ermala, Aslak; Stubbe, Annegret; Stubbe, Michael; Hofreiter, Michael

    2011-01-01

    Background Beavers are one of the largest and ecologically most distinct rodent species. Little is known about their evolution and even their closest phylogenetic relatives have not yet been identified with certainty. Similarly, little is known about the timing of divergence events within the genus Castor. Methodology/Principal Findings We sequenced complete mitochondrial genomes from both extant beaver species and used these sequences to place beavers in the phylogenetic tree of rodents and date their divergence from other rodents as well as the divergence events within the genus Castor. Our analyses support the phylogenetic position of beavers as a sister lineage to the scaly tailed squirrel Anomalurus within the mouse related clade. Molecular dating places the divergence time of the lineages leading to beavers and Anomalurus as early as around 54 million years ago (mya). The living beaver species, Castor canadensis from North America and Castor fiber from Eurasia, although similar in appearance, appear to have diverged from a common ancestor more than seven mya. This result is consistent with the hypothesis that a migration of Castor from Eurasia to North America as early as 7.5 mya could have initiated their speciation. We date the common ancestor of the extant Eurasian beaver relict populations to around 210,000 years ago, much earlier than previously thought. Finally, the substitution rate of Castor mitochondrial DNA is considerably lower than that of other rodents. We found evidence that this is correlated with the longer life span of beavers compared to other rodents. Conclusions/Significance A phylogenetic analysis of mitochondrial genome sequences suggests a sister-group relationship between Castor and Anomalurus, and allows molecular dating of species divergence in congruence with paleontological data. The implementation of a relaxed molecular clock enabled us to estimate mitochondrial substitution rates and to evaluate the effect of life history traits on it. PMID:21307956

  12. Deciphering amphibian diversity through DNA barcoding: chances and challenges.

    PubMed

    Vences, Miguel; Thomas, Meike; Bonett, Ronald M; Vieites, David R

    2005-10-29

    Amphibians globally are in decline, yet there is still a tremendous amount of unrecognized diversity, calling for an acceleration of taxonomic exploration. This process will be greatly facilitated by a DNA barcoding system; however, the mitochondrial population structure of many amphibian species presents numerous challenges to such a standardized, single locus, approach. Here we analyse intra- and interspecific patterns of mitochondrial variation in two distantly related groups of amphibians, mantellid frogs and salamanders, to determine the promise of DNA barcoding with cytochrome oxidase subunit I (cox1) sequences in this taxon. High intraspecific cox1 divergences of 7-14% were observed (18% in one case) within the whole set of amphibian sequences analysed. These high values are not caused by particularly high substitution rates of this gene but by generally deep mitochondrial divergences within and among amphibian species. Despite these high divergences, cox1 sequences were able to correctly identify species including disparate geographic variants. The main problems with cox1 barcoding of amphibians are (i) the high variability of priming sites that hinder the application of universal primers to all species and (ii) the observed distinct overlap of intraspecific and interspecific divergence values, which implies difficulties in the definition of threshold values to identify candidate species. Common discordances between geographical signatures of mitochondrial and nuclear markers in amphibians indicate that a single-locus approach can be problematic when high accuracy of DNA barcoding is required. We suggest that a number of mitochondrial and nuclear genes may be used as DNA barcoding markers to complement cox1.

  13. Mitochondrial genome sequence and expression profiling for the legume pod borer Maruca vitrata (Lepidoptera: Crambidae)

    USDA-ARS?s Scientific Manuscript database

    We report on the assembly of the 14,146 base pairs (bp) near complete mitochondrial sequencing of the legume pod borer (LPB), Maruca vitrata (Lepidoptera: Crambidae), which was used to estimate divergence and relationships within the lepidopteran lineage. Arrangement and orientation of 13 protein c...

  14. Mitochondrial genomes reveal the extinct Hippidion as an outgroup to all living equids.

    PubMed

    Der Sarkissian, Clio; Vilstrup, Julia T; Schubert, Mikkel; Seguin-Orlando, Andaine; Eme, David; Weinstock, Jacobo; Alberdi, Maria Teresa; Martin, Fabiana; Lopez, Patricio M; Prado, Jose L; Prieto, Alfredo; Douady, Christophe J; Stafford, Tom W; Willerslev, Eske; Orlando, Ludovic

    2015-03-01

    Hippidions were equids with very distinctive anatomical features. They lived in South America 2.5 million years ago (Ma) until their extinction approximately 10 000 years ago. The evolutionary origin of the three known Hippidion morphospecies is still disputed. Based on palaeontological data, Hippidion could have diverged from the lineage leading to modern equids before 10 Ma. In contrast, a much later divergence date, with Hippidion nesting within modern equids, was indicated by partial ancient mitochondrial DNA sequences. Here, we characterized eight Hippidion complete mitochondrial genomes at 3.4-386.3-fold coverage using target-enrichment capture and next-generation sequencing. Our dataset reveals that the two morphospecies sequenced (H. saldiasi and H. principale) formed a monophyletic clade, basal to extant and extinct Equus lineages. This contrasts with previous genetic analyses and supports Hippidion as a distinct genus, in agreement with palaeontological models. We date the Hippidion split from Equus at 5.6-6.5 Ma, suggesting an early divergence in North America prior to the colonization of South America, after the formation of the Panamanian Isthmus 3.5 Ma and the Great American Biotic Interchange. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  15. Mitochondrial genomes reveal the extinct Hippidion as an outgroup to all living equids

    PubMed Central

    Der Sarkissian, Clio; Vilstrup, Julia T.; Schubert, Mikkel; Seguin-Orlando, Andaine; Eme, David; Weinstock, Jacobo; Alberdi, Maria Teresa; Martin, Fabiana; Lopez, Patricio M.; Prado, Jose L.; Prieto, Alfredo; Douady, Christophe J.; Stafford, Tom W.; Willerslev, Eske; Orlando, Ludovic

    2015-01-01

    Hippidions were equids with very distinctive anatomical features. They lived in South America 2.5 million years ago (Ma) until their extinction approximately 10 000 years ago. The evolutionary origin of the three known Hippidion morphospecies is still disputed. Based on palaeontological data, Hippidion could have diverged from the lineage leading to modern equids before 10 Ma. In contrast, a much later divergence date, with Hippidion nesting within modern equids, was indicated by partial ancient mitochondrial DNA sequences. Here, we characterized eight Hippidion complete mitochondrial genomes at 3.4–386.3-fold coverage using target-enrichment capture and next-generation sequencing. Our dataset reveals that the two morphospecies sequenced (H. saldiasi and H. principale) formed a monophyletic clade, basal to extant and extinct Equus lineages. This contrasts with previous genetic analyses and supports Hippidion as a distinct genus, in agreement with palaeontological models. We date the Hippidion split from Equus at 5.6–6.5 Ma, suggesting an early divergence in North America prior to the colonization of South America, after the formation of the Panamanian Isthmus 3.5 Ma and the Great American Biotic Interchange. PMID:25762573

  16. High diversity and rapid diversification in the head louse, Pediculus humanus (Pediculidae: Phthiraptera)

    PubMed Central

    Ashfaq, Muhammad; Prosser, Sean; Nasir, Saima; Masood, Mariyam; Ratnasingham, Sujeevan; Hebert, Paul D. N.

    2015-01-01

    The study analyzes sequence variation of two mitochondrial genes (COI, cytb) in Pediculus humanus from three countries (Egypt, Pakistan, South Africa) that have received little prior attention, and integrates these results with prior data. Analysis indicates a maximum K2P distance of 10.3% among 960 COI sequences and 13.8% among 479 cytb sequences. Three analytical methods (BIN, PTP, ABGD) reveal five concordant OTUs for COI and cytb. Neighbor-Joining analysis of the COI sequences confirm five clusters; three corresponding to previously recognized mitochondrial clades A, B, C and two new clades, “D” and “E”, showing 2.3% and 2.8% divergence from their nearest neighbors (NN). Cytb data corroborate five clusters showing that clades “D” and “E” are both 4.6% divergent from their respective NN clades. Phylogenetic analysis supports the monophyly of all clusters recovered by NJ analysis. Divergence time estimates suggest that the earliest split of P. humanus clades occured slightly more than one million years ago (MYa) and the latest about 0.3 MYa. Sequence divergences in COI and cytb among the five clades of P. humanus are 10X those in their human host, a difference that likely reflects both rate acceleration and the acquisition of lice clades from several archaic hominid lineages. PMID:26373806

  17. Phylogeny and evolution of the auks (subfamily Alcinae) based on mitochondrial DNA sequences

    USGS Publications Warehouse

    Moum, Truls; Johansen, Steinar; Erikstad, Kjell Einar; Piatt, John F.

    1994-01-01

    The genetic divergence and phylogeny of the auks was assessed by mitochondrial DNA sequence comparisons in a study using 19 of the 22 auk species and two outgroup representatives. We compared more than 500 nucleotides from each of two mitochondrial genes encoding 12S rRNA and the NADH dehydrogenase subunit 6. Divergence times were estimated from transversional substitutions. The dovekie (Alle alle) is related to the razorbill (Alca torda) and the murres (Uria spp). Furthermore, the Xantus's murrelet (Synthliboramphus hypoleucus) and the ancient (Synthliboramphus antiquus) and Japanese murrelets (Synthliboramphus wumizusume) are genetically distinct members of the same main lineage, whereas brachyramphine and synthliboramphine murrelets are not closely related. An early adaptive radiation of six main species groups of auks seems to trace back to Middle Miocene. Later speciation probably involved ecological differentiations and geographical isolations.

  18. Mitochondrial sequence divergence among Antarctic killer whale ecotypes is consistent with multiple species.

    PubMed

    LeDuc, Richard G; Robertson, Kelly M; Pitman, Robert L

    2008-08-23

    Recently, three visually distinct forms of killer whales (Orcinus orca) were described from Antarctic waters and designated as types A, B and C. Based on consistent differences in prey selection and habitat preferences, morphological divergence and apparent lack of interbreeding among these broadly sympatric forms, it was suggested that they may represent separate species. To evaluate this hypothesis, we compared complete sequences of the mitochondrial control region from 81 Antarctic killer whale samples, including 9 type A, 18 type B, 47 type C and 7 type-undetermined individuals. We found three fixed differences that separated type A from B and C, and a single fixed difference that separated type C from A and B. These results are consistent with reproductive isolation among the different forms, although caution is needed in drawing further conclusions. Despite dramatic differences in morphology and ecology, the relatively low levels of sequence divergence in Antarctic killer whales indicate that these evolutionary changes occurred relatively rapidly and recently.

  19. Mitochondrial Genomes of Kinorhyncha: trnM Duplication and New Gene Orders within Animals.

    PubMed

    Popova, Olga V; Mikhailov, Kirill V; Nikitin, Mikhail A; Logacheva, Maria D; Penin, Aleksey A; Muntyan, Maria S; Kedrova, Olga S; Petrov, Nikolai B; Panchin, Yuri V; Aleoshin, Vladimir V

    2016-01-01

    Many features of mitochondrial genomes of animals, such as patterns of gene arrangement, nucleotide content and substitution rate variation are extensively used in evolutionary and phylogenetic studies. Nearly 6,000 mitochondrial genomes of animals have already been sequenced, covering the majority of animal phyla. One of the groups that escaped mitogenome sequencing is phylum Kinorhyncha-an isolated taxon of microscopic worm-like ecdysozoans. The kinorhynchs are thought to be one of the early-branching lineages of Ecdysozoa, and their mitochondrial genomes may be important for resolving evolutionary relations between major animal taxa. Here we present the results of sequencing and analysis of mitochondrial genomes from two members of Kinorhyncha, Echinoderes svetlanae (Cyclorhagida) and Pycnophyes kielensis (Allomalorhagida). Their mitochondrial genomes are circular molecules approximately 15 Kbp in size. The kinorhynch mitochondrial gene sequences are highly divergent, which precludes accurate phylogenetic inference. The mitogenomes of both species encode a typical metazoan complement of 37 genes, which are all positioned on the major strand, but the gene order is distinct and unique among Ecdysozoa or animals as a whole. We predict four types of start codons for protein-coding genes in E. svetlanae and five in P. kielensis with a consensus DTD in single letter code. The mitochondrial genomes of E. svetlanae and P. kielensis encode duplicated methionine tRNA genes that display compensatory nucleotide substitutions. Two distant species of Kinorhyncha demonstrate similar patterns of gene arrangements in their mitogenomes. Both genomes have duplicated methionine tRNA genes; the duplication predates the divergence of two species. The kinorhynchs share a few features pertaining to gene order that align them with Priapulida. Gene order analysis reveals that gene arrangement specific of Priapulida may be ancestral for Scalidophora, Ecdysozoa, and even Protostomia.

  20. Mitochondrial Genomes of Kinorhyncha: trnM Duplication and New Gene Orders within Animals

    PubMed Central

    Popova, Olga V.; Mikhailov, Kirill V.; Nikitin, Mikhail A.; Logacheva, Maria D.; Penin, Aleksey A.; Muntyan, Maria S.; Kedrova, Olga S.; Petrov, Nikolai B.; Panchin, Yuri V.

    2016-01-01

    Many features of mitochondrial genomes of animals, such as patterns of gene arrangement, nucleotide content and substitution rate variation are extensively used in evolutionary and phylogenetic studies. Nearly 6,000 mitochondrial genomes of animals have already been sequenced, covering the majority of animal phyla. One of the groups that escaped mitogenome sequencing is phylum Kinorhyncha—an isolated taxon of microscopic worm-like ecdysozoans. The kinorhynchs are thought to be one of the early-branching lineages of Ecdysozoa, and their mitochondrial genomes may be important for resolving evolutionary relations between major animal taxa. Here we present the results of sequencing and analysis of mitochondrial genomes from two members of Kinorhyncha, Echinoderes svetlanae (Cyclorhagida) and Pycnophyes kielensis (Allomalorhagida). Their mitochondrial genomes are circular molecules approximately 15 Kbp in size. The kinorhynch mitochondrial gene sequences are highly divergent, which precludes accurate phylogenetic inference. The mitogenomes of both species encode a typical metazoan complement of 37 genes, which are all positioned on the major strand, but the gene order is distinct and unique among Ecdysozoa or animals as a whole. We predict four types of start codons for protein-coding genes in E. svetlanae and five in P. kielensis with a consensus DTD in single letter code. The mitochondrial genomes of E. svetlanae and P. kielensis encode duplicated methionine tRNA genes that display compensatory nucleotide substitutions. Two distant species of Kinorhyncha demonstrate similar patterns of gene arrangements in their mitogenomes. Both genomes have duplicated methionine tRNA genes; the duplication predates the divergence of two species. The kinorhynchs share a few features pertaining to gene order that align them with Priapulida. Gene order analysis reveals that gene arrangement specific of Priapulida may be ancestral for Scalidophora, Ecdysozoa, and even Protostomia. PMID:27755612

  1. Next Generation sequencing of the Trichinella murrelli mitochondrial genome allows comprehensive comparison of its divergence from the principal agent of human trichinellosis, Trichinella spiralis

    USDA-ARS?s Scientific Manuscript database

    The mitochondrial genome’s non-recombinant mode of inheritance and relatively rapid rate of evolution has promoted its use as a marker for studying the biogeographic history and evolutionary interrelationships among many metazoan species. A modest portion of the mitochondrial genome has been define...

  2. Complete mitochondrial genome of Porzana fusca and Porzana pusilla and phylogenetic relationship of 16 Rallidae species.

    PubMed

    Chen, Peng; Han, Yuqing; Zhu, Chaoying; Gao, Bin; Ruan, Luzhang

    2017-12-01

    The complete mitochondrial genome sequences of Porzana fusca and Porzana pusilla were determined. The two avian species share a high degree of homology in terms of mitochondrial genome organization and gene arrangement. Their corresponding mitochondrial genomes are 16,935 and 16,978 bp and consist of 37 genes and a control region. Their PCGs were both 11,365 bp long and have similar structure. Their tRNA gene sequences could be folded into canonical cloverleaf secondary structure, except for tRNA Ser (AGY) , which lost its "DHU" arm. Based on the concatenated nucleotide sequences of the complete mitochondrial DNA genes of 16 Rallidae species, reconstruction of phylogenetic trees and analysis of the molecular clock of P. fusca and P. pusilla indicated that these species from a sister group, which in turn are sister group to Rallina eurizonoides. The genus Gallirallus is a sister group to genus Lewinia, and these groups in turn are sister groups to genus Porphyrio. Moreover, molecular clock analyses suggested that the basal divergence of Rallidae could be traced back to 40.47 (41.46‒39.45) million years ago (Mya), and the divergence of Porzana occurred approximately 5.80 (15.16‒0.79) Mya.

  3. Phylogenetic analysis of Sicilian goats reveals a new mtDNA lineage.

    PubMed

    Sardina, M T; Ballester, M; Marmi, J; Finocchiaro, R; van Kaam, J B C H M; Portolano, B; Folch, J M

    2006-08-01

    The mitochondrial hypervariable region 1 (HVR1) sequence of 67 goats belonging to the Girgentana, Maltese and Derivata di Siria breeds was partially sequenced in order to present the first phylogenetic characterization of Sicilian goat breeds. These sequences were compared with published sequences of Indian and Pakistani domestic goats and wild goats. Mitochondrial lineage A was observed in most of the Sicilian goats. However, three Girgentana haplotypes were highly divergent from the Capra hircus clade, indicating that a new mtDNA lineage in domestic goats was found.

  4. A revised timescale for human evolution based on ancient mitochondrial genomes.

    PubMed

    Fu, Qiaomei; Mittnik, Alissa; Johnson, Philip L F; Bos, Kirsten; Lari, Martina; Bollongino, Ruth; Sun, Chengkai; Giemsch, Liane; Schmitz, Ralf; Burger, Joachim; Ronchitelli, Anna Maria; Martini, Fabio; Cremonesi, Renata G; Svoboda, Jiří; Bauer, Peter; Caramelli, David; Castellano, Sergi; Reich, David; Pääbo, Svante; Krause, Johannes

    2013-04-08

    Recent analyses of de novo DNA mutations in modern humans have suggested a nuclear substitution rate that is approximately half that of previous estimates based on fossil calibration. This result has led to suggestions that major events in human evolution occurred far earlier than previously thought. Here, we use mitochondrial genome sequences from ten securely dated ancient modern humans spanning 40,000 years as calibration points for the mitochondrial clock, thus yielding a direct estimate of the mitochondrial substitution rate. Our clock yields mitochondrial divergence times that are in agreement with earlier estimates based on calibration points derived from either fossils or archaeological material. In particular, our results imply a separation of non-Africans from the most closely related sub-Saharan African mitochondrial DNAs (haplogroup L3) that occurred less than 62-95 kya. Though single loci like mitochondrial DNA (mtDNA) can only provide biased estimates of population divergence times, they can provide valid upper bounds. Our results exclude most of the older dates for African and non-African population divergences recently suggested by de novo mutation rate estimates in the nuclear genome. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Genetic structuring of European anchovy (Engraulis encrasicolus) populations through mitochondrial DNA sequences.

    PubMed

    Keskin, Emre; Atar, Hasan Huseyin

    2012-04-01

    Mitochondrial DNA sequence variation in 655 bpfragments of the cytochrome oxidase c subunit I gene, known as the DNA barcode, of European anchovy (Engraulis encrasicolus) was evaluated by analyzing 1529 individuals representing 16 populations from the Black Sea, through the Marmara Sea and the Aegean Sea to the Mediterranean Sea. A total of 19 (2.9%) variable sites were found among individuals, and these defined 10 genetically diverged populations with an overall mean distance of 1.2%. The highest nucleotide divergence was found between samples of eastern Mediterranean and northern Aegean (2.2%). Evolutionary history analysis among 16 populations clustered the Mediterranean Sea clades in one main branch and the other clades in another branch. Diverging pattern of the European anchovy populations correlated with geographic dispersion supports the genetic structuring through the Black Sea-Marmara Sea-Aegean Sea-Mediterranean Sea quad.

  6. Molecular phylogeography of the brown bear (Ursus arctos) in Northeastern Asia based on analyses of complete mitochondrial DNA sequences.

    PubMed

    Hirata, Daisuke; Mano, Tsutomu; Abramov, Alexei V; Baryshnikov, Gennady F; Kosintsev, Pavel A; Vorobiev, Alexandr A; Raichev, Evgeny G; Tsunoda, Hiroshi; Kaneko, Yayoi; Murata, Koichi; Fukui, Daisuke; Masuda, Ryuichi

    2013-07-01

    To further elucidate the migration history of the brown bears (Ursus arctos) on Hokkaido Island, Japan, we analyzed the complete mitochondrial DNA (mtDNA) sequences of 35 brown bears from Hokkaido, the southern Kuril Islands (Etorofu and Kunashiri), Sakhalin Island, and the Eurasian Continent (continental Russia, Bulgaria, and Tibet), and those of four polar bears. Based on these sequences, we reconstructed the maternal phylogeny of the brown bear and estimated divergence times to investigate the timing of brown bear migrations, especially in northeastern Eurasia. Our gene tree showed the mtDNA haplotypes of all 73 brown and polar bears to be divided into eight divergent lineages. The brown bear on Hokkaido was divided into three lineages (central, eastern, and southern). The Sakhalin brown bear grouped with eastern European and western Alaskan brown bears. Etorofu and Kunashiri brown bears were closely related to eastern Hokkaido brown bears and could have diverged from the eastern Hokkaido lineage after formation of the channel between Hokkaido and the southern Kuril Islands. Tibetan brown bears diverged early in the eastern lineage. Southern Hokkaido brown bears were closely related to North American brown bears.

  7. Transcriptional and phylogenetic analysis of five complete ambystomatid salamander mitochondrial genomes.

    PubMed

    Samuels, Amy K; Weisrock, David W; Smith, Jeramiah J; France, Katherine J; Walker, John A; Putta, Srikrishna; Voss, S Randal

    2005-04-11

    We report on a study that extended mitochondrial transcript information from a recent EST project to obtain complete mitochondrial genome sequence for 5 tiger salamander complex species (Ambystoma mexicanum, A. t. tigrinum, A. andersoni, A. californiense, and A. dumerilii). We describe, for the first time, aspects of mitochondrial transcription in a representative amphibian, and then use complete mitochondrial sequence data to examine salamander phylogeny at both deep and shallow levels of evolutionary divergence. The available mitochondrial ESTs for A. mexicanum (N=2481) and A. t. tigrinum (N=1205) provided 92% and 87% coverage of the mitochondrial genome, respectively. Complete mitochondrial sequences for all species were rapidly obtained by using long distance PCR and DNA sequencing. A number of genome structural characteristics (base pair length, base composition, gene number, gene boundaries, codon usage) were highly similar among all species and to other distantly related salamanders. Overall, mitochondrial transcription in Ambystoma approximated the pattern observed in other vertebrates. We inferred from the mapping of ESTs onto mtDNA that transcription occurs from both heavy and light strand promoters and continues around the entire length of the mtDNA, followed by post-transcriptional processing. However, the observation of many short transcripts corresponding to rRNA genes indicates that transcription may often terminate prematurely to bias transcription of rRNA genes; indeed an rRNA transcription termination signal sequence was observed immediately following the 16S rRNA gene. Phylogenetic analyses of salamander family relationships consistently grouped Ambystomatidae in a clade containing Cryptobranchidae and Hynobiidae, to the exclusion of Salamandridae. This robust result suggests a novel alternative hypothesis because previous studies have consistently identified Ambystomatidae and Salamandridae as closely related taxa. Phylogenetic analyses of tiger salamander complex species also produced robustly supported trees. The D-loop, used in previous molecular phylogenetic studies of the complex, was found to contain a relatively low level of variation and we identified mitochondrial regions with higher rates of molecular evolution that are more useful in resolving relationships among species. Our results show the benefit of using complete genome mitochondrial information in studies of recently and rapidly diverged taxa.

  8. Characterization and evolution of the mitochondrial DNA control region in hornbills (Bucerotiformes).

    PubMed

    Delport, Wayne; Ferguson, J Willem H; Bloomer, Paulette

    2002-06-01

    We determined the mitochondrial DNA control region sequences of six Bucerotiformes. Hornbills have the typical avian gene order and their control region is similar to other avian control regions in that it is partitioned into three domains: two variable domains that flank a central conserved domain. Two characteristics of the hornbill control region sequence differ from that of other birds. First, domain I is AT rich as opposed to AC rich, and second, the control region is approximately 500 bp longer than that of other birds. Both these deviations from typical avian control region sequence are explainable on the basis of repeat motifs in domain I of the hornbill control region. The repeat motifs probably originated from a duplication of CSB-1 as has been determined in chicken, quail, and snowgoose. Furthermore, the hornbill repeat motifs probably arose before the divergence of hornbills from each other but after the divergence of hornbills from other avian taxa. The mitochondrial control region of hornbills is suitable for both phylogenetic and population studies, with domains I and II probably more suited to population and phylogenetic analyses, respectively.

  9. Evolutionary relationships and divergence times among the native rats of Australia.

    PubMed

    Robins, Judith H; McLenachan, Patricia A; Phillips, Matthew J; McComish, Bennet J; Matisoo-Smith, Elizabeth; Ross, Howard A

    2010-12-02

    The genus Rattus is highly speciose and has a complex taxonomy that is not fully resolved. As shown previously there are two major groups within the genus, an Asian and an Australo-Papuan group. This study focuses on the Australo-Papuan group and particularly on the Australian rats. There are uncertainties regarding the number of species within the group and the relationships among them. We analysed 16 mitochondrial genomes, including seven novel genomes from six species, to help elucidate the evolutionary history of the Australian rats. We also demonstrate, from a larger dataset, the usefulness of short regions of the mitochondrial genome in identifying these rats at the species level. Analyses of 16 mitochondrial genomes representing species sampled from Australo-Papuan and Asian clades of Rattus indicate divergence of these two groups ~2.7 million years ago (Mya). Subsequent diversification of at least 4 lineages within the Australo-Papuan clade was rapid and occurred over the period from ~ 0.9-1.7 Mya, a finding that explains the difficulty in resolving some relationships within this clade. Phylogenetic analyses of our 126 taxon, but shorter sequence (1952 nucleotides long), Rattus database generally give well supported species clades. Our whole mitochondrial genome analyses are concordant with a taxonomic division that places the native Australian rats into the Rattus fuscipes species group. We suggest the following order of divergence of the Australian species. R. fuscipes is the oldest lineage among the Australian rats and is not part of a New Guinean radiation. R. lutreolus is also within this Australian clade and shallower than R. tunneyi while the R. sordidus group is the shallowest lineage in the clade. The divergences within the R. sordidus and R. leucopus lineages occurring about half a million years ago support the hypotheses of more recent interchanges of rats between Australia and New Guinea. While problematic for inference of deeper divergences, we report that the analysis of shorter mitochondrial sequences is very useful for species identification in rats.

  10. Estimation of divergence times in cnidarian evolution based on mitochondrial protein-coding genes and the fossil record.

    PubMed

    Park, Eunji; Hwang, Dae-Sik; Lee, Jae-Seong; Song, Jun-Im; Seo, Tae-Kun; Won, Yong-Jin

    2012-01-01

    The phylum Cnidaria is comprised of remarkably diverse and ecologically significant taxa, such as the reef-forming corals, and occupies a basal position in metazoan evolution. The origin of this phylum and the most recent common ancestors (MRCAs) of its modern classes remain mostly unknown, although scattered fossil evidence provides some insights on this topic. Here, we investigate the molecular divergence times of the major taxonomic groups of Cnidaria (27 Hexacorallia, 16 Octocorallia, and 5 Medusozoa) on the basis of mitochondrial DNA sequences of 13 protein-coding genes. For this analysis, the complete mitochondrial genomes of seven octocoral and two scyphozoan species were newly sequenced and combined with all available mitogenomic data from GenBank. Five reliable fossil dates were used to calibrate the Bayesian estimates of divergence times. The molecular evidence suggests that cnidarians originated 741 million years ago (Ma) (95% credible region of 686-819), and the major taxa diversified prior to the Cambrian (543 Ma). The Octocorallia and Scleractinia may have originated from radiations of survivors of the Permian-Triassic mass extinction, which matches their fossil record well. Copyright © 2011 Elsevier Inc. All rights reserved.

  11. Precise assignment of the heavy-strand promoter of mouse mitochondrial DNA: cognate start sites are not required for transcriptional initiation.

    PubMed Central

    Chang, D D; Clayton, D A

    1986-01-01

    Transcription of the heavy strand of mouse mitochondrial DNA starts from two closely spaced, distinct sites located in the displacement loop region of the genome. We report here an analysis of regulatory sequences required for faithful transcription from these two sites. Data obtained from in vitro assays demonstrated that a 51-base-pair region, encompassing nucleotides -40 to +11 of the downstream start site, contains sufficient information for accurate transcription from both start sites. Deletion of the 3' flanking sequences, including one or both start sites to -17, resulted in the initiation of transcription by the mitochondrial RNA polymerase from alternative sites within vector DNA sequences. This feature places the mouse heavy-strand promoter uniquely among other known mitochondrial promoters, all of which absolutely require cognate start sites for transcription. Comparison of the heavy-strand promoter with those of other vertebrate mitochondrial DNAs revealed a remarkably high rate of sequence divergence among species. Images PMID:3785226

  12. Recent African origin of modern humans revealed by complete sequences of hominoid mitochondrial DNAs.

    PubMed Central

    Horai, S; Hayasaka, K; Kondo, R; Tsugane, K; Takahata, N

    1995-01-01

    We analyzed the complete mitochondrial DNA (mtDNA) sequences of three humans (African, European, and Japanese), three African apes (common and pygmy chimpanzees, and gorilla), and one orangutan in an attempt to estimate most accurately the substitution rates and divergence times of hominoid mtDNAs. Nonsynonymous substitutions and substitutions in RNA genes have accumulated with an approximately clock-like regularity. From these substitutions and under the assumption that the orangutan and African apes diverged 13 million years ago, we obtained a divergence time for humans and chimpanzees of 4.9 million years. This divergence time permitted calibration of the synonymous substitution rate (3.89 x 10(-8)/site per year). To obtain the substitution rate in the displacement (D)-loop region, we compared the three human mtDNAs and measured the relative abundance of substitutions in the D-loop region and at synonymous sites. The estimated substitution rate in the D-loop region was 7.00 x 10(-8)/site per year. Using both synonymous and D-loop substitutions, we inferred the age of the last common ancestor of the human mtDNAs as 143,000 +/- 18,000 years. The shallow ancestry of human mtDNAs, together with the observation that the African sequence is the most diverged among humans, strongly supports the recent African origin of modern humans, Homo sapiens sapiens. PMID:7530363

  13. The mitochondrial genomes of the acoelomorph worms Paratomella rubra, Isodiametra pulchra and Archaphanostoma ylvae.

    PubMed

    Robertson, Helen E; Lapraz, François; Egger, Bernhard; Telford, Maximilian J; Schiffer, Philipp H

    2017-05-12

    Acoels are small, ubiquitous - but understudied - marine worms with a very simple body plan. Their internal phylogeny is still not fully resolved, and the position of their proposed phylum Xenacoelomorpha remains debated. Here we describe mitochondrial genome sequences from the acoels Paratomella rubra and Isodiametra pulchra, and the complete mitochondrial genome of the acoel Archaphanostoma ylvae. The P. rubra and A. ylvae sequences are typical for metazoans in size and gene content. The larger I. pulchra  mitochondrial genome contains both ribosomal genes, 21 tRNAs, but only 11 protein-coding genes. We find evidence suggesting a duplicated sequence in the I. pulchra mitochondrial genome. The P. rubra, I. pulchra and A. ylvae mitochondria have a unique genome organisation in comparison to other metazoan mitochondrial genomes. We found a large degree of protein-coding gene and tRNA overlap with little non-coding sequence in the compact P. rubra genome. Conversely, the A. ylvae and I. pulchra genomes have many long non-coding sequences between genes, likely driving genome size expansion in the latter. Phylogenetic trees inferred from mitochondrial genes retrieve Xenacoelomorpha as an early branching taxon in the deuterostomes. Sequence divergence analysis between P. rubra sampled in England and Spain indicates cryptic diversity.

  14. Mitogenome Sequencing in the Genus Camelus Reveals Evidence for Purifying Selection and Long-term Divergence between Wild and Domestic Bactrian Camels.

    PubMed

    Mohandesan, Elmira; Fitak, Robert R; Corander, Jukka; Yadamsuren, Adiya; Chuluunbat, Battsetseg; Abdelhadi, Omer; Raziq, Abdul; Nagy, Peter; Stalder, Gabrielle; Walzer, Chris; Faye, Bernard; Burger, Pamela A

    2017-08-30

    The genus Camelus is an interesting model to study adaptive evolution in the mitochondrial genome, as the three extant Old World camel species inhabit hot and low-altitude as well as cold and high-altitude deserts. We sequenced 24 camel mitogenomes and combined them with three previously published sequences to study the role of natural selection under different environmental pressure, and to advance our understanding of the evolutionary history of the genus Camelus. We confirmed the heterogeneity of divergence across different components of the electron transport system. Lineage-specific analysis of mitochondrial protein evolution revealed a significant effect of purifying selection in the concatenated protein-coding genes in domestic Bactrian camels. The estimated dN/dS < 1 in the concatenated protein-coding genes suggested purifying selection as driving force for shaping mitogenome diversity in camels. Additional analyses of the functional divergence in amino acid changes between species-specific lineages indicated fixed substitutions in various genes, with radical effects on the physicochemical properties of the protein products. The evolutionary time estimates revealed a divergence between domestic and wild Bactrian camels around 1.1 [0.58-1.8] million years ago (mya). This has major implications for the conservation and management of the critically endangered wild species, Camelus ferus.

  15. Complete mitochondrial genome phylogeographic analysis of killer whales (Orcinus orca) indicates multiple species.

    PubMed

    Morin, Phillip A; Archer, Frederick I; Foote, Andrew D; Vilstrup, Julia; Allen, Eric E; Wade, Paul; Durban, John; Parsons, Kim; Pitman, Robert; Li, Lewyn; Bouffard, Pascal; Abel Nielsen, Sandra C; Rasmussen, Morten; Willerslev, Eske; Gilbert, M Thomas P; Harkins, Timothy

    2010-07-01

    Killer whales (Orcinus orca) currently comprise a single, cosmopolitan species with a diverse diet. However, studies over the last 30 yr have revealed populations of sympatric "ecotypes" with discrete prey preferences, morphology, and behaviors. Although these ecotypes avoid social interactions and are not known to interbreed, genetic studies to date have found extremely low levels of diversity in the mitochondrial control region, and few clear phylogeographic patterns worldwide. This low level of diversity is likely due to low mitochondrial mutation rates that are common to cetaceans. Using killer whales as a case study, we have developed a method to readily sequence, assemble, and analyze complete mitochondrial genomes from large numbers of samples to more accurately assess phylogeography and estimate divergence times. This represents an important tool for wildlife management, not only for killer whales but for many marine taxa. We used high-throughput sequencing to survey whole mitochondrial genome variation of 139 samples from the North Pacific, North Atlantic, and southern oceans. Phylogenetic analysis indicated that each of the known ecotypes represents a strongly supported clade with divergence times ranging from approximately 150,000 to 700,000 yr ago. We recommend that three named ecotypes be elevated to full species, and that the remaining types be recognized as subspecies pending additional data. Establishing appropriate taxonomic designations will greatly aid in understanding the ecological impacts and conservation needs of these important marine predators. We predict that phylogeographic mitogenomics will become an important tool for improved statistical phylogeography and more precise estimates of divergence times.

  16. Complete mitochondrial genome phylogeographic analysis of killer whales (Orcinus orca) indicates multiple species

    PubMed Central

    Morin, Phillip A.; Archer, Frederick I.; Foote, Andrew D.; Vilstrup, Julia; Allen, Eric E.; Wade, Paul; Durban, John; Parsons, Kim; Pitman, Robert; Li, Lewyn; Bouffard, Pascal; Abel Nielsen, Sandra C.; Rasmussen, Morten; Willerslev, Eske; Gilbert, M. Thomas P.; Harkins, Timothy

    2010-01-01

    Killer whales (Orcinus orca) currently comprise a single, cosmopolitan species with a diverse diet. However, studies over the last 30 yr have revealed populations of sympatric “ecotypes” with discrete prey preferences, morphology, and behaviors. Although these ecotypes avoid social interactions and are not known to interbreed, genetic studies to date have found extremely low levels of diversity in the mitochondrial control region, and few clear phylogeographic patterns worldwide. This low level of diversity is likely due to low mitochondrial mutation rates that are common to cetaceans. Using killer whales as a case study, we have developed a method to readily sequence, assemble, and analyze complete mitochondrial genomes from large numbers of samples to more accurately assess phylogeography and estimate divergence times. This represents an important tool for wildlife management, not only for killer whales but for many marine taxa. We used high-throughput sequencing to survey whole mitochondrial genome variation of 139 samples from the North Pacific, North Atlantic, and southern oceans. Phylogenetic analysis indicated that each of the known ecotypes represents a strongly supported clade with divergence times ranging from ∼150,000 to 700,000 yr ago. We recommend that three named ecotypes be elevated to full species, and that the remaining types be recognized as subspecies pending additional data. Establishing appropriate taxonomic designations will greatly aid in understanding the ecological impacts and conservation needs of these important marine predators. We predict that phylogeographic mitogenomics will become an important tool for improved statistical phylogeography and more precise estimates of divergence times. PMID:20413674

  17. On the value of nuclear and mitochondrial gene sequences for reconstructing the phylogeny of vanilloid orchids (Vanilloideae, Orchidaceae)

    PubMed Central

    Cameron, Kenneth M.

    2009-01-01

    Background and Aims Most molecular phylogenetic studies of Orchidaceae have relied heavily on DNA sequences from the plastid genome. Nuclear and mitochondrial loci have only been superficially examined for their systematic value. Since 40% of the genera within Vanilloideae are achlorophyllous mycoheterotrophs, this is an ideal group of orchids in which to evaluate non-plastid gene sequences. Methods Phylogenetic reconstructions for Vanilloideae were produced using independent and combined data from the nuclear 18S, 5·8S and 26S rDNA genes and the mitochondrial atpA gene and nad1b-c intron. Key Results These new data indicate placements for genera such as Lecanorchis and Galeola, for which plastid gene sequences have been mostly unavailable. Nuclear and mitochondrial parsimony jackknife trees are congruent with each other and previously published trees based solely on plastid data. Because of high rates of sequence divergence among vanilloid orchids, even the short 5·8S rDNA gene provides impressive levels of resolution and support. Conclusions Orchid systematists are encouraged to sequence nuclear and mitochondrial gene regions along with the growing number of plastid loci available. PMID:19251715

  18. A complete Neandertal mitochondrial genome sequence determined by high-throughput sequencing

    PubMed Central

    Green, Richard E.; Malaspinas, Anna-Sapfo; Krause, Johannes; Briggs, Adrian W.; Johnson, Philip L. F.; Uhler, Caroline; Meyer, Matthias; Good, Jeffrey M.; Maricic, Tomislav; Stenzel, Udo; Prüfer, Kay; Siebauer, Michael; Burbano, Hernán A.; Ronan, Michael; Rothberg, Jonathan M.; Egholm, Michael; Rudan, Pavao; Brajković, Dejana; Kućan, Željko; Gušić, Ivan; Wikström, Mårten; Laakkonen, Liisa; Kelso, Janet; Slatkin, Montgomery; Pääbo, Svante

    2008-01-01

    Summary A complete mitochondrial (mt) genome sequence was reconstructed from a 38,000-year-old Neandertal individual using 8,341 mtDNA sequences identified among 4.8 Gb of DNA generated from ~0.3 grams of bone. Analysis of the assembled sequence unequivocally establishes that the Neandertal mtDNA falls outside the variation of extant human mtDNAs and allows an estimate of the divergence date between the two mtDNA lineages of 660,000±140,000 years. Of the 13 proteins encoded in the mtDNA, subunit 2 of cytochrome c oxidase of the mitochondrial electron transport chain has experienced the largest number of amino acid substitutions in human ancestors since the separation from Neandertals. There is evidence that purifying selection in the Neandertal mtDNA was reduced compared to other primate lineages suggesting that the effective population size of Neandertals was small. PMID:18692465

  19. Mitochondrial and nuclear DNA sequences reveal recent divergence in morphologically indistinguishable petrels.

    PubMed

    Welch, Andreanna J; Yoshida, Allison A; Fleischer, Robert C

    2011-04-01

    Often during the process of divergence, genetic markers will only gradually obtain the signal of isolation. Studies of recently diverged taxa utilizing both mitochondrial and nuclear data sets may therefore yield gene trees with differing levels of phylogenetic signal as a result of differences in coalescence times. However, several factors can lead to this same pattern, and it is important to distinguish between them to gain a better understanding of the process of divergence and the factors driving it. Here, we employ three nuclear intron loci in addition to the mitochondrial Cytochrome b gene to investigate the magnitude and timing of divergence between two endangered and nearly indistinguishable petrel taxa: the Galapagos (GAPE) and Hawaiian (HAPE) petrels (Pterodroma phaeopygia and P. sandwichensis). Phylogenetic analyses indicated reciprocal monophyly between these two taxa for the mitochondrial data set, but trees derived from the nuclear introns were unresolved. Coalescent analyses revealed effectively no migration between GAPE and HAPE over the last 100,000 generations and that they diverged relatively recently, approximately 550,000 years ago, coincident with a time of intense ecological change in both the Galapagos and Hawaiian archipelagoes. This indicates that recent divergence and incomplete lineage sorting are causing the difference in the strength of the phylogenetic signal of each data set, instead of insufficient variability or ongoing male-biased dispersal. Further coalescent analyses show that gene flow is low even between islands within each archipelago suggesting that divergence may be continuing at a local scale. Accurately identifying recently isolated taxa is becoming increasingly important as many clearly recognizable species are already threatened by extinction. © 2011 Blackwell Publishing Ltd.

  20. First comparative insight into the architecture of COI mitochondrial minicircle molecules of dicyemids reveals marked inter-species variation.

    PubMed

    Catalano, Sarah R; Whittington, Ian D; Donnellan, Stephen C; Bertozzi, Terry; Gillanders, Bronwyn M

    2015-07-01

    Dicyemids, poorly known parasites of benthic cephalopods, are one of the few phyla in which mitochondrial (mt) genome architecture departs from the typical ~16 kb circular metazoan genome. In addition to a putative circular genome, a series of mt minicircles that each comprises the mt encoded units (I-III) of the cytochrome c oxidase complex have been reported. Whether the structure of the mt minicircles is a consistent feature among dicyemid species is unknown. Here we analyse the complete cytochrome c oxidase subunit I (COI) minicircle molecule, containing the COI gene and an associated non-coding region (NCR), for ten dicyemid species, allowing for first time comparisons between species of minicircle architecture, NCR function and inferences of minicircle replication. Divergence in COI nucleotide sequences between dicyemid species was high (average net divergence = 31.6%) while within species diversity was lower (average net divergence = 0.2%). The NCR and putative 5' section of the COI gene were highly divergent between dicyemid species (average net nucleotide divergence of putative 5' COI section = 61.1%). No tRNA genes were found in the NCR, although palindrome sequences with the potential to form stem-loop structures were identified in some species, which may play a role in transcription or other biological processes.

  1. Molecular identification and phylogenetic study of Demodex caprae.

    PubMed

    Zhao, Ya-E; Cheng, Juan; Hu, Li; Ma, Jun-Xian

    2014-10-01

    The DNA barcode has been widely used in species identification and phylogenetic analysis since 2003, but there have been no reports in Demodex. In this study, to obtain an appropriate DNA barcode for Demodex, molecular identification of Demodex caprae based on mitochondrial cox1 was conducted. Firstly, individual adults and eggs of D. caprae were obtained for genomic DNA (gDNA) extraction; Secondly, mitochondrial cox1 fragment was amplified, cloned, and sequenced; Thirdly, cox1 fragments of D. caprae were aligned with those of other Demodex retrieved from GenBank; Finally, the intra- and inter-specific divergences were computed and the phylogenetic trees were reconstructed to analyze phylogenetic relationship in Demodex. Results obtained from seven 429-bp fragments of D. caprae showed that sequence identities were above 99.1% among three adults and four eggs. The intraspecific divergences in D. caprae, Demodex folliculorum, Demodex brevis, and Demodex canis were 0.0-0.9, 0.5-0.9, 0.0-0.2, and 0.0-0.5%, respectively, while the interspecific divergences between D. caprae and D. folliculorum, D. canis, and D. brevis were 20.3-20.9, 21.8-23.0, and 25.0-25.3, respectively. The interspecific divergences were 10 times higher than intraspecific ones, indicating considerable barcoding gap. Furthermore, the phylogenetic trees showed that four Demodex species gathered separately, representing independent species; and Demodex folliculorum gathered with canine Demodex, D. caprae, and D. brevis in sequence. In conclusion, the selected 429-bp mitochondrial cox1 gene is an appropriate DNA barcode for molecular classification, identification, and phylogenetic analysis of Demodex. D. caprae is an independent species and D. folliculorum is closer to D. canis than to D. caprae or D. brevis.

  2. Molecular diversification of Trichuris spp. from Sigmodontinae (Cricetidae) rodents from Argentina based on mitochondrial DNA sequences.

    PubMed

    Callejón, Rocío; Robles, María Del Rosario; Panei, Carlos Javier; Cutillas, Cristina

    2016-08-01

    A molecular phylogenetic hypothesis is presented for the genus Trichuris based on sequence data from mitochondrial cytochrome c oxidase 1 (cox1) and cytochrome b (cob). The taxa consisted of nine populations of whipworm from five species of Sigmodontinae rodents from Argentina. Bayesian Inference, Maximum Parsimony, and Maximum Likelihood methods were used to infer phylogenies for each gene separately but also for the combined mitochondrial data and the combined mitochondrial and nuclear dataset. Phylogenetic results based on cox1 and cob mitochondrial DNA (mtDNA) revealed three clades strongly resolved corresponding to three different species (Trichuris navonae, Trichuris bainae, and Trichuris pardinasi) showing phylogeographic variation, but relationships among Trichuris species were poorly resolved. Phylogenetic reconstruction based on concatenated sequences had greater phylogenetic resolution for delimiting species and populations intra-specific of Trichuris than those based on partitioned genes. Thus, populations of T. bainae and T. pardinasi could be affected by geographical factors and co-divergence parasite-host.

  3. Complete mitochondrial genome sequences of the northern spotted owl (Strix occidentalis caurina) and the barred owl (Strix varia; Aves: Strigiformes: Strigidae) confirm the presence of a duplicated control region

    PubMed Central

    Henderson, James B.; Sellas, Anna B.; Fuchs, Jérôme; Bowie, Rauri C.K.; Dumbacher, John P.

    2017-01-01

    We report here the successful assembly of the complete mitochondrial genomes of the northern spotted owl (Strix occidentalis caurina) and the barred owl (S. varia). We utilized sequence data from two sequencing methodologies, Illumina paired-end sequence data with insert lengths ranging from approximately 250 nucleotides (nt) to 9,600 nt and read lengths from 100–375 nt and Sanger-derived sequences. We employed multiple assemblers and alignment methods to generate the final assemblies. The circular genomes of S. o. caurina and S. varia are comprised of 19,948 nt and 18,975 nt, respectively. Both code for two rRNAs, twenty-two tRNAs, and thirteen polypeptides. They both have duplicated control region sequences with complex repeat structures. We were not able to assemble the control regions solely using Illumina paired-end sequence data. By fully spanning the control regions, Sanger-derived sequences enabled accurate and complete assembly of these mitochondrial genomes. These are the first complete mitochondrial genome sequences of owls (Aves: Strigiformes) possessing duplicated control regions. We searched the nuclear genome of S. o. caurina for copies of mitochondrial genes and found at least nine separate stretches of nuclear copies of gene sequences originating in the mitochondrial genome (Numts). The Numts ranged from 226–19,522 nt in length and included copies of all mitochondrial genes except tRNAPro, ND6, and tRNAGlu. Strix occidentalis caurina and S. varia exhibited an average of 10.74% (8.68% uncorrected p-distance) divergence across the non-tRNA mitochondrial genes. PMID:29038757

  4. Evaluation of DNA barcoding and identification of new haplomorphs in Canadian deerflies and horseflies.

    PubMed

    Cywinska, A; Hannan, M A; Kevan, P G; Roughley, R E; Iranpour, M; Hunter, F F

    2010-12-01

    This paper reports the first tests of the suitability of the standardized mitochondrial cytochrome c oxidase subunit I (COI) barcoding system for the identification of Canadian deerflies and horseflies. Two additional mitochondrial molecular markers were used to determine whether unambiguous species recognition in tabanids can be achieved. Our 332 Canadian tabanid samples yielded 650 sequences from five genera and 42 species. Standard COI barcodes demonstrated a strong A + T bias (mean 68.1%), especially at third codon positions (mean 93.0%). Our preliminary test of this system showed that the standard COI barcode worked well for Canadian Tabanidae: the target DNA can be easily recovered from small amounts of insect tissue and aligned for all tabanid taxa. Each tabanid species possessed distinctive sets of COI haplotypes which discriminated well among species. Average conspecific Kimura two-parameter (K2P) divergence (0.49%) was 12 times lower than the average divergence within species. Both the neighbour-joining and the Bayesian methods produced trees with identical monophyletic species groups. Two species, Chrysops dawsoni Philip and Chrysops montanus Osten Sacken (Diptera: Tabanidae), showed relatively deep intraspecific sequence divergences (∼ 10 times the average) for all three mitochondrial gene regions analysed. We suggest provisional differentiation of Ch. montanus into two haplotypes, namely, Ch. montanus haplomorph 1 and Ch. montanus haplomorph 2, both defined by their molecular sequences and by newly discovered differences in structural features near their ocelli. © 2010 Brock University. Medical and Veterinary Entomology © 2010 The Royal Entomological Society.

  5. A Reevaluation of Rice Mitochondrial Evolution Based on the Complete Sequence of Male-Fertile and Male-Sterile Mitochondrial Genomes1[C][W][OA

    PubMed Central

    Bentolila, Stéphane; Stefanov, Stefan

    2012-01-01

    Plant mitochondrial genomes have features that distinguish them radically from their animal counterparts: a high rate of rearrangement, of uptake and loss of DNA sequences, and an extremely low point mutation rate. Perhaps the most unique structural feature of plant mitochondrial DNAs is the presence of large repeated sequences involved in intramolecular and intermolecular recombination. In addition, rare recombination events can occur across shorter repeats, creating rearrangements that result in aberrant phenotypes, including pollen abortion, which is known as cytoplasmic male sterility (CMS). Using next-generation sequencing, we pyrosequenced two rice (Oryza sativa) mitochondrial genomes that belong to the indica subspecies. One genome is normal, while the other carries the wild abortive-CMS. We find that numerous rearrangements in the rice mitochondrial genome occur even between close cytotypes during rice evolution. Unlike maize (Zea mays), a closely related species also belonging to the grass family, integration of plastid sequences did not play a role in the sequence divergence between rice cytotypes. This study also uncovered an excellent candidate for the wild abortive-CMS-encoding gene; like most of the CMS-associated open reading frames that are known in other species, this candidate was created via a rearrangement, is chimeric in structure, possesses predicted transmembrane domains, and coopted the promoter of a genuine mitochondrial gene. Our data give new insights into rice mitochondrial evolution, correcting previous reports. PMID:22128137

  6. Mitochondrial genome rearrangements in glomus species triggered by homologous recombination between distinct mtDNA haplotypes.

    PubMed

    Beaudet, Denis; Terrat, Yves; Halary, Sébastien; de la Providencia, Ivan Enrique; Hijri, Mohamed

    2013-01-01

    Comparative mitochondrial genomics of arbuscular mycorrhizal fungi (AMF) provide new avenues to overcome long-lasting obstacles that have hampered studies aimed at understanding the community structure, diversity, and evolution of these multinucleated and genetically polymorphic organisms.AMF mitochondrial (mt) genomes are homogeneous within isolates, and their intergenic regions harbor numerous mobile elements that have rapidly diverged, including homing endonuclease genes, small inverted repeats, and plasmid-related DNA polymerase genes (dpo), making them suitable targets for the development of reliable strain-specific markers. However, these elements may also lead to genome rearrangements through homologous recombination, although this has never previously been reported in this group of obligate symbiotic fungi. To investigate whether such rearrangements are present and caused by mobile elements in AMF, the mitochondrial genomes from two Glomeraceae members (i.e., Glomus cerebriforme and Glomus sp.) with substantial mtDNA synteny divergence,were sequenced and compared with available glomeromycotan mitochondrial genomes. We used an extensive nucleotide/protein similarity network-based approach to investigated podiversity in AMF as well as in other organisms for which sequences are publicly available. We provide strong evidence of dpo-induced inter-haplotype recombination, leading to a reshuffled mitochondrial genome in Glomus sp. These findings raise questions as to whether AMF single spore cultivations artificially underestimate mtDNA genetic diversity.We assessed potential dpo dispersal mechanisms in AMF and inferred a robust phylogenetic relationship with plant mitochondrial plasmids. Along with other indirect evidence, our analyses indicate that members of the Glomeromycota phylum are potential donors of mitochondrial plasmids to plants.

  7. Mitochondrial Genome Rearrangements in Glomus Species Triggered by Homologous Recombination between Distinct mtDNA Haplotypes

    PubMed Central

    Beaudet, Denis; Terrat, Yves; Halary, Sébastien; de la Providencia, Ivan Enrique; Hijri, Mohamed

    2013-01-01

    Comparative mitochondrial genomics of arbuscular mycorrhizal fungi (AMF) provide new avenues to overcome long-lasting obstacles that have hampered studies aimed at understanding the community structure, diversity, and evolution of these multinucleated and genetically polymorphic organisms. AMF mitochondrial (mt) genomes are homogeneous within isolates, and their intergenic regions harbor numerous mobile elements that have rapidly diverged, including homing endonuclease genes, small inverted repeats, and plasmid-related DNA polymerase genes (dpo), making them suitable targets for the development of reliable strain-specific markers. However, these elements may also lead to genome rearrangements through homologous recombination, although this has never previously been reported in this group of obligate symbiotic fungi. To investigate whether such rearrangements are present and caused by mobile elements in AMF, the mitochondrial genomes from two Glomeraceae members (i.e., Glomus cerebriforme and Glomus sp.) with substantial mtDNA synteny divergence, were sequenced and compared with available glomeromycotan mitochondrial genomes. We used an extensive nucleotide/protein similarity network-based approach to investigate dpo diversity in AMF as well as in other organisms for which sequences are publicly available. We provide strong evidence of dpo-induced inter-haplotype recombination, leading to a reshuffled mitochondrial genome in Glomus sp. These findings raise questions as to whether AMF single spore cultivations artificially underestimate mtDNA genetic diversity. We assessed potential dpo dispersal mechanisms in AMF and inferred a robust phylogenetic relationship with plant mitochondrial plasmids. Along with other indirect evidence, our analyses indicate that members of the Glomeromycota phylum are potential donors of mitochondrial plasmids to plants. PMID:23925788

  8. Enlightenment of Yeast Mitochondrial Homoplasmy: Diversified Roles of Gene Conversion

    PubMed Central

    Ling, Feng; Mikawa, Tsutomu; Shibata, Takehiko

    2011-01-01

    Mitochondria have their own genomic DNA. Unlike the nuclear genome, each cell contains hundreds to thousands of copies of mitochondrial DNA (mtDNA). The copies of mtDNA tend to have heterogeneous sequences, due to the high frequency of mutagenesis, but are quickly homogenized within a cell (“homoplasmy”) during vegetative cell growth or through a few sexual generations. Heteroplasmy is strongly associated with mitochondrial diseases, diabetes and aging. Recent studies revealed that the yeast cell has the machinery to homogenize mtDNA, using a common DNA processing pathway with gene conversion; i.e., both genetic events are initiated by a double-stranded break, which is processed into 3′ single-stranded tails. One of the tails is base-paired with the complementary sequence of the recipient double-stranded DNA to form a D-loop (homologous pairing), in which repair DNA synthesis is initiated to restore the sequence lost by the breakage. Gene conversion generates sequence diversity, depending on the divergence between the donor and recipient sequences, especially when it occurs among a number of copies of a DNA sequence family with some sequence variations, such as in immunoglobulin diversification in chicken. MtDNA can be regarded as a sequence family, in which the members tend to be diversified by a high frequency of spontaneous mutagenesis. Thus, it would be interesting to determine why and how double-stranded breakage and D-loop formation induce sequence homogenization in mitochondria and sequence diversification in nuclear DNA. We will review the mechanisms and roles of mtDNA homoplasmy, in contrast to nuclear gene conversion, which diversifies gene and genome sequences, to provide clues toward understanding how the common DNA processing pathway results in such divergent outcomes. PMID:24710143

  9. The mitochondrial genomes of Campodea fragilis and C. lubbocki(Hexapoda: Diplura): high genetic divergence in a morphologically uniformtaxon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Podsiadlowski, L.; Carapelli, A.; Nardi, F.

    2005-12-01

    Mitochondrial genomes from two dipluran hexapods of the genus Campodea have been sequenced. Gene order is the same as in most other hexapods and crustaceans. Secondary structures of tRNAs reveal specific structural changes in tRNA-C, tRNA-R, tRNA-S1 and tRNA-S2. Comparative analyses of nucleotide and amino acid composition, as well as structural features of both ribosomal RNA subunits, reveal substantial differences among the analyzed taxa. Although the two Campodea species are morphologically highly uniform, genetic divergence is larger than expected, suggesting a long evolutionary history under stable ecological conditions.

  10. Resolution of the African hominoid trichotomy by use of a mitochondrial gene sequence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruvolo, M.; Disotell, T.R.; Allard, M.W.

    1991-02-15

    Mitochondrial DNA sequences encoding the cytochrome oxidase subunit II gene have been determined for five primate species, siamang (Hylobates syndactylus), lowland gorilla (Gorilla gorilla), pygmy chimpanzee (Pan paniscus), crab-eating macaque (Macaca fascicularis), and green monkey (Cercopithecus aethiops), and compared with published sequences of other primate and nonprimate species. Comparisons of cytochrome oxidase subunit II gene sequences provide clear-cut evidence from the mitochondrial genome for the separation of the African ape trichotomy into two evolutionary lineages, one leading to gorillas and the other to humans and chimpanzees. Several different tree-building methods support this same phylogenetic tree topology. The comparisons also yieldmore » trees in which a substantial length separates the divergence point of gorillas from that of humans and chimpanzees, suggesting that the lineage most immediately ancestral to humans and chimpanzees may have been in existence for a relatively long time.« less

  11. Selections that isolate recombinant mitochondrial genomes in animals

    PubMed Central

    Ma, Hansong; O'Farrell, Patrick H

    2015-01-01

    Homologous recombination is widespread and catalyzes evolution. Nonetheless, its existence in animal mitochondrial DNA is questioned. We designed selections for recombination between co-resident mitochondrial genomes in various heteroplasmic Drosophila lines. In four experimental settings, recombinant genomes became the sole or dominant genome in the progeny. Thus, selection uncovers occurrence of homologous recombination in Drosophila mtDNA and documents its functional benefit. Double-strand breaks enhanced recombination in the germline and revealed somatic recombination. When the recombination partner was a diverged Drosophila melanogaster genome or a genome from a different species such as Drosophila yakuba, sequencing revealed long continuous stretches of exchange. In addition, the distribution of sequence polymorphisms in recombinants allowed us to map a selected trait to a particular region in the Drosophila mitochondrial genome. Thus, recombination can be harnessed to dissect function and evolution of mitochondrial genome. DOI: http://dx.doi.org/10.7554/eLife.07247.001 PMID:26237110

  12. The Large Mitochondrial Genome of Symbiodinium minutum Reveals Conserved Noncoding Sequences between Dinoflagellates and Apicomplexans

    PubMed Central

    Shoguchi, Eiichi; Shinzato, Chuya; Hisata, Kanako; Satoh, Nori; Mungpakdee, Sutada

    2015-01-01

    Even though mitochondrial genomes, which characterize eukaryotic cells, were first discovered more than 50 years ago, mitochondrial genomics remains an important topic in molecular biology and genome sciences. The Phylum Alveolata comprises three major groups (ciliates, apicomplexans, and dinoflagellates), the mitochondrial genomes of which have diverged widely. Even though the gene content of dinoflagellate mitochondrial genomes is reportedly comparable to that of apicomplexans, the highly fragmented and rearranged genome structures of dinoflagellates have frustrated whole genomic analysis. Consequently, noncoding sequences and gene arrangements of dinoflagellate mitochondrial genomes have not been well characterized. Here we report that the continuous assembled genome (∼326 kb) of the dinoflagellate, Symbiodinium minutum, is AT-rich (∼64.3%) and that it contains three protein-coding genes. Based upon in silico analysis, the remaining 99% of the genome comprises transcriptomic noncoding sequences. RNA edited sites and unique, possible start and stop codons clarify conserved regions among dinoflagellates. Our massive transcriptome analysis shows that almost all regions of the genome are transcribed, including 27 possible fragmented ribosomal RNA genes and 12 uncharacterized small RNAs that are similar to mitochondrial RNA genes of the malarial parasite, Plasmodium falciparum. Gene map comparisons show that gene order is only slightly conserved between S. minutum and P. falciparum. However, small RNAs and intergenic sequences share sequence similarities with P. falciparum, suggesting that the function of noncoding sequences has been preserved despite development of very different genome structures. PMID:26199191

  13. Extensive Horizontal Transfer and Homologous Recombination Generate Highly Chimeric Mitochondrial Genomes in Yeast.

    PubMed

    Wu, Baojun; Buljic, Adnan; Hao, Weilong

    2015-10-01

    The frequency of horizontal gene transfer (HGT) in mitochondrial DNA varies substantially. In plants, HGT is relatively common, whereas in animals it appears to be quite rare. It is of considerable importance to understand mitochondrial HGT across the major groups of eukaryotes at a genome-wide level, but so far this has been well studied only in plants. In this study, we generated ten new mitochondrial genome sequences and analyzed 40 mitochondrial genomes from the Saccharomycetaceae to assess the magnitude and nature of mitochondrial HGT in yeasts. We provide evidence for extensive, homologous-recombination-mediated, mitochondrial-to-mitochondrial HGT occurring throughout yeast mitochondrial genomes, leading to genomes that are highly chimeric evolutionarily. This HGT has led to substantial intraspecific polymorphism in both sequence content and sequence divergence, which to our knowledge has not been previously documented in any mitochondrial genome. The unexpectedly high frequency of mitochondrial HGT in yeast may be driven by frequent mitochondrial fusion, relatively low mitochondrial substitution rates and pseudohyphal fusion to produce heterokaryons. These findings suggest that mitochondrial HGT may play an important role in genome evolution of a much broader spectrum of eukaryotes than previously appreciated and that there is a critical need to systematically study the frequency, extent, and importance of mitochondrial HGT across eukaryotes. © The Author 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  14. Improved systematic tRNA gene annotation allows new insights into the evolution of mitochondrial tRNA structures and into the mechanisms of mitochondrial genome rearrangements

    PubMed Central

    Jühling, Frank; Pütz, Joern; Bernt, Matthias; Donath, Alexander; Middendorf, Martin; Florentz, Catherine; Stadler, Peter F.

    2012-01-01

    Transfer RNAs (tRNAs) are present in all types of cells as well as in organelles. tRNAs of animal mitochondria show a low level of primary sequence conservation and exhibit ‘bizarre’ secondary structures, lacking complete domains of the common cloverleaf. Such sequences are hard to detect and hence frequently missed in computational analyses and mitochondrial genome annotation. Here, we introduce an automatic annotation procedure for mitochondrial tRNA genes in Metazoa based on sequence and structural information in manually curated covariance models. The method, applied to re-annotate 1876 available metazoan mitochondrial RefSeq genomes, allows to distinguish between remaining functional genes and degrading ‘pseudogenes’, even at early stages of divergence. The subsequent analysis of a comprehensive set of mitochondrial tRNA genes gives new insights into the evolution of structures of mitochondrial tRNA sequences as well as into the mechanisms of genome rearrangements. We find frequent losses of tRNA genes concentrated in basal Metazoa, frequent independent losses of individual parts of tRNA genes, particularly in Arthropoda, and wide-spread conserved overlaps of tRNAs in opposite reading direction. Direct evidence for several recent Tandem Duplication-Random Loss events is gained, demonstrating that this mechanism has an impact on the appearance of new mitochondrial gene orders. PMID:22139921

  15. Diversification in the northern neotropics: mitochondrial and nuclear DNA phylogeography of the iguana Ctenosaura pectinata and related species.

    PubMed

    Zarza, Eugenia; Reynoso, Victor H; Emerson, Brent C

    2008-07-01

    While Quaternary climatic changes are considered by some to have been a major factor promoting speciation within the neotropics, others suggest that much of the neotropical species diversity originated before the Pleistocene. Using mitochondrial and nuclear sequence data, we evaluate the relative importance of Pleistocene and pre-Pleistocene events within the evolutionary history of the Mexican iguana Ctenosaura pectinata, and related species. Results support the existence of cryptic lineages with strong mitochondrial divergence (> 4%) among them. Some of these lineages form zones of secondary contact, with one of them hybridizing with C. hemilopha. Evolutionary network analyses reveal the oldest populations of C. pectinata to be those of the northern and southern Mexican coastal regions. Inland and mid-latitudinal coastal populations are younger in age as a consequence of a history of local extinction within these regions followed by re-colonization. Estimated divergence times suggest that C. pectinata originated during the Pliocene, whereas geographically distinct mitochondrial DNA lineages first started to diverge during the Pliocene, with subsequent divergence continuing through the Pleistocene. Our results highlight the influence of both Pliocene and Pleistocene events in shaping the geographical distribution of genetic variation within neotropical lowland organisms. Areas of high genetic diversity in southern Mexico were detected, this finding plus the high levels of genetic diversity within C. pectinata, have implications for the conservation of this threatened species.

  16. Direct sequencing of mitochondrial DNA detects highly divergent haplotypes in blue marlin (Makaira nigricans).

    PubMed

    Finnerty, J R; Block, B A

    1992-06-01

    We were able to differentiate between species of billfish (Istiophoridae family) and to detect considerable intraspecific variation in the blue marlin (Makaira nigricans) by directly sequencing a polymerase chain reaction (PCR)-amplified, 612-bp fragment of the mitochondrial cytochrome b gene. Thirteen variable nucleotide sites separated blue marlin (n = 26) into 7 genotypes. On average, these genotypes differed by 5.7 base substitutions. A smaller sample of swordfish from an equally broad geographic distribution displayed relatively little intraspecific variation, with an average of 1.3 substitutions separating different genotypes. A cladistic analysis of blue marlin cytochrome b variants indicates two major divergent evolutionary lines within the species. The frequencies of these two major evolutionary lines differ significantly between Atlantic and Pacific ocean basins. This finding is important given that the Atlantic stocks of blue marlin are considered endangered. Migration from the Pacific can help replenish the numbers of blue marlin in the Atlantic, but the loss of certain mitochondrial DNA haplotypes in the Atlantic due to overfishing probably could not be remedied by an influx of Pacific fish because of their absence in the Pacific population. Fishery management strategies should attempt to preserve the genetic diversity within the species. The detection of DNA sequence polymorphism indicates the utility of PCR technology in pelagic fishery genetics.

  17. Complete mitochondrial genomes of the yellow-bellied slider turtle Trachemys scripta scripta and anoxia tolerant red-eared slider Trachemys scripta elegans.

    PubMed

    Yu, Danna; Fang, Xindong; Storey, Kenneth B; Zhang, Yongpu; Zhang, Jiayong

    2016-05-01

    The complete mitochondrial genomes of the yellow-bellied slider (Trachemys scripta scripta) and anoxia tolerant red-eared slider (Trachemys scripta elegans) turtles were sequenced to analyze gene arrangement. The complete mt genomes of T. s. scripta and elegans were circular molecules of 16,791 bp and 16,810 bp in length, respectively, and included an A + 1 frameshift insertion in ND3 and ND4L genes. The AT content of the overall base composition of scripta and elegans was 61.2%. Nucleotide sequence divergence of the mt-genome (p distance) between scripta and elegans was 0.4%. A detailed comparison between the mitochondrial genomes of the two subspecies is shown.

  18. Phylogenetic relationships of bears (the Ursidae) inferred from mitochondrial DNA sequences.

    PubMed

    Zhang, Y P; Ryder, O A

    1994-12-01

    The phylogenetic relationships among some bear species are still open questions. We present here mitochondrial DNA sequences of D-loop region, cytochrome b, 12S rRNA, tRNA(Pro), and tRNA(Thr) genes from all bear species and the giant panda. A series of evolutionary trees with concordant topology has been derived based on the combined data set of all of the mitochondrial DNA sequences, which may have resolved the evolutionary relationships of all bear species: the ancestor of the spectacled bear diverged first, followed by the sloth bear; the brown bear and polar bear are sister taxa relative to the Asiatic black bear; the closest relative of the American black bear is the sun bear. Primers for forensic identification of the giant panda and bears are proposed. Analysis of these data, in combination with data from primates and antelopes, suggests that relative substitutional rates between different mitochondrial DNA regions may vary greatly among different taxa of the vertebrates.

  19. Distinct subspecies or phenotypic plasticity? Genetic and morphological differentiation of mountain honey bees in East Africa.

    PubMed

    Gruber, Karl; Schöning, Caspar; Otte, Marianne; Kinuthia, Wanja; Hasselmann, Martin

    2013-09-01

    Identifying the forces shaping intraspecific phenotypic and genotypic divergence are of key importance in evolutionary biology. Phenotypic divergence may result from local adaptation or, especially in species with strong gene flow, from pronounced phenotypic plasticity. Here, we examine morphological and genetic divergence among populations of the western honey bee Apis mellifera in the topographically heterogeneous East African region. The currently accepted "mountain refugia hypothesis" states that populations living in disjunct montane forests belong to a different lineage than those in savanna habitats surrounding these forests. We obtained microsatellite data, mitochondrial sequences, and morphometric data from worker honey bees collected from feral colonies in three montane forests and corresponding neighboring savanna regions in Kenya. Honey bee colonies from montane forests showed distinct worker morphology compared with colonies in savanna areas. Mitochondrial sequence data did not support the existence of the two currently accepted subspecies. Furthermore, analyses of the microsatellite data with a Bayesian clustering method did not support the existence of two source populations as it would be expected under the mountain refugia scenario. Our findings suggest that phenotypic plasticity rather than distinct ancestry is the leading cause behind the phenotypic divergence observed between montane forest and savanna honey bees. Our study thus corroborates the idea that high gene flow may select for increased plasticity.

  20. Rapid rate of control-region evolution in Pacific butterflyfishes (Chaetodontidae).

    PubMed

    McMillan, W O; Palumbi, S R

    1997-11-01

    Sequence differences in the tRNA-proline (tRNApro) end of the mitochondrial control-region of three species of Pacific butterflyfishes accumulated 33-43 times more rapidly than did changes within the mitochondrial cytochrome b gene (cytb). Rapid evolution in this region was accompanied by strong transition/transversion bias and large variation in the probability of a DNA substitution among sites. These substitution constraints placed an absolute ceiling on the magnitude of sequence divergence that could be detected between individuals. This divergence "ceiling" was reached rapidly and led to a decay in the relative rate of control-region/cytb b evolution. A high rate of evolution in this section of the control-region of butterflyfishes stands in marked contrast to the patterns reported in some other fish lineages. Although the mechanism underlying rate variation remains unclear, all taxa with rapid evolution in the 5'-end of the control-region showed extreme transition biases. By contrast, in taxa with slower control-region evolution, transitions accumulated at nearly the same rate as transversions. More information is needed to understand the relationship between nucleotide bias and the rate of evolution in the 5'-end of the control-region. Despite strong constraints on sequence change, phylogenetic information was preserved in the group of recently differentiated species and supported the clustering of sequences into three major mtDNA groupings. Within these groups, very similar control-region sequences were widely distributed across the Pacific Ocean and were shared between recognized species, indicating a lack of mitochondrial sequence monophyly among species.

  1. Limited Genetic Diversity Preceded Extinction of the Tasmanian Tiger

    PubMed Central

    Menzies, Brandon R.; Renfree, Marilyn B.; Heider, Thomas; Mayer, Frieder; Hildebrandt, Thomas B.; Pask, Andrew J.

    2012-01-01

    The Tasmanian tiger or thylacine was the largest carnivorous marsupial when Europeans first reached Australia. Sadly, the last known thylacine died in captivity in 1936. A recent analysis of the genome of the closely related and extant Tasmanian devil demonstrated limited genetic diversity between individuals. While a similar lack of diversity has been reported for the thylacine, this analysis was based on just two individuals. Here we report the sequencing of an additional 12 museum-archived specimens collected between 102 and 159 years ago. We examined a portion of the mitochondrial DNA hyper-variable control region and determined that all sequences were on average 99.5% identical at the nucleotide level. As a measure of accuracy we also sequenced mitochondrial DNA from a mother and two offspring. As expected, these samples were found to be 100% identical, validating our methods. We also used 454 sequencing to reconstruct 2.1 kilobases of the mitochondrial genome, which shared 99.91% identity with the two complete thylacine mitochondrial genomes published previously. Our thylacine genomic data also contained three highly divergent putative nuclear mitochondrial sequences, which grouped phylogenetically with the published thylacine mitochondrial homologs but contained 100-fold more polymorphisms than the conserved fragments. Together, our data suggest that the thylacine population in Tasmania had limited genetic diversity prior to its extinction, possibly as a result of their geographic isolation from mainland Australia approximately 10,000 years ago. PMID:22530022

  2. Mosaic Origins of a Complex Chimeric Mitochondrial Gene in Silene vulgaris

    PubMed Central

    Storchova, Helena; Müller, Karel; Lau, Steffen; Olson, Matthew S.

    2012-01-01

    Chimeric genes are significant sources of evolutionary innovation that are normally created when portions of two or more protein coding regions fuse to form a new open reading frame. In plant mitochondria astonishingly high numbers of different novel chimeric genes have been reported, where they are generated through processes of rearrangement and recombination. Nonetheless, because most studies do not find or report nucleotide variation within the same chimeric gene, evolution after the origination of these chimeric genes remains unstudied. Here we identify two alleles of a complex chimera in Silene vulgaris that are divergent in nucleotide sequence, genomic position relative to other mitochondrial genes, and expression patterns. Structural patterns suggest a history partially influenced by gene conversion between the chimeric gene and functional copies of subunit 1 of the mitochondrial ATP synthase gene (atp1). We identified small repeat structures within the chimeras that are likely recombination sites allowing generation of the chimera. These results establish the potential for chimeric gene divergence in different plant mitochondrial lineages within the same species. This result contrasts with the absence of diversity within mitochondrial chimeras found in crop species. PMID:22383961

  3. The Large Mitochondrial Genome of Symbiodinium minutum Reveals Conserved Noncoding Sequences between Dinoflagellates and Apicomplexans.

    PubMed

    Shoguchi, Eiichi; Shinzato, Chuya; Hisata, Kanako; Satoh, Nori; Mungpakdee, Sutada

    2015-07-20

    Even though mitochondrial genomes, which characterize eukaryotic cells, were first discovered more than 50 years ago, mitochondrial genomics remains an important topic in molecular biology and genome sciences. The Phylum Alveolata comprises three major groups (ciliates, apicomplexans, and dinoflagellates), the mitochondrial genomes of which have diverged widely. Even though the gene content of dinoflagellate mitochondrial genomes is reportedly comparable to that of apicomplexans, the highly fragmented and rearranged genome structures of dinoflagellates have frustrated whole genomic analysis. Consequently, noncoding sequences and gene arrangements of dinoflagellate mitochondrial genomes have not been well characterized. Here we report that the continuous assembled genome (∼326 kb) of the dinoflagellate, Symbiodinium minutum, is AT-rich (∼64.3%) and that it contains three protein-coding genes. Based upon in silico analysis, the remaining 99% of the genome comprises transcriptomic noncoding sequences. RNA edited sites and unique, possible start and stop codons clarify conserved regions among dinoflagellates. Our massive transcriptome analysis shows that almost all regions of the genome are transcribed, including 27 possible fragmented ribosomal RNA genes and 12 uncharacterized small RNAs that are similar to mitochondrial RNA genes of the malarial parasite, Plasmodium falciparum. Gene map comparisons show that gene order is only slightly conserved between S. minutum and P. falciparum. However, small RNAs and intergenic sequences share sequence similarities with P. falciparum, suggesting that the function of noncoding sequences has been preserved despite development of very different genome structures. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  4. Presence of a mitochondrial-type 70-kDa heat shock protein in Trichomonas vaginalis suggests a very early mitochondrial endosymbiosis in eukaryotes

    PubMed Central

    Germot, Agnès; Philippe, Hervé; Le Guyader, Hervé

    1996-01-01

    Molecular phylogenetic analyses, based mainly on ribosomal RNA, show that three amitochondriate protist lineages, diplomonads, microsporidia, and trichomonads, emerge consistently at the base of the eukaryotic tree before groups having mitochondria. This suggests that these groups could have diverged before the mitochondrial endosymbiosis. Nevertheless, since all these organisms live in anaerobic environments, the absence of mitochondria might be due to secondary loss, as demonstrated for the later emerging eukaryote Entamoeba histolytica. We have now isolated from Trichomonas vaginalis a gene encoding a chaperone protein (HSP70) that in other lineages is addressed to the mitochondrial compartment. The phylogenetic reconstruction unambiguously located this HSP70 within a large set of mitochondrial sequences, itself a sister-group of α-purple bacteria. In addition, the T. vaginalis protein exhibits the GDAWV sequence signature, so far exclusively found in mitochondrial HSP70 and in proteobacterial dnaK. Thus mitochondrial endosymbiosis could have occurred earlier than previously assumed. The trichomonad double membrane-bounded organelles, the hydrogenosomes, could have evolved from mitochondria. PMID:8962101

  5. Presence of a mitochondrial-type 70-kDa heat shock protein in Trichomonas vaginalis suggests a very early mitochondrial endosymbiosis in eukaryotes.

    PubMed

    Germot, A; Philippe, H; Le Guyader, H

    1996-12-10

    Molecular phylogenetic analyses, based mainly on ribosomal RNA, show that three amitochondriate protist lineages, diplomonads, microsporidia, and trichomonads, emerge consistently at the base of the eukaryotic tree before groups having mitochondria. This suggests that these groups could have diverged before the mitochondrial endosymbiosis. Nevertheless, since all these organisms live in anaerobic environments, the absence of mitochondria might be due to secondary loss, as demonstrated for the later emerging eukaryote Entamoeba histolytica. We have now isolated from Trichomonas vaginalis a gene encoding a chaperone protein (HSP70) that in other lineages is addressed to the mitochondrial compartment. The phylogenetic reconstruction unambiguously located this HSP70 within a large set of mitochondrial sequences, itself a sister-group of alpha-purple bacteria. In addition, the T. vaginalis protein exhibits the GDAWV sequence signature, so far exclusively found in mitochondrial HSP70 and in proteobacterial dnaK. Thus mitochondrial endosymbiosis could have occurred earlier than previously assumed. The trichomonad double membrane-bounded organelles, the hydrogenosomes, could have evolved from mitochondria.

  6. Mitochondrial genome of the freshwater jellyfish Craspedacusta sowerbyi and phylogenetics of Medusozoa.

    PubMed

    Zou, Hong; Zhang, Jin; Li, Wenxiang; Wu, Shangong; Wang, Guitang

    2012-01-01

    The 17,922 base pairs (bp) nucleotide sequence of the linear mitochondrial DNA (mtDNA) molecule of the freshwater jellyfish Craspedacusta sowerbyi (Hydrozoa, Trachylina, Limnomedusae) has been determined. This sequence exhibits surprisingly low A+T content (57.1%), containing genes for 13 energy pathway proteins, a small and a large subunit rRNAs, and methionine and tryptophan tRNAs. Mitochondrial ancestral medusozoan gene order (AMGO) was found in the C. sowerbyi, as those found in Cubaia aphrodite (Hydrozoa, Trachylina, Limnomedusae), discomedusan Scyphozoa and Staurozoa. The genes of C. sowerbyi mtDNA are arranged in two clusters with opposite transcriptional polarities, whereby transcription proceeds toward the ends of the DNA molecule. Identical inverted terminal repeats (ITRs) flank the ends of the mitochondrial DNA molecule, a characteristic typical of medusozoans. In addition, two open reading frames (ORFs) of 354 and 1611 bp in length were found downstream of the large subunit rRNA gene, similar to the two ORFs of ORF314 and polB discovered in the linear mtDNA of C. aphrodite, discomedusan Scyphozoa and Staurozoa. Phylogenetic analyses of C. sowerbyi and other cnidarians were carried out based on both nucleotide and inferred amino acid sequences of the 13 mitochondrial energy pathway genes. Our working hypothesis supports the monophyletic Medusozoa being a sister group to Octocorallia (Cnidaria, Anthozoa). Within Medusozoa, the phylogenetic analysis suggests that Staurozoa may be the earliest diverging class and the sister group of all other medusozoans. Cubozoa and coronate Scyphozoa form a clade that is the sister group of Hydrozoa plus discomedusan Scyphozoa. Hydrozoa is the sister group of discomedusan Scyphozoa. Semaeostomeae is a paraphyletic clade with Rhizostomeae, while Limnomedusae (Trachylina) is the sister group of hydroidolinans and may be the earliest diverging lineage among Hydrozoa.

  7. Mitochondrial Genome of the Freshwater Jellyfish Craspedacusta sowerbyi and Phylogenetics of Medusozoa

    PubMed Central

    Zou, Hong; Zhang, Jin; Li, Wenxiang; Wu, Shangong; Wang, Guitang

    2012-01-01

    The 17,922 base pairs (bp) nucleotide sequence of the linear mitochondrial DNA (mtDNA) molecule of the freshwater jellyfish Craspedacusta sowerbyi (Hydrozoa,Trachylina, Limnomedusae) has been determined. This sequence exhibits surprisingly low A+T content (57.1%), containing genes for 13 energy pathway proteins, a small and a large subunit rRNAs, and methionine and tryptophan tRNAs. Mitochondrial ancestral medusozoan gene order (AMGO) was found in the C. sowerbyi, as those found in Cubaia aphrodite (Hydrozoa, Trachylina, Limnomedusae), discomedusan Scyphozoa and Staurozoa. The genes of C. sowerbyi mtDNA are arranged in two clusters with opposite transcriptional polarities, whereby transcription proceeds toward the ends of the DNA molecule. Identical inverted terminal repeats (ITRs) flank the ends of the mitochondrial DNA molecule, a characteristic typical of medusozoans. In addition, two open reading frames (ORFs) of 354 and 1611 bp in length were found downstream of the large subunit rRNA gene, similar to the two ORFs of ORF314 and polB discovered in the linear mtDNA of C. aphrodite, discomedusan Scyphozoa and Staurozoa. Phylogenetic analyses of C. sowerbyi and other cnidarians were carried out based on both nucleotide and inferred amino acid sequences of the 13 mitochondrial energy pathway genes. Our working hypothesis supports the monophyletic Medusozoa being a sister group to Octocorallia (Cnidaria, Anthozoa). Within Medusozoa, the phylogenetic analysis suggests that Staurozoa may be the earliest diverging class and the sister group of all other medusozoans. Cubozoa and coronate Scyphozoa form a clade that is the sister group of Hydrozoa plus discomedusan Scyphozoa. Hydrozoa is the sister group of discomedusan Scyphozoa. Semaeostomeae is a paraphyletic clade with Rhizostomeae, while Limnomedusae (Trachylina) is the sister group of hydroidolinans and may be the earliest diverging lineage among Hydrozoa. PMID:23240028

  8. Snake mitochondrial genomes: phylogenetic relationships and implications of extended taxon sampling for interpretations of mitogenomic evolution

    PubMed Central

    2010-01-01

    Background Snake mitochondrial genomes are of great interest in understanding mitogenomic evolution because of gene duplications and rearrangements and the fast evolutionary rate of their genes compared to other vertebrates. Mitochondrial gene sequences have also played an important role in attempts to resolve the contentious phylogenetic relationships of especially the early divergences among alethinophidian snakes. Two recent innovative studies found dramatic gene- and branch-specific relative acceleration in snake protein-coding gene evolution, particularly along internal branches leading to Serpentes and Alethinophidia. It has been hypothesized that some of these rate shifts are temporally (and possibly causally) associated with control region duplication and/or major changes in ecology and anatomy. Results The near-complete mitochondrial (mt) genomes of three henophidian snakes were sequenced: Anilius scytale, Rhinophis philippinus, and Charina trivirgata. All three genomes share a duplicated control region and translocated tRNALEU, derived features found in all alethinophidian snakes studied to date. The new sequence data were aligned with mt genome data for 21 other species of snakes and used in phylogenetic analyses. Phylogenetic results agreed with many other studies in recovering several robust clades, including Colubroidea, Caenophidia, and Cylindrophiidae+Uropeltidae. Nodes within Henophidia that have been difficult to resolve robustly in previous analyses remained uncompellingly resolved here. Comparisons of relative rates of evolution of rRNA vs. protein-coding genes were conducted by estimating branch lengths across the tree. Our expanded sampling revealed dramatic acceleration along the branch leading to Typhlopidae, particularly long rRNA terminal branches within Scolecophidia, and that most of the dramatic acceleration in protein-coding gene rate along Serpentes and Alethinophidia branches occurred before Anilius diverged from other alethinophidians. Conclusions Mitochondrial gene sequence data alone may not be able to robustly resolve basal divergences among alethinophidian snakes. Taxon sampling plays an important role in identifying mitogenomic evolutionary events within snakes, and in testing hypotheses explaining their origin. Dramatic rate shifts in mitogenomic evolution occur within Scolecophidia as well as Alethinophidia, thus falsifying the hypothesis that these shifts in snakes are associated exclusively with evolution of a non-burrowing lifestyle, macrostomatan feeding ecology and/or duplication of the control region, both restricted to alethinophidians among living snakes. PMID:20055998

  9. Mitochondrial Divergence between Western and Eastern Great Bustards: Implications for Conservation and Species Status.

    PubMed

    Kessler, Aimee Elizabeth; Santos, Malia A; Flatz, Ramona; Batbayar, Nyambayar; Natsagdorj, Tseveenmyadag; Batsuur, Dashnyam; Bidashko, Fyodor G; Galbadrakh, Natsag; Goroshko, Oleg; Khrokov, Valery V; Unenbat, Tuvshin; Vagner, Ivan I; Wang, Muyang; Smith, Christopher Irwin

    2018-06-02

    The Great Bustard is the heaviest bird capable of flight and an iconic species of the Eurasian steppe. Populations of both currently recognized subspecies are highly fragmented and critically small in Asia. We used DNA sequence data from the mitochondrial cytochrome b gene and the mitochondrial control region to estimate the degree of mitochondrial differentiation and rates of female gene flow between the subspecies. We obtained genetic samples from 51 individuals of Otis tarda dybowskii representing multiple populations, including the first samples from Kazakhstan and Mongolia and samples from near the Altai Mountains, the proposed geographic divide between the subspecies, allowing for better characterization of the boundary between the two subspecies. We compared these with existing sequence data (n=66) from O. t. tarda. Our results suggest, though do not conclusively prove, that O. t. dybowskii and O. t. tarda may be distinct species. The geographic distribution of haplotypes, phylogenetic analysis, analyses of molecular variance, and coalescent estimation of divergence time and female migration rates indicate that O. t. tarda and O. t. dybowskii are highly differentiated in the mitochondrial genome, have been isolated for approximately 1.4 million years, and exchange much less than one female migrant per generation. Our findings indicate that the two forms should at least be recognized and managed as separate evolutionary units. Populations in Xinjiang, China and Khövsgöl and Bulgan, Mongolia exhibited the highest levels of genetic diversity and should be prioritized in conservation planning.

  10. Interbreeding among deeply divergent mitochondrial lineages in the American cockroach (Periplaneta americana)

    NASA Astrophysics Data System (ADS)

    von Beeren, Christoph; Stoeckle, Mark Y.; Xia, Joyce; Burke, Griffin; Kronauer, Daniel J. C.

    2015-02-01

    DNA barcoding promises to be a useful tool to identify pest species assuming adequate representation of genetic variants in a reference library. Here we examined mitochondrial DNA barcodes in a global urban pest, the American cockroach (Periplaneta americana). Our sampling effort generated 284 cockroach specimens, most from New York City, plus 15 additional U.S. states and six other countries, enabling the first large-scale survey of P. americana barcode variation. Periplaneta americana barcode sequences (n = 247, including 24 GenBank records) formed a monophyletic lineage separate from other Periplaneta species. We found three distinct P. americana haplogroups with relatively small differences within (<=0.6%) and larger differences among groups (2.4%-4.7%). This could be interpreted as indicative of multiple cryptic species. However, nuclear DNA sequences (n = 77 specimens) revealed extensive gene flow among mitochondrial haplogroups, confirming a single species. This unusual genetic pattern likely reflects multiple introductions from genetically divergent source populations, followed by interbreeding in the invasive range. Our findings highlight the need for comprehensive reference databases in DNA barcoding studies, especially when dealing with invasive populations that might be derived from multiple genetically distinct source populations.

  11. Mitogenomic analysis of the genus Panthera.

    PubMed

    Wei, Lei; Wu, Xiaobing; Zhu, Lixin; Jiang, Zhigang

    2011-10-01

    The complete sequences of the mitochondrial DNA genomes of Panthera tigris, Panthera pardus, and Panthera uncia were determined using the polymerase chain reaction method. The lengths of the complete mitochondrial DNA sequences of the three species were 16990, 16964, and 16773 bp, respectively. Each of the three mitochondrial DNA genomes included 13 protein-coding genes, 22 tRNA, two rRNA, one O(L)R, and one control region. The structures of the genomes were highly similar to those of Felis catus, Acinonyx jubatus, and Neofelis nebulosa. The phylogenies of the genus Panthera were inferred from two combined mitochondrial sequence data sets and the complete mitochondrial genome sequences, by MP (maximum parsimony), ML (maximum likelihood), and Bayesian analysis. The results showed that Panthera was composed of Panthera leo, P. uncia, P. pardus, Panthera onca, P. tigris, and N. nebulosa, which was included as the most basal member. The phylogeny within Panthera genus was N. nebulosa (P. tigris (P. onca (P. pardus, (P. leo, P. uncia)))). The divergence times for Panthera genus were estimated based on the ML branch lengths and four well-established calibration points. The results showed that at about 11.3 MYA, the Panthera genus separated from other felid species and then evolved into the several species of the genus. In detail, N. nebulosa was estimated to be founded about 8.66 MYA, P. tigris about 6.55 MYA, P. uncia about 4.63 MYA, and P. pardus about 4.35 MYA. All these estimated times were older than those estimated from the fossil records. The divergence event, evolutionary process, speciation, and distribution pattern of P. uncia, a species endemic to the central Asia with core habitats on the Qinghai-Tibetan Plateau and surrounding highlands, mostly correlated with the geological tectonic events and intensive climate shifts that happened at 8, 3.6, 2.5, and 1.7 MYA on the plateau during the late Cenozoic period.

  12. Population histories of right whales (Cetacea: Eubalaena) inferred from mitochondrial sequence diversities and divergences of their whale lice (Amphipoda: Cyamus).

    PubMed

    Kaliszewska, Zofia A; Seger, Jon; Rowntree, Victoria J; Barco, Susan G; Benegas, Rafael; Best, Peter B; Brown, Moira W; Brownell, Robert L; Carribero, Alejandro; Harcourt, Robert; Knowlton, Amy R; Marshall-Tilas, Kim; Patenaude, Nathalie J; Rivarola, Mariana; Schaeff, Catherine M; Sironi, Mariano; Smith, Wendy A; Yamada, Tadasu K

    2005-10-01

    Right whales carry large populations of three 'whale lice' (Cyamus ovalis, Cyamus gracilis, Cyamus erraticus) that have no other hosts. We used sequence variation in the mitochondrial COI gene to ask (i) whether cyamid population structures might reveal associations among right whale individuals and subpopulations, (ii) whether the divergences of the three nominally conspecific cyamid species on North Atlantic, North Pacific, and southern right whales (Eubalaena glacialis, Eubalaena japonica, Eubalaena australis) might indicate their times of separation, and (iii) whether the shapes of cyamid gene trees might contain information about changes in the population sizes of right whales. We found high levels of nucleotide diversity but almost no population structure within oceans, indicating large effective population sizes and high rates of transfer between whales and subpopulations. North Atlantic and Southern Ocean populations of all three species are reciprocally monophyletic, and North Pacific C. erraticus is well separated from North Atlantic and southern C. erraticus. Mitochondrial clock calibrations suggest that these divergences occurred around 6 million years ago (Ma), and that the Eubalaena mitochondrial clock is very slow. North Pacific C. ovalis forms a clade inside the southern C. ovalis gene tree, implying that at least one right whale has crossed the equator in the Pacific Ocean within the last 1-2 million years (Myr). Low-frequency polymorphisms are more common than expected under neutrality for populations of constant size, but there is no obvious signal of rapid, interspecifically congruent expansion of the kind that would be expected if North Atlantic or southern right whales had experienced a prolonged population bottleneck within the last 0.5 Myr.

  13. Complete mitochondrial DNA sequence of a tadpole shrimp (Triops cancriformis) and analysis of museum samples.

    PubMed

    Umetsu, Kazuo; Iwabuchi, Naruki; Yuasa, Isao; Saitou, Naruya; Clark, Paul F; Boxshall, Geoff; Osawa, Motoki; Igarashi, Keiji

    2002-12-01

    The complete mitochondrial DNA (mtNDA) of the tadpole shrimp Triops cancriformis was sequenced. The sequence consisted of 15,101 bp with an A+T content of 69%. Its gene arrangement was identical with those sequences of the water flea (Daphnia pulex) and giant tiger prawn (Penaeus monodon), whereas it differed from that of the brine shrimp (Artemia franciscana) in the arrangement of its genes for tRNAs. Phylogenetic analysis revealed T. cancriformis to be more closely related to the water flea than to the brine shrimp and giant tiger prawn. We also compared the 16S rRNA sequences of five formalin-fixed tadpole shrimps that had been collected in five different locations and stored in a museum. The sequence divergence was in the range of 0-1.51%, suggesting that those samples were closely related to each other.

  14. What Is Peromyscus? Evidence from nuclear and mitochondrial DNA sequences suggests the need for a new classification

    PubMed Central

    Platt, Roy N.; Amman, Brian R.; Keith, Megan S.; Thompson, Cody W.; Bradley, Robert D.

    2015-01-01

    The evolutionary relationships between Peromyscus, Habromys, Isthmomys, Megadontomys, Neotomodon, Osgoodomys, and Podomys are poorly understood. In order to further explore the evolutionary boundaries of Peromyscus and compare potential taxonomic solutions for this diverse group and its relatives, we conducted phylogenetic analyses of DNA sequence data from alcohol dehydrogenase (Adh1-I2), beta fibrinogen (Fgb-I7), interphotoreceptor retinoid-binding protein (Rbp3), and cytochrome-b (Cytb). Phylogenetic analyses of mitochondrial and nuclear genes produced similar topologies although levels of nodal support varied. The best-supported topology was obtained by combining nuclear and mitochondrial sequences. No monophyletic Peromyscus clade was supported. Instead, support was found for a clade containing Habromys, Megadontomys, Neotomodon, Osgoodomys, Podomys, and Peromyscus suggesting paraphyly of Peromyscus and confirming previous observations. Our analyses indicated an early divergence of Isthmomys from Peromyscus (approximately 8 million years ago), whereas most other peromyscine taxa emerged within the last 6 million years. To recover a monophyletic taxonomy from Peromyscus and affiliated lineages, we detail 3 taxonomic options in which Habromys, Megadontomys, Neotomodon, Osgoodomys, and Podomys are retained as genera, subsumed as subgenera, or subsumed as species groups within Peromyscus. Each option presents distinct taxonomic challenges, and the appropriate taxonomy must reflect the substantial levels of morphological divergence that characterize this group while maintaining the monophyletic relationships obtained from genetic data. PMID:26937047

  15. What Is Peromyscus? Evidence from nuclear and mitochondrial DNA sequences suggests the need for a new classification.

    PubMed

    Platt, Roy N; Amman, Brian R; Keith, Megan S; Thompson, Cody W; Bradley, Robert D

    2015-08-03

    The evolutionary relationships between Peromyscus , Habromys , Isthmomys , Megadontomys , Neotomodon , Osgoodomys , and Podomys are poorly understood. In order to further explore the evolutionary boundaries of Peromyscus and compare potential taxonomic solutions for this diverse group and its relatives, we conducted phylogenetic analyses of DNA sequence data from alcohol dehydrogenase ( Adh 1-I2), beta fibrinogen ( Fgb -I7), interphotoreceptor retinoid-binding protein ( Rbp 3), and cytochrome- b ( Cytb ). Phylogenetic analyses of mitochondrial and nuclear genes produced similar topologies although levels of nodal support varied. The best-supported topology was obtained by combining nuclear and mitochondrial sequences. No monophyletic Peromyscus clade was supported. Instead, support was found for a clade containing Habromys , Megadontomys , Neotomodon , Osgoodomys , Podomys , and Peromyscus suggesting paraphyly of Peromyscus and confirming previous observations. Our analyses indicated an early divergence of Isthmomys from Peromyscus (approximately 8 million years ago), whereas most other peromyscine taxa emerged within the last 6 million years. To recover a monophyletic taxonomy from Peromyscus and affiliated lineages, we detail 3 taxonomic options in which Habromys , Megadontomys , Neotomodon , Osgoodomys , and Podomys are retained as genera, subsumed as subgenera, or subsumed as species groups within Peromyscus . Each option presents distinct taxonomic challenges, and the appropriate taxonomy must reflect the substantial levels of morphological divergence that characterize this group while maintaining the monophyletic relationships obtained from genetic data.

  16. Mitochondrial genomes reveal an explosive radiation of extinct and extant bears near the Miocene-Pliocene boundary.

    PubMed

    Krause, Johannes; Unger, Tina; Noçon, Aline; Malaspinas, Anna-Sapfo; Kolokotronis, Sergios-Orestis; Stiller, Mathias; Soibelzon, Leopoldo; Spriggs, Helen; Dear, Paul H; Briggs, Adrian W; Bray, Sarah C E; O'Brien, Stephen J; Rabeder, Gernot; Matheus, Paul; Cooper, Alan; Slatkin, Montgomery; Pääbo, Svante; Hofreiter, Michael

    2008-07-28

    Despite being one of the most studied families within the Carnivora, the phylogenetic relationships among the members of the bear family (Ursidae) have long remained unclear. Widely divergent topologies have been suggested based on various data sets and methods. We present a fully resolved phylogeny for ursids based on ten complete mitochondrial genome sequences from all eight living and two recently extinct bear species, the European cave bear (Ursus spelaeus) and the American giant short-faced bear (Arctodus simus). The mitogenomic data yield a well-resolved topology for ursids, with the sloth bear at the basal position within the genus Ursus. The sun bear is the sister taxon to both the American and Asian black bears, and this clade is the sister clade of cave bear, brown bear and polar bear confirming a recent study on bear mitochondrial genomes. Sequences from extinct bears represent the third and fourth Pleistocene species for which complete mitochondrial genomes have been sequenced. Moreover, the cave bear specimen demonstrates that mitogenomic studies can be applied to Pleistocene fossils that have not been preserved in permafrost, and therefore have a broad application within ancient DNA research. Molecular dating of the mtDNA divergence times suggests a rapid radiation of bears in both the Old and New Worlds around 5 million years ago, at the Miocene-Pliocene boundary. This coincides with major global changes, such as the Messinian crisis and the first opening of the Bering Strait, and suggests a global influence of such events on species radiations.

  17. Mitochondrial genomes reveal an explosive radiation of extinct and extant bears near the Miocene-Pliocene boundary

    PubMed Central

    2008-01-01

    Background Despite being one of the most studied families within the Carnivora, the phylogenetic relationships among the members of the bear family (Ursidae) have long remained unclear. Widely divergent topologies have been suggested based on various data sets and methods. Results We present a fully resolved phylogeny for ursids based on ten complete mitochondrial genome sequences from all eight living and two recently extinct bear species, the European cave bear (Ursus spelaeus) and the American giant short-faced bear (Arctodus simus). The mitogenomic data yield a well-resolved topology for ursids, with the sloth bear at the basal position within the genus Ursus. The sun bear is the sister taxon to both the American and Asian black bears, and this clade is the sister clade of cave bear, brown bear and polar bear confirming a recent study on bear mitochondrial genomes. Conclusion Sequences from extinct bears represent the third and fourth Pleistocene species for which complete mitochondrial genomes have been sequenced. Moreover, the cave bear specimen demonstrates that mitogenomic studies can be applied to Pleistocene fossils that have not been preserved in permafrost, and therefore have a broad application within ancient DNA research. Molecular dating of the mtDNA divergence times suggests a rapid radiation of bears in both the Old and New Worlds around 5 million years ago, at the Miocene-Pliocene boundary. This coincides with major global changes, such as the Messinian crisis and the first opening of the Bering Strait, and suggests a global influence of such events on species radiations. PMID:18662376

  18. Phylogenetic analysis of higher-level relationships within Hydroidolina (Cnidaria: Hydrozoa) using mitochondrial genome data and insight into their mitochondrial transcription.

    PubMed

    Kayal, Ehsan; Bentlage, Bastian; Cartwright, Paulyn; Yanagihara, Angel A; Lindsay, Dhugal J; Hopcroft, Russell R; Collins, Allen G

    2015-01-01

    Hydrozoans display the most morphological diversity within the phylum Cnidaria. While recent molecular studies have provided some insights into their evolutionary history, sister group relationships remain mostly unresolved, particularly at mid-taxonomic levels. Specifically, within Hydroidolina, the most speciose hydrozoan subclass, the relationships and sometimes integrity of orders are highly unsettled. Here we obtained the near complete mitochondrial sequence of twenty-six hydroidolinan hydrozoan species from a range of sources (DNA and RNA-seq data, long-range PCR). Our analyses confirm previous inference of the evolution of mtDNA in Hydrozoa while introducing a novel genome organization. Using RNA-seq data, we propose a mechanism for the expression of mitochondrial mRNA in Hydroidolina that can be extrapolated to the other medusozoan taxa. Phylogenetic analyses using the full set of mitochondrial gene sequences provide some insights into the order-level relationships within Hydroidolina, including siphonophores as the first diverging clade, a well-supported clade comprised of Leptothecata-Filifera III-IV, and a second clade comprised of Aplanulata-Capitata s.s.-Filifera I-II. Finally, we describe our relatively inexpensive and accessible multiplexing strategy to sequence long-range PCR amplicons that can be adapted to most high-throughput sequencing platforms.

  19. Phylogenetic analysis of higher-level relationships within Hydroidolina (Cnidaria: Hydrozoa) using mitochondrial genome data and insight into their mitochondrial transcription

    PubMed Central

    Bentlage, Bastian; Cartwright, Paulyn; Yanagihara, Angel A.; Lindsay, Dhugal J.; Hopcroft, Russell R.; Collins, Allen G.

    2015-01-01

    Hydrozoans display the most morphological diversity within the phylum Cnidaria. While recent molecular studies have provided some insights into their evolutionary history, sister group relationships remain mostly unresolved, particularly at mid-taxonomic levels. Specifically, within Hydroidolina, the most speciose hydrozoan subclass, the relationships and sometimes integrity of orders are highly unsettled. Here we obtained the near complete mitochondrial sequence of twenty-six hydroidolinan hydrozoan species from a range of sources (DNA and RNA-seq data, long-range PCR). Our analyses confirm previous inference of the evolution of mtDNA in Hydrozoa while introducing a novel genome organization. Using RNA-seq data, we propose a mechanism for the expression of mitochondrial mRNA in Hydroidolina that can be extrapolated to the other medusozoan taxa. Phylogenetic analyses using the full set of mitochondrial gene sequences provide some insights into the order-level relationships within Hydroidolina, including siphonophores as the first diverging clade, a well-supported clade comprised of Leptothecata-Filifera III–IV, and a second clade comprised of Aplanulata-Capitata s.s.-Filifera I–II. Finally, we describe our relatively inexpensive and accessible multiplexing strategy to sequence long-range PCR amplicons that can be adapted to most high-throughput sequencing platforms. PMID:26618080

  20. Mitochondrial and nuclear sequence polymorphisms reveal geographic structuring in Amazonian populations of Echinococcus vogeli (Cestoda: Taeniidae).

    PubMed

    Santos, Guilherme B; Soares, Manoel do C P; de F Brito, Elisabete M; Rodrigues, André L; Siqueira, Nilton G; Gomes-Gouvêa, Michele S; Alves, Max M; Carneiro, Liliane A; Malheiros, Andreza P; Póvoa, Marinete M; Zaha, Arnaldo; Haag, Karen L

    2012-12-01

    To date, nothing is known about the genetic diversity of the Echinococcus neotropical species, Echinococcus vogeli and Echinococcus oligarthrus. Here we used mitochondrial and nuclear DNA sequence polymorphisms to uncover the genetic structure, transmission and history of E. vogeli in the Brazilian Amazon, based on a sample of 38 isolates obtained from human and wild animal hosts. We confirm that the parasite is partially synanthropic and show that its populations are diverse. Furthermore, significant geographical structuring is found, with western and eastern populations being genetically divergent. Copyright © 2012 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.

  1. Morphological and molecular identification of marine copepod Dioithona rigida Giesbrecht, 1896 (Crustacea:Cyclopoida) based on mitochondrial COI gene sequences, from Lakshadweep sea, India.

    PubMed

    Radhika, R; Bijoy Nandan, S; Harikrishnan, M

    2017-11-01

    Morphological identification of the marine cyclopoid copepod Dioithona rigida in combination with sequencing a 645 bp fragment of mitochondrial cytochrome oxidase c subunit I (mtCOI) gene, collected from offshore waters of Kavarathi Island, Lakshadweep Sea, is presented in this study. Kiefer in 1935 classified Dioithona as a separate genus from Oithona. The main distinguishing characters observed in the collected samples, such as the presence of well-developed P5 with 2 setae, 5 segmented urosome, 12 segmented antennule, compact dagger-like setae on the inner margin of proximal segment of exopod ramus in P1-P4 and engorged portion of P1-bearing a spine, confirmed their morphology to D. rigida. A comparison of setal formulae of the exopod and endopod of D. rigida with those recorded previously by various authors are also presented here. Maximum likelihood Tree analysis exhibited the clustering of D. rigida sequences into a single clade (accession numbers KP972540.1-KR528588.1), which in contrast was 37-42% divergent from other Oithona species. Further intra-specific divergence values of 0-2% also confirmed the genetic identity of D. rigida species. Paracyclopina nana was selected as an out group displayed a diverged array. The present results distinctly differentiated D. rigida from other Oithona species.

  2. Molecular phylogenetic and dating analyses using mitochondrial DNA sequences of eyelid geckos (Squamata: Eublepharidae).

    PubMed

    Jonniaux, Pierre; Kumazawa, Yoshinori

    2008-01-15

    Mitochondrial DNA sequences of approximately 2.3 kbp including the complete NADH dehydrogenase subunit 2 gene and its flanking genes, as well as parts of 12S and 16S rRNA genes were determined from major species of the eyelid gecko family Eublepharidae sensu [Kluge, A.G. 1987. Cladistic relationships in the Gekkonoidea (Squamata, Sauria). Misc. Publ. Mus. Zool. Univ. Michigan 173, 1-54.]. In contrast to previous morphological studies, phylogenetic analyses based on these sequences supported that Eublepharidae and Gekkonidae form a sister group with Pygopodidae, raising the possibility of homoplasious character change in some key features of geckos, such as reduction of movable eyelids and innovation of climbing toe pads. The phylogenetic analyses also provided a well-resolved tree for relationships between the eublepharid species. The Bayesian estimation of divergence times without assuming the molecular clock suggested the Jurassic divergence of Eublepharidae from Gekkonidae and radiations of most eublepharid genera around the Cretaceous. These dating results appeared to be robust against some conditional changes for time estimation, such as gene regions used, taxon representation, and data partitioning. Taken together with geological evidence, these results support the vicariant divergence of Eublepharidae and Gekkonidae by the breakup of Pangea into Laurasia and Gondwanaland, and recent dispersal of two African eublepharid genera from Eurasia to Africa after these landmasses were connected in the Early Miocene.

  3. Distinct subspecies or phenotypic plasticity? Genetic and morphological differentiation of mountain honey bees in East Africa

    PubMed Central

    Gruber, Karl; Schöning, Caspar; Otte, Marianne; Kinuthia, Wanja; Hasselmann, Martin

    2013-01-01

    Identifying the forces shaping intraspecific phenotypic and genotypic divergence are of key importance in evolutionary biology. Phenotypic divergence may result from local adaptation or, especially in species with strong gene flow, from pronounced phenotypic plasticity. Here, we examine morphological and genetic divergence among populations of the western honey bee Apis mellifera in the topographically heterogeneous East African region. The currently accepted “mountain refugia hypothesis” states that populations living in disjunct montane forests belong to a different lineage than those in savanna habitats surrounding these forests. We obtained microsatellite data, mitochondrial sequences, and morphometric data from worker honey bees collected from feral colonies in three montane forests and corresponding neighboring savanna regions in Kenya. Honey bee colonies from montane forests showed distinct worker morphology compared with colonies in savanna areas. Mitochondrial sequence data did not support the existence of the two currently accepted subspecies. Furthermore, analyses of the microsatellite data with a Bayesian clustering method did not support the existence of two source populations as it would be expected under the mountain refugia scenario. Our findings suggest that phenotypic plasticity rather than distinct ancestry is the leading cause behind the phenotypic divergence observed between montane forest and savanna honey bees. Our study thus corroborates the idea that high gene flow may select for increased plasticity. PMID:24223262

  4. A complete mitochondrial genome sequence of the wild two-humped camel (Camelus bactrianus ferus): an evolutionary history of camelidae

    PubMed Central

    Cui, Peng; Ji, Rimutu; Ding, Feng; Qi, Dan; Gao, Hongwei; Meng, He; Yu, Jun; Hu, Songnian; Zhang, Heping

    2007-01-01

    Background The family Camelidae that evolved in North America during the Eocene survived with two distinct tribes, Camelini and Lamini. To investigate the evolutionary relationship between them and to further understand the evolutionary history of this family, we determined the complete mitochondrial genome sequence of the wild two-humped camel (Camelus bactrianus ferus), the only wild survivor of the Old World camel. Results The mitochondrial genome sequence (16,680 bp) from C. bactrianus ferus contains 13 protein-coding, two rRNA, and 22 tRNA genes as well as a typical control region; this basic structure is shared by all metazoan mitochondrial genomes. Its protein-coding region exhibits codon usage common to all mammals and possesses the three cryptic stop codons shared by all vertebrates. C. bactrianus ferus together with the rest of mammalian species do not share a triplet nucleotide insertion (GCC) that encodes a proline residue found only in the nd1 gene of the New World camelid Lama pacos. This lineage-specific insertion in the L. pacos mtDNA occurred after the split between the Old and New World camelids suggests that it may have functional implication since a proline insertion in a protein backbone usually alters protein conformation significantly, and nd1 gene has not been seen as polymorphic as the rest of ND family genes among camelids. Our phylogenetic study based on complete mitochondrial genomes excluding the control region suggested that the divergence of the two tribes may occur in the early Miocene; it is much earlier than what was deduced from the fossil record (11 million years). An evolutionary history reconstructed for the family Camelidae based on cytb sequences suggested that the split of bactrian camel and dromedary may have occurred in North America before the tribe Camelini migrated from North America to Asia. Conclusion Molecular clock analysis of complete mitochondrial genomes from C. bactrianus ferus and L. pacos suggested that the two tribes diverged from their common ancestor about 25 million years ago, much earlier than what was predicted based on fossil records. PMID:17640355

  5. DNA Barcodes for Species Identification in the Hyperdiverse Ant Genus Pheidole (Formicidae: Myrmicinae)

    PubMed Central

    Ng'endo, R.N.; Osiemo, Z.B.; Brandl, R.

    2013-01-01

    DNA sequencing is increasingly being used to assist in species identification in order to overcome taxonomic impediment. However, few studies attempt to compare the results of these molecular studies with a more traditional species delineation approach based on morphological characters. Mitochondrial DNA Cytochrome oxidase subunit 1 (CO1) gene was sequenced, measuring 636 base pairs, from 47 ants of the genus Pheidole (Formicidae: Myrmicinae) collected in the Brazilian Atlantic Forest to test whether the morphology-based assignment of individuals into species is supported by DNA-based species delimitation. Twenty morphospecies were identified, whereas the barcoding analysis identified 19 Molecular Operational Taxonomic Units (MOTUs). Fifteen out of the 19 DNA-based clusters allocated, using sequence divergence thresholds of 2% and 3%, matched with morphospecies. Both thresholds yielded the same number of MOTUs. Only one MOTU was successfully identified to species level using the CO1 sequences of Pheidole species already in the Genbank. The average pairwise sequence divergence for all 47 sequences was 19%, ranging between 0–25%. In some cases, however, morphology and molecular based methods differed in their assignment of individuals to morphospecies or MOTUs. The occurrence of distinct mitochondrial lineages within morphological species highlights groups for further detailed genetic and morphological studies, and therefore a pluralistic approach using several methods to understand the taxonomy of difficult lineages is advocated. PMID:23902257

  6. Phylogenetic relationships in Demodex mites (Acari: Demodicidae) based on mitochondrial 16S rDNA partial sequences.

    PubMed

    Zhao, Ya-E; Wu, Li-Ping

    2012-09-01

    To confirm phylogenetic relationships in Demodex mites based on mitochondrial 16S rDNA partial sequences, mtDNA 16S partial sequences of ten isolates of three Demodex species from China were amplified, recombined, and sequenced and then analyzed with two Demodex folliculorum isolates from Spain. Lastly, genetic distance was computed, and phylogenetic tree was reconstructed. MEGA 4.0 analysis showed high sequence identity among 16S rDNA partial sequences of three Demodex species, which were 95.85 % in D. folliculorum, 98.53 % in Demodex canis, and 99.71 % in Demodex brevis. The divergence, genetic distance, and transition/transversions of the three Demodex species reached interspecies level, whereas there was no significant difference of the divergence (1.1 %), genetic distance (0.011), and transition/transversions (3/1) of the two geographic D. folliculorum isolates (Spain and China). Phylogenetic trees reveal that the three Demodex species formed three separate branches of one clade, where D. folliculorum and D. canis gathered first, and then gathered with D. brevis. The two Spain and five China D. folliculorum isolates did not form sister clades. In conclusion, 16S mtDNA are suitable for phylogenetic relationship analysis in low taxa (genus or species), but not for intraspecies determination of Demodex. The differentiation among the three Demodex species has reached interspecies level.

  7. Deep phylogeographic divergence and cytonuclear discordance in the grasshopper Oedaleus decorus.

    PubMed

    Kindler, Eveline; Arlettaz, Raphaël; Heckel, Gerald

    2012-11-01

    The grasshopper Oedaleus decorus is a thermophilic insect with a large, mostly south-Palaearctic distribution range, stretching from the Mediterranean regions in Europe to Central-Asia and China. In this study, we analyzed the extent of phylogenetic divergence and the recent evolutionary history of the species based on 274 specimens from 26 localities across the distribution range in Europe. Phylogenetic relationships were determined using sequences of two mitochondrial loci (ctr, ND2) with neighbour-joining and Bayesian methods. Additionally, genetic differentiation was analyzed based on mitochondrial DNA and 11 microsatellite markers using F-statistics, model-free multivariate and model-based Bayesian clustering approaches. Phylogenetic analyses detected consistently two highly divergent, allopatrically distributed lineages within O. decorus. The divergence among these Western and Eastern lineages meeting in the region of the Alps was similar to the divergence of each lineage to the sister species O. asiaticus. Genetic differentiation for ctr was extremely high between Western and Eastern grasshopper populations (F(ct)=0.95). Microsatellite markers detected much lower but nevertheless very significant genetic structure among population samples. The nuclear data also demonstrated a case of cytonuclear discordance because the affiliation with mitochondrial lineages was incongruent in Northern Italy. Taken together these results provide evidence of an ancient separation within Oedaleus and either historical introgression of mtDNA among lineages and/or ongoing sex-specific gene flow in this grasshopper. Our study stresses the importance of multilocus approaches for unravelling the history and status of taxa of uncertain evolutionary divergence. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. Multiple independent origins of mitochondrial control region duplications in the order Psittaciformes

    PubMed Central

    Schirtzinger, Erin E.; Tavares, Erika S.; Gonzales, Lauren A.; Eberhard, Jessica R.; Miyaki, Cristina Y.; Sanchez, Juan J.; Hernandez, Alexis; Müeller, Heinrich; Graves, Gary R.; Fleischer, Robert C.; Wright, Timothy F.

    2012-01-01

    Mitochondrial genomes are generally thought to be under selection for compactness, due to their small size, consistent gene content, and a lack of introns or intergenic spacers. As more animal mitochondrial genomes are fully sequenced, rearrangements and partial duplications are being identified with increasing frequency, particularly in birds (Class Aves). In this study, we investigate the evolutionary history of mitochondrial control region states within the avian order Psittaciformes (parrots and cockatoos). To this aim, we reconstructed a comprehensive multi-locus phylogeny of parrots, used PCR of three diagnostic fragments to classify the mitochondrial control region state as single or duplicated, and mapped these states onto the phylogeny. We further sequenced 44 selected species to validate these inferences of control region state. Ancestral state reconstruction using a range of weighting schemes identified six independent origins of mitochondrial control region duplications within Psittaciformes. Analysis of sequence data showed that varying levels of mitochondrial gene and tRNA homology and degradation were present within a given clade exhibiting duplications. Levels of divergence between control regions within an individual varied from 0–10.9% with the differences occurring mainly between 51 and 225 nucleotides 3′ of the goose hairpin in domain I. Further investigations into the fates of duplicated mitochondrial genes, the potential costs and benefits of having a second control region, and the complex relationship between evolutionary rates, selection, and time since duplication are needed to fully explain these patterns in the mitochondrial genome. PMID:22543055

  9. DNA barcoding for molecular identification of Demodex based on mitochondrial genes.

    PubMed

    Hu, Li; Yang, YuanJun; Zhao, YaE; Niu, DongLing; Yang, Rui; Wang, RuiLing; Lu, Zhaohui; Li, XiaoQi

    2017-12-01

    There has been no widely accepted DNA barcode for species identification of Demodex. In this study, we attempted to solve this issue. First, mitochondrial cox1-5' and 12S gene fragments of Demodex folloculorum, D. brevis, D. canis, and D. caprae were amplified, cloned, and sequenced for the first time; intra/interspecific divergences were computed and phylogenetic trees were reconstructed. Then, divergence frequency distribution plots of those two gene fragments were drawn together with mtDNA cox1-middle region and 16S obtained in previous studies. Finally, their identification efficiency was evaluated by comparing barcoding gap. Results indicated that 12S had the higher identification efficiency. Specifically, for cox1-5' region of the four Demodex species, intraspecific divergences were less than 2.0%, and interspecific divergences were 21.1-31.0%; for 12S, intraspecific divergences were less than 1.4%, and interspecific divergences were 20.8-26.9%. The phylogenetic trees demonstrated that the four Demodex species clustered separately, and divergence frequency distribution plot showed that the largest intraspecific divergence of 12S (1.4%) was less than cox1-5' region (2.0%), cox1-middle region (3.1%), and 16S (2.8%). The barcoding gap of 12S was 19.4%, larger than cox1-5' region (19.1%), cox1-middle region (11.3%), and 16S (13.0%); the interspecific divergence span of 12S was 6.2%, smaller than cox1-5' region (10.0%), cox1-middle region (14.1%), and 16S (11.4%). Moreover, 12S has a moderate length (517 bp) for sequencing at once. Therefore, we proposed mtDNA 12S was more suitable than cox1 and 16S to be a DNA barcode for classification and identification of Demodex at lower category level.

  10. Analysis of complete mitochondrial genome sequences increases phylogenetic resolution of bears (Ursidae), a mammalian family that experienced rapid speciation.

    PubMed

    Yu, Li; Li, Yi-Wei; Ryder, Oliver A; Zhang, Ya-Ping

    2007-10-24

    Despite the small number of ursid species, bear phylogeny has long been a focus of study due to their conservation value, as all bear genera have been classified as endangered at either the species or subspecies level. The Ursidae family represents a typical example of rapid evolutionary radiation. Previous analyses with a single mitochondrial (mt) gene or a small number of mt genes either provide weak support or a large unresolved polytomy for ursids. We revisit the contentious relationships within Ursidae by analyzing complete mt genome sequences and evaluating the performance of both entire mt genomes and constituent mtDNA genes in recovering a phylogeny of extremely recent speciation events. This mitochondrial genome-based phylogeny provides strong evidence that the spectacled bear diverged first, while within the genus Ursus, the sloth bear is the sister taxon of all the other five ursines. The latter group is divided into the brown bear/polar bear and the two black bears/sun bear assemblages. These findings resolve the previous conflicts between trees using partial mt genes. The ability of different categories of mt protein coding genes to recover the correct phylogeny is concordant with previous analyses for taxa with deep divergence times. This study provides a robust Ursidae phylogenetic framework for future validation by additional independent evidence, and also has significant implications for assisting in the resolution of other similarly difficult phylogenetic investigations. Identification of base composition bias and utilization of the combined data of whole mitochondrial genome sequences has allowed recovery of a strongly supported phylogeny that is upheld when using multiple alternative outgroups for the Ursidae, a mammalian family that underwent a rapid radiation since the mid- to late Pliocene. It remains to be seen if the reliability of mt genome analysis will hold up in studies of other difficult phylogenetic issues. Although the whole mitochondrial DNA sequence based phylogeny is robust, it remains in conflict with phylogenetic relationships suggested by analysis of limited nuclear-encoded data, a situation that will require gathering more nuclear DNA sequence information.

  11. Analysis of complete mitochondrial genome sequences increases phylogenetic resolution of bears (Ursidae), a mammalian family that experienced rapid speciation

    PubMed Central

    Yu, Li; Li, Yi-Wei; Ryder, Oliver A; Zhang, Ya-Ping

    2007-01-01

    Background Despite the small number of ursid species, bear phylogeny has long been a focus of study due to their conservation value, as all bear genera have been classified as endangered at either the species or subspecies level. The Ursidae family represents a typical example of rapid evolutionary radiation. Previous analyses with a single mitochondrial (mt) gene or a small number of mt genes either provide weak support or a large unresolved polytomy for ursids. We revisit the contentious relationships within Ursidae by analyzing complete mt genome sequences and evaluating the performance of both entire mt genomes and constituent mtDNA genes in recovering a phylogeny of extremely recent speciation events. Results This mitochondrial genome-based phylogeny provides strong evidence that the spectacled bear diverged first, while within the genus Ursus, the sloth bear is the sister taxon of all the other five ursines. The latter group is divided into the brown bear/polar bear and the two black bears/sun bear assemblages. These findings resolve the previous conflicts between trees using partial mt genes. The ability of different categories of mt protein coding genes to recover the correct phylogeny is concordant with previous analyses for taxa with deep divergence times. This study provides a robust Ursidae phylogenetic framework for future validation by additional independent evidence, and also has significant implications for assisting in the resolution of other similarly difficult phylogenetic investigations. Conclusion Identification of base composition bias and utilization of the combined data of whole mitochondrial genome sequences has allowed recovery of a strongly supported phylogeny that is upheld when using multiple alternative outgroups for the Ursidae, a mammalian family that underwent a rapid radiation since the mid- to late Pliocene. It remains to be seen if the reliability of mt genome analysis will hold up in studies of other difficult phylogenetic issues. Although the whole mitochondrial DNA sequence based phylogeny is robust, it remains in conflict with phylogenetic relationships suggested by analysis of limited nuclear-encoded data, a situation that will require gathering more nuclear DNA sequence information. PMID:17956639

  12. Some maternal lineages of domestic horses may have origins in East Asia revealed with further evidence of mitochondrial genomes and HVR-1 sequences.

    PubMed

    Ma, Hongying; Wu, Yajiang; Xiang, Hai; Yang, Yunzhou; Wang, Min; Zhao, Chunjiang; Wu, Changxin

    2018-01-01

    There are large populations of indigenous horse ( Equus caballus ) in China and some other parts of East Asia. However, their matrilineal genetic diversity and origin remained poorly understood. Using a combination of mitochondrial DNA (mtDNA) and hypervariable region (HVR-1) sequences, we aim to investigate the origin of matrilineal inheritance in these domestic horses. To investigate patterns of matrilineal inheritance in domestic horses, we conducted a phylogenetic study using 31 de novo mtDNA genomes together with 317 others from the GenBank. In terms of the updated phylogeny, a total of 5,180 horse mitochondrial HVR-1 sequences were analyzed. Eightteen haplogroups (Aw-Rw) were uncovered from the analysis of the whole mitochondrial genomes. Most of which have a divergence time before the earliest domestication of wild horses (about 5,800 years ago) and during the Upper Paleolithic (35-10 KYA). The distribution of some haplogroups shows geographic patterns. The Lw haplogroup contained a significantly higher proportion of European horses than the horses from other regions, while haplogroups Jw, Rw, and some maternal lineages of Cw, have a higher frequency in the horses from East Asia. The 5,180 sequences of horse mitochondrial HVR-1 form nine major haplogroups (A-I). We revealed a corresponding relationship between the haplotypes of HVR-1 and those of whole mitochondrial DNA sequences. The data of the HVR-1 sequences also suggests that Jw, Rw, and some haplotypes of Cw may have originated in East Asia while Lw probably formed in Europe. Our study supports the hypothesis of the multiple origins of the maternal lineage of domestic horses and some maternal lineages of domestic horses may have originated from East Asia.

  13. The complete nucleotide sequence of the domestic dog (Canis familiaris) mitochondrial genome.

    PubMed

    Kim, K S; Lee, S E; Jeong, H W; Ha, J H

    1998-10-01

    The complete nucleotide sequence of the mitochondrial genome of the domestic dog, Canis familiaris, was determined. The length of the sequence was 16,728 bp; however, the length was not absolute due to the variation (heteroplasmy) caused by differing numbers of the repetitive motif, 5'-GTACACGT(A/G)C-3', in the control region. The genome organization, gene contents, and codon usage conformed to those of other mammalian mitochondrial genomes. Although its features were unknown, the "CTAGA" duplication event which followed the translational stop codon of the COII gene was not observed in other mammalian mitochondrial genomes. In order to determine the possible differences between mtDNAs in carnivores, two rRNA and 13 protein-coding genes from the cat, dog, and seal were compared. The combined molecular differences, in two rRNA genes as well as in the inferred amino acid sequences of the mitochondrial 13 protein-coding genes, suggested that there is a closer relationship between the dog and the seal than there is between either of these species and the cat. Based on the molecular differences of the mtDNA, the evolutionary divergence between the cat, the dog, and the seal was dated to approximately 50 +/- 4 million years ago. The degree of difference between carnivore mtDNAs varied according to the individual protein-coding gene applied, showing that the evolutionary relationships of distantly related species should be presented in an extended study based on ample sequence data like complete mtDNA molecules. Copyright 1998 Academic Press.

  14. Molecular diversity of some species belonging to the genus Daphnia O. F. Müller, 1785 (Crustacea: Cladocera) in Turkey.

    PubMed

    Özdemir, Ebru; Altındağ, Ahmet; Kandemir, İrfan

    2017-05-01

    Daphnia is a freshwater zooplankton species with controversial taxonomy due to its high morphological variation linked to environmental factors and inter-specific hybridization and polyploidy in some groups. The aim of the present study is to examine molecular diversity of some Daphnia species in Turkey and to establish DNA barcodes of Turkish Daphnia species. Sequence analysis was performed using 540 bp region of cytochrome oxidase subunit I gene of mitochondrial DNA. A total of 34 haplotypes have been identified for Turkey. Daphnia pulex complex was divided into two clades with 16.1% sequence divergence according to molecular taxonomy based on Kimura 2-parameter. The clade which was molecularly diverged from Daphnia pulex with 16.1% sequence divergence was found to show 99% similarity with Daphnia cf. pulicaria (sensu Alonso 1996) instead of Daphnia pulicaria Forbes, 1893. Furthermore, this study has contributed to Turkish zoogeography by demonstrating the distribution of Daphnia species in Turkey.

  15. Napoleon Bonaparte and the fate of an Amazonian rat: new data on the taxonomy of Mesomys hispidus (Rodentia: Echimyidae).

    PubMed

    Orlando, Ludovic; Mauffrey, Jean-François; Cuisin, Jacques; Patton, James L; Hänni, Catherine; Catzeflis, François

    2003-04-01

    The spiny rat Mesomys hispidus is one of many South American rodents that lack adequate taxonomic definition. The few sampled populations of this broadly distributed trans-Amazonian arboreal rat have come from widely separated regions and are typically highly divergent. The holotype was described in 1817 by A.-G. Desmarest, after Napoleon's army brought it to Paris following the plunder of Lisbon in 1808; however, the locality of origin has remained unknown. Here we examine the taxonomic status of this species by direct comparison of 50 extant individuals with the holotype at the morphometric and genetic levels, the latter based on 331 bp of the mitochondrial cytochrome b gene retrieved from a small skin fragment of the holotype with ancient DNA technology. Extensive sequence divergence is present among samples of M. hispidus collected from throughout its range, from French Guiana across Amazonia to Bolivia and Peru, with at least seven mitochondrial clades recognized (average divergence of 7.7% Kimura 2-parameter distance). Sequence from the holotype is, however, only weakly divergent from those of recent samples from French Guiana. Moreover, the holotype clusters with greater that 99% posterior probability with samples from this part of Amazonia in a discriminant analysis based on 22 cranial and dental measurements. Thus, we suggest that the holotype was originally obtained in eastern Amazonia north of the Amazon River, most likely in the Brazilian state of Amapá. Despite the high level of sequence diversity and marked morphological differences in size across the range of M. hispidus, we continue to regard this assemblage as a single species until additional samples and analyses suggest otherwise. Copyright 2002 Elsevier Science (USA)

  16. Purifying selection and genetic drift shaped Pleistocene evolution of the mitochondrial genome in an endangered Australian freshwater fish.

    PubMed

    Pavlova, A; Gan, H M; Lee, Y P; Austin, C M; Gilligan, D M; Lintermans, M; Sunnucks, P

    2017-05-01

    Genetic variation in mitochondrial genes could underlie metabolic adaptations because mitochondrially encoded proteins are directly involved in a pathway supplying energy to metabolism. Macquarie perch from river basins exposed to different climates differ in size and growth rate, suggesting potential presence of adaptive metabolic differences. We used complete mitochondrial genome sequences to build a phylogeny, estimate lineage divergence times and identify signatures of purifying and positive selection acting on mitochondrial genes for 25 Macquarie perch from three basins: Murray-Darling Basin (MDB), Hawkesbury-Nepean Basin (HNB) and Shoalhaven Basin (SB). Phylogenetic analysis resolved basin-level clades, supporting incipient speciation previously inferred from differentiation in allozymes, microsatellites and mitochondrial control region. The estimated time of lineage divergence suggested an early- to mid-Pleistocene split between SB and the common ancestor of HNB+MDB, followed by mid-to-late Pleistocene splitting between HNB and MDB. These divergence estimates are more recent than previous ones. Our analyses suggested that evolutionary drivers differed between inland MDB and coastal HNB. In the cooler and more climatically variable MDB, mitogenomes evolved under strong purifying selection, whereas in the warmer and more climatically stable HNB, purifying selection was relaxed. Evidence for relaxed selection in the HNB includes elevated transfer RNA and 16S ribosomal RNA polymorphism, presence of potentially mildly deleterious mutations and a codon (ATP6 113 ) displaying signatures of positive selection (ratio of nonsynonymous to synonymous substitution rates (dN/dS) >1, radical change of an amino-acid property and phylogenetic conservation across the Percichthyidae). In addition, the difference could be because of stronger genetic drift in the smaller and historically more subdivided HNB with low per-population effective population sizes.

  17. The "fossilized" mitochondrial genome of Liriodendron tulipifera: ancestral gene content and order, ancestral editing sites, and extraordinarily low mutation rate.

    PubMed

    Richardson, Aaron O; Rice, Danny W; Young, Gregory J; Alverson, Andrew J; Palmer, Jeffrey D

    2013-04-15

    The mitochondrial genomes of flowering plants vary greatly in size, gene content, gene order, mutation rate and level of RNA editing. However, the narrow phylogenetic breadth of available genomic data has limited our ability to reconstruct these traits in the ancestral flowering plant and, therefore, to infer subsequent patterns of evolution across angiosperms. We sequenced the mitochondrial genome of Liriodendron tulipifera, the first from outside the monocots or eudicots. This 553,721 bp mitochondrial genome has evolved remarkably slowly in virtually all respects, with an extraordinarily low genome-wide silent substitution rate, retention of genes frequently lost in other angiosperm lineages, and conservation of ancestral gene clusters. The mitochondrial protein genes in Liriodendron are the most heavily edited of any angiosperm characterized to date. Most of these sites are also edited in various other lineages, which allowed us to polarize losses of editing sites in other parts of the angiosperm phylogeny. Finally, we added comprehensive gene sequence data for two other magnoliids, Magnolia stellata and the more distantly related Calycanthus floridus, to measure rates of sequence evolution in Liriodendron with greater accuracy. The Magnolia genome has evolved at an even lower rate, revealing a roughly 5,000-fold range of synonymous-site divergence among angiosperms whose mitochondrial gene space has been comprehensively sequenced. Using Liriodendron as a guide, we estimate that the ancestral flowering plant mitochondrial genome contained 41 protein genes, 14 tRNA genes of mitochondrial origin, as many as 7 tRNA genes of chloroplast origin, >700 sites of RNA editing, and some 14 colinear gene clusters. Many of these gene clusters, genes and RNA editing sites have been variously lost in different lineages over the course of the ensuing ∽200 million years of angiosperm evolution.

  18. Gone with the plate: the opening of the Western Mediterranean basin drove the diversification of ground-dweller spiders

    PubMed Central

    2011-01-01

    Background The major islands of the Western Mediterranean--Corsica, Sardinia, and the Balearic Islands--are continental terrenes that drifted towards their present day location following a retreat from their original position on the eastern Iberian Peninsula about 30 million years ago. Several studies have taken advantage of this well-dated geological scenario to calibrate molecular rates in species for which distributions seemed to match this tectonic event. Nevertheless, the use of external calibration points has revealed that most of the present-day fauna on these islands post-dated the opening of the western Mediterranean basin. In this study, we use sequence information of the cox1, nad1, 16S, L1, and 12S mitochondrial genes and the 18S, 28S, and h3 nuclear genes, along with relaxed clock models and a combination of biogeographic and fossil external calibration points, to test alternative historical scenarios of the evolutionary history of the ground-dweller spider genus Parachtes (Dysderidae), which is endemic to the region. Results We analyse 49 specimens representing populations of most Parachtes species and close relatives. Our results reveal that both the sequence of species formation in Parachtes and the estimated divergence times match the geochronological sequence of separation of the main islands, suggesting that the diversification of the group was driven by Tertiary plate tectonics. In addition, the confirmation that Parachtes diversification matches well-dated geological events provides a model framework to infer substitution rates of molecular markers. Divergence rates estimates ranged from 3.5% My-1 (nad1) to 0.12% My-1 (28S), and the average divergence rate for the mitochondrial genes was 2.25% My-1, very close to the "standard" arthropod mitochondrial rate (2.3% My-1). Conclusions Our study provides the first unequivocal evidence of terrestrial endemic fauna of the major western Mediterranean islands, whose origin can be traced back to the Oligocene separation of these islands from the continent. Moreover, our study provides useful information on the divergence rate estimates of the most commonly used genes for phylogenetic inference in non-model arthropods. PMID:22039781

  19. Gone with the plate: the opening of the Western Mediterranean basin drove the diversification of ground-dweller spiders.

    PubMed

    Bidegaray-Batista, Leticia; Arnedo, Miquel A

    2011-10-31

    The major islands of the Western Mediterranean--Corsica, Sardinia, and the Balearic Islands--are continental terrenes that drifted towards their present day location following a retreat from their original position on the eastern Iberian Peninsula about 30 million years ago. Several studies have taken advantage of this well-dated geological scenario to calibrate molecular rates in species for which distributions seemed to match this tectonic event. Nevertheless, the use of external calibration points has revealed that most of the present-day fauna on these islands post-dated the opening of the western Mediterranean basin. In this study, we use sequence information of the cox1, nad1, 16S, L1, and 12S mitochondrial genes and the 18S, 28S, and h3 nuclear genes, along with relaxed clock models and a combination of biogeographic and fossil external calibration points, to test alternative historical scenarios of the evolutionary history of the ground-dweller spider genus Parachtes (Dysderidae), which is endemic to the region. We analyse 49 specimens representing populations of most Parachtes species and close relatives. Our results reveal that both the sequence of species formation in Parachtes and the estimated divergence times match the geochronological sequence of separation of the main islands, suggesting that the diversification of the group was driven by Tertiary plate tectonics. In addition, the confirmation that Parachtes diversification matches well-dated geological events provides a model framework to infer substitution rates of molecular markers. Divergence rates estimates ranged from 3.5% My(-1) (nad1) to 0.12% My(-1) (28S), and the average divergence rate for the mitochondrial genes was 2.25% My(-1), very close to the "standard" arthropod mitochondrial rate (2.3% My(-1)). Our study provides the first unequivocal evidence of terrestrial endemic fauna of the major western Mediterranean islands, whose origin can be traced back to the Oligocene separation of these islands from the continent. Moreover, our study provides useful information on the divergence rate estimates of the most commonly used genes for phylogenetic inference in non-model arthropods.

  20. Mitochondrial DNA Detects a Complex Evolutionary History with Pleistocene Epoch Divergence for the Neotropical Malaria Vector Anopheles nuneztovari Sensu Lato

    PubMed Central

    Scarpassa, Vera Margarete; Conn, Jan E.

    2011-01-01

    Cryptic species and lineages characterize Anopheles nuneztovari s.l. Gabaldón, an important malaria vector in South America. We investigated the phylogeographic structure across the range of this species with cytochrome oxidase subunit I (COI) mitochondrial DNA sequences to estimate the number of clades and levels of divergence. Bayesian and maximum-likelihood phylogenetic analyses detected four groups distributed in two major monophyletic clades (I and II). Samples from the Amazon Basin were clustered in clade I, as were subclades II-A and II-B, whereas those from Bolivia/Colombia/Venezuela were restricted to one basal subclade (II-C). These data, together with a statistical parsimony network, confirm results of previous studies that An. nuneztovari is a species complex consisting of at least two cryptic taxa, one occurring in Colombia and Venezuela and the another occurring in the Amazon Basin. These data also suggest that additional incipient species may exist in the Amazon Basin. Divergence time and expansion tests suggested that these groups separated and expanded in the Pleistocene Epoch. In addition, the COI sequences clearly separated An. nuneztovari s.l. from the closely related species An. dunhami Causey, and three new records are reported for An. dunhami in Amazonian Brazil. These findings are relevant for vector control programs in areas where both species occur. Our analyses support dynamic geologic and landscape changes in northern South America, and infer particularly active divergence during the Pleistocene Epoch for New World anophelines. PMID:22049039

  1. Searching for evidence of selection in avian DNA barcodes.

    PubMed

    Kerr, Kevin C R

    2011-11-01

    The barcode of life project has assembled a tremendous number of mitochondrial cytochrome c oxidase I (COI) sequences. Although these sequences were gathered to develop a DNA-based system for species identification, it has been suggested that further biological inferences may also be derived from this wealth of data. Recurrent selective sweeps have been invoked as an evolutionary mechanism to explain limited intraspecific COI diversity, particularly in birds, but this hypothesis has not been formally tested. In this study, I collated COI sequences from previous barcoding studies on birds and tested them for evidence of selection. Using this expanded data set, I re-examined the relationships between intraspecific diversity and interspecific divergence and sampling effort, respectively. I employed the McDonald-Kreitman test to test for neutrality in sequence evolution between closely related pairs of species. Because amino acid sequences were generally constrained between closely related pairs, I also included broader intra-order comparisons to quantify patterns of protein variation in avian COI sequences. Lastly, using 22 published whole mitochondrial genomes, I compared the evolutionary rate of COI against the other 12 protein-coding mitochondrial genes to assess intragenomic variability. I found no conclusive evidence of selective sweeps. Most evidence pointed to an overall trend of strong purifying selection and functional constraint. The COI protein did vary across the class Aves, but to a very limited extent. COI was the least variable gene in the mitochondrial genome, suggesting that other genes might be more informative for probing factors constraining mitochondrial variation within species. © 2011 Blackwell Publishing Ltd.

  2. Molecular phylogeny of the Drusinae (Trichoptera: Limnephilidae): preliminary results

    NASA Astrophysics Data System (ADS)

    Pauls, S.; Lumbsch, T.; Haase, P.

    2005-05-01

    We examine the phylogenetic relationships within the subfamily of the Drusinae using molecular markers. Sequence data from two mitochondrial loci (mitochondrial cytochrome oxidase I, mitochondrial ribosomal large subunit) are used to infer the relationships within and among the genera of the Drusinae. Sequence data were generated for 21 taxa from five genera from the subfamily. The molecular data were analyzed using a Bayesian Markov Chain Monte Carlo and a Maximum Parsimony approach for both single gene and combined data sets. Several hypotheses of relationships previously inferred based on morphological characters were tested. The study revealed a very close relationship between Drusus discolor and D. romanicus suggesting that divergence between these two species occurred recently. The relationships inferred by molecular data suggest that larval morphology may be an important taxonomic character, which has often been neglected. The data also indicate that the genera Ecclisopteryx and Drusus are polyphyletic with respect to one another.

  3. The effectiveness of three regions in mitochondrial genome for aphid DNA barcoding: a case in Lachininae.

    PubMed

    Chen, Rui; Jiang, Li-Yun; Qiao, Ge-Xia

    2012-01-01

    The mitochondrial gene COI has been widely used by taxonomists as a standard DNA barcode sequence for the identification of many animal species. However, the COI region is of limited use for identifying certain species and is not efficiently amplified by PCR in all animal taxa. To evaluate the utility of COI as a DNA barcode and to identify other barcode genes, we chose the aphid subfamily Lachninae (Hemiptera: Aphididae) as the focus of our study. We compared the results obtained using COI with two other mitochondrial genes, COII and Cytb. In addition, we propose a new method to improve the efficiency of species identification using DNA barcoding. Three mitochondrial genes (COI, COII and Cytb) were sequenced and were used in the identification of over 80 species of Lachninae. The COI and COII genes demonstrated a greater PCR amplification efficiency than Cytb. Species identification using COII sequences had a higher frequency of success (96.9% in "best match" and 90.8% in "best close match") and yielded lower intra- and higher interspecific genetic divergence values than the other two markers. The use of "tag barcodes" is a new approach that involves attaching a species-specific tag to the standard DNA barcode. With this method, the "barcoding overlap" can be nearly eliminated. As a result, we were able to increase the identification success rate from 83.9% to 95.2% by using COI and the "best close match" technique. A COII-based identification system should be more effective in identifying lachnine species than COI or Cytb. However, the Cytb gene is an effective marker for the study of aphid population genetics due to its high sequence diversity. Furthermore, the use of "tag barcodes" can improve the accuracy of DNA barcoding identification by reducing or removing the overlap between intra- and inter-specific genetic divergence values.

  4. Multilocus approach to clarify species status and the divergence history of the Bemisia tabaci (Hemiptera: Aleyrodidae) species complex.

    PubMed

    Hsieh, Chia-Hung; Ko, Chiun-Cheng; Chung, Cheng-Han; Wang, Hurng-Yi

    2014-07-01

    The sweet potato whitefly, Bemisia tabaci, is a highly differentiated species complex. Despite consisting of several morphologically indistinguishable entities and frequent invasions on all continents with important associated economic losses, the phylogenetic relationships, species status, and evolutionary history of this species complex is still debated. We sequenced and analyzed one mitochondrial and three single-copy nuclear genes from 9 of the 12 genetic groups of B. tabaci and 5 closely related species. Bayesian species delimitation was applied to investigate the speciation events of B. tabaci. The species statuses of the different genetic groups were strongly supported under different prior settings and phylogenetic scenarios. Divergence histories were estimated by a multispecies coalescence approach implemented in (*)BEAST. Based on mitochondrial locus, B. tabaci was originated 6.47 million years ago (MYA). Nevertheless, the time was 1.25MYA based on nuclear loci. According to the method of approximate Bayesian computation, this difference is probably due to different degrees of migration among loci; i.e., although the mitochondrial locus had differentiated, gene flow at nuclear loci was still possible, a scenario similar to parapatric mode of speciation. This is the first study in whiteflies using multilocus data and incorporating Bayesian coalescence approaches, both of which provide a more biologically realistic framework for delimiting species status and delineating the divergence history of B. tabaci. Our study illustrates that gene flow during species divergence should not be overlooked and has a great impact on divergence time estimation. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Mitochondrial genome nucleotide substitution pattern between domesticated silkmoth, Bombyx mori, and its wild ancestors, Chinese Bombyx mandarina and Japanese Bombyx mandarina

    PubMed Central

    2010-01-01

    Bombyx mori and Bombyx mandarina are morphologically and physiologically similar. In this study, we compared the nucleotide variations in the complete mitochondrial (mt) genomes between the domesticated silkmoth, B. mori, and its wild ancestors, Chinese B. mandarina (ChBm) and Japanese B. mandarina (JaBm). The sequence divergence and transition mutation ratio between B. mori and ChBm are significantly smaller than those observed between B. mori and JaBm. The preference of transition by DNA strands between B. mori and ChBm is consistent with that between B. mori and JaBm, however, the regional variation in nucleotide substitution rate shows a different feature. These results suggest that the ChBm mt genome is not undergoing the same evolutionary process as JaBm, providing evidence for selection on mtDNA. Moreover, investigation of the nucleotide sequence divergence in the A+T-rich region of Bombyx mt genomes also provides evidence for the assumption that the A+T-rich region might not be the fastest evolving region of the mtDNA of insects. PMID:21637625

  6. Analysis of plastid and mitochondrial DNA insertions in the nucleus (NUPTs and NUMTs) of six plant species: size, relative age and chromosomal localization.

    PubMed

    Michalovova, M; Vyskot, B; Kejnovsky, E

    2013-10-01

    We analysed the size, relative age and chromosomal localization of nuclear sequences of plastid and mitochondrial origin (NUPTs-nuclear plastid DNA and NUMTs-nuclear mitochondrial DNA) in six completely sequenced plant species. We found that the largest insertions showed lower divergence from organelle DNA than shorter insertions in all species, indicating their recent origin. The largest NUPT and NUMT insertions were localized in the vicinity of the centromeres in the small genomes of Arabidopsis and rice. They were also present in other chromosomal regions in the large genomes of soybean and maize. Localization of NUPTs and NUMTs correlated positively with distribution of transposable elements (TEs) in Arabidopsis and sorghum, negatively in grapevine and soybean, and did not correlate in rice or maize. We propose a model where new plastid and mitochondrial DNA sequences are inserted close to centromeres and are later fragmented by TE insertions and reshuffled away from the centromere or removed by ectopic recombination. The mode and tempo of TE dynamism determines the turnover of NUPTs and NUMTs resulting in their species-specific chromosomal distributions.

  7. DNA Barcode Analysis of Thrips (Thysanoptera) Diversity in Pakistan Reveals Cryptic Species Complexes.

    PubMed

    Iftikhar, Romana; Ashfaq, Muhammad; Rasool, Akhtar; Hebert, Paul D N

    2016-01-01

    Although thrips are globally important crop pests and vectors of viral disease, species identifications are difficult because of their small size and inconspicuous morphological differences. Sequence variation in the mitochondrial COI-5' (DNA barcode) region has proven effective for the identification of species in many groups of insect pests. We analyzed barcode sequence variation among 471 thrips from various plant hosts in north-central Pakistan. The Barcode Index Number (BIN) system assigned these sequences to 55 BINs, while the Automatic Barcode Gap Discovery detected 56 partitions, a count that coincided with the number of monophyletic lineages recognized by Neighbor-Joining analysis and Bayesian inference. Congeneric species showed an average of 19% sequence divergence (range = 5.6% - 27%) at COI, while intraspecific distances averaged 0.6% (range = 0.0% - 7.6%). BIN analysis suggested that all intraspecific divergence >3.0% actually involved a species complex. In fact, sequences for three major pest species (Haplothrips reuteri, Thrips palmi, Thrips tabaci), and one predatory thrips (Aeolothrips intermedius) showed deep intraspecific divergences, providing evidence that each is a cryptic species complex. The study compiles the first barcode reference library for the thrips of Pakistan, and examines global haplotype diversity in four important pest thrips.

  8. The phylogenetic position of the roughskin skate Dipturus trachyderma (Krefft & Stehmann, 1975) (Rajiformes, Rajidae) inferred from the mitochondrial genome.

    PubMed

    Vargas-Caro, Carolina; Bustamante, Carlos; Lamilla, Julio; Bennett, Michael B; Ovenden, Jennifer R

    2016-07-01

    The complete mitochondrial genome of the roughskin skate Dipturus trachyderma is described from 1 455 724 sequences obtained using Illumina NGS technology. Total length of the mitogenome was 16 909 base pairs, comprising 2 rRNAs, 13 protein-coding genes, 22 tRNAs and 2 non-coding regions. Phylogenetic analysis based on mtDNA revealed low genetic divergence among longnose skates, in particular, those dwelling the continental shelf and slope off the coasts of Chile and Argentina.

  9. An unexpectedly large and loosely packed mitochondrial genome in the charophycean green alga Chlorokybus atmophyticus

    PubMed Central

    Turmel, Monique; Otis, Christian; Lemieux, Claude

    2007-01-01

    Background The Streptophyta comprises all land plants and six groups of charophycean green algae. The scaly biflagellate Mesostigma viride (Mesostigmatales) and the sarcinoid Chlorokybus atmophyticus (Chlorokybales) represent the earliest diverging lineages of this phylum. In trees based on chloroplast genome data, these two charophycean green algae are nested in the same clade. To validate this relationship and gain insight into the ancestral state of the mitochondrial genome in the Charophyceae, we sequenced the mitochondrial DNA (mtDNA) of Chlorokybus and compared this genome sequence with those of three other charophycean green algae and the bryophytes Marchantia polymorpha and Physcomitrella patens. Results The Chlorokybus genome differs radically from its 42,424-bp Mesostigma counterpart in size, gene order, intron content and density of repeated elements. At 201,763-bp, it is the largest mtDNA yet reported for a green alga. The 70 conserved genes represent 41.4% of the genome sequence and include nad10 and trnL(gag), two genes reported for the first time in a streptophyte mtDNA. At the gene order level, the Chlorokybus genome shares with its Chara, Chaetosphaeridium and bryophyte homologues eight to ten gene clusters including about 20 genes. Notably, some of these clusters exhibit gene linkages not previously found outside the Streptophyta, suggesting that they originated early during streptophyte evolution. In addition to six group I and 14 group II introns, short repeated sequences accounting for 7.5% of the genome were identified. Mitochondrial trees were unable to resolve the correct position of Mesostigma, due to analytical problems arising from accelerated sequence evolution in this lineage. Conclusion The Chlorokybus and Mesostigma mtDNAs exemplify the marked fluidity of the mitochondrial genome in charophycean green algae. The notion that the mitochondrial genome was constrained to remain compact during charophycean evolution is no longer tenable. Our data raise the possibility that the emergence of land plants was not associated with a substantial gain of intergenic sequences by the mitochondrial genome. PMID:17537252

  10. A preliminary assessment of genetic divergence and distribution of Malagasy cave fish in the genus Typhleotris (Teleostei: Milyeringidae).

    PubMed

    Vences, Miguel; Rasoloariniaina, Jean R; Riemann, Jana C

    2018-02-08

    The genus Typhleotris contains three poorly known blind fish species, inhabiting aquifers in the limestone plateau of south-western Madagascar. Until recently these species were known from only few localities, and their pattern of genetic differentiation remains poorly studied. In this study we analyse 122 Typhleotris tissue samples collected from 12 localities, spanning the entire known range of the genus, and use DNA sequences to assign these samples to the three species known. The phylogeny based on the mitochondrial marker cox1 revealed three main clades corresponding to the three species: Typhleotris madagascariensis, T. mararybe and T. pauliani, differing by uncorrected pairwise sequence divergences of 6.3-9.8%. The distribution ranges of the three species overlapped widely: T. mararybe was collected only in a southern group of localities, T. madagascariensis was found in both the southern and the central group of localities, and T. pauliani occurred from the northernmost site to the southern group of localities; yet the three species did not share haplotypes in two nuclear genes, except for three individuals that we hypothesize are hybrids of T. pauliani with T. madagascariensis and T. mararybe. This pattern of concordant mitochondrial and nuclear divergence despite sympatry strongly supports the status of all three taxa as separate species. Phylogeographic structure was obvious in T. madagascariensis, with two separate shallow mitochondrial clades occupying (1) the central vs. (2) the southern group of populations, and in T. pauliani, with separate mitochondrial clades for (1) the northern vs. (2) the central/southern populations. The widespread occurrence of these three cave fish species suggests that the aquifers in south-western Madagascar have at least in the past allowed episodic dispersal and gene flow of subterraneous organisms, whereas the phylogeographic pattern of T. madagascariensis and T. pauliani provides evidence for isolation and loss of connectivity in the more recent past.

  11. Complete Mitochondrial Genomes of the Cherskii's Sculpin Cottus czerskii and Siberian Taimen Hucho taimen Reveal GenBank Entry Errors: Incorrect Species Identification and Recombinant Mitochondrial Genome.

    PubMed

    Balakirev, Evgeniy S; Saveliev, Pavel A; Ayala, Francisco J

    2017-01-01

    The complete mitochondrial (mt) genome is sequenced in 2 individuals of the Cherskii's sculpin Cottus czerskii . A surprisingly high level of sequence divergence (10.3%) has been detected between the 2 genomes of C czerskii studied here and the GenBank mt genome of C czerskii (KJ956027). At the same time, a surprisingly low level of divergence (1.4%) has been detected between the GenBank C czerskii (KJ956027) and the Amur sculpin Cottus szanaga (KX762049, KX762050). We argue that the observed discrepancies are due to incorrect taxonomic identification so that the GenBank accession number KJ956027 represents actually the mt genome of C szanaga erroneously identified as C czerskii . Our results are of consequence concerning the GenBank database quality, highlighting the potential negative consequences of entry errors, which once they are introduced tend to be propagated among databases and subsequent publications. We illustrate the premise with the data on recombinant mt genome of the Siberian taimen Hucho taimen (NCBI Reference Sequence Database NC_016426.1; GenBank accession number HQ897271.1), bearing 2 introgressed fragments (≈0.9 kb [kilobase]) from 2 lenok subspecies, Brachymystax lenok and Brachymystax lenok tsinlingensis , submitted to GenBank on June 12, 2011. Since the time of submission, the H taimen recombinant mt genome leading to incorrect phylogenetic inferences was propagated in multiple subsequent publications despite the fact that nonrecombinant H taimen genomes were also available (submitted to GenBank on August 2, 2014; KJ711549, KJ711550). Other examples of recombinant sequences persisting in GenBank are also considered. A GenBank Entry Error Depositary is urgently needed to monitor and avoid a progressive accumulation of wrong biological information.

  12. Cryptic species? Patterns of maternal and paternal gene flow in eight neotropical bats.

    PubMed

    Clare, Elizabeth L

    2011-01-01

    Levels of sequence divergence at mitochondrial loci are frequently used in phylogeographic analysis and species delimitation though single marker systems cannot assess bi-parental gene flow. In this investigation I compare the phylogeographic patterns revealed through the maternally inherited mitochondrial COI region and the paternally inherited 7(th) intron region of the Dby gene on the Y-chromosome in eight common Neotropical bat species. These species are diverse and include members of two families from the feeding guilds of sanguivores, nectarivores, frugivores, carnivores and insectivores. In each case, the currently recognized taxon is comprised of distinct, substantially divergent intraspecific mitochondrial lineages suggesting cryptic species complexes. In Chrotopterus auritus, and Saccopteryx bilineata I observed congruent patterns of divergence in both genetic regions suggesting a cessation of gene flow between intraspecific groups. This evidence supports the existence of cryptic species complexes which meet the criteria of the genetic species concept. In Glossophaga soricina two intraspecific groups with largely sympatric South American ranges show evidence for incomplete lineage sorting or frequent hybridization while a third group with a Central American distribution appears to diverge congruently at both loci suggesting speciation. Within Desmodus rotundus and Trachops cirrhosus the paternally inherited region was monomorphic and thus does not support or refute the potential for cryptic speciation. In Uroderma bilobatum, Micronycteris megalotis and Platyrrhinus helleri the gene regions show conflicting patterns of divergence and I cannot exclude ongoing gene flow between intraspecific groups. This analysis provides a comprehensive comparison across taxa and employs both maternally and paternally inherited gene regions to validate patterns of gene flow. I present evidence for previously unrecognized species meeting the criteria of the genetic species concept but demonstrate that estimates of mitochondrial diversity alone do not accurately represent gene flow in these species and that contact/hybrid zones must be explored to evaluate reproductive isolation.

  13. Complete mitochondrial genome sequence of a Middle Pleistocene cave bear reconstructed from ultrashort DNA fragments.

    PubMed

    Dabney, Jesse; Knapp, Michael; Glocke, Isabelle; Gansauge, Marie-Theres; Weihmann, Antje; Nickel, Birgit; Valdiosera, Cristina; García, Nuria; Pääbo, Svante; Arsuaga, Juan-Luis; Meyer, Matthias

    2013-09-24

    Although an inverse relationship is expected in ancient DNA samples between the number of surviving DNA fragments and their length, ancient DNA sequencing libraries are strikingly deficient in molecules shorter than 40 bp. We find that a loss of short molecules can occur during DNA extraction and present an improved silica-based extraction protocol that enables their efficient retrieval. In combination with single-stranded DNA library preparation, this method enabled us to reconstruct the mitochondrial genome sequence from a Middle Pleistocene cave bear (Ursus deningeri) bone excavated at Sima de los Huesos in the Sierra de Atapuerca, Spain. Phylogenetic reconstructions indicate that the U. deningeri sequence forms an early diverging sister lineage to all Western European Late Pleistocene cave bears. Our results prove that authentic ancient DNA can be preserved for hundreds of thousand years outside of permafrost. Moreover, the techniques presented enable the retrieval of phylogenetically informative sequences from samples in which virtually all DNA is diminished to fragments shorter than 50 bp.

  14. Complete mitochondrial genome sequence of a Middle Pleistocene cave bear reconstructed from ultrashort DNA fragments

    PubMed Central

    Dabney, Jesse; Knapp, Michael; Glocke, Isabelle; Gansauge, Marie-Theres; Weihmann, Antje; Nickel, Birgit; Valdiosera, Cristina; García, Nuria; Pääbo, Svante; Arsuaga, Juan-Luis; Meyer, Matthias

    2013-01-01

    Although an inverse relationship is expected in ancient DNA samples between the number of surviving DNA fragments and their length, ancient DNA sequencing libraries are strikingly deficient in molecules shorter than 40 bp. We find that a loss of short molecules can occur during DNA extraction and present an improved silica-based extraction protocol that enables their efficient retrieval. In combination with single-stranded DNA library preparation, this method enabled us to reconstruct the mitochondrial genome sequence from a Middle Pleistocene cave bear (Ursus deningeri) bone excavated at Sima de los Huesos in the Sierra de Atapuerca, Spain. Phylogenetic reconstructions indicate that the U. deningeri sequence forms an early diverging sister lineage to all Western European Late Pleistocene cave bears. Our results prove that authentic ancient DNA can be preserved for hundreds of thousand years outside of permafrost. Moreover, the techniques presented enable the retrieval of phylogenetically informative sequences from samples in which virtually all DNA is diminished to fragments shorter than 50 bp. PMID:24019490

  15. Mitochondrial DNA Sequence Divergence among Meloidogyne incognita, Romanomermis culicivorax, Ascaris suum, and Caenorhabditis elegans

    PubMed Central

    Powers, T. O.; Harris, T. S.; Hyman, B. C.

    1993-01-01

    Mitochondrial DNA sequences were obtained from the NADH dehydrogenase subunit 3 (ND3), large rRNA, and cytochrome b genes from Meloidogyne incognita and Romanomermis culicivorax. Both species show considerable genetic distance within these same genes when compared with Caenorhabditis elegans or Ascaris suum, two species previously analyzed. Caenorhabditis, Ascaris, and Meloidogyne were selected as representatives of three subclasses in the nematode class Secernentea: Rhabditia, Spiruria, and Diplogasteria, respectively. Romanomermis served as a representative out-group of the class Adenophorea. The divergence between the phytoparasitic lineage (represented by Meloidogyne) and the three other species is so great that virtually every variable position in these genes appears to have accumulated multiple mutations, obscuring the phylogenetic information obtainable from these comparisons. The 39 and 42% amino acid similarity between the M. incognita and C. elegans ND3 and cytochrome b coding sequences, respectively, are approximately the same as those of C. elegans-mouse comparisons for the same genes (26 and 44%). This discovery calls into question the feasibility of employing cloned C. elegans probes as reagents to isolate phytoparasitic nematode genes. The genetic distance between the phytoparasitic nematode lineage and C. elegans markedly contrasts with the 79% amino acid similarity between C. elegans and A. suum for the same sequences. The molecular data suggest that Caenorhabditis and Ascaris belong to the same subclass. PMID:19279810

  16. Exploring the effect of asymmetric mitochondrial DNA introgression on estimating niche divergence in morphologically cryptic species.

    PubMed

    Wielstra, Ben; Arntzen, Jan W

    2014-01-01

    If potential morphologically cryptic species, identified based on differentiated mitochondrial DNA, express ecological divergence, this increases support for their treatment as distinct species. However, mitochondrial DNA introgression hampers the correct estimation of ecological divergence. We test the hypothesis that estimated niche divergence differs when considering nuclear DNA composition or mitochondrial DNA type as representing the true species range. We use empirical data of two crested newt species (Amphibia: Triturus) which possess introgressed mitochondrial DNA from a third species in part of their ranges. We analyze the data in environmental space by determining Fisher distances in a principal component analysis and in geographical space by determining geographical overlap of species distribution models. We find that under mtDNA guidance in one of the two study cases niche divergence is overestimated, whereas in the other it is underestimated. In the light of our results we discuss the role of estimated niche divergence in species delineation.

  17. The mitochondrial genome of Ifremeria nautilei and the phylogenetic position of the enigmatic deep-sea Abyssochrysoidea (Mollusca: Gastropoda).

    PubMed

    Osca, David; Templado, José; Zardoya, Rafael

    2014-09-01

    The complete nucleotide sequence of the mitochondrial (mt) genome of the deep-sea vent snail Ifremeria nautilei (Gastropoda: Abyssochrysoidea) was determined. The double stranded circular molecule is 15,664 pb in length and encodes for the typical 37 metazoan mitochondrial genes. The gene arrangement of the Ifremeria mt genome is most similar to genome organization of caenogastropods and differs only on the relative position of the trnW gene. The deduced amino acid sequences of the mt protein coding genes of Ifremeria mt genome were aligned with orthologous sequences from representatives of the main lineages of gastropods and phylogenetic relationships were inferred. The reconstructed phylogeny supports that Ifremeria belongs to Caenogastropoda and that it is closely related to hypsogastropod superfamilies. Results were compared with a reconstructed nuclear-based phylogeny. Moreover, a relaxed molecular-clock timetree calibrated with fossils dated the divergence of Abyssochrysoidea in the Late Jurassic-Early Cretaceous indicating a relatively modern colonization of deep-sea environments by these snails. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Ancient DNA analysis reveals woolly rhino evolutionary relationships.

    PubMed

    Orlando, Ludovic; Leonard, Jennifer A; Thenot, Aurélie; Laudet, Vincent; Guerin, Claude; Hänni, Catherine

    2003-09-01

    With ancient DNA technology, DNA sequences have been added to the list of characters available to infer the phyletic position of extinct species in evolutionary trees. We have sequenced the entire 12S rRNA and partial cytochrome b (cyt b) genes of one 60-70,000-year-old sample, and partial 12S rRNA and cyt b sequences of two 40-45,000-year-old samples of the extinct woolly rhinoceros (Coelodonta antiquitatis). Based on these two mitochondrial markers, phylogenetic analyses show that C. antiquitatis is most closely related to one of the three extant Asian rhinoceros species, Dicerorhinus sumatrensis. Calculations based on a molecular clock suggest that the lineage leading to C. antiquitatis and D. sumatrensis diverged in the Oligocene, 21-26 MYA. Both results agree with morphological models deduced from palaeontological data. Nuclear inserts of mitochondrial DNA were identified in the ancient specimens. These data should encourage the use of nuclear DNA in future ancient DNA studies. It also further establishes that the degraded nature of ancient DNA does not completely protect ancient DNA studies based on mitochondrial data from the problems associated with nuclear inserts.

  19. The Complete Mitochondrial Genome of the Land Snail Cornu aspersum (Helicidae: Mollusca): Intra-Specific Divergence of Protein-Coding Genes and Phylogenetic Considerations within Euthyneura

    PubMed Central

    Gaitán-Espitia, Juan Diego; Nespolo, Roberto F.; Opazo, Juan C.

    2013-01-01

    The complete sequences of three mitochondrial genomes from the land snail Cornu aspersum were determined. The mitogenome has a length of 14050 bp, and it encodes 13 protein-coding genes, 22 transfer RNA genes and two ribosomal RNA genes. It also includes nine small intergene spacers, and a large AT-rich intergenic spacer. The intra-specific divergence analysis revealed that COX1 has the lower genetic differentiation, while the most divergent genes were NADH1, NADH3 and NADH4. With the exception of Euhadra herklotsi, the structural comparisons showed the same gene order within the family Helicidae, and nearly identical gene organization to that found in order Pulmonata. Phylogenetic reconstruction recovered Basommatophora as polyphyletic group, whereas Eupulmonata and Pulmonata as paraphyletic groups. Bayesian and Maximum Likelihood analyses showed that C. aspersum is a close relative of Cepaea nemoralis, and with the other Helicidae species form a sister group of Albinaria caerulea, supporting the monophyly of the Stylommatophora clade. PMID:23826260

  20. Nuclear DNA sequences from the Middle Pleistocene Sima de los Huesos hominins.

    PubMed

    Meyer, Matthias; Arsuaga, Juan-Luis; de Filippo, Cesare; Nagel, Sarah; Aximu-Petri, Ayinuer; Nickel, Birgit; Martínez, Ignacio; Gracia, Ana; Bermúdez de Castro, José María; Carbonell, Eudald; Viola, Bence; Kelso, Janet; Prüfer, Kay; Pääbo, Svante

    2016-03-24

    A unique assemblage of 28 hominin individuals, found in Sima de los Huesos in the Sierra de Atapuerca in Spain, has recently been dated to approximately 430,000 years ago. An interesting question is how these Middle Pleistocene hominins were related to those who lived in the Late Pleistocene epoch, in particular to Neanderthals in western Eurasia and to Denisovans, a sister group of Neanderthals so far known only from southern Siberia. While the Sima de los Huesos hominins share some derived morphological features with Neanderthals, the mitochondrial genome retrieved from one individual from Sima de los Huesos is more closely related to the mitochondrial DNA of Denisovans than to that of Neanderthals. However, since the mitochondrial DNA does not reveal the full picture of relationships among populations, we have investigated DNA preservation in several individuals found at Sima de los Huesos. Here we recover nuclear DNA sequences from two specimens, which show that the Sima de los Huesos hominins were related to Neanderthals rather than to Denisovans, indicating that the population divergence between Neanderthals and Denisovans predates 430,000 years ago. A mitochondrial DNA recovered from one of the specimens shares the previously described relationship to Denisovan mitochondrial DNAs, suggesting, among other possibilities, that the mitochondrial DNA gene pool of Neanderthals turned over later in their history.

  1. Barcoding of fresh water fishes from Pakistan.

    PubMed

    Karim, Asma; Iqbal, Asad; Akhtar, Rehan; Rizwan, Muhammad; Amar, Ali; Qamar, Usman; Jahan, Shah

    2016-07-01

    DNA bar-coding is a taxonomic method that uses small genetic markers in organisms' mitochondrial DNA (mt DNA) for identification of particular species. It uses sequence diversity in a 658-base pair fragment near the 5' end of the mitochondrial cytochrome c oxidase subunit 1 (CO1) gene as a tool for species identification. DNA barcoding is more accurate and reliable method as compared with the morphological identification. It is equally useful in juveniles as well as adult stages of fishes. The present study was conducted to identify three farm fish species of Pakistan (Cyprinus carpio, Cirrhinus mrigala, and Ctenopharyngodon idella) genetically. All of them belonged to family cyprinidae. CO1 gene was amplified. PCR products were sequenced and analyzed by bioinformatic software. Conspecific, congenric, and confamilial k2P nucleotide divergence was estimated. From these findings, it was concluded that the gene sequence, CO1, may serve as milestone for the identification of related species at molecular level.

  2. ACCELERATED EVOLUTION OF LAND SNAILS MANDARINA IN THE OCEANIC BONIN ISLANDS: EVIDENCE FROM MITOCHONDRIAL DNA SEQUENCES.

    PubMed

    Chiba, Satoshi

    1999-04-01

    An endemic land snail genus Mandarina of the oceanic Bonin (Ogasawara) Islands shows exceptionally rapid evolution not only of morphological and ecological traits, but of DNA sequence. A phylogenetic relationship based on mitochondrial DNA (mtDNA) sequences suggests that morphological differences equivalent to the differences between families were produced between Mandarina and its ancestor during the Pleistocene. The inferred phylogeny shows that species with similar morphologies and life habitats appeared repeatedly and independently in different lineages and islands at different times. Sequential adaptive radiations occurred in different islands of the Bonin Islands and species occupying arboreal, semiarboreal, and terrestrial habitat arose independently in each island. Because of a close relationship between shell morphology and life habitat, independent evolution of the same life habitat in different islands created species possesing the same shell morphology in different islands and lineages. This rapid evolution produced some incongruences between phylogenetic relationship and species taxonomy. Levels of sequence divergence of mtDNA among the species of Mandarina is extremely high. The maximum level of sequence divergence at 16S and 12S ribosomal RNA sequence within Mandarina are 18.7% and 17.7%, respectively, and this suggests that evolution of mtDNA of Mandarina is extremely rapid, more than 20 times faster than the standard rate in other animals. The present examination reveals that evolution of morphological and ecological traits occurs at extremely high rates in the time of adaptive radiation, especially in fragmented environments. © 1999 The Society for the Study of Evolution.

  3. A promoter recognition mechanism common to yeast mitochondrial and phage t7 RNA polymerases.

    PubMed

    Nayak, Dhananjaya; Guo, Qing; Sousa, Rui

    2009-05-15

    Yeast mitochondrial (YMt) and phage T7 RNA polymerases (RNAPs) are two divergent representatives of a large family of single subunit RNAPs that are also found in the mitochondria and chloroplasts of higher eukaryotes, mammalian nuclei, and many other bacteriophage. YMt and phage T7 promoters differ greatly in sequence and length, and the YMt RNAP uses an accessory factor for initiation, whereas T7 RNAP does not. We obtain evidence here that, despite these apparent differences, both the YMt and T7 RNAPs utilize a similar promoter recognition loop to bind their respective promoters. Mutations in this element in YMt RNAP specifically disrupt mitochondrial promoter utilization, and experiments with site-specifically tethered chemical nucleases indicate that this element binds the mitochondrial promoter almost identically to how the promoter recognition loop from the phage RNAP binds its promoter. Sequence comparisons reveal that the other members of the single subunit RNAP family display loops of variable sequence and size at a position corresponding to the YMt and T7 RNAP promoter recognition loops. We speculate that these elements may be involved in promoter recognition in most or all of these enzymes and that this element's structure allows it to accommodate significant sequence and length variation to provide a mechanism for rapid evolution of new promoter specificities in this RNAP family.

  4. The Mitochondrial Genomes of the Zoonotic Canine Filarial Parasites Dirofilaria (Nochtiella) repens and Candidatus Dirofilaria (Nochtiella) Honkongensis Provide Evidence for Presence of Cryptic Species

    PubMed Central

    Yilmaz, Esra; Fritzenwanker, Moritz; Pantchev, Nikola; Lendner, Mathias; Wongkamchai, Sirichit; Otranto, Domenico; Kroidl, Inge; Dennebaum, Martin; Le, Thanh Hoa; Anh Le, Tran; Ramünke, Sabrina; Schaper, Roland; von Samson-Himmelstjerna, Georg; Poppert, Sven; Krücken, Jürgen

    2016-01-01

    Background Cutaneous dirofilariosis is a canine mosquito-borne zoonosis that can cause larva migrans disease in humans. Dirofilaria repens is considered an emerging pathogen occurring with high prevalence in Mediterranean areas and many parts of tropical Asia. In Hong Kong, a second species, Candidatus Dirofilaria hongkongensis, has been reported. The present study aimed to compare mitochondrial genomes from these parasites and to obtain population genetic information. Methods and Findings Complete mitochondrial genomes were obtained by PCR and Sanger sequencing or ILLUMINA sequencing for four worms. Cytochrome oxidase subunit 1 sequences identified three as D. repens (all from Europe) and one as C. D. hongkongensis (from India). Mitochondrial genomes have the same organization as in other spirurid nematodes but a higher preference for thymine in the coding strand. Phylogenetic analysis was in contradiction to current taxonomy of the Onchocercidae but in agreement with a recent multi-locus phylogenetic analysis using both mitochondrial and nuclear markers. D. repens and C. D. hongkongensis sequences clustered together and were the common sister group to Dirofilaria immitis. Analysis of a 2.5 kb mitochondrial genome fragment from macrofilaria or canine blood samples from Europe (42), Thailand (2), India (1) and Vietnam (1) revealed only small genetic differences in the D. repens samples including all European and the Vietnam sample. The Indian C. D. hongkongensis and the two Thai samples formed separate clusters and differences were comparatively large. Conclusion Genetic differences between Dirofilaria spp. causing cutaneous disease can be considerable whereas D. repens itself was genetically quite homogenous. C. D. hongkongensis was identified for the first time from the Indian subcontinent. The full mitochondrial genome sequence strengthens the hypothesis that it represents an independent species and the Thai samples might represent another cryptic species, Candidatus Dirofilaria sp. ‘Thailand II’, or a quite divergent population of C. D. hongkongensis. PMID:27727270

  5. High genetic diversities between isolates of the fish parasite Cryptocaryon irritans (Ciliophora) suggest multiple cryptic species.

    PubMed

    Chi, Hongshu; Taik, Patricia; Foley, Emily J; Racicot, Alycia C; Gray, Hilary M; Guzzetta, Katherine E; Lin, Hsin-Yun; Song, Yen-Ling; Tung, Che-Huang; Zenke, Kosuke; Yoshinaga, Tomoyoshi; Cheng, Chao-Yin; Chang, Wei-Jen; Gong, Hui

    2017-07-01

    The ciliate protozoan Cryptocaryon irritans parasitizes marine fish and causes lethal white spot disease. Sporadic infections as well as large-scale outbreaks have been reported globally and the parasite's broad host range poses particular threat to the aquaculture and ornamental fish markets. In order to better understand C. irritans' population structure, we sequenced and compared mitochondrial cox-1, SSU rRNA, and ITS-1 sequences from 8 new isolates of C. irritans collected in China, Japan, and Taiwan. We detected two SSU rRNA haplotypes, which differ at three positions, separating the isolates into two main groups (I and II). Cox-1 sequences also support the division into two groups, and the cox-1 divergence between these two groups is unexpectedly high (9.28% for 1582 nucleotide positions). The divergence is much greater than that detected in Ichthyophthirius multifiliis, the ciliate protozoan causing freshwater white spot disease in fish, where intraspecies divergence on cox-1 sequence is only 1.95%. ITS-1 sequences derived from these eight isolates and from all other C. irritans isolates (deposited in the GenBank) not only support the two groups, but further suggest the presence of a third group with even greater sequence divergence. Finally, a small Ka/Ks ratio estimated from cox-1 sequences suggests that this gene in C. irritans remains under strong purifying selection. Taken together, the C. irritans species may consists of many subspecies and/or syngens. Further work is needed to determine if there is reproductive isolation between the groups we have defined. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Divergent nuclear 18S rDNA paralogs in a turkey coccidium, Eimeria meleagrimitis, complicate molecular systematics and identification.

    PubMed

    El-Sherry, Shiem; Ogedengbe, Mosun E; Hafeez, Mian A; Barta, John R

    2013-07-01

    Multiple 18S rDNA sequences were obtained from two single-oocyst-derived lines of each of Eimeria meleagrimitis and Eimeria adenoeides. After analysing the 15 new 18S rDNA sequences from two lines of E. meleagrimitis and 17 new sequences from two lines of E. adenoeides, there were clear indications that divergent, paralogous 18S rDNA copies existed within the nuclear genome of E. meleagrimitis. In contrast, mitochondrial cytochrome c oxidase subunit I (COI) partial sequences from all lines of a particular Eimeria sp. were identical and, in phylogenetic analyses, COI sequences clustered unambiguously in monophyletic and highly-supported clades specific to individual Eimeria sp. Phylogenetic analysis of the new 18S rDNA sequences from E. meleagrimitis showed that they formed two distinct clades: Type A with four new sequences; and Type B with nine new sequences; both Types A and B sequences were obtained from each of the single-oocyst-derived lines of E. meleagrimitis. Together these rDNA types formed a well-supported E. meleagrimitis clade. Types A and B 18S rDNA sequences from E. meleagrimitis had a mean sequence identity of only 97.4% whereas mean sequence identity within types was 99.1-99.3%. The observed intraspecific sequence divergence among E. meleagrimitis 18S rDNA sequence types was even higher (approximately 2.6%) than the interspecific sequence divergence present between some well-recognized species such as Eimeria tenella and Eimeria necatrix (1.1%). Our observations suggest that, unlike COI sequences, 18S rDNA sequences are not reliable molecular markers to be used alone for species identification with coccidia, although 18S rDNA sequences have clear utility for phylogenetic reconstruction of apicomplexan parasites at the genus and higher taxonomic ranks. Copyright © 2013. Published by Elsevier Ltd.

  7. Phylogenetic analysis of the alfalfa weevil complex (Coleoptera: Curculionidae) in North America.

    PubMed

    Böttger, Jorge A Achata; Bundy, C Scott; Oesterle, Naomi; Hanson, Stephen F

    2013-02-01

    The Eastern, Western, and Egyptian strains of alfalfa weevil are pests introduced to North America on three separate occasions, now they share partially overlapping geographic ranges, covering most of the continental United States. Behavior, susceptibility to parasites, and subtle morphological differences separate the strains. The difficulty in differentiating among these strains morphologically has led to the application of molecular phylogeny approaches including restriction fragment-length polymorphism characterization and sequencing of mitochondrial genes. While valuable for strain identification, this approach cannot identify interstrain hybrids because mitochondrial markers are maternally inherited. The work reported here extends previous findings by comparing over 7 Kb of sequence from two mitochondrial and four nuclear loci to increase the resolution of molecular phylogeny for these weevils. The related clover leaf weevil, also an occasional pest of alfalfa, was included in the analysis because the molecular phylogeny of this weevil has not been examined to date. Analysis of nuclear loci indicate that the clover weevil is a distinct species. Furthermore, while the three alfalfa weevil strains are separable based on mitochondrial sequence data they cannot be separated using nuclearloci suggesting that they are all recently diverged members of the same species. These data refine the relationships among these strains and may find application in design of better control strategies.

  8. Cryptic diversity in European bats.

    PubMed Central

    Mayer, F.; von Helversen, O.

    2001-01-01

    Different species of bat can be morphologically very similar. In order to estimate the amount of cryptic diversity among European bats we screened the intra- and interspecific genetic variation in 26 European vespertilionid bat species. We sequenced the DNA of subunit 1 of the mitochondrial protein NADH dehydrogenase (ND1) from several individuals of a species, which were sampled in a variety of geographical regions. A phylogeny based on the mitochondrial (mt) DNA data is in good agreement with the current classification in the family. Highly divergent mitochondrial lineages were found in two taxa, which differed in at least 11% of their ND1 sequence. The two mtDNA lineages in Plecotus austriacus correlated with the two subspecies Plecotus austriacus austriacus and Plecotus austriacus kolombatovici. The two mtDNA lineages in Myotis mystacinus were partitioned among two morphotypes. The evidence for two new bat species within Europe is discussed. Convergent adaptive evolution might have contributed to the morphological similarity among distantly related species if they occupy similar ecological niches. Closely related species may differ in their ecology but not necessarily in their morphology. On the other hand, two morphologically clearly different species (Eptesicus serotinus and Eptesicus nilssonii) were found to be genetically very similar. Neither morphological nor mitochondrial DNA sequence analysis alone can be guaranteed to identify species. PMID:11522202

  9. Cryptic genetic diversity, population structure, and gene flow in the Mojave rattlesnake (Crotalus scutulatus).

    PubMed

    Schield, Drew R; Adams, Richard H; Card, Daren C; Corbin, Andrew B; Jezkova, Tereza; Hales, Nicole R; Meik, Jesse M; Perry, Blair W; Spencer, Carol L; Smith, Lydia L; García, Gustavo Campillo; Bouzid, Nassima M; Strickland, Jason L; Parkinson, Christopher L; Borja, Miguel; Castañeda-Gaytán, Gamaliel; Bryson, Robert W; Flores-Villela, Oscar A; Mackessy, Stephen P; Castoe, Todd A

    2018-06-15

    The Mojave rattlesnake (Crotalus scutulatus) inhabits deserts and arid grasslands of the western United States and Mexico. Despite considerable interest in its highly toxic venom and the recognition of two subspecies, no molecular studies have characterized range-wide genetic diversity and population structure or tested species limits within C. scutulatus. We used mitochondrial DNA and thousands of nuclear loci from double-digest restriction site associated DNA sequencing to infer population genetic structure throughout the range of C. scutulatus, and to evaluate divergence times and gene flow between populations. We find strong support for several divergent mitochondrial and nuclear clades of C. scutulatus, including splits coincident with two major phylogeographic barriers: the Continental Divide and the elevational increase associated with the Central Mexican Plateau. We apply Bayesian clustering, phylogenetic inference, and coalescent-based species delimitation to our nuclear genetic data to test hypotheses of population structure. We also performed demographic analyses to test hypotheses relating to population divergence and gene flow. Collectively, our results support the existence of four distinct lineages within C. scutulatus, and genetically defined populations do not correspond with currently recognized subspecies ranges. Finally, we use approximate Bayesian computation to test hypotheses of divergence among multiple rattlesnake species groups distributed across the Continental Divide, and find evidence for co-divergence at this boundary during the mid-Pleistocene. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. A DNA Barcode Library for North American Ephemeroptera: Progress and Prospects

    PubMed Central

    Webb, Jeffrey M.; Jacobus, Luke M.; Funk, David H.; Zhou, Xin; Kondratieff, Boris; Geraci, Christy J.; DeWalt, R. Edward; Baird, Donald J.; Richard, Barton; Phillips, Iain; Hebert, Paul D. N.

    2012-01-01

    DNA barcoding of aquatic macroinvertebrates holds much promise as a tool for taxonomic research and for providing the reliable identifications needed for water quality assessment programs. A prerequisite for identification using barcodes is a reliable reference library. We gathered 4165 sequences from the barcode region of the mitochondrial cytochrome c oxidase subunit I gene representing 264 nominal and 90 provisional species of mayflies (Insecta: Ephemeroptera) from Canada, Mexico, and the United States. No species shared barcode sequences and all can be identified with barcodes with the possible exception of some Caenis. Minimum interspecific distances ranged from 0.3–24.7% (mean: 12.5%), while the average intraspecific divergence was 1.97%. The latter value was inflated by the presence of very high divergences in some taxa. In fact, nearly 20% of the species included two or three haplotype clusters showing greater than 5.0% sequence divergence and some values are as high as 26.7%. Many of the species with high divergences are polyphyletic and likely represent species complexes. Indeed, many of these polyphyletic species have numerous synonyms and individuals in some barcode clusters show morphological attributes characteristic of the synonymized species. In light of our findings, it is imperative that type or topotype specimens be sequenced to correctly associate barcode clusters with morphological species concepts and to determine the status of currently synonymized species. PMID:22666447

  11. Detection of a transient mitochondrial DNA heteroplasmy in the progeny of crossed genetically divergent isolates of arbuscular mycorrhizal fungi.

    PubMed

    de la Providencia, Ivan Enrique; Nadimi, Maryam; Beaudet, Denis; Morales, Gabriela Rodriguez; Hijri, Mohamed

    2013-10-01

    Nonself fusion and nuclear genetic exchange have been documented in arbuscular mycorrhizal fungi (AMF), particularly in Rhizophagus irregularis. However, mitochondrial transmission accompanying nonself fusion of genetically divergent isolates remains unknown. Here, we tested the hypothesis that mitochondrial DNA (mtDNA) heteroplasmy occurs in the progeny of spores, obtained by crossing genetically divergent mtDNAs in R. irregularis isolates. Three isolates of geographically distant locations were used to investigate nonself fusions and mtDNA transmission to the progeny. We sequenced two additional mtDNAs of two R. irregularis isolates and developed isolate-specific size-variable markers in intergenic regions of these isolates and those of DAOM-197198. We achieved three crossing combinations in pre-symbiotic and symbiotic phases. Progeny spores per crossing combination were genotyped using isolate-specific markers. We found evidence that nonself recognition occurs between isolates originating from different continents both in pre-symbiotic and symbiotic phases. Genotyping patterns of individual spores from the progeny clearly showed the presence of markers of the two parental mtDNA haplotypes. Our results demonstrate that mtDNA heteroplasmy occurs in the progeny of the crossed isolates. However, this heteroplasmy appears to be a transient stage because all the live progeny spores that were able to germinate showed only one mtDNA haplotype. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  12. Nucleotide sequence of the Varkud mitochondrial plasmid of Neurospora and synthesis of a hybrid transcript with a 5' leader derived from mitochondrial RNA.

    PubMed

    Akins, R A; Grant, D M; Stohl, L L; Bottorff, D A; Nargang, F E; Lambowitz, A M

    1988-11-05

    The Mauriceville and Varkud mitochondrial plasmids of Neurospora are closely related, closed circular DNAs (3.6 and 3.7 kb, respectively; 1 kb = 10(3) bases or base-pairs), whose characteristics suggest relationships to mitochondrial DNA introns and retrotransposons. Here, we characterized the structure of the Varkud plasmid, determined its complete nucleotide sequence and mapped its major transcripts. The Mauriceville and Varkud plasmids have more than 97% positional identity. Both plasmids contain a 710 amino acid open reading frame that encodes a reverse transcriptase-like protein. The amino acid sequence of this open reading frame is strongly conserved between the two plasmids (701/710 amino acids) as expected for a functionally important protein. Both plasmids have a 0.4 kb region that contains five PstI palindromes and a direct repeat of approximately 160 base-pairs. Comparison of sequences in this region suggests that the Varkud plasmid has diverged less from a common ancestor than has the Mauriceville plasmid. Two major transcripts of the Varkud plasmid were detected by Northern hybridization experiments: a full-length linear RNA of 3.7 kb and an additional prominent transcript of 4.9 kb, 1.2 kb longer than monomer plasmid. Remarkably, we find that the 4.9 kb transcript is a hybrid RNA consisting of the full-length 3.7 kb Varkud plasmid transcript plus a 5' leader of 1.2 kb that is derived from the 5' end of the mitochondrial small rRNA. This and other findings suggest that the Varkud plasmid, like certain RNA viruses, has a mechanism for joining heterologous RNAs to the 5' end of its major transcript, and that, under some circumstances, nucleotide sequences in mitochondria may be recombined at the RNA level.

  13. Molecular phylogeny of Anopheles hyrcanus group (Diptera: Culicidae) based on mtDNA COI.

    PubMed

    Fang, Yuan; Shi, Wen-Qi; Zhang, Yi

    2017-05-08

    The Anopheles hyrcanus group, which includes at least 25 species, is widely distributed in the Oriental and Palearctic regions. Some group members have been incriminated as vectors of malaria and other mosquito-borne diseases. It is difficult to identify Hyrcanus Group members by morphological features. Thus, molecular phylogeny has been proposed as an important complementary method to traditional morphological taxonomy. Based on the GenBank database and our original study data, we used 466 mitochondrial DNA COI sequences belonging to 18 species to reconstruct the molecular phylogeny of the Hyrcanus Group across its worldwide geographic range. The results are as follows. 1) The average conspecific K2P divergence was 0.008 (range 0.002-0.017), whereas sequence divergence between congroup species averaged 0.064 (range 0.026-0.108). 2) The topology of COI tree of the Hyrcanus Group was generally consistent with classical morphological taxonomy in terms of species classification, but disagreed in subgroup division. In the COI tree, the group was divided into at least three main clusters. The first cluster contained An. nimpe; the second was composed of the Nigerrimus Subgroup and An. argyropus; and the third cluster was comprised of the Lesteri Subgroup and other unassociated species. 3) Phylogenetic analysis of COI indicated that ancient hybridizations probably occurred among the three closely related species, An. sinensis, An. belenrae, and An. kleini. 4) The results supported An. paraliae as a probable synonym of An. lesteri, and it was possible that An. pseudopictus and An. hyrcanus were the same species, as evident from their extremely low interspecific genetic divergence (0.020 and 0.007, respectively) and their phylogenetic positions. In summary, we reconstructed the molecular phylogeny and analysed genetic divergence of the Hyrcanus Group using mitochondrial COI sequences. Our results suggest that in the future of malaria surveillance, we should not only pay much attention to those known vectors of malaria, but also their closely related species.

  14. Complete sequences of organelle genomes from the medicinal plant Rhazya stricta (Apocynaceae) and contrasting patterns of mitochondrial genome evolution across asterids.

    PubMed

    Park, Seongjun; Ruhlman, Tracey A; Sabir, Jamal S M; Mutwakil, Mohammed H Z; Baeshen, Mohammed N; Sabir, Meshaal J; Baeshen, Nabih A; Jansen, Robert K

    2014-05-28

    Rhazya stricta is native to arid regions in South Asia and the Middle East and is used extensively in folk medicine to treat a wide range of diseases. In addition to generating genomic resources for this medicinally important plant, analyses of the complete plastid and mitochondrial genomes and a nuclear transcriptome from Rhazya provide insights into inter-compartmental transfers between genomes and the patterns of evolution among eight asterid mitochondrial genomes. The 154,841 bp plastid genome is highly conserved with gene content and order identical to the ancestral organization of angiosperms. The 548,608 bp mitochondrial genome exhibits a number of phenomena including the presence of recombinogenic repeats that generate a multipartite organization, transferred DNA from the plastid and nuclear genomes, and bidirectional DNA transfers between the mitochondrion and the nucleus. The mitochondrial genes sdh3 and rps14 have been transferred to the nucleus and have acquired targeting presequences. In the case of rps14, two copies are present in the nucleus; only one has a mitochondrial targeting presequence and may be functional. Phylogenetic analyses of both nuclear and mitochondrial copies of rps14 across angiosperms suggests Rhazya has experienced a single transfer of this gene to the nucleus, followed by a duplication event. Furthermore, the phylogenetic distribution of gene losses and the high level of sequence divergence in targeting presequences suggest multiple, independent transfers of both sdh3 and rps14 across asterids. Comparative analyses of mitochondrial genomes of eight sequenced asterids indicates a complicated evolutionary history in this large angiosperm clade with considerable diversity in genome organization and size, repeat, gene and intron content, and amount of foreign DNA from the plastid and nuclear genomes. Organelle genomes of Rhazya stricta provide valuable information for improving the understanding of mitochondrial genome evolution among angiosperms. The genomic data have enabled a rigorous examination of the gene transfer events. Rhazya is unique among the eight sequenced asterids in the types of events that have shaped the evolution of its mitochondrial genome. Furthermore, the organelle genomes of R. stricta provide valuable genomic resources for utilizing this important medicinal plant in biotechnology applications.

  15. Complete mitochondrial genome of Camponotus atrox (Hymenoptera: Formicidae): a new tRNA arrangement in Hymenoptera.

    PubMed

    Kim, Min Jee; Hong, Eui Jeong; Kim, Iksoo

    2016-01-01

    We sequenced the complete mitochondrial (mt) genome of Camponotus atrox (Hymenoptera: Formicidae), which is only distributed in Korea. The genome was 16 540 bp in size and contained typical sets of genes (13 protein-coding genes, 22 tRNAs, and 2 rRNAs). The C. atrox A+T-rich region, at 1402 bp, was the longest of all sequenced ant genomes and was composed of an identical tandem repeat consisting of six 100-bp copies and one 96-bp copy. A total of 315 bp of intergenic spacer sequence was spread over 23 regions. An alignment of the spacer sequences in ants was largely feasible among congeneric species, and there was substantial sequence divergence, indicating their potential use as molecular markers for congeneric species. The A/T contents at the first and second codon positions of protein-coding genes (PCGs) were similar for ant species, including C. atrox (73.9% vs. 72.3%, on average). With increased taxon sampling among hymenopteran superfamilies, differences in the divergence rates (i.e., the non-synonymous substitution rates) between the suborders Symphyta and Apocrita were detected, consistent with previous results. The C. atrox mt genome had a unique gene arrangement, trnI-trnM-trnQ, at the A+T-rich region and ND2 junction (underline indicates inverted gene). This may have originated from a tandem duplication of trnM-trnI, resulting in trnM-trnI-trnM-trnI-trnQ, and the subsequent loss of the first trnM and second trnI, resulting in trnI-trnM-trnQ.

  16. Phylogeographic Analyses of American Black Bears (Ursus americanus) Suggest Four Glacial Refugia and Complex Patterns of Postglacial Admixture.

    PubMed

    Puckett, Emily E; Etter, Paul D; Johnson, Eric A; Eggert, Lori S

    2015-09-01

    Studies of species with continental distributions continue to identify intraspecific lineages despite continuous habitat. Lineages may form due to isolation by distance, adaptation, divergence across barriers, or genetic drift following range expansion. We investigated lineage diversification and admixture within American black bears (Ursus americanus) across their range using 22 k single nucleotide polymorphisms and mitochondrial DNA sequences. We identified three subcontinental nuclear clusters which we further divided into nine geographic regions: Alaskan (Alaska-East), eastern (Central Interior Highlands, Great Lakes, Northeast, Southeast), and western (Alaska-West, West, Pacific Coast, Southwest). We estimated that the western cluster diverged 67 ka, before eastern and Alaskan divergence 31 ka; these divergence dates contrasted with those from the mitochondrial genome where clades A and B diverged 1.07 Ma, and clades A-east and A-west diverged 169 ka. We combined estimates of divergence timing with hindcast species distribution models to infer glacial refugia for the species in Beringia, Pacific Northwest, Southwest, and Southeast. Our results show a complex arrangement of admixture due to expansion out of multiple refugia. The delineation of the genomic population clusters was inconsistent with the ranges for 16 previously described subspecies. Ranges for U. a. pugnax and U. a. cinnamomum were concordant with admixed clusters, calling into question how to order taxa below the species level. Additionally, our finding that U. a. floridanus has not diverged from U. a. americanus also suggests that morphology and genetics should be reanalyzed to assess taxonomic designations relevant to the conservation management of the species. © The Author 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved.For permissions please email: journals.permissions@oup.com.

  17. Mitogenome Phylogenetics: The Impact of Using Single Regions and Partitioning Schemes on Topology, Substitution Rate and Divergence Time Estimation

    PubMed Central

    Duchêne, Sebastián; Archer, Frederick I.; Vilstrup, Julia; Caballero, Susana; Morin, Phillip A.

    2011-01-01

    The availability of mitochondrial genome sequences is growing as a result of recent technological advances in molecular biology. In phylogenetic analyses, the complete mitogenome is increasingly becoming the marker of choice, usually providing better phylogenetic resolution and precision relative to traditional markers such as cytochrome b (CYTB) and the control region (CR). In some cases, the differences in phylogenetic estimates between mitogenomic and single-gene markers have yielded incongruent conclusions. By comparing phylogenetic estimates made from different genes, we identified the most informative mitochondrial regions and evaluated the minimum amount of data necessary to reproduce the same results as the mitogenome. We compared results among individual genes and the mitogenome for recently published complete mitogenome datasets of selected delphinids (Delphinidae) and killer whales (genus Orcinus). Using Bayesian phylogenetic methods, we investigated differences in estimation of topologies, divergence dates, and clock-like behavior among genes for both datasets. Although the most informative regions were not the same for each taxonomic group (COX1, CYTB, ND3 and ATP6 for Orcinus, and ND1, COX1 and ND4 for Delphinidae), in both cases they were equivalent to less than a quarter of the complete mitogenome. This suggests that gene information content can vary among groups, but can be adequately represented by a portion of the complete sequence. Although our results indicate that complete mitogenomes provide the highest phylogenetic resolution and most precise date estimates, a minimum amount of data can be selected using our approach when the complete sequence is unavailable. Studies based on single genes can benefit from the addition of a few more mitochondrial markers, producing topologies and date estimates similar to those obtained using the entire mitogenome. PMID:22073275

  18. Mitochondrial DNA variation and phylogenetic relationships among five tuna species based on sequencing of D-loop region.

    PubMed

    Kumar, Girish; Kocour, Martin; Kunal, Swaraj Priyaranjan

    2016-05-01

    In order to assess the DNA sequence variation and phylogenetic relationship among five tuna species (Auxis thazard, Euthynnus affinis, Katsuwonus pelamis, Thunnus tonggol, and T. albacares) out of all four tuna genera, partial sequences of the mitochondrial DNA (mtDNA) D-loop region were analyzed. The estimate of intra-specific sequence variation in studied species was low, ranging from 0.027 to 0.080 [Kimura's two parameter distance (K2P)], whereas values of inter-specific variation ranged from 0.049 to 0.491. The longtail tuna (T. tonggol) and yellowfin tuna (T. albacares) were found to share a close relationship (K2P = 0.049) while skipjack tuna (K. pelamis) was most divergent studied species. Phylogenetic analysis using Maximum-Likelihood (ML) and Neighbor-Joining (NJ) methods supported the monophyletic origin of Thunnus species. Similarly, phylogeny of Auxis and Euthynnus species substantiate the monophyly. However, results showed a distinct origin of K. pelamis from genus Thunnus as well as Auxis and Euthynnus. Thus, the mtDNA D-loop region sequence data supports the polyphyletic origin of tuna species.

  19. De novo assembly of mitochondrial genomes provides insights into genetic diversity and molecular evolution in wild boars and domestic pigs.

    PubMed

    Ni, Pan; Bhuiyan, Ali Akbar; Chen, Jian-Hai; Li, Jingjin; Zhang, Cheng; Zhao, Shuhong; Du, Xiaoyong; Li, Hua; Yu, Hui; Liu, Xiangdong; Li, Kui

    2018-06-01

    Up to date, the scarcity of publicly available complete mitochondrial sequences for European wild pigs hampers deeper understanding about the genetic changes following domestication. Here, we have assembled 26 de novo mtDNA sequences of European wild boars from next generation sequencing (NGS) data and downloaded 174 complete mtDNA sequences to assess the genetic relationship, nucleotide diversity, and selection. The Bayesian consensus tree reveals the clear divergence between the European and Asian clade and a very small portion (10 out of 200 samples) of maternal introgression. The overall nucleotides diversities of the mtDNA sequences have been reduced following domestication. Interestingly, the selection efficiencies in both European and Asian domestic pigs are reduced, probably caused by changes in both selection constraints and maternal population size following domestication. This study suggests that de novo assembled mitogenomes can be a great boon to uncover the genetic turnover following domestication. Further investigation is warranted to include more samples from the ever-increasing amounts of NGS data to help us to better understand the process of domestication.

  20. Dating of the human-ape splitting by a molecular clock of mitochondrial DNA.

    PubMed

    Hasegawa, M; Kishino, H; Yano, T

    1985-01-01

    A new statistical method for estimating divergence dates of species from DNA sequence data by a molecular clock approach is developed. This method takes into account effectively the information contained in a set of DNA sequence data. The molecular clock of mitochondrial DNA (mtDNA) was calibrated by setting the date of divergence between primates and ungulates at the Cretaceous-Tertiary boundary (65 million years ago), when the extinction of dinosaurs occurred. A generalized least-squares method was applied in fitting a model to mtDNA sequence data, and the clock gave dates of 92.3 +/- 11.7, 13.3 +/- 1.5, 10.9 +/- 1.2, 3.7 +/- 0.6, and 2.7 +/- 0.6 million years ago (where the second of each pair of numbers is the standard deviation) for the separation of mouse, gibbon, orangutan, gorilla, and chimpanzee, respectively, from the line leading to humans. Although there is some uncertainty in the clock, this dating may pose a problem for the widely believed hypothesis that the pipedal creature Australopithecus afarensis, which lived some 3.7 million years ago at Laetoli in Tanzania and at Hadar in Ethiopia, was ancestral to man and evolved after the human-ape splitting. Another likelier possibility is that mtDNA was transferred through hybridization between a proto-human and a proto-chimpanzee after the former had developed bipedalism.

  1. Complete Columbian mammoth mitogenome suggests interbreeding with woolly mammoths

    PubMed Central

    2011-01-01

    Background Late Pleistocene North America hosted at least two divergent and ecologically distinct species of mammoth: the periglacial woolly mammoth (Mammuthus primigenius) and the subglacial Columbian mammoth (Mammuthus columbi). To date, mammoth genetic research has been entirely restricted to woolly mammoths, rendering their genetic evolution difficult to contextualize within broader Pleistocene paleoecology and biogeography. Here, we take an interspecific approach to clarifying mammoth phylogeny by targeting Columbian mammoth remains for mitogenomic sequencing. Results We sequenced the first complete mitochondrial genome of a classic Columbian mammoth, as well as the first complete mitochondrial genome of a North American woolly mammoth. Somewhat contrary to conventional paleontological models, which posit that the two species were highly divergent, the M. columbi mitogenome we obtained falls securely within a subclade of endemic North American M. primigenius. Conclusions Though limited, our data suggest that the two species interbred at some point in their evolutionary histories. One potential explanation is that woolly mammoth haplotypes entered Columbian mammoth populations via introgression at subglacial ecotones, a scenario with compelling parallels in extant elephants and consistent with certain regional paleontological observations. This highlights the need for multi-genomic data to sufficiently characterize mammoth evolutionary history. Our results demonstrate that the use of next-generation sequencing technologies holds promise in obtaining such data, even from non-cave, non-permafrost Pleistocene depositional contexts. PMID:21627792

  2. Assessment of snake DNA barcodes based on mitochondrial COI and Cytb genes revealed multiple putative cryptic species in Thailand.

    PubMed

    Laopichienpong, Nararat; Muangmai, Narongrit; Supikamolseni, Arrjaree; Twilprawat, Panupon; Chanhome, Lawan; Suntrarachun, Sunutcha; Peyachoknagul, Surin; Srikulnath, Kornsorn

    2016-12-15

    DNA barcodes of mitochondrial cytochrome c oxidase I (COI), cytochrome b (Cytb) genes, and their combined data sets were constructed from 35 snake species in Thailand. No barcoding gap was detected in either of the two genes from the observed intra- and interspecific sequence divergences. Intra- and interspecific sequence divergences of the COI gene differed 14 times, with barcode cut-off scores ranging over 2%-4% for threshold values differentiated among most of the different species; the Cytb gene differed 6 times with cut-off scores ranging over 2%-6%. Thirty-five specific nucleotide mutations were also found at interspecific level in the COI gene, identifying 18 snake species, but no specific nucleotide mutation was observed for Cytb in any single species. This suggests that COI barcoding was a better marker than Cytb. Phylogenetic clustering analysis indicated that most species were represented by monophyletic clusters, suggesting that these snake species could be clearly differentiated using COI barcodes. However, the two-marker combination of both COI and Cytb was more effective, differentiating snake species by over 2%-4%, and reducing species numbers in the overlap value between intra- and interspecific divergences. Three species delimitation algorithms (general mixed Yule-coalescent, automatic barcoding gap detection, and statistical parsimony network analysis) were extensively applied to a wide range of snakes based on both barcodes. This revealed cryptic diversity for eleven snake species in Thailand. In addition, eleven accessions from the database previously grouped under the same species were represented at different species level, suggesting either high genetic diversity, or the misidentification of these sequences in the database as a consequence of cryptic species. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Mitochondrial and nuclear DNA sequences support a Cretaceous origin of Columbiformes and a dispersal-driven radiation in the Paleocene .

    PubMed

    Pereira, Sergio L; Johnson, Kevin P; Clayton, Dale H; Baker, Allan J

    2007-08-01

    Phylogenetic relationships among genera of pigeons and doves (Aves, Columbiformes) have not been fully resolved because of limited sampling of taxa and characters in previous studies. We therefore sequenced multiple nuclear and mitochondrial DNA genes totaling over 9000 bp from 33 of 41 genera plus 8 outgroup taxa, and, together with sequences from 5 other pigeon genera retrieved from GenBank, recovered a strong phylogenetic hypothesis for the Columbiformes. Three major clades were recovered with the combined data set, comprising the basally branching New World pigeons and allies (clade A) that are sister to Neotropical ground doves (clade B), and the Afro-Eurasian and Australasian taxa (clade C). None of these clades supports the monophyly of current families and subfamilies. The extinct, flightless dodo and solitaires (Raphidae) were embedded within pigeons and doves (Columbidae) in clade C, and monophyly of the subfamily Columbinae was refuted because the remaining subfamilies were nested within it. Divergence times estimated using a Bayesian framework suggest that Columbiformes diverged from outgroups such as Apodiformes and Caprimulgiformes in the Cretaceous before the mass extinction that marks the end of this period. Bayesian and maximum likelihood inferences of ancestral areas, accounting for phylogenetic uncertainty and divergence times, respectively, favor an ancient origin of Columbiformes in the Neotropical portion of what was then Gondwana. The radiation of modern genera of Columbiformes started in the Early Eocene to the Middle Miocene, as previously estimated for other avian groups such as ratites, tinamous, galliform birds, penguins, shorebirds, parrots, passerine birds, and toucans. Multiple dispersals of more derived Columbiformes between Australasian and Afro-Eurasian regions are required to explain current distributions.

  4. Evolutionary Drivers of Diversification and Distribution of a Southern Temperate Stream Fish Assemblage: Testing the Role of Historical Isolation and Spatial Range Expansion

    PubMed Central

    Chakona, Albert; Swartz, Ernst R.; Gouws, Gavin

    2013-01-01

    This study used phylogenetic analyses of mitochondrial cytochrome b sequences to investigate genetic diversity within three broadly co-distributed freshwater fish genera (Galaxias, Pseudobarbus and Sandelia) to shed some light on the processes that promoted lineage diversification and shaped geographical distribution patterns. A total of 205 sequences of Galaxias, 177 sequences of Pseudobarbus and 98 sequences of Sandelia from 146 localities across nine river systems in the south-western Cape Floristic Region (South Africa) were used. The data were analysed using phylogenetic and haplotype network methods and divergence times for the clades retrieved were estimated using *BEAST. Nine extremely divergent (3.5–25.3%) lineages were found within Galaxias. Similarly, deep phylogeographic divergence was evident within Pseudobarbus, with four markedly distinct (3.8–10.0%) phylogroups identified. Sandelia had two deeply divergent (5.5–5.9%) lineages, but seven minor lineages with strong geographical congruence were also identified. The Miocene-Pliocene major sea-level transgression and the resultant isolation of populations in upland refugia appear to have driven widespread allopatric divergence within the three genera. Subsequent coalescence of rivers during the Pleistocene major sea-level regression as well as intermittent drainage connections during wet periods are proposed to have facilitated range expansion of lineages that currently occur across isolated river systems. The high degree of genetic differentiation recovered from the present and previous studies suggest that freshwater fish diversity within the south-western CFR may be vastly underestimated, and taxonomic revisions are required. PMID:23951050

  5. Genetic polymorphisms of Echinococcus tapeworms in China as determined by mitochondrial and nuclear DNA sequences ✩

    PubMed Central

    Nakao, Minoru; Li, Tiaoying; Han, Xiumin; Ma, Xiumin; Xiao, Ning; Qiu, Jiamin; Wang, Hu; Yanagida, Tetsuya; Mamuti, Wulamu; Wen, Hao; Moro, Pedro L.; Giraudoux, Patrick; Craig, Philip S.; Ito, Akira

    2009-01-01

    The genetic polymorphisms of Echinococcus spp. in the eastern Tibetan Plateau and the Xinjiang Uyghur Autonomous Region were evaluated by DNA sequencing analyses of genes for mitochondrial cytochrome c oxidase subunit 1 (cox1) and nuclear elongation factor-1 alpha (ef1a). We collected 68 isolates of Echinococcus granulosus sensu stricto (s.s.) from Xinjiang and 113 isolates of E. granulosus s. s., 49 isolates of Echinococcus multilocularis and 34 isolates of Echinococcus shiquicus from the Tibetan Plateau. The results of molecular identification by mitochondrial and nuclear markers were identical, suggesting the infrequency of introgressive hybridization. A considerable intraspecific variation was detected in mitochondrial cox1 sequences. The parsimonious network of cox1 haplotypes showed star-like features in E. granulosus s. s. and E. multilocularis, but a divergent feature in E. shiquicus. The cox1 neutrality indexes computed by Tajima's D and Fu's Fs tests showed high negative values in E. granulosus s. s. and E. multilocularis, indicating significant deviations from neutrality. In contrast, the low positive values of both tests were obtained in E. shiquicus. These results suggest the following hypotheses: (i) recent founder effects arose in E. granulosus and E. multilocularis after introducing particular individuals into the endemic areas by anthropogenic movement or natural migration of host mammals, and (ii) the ancestor of E. shiquicus was segregated into the Tibetan Plateau by colonizing alpine mammals and its mitochondrial locus has evolved without bottleneck effects. PMID:19800346

  6. Phylogeography of the prehensile-tailed skink Corucia zebrata on the Solomon Archipelago.

    PubMed

    Hagen, Ingerid J; Donnellan, Stephen C; Bull, C Michael

    2012-06-01

    The biogeography of islands is often strongly influenced by prior geological events. Corucia zebrata (Squamata: Scincidae) is endemic to the geologically complex Solomon Archipelago in Northern Melanesia. We examined the level of divergence for different island populations of C. zebrata and discussed these patterns in light of Pleistocene land bridges, island isolation, and island age. Corucia zebrata was sampled from 14 locations across the Solomon Archipelago and sequenced at two mitochondrial genes (ND2 and ND4; 1697 bp in total) and four nuclear loci (rhodopsin, an unknown intron, AKAP9, and PTPN12). Measures of genetic divergence, analyses of genetic variation, and Bayesian phylogenetic inference were used and the data assessed in light of geological information. Populations of C. zebrata on separate islands were found to be genetically different from each other, with reciprocal monophyly on mitochondrial DNA. Populations on islands previously connected by Pleistocene land bridges were marginally less divergent from each other than from populations on other nearby but isolated islands. There are indications that C. zebrata has radiated across the eastern islands of the archipelago within the last 1-4 million years. Nuclear loci were not sufficiently informative to yield further information about the phylogeography of C. zebrata on the Solomon Archipelago. Analyses of the mitochondrial data suggest that dispersal between islands has been very limited and that there are barriers to gene flow within the major islands. Islands that have been isolated during the Pleistocene glacial cycles are somewhat divergent in their mitochondrial genotypes, however, isolation by distance (IBD) and recent colonization of isolated but geologically younger islands appear to have had stronger effects on the phylogeography of C. zebrata than the Pleistocene glacial cycles. This contrasts with patterns reported for avian taxa, and highlights the fact that biogeographic regions for island species cannot be directly extrapolated among taxa of differing dispersal ability.

  7. Length variation and sequence divergence in mitochondrial control region of Schizothoracine (Teleostei: Cyperinidae) species.

    PubMed

    Syed, Mudasir Ahmad; Bhat, Farooz Ahmad; Balkhi, Masood-ul Hassan; Bhat, Bilal Ahmad

    2016-01-01

    Schizothoracine fish commonly called snow trouts inhibit the entire network of snow and spring fed cool waters of Kashmir, India. Over 10 species reported earlier, only five species have been found, these include Schizothorax niger, Schizothorax esocinus, Schizothorax plagiostomus, Schizothorax curvifrons and Schizothorax labiatus. The relationship between these species is contradicting. To understand the evolutionary relation of these species, we examined the sequence information of mitochondrial D-loop of 25 individuals representing five species. Sequence alignment showed D-loop region highly variable and length variation was observed in di-nucleotide (TA)n microsatellite between and within species. Interestingly, all these species have (TA)n microsatellite not associated with longer tandem repeats at the 3' end of the mitochondrial control region and do not show heteroplasmy. Our analysis also indicates the presence of four conserved sequence blocks (CSB), CSB-D, CSB-1, CSB-II and CSB-III, four (Termination Associated Sequence) TAS motifs and 15bp pyrimidine block within the mitochondrial control region, that are highly conserved within genus Schizothorax when compared with other species. The phylogenetic analysis carried by Maximum likelihood (ML), Neighbor Joining (NJ) and Bayesian inference (BI) generated almost identical results. The resultant BI tree showed a close genetic relationship of all the five species and supports two distinct grouping of S. esocinus species. Besides the species relation, the presence of length variation in tandem repeats is attributed to differences in predicting the stability of secondary structures. The role of CSBs and TASs, reported so far as main regulatory signals, would explain the conservation of these elements in evolution.

  8. Comment on "Nuclear genomic sequences reveal that polar bears are an old and distinct bear lineage".

    PubMed

    Nakagome, Shigeki; Mano, Shuhei; Hasegawa, Masami

    2013-03-29

    Based on nuclear and mitochondrial DNA, Hailer et al. (Reports, 20 April 2012, p. 344) suggested early divergence of polar bears from a common ancestor with brown bears and subsequent introgression. Our population genetic analysis that traces each of the genealogies in the independent nuclear loci does not support the evolutionary model proposed by the authors.

  9. Multiple mitochondrial introgression events and heteroplasmy in trypanosoma cruzi revealed by maxicircle MLST and next generation sequencing.

    PubMed

    Messenger, Louisa A; Llewellyn, Martin S; Bhattacharyya, Tapan; Franzén, Oscar; Lewis, Michael D; Ramírez, Juan David; Carrasco, Hernan J; Andersson, Björn; Miles, Michael A

    2012-01-01

    Mitochondrial DNA is a valuable taxonomic marker due to its relatively fast rate of evolution. In Trypanosoma cruzi, the causative agent of Chagas disease, the mitochondrial genome has a unique structural organization consisting of 20-50 maxicircles (∼20 kb) and thousands of minicircles (0.5-10 kb). T. cruzi is an early diverging protist displaying remarkable genetic heterogeneity and is recognized as a complex of six discrete typing units (DTUs). The majority of infected humans are asymptomatic for life while 30-35% develop potentially fatal cardiac and/or digestive syndromes. However, the relationship between specific clinical outcomes and T. cruzi genotype remains elusive. The availability of whole genome sequences has driven advances in high resolution genotyping techniques and re-invigorated interest in exploring the diversity present within the various DTUs. To describe intra-DTU diversity, we developed a highly resolutive maxicircle multilocus sequence typing (mtMLST) scheme based on ten gene fragments. A panel of 32 TcI isolates was genotyped using the mtMLST scheme, GPI, mini-exon and 25 microsatellite loci. Comparison of nuclear and mitochondrial data revealed clearly incongruent phylogenetic histories among different geographical populations as well as major DTUs. In parallel, we exploited read depth data, generated by Illumina sequencing of the maxicircle genome from the TcI reference strain Sylvio X10/1, to provide the first evidence of mitochondrial heteroplasmy (heterogeneous mitochondrial genomes in an individual cell) in T. cruzi. mtMLST provides a powerful approach to genotyping at the sub-DTU level. This strategy will facilitate attempts to resolve phenotypic variation in T. cruzi and to address epidemiologically important hypotheses in conjunction with intensive spatio-temporal sampling. The observations of both general and specific incidences of nuclear-mitochondrial phylogenetic incongruence indicate that genetic recombination is geographically widespread and continues to influence the natural population structure of TcI, a conclusion which challenges the traditional paradigm of clonality in T. cruzi.

  10. Cuticular hydrocarbon phenotypes do not indicate cryptic species in fungus-growing termites (Isoptera: Macrotermitinae).

    PubMed

    Marten, Andreas; Kaib, Manfred; Brandl, Roland

    2009-05-01

    In several termite species, distinct differences in the composition of cuticular hydrocarbons among colonies correspond to high genetic divergence of mitochondrial DNA sequences. These observations suggest that hydrocarbon phenotypes represent cryptic species. Different cuticular hydrocarbon phenotypes also are found among colonies of fungus-growing termites of the genus Macrotermes. To determine if these hydrocarbon differences in Macrotermes also indicate cryptic species, we sequenced the mitochondrial CO I gene from species in West and East Africa. Among individuals of a supposed species but belonging to different cuticular hydrocarbon phenotypes, the genetic distances are much smaller than distances between species. Unlike what has been observed in other termites, Macrotermes hydrocarbon phenotypes do not represent cryptic species. Our findings suggest fundamental differences in the evolution and/or function of cuticular hydrocarbons among different termite lineages.

  11. Maternal invasion history of Aedes aegypti and Aedes albopictus into the Isthmus of Panama: Implications for the control of emergent viral disease agents.

    PubMed

    Eskildsen, Gilberto A; Rovira, Jose R; Smith, Octavio; Miller, Matthew J; Bennett, Kelly L; McMillan, W Owen; Loaiza, Jose

    2018-01-01

    Despite an increase in dengue outbreaks and the arrival of chikungunya and Zika disease in Panama, studies on the demographic history of the invasive Aedes mosquitoes that are the principle vectors of these diseases are still lacking in this region. Here, we assess the genetic diversity of these mosquitoes in order to decipher their invasion histories into the Isthmus of Panama. DNA sequences from the mitochondrial cytochrome C oxidase I gene obtained from 30 localities in 10 provinces confirmed the presence of more than one mitochondrial haplogroup (i.e., maternal lineage) in each species. The invasion of Aedes albopictus was likely from temperate European countries, as the most frequent and widespread haplogroup in Panama harbored variants that are uncommon elsewhere in the Americas. Two infrequent and geographically restricted Ae. albopictus haplotypes appear to have subsequently invaded Panama from neighboring Costa Rica and the USA, respectively. In addition, we recovered two deeply divergent mitochondrial clades in Panamanian Aedes aegypti. The geographic origins of these clades is unknown, given that divergence in the mitochondrial genome is probably due to ancient population processes within the native range of Ae. aegypti, rather than due to its global expansion out of Africa. However, Panamanian Ae. aegypti mitochondrial sequences within the first clade were closely related to others from Colombia, Bolivia, Brazil, Mexico and the USA, suggesting two separate invasions from Western Hemisphere source populations. The pattern of increased genetic diversity in Aedes mosquitoes in Panama is likely facilitated by the numerous land and water inter-connections across the country, which allows them to enter via sea- and land-transportation from Europe, North, Central and South America. Our results here should be considered in disease mitigation programs if emergent arboviruses are to be effectively diminished in Panama through vector suppression.

  12. Maternal invasion history of Aedes aegypti and Aedes albopictus into the Isthmus of Panama: Implications for the control of emergent viral disease agents

    PubMed Central

    Eskildsen, Gilberto A.; Rovira, Jose R.; Smith, Octavio; Miller, Matthew J.; Bennett, Kelly L.; McMillan, W. Owen

    2018-01-01

    Despite an increase in dengue outbreaks and the arrival of chikungunya and Zika disease in Panama, studies on the demographic history of the invasive Aedes mosquitoes that are the principle vectors of these diseases are still lacking in this region. Here, we assess the genetic diversity of these mosquitoes in order to decipher their invasion histories into the Isthmus of Panama. DNA sequences from the mitochondrial cytochrome C oxidase I gene obtained from 30 localities in 10 provinces confirmed the presence of more than one mitochondrial haplogroup (i.e., maternal lineage) in each species. The invasion of Aedes albopictus was likely from temperate European countries, as the most frequent and widespread haplogroup in Panama harbored variants that are uncommon elsewhere in the Americas. Two infrequent and geographically restricted Ae. albopictus haplotypes appear to have subsequently invaded Panama from neighboring Costa Rica and the USA, respectively. In addition, we recovered two deeply divergent mitochondrial clades in Panamanian Aedes aegypti. The geographic origins of these clades is unknown, given that divergence in the mitochondrial genome is probably due to ancient population processes within the native range of Ae. aegypti, rather than due to its global expansion out of Africa. However, Panamanian Ae. aegypti mitochondrial sequences within the first clade were closely related to others from Colombia, Bolivia, Brazil, Mexico and the USA, suggesting two separate invasions from Western Hemisphere source populations. The pattern of increased genetic diversity in Aedes mosquitoes in Panama is likely facilitated by the numerous land and water inter-connections across the country, which allows them to enter via sea- and land-transportation from Europe, North, Central and South America. Our results here should be considered in disease mitigation programs if emergent arboviruses are to be effectively diminished in Panama through vector suppression. PMID:29579112

  13. Timing major conflict between mitochondrial and nuclear genes in species relationships of Polygonia butterflies (Nymphalidae: Nymphalini)

    PubMed Central

    Wahlberg, Niklas; Weingartner, Elisabet; Warren, Andrew D; Nylin, Sören

    2009-01-01

    Background Major conflict between mitochondrial and nuclear genes in estimating species relationships is an increasingly common finding in animals. Usually this is attributed to incomplete lineage sorting, but recently the possibility has been raised that hybridization is important in generating such phylogenetic patterns. Just how widespread ancient and/or recent hybridization is in animals and how it affects estimates of species relationships is still not well-known. Results We investigate the species relationships and their evolutionary history over time in the genus Polygonia using DNA sequences from two mitochondrial gene regions (COI and ND1, total 1931 bp) and four nuclear gene regions (EF-1α, wingless, GAPDH and RpS5, total 2948 bp). We found clear, strongly supported conflict between mitochondrial and nuclear DNA sequences in estimating species relationships in the genus Polygonia. Nodes at which there was no conflict tended to have diverged at the same time when analyzed separately, while nodes at which conflict was present diverged at different times. We find that two species create most of the conflict, and attribute the conflict found in Polygonia satyrus to ancient hybridization and conflict found in Polygonia oreas to recent or ongoing hybridization. In both examples, the nuclear gene regions tended to give the phylogenetic relationships of the species supported by morphology and biology. Conclusion Studies inferring species-level relationships using molecular data should never be based on a single locus. Here we show that the phylogenetic hypothesis generated using mitochondrial DNA gives a very different interpretation of the evolutionary history of Polygonia species compared to that generated from nuclear DNA. We show that possible cases of hybridization in Polygonia are not limited to sister species, but may be inferred further back in time. Furthermore, we provide more evidence that Haldane's effect might not be as strong a process in preventing hybridization in butterflies as has been previously thought. PMID:19422691

  14. Bayesian estimation of post-Messinian divergence times in Balearic Island lizards.

    PubMed

    Brown, R P; Terrasa, B; Pérez-Mellado, V; Castro, J A; Hoskisson, P A; Picornell, A; Ramon, M M

    2008-07-01

    Phylogenetic relationships and timings of major cladogenesis events are investigated in the Balearic Island lizards Podarcislilfordi and P.pityusensis using 2675bp of mitochondrial and nuclear DNA sequences. Partitioned Bayesian and Maximum Parsimony analyses provided a well-resolved phylogeny with high node-support values. Bayesian MCMC estimation of node dates was investigated by comparing means of posterior distributions from different subsets of the sequence against the most robust analysis which used multiple partitions and allowed for rate heterogeneity among branches under a rate-drift model. Evolutionary rates were systematically underestimated and thus divergence times overestimated when sequences containing lower numbers of variable sites were used (based on ingroup node constraints). The following analyses allowed the best recovery of node times under the constant-rate (i.e., perfect clock) model: (i) all cytochrome b sequence (partitioned by codon position), (ii) cytochrome b (codon position 3 alone), (iii) NADH dehydrogenase (subunits 1 and 2; partitioned by codon position), (iv) cytochrome b and NADH dehydrogenase sequence together (six gene-codon partitions), (v) all unpartitioned sequence, (vi) a full multipartition analysis (nine partitions). Of these, only (iv) and (vi) performed well under the rate-drift model. These findings have significant implications for dating of recent divergence times in other taxa. The earliest P.lilfordi cladogenesis event (divergence of Menorcan populations), occurred before the end of the Pliocene, some 2.6Ma. Subsequent events led to a West Mallorcan lineage (2.0Ma ago), followed 1.2Ma ago by divergence of populations from the southern part of the Cabrera archipelago from a widely-distributed group from north Cabrera, northern and southern Mallorcan islets. Divergence within P.pityusensis is more recent with the main Ibiza and Formentera clades sharing a common ancestor at about 1.0Ma ago. Climatic and sea level changes are likely to have initiated cladogenesis, with lineages making secondary contact during periodic landbridge formation. This oscillating cross-archipelago pattern in which ancient divergence is followed by repeated contact resembles that seen between East-West refugia populations from mainland Europe.

  15. Fungal mitochondrial DNases: effectors with the potential to activate plant defenses in nonhost resistance.

    PubMed

    Hadwiger, Lee A; Polashock, James

    2013-01-01

    Previous reports on the model nonhost resistance interaction between Fusarium solani f. sp. phaseoli and pea endocarp tissue have described the disease resistance-signaling role of a fungal DNase1-like protein. The response resulted in no further growth beyond spore germination. This F. solani f. sp. phaseoli DNase gene, constructed with a pathogenesis-related (PR) gene promoter, when transferred to tobacco, generated resistance against Pseudomonas syringe pv. tabaci. The current analytical/theoretical article proposes similar roles for the additional nuclear and mitochondrial nucleases, the coding regions for which are identified in newly available fungal genome sequences. The amino acid sequence homologies within functional domains are conserved within a wide array of fungi. The potato pathogen Verticillium dahliae nuclease was divergent from that of the saprophyte, yeast; however, the purified DNase from yeast also elicited nonhost defense responses in pea, including pisatin accumulation, PR gene induction, and resistance against a true pea pathogen. The yeast mitochondrial DNase gene (open reading frame) predictably codes for a signal peptide providing the mechanism for secretion. Mitochondrial DNase genes appear to provide an unlimited source of components for developing transgenic resistance in all transformable plants.

  16. Ancient wolf lineages in India.

    PubMed Central

    Sharma, Dinesh K; Maldonado, Jesus E; Jhala, Yadrendradev V; Fleischer, Robert C

    2004-01-01

    All previously obtained wolf (Canis lupus) and dog (Canis familiaris) mitochondrial (mt) DNA sequences fall within an intertwined and shallow clade (the 'wolf-dog' clade). We sequenced mtDNA of recent and historical samples from 45 wolves from throughout lowland peninsular India and 23 wolves from the Himalayas and Tibetan Plateau and compared these sequences with all available wolf and dog sequences. All 45 lowland Indian wolves have one of four closely related haplotypes that form a well-supported, divergent sister lineage to the wolf-dog clade. This unique lineage may have been independent for more than 400,000 years. Although seven Himalayan wolves from western and central Kashmir fall within the widespread wolf-dog clade, one from Ladakh in eastern Kashmir, nine from Himachal Pradesh, four from Nepal and two from Tibet form a very different basal clade. This lineage contains five related haplotypes that probably diverged from other canids more than 800,000 years ago, but we find no evidence of current barriers to admixture. Thus, the Indian subcontinent has three divergent, ancient and apparently parapatric mtDNA lineages within the morphologically delineated wolf. No haplotypes of either novel lineage are found within a sample of 37 Indian (or other) dogs. Thus, we find no evidence that these two taxa played a part in the domestication of canids. PMID:15101402

  17. Amazonian phylogeography: mtDNA sequence variation in arboreal echimyid rodents (Caviomorpha).

    PubMed

    da Silva, M N; Patton, J L

    1993-09-01

    Patterns of evolutionary relationships among haplotype clades of sequences of the mitochondrial cytochrome b DNA gene are examined for five genera of arboreal rodents of the Caviomorph family Echimyidae from the Amazon Basin. Data are available for 798 bp of sequence from a total of 24 separate localities in Peru, Venezuela, Bolivia, and Brazil for Mesomys, Isothrix, Makalata, Dactylomys, and Echimys. Sequence divergence, corrected for multiple hits, is extensive, ranging from less than 1% for comparisons within populations of over 20% among geographic units within genera. Both the degree of differentiation and the geographic patterning of the variation suggest that more than one species composes the Amazonian distribution of the currently recognized Mesomys hispidus, Isothrix bistriata, Makalata didelphoides, and Dactylomys dactylinus. There is general concordance in the geographic range of haplotype clades for each of these taxa, and the overall level of differentiation within them is largely equivalent. These observations suggest that a common vicariant history underlies the respective diversification of each genus. However, estimated times of divergence based on the rate of third position transversion substitutions for the major clades within each genus typically range above 1 million years. Thus, allopatric isolation precipitating divergence must have been considerably earlier than the late Pleistocene forest fragmentation events commonly invoked for Amazonian biota.

  18. Ancient wolf lineages in India.

    PubMed

    Sharma, Dinesh K; Maldonado, Jesus E; Jhala, Yadrendradev V; Fleischer, Robert C

    2004-02-07

    All previously obtained wolf (Canis lupus) and dog (Canis familiaris) mitochondrial (mt) DNA sequences fall within an intertwined and shallow clade (the 'wolf-dog' clade). We sequenced mtDNA of recent and historical samples from 45 wolves from throughout lowland peninsular India and 23 wolves from the Himalayas and Tibetan Plateau and compared these sequences with all available wolf and dog sequences. All 45 lowland Indian wolves have one of four closely related haplotypes that form a well-supported, divergent sister lineage to the wolf-dog clade. This unique lineage may have been independent for more than 400,000 years. Although seven Himalayan wolves from western and central Kashmir fall within the widespread wolf-dog clade, one from Ladakh in eastern Kashmir, nine from Himachal Pradesh, four from Nepal and two from Tibet form a very different basal clade. This lineage contains five related haplotypes that probably diverged from other canids more than 800,000 years ago, but we find no evidence of current barriers to admixture. Thus, the Indian subcontinent has three divergent, ancient and apparently parapatric mtDNA lineages within the morphologically delineated wolf. No haplotypes of either novel lineage are found within a sample of 37 Indian (or other) dogs. Thus, we find no evidence that these two taxa played a part in the domestication of canids.

  19. Complete Mitochondrial Genomes of the Cherskii’s Sculpin Cottus czerskii and Siberian Taimen Hucho taimen Reveal GenBank Entry Errors: Incorrect Species Identification and Recombinant Mitochondrial Genome

    PubMed Central

    Balakirev, Evgeniy S; Saveliev, Pavel A; Ayala, Francisco J

    2017-01-01

    The complete mitochondrial (mt) genome is sequenced in 2 individuals of the Cherskii’s sculpin Cottus czerskii. A surprisingly high level of sequence divergence (10.3%) has been detected between the 2 genomes of C czerskii studied here and the GenBank mt genome of C czerskii (KJ956027). At the same time, a surprisingly low level of divergence (1.4%) has been detected between the GenBank C czerskii (KJ956027) and the Amur sculpin Cottus szanaga (KX762049, KX762050). We argue that the observed discrepancies are due to incorrect taxonomic identification so that the GenBank accession number KJ956027 represents actually the mt genome of C szanaga erroneously identified as C czerskii. Our results are of consequence concerning the GenBank database quality, highlighting the potential negative consequences of entry errors, which once they are introduced tend to be propagated among databases and subsequent publications. We illustrate the premise with the data on recombinant mt genome of the Siberian taimen Hucho taimen (NCBI Reference Sequence Database NC_016426.1; GenBank accession number HQ897271.1), bearing 2 introgressed fragments (≈0.9 kb [kilobase]) from 2 lenok subspecies, Brachymystax lenok and Brachymystax lenok tsinlingensis, submitted to GenBank on June 12, 2011. Since the time of submission, the H taimen recombinant mt genome leading to incorrect phylogenetic inferences was propagated in multiple subsequent publications despite the fact that nonrecombinant H taimen genomes were also available (submitted to GenBank on August 2, 2014; KJ711549, KJ711550). Other examples of recombinant sequences persisting in GenBank are also considered. A GenBank Entry Error Depositary is urgently needed to monitor and avoid a progressive accumulation of wrong biological information. PMID:28890653

  20. Recent speciation in the Indo-West Pacific: rapid evolution of gamete recognition and sperm morphology in cryptic species of sea urchin.

    PubMed Central

    Landry, C; Geyer, L B; Arakaki, Y; Uehara, T; Palumbi, Stephen R

    2003-01-01

    The rich species diversity of the marine Indo-West Pacific (IWP) has been explained largely on the basis of historical observation of large-scale diversity gradients. Careful study of divergence among closely related species can reveal important new information about the pace and mechanisms of their formation, and can illuminate the genesis of biogeographic patterns. Young species inhabiting the IWP include urchins of the genus Echinometra, which diverged over the past 1-5 Myr. Here, we report the most recent divergence of two cryptic species of Echinometra inhabiting this region. Mitochondrial cytochrome oxidase 1 (CO1) sequence data show that in Echinometra oblonga, species-level divergence in sperm morphology, gamete recognition proteins and gamete compatibility arose between central and western Pacific populations in the past 250 000 years. Divergence in sperm attachment proteins suggests rapid evolution of the fertilization system. Divergence of sperm morphology may be a common feature of free-spawning animals, and offers opportunities to simultaneously understand genetic divergence, changes in protein expression patterns and morphological evolution in traits directly related to reproductive isolation. PMID:12964987

  1. Mitochondrial Analysis of the Most Basal Canid Reveals Deep Divergence between Eastern and Western North American Gray Foxes (Urocyon spp.) and Ancient Roots in Pleistocene California.

    PubMed

    Goddard, Natalie S; Statham, Mark J; Sacks, Benjamin N

    2015-01-01

    Pleistocene aridification in central North America caused many temperate forest-associated vertebrates to split into eastern and western lineages. Such divisions can be cryptic when Holocene expansions have closed the gaps between once-disjunct ranges or when local morphological variation obscures deeper regional divergences. We investigated such cryptic divergence in the gray fox (Urocyon cinereoargenteus), the most basal extant canid in the world. We also investigated the phylogeography of this species and its diminutive relative, the island fox (U. littoralis), in California. The California Floristic Province was a significant source of Pleistocene diversification for a wide range of taxa and, we hypothesized, for the gray fox as well. Alternatively, gray foxes in California potentially reflected a recent Holocene expansion from further south. We sequenced mitochondrial DNA from 169 gray foxes from the southeastern and southwestern United States and 11 island foxes from three of the Channel Islands. We estimated a 1.3% sequence divergence in the cytochrome b gene between eastern and western foxes and used coalescent simulations to date the divergence to approximately 500,000 years before present (YBP), which is comparable to that between recognized sister species within the Canidae. Gray fox samples collected from throughout California exhibited high haplotype diversity, phylogeographic structure, and genetic signatures of a late-Holocene population decline. Bayesian skyline analysis also indicated an earlier population increase dating to the early Wisconsin glaciation (~70,000 YBP) and a root height extending back to the previous interglacial (~100,000 YBP). Together these findings support California's role as a long-term Pleistocene refugium for western Urocyon. Lastly, based both on our results and re-interpretation of those of another study, we conclude that island foxes of the Channel Islands trace their origins to at least 3 distinct female founders from the mainland rather than to a single matriline, as previously suggested.

  2. Mitochondrial Analysis of the Most Basal Canid Reveals Deep Divergence between Eastern and Western North American Gray Foxes (Urocyon spp.) and Ancient Roots in Pleistocene California

    PubMed Central

    Goddard, Natalie S.; Statham, Mark J.; Sacks, Benjamin N.

    2015-01-01

    Pleistocene aridification in central North America caused many temperate forest-associated vertebrates to split into eastern and western lineages. Such divisions can be cryptic when Holocene expansions have closed the gaps between once-disjunct ranges or when local morphological variation obscures deeper regional divergences. We investigated such cryptic divergence in the gray fox (Urocyon cinereoargenteus), the most basal extant canid in the world. We also investigated the phylogeography of this species and its diminutive relative, the island fox (U. littoralis), in California. The California Floristic Province was a significant source of Pleistocene diversification for a wide range of taxa and, we hypothesized, for the gray fox as well. Alternatively, gray foxes in California potentially reflected a recent Holocene expansion from further south. We sequenced mitochondrial DNA from 169 gray foxes from the southeastern and southwestern United States and 11 island foxes from three of the Channel Islands. We estimated a 1.3% sequence divergence in the cytochrome b gene between eastern and western foxes and used coalescent simulations to date the divergence to approximately 500,000 years before present (YBP), which is comparable to that between recognized sister species within the Canidae. Gray fox samples collected from throughout California exhibited high haplotype diversity, phylogeographic structure, and genetic signatures of a late-Holocene population decline. Bayesian skyline analysis also indicated an earlier population increase dating to the early Wisconsin glaciation (~70,000 YBP) and a root height extending back to the previous interglacial (~100,000 YBP). Together these findings support California’s role as a long-term Pleistocene refugium for western Urocyon. Lastly, based both on our results and re-interpretation of those of another study, we conclude that island foxes of the Channel Islands trace their origins to at least 3 distinct female founders from the mainland rather than to a single matriline, as previously suggested. PMID:26288066

  3. Divergence with gene flow within the recent chipmunk radiation (Tamias)

    PubMed Central

    Sullivan, J; Demboski, J R; Bell, K C; Hird, S; Sarver, B; Reid, N; Good, J M

    2014-01-01

    Increasing data have supported the importance of divergence with gene flow (DGF) in the generation of biological diversity. In such cases, lineage divergence occurs on a shorter timescale than does the completion of reproductive isolation. Although it is critical to explore the mechanisms driving divergence and preventing homogenization by hybridization, it is equally important to document cases of DGF in nature. Here we synthesize data that have accumulated over the last dozen or so years on DGF in the chipmunk (Tamias) radiation with new data that quantify very high rates of mitochondrial DNA (mtDNA) introgression among para- and sympatric species in the T. quadrivittatus group in the central and southern Rocky Mountains. These new data (188 cytochrome b sequences) bring the total number of sequences up to 1871; roughly 16% (298) of the chipmunks we have sequenced exhibit introgressed mtDNA. This includes ongoing introgression between subspecies and between both closely related and distantly related taxa. In addition, we have identified several taxa that are apparently fixed for ancient introgressions and in which there is no evidence of ongoing introgression. A recurrent observation is that these introgressions occur between ecologically and morphologically diverged, sometimes non-sister taxa that engage in well-documented niche partitioning. Thus, the chipmunk radiation in western North America represents an excellent mammalian example of speciation in the face of recurrent gene flow among lineages and where biogeography, habitat differentiation and mating systems suggest important roles for both ecological and sexual selection. PMID:24781803

  4. Next generation sequencing and analysis of a conserved transcriptome of New Zealand's kiwi.

    PubMed

    Subramanian, Sankar; Huynen, Leon; Millar, Craig D; Lambert, David M

    2010-12-15

    Kiwi is a highly distinctive, flightless and endangered ratite bird endemic to New Zealand. To understand the patterns of molecular evolution of the nuclear protein-coding genes in brown kiwi (Apteryx australis mantelli) and to determine the timescale of avian history we sequenced a transcriptome obtained from a kiwi embryo using next generation sequencing methods. We then assembled the conserved protein-coding regions using the chicken proteome as a scaffold. Using 1,543 conserved protein coding genes we estimated the neutral evolutionary divergence between the kiwi and chicken to be ~45%, which is approximately equal to the divergence computed for the human-mouse pair using the same set of genes. A large fraction of genes was found to be under high selective constraint, as most of the expressed genes appeared to be involved in developmental gene regulation. Our study suggests a significant relationship between gene expression levels and protein evolution. Using sequences from over 700 nuclear genes we estimated the divergence between the two basal avian groups, Palaeognathae and Neognathae to be 132 million years, which is consistent with previous studies using mitochondrial genes. The results of this investigation revealed patterns of mutation and purifying selection in conserved protein coding regions in birds. Furthermore this study suggests a relatively cost-effective way of obtaining a glimpse into the fundamental molecular evolutionary attributes of a genome, particularly when no closely related genomic sequence is available.

  5. Mitochondrial cytochrome c oxidase subunit 1 gene and nuclear rDNA regions of Enterobius vermicularis parasitic in captive chimpanzees with special reference to its relationship with pinworms in humans.

    PubMed

    Nakano, Tadao; Okamoto, Munehiro; Ikeda, Yatsukaho; Hasegawa, Hideo

    2006-12-01

    Sequences of mitochondrial cytochrome c oxidase subunit 1 (CO1) gene, nuclear internal transcribed spacer 2 (ITS2) region of ribosomal DNA (rDNA), and 5S rDNA of Enterobius vermicularis from captive chimpanzees in five zoos/institutions in Japan were analyzed and compared with those of pinworm eggs from humans in Japan. Three major types of variants appearing in both CO1 and ITS2 sequences, but showing no apparent connection, were observed among materials collected from the chimpanzees. Each one of them was also observed in pinworms in humans. Sequences of 5S rDNA were identical in the materials from chimpanzees and humans. Phylogenetic analysis of CO1 gene revealed three clusters with high bootstrap value, suggesting considerable divergence, presumably correlated with human evolution, has occurred in the human pinworms. The synonymy of E. gregorii with E. vermicularis is supported by the molecular evidence.

  6. Assessing the potential of RAD-sequencing to resolve phylogenetic relationships within species radiations: The fly genus Chiastocheta (Diptera: Anthomyiidae) as a case study.

    PubMed

    Suchan, Tomasz; Espíndola, Anahí; Rutschmann, Sereina; Emerson, Brent C; Gori, Kevin; Dessimoz, Christophe; Arrigo, Nils; Ronikier, Michał; Alvarez, Nadir

    2017-09-01

    Determining phylogenetic relationships among recently diverged species has long been a challenge in evolutionary biology. Cytoplasmic DNA markers, which have been widely used, notably in the context of molecular barcoding, have not always proved successful in resolving such phylogenies. However, with the advent of next-generation-sequencing technologies and associated techniques of reduced genome representation, phylogenies of closely related species have been resolved at a much higher detail in the last couple of years. Here we examine the potential and limitations of one of such techniques-Restriction-site Associated DNA (RAD) sequencing, a method that produces thousands of (mostly) anonymous nuclear markers, in disentangling the phylogeny of the fly genus Chiastocheta (Diptera: Anthomyiidae). In Europe, this genus encompasses seven species of seed predators, which have been widely studied in the context of their ecological and evolutionary interactions with the plant Trollius europaeus (Ranunculaceae). So far, phylogenetic analyses using mitochondrial markers failed to resolve monophyly of most of the species from this recently diversified genus, suggesting that their taxonomy may need a revision. However, relying on a single, non-recombining marker and ignoring potential incongruences between mitochondrial and nuclear loci may provide an incomplete account of the lineage history. In this study, we applied both classical Sanger sequencing of three mtDNA regions and RAD-sequencing, for reconstructing the phylogeny of the genus. Contrasting with results based on mitochondrial markers, RAD-sequencing analyses retrieved the monophyly of all seven species, in agreement with the morphological species assignment. We found robust nuclear-based species assignment of individual samples, and low levels of estimated contemporary gene flow among them. However, despite recovering species' monophyly, interspecific relationships varied depending on the set of RAD loci considered, producing contradictory topologies. Moreover, coalescence-based phylogenetic analyses revealed low supports for most of the interspecific relationships. Our results indicate that despite the higher performance of RAD-sequencing in terms of species trees resolution compared to cytoplasmic markers, reconstructing inter-specific relationships among recently-diverged lineages may lie beyond the possibilities offered by large sets of RAD-sequencing markers in cases of strong gene tree incongruence. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Alignment-based and alignment-free methods converge with experimental data on amino acids coded by stop codons at split between nuclear and mitochondrial genetic codes.

    PubMed

    Seligmann, Hervé

    2018-05-01

    Genetic codes mainly evolve by reassigning punctuation codons, starts and stops. Previous analyses assuming that undefined amino acids translate stops showed greater divergence between nuclear and mitochondrial genetic codes. Here, three independent methods converge on which amino acids translated stops at split between nuclear and mitochondrial genetic codes: (a) alignment-free genetic code comparisons inserting different amino acids at stops; (b) alignment-based blast analyses of hypothetical peptides translated from non-coding mitochondrial sequences, inserting different amino acids at stops; (c) biases in amino acid insertions at stops in proteomic data. Hence short-term protein evolution models reconstruct long-term genetic code evolution. Mitochondria reassign stops to amino acids otherwise inserted at stops by codon-anticodon mismatches (near-cognate tRNAs). Hence dual function (translation termination and translation by codon-anticodon mismatch) precedes mitochondrial reassignments of stops to amino acids. Stop ambiguity increases coded information, compensates endocellular mitogenome reduction. Mitochondrial codon reassignments might prevent viral infections. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Estimation of primate speciation dates using local molecular clocks.

    PubMed

    Yoder, A D; Yang, Z

    2000-07-01

    Protein-coding genes of the mitochondrial genomes from 31 mammalian species were analyzed to estimate the speciation dates within primates and also between rats and mice. Three calibration points were used based on paleontological data: one at 20-25 MYA for the hominoid/cercopithecoid divergence, one at 53-57 MYA for the cetacean/artiodactyl divergence, and the third at 110-130 MYA for the metatherian/eutherian divergence. Both the nucleotide and the amino acid sequences were analyzed, producing conflicting results. The global molecular clock was clearly violated for both the nucleotide and the amino acid data. Models of local clocks were implemented using maximum likelihood, allowing different evolutionary rates for some lineages while assuming rate constancy in others. Surprisingly, the highly divergent third codon positions appeared to contain phylogenetic information and produced more sensible estimates of primate divergence dates than did the amino acid sequences. Estimated dates varied considerably depending on the data type, the calibration point, and the substitution model but differed little among the four tree topologies used. We conclude that the calibration derived from the primate fossil record is too recent to be reliable; we also point out a number of problems in date estimation when the molecular clock does not hold. Despite these obstacles, we derived estimates of primate divergence dates that were well supported by the data and were generally consistent with the paleontological record. Estimation of the mouse-rat divergence date, however, was problematic.

  9. Mitochondrial DNA diversity in the acanthocephalan Prosthenorchis elegans in Colombia based on cytochrome c oxidase I (COI) gene sequence.

    PubMed

    Falla, Ana Carolina; Brieva, Claudia; Bloor, Paul

    2015-12-01

    Prosthenorchis elegans is a member of the Phylum Acanthocephala and is an important parasite affecting New World Primates in the wild in South America and in captivity around the world. It is of significant management concern due to its pathogenicity and mode of transmission through intermediate hosts. Current diagnosis of P. elegans is based on the detection of eggs by coprological examination. However, this technique lacks both specificity and sensitivity, since eggs of most members of the genus are morphologically indistinguishable and shed intermittently, making differential diagnosis difficult, and coprological examinations are often negative in animals severely infected at death. We examined sequence variation in 633 bp of mitochondrial DNA (mtDNA) cytochrome c oxidase I (COI) sequence in 37 isolates of P. elegans from New World monkeys (Saguinus leucopus and Cebus albifrons) in Colombia held in rescue centers and from the wild. Intraspecific divergence ranged from 0.0 to 1.6% and was comparable with corresponding values within other species of acanthocephalans. Furthermore, comparisons of patterns of sequence divergence within the Acanthocephala suggest that Prosthenorchis represents a separate genus within the Oligacanthorhynchida. Six distinct haplotypes were identified within P. elegans which grouped into one of two well-supported mtDNA haplogroups. No association between haplogroup/haplotype, holding facility and species was found. This information will help pave the way to the development of molecular-based diagnostic tools for the detection of P. elegans as well as furthering research into the life cycle, intermediate hosts and epidemiological aspects of the species.

  10. Mitochondrial DNA Variation and the Evolution of Robertsonian Chromosomal Races of House Mice, Mus Domesticus

    PubMed Central

    Nachman, M. W.; Boyer, S. N.; Searle, J. B.; Aquadro, C. F.

    1994-01-01

    The house mouse, Mus domesticus, includes many distinct Robertsonian (Rb) chromosomal races with diploid numbers from 2n = 22 to 2n = 38. Although these races are highly differentiated karyotypically, they are otherwise indistinguishable from standard karyotype (i.e., 2n = 40) mice, and consequently their evolutionary histories are not well understood. We have examined mitochondrial DNA (mtDNA) sequence variation from the control region and the ND3 gene region among 56 M. domesticus from Western Europe, including 15 Rb populations and 13 standard karyotype populations, and two individuals of the sister species, Mus musculus. mtDNA exhibited an average sequence divergence of 0.84% within M. domesticus and 3.4% between M. domesticus and M. musculus. The transition/transversion bias for the regions sequenced is 5.7:1, and the overall rate of sequence evolution is approximately 10% divergence per million years. The amount of mtDNA variation was as great among different Rb races as among different populations of standard karyotype mice, suggesting that different Rb races do not derive from a single recent maternal lineage. Phylogenetic analysis of the mtDNA sequences resulted in a parsimony tree which contained six major clades. Each of these clades contained both Rb and standard karyotype mice, consistent with the hypothesis that Rb races have arisen independently multiple times. Discordance between phylogeny and geography was attributable to ancestral polymorphism as a consequence of the recent colonization of Western Europe by mice. Two major mtDNA lineages were geographically localized and contained both Rb and standard karyotype mice. The age of these lineages suggests that mice have moved into Europe only within the last 10,000 years and that Rb populations in different geographic regions arose during this time. PMID:8005418

  11. Phylogenetic relationships and divergence dates of softshell turtles (Testudines: Trionychidae) inferred from complete mitochondrial genomes.

    PubMed

    Li, H; Liu, J; Xiong, L; Zhang, H; Zhou, H; Yin, H; Jing, W; Li, J; Shi, Q; Wang, Y; Liu, J; Nie, L

    2017-05-01

    The softshell turtles (Trionychidae) are one of the most widely distributed reptile groups in the world, and fossils have been found on all continents except Antarctica. The phylogenetic relationships among members of this group have been previously studied; however, disagreements regarding its taxonomy, its phylogeography and divergence times are still poorly understood as well. Here, we present a comprehensive mitogenomic study of softshell turtles. We sequenced the complete mitochondrial genomes of 10 softshell turtles, in addition to the GenBank sequence of Dogania subplana, Lissemys punctata, Trionyx triunguis, which cover all extant genera within Trionychidae except for Cyclanorbis and Cycloderma. These data were combined with other mitogenomes of turtles for phylogenetic analyses. Divergence time calibration and ancestral reconstruction were calculated using BEAST and RASP software, respectively. Our phylogenetic analyses indicate that Trionychidae is the sister taxon of Carettochelyidae, and support the monophyly of Trionychinae and Cyclanorbinae, which is consistent with morphological data and molecular analysis. Our phylogenetic analyses have established a sister taxon relationship between the Asian Rafetus and the Asian Palea + Pelodiscus + Dogania + Nilssonia + Amyda, whereas a previous study grouped the Asian Rafetus with the American Apalone. The results of divergence time estimates and area ancestral reconstruction show that extant Trionychidae originated in Asia at around 108 million years ago (MA), and radiations mainly occurred during two warm periods, namely Late Cretaceous-Early Eocene and Oligocene. By combining the estimated divergence time and the reconstructed ancestral area of softshell turtles, we determined that the dispersal of softshell turtles out of Asia may have taken three routes. Furthermore, the times of dispersal seem to be in agreement with the time of the India-Asia collision and opening of the Bering Strait, which provide evidence for the accuracy of our estimation of divergence time. Overall, the mitogenomes of this group were used to explore the origin and dispersal route of Trionychidae and have provided new insights on the evolution of this group. © 2017 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2017 European Society For Evolutionary Biology.

  12. Molecular taxonomy, phylogeny and evolution in the family Stichopodidae (Aspidochirotida: Holothuroidea) based on COI and 16S mitochondrial DNA.

    PubMed

    Byrne, Maria; Rowe, Frank; Uthicke, Sven

    2010-09-01

    The Stichopodidae comprise a diverse assemblage of holothuroids most of which occur in the Indo-Pacific. Phylogenetic analyses of mitochondrial gene (COI, 16S rRNA) sequence for 111 individuals (7 genera, 17 species) clarified taxonomic uncertainties, species relationships, biogeography and evolution of the family. A monophyly of the genus Stichopus was supported with the exception of Stichopus ellipes. Molecular analyses confirmed genus level taxonomy based on morphology. Most specimens harvested as S. horrens fell in the S. monotuberculatus clade, a morphologically variable assemblage with others from the S. naso clade. Taxonomic clarification of species fished as S. horrens will assist conservation measures. Evolutionary rates based on comparison of sequence from trans-ithmian Isostichopus species estimated that Stichopus and Isostichopus diverged ca. 5.5-10.7Ma (Miocene). More recent splits were estimated to be younger than 1Ma. Copyright 2010 Elsevier Inc. All rights reserved.

  13. The First Mitogenome of the Cyprus Mouflon (Ovis gmelini ophion): New Insights into the Phylogeny of the Genus Ovis

    PubMed Central

    Sanna, Daria; Barbato, Mario; Hadjisterkotis, Eleftherios; Cossu, Piero; Decandia, Luca; Trova, Sandro; Pirastru, Monica; Leoni, Giovanni Giuseppe; Naitana, Salvatore; Francalacci, Paolo; Masala, Bruno; Manca, Laura; Mereu, Paolo

    2015-01-01

    Sheep are thought to have been one of the first livestock to be domesticated in the Near East, thus playing an important role in human history. The current whole mitochondrial genome phylogeny for the genus Ovis is based on: the five main domestic haplogroups occurring among sheep (O. aries), along with molecular data from two wild European mouflons, three urials, and one argali. With the aim to shed some further light on the phylogenetic relationship within this genus, the first complete mitochondrial genome sequence of a Cypriot mouflon (O. gmelini ophion) is here reported. Phylogenetic analyses were performed using a dataset of whole Ovis mitogenomes as well as D-loop sequences. The concatenated sequence of 28 mitochondrial genes of one Cypriot mouflon, and the D-loop sequence of three Cypriot mouflons were compared to sequences obtained from samples representatives of the five domestic sheep haplogroups along with samples of the extant wild and feral sheep. The sample included also individuals from the Mediterranean islands of Sardinia and Corsica hosting remnants of the first wave of domestication that likely went then back to feral life. The divergence time between branches in the phylogenetic tree has been calculated using seven different calibration points by means of Bayesian and Maximum Likelihood inferences. Results suggest that urial (O. vignei) and argali (O. ammon) diverged from domestic sheep about 0.89 and 1.11 million years ago (MYA), respectively; and dates the earliest radiation of domestic sheep common ancestor at around 0.3 MYA. Additionally, our data suggest that the rise of the modern sheep haplogroups happened in the span of time between six and 32 thousand years ago (KYA). A close phylogenetic relationship between the Cypriot and the Anatolian mouflon carrying the X haplotype was detected. The genetic distance between this group and the other ovine haplogroups supports the hypothesis that it may be a new haplogroup never described before. Furthermore, the updated phylogenetic tree presented in this study determines a finer classification of ovine species and may help to classify more accurately new mitogenomes within the established haplogroups so far identified. PMID:26636977

  14. A revised timescale for human evolution based on ancient mitochondrial genomes

    PubMed Central

    Johnson, Philip L.F.; Bos, Kirsten; Lari, Martina; Bollongino, Ruth; Sun, Chengkai; Giemsch, Liane; Schmitz, Ralf; Burger, Joachim; Ronchitelli, Anna Maria; Martini, Fabio; Cremonesi, Renata G.; Svoboda, Jiří; Bauer, Peter; Caramelli, David; Castellano, Sergi; Reich, David; Pääbo, Svante; Krause, Johannes

    2016-01-01

    Summary Background Recent analyses of de novo DNA mutations in modern humans have suggested a nuclear substitution rate that is approximately half that of previous estimates based on fossil calibration. This result has led to suggestions that major events in human evolution occurred far earlier than previously thought. Result Here we use mitochondrial genome sequences from 10 securely dated ancient modern humans spanning 40,000 years as calibration points for the mitochondrial clock, thus yielding a direct estimate of the mitochondrial substitution rate. Our clock yields mitochondrial divergence times that are in agreement with earlier estimates based on calibration points derived from either fossils or archaeological material. In particular, our results imply a separation of non-Africans from the most closely related sub-Saharan African mitochondrial DNAs (haplogroup L3) of less than 62,000-95,000 years ago. Conclusion Though single loci like mitochondrial DNA (mtDNA) can only provide biased estimates of population split times, they can provide valid upper bounds; our results exclude most of the older dates for African and non-African split times recently suggested by de novo mutation rate estimates in the nuclear genome. PMID:23523248

  15. Molecular characterization of Atractolytocestus sagittatus (Cestoda: Caryophyllidea), monozoic parasite of common carp, and its differentiation from the invasive species Atractolytocestus huronensis.

    PubMed

    Bazsalovicsová, Eva; Králová-Hromadová, Ivica; Stefka, Jan; Scholz, Tomáš

    2012-05-01

    Sequence structure of complete internal transcribed spacer 1 and 2 (ITS1 and ITS2) of the ribosomal DNA region and partial mitochondrial cytochrome c oxidase subunit I (cox1) gene sequences were studied in the monozoic tapeworm Atractolytocestus sagittatus (Kulakovskaya et Akhmerov, 1965) (Cestoda: Caryophyllidea), a parasite of common carp (Cyprinus carpio carpio L.). Intraindividual sequence diversity was observed in both ribosomal spacers. In ITS1, a total number of 19 recombinant clones yielded eight different sequence types (pairwise sequence identity, 99.7-100%) which, however, did not resemble the structure typical for divergent intragenomic ITS copies (paralogues). Polymorphism was displayed by several single nucleotide mutations present exclusively in single clones, but variation in the number of short repetitive motifs was not observed. In ITS2, a total of 21 recombinant clones yielded ten different sequence types (pairwise sequence identity, 97.5-100%). They were mostly characterized by a varying number of (TCGT)(n) repeats resulting in assortment of ITS2 sequences into two sequence variants, which reflected the structure specific for ITS paralogues. The third DNA region analysed, mitochondrial cox1 gene (669 bp) was detected to be 100% identical in all studied A. sagittatus individuals. Comparison of molecular data on A. sagittatus with those on Atractolytocestus huronensis Anthony, 1958, an invasive parasite of common carp, has shown that interspecific differences significantly exceeded intraspecific variation in both ribosomal spacers (81.4-82.5% in ITS1, 74.4-75.2% in ITS2) as well as in mitochondrial cox1, which confirms validity of both congeneric tapeworms parasitic in the same fish host.

  16. The complete mitochondrial genome of an 11,450-year-old aurochsen (Bos primigenius) from Central Italy.

    PubMed

    Lari, Martina; Rizzi, Ermanno; Mona, Stefano; Corti, Giorgio; Catalano, Giulio; Chen, Kefei; Vernesi, Cristiano; Larson, Greger; Boscato, Paolo; De Bellis, Gianluca; Cooper, Alan; Caramelli, David; Bertorelle, Giorgio

    2011-01-31

    Bos primigenius, the aurochs, is the wild ancestor of modern cattle breeds and was formerly widespread across Eurasia and northern Africa. After a progressive decline, the species became extinct in 1627. The origin of modern taurine breeds in Europe is debated. Archaeological and early genetic evidence point to a single Near Eastern origin and a subsequent spread during the diffusion of herding and farming. More recent genetic data are instead compatible with local domestication events or at least some level of local introgression from the aurochs. Here we present the analysis of the complete mitochondrial genome of a pre-Neolithic Italian aurochs. In this study, we applied a combined strategy employing both multiplex PCR amplifications and 454 pyrosequencing technology to sequence the complete mitochondrial genome of an 11,450-year-old aurochs specimen from Central Italy. Phylogenetic analysis of the aurochs mtDNA genome supports the conclusions from previous studies of short mtDNA fragments--namely that Italian aurochsen were genetically very similar to modern cattle breeds, but highly divergent from the North-Central European aurochsen. Complete mitochondrial genome sequences are now available for several modern cattle and two pre-Neolithic mtDNA genomes from very different geographic areas. These data suggest that previously identified sub-groups within the widespread modern cattle mitochondrial T clade are polyphyletic, and they support the hypothesis that modern European breeds have multiple geographic origins.

  17. Yeast mitochondrial HMG proteins: DNA-binding properties of the most evolutionarily divergent component of mitochondrial nucleoids.

    PubMed

    Bakkaiova, Jana; Marini, Victoria; Willcox, Smaranda; Nosek, Jozef; Griffith, Jack D; Krejci, Lumir; Tomaska, Lubomir

    2015-12-08

    Yeast mtDNA is compacted into nucleoprotein structures called mitochondrial nucleoids (mt-nucleoids). The principal mediators of nucleoid formation are mitochondrial high-mobility group (HMG)-box containing (mtHMG) proteins. Although these proteins are some of the fastest evolving components of mt-nucleoids, it is not known whether the divergence of mtHMG proteins on the level of their amino acid sequences is accompanied by diversification of their biochemical properties. In the present study we performed a comparative biochemical analysis of yeast mtHMG proteins from Saccharomyces cerevisiae (ScAbf2p), Yarrowia lipolytica (YlMhb1p) and Candida parapsilosis (CpGcf1p). We found that all three proteins exhibit relatively weak binding to intact dsDNA. In fact, ScAbf2p and YlMhb1p bind quantitatively to this substrate only at very high protein to DNA ratios and CpGcf1p shows only negligible binding to dsDNA. In contrast, the proteins exhibit much higher preference for recombination intermediates such as Holliday junctions (HJ) and replication forks (RF). Therefore, we hypothesize that the roles of the yeast mtHMG proteins in maintenance and compaction of mtDNA in vivo are in large part mediated by their binding to recombination/replication intermediates. We also speculate that the distinct biochemical properties of CpGcf1p may represent one of the prerequisites for frequent evolutionary tinkering with the form of the mitochondrial genome in the CTG-clade of hemiascomycetous yeast species. © 2016 Authors.

  18. MPIC: a mitochondrial protein import components database for plant and non-plant species.

    PubMed

    Murcha, Monika W; Narsai, Reena; Devenish, James; Kubiszewski-Jakubiak, Szymon; Whelan, James

    2015-01-01

    In the 2 billion years since the endosymbiotic event that gave rise to mitochondria, variations in mitochondrial protein import have evolved across different species. With the genomes of an increasing number of plant species sequenced, it is possible to gain novel insights into mitochondrial protein import pathways. We have generated the Mitochondrial Protein Import Components (MPIC) Database (DB; http://www.plantenergy.uwa.edu.au/applications/mpic) providing searchable information on the protein import apparatus of plant and non-plant mitochondria. An in silico analysis was carried out, comparing the mitochondrial protein import apparatus from 24 species representing various lineages from Saccharomyces cerevisiae (yeast) and algae to Homo sapiens (human) and higher plants, including Arabidopsis thaliana (Arabidopsis), Oryza sativa (rice) and other more recently sequenced plant species. Each of these species was extensively searched and manually assembled for analysis in the MPIC DB. The database presents an interactive diagram in a user-friendly manner, allowing users to select their import component of interest. The MPIC DB presents an extensive resource facilitating detailed investigation of the mitochondrial protein import machinery and allowing patterns of conservation and divergence to be recognized that would otherwise have been missed. To demonstrate the usefulness of the MPIC DB, we present a comparative analysis of the mitochondrial protein import machinery in plants and non-plant species, revealing plant-specific features that have evolved. © The Author 2014. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  19. Complete nucleotide sequence of pig (Sus scrofa) mitochondrial genome and dating evolutionary divergence within Artiodactyla.

    PubMed

    Lin, C S; Sun, Y L; Liu, C Y; Yang, P C; Chang, L C; Cheng, I C; Mao, S J; Huang, M C

    1999-08-05

    The complete nucleotide sequence of the pig (Sus scrofa) mitochondrial genome, containing 16613bp, is presented in this report. The genome is not a specific length because of the presence of the variable numbers of tandem repeats, 5'-CGTGCGTACA in the displacement loop (D-loop). Genes responsible for 12S and 16S rRNAs, 22 tRNAs, and 13 protein-coding regions are found. The genome carries very few intergenic nucleotides with several instances of overlap between protein-coding or tRNA genes, except in the D-loop region. For evaluating the possible evolutionary relationships between Artiodactyla and Cetacea, the nucleotide substitutions and amino acid sequences of 13 protein-coding genes were aligned by pairwise comparisons of the pig, cow, and fin whale. By comparing these sequences, we suggest that there is a closer relationship between the pig and cow than that between either of these species and fin whale. In addition, the accumulation of transversions and gaps in pig 12S and 16S rRNA genes was compared with that in other eutherian species, including cow, fin whale, human, horse, and harbor seal. The results also reveal a close phylogenetic relationship between pig and cow, as compared to fin whale and others. Thus, according to the sequence differences of mitochondrial rRNA genes in eutherian species, the evolutionary separation of pig and cow occurred about 53-60 million years ago.

  20. A compositional segmentation of the human mitochondrial genome is related to heterogeneities in the guanine mutation rate

    PubMed Central

    Samuels, David C.; Boys, Richard J.; Henderson, Daniel A.; Chinnery, Patrick F.

    2003-01-01

    We applied a hidden Markov model segmentation method to the human mitochondrial genome to identify patterns in the sequence, to compare these patterns to the gene structure of mtDNA and to see whether these patterns reveal additional characteristics important for our understanding of genome evolution, structure and function. Our analysis identified three segmentation categories based upon the sequence transition probabilities. Category 2 segments corresponded to the tRNA and rRNA genes, with a greater strand-symmetry in these segments. Category 1 and 3 segments covered the protein- coding genes and almost all of the non-coding D-loop. Compared to category 1, the mtDNA segments assigned to category 3 had much lower guanine abundance. A comparison to two independent databases of mitochondrial mutations and polymorphisms showed that the high substitution rate of guanine in human mtDNA is largest in the category 3 segments. Analysis of synonymous mutations showed the same pattern. This suggests that this heterogeneity in the mutation rate is partly independent of respiratory chain function and is a direct property of the genome sequence itself. This has important implications for our understanding of mtDNA evolution and its use as a ‘molecular clock’ to determine the rate of population and species divergence. PMID:14530452

  1. Genetic variation and origin of parthenogenesis in the Aspidoscelis cozumela complex: evidence from mitochondrial genes.

    PubMed

    Manríquez-Morán, Norma L; Cruz, Fausto R Méndez-de la; Murphy, Robert W

    2014-01-01

    Parthenogenesis is a form of clonal reproduction. Eggs develop in the absence of sperm and offspring are genetically identical to their mother. Although common in invertebrates, it occurs in only a few species of squamate reptiles. Parthenogenetic reptiles have their origin in interspecific hybridization, and their populations are exclusively female. Because of its high mutation rate and maternal inheritance, mitochondrial DNA sequence data can evaluate the origin and evolution of all-female vertebrates. Partial sequences from two mitochondrial genes, Cytb and ND4, were analyzed to investigate questions about the origin of parthenogenesis in the Aspidoscelis cozumela complex, which includes A. cozumela, A. maslini and A. rodecki. Low levels of divergence were detected among parthenogenetic species, and between them and A. angusticeps, confirming it as the maternal species of the parthenoforms. A gene tree was constructed using sequences from three populations of A. angusticeps and nine of its unisexual daughter species. The phylogeny suggests that two independent hybridization events between A. angusticeps and A. deppii formed three unisexual species. One hybridization resulted in A. rodecki and the other formed A. maslini and A. cozumela. Although A. cozumela has the haplotype characteristic of A. maslini from Puerto Morelos, it is considered to be a different species based on karyological and morphological characteristics and its geographical isolation.

  2. Corresponding Mitochondrial DNA and Niche Divergence for Crested Newt Candidate Species

    PubMed Central

    Wielstra, Ben; Beukema, Wouter; Arntzen, Jan W.; Skidmore, Andrew K.; Toxopeus, Albertus G.; Raes, Niels

    2012-01-01

    Genetic divergence of mitochondrial DNA does not necessarily correspond to reproductive isolation. However, if mitochondrial DNA lineages occupy separate segments of environmental space, this supports the notion of their evolutionary independence. We explore niche differentiation among three candidate species of crested newt (characterized by distinct mitochondrial DNA lineages) and interpret the results in the light of differences observed for recognized crested newt species. We quantify niche differences among all crested newt (candidate) species and test hypotheses regarding niche evolution, employing two ordination techniques (PCA-env and ENFA). Niche equivalency is rejected: all (candidate) species are found to occupy significantly different segments of environmental space. Furthermore, niche overlap values for the three candidate species are not significantly higher than those for the recognized species. As the three candidate crested newt species are, not only in terms of mitochondrial DNA genetic divergence, but also ecologically speaking, as diverged as the recognized crested newt species, our findings are in line with the hypothesis that they represent cryptic species. We address potential pitfalls of our methodology. PMID:23029564

  3. The complete mitochondrial genome of the citrus red mite Panonychus citri (Acari: Tetranychidae): high genome rearrangement and extremely truncated tRNAs

    PubMed Central

    2010-01-01

    Background The family Tetranychidae (Chelicerata: Acari) includes ~1200 species, many of which are of agronomic importance. To date, mitochondrial genomes of only two Tetranychidae species have been sequenced, and it has been found that these two mitochondrial genomes are characterized by many unusual features in genome organization and structure such as gene order and nucleotide frequency. The scarcity of available sequence data has greatly impeded evolutionary studies in Acari (mites and ticks). Information on Tetranychidae mitochondrial genomes is quite important for phylogenetic evaluation and population genetics, as well as the molecular evolution of functional genes such as acaricide-resistance genes. In this study, we sequenced the complete mitochondrial genome of Panonychus citri (Family Tetranychidae), a worldwide citrus pest, and provide a comparison to other Acari. Results The mitochondrial genome of P. citri is a typical circular molecule of 13,077 bp, and contains the complete set of 37 genes that are usually found in metazoans. This is the smallest mitochondrial genome within all sequenced Acari and other Chelicerata, primarily due to the significant size reduction of protein coding genes (PCGs), a large rRNA gene, and the A + T-rich region. The mitochondrial gene order for P. citri is the same as those for P. ulmi and Tetranychus urticae, but distinctly different from other Acari by a series of gene translocations and/or inversions. The majority of the P. citri mitochondrial genome has a high A + T content (85.28%), which is also reflected by AT-rich codons being used more frequently, but exhibits a positive GC-skew (0.03). The Acari mitochondrial nad1 exhibits a faster amino acid substitution rate than other genes, and the variation of nucleotide substitution patterns of PCGs is significantly correlated with the G + C content. Most tRNA genes of P. citri are extremely truncated and atypical (44-65, 54.1 ± 4.1 bp), lacking either the T- or D-arm, as found in P. ulmi, T. urticae, and other Acariform mites. Conclusions The P. citri mitochondrial gene order is markedly different from those of other chelicerates, but is conserved within the family Tetranychidae indicating that high rearrangements have occurred after Tetranychidae diverged from other Acari. Comparative analyses suggest that the genome size, gene order, gene content, codon usage, and base composition are strongly variable among Acari mitochondrial genomes. While extremely small and unusual tRNA genes seem to be common for Acariform mites, further experimental evidence is needed. PMID:20969792

  4. Positive selection and propeptide repeats promote rapid interspecific divergence of a gastropod sperm protein.

    PubMed

    Hellberg, M E; Moy, G W; Vacquier, V D

    2000-03-01

    Male-specific proteins have increasingly been reported as targets of positive selection and are of special interest because of the role they may play in the evolution of reproductive isolation. We report the rapid interspecific divergence of cDNA encoding a major acrosomal protein of unknown function (TMAP) of sperm from five species of teguline gastropods. A mitochondrial DNA clock (calibrated by congeneric species divided by the Isthmus of Panama) estimates that these five species diverged 2-10 MYA. Inferred amino acid sequences reveal a propeptide that has diverged rapidly between species. The mature protein has diverged faster still due to high nonsynonymous substitution rates (> 25 nonsynonymous substitutions per site per 10(9) years). cDNA encoding the mature protein (89-100 residues) shows evidence of positive selection (Dn/Ds > 1) for 4 of 10 pairwise species comparisons. cDNA and predicted secondary-structure comparisons suggest that TMAP is neither orthologous nor paralogous to abalone lysin, and thus marks a second, phylogenetically independent, protein subject to strong positive selection in free-spawning marine gastropods. In addition, an internal repeat in one species (Tegula aureotincta) produces a duplicated cleavage site which results in two alternatively processed mature proteins differing by nine amino acid residues. Such alternative processing may provide a mechanism for introducing novel amino acid sequence variation at the amino-termini of proteins. Highly divergent TMAP N-termini from two other tegulines (Tegula regina and Norrisia norrisii) may have originated by such a mechanism.

  5. Ancient mitochondrial haplotypes and evidence for intragenic recombination in a gynodioecious plant.

    PubMed

    Städler, Thomas; Delph, Lynda F

    2002-09-03

    Because of their extremely low nucleotide mutation rates, plant mitochondrial genes are generally not expected to show variation within species. Remarkably, we found nine distinct cytochrome b sequence haplotypes in the gynodioecious alpine plant Silene acaulis, with two or more haplotypes coexisting locally in each of three sampled regions. Moreover, there is evidence for intragenic recombination in the history of the haplotype sample, implying at least transient heteroplasmy of mitochondrial DNA (mtDNA). Heteroplasmy might be achieved by one of two potential mechanisms, either continuous coexistence of subgenomic fragments in low stoichiometry, or occasional paternal leakage of mtDNA. On the basis of levels of synonymous nucleotide substitutions, the average divergence time between haplotypes is estimated to be at least 15 million years. Ancient coalescence of extant haplotypes is further indicated by the paucity of fixed differences in haplotypes obtained from related species, a pattern expected under trans-specific evolution. Our data are consistent with models of frequency-dependent selection on linked cytoplasmic male-sterility factors, the putative molecular basis of females in gynodioecious populations. However, associations between marker loci and the inferred male-sterility genes can be maintained only with very low rates of recombination. Heteroplasmy and recombination between divergent haplotypes imply unexplored consequences for the evolutionary dynamics of gynodioecy, a widespread plant breeding system.

  6. High genetic differentiation among French populations of the Orsini's viper (Vipera ursinii ursinii) based on mitochondrial and microsatellite data: implications for conservation management.

    PubMed

    Ferchaud, Anne-Laure; Lyet, Arnaud; Cheylan, Marc; Arnal, Véronique; Baron, Jean-Pierre; Montgelard, Claudine; Ursenbacher, Sylvain

    2011-01-01

    The Orsini's viper (Vipera ursinii) is one of the most threatened snakes in Europe due to its highly fragmented distribution and specific open environment (steppic habitat) requirement. French populations are isolated on top of mountain massifs of the southern Prealps/Alps. Mitochondrial sequences (cytochrome b) and 6 microsatellite loci have been used to estimate the levels of genetic diversity and isolation within and among 11 French fragmented populations (a total of 157 individuals). Eleven cytochrome b haplotypes with a limited divergence were observed (mean divergence between haplotypes: 0.31%). However, we detected considerable genetic differentiation among populations (global F(ST) = 0.76 and 0.26 for mitochondrial and nuclear DNA, respectively). Results indicate that 3 populations possibly went through a bottleneck and 1 population showed low genetic diversity compared with the others. Although a significant isolation by distance was detected for both markers, strong differentiation was also observed between geographically close populations, probably due to the ragged landscape that constitutes a serious barrier to gene flow owing to the limited dispersal capability of the viper. Despite some discrepancies between the 2 markers, 8 Management Units have been identified and should be considered for future management projects.

  7. A test of alternative models of diversification in tropical rainforests: Ecological gradients vs. rainforest refugia

    PubMed Central

    Schneider, Christopher J.; Smith, Thomas B.; Larison, Brenda; Moritz, Craig

    1999-01-01

    Comparison of mitochondrial and morphological divergence in eight populations of a widespread leaf-litter skink is used to determine the relative importance of geographic isolation and natural selection in generating phenotypic diversity in the Wet Tropics Rainforest region of Australia. The populations occur in two geographically isolated regions, and within each region, in two different habitats (closed rainforest and tall open forest) that span a well characterized ecological gradient. Morphological differences among ancient geographic isolates (separated for several million years, judging by their mitochondrial DNA sequence divergence) were slight, but morphological and life history differences among habitats were large and occurred despite moderate to high levels of mitochondrial gene flow. A field experiment identified avian predation as one potential agent of natural selection. These results indicate that natural selection operating across ecological gradients can be more important than geographic isolation in similar habitats in generating phenotypic diversity. In addition, our results indicate that selection is sufficiently strong to overcome the homogenizing effects of gene flow, a necessary first step toward speciation in continuously distributed populations. Because ecological gradients may be a source of evolutionary novelty, and perhaps new species, their conservation warrants greater attention. This is particularly true in tropical regions, where most reserves do not include ecological gradients and transitional habitats. PMID:10570165

  8. Hybridization and massive mtDNA unidirectional introgression between the closely related Neotropical toads Rhinella marina and R. schneideri inferred from mtDNA and nuclear markers

    PubMed Central

    2011-01-01

    Background The classical perspective that interspecific hybridization in animals is rare has been changing due to a growing list of empirical examples showing the occurrence of gene flow between closely related species. Using sequence data from cyt b mitochondrial gene and three intron nuclear genes (RPL9, c-myc, and RPL3) we investigated patterns of nucleotide polymorphism and divergence between two closely related toad species R. marina and R. schneideri. By comparing levels of differentiation at nuclear and mtDNA levels we were able to describe patterns of introgression and infer the history of hybridization between these species. Results All nuclear loci are essentially concordant in revealing two well differentiated groups of haplotypes, corresponding to the morphologically-defined species R. marina and R. schneideri. Mitochondrial DNA analysis also revealed two well-differentiated groups of haplotypes but, in stark contrast with the nuclear genealogies, all R. schneideri sequences are clustered with sequences of R. marina from the right Amazon bank (RAB), while R. marina sequences from the left Amazon bank (LAB) are monophyletic. An Isolation-with-Migration (IM) analysis using nuclear data showed that R. marina and R. schneideri diverged at ≈ 1.69 Myr (early Pleistocene), while R. marina populations from LAB and RAB diverged at ≈ 0.33 Myr (middle Pleistocene). This time of divergence is not consistent with the split between LAB and RAB populations obtained with mtDNA data (≈ 1.59 Myr), which is notably similar to the estimate obtained with nuclear genes between R. marina and R. schneideri. Coalescent simulations of mtDNA phylogeny under the speciation history inferred from nuclear genes rejected the hypothesis of incomplete lineage sorting to explain the conflicting signal between mtDNA and nuclear-based phylogenies. Conclusions The cytonuclear discordance seems to reflect the occurrence of interspecific hybridization between these two closely related toad species. Overall, our results suggest a phenomenon of extensive mtDNA unidirectional introgression from the previously occurring R. schneideri into the invading R. marina. We hypothesize that climatic-induced range shifts during the Pleistocene/Holocene may have played an important role in the observed patterns of introgression. PMID:21939538

  9. Evidence of shallow mitochondrial divergence in the slender armorhead, Pentaceros wheeleri (Pisces, Pentacerotidae) from the Emperor Seamount Chain.

    PubMed

    Bae, Seung Eun; Kim, Hanna; Choi, Seok-Gwan; Kim, Jin-Koo

    2018-01-12

    Competitive overexploitation of the slender armorhead, Pentaceros wheeleri, a deep-sea fish inhabiting the Emperor Seamount Chain caused a serious population decline. Therefore, it is urgently necessary to clarify its genetic diversity and connectivity among populations of P. wheeleri for appropriate stock management. For this, we compared 677 base pairs (bp) of mitochondrial (mt) DNA control region (CR) sequences of 80 individuals from three seamounts (the Milwaukee, Kinmei, and Koko Seamounts) in the southern part of the Emperor Seamount Chain. Contrary to our expectation, the three seamount populations showed high genetic diversity, not yet reflecting effects from the recent population decline or due to mixed two clades. Analysis of molecular variance indicated no significant genetic differentiation between seamount populations, however, the neighbour-joining tree and minimum spanning network showed significant separation into two clades (K2P distance= 1.2-3.2%, ϕ st  = 0.5739, p < .05) regardless of seamount. The divergence time between the two clades was estimated to be 0.3-0.8 Mya, during the period of Pleistocene glacial cycles, suggesting that associated environmental changes and the unique life history traits of Pentaceros spp. might have resulted in the initiation of divergence between these clades.

  10. Speciation in ancient cryptic species complexes: evidence from the molecular phylogeny of Brachionus plicatilis (Rotifera).

    PubMed

    Gómez, Africa; Serra, Manuel; Carvalho, Gary R; Lunt, David H

    2002-07-01

    Continental lake-dwelling zooplanktonic organisms have long been considered cosmopolitan species with little geographic variation in spite of the isolation of their habitats. Evidence of morphological cohesiveness and high dispersal capabilities support this interpretation. However, this view has been challenged recently as many such species have been shown either to comprise cryptic species complexes or to exhibit marked population genetic differentiation and strong phylogeographic structuring at a regional scale. Here we investigate the molecular phylogeny of the cosmopolitan passively dispersing rotifer Brachionus plicatilis (Rotifera: Monogononta) species complex using nucleotide sequence variation from both nuclear (ribosomal internal transcribed spacer 1, ITS1) and mitochondrial (cytochrome c oxidase subunit I, COI) genes. Analysis of rotifer resting eggs from 27 salt lakes in the Iberian Peninsula plus lakes from four continents revealed nine genetically divergent lineages. The high level of sequence divergence, absence of hybridization, and extensive sympatry observed support the specific status of these lineages. Sequence divergence estimates indicate that the B. plicatilis complex began diversifying many millions of years ago, yet has showed relatively high levels of morphological stasis. We discuss these results in relation to the ecology and genetics of aquatic invertebrates possessing dispersive resting propagules and address the apparent contradiction between zooplanktonic population structure and their morphological stasis.

  11. Genetic divergence analysis of the Common Barn Owl Tyto alba (Scopoli, 1769) and the Short-eared Owl Asio flammeus (Pontoppidan, 1763) from southern Chile using COI sequence

    PubMed Central

    Colihueque, Nelson; Gantz, Alberto; Rau, Jaime Ricardo; Parraguez, Margarita

    2015-01-01

    Abstract In this paper new mitochondrial COI sequences of Common Barn Owl Tyto alba (Scopoli, 1769) and Short-eared Owl Asio flammeus (Pontoppidan, 1763) from southern Chile are reported and compared with sequences from other parts of the World. The intraspecific genetic divergence (mean p-distance) was 4.6 to 5.5% for the Common Barn Owl in comparison with specimens from northern Europe and Australasia and 3.1% for the Short-eared Owl with respect to samples from north America, northern Europe and northern Asia. Phylogenetic analyses revealed three distinctive groups for the Common Barn Owl: (i) South America (Chile and Argentina) plus Central and North America, (ii) northern Europe and (iii) Australasia, and two distinctive groups for the Short-eared Owl: (i) South America (Chile and Argentina) and (ii) north America plus northern Europe and northern Asia. The level of genetic divergence observed in both species exceeds the upper limit of intraspecific comparisons reported previously for Strigiformes. Therefore, this suggests that further research is needed to assess the taxonomic status, particularly for the Chilean populations that, to date, have been identified as belonging to these species through traditional taxonomy. PMID:26668551

  12. Primate phylogenetic relationships and divergence dates inferred from complete mitochondrial genomes.

    PubMed

    Pozzi, Luca; Hodgson, Jason A; Burrell, Andrew S; Sterner, Kirstin N; Raaum, Ryan L; Disotell, Todd R

    2014-06-01

    The origins and the divergence times of the most basal lineages within primates have been difficult to resolve mainly due to the incomplete sampling of early fossil taxa. The main source of contention is related to the discordance between molecular and fossil estimates: while there are no crown primate fossils older than 56Ma, most molecule-based estimates extend the origins of crown primates into the Cretaceous. Here we present a comprehensive mitogenomic study of primates. We assembled 87 mammalian mitochondrial genomes, including 62 primate species representing all the families of the order. We newly sequenced eleven mitochondrial genomes, including eight Old World monkeys and three strepsirrhines. Phylogenetic analyses support a strong topology, confirming the monophyly for all the major primate clades. In contrast to previous mitogenomic studies, the positions of tarsiers and colugos relative to strepsirrhines and anthropoids are well resolved. In order to improve our understanding of how fossil calibrations affect age estimates within primates, we explore the effect of seventeen fossil calibrations across primates and other mammalian groups and we select a subset of calibrations to date our mitogenomic tree. The divergence date estimates of the Strepsirrhine/Haplorhine split support an origin of crown primates in the Late Cretaceous, at around 74Ma. This result supports a short-fuse model of primate origins, whereby relatively little time passed between the origin of the order and the diversification of its major clades. It also suggests that the early primate fossil record is likely poorly sampled. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Mechanisms of peripheral phylogeographic divergence in the indo-Pacific: lessons from the spiny lobster Panulirus homarus.

    PubMed

    Farhadi, Ahmad; Jeffs, Andrew G; Farahmand, Hamid; Rejiniemon, Thankappan Sarasam; Smith, Greg; Lavery, Shane D

    2017-08-18

    There is increasing recognition of the concordance between marine biogeographic and phylogeographic boundaries. However, it is still unclear how population-level divergence translates into species-level divergence, and what are the principal factors that first initiate that divergence, and then maintain reproductive isolation. This study examines the likely forces driving population and lineage divergences in the broadly-distributed Indo-Pacific spiny lobster Panulirus homarus, which has peripheral divergent lineages in the west and east. The study focuses particularly on the West Indian Ocean, which is emerging as a region of unexpected diversity. Mitochondrial control region (mtCR) and COI sequences as well as genotypes of 9 microsatellite loci were examined in 410 individuals from 17 locations grouped into 7 regions from South Africa in the west, and eastward across to Taiwan and the Marquesas Islands. Phylogenetic and population-level analyses were used to test the significance and timing of divergences and describe the genetic relationships among populations. Analyses of the mtCR revealed high levels of divergence among the seven regions (Ф ST  = 0.594, P < 0.001). Microsatellite analyses also revealed significant divergence among regions, but at a much lower level (F ST  = 0.066, P < 0.001). The results reveal different patterns of mtCR v. nDNA divergence between the two distinct peripheral lineages: a subspecies in South Africa and Madagascar, and a phylogeographically diverged population in the Marquesas. The results also expose a number of other more fine-scale population divergences, particularly in the Indian Ocean. The divergence of peripheral lineages in the west and east of the species' range appear to have been initiated and maintained by very different processes. The pattern of mitochondrial and nuclear divergence of the western lineage, implicates processes of parapatric isolation, secondary contact and introgression, and suggests possible maintenance through adaptation and behavioural reproductive isolation. In contrast, the eastern lineage appears to have diverged through a rare colonisation event, maintained through long-term isolation, and matches expectations of the core-periphery hypothesis. The process of active peripheral speciation may be a common force in the Indo-Pacific that helps drive some of the regions' recognized biogeographic boundaries.

  14. Pseudoscorpion mitochondria show rearranged genes and genome-wide reductions of RNA gene sizes and inferred structures, yet typical nucleotide composition bias

    PubMed Central

    2012-01-01

    Background Pseudoscorpions are chelicerates and have historically been viewed as being most closely related to solifuges, harvestmen, and scorpions. No mitochondrial genomes of pseudoscorpions have been published, but the mitochondrial genomes of some lineages of Chelicerata possess unusual features, including short rRNA genes and tRNA genes that lack sequence to encode arms of the canonical cloverleaf-shaped tRNA. Additionally, some chelicerates possess an atypical guanine-thymine nucleotide bias on the major coding strand of their mitochondrial genomes. Results We sequenced the mitochondrial genomes of two divergent taxa from the chelicerate order Pseudoscorpiones. We find that these genomes possess unusually short tRNA genes that do not encode cloverleaf-shaped tRNA structures. Indeed, in one genome, all 22 tRNA genes lack sequence to encode canonical cloverleaf structures. We also find that the large ribosomal RNA genes are substantially shorter than those of most arthropods. We inferred secondary structures of the LSU rRNAs from both pseudoscorpions, and find that they have lost multiple helices. Based on comparisons with the crystal structure of the bacterial ribosome, two of these helices were likely contact points with tRNA T-arms or D-arms as they pass through the ribosome during protein synthesis. The mitochondrial gene arrangements of both pseudoscorpions differ from the ancestral chelicerate gene arrangement. One genome is rearranged with respect to the location of protein-coding genes, the small rRNA gene, and at least 8 tRNA genes. The other genome contains 6 tRNA genes in novel locations. Most chelicerates with rearranged mitochondrial genes show a genome-wide reversal of the CA nucleotide bias typical for arthropods on their major coding strand, and instead possess a GT bias. Yet despite their extensive rearrangement, these pseudoscorpion mitochondrial genomes possess a CA bias on the major coding strand. Phylogenetic analyses of all 13 mitochondrial protein-coding gene sequences consistently yield trees that place pseudoscorpions as sister to acariform mites. Conclusion The well-supported phylogenetic placement of pseudoscorpions as sister to Acariformes differs from some previous analyses based on morphology. However, these two lineages share multiple molecular evolutionary traits, including substantial mitochondrial genome rearrangements, extensive nucleotide substitution, and loss of helices in their inferred tRNA and rRNA structures. PMID:22409411

  15. Genetic diversity among populations of Antarctic springtails (Collembola) within the Mackay Glacier ecotone.

    PubMed

    Beet, Clare R; Hogg, Ian D; Collins, Gemma E; Cowan, Don A; Wall, Diana H; Adams, Byron J

    2016-09-01

    Climate changes are likely to have major influences on the distribution and abundance of Antarctic terrestrial biota. To assess arthropod distribution and diversity within the Ross Sea region, we examined mitochondrial DNA (COI) sequences for three currently recognized species of springtail (Collembola) collected from sites in the vicinity, and to the north of, the Mackay Glacier (77°S). This area acts as a transition between two biogeographic regions (northern and southern Victoria Land). We found populations of highly divergent individuals (5%-11.3% intraspecific sequence divergence) for each of the three putative springtail species, suggesting the possibility of cryptic diversity. Based on molecular clock estimates, these divergent lineages are likely to have been isolated for 3-5 million years. It was during this time that the Western Antarctic Ice Sheet (WAIS) was likely to have completely collapsed, potentially facilitating springtail dispersal via rafting on running waters and open seaways. The reformation of the WAIS would have isolated newly established populations, with subsequent dispersal restricted by glaciers and ice-covered areas. Given the currently limited distributions for these genetically divergent populations, any future changes in species' distributions can be easily tracked through the DNA barcoding of springtails from within the Mackay Glacier ecotone.

  16. More reliable estimates of divergence times in Pan using complete mtDNA sequences and accounting for population structure.

    PubMed

    Stone, Anne C; Battistuzzi, Fabia U; Kubatko, Laura S; Perry, George H; Trudeau, Evan; Lin, Hsiuman; Kumar, Sudhir

    2010-10-27

    Here, we report the sequencing and analysis of eight complete mitochondrial genomes of chimpanzees (Pan troglodytes) from each of the three established subspecies (P. t. troglodytes, P. t. schweinfurthii and P. t. verus) and the proposed fourth subspecies (P. t. ellioti). Our population genetic analyses are consistent with neutral patterns of evolution that have been shaped by demography. The high levels of mtDNA diversity in western chimpanzees are unlike those seen at nuclear loci, which may reflect a demographic history of greater female to male effective population sizes possibly owing to the characteristics of the founding population. By using relaxed-clock methods, we have inferred a timetree of chimpanzee species and subspecies. The absolute divergence times vary based on the methods and calibration used, but relative divergence times show extensive uniformity. Overall, mtDNA produces consistently older times than those known from nuclear markers, a discrepancy that is reduced significantly by explicitly accounting for chimpanzee population structures in time estimation. Assuming the human-chimpanzee split to be between 7 and 5 Ma, chimpanzee time estimates are 2.1-1.5, 1.1-0.76 and 0.25-0.18 Ma for the chimpanzee/bonobo, western/(eastern + central) and eastern/central chimpanzee divergences, respectively.

  17. Conservative and compensatory evolution in oxidative phosphorylation complexes of angiosperms with highly divergent rates of mitochondrial genome evolution.

    PubMed

    Havird, Justin C; Whitehill, Nicholas S; Snow, Christopher D; Sloan, Daniel B

    2015-12-01

    Interactions between nuclear and mitochondrial gene products are critical for eukaryotic cell function. Nuclear genes encoding mitochondrial-targeted proteins (N-mt genes) experience elevated rates of evolution, which has often been interpreted as evidence of nuclear compensation in response to elevated mitochondrial mutation rates. However, N-mt genes may be under relaxed functional constraints, which could also explain observed increases in their evolutionary rate. To disentangle these hypotheses, we examined patterns of sequence and structural evolution in nuclear- and mitochondrial-encoded oxidative phosphorylation proteins from species in the angiosperm genus Silene with vastly different mitochondrial mutation rates. We found correlated increases in N-mt gene evolution in species with fast-evolving mitochondrial DNA. Structural modeling revealed an overrepresentation of N-mt substitutions at positions that directly contact mutated residues in mitochondrial-encoded proteins, despite overall patterns of conservative structural evolution. These findings support the hypothesis that selection for compensatory changes in response to mitochondrial mutations contributes to the elevated rate of evolution in N-mt genes. We discuss these results in light of theories implicating mitochondrial mutation rates and mitonuclear coevolution as drivers of speciation and suggest comparative and experimental approaches that could take advantage of heterogeneity in rates of mtDNA evolution across eukaryotes to evaluate such theories. © 2015 The Author(s). Evolution © 2015 The Society for the Study of Evolution.

  18. Phylogenetic analysis of Demodex caprae based on mitochondrial 16S rDNA sequence.

    PubMed

    Zhao, Ya-E; Hu, Li; Ma, Jun-Xian

    2013-11-01

    Demodex caprae infests the hair follicles and sebaceous glands of goats worldwide, which not only seriously impairs goat farming, but also causes a big economic loss. However, there are few reports on the DNA level of D. caprae. To reveal the taxonomic position of D. caprae within the genus Demodex, the present study conducted phylogenetic analysis of D. caprae based on mt16S rDNA sequence data. D. caprae adults and eggs were obtained from a skin nodule of the goat suffering demodicidosis. The mt16S rDNA sequences of individual mite were amplified using specific primers, and then cloned, sequenced, and aligned. The sequence divergence, genetic distance, and transition/transversion rate were computed, and the phylogenetic trees in Demodex were reconstructed. Results revealed the 339-bp partial sequences of six D. caprae isolates were obtained, and the sequence identity was 100% among isolates. The pairwise divergences between D. caprae and Demodex canis or Demodex folliculorum or Demodex brevis were 22.2-24.0%, 24.0-24.9%, and 22.9-23.2%, respectively. The corresponding average genetic distances were 2.840, 2.926, and 2.665, and the average transition/transversion rates were 0.70, 0.55, and 0.54, respectively. The divergences, genetic distances, and transition/transversion rates of D. caprae versus the other three species all reached interspecies level. The five phylogenetic trees all presented that D. caprae clustered with D. brevis first, and then with D. canis, D. folliculorum, and Demodex injai in sequence. In conclusion, D. caprae is an independent species, and it is closer to D. brevis than to D. canis, D. folliculorum, or D. injai.

  19. Late-Quaternary biogeographic scenarios for the brown bear ( Ursus arctos), a wild mammal model species

    NASA Astrophysics Data System (ADS)

    Davison, John; Ho, Simon Y. W.; Bray, Sarah C.; Korsten, Marju; Tammeleht, Egle; Hindrikson, Maris; Østbye, Kjartan; Østbye, Eivind; Lauritzen, Stein-Erik; Austin, Jeremy; Cooper, Alan; Saarma, Urmas

    2011-02-01

    This review provides an up-to-date synthesis of the matrilineal phylogeography of a uniquely well-studied Holarctic mammal, the brown bear. We extend current knowledge by presenting a DNA sequence derived from one of the earliest known fossils of a polar bear (dated to 115 000 years before present), a species that shares a paraphyletic mitochondrial association with brown bears. A molecular clock analysis of 140 mitochondrial DNA sequences, including our new polar bear sequence, provides novel insights into the times of origin for different brown bear clades. We propose a number of regional biogeographic scenarios based on genetic data, divergence time estimates and paleontological records. The case of the brown bear provides an example for researchers working with less well-studied taxa: it shows clearly that phylogeographic models based on patterns of modern genetic variation alone can be substantially improved by including data on historical patterns of genetic diversity in the form of ancient DNA sequences derived from accurately dated samples and by using an approach to divergence-time estimation that suits the data under analysis. Using such approaches it has been possible to (i) establish that the processes shaping modern genetic diversity in brown bears acted recently, within the last three glacial cycles; (ii) distinguish among hypotheses concerning species' responses to climatic oscillations in accordance with the lack of phylogeographic structure that existed in brown bears prior to the last glacial maximum (LGM); (iii) reassess theories linking monophyletic brown bear populations to particular LGM refuge areas; and (iv) identify vicariance events and track analogous patterns of migration by brown bears out of Eurasia to North America and Japan.

  20. Multilocus phylogeography and systematic revision of North American water shrews (genus: Sorex)

    USGS Publications Warehouse

    Hope, Andrew G.; Panter, Nicholas; Cook, Joseph A.; Talbot, Sandra L.; Nagorsen, David W.

    2014-01-01

    North American water shrews, which have traditionally included Sorex alaskanus, S. bendirii, and S. palustris, are widely distributed through Nearctic boreal forests and adapted for life in semiaquatic environments. Molecular mitochondrial signatures for these species have recorded an evolutionary history with variable levels of regional divergence, suggesting a strong role of Quaternary environmental change in speciation processes. We expanded molecular analyses, including more-comprehensive rangewide sampling of specimens representing North American water shrew taxa, except S. alaskanus, and sequencing of 4 independent loci from the nuclear and mitochondrial genomes. We investigated relative divergence of insular populations along the North Pacific Coast, and newly recognized diversity from southwestern montane locations, potentially representing refugial isolates. Congruent independent genealogies, lack of definitive evidence for contemporary gene flow, and high support from coalescent species trees indicated differentiation of 4 major geographic lineages over multiple glacial cycles of the late Quaternary, similar to a growing number of boreal taxa. Limited divergence of insular populations suggested colonization following the last glacial. Characterization of southwestern montane diversity will require further sampling but divergence over multiple loci is indicative of a relictual sky-island fauna. We have reviewed and revised North American water shrew taxonomy including the recognition of 3 species within what was previously known as S. palustris. The possibility of gene flow between most distantly related North American water shrew lineages coupled with unresolved early diversification of this group and other sibling species reflects a complex but potentially productive system for investigating speciation processes.

  1. The impact of fossil calibrations, codon positions and relaxed clocks on the divergence time estimates of the native Australian rodents (Conilurini).

    PubMed

    Nilsson, Maria A; Härlid, Anna; Kullberg, Morgan; Janke, Axel

    2010-05-01

    The native rodents are the most species-rich placental mammal group on the Australian continent. Fossils of native Australian rodents belonging to the group Conilurini are known from Northern Australia at 4.5Ma. These fossil assemblages already display a rich diversity of rodents, but the exact timing of their arrival on the Australian continent is not yet established. The complete mitochondrial genomes of two native Australian rodents, Leggadina lakedownensis (Lakeland Downs mouse) and Pseudomys chapmani (Western Pebble-mound mouse) were sequenced for investigating their evolutionary history. The molecular data were used for studying the phylogenetic position and divergence times of the Australian rodents, using 12 calibration points and various methods. Phylogenetic analyses place the native Australian rodents as the sister-group to the genus Mus. The Mus-Conilurini calibration point (7.3-11.0Ma) is highly critical for estimating rodent divergence times, while the influence of the different algorithms on estimating divergence times is negligible. The influence of the data type was investigated, indicating that amino acid data are more likely to reflect the correct divergence times than nucleotide sequences. The study on the problems related to estimating divergence times in fast-evolving lineages such as rodents, emphasize the choice of data and calibration points as being critical. Furthermore, it is essential to include accurate calibration points for fast-evolving groups, because the divergence times can otherwise be estimated to be significantly older. The divergence times of the Australian rodents are highly congruent and are estimated to 6.5-7.2Ma, a date that is compatible with their fossil record.

  2. Digging up the roots of an insular hotspot of genetic diversity: decoupled mito-nuclear histories in the evolution of the Corsican-Sardinian endemic lizard Podarcis tiliguerta.

    PubMed

    Salvi, Daniele; Pinho, Catarina; Harris, D James

    2017-03-02

    Mediterranean islands host a disproportionately high level of biodiversity and endemisms. Growing phylogeographic evidence on island endemics has unveiled unexpectedly complex patterns of intra-island diversification, which originated at diverse spatial and temporal scales. We investigated multilocus genetic variation of the Corsican-Sardinian endemic lizard Podarcis tiliguerta with the aim of shedding more light on the evolutionary processes underlying the origin of Mediterranean island biodiversity. We analysed DNA sequences of mitochondrial (12S and nd4) and nuclear (acm4 and mc1r) gene fragments in 174 individuals of P. tiliguerta from 81 localities across the full range of the species in a geographic and genealogical framework. We found surprisingly high genetic diversity both at mitochondrial and nuclear loci. Seventeen reciprocally monophyletic allopatric mitochondrial haplogroups were sharply divided into four main mitochondrial lineages (two in Corsica and two in Sardinia) of Miocene origin. In contrast, shallow divergence and shared diversity within and between islands was observed at the nuclear loci. We evaluated alternative biogeographic and evolutionary scenarios to explain such profound discordance in spatial and phylogenetic patterning between mitochondrial and nuclear genomes. While neutral models provided unparsimonious explanations for the observed pattern, the hypothesis of environmental selection driving mitochondrial divergence in the presence of nuclear gene flow is favoured. Our study on the genetic variation of P. tiliguerta reveals surprising levels of diversity underlining a complex phylogeographic pattern with a striking example of mito-nuclear discordance. These findings have profound implications, not only for the taxonomy and conservation of P. tiliguerta. Growing evidence on deep mitochondrial breaks in absence of geographic barriers and of climatic factors associated to genetic variation of Corsican-Sardinian endemics warrants additional investigation on the potential role of environmental selection driving the evolution of diversity hotspots within Mediterranean islands.

  3. DNA barcoding as a tool for coral reef conservation

    NASA Astrophysics Data System (ADS)

    Neigel, J.; Domingo, A.; Stake, J.

    2007-09-01

    DNA Barcoding (DBC) is a method for taxonomic identification of animals that is based entirely on the 5' portion of the mitochondrial gene, cytochrome oxidase subunit I ( COI-5). It can be especially useful for identification of larval forms or incomplete specimens lacking diagnostic morphological characters. DBC can also facilitate the discovery of species and in defining “molecular taxonomic units” in problematic groups. However, DBC is not a panacea for coral reef taxonomy. In two of the most ecologically important groups on coral reefs, the Anthozoa and Porifera, COI-5 sequences have diverged too little to be diagnostic for all species. Other problems for DBC include paraphyly in mitochondrial gene trees and lack of differentiation between hybrids and their maternal ancestors. DBC also depends on the availability of databases of COI-5 sequences, which are still in early stages of development. A global effort to barcode all fish species has demonstrated the importance of large-scale coordination and is yielding promising results. Whether or not COI-5 by itself is sufficient for species assignments has become a contentious question; it is generally advantageous to use sequences from multiple loci.

  4. Origin of pitcher plant mosquitoes in Aedes (Stegomyia): a molecular phylogenetic analysis using mitochondrial and nuclear gene sequences.

    PubMed

    Sota, Teiji; Mogi, Motoyoshi

    2006-09-01

    Two mosquito species of the subgenus Stegomyia (genus Aedes) (Diptera: Culicidae) on the islands of Palau and Yap (Aedes dybasi Bohart and Aedes maehleri Bohart) are adapted to aquatic habitats occupied by Nepenthes pitcher plants. To reveal the origin of these pitcher plant mosquitoes, we attempted a molecular phylogenetic analysis with 11 Stegomyia species by using sequence data from mitochondrial cytochrome oxidase subunit I and 16SrRNA genes as well as the nuclear 28SrRNA gene. Ae. dybasi, a pitcher plant specialist, was sister to Aedes palauensis Bohart within the scutellaris group from the same islands. Ae. maehleri, an opportunistic pitcher plant mosquito, was in a distinct lineage related to the scutellaris group. The adaptation to pitcher plants could have occurred independently in these two species, and recent differentiation of the pitcher plant mosquito Ae. dybasi from the nonpitcher plant mosquito Ae. palauensis was suggested by a relatively small sequence divergence between these species. We also discuss the implications of this analysis for the phylogeny of some other Stegomyia species.

  5. Classification and phylogeny of sika deer (Cervus nippon) subspecies based on the mitochondrial control region DNA sequence using an extended sample set.

    PubMed

    Ba, Hengxing; Yang, Fuhe; Xing, Xiumei; Li, Chunyi

    2015-06-01

    To further refine the classification and phylogeny of sika deer subspecies, the well-annotated sequences of the complete mitochondrial DNA (mtDNA) control region of 13 sika deer subspecies from GenBank were downloaded, aligned and analyzed in this study. By reconstructing the phylogenetic tree with an extended sample set, the results revealed a split between Northern and Southern Mainland Asia/Taiwan lineages, and moreover, two subspecies, C.n.mantchuricus and C.n.hortulorum, were existed in Northern Mainland Asia. Unexpectedly, Dybowskii's sika deer that was thought to originate from Northern Mainland Asia joins the Southern Mainland Asia/Taiwan lineage. The genetic divergences were ranged from 2.1% to 4.7% between Dybowskii's sika deer and all the other established subspecies at the mtDNA sequence level, which suggests that the maternal lineage of uncertain sika subspecies in Europe had been maintained until today. This study also provides a better understanding for the classification, phylogeny and phylogeographic history of sika deer subspecies.

  6. Genetic divergence in populations of Lutzomyia ayacuchensis, a vector of Andean-type cutaneous leishmaniasis, in Ecuador and Peru.

    PubMed

    Kato, Hirotomo; Cáceres, Abraham G; Gomez, Eduardo A; Mimori, Tatsuyuki; Uezato, Hiroshi; Hashiguchi, Yoshihisa

    2015-01-01

    Haplotype and gene network analyses were performed on mitochondrial cytochrome oxidase I and cytochrome b gene sequences of Lutzomyia (Lu.) ayacuchensis populations from Andean areas of Ecuador and southern Peru where the sand fly species transmit Leishmania (Leishmania) mexicana and Leishmania (Viannia) peruviana, respectively, and populations from the northern Peruvian Andes, for which transmission of Leishmania by Lu. ayacuchensis has not been reported. The haplotype analyses showed higher intrapopulation genetic divergence in northern Peruvian Andes populations and less divergence in the southern Peru and Ecuador populations, suggesting that a population bottleneck occurred in the latter populations, but not in former ones. Importantly, both haplotype and phylogenetic analyses showed that populations from Ecuador consisted of clearly distinct clusters from southern Peru, and the two populations were separated from those of northern Peru. Crown Copyright © 2014. Published by Elsevier B.V. All rights reserved.

  7. DNA Barcode Identification of Freshwater Snails in the Family Bithyniidae from Thailand

    PubMed Central

    Kulsantiwong, Jutharat; Prasopdee, Sattrachai; Ruangsittichai, Jiraporn; Ruangjirachuporn, Wipaporn; Boonmars, Thidarut; Viyanant, Vithoon; Pierossi, Paola; Hebert, Paul D. N.; Tesana, Smarn

    2013-01-01

    Freshwater snails in the family Bithyniidae are the first intermediate host for Southeast Asian liver fluke (Opisthorchis viverrini), the causative agent of opisthorchiasis. Unfortunately, the subtle morphological characters that differentiate species in this group are not easily discerned by non-specialists. This is a serious matter because the identification of bithyniid species is a fundamental prerequisite for better understanding of the epidemiology of this disease. Because DNA barcoding, the analysis of sequence diversity in the 5’ region of the mitochondrial COI gene, has shown strong performance in other taxonomic groups, we decided to test its capacity to resolve 10 species/ subspecies of bithyniids from Thailand. Our analysis of 217 specimens indicated that COI sequences delivered species-level identification for 9 of 10 currently recognized species. The mean intraspecific divergence of COI was 2.3% (range 0-9.2 %), whereas sequence divergences between congeneric species averaged 8.7% (range 0-22.2 %). Although our results indicate that DNA barcoding can differentiate species of these medically-important snails, we also detected evidence for the presence of one overlooked species and one possible case of synonymy. PMID:24223896

  8. Molecular and phylogenetic analyses of the liver amphistome Explanatum explanatum (Creplin, 1847) Fukui, 1929 in ruminants from Bangladesh and Nepal based on nuclear ribosomal ITS2 and mitochondrial nad1 sequences.

    PubMed

    Mohanta, U K; Rana, H B; Devkota, B; Itagaki, T

    2017-07-01

    Explanatum explanatum flukes, liver amphistomes of ruminants, cause significant economic loss in the livestock industry by inducing severe liver damage. A total of 66 flukes from 26 buffaloes and 7 cattle in four different geographic areas of Bangladesh and 20 flukes from 10 buffaloes in the Chitwan district of Nepal were subjected for analysis. The sequences (442 bp) of the second internal transcribed spacer (ITS2) of ribosomal DNA and the variable fragments (657 bp) of mitochondrial nicotinamide dehydrogenase subunit 1 (nad1) of E. explanatum flukes from Bangladesh and Nepal were analysed. The aim of this study was molecular characterization of the flukes and to elucidate their origin and biogeography. In the ITS2 region, two genotypes were detected among the flukes from Bangladesh, while flukes from Nepal were of only one genotype. Phylogenetic analyses inferred from the nad1 gene revealed that at least four divergent populations (groups I-IV) are distributed in Bangladesh, whereas two divergent populations were found to be distributed in Nepal. Fst values (pairwise fixation index) suggest that Bangladeshi and Nepalese populations of group I to IV are significantly different from each other; but within groups III and IV, the populations from Bangladesh and Nepal were genetically close. This divergence in the nad1 gene indicates that each lineage of E. explanatum from diverse geography was co-adapted during the multiple domestication events of ruminants. This study, for the first time, provides molecular characterization of E. explanatum in Bangladesh and Nepal, and may provide useful information for elucidating its origin and dispersal route in Asia.

  9. Nonsynonymous substitution in abalone sperm fertilization genes exceeds substitution in introns and mitochondrial DNA

    PubMed Central

    Metz, Edward C.; Robles-Sikisaka, Refugio; Vacquier, Victor D.

    1998-01-01

    Strong positive Darwinian selection acts on two sperm fertilization proteins, lysin and 18-kDa protein, from abalone (Haliotis). To understand the phylogenetic context for this dramatic molecular evolution, we obtained sequences of mitochondrial cytochrome c oxidase subunit I (mtCOI), and genomic sequences of lysin, 18-kDa, and a G protein subunit. Based on mtDNA differentiation, four north Pacific abalone species diverged within the past 2 million years (Myr), and remaining north Pacific species diverged over a period of 4–20 Myr. Between-species nonsynonymous differences in lysin and 18-kDa exons exceed nucleotide differences in introns by 3.5- to 24-fold. Remarkably, in some comparisons nonsynonymous substitutions in lysin and 18-kDa genes exceed synonymous substitutions in mtCOI. Lysin and 18-kDa intron/exon segments were sequenced from multiple red abalone individuals collected over a 1,200-km range. Only two nucleotide changes and two sites of slippage variation were detected in a total of >29,000 nucleotides surveyed. However, polymorphism in mtCOI and a G protein intron was found in this species. This finding suggests that positive selection swept one lysin allele and one 18-kDa allele to fixation. Similarities between mtCOI and lysin gene trees indicate that rapid adaptive evolution of lysin has occurred consistently through the history of the group. Comparisons with mtCOI molecular clock calibrations suggest that nonsynonymous substitutions accumulate 2–50 times faster in lysin and 18-kDa genes than in rapidly evolving mammalian genes. PMID:9724763

  10. Identification of two invasive Cacopsylla chinensis (Hemiptera: Psyllidae) lineages based on two mitochondrial sequences and restriction fragment length polymorphism of cytochrome oxidase I amplicon.

    PubMed

    Lee, Hsien-Chung; Yang, Man-Miao; Yeh, Wen-Bin

    2008-08-01

    The occurrence of pear decline, a disease found in some pear (Pyrus spp.) orchards of Taiwan in recent years, is accompanied by an outbreak of Cacopsylla chinensis (Yang & Li). Two major morphological forms (summer and winter forms) with a variety of intermediate body color and two phylogenetic lineages of this psyllid have been described. The work herein used sequences of mitochondrial cytochrome oxidase I (COI) and 16S rDNA regions to delineate the genetic differentiation of this color-variable insect and to elucidate their relationship. Sequence divergence and phylogenetic analysis have shown that C. chinensis individuals could be divided into two lineages with 3.3 and 2.3% divergence of COI and 16S rDNA, respectively. All specimens from China were found to belong to lineage I. Restriction fragment length polymorphism analysis of COI with restriction enzymes AcuI, AseI, BccI, and FokI on 263 specimens of six populations from Taiwan produced two digestion patterns, which are in agreement with the two lineages described above. Both patterns could be found in each population, with most individuals belonging to lineage I and 5-21% of the individuals belonging to lineage II. Because these two lineages included summer as well as winter morphological forms, the lineage differentiation is apparently not related to morphological characters of this psyllid. Because the invasive records are not in favor of a sympatric differentiation, this psyllid is more likely introduced as different populations from countries in temperate regions.

  11. Strikingly variable divergence times inferred across an Amazonian butterfly ‘suture zone’

    PubMed Central

    Whinnett, Alaine; Zimmermann, Marie; Willmott, Keith R; Herrera, Nimiadina; Mallarino, Ricardo; Simpson, Fraser; Joron, Mathieu; Lamas, Gerardo; Mallet, James

    2005-01-01

    ‘Suture zones’ are areas where hybrid and contact zones of multiple taxa are clustered. Such zones have been regarded as strong evidence for allopatric divergence by proponents of the Pleistocene forest refugia theory, a vicariance hypothesis frequently used to explain diversification in the Amazon basin. A central prediction of the refugia and other vicariance theories is that the taxa should have a common history so that divergence times should be coincident among taxa. A suture zone for Ithomiinae butterflies near Tarapoto, NE Peru, was therefore studied to examine divergence times of taxa in contact across the zone. We sequenced 1619 bp of the mitochondrial COI/COII region in 172 individuals of 31 species from across the suture zone. Inferred divergence times differed remarkably, with divergence between some pairs of widespread species (each of which may have two or more subspecies interacting in the zone, as in the genus Melinaea) being considerably less than that between hybridizing subspecies in other genera (for instance in Oleria). Our data therefore strongly refute a simple hypothesis of simultaneous vicariance and suggest that ongoing parapatric or other modes of differentiation in continuous forest may be important in driving diversification in Amazonia. PMID:16271979

  12. Complete mitochondrial genome sequence from an endangered Indian snake, Python molurus molurus (Serpentes, Pythonidae).

    PubMed

    Dubey, Bhawna; Meganathan, P R; Haque, Ikramul

    2012-07-01

    This paper reports the complete mitochondrial genome sequence of an endangered Indian snake, Python molurus molurus (Indian Rock Python). A typical snake mitochondrial (mt) genome of 17258 bp length comprising of 37 genes including the 13 protein coding genes, 22 tRNA genes, and 2 ribosomal RNA genes along with duplicate control regions is described herein. The P. molurus molurus mt. genome is relatively similar to other snake mt. genomes with respect to gene arrangement, composition, tRNA structures and skews of AT/GC bases. The nucleotide composition of the genome shows that there are more A-C % than T-G% on the positive strand as revealed by positive AT and CG skews. Comparison of individual protein coding genes, with other snake genomes suggests that ATP8 and NADH3 genes have high divergence rates. Codon usage analysis reveals a preference of NNC codons over NNG codons in the mt. genome of P. molurus. Also, the synonymous and non-synonymous substitution rates (ka/ks) suggest that most of the protein coding genes are under purifying selection pressure. The phylogenetic analyses involving the concatenated 13 protein coding genes of P. molurus molurus conformed to the previously established snake phylogeny.

  13. Complete mitochondrial genomes of living and extinct pigeons revise the timing of the columbiform radiation.

    PubMed

    Soares, André E R; Novak, Ben J; Haile, James; Heupink, Tim H; Fjeldså, Jon; Gilbert, M Thomas P; Poinar, Hendrik; Church, George M; Shapiro, Beth

    2016-10-26

    Pigeons and doves (Columbiformes) are one of the oldest and most diverse extant lineages of birds. However, the nature and timing of the group's evolutionary radiation remains poorly resolved, despite recent advances in DNA sequencing and assembly and the growing database of pigeon mitochondrial genomes. One challenge has been to generate comparative data from the large number of extinct pigeon lineages, some of which are morphologically unique and therefore difficult to place in a phylogenetic context. We used ancient DNA and next generation sequencing approaches to assemble complete mitochondrial genomes for eleven pigeons, including the extinct Ryukyu wood pigeon (Columba jouyi), the thick-billed ground dove (Alopecoenas salamonis), the spotted green pigeon (Caloenas maculata), the Rodrigues solitaire (Pezophaps solitaria), and the dodo (Raphus cucullatus). We used a Bayesian approach to infer the evolutionary relationships among 24 species of living and extinct pigeons and doves. Our analyses indicate that the earliest radiation of the Columbidae crown group most likely occurred during the Oligocene, with continued divergence of major clades into the Miocene, suggesting that diversification within the Columbidae occurred more recently than has been reported previously.

  14. The Complete Mitochondrial Genome of an 11,450-year-old Aurochsen (Bos primigenius) from Central Italy

    PubMed Central

    2011-01-01

    Background Bos primigenius, the aurochs, is the wild ancestor of modern cattle breeds and was formerly widespread across Eurasia and northern Africa. After a progressive decline, the species became extinct in 1627. The origin of modern taurine breeds in Europe is debated. Archaeological and early genetic evidence point to a single Near Eastern origin and a subsequent spread during the diffusion of herding and farming. More recent genetic data are instead compatible with local domestication events or at least some level of local introgression from the aurochs. Here we present the analysis of the complete mitochondrial genome of a pre-Neolithic Italian aurochs. Results In this study, we applied a combined strategy employing both multiplex PCR amplifications and 454 pyrosequencing technology to sequence the complete mitochondrial genome of an 11,450-year-old aurochs specimen from Central Italy. Phylogenetic analysis of the aurochs mtDNA genome supports the conclusions from previous studies of short mtDNA fragments - namely that Italian aurochsen were genetically very similar to modern cattle breeds, but highly divergent from the North-Central European aurochsen. Conclusions Complete mitochondrial genome sequences are now available for several modern cattle and two pre-Neolithic mtDNA genomes from very different geographic areas. These data suggest that previously identified sub-groups within the widespread modern cattle mitochondrial T clade are polyphyletic, and they support the hypothesis that modern European breeds have multiple geographic origins. PMID:21281509

  15. Comparative Mitogenomics of the Assassin Bug Genus Peirates (Hemiptera: Reduviidae: Peiratinae) Reveal Conserved Mitochondrial Genome Organization of P. atromaculatus, P. fulvescens and P. turpis

    PubMed Central

    Zhao, Guangyu; Li, Hu; Zhao, Ping; Cai, Wanzhi

    2015-01-01

    In this study, we sequenced four new mitochondrial genomes and presented comparative mitogenomic analyses of five species in the genus Peirates (Hemiptera: Reduviidae). Mitochondrial genomes of these five assassin bugs had a typical set of 37 genes and retained the ancestral gene arrangement of insects. The A+T content, AT- and GC-skews were similar to the common base composition biases of insect mtDNA. Genomic size ranges from 15,702 bp to 16,314 bp and most of the size variation was due to length and copy number of the repeat unit in the putative control region. All of the control region sequences included large tandem repeats present in two or more copies. Our result revealed similarity in mitochondrial genomes of P. atromaculatus, P. fulvescens and P. turpis, as well as the highly conserved genomic-level characteristics of these three species, e.g., the same start and stop codons of protein-coding genes, conserved secondary structure of tRNAs, identical location and length of non-coding and overlapping regions, and conservation of structural elements and tandem repeat unit in control region. Phylogenetic analyses also supported a close relationship between P. atromaculatus, P. fulvescens and P. turpis, which might be recently diverged species. The present study indicates that mitochondrial genome has important implications on phylogenetics, population genetics and speciation in the genus Peirates. PMID:25689825

  16. Mitochondrial cytochrome b sequence variations and population structure of Siberian chipmunk (Tamias sibiricus) in Northeastern Asia and population substructure in South Korea.

    PubMed

    Lee, Mu-Yeong; Lissovsky, Andrey A; Park, Sun-Kyung; Obolenskaya, Ekaterina V; Dokuchaev, Nikolay E; Zhang, Ya-Ping; Yu, Li; Kim, Young-Jun; Voloshina, Inna; Myslenkov, Alexander; Choi, Tae-Young; Min, Mi-Sook; Lee, Hang

    2008-12-31

    Twenty-five chipmunk species occur in the world, of which only the Siberian chipmunk, Tamias sibiricus, inhabits Asia. To investigate mitochondrial cytochrome b sequence variations and population structure of the Siberian chipmunk in northeastern Asia, we examined mitochondrial cytochrome b sequences (1140 bp) from 3 countries. Analyses of 41 individuals from South Korea and 33 individuals from Russia and northeast China resulted in 37 haplotypes and 27 haplotypes, respectively. There were no shared haplotypes between South Korea and Russia--northeast China. Phylogenetic trees and network analysis showed 2 major maternal lineages for haplotypes, referred to as the S and R lineages. Haplotype grouping in each cluster was nearly coincident with its geographic affinity. In particular, 3 distinct groups were found that mostly clustered in the northern, central and southern parts of South Korea. Nucleotide diversity of the S lineage was twice that of lineage R. The divergence between S and R lineages was estimated to be 2.98-0.98 Myr. During the ice age, there may have been at least 2 refuges in South Korea and Russia--northeast China. The sequence variation between the S and R lineages was 11.3% (K2P), which is indicative of specific recognition in rodents. These results suggest that T. sibiricus from South Korea could be considered a separate species. However, additional information, such as details of distribution, nuclear genes data or morphology, is required to strengthen this hypothesis.

  17. A molecular phylogeny of anseriformes based on mitochondrial DNA analysis.

    PubMed

    Donne-Goussé, Carole; Laudet, Vincent; Hänni, Catherine

    2002-06-01

    To study the phylogenetic relationships among Anseriformes, sequences for the complete mitochondrial control region (CR) were determined from 45 waterfowl representing 24 genera, i.e., half of the existing genera. To confirm the results based on CR analysis we also analyzed representative species based on two mitochondrial protein-coding genes, cytochrome b (cytb) and NADH dehydrogenase subunit 2 (ND2). These data allowed us to construct a robust phylogeny of the Anseriformes and to compare it with existing phylogenies based on morphological or molecular data. Chauna and Dendrocygna were identified as early offshoots of the Anseriformes. All the remaining taxa fell into two clades that correspond to the two subfamilies Anatinae and Anserinae. Within Anserinae Branta and Anser cluster together, whereas Coscoroba, Cygnus, and Cereopsis form a relatively weak clade with Cygnus diverging first. Five clades are clearly recognizable among Anatinae: (i) the Anatini with Anas and Lophonetta; (ii) the Aythyini with Aythya and Netta; (iii) the Cairinini with Cairina and Aix; (iv) the Mergini with Mergus, Bucephala, Melanitta, Callonetta, Somateria, and Clangula, and (v) the Tadornini with Tadorna, Chloephaga, and Alopochen. The Tadornini diverged early on from the Anatinae; then the Mergini and a large group that comprises the Anatini, Aythyini, Cairinini, and two isolated genera, Chenonetta and Marmaronetta, diverged. The phylogeny obtained with the control region appears more robust than the one obtained with mitochondrial protein-coding genes such as ND2 and cytb. This suggests that the CR is a powerful tool for bird phylogeny, not only at a small scale (i.e., relationships between species) but also at the family level. Whereas morphological analysis effectively resolved the split between Anatinae and Anserinae and the existence of some of the clades, the precise composition of the clades are different when morphological and molecular data are compared. (c) 2002 Elsevier Science (USA).

  18. Excess amino acid polymorphism in mitochondrial DNA: contrasts among genes from Drosophila, mice, and humans.

    PubMed

    Rand, D M; Kann, L M

    1996-07-01

    Recent studies of mitochondrial DNA (mtDNA) variation in mammals and Drosophila have shown an excess of amino acid variation within species (replacement polymorphism) relative to the number of silent and replacement differences fixed between species. To examine further this pattern of nonneutral mtDNA evolution, we present sequence data for the ND3 and ND5 genes from 59 lines of Drosophila melanogaster and 29 lines of D. simulans. Of interest are the frequency spectra of silent and replacement polymorphisms, and potential variation among genes and taxa in the departures from neutral expectations. The Drosophila ND3 and ND5 data show no significant excess of replacement polymorphism using the McDonald-Kreitman test. These data are in contrast to significant departures from neutrality for the ND3 gene in mammals and other genes in Drosophila mtDNA (cytochrome b and ATPase 6). Pooled across genes, however, both Drosophila and human mtDNA show very significant excesses of amino acid polymorphism. Silent polymorphisms at ND5 show a significantly higher variance in frequency than replacement polymorphisms, and the latter show a significant skew toward low frequencies (Tajima's D = -1.954). These patterns are interpreted in light of the nearly neutral theory where mildly deleterious amino acid haplotypes are observed as ephemeral variants within species but do not contribute to divergence. The patterns of polymorphism and divergence at charge-altering amino acid sites are presented for the Drosophila ND5 gene to examine the evolution of functionally distinct mutations. Excess charge-altering polymorphism is observed at the carboxyl terminal and excess charge-altering divergence is detected at the amino terminal. While the mildly deleterious model fits as a net effect in the evolution of nonrecombining mitochondrial genomes, these data suggest that opposing evolutionary pressures may act on different regions of mitochondrial genes and genomes.

  19. Navigating the tip of the genomic iceberg: Next-generation sequencing for plant systematics.

    PubMed

    Straub, Shannon C K; Parks, Matthew; Weitemier, Kevin; Fishbein, Mark; Cronn, Richard C; Liston, Aaron

    2012-02-01

    Just as Sanger sequencing did more than 20 years ago, next-generation sequencing (NGS) is poised to revolutionize plant systematics. By combining multiplexing approaches with NGS throughput, systematists may no longer need to choose between more taxa or more characters. Here we describe a genome skimming (shallow sequencing) approach for plant systematics. Through simulations, we evaluated optimal sequencing depth and performance of single-end and paired-end short read sequences for assembly of nuclear ribosomal DNA (rDNA) and plastomes and addressed the effect of divergence on reference-guided plastome assembly. We also used simulations to identify potential phylogenetic markers from low-copy nuclear loci at different sequencing depths. We demonstrated the utility of genome skimming through phylogenetic analysis of the Sonoran Desert clade (SDC) of Asclepias (Apocynaceae). Paired-end reads performed better than single-end reads. Minimum sequencing depths for high quality rDNA and plastome assemblies were 40× and 30×, respectively. Divergence from the reference significantly affected plastome assembly, but relatively similar references are available for most seed plants. Deeper rDNA sequencing is necessary to characterize intragenomic polymorphism. The low-copy fraction of the nuclear genome was readily surveyed, even at low sequencing depths. Nearly 160000 bp of sequence from three organelles provided evidence of phylogenetic incongruence in the SDC. Adoption of NGS will facilitate progress in plant systematics, as whole plastome and rDNA cistrons, partial mitochondrial genomes, and low-copy nuclear markers can now be efficiently obtained for molecular phylogenetics studies.

  20. A dated molecular phylogeny of manta and devil rays (Mobulidae) based on mitogenome and nuclear sequences.

    PubMed

    Poortvliet, Marloes; Olsen, Jeanine L; Croll, Donald A; Bernardi, Giacomo; Newton, Kelly; Kollias, Spyros; O'Sullivan, John; Fernando, Daniel; Stevens, Guy; Galván Magaña, Felipe; Seret, Bernard; Wintner, Sabine; Hoarau, Galice

    2015-02-01

    Manta and devil rays are an iconic group of globally distributed pelagic filter feeders, yet their evolutionary history remains enigmatic. We employed next generation sequencing of mitogenomes for nine of the 11 recognized species and two outgroups; as well as additional Sanger sequencing of two mitochondrial and two nuclear genes in an extended taxon sampling set. Analysis of the mitogenome coding regions in a Maximum Likelihood and Bayesian framework provided a well-resolved phylogeny. The deepest divergences distinguished three clades with high support, one containing Manta birostris, Manta alfredi, Mobula tarapacana, Mobula japanica and Mobula mobular; one containing Mobula kuhlii, Mobula eregoodootenkee and Mobula thurstoni; and one containing Mobula munkiana, Mobula hypostoma and Mobula rochebrunei. Mobula remains paraphyletic with the inclusion of Manta, a result that is in agreement with previous studies based on molecular and morphological data. A fossil-calibrated Bayesian random local clock analysis suggests that mobulids diverged from Rhinoptera around 30 Mya. Subsequent divergences are characterized by long internodes followed by short bursts of speciation extending from an initial episode of divergence in the Early and Middle Miocene (19-17 Mya) to a second episode during the Pliocene and Pleistocene (3.6 Mya - recent). Estimates of divergence dates overlap significantly with periods of global warming, during which upwelling intensity - and related high primary productivity in upwelling regions - decreased markedly. These periods are hypothesized to have led to fragmentation and isolation of feeding regions leading to possible regional extinctions, as well as the promotion of allopatric speciation. The closely shared evolutionary history of mobulids in combination with ongoing threats from fisheries and climate change effects on upwelling and food supply, reinforces the case for greater protection of this charismatic family of pelagic filter feeders. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Relative information content of polymorphic microsatellites and mitochondrial DNA for inferring dispersal and population genetic structure in the olive sea snake, Aipysurus laevis.

    PubMed

    Lukoschek, V; Waycott, M; Keogh, J S

    2008-07-01

    Polymorphic microsatellites are widely considered more powerful for resolving population structure than mitochondrial DNA (mtDNA) markers, particularly for recently diverged lineages or geographically proximate populations. Weaker population subdivision for biparentally inherited nuclear markers than maternally inherited mtDNA may signal male-biased dispersal but can also be attributed to marker-specific evolutionary characteristics and sampling properties. We discriminated between these competing explanations with a population genetic study on olive sea snakes, Aipysurus laevis. A previous mtDNA study revealed strong regional population structure for A. laevis around northern Australia, where Pleistocene sea-level fluctuations have influenced the genetic signatures of shallow-water marine species. Divergences among phylogroups dated to the Late Pleistocene, suggesting recent range expansions by previously isolated matrilines. Fine-scale population structure within regions was, however, poorly resolved for mtDNA. In order to improve estimates of fine-scale genetic divergence and to compare population structure between nuclear and mtDNA, 354 olive sea snakes (previously sequenced for mtDNA) were genotyped for five microsatellite loci. F statistics and Bayesian multilocus genotype clustering analyses found similar regional population structure as mtDNA and, after standardizing microsatellite F statistics for high heterozygosities, regional divergence estimates were quantitatively congruent between marker classes. Over small spatial scales, however, microsatellites recovered almost no genetic structure and standardized F statistics were orders of magnitude smaller than for mtDNA. Three tests for male-biased dispersal were not significant, suggesting that recent demographic expansions to the typically large population sizes of A. laevis have prevented microsatellites from reaching mutation-drift equilibrium and local populations may still be diverging.

  2. Genetic and morphological analyses indicate that the Australian endemic scorpion Urodacus yaschenkoi (Scorpiones: Urodacidae) is a species complex

    PubMed Central

    Luna-Ramirez, Karen; Miller, Adam D.

    2017-01-01

    Background Australian scorpions have received far less attention from researchers than their overseas counterparts. Here we provide the first insight into the molecular variation and evolutionary history of the endemic Australian scorpion Urodacus yaschenkoi. Also known as the inland robust scorpion, it is widely distributed throughout arid zones of the continent and is emerging as a model organism in biomedical research due to the chemical nature of its venom. Methods We employed Bayesian Inference (BI) methods for the phylogenetic reconstructions and divergence dating among lineages, using unique haplotype sequences from two mitochondrial loci (COXI, 16S) and one nuclear locus (28S). We also implemented two DNA taxonomy approaches (GMYC and PTP/dPTP) to evaluate the presence of cryptic species. Linear Discriminant Analysis was used to test whether the linear combination of 21 variables (ratios of morphological measurements) can predict individual’s membership to a putative species. Results Genetic and morphological data suggest that U. yaschenkoi is a species complex. High statistical support for the monophyly of several divergent lineages was found both at the mitochondrial loci and at a nuclear locus. The extent of mitochondrial divergence between these lineages exceeds estimates of interspecific divergence reported for other scorpion groups. The GMYC model and the PTP/bPTP approach identified major lineages and several sub-lineages as putative species. Ratios of several traits that approximate body shape had a strong predictive power (83–100%) in discriminating two major molecular lineages. A time-calibrated phylogeny dates the early divergence at the onset of continental-wide aridification in late Miocene and Pliocene, with finer-scale phylogeographic patterns emerging during the Pleistocene. This structuring dynamics is congruent with the diversification history of other fauna of the Australian arid zones. Discussion Our results indicate that the taxonomic status of U. yaschenkoi requires revision, and we provide recommendations for such future efforts. A complex evolutionary history and extensive diversity highlights the importance of conserving U. yaschenkoi populations from different Australian arid zones in order to preserve patterns of endemism and evolutionary potential. PMID:28123903

  3. Isolation with differentiation followed by expansion with admixture in the tunicate Pyura chilensis

    PubMed Central

    2013-01-01

    Background Pyura chilensis, a tunicate commercially exploited as food resource in Chile, is subject to management strategies, including restocking. The goal of this study was to examine the genetic structure of P. chilensis using information from a mitochondrial gene (Cytochrome Oxidase I, COI) and a nuclear gene (Elongation 1 alpha, EF1a), to characterize the geographic distribution of genetic diversity and differentiation, and to identify the main processes that have shaped it. We analyzed 268 and 208 sequences of COI and EF1a, respectively, from samples of eight local populations covering ca. 1800 km. Results For Pyura chilensis, partial sequences of the gene COI revealed three highly supported haplogroups that diverged 260000 to 470000 years ago. Two haplogroups currently are widely distributed and sympatric, while one is dominant only in Los Molinos (LM, 39°50′S). The two widespread COI haplogroups underwent a geographic expansion during an interglacial period of the Late Pleistocene ca. 100000 years ago. The nuclear gene was less divergent and did not resolve the COI haplogroups. Bayesian clustering of the nuclear gene’s SNPs revealed that individuals from the two widespread COI haplogroups were mostly assigned to two of the three detected clusters and had a marked degree of admixture. The third cluster predominated in LM and showed low admixture. Haplotypic diversity of both genes was very high, there was no isolation by distance, and most localities were genetically undifferentiated; only LM was consistently differentiated with both genes analyzed. Conclusions Pyura chilensis has less genetic structure than expected given its life history, which could be a consequence of dispersal on ship hulls. The only differentiated local population analyzed was LM. Coincidentally, it is the one furthest away from main maritime routes along the coast of Chile. The use of mitochondrial and nuclear markers allowed detection of divergent mitochondrial haplogroups in P. chilensis, two of which revealed nuclear admixture. The genetic structure of P. chilensis has likely been shaped by Pleistocene’s climatic effect on sea level leading to population contraction with isolation, followed by geographic range expansions with concomitant secondary contact and admixture. PMID:24238017

  4. Molecular systematics of the freshwater stingrays (myliobatiformes: potamotrygonidae) of the Amazon, Orinoco, Magdalena, Esequibo, Caribbean, and Maracaibo basins (Colombia - Venezuela): evidence from three mitochondrial genes.

    PubMed

    Garcia, David Alejandro; Lasso, Carlos Andres; Morales, Monica; Caballero, Susana Josefina

    2016-11-01

    Lack of adequate information about the taxonomic and evolutionary relationships, ecology, biology, and distribution of several species belonging to the family Potamotrygonidae makes these species vulnerable to anthropic activities, including commercial overexploitation for the ornamental fish market. The aim of this study was to investigate the systematic relationships among genera and species belonging to this family by analyses of three mitochondrial gene regions. Samples were collected from the main river basins in Colombia and Venezuela for four genera and seven species of the family, as well as for what appear to be unidentified species. Three mitochondrial molecular markers COI, Cytb, and ATP6 were amplified and sequenced. Maximum likelihood and Bayesian inference analysis were performed to obtain topologies for each marker and for a concatenated dataset including the three genes. Small dataset may compromise some methods estimations of sequence divergence in the ATP6 marker. Monophyly of the four genera in Potamotrygonidae was confirmed and phylogenetic relationships among members of the Potamotrygon genus were not clearly resolved. However, results obtained with the molecular marker Cytb appear to offer a good starting point to differentiate among genera and species as a tool that could be used for barcoding. The application of this gene as a barcode could be applied for management and regulation of extraction practices for these genera. Sequencing complete mitochondrial genomes would be the next step for testing evolutionary hypothesis among these genera. Population structure analyses should be undertaken for Paratrygon, Potamotrygon magdalenae and motoro.

  5. Genetic diversity and population history of the red panda (Ailurus fulgens) as inferred from mitochondrial DNA sequence variations.

    PubMed

    Su, B; Fu, Y; Wang, Y; Jin, L; Chakraborty, R

    2001-06-01

    The red panda (Ailurus fulgens) is one of the flagship species in worldwide conservation and is of special interest in evolutionary studies due to its taxonomic uniqueness. We sequenced a 236-bp fragment of the mitochondrial D-loop region in a sample of 53 red pandas from two populations in southwestern China. Seventeen polymorphic sites were found, together with a total of 25 haplotypes, indicating a high level of genetic diversity in the red panda. However, no obvious genetic divergence was detected between the Sichuan and Yunnan populations. The consensus phylogenetic tree of the 25 haplotypes was starlike. The pairwise mismatch distribution fitted into a pattern of populations undergoing expansion. Furthermore, Fu's F(S) test of neutrality was significant for the total population (F(S) = -7.573), which also suggests a recent population expansion. Interestingly, the effective population size in the Sichuan population was both larger and more stable than that in the Yunnan population, implying a southward expansion from Sichuan to Yunnan.

  6. Genetic evidence from mitochondrial DNA corroborates the origin of Tibetan chickens.

    PubMed

    Zhang, Long; Zhang, Pu; Li, Qingqing; Gaur, Uma; Liu, Yiping; Zhu, Qing; Zhao, Xiaoling; Wang, Yan; Yin, Huadong; Hu, Yaodong; Liu, Aiping; Li, Diyan

    2017-01-01

    Chicken is the most common poultry species and is important to human societies. Tibetan chicken (Gallus gallus domesticus) is a breed endemic to China that is distributed mainly on the Qinghai-Tibet Plateau. However, its origin has not been well characterized. In the present study, we sequenced partial mitochondrial DNA (mtDNA) control region of 239 and 283 samples from Tibetan and Sichuan indigenous chickens, respectively. Incorporating 1091 published sequences, we constructed the matrilineal genealogy of Tibetan chickens to further document their domestication history. We found that the genetic structure of the mtDNA haplotypes of Tibetan chickens are dominated by seven major haplogroups (A-G). In addition, phylogenetic and network analyses showed that Tibetan chickens are not distinguishable from the indigenous chickens in surrounding areas. Furthermore, some clades of Tibetan chickens may have originated from game fowls. In summary, our results collectively indicated that Tibetan chickens may have diverged from indigenous chickens in the adjacent regions and hybridized with various chickens.

  7. Molecular phylogeny of mitochondrial cytochrome b and 12S rRNA sequences in the Felidae: ocelot and domestic cat lineages.

    PubMed

    Masuda, R; Lopez, J V; Slattery, J P; Yuhki, N; O'Brien, S J

    1996-12-01

    Molecular phylogeny of the cat family Felidae is derived using two mitochondrial genes, cytochrome b and 12S rRNA. Phylogenetic methods of weighted maximum parsimony and minimum evolution estimated by neighbor-joining are employed to reconstruct topologies among 20 extant felid species. Sequence analyses of 363 bp of cytochrome b and 376 bp of the 12S rRNA genes yielded average pair-wise similarity values between felids ranging from 94 to 99% and from 85 to 99%, respectively. Phylogenetic reconstruction supports more recent, intralineage associations but fails to completely resolve interlineage relationships. Both genes produce a monophyletic group of Felis species but vary in the placement of the pallas cat. The ocelot lineage represents an early divergence within the Felidae, with strong associations between ocelot and margay, Geoffroy's cat and kodkod, and pampas cat and tigrina. Implications of the relative recency of felid evolution, presence of ancestral polymorphisms, and influence of outgroups in placement of the topological root are discussed.

  8. Genetic evidence from mitochondrial DNA corroborates the origin of Tibetan chickens

    PubMed Central

    Zhu, Qing; Zhao, Xiaoling; Wang, Yan; Yin, Huadong; Hu, Yaodong; Liu, Aiping; Li, Diyan

    2017-01-01

    Chicken is the most common poultry species and is important to human societies. Tibetan chicken (Gallus gallus domesticus) is a breed endemic to China that is distributed mainly on the Qinghai-Tibet Plateau. However, its origin has not been well characterized. In the present study, we sequenced partial mitochondrial DNA (mtDNA) control region of 239 and 283 samples from Tibetan and Sichuan indigenous chickens, respectively. Incorporating 1091 published sequences, we constructed the matrilineal genealogy of Tibetan chickens to further document their domestication history. We found that the genetic structure of the mtDNA haplotypes of Tibetan chickens are dominated by seven major haplogroups (A-G). In addition, phylogenetic and network analyses showed that Tibetan chickens are not distinguishable from the indigenous chickens in surrounding areas. Furthermore, some clades of Tibetan chickens may have originated from game fowls. In summary, our results collectively indicated that Tibetan chickens may have diverged from indigenous chickens in the adjacent regions and hybridized with various chickens. PMID:28241078

  9. Comparative analysis of complete mitochondrial genomes suggests that relaxed purifying selection is driving high nonsynonymous evolutionary rate of the NADH2 gene in whitefish (Coregonus ssp.).

    PubMed

    Jacobsen, Magnus W; da Fonseca, Rute R; Bernatchez, Louis; Hansen, Michael M

    2016-02-01

    Several studies have recently reported evidence for positive selection acting on the mitochondrial genome (mitogenome), emphasizing its potential role in adaptive divergence and speciation. In this study we searched 107 full mitogenomes of recently diverged species and lineages of whitefish (Coregonus ssp.) for signals of positive selection. These salmonids show several distinct morphological and ecological differences that may be associated with energetics and therefore potentially positive selection at the mitogenome level. We found that purifying selection and genetic drift were the predominant evolutionary forces acting on the analyzed mitogenomes. However, the NADH dehydrogenase 2 gene (ND2) showed a highly elevated dN/dS ratio compared to the other mitochondrial genes, which was significantly higher in whitefish compared to other salmonids. We therefore further examined nonsynonymous evolution in ND2 by (i) mapping amino acid changes to a protein model structure which showed that they were located away from key functional residues of the protein, (ii) locating them in the sequences of other species of fish (Salmonidae, Anguillidae, Scombridae and Percidae) only to find pronounced overlap of nonsynonymous regions. We thus conclude that relaxed purifying selection is driving the evolution of ND2 by affecting mostly regions that have lower functional relevance. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Hiding deep in the trees: discovery of divergent mitochondrial lineages in Malagasy chameleons of the Calumma nasutum group

    PubMed Central

    Gehring, Philip-Sebastian; Tolley, Krystal A; Eckhardt, Falk Sebastian; Townsend, Ted M; Ziegler, Thomas; Ratsoavina, Fanomezana; Glaw, Frank; Vences, Miguel

    2012-01-01

    We conducted a comprehensive molecular phylogenetic study for a group of chameleons from Madagascar (Chamaeleonidae: Calumma nasutum group, comprising seven nominal species) to examine the genetic and species diversity in this widespread genus. Based on DNA sequences of the mitochondrial gene (ND2) from 215 specimens, we reconstructed the phylogeny using a Bayesian approach. Our results show deep divergences among several unnamed mitochondrial lineages that are difficult to identify morphologically. We evaluated lineage diversification using a number of statistical phylogenetic methods (general mixed Yule-coalescent model; SpeciesIdentifier; net p-distances) to objectively delimit lineages that we here consider as operational taxonomic units (OTUs), and for which the taxonomic status remains largely unknown. In addition, we compared molecular and morphological differentiation in detail for one particularly diverse clade (the C. boettgeri complex) from northern Madagascar. To assess the species boundaries within this group we used an integrative taxonomic approach, combining evidence from two independent molecular markers (ND2 and CMOS), together with genital and other external morphological characters, and conclude that some of the newly discovered OTUs are separate species (confirmed candidate species, CCS), while others should best be considered as deep conspecific lineages (DCLs). Our analysis supports a total of 33 OTUs, of which seven correspond to described species, suggesting that the taxonomy of the C. nasutum group is in need of revision. PMID:22957155

  11. Molecular Identification of Sibling Species of Sclerodermus (Hymenoptera: Bethylidae) That Parasitize Buprestid and Cerambycid Beetles by Using Partial Sequences of Mitochondrial DNA Cytochrome Oxidase Subunit 1 and 28S Ribosomal RNA Gene

    PubMed Central

    Jiang, Yuan; Yang, Zhongqi; Wang, Xiaoyi; Hou, Yuxia

    2015-01-01

    The species belonging to Sclerodermus (Hymenoptera: Bethylidae) are currently the most important insect natural enemies of wood borer pests, mainly buprestid and cerambycid beetles, in China. However, some sibling species of this genus are very difficult to distinguish because of their similar morphological features. To address this issue, we conducted phylogenetic and genetic analyses of cytochrome oxidase subunit I (COI) and 28S RNA gene sequences from eight species of Sclerodermus reared from different wood borer pests. The eight sibling species were as follows: S. guani Xiao et Wu, S. sichuanensis Xiao, S. pupariae Yang et Yao, and Sclerodermus spp. (Nos. 1–5). A 594-bp fragment of COI and 750-bp fragment of 28S were subsequently sequenced. For COI, the G-C content was found to be low in all the species, averaging to about 30.0%. Sequence divergences (Kimura-2-parameter distances) between congeneric species averaged to 4.5%, and intraspecific divergences averaged to about 0.09%. Further, the maximum sequence divergences between congeneric species and Sclerodermus sp. (No. 5) averaged to about 16.5%. All 136 samples analyzed were included in six reciprocally monophyletic clades in the COI neighbor-joining (NJ) tree. The NJ tree inferred from the 28S rRNA sequence yielded almost identical results, but the samples from S. guani, S. sichuanensis, S. pupariae, and Sclerodermus spp. (Nos. 1–4) clustered together and only Sclerodermus sp. (No. 5) clustered separately. Our findings indicate that the standard barcode region of COI can be efficiently used to distinguish morphologically similar Sclerodermus species. Further, we speculate that Sclerodermus sp. (No. 5) might be a new species of Sclerodermus. PMID:25782000

  12. Coalescent analyses show isolation without migration in two closely related tropical orioles: the case of Icterus graduacauda and Icterus chrysater

    PubMed Central

    Cortés-Rodríguez, Nandadevi; Jacobsen, Frode; Hernandez-Baños, Blanca E; Navarro-Siguenza, Adolfo G; Peters, Jeffrey L; Omland, Kevin E

    2013-01-01

    The Isthmus of Tehuantepec has played an important role in shaping the avian diversity of Mexico, as well as the rest of the Western Hemisphere. It has been both a barrier and a land connector between North and South America for many groups of birds. Furthermore, climatic change over the Pleistocene has resulted in ecological fluctuations that led to periods of connection and isolation of the highlands in this area. Here we studied the divergence of two species of orioles whose distribution in the highlands is separated by the lowlands of the Isthmus of Tehuantepec: Icterus graduacauda (west of the Isthmus) and Icterus chrysater (east of the Isthmus). We sequenced multiple loci (one mitochondrial gene and six nuclear introns) and performed coalescent analyses (Isolation with Migration) to test whether their divergence resulted from prior occupancy of the ancestral area followed by a vicariant event or recent dispersal from one side or the other of this Isthmus. Results strongly indicate a vicariant event roughly 300,000 years ago in the Pleistocene followed by little or no gene flow. Both mitochondrial and nuclear genes show that the Isthmus of Tehuantepec is a strong barrier to gene flow. Thus, these two species appear to not exchange genes despite their recent divergence and the close geographic proximity of their ranges. PMID:24340179

  13. Mitochondrial and morphological variation of Tilapia zillii in Israel.

    PubMed

    Szitenberg, Amir; Goren, Menachem; Huchon, Dorothée

    2012-04-02

    Tilapia zillii is widespread in the East Levant inland aquatic systems as well as in artificial water reservoirs. In this study we explore the genetic and morphological variation of this widespread species, using mitochondrial control region sequences and meristic characters. We examine the hypothesis that T. zillii's population structure corresponds to the four Israeli aquatic systems. Out of seven natural water bodies, only two were found to possess genetically divergent populations of T. zillii. In addition to its presence in fish farms, the species was found in two artificial recreational ponds which were supposed to have been stocked only with other fish species. In these two artificial habitats, the haplotype frequencies diverged significantly from those of natural populations. Finally, fish from the Dead Sea springs of Ne'ot HaKikar appear to differ both genetically and morphologically from fish of the same aquatic system but not from fish of other water systems. Our results show that the population structure of T. zillii does not match the geography of the Israeli water-basins, with the exception of the Dead Sea and Kishon River, when considering natural populations only. The absence of a significant divergence between basins is discussed. Our results and observations suggest that the Ne'ot HaKikar Dead Sea population and those of artificial ponds could have originated from the "hitchhiking" of T. zillii, at the expense of some other cultivated tilapiine species.

  14. Evolution and phylogeny of the mud shrimps (Crustacea: Decapoda) revealed from complete mitochondrial genomes.

    PubMed

    Lin, Feng-Jiau; Liu, Yuan; Sha, Zhongli; Tsang, Ling Ming; Chu, Ka Hou; Chan, Tin-Yam; Liu, Ruiyu; Cui, Zhaoxia

    2012-11-16

    The evolutionary history and relationships of the mud shrimps (Crustacea: Decapoda: Gebiidea and Axiidea) are contentious, with previous attempts revealing mixed results. The mud shrimps were once classified in the infraorder Thalassinidea. Recent molecular phylogenetic analyses, however, suggest separation of the group into two individual infraorders, Gebiidea and Axiidea. Mitochondrial (mt) genome sequence and structure can be especially powerful in resolving higher systematic relationships that may offer new insights into the phylogeny of the mud shrimps and the other decapod infraorders, and test the hypothesis of dividing the mud shrimps into two infraorders. We present the complete mitochondrial genome sequences of five mud shrimps, Austinogebia edulis, Upogebia major, Thalassina kelanang (Gebiidea), Nihonotrypaea thermophilus and Neaxius glyptocercus (Axiidea). All five genomes encode a standard set of 13 protein-coding genes, two ribosomal RNA genes, 22 transfer RNA genes and a putative control region. Except for T. kelanang, mud shrimp mitochondrial genomes exhibited rearrangements and novel patterns compared to the pancrustacean ground pattern. Each of the two Gebiidea species (A. edulis and U. major) and two Axiidea species (N. glyptocercus and N. thermophiles) share unique gene order specific to their infraorders and analyses further suggest these two derived gene orders have evolved independently. Phylogenetic analyses based on the concatenated nucleotide and amino acid sequences of 13 protein-coding genes indicate the possible polyphyly of mud shrimps, supporting the division of the group into two infraorders. However, the infraordinal relationships among the Gebiidea and Axiidea, and other reptants are poorly resolved. The inclusion of mt genome from more taxa, in particular the reptant infraorders Polychelida and Glypheidea is required in further analysis. Phylogenetic analyses on the mt genome sequences and the distinct gene orders provide further evidences for the divergence between the two mud shrimp infraorders, Gebiidea and Axiidea, corroborating previous molecular phylogeny and justifying their infraordinal status. Mitochondrial genome sequences appear to be promising markers for resolving phylogenetic issues concerning decapod crustaceans that warrant further investigations and our present study has also provided further information concerning the mt genome evolution of the Decapoda.

  15. Evolution and phylogeny of the mud shrimps (Crustacea: Decapoda) revealed from complete mitochondrial genomes

    PubMed Central

    2012-01-01

    Background The evolutionary history and relationships of the mud shrimps (Crustacea: Decapoda: Gebiidea and Axiidea) are contentious, with previous attempts revealing mixed results. The mud shrimps were once classified in the infraorder Thalassinidea. Recent molecular phylogenetic analyses, however, suggest separation of the group into two individual infraorders, Gebiidea and Axiidea. Mitochondrial (mt) genome sequence and structure can be especially powerful in resolving higher systematic relationships that may offer new insights into the phylogeny of the mud shrimps and the other decapod infraorders, and test the hypothesis of dividing the mud shrimps into two infraorders. Results We present the complete mitochondrial genome sequences of five mud shrimps, Austinogebia edulis, Upogebia major, Thalassina kelanang (Gebiidea), Nihonotrypaea thermophilus and Neaxius glyptocercus (Axiidea). All five genomes encode a standard set of 13 protein-coding genes, two ribosomal RNA genes, 22 transfer RNA genes and a putative control region. Except for T. kelanang, mud shrimp mitochondrial genomes exhibited rearrangements and novel patterns compared to the pancrustacean ground pattern. Each of the two Gebiidea species (A. edulis and U. major) and two Axiidea species (N. glyptocercus and N. thermophiles) share unique gene order specific to their infraorders and analyses further suggest these two derived gene orders have evolved independently. Phylogenetic analyses based on the concatenated nucleotide and amino acid sequences of 13 protein-coding genes indicate the possible polyphyly of mud shrimps, supporting the division of the group into two infraorders. However, the infraordinal relationships among the Gebiidea and Axiidea, and other reptants are poorly resolved. The inclusion of mt genome from more taxa, in particular the reptant infraorders Polychelida and Glypheidea is required in further analysis. Conclusions Phylogenetic analyses on the mt genome sequences and the distinct gene orders provide further evidences for the divergence between the two mud shrimp infraorders, Gebiidea and Axiidea, corroborating previous molecular phylogeny and justifying their infraordinal status. Mitochondrial genome sequences appear to be promising markers for resolving phylogenetic issues concerning decapod crustaceans that warrant further investigations and our present study has also provided further information concerning the mt genome evolution of the Decapoda. PMID:23153176

  16. Genome Evolution in the Primary Endosymbiont of Whiteflies Sheds Light on Their Divergence

    PubMed Central

    Santos-Garcia, Diego; Vargas-Chavez, Carlos; Moya, Andrés; Latorre, Amparo; Silva, Francisco J.

    2015-01-01

    Whiteflies are important agricultural insect pests, whose evolutionary success is related to a long-term association with a bacterial endosymbiont, Candidatus Portiera aleyrodidarum. To completely characterize this endosymbiont clade, we sequenced the genomes of three new Portiera strains covering the two extant whitefly subfamilies. Using endosymbiont and mitochondrial sequences we estimated the divergence dates in the clade and used these values to understand the molecular evolution of the endosymbiont coding sequences. Portiera genomes were maintained almost completely stable in gene order and gene content during more than 125 Myr of evolution, except in the Bemisia tabaci lineage. The ancestor had already lost the genetic information transfer autonomy but was able to participate in the synthesis of all essential amino acids and carotenoids. The time of divergence of the B. tabaci complex was much more recent than previous estimations. The recent divergence of biotypes B (MEAM1 species) and Q (MED species) suggests that they still could be considered strains of the same species. We have estimated the rates of evolution of Portiera genes, synonymous and nonsynonymous, and have detected significant differences among-lineages, with most Portiera lineages evolving very slowly. Although the nonsynonymous rates were much smaller than the synonymous, the genomic dN/dS ratios were similar, discarding selection as the driver of among-lineage variation. We suggest variation in mutation rate and generation time as the responsible factors. In conclusion, the slow evolutionary rates of Portiera may have contributed to its long-term association with whiteflies, avoiding its replacement by a novel and more efficient endosymbiont. PMID:25716826

  17. Bathymetric and geographic population structure in the pan-Atlantic deep-sea bivalve Deminucula atacellana (Schenck, 1939).

    PubMed

    Zardus, John D; Etter, Ron J; Chase, Michael R; Rex, Michael A; Boyle, Elizabeth E

    2006-03-01

    The deep-sea soft-sediment environment hosts a diverse and highly endemic fauna of uncertain origin. We know little about how this fauna evolved because geographic patterns of genetic variation, the essential information for inferring patterns of population differentiation and speciation are poorly understood. Using formalin-fixed specimens from archival collections, we quantify patterns of genetic variation in the protobranch bivalve Deminucula atacellana, a species widespread throughout the Atlantic Ocean at bathyal and abyssal depths. Samples were taken from 18 localities in the North American, West European and Argentine basins. A hypervariable region of mitochondrial 16S rDNA was amplified by polymerase chain reaction (PCR) and sequenced from 130 individuals revealing 21 haplotypes. Except for several important exceptions, haplotypes are unique to each basin. Overall gene diversity is high (h = 0.73) with pronounced population structure (Phi(ST) = 0.877) and highly significant geographic associations (P < 0.0001). Sequences cluster into four major clades corresponding to differences in geography and depth. Genetic divergence was much greater among populations at different depths within the same basin, than among those at similar depths but separated by thousands of kilometres. Isolation by distance probably explains much of the interbasin variation. Depth-related divergence may reflect historical patterns of colonization or strong environmental selective gradients. Broadly distributed deep-sea organisms can possess highly genetically divergent populations, despite the lack of any morphological divergence.

  18. Relationship between amino acid changes in mitochondrial ATP6 and life-history variation in anguillid eels.

    PubMed

    Jacobsen, Magnus W; Pujolar, José Martin; Hansen, Michael M

    2015-03-01

    Mitochondrial genes are part of the oxidative phosphorylation pathway and important for energy production. Although evidence for positive selection at the mitochondrial level exists, few studies have investigated the link between amino acid changes and phenotype. Here we test the hypothesis that differences in two life-history related traits, migratory distance between spawning and foraging areas and larval phase duration, are associated with divergent selection within the mitochondrial ATP6 gene in anguillid eels. We compare amino acid changes among 18 species with the sequence of the putative ancestral species, believed to have shown short migratory distance and larval phase duration. We find positive correlations between both life-history related traits and (i) the number of amino acid changes and (ii) the strength of the combined physico-chemical and structural changes at positions previously identified as candidates for positive selection. This supports a link between genotype and phenotype driven by positive selection at ATP6. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  19. Sequence analysis of a few species of termites (Order: Isoptera) on the basis of partial characterization of COII gene.

    PubMed

    Sobti, Ranbir Chander; Kumari, Mamtesh; Sharma, Vijay Lakshmi; Sodhi, Monika; Mukesh, Manishi; Shouche, Yogesh

    2009-11-01

    The present study was aimed to get the nucleotide sequences of a part of COII mitochondrial gene amplified from individuals of five species of Termites (Isoptera: Termitidae: Macrotermitinae). Four of them belonged to the genus Odontotermes (O. obesus, O. horni, O. bhagwatii and Odontotermes sp.) and one to Microtermes (M. obesi). Partial COII gene fragments were amplified by using specific primers. The sequences so obtained were characterized to calculate the frequencies of each nucleotide bases and a high A + T content was observed. The interspecific pairwise sequence divergence in Odontotermes species ranged from 6.5% to 17.1% across COII fragment. M. obesi sequence diversity ranged from 2.5 with Odontotermes sp. to 19.0% with O. bhagwatii. Phylogenetic trees drawn on the basis of distance neighbour-joining method revealed three main clades clustering all the individuals according to their genera and families.

  20. Molecular phylogeny for marine turtles based on sequences of the ND4-leucine tRNA and control regions of mitochondrial DNA.

    PubMed

    Dutton, P H; Davis, S K; Guerra, T; Owens, D

    1996-06-01

    Marine turtles are divided into two families, the Dermochelyidae and the Cheloniidae. The majority of species are currently placed within the two tribes of the Cheloniidae, the Chelonini and the Carettini, but debate continues over generic and tribal affinities as well as species boundaries. We used nucleotide sequences (907 bp) from the ND4-LEU tRNA region and the control region (526 bp) of mitochondrial DNA to resolve areas of uncertainty in marine turtle (Chelonioidae) systematics. The ND4-LEU tRNA fragment was more conserved than the fragment from the control region, with sequence divergences ranging from 0.026 to 0.148 and 0.067 to 0.267, respectively. Parsimony analysis based only on the ND4-LEU tRNA data suggests that the hawksbill, Eretmochelys imbricata, lies within the tribe Carettni and is closely related to the genus Caretta, but could not resolve the position of the flatback, Natator depressus. A similar analysis based only on the control region sequence data suggested that N. depressus is affiliated with the Chelonini, but failed to resolve the position of E. imbricata and the loggerhead, Caretta caretta. In contrast to these results, the combination of both data sets with published cytochrome b data produced a phylogeny based on 1924 bp of sequence data which resolves the position of E. imbricata relative to Caretta and Lepidochelys and joins N. depressus as sister to the Carettini. Based on the molecular data, the Chelonini contains the Chelonia species, while the Carettini contains the remaining species of Cheloniidae. The control region sequence divergence between Pacific and Atlantic populations of the leatherback, Dermochelys coriacea, was relatively low (0.0081) when compared with the green turtle, Chelonia mydas (0.071-0.074). Atlantic and Pacific populations of Ch. mydas were found to be paraphyletic with respect to the black turtle, Ch. agassizi, suggesting that the current taxonomic designations within the Pacific Chelonia are questionable. This analysis shows the utility of combining sequence data for different regions of mtDNA that by themselves are insufficient to obtain robust phylogenies.

  1. Nuclear genomic sequences reveal that polar bears are an old and distinct bear lineage.

    PubMed

    Hailer, Frank; Kutschera, Verena E; Hallström, Björn M; Klassert, Denise; Fain, Steven R; Leonard, Jennifer A; Arnason, Ulfur; Janke, Axel

    2012-04-20

    Recent studies have shown that the polar bear matriline (mitochondrial DNA) evolved from a brown bear lineage since the late Pleistocene, potentially indicating rapid speciation and adaption to arctic conditions. Here, we present a high-resolution data set from multiple independent loci across the nuclear genomes of a broad sample of polar, brown, and black bears. Bayesian coalescent analyses place polar bears outside the brown bear clade and date the divergence much earlier, in the middle Pleistocene, about 600 (338 to 934) thousand years ago. This provides more time for polar bear evolution and confirms previous suggestions that polar bears carry introgressed brown bear mitochondrial DNA due to past hybridization. Our results highlight that multilocus genomic analyses are crucial for an accurate understanding of evolutionary history.

  2. Mitochondrial Replacement Techniques: Divergence in Global Policy.

    PubMed

    Schandera, Johanna; Mackey, Tim K

    2016-07-01

    In 2015, the UK became the first country permitting the clinical application of mitochondrial replacement techniques (MRT). Here, we explore how MRT have led to diverging international policy. In response, we recommend focused regulatory efforts coupled with United Nations (UN) leadership to build international consensus on the future of MRT. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Horizontal acquisition of multiple mitochondrial genes from a parasitic plant followed by gene conversion with host mitochondrial genes

    PubMed Central

    2010-01-01

    Background Horizontal gene transfer (HGT) is relatively common in plant mitochondrial genomes but the mechanisms, extent and consequences of transfer remain largely unknown. Previous results indicate that parasitic plants are often involved as either transfer donors or recipients, suggesting that direct contact between parasite and host facilitates genetic transfer among plants. Results In order to uncover the mechanistic details of plant-to-plant HGT, the extent and evolutionary fate of transfer was investigated between two groups: the parasitic genus Cuscuta and a small clade of Plantago species. A broad polymerase chain reaction (PCR) survey of mitochondrial genes revealed that at least three genes (atp1, atp6 and matR) were recently transferred from Cuscuta to Plantago. Quantitative PCR assays show that these three genes have a mitochondrial location in the one species line of Plantago examined. Patterns of sequence evolution suggest that these foreign genes degraded into pseudogenes shortly after transfer and reverse transcription (RT)-PCR analyses demonstrate that none are detectably transcribed. Three cases of gene conversion were detected between native and foreign copies of the atp1 gene. The identical phylogenetic distribution of the three foreign genes within Plantago and the retention of cytidines at ancestral positions of RNA editing indicate that these genes were probably acquired via a single, DNA-mediated transfer event. However, samplings of multiple individuals from two of the three species in the recipient Plantago clade revealed complex and perplexing phylogenetic discrepancies and patterns of sequence divergence for all three of the foreign genes. Conclusions This study reports the best evidence to date that multiple mitochondrial genes can be transferred via a single HGT event and that transfer occurred via a strictly DNA-level intermediate. The discovery of gene conversion between co-resident foreign and native mitochondrial copies suggests that transferred genes may be evolutionarily important in generating mitochondrial genetic diversity. Finally, the complex relationships within each lineage of transferred genes imply a surprisingly complicated history of these genes in Plantago subsequent to their acquisition via HGT and this history probably involves some combination of additional transfers (including intracellular transfer), gene duplication, differential loss and mutation-rate variation. Unravelling this history will probably require sequencing multiple mitochondrial and nuclear genomes from Plantago. See Commentary: http://www.biomedcentral.com/1741-7007/8/147. PMID:21176201

  4. Evidence for loss of mitochondria in Microsporidia from a mitochondrial-type HSP70 in Nosema locustae.

    PubMed

    Germot, A; Philippe, H; Le Guyader, H

    1997-08-01

    In molecular phylogenies based on ribosomal RNA, three amitochondriate protist lineages, Microsporidia, Metamonada (including diplomonads) and Parabasala (including trichomonads), are the earliest offshoots of the eukaryotic tree. As an explantation for the lack of mitochondria in these organisms, the hypothesis that they have diverged before the mitochondrial endosymbiosis is preferred to the less parsimonious hypothesis of several independent losses of the organelle. Nevertheless, if they had descended from mitochondrion-containing ancestors, it may be possible to find in their nuclear DNA genes that derive from the endosymbiont which gave rise to mitochondria. Based on similar evidence, secondary losses of mitochondria have recently been suggested for Entamoeba histolytica and for Trichomonas vaginalis. In this study, we have isolated a gene encoding a chaperone protein (HSP70, 70 kDa heat shock protein) from the microspordian Nosema locustae. In phylogenetic trees, this HSP70 was located within a group of sequences that in other lineages is targetted to the mitochondrial compartment, itself included in the proteobacterial clade. In addition, the N. locustae protein contained the GDAW(V) motif shared by mitochondrial and proteobacterial sequences, with only one conservative substitution. Moreover, microsporidia, a phylum which was assumed to emerge close to the base of the eukaryotic tree, appears as the sister-group of fungi in the HSP70 phylogeny, in agreement with some ultrastructural characters and phylogenies based on alpha- and beta-tubulins. Loss of mitochondria, now demonstrated for several amitochondriate groups, indicates that the common ancestor of all the extant eukaryotic species could have been a mitochondriate eukaryote.

  5. Mitochondrial DNA variation of indigenous goats in Narok and Isiolo counties of Kenya.

    PubMed

    Kibegwa, F M; Githui, K E; Jung'a, J O; Badamana, M S; Nyamu, M N

    2016-06-01

    Phylogenetic relationships among and genetic variability within 60 goats from two different indigenous breeds in Narok and Isiolo counties in Kenya and 22 published goat samples were analysed using mitochondrial control region sequences. The results showed that there were 54 polymorphic sites in a 481-bp sequence and 29 haplotypes were determined. The mean haplotype diversity and nucleotide diversity were 0.981 ± 0.006 and 0.019 ± 0.001, respectively. The phylogenetic analysis in combination with goat haplogroup reference sequences from GenBank showed that all goat sequences were clustered into two haplogroups (A and G), of which haplogroup A was the commonest in the two populations. A very high percentage (99.90%) of the genetic variation was distributed within the regions, and a smaller percentage (0.10%) distributed among regions as revealed by the analysis of molecular variance (amova). This amova results showed that the divergence between regions was not statistically significant. We concluded that the high levels of intrapopulation diversity in Isiolo and Narok goats and the weak phylogeographic structuring suggested that there existed strong gene flow among goat populations probably caused by extensive transportation of goats in history. © 2015 Blackwell Verlag GmbH.

  6. The evolution and phylogeography of the African elephant inferred from mitochondrial DNA sequence and nuclear microsatellite markers.

    PubMed

    Eggert, Lori S; Rasner, Caylor A; Woodruff, David S

    2002-10-07

    Recent genetic results support the recognition of two African elephant species: Loxodonta africana, the savannah elephant, and Loxodonta cyclotis, the forest elephant. The study, however, did not include the populations of West Africa, where the taxonomic affinities of elephants have been much debated. We examined mitochondrial cytochrome b control region sequences and four microsatellite loci to investigate the genetic differences between the forest and savannah elephants of West and Central Africa. We then combined our data with published control region sequences from across Africa to examine patterns at the continental level. Our analysis reveals several deeply divergent lineages that do not correspond with the currently recognized taxonomy: (i) the forest elephants of Central Africa; the forest and savannah elephants of West Africa; and (iii) the savannah elephants of eastern, southern and Central Africa. We propose that the complex phylogeographic patterns we detect in African elephants result from repeated continental-scale climatic changes over their five-to-six million year evolutionary history. Until there is consensus on the taxonomy, we suggest that the genetic and ecological distinctness of these lineages should be an important factor in conservation management planning.

  7. Morphologic and genetic identification of Diphyllobothrium nihonkaiense in Korea.

    PubMed

    Jeon, Hyeong-Kyu; Kim, Kyu-Heon; Huh, Sun; Chai, Jong-Yil; Min, Duk-Young; Rim, Han-Jong; Eom, Keeseon S

    2009-12-01

    Diphyllobothrium nihonkaiense was first described by Yamane in 1986 but the taxonomical features have been obscure due to lack of critical morphologic criteria in its larval and adult stages. In Korea, this tapeworm had long been known as Diphyllobothrium latum. In this study, we observed 62 specimens collected from Korean residents and analyzed them by morphological features and nucleotide sequences of mitochondrial cox1 gene as well as the ITS1 region. Adult tapeworms were examined after carmine or trichrome stain. Longitudinal sections of the gravid proglottids showed an obtuse angle of about 150 degree between the cirrus sac and seminal vesicle. This angle is known as a major differential point compared with that of D. latum. Nucleotide sequence differences between D. latum and the specimens from Koreans represented 17.3% in mitochondrial DNA cox1 gene. Sequence divergence of ITS1 among 4 Korean isolates was 0.3% and similarity was 99.7% with D. nihonkaiense and D. klebanovskii. All of the Korean specimens analyzed in this study were identified as being D. nihonkaiense (n = 62). We propose its Korean name as "Dong-hae-gin-chon-chung" which means 'long tapeworm of the East Sea' for this newly analyzed diphyllobothriid tapeworm in Korea.

  8. The Nuclear and Mitochondrial Genomes of the Facultatively Eusocial Orchid Bee Euglossa dilemma

    PubMed Central

    Brand, Philipp; Saleh, Nicholas; Pan, Hailin; Li, Cai; Kapheim, Karen M.; Ramírez, Santiago R.

    2017-01-01

    Bees provide indispensable pollination services to both agricultural crops and wild plant populations, and several species of bees have become important models for the study of learning and memory, plant–insect interactions, and social behavior. Orchid bees (Apidae: Euglossini) are especially important to the fields of pollination ecology, evolution, and species conservation. Here we report the nuclear and mitochondrial genome sequences of the orchid bee Euglossa dilemma Bembé & Eltz. E. dilemma was selected because it is widely distributed, highly abundant, and it was recently naturalized in the southeastern United States. We provide a high-quality assembly of the 3.3 Gb genome, and an official gene set of 15,904 gene annotations. We find high conservation of gene synteny with the honey bee throughout 80 MY of divergence time. This genomic resource represents the first draft genome of the orchid bee genus Euglossa, and the first draft orchid bee mitochondrial genome, thus representing a valuable resource to the research community. PMID:28701376

  9. Mitochondrial-DNA variation among subspecies and populations of sea otters (Enhydra lutris)

    USGS Publications Warehouse

    Cronin, Matthew A.; Bodkin, James L.; Ballachey, Brenda E.; Estes, James A.; Patton, John C.

    1996-01-01

    We used restriction-enzyme analysis of polymerase-chain reaction-amplified, mitochondrial DNA (mtDNA) to assess genetic differentiation of subspecies and populations of sea otters, Enhydra lutris, throughout the range of the species. There were several haplotypes of mtDNA in each subspecies and geographically separate populations. MtDNA sequence divergence of haplotypes of sea otters was 0.0004–0.0041 base substitutions per nucleotide. E. L nereis appears to have monophyletic mitochondrial DNA, while E. I. lutris and E. I. kenyoni do not. Different frequencies of haplotypes of mtDNA among populations reflect current restriction of gene flow and the unique histories of different populations. There are two or three haplotypes of mtDNA and diversity of haplotypes is 0.1376–0.5854 in each population of otters. This is consistent with theoretical work, which suggests that population bottlenecks of sea otters probably did not result in major losses of genetic variation for individual populations, or the species as a whole.

  10. The Nuclear and Mitochondrial Genomes of the Facultatively Eusocial Orchid Bee Euglossa dilemma.

    PubMed

    Brand, Philipp; Saleh, Nicholas; Pan, Hailin; Li, Cai; Kapheim, Karen M; Ramírez, Santiago R

    2017-09-07

    Bees provide indispensable pollination services to both agricultural crops and wild plant populations, and several species of bees have become important models for the study of learning and memory, plant-insect interactions, and social behavior. Orchid bees (Apidae: Euglossini) are especially important to the fields of pollination ecology, evolution, and species conservation. Here we report the nuclear and mitochondrial genome sequences of the orchid bee Euglossa dilemma Bembé & Eltz. E. dilemma was selected because it is widely distributed, highly abundant, and it was recently naturalized in the southeastern United States. We provide a high-quality assembly of the 3.3 Gb genome, and an official gene set of 15,904 gene annotations. We find high conservation of gene synteny with the honey bee throughout 80 MY of divergence time. This genomic resource represents the first draft genome of the orchid bee genus Euglossa , and the first draft orchid bee mitochondrial genome, thus representing a valuable resource to the research community. Copyright © 2017 Brand et al.

  11. Phylogeny of Australian Coptotermes (Isoptera: Rhinotermitidae) species inferred from mitochondrial COII sequences.

    PubMed

    Lo, N; Eldridge, R H; Lenz, M

    2006-08-01

    Six Australian species of Coptotermes are traditionally recognized, but recent cuticular hydrocarbon studies suggest that some of these may represent more than one species. An understanding of the phylogenetic diversity of Australian Coptotermes, particularly the pest species, is likely to be important for the improvement of termite management strategies. A study of phylogenetic relationships among species of this genus was performed, based on the mitochondrial cytochrome oxidase (COII) gene, comparing the data with recent data from Asian species. Representatives of the species C. lacteus (Froggatt), C. frenchi Hill and C. michaelseni Silvestri were each found to form closely related monophyletic groups, however representatives of C. acinaciformis (Froggatt) were not. For C. acinaciformis, representatives from northern mound-building populations were found to form a distinct group to southern, tree-nesting forms. Among southern C. acinaciformis, two Western Australian representatives were found to be divergent from other populations. The results suggest that C. acinaciformis probably represents a complex of species rather than one, as has been suggested previously. One unidentified Coptotermes sp. taxon from Melbourne was found to be divergent from other taxa. Notably, some Australian species were more closely related to Asian species than other Australian species.

  12. Low mitochondrial DNA diversity of Japanese Polled and Kuchinoshima feral cattle.

    PubMed

    Mannen, Hideyuki; Yonesaka, Riku; Noda, Aoi; Shimogiri, Takeshi; Oshima, Ichiro; Katahira, Kiyomi; Kanemaki, Misao; Kunieda, Tetsuo; Inayoshi, Yousuke; Mukai, Fumio; Sasazaki, Shinji

    2017-05-01

    This study aims to estimate the mitochondrial genetic diversity and structure of Japanese Polled and Kuchinoshima feral cattle, which are maintained in small populations. We determined the mitochondrial DMA (mtDNA) displacement loop (D-loop) sequences for both cattle populations and analyzed these in conjunction with previously published data from Northeast Asian cattle populations. Our findings showed that Japanese native cattle have a predominant, Asian-specific mtDNA haplogroup T4 with high frequencies (0.43-0.81). This excluded Kuchinoshima cattle (32 animals), which had only one mtDNA haplotype belonging to the haplogroup T3. Japanese Polled showed relatively lower mtDNA diversity in the average sequence divergence (0.0020) than other Wagyu breeds (0.0036-0.0047). Japanese Polled have been maintained in a limited area of Yamaguchi, and the population size is now less than 200. Therefore, low mtDNA diversity in the Japanese Polled could be explained by the decreasing population size in the last three decades. We found low mtDNA diversity in both Japanese Polled and Kuchinoshima cattle. The genetic information obtained in this study will be useful for maintaining these populations and for understanding the origin of Japanese native cattle. © 2016 Japanese Society of Animal Science.

  13. Updated Three-Stage Model for the Peopling of the Americas

    PubMed Central

    Mulligan, Connie J.; Kitchen, Andrew; Miyamoto, Michael M.

    2008-01-01

    Background We re-assess support for our three stage model for the peopling of the Americas in light of a recent report that identified nine non-Native American mitochondrial genome sequences that should not have been included in our initial analysis. Removal of these sequences results in the elimination of an early (i.e. ∼40,000 years ago) expansion signal we had proposed for the proto-Amerind population. Methodology/Findings Bayesian skyline plot analysis of a new dataset of Native American mitochondrial coding genomes confirms the absence of an early expansion signal for the proto-Amerind population and allows us to reduce the variation around our estimate of the New World founder population size. In addition, genetic variants that define New World founder haplogroups are used to estimate the amount of time required between divergence of proto-Amerinds from the Asian gene pool and expansion into the New World. Conclusions/Significance The period of population isolation required for the generation of New World mitochondrial founder haplogroup-defining genetic variants makes the existence of three stages of colonization a logical conclusion. Thus, our three stage model remains an important and useful working hypothesis for researchers interested in the peopling of the Americas and the processes of colonization. PMID:18797500

  14. Population Genomics of Paramecium Species.

    PubMed

    Johri, Parul; Krenek, Sascha; Marinov, Georgi K; Doak, Thomas G; Berendonk, Thomas U; Lynch, Michael

    2017-05-01

    Population-genomic analyses are essential to understanding factors shaping genomic variation and lineage-specific sequence constraints. The dearth of such analyses for unicellular eukaryotes prompted us to assess genomic variation in Paramecium, one of the most well-studied ciliate genera. The Paramecium aurelia complex consists of ∼15 morphologically indistinguishable species that diverged subsequent to two rounds of whole-genome duplications (WGDs, as long as 320 MYA) and possess extremely streamlined genomes. We examine patterns of both nuclear and mitochondrial polymorphism, by sequencing whole genomes of 10-13 worldwide isolates of each of three species belonging to the P. aurelia complex: P. tetraurelia, P. biaurelia, P. sexaurelia, as well as two outgroup species that do not share the WGDs: P. caudatum and P. multimicronucleatum. An apparent absence of global geographic population structure suggests continuous or recent dispersal of Paramecium over long distances. Intergenic regions are highly constrained relative to coding sequences, especially in P. caudatum and P. multimicronucleatum that have shorter intergenic distances. Sequence diversity and divergence are reduced up to ∼100-150 bp both upstream and downstream of genes, suggesting strong constraints imposed by the presence of densely packed regulatory modules. In addition, comparison of sequence variation at non-synonymous and synonymous sites suggests similar recent selective pressures on paralogs within and orthologs across the deeply diverging species. This study presents the first genome-wide population-genomic analysis in ciliates and provides a valuable resource for future studies in evolutionary and functional genetics in Paramecium. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  15. Revealing Less Derived Nature of Cartilaginous Fish Genomes with Their Evolutionary Time Scale Inferred with Nuclear Genes

    PubMed Central

    Renz, Adina J.; Meyer, Axel; Kuraku, Shigehiro

    2013-01-01

    Cartilaginous fishes, divided into Holocephali (chimaeras) and Elasmoblanchii (sharks, rays and skates), occupy a key phylogenetic position among extant vertebrates in reconstructing their evolutionary processes. Their accurate evolutionary time scale is indispensable for better understanding of the relationship between phenotypic and molecular evolution of cartilaginous fishes. However, our current knowledge on the time scale of cartilaginous fish evolution largely relies on estimates using mitochondrial DNA sequences. In this study, making the best use of the still partial, but large-scale sequencing data of cartilaginous fish species, we estimate the divergence times between the major cartilaginous fish lineages employing nuclear genes. By rigorous orthology assessment based on available genomic and transcriptomic sequence resources for cartilaginous fishes, we selected 20 protein-coding genes in the nuclear genome, spanning 2973 amino acid residues. Our analysis based on the Bayesian inference resulted in the mean divergence time of 421 Ma, the late Silurian, for the Holocephali-Elasmobranchii split, and 306 Ma, the late Carboniferous, for the split between sharks and rays/skates. By applying these results and other documented divergence times, we measured the relative evolutionary rate of the Hox A cluster sequences in the cartilaginous fish lineages, which resulted in a lower substitution rate with a factor of at least 2.4 in comparison to tetrapod lineages. The obtained time scale enables mapping phenotypic and molecular changes in a quantitative framework. It is of great interest to corroborate the less derived nature of cartilaginous fish at the molecular level as a genome-wide phenomenon. PMID:23825540

  16. Revealing less derived nature of cartilaginous fish genomes with their evolutionary time scale inferred with nuclear genes.

    PubMed

    Renz, Adina J; Meyer, Axel; Kuraku, Shigehiro

    2013-01-01

    Cartilaginous fishes, divided into Holocephali (chimaeras) and Elasmoblanchii (sharks, rays and skates), occupy a key phylogenetic position among extant vertebrates in reconstructing their evolutionary processes. Their accurate evolutionary time scale is indispensable for better understanding of the relationship between phenotypic and molecular evolution of cartilaginous fishes. However, our current knowledge on the time scale of cartilaginous fish evolution largely relies on estimates using mitochondrial DNA sequences. In this study, making the best use of the still partial, but large-scale sequencing data of cartilaginous fish species, we estimate the divergence times between the major cartilaginous fish lineages employing nuclear genes. By rigorous orthology assessment based on available genomic and transcriptomic sequence resources for cartilaginous fishes, we selected 20 protein-coding genes in the nuclear genome, spanning 2973 amino acid residues. Our analysis based on the Bayesian inference resulted in the mean divergence time of 421 Ma, the late Silurian, for the Holocephali-Elasmobranchii split, and 306 Ma, the late Carboniferous, for the split between sharks and rays/skates. By applying these results and other documented divergence times, we measured the relative evolutionary rate of the Hox A cluster sequences in the cartilaginous fish lineages, which resulted in a lower substitution rate with a factor of at least 2.4 in comparison to tetrapod lineages. The obtained time scale enables mapping phenotypic and molecular changes in a quantitative framework. It is of great interest to corroborate the less derived nature of cartilaginous fish at the molecular level as a genome-wide phenomenon.

  17. Link Between the Adult and the Metacercaria of Clinostomum heluans Braun, 1899 (Trematoda: Clinostomidae) Through DNA Sequences, and its Phylogenetic Position Within the Genus Clinostomum Leidy, 1856.

    PubMed

    Briosio-Aguilar, R; Pinto, H A; Rodríguez-Santiago, M A; López-García, K; García-Varela, M; de León, G Pérez-Ponce

    2018-06-01

    The phylogenetic position of Clinostomum heluans Braun, 1899 within the genus Clinostomum Leidy, 1856 is reported in this study based on sequences of the barcoding region of the mitochondrial cytochrome c oxidase subunit 1 gene ( COX1). Additionally, molecular data are used to link the adult and the metacercariae of the species. The metacercariae of C. heluans were found encysted infecting the cichlid fish Australoheros sp. in Minas Gerais, Brazil, whereas the adults were obtained from the mouth cavity of the Great White Egret, Ardea alba, in Campeche, Mexico. The COX1 sequences obtained for the Mexican clinostomes and the Brazilian metacercaria were almost identical (0.2% molecular divergence), indicating conspecificity. Similar molecular divergence (0.2-0.4%) was found between sequences of C. heluans reported here and Clinostomum sp. 6 previously obtained from a metacercaria recovered from the cichlid Cichlasoma boliviense in Santa Cruz, Bolivia. Both maximum likelihood and Bayesian inference analyses unequivocally showed the conspecificity between C. heluans and Clinostomum sp. 6, which form a monophyletic clade with high nodal support and very low genetic divergence. Moreover, tree topology reveals that C. heluans occupies a basal position with respect to New World species of Clinostomum, although a denser taxon sampling of species within the genus is further required. The metacercaria of C. heluans seems to be specific to cichlid fish because both samples from South America were recovered from species of this fish family, although not closely related.

  18. Trading genes along the silk road: mtDNA sequences and the origin of central Asian populations.

    PubMed Central

    Comas, D; Calafell, F; Mateu, E; Pérez-Lezaun, A; Bosch, E; Martínez-Arias, R; Clarimon, J; Facchini, F; Fiori, G; Luiselli, D; Pettener, D; Bertranpetit, J

    1998-01-01

    Central Asia is a vast region at the crossroads of different habitats, cultures, and trade routes. Little is known about the genetics and the history of the population of this region. We present the analysis of mtDNA control-region sequences in samples of the Kazakh, the Uighurs, the lowland Kirghiz, and the highland Kirghiz, which we have used to address both the population history of the region and the possible selective pressures that high altitude has on mtDNA genes. Central Asian mtDNA sequences present features intermediate between European and eastern Asian sequences, in several parameters-such as the frequencies of certain nucleotides, the levels of nucleotide diversity, mean pairwise differences, and genetic distances. Several hypotheses could explain the intermediate position of central Asia between Europe and eastern Asia, but the most plausible would involve extensive levels of admixture between Europeans and eastern Asians in central Asia, possibly enhanced during the Silk Road trade and clearly after the eastern and western Eurasian human groups had diverged. Lowland and highland Kirghiz mtDNA sequences are very similar, and the analysis of molecular variance has revealed that the fraction of mitochondrial genetic variance due to altitude is not significantly different from zero. Thus, it seems unlikely that altitude has exerted a major selective pressure on mitochondrial genes in central Asian populations. PMID:9837835

  19. DNA barcoding of Clarias gariepinus, Coptodon zillii and Sarotherodon melanotheron from Southwestern Nigeria

    PubMed Central

    Falade, Mofolusho O.; Opene, Anthony J.; Benson, Otarigho

    2016-01-01

    DNA barcoding has been adopted as a gold standard rapid, precise and unifying identification system for animal species and provides a database of genetic sequences that can be used as a tool for universal species identification. In this study, we employed mitochondrial genes 16S rRNA (16S) and cytochrome oxidase subunit I (COI) for the identification of some Nigerian freshwater catfish and Tilapia species. Approximately 655 bp were amplified from the 5′ region of the mitochondrial cytochrome C oxidase subunit I (COI) gene whereas 570 bp were amplified for the 16S rRNA gene. Nucleotide divergences among sequences were estimated based on Kimura 2-parameter distances and the genetic relationships were assessed by constructing phylogenetic trees using the neighbour-joining (NJ) and maximum likelihood (ML) methods. Analyses of consensus barcode sequences for each species, and alignment of individual sequences from within a given species revealed highly consistent barcodes (99% similarity on average), which could be compared with deposited sequences in public databases. The nucleotide distance between species belonging to different genera based on COI ranged from 0.17% between Sarotherodon melanotheron and Coptodon zillii to 0.49% between Clarias gariepinus and C. zillii, indicating that S. melanotheron and C. zillii are closely related. Based on the data obtained, the utility of COI gene was confirmed in accurate identification of three fish species from Southwest Nigeria. PMID:27990256

  20. Evolution of the mitochondrial genome in snakes: Gene rearrangements and phylogenetic relationships

    PubMed Central

    Yan, Jie; Li, Hongdan; Zhou, Kaiya

    2008-01-01

    Background Snakes as a major reptile group display a variety of morphological characteristics pertaining to their diverse behaviours. Despite abundant analyses of morphological characters, molecular studies using mitochondrial and nuclear genes are limited. As a result, the phylogeny of snakes remains controversial. Previous studies on mitochondrial genomes of snakes have demonstrated duplication of the control region and translocation of trnL to be two notable features of the alethinophidian (all serpents except blindsnakes and threadsnakes) mtDNAs. Our purpose is to further investigate the gene organizations, evolution of the snake mitochondrial genome, and phylogenetic relationships among several major snake families. Results The mitochondrial genomes were sequenced for four taxa representing four different families, and each had a different gene arrangement. Comparative analyses with other snake mitochondrial genomes allowed us to summarize six types of mitochondrial gene arrangement in snakes. Phylogenetic reconstruction with commonly used methods of phylogenetic inference (BI, ML, MP, NJ) arrived at a similar topology, which was used to reconstruct the evolution of mitochondrial gene arrangements in snakes. Conclusion The phylogenetic relationships among the major families of snakes are in accordance with the mitochondrial genomes in terms of gene arrangements. The gene arrangement in Ramphotyphlops braminus mtDNA is inferred to be ancestral for snakes. After the divergence of the early Ramphotyphlops lineage, three types of rearrangements occurred. These changes involve translocations within the IQM tRNA gene cluster and the duplication of the CR. All phylogenetic methods support the placement of Enhydris plumbea outside of the (Colubridae + Elapidae) cluster, providing mitochondrial genomic evidence for the familial rank of Homalopsidae. PMID:19038056

  1. Characterisation of Asian Snakehead Murrel Channa striata (Channidae) in Malaysia: An Insight into Molecular Data and Morphological Approach

    PubMed Central

    Song, Li Min; Munian, Kaviarasu; Abd Rashid, Zulkafli; Bhassu, Subha

    2013-01-01

    Conservation is imperative for the Asian snakeheads Channa striata, as the species has been overfished due to its high market demand. Using maternal markers (mitochondrial cytochrome c oxidase subunit 1 gene (COI)), we discovered that evolutionary forces that drove population divergence did not show any match between the genetic and morphological divergence pattern. However, there is evidence of incomplete divergence patterns between the Borneo population and the populations from Peninsular Malaysia. This supports the claim of historical coalescence of C. striata during Pleistocene glaciations. Ecological heterogeneity caused high phenotypic variance and was not correlated with genetic variance among the populations. Spatial conservation assessments are required to manage different stock units. Results on DNA barcoding show no evidence of cryptic species in C. striata in Malaysia. The newly obtained sequences add to the database of freshwater fish DNA barcodes and in future will provide information relevant to identification of species. PMID:24396312

  2. Ancient DNA evidence for the loss of a highly divergent brown bear clade during historical times.

    PubMed

    Calvignac, Sebastien; Hughes, Sandrine; Tougard, Christelle; Michaux, Jacques; Thevenot, Michel; Philippe, Michel; Hamdine, Watik; Hänni, Catherine

    2008-04-01

    The genetic diversity of present-day brown bears (Ursus arctos) has been extensively studied over the years and appears to be geographically structured into five main clades. The question of the past diversity of the species has been recently addressed by ancient DNA studies that concluded to a relative genetic stability over the last 35,000 years. However, the post-last glacial maximum genetic diversity of the species still remains poorly documented, notably in the Old World. Here, we analyse Atlas brown bears, which became extinct during the Holocene period. A divergent brown bear mitochondrial DNA lineage not present in any of the previously studied modern or ancient bear samples was uncovered, suggesting that the diversity of U. arctos was larger in the past than it is now. Specifically, a significant portion (with respect to sequence divergence) of the intraspecific diversity of the brown bear was lost with the extinction of the Atlas brown bear after the Pleistocene/Holocene transition.

  3. Molecular systematics and biogeography of the circumglobally distributed genus Seriola (Pisces: Carangidae).

    PubMed

    Swart, Belinda L; von der Heyden, Sophie; Bester-van der Merwe, Aletta; Roodt-Wilding, Rouvay

    2015-12-01

    The genus Seriola includes several important commercially exploited species and has a disjunct distribution globally; yet phylogenetic relationships within this genus have not been thoroughly investigated. This study reports the first comprehensive molecular phylogeny for this genus based on mitochondrial (Cytb) and nuclear gene (RAG1 and Rhod) DNA sequence data for all extant Seriola species (nine species, n=27). All species were found to be monophyletic based on Maximum parsimony, Maximum likelihood and Bayesian inference. The closure of the Tethys Sea (12-20 MYA) coincides with the divergence of a clade containing ((S. fasciata and S. peruana), S. carpenteri) from the rest of the Seriola species, while the formation of the Isthmus of Panama (±3 MYA) played an important role in the divergence of S. fasciata and S. peruana. Furthermore, factors such as climate and water temperature fluctuations during the Pliocene played important roles during the divergence of the remaining Seriola species. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Genetic divergence of a sympatric lake-resident-anadromous three-spined stickleback Gasterosteus aculeatus species pair.

    PubMed

    Drevecky, C J; Falco, R; Aguirre, W E

    2013-07-01

    The genetic relationship between sympatric, morphologically divergent populations of anadromous and lake-resident three-spined stickleback Gasterosteus aculeatus in the Jim Creek drainage of Cook Inlet, Alaska, was examined using microsatellite loci and mitochondrial d-loop sequence data. Resident samples differed substantially from sympatric anadromous samples in the Jim Creek drainage with the magnitude of the genetic divergence being similar to that between allopatric resident and anadromous populations in other areas. Resident samples were genetically similar within the Jim Creek drainage, as were the anadromous samples surveyed. Neighbour-joining and Structure cluster analysis grouped the samples into four genetic clusters by ecomorph (anadromous v. all resident) and geographic location of the resident samples (Jim Creek, Mat-Su and Kenai). There was no evidence of hybridization between resident and anadromous G. aculeatus in the Jim Creek drainage, which thus appear to be reproductively isolated. © 2013 The Authors. Journal of Fish Biology © 2013 The Fisheries Society of the British Isles.

  5. A hitchhikers guide to the Galápagos: co-phylogeography of Galápagos mockingbirds and their parasites

    PubMed Central

    2011-01-01

    Background Parasites are evolutionary hitchhikers whose phylogenies often track the evolutionary history of their hosts. Incongruence in the evolutionary history of closely associated lineages can be explained through a variety of possible events including host switching and host independent speciation. However, in recently diverged lineages stochastic population processes, such as retention of ancestral polymorphism or secondary contact, can also explain discordant genealogies, even in fully co-speciating taxa. The relatively simple biogeographic arrangement of the Galápagos archipelago, compared with mainland biomes, provides a framework to identify stochastic and evolutionary informative components of genealogic data in these recently diverged organisms. Results Mitochondrial DNA sequences were obtained for four species of Galápagos mockingbirds and three sympatric species of ectoparasites - two louse and one mite species. These data were complemented with nuclear EF1α sequences in selected samples of parasites and with information from microsatellite loci in the mockingbirds. Mitochondrial sequence data revealed differences in population genetic diversity between all taxa and varying degrees of topological congruence between host and parasite lineages. A very low level of genetic variability and lack of congruence was found in one of the louse parasites, which was excluded from subsequent joint analysis of mitochondrial data. The reconciled multi-species tree obtained from the analysis is congruent with both the nuclear data and the geological history of the islands. Conclusions The gene genealogies of Galápagos mockingbirds and two of their ectoparasites show strong phylogeographic correlations, with instances of incongruence mostly explained by ancestral genetic polymorphism. A third parasite genealogy shows low levels of genetic diversity and little evidence of co-phylogeny with their hosts. These differences can mostly be explained by variation in life-history characteristics, primarily host specificity and dispersal capabilities. We show that pooling genetic data from organisms living in close ecological association reveals a more accurate phylogeographic history for these taxa. Our results have implications for the conservation and taxonomy of Galápagos mockingbirds and their parasites. PMID:21966954

  6. Fine Dissection of Human Mitochondrial DNA Haplogroup HV Lineages Reveals Paleolithic Signatures from European Glacial Refugia

    PubMed Central

    Sarno, Stefania; Sevini, Federica; Vianello, Dario; Tamm, Erika; Metspalu, Ene; van Oven, Mannis; Hübner, Alexander; Sazzini, Marco; Franceschi, Claudio; Pettener, Davide; Luiselli, Donata

    2015-01-01

    Genetic signatures from the Paleolithic inhabitants of Eurasia can be traced from the early divergent mitochondrial DNA lineages still present in contemporary human populations. Previous studies already suggested a pre-Neolithic diffusion of mitochondrial haplogroup HV*(xH,V) lineages, a relatively rare class of mtDNA types that includes parallel branches mainly distributed across Europe and West Asia with a certain degree of structure. Up till now, variation within haplogroup HV was addressed mainly by analyzing sequence data from the mtDNA control region, except for specific sub-branches, such as HV4 or the widely distributed haplogroups H and V. In this study, we present a revised HV topology based on full mtDNA genome data, and we include a comprehensive dataset consisting of 316 complete mtDNA sequences including 60 new samples from the Italian peninsula, a previously underrepresented geographic area. We highlight points of instability in the particular topology of this haplogroup, reconstructed with BEAST-generated trees and networks. We also confirm a major lineage expansion that probably followed the Late Glacial Maximum and preceded Neolithic population movements. We finally observe that Italy harbors a reservoir of mtDNA diversity, with deep-rooting HV lineages often related to sequences present in the Caucasus and the Middle East. The resulting hypothesis of a glacial refugium in Southern Italy has implications for the understanding of late Paleolithic population movements and is discussed within the archaeological cultural shifts occurred over the entire continent. PMID:26640946

  7. Absence of Complex I Is Associated with Diminished Respiratory Chain Function in European Mistletoe.

    PubMed

    Maclean, Andrew E; Hertle, Alexander P; Ligas, Joanna; Bock, Ralph; Balk, Janneke; Meyer, Etienne H

    2018-05-21

    Parasitism is a life history strategy found across all domains of life whereby nutrition is obtained from a host. It is often associated with reductive evolution of the genome, including loss of genes from the organellar genomes [1, 2]. In some unicellular parasites, the mitochondrial genome (mitogenome) has been lost entirely, with far-reaching consequences for the physiology of the organism [3, 4]. Recently, mitogenome sequences of several species of the hemiparasitic plant mistletoe (Viscum sp.) have been reported [5, 6], revealing a striking loss of genes not seen in any other multicellular eukaryotes. In particular, the nad genes encoding subunits of respiratory complex I are all absent and other protein-coding genes are also lost or highly diverged in sequence, raising the question what remains of the respiratory complexes and mitochondrial functions. Here we show that oxidative phosphorylation (OXPHOS) in European mistletoe, Viscum album, is highly diminished. Complex I activity and protein subunits of complex I could not be detected. The levels of complex IV and ATP synthase were at least 5-fold lower than in the non-parasitic model plant Arabidopsis thaliana, whereas alternative dehydrogenases and oxidases were higher in abundance. Carbon flux analysis indicates that cytosolic reactions including glycolysis are greater contributors to ATP synthesis than the mitochondrial tricarboxylic acid (TCA) cycle. Our results describe the extreme adjustments in mitochondrial functions of the first reported multicellular eukaryote without complex I. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Phylogenetic relationships of cone snails endemic to Cabo Verde based on mitochondrial genomes.

    PubMed

    Abalde, Samuel; Tenorio, Manuel J; Afonso, Carlos M L; Uribe, Juan E; Echeverry, Ana M; Zardoya, Rafael

    2017-11-25

    Due to their great species and ecological diversity as well as their capacity to produce hundreds of different toxins, cone snails are of interest to evolutionary biologists, pharmacologists and amateur naturalists alike. Taxonomic identification of cone snails still relies mostly on the shape, color, and banding patterns of the shell. However, these phenotypic traits are prone to homoplasy. Therefore, the consistent use of genetic data for species delimitation and phylogenetic inference in this apparently hyperdiverse group is largely wanting. Here, we reconstruct the phylogeny of the cones endemic to Cabo Verde archipelago, a well-known radiation of the group, using mitochondrial (mt) genomes. The reconstructed phylogeny grouped the analyzed species into two main clades, one including Kalloconus from West Africa sister to Trovaoconus from Cabo Verde and the other with a paraphyletic Lautoconus due to the sister group relationship of Africonus from Cabo Verde and Lautoconus ventricosus from Mediterranean Sea and neighboring Atlantic Ocean to the exclusion of Lautoconus endemic to Senegal (plus Lautoconus guanche from Mauritania, Morocco, and Canary Islands). Within Trovaoconus, up to three main lineages could be distinguished. The clade of Africonus included four main lineages (named I to IV), each further subdivided into two monophyletic groups. The reconstructed phylogeny allowed inferring the evolution of the radula in the studied lineages as well as biogeographic patterns. The number of cone species endemic to Cabo Verde was revised under the light of sequence divergence data and the inferred phylogenetic relationships. The sequence divergence between continental members of the genus Kalloconus and island endemics ascribed to the genus Trovaoconus is low, prompting for synonymization of the latter. The genus Lautoconus is paraphyletic. Lautoconus ventricosus is the closest living sister group of genus Africonus. Diversification of Africonus was in allopatry due to the direct development nature of their larvae and mainly triggered by eustatic sea level changes during the Miocene-Pliocene. Our study confirms the diversity of cone endemic to Cabo Verde but significantly reduces the number of valid species. Applying a sequence divergence threshold, the number of valid species within the sampled Africonus is reduced to half.

  9. Phylogeography of Canada Geese (Branta canadensis) in western North America

    USGS Publications Warehouse

    Scribner, K.T.; Talbot, S.L.; Pearce, J.M.; Pierson, Barbara J.; Bollinger, K.S.; Derksen, D.V.

    2003-01-01

    Using molecular genetic markers that differ in mode of inheritance and rate of evolution, we examined levels and partitioning of genetic variation for seven nominal subspecies (11 breeding populations) of Canada Geese (Branta canadensis) in western North America. Gene trees constructed from mtDNA control region sequence data show that subspecies of Canada Geese do not have distinct mtDNA. Large- and small-bodied forms of Canada Geese were highly diverged (0. 077 average sequence divergence) and represent monophyletic groups. A majority (65%) of 20 haplotypes resolved were observed in single breeding locales. However, within both large- and small-bodied forms certain haplotypes occurred across multiple subspecies. Population trees for both nuclear (microsatellites) and mitochondrial markers were generally concordant and provide resolution of population and subspecific relationships indicating incomplete lineage sorting. All populations and subspecies were genetically diverged, but to varying degrees. Analyses of molecular variance, nested-clade and coalescence-based analyses of mtDNA suggest that both historical (past fragmentation) and contemporary forces have been important in shaping current spatial genetic distributions. Gene flow appears to be ongoing though at different rates, even among currently recognized subspecies. The efficacy of current subspecific taxonomy is discussed in light of hypothesized historical vicariance and current demographic trends of management and conservation concern.

  10. Whole mitochondrial genome sequencing of domestic horses reveals incorporation of extensive wild horse diversity during domestication

    PubMed Central

    2011-01-01

    Background DNA target enrichment by micro-array capture combined with high throughput sequencing technologies provides the possibility to obtain large amounts of sequence data (e.g. whole mitochondrial DNA genomes) from multiple individuals at relatively low costs. Previously, whole mitochondrial genome data for domestic horses (Equus caballus) were limited to only a few specimens and only short parts of the mtDNA genome (especially the hypervariable region) were investigated for larger sample sets. Results In this study we investigated whole mitochondrial genomes of 59 domestic horses from 44 breeds and a single Przewalski horse (Equus przewalski) using a recently described multiplex micro-array capture approach. We found 473 variable positions within the domestic horses, 292 of which are parsimony-informative, providing a well resolved phylogenetic tree. Our divergence time estimate suggests that the mitochondrial genomes of modern horse breeds shared a common ancestor around 93,000 years ago and no later than 38,000 years ago. A Bayesian skyline plot (BSP) reveals a significant population expansion beginning 6,000-8,000 years ago with an ongoing exponential growth until the present, similar to other domestic animal species. Our data further suggest that a large sample of wild horse diversity was incorporated into the domestic population; specifically, at least 46 of the mtDNA lineages observed in domestic horses (73%) already existed before the beginning of domestication about 5,000 years ago. Conclusions Our study provides a window into the maternal origins of extant domestic horses and confirms that modern domestic breeds present a wide sample of the mtDNA diversity found in ancestral, now extinct, wild horse populations. The data obtained allow us to detect a population expansion event coinciding with the beginning of domestication and to estimate both the minimum number of female horses incorporated into the domestic gene pool and the time depth of the domestic horse mtDNA gene pool. PMID:22082251

  11. Molecular analysis of the split cox1 gene from the Basidiomycota Agrocybe aegerita: relationship of its introns with homologous Ascomycota introns and divergence levels from common ancestral copies.

    PubMed

    Gonzalez, P; Barroso, G; Labarère, J

    1998-10-05

    The Basidiomycota Agrocybe aegerita (Aa) mitochondrial cox1 gene (6790 nucleotides), encoding a protein of 527aa (58377Da), is split by four large subgroup IB introns possessing site-specific endonucleases assumed to be involved in intron mobility. When compared to other fungal COX1 proteins, the Aa protein is closely related to the COX1 one of the Basidiomycota Schizophyllum commune (Sc). This clade reveals a relationship with the studied Ascomycota ones, with the exception of Schizosaccharomyces pombe (Sp) which ranges in an out-group position compared with both higher fungi divisions. When comparison is extended to other kingdoms, fungal COX1 sequences are found to be more related to algae and plant ones (more than 57.5% aa similarity) than to animal sequences (53.6% aa similarity), contrasting with the previously established close relationship between fungi and animals, based on comparisons of nuclear genes. The four Aa cox1 introns are homologous to Ascomycota or algae cox1 introns sharing the same location within the exonic sequences. The percentages of identity of the intronic nucleotide sequences suggest a possible acquisition by lateral transfers of ancestral copies or of their derived sequences. These identities extend over the whole intronic sequences, arguing in favor of a transfer of the complete intron rather than a transfer limited to the encoded ORF. The intron i4 shares 74% of identity, at the nucleotidic level, with the Podospora anserina (Pa) intron i14, and up to 90.5% of aa similarity between the encoded proteins, i.e. the highest values reported to date between introns of two phylogenetically distant species. This low divergence argues for a recent lateral transfer between the two species. On the contrary, the low sequence identities (below 36%) observed between Aa i1 and the homologous Sp i1 or Prototheca wickeramii (Pw) i1 suggest a long evolution time after the separation of these sequences. The introns i2 and i3 possessed intermediate percentages of identity with their homologous Ascomycota introns. This is the first report of the complete nucleotide sequence and molecular organization of a mitochondrial cox1 gene of any member of the Basidiomycota division.

  12. Molecular phylogeny and biogeography of West Indian frogs of the genus Leptodactylus (Anura, Leptodactylidae).

    PubMed

    Hedges, S Blair; Heinicke, Matthew P

    2007-07-01

    Three endemic species of the aquatic-breeding frog genus Leptodactylus are recognized from the West Indies: Leptodactylus albilabris (Puerto Rico and the Virgin Islands), Leptodactylus dominicensis (Hispaniola), and Leptodactylus fallax (Lesser Antilles). DNA sequences were obtained from several mitochondrial genes to resolve taxonomic questions involving these species and to provide insights into their origin and distribution in the islands. We found low levels of sequence divergence between L. dominicensis and L. albilabris, supporting morphological evidence that the former species is a junior synonym of the latter species. Phylogenetic analysis supported previous species-group allocations, finding that L. albilabris is a member of the fuscus group and L. fallax is a member of the pentadactylus group. Molecular time estimates for the divergence of L. albilabris from its closest relative in South America (24-58 million years ago, Ma) and for L. fallax from its closest relative in South America (23-34Ma) indicate that they colonized the West Indies independently by over-water dispersal in the mid-Cenozoic. The absence of detectable sequence divergence between the two extant populations of L. fallax (Dominica and Montserrat), a species used for human food and now critically endangered, suggests that one or both arose by human introduction from an island or islands where that species originated. The relatively minor genetic differentiation of populations of L. albilabris can be explained by vicariance and dispersal in the Pleistocene and Holocene, although human introduction of some populations cannot be ruled out.

  13. Mitochondrial DNA and Y-chromosomal diversity in ancient populations of domestic sheep (Ovis aries) in Finland: comparison with contemporary sheep breeds.

    PubMed

    Niemi, Marianna; Bläuer, Auli; Iso-Touru, Terhi; Nyström, Veronica; Harjula, Janne; Taavitsainen, Jussi-Pekka; Storå, Jan; Lidén, Kerstin; Kantanen, Juha

    2013-01-22

    Several molecular and population genetic studies have focused on the native sheep breeds of Finland. In this work, we investigated their ancestral sheep populations from Iron Age, Medieval and Post-Medieval periods by sequencing a partial mitochondrial DNA D-loop and the 5'-promoter region of the SRY gene. We compared the maternal (mitochondrial DNA haplotypes) and paternal (SNP oY1) genetic diversity of ancient sheep in Finland with modern domestic sheep populations in Europe and Asia to study temporal changes in genetic variation and affinities between ancient and modern populations. A 523-bp mitochondrial DNA sequence was successfully amplified for 26 of 36 sheep ancient samples i.e. five, seven and 14 samples representative of Iron Age, Medieval and Post-Medieval sheep, respectively. Genetic diversity was analyzed within the cohorts. This ancient dataset was compared with present-day data consisting of 94 animals from 10 contemporary European breeds and with GenBank DNA sequence data to carry out a haplotype sharing analysis. Among the 18 ancient mitochondrial DNA haplotypes identified, 14 were present in the modern breeds. Ancient haplotypes were assigned to the highly divergent ovine haplogroups A and B, haplogroup B being the major lineage within the cohorts. Only two haplotypes were detected in the Iron Age samples, while the genetic diversity of the Medieval and Post-Medieval cohorts was higher. For three of the ancient DNA samples, Y-chromosome SRY gene sequences were amplified indicating that they originated from rams. The SRY gene of these three ancient ram samples contained SNP G-oY1, which is frequent in modern north-European sheep breeds. Our study did not reveal any sign of major population replacement of native sheep in Finland since the Iron Age. Variations in the availability of archaeological remains may explain differences in genetic diversity estimates and patterns within the cohorts rather than demographic events that occurred in the past. Our ancient DNA results fit well with the genetic context of domestic sheep as determined by analyses of modern north-European sheep breeds.

  14. Mitochondrial DNA and Y-chromosomal diversity in ancient populations of domestic sheep (Ovis aries) in Finland: comparison with contemporary sheep breeds

    PubMed Central

    2013-01-01

    Background Several molecular and population genetic studies have focused on the native sheep breeds of Finland. In this work, we investigated their ancestral sheep populations from Iron Age, Medieval and Post-Medieval periods by sequencing a partial mitochondrial DNA D-loop and the 5’-promoter region of the SRY gene. We compared the maternal (mitochondrial DNA haplotypes) and paternal (SNP oY1) genetic diversity of ancient sheep in Finland with modern domestic sheep populations in Europe and Asia to study temporal changes in genetic variation and affinities between ancient and modern populations. Results A 523-bp mitochondrial DNA sequence was successfully amplified for 26 of 36 sheep ancient samples i.e. five, seven and 14 samples representative of Iron Age, Medieval and Post-Medieval sheep, respectively. Genetic diversity was analyzed within the cohorts. This ancient dataset was compared with present-day data consisting of 94 animals from 10 contemporary European breeds and with GenBank DNA sequence data to carry out a haplotype sharing analysis. Among the 18 ancient mitochondrial DNA haplotypes identified, 14 were present in the modern breeds. Ancient haplotypes were assigned to the highly divergent ovine haplogroups A and B, haplogroup B being the major lineage within the cohorts. Only two haplotypes were detected in the Iron Age samples, while the genetic diversity of the Medieval and Post-Medieval cohorts was higher. For three of the ancient DNA samples, Y-chromosome SRY gene sequences were amplified indicating that they originated from rams. The SRY gene of these three ancient ram samples contained SNP G-oY1, which is frequent in modern north-European sheep breeds. Conclusions Our study did not reveal any sign of major population replacement of native sheep in Finland since the Iron Age. Variations in the availability of archaeological remains may explain differences in genetic diversity estimates and patterns within the cohorts rather than demographic events that occurred in the past. Our ancient DNA results fit well with the genetic context of domestic sheep as determined by analyses of modern north-European sheep breeds. PMID:23339395

  15. Phylogeny and dating of divergences within the genus Thymallus (Salmonidae: Thymallinae) using complete mitochondrial genomes.

    PubMed

    Ma, Bo; Jiang, Haiying; Sun, Peng; Chen, Jinping; Li, Linmiao; Zhang, Xiujuan; Yuan, Lihong

    2016-09-01

    The genus Thymallus has attracted increasing attention in recent years because of its sharp demographic decline. In this study, we reported four complete mitochondrial genomes in the Thymallus genus: Baikal-Lena grayling (T. arcticus baicalolenensis), lower Amur grayling (T. tugarinae), Yalu grayling (T. a. yaluensis), and Mongolian grayling (T. brevirostris). The total length of the four new grayling mtDNAs ranged from 16 658 to 16 663 bp, all of which contained 13 protein-coding genes, 22 tRNA genes, two rRNA genes, and one control region. The results suggested that mitochondrial genomes could be a powerful marker for resolving the phylogeny within Thymallinae. Our study validated that the Yalu grayling should be a synonym of the Amur grayling (T. grubii) at the whole mitogenome level. The phylogenetic and dating analyses placed the Amur grayling at the deepest divergence node within Thymallus, diverging at ∼14.95 Ma. The lower Amur grayling diverged at the next deepest node (∼12.14 Ma). This was followed by T. thymallus, which diverged at ∼9.27 Ma. The Mongolian grayling and the ancestor of the sister species, T. arcticus and T. arcticus baicalolenensis, diverged at ∼7.79 Ma, with T. arcticus and T. arcticus baicalolenensis separating at ∼6.64 Ma. Our study provides far better resolution of the phylogenetic relationships and divergence dates of graylings than previous studies.

  16. Mitochondrial DNA Variant in COX1 Subunit Significantly Alters Energy Metabolism of Geographically Divergent Wild Isolates in Caenorhabditis elegans

    PubMed Central

    Dingley, Stephen D.; Polyak, Erzsebet; Ostrovsky, Julian; Srinivasan, Satish; Lee, Icksoo; Rosenfeld, Amy B.; Tsukikawa, Mai; Xiao, Rui; Selak, Mary A.; Coon, Joshua J.; Hebert, Alexander S.; Grimsrud, Paul A.; Kwon, Young Joon; Pagliarini, David J.; Gai, Xiaowu; Schurr, Theodore G.; Hüttemann, Maik; Nakamaru-Ogiso, Eiko; Falk, Marni J.

    2014-01-01

    Mitochondrial DNA (mtDNA) sequence variation can influence the penetrance of complex diseases and climatic adaptation. While studies in geographically defined human populations suggest that mtDNA mutations become fixed when they have conferred metabolic capabilities optimally suited for a specific environment, it has been challenging to definitively assign adaptive functions to specific mtDNA sequence variants in mammals. We investigated whether mtDNA genome variation functionally influences Caenorhabditis elegans wild isolates of distinct mtDNA lineages and geographic origins. We found that, relative to N2 (England) wild-type nematodes, CB4856 wild isolates from a warmer native climate (Hawaii) had a unique p.A12S amino acid substitution in the mtDNA-encoded COX1 core catalytic subunit of mitochondrial complex IV (CIV). Relative to N2, CB4856 worms grown at 20 °C had significantly increased CIV enzyme activity, mitochondrial matrix oxidant burden, and sensitivity to oxidative stress but had significantly reduced lifespan and mitochondrial membrane potential. Interestingly, mitochondrial membrane potential was significantly increased in CB4856 grown at its native temperature of 25 °C. A transmitochondrial cybrid worm strain, chpIR (M, CB4856 > N2), was bred as homoplasmic for the CB4856 mtDNA genome in the N2 nuclear background. The cybrid strain also displayed significantly increased CIV activity, demonstrating that this difference results from the mtDNA-encoded p.A12S variant. However, chpIR (M, CB4856 > N2) worms had significantly reduced median and maximal lifespan relative to CB4856, which may relate to their nuclear– mtDNA genome mismatch. Overall, these data suggest that C. elegans wild isolates of varying geographic origins may adapt to environmental challenges through mtDNA variation to modulate critical aspects of mitochondrial energy metabolism. PMID:24534730

  17. Biogeography of Speciation of Two Sister Species of Neotropical Amazona (Aves, Psittaciformes) Based on Mitochondrial Sequence Data

    PubMed Central

    Rocha, Amanda V.; Rivera, Luis O.; Martinez, Jaime; Prestes, Nêmora P.; Caparroz, Renato

    2014-01-01

    Coalescent theory provides powerful models for population genetic inference and is now increasingly important in estimates of divergence times and speciation research. We use molecular data and methods based on coalescent theory to investigate whether genetic evidence supports the hypothesis of A. pretrei and A. tucumana as separate species and whether genetic data allow us to assess which allopatric model seems to better explain the diversification process in these taxa. We sampled 13 A. tucumana from two provinces in northern Argentina and 28 A. pretrei from nine localities of Rio Grande do Sul, Brazil. A 491 bp segment of the mitochondrial gene cytochrome c oxidase I was evaluated using the haplotype network and phylogenetic methods. The divergence time and other demographic quantities were estimated using the isolation and migration model based on coalescent theory. The network and phylogenetic reconstructions showed similar results, supporting reciprocal monophyly for these two taxa. The divergence time of lineage separation was estimated to be approximately 1.3 million years ago, which corresponds to the lower Pleistocene. Our results enforce the current taxonomic status for these two Amazon species. They also support that A. pretrei and A. tucumana diverged with little or no gene flow approximately 1.3 million years ago, most likely after the establishment of a small population in the Southern Yungas forest by dispersion of a few founders from the A. pretrei ancestral population. This process may have been favored by habitat corridors formed in hot and humid periods of the Quaternary. Considering that these two species are considered threatened, the results were evaluated for their implications for the conservation of these two species. PMID:25251765

  18. A Passerine Bird's evolution corroborates the geologic history of the island of New Guinea.

    PubMed

    Deiner, Kristy; Lemmon, Alan R; Mack, Andrew L; Fleischer, Robert C; Dumbacher, John P

    2011-05-06

    New Guinea is a biologically diverse island, with a unique geologic history and topography that has likely played a role in the evolution of species. Few island-wide studies, however, have examined the phylogeographic history of lowland species. The objective of this study was to examine patterns of phylogeographic variation of a common and widespread New Guinean bird species (Colluricincla megarhyncha). Specifically, we test the mechanisms hypothesized to cause geographic and genetic variation (e.g., vicariance, isolation by distance and founder-effect with dispersal). To accomplish this, we surveyed three regions of the mitochondrial genome and a nuclear intron and assessed differences among 23 of the 30 described subspecies from throughout their range. We found support for eight highly divergent lineages within C. megarhyncha. Genetic lineages were found within continuous lowland habitat or on smaller islands, but all individuals within clades were not necessarily structured by predicted biogeographic barriers. There was some evidence of isolation by distance and potential founder-effects. Mitochondrial DNA sequence divergence among lineages was at a level often observed among different species or even genera of birds (5-11%), suggesting lineages within regions have been isolated for long periods of time. When topographical barriers were associated with divergence patterns, the estimated divergence date for the clade coincided with the estimated time of barrier formation. We also found that dispersal distance and range size are positively correlated across lineages. Evidence from this research suggests that different phylogeographic mechanisms concurrently structure lineages of C. megarhyncha and are not mutually exclusive. These lineages are a result of evolutionary forces acting at different temporal and spatial scales concordant with New Guinea's geological history.

  19. A Passerine Bird's Evolution Corroborates the Geologic History of the Island of New Guinea

    PubMed Central

    Deiner, Kristy; Lemmon, Alan R.; Mack, Andrew L.; Fleischer, Robert C.; Dumbacher, John P.

    2011-01-01

    New Guinea is a biologically diverse island, with a unique geologic history and topography that has likely played a role in the evolution of species. Few island-wide studies, however, have examined the phylogeographic history of lowland species. The objective of this study was to examine patterns of phylogeographic variation of a common and widespread New Guinean bird species (Colluricincla megarhyncha). Specifically, we test the mechanisms hypothesized to cause geographic and genetic variation (e.g., vicariance, isolation by distance and founder-effect with dispersal). To accomplish this, we surveyed three regions of the mitochondrial genome and a nuclear intron and assessed differences among 23 of the 30 described subspecies from throughout their range. We found support for eight highly divergent lineages within C. megarhyncha. Genetic lineages were found within continuous lowland habitat or on smaller islands, but all individuals within clades were not necessarily structured by predicted biogeographic barriers. There was some evidence of isolation by distance and potential founder-effects. Mitochondrial DNA sequence divergence among lineages was at a level often observed among different species or even genera of birds (5–11%), suggesting lineages within regions have been isolated for long periods of time. When topographical barriers were associated with divergence patterns, the estimated divergence date for the clade coincided with the estimated time of barrier formation. We also found that dispersal distance and range size are positively correlated across lineages. Evidence from this research suggests that different phylogeographic mechanisms concurrently structure lineages of C. megarhyncha and are not mutually exclusive. These lineages are a result of evolutionary forces acting at different temporal and spatial scales concordant with New Guinea's geological history. PMID:21573115

  20. Mitochondrial and morphological variation of Tilapia zillii in Israel

    PubMed Central

    2012-01-01

    Background Tilapia zillii is widespread in the East Levant inland aquatic systems as well as in artificial water reservoirs. In this study we explore the genetic and morphological variation of this widespread species, using mitochondrial control region sequences and meristic characters. We examine the hypothesis that T. zillii's population structure corresponds to the four Israeli aquatic systems. Results Out of seven natural water bodies, only two were found to possess genetically divergent populations of T. zillii. In addition to its presence in fish farms, the species was found in two artificial recreational ponds which were supposed to have been stocked only with other fish species. In these two artificial habitats, the haplotype frequencies diverged significantly from those of natural populations. Finally, fish from the Dead Sea springs of Ne'ot HaKikar appear to differ both genetically and morphologically from fish of the same aquatic system but not from fish of other water systems. Conclusions Our results show that the population structure of T. zillii does not match the geography of the Israeli water-basins, with the exception of the Dead Sea and Kishon River, when considering natural populations only. The absence of a significant divergence between basins is discussed. Our results and observations suggest that the Ne'ot HaKikar Dead Sea population and those of artificial ponds could have originated from the "hitchhiking" of T. zillii, at the expense of some other cultivated tilapiine species. PMID:22469095

  1. Deep divergence and apparent sex-biased dispersal revealed by a Y-linked marker in rainbow trout

    PubMed Central

    Brunelli, Joseph P.; Steele, Craig A.; Thorgaard, Gary H.

    2010-01-01

    Y-chromosome and mitochondrial DNA markers can reveal phylogenetic patterns by allowing tracking of male and female lineages, respectively. We used sequence data from a recently discovered Y-linked marker and a mitochondrial marker to examine phylogeographic structure in the widespread and economically important rainbow trout (Oncorhynchus mykiss). Two distinct geographic groupings that generally correspond to coastal and inland subspecies were evident within the Y marker network while the mtDNA haplotype network showed little geographic structure. Our results suggest that male-specific behavior has prevented widespread admixture of Y haplotypes and that gene flow between the coastal and inland subspecies has largely occurred through females. This new Y marker may also aid conservation efforts by genetically identifying inland populations that have not hybridized with widely stocked coastal-derived hatchery fish. PMID:20546904

  2. Mitochondrial and nuclear genetic relationships of deer (Odocoileus spp.) in western North America

    USGS Publications Warehouse

    Cronin, Matthew A.

    1991-01-01

    Odocoileus hemionus (mule deer and black-tailed deer) and Odocoileus virginanus (white-tailed deer) are sympatric in western North America and are characterized by distinct morphology, behavior, and allozyme allele frequencies. However, there is discordance among nuclear and mitochondrial genetic relationships, as mule deer (O. h. hemionus) and white-tailed deer have similar mitochondrial DNA (mtDNA) which is very different from that of black-tailed deer (O. h. columbianus, O. h. sitkensis). I expanded previous studies to clarify the genetic relationships of these groups by determining mtDNA haplotype and allozyme genotypes for 667 deer from several locations in northwestern North America. Different mtDNA haplotypes in mule deer, black-tailed deer, and white-tailed deer indicate that mitochondrial gene flow is restricted. Allozyme allele frequencies indicate that there is also restriction of nuclear gene flow between O. virginianus and O. hemionus, and to a lesser extent between mule deer and black-tailed deer. There is a low level of introgressive hybridization of mtDNA from mule deer and black-tailed deer into white-tailed deer populations and considerable interbreeding of mule deer and black-tailed deer in a contact zone. The discordance of mitochondrial and nuclear genomes is apparent only if mtDNA sequence divergences, and not haplotype frequencies, are considered.

  3. Supermatrix and species tree methods resolve phylogenetic relationships within the big cats, Panthera (Carnivora: Felidae).

    PubMed

    Davis, Brian W; Li, Gang; Murphy, William J

    2010-07-01

    The pantherine lineage of cats diverged from the remainder of modern Felidae less than 11 million years ago and consists of the five big cats of the genus Panthera, the lion, tiger, jaguar, leopard, and snow leopard, as well as the closely related clouded leopard. A significant problem exists with respect to the precise phylogeny of these highly threatened great cats. Despite multiple publications on the subject, no two molecular studies have reconstructed Panthera with the same topology. These evolutionary relationships remain unresolved partially due to the recent and rapid radiation of pantherines in the Pliocene, individual speciation events occurring within less than 1 million years, and probable introgression between lineages following their divergence. We provide an alternative, highly supported interpretation of the evolutionary history of the pantherine lineage using novel and published DNA sequence data from the autosomes, both sex chromosomes and the mitochondrial genome. New sequences were generated for 39 single-copy regions of the felid Y chromosome, as well as four mitochondrial and four autosomal gene segments, totaling 28.7 kb. Phylogenetic analysis of these new data, combined with all published data in GenBank, highlighted the prevalence of phylogenetic disparities stemming either from the amplification of a mitochondrial to nuclear translocation event (numt), or errors in species identification. Our 47.6 kb combined dataset was analyzed as a supermatrix and with respect to individual partitions using maximum likelihood and Bayesian phylogenetic inference, in conjunction with Bayesian Estimation of Species Trees (BEST) which accounts for heterogeneous gene histories. Our results yield a robust consensus topology supporting the monophyly of lion and leopard, with jaguar sister to these species, as well as a sister species relationship of tiger and snow leopard. These results highlight new avenues for the study of speciation genomics and understanding the historical events surrounding the origin of the members of this lineage. Copyright 2010 Elsevier Inc. All rights reserved.

  4. Parallel body shape divergence in the Neotropical fish genus Rhoadsia (Teleostei: Characidae) along elevational gradients of the western slopes of the Ecuadorian Andes

    PubMed Central

    Malato, Grace; Shervette, Virginia R.; Navarrete Amaya, Ronald; Valdiviezo Rivera, Jonathan; Nugra Salazar, Fredy; Calle Delgado, Paola; Karpan, Kirby C.

    2017-01-01

    Neotropical mountain streams are important contributors of biological diversity. Two species of the characid genus Rhoadsia differing for an ecologically important morphological trait, body depth, have been described from mountain streams of the western slopes of the Andes in Ecuador. Rhoadsia altipinna is a deeper-bodied species reported from low elevations in southwestern Ecuador and northern Peru, and Rhoadsia minor is a more streamlined species that was described from high elevations (>1200 m) in the Esmeraldas drainage in northwestern Ecuador. Little is known about these species and their validity as distinct species has been questioned. In this study, we examine how their body shape varies along replicated elevational gradients in different drainages of western Ecuador using geometric morphometrics and the fineness ratio. We also use sequences of the mitochondrial cytochrome oxidase c I gene and the second intron of the S7 nuclear gene to examine whether genetic data are consistent with the existence of two species. We found that body depth varies continuously among populations within drainages as a function of elevation, and that body shape overlaps among drainages, such that low elevation populations of R. minor in the Esmeraldas drainage have similar body depths to higher elevation R. altipinna in southern drainages. Although a common general trend of declining body depth with elevation is clear, the pattern and magnitude of body shape divergence differed among drainages. Sequencing of mitochondrial and nuclear genes failed to meet strict criteria for the recognition of two species (e.g., reciprocal monophyly and deep genetic structure). However, there was a large component of genetic variation for the COI gene that segregated among drainages, indicating significant genetic divergence associated with geographic isolation. Continued research on Rhoadsia in western Ecuador may yield significant insight into adaptation and speciation in Neotropical mountain streams. PMID:28658255

  5. Second generation DNA sequencing of the mitogenome of the Chinstrap penguin and comparative genomics of Antarctic penguins.

    PubMed

    Subramanian, Sankar; Lingala, Syamala Gowri; Swaminathan, Siva; Huynen, Leon; Lambert, David

    2014-08-01

    The complete mitochondrial genome of the Chinstrap penguin (Pygoscelis antarcticus) was sequenced and compared with other penguin mitogenomes. The genome is 15,972 bp in length with the number and order of protein coding genes and RNAs being very similar to that of other known penguin mitogenomes. Comparative nucleotide analysis showed the Chinstrap mitogenome shares 94% homology with the mitogenome of its sister species, Pygoscelis adelie (Adélie penguin). Divergence at nonsynonymous nucleotide positions was found to be up to 23 times less than that observed in synonymous positions of protein coding genes, suggesting high selection constraints. The complete mitogenome data will be useful for genetic and evolutionary studies of penguins.

  6. Morphological and molecular differentiation of Staphylocystis clydesengeri n. sp. (Cestoda, Hymenolepididae) from the vagrant shrew, Sorex vagrans (Soricomorpha, Soricidae), in North America.

    PubMed

    Tkach, Vasyl V; Makarikov, Arseny A; Kinsella, John M

    2013-01-01

    Staphylocystis clydesengeri n. sp. is described from shrews Sorex vagrans in Montana and Washington, United States. It differs from the only previously known North American representative of the genus, S. schilleri, in having more numerous (37-42 vs. 22-30) and larger (39-44 microm vs. 27-30 microm) rostellar hooks. The two species also differ in several other important characters such as relative length of the cirrus pouch, position of gonads and shape of mature proglottides. Morphological differentiation of the new species from all previously known Palearctic species of Staphylocystis from Sorex is also provided. Differentiation from Staphylocystis parasitic in crocidurine shrews is not provided due to the high level of specificity among shrew hymenolepidids to the host genera and much greater levels of sequence divergence between Staphylocystis from the two groups of shrews. Molecular differentiation based on 2,800 base pair long sequences of nuclear ribosomal RNA (complete ITS region and partial 28S region), 663 base pair long sequences of mitochondrial nad1 gene and 542 base pair long sequences of mitochondrial ribosomal 16S gene strongly support the status of Staphylocystis clydesengeri n. sp. Relative utility of the DNA fragments used in this study for reliable differentiation among closely related species of mammalian hymenolepidids is discussed. Nuclear ribosomal RNA region appears to be too conserved for this purpose. Use of at least one mitochondrial gene in addition to nuclear ribosomal RNA or without it, is recommended. Vampirolepis novosibirskiensis Sawada & Kobayashi, 1994 is transferred to Staphylocystis as a junior synonym of S. furcara (Stieda, 1862). Rodentolepis gnoskei Greiman & Tkach, 2012 is transferred to Pararodentolepis Makarikov and Gulyaev, 2009 as a new combination Pararodentolepis gnoskei (Greiman & Tkach, 2012) n. comb.

  7. Phylogeographic patterns of genetic diversity in eastern Mediterranean water frogs have been determined by geological processes and climate change in the Late Cenozoic.

    PubMed

    Akın, Ciğdem; Bilgin, C Can; Beerli, Peter; Westaway, Rob; Ohst, Torsten; Litvinchuk, Spartak N; Uzzell, Thomas; Bilgin, Metin; Hotz, Hansjürg; Guex, Gaston-Denis; Plötner, Jörg

    2010-11-01

    AIM: Our aims were to assess the phylogeographic patterns of genetic diversity in eastern Mediterranean water frogs and to estimate divergence times using different geological scenarios. We related divergence times to past geological events and discuss the relevance of our data for the systematics of eastern Mediterranean water frogs. LOCATION: The eastern Mediterranean region. METHODS: Genetic diversity and divergence were calculated using sequences of two protein-coding mitochondrial (mt) genes: ND2 (1038 bp, 119 sequences) and ND3 (340 bp, 612 sequences). Divergence times were estimated in a Bayesian framework under four geological scenarios representing alternative possible geological histories for the eastern Mediterranean. We then compared the different scenarios using Bayes factors and additional geological data. RESULTS: Extensive genetic diversity in mtDNA divides eastern Mediterranean water frogs into six main haplogroups (MHG). Three MHGs were identified on the Anatolian mainland; the most widespread MHG with the highest diversity is distributed from western Anatolia to the northern shore of the Caspian Sea, including the type locality of Pelophylax ridibundus. The other two Anatolian MHGs are restricted to south-eastern Turkey, occupying localities west and east of the Amanos mountain range. One of the remaining three MHGs is restricted to Cyprus; a second to the Levant; the third was found in the distribution area of European lake frogs (P. ridibundus group), including the Balkans. MAIN CONCLUSIONS: Based on geological evidence and estimates of genetic divergence we hypothesize that the water frogs of Cyprus have been isolated from the Anatolian mainland populations since the end of the Messinian salinity crisis (MSC), i.e. since c. 5.5-5.3 Ma, while our divergence time estimates indicate that the isolation of Crete from the mainland populations (Peloponnese, Anatolia) most likely pre-dates the MSC. The observed rates of divergence imply a time window of c. 1.6-1.1 million years for diversification of the largest Anatolian MHG; divergence between the two other Anatolian MHGs may have begun about 3.0 Ma, apparently as a result of uplift of the Amanos Mountains. Our mtDNA data suggest that the Anatolian water frogs and frogs from Cyprus represent several undescribed species.

  8. What is the phylogenetic signal limit from mitogenomes? The reconciliation between mitochondrial and nuclear data in the Insecta class phylogeny

    PubMed Central

    2011-01-01

    Background Efforts to solve higher-level evolutionary relationships within the class Insecta by using mitochondrial genomic data are hindered due to fast sequence evolution of several groups, most notably Hymenoptera, Strepsiptera, Phthiraptera, Hemiptera and Thysanoptera. Accelerated rates of substitution on their sequences have been shown to have negative consequences in phylogenetic inference. In this study, we tested several methodological approaches to recover phylogenetic signal from whole mitochondrial genomes. As a model, we used two classical problems in insect phylogenetics: The relationships within Paraneoptera and within Holometabola. Moreover, we assessed the mitochondrial phylogenetic signal limits in the deeper Eumetabola dataset, and we studied the contribution of individual genes. Results Long-branch attraction (LBA) artefacts were detected in all the datasets. Methods using Bayesian inference outperformed maximum likelihood approaches, and LBA was avoided in Paraneoptera and Holometabola when using protein sequences and the site-heterogeneous mixture model CAT. The better performance of this method was evidenced by resulting topologies matching generally accepted hypotheses based on nuclear and/or morphological data, and was confirmed by cross-validation and simulation analyses. Using the CAT model, the order Strepsiptera was recovered as sister to Coleoptera for the first time using mitochondrial sequences, in agreement with recent results based on large nuclear and morphological datasets. Also the Hymenoptera-Mecopterida association was obtained, leaving Coleoptera and Strepsiptera as the basal groups of the holometabolan insects, which coincides with one of the two main competing hypotheses. For the Paraneroptera, the currently accepted non-monophyly of Homoptera was documented as a phylogenetic novelty for mitochondrial data. However, results were not satisfactory when exploring the entire Eumetabola, revealing the limits of the phylogenetic signal that can be extracted from Insecta mitogenomes. Based on the combined use of the five best topology-performing genes we obtained comparable results to whole mitogenomes, highlighting the important role of data quality. Conclusion We show for the first time that mitogenomic data agrees with nuclear and morphological data for several of the most controversial insect evolutionary relationships, adding a new independent source of evidence to study relationships among insect orders. We propose that deeper divergences cannot be inferred with the current available methods due to sequence saturation and compositional bias inconsistencies. Our exploratory analysis indicates that the CAT model is the best dealing with LBA and it could be useful for other groups and datasets with similar phylogenetic difficulties. PMID:22032248

  9. Mitochondrial DNA sequence evolution in the Arctoidea.

    PubMed

    Zhang, Y P; Ryder, O A

    1993-10-15

    Some taxa in the superfamily Arctoidea, such as the giant panda and the lesser panda, have presented puzzles to taxonomists. In the present study, approximately 397 bases of the cytochrome b gene, 364 bases of the 12S rRNA gene, and 74 bases of the tRNA(Thr) and tRNA(Pro) genes from the giant panda, lesser panda, kinkajou, raccoon, coatimundi, and all species of the Ursidae were sequenced. The high transition/transversion ratios in cytochrome b and RNA genes prior to saturation suggest that the presumed transition bias may represent a trend for some mammalian lineages rather than strictly a primate phenomenon. Transversions in the 12S rRNA gene accumulate in arctoids at about half the rate reported for artiodactyls. Different arctoid lineages evolve at different rates: the kinkajou, a procyonid, evolves the fastest, 1.7-1.9 times faster than the slowest lineage that comprises the spectacled and polar bears. Generation-time effect can only partially explain the different rates of nucleotide substitution in arctoids. Our results based on parsimony analysis show that the giant panda is more closely related to bears than to the lesser panda; the lesser panda is neither closely related to bears nor to the New World procyonids. The kinkajou, raccoon, and coatimundi diverged from each other very early, even though they group together. The polar bear is closely related to the spectacled bear, and they began to diverge from a common mitochondrial ancestor approximately 2 million years ago. Relationships of the remaining five bear species are derived.

  10. Mitochondrial DNA haplotype distribution patterns in Pinus ponderosa (Pinaceae): range-wide evolutionary history and implications for conservation.

    PubMed

    Potter, Kevin M; Hipkins, Valerie D; Mahalovich, Mary F; Means, Robert E

    2013-08-01

    Ponderosa pine (Pinus ponderosa Douglas ex P. Lawson & C. Lawson) exhibits complicated patterns of morphological and genetic variation across its range in western North America. This study aims to clarify P. ponderosa evolutionary history and phylogeography using a highly polymorphic mitochondrial DNA marker, with results offering insights into how geographical and climatological processes drove the modern evolutionary structure of tree species in the region. We amplified the mtDNA nad1 second intron minisatellite region for 3,100 trees representing 104 populations, and sequenced all length variants. We estimated population-level haplotypic diversity and determined diversity partitioning among varieties, races and populations. After aligning sequences of minisatellite repeat motifs, we evaluated evolutionary relationships among haplotypes. The geographical structuring of the 10 haplotypes corresponded with division between Pacific and Rocky Mountain varieties. Pacific haplotypes clustered with high bootstrap support, and appear to have descended from Rocky Mountain haplotypes. A greater proportion of diversity was partitioned between Rocky Mountain races than between Pacific races. Areas of highest haplotypic diversity were the southern Sierra Nevada mountain range in California, northwestern California, and southern Nevada. Pinus ponderosa haplotype distribution patterns suggest a complex phylogeographic history not revealed by other genetic and morphological data, or by the sparse paleoecological record. The results appear consistent with long-term divergence between the Pacific and Rocky Mountain varieties, along with more recent divergences not well-associated with race. Pleistocene refugia may have existed in areas of high haplotypic diversity, as well as the Great Basin, Southwestern United States/northern Mexico, and the High Plains.

  11. Mitochondrial DNA sequence evolution in the Arctoidea.

    PubMed Central

    Zhang, Y P; Ryder, O A

    1993-01-01

    Some taxa in the superfamily Arctoidea, such as the giant panda and the lesser panda, have presented puzzles to taxonomists. In the present study, approximately 397 bases of the cytochrome b gene, 364 bases of the 12S rRNA gene, and 74 bases of the tRNA(Thr) and tRNA(Pro) genes from the giant panda, lesser panda, kinkajou, raccoon, coatimundi, and all species of the Ursidae were sequenced. The high transition/transversion ratios in cytochrome b and RNA genes prior to saturation suggest that the presumed transition bias may represent a trend for some mammalian lineages rather than strictly a primate phenomenon. Transversions in the 12S rRNA gene accumulate in arctoids at about half the rate reported for artiodactyls. Different arctoid lineages evolve at different rates: the kinkajou, a procyonid, evolves the fastest, 1.7-1.9 times faster than the slowest lineage that comprises the spectacled and polar bears. Generation-time effect can only partially explain the different rates of nucleotide substitution in arctoids. Our results based on parsimony analysis show that the giant panda is more closely related to bears than to the lesser panda; the lesser panda is neither closely related to bears nor to the New World procyonids. The kinkajou, raccoon, and coatimundi diverged from each other very early, even though they group together. The polar bear is closely related to the spectacled bear, and they began to diverge from a common mitochondrial ancestor approximately 2 million years ago. Relationships of the remaining five bear species are derived. PMID:8415740

  12. Shaken not stirred: A molecular contribution to the systematics of genus Mugil (Teleostei, Mugilidae).

    PubMed

    Heras, Sandra; Maltagliati, Ferruccio; Fernández, Maria Victoria; Roldán, María Inés

    2016-07-01

    With this work we addressed some molecular systematic issues within the Mugil cephalus species complex. Particular attention was paid to the debated situations of: (i) Mugil liza, occurring in partial sympatry with Mugil cephalus in the northwestern Atlantic, and (ii) Mugil platanus, considered by some authors a synonymy of the former species and distributed in the southwestern Atlantic. We sequenced 79 individuals of a 465-bp portion of the mitochondrial control region (CR) from 8 western Atlantic and 2 Mediterranean localities. In addition, all CR sequences available from GenBank for the studied taxa were added to our dataset, for a total of 323 individuals. Overall, 229 haplotypes corresponding to 8 divergent monophyletic lineages were detected. Results of phylogenetic analyses were consistent with the occurrence of past speciation events producing the observed lineages. Of these lineages, 7 correspond to cryptic species and one is constituted by M. liza and M. platanus. As a matter of fact, these 2 taxa constitute a single lineage within the M. cephalus species complex. However, individuals of M. liza/M. platanus lineage analyzed by means of the 18 mitochondrial markers available in GenBank exhibited a degree of genetic diversity consistent with highly divergent populations. Of the 8 lineages detected, the Mediterraean one (type locality) corresponds to M. cephalus; the lineage M. liza/M. platanus should be named M. liza, under the priority principle, and the left 6 lineages need formal description. © 2015 International Society of Zoological Sciences, Institute of Zoology/Chinese Academy of Sciences and John Wiley & Sons Australia, Ltd.

  13. Resolving the phylogenetic position of Darwin's extinct ground sloth (Mylodon darwinii) using mitogenomic and nuclear exon data.

    PubMed

    Delsuc, Frédéric; Kuch, Melanie; Gibb, Gillian C; Hughes, Jonathan; Szpak, Paul; Southon, John; Enk, Jacob; Duggan, Ana T; Poinar, Hendrik N

    2018-05-16

    Mylodon darwinii is the extinct giant ground sloth named after Charles Darwin, who first collected its remains in South America. We have successfully obtained a high-quality mitochondrial genome at 99-fold coverage using an Illumina shotgun sequencing of a 12 880-year-old bone fragment from Mylodon Cave in Chile. Low level of DNA damage showed that this sample was exceptionally well preserved for an ancient subfossil, probably the result of the dry and cold conditions prevailing within the cave. Accordingly, taxonomic assessment of our shotgun metagenomic data showed a very high percentage of endogenous DNA with 22% of the assembled metagenomic contigs assigned to Xenarthra. Additionally, we enriched over 15 kb of sequence data from seven nuclear exons, using target sequence capture designed against a wide xenarthran dataset. Phylogenetic and dating analyses of the mitogenomic dataset including all extant species of xenarthrans and the assembled nuclear supermatrix unambiguously place Mylodon darwinii as the sister-group of modern two-fingered sloths, from which it diverged around 22 million years ago. These congruent results from both the mitochondrial and nuclear data support the diphyly of the two modern sloth lineages, implying the convergent evolution of their unique suspensory behaviour as an adaption to arboreality. Our results offer promising perspectives for whole-genome sequencing of this emblematic extinct taxon. © 2018 The Authors.

  14. Comparative analysis of mitochondrial genomes between a wheat K-type cytoplasmic male sterility (CMS) line and its maintainer line.

    PubMed

    Liu, Huitao; Cui, Peng; Zhan, Kehui; Lin, Qiang; Zhuo, Guoyin; Guo, Xiaoli; Ding, Feng; Yang, Wenlong; Liu, Dongcheng; Hu, Songnian; Yu, Jun; Zhang, Aimin

    2011-03-29

    Plant mitochondria, semiautonomous organelles that function as manufacturers of cellular ATP, have their own genome that has a slow rate of evolution and rapid rearrangement. Cytoplasmic male sterility (CMS), a common phenotype in higher plants, is closely associated with rearrangements in mitochondrial DNA (mtDNA), and is widely used to produce F1 hybrid seeds in a variety of valuable crop species. Novel chimeric genes deduced from mtDNA rearrangements causing CMS have been identified in several plants, such as rice, sunflower, pepper, and rapeseed, but there are very few reports about mtDNA rearrangements in wheat. In the present work, we describe the mitochondrial genome of a wheat K-type CMS line and compare it with its maintainer line. The complete mtDNA sequence of a wheat K-type (with cytoplasm of Aegilops kotschyi) CMS line, Ks3, was assembled into a master circle (MC) molecule of 647,559 bp and found to harbor 34 known protein-coding genes, three rRNAs (18 S, 26 S, and 5 S rRNAs), and 16 different tRNAs. Compared to our previously published sequence of a K-type maintainer line, Km3, we detected Ks3-specific mtDNA (> 100 bp, 11.38%) and repeats (> 100 bp, 29 units) as well as genes that are unique to each line: rpl5 was missing in Ks3 and trnH was absent from Km3. We also defined 32 single nucleotide polymorphisms (SNPs) in 13 protein-coding, albeit functionally irrelevant, genes, and predicted 22 unique ORFs in Ks3, representing potential candidates for K-type CMS. All these sequence variations are candidates for involvement in CMS. A comparative analysis of the mtDNA of several angiosperms, including those from Ks3, Km3, rice, maize, Arabidopsis thaliana, and rapeseed, showed that non-coding sequences of higher plants had mostly divergent multiple reorganizations during the mtDNA evolution of higher plants. The complete mitochondrial genome of the wheat K-type CMS line Ks3 is very different from that of its maintainer line Km3, especially in non-coding sequences. Sequence rearrangement has produced novel chimeric ORFs, which may be candidate genes for CMS. Comparative analysis of several angiosperm mtDNAs indicated that non-coding sequences are the most frequently reorganized during mtDNA evolution in higher plants.

  15. Resolving the tips of the tree of life: How much mitochondrialdata doe we need?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bonett, Ronald M.; Macey, J. Robert; Boore, Jeffrey L.

    2005-04-29

    Mitochondrial (mt) DNA sequences are used extensively to reconstruct evolutionary relationships among recently diverged animals,and have constituted the most widely used markers for species- and generic-level relationships for the last decade or more. However, most studies to date have employed relatively small portions of the mt-genome. In contrast, complete mt-genomes primarily have been used to investigate deep divergences, including several studies of the amount of mt sequence necessary to recover ancient relationships. We sequenced and analyzed 24 complete mt-genomes from a group of salamander species exhibiting divergences typical of those in many species-level studies. We present the first comprehensive investigationmore » of the amount of mt sequence data necessary to consistently recover the mt-genome tree at this level, using parsimony and Bayesian methods. Both methods of phylogenetic analysis revealed extremely similar results. A surprising number of well supported, yet conflicting, relationships were found in trees based on fragments less than {approx}2000 nucleotides (nt), typical of the vast majority of the thousands of mt-based studies published to date. Large amounts of data (11,500+ nt) were necessary to consistently recover the whole mt-genome tree. Some relationships consistently were recovered with fragments of all sizes, but many nodes required the majority of the mt-genome to stabilize, particularly those associated with short internal branches. Although moderate amounts of data (2000-3000 nt) were adequate to recover mt-based relationships for which most nodes were congruent with the whole mt-genome tree, many thousands of nucleotides were necessary to resolve rapid bursts of evolution. Recent advances in genomics are making collection of large amounts of sequence data highly feasible, and our results provide the basis for comparative studies of other closely related groups to optimize mt sequence sampling and phylogenetic resolution at the ''tips'' of the Tree of Life.« less

  16. DNA barcode variability and host plant usage of fruit flies (Diptera: Tephritidae) in Thailand.

    PubMed

    Kunprom, Chonticha; Pramual, Pairot

    2016-10-01

    The objectives of this study were to examine the genetic variation in fruit flies (Diptera: Tephritidae) in Thailand and to test the efficiency of the mitochondrial cytochrome c oxidase subunit I (COI) barcoding region for species-level identification. Twelve fruit fly species were collected from 24 host plant species of 13 families. The number of host plant species for each fruit fly species ranged between 1 and 11, with Bactrocera correcta found in the most diverse host plants. A total of 123 COI sequences were obtained from these fruit fly species. Sequences from the NCBI database were also included, for a total of 17 species analyzed. DNA barcoding identification analysis based on the best close match method revealed a good performance, with 94.4% of specimens correctly identified. However, many specimens (3.6%) had ambiguous identification, mostly due to intra- and interspecific overlap between members of the B. dorsalis complex. A phylogenetic tree based on the mitochondrial barcode sequences indicated that all species, except for the members of the B. dorsalis complex, were monophyletic with strong support. Our work supports recent calls for synonymization of these species. Divergent lineages were observed within B. correcta and B. tuberculata, and this suggested that these species need further taxonomic reexamination.

  17. Genetic variation and evolutionary demography of Fenneropenaeus chinensis populations, as revealed by the analysis of mitochondrial control region sequences

    PubMed Central

    2010-01-01

    Genetic variation and evolutionary demography of the shrimp Fenneropenaeus chinensis were investigated using sequence data of the complete mitochondrial control region (CR). Fragments of 993 bp of the CR were sequenced for 93 individuals from five localities over most of the species' range in the Yellow Sea and the Bohai Sea. There were 84 variable sites defining 68 haplotypes. Haplotype diversity levels were very high (0.95 ± 0.03-0.99 ± 0.02) in F. chinensis populations, whereas those of nucleotide diversity were moderate to low (0.66 ± 0.36%-0.84 ± 0.46%). Analysis of molecular variance and conventional population statistics (FST ) revealed no significant genetic structure throughout the range of F. chinensis. Mismatch distribution, estimates of population parameters and neutrality tests revealed that the significant fluctuations and shallow coalescence of mtDNA genealogies observed were coincident with estimated demographic parameters and neutrality tests, in implying important past-population size fluctuations or range expansion. Isolation with Migration (IM) coalescence results suggest that F. chinensis, distributed along the coasts of northern China and the Korean Peninsula (about 1000 km apart), diverged recently, the estimated time-split being 12,800 (7,400-18,600) years ago. PMID:21637498

  18. Sequence analysis of three mitochondrial DNA molecules reveals interesting differences among Saccharomyces yeasts

    PubMed Central

    Langkjær, R. B.; Casaregola, S.; Ussery, D. W.; Gaillardin, C.; Piškur, J.

    2003-01-01

    The complete sequences of mitochondrial DNA (mtDNA) from the two budding yeasts Saccharomyces castellii and Saccharomyces servazzii, consisting of 25 753 and 30 782 bp, respectively, were analysed and compared to Saccharomyces cerevisiae mtDNA. While some of the traits are very similar among Saccharomyces yeasts, others have highly diverged. The two mtDNAs are much more compact than that of S.cerevisiae and contain fewer introns and intergenic sequences, although they have almost the same coding potential. A few genes contain group I introns, but group II introns, otherwise found in S.cerevisiae mtDNA, are not present. Surprisingly, four genes (ATP6, COX2, COX3 and COB) in the mtDNA of S.servazzii contain, in total, five +1 frameshifts. mtDNAs of S.castellii, S.servazzii and S.cerevisiae contain all genes on the same strand, except for one tRNA gene. On the other hand, the gene order is very different. Several gene rearrangements have taken place upon separation of the Saccharomyces lineages, and even a part of the transcription units have not been preserved. It seems that the mechanism(s) involved in the generation of the rearrangements has had to ensure that all genes stayed encoded by the same DNA strand. PMID:12799436

  19. The First Chameleon Transcriptome: Comparative Genomic Analysis of the OXPHOS System Reveals Loss of COX8 in Iguanian Lizards

    PubMed Central

    Bar-Yaacov, Dan; Bouskila, Amos; Mishmar, Dan

    2013-01-01

    Recently, we found dramatic mitochondrial DNA divergence of Israeli Chamaeleo chamaeleon populations into two geographically distinct groups. We aimed to examine whether the same pattern of divergence could be found in nuclear genes. However, no genomic resource is available for any chameleon species. Here we present the first chameleon transcriptome, obtained using deep sequencing (SOLiD). Our analysis identified 164,000 sequence contigs of which 19,000 yielded unique BlastX hits. To test the efficacy of our sequencing effort, we examined whether the chameleon and other available reptilian transcriptomes harbored complete sets of genes comprising known biochemical pathways, focusing on the nDNA-encoded oxidative phosphorylation (OXPHOS) genes as a model. As a reference for the screen, we used the human 86 (including isoforms) known structural nDNA-encoded OXPHOS subunits. Analysis of 34 publicly available vertebrate transcriptomes revealed orthologs for most human OXPHOS genes. However, OXPHOS subunit COX8 (Cytochrome C oxidase subunit 8), including all its known isoforms, was consistently absent in transcriptomes of iguanian lizards, implying loss of this subunit during the radiation of this suborder. The lack of COX8 in the suborder Iguania is intriguing, since it is important for cellular respiration and ATP production. Our sequencing effort added a new resource for comparative genomic studies, and shed new light on the evolutionary dynamics of the OXPHOS system. PMID:24009133

  20. The first Chameleon transcriptome: comparative genomic analysis of the OXPHOS system reveals loss of COX8 in Iguanian lizards.

    PubMed

    Bar-Yaacov, Dan; Bouskila, Amos; Mishmar, Dan

    2013-01-01

    Recently, we found dramatic mitochondrial DNA divergence of Israeli Chamaeleo chamaeleon populations into two geographically distinct groups. We aimed to examine whether the same pattern of divergence could be found in nuclear genes. However, no genomic resource is available for any chameleon species. Here we present the first chameleon transcriptome, obtained using deep sequencing (SOLiD). Our analysis identified 164,000 sequence contigs of which 19,000 yielded unique BlastX hits. To test the efficacy of our sequencing effort, we examined whether the chameleon and other available reptilian transcriptomes harbored complete sets of genes comprising known biochemical pathways, focusing on the nDNA-encoded oxidative phosphorylation (OXPHOS) genes as a model. As a reference for the screen, we used the human 86 (including isoforms) known structural nDNA-encoded OXPHOS subunits. Analysis of 34 publicly available vertebrate transcriptomes revealed orthologs for most human OXPHOS genes. However, OXPHOS subunit COX8 (Cytochrome C oxidase subunit 8), including all its known isoforms, was consistently absent in transcriptomes of iguanian lizards, implying loss of this subunit during the radiation of this suborder. The lack of COX8 in the suborder Iguania is intriguing, since it is important for cellular respiration and ATP production. Our sequencing effort added a new resource for comparative genomic studies, and shed new light on the evolutionary dynamics of the OXPHOS system.

  1. The benefits of analysing complete mitochondrial genomes: Deep insights into the phylogeny and population structure of Echinococcus granulosus sensu lato genotypes G6 and G7.

    PubMed

    Laurimäe, Teivi; Kinkar, Liina; Romig, Thomas; Omer, Rihab A; Casulli, Adriano; Umhang, Gérald; Gasser, Robin B; Jabbar, Abdul; Sharbatkhori, Mitra; Mirhendi, Hossein; Ponce-Gordo, Francisco; Lazzarini, Lorena E; Soriano, Silvia V; Varcasia, Antonio; Nejad, Mohammad Rostami; Andresiuk, Vanessa; Maravilla, Pablo; González, Luis Miguel; Dybicz, Monika; Gawor, Jakub; Šarkūnas, Mindaugas; Šnábel, Viliam; Kuzmina, Tetiana; Saarma, Urmas

    2018-06-12

    Cystic echinococcosis (CE) is a zoonotic disease caused by the larval stage of the species complex Echinococcus granulosus sensu lato. Within this complex, genotypes G6 and G7 have been frequently associated with human CE worldwide. Previous studies exploring the genetic variability and phylogeography of genotypes G6 and G7 have been based on relatively short mtDNA sequences, and the resolution of these studies has often been low. Moreover, using short sequences, the distinction between G6 and G7 has in some cases remained challenging. The aim here was to sequence complete mitochondrial genomes (mitogenomes) to obtain deeper insight into the genetic diversity, phylogeny and population structure of genotypes G6 and G7. We sequenced complete mitogenomes of 94 samples collected from 15 different countries worldwide. The results demonstrated that (i) genotypes G6 and G7 can be clearly distinguished when mitogenome sequences are used; (ii) G7 is represented by two major haplogroups, G7a and G7b, the latter being specific to islands of Corsica and Sardinia; (iii) intensive animal trade, but also geographical isolation, have likely had the largest impact on shaping the genetic structure and distribution of genotypes G6 and G7. In addition, we found phylogenetically highly divergent haplotype from Mongolia (Gmon), which had a higher affinity to G6. Copyright © 2017. Published by Elsevier B.V.

  2. Patterns of population subdivision, gene flow and genetic variability in the African wild dog (Lycaon pictus).

    PubMed

    Girman, D J; Vilà, C; Geffen, E; Creel, S; Mills, M G; McNutt, J W; Ginsberg, J; Kat, P W; Mamiya, K H; Wayne, R K

    2001-07-01

    African wild dogs are large, highly mobile carnivores that are known to disperse over considerable distances and are rare throughout much of their geographical range. Consequently, genetic variation within and differentiation between geographically separated populations is predicted to be minimal. We determined the genetic diversity of mitochondrial DNA (mtDNA) control region sequences and microsatellite loci in seven populations of African wild dogs. Analysis of mtDNA nucleotide diversity suggests that, historically, wild dog populations have been small relative to other large carnivores. However, population declines due to recent habitat loss have not caused a dramatic reduction in genetic diversity. We found one historical and eight recent mtDNA genotypes in 280 individuals that defined two highly divergent clades. In contrast to a previous, more limited, mtDNA analysis, sequences from these clades are not geographically restricted to eastern or southern African populations. Rather, we found a large admixture zone spanning populations from Botswana, Zimbabwe and south-eastern Tanzania. Mitochondrial and microsatellite differentiation between populations was significant and unique mtDNA genotypes and alleles characterized the populations. However, gene flow estimates (Nm) based on microsatellite data were generally greater than one migrant per generation. In contrast, gene flow estimates based on the mtDNA control region were lower than expected given differences in the mode of inheritance of mitochondrial and nuclear markers which suggests a male bias in long-distance dispersal.

  3. Mitochondrial D-loop analysis for uncovering the population structure and genetic diversity among the indigenous duck (Anas platyrhynchos) populations of India.

    PubMed

    Gaur, Uma; Tantia, Madhu Sudan; Mishra, Bina; Bharani Kumar, Settypalli Tirumala; Vijh, Ramesh Kumar; Chaudhury, Ashok

    2018-03-01

    The indigenous domestic duck (Anas platyrhynchos domestica) which is domesticated from Mallard (Anas platyrhynchos) contributes significantly to poor farming community in coastal and North Eastern regions of India. For conservation and maintenance of indigenous duck populations it is very important to know the existing genetic diversity and population structure. To unravel the population structure and genetic diversity among the five indigenous duck populations of India, the mitochondrial D-loop sequences of 120 ducks were analyzed. The sequence analysis by comparison of mtDNA D-loop region (470 bp) of five Indian duck populations revealed 25 mitochondrial haplotypes. Pairwise F ST value among populations was 0.4243 (p < .01) and the range of nucleotide substitution per site (Dxy) between the five Indian duck populations was 0.00034-0.00555, and the net divergence (Da) was 0-0.00355. The phylogenetic analysis in the present study unveiled three clades. The analysis revealed genetic continuity among ducks of coastal region of the country which formed a separate group from the ducks of the inland area. Both coastal as well as the land birds revealed introgression of the out group breed Khaki Campbell, which is used for breed improvement programs in India. The observations revealed very less selection and a single matrilineal lineage of indigenous domestic ducks.

  4. Compositional complexity of the mitochondrial proteome of a unicellular eukaryote (Acanthamoeba castellanii, supergroup Amoebozoa) rivals that of animals, fungi, and plants.

    PubMed

    Gawryluk, Ryan M R; Chisholm, Kenneth A; Pinto, Devanand M; Gray, Michael W

    2014-09-23

    We present a combined proteomic and bioinformatic investigation of mitochondrial proteins from the amoeboid protist Acanthamoeba castellanii, the first such comprehensive investigation in a free-living member of the supergroup Amoebozoa. This protist was chosen both for its phylogenetic position (as a sister to animals and fungi) and its ecological ubiquity and physiological flexibility. We report 1033 A. castellanii mitochondrial protein sequences, 709 supported by mass spectrometry data (676 nucleus-encoded and 33 mitochondrion-encoded), including two previously unannotated mtDNA-encoded proteins, which we identify as highly divergent mitochondrial ribosomal proteins. Other notable findings include duplicate proteins for all of the enzymes of the tricarboxylic acid (TCA) cycle-which, along with the identification of a mitochondrial malate synthase-isocitrate lyase fusion protein, suggests the interesting possibility that the glyoxylate cycle operates in A. castellanii mitochondria. Additionally, the A. castellanii genome encodes an unusually high number (at least 29) of mitochondrion-targeted pentatricopeptide repeat (PPR) proteins, organellar RNA metabolism factors in other organisms. We discuss several key mitochondrial pathways, including DNA replication, transcription and translation, protein degradation, protein import and Fe-S cluster biosynthesis, highlighting similarities and differences in these pathways in other eukaryotes. In compositional and functional complexity, the mitochondrial proteome of A. castellanii rivals that of multicellular eukaryotes. Comprehensive proteomic surveys of mitochondria have been undertaken in a limited number of predominantly multicellular eukaryotes. This phylogenetically narrow perspective constrains and biases our insights into mitochondrial function and evolution, as it neglects protists, which account for most of the evolutionary and functional diversity within eukaryotes. We report here the first comprehensive investigation of the mitochondrial proteome in a member (A. castellanii) of the eukaryotic supergroup Amoebozoa. Through a combination of tandem mass spectrometry (MS/MS) and in silico data mining, we have retrieved 1033 candidate mitochondrial protein sequences, 709 having MS support. These data were used to reconstruct the metabolic pathways and protein complexes of A. castellanii mitochondria, and were integrated with data from other characterized mitochondrial proteomes to augment our understanding of mitochondrial proteome evolution. Our results demonstrate the power of combining direct proteomic and bioinformatic approaches in the discovery of novel mitochondrial proteins, both nucleus-encoded and mitochondrion-encoded, and highlight the compositional complexity of the A. castellanii mitochondrial proteome, which rivals that of animals, fungi and plants. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. PARALLEL RACE FORMATION AND THE EVOLUTION OF MIMICRY IN HELICONIUS BUTTERFLIES: A PHYLOGENETIC HYPOTHESIS FROM MITOCHONDRIAL DNA SEQUENCES.

    PubMed

    Brower, Andrew V Z

    1996-02-01

    Mimicry has been a fundamental focus of research since the birth of evolutionary biology yet rarely has been studied from a phylogenetic perspective beyond the simple recognition that mimics are not similar due to common descent. The difficulty of finding characters to discern relationships among closely related and convergent taxa has challenged systematists for more than a century. The phenotypic diversity of wing pattens among mimetic Heliconius adds an additional twist to the problem, because single species contain more than a dozen radically different-looking geographical races even though the mimetic advantage is theoretically highest when all individuals within and between species appear the same. Mitochondrial DNA (mtDNA) offers an independent way to address these issues. In this study, Cytochrome Oxidase I and II sequences from multiple, parallel races of Heliconius erato and Heliconius melpomene are examined, to estimate intraspecific phylogeny and gauge sequence divergence and ages of clades among races within each species. Although phenotypes of sympatric races exhibit remarkable concordance between the two species, the mitochondrial cladograms show that the species have not shared a common evolutionary history. H. erato exhibits a basal split between trans- and cis-Andean groups of races, whereas H. melpomene originates in the Guiana Shield. Diverse races in either species appear to have evolved within the last 200,000 yr, and convergent phenotypes have evolved independently within as well as between species. These results contradict prior theories of the evolution of mimicry based on analysis of wing-pattern genetics. © 1996 The Society for the Study of Evolution.

  6. The complete mitochondrial genome of the Tibetan fox (Vulpes ferrilata) and implications for the phylogeny of Canidae.

    PubMed

    Zhao, Chao; Zhang, Honghai; Liu, Guangshuai; Yang, Xiufeng; Zhang, Jin

    2016-02-01

    Canidae is a family of carnivores comprises about 36 extant species that have been defined as three distinct monophyletic groups based on multi-gene data sets. The Tibetan fox (Vulpes ferrilata) is a member of the family Canidae that is endemic to the Tibetan Plateau and has seldom been in the focus of phylogenetic analyses. To clarify the phylogenic relationship of V. ferrilata between other canids, we sequenced the mitochondrial genome and firstly attempted to clarify the relative phylogenetic position of V. ferrilata in canids using the complete mitochondrial genome data. The mitochondrial genome of the Tibetan fox was 16,667 bp, including 37 genes (13 protein-coding genes, 2 rRNA, and 22 tRNA) and a control region. A comparison analysis among the sequenced data of canids indicated that they shared a similar arrangement, codon usage, and other aspects. A phylogenetic analysis on the basis of the nearly complete mtDNA genomes of canids agreed with three monophyletic clades, and the Tibetan fox was highly supported as a sister group of the corsac fox within Vulpes. The estimation of the divergence time suggested a recent split between the Tibetan fox and the corsac fox and rapid evolution in canids. There was no genetic evidence for positive selection related to high-altitude adaption for the Tibetan fox in mtDNA and following studies should pay more attention to the detection of positive signals in nuclear genes involved in energy and oxygen metabolisms. Copyright © 2015 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  7. The effects of Pleistocene climate change on biotic differentiation in a montane songbird clade from Wallacea.

    PubMed

    Ng, Nathaniel S R; Wilton, Peter R; Prawiradilaga, Dewi Malia; Tay, Ywee Chieh; Indrawan, Mochamad; Garg, Kritika M; Rheindt, Frank E

    2017-09-01

    The role of Pleistocene Ice Age in tropical diversification is poorly understood, especially in archipelagos, in which glaciation-induced sea level fluctuations may lead to complicated changes in land distribution. To assess how Pleistocene land bridges may have facilitated gene flow in tropical archipelagos, we investigated patterns of diversification in the rarely-collected rusty-bellied fantail Rhipidura teysmanni (Passeriformes: Rhipiduridae) complex from Wallacea using a combination of bioacoustic traits and whole-genome sequencing methods (dd-RADSeq). We report a biogeographic leapfrog pattern in the vocalizations of these birds, and uncover deep genomic divergence among island populations despite the presence of intermittent land connections between some. We demonstrate how rare instances of genetic introgression have affected the evolution of this species complex, and document the presence of double introgressive mitochondrial sweeps, highlighting the dangers of using only mitochondrial DNA in evolutionary research. By applying different tree inference approaches, we demonstrate how concatenation methods can give inaccurate results when investigating divergence in closely-related taxa. Our study highlights high levels of cryptic avian diversity in poorly-explored Wallacea, elucidates complex patterns of Pleistocene climate-mediated diversification in an elusive montane songbird, and suggests that Pleistocene land bridges may have accounted for limited connectivity among montane Wallacean biota. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. The role of Pleistocene glaciations in shaping the evolution of polar and brown bears. Evidence from a critical review of mitochondrial and nuclear genome analyses.

    PubMed

    Hassanin, Alexandre

    2015-07-01

    In this report, I review recent molecular studies dealing with the origin and evolution of polar bears (Ursus maritimus), with special emphasis on their relationships with brown bears (U. arctos). On the basis of mitochondrial and nuclear data, different hypotheses have been proposed, including rapid morphological differentiation of U. maritimus, genetic introgression from U. arctos into U. maritimus, or inversely from U. maritimus into U. arctos, involving either male- or female-mediated gene flow. In the light of available molecular and eco-ethological data, I suggest, firstly, that all divergences among major clades of large bears can be linked to glacial periods, secondly, that polar bears diverged from brown bears before 530 thousand years ago (ka), during one of the three glacial marine isotope stages (MIS) 14, 15.2 or 16, and, thirdly, that genetic introgression had occurred from female polar bears into brown bear populations during at least two glacial periods, at 340 ± 10 ka (MIS 10) in western Europe, and at 155 ± 5 ka (MIS 6) on the ABC islands of southeastern Alaska, and probably also in Beringia and Ireland based on ancient DNA sequences. Copyright © 2015 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  9. Evolution of nuclear ribosomal RNAs in kinetoplastid protozoa: perspectives on the age and origins of parasitism.

    PubMed Central

    Fernandes, A P; Nelson, K; Beverley, S M

    1993-01-01

    Molecular evolutionary relationships within the protozoan order Kinetoplastida were deduced from comparisons of the nuclear small and large subunit ribosomal RNA (rRNA) gene sequences. These studies show that relationships among the trypanosomatid protozoans differ from those previously proposed from studies of organismal characteristics or mitochondrial rRNAs. The genera Leishmania, Endotrypanum, Leptomonas, and Crithidia form a closely related group, which shows progressively more distant relationships to Phytomonas and Blastocrithidia, Trypanosoma cruzi, and lastly Trypanosoma brucei. The rooting of the trypanosomatid tree was accomplished by using Bodo caudatus (family Bodonidae) as an outgroup, a status confirmed by molecular comparisons with other eukaryotes. The nuclear rRNA tree agrees well with data obtained from comparisons of other nuclear genes. Differences with the proposed mitochondrial rRNA tree probably reflect the lack of a suitable outgroup for this tree, as the topologies are otherwise similar. Small subunit rRNA divergences within the trypanosomatids are large, approaching those among plants and animals, which underscores the evolutionary antiquity of the group. Analysis of the distribution of different parasitic life-styles of these species in conjunction with a probable timing of evolutionary divergences suggests that vertebrate parasitism arose multiple times in the trypanosomatids. PMID:8265597

  10. Remarkable ancient divergences amongst neglected lorisiform primates

    PubMed Central

    Nekaris, K. Anne‐Isola; Perkin, Andrew; Bearder, Simon K.; Pimley, Elizabeth R.; Schulze, Helga; Streicher, Ulrike; Nadler, Tilo; Kitchener, Andrew; Zischler, Hans; Zinner, Dietmar; Roos, Christian

    2015-01-01

    Lorisiform primates (Primates: Strepsirrhini: Lorisiformes) represent almost 10% of the living primate species and are widely distributed in sub‐Saharan Africa and South/South‐East Asia; however, their taxonomy, evolutionary history, and biogeography are still poorly understood. In this study we report the largest molecular phylogeny in terms of the number of represented taxa. We sequenced the complete mitochondrial cytochrome b gene for 86 lorisiform specimens, including ∼80% of all the species currently recognized. Our results support the monophyly of the Galagidae, but a common ancestry of the Lorisinae and Perodicticinae (family Lorisidae) was not recovered. These three lineages have early origins, with the Galagidae and the Lorisinae diverging in the Oligocene at about 30 Mya and the Perodicticinae emerging in the early Miocene. Our mitochondrial phylogeny agrees with recent studies based on nuclear data, and supports Euoticus as the oldest galagid lineage and the polyphyletic status of Galagoides. Moreover, we have elucidated phylogenetic relationships for several species never included before in a molecular phylogeny. The results obtained in this study suggest that lorisiform diversity remains substantially underestimated and that previously unnoticed cryptic diversity might be present within many lineages, thus urgently requiring a comprehensive taxonomic revision of this primate group. © 2015 The Linnean Society of London PMID:26900177

  11. Independent evolution of functionally exchangeable mitochondrial outer membrane import complexes

    PubMed Central

    Dimmer, Kai S

    2018-01-01

    Assembly and/or insertion of a subset of mitochondrial outer membrane (MOM) proteins, including subunits of the main MOM translocase, require the fungi-specific Mim1/Mim2 complex. So far it was unclear which proteins accomplish this task in other eukaryotes. Here, we show by reciprocal complementation that the MOM protein pATOM36 of trypanosomes is a functional analogue of yeast Mim1/Mim2 complex, even though these proteins show neither sequence nor topological similarity. Expression of pATOM36 rescues almost all growth, mitochondrial biogenesis, and morphology defects in yeast cells lacking Mim1 and/or Mim2. Conversely, co-expression of Mim1 and Mim2 restores the assembly and/or insertion defects of MOM proteins in trypanosomes ablated for pATOM36. Mim1/Mim2 and pATOM36 form native-like complexes when heterologously expressed, indicating that additional proteins are not part of these structures. Our findings indicate that Mim1/Mim2 and pATOM36 are the products of convergent evolution and arose only after the ancestors of fungi and trypanosomatids diverged. PMID:29923829

  12. Conservation genetics of snowy plovers (Charadrius alexandrinus) in the Western Hemisphere: Population genetic structure and delineation of subspecies

    USGS Publications Warehouse

    Funk, W.C.; Mullins, T.D.; Haig, S.M.

    2007-01-01

    We examined the genetic structure of snowy plovers (Charadrius alexandrinus) in North America, the Caribbean, and the west coast of South America to quantify variation within and among breeding areas and to test the validity of three previously recognized subspecies. Sequences (676 bp) from domains I and II of the mitochondrial control region were analyzed for 166 snowy plovers from 20 breeding areas. Variation was also examined at 10 microsatellite loci for 144 snowy plovers from 14 breeding areas. The mtDNA and microsatellite data provided strong evidence that the Puerto Rican breeding group is genetically divergent from sites in the continental U.S. (net sequence divergence = 0.38%; F ST for microsatellites = 0.190). Our data also revealed high levels of differentiation between sites from South America and North America (net sequence divergence = 0.81%; F ST for microsatellites = 0.253). In contrast, there was little genetic structure among breeding sites within the continental U.S. Our results suggest that snowy plovers in Florida should be considered part of C. a. nivosus (rather than part of C. a. tenuirostris, where they are currently placed), whereas snowy plovers from Puerto Rico should be considered part of C. a. tenuirostris. Snowy plovers in South America should remain a separate subspecies (C. a. occidentalis). Although U.S. Pacific and Gulf Coast breeding areas were not genetically distinct from other continental U.S. sites, demographic isolation, unique coastal habitats, and recent population declines suggest they warrant special concern. ?? 2007 Springer Science+Business Media, Inc.

  13. Sky island diversification meets the multispecies coalescent - divergence in the spruce-fir moss spider (Microhexura montivaga, Araneae, Mygalomorphae) on the highest peaks of southern Appalachia.

    PubMed

    Hedin, Marshal; Carlson, Dave; Coyle, Fred

    2015-07-01

    Microhexura montivaga is a miniature tarantula-like spider endemic to the highest peaks of the southern Appalachian mountains and is known only from six allopatric, highly disjunct montane populations. Because of severe declines in spruce-fir forest in the late 20th century, M. montivaga was formally listed as a US federally endangered species in 1995. Using DNA sequence data from one mitochondrial and seven nuclear genes, patterns of multigenic genetic divergence were assessed for six montane populations. Independent mitochondrial and nuclear discovery analyses reveal obvious genetic fragmentation both within and among montane populations, with five to seven primary genetic lineages recovered. Multispecies coalescent validation analyses [guide tree and unguided Bayesian Phylogenetics and Phylogeography (BPP), Bayes factor delimitation (BFD)] using nuclear-only data congruently recover six or seven distinct lineages; BFD analyses using combined nuclear plus mitochondrial data favour seven or eight lineages. In stark contrast to this clear genetic fragmentation, a survey of secondary sexual features for available males indicates morphological conservatism across montane populations. While it is certainly possible that morphologically cryptic speciation has occurred in this taxon, this system may alternatively represent a case where extreme population genetic structuring (but not speciation) leads to an oversplitting of lineage diversity by multispecies coalescent methods. Our results have clear conservation implications for this federally endangered taxon and illustrate a methodological issue expected to become more common as genomic-scale data sets are gathered for taxa found in naturally fragmented habitats. © 2015 John Wiley & Sons Ltd.

  14. Miniaturized mitogenome of the parasitic plant Viscum scurruloideum is extremely divergent and dynamic and has lost all nad genes

    PubMed Central

    Skippington, Elizabeth; Barkman, Todd J.; Rice, Danny W.; Palmer, Jeffrey D.

    2015-01-01

    Despite the enormous diversity among parasitic angiosperms in form and structure, life-history strategies, and plastid genomes, little is known about the diversity of their mitogenomes. We report the sequence of the wonderfully bizarre mitogenome of the hemiparasitic aerial mistletoe Viscum scurruloideum. This genome is only 66 kb in size, making it the smallest known angiosperm mitogenome by a factor of more than three and the smallest land plant mitogenome. Accompanying this size reduction is exceptional reduction of gene content. Much of this reduction arises from the unexpected loss of respiratory complex I (NADH dehydrogenase), universally present in all 300+ other angiosperms examined, where it is encoded by nine mitochondrial and many nuclear nad genes. Loss of complex I in a multicellular organism is unprecedented. We explore the potential relationship between this loss in Viscum and its parasitic lifestyle. Despite its small size, the Viscum mitogenome is unusually rich in recombinationally active repeats, possessing unparalleled levels of predicted sublimons resulting from recombination across short repeats. Many mitochondrial gene products exhibit extraordinary levels of divergence in Viscum, indicative of highly relaxed if not positive selection. In addition, all Viscum mitochondrial protein genes have experienced a dramatic acceleration in synonymous substitution rates, consistent with the hypothesis of genomic streamlining in response to a high mutation rate but completely opposite to the pattern seen for the high-rate but enormous mitogenomes of Silene. In sum, the Viscum mitogenome possesses a unique constellation of extremely unusual features, a subset of which may be related to its parasitic lifestyle. PMID:26100885

  15. Shallow phylogeographic structuring of Vimba vimba across Europe suggests two distinct refugia during the last glaciation.

    PubMed

    Hänfling, B; Dümpelmann, C; Bogutskaya, N G; Brandl, R; Brändle, M

    2009-12-01

    Genetic variation and geographical structuring of vimba Vimba vimba were analysed across 26 sites (80 individuals) by means of mtDNA sequences (cyt b gene, mitochondrial control region) to localize hypothesized glacial refugia and to reconstruct postglacial recoloniation routes. Although genetic diversity among sequenced individuals was low, a combined analysis of the two sequenced fragments revealed a western (central and northern Europe: Danube, Elbe and lakes of Sweden) and an eastern clade (eastern Europe: Dnieper-South Bug, Don, Neman). Furthermore, a number of divergent ancestral haplotypes distributed around the Black and Caspian Seas became apparent. Mismatch analyses supported a sudden expansion model for the populations of the western clade between 50 and 10 000 bp. Overall, the study provides strong evidence for a northward and westward expansion of V. vimba from two refugial regions located in the Danubian drainage and the northern Pontic regions respectively.

  16. Multigenomic Delineation of Plasmodium Species of the Laverania Subgenus Infecting Wild-Living Chimpanzees and Gorillas.

    PubMed

    Liu, Weimin; Sundararaman, Sesh A; Loy, Dorothy E; Learn, Gerald H; Li, Yingying; Plenderleith, Lindsey J; Ndjango, Jean-Bosco N; Speede, Sheri; Atencia, Rebeca; Cox, Debby; Shaw, George M; Ayouba, Ahidjo; Peeters, Martine; Rayner, Julian C; Hahn, Beatrice H; Sharp, Paul M

    2016-07-02

    Plasmodium falciparum, the major cause of malaria morbidity and mortality worldwide, is only distantly related to other human malaria parasites and has thus been placed in a separate subgenus, termed Laverania Parasites morphologically similar to P. falciparum have been identified in African apes, but only one other Laverania species, Plasmodium reichenowi from chimpanzees, has been formally described. Although recent studies have pointed to the existence of additional Laverania species, their precise number and host associations remain uncertain, primarily because of limited sampling and a paucity of parasite sequences other than from mitochondrial DNA. To address this, we used limiting dilution polymerase chain reaction to amplify additional parasite sequences from a large number of chimpanzee and gorilla blood and fecal samples collected at two sanctuaries and 30 field sites across equatorial Africa. Phylogenetic analyses of more than 2,000 new sequences derived from the mitochondrial, nuclear, and apicoplast genomes revealed six divergent and well-supported clades within the Laverania parasite group. Although two of these clades exhibited deep subdivisions in phylogenies estimated from organelle gene sequences, these sublineages were geographically defined and not present in trees from four unlinked nuclear loci. This greatly expanded sequence data set thus confirms six, and not seven or more, ape Laverania species, of which P. reichenowi, Plasmodium gaboni, and Plasmodium billcollinsi only infect chimpanzees, whereas Plasmodium praefalciparum, Plasmodium adleri, and Pladmodium blacklocki only infect gorillas. The new sequence data also confirm the P. praefalciparum origin of human P. falciparum. © The Author(s) 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  17. Rhodnius barretti, a new species of Triatominae (Hemiptera: Reduviidae) from western Amazonia

    PubMed Central

    Abad-Franch, Fernando; Pavan, Márcio G; Jaramillo-O, Nicolás; Palomeque, Francisco S; Dale, Carolina; Chaverra, Duverney; Monteiro, Fernando A

    2013-01-01

    Rhodnius barretti , a new triatomine species, is described based on adult specimens collected in rainforest environments within the Napo ecoregion of western Amazonia (Colombia and Ecuador). R. barretti resembles Rhodnius robustus s.l. , but mitochondrial cytochrome b gene sequences reveal that it is a strongly divergent member of the “robustus lineage”, i.e., basal to the clade encompassing Rhodnius nasutus , Rhodnius neglectus , Rhodnius prolixus and five members of the R. robustus species complex. Morphometric analyses also reveal consistent divergence from R. robustus s.l. , including head and, as previously shown, wing shape and the length ratios of some anatomical structures. R. barretti occurs, often at high densities, in Attalea butyracea and Oenocarpus bataua palms. It is strikingly aggressive and adults may invade houses flying from peridomestic palms. R. barretti must therefore be regarded as a potential Trypanosoma cruzi vector in the Napo ecoregion, where Chagas disease is endemic. PMID:24473808

  18. Mitochondrial DNA phylogeography of Semisulcospira libertina (Gastropoda: Cerithioidea: Pleuroceridae): implications the history of landform changes in Taiwan.

    PubMed

    Hsu, Kui-Ching; Bor, Hor; Lin, Hung-Du; Kuo, Po-Hsun; Tan, Mian-Shin; Chiu, Yuh-Wen

    2014-06-01

    The mitochondrial DNA cytochrome c oxidase subunit I sequences from 95 specimens of Semisulcospira libertina in Taiwan were identified as two major phylogroups, exhibiting a southern and northern distribution, north of Formosa Bank and south of Miaoli Plateau. The genetic distance between these two phylogroups was 12.20%, and the distances within-phylogroups were 4.97 and 5.56%. According to a molecular clock of 1.56% per lineage per million years, the divergence time between these two major phylogroups was estimated at 4.94 million years ago (mya), with the two phylogroups forming at 3.64 and 3.75 mya, respectively. Moreover, the geological events have suggested that Taiwan Island emerged above sea level at 4-5 mya, and became its present shape at 2 mya. These results suggested that these two phylogroups might originate from two independent ancestral populations or divergent before colonizing Taiwan. Within South phylogroup, the initial colonization was hypothesized to be in Kaoping River (WT), followed by its northward. The high divergence between south- and north of WT River was influenced by the formation of the Kaoping foreland basins. Within North phylogroup, the colonization was from central sub-region through paleo-Miaoli Plateau to northern and northeastern sub-regions. This study showed that the landform changes might have shaped the genetic structure of S. libertina in concert. Apparently, two cryptic species or five different genetic stocks of S. libertina could be identified; these results are useful for the evaluation and conservation of S. libertina in Taiwan.

  19. The role of habitat shift in the evolution of lizard morphology: evidence from tropical Tropidurus

    PubMed Central

    Vitt, Laurie J.; Caldwell, Janalee P.; Zani, Peter A.; Titus, Tom A.

    1997-01-01

    We compared morphology of two geographically close populations of the tropical lizard Tropidurus hispidus to test the hypothesis that habitat structure influences the evolution of morphology and ecology at the population level. T. hispidus isolated on a rock outcrop surrounded by tropical forest use rock crevices for refuge and appear dorsoventrally compressed compared with those in open savanna. A principal components analysis revealed that the populations were differentially distributed along an axis representing primarily three components of shape: body width, body height, and hind-leg length. Morphological divergence was supported by a principal components analysis of size-free morphological variables. Mitochondrial DNA sequences of ATPase 6 indicate that these populations are closely related relative to other T. hispidus, the rock outcrop morphology and ecology are derived within T. hispidus, and morphological and ecological divergence has occurred more rapidly than genetic divergence. This suggests that natural selection can rapidly adjust morphology and ecology in response to a recent history of exposure to habitats differing in structure, a result heretofore implied from comparative studies among lizard species. PMID:9108063

  20. The role of habitat shift in the evolution of lizard morphology: evidence from tropical Tropidurus.

    PubMed

    Vitt, L J; Caldwell, J P; Zani, P A; Titus, T A

    1997-04-15

    We compared morphology of two geographically close populations of the tropical lizard Tropidurus hispidus to test the hypothesis that habitat structure influences the evolution of morphology and ecology at the population level. T. hispidus isolated on a rock outcrop surrounded by tropical forest use rock crevices for refuge and appear dorsoventrally compressed compared with those in open savanna. A principal components analysis revealed that the populations were differentially distributed along an axis representing primarily three components of shape: body width, body height, and hind-leg length. Morphological divergence was supported by a principal components analysis of size-free morphological variables. Mitochondrial DNA sequences of ATPase 6 indicate that these populations are closely related relative to other T. hispidus, the rock outcrop morphology and ecology are derived within T. hispidus, and morphological and ecological divergence has occurred more rapidly than genetic divergence. This suggests that natural selection can rapidly adjust morphology and ecology in response to a recent history of exposure to habitats differing in structure, a result heretofore implied from comparative studies among lizard species.

  1. Gene conversion as a mechanism for divergence of a chloroplast tRNA gene inserted in the mitochondrial genome of Brassica oleracea.

    PubMed Central

    Dron, M; Hartmann, C; Rode, A; Sevignac, M

    1985-01-01

    We have characterized a 1.7 kb sequence, containing a tRNA Leu2 gene shared by the ct and mt genomes of Brassica oleracea. The two sequences are completely homologous except in two short regions where two distinct gene conversion events have occurred between two sets of direct repeats leading to the insertion of 5 bp in the T loop of the mt copy of the ct gene. This is the first evidence that gene conversion represents the initial evolutionary step in inactivation of transferred ct genes in the mt genome. We also indicate that organelle DNA transfer by organelle fusion is an ongoing process which could be useful in genetic engineering. PMID:4080548

  2. Genetic population structure of the lionfish Pterois miles (Scorpaenidae, Pteroinae) in the Gulf of Aqaba and northern Red Sea.

    PubMed

    Kochzius, Marc; Blohm, Dietmar

    2005-03-14

    The aim of this study is to reveal gene flow between populations of the coral reef dwelling lionfish Pterois miles in the Gulf of Aqaba and northern Red Sea. Due to the fjord-like hydrography and topology of the Gulf of Aqaba, isolation of populations might be possible. Analysis of 5' mitochondrial control region sequences from 94 P. miles specimens detected 32 polymorphic sites, yielding 38 haplotypes. Sequence divergence among different haplotypes ranged from 0.6% to 9.9% and genetic diversity was high (h=0.85, pi=1.9%). AMOVA indicates panmixia between the Gulf of Aqaba and northern Red Sea, but analysis of migration pattern shows an almost unidirectional migration originating from the Red Sea.

  3. Influence of gene flow on divergence dating - implications for the speciation history of Takydromus grass lizards.

    PubMed

    Tseng, Shu-Ping; Li, Shou-Hsien; Hsieh, Chia-Hung; Wang, Hurng-Yi; Lin, Si-Min

    2014-10-01

    Dating the time of divergence and understanding speciation processes are central to the study of the evolutionary history of organisms but are notoriously difficult. The difficulty is largely rooted in variations in the ancestral population size or in the genealogy variation across loci. To depict the speciation processes and divergence histories of three monophyletic Takydromus species endemic to Taiwan, we sequenced 20 nuclear loci and combined with one mitochondrial locus published in GenBank. They were analysed by a multispecies coalescent approach within a Bayesian framework. Divergence dating based on the gene tree approach showed high variation among loci, and the divergence was estimated at an earlier date than when derived by the species-tree approach. To test whether variations in the ancestral population size accounted for the majority of this variation, we conducted computer inferences using isolation-with-migration (IM) and approximate Bayesian computation (ABC) frameworks. The results revealed that gene flow during the early stage of speciation was strongly favoured over the isolation model, and the initiation of the speciation process was far earlier than the dates estimated by gene- and species-based divergence dating. Due to their limited dispersal ability, it is suggested that geographical isolation may have played a major role in the divergence of these Takydromus species. Nevertheless, this study reveals a more complex situation and demonstrates that gene flow during the speciation process cannot be overlooked and may have a great impact on divergence dating. By using multilocus data and incorporating Bayesian coalescence approaches, we provide a more biologically realistic framework for delineating the divergence history of Takydromus. © 2014 John Wiley & Sons Ltd.

  4. Beyond Reasonable Doubt: Evolution from DNA Sequences

    PubMed Central

    Penny, David

    2013-01-01

    We demonstrate quantitatively that, as predicted by evolutionary theory, sequences of homologous proteins from different species converge as we go further and further back in time. The converse, a non-evolutionary model can be expressed as probabilities, and the test works for chloroplast, nuclear and mitochondrial sequences, as well as for sequences that diverged at different time depths. Even on our conservative test, the probability that chance could produce the observed levels of ancestral convergence for just one of the eight datasets of 51 proteins is ≈1×10−19 and combined over 8 datasets is ≈1×10−132. By comparison, there are about 1080 protons in the universe, hence the probability that the sequences could have been produced by a process involving unrelated ancestral sequences is about 1050 lower than picking, among all protons, the same proton at random twice in a row. A non-evolutionary control model shows no convergence, and only a small number of parameters are required to account for the observations. It is time that that researchers insisted that doubters put up testable alternatives to evolution. PMID:23950906

  5. RNA Editing in Plant Mitochondria

    NASA Astrophysics Data System (ADS)

    Hiesel, Rudolf; Wissinger, Bernd; Schuster, Wolfgang; Brennicke, Axel

    1989-12-01

    Comparative sequence analysis of genomic and complementary DNA clones from several mitochondrial genes in the higher plant Oenothera revealed nucleotide sequence divergences between the genomic and the messenger RNA-derived sequences. These sequence alterations could be most easily explained by specific post-transcriptional nucleotide modifications. Most of the nucleotide exchanges in coding regions lead to altered codons in the mRNA that specify amino acids better conserved in evolution than those encoded by the genomic DNA. Several instances show that the genomic arginine codon CGG is edited in the mRNA to the tryptophan codon TGG in amino acid positions that are highly conserved as tryptophan in the homologous proteins of other species. This editing suggests that the standard genetic code is used in plant mitochondria and resolves the frequent coincidence of CGG codons and tryptophan in different plant species. The apparently frequent and non-species-specific equivalency of CGG and TGG codons in particular suggests that RNA editing is a common feature of all higher plant mitochondria.

  6. Contrasting genetic structure between mitochondrial and nuclear markers in the dengue fever mosquito from Rio de Janeiro: implications for vector control

    PubMed Central

    Rašić, Gordana; Schama, Renata; Powell, Rosanna; Maciel-de Freitas, Rafael; Endersby-Harshman, Nancy M; Filipović, Igor; Sylvestre, Gabriel; Máspero, Renato C; Hoffmann, Ary A

    2015-01-01

    Dengue is the most prevalent global arboviral disease that affects over 300 million people every year. Brazil has the highest number of dengue cases in the world, with the most severe epidemics in the city of Rio de Janeiro (Rio). The effective control of dengue is critically dependent on the knowledge of population genetic structuring in the primary dengue vector, the mosquito Aedes aegypti. We analyzed mitochondrial and nuclear genomewide single nucleotide polymorphism markers generated via Restriction-site Associated DNA sequencing, as well as traditional microsatellite markers in Ae. aegypti from Rio. We found four divergent mitochondrial lineages and a strong spatial structuring of mitochondrial variation, in contrast to the overall nuclear homogeneity across Rio. Despite a low overall differentiation in the nuclear genome, we detected strong spatial structure for variation in over 20 genes that have a significantly altered expression in response to insecticides, xenobiotics, and pathogens, including the novel biocontrol agent Wolbachia. Our results indicate that high genetic diversity, spatially unconstrained admixing likely mediated by male dispersal, along with locally heterogeneous genetic variation that could affect insecticide resistance and mosquito vectorial capacity, set limits to the effectiveness of measures to control dengue fever in Rio. PMID:26495042

  7. Deficits in the mitochondrial enzyme α-ketoglutarate dehydrogenase lead to Alzheimer's disease-like calcium dysregulation.

    PubMed

    Gibson, Gary E; Chen, Huan-Lian; Xu, Hui; Qiu, Linghua; Xu, Zuoshang; Denton, Travis T; Shi, Qingli

    2012-06-01

    Understanding the molecular sequence of events that culminate in multiple abnormalities in brains from patients that died with Alzheimer's disease (AD) will help to reveal the mechanisms of the disease and identify upstream events as therapeutic targets. The activity of the mitochondrial α-ketoglutarate dehydrogenase complex (KGDHC) in homogenates from autopsy brain declines with AD. Experimental reductions in KGDHC in mouse models of AD promote plaque and tangle formation, the hallmark pathologies of AD. We hypothesize that deficits in KGDHC also lead to the abnormalities in endoplasmic reticulum (ER) calcium stores and cytosolic calcium following K(+) depolarization that occurs in cells from AD patients and transgenic models of AD. The activity of the mitochondrial enzyme KGDHC was diminished acutely (minutes), long-term (days), or chronically (weeks). Acute inhibition of KGDHC produced effects on calcium opposite to those in AD, while the chronic or long-term inhibition of KGDHC mimicked the AD-related changes in calcium. Divergent changes in proteins released from the mitochondria that affect endoplasmic reticulum calcium channels may underlie the selective cellular consequences of acute versus longer term inhibition of KGDHC. The results suggest that the mitochondrial abnormalities in AD can be upstream of those in calcium. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. Deficits in the Mitochondrial Enzyme α-Ketoglutarate Dehydrogenase Lead to Alzheimer’s Disease-like Calcium Dysregulation

    PubMed Central

    Gibson, Gary E.; Chen, Huan-Lian; Xu, Hui; Qiu, Linghua; Xu, Zuoshang; Denton, Travis T.; Shi, Qingli

    2011-01-01

    Understanding the molecular sequence of events that culminate in multiple abnormalities in brains from patients that died with Alzheimer’s Disease (AD) will help to reveal the mechanisms of the disease and identify upstream events as therapeutic targets. The activity of the mitochondrial α-ketoglutarate dehydrogenase complex (KGDHC) in homogenates from autopsy brain declines with AD. Experimental reductions in KGDHC in mouse models of AD promote plaque and tangle formation, the hallmark pathologies of AD. We hypothesize that deficits in KGDHC also lead to the abnormalities in endoplasmic reticulum (ER) calcium stores and cytosolic calcium following K+ -depolarization that occur in cells from AD patients and transgenic models of AD. The activity of the mitochondrial enzyme KGDHC was diminished acutely (minutes), long term (days) or chronically (weeks). Acute inhibition of KGDHC produced effects on calcium opposite to those in AD, while the chronic or long term inhibition of KGDHC mimicked the AD-related changes in calcium. Divergent changes in proteins released from the mitochondria that effect ER calcium channels may underlie the selective cellular consequences of acute versus longer term inhibition of KGDHC. The results suggest that the mitochondrial abnormalities in AD can be upstream of those in calcium. PMID:22169199

  9. Widespread unidirectional transfer of mitochondrial DNA: a case in western Palaearctic water frogs.

    PubMed

    Plötner, J; Uzzell, T; Beerli, P; Spolsky, C; Ohst, T; Litvinchuk, S N; Guex, G-D; Reyer, H-U; Hotz, H

    2008-05-01

    Interspecies transfer of mitochondrial (mt) DNA is a common phenomenon in plants, invertebrates and vertebrates, normally linked with hybridization of closely related species in zones of sympatry or parapatry. In central Europe, in an area north of 48 degrees N latitude and between 8 degrees and 22 degrees E longitude, western Palaearctic water frogs show massive unidirectional introgression of mtDNA: 33.7% of 407 Rana ridibunda possessed mtDNA specific for Rana lessonae. By contrast, no R. lessonae with R. ridibunda mtDNA was observed. That R. ridibunda with introgressed mitochondrial genomes were found exclusively within the range of the hybrid Rana esculenta and that most hybrids had lessonae mtDNA (90.4% of 335 individuals investigated) is evidence that R. esculenta serves as a vehicle for transfer of lessonae mtDNA into R. ridibunda. Such introgression has occurred several times independently. The abundance and wide distribution of individuals with introgressed mitochondrial genomes show that R. lessonae mt genomes work successfully in a R. ridibunda chromosomal background despite their high sequence divergence from R. ridibunda mtDNAs (14.2-15.2% in the ND2/ND3 genes). Greater effectiveness of enzymes encoded by R. lessonae mtDNA may be advantageous to individuals of R. ridibunda and probably R. esculenta in the northern parts of their ranges.

  10. Evolutionary history of Mexican domesticated and wild Meleagris gallopavo.

    PubMed

    Padilla-Jacobo, Gabriela; Cano-Camacho, Horacio; López-Zavala, Rigoberto; Cornejo-Pérez, María E; Zavala-Páramo, María G

    2018-04-17

    The distribution of the wild turkey (Meleagris gallopavo) extends from Mexico to southeastern Canada and to the eastern and southern regions of the USA. Six subspecies have been described based on morphological characteristics and/or geographical variations in wild and domesticated populations. In this paper, based on DNA sequence data from the mitochondrial D-loop, we investigated the genetic diversity and structure, genealogical relationships, divergence time and demographic history of M. gallopavo populations including domesticated individuals. Analyses of 612 wild and domesticated turkey mitochondrial D-loop sequences, including 187 that were collected for this study and 425 from databases, revealed 64 haplotypes with few mutations, some of which are shared between domesticated and wild turkeys. We found a high level of haplotype and nucleotide diversity, which suggests that the total population of this species is large and stable with an old evolutionary history. The results of genetic differentiation, haplotype network, and genealogical relationships analyses revealed three main genetic groups within the species: mexicana as a population relict (C1), merriami (C2), and mexicana/intermedia/silvestris/osceola (C3). Haplotypes detected in domesticated turkeys belong to group C3. Estimates of divergence times agree with range expansion and diversification events of the relict population of M. gallopavo in northwestern Mexico during the Pliocene-Pleistocene and Pleistocene-Holocene boundaries. Demographic reconstruction showed that an expansion of the population occurred 110,000 to 130,000 years ago (Kya), followed by a stable period 100 Kya and finally a decline ~ 10 Kya (Pleistocene-Holocene boundary). In Mexico, the Trans-Mexican Volcanic Belt may be responsible for the range expansion of the C3 group. Two haplotypes with different divergence times, MGMDgoB/MICH1 and MICH2, are dominant in domesticated and commercial turkeys. During the Pleistocene, a large and stable population of M. gallopavo covered a wide geographic distribution from the north to the center of America (USA and Mexico). The mexicana, merriami, and mexicana/intermedia/silvestris/osceola genetic groups originated after divergence and range expansion from northwestern Mexico during the Pliocene-Pleistocene and Pleistocene-Holocene boundaries. Old and new maternal lines of the mexicana/intermedia/silvestris/osceola genetic group were distributed within the Trans-Mexican Volcanic Belt where individuals were captured for domestication. Two haplotypes are the main founder maternal lines of domesticated turkeys.

  11. Mitochondrial DNA sequence-based phylogenetic relationship of Trichiurus lepturus (Perciformes: Trichiuridae) from the Persian Gulf

    PubMed Central

    Tamadoni Jahromi, S.; Mohd Noor, S. A.; Pirian, K.; Dehghani, R.; Nazemi, M.; Khazaali, A.

    2016-01-01

    In this study, mitochondrial DNA analysis using 16S ribosomal DNA (rDNA) was performed to investigate the phylogeny relationship of Trichiurus lepturus in the Persian Gulf compared to the other investigated area. The amplification of 16S rDNA resulted in a product of 600 bp in all samples. The results showed that the isolated strain belongs to T. lepturus showing 42 divergence sites among the same reported partial sequences of 16S rRNA gene from the other area (West Atlantic and Indo-Pacific area). Phylogeny results showed that all 18 haplotypes of the species clustered into five clades with reasonably high bootstrap support of values (>64%). Overall, the tree topology for both phylogenetic and phenetic trees for 16S rDNA was similar. Both trees exposed two major clusters, one wholly containing the haplotypes of the T. lepturus species belonging to Indo-Pacific area with two major sister groups including Persian Gulf specimen and the other cleared the Western Atlantic and Japan individuals clustered in another distinct clade supporting the differentiation between the two areas. Phylogenic relationship observed between the Persian Gulf and the other Indo-Pacific Individuals suggested homogeneity between two mentioned areas. PMID:27822250

  12. Molecular phylogeny of the lionfish genera Dendrochirus and Pterois (Scorpaenidae, Pteroinae) based on mitochondrial DNA sequences.

    PubMed

    Kochzius, Marc; Söller, Rainer; Khalaf, Maroof A; Blohm, Dietmar

    2003-09-01

    This study investigates the molecular phylogeny of seven lionfishes of the genera Dendrochirus and Pterois. MP, ML, and NJ phylogenetic analysis based on 964 bp of partial mitochondrial DNA sequences (cytochrome b and 16S rDNA) revealed two main clades: (1) "Pterois" clade (Pterois miles and Pterois volitans), and (2) "Pteropterus-Dendrochirus" clade (remainder of the sampled species). The position of Dendrochirus brachypterus either basal to the main clades or in the "Pteropterus-Dendrochirus" clade cannot be resolved. However, the molecular phylogeny did not support the current separation of the genera Pterois and Dendrochirus. The siblings P. miles and P. volitans are clearly separated and our results support the proposed allopatric or parapatric distribution in the Indian and Pacific Ocean. However, the present analysis cannot reveal if P. miles and P. volitans are separate species or two populations of a single species, because the observed separation in different clades can be either explained by speciation or lineage sorting. Molecular clock estimates for the siblings P. miles and P. volitans suggest a divergence time of 2.4-8.3 mya, which coincide with geological events that created vicariance between populations of the Indian and Pacific Ocean.

  13. Fragmented mitochondrial genomes in two suborders of parasitic lice of eutherian mammals (Anoplura and Rhynchophthirina, Insecta)

    PubMed Central

    Shao, Renfu; Barker, Stephen C; Li, Hu; Song, Simon; Poudel, Shreekanta; Su, Yuan

    2015-01-01

    Parasitic lice (order Phthiraptera) infest birds and mammals. The typical animal mitochondrial (mt) genome organization, which consists of a single chromosome with 37 genes, was found in chewing lice in the suborders Amblycera and Ischnocera. The sucking lice (suborder Anoplura) known, however, have fragmented mt genomes with 9–20 minichromosomes. We sequenced the mt genome of the elephant louse, Haematomyzus elephantis – the first species of chewing lice investigated from the suborder Rhynchophthirina. We identified 33 mt genes in the elephant louse, which were on 10 minichromosomes. Each minichromosome is 3.5–4.2 kb in size and has 2–6 genes. Phylogenetic analyses of mt genome sequences confirm that the elephant louse is more closely related to sucking lice than to the chewing lice in the Amblycera and Ischnocera. Our results indicate that mt genome fragmentation is shared by the suborders Anoplura and Rhynchophthirina. Nine of the 10 mt minichromosomes of the elephant louse differ from those of the sucking lice (Anoplura) known in gene content and gene arrangement, indicating that distinct mt karyotypes have evolved in Anoplura and Rhynchophthirina since they diverged ~92 million years ago. PMID:26617060

  14. Climate-driven genetic divergence of limpets with different life histories across a southeast African marine biogeographic disjunction: different processes, same outcome.

    PubMed

    Teske, Peter R; Papadopoulos, Isabelle; Mmonwa, K Lucas; Matumba, T Given; McQuaid, Christopher D; Barker, Nigel P; Beheregaray, Luciano B

    2011-12-01

    Genetic divergence among populations of marine broadcast spawners in the absence of past geological barriers presents an intriguing challenge to understanding speciation in the sea. To determine how differences in life history affect genetic divergence and demographic histories across incomplete dispersal barriers, we conducted a comparative phylogeographic study of three intertidal limpets (Siphonaria spp.) represented on either side of a biogeographic disjunction separating tropical and subtropical marine provinces in southeastern Africa. Using a combination of mitochondrial and nuclear sequence data, we identified two distinct evolutionary lineages each in both Siphonaria concinna (a planktonic disperser) and S. nigerrima (a direct developer), and panmixia in a second planktonic disperser, S. capensis. Although phylogeographic breaks were present in two species, how these became established differed depending on their life histories. In the direct developer, lack of gene flow following divergence, and demographic expansion from a small initial size in the species' subtropical population, point to a single colonisation event. In contrast, the evolutionary lineages of the planktonic disperser split into two genetic lineages with much larger initial population sizes and southward gene flow continued at least periodically, indicating that divergence in this species may have been driven by a combination of reduced larval dispersal and divergent selection. These findings help explain why the presence or absence of phylogeographic breaks often appears to be independent of species' dispersal potential. © 2011 Blackwell Publishing Ltd.

  15. Behavioral vs. molecular sources of conflict between nuclear and mitochondrial DNA: The role of male-biased dispersal in a Holarctic sea duck

    USGS Publications Warehouse

    Peters, Jeffrey L.; Bolender, Kimberly A.; Pearce, John M.

    2012-01-01

    Genetic studies of waterfowl (Anatidae) have observed the full spectrum of mitochondrial (mt) DNA population divergence, from apparent panmixia to deep, reciprocally monophyletic lineages. Yet, these studies often found weak or no nuclear (nu) DNA structure, which was often attributed to male-biased gene flow, a common behaviour within this family. An alternative explanation for this ‘conflict’ is that the smaller effective population size and faster sorting rate of mtDNA relative to nuDNA lead to different signals of population structure. We tested these alternatives by sequencing 12 nuDNA introns for a Holarctic pair of waterfowl subspecies, the European goosander (Mergus merganser merganser) and the North American common merganser (M. m. americanus), which exhibit strong population structure in mtDNA. We inferred effective population sizes, gene flow and divergence times from published mtDNA sequences and simulated expected differentiation for nuDNA based on those histories. Between Europe and North America, nuDNA ФST was 3.4-fold lower than mtDNA ФST, a result consistent with differences in sorting rates. However, despite geographically structured and monophyletic mtDNA lineages within continents, nuDNA ФST values were generally zero and significantly lower than predicted. This between- and within-continent contrast held when comparing mtDNA and nuDNA among published studies of ducks. Thus, male-mediated gene flow is a better explanation than slower sorting rates for limited nuDNA differentiation within continents, which is also supported by nonmolecular data. This study illustrates the value of quantitatively testing discrepancies between mtDNA and nuDNA to reject the null hypothesis that conflict simply reflects different sorting rates.

  16. A New Species of the Bay Goby Genus Eucyclogobius, Endemic to Southern California: Evolution, Conservation, and Decline

    PubMed Central

    Swift, Camm C.; Spies, Brenton; Ellingson, Ryan A.; Jacobs, David K.

    2016-01-01

    A geographically isolated set of southern localities of the formerly monotypic goby genus Eucyclogobius is known to be reciprocally monophyletic and substantially divergent in mitochondrial sequence and nuclear microsatellite-based phylogenies relative to populations to the north along the California coast. To clarify taxonomic and conservation status, we conducted a suite of analyses on a comprehensive set of morphological counts and measures from across the range of Eucyclogobius and describe the southern populations as a new species, the Southern Tidewater Goby, Eucyclogobius kristinae, now separate from the Northern Tidewater Goby Eucyclogobius newberryi (Girard 1856). In addition to molecular distinction, adults of E. kristinae are diagnosed by: 1) loss of the anterior supratemporal lateral-line canals resulting in higher neuromast counts, 2) lower pectoral and branched caudal ray counts, and 3) sets of measurements identified via discriminant analysis. These differences suggest ecological distinction of the two species. Previous studies estimated lineage separation at 2–4 million years ago, and mitochondrial sequence divergence exceeds that of other recognized fish species. Fish from Santa Monica Artesian Springs (Los Angeles County) northward belong to E. newberryi; those from Aliso Creek (Orange County) southward constitute E. kristinae. The lagoonal habitat of Eucyclogobius has been diminished or degraded, leading to special conservation status at state and federal levels beginning in 1980. Habitat of the newly described species has been impacted by a range of anthropogenic activities, including the conversion of closing lagoons to open tidal systems in the name of restoration. In the last 30 years, E. kristinae has only been observed in nine intermittently occupied lagoonal systems in northern San Diego County; it currently persists in only three sites. Thus, the new species is in imminent danger of extinction and will require ongoing active management. PMID:27462700

  17. Genetic evidence from mitochondrial, nuclear, and endosymbiont markers for the evolution of host plant associated species in the aphid genus Hyalopterus (Hemiptera: Aphididae).

    PubMed

    Lozier, Jeffrey D; Roderick, George K; Mills, Nicholas J

    2007-06-01

    Over the past several decades biologists' fascination with plant-herbivore interactions has generated intensive research into the implications of these interactions for insect diversification. The study of closely related phytophagous insect species or populations from an evolutionary perspective can help illuminate ecological and selective forces that drive these interactions. Here we present such an analysis for aphids in the genus Hyalopterus (Hemiptera: Aphididae), a cosmopolitan group that feeds on plants in the genus Prunus (Rosaceae). Hyalopterus currently contains two recognized species associated with different Prunus species, although the taxonomy and evolutionary history of the group is poorly understood. Using mitochondrial COI sequences, 16S rDNA sequences from the aphid endosymbiont Buchnera aphidicola, and nine microsatellite loci we investigated population structure in Hyalopterus from the most commonly used Prunus host species throughout the Mediterranean as well as in California, where the species H. pruni is an invasive pest. We found three deeply divergent lineages structured in large part by specific associations with plum, almond, and peach trees. There was no evidence that geographic or temporal barriers could explain the overall diversity in the genus. Levels of genetic differentiation are consistent with that typically attributed to aphid species and indicate divergence times older than the domestication of Prunus for agriculture. Interestingly, in addition to their typical hosts, aphids from each of the three lineages were frequently found on apricot trees. Apricot also appears to act as a resource mediated hybrid zone for plum and almond associated lineages. Together, results suggest that host plants have played a role in maintaining host-associated differentiation in Hyalopterus for as long as several million years, despite worldwide movement of host plants and the potential for ongoing hybridization.

  18. A New Species of the Bay Goby Genus Eucyclogobius, Endemic to Southern California: Evolution, Conservation, and Decline.

    PubMed

    Swift, Camm C; Spies, Brenton; Ellingson, Ryan A; Jacobs, David K

    2016-01-01

    A geographically isolated set of southern localities of the formerly monotypic goby genus Eucyclogobius is known to be reciprocally monophyletic and substantially divergent in mitochondrial sequence and nuclear microsatellite-based phylogenies relative to populations to the north along the California coast. To clarify taxonomic and conservation status, we conducted a suite of analyses on a comprehensive set of morphological counts and measures from across the range of Eucyclogobius and describe the southern populations as a new species, the Southern Tidewater Goby, Eucyclogobius kristinae, now separate from the Northern Tidewater Goby Eucyclogobius newberryi (Girard 1856). In addition to molecular distinction, adults of E. kristinae are diagnosed by: 1) loss of the anterior supratemporal lateral-line canals resulting in higher neuromast counts, 2) lower pectoral and branched caudal ray counts, and 3) sets of measurements identified via discriminant analysis. These differences suggest ecological distinction of the two species. Previous studies estimated lineage separation at 2-4 million years ago, and mitochondrial sequence divergence exceeds that of other recognized fish species. Fish from Santa Monica Artesian Springs (Los Angeles County) northward belong to E. newberryi; those from Aliso Creek (Orange County) southward constitute E. kristinae. The lagoonal habitat of Eucyclogobius has been diminished or degraded, leading to special conservation status at state and federal levels beginning in 1980. Habitat of the newly described species has been impacted by a range of anthropogenic activities, including the conversion of closing lagoons to open tidal systems in the name of restoration. In the last 30 years, E. kristinae has only been observed in nine intermittently occupied lagoonal systems in northern San Diego County; it currently persists in only three sites. Thus, the new species is in imminent danger of extinction and will require ongoing active management.

  19. A New Species of Microhyla (Anura: Microhylidae) from Nilphamari, Bangladesh

    PubMed Central

    Howlader, Mohammad Sajid Ali; Nair, Abhilash; Gopalan, Sujith V.; Merilä, Juha

    2015-01-01

    A new species of Microhyla frog from the Nilphamari district of Bangladesh is described and compared with its morphologically similar and geographically proximate congeners. Molecular phylogeny derived from mitochondrial DNA sequences revealed that although the new species – designated here as Microhyla nilphamariensis sp. nov. – forms a clade with M. ornate, it is highly divergent from M. ornata and all of its congeners, with 5.7 – 13.2% sequence divergence at the 16S rRNA gene. The new species can be identified phenotypically on the basis of a set of diagnostic (both qualitative and quantitative) characters as follows: head length is 77% of head width, distance from front of eyes to the nostril is roughly six times greater than nostril–snout length, internarial distance is roughly five times greater than nostril–snout length, interorbital distance is two times greater than internarial distance, and distance from back of mandible to back of the eye is 15% of head length. Furthermore, inner metacarpal tubercle is small and ovoid-shaped, whereas outer metacarpal tubercle is very small and rounded. Toes have rudimentary webbing, digital discs are absent, inner metatarsal tubercle is small and round, outer metatarsal tubercle is ovoid-shaped, minute, and indistinct. PMID:25806804

  20. Mito-nuclear discord in six congeneric lineages of Holarctic ducks (genus Anas).

    PubMed

    Peters, Jeffrey L; Winker, Kevin; Millam, Kendra C; Lavretsky, Philip; Kulikova, Irina; Wilson, Robert E; Zhuravlev, Yuri N; McCracken, Kevin G

    2014-06-01

    Many species have Holarctic distributions that extend across Europe, Asia and North America. Most genetics research on these species has examined only mitochondrial (mt) DNA, which has revealed wide variance in divergence between Old World (OW) and New World (NW) populations, ranging from shallow, unstructured genealogies to deeply divergent lineages. In this study, we sequenced 20 nuclear introns to test for concordant patterns of OW-NW differentiation between mtDNA and nuclear (nu) DNA for six lineages of Holarctic ducks (genus Anas). Genetic differentiation for both marker types varied widely among these lineages (idiosyncratic population histories), but mtDNA and nuDNA divergence within lineages was not significantly correlated. Moreover, compared with the association between mtDNA and nuDNA divergence observed among different species, OW-NW nuDNA differentiation was generally lower than mtDNA divergence, at least for lineages with deeply divergent mtDNA. Furthermore, coalescent estimates indicated significantly higher rates of gene flow for nuDNA than mtDNA for four of the six lineages. Thus, Holarctic ducks show prominent mito-nuclear discord between OW and NW populations, and we reject differences in sorting rates as the sole cause of the within-species discord. Male-mediated intercontinental gene flow is likely a leading contributor to this discord, although selection could also cause increased mtDNA divergence relative to weak nuDNA differentiation. The population genetics of these ducks contribute to growing evidence that mtDNA can be an unreliable indicator of stage of speciation and that more holistic approaches are needed for species delimitation. © 2014 John Wiley & Sons Ltd.

  1. Cenozoic biogeography and evolution in direct-developing frogs of Central America (Leptodactylidae: Eleutherodactylus) as inferred from a phylogenetic analysis of nuclear and mitochondrial genes.

    PubMed

    Crawford, Andrew J; Smith, Eric N

    2005-06-01

    We report the first phylogenetic analysis of DNA sequence data for the Central American component of the genus Eleutherodactylus (Anura: Leptodactylidae: Eleutherodactylinae), one of the most ubiquitous, diverse, and abundant components of the Neotropical amphibian fauna. We obtained DNA sequence data from 55 specimens representing 45 species. Sampling was focused on Central America, but also included Bolivia, Brazil, Jamaica, and the USA. We sequenced 1460 contiguous base pairs (bp) of the mitochondrial genome containing ND2 and five neighboring tRNA genes, plus 1300 bp of the c-myc nuclear gene. The resulting phylogenetic inferences were broadly concordant between data sets and among analytical methods. The subgenus Craugastor is monophyletic and its initial radiation was potentially rapid and adaptive. Within Craugastor, the earliest splits separate three northern Central American species groups, milesi, augusti, and alfredi, from a clade comprising the rest of Craugastor. Within the latter clade, the rhodopis group as formerly recognized comprises three deeply divergent clades that do not form a monophyletic group; we therefore restrict the content of the rhodopis group to one of two northern clades, and use new names for the other northern (mexicanus group) and one southern clade (bransfordii group). The new rhodopis and bransfordii groups together form the sister taxon to a clade comprising the biporcatus, fitzingeri, mexicanus, and rugulosus groups. We used a Bayesian MCMC approach together with geological and biogeographic assumptions to estimate divergence times from the combined DNA sequence data. Our results corroborated three independent dispersal events for the origins of Central American Eleutherodactylus: (1) an ancestor of Craugastor entered northern Central America from South American in the early Paleocene, (2) an ancestor of the subgenus Syrrhophus entered northern Central America from the Caribbean at the end of the Eocene, and (3) a wave of independent dispersal events from South America coincided with formation of the Isthmus of Panama during the Pliocene. We elevate the subgenus Craugastor to the genus rank.

  2. Nuclear counterparts of the cytoplasmic mitochondrial 12S rRNA gene: a problem of ancient DNA and molecular phylogenies.

    PubMed

    van der Kuyl, A C; Kuiken, C L; Dekker, J T; Perizonius, W R; Goudsmit, J

    1995-06-01

    Monkey mummy bones and teeth originating from the North Saqqara Baboon Galleries (Egypt), soft tissue from a mummified baboon in a museum collection, and nineteenth/twentieth-century skin fragments from mangabeys were used for DNA extraction and PCR amplification of part of the mitochondrial 12S rRNA gene. Sequences aligning with the 12S rRNA gene were recovered but were only distantly related to contemporary monkey mitochondrial 12S rRNA sequences. However, many of these sequences were identical or closely related to human nuclear DNA sequences resembling mitochondrial 12S rRNA (isolated from a cell line depleted in mitochondria) and therefore have to be considered contamination. Subsequently in a separate study we were able to recover genuine mitochondrial 12S rRNA sequences from many extant species of nonhuman Old World primates and sequences closely resembling the human nuclear integrations. Analysis of all sequences by the neighbor-joining (NJ) method indicated that mitochondrial DNA sequences and their nuclear counterparts can be divided into two distinct clusters. One cluster contained all temporary cytoplasmic mitochondrial DNA sequences and approximately half of the monkey nuclear mitochondriallike sequences. A second cluster contained most human nuclear sequences and the other half of monkey nuclear sequences with a separate branch leading to human and gorilla mitochondrial and nuclear sequences. Sequences recovered from ancient materials were equally divided between the two clusters. These results constitute a warning for when working with ancient DNA or performing phylogenetic analysis using mitochondrial DNA as a target sequence: Nuclear counterparts of mitochondrial genes may lead to faulty interpretation of results.

  3. A New Phylogeographic Pattern of Endemic Bufo bankorensis in Taiwan Island Is Attributed to the Genetic Variation of Populations

    PubMed Central

    Yu, Teng-Lang; Lin, Hung-Du; Weng, Ching-Feng

    2014-01-01

    Aim To comprehend the phylogeographic patterns of genetic variation in anurans at Taiwan Island, this study attempted to examine (1) the existence of various geological barriers (Central Mountain Ranges, CMRs); and (2) the genetic variation of Bufo bankorensis using mtDNA sequences among populations located in different regions of Taiwan, characterized by different climates and existing under extreme conditions when compared available sequences of related species B. gargarizans of mainland China. Methodology/Principal Findings Phylogenetic analyses of the dataset with mitochondrial DNA (mtDNA) D-loop gene (348 bp) recovered a close relationship between B. bankorensis and B. gargarizans, identified three distinct lineages. Furthermore, the network of mtDNA D-loop gene (564 bp) amplified (279 individuals, 27 localities) from Taiwan Island indicated three divergent clades within B. bankorensis (Clade W, E and S), corresponding to the geography, thereby verifying the importance of the CMRs and Kaoping River drainage as major biogeographic barriers. Mismatch distribution analysis, neutrality tests and Bayesian skyline plots revealed that a significant population expansion occurred for the total population and Clade W, with horizons dated to approximately 0.08 and 0.07 Mya, respectively. These results suggest that the population expansion of Taiwan Island species B. bankorensis might have resulted from the release of available habitat in post-glacial periods, the genetic variation on mtDNA showing habitat selection, subsequent population dispersal, and co-distribution among clades. Conclusions The multiple origins (different clades) of B. bankorensis mtDNA sequences were first evident in this study. The divergent genetic clades found within B. bankorensis could be independent colonization by previously diverged lineages; inferring B. bankorensis originated from B. gargarizans of mainland China, then dispersal followed by isolation within Taiwan Island. Highly divergent clades between W and E of B. bankorensis, implies that the CMRs serve as a genetic barrier and separated the whole island into the western and eastern phylogroups. PMID:24853679

  4. Extensive genetic differentiation detected within a model marsupial, the tammar wallaby (Notamacropus eugenii)

    PubMed Central

    Miller, Emily J.; Neaves, Linda E.; Zenger, Kyall R.; Herbert, Catherine A.

    2017-01-01

    The tammar wallaby (Notamacropus eugenii) is one of the most intensively studied of all macropodids and was the first Australasian marsupial to have its genome sequenced. However, comparatively little is known about genetic diversity and differentiation amongst the morphologically distinct allopatric populations of tammar wallabies found in Western (WA) and South Australia (SA). Here we compare autosomal and Y-linked microsatellite genotypes, as well as sequence data (~600 bp) from the mitochondrial DNA (mtDNA) control region (CR) in tammar wallabies from across its distribution. Levels of diversity at autosomal microsatellite loci were typically high in the WA mainland and Kangaroo Island (SA) populations (A = 8.9–10.6; He = 0.77–0.78) but significantly reduced in other endemic island populations (A = 3.8–4.1; He = 0.41–0.48). Autosomal and Y-linked microsatellite loci revealed a pattern of significant differentiation amongst populations, especially between SA and WA. The Kangaroo Island and introduced New Zealand population showed limited differentiation. Multiple divergent mtDNA CR haplotypes were identified within both SA and WA populations. The CR haplotypes of tammar wallabies from SA and WA show reciprocal monophyly and are highly divergent (14.5%), with levels of sequence divergence more typical of different species. Within WA tammar wallabies, island populations each have unique clusters of highly related CR haplotypes and each is most closely related to different WA mainland haplotypes. Y-linked microsatellite haplotypes show a similar pattern of divergence although levels of diversity are lower. In light of these differences, we suggest that two subspecies of tammar wallaby be recognized; Notamacropus eugenii eugenii in SA and N. eugenii derbianus in WA. The extensive neutral genetic diversity and inter-population differentiation identified within tammar wallabies should further increase the species value and usefulness as a model organism. PMID:28257440

  5. Functional and composition differences between mitochondrial complex II in Arabidopsis and rice are correlated with the complex genetic history of the enzyme.

    PubMed

    Huang, Shaobai; Taylor, Nicolas L; Narsai, Reena; Eubel, Holger; Whelan, James; Millar, A Harvey

    2010-02-01

    Complex II plays a central role in mitochondrial metabolism as a component of both the electron transport chain and the tricarboxylic acid cycle. However, the composition and function of the plant enzyme has been elusive and differs from the well-characterised enzymes in mammals and bacteria. Herewith, we demonstrate that mitochondrial Complex II from Arabidopsis and rice differ significantly in several aspects: (1) Stability-Rice complex II in contrast to Arabidopsis is not stable when resolved by native electrophoresis and activity staining. (2) Composition-Arabidopsis complex II contains 8 subunits, only 7 of which have homologs in the rice genome. SDH 1 and 2 subunits display high levels of amino acid identity between two species, while the remainder of the subunits are not well conserved at a sequence level, indicating significant divergence. (3) Gene expression-the pairs of orthologous SDH1 and SDH2 subunits were universally expressed in both Arabidopsis and rice. The very divergent genes for SDH3 and SDH4 were co-expressed in both species, consistent with their functional co-ordination to form the membrane anchor. The plant-specific SDH5, 6 and 7 subunits with unknown functions appeared to be differentially expressed in both species. (4) Biochemical regulation -succinate-dependent O(2) consumption and SDH activity of isolated Arabidopsis mitochondria were substantially stimulated by ATP, but a much more minor effect of ATP was observed for the rice enzyme. The ATP activation of succinate-dependent reduction of DCPIP in frozen-thawed and digitonin-solubilised mitochondrial samples, and with or without the uncoupler CCCP, indicate that the differential ATP effect on SDH is not via the protonmotive force but likely due to an allosteric effect on the plant SDH enzyme itself, in contrast to the enzyme in other organisms.

  6. Discrimination between Demodex folliculorum (Acari: Demodicidae) isolates from China and Spain based on mitochondrial cox1 sequences*

    PubMed Central

    Zhao, Ya-e; Ma, Jun-xian; Hu, Li; Wu, Li-ping; De Rojas, Manuel

    2013-01-01

    For a long time, classification of Demodex mites has been based mainly on their hosts and phenotypic characteristics. A new subspecies of Demodex folliculorum has been proposed, but not confirmed. Here, cox1 partial sequences of nine isolates of three Demodex species from two geographical sources (China and Spain) were studied to conduct molecular identification of D. folliculorum. Sequencing showed that the mitochondrial cox1 fragments of five D. folliculorum isolates from the facial skin of Chinese individuals were 429 bp long and that their sequence identity was 97.4%. The average sequence divergence was 1.24% among the five Chinese isolates, 0.94% between the two geographical isolate groups (China (5) and Spain (1)), and 2.15% between the two facial tissue sources (facial skin (6) and eyelids (1)). The genetic distance and rate of third-position nucleotide transition/transversion were 0.0125, 2.7 (3/1) among the five Chinese isolates, 0.0094, 3.1 (3/1) between the two geographical isolate groups, and 0.0217, 4.4 (3/1) between the two facial tissue sources. Phylogenetic trees showed that D. folliculorum from the two geographical isolate groups did not form sister clades, while those from different facial tissue sources did. According to the molecular characteristics, it appears that subspecies differentiation might not have occurred and that D. folliculorum isolates from the two geographical sources are of the same population. However, population differentiation might be occurring between isolates from facial skin and eyelids. PMID:24009203

  7. Multiple Origins of a Mitochondrial Mutation Conferring Deafness

    PubMed Central

    Hutchin, T. P.; Cortopassi, G. A.

    1997-01-01

    A point mutation (1555G) in the smaller ribosomal subunit of the mitochondrial DNA (mtDNA) has been associated with maternally inherited traits of hypersensitivity to streptomycin and sensorineural deafness in a number of families from China, Japan, Israel, and Africa. To determine whether this distribution was the result of a single or multiple mutational events, we carried out genetic distance analysis and phylogenetic analysis of 10 independent mtDNA D-loop sequences from Africa and Asia. The mtDNA sequence diversity was high (2.21%). Phylogenetic analysis assigned 1555G-bearing haplotypes at very divergent points in the human mtDNA evolutionary tree, and the 1555G mutations occur in many cases on race-specific mtDNA haplotypes, both facts are inconsistent with a recent introgression of the mutation into these races. The simplest interpretation of the available data is that there have been multiple origins of the 1555G mutation. The genetic distance among mtDNAs bearing the pathogenic 1555G mutation is much larger than among mtDNAs bearing either evolutionarily neutral or weakly deleterious nucleotide substitutions (such as the 4336G mutation). These results are consistent with the view that pathogenic mtDNA haplotypes such as 1555G arise on disparate mtDNA lineages which because of negative natural selection leave relatively few related descendants. The co-existence of the same mutation with deafness in individuals with very different nuclear and mitochondrial genetic backgrounds confirms the pathogenicity of the 1555G mutation. PMID:9055086

  8. Recent Reticulate Evolution in the Ecologically Dominant Lineage of Coccolithophores

    PubMed Central

    Bendif, El Mahdi; Probert, Ian; Díaz-Rosas, Francisco; Thomas, Daniela; van den Engh, Ger; Young, Jeremy R.; von Dassow, Peter

    2016-01-01

    The coccolithophore family Noëlaerhabdaceae contains a number of taxa that are very abundant in modern oceans, including the cosmopolitan bloom-forming Emiliania huxleyi. Introgressive hybridization has been suggested to account for incongruences between nuclear, mitochondrial and plastidial phylogenies of morphospecies within this lineage, but the number of species cultured to date remains rather limited. Here, we present the characterization of 5 new Noëlaerhabdaceae culture strains isolated from samples collected in the south-east Pacific Ocean. These were analyzed morphologically using scanning electron microscopy and phylogenetically by sequencing 5 marker genes (nuclear 18S and 28S rDNA, plastidial tufA, and mitochondrial cox1 and cox3 genes). Morphologically, one of these strains corresponded to Gephyrocapsa ericsonii and the four others to Reticulofenestra parvula. Ribosomal gene sequences were near identical between these new strains, but divergent from G. oceanica, G. muellerae, and E. huxleyi. In contrast to the clear distinction in ribosomal phylogenies, sequences from other genomic compartments clustered with those of E. huxleyi strains with which they share an ecological range (i.e., warm temperate to tropical waters). These data provide strong support for the hypothesis of past (and potentially ongoing) introgressive hybridization within this ecologically important lineage and for the transfer of R. parvula to Gephyrocapsa. These results have important implications for understanding the role of hybridization in speciation in vast ocean meta-populations of phytoplankton. PMID:27252694

  9. Recent Reticulate Evolution in the Ecologically Dominant Lineage of Coccolithophores.

    PubMed

    Bendif, El Mahdi; Probert, Ian; Díaz-Rosas, Francisco; Thomas, Daniela; van den Engh, Ger; Young, Jeremy R; von Dassow, Peter

    2016-01-01

    The coccolithophore family Noëlaerhabdaceae contains a number of taxa that are very abundant in modern oceans, including the cosmopolitan bloom-forming Emiliania huxleyi. Introgressive hybridization has been suggested to account for incongruences between nuclear, mitochondrial and plastidial phylogenies of morphospecies within this lineage, but the number of species cultured to date remains rather limited. Here, we present the characterization of 5 new Noëlaerhabdaceae culture strains isolated from samples collected in the south-east Pacific Ocean. These were analyzed morphologically using scanning electron microscopy and phylogenetically by sequencing 5 marker genes (nuclear 18S and 28S rDNA, plastidial tufA, and mitochondrial cox1 and cox3 genes). Morphologically, one of these strains corresponded to Gephyrocapsa ericsonii and the four others to Reticulofenestra parvula. Ribosomal gene sequences were near identical between these new strains, but divergent from G. oceanica, G. muellerae, and E. huxleyi. In contrast to the clear distinction in ribosomal phylogenies, sequences from other genomic compartments clustered with those of E. huxleyi strains with which they share an ecological range (i.e., warm temperate to tropical waters). These data provide strong support for the hypothesis of past (and potentially ongoing) introgressive hybridization within this ecologically important lineage and for the transfer of R. parvula to Gephyrocapsa. These results have important implications for understanding the role of hybridization in speciation in vast ocean meta-populations of phytoplankton.

  10. Assessment of mitochondrial functions in Daphnia pulex clones using high-resolution respirometry.

    PubMed

    Kake-Guena, Sandrine A; Touisse, Kamal; Vergilino, Roland; Dufresne, France; Blier, Pierre U; Lemieux, Hélène

    2015-06-01

    The objectives of our study were to adapt a method to measure mitochondrial function in intact mitochondria from the small crustacean Daphnia pulex and to validate if this method was sensitive enough to characterize mitochondrial metabolism in clones of the pulex complex differing in ploidy levels, mitochondrial DNA haplotypes, and geographic origins. Daphnia clones belonging to the Daphnia pulex complex represent a powerful model to delineate the link between mitochondrial DNA evolution and mitochondrial phenotypes, as single genotypes with divergent mtDNA can be grown under various experimental conditions. Our study included two diploid clones from temperate environments and two triploid clones from subarctic environments. The whole animal permeabilization and measurement of respiration with high-resolution respirometry enabled the measurement of the functional capacity of specific mitochondrial complexes in four clones. When expressing the activity as ratios, our method detected significant interclonal variations. In the triploid subarctic clone from Kuujjurapik, a higher proportion of the maximal physiological oxidative phosphorylation (OXPHOS) capacity of mitochondria was supported by complex II, and a lower proportion by complex I. The triploid subarctic clone from Churchill (Manitoba) showed the lowest proportion of the maximal OXPHOS supported by complex II. Additional studies are required to determine if these differences in mitochondrial functions are related to differences in mitochondrial haplotypes or ploidy level and if they might be associated with fitness divergences and therefore selective value. © 2015 Wiley Periodicals, Inc.

  11. Strong genetic divergence among populations of a marine fish with limited dispersal, Acanthochromis polyacanthus, within the Great Barrier Reef and the Coral Sea.

    PubMed

    Planes, S; Doherty, P J; Bernardi, G

    2001-11-11

    Acanthochromis polyacanthus is an unusual tropical marine damselfish that uniquely lacks pelagic larvae and has lost the capacity for broad-scale dispersal among coral reefs. On the modern Great Barrier Reef (GBR), three color morphs meet and hydridize at two zones of secondary contact. Allozyme electrophoreses revealed strong differences between morphs from the southern zone but few differences between morphs from the northern counterpart, thus suggesting different contact histories. We explore the phylogeography of Acanthochromis polyacanthus with mitochondrial cytochrome b region sequences (alignment of 565 positions) obtained from 126 individuals representing seven to 12 fish from 13 sites distributed over 12 reefs of the GBR and the Coral Sea. The samples revealed three major clades: (1) black fish collected from the southern GBR; (2) bicolored fish collected from the GBR and one reef (Osprey) from the northern Coral Sea; (3) black and white monomorphs collected from six reefs in the Coral Sea. All three clades were well supported (72-100%) by bootstrap analyses. Sequence divergences were very high between the major clades (mean = 7.6%) as well as within them (2.0-3.6%). Within clades, most reefs segregated as monophyletic assemblages. This was revealed both by phylogenetic analyses and AMOVAs that showed that 72-90% of the variance originated from differences among groups, whereas only 5-13% originated within populations. These patterns are discussed in relation to the known geological history of coral reefs of the GBR and the Coral Sea. Finally, we ask whether the monospecific status of Acanthochromis should be revisited because the sequence divergences found among our samples is substantially greater than those recorded among well-recognized species in other reef fishes.

  12. MitoFish and MitoAnnotator: A Mitochondrial Genome Database of Fish with an Accurate and Automatic Annotation Pipeline

    PubMed Central

    Iwasaki, Wataru; Fukunaga, Tsukasa; Isagozawa, Ryota; Yamada, Koichiro; Maeda, Yasunobu; Satoh, Takashi P.; Sado, Tetsuya; Mabuchi, Kohji; Takeshima, Hirohiko; Miya, Masaki; Nishida, Mutsumi

    2013-01-01

    Mitofish is a database of fish mitochondrial genomes (mitogenomes) that includes powerful and precise de novo annotations for mitogenome sequences. Fish occupy an important position in the evolution of vertebrates and the ecology of the hydrosphere, and mitogenomic sequence data have served as a rich source of information for resolving fish phylogenies and identifying new fish species. The importance of a mitogenomic database continues to grow at a rapid pace as massive amounts of mitogenomic data are generated with the advent of new sequencing technologies. A severe bottleneck seems likely to occur with regard to mitogenome annotation because of the overwhelming pace of data accumulation and the intrinsic difficulties in annotating sequences with degenerating transfer RNA structures, divergent start/stop codons of the coding elements, and the overlapping of adjacent elements. To ease this data backlog, we developed an annotation pipeline named MitoAnnotator. MitoAnnotator automatically annotates a fish mitogenome with a high degree of accuracy in approximately 5 min; thus, it is readily applicable to data sets of dozens of sequences. MitoFish also contains re-annotations of previously sequenced fish mitogenomes, enabling researchers to refer to them when they find annotations that are likely to be erroneous or while conducting comparative mitogenomic analyses. For users who need more information on the taxonomy, habitats, phenotypes, or life cycles of fish, MitoFish provides links to related databases. MitoFish and MitoAnnotator are freely available at http://mitofish.aori.u-tokyo.ac.jp/ (last accessed August 28, 2013); all of the data can be batch downloaded, and the annotation pipeline can be used via a web interface. PMID:23955518

  13. Divergence times in the termite genus Macrotermes (Isoptera: Termitidae).

    PubMed

    Brandl, R; Hyodo, F; Korff-Schmising, M von; Maekawa, K; Miura, T; Takematsu, Y; Matsumoto, T; Abe, T; Bagine, R; Kaib, M

    2007-10-01

    The evolution of fungus-growing termites is supposed to have started in the African rain forests with multiple invasions of semi-arid habitats as well as multiple invasions of the Oriental region. We used sequences of the mitochondrial COII gene and Bayesian dating to investigate the time frame of the evolution of Macrotermes, an important genus of fungus-growing termites. We found that the genus Macrotermes consists of at least 6 distantly related clades. Furthermore, the COII sequences suggested some cryptic diversity within the analysed African Macrotermes species. The dates calculated with the COII data using a fossilized termite mound to calibrate the clock were in good agreement with dates calculated with COI sequences using the split between Locusta and Chortippus as calibration point which supports the consistency of the calibration points. The clades from the Oriental region dated back to the early Tertiary. These estimates of divergence times suggested that Macrotermes invaded Asia during periods with humid climates. For Africa, many speciation events predated the Pleistocene and fall in range of 6-23 million years ago. These estimates suggest that savannah-adapted African clades radiated with the spread of the semi-arid ecosystems during the Miocene. Apparently, events during the Pleistocene were of little importance for speciation within the genus Macrotermes. However, further investigations are necessary to increase the number of taxa for phylogenetic analysis.

  14. High levels of Y-chromosome nucleotide diversity in the genus Pan

    PubMed Central

    Stone, Anne C.; Griffiths, Robert C.; Zegura, Stephen L.; Hammer, Michael F.

    2002-01-01

    Although some mitochondrial, X chromosome, and autosomal sequence diversity data are available for our closest relatives, Pan troglodytes and Pan paniscus, data from the nonrecombining portion of the Y chromosome (NRY) are more limited. We examined ≈3 kb of NRY DNA from 101 chimpanzees, seven bonobos, and 42 humans to investigate: (i) relative levels of intraspecific diversity; (ii) the degree of paternal lineage sorting among species and subspecies of the genus Pan; and (iii) the date of the chimpanzee/bonobo divergence. We identified 10 informative sequence-tagged sites associated with 23 polymorphisms on the NRY from the genus Pan. Nucleotide diversity was significantly higher on the NRY of chimpanzees and bonobos than on the human NRY. Similar to mtDNA, but unlike X-linked and autosomal loci, lineages defined by mutations on the NRY were not shared among subspecies of P. troglodytes. Comparisons with mtDNA ND2 sequences from some of the same individuals revealed a larger female versus male effective population size for chimpanzees. The NRY-based divergence time between chimpanzees and bonobos was estimated at ≈1.8 million years ago. In contrast to human populations who appear to have had a low effective size and a recent origin with subsequent population growth, some taxa within the genus Pan may be characterized by large populations of relatively constant size, more ancient origins, and high levels of subdivision. PMID:11756656

  15. Evolutionary history of enigmatic bears in the Tibetan Plateau–Himalaya region and the identity of the yeti

    PubMed Central

    Lan, Tianying; Gill, Stephanie; Bellemain, Eva; Bischof, Richard; Nawaz, Muhammad Ali

    2017-01-01

    Although anecdotally associated with local bears (Ursus arctos and U. thibetanus), the exact identity of ‘hominid’-like creatures important to folklore and mythology in the Tibetan Plateau–Himalaya region is still surrounded by mystery. Recently, two purported yeti samples from the Himalayas showed genetic affinity with an ancient polar bear, suggesting they may be from previously unrecognized, possibly hybrid, bear species, but this preliminary finding has been under question. We conducted a comprehensive genetic survey of field-collected and museum specimens to explore their identity and ultimately infer the evolutionary history of bears in the region. Phylogenetic analyses of mitochondrial DNA sequences determined clade affinities of the purported yeti samples in this study, strongly supporting the biological basis of the yeti legend to be local, extant bears. Complete mitochondrial genomes were assembled for Himalayan brown bear (U. a. isabellinus) and black bear (U. t. laniger) for the first time. Our results demonstrate that the Himalayan brown bear is one of the first-branching clades within the brown bear lineage, while Tibetan brown bears diverged much later. The estimated times of divergence of the Tibetan Plateau and Himalayan bear lineages overlap with Middle to Late Pleistocene glaciation events, suggesting that extant bears in the region are likely descendants of populations that survived in local refugia during the Pleistocene glaciations. PMID:29187630

  16. Phylogenetic analysis of peri-Mediterranean blennies of the genus Salaria: molecular insights on the colonization of freshwaters.

    PubMed

    Almada, V C; Robalo, J I; Levy, A; Freyhof, J; Bernardi, G; Doadrio, I

    2009-08-01

    In this paper, the phylogenetic relationships of the marine blenny Salaria pavo and the freshwater S. fluviatilis and S. economidisi were analyzed using four molecular markers: the mitochondrial 12S rRNA, 16S rRNA, and the control region and the nuclear first intron of the S7 ribosomal protein. The monophyly of Salaria is supported, as well as that of S. pavo and that of all the freshwater members of Salaria. Thus, the present results support a single origin for all freshwater Mediterranean blenniids. Our results reject the placement of the species of Salaria in the genus Lipophrys as proposed in previous studies. Using a molecular clock calibrated with trans-Isthmian geminate blenniid species, the split between the ancestor of the freshwater lineage and the ancestor of S. pavo is tentatively placed in the Middle Miocene (well before the Messinian). The marine S. pavo displays a very low level of intraspecific sequence divergence consistent with a Pleistocene bottleneck. S. fluviatilis is a paraphyletic entity with S. economidisi nested within it. A Moroccan population of S. fluviatilis is more divergent than S. economidisi, both in nuclear and mitochondrial genes. Fish from Israel together with some Turkish samples represent the second oldest split. It is argued that these populations may represent cryptic species. Thus, further studies on the taxonomy of these freshwater blennies are urgently needed.

  17. Highly divergent mussel lineages in isolated Indonesian marine lakes.

    PubMed

    Becking, Leontine E; de Leeuw, Christiaan A; Knegt, Bram; Maas, Diede L; de Voogd, Nicole J; Abdunnur; Suyatna, Iwan; Peijnenburg, Katja T C A

    2016-01-01

    Marine lakes, with populations in landlocked seawater and clearly delineated contours, have the potential to provide a unique model to study early stages of evolution in coastal marine taxa. Here we ask whether populations of the mussel Brachidontes from marine lakes in Berau, East Kalimantan (Indonesia) are isolated from each other and from the coastal mangrove systems. We analyzed sequence data of one mitochondrial marker (Cytochrome Oxidase I (COI)), and two nuclear markers (18S and 28S). In addition, we examined shell shape using a geometric morphometric approach. The Indonesian populations of Brachidontes spp. harbored four deeply diverged lineages (14-75% COI corrected net sequence divergence), two of which correspond to previously recorded lineages from marine lakes in Palau, 1,900 km away. These four lineages also showed significant differences in shell shape and constitute a species complex of at least four undescribed species. Each lake harbored a different lineage despite the fact that the lakes are separated from each other by only 2-6 km, while the two mangrove populations, at 20 km distance from each other, harbored the same lineage and shared haplotypes. Marine lakes thus represent isolated habitats. As each lake contained unique within lineage diversity (0.1-0.2%), we suggest that this may have resulted from in situ divergence due to isolation of founder populations after the formation of the lakes (6,000-12,000 years before present). Combined effects of stochastic processes, local adaptation and increased evolutionary rates could produce high levels of differentiation in small populations such as in marine lake environments. Such short-term isolation at small spatial scales may be an important contributing factor to the high marine biodiversity that is found in the Indo-Australian Archipelago.

  18. Understanding the mechanisms of antitropical divergence in the seabird White-faced Storm-petrel (Procellariiformes: Pelagodroma marina) using a multilocus approach.

    PubMed

    Silva, Mónica C; Matias, Rafael; Wanless, Ross M; Ryan, Peter G; Stephenson, Brent M; Bolton, Mark; Ferrand, Nuno; Coelho, M Manuela

    2015-06-01

    Analytical methods that apply coalescent theory to multilocus data have improved inferences of demographic parameters that are critical to understanding population divergence and speciation. In particular, at the early stages of speciation, it is important to implement models that accommodate conflicting gene trees, and benefit from the presence of shared polymorphisms. Here, we employ eleven nuclear loci and the mitochondrial control region to investigate the phylogeography and historical demography of the pelagic seabird White-faced Storm-petrel (Pelagodroma marina) by sampling subspecies across its antitropical distribution. Groups are all highly differentiated: global mitochondrial ΦST = 0.89 (P < 0.01) and global nuclear ΦST varies between 0.22 and 0.83 (all P < 0.01). The complete lineage sorting of the mitochondrial locus between hemispheres is corroborated by approximately half of the nuclear genealogies, suggesting a long-term antitropical divergence in isolation. Coalescent-based estimates of demographic parameters suggest that hemispheric divergence of P. marina occurred approximately 840 000 ya (95% HPD 582 000-1 170 000), in the absence of gene flow, and divergence within the Southern Hemisphere occurred 190 000 ya (95% HPD 96 000-600 000), both probably associated with the profound palaeo-oceanographic changes of the Pleistocene. A fledgling sampled in St Helena (tropical South Atlantic) suggests recent colonization from the Northern Hemisphere. Despite the great potential for long-distance dispersal, P. marina antitropical groups have been evolving as independent, allopatric lineages, and divergence is probably maintained by philopatry coupled with asynchronous reproductive phenology and local adaptation. © 2015 John Wiley & Sons Ltd.

  19. Molecular identification and first report of mitochondrial COI gene haplotypes in the hawksbill turtle Eretmochelys imbricata (Testudines: Cheloniidae) in the Colombian Caribbean nesting colonies.

    PubMed

    Daza-Criado, L; Hernández-Fernández, J

    2014-02-21

    Hawksbill sea turtles Eretmochelys imbricata are found extensively around the world, including the Atlantic, Pacific, and Indian Oceans; the Persian Gulf, and the Red and Mediterranean Seas. Populations of this species are affected by international trafficking of their shields, meat, and eggs, making it a critically endangered animal. We determined the haplotypes of 17 hawksbill foraging turtles of Islas del Rosario (Bolivar) and of the nesting beach Don Diego (Magdalena) in the Colombian Caribbean based on amplification and sequencing of the mitochondrial gene cytochrome oxidase c subunit I (COI). We identified 5 haplotypes, including EI-A1 previously reported in Puerto Rico, which was similar to 10 of the study samples. To our knowledge, the remaining 4 haplotypes have not been described. Samples EICOI11 and EICOI3 showed 0.2% divergence from EI-A1, by a single nucleotide change, and were classified as the EI-A2 haplotype. EICOI6, EICOI14, and EICOI12 samples showed 0.2% divergence from EI-A1 and 0.3% divergence from EI-A2 and were classified as EI-A3 haplotype. Samples EICOI16 and EICOI15 presented 5 nucleotide changes each and were classified as 2 different haplotypes, EI-A4 and EI-A5, respectively. The last 2 haplotypes had higher nucleotide diversity (K2P=1.7%) than that by the first 3 haplotypes. EI-A1 and EI-A2 occurred in nesting individuals, and EI-A2, EI-A3, EI-A4, and EI-A5 occurred in foraging individuals. The description of the haplotypes may be associated with reproductive migrations or foraging and could support the hypothesis of natal homing. Furthermore, they can be used in phylogeographic studies.

  20. Phylogeny and chronology of the major lineages of New World hystricognath rodents: insights on the biogeography of the Eocene/Oligocene arrival of mammals in South America.

    PubMed

    Voloch, Carolina M; Vilela, Julio F; Loss-Oliveira, Leticia; Schrago, Carlos G

    2013-04-22

    The hystricognath rodents of the New World, the Caviomorpha, are a diverse lineage with a long evolutionary history, and their representation in South American fossil record begins with their occurrence in Eocene deposits from Peru. Debates regarding the origin and diversification of this group represent longstanding issues in mammalian evolution because early hystricognaths, as well as Platyrrhini primates, appeared when South American was an isolated landmass, which raised the possibility of a synchronous arrival of these mammalian groups. Thus, an immediate biogeographic problem is posed by the study of caviomorph origins. This problem has motivated the analysis of hystricognath evolution with molecular dating techniques that relied essentially on nuclear data. However, questions remain about the phylogeny and chronology of the major caviomorph lineages. To enhance the understanding of the evolution of the Hystricognathi in the New World, we sequenced new mitochondrial genomes of caviomorphs and performed a combined analysis with nuclear genes. Our analysis supports the existence of two major caviomorph lineages: the (Chinchilloidea + Octodontoidea) and the (Cavioidea + Erethizontoidea), which diverged in the late Eocene. The Caviomorpha/phiomorph divergence also occurred at approximately 43 Ma. We inferred that all family-level divergences of New World hystricognaths occurred in the early Miocene. The molecular estimates presented in this study, inferred from the combined analysis of mitochondrial genomes and nuclear data, are in complete agreement with the recently proposed paleontological scenario of Caviomorpha evolution. A comparison with recent studies on New World primate diversification indicate that although the hypothesis that both lineages arrived synchronously in the Neotropics cannot be discarded, the times elapsed since the most recent common ancestor of the extant representatives of both groups are different.

  1. Out of Asia: mitochondrial evolutionary history of the globally introduced supralittoral isopod Ligia exotica.

    PubMed

    Hurtado, Luis A; Mateos, Mariana; Wang, Chang; Santamaria, Carlos A; Jung, Jongwoo; Khalaji-Pirbalouty, Valiallah; Kim, Won

    2018-01-01

    The native ranges and invasion histories of many marine species remain elusive due to a dynamic dispersal process via marine vessels. Molecular markers can aid in identification of native ranges and elucidation of the introduction and establishment process. The supralittoral isopod Ligia exotica has a wide tropical and subtropical distribution, frequently found in harbors and ports around the globe. This isopod is hypothesized to have an Old World origin, from where it was unintentionally introduced to other regions via wooden ships and solid ballast. Its native range, however, remains uncertain. Recent molecular studies uncovered the presence of two highly divergent lineages of L. exotica in East Asia, and suggest this region is a source of nonindigenous populations. In this study, we conducted phylogenetic analyses (Maximum Likelihood and Bayesian) of a fragment of the mitochondrial 16S ribosomal (r)DNA gene using a dataset of this isopod that greatly expanded previous representation from Asia and putative nonindigenous populations around the world. For a subset of samples, sequences of 12S rDNA and NaK were also obtained and analyzed together with 16S rDNA. Our results show that L. exotica is comprised of several highly divergent genetic lineages, which probably represent different species. Most of the 16S rDNA genetic diversity (48 haplotypes) was detected in East and Southeast Asia. Only seven haplotypes were observed outside this region (in the Americas, Hawai'i, Africa and India), which were identical or closely related to haplotypes found in East and Southeast Asia. Phylogenetic patterns indicate the L. exotica clade originated and diversified in East and Southeast Asia, and only members of one of the divergent lineages have spread out of this region, recently, suggesting the potential to become invasive is phylogenetically constrained.

  2. Phylogeny and chronology of the major lineages of New World hystricognath rodents: insights on the biogeography of the Eocene/Oligocene arrival of mammals in South America

    PubMed Central

    2013-01-01

    Background The hystricognath rodents of the New World, the Caviomorpha, are a diverse lineage with a long evolutionary history, and their representation in South American fossil record begins with their occurrence in Eocene deposits from Peru. Debates regarding the origin and diversification of this group represent longstanding issues in mammalian evolution because early hystricognaths, as well as Platyrrhini primates, appeared when South American was an isolated landmass, which raised the possibility of a synchronous arrival of these mammalian groups. Thus, an immediate biogeographic problem is posed by the study of caviomorph origins. This problem has motivated the analysis of hystricognath evolution with molecular dating techniques that relied essentially on nuclear data. However, questions remain about the phylogeny and chronology of the major caviomorph lineages. To enhance the understanding of the evolution of the Hystricognathi in the New World, we sequenced new mitochondrial genomes of caviomorphs and performed a combined analysis with nuclear genes. Results Our analysis supports the existence of two major caviomorph lineages: the (Chinchilloidea + Octodontoidea) and the (Cavioidea + Erethizontoidea), which diverged in the late Eocene. The Caviomorpha/phiomorph divergence also occurred at approximately 43 Ma. We inferred that all family-level divergences of New World hystricognaths occurred in the early Miocene. Conclusion The molecular estimates presented in this study, inferred from the combined analysis of mitochondrial genomes and nuclear data, are in complete agreement with the recently proposed paleontological scenario of Caviomorpha evolution. A comparison with recent studies on New World primate diversification indicate that although the hypothesis that both lineages arrived synchronously in the Neotropics cannot be discarded, the times elapsed since the most recent common ancestor of the extant representatives of both groups are different. PMID:23607317

  3. Genomic timetree and historical biogeography of Caribbean island ameiva lizards (Pholidoscelis: Teiidae).

    PubMed

    Tucker, Derek B; Hedges, Stephen Blair; Colli, Guarino R; Pyron, Robert Alexander; Sites, Jack W

    2017-09-01

    The phylogenetic relationships and biogeographic history of Caribbean island ameivas ( Pholidoscelis ) are not well-known because of incomplete sampling, conflicting datasets, and poor support for many clades. Here, we use phylogenomic and mitochondrial DNA datasets to reconstruct a well-supported phylogeny and assess historical colonization patterns in the group. We obtained sequence data from 316 nuclear loci and one mitochondrial marker for 16 of 19 extant species of the Caribbean endemic genus Pholidoscelis . Phylogenetic analyses were carried out using both concatenation and species tree approaches. To estimate divergence times, we used fossil teiids to calibrate a timetree which was used to elucidate the historical biogeography of these lizards. All phylogenetic analyses recovered four well-supported species groups (clades) recognized previously and supported novel relationships of those groups, including a ( P. auberi + P. lineolatus ) clade (western + central Caribbean), and a ( P. exsul + P. plei ) clade (eastern Caribbean). Divergence between Pholidoscelis and its sister clade was estimated to have occurred ~25 Ma, with subsequent diversification on Caribbean islands occurring over the last 11 Myr. Of the six models compared in the biogeographic analyses, the scenario which considered the distance among islands and allowed dispersal in all directions best fit the data. These reconstructions suggest that the ancestor of this group colonized either Hispaniola or Puerto Rico from Middle America. We provide a well-supported phylogeny of Pholidoscelis with novel relationships not reported in previous studies that were based on significantly smaller datasets. We propose that Pholidoscelis colonized the eastern Greater Antilles from Middle America based on our biogeographic analysis, phylogeny, and divergence time estimates. The closing of the Central American Seaway and subsequent formation of the modern Atlantic meridional overturning circulation may have promoted dispersal in this group.

  4. Mitochondrial phylogeography of moose (Alces alces): Late Pleistocene divergence and population expansion

    USGS Publications Warehouse

    Hundertmark, Kris J.; Shields, Gerald F.; Udina, Irina G.; Bowyer, R. Terry; Danilkin, Alexei A.; Schwartz, Charles C.

    2002-01-01

    We examined phylogeographic relationships of moose (Alces alces) worldwide to test the proposed existence of two geographic races and to infer the timing and extent of demographic processes underpinning the expansion of this species across the Northern Hemisphere in the late Pleistocene. Sequence variation within the left hypervariable domain of the control region occurred at low or moderate levels worldwide and was structured geographically. Partitioning of genetic variance among regions indicated that isolation by distance was the primary agent for differentiation of moose populations but does not support the existence of distinct eastern and western races. Levels of genetic variation and structure of phylogenetic trees identify Asia as the origin of all extant mitochondrial lineages. A recent coalescence is indicated, with the most recent common ancestor dating to the last ice age. Moose have undergone two episodes of population expansion, likely corresponding to the final interstade of the most recent ice age and the onset of the current interglacial. Timing of expansion for the population in the Yakutia–Manchuria region of eastern Asia indicates that it is one of the oldest populations of moose and may represent the source of founders of extant populations in North America, which were colonized within the last 15,000 years. Our data suggest an extended period of low population size or a severe bottleneck prior to the divergence and expansion of extant lineages and a recent, less-severe bottleneck among European lineages. Climate change during the last ice age, acting through contraction and expansion of moose habitat and the flooding of the Bering land bridge, undoubtedly was a key factor influencing the divergence and expansion of moose populations.

  5. Deciphering the complete mitochondrial genome and phylogeny of the extinct cave bear in the Paleolithic painted cave of Chauvet.

    PubMed

    Bon, Céline; Caudy, Nicolas; de Dieuleveult, Maud; Fosse, Philippe; Philippe, Michel; Maksud, Frédéric; Beraud-Colomb, Eliane; Bouzaid, Eric; Kefi, Rym; Laugier, Christelle; Rousseau, Bernard; Casane, Didier; van der Plicht, Johannes; Elalouf, Jean-Marc

    2008-11-11

    Retrieving a large amount of genetic information from extinct species was demonstrated feasible, but complete mitochondrial genome sequences have only been deciphered for the moa, a bird that became extinct a few hundred years ago, and for Pleistocene species, such as the woolly mammoth and the mastodon, both of which could be studied from animals embedded in permafrost. To enlarge the diversity of mitochondrial genomes available for Pleistocene species, we turned to the cave bear (Ursus spelaeus), whose only remains consist of skeletal elements. We collected bone samples from the Paleolithic painted cave of Chauvet-Pont d'Arc (France), which displays the earliest known human drawings, and contains thousands of bear remains. We selected a cave bear sternebra, radiocarbon dated to 32,000 years before present, from which we generated overlapping DNA fragments assembling into a 16,810-base pair mitochondrial genome. Together with the first mitochondrial genome for the brown bear western lineage, this study provides a statistically secured molecular phylogeny assessing the cave bear as a sister taxon to the brown bear and polar bear clade, with a divergence inferred to 1.6 million years ago. With the first mitochondrial genome for a Pleistocene carnivore to be delivered, our study establishes the Chauvet-Pont d'Arc Cave as a new reservoir for Paleogenetic studies. These molecular data enable establishing the chronology of bear speciation, and provide a helpful resource to rescue for genetic analysis archeological samples initially diagnosed as devoid of amplifiable DNA.

  6. Deciphering the complete mitochondrial genome and phylogeny of the extinct cave bear in the Paleolithic painted cave of Chauvet

    PubMed Central

    Bon, Céline; Caudy, Nicolas; de Dieuleveult, Maud; Fosse, Philippe; Philippe, Michel; Maksud, Frédéric; Beraud-Colomb, Éliane; Bouzaid, Eric; Kefi, Rym; Laugier, Christelle; Rousseau, Bernard; Casane, Didier; van der Plicht, Johannes; Elalouf, Jean-Marc

    2008-01-01

    Retrieving a large amount of genetic information from extinct species was demonstrated feasible, but complete mitochondrial genome sequences have only been deciphered for the moa, a bird that became extinct a few hundred years ago, and for Pleistocene species, such as the woolly mammoth and the mastodon, both of which could be studied from animals embedded in permafrost. To enlarge the diversity of mitochondrial genomes available for Pleistocene species, we turned to the cave bear (Ursus spelaeus), whose only remains consist of skeletal elements. We collected bone samples from the Paleolithic painted cave of Chauvet-Pont d'Arc (France), which displays the earliest known human drawings, and contains thousands of bear remains. We selected a cave bear sternebra, radiocarbon dated to 32,000 years before present, from which we generated overlapping DNA fragments assembling into a 16,810-base pair mitochondrial genome. Together with the first mitochondrial genome for the brown bear western lineage, this study provides a statistically secured molecular phylogeny assessing the cave bear as a sister taxon to the brown bear and polar bear clade, with a divergence inferred to 1.6 million years ago. With the first mitochondrial genome for a Pleistocene carnivore to be delivered, our study establishes the Chauvet-Pont d'Arc Cave as a new reservoir for Paleogenetic studies. These molecular data enable establishing the chronology of bear speciation, and provide a helpful resource to rescue for genetic analysis archeological samples initially diagnosed as devoid of amplifiable DNA. PMID:18955696

  7. A Mitochondrial Mutator System in Maize1[w

    PubMed Central

    Kuzmin, Evgeny V.; Duvick, Donald N.; Newton, Kathleen J.

    2005-01-01

    The P2 line of maize (Zea mays) is characterized by mitochondrial genome destabilization, initiated by recessive nuclear mutations. These alleles alter copy number control of mitochondrial subgenomes and disrupt normal transfer of mitochondrial genomic components to progeny, resulting in differences in mitochondrial DNA profiles among sibling plants and between parents and progeny. The mitochondrial DNA changes are often associated with variably defective phenotypes, reflecting depletion of essential mitochondrial genes. The P2 nuclear genotype can be considered a natural mutagenesis system for maize mitochondria. It dramatically accelerates mitochondrial genomic divergence by increasing low copy-number subgenomes, by rapidly amplifying aberrant recombination products, and by causing the random loss of normal components of the mitochondrial genomes. PMID:15681663

  8. Pre-Historic and Recent Vicariance Events Shape Genetic Structure and Diversity in Endangered Lion-Tailed Macaque in the Western Ghats: Implications for Conservation

    PubMed Central

    Ram, Muthuvarmadam S.; Marne, Minal; Gaur, Ajay; Kumara, Honnavalli N.; Singh, Mewa; Kumar, Ajith; Umapathy, Govindhaswamy

    2015-01-01

    Genetic isolation of populations is a potent force that helps shape the course of evolution. However, small populations in isolation, especially in fragmented landscapes, are known to lose genetic variability, suffer from inbreeding depression and become genetically differentiated among themselves. In this study, we assessed the genetic diversity of lion-tailed macaques (Macaca silenus) inhabiting the fragmented landscape of Anamalai hills and examined the genetic structure of the species across its distributional range in the Western Ghats. We sequenced around 900 bases of DNA covering two mitochondrial regions–hypervariable region-I and partial mitochondrial cytochrome b–from individuals sampled both from wild and captivity, constructed and dated phylogenetic trees. We found that the lion-tailed macaque troops in the isolated forest patches in Anamalai hills have depleted mitochondrial DNA diversity compared to troops in larger and continuous forests. Our results also revealed an ancient divergence in the lion-tailed macaque into two distinct populations across the Palghat gap, dating to 2.11 million years ago. In light of our findings, we make a few suggestions on the management of wild and captive populations. PMID:26561307

  9. Mitochondrial Genome Analysis of Wild Rice (Oryza minuta) and Its Comparison with Other Related Species.

    PubMed

    Asaf, Sajjad; Khan, Abdul Latif; Khan, Abdur Rahim; Waqas, Muhammad; Kang, Sang-Mo; Khan, Muhammad Aaqil; Shahzad, Raheem; Seo, Chang-Woo; Shin, Jae-Ho; Lee, In-Jung

    2016-01-01

    Oryza minuta (Poaceae family) is a tetraploid wild relative of cultivated rice with a BBCC genome. O. minuta has the potential to resist against various pathogenic diseases such as bacterial blight (BB), white backed planthopper (WBPH) and brown plant hopper (BPH). Here, we sequenced and annotated the complete mitochondrial genome of O. minuta. The mtDNA genome is 515,022 bp, containing 60 protein coding genes, 31 tRNA genes and two rRNA genes. The mitochondrial genome organization and the gene content at the nucleotide level are highly similar (89%) to that of O. rufipogon. Comparison with other related species revealed that most of the genes with known function are conserved among the Poaceae members. Similarly, O. minuta mt genome shared 24 protein-coding genes, 15 tRNA genes and 1 ribosomal RNA gene with other rice species (indica and japonica). The evolutionary relationship and phylogenetic analysis revealed that O. minuta is more closely related to O. rufipogon than to any other related species. Such studies are essential to understand the evolutionary divergence among species and analyze common gene pools to combat risks in the current scenario of a changing environment.

  10. Highly Conserved Mitochondrial Genomes among Multicellular Red Algae of the Florideophyceae

    PubMed Central

    Yang, Eun Chan; Kim, Kyeong Mi; Kim, Su Yeon; Lee, JunMo; Boo, Ga Hun; Lee, Jung-Hyun; Nelson, Wendy A.; Yi, Gangman; Schmidt, William E.; Fredericq, Suzanne; Boo, Sung Min; Bhattacharya, Debashish; Yoon, Hwan Su

    2015-01-01

    Two red algal classes, the Florideophyceae (approximately 7,100 spp.) and Bangiophyceae (approximately 193 spp.), comprise 98% of red algal diversity in marine and freshwater habitats. These two classes form well-supported monophyletic groups in most phylogenetic analyses. Nonetheless, the interordinal relationships remain largely unresolved, in particular in the largest subclass Rhodymeniophycidae that includes 70% of all species. To elucidate red algal phylogenetic relationships and study organelle evolution, we determined the sequence of 11 mitochondrial genomes (mtDNA) from 5 florideophycean subclasses. These mtDNAs were combined with existing data, resulting in a database of 25 florideophytes and 12 bangiophytes (including cyanidiophycean species). A concatenated alignment of mt proteins was used to resolve ordinal relationships in the Rhodymeniophycidae. Red algal mtDNA genome comparisons showed 47 instances of gene rearrangement including 12 that distinguish Bangiophyceae from Hildenbrandiophycidae, and 5 that distinguish Hildenbrandiophycidae from Nemaliophycidae. These organelle data support a rapid radiation and surprisingly high conservation of mtDNA gene syntheny among the morphologically divergent multicellular lineages of Rhodymeniophycidae. In contrast, we find extensive mitochondrial gene rearrangements when comparing Bangiophyceae and Florideophyceae and multiple examples of gene loss among the different red algal lineages. PMID:26245677

  11. Evolutionary history of freshwater sculpins, genus Cottus (Teleostei; Cottidae) and related taxa, as inferred from mitochondrial DNA phylogeny.

    PubMed

    Yokoyama, Ryota; Goto, Akira

    2005-09-01

    The freshwater sculpins, genus Cottus (Teleostei; Cottidae), comprise bottom-dwelling fishes that exhibit various life-history styles, having radiated throughout Northern Hemisphere freshwater habitats. The phylogenetic relationships among Cottus and related taxa were estimated from mitochondrial DNA 12S rRNA and control region (CR) sequences, the freshwater sculpins examined falling into five lineages (A-E). Lineage A consisted of Trachidermus fasciatus and C. kazika, both having a catadromous life-history. The remaining species (lineages B-E) spawn in freshwater habitats regardless of life-history (amphidromous, lacustrine or fluvial), suggesting that the various life-history types post-dated a common ancestor of lineages B-E. Molecular clock estimates suggested a Pliocene-Pleistocene radiation (or Miocene-Pliocene from the alternative clock) of lineages B-E. In eastern Eurasia, speciation with life-history changes to amphidromous or fluvial styles has apparently occurred independently in some lineages, as a general pattern. Mitochondrial DNA CR phylogeny showed the monophyletic Baikalian cottoids (Cottoidei) to be nested within Cottus and Trachidermus, suggesting that the former ecologically and morphologically divergent cottoids may have originated from a single lineage which invaded the ancient lake.

  12. Evolutionary divergence of mitochondrial genomes in two Tetranychus species distributed across different climates.

    PubMed

    Sun, J-T; Jin, P-Y; Hoffmann, A A; Duan, X-Z; Dai, J; Hu, G; Xue, X-F; Hong, X-Y

    2018-05-24

    There is increasing evidence that mitochondrial genomes (mitogenomes) can be under selection, whereas the selective regimes shaping mitogenome evolution remain largely unclear. To test for mitochondrial genome evolution in relation to the climate adaptation, we explored mtDNA variation in two spider mite (Tetranychus) species, which distribute across different climates. We sequenced 26 complete mitogenomes of T. truncatus which occurs in both warm and cold regions, and 9 complete mitogenomes of T. pueraricola which is only restricted in warm regions. Patterns of evolution in the two species mitogenomes were compared through a series of d N /d S methods and physicochemical profiles of amino acid replacements. We found that (1) the mitogenomes of both species were under widespread purifying selection. (2) Elevated directional adaptive selection was observed in the T. truncatus mitogenome, perhaps linked to the cold climates adaptation of T. truncatus. (3) The strength of selection varied across genes, and diversifying positive selection detected on ND4 and ATP6 pointed to their crucial roles during adaptation to different climatic conditions. This study gained insight into the mitogenome evolution in relation to the climate adaptation. This article is protected by copyright. All rights reserved. © 2018 The Royal Entomological Society.

  13. Big and slow: phylogenetic estimates of molecular evolution in baleen whales (suborder mysticeti).

    PubMed

    Jackson, J A; Baker, C S; Vant, M; Steel, D J; Medrano-González, L; Palumbi, S R

    2009-11-01

    Baleen whales are the largest animals that have ever lived. To develop an improved estimation of substitution rate for nuclear and mitochondrial DNA for this taxon, we implemented a relaxed-clock phylogenetic approach using three fossil calibration dates: the divergence between odontocetes and mysticetes approximately 34 million years ago (Ma), between the balaenids and balaenopterids approximately 28 Ma, and the time to most recent common ancestor within the Balaenopteridae approximately 12 Ma. We examined seven mitochondrial genomes, a large number of mitochondrial control region sequences (219 haplotypes for 465 bp) and nine nuclear introns representing five species of whales, within which multiple species-specific alleles were sequenced to account for within-species diversity (1-15 for each locus). The total data set represents >1.65 Mbp of mitogenome and nuclear genomic sequence. The estimated substitution rate for the humpback whale control region (3.9%/million years, My) was higher than previous estimates for baleen whales but slow relative to other mammal species with similar generation times (e.g., human-chimp mean rate > 20%/My). The mitogenomic third codon position rate was also slow relative to other mammals (mean estimate 1%/My compared with a mammalian average of 9.8%/My for the cytochrome b gene). The mean nuclear genomic substitution rate (0.05%/My) was substantially slower than average synonymous estimates for other mammals (0.21-0.37%/My across a range of studies). The nuclear and mitogenome rate estimates for baleen whales were thus roughly consistent with an 8- to 10-fold slowing due to a combination of large body size and long generation times. Surprisingly, despite the large data set of nuclear intron sequences, there was only weak and conflicting support for alternate hypotheses about the phylogeny of balaenopterid whales, suggesting that interspecies introgressions or a rapid radiation has obscured species relationships in the nuclear genome.

  14. Analyses of mitochondrial genes reveal two sympatric but genetically divergent lineages of Rhipicephalus appendiculatus in Kenya.

    PubMed

    Kanduma, Esther G; Mwacharo, Joram M; Githaka, Naftaly W; Kinyanjui, Peter W; Njuguna, Joyce N; Kamau, Lucy M; Kariuki, Edward; Mwaura, Stephen; Skilton, Robert A; Bishop, Richard P

    2016-06-22

    The ixodid tick Rhipicephalus appendiculatus transmits the apicomplexan protozoan parasite Theileria parva, which causes East coast fever (ECF), the most economically important cattle disease in eastern and southern Africa. Recent analysis of micro- and minisatellite markers showed an absence of geographical and host-associated genetic sub-structuring amongst field populations of R. appendiculatus in Kenya. To assess further the phylogenetic relationships between field and laboratory R. appendiculatus tick isolates, this study examined sequence variations at two mitochondrial genes, cytochrome c oxidase subunit I (COI) and 12S ribosomal RNA (rRNA), and the nuclear encoded ribosomal internal transcribed spacer 2 (ITS2) of the rRNA gene, respectively. The analysis of 332 COI sequences revealed 30 polymorphic sites, which defined 28 haplotypes that were separated into two distinct haplogroups (A and B). Inclusion of previously published haplotypes in our analysis revealed a high degree of phylogenetic complexity never reported before in haplogroup A. Neither haplogroup however, showed any clustering pattern related to either the geographical sampling location, the type of tick sampled (laboratory stocks vs field populations) or the mammalian host species. This finding was supported by the results obtained from the analysis of 12S rDNA sequences. Analysis of molecular variance (AMOVA) indicated that 90.8 % of the total genetic variation was explained by the two haplogroups, providing further support for their genetic divergence. These results were, however, not replicated by the nuclear transcribed ITS2 sequences likely because of recombination between the nuclear genomes maintaining a high level of genetic sequence conservation. COI and 12S rDNA are better markers than ITS2 for studying intraspecific diversity. Based on these genes, two major genetic groups of R. appendiculatus that have gone through a demographic expansion exist in Kenya. The two groups show no phylogeographic structure or correlation with the type of host species from which the ticks were collected, nor to the evolutionary and breeding history of the species. The two lineages may have a wide geographic distribution range in eastern and southern Africa. The findings of this study may have implications for the spread and control of R. appendiculatus, and indirectly, on the transmission dynamics of ECF.

  15. Mitochondrial Genome Sequences of Nematocera (Lower Diptera): Evidence of Rearrangement following a Complete Genome Duplication in a Winter Crane Fly

    PubMed Central

    Beckenbach, Andrew T.

    2012-01-01

    The complete mitochondrial DNA sequences of eight representatives of lower Diptera, suborder Nematocera, along with nearly complete sequences from two other species, are presented. These taxa represent eight families not previously represented by complete mitochondrial DNA sequences. Most of the sequences retain the ancestral dipteran mitochondrial gene arrangement, while one sequence, that of the midge Arachnocampa flava (family Keroplatidae), has an inversion of the trnE gene. The most unusual result is the extensive rearrangement of the mitochondrial genome of a winter crane fly, Paracladura trichoptera (family Trichocera). The pattern of rearrangement indicates that the mechanism of rearrangement involved a tandem duplication of the entire mitochondrial genome, followed by random and nonrandom loss of one copy of each gene. Another winter crane fly retains the ancestral diperan gene arrangement. A preliminary mitochondrial phylogeny of the Diptera is also presented. PMID:22155689

  16. DNA barcoding as a tool for elucidating species delineation in wide-ranging species as illustrated by owls (Tytonidae and Strigidae).

    PubMed

    Nijman, Vincent; Aliabadian, Mansour

    2013-11-01

    The mitochondrial cytochrome c-oxidase subunit I (cox1) can serve as a fast and accurate marker for the identification of animal species, and for the discovery of new species across the tree of life. Distinguishing species using this universal molecular marker, a technique known as DNA barcoding, relies on the identifying the gap between intra- and interspecific divergence. One of the difficulties could be wide-ranging, cosmopolitan species that show large amounts of morphological variation. The barn owl Tyto alba is a case in point. It occurs worldwide and varies morphologically, leading to the recognition of many subspecies or, more recently, species. We analysed data from the cox1 gene for 31 individuals of seven subspecies, and compared this with 214 sequences from 29 other owl species. Phylogenetic analysis of the T. alba samples gives very strong support for an Old World alba-clade (three subspecies) and a New World furcata-clade (four subspecies) that are genetically equidistant. The amount of intraspecific variation within each of these clades ranges from 0.66-0.99%, but variation among these clades ranges from 5.33-6.20%. Combined these data suggest that barn owl of the Old World is indeed best considered a separate species different from that of the New World. For combined dataset, sample size of owl species (n between 1 and 21 sequences) increased with geographic range size but we did not find significant relationships between interspecific divergence and sample size or between interspecific divergence and geographic range. For 21/24 species of owls with sample sizes of n ≥4 the maximum interspecific divergences was ≤ 3.00%. However, similar to those found in barn owls, the largest amount of divergence (3.23-4.09%) was present in two other wide-ranging species (Strix nebulosa and Aegolius funereus) raising the possibility of multiple species in other wide-ranging owls as well.

  17. Comparative mitogenomic analysis of Aposthonia borneensis and Aposthonia japonica (Embioptera: Oligotomidae) reveals divergent evolution of webspinners.

    PubMed

    Chen, Zhi-Teng; Lü, Liang; Lu, Ming-Xing; Du, Yu-Zhou

    2017-08-15

    In this study, we report the complete mitochondrial genome (mitogenome, mtDNA) of Aposthonia borneensis and compare it with another sequenced webspinner, Aposthonia japonica. The A. borneensis mitogenome is smaller than A. japonica, but the size of each gene and the A + T content of protein-coding genes (PCGs) are almost identical in the two mitogenomes. Among the PCGs, atp6 shows the highest evolutionary rate and cox1 the lowest. The mtDNA map in A. borneensis is similar to Drosophila yakuba, but distinctly different from A. japonica, which has extensive rearrangement. Phylogenetic analyses dated the divergence time of the two webspinners at ca. 103 Ma. We speculate that the most recent common ancestor (MRCA) of A. borneensis and A. japonica was divided into several geographic groups during the Pangea breakup. Geographic isolation between the Japanese islands and the continental southeastern Asia resulted in the divergent evolution of A. borneensis and A. japonica, thus generating mtDNA structural variations between the two species. Based on the phylogenetic analyses and specific distributional features, the genus Aposthonia was supported as non-monophyly, and we speculate that both highly rearranged and relatively conserved mitogenomes exist in other webspinners.

  18. Molecular barcoding of venomous snakes and species-specific multiplex PCR assay to identify snake groups for which antivenom is available in Thailand.

    PubMed

    Supikamolseni, A; Ngaoburanawit, N; Sumontha, M; Chanhome, L; Suntrarachun, S; Peyachoknagul, S; Srikulnath, K

    2015-10-30

    DNA barcodes of mitochondrial COI and Cytb genes were constructed from 54 specimens of 16 species for species identification. Intra- and interspecific sequence divergence of the COI gene (10 times) was greater than that of the Cytb gene (4 times), which suggests that the former gene may be a better marker than the latter for species delimitation in snakes. The COI barcode cut-off scores differed by more than 3% between most species, and the minimum interspecific divergence was greater than the maximum intraspecific divergence. Clustering analysis indicated that most species fell into monophyletic clades. These results suggest that these species could be reliably differentiated using COI DNA barcodes. Moreover, a novel species-specific multiplex PCR assay was developed to distinguish between Naja spp, Ophiophagus hannah, Trimeresurus spp, Hydrophiinae, Daboia siamensis, Bungarus fasciatus, and Calloselasma rhodostoma. Antivenom for these species is produced and kept by the Thai Red Cross for clinical use. Our novel PCR assay could easily be applied to venom and saliva samples and could be used effectively for the rapid and accurate identification of species during forensic work, conservation study, and medical research.

  19. Molecular and morphological evidence supports the species status of the Mahachai fighter Betta sp. Mahachai and reveals new species of Betta from Thailand.

    PubMed

    Sriwattanarothai, N; Steinke, D; Ruenwongsa, P; Hanner, R; Panijpan, B

    2010-08-01

    Two regions of mitochondrial (mt) DNA, cytochrome c oxidase subunit 1 (COI) and 16S rRNA, were sequenced in nine species of Betta from Thailand and Indonesia. Most species showed little intraspecific COI variation (adjusted mean = 0.48%) including the putative species Betta sp. Mahachai, but one species (Betta smaragdina) included three lineages showing much greater divergence (7.03-13.48%) that probably represent overlooked species. These findings were confirmed by maximum likelihood analysis and Bayesian inference, which revealed well-supported corresponding monophyletic clades. Based on these results and morphological differences, the putative species Betta sp. Mahachai from central Thailand is a species distinct from other members of the B. splendens group and represents a new and hitherto undescribed species. Furthermore, this study also demonstrated the probable existence of two overlooked Betta species found in the Khorat plateau basin, illustrating the utility of mitochondrial genetic markers in the revelation of overlooked diversity.

  20. Morphological adaptation with no mitochondrial DNA differentiation in the coastal plain swamp sparrow

    USGS Publications Warehouse

    Greenberg, R.; Cordero, P.J.; Droege, S.; Fleischer, R.C.

    1998-01-01

    We estimated genetic differentiation between morphologically distinct tidal marsh populations of Swamp Sparrows (Melospiza georgiana nigrescens) and the more widespread inland populations (M. g. georgiana and M. g. ericrypta). The tidal marsh populations are consistently grayer with more extensive black markings (particularly in the crown), and their bills are larger. These differences are variously shared with other species of salt marsh birds and small mammals. We analyzed mitochondrial DNA sequences (5′ end of control region, COII/t-lys/ATPase8, and ND2) of Swamp Sparrows and found low levels of genetic variation and no evidence of geographic structure. These results suggest a rapid and recent geographic expansion of Swamp Sparrows from restricted Pleistocene populations. Morphological differentiation has occurred without long-term genetic isolation, suggesting that selection on the divergent traits is intense. The grayer and more melanistic plumage is probably cryptic coloration for foraging on tidal mud, which tends to be grayish as a result of the formation of iron sulfides, rather than iron oxides, under anaerobic conditions.

  1. Substantial variation in the extent of mitochondrial genome fragmentation among blood-sucking lice of mammals.

    PubMed

    Jiang, Haowei; Barker, Stephen C; Shao, Renfu

    2013-01-01

    Blood-sucking lice of humans have extensively fragmented mitochondrial (mt) genomes. Human head louse and body louse have their 37 mt genes on 20 minichromosomes. In human pubic louse, the 34 mt genes known are on 14 minichromosomes. To understand the process of mt genome fragmentation in the blood-sucking lice of mammals, we sequenced the mt genomes of the domestic pig louse, Haematopinus suis, and the wild pig louse, H. apri, which diverged from human lice approximately 65 Ma. The 37 mt genes of the pig lice are on nine circular minichromosomes; each minichromosome is 3-4 kb in size. The pig lice have four genes per minichromosome on average, in contrast to two genes per minichromosome in the human lice. One minichromosome of the pig lice has eight genes and is the most gene-rich minichromosome found in the sucking lice. Our results indicate substantial variation in the rate and extent of mt genome fragmentation among different lineages of the sucking lice.

  2. Substantial Variation in the Extent of Mitochondrial Genome Fragmentation among Blood-Sucking Lice of Mammals

    PubMed Central

    Jiang, Haowei; Barker, Stephen C.; Shao, Renfu

    2013-01-01

    Blood-sucking lice of humans have extensively fragmented mitochondrial (mt) genomes. Human head louse and body louse have their 37 mt genes on 20 minichromosomes. In human pubic louse, the 34 mt genes known are on 14 minichromosomes. To understand the process of mt genome fragmentation in the blood-sucking lice of mammals, we sequenced the mt genomes of the domestic pig louse, Haematopinus suis, and the wild pig louse, H. apri, which diverged from human lice approximately 65 Ma. The 37 mt genes of the pig lice are on nine circular minichromosomes; each minichromosome is 3–4 kb in size. The pig lice have four genes per minichromosome on average, in contrast to two genes per minichromosome in the human lice. One minichromosome of the pig lice has eight genes and is the most gene-rich minichromosome found in the sucking lice. Our results indicate substantial variation in the rate and extent of mt genome fragmentation among different lineages of the sucking lice. PMID:23781098

  3. Recovering complete mitochondrial genome sequences from RNA-Seq: A case study of Polytomella non-photosynthetic green algae.

    PubMed

    Tian, Yao; Smith, David Roy

    2016-05-01

    Thousands of mitochondrial genomes have been sequenced, but there are comparatively few available mitochondrial transcriptomes. This might soon be changing. High-throughput RNA sequencing (RNA-Seq) techniques have made it fast and cheap to generate massive amounts of mitochondrial transcriptomic data. Here, we explore the utility of RNA-Seq for assembling mitochondrial genomes and studying their expression patterns. Specifically, we investigate the mitochondrial transcriptomes from Polytomella non-photosynthetic green algae, which have among the smallest, most reduced mitochondrial genomes from the Archaeplastida as well as fragmented rRNA-coding regions, palindromic genes, and linear chromosomes with telomeres. Isolation of whole genomic RNA from the four known Polytomella species followed by Illumina paired-end sequencing generated enough mitochondrial-derived reads to easily recover almost-entire mitochondrial genome sequences. Read-mapping and coverage statistics also gave insights into Polytomella mitochondrial transcriptional architecture, revealing polycistronic transcripts and the expression of telomeres and palindromic genes. Ultimately, RNA-Seq is a promising, cost-effective technique for studying mitochondrial genetics, but it does have drawbacks, which are discussed. One of its greatest potentials, as shown here, is that it can be used to generate near-complete mitochondrial genome sequences, which could be particularly useful in situations where there is a lack of available mtDNA data. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  4. Environmental and Metabolic Transformations of the Piscicide Antimycin A

    EPA Science Inventory

    Antimycin A is a natural occurring product of bacterial fermentation and is an extremely potent inhibitor of mitochondrial respiration. It is toxic to all organisms that depend on mitochondrial respiration; however, there is a large divergence in toxicity, even between closely re...

  5. Genetic structure and divergence in populations of Lutzomyia cruciata, a phlebotomine sand fly (Diptera: Psychodidae) vector of Leishmania mexicana in southeastern Mexico.

    PubMed

    Pech-May, Angélica; Marina, Carlos F; Vázquez-Domínguez, Ella; Berzunza-Cruz, Miriam; Rebollar-Téllez, Eduardo A; Narváez-Zapata, José A; Moo-Llanes, David; Ibáñez-Bernal, Sergio; Ramsey, Janine M; Becker, Ingeborg

    2013-06-01

    The low dispersal capacity of sand flies could lead to population isolation due to geographic barriers, climate variation, or to population fragmentation associated with specific local habitats due to landscape modification. The phlebotomine sand fly Lutzomyia cruciata has a wide distribution throughout Mexico and is a vector of Leishmania mexicana in the southeast. The aim of this study was to evaluate the genetic diversity, structure, and divergence within and among populations of Lu. cruciata in the state of Chiapas, and to infer the intra-specific phylogeny using the 3' end of the mitochondrial cytochrome b gene. We analyzed 62 sequences from four Lu. cruciata populations and found 26 haplotypes, high genetic differentiation and restricted gene flow among populations (Fst=0.416, Nm=0.701, p<0.001). The highest diversity values were recorded in populations from Loma Bonita and Guadalupe Miramar. Three lineages (100% bootstrap and 7% overall divergence) were identified using a maximum likelihood phylogenetic analysis which showed high genetic divergence (17.2-22.7%). A minimum spanning haplotype network also supported separation into three lineages. Genetic structure and divergence within and among Lu. cruciata populations are hence affected by geographic heterogeneity and evolutionary background. Data obtained in the present study suggest that Lu. cruciata in the state of Chiapas consists of at least three lineages. Such findings may have implications for vector capacity and hence for vector control strategies. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Determinism and randomness in the evolution of introns and sine inserts in mouse and human mitochondrial solute carrier and cytokine receptor genes.

    PubMed

    Cianciulli, Antonia; Calvello, Rosa; Panaro, Maria A

    2015-04-01

    In the homologous genes studied, the exons and introns alternated in the same order in mouse and human. We studied, in both species: corresponding short segments of introns, whole corresponding introns and complete homologous genes. We considered the total number of nucleotides and the number and orientation of the SINE inserts. Comparisons of mouse and human data series showed that at the level of individual relatively short segments of intronic sequences the stochastic variability prevails in the local structuring, but at higher levels of organization a deterministic component emerges, conserved in mouse and human during the divergent evolution, despite the ample re-editing of the intronic sequences and the fact that processes such as SINE spread had taken place in an independent way in the two species. Intron conservation is negatively correlated with the SINE occupancy, suggesting that virus inserts interfere with the conservation of the sequences inherited from the common ancestor. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Mitochondrial Haplogroup Influences Motor Function in Long-Term HIV-1-Infected Individuals

    PubMed Central

    Azar, Ashley; Giovannetti, Tania; Pirrone, Vanessa; Nonnemacher, Michael R.; Passic, Shendra; Kercher, Katherine; Williams, Jean W.; Wigdahl, Brian; Dampier, William; Libon, David J.; Sell, Christian

    2016-01-01

    Evolutionary divergence of the mitochondrial genome has given rise to distinct haplogroups. These haplogroups have arisen in specific geographical locations and are responsible for subtle functional changes in the mitochondria that may provide an evolutionary advantage in a given environment. Based on these functional differences, haplogroups could define disease susceptibility in chronic settings. In this study, we undertook a detailed neuropsychological analysis of a cohort of long-term HIV-1-infected individuals in conjunction with sequencing of their mitochondrial genomes. Stepwise regression analysis showed that the best model for predicting both working memory and declarative memory were age and years since diagnosis. In contrast, years since diagnosis and sub-haplogroup were significantly predictive of psychomotor speed. Consistent with this, patients with haplogroup L3e obtained better scores on psychomotor speed and dexterity tasks when compared to the remainder of the cohort, suggesting that this haplogroup provides a protective advantage when faced with the combined stress of HIV-1 infection and long-term antiretroviral therapies. Differential performance on declarative memory tasks was noted for individuals with other sub-L haplogroups, but these differences were not as robust as the association between L3e and psychomotor speed and dexterity tasks. This work provides evidence that mitochondrial haplogroup is related to neuropsychological test performance among patients in chronic disease settings such as HIV-1 infection. PMID:27711166

  8. Organizational differences between cytoplasmic male sterile and male fertile Brassica mitochondrial genomes are confined to a single transposed locus.

    PubMed Central

    L'Homme, Y; Brown, G G

    1993-01-01

    Comparison of the physical maps of male fertile (cam) and male sterile (pol) mitochondrial genomes of Brassica napus indicates that structural differences between the two mtDNAs are confined to a region immediately upstream of the atp6 gene. Relative to cam mtDNA, pol mtDNA possesses a 4.5 kb segment at this locus that includes a chimeric gene that is cotranscribed with atp6 and lacks an approximately 1kb region located upstream of the cam atp6 gene. The 4.5 kb pol segment is present and similarly organized in the mitochondrial genome of the common nap B.napus cytoplasm; however, the nap and pol DNA regions flanking this segment are different and the nap sequences are not expressed. The 4.5 kb CMS-associated pol segment has thus apparently undergone transposition during the evolution of the nap and pol cytoplasms and has been lost in the cam genome subsequent to the pol-cam divergence. This 4.5 kb segment comprises the single DNA region that is expressed differently in fertile, pol CMS and fertility restored pol cytoplasm plants. The finding that this locus is part of the single mtDNA region organized differently in the fertile and male sterile mitochondrial genomes provides strong support for the view that it specifies the pol CMS trait. Images PMID:8388101

  9. Positive and purifying selection in mitochondrial genomes of a bird with mitonuclear discordance.

    PubMed

    Morales, Hernán E; Pavlova, Alexandra; Joseph, Leo; Sunnucks, Paul

    2015-06-01

    Diversifying selection on metabolic pathways can reduce intraspecific gene flow and promote population divergence. An opportunity to explore this arises from mitonuclear discordance observed in an Australian bird Eopsaltria australis. Across >1500 km, nuclear differentiation is low and latitudinally structured by isolation by distance, whereas two highly divergent, parapatric mitochondrial lineages (>6.6% in ND2) show a discordant longitudinal geographic pattern and experience different climates. Vicariance, incomplete lineage sorting and sex-biased dispersal were shown earlier to be unlikely drivers of the mitonuclear discordance; instead, natural selection on a female-linked trait was the preferred hypothesis. Accordingly, here we tested for signals of positive, divergent selection on mitochondrial genes in E. australis. We used codon models and physicochemical profiles of amino acid replacements to analyse complete mitochondrial genomes of the two mitochondrial lineages in E. australis, its sister species Eopsaltria griseogularis, and outgroups. We found evidence of positive selection on at least five amino acids, encoded by genes of two oxidative phosphorylation pathway complexes NADH dehydrogenase (ND4 and ND4L) and cytochrome bc1 (cyt-b) against a background of widespread purifying selection on all mitochondrial genes. Three of these amino acid replacements were fixed in ND4 of the geographically most widespread E. australis lineage. The other two replacements were fixed in ND4L and cyt-b of the geographically more restricted E. australis lineage. We discuss whether this selection may reflect local environmental adaptation, a by-product of other selective processes, or genetic incompatibilities, and propose how these hypotheses can be tested in future. © 2015 John Wiley & Sons Ltd.

  10. Phylogeography of the finless porpoise (genus Neophocaena): testing the stepwise divergence hypothesis in the northwestern Pacific.

    PubMed

    Lin, Wenzhi; Frère, Céline H; Karczmarski, Leszek; Xia, Jia; Gui, Duan; Wu, Yuping

    2014-10-10

    We used 344 mitochondrial control region (717 bp) sequences from the finless porpoise (genus Neophocaena) from the northwestern Pacific to investigate the extent and manner in which past climatic oscillations may have shaped patterns of genetic diversity for this marine mammal. Both SplitsTree and Analysis of Molecular Variance (AMOVA) revealed the presence of a deep divergence among N. phocaenoides in subtropical waters compared with N. asiaeorientalis in temperate waters. Results from Migrate-n indicated that migration increased along the continent during the early Pleistocene period. Migration increased, although to a lesser extent than that during the Pleistocene, along the marginal shelf in the Yellow/Bohai Sea during the Last Glacial Maximum (LGM) due to a shortening coastline. Our results suggest that the current patterns of genetic diversity of Neophocaena vary at a hierarchy on a temporal and spatial scale, and phylogeographic history should be taken into account when examining species population structure and taxonomy.

  11. Unrealized diversity in an urban rainforest: A new species of Lygosoma (Squamata: Scincidae) from western Sarawak, Malaysia (Borneo).

    PubMed

    Karin, Benjamin R; Freitas, Elyse S; Shonleben, Samuel; Grismer, L Lee; Bauer, Aaron M; Das, Indraneil

    2018-01-12

    We collected two specimens of an undescribed species of Lygosoma from pitfall traps in an urban rainforest in Kuching and from the base of a forested hill in western Sarawak, East Malaysia. The new species is diagnosable from all south-east Asian congeners by morphological characters, and most closely resembles Lygosoma herberti from the Thai-Malay Peninsula. The new species shows substantial molecular divergence from its closest relatives in two protein-coding genes, one mitochondrial (ND1) and one nuclear (R35) that we sequenced for several south-east Asian congeners. We describe the new species on the basis of this distinct morphology and genetic divergence. It is the third species of Lygosoma known from Borneo, and highlights the continuing rise in lizard species diversity on the island. In addition, the discovery of this species from a small urban rainforest underscores the importance of preserving intact rainforest areas of any size in maintaining species diversity.

  12. Mitochondrial Genome Sequence of the Legume Vicia faba

    PubMed Central

    Negruk, Valentine

    2013-01-01

    The number of plant mitochondrial genomes sequenced exceeds two dozen. However, for a detailed comparative study of different phylogenetic branches more plant mitochondrial genomes should be sequenced. This article presents sequencing data and comparative analysis of mitochondrial DNA (mtDNA) of the legume Vicia faba. The size of the V. faba circular mitochondrial master chromosome of cultivar Broad Windsor was estimated as 588,000 bp with a genome complexity of 387,745 bp and 52 conservative mitochondrial genes; 32 of them encoding proteins, 3 rRNA, and 17 tRNA genes. Six tRNA genes were highly homologous to chloroplast genome sequences. In addition to the 52 conservative genes, 114 unique open reading frames (ORFs) were found, 36 without significant homology to any known proteins and 29 with homology to the Medicago truncatula nuclear genome and to other plant mitochondrial ORFs, 49 ORFs were not homologous to M. truncatula but possessed sequences with significant homology to other plant mitochondrial or nuclear ORFs. In general, the unique ORFs revealed very low homology to known closely related legumes, but several sequence homologies were found between V. faba, Beta vulgaris, Nicotiana tabacum, Vitis vinifera, and even the monocots Oryza sativa and Zea mays. Most likely these ORFs arose independently during angiosperm evolution (Kubo and Mikami, 2007; Kubo and Newton, 2008). Computational analysis revealed in total about 45% of V. faba mtDNA sequence being homologous to the Medicago truncatula nuclear genome (more than to any sequenced plant mitochondrial genome), and 35% of this homology ranging from a few dozen to 12,806 bp are located on chromosome 1. Apparently, mitochondrial rrn5, rrn18, rps10, ATP synthase subunit alpha, cox2, and tRNA sequences are part of transcribed nuclear mosaic ORFs. PMID:23675376

  13. Population genetic structure and demographic history of the black fly vector, Simulium nodosum in Thailand.

    PubMed

    Chaiyasan, P; Pramual, P

    2016-09-01

    An understanding of the genetic structure and diversity of vector species is crucial for effective control and management. In this study, mitochondrial DNA sequences were used to examine the genetic structure, diversity and demographic history of a black fly vector, Simulium nodosum Puri (Diptera: Simuliidae), in Thailand. A total of 145 sequences were obtained from 10 sampling locations collected across geographical ranges in the country. Low genetic diversity was found in populations of S. nodosum that could be explained by the recent population history of this species. Demographic history analysis revealed a signature of demographic expansion dating back to only 2600-5200 years ago. Recent population expansion in S. nodosum possibly followed an increase in agriculture that enabled its hosts', humans and domestic animals, densities to increase. Alternatively, the Thai populations could be a derivative of an older expansion event in the more northern populations. Mitochondrial DNA genealogy revealed no genetically divergent lineages, which agrees with the previous cytogenetic study. Genetic structure analyses found that only 27% of the pairwise comparisons were significantly different. The most likely explanation for the pattern of genetic structuring is the effect of genetic drift because of recent colonization. © 2016 The Royal Entomological Society.

  14. An examination of the origin and evolution of additional tandem repeats in the mitochondrial DNA control region of Japanese sika deer (Cervus Nippon).

    PubMed

    Ba, Hengxing; Wu, Lang; Liu, Zongyue; Li, Chunyi

    2016-01-01

    Tandem repeat units are only detected in the left domain of the mitochondrial DNA control region in sika deer. Previous studies showed that Japanese sika deer have more tandem repeat units than its cousins from the Asian continent and Taiwan, which often have only three repeat units. To determine the origin and evolution of these additional repeat units in Japanese sika deer, we obtained the sequence of repeat units from an expanded dataset of the control region from all sika deer lineages. The functional constraint is inferred to act on the first repeat unit because this repeat has the least sequence divergence in comparison to the other units. Based on slipped-strand mispairing mechanisms, the illegitimate elongation model could account for the addition or deletion of these additional repeat units in the Japanese sika deer population. We also report that these additional repeat units could be occurring in the internal positions of tandem repeat regions, possibly via coupling with a homogenization mechanism within and among these lineages. Moreover, the increased number of repeat units in the Japanese sika deer population could reflect a balance between mutation and selection, as well as genetic drift.

  15. Implications of Hybridization, NUMTs, and Overlooked Diversity for DNA Barcoding of Eurasian Ground Squirrels

    PubMed Central

    Ermakov, Oleg A.; Simonov, Evgeniy; Surin, Vadim L.; Titov, Sergey V.; Brandler, Oleg V.; Ivanova, Natalia V.; Borisenko, Alex V.

    2015-01-01

    The utility of DNA Barcoding for species identification and discovery has catalyzed a concerted effort to build the global reference library; however, many animal groups of economical or conservational importance remain poorly represented. This study aims to contribute DNA barcode records for all ground squirrel species (Xerinae, Sciuridae, Rodentia) inhabiting Eurasia and to test efficiency of this approach for species discrimination. Cytochrome c oxidase subunit 1 (COI) gene sequences were obtained for 97 individuals representing 16 ground squirrel species of which 12 were correctly identified. Taxonomic allocation of some specimens within four species was complicated by geographically restricted mtDNA introgression. Exclusion of individuals with introgressed mtDNA allowed reaching a 91.6% identification success rate. Significant COI divergence (3.5–4.4%) was observed within the most widespread ground squirrel species (Spermophilus erythrogenys, S. pygmaeus, S. suslicus, Urocitellus undulatus), suggesting the presence of cryptic species. A single putative NUMT (nuclear mitochondrial pseudogene) sequence was recovered during molecular analysis; mitochondrial COI from this sample was amplified following re-extraction of DNA. Our data show high discrimination ability of 100 bp COI fragments for Eurasian ground squirrels (84.3%) with no incorrect assessments, underscoring the potential utility of the existing reference librariy for the development of diagnostic ‘mini-barcodes’. PMID:25617768

  16. Extensive frameshift at all AGG and CCC codons in the mitochondrial cytochrome c oxidase subunit 1 gene of Perkinsus marinus (Alveolata; Dinoflagellata).

    PubMed

    Masuda, Isao; Matsuzaki, Motomichi; Kita, Kiyoshi

    2010-10-01

    Diverse mitochondrial (mt) genetic systems have evolved independently of the more uniform nuclear system and often employ modified genetic codes. The organization and genetic system of dinoflagellate mt genomes are particularly unusual and remain an evolutionary enigma. We determined the sequence of full-length cytochrome c oxidase subunit 1 (cox1) mRNA of the earliest diverging dinoflagellate Perkinsus and show that this gene resides in the mt genome. Apparently, this mRNA is not translated in a single reading frame with standard codon usage. Our examination of the nucleotide sequence and three-frame translation of the mRNA suggest that the reading frame must be shifted 10 times, at every AGG and CCC codon, to yield a consensus COX1 protein. We suggest two possible mechanisms for these translational frameshifts: a ribosomal frameshift in which stalled ribosomes skip the first bases of these codons or specialized tRNAs recognizing non-triplet codons, AGGY and CCCCU. Regardless of the mechanism, active and efficient machinery would be required to tolerate the frameshifts predicted in Perkinsus mitochondria. To our knowledge, this is the first evidence of translational frameshifts in protist mitochondria and, by far, is the most extensive case in mitochondria.

  17. Genetic diversity of Taenia asiatica from Thailand and other geographical locations as revealed by cytochrome c oxidase subunit 1 sequences.

    PubMed

    Anantaphruti, Malinee Thairungroj; Thaenkham, Urusa; Watthanakulpanich, Dorn; Phuphisut, Orawan; Maipanich, Wanna; Yoonuan, Tippayarat; Nuamtanong, Supaporn; Pubampen, Somjit; Sanguankiat, Surapol

    2013-02-01

    Twelve 924 bp cytochrome c oxidase subunit 1 (cox1) mitochondrial DNA sequences from Taenia asiatica isolates from Thailand were aligned and compared with multiple sequence isolates from Thailand and 6 other countries from the GenBank database. The genetic divergence of T. asiatica was also compared with Taenia saginata database sequences from 6 different countries in Asia, including Thailand, and 3 countries from other continents. The results showed that there were minor genetic variations within T. asiatica species, while high intraspecies variation was found in T. saginata. There were only 2 haplotypes and 1 polymorphic site found in T. asiatica, but 8 haplotypes and 9 polymorphic sites in T. saginata. Haplotype diversity was very low, 0.067, in T. asiatica and high, 0.700, in T. saginata. The very low genetic diversity suggested that T. asiatica may be at a risk due to the loss of potential adaptive alleles, resulting in reduced viability and decreased responses to environmental changes, which may endanger the species.

  18. Genetic Diversity of Taenia asiatica from Thailand and Other Geographical Locations as Revealed by Cytochrome c Oxidase Subunit 1 Sequences

    PubMed Central

    Thaenkham, Urusa; Watthanakulpanich, Dorn; Phuphisut, Orawan; Maipanich, Wanna; Yoonuan, Tippayarat; Nuamtanong, Supaporn; Pubampen, Somjit; Sanguankiat, Surapol

    2013-01-01

    Twelve 924 bp cytochrome c oxidase subunit 1 (cox1) mitochondrial DNA sequences from Taenia asiatica isolates from Thailand were aligned and compared with multiple sequence isolates from Thailand and 6 other countries from the GenBank database. The genetic divergence of T. asiatica was also compared with Taenia saginata database sequences from 6 different countries in Asia, including Thailand, and 3 countries from other continents. The results showed that there were minor genetic variations within T. asiatica species, while high intraspecies variation was found in T. saginata. There were only 2 haplotypes and 1 polymorphic site found in T. asiatica, but 8 haplotypes and 9 polymorphic sites in T. saginata. Haplotype diversity was very low, 0.067, in T. asiatica and high, 0.700, in T. saginata. The very low genetic diversity suggested that T. asiatica may be at a risk due to the loss of potential adaptive alleles, resulting in reduced viability and decreased responses to environmental changes, which may endanger the species. PMID:23467439

  19. Why barcode? High-throughput multiplex sequencing of mitochondrial genomes for molecular systematics.

    PubMed

    Timmermans, M J T N; Dodsworth, S; Culverwell, C L; Bocak, L; Ahrens, D; Littlewood, D T J; Pons, J; Vogler, A P

    2010-11-01

    Mitochondrial genome sequences are important markers for phylogenetics but taxon sampling remains sporadic because of the great effort and cost required to acquire full-length sequences. Here, we demonstrate a simple, cost-effective way to sequence the full complement of protein coding mitochondrial genes from pooled samples using the 454/Roche platform. Multiplexing was achieved without the need for expensive indexing tags ('barcodes'). The method was trialled with a set of long-range polymerase chain reaction (PCR) fragments from 30 species of Coleoptera (beetles) sequenced in a 1/16th sector of a sequencing plate. Long contigs were produced from the pooled sequences with sequencing depths ranging from ∼10 to 100× per contig. Species identity of individual contigs was established via three 'bait' sequences matching disparate parts of the mitochondrial genome obtained by conventional PCR and Sanger sequencing. This proved that assembly of contigs from the sequencing pool was correct. Our study produced sequences for 21 nearly complete and seven partial sets of protein coding mitochondrial genes. Combined with existing sequences for 25 taxa, an improved estimate of basal relationships in Coleoptera was obtained. The procedure could be employed routinely for mitochondrial genome sequencing at the species level, to provide improved species 'barcodes' that currently use the cox1 gene only.

  20. Deeply divergent archaic mitochondrial genome provides lower time boundary for African gene flow into Neanderthals

    PubMed Central

    Posth, Cosimo; Wißing, Christoph; Kitagawa, Keiko; Pagani, Luca; van Holstein, Laura; Racimo, Fernando; Wehrberger, Kurt; Conard, Nicholas J.; Kind, Claus Joachim; Bocherens, Hervé; Krause, Johannes

    2017-01-01

    Ancient DNA is revealing new insights into the genetic relationship between Pleistocene hominins and modern humans. Nuclear DNA indicated Neanderthals as a sister group of Denisovans after diverging from modern humans. However, the closer affinity of the Neanderthal mitochondrial DNA (mtDNA) to modern humans than Denisovans has recently been suggested as the result of gene flow from an African source into Neanderthals before 100,000 years ago. Here we report the complete mtDNA of an archaic femur from the Hohlenstein–Stadel (HST) cave in southwestern Germany. HST carries the deepest divergent mtDNA lineage that splits from other Neanderthals ∼270,000 years ago, providing a lower boundary for the time of the putative mtDNA introgression event. We demonstrate that a complete Neanderthal mtDNA replacement is feasible over this time interval even with minimal hominin introgression. The highly divergent HST branch is indicative of greater mtDNA diversity during the Middle Pleistocene than in later periods. PMID:28675384

  1. DNA barcoding for the identification of sand fly species (Diptera, Psychodidae, Phlebotominae) in Colombia.

    PubMed

    Contreras Gutiérrez, María Angélica; Vivero, Rafael J; Vélez, Iván D; Porter, Charles H; Uribe, Sandra

    2014-01-01

    Sand flies include a group of insects that are of medical importance and that vary in geographic distribution, ecology, and pathogen transmission. Approximately 163 species of sand flies have been reported in Colombia. Surveillance of the presence of sand fly species and the actualization of species distribution are important for predicting risks for and monitoring the expansion of diseases which sand flies can transmit. Currently, the identification of phlebotomine sand flies is based on morphological characters. However, morphological identification requires considerable skills and taxonomic expertise. In addition, significant morphological similarity between some species, especially among females, may cause difficulties during the identification process. DNA-based approaches have become increasingly useful and promising tools for estimating sand fly diversity and for ensuring the rapid and accurate identification of species. A partial sequence of the mitochondrial cytochrome oxidase gene subunit I (COI) is currently being used to differentiate species in different animal taxa, including insects, and it is referred as a barcoding sequence. The present study explored the utility of the DNA barcode approach for the identification of phlebotomine sand flies in Colombia. We sequenced 700 bp of the COI gene from 36 species collected from different geographic localities. The COI barcode sequence divergence within a single species was <2% in most cases, whereas this divergence ranged from 9% to 26.6% among different species. These results indicated that the barcoding gene correctly discriminated among the previously morphologically identified species with an efficacy of nearly 100%. Analyses of the generated sequences indicated that the observed species groupings were consistent with the morphological identifications. In conclusion, the barcoding gene was useful for species discrimination in sand flies from Colombia.

  2. DNA Barcoding for the Identification of Sand Fly Species (Diptera, Psychodidae, Phlebotominae) in Colombia

    PubMed Central

    Contreras Gutiérrez, María Angélica; Vivero, Rafael J.; Vélez, Iván D.; Porter, Charles H.; Uribe, Sandra

    2014-01-01

    Sand flies include a group of insects that are of medical importance and that vary in geographic distribution, ecology, and pathogen transmission. Approximately 163 species of sand flies have been reported in Colombia. Surveillance of the presence of sand fly species and the actualization of species distribution are important for predicting risks for and monitoring the expansion of diseases which sand flies can transmit. Currently, the identification of phlebotomine sand flies is based on morphological characters. However, morphological identification requires considerable skills and taxonomic expertise. In addition, significant morphological similarity between some species, especially among females, may cause difficulties during the identification process. DNA-based approaches have become increasingly useful and promising tools for estimating sand fly diversity and for ensuring the rapid and accurate identification of species. A partial sequence of the mitochondrial cytochrome oxidase gene subunit I (COI) is currently being used to differentiate species in different animal taxa, including insects, and it is referred as a barcoding sequence. The present study explored the utility of the DNA barcode approach for the identification of phlebotomine sand flies in Colombia. We sequenced 700 bp of the COI gene from 36 species collected from different geographic localities. The COI barcode sequence divergence within a single species was <2% in most cases, whereas this divergence ranged from 9% to 26.6% among different species. These results indicated that the barcoding gene correctly discriminated among the previously morphologically identified species with an efficacy of nearly 100%. Analyses of the generated sequences indicated that the observed species groupings were consistent with the morphological identifications. In conclusion, the barcoding gene was useful for species discrimination in sand flies from Colombia. PMID:24454877

  3. Analysis of a library of macaque nuclear mitochondrial sequences confirms macaque origin of divergent sequences from old oral polio vaccine samples.

    PubMed

    Vartanian, Jean-Pierre; Wain-Hobson, Simon

    2002-05-28

    Nuclear mtDNA sequences (numts) are a widespread family of paralogs evolving as pseudogenes in chromosomal DNA [Zhang, D. E. & Hewitt, G. M. (1996) TREE 11, 247-251 and Bensasson, D., Zhang, D., Hartl, D. L. & Hewitt, G. M. (2001) TREE 16, 314-321]. When trying to identify the species origin of an unknown DNA sample by way of an mtDNA locus, PCR may amplify both mtDNA and numts. Indeed, occasionally numts dominate confounding attempts at species identification [Bensasson, D., Zhang, D. X. & Hewitt, G. M. (2000) Mol. Biol. Evol. 17, 406-415; Wallace, D. C., et al. (1997) Proc. Natl. Acad. Sci. USA 94, 14900-14905]. Rhesus and cynomolgus macaque mtDNA haplotypes were identified in a study of oral polio vaccine samples dating from the late 1950s [Blancou, P., et al. (2001) Nature (London) 410, 1045-1046]. They were accompanied by a number of putative numts. To confirm that these putative numts were of macaque origin, a library of numts corresponding to a small segment of 12S rDNA locus has been made by using DNA from a Chinese rhesus macaque. A broad distribution was found with up to 30% sequence variation. Phylogenetic analysis showed that the evolutionary trajectories of numts and bona fide mtDNA haplotypes do not overlap with the signal exception of the host species; mtDNA fragments are continually crossing over into the germ line. In the case of divergent mtDNA sequences from old oral polio vaccine samples [Blancou, P., et al. (2001) Nature (London) 410, 1045-1046], all were closely related to numts in the Chinese macaque library.

  4. Genetic divergence among invasive and native populations of the yellow peacock cichlid Cichla kelberi.

    PubMed

    Marques, A C P B; Franco, A C S; Salgueiro, F; García-Berthou, E; Santos, L N

    2016-12-01

    This study used the hypervariable domain of the mitochondrial DNA (mtDNA) control region (CR) to assess the genetic divergence among native and invasive populations of Cichla kelberi, which is considered the first peacock cichlid introduced and established throughout Brazil and is among the most invasive populations of this genus worldwide. The maximum likelihood tree based on 53 CR sequences with strong bootstrap support revealed that C. kelberi forms a monophyletic clade, confirming that all 30 C. kelberi studied belong to this morphotype. Additionally, the haplotype analysis of the C. kelberi sequences from 11 sampling sites revealed that invasive populations are much less diverse than native ones and largely dominated by a single haplotype that prevailed in reservoirs at the Paraíba do Sul River basin. Two haplotypes were recorded exclusively in an invasive population at Porto Rico, southern Brazil, and one private haplotype was detected in two reservoirs from Paraíba do Sul (Pereira Passos and Paracambi), suggesting more than one introduction event and that native populations should be better evaluated to encompass the entire genetic diversity of native C. kelberi. The possible route and pathways of C. kelberi introduction are also briefly discussed. © 2016 The Fisheries Society of the British Isles.

  5. Complete Khoisan and Bantu genomes from southern Africa

    PubMed Central

    Schuster, Stephan C.; Miller, Webb; Ratan, Aakrosh; Tomsho, Lynn P.; Giardine, Belinda; Kasson, Lindsay R.; Harris, Robert S.; Petersen, Desiree C.; Zhao, Fangqing; Qi, Ji; Alkan, Can; Kidd, Jeffrey M.; Sun, Yazhou; Drautz, Daniela I.; Bouffard, Pascal; Muzny, Donna M.; Reid, Jeffrey G.; Nazareth, Lynne V.; Wang, Qingyu; Burhans, Richard; Riemer, Cathy; Wittekindt, Nicola E.; Moorjani, Priya; Tindall, Elizabeth A.; Danko, Charles G.; Teo, Wee Siang; Buboltz, Anne M.; Zhang, Zhenhai; Ma, Qianyi; Oosthuysen, Arno; Steenkamp, Abraham W.; Oostuisen, Hermann; Venter, Philippus; Gajewski, John; Zhang, Yu; Pugh, B. Franklin; Makova, Kateryna D.; Nekrutenko, Anton; Mardis, Elaine R.; Patterson, Nick; Pringle, Tom H.; Chiaromonte, Francesca; Mullikin, James C.; Eichler, Evan E.; Hardison, Ross C.; Gibbs, Richard A.; Harkins, Timothy T.; Hayes, Vanessa M.

    2013-01-01

    The genetic structure of the indigenous hunter-gatherer peoples of southern Africa, the oldest known lineage of modern human, is important for understanding human diversity. Studies based on mitochondrial1 and small sets of nuclear markers2 have shown that these hunter-gatherers, known as Khoisan, San, or Bushmen, are genetically divergent from other humans1,3. However, until now, fully sequenced human genomes have been limited to recently diverged populations4–8. Here we present the complete genome sequences of an indigenous hunter-gatherer from the Kalahari Desert and a Bantu from southern Africa, as well as protein-coding regions from an additional three hunter-gatherers from disparate regions of the Kalahari. We characterize the extent of whole-genome and exome diversity among the five men, reporting 1.3 million novel DNA differences genome-wide, including 13,146 novel amino acid variants. In terms of nucleotide substitutions, the Bushmen seem to be, on average, more different from each other than, for example, a European and an Asian. Observed genomic differences between the hunter-gatherers and others may help to pinpoint genetic adaptations to an agricultural lifestyle. Adding the described variants to current databases will facilitate inclusion of southern Africans in medical research efforts, particularly when family and medical histories can be correlated with genome-wide data. PMID:20164927

  6. Global diversity and oceanic divergence of humpback whales (Megaptera novaeangliae).

    PubMed

    Jackson, Jennifer A; Steel, Debbie J; Beerli, P; Congdon, Bradley C; Olavarría, Carlos; Leslie, Matthew S; Pomilla, Cristina; Rosenbaum, Howard; Baker, C Scott

    2014-07-07

    Humpback whales (Megaptera novaeangliae) annually undertake the longest migrations between seasonal feeding and breeding grounds of any mammal. Despite this dispersal potential, discontinuous seasonal distributions and migratory patterns suggest that humpbacks form discrete regional populations within each ocean. To better understand the worldwide population history of humpbacks, and the interplay of this species with the oceanic environment through geological time, we assembled mitochondrial DNA control region sequences representing approximately 2700 individuals (465 bp, 219 haplotypes) and eight nuclear intronic sequences representing approximately 70 individuals (3700 bp, 140 alleles) from the North Pacific, North Atlantic and Southern Hemisphere. Bayesian divergence time reconstructions date the origin of humpback mtDNA lineages to the Pleistocene (880 ka, 95% posterior intervals 550-1320 ka) and estimate radiation of current Northern Hemisphere lineages between 50 and 200 ka, indicating colonization of the northern oceans prior to the Last Glacial Maximum. Coalescent analyses reveal restricted gene flow between ocean basins, with long-term migration rates (individual migrants per generation) of less than 3.3 for mtDNA and less than 2 for nuclear genomic DNA. Genetic evidence suggests that humpbacks in the North Pacific, North Atlantic and Southern Hemisphere are on independent evolutionary trajectories, supporting taxonomic revision of M. novaeangliae to three subspecies. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  7. Global diversity and oceanic divergence of humpback whales (Megaptera novaeangliae)

    PubMed Central

    Jackson, Jennifer A.; Steel, Debbie J.; Beerli, P.; Congdon, Bradley C.; Olavarría, Carlos; Leslie, Matthew S.; Pomilla, Cristina; Rosenbaum, Howard; Baker, C. Scott

    2014-01-01

    Humpback whales (Megaptera novaeangliae) annually undertake the longest migrations between seasonal feeding and breeding grounds of any mammal. Despite this dispersal potential, discontinuous seasonal distributions and migratory patterns suggest that humpbacks form discrete regional populations within each ocean. To better understand the worldwide population history of humpbacks, and the interplay of this species with the oceanic environment through geological time, we assembled mitochondrial DNA control region sequences representing approximately 2700 individuals (465 bp, 219 haplotypes) and eight nuclear intronic sequences representing approximately 70 individuals (3700 bp, 140 alleles) from the North Pacific, North Atlantic and Southern Hemisphere. Bayesian divergence time reconstructions date the origin of humpback mtDNA lineages to the Pleistocene (880 ka, 95% posterior intervals 550–1320 ka) and estimate radiation of current Northern Hemisphere lineages between 50 and 200 ka, indicating colonization of the northern oceans prior to the Last Glacial Maximum. Coalescent analyses reveal restricted gene flow between ocean basins, with long-term migration rates (individual migrants per generation) of less than 3.3 for mtDNA and less than 2 for nuclear genomic DNA. Genetic evidence suggests that humpbacks in the North Pacific, North Atlantic and Southern Hemisphere are on independent evolutionary trajectories, supporting taxonomic revision of M. novaeangliae to three subspecies. PMID:24850919

  8. A rapid loss of stripes: the evolutionary history of the extinct quagga

    PubMed Central

    Leonard, Jennifer A; Rohland, Nadin; Glaberman, Scott; Fleischer, Robert C; Caccone, Adalgisa; Hofreiter, Michael

    2005-01-01

    Twenty years ago, the field of ancient DNA was launched with the publication of two short mitochondrial (mt) DNA sequences from a single quagga (Equus quagga) museum skin, an extinct South African equid (Higuchi et al. 1984 Nature 312, 282–284). This was the first extinct species from which genetic information was retrieved. The DNA sequences of the quagga showed that it was more closely related to zebras than to horses. However, quagga evolutionary history is far from clear. We have isolated DNA from eight quaggas and a plains zebra (subspecies or phenotype Equus burchelli burchelli). We show that the quagga displayed little genetic diversity and very recently diverged from the plains zebra, probably during the penultimate glacial maximum. This emphasizes the importance of Pleistocene climate changes for phylogeographic patterns in African as well as Holarctic fauna. PMID:17148190

  9. Mitochondrial phylogenomics of Hemiptera reveals adaptive innovations driving the diversification of true bugs

    PubMed Central

    Li, Hu; Leavengood, John M.; Chapman, Eric G.; Burkhardt, Daniel; Song, Fan; Jiang, Pei; Liu, Jinpeng; Cai, Wanzhi

    2017-01-01

    Hemiptera, the largest non-holometabolous order of insects, represents approximately 7% of metazoan diversity. With extraordinary life histories and highly specialized morphological adaptations, hemipterans have exploited diverse habitats and food sources through approximately 300 Myr of evolution. To elucidate the phylogeny and evolutionary history of Hemiptera, we carried out the most comprehensive mitogenomics analysis on the richest taxon sampling to date covering all the suborders and infraorders, including 34 newly sequenced and 94 published mitogenomes. With optimized branch length and sequence heterogeneity, Bayesian analyses using a site-heterogeneous mixture model resolved the higher-level hemipteran phylogeny as (Sternorrhyncha, (Auchenorrhyncha, (Coleorrhyncha, Heteroptera))). Ancestral character state reconstruction and divergence time estimation suggest that the success of true bugs (Heteroptera) is probably due to angiosperm coevolution, but key adaptive innovations (e.g. prognathous mouthpart, predatory behaviour, and haemelytron) facilitated multiple independent shifts among diverse feeding habits and multiple independent colonizations of aquatic habitats. PMID:28878063

  10. The origin and evolution of seahorses (genus Hippocampus): a phylogenetic study using the cytochrome b gene of mitochondrial DNA.

    PubMed

    Casey, Stephen P; Hall, Heather J; Stanley, Helen F; Vincent, Amanda C J

    2004-02-01

    Phylogenetic relationships among 93 specimens of 22 species of seahorses (genus Hippocampus) from the Atlantic and Indo-Pacific Oceans were analysed using cytochrome b gene sequence data. A maximum sequence divergence of 23.2% (Kimura 2-parameter model) suggests a pre-Tethyan origin for the genus. Despite a greater number of seahorse species in the Indo-Pacific than in the Atlantic Ocean, there was no compelling genetic evidence to support an Indo-Pacific origin for the genus Hippocampus. The phylogenetic data suggest that high diversity in the Indo-Pacific results from speciation events dating from the Pleistocene to the Miocene, or earlier. Both vicariance and dispersal events in structuring the current global distribution of seahorses. The results suggested that several species designations need re-evaluating, and further phylogeographic studies are required to determine patterns and processes of seahorse dispersal.

  11. DNA-based identification of forensically important species of Sarcophagidae (Insecta: Diptera) from Rio de Janeiro, Brazil.

    PubMed

    Napoleão, K S; Mello-Patiu, C A; Oliveira-Costa, J; Takiya, D M; Silva, R; Moura-Neto, R S

    2016-05-06

    Sarcophagidae, or flesh flies, are of great importance in forensic entomology, but their effective application requires precise taxonomic identification, which relies almost exclusively on characteristics of the male genitalia. Given that female flies and larvae are most abundant in animal carcasses or on corpses, precise morphological identification can be difficult; therefore, DNA sequencing can be an additional tool for use in taxonomic identification. This paper analyzes part of the mitochondrial cytochrome c oxidase subunit I (COI) gene from three Sarcophagidae species of forensic importance in the City of Rio de Janeiro: Oxysarcodexia fluminensis, Peckia chrysostoma, and Peckia intermutans. COI fragments of 400 bp from 36 specimens of these three species were sequenced. No intraspecific differences were found among specimens of O. fluminensis, but P. chrysostoma and P. intermutans each had two haplotypes, ranging from 0 to 0.7%. The interspecific divergence was 8.5-11.6%, corroborating previously reported findings.

  12. Giraffe genome sequence reveals clues to its unique morphology and physiology

    PubMed Central

    Agaba, Morris; Ishengoma, Edson; Miller, Webb C.; McGrath, Barbara C.; Hudson, Chelsea N.; Bedoya Reina, Oscar C.; Ratan, Aakrosh; Burhans, Rico; Chikhi, Rayan; Medvedev, Paul; Praul, Craig A.; Wu-Cavener, Lan; Wood, Brendan; Robertson, Heather; Penfold, Linda; Cavener, Douglas R.

    2016-01-01

    The origins of giraffe's imposing stature and associated cardiovascular adaptations are unknown. Okapi, which lacks these unique features, is giraffe's closest relative and provides a useful comparison, to identify genetic variation underlying giraffe's long neck and cardiovascular system. The genomes of giraffe and okapi were sequenced, and through comparative analyses genes and pathways were identified that exhibit unique genetic changes and likely contribute to giraffe's unique features. Some of these genes are in the HOX, NOTCH and FGF signalling pathways, which regulate both skeletal and cardiovascular development, suggesting that giraffe's stature and cardiovascular adaptations evolved in parallel through changes in a small number of genes. Mitochondrial metabolism and volatile fatty acids transport genes are also evolutionarily diverged in giraffe and may be related to its unusual diet that includes toxic plants. Unexpectedly, substantial evolutionary changes have occurred in giraffe and okapi in double-strand break repair and centrosome functions. PMID:27187213

  13. Hidden genetic history of the Japanese sand dollar Peronella (Echinoidea: Laganidae) revealed by nuclear intron sequences.

    PubMed

    Endo, Megumi; Hirose, Mamiko; Honda, Masanao; Koga, Hiroyuki; Morino, Yoshiaki; Kiyomoto, Masato; Wada, Hiroshi

    2018-06-15

    The marine environment around Japan experienced significant changes during the Cenozoic Era. In this study, we report findings suggesting that this dynamic history left behind traces in the genome of the Japanese sand dollar species Peronella japonica and P. rubra. Although mitochondrial Cytochrome C Oxidase I sequences did not indicate fragmentation of the current local populations of P. japonica around Japan, two different types of intron sequence were found in the Alx1 locus. We inferred that past fragmentation of the populations account for the presence of two types of nuclear sequences as alleles in the Alx1 intron of P. japonica. It is likely that the split populations have intermixed in recent times; hence, we did not detect polymorphisms in the sequences reflecting the current localization of the species. In addition, we found two allelic sequences of theAlx1 intron in the sister species P. rubra. The divergence times of the two types of Alx1 intron sequences were estimated at approximately 14.9 and 4.0 million years ago for P. japonica and P. rubra, respectively. Our study indicates that information from the intron sequences of nuclear genes can enhance our understanding of past genetic events in organisms. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Comparative analyses of the mitochondrial genome of the sheep ked Melophagus ovinus (Diptera: Hippoboscidae) from different geographical origins in China.

    PubMed

    Tang, Jia-Min; Li, Fen; Cheng, Tian-Yin; Duan, De-Yong; Liu, Guo-Hua

    2018-05-22

    The sheep ked Melophagus ovinus is mainly found in Europe, Northwestern Africa, and Asia. Although M. ovinus is an important ectoparasite of sheep in many countries, the population genetics, molecular biology, and systematics of this ectoparasite remain poorly understood. Herein, we determined the mitochondrial (mt) genome of M. ovinus from Gansu Province, China (MOG) and compared with that of M. ovinus Xinjiang Uygur Autonomous Region, China (MOX). The mt genome sequence (15,044 bp) of M. ovinus MOG was significantly shorter (529 bp) than M. ovinus MOX. Nucleotide sequence difference in the whole mt genome except for non-coding region was 0.37% between M. ovinus MOG and MOX. For the 13 protein-coding genes, comparison revealed sequence divergences at both the nucleotide (0-1.1%) and amino acid (0-0.59%) levels between M. ovinus MOG and MOX, respectively. Interestingly, the cox1 gene of M. ovinus MOX is predicted to employ unusual mt start codons AAA, which has not been predicted previously for any parasite genome. Phylogenetic analyses showed that M. ovinus (Hippoboscoidea) is related to the superfamilies Oestroidea + Muscoidea. Our results have also indicated the paraphylies of the four families (Anthomyiidae, Calliphoridae, Muscidae, and Oestridae) and two superfamilies (Oestroidea and Muscoidea). This mt genome of M. ovinus provides useful molecular markers for studies into the population genetics, molecular biology, and systematics of this ectoparasite.

  15. A new Nototriton (Caudata: Plethodontidae) from Parque Nacional Montaña de Botaderos in northeastern Honduras.

    PubMed

    Townsend, Josiah H; Medina-flores, Melissa; Reyes-Calderón, Onán; Austin, James D

    2013-01-01

    The highlands of northeastern Honduras remain under-characterized in terms of biological diversity, as exemplified by the regularity of new amphibian and reptile taxa discoveries. Following the recent description of a new species of Nototriton from the Sierra de Agalta in northeastern Honduras, we report the discovery of a second new species of Nototriton from the nearby Parque Nacional Montaña de Botaderos. This new taxon, Nototriton mime sp. nov., is distinguished from other Nototriton by its distinctive pale brown dorsal coloration in adult males, relatively large nares, a relatively broad head, mitochondrial sequence divergence, and phylogenetic relationships, and is geographically isolated from other populations of Nototriton.

  16. Redescription of Enterobius (Enterobius) macaci Yen, 1973 (Nematoda: Oxyuridae: Enterobiinae) based on material collected from wild Japanese macaque, Macaca fuscata (Primates: Cercopithecidae).

    PubMed

    Hasegawa, Hideo; Sato, Hiroshi; Torii, Harumi

    2012-02-01

    Enterobius (Enterobius) macaci Yen, 1973 (Nematoda: Oxyuridae: Enterobiinae) was collected from a Japanese macaque, Macaca fuscata, in Nara and Yamaguchi Prefectures, Honshu Island, Japan, for the first time. A redescription is presented along with DNA sequence data. This pinworm is a typical member of the subgenus Enterobius and is characteristic in the spicule morphology, being readily distinguished from other congeners. Phylogenetic analyses based on 18S ribosomal RNA gene (rDNA) and mitochondrial DNA (mtDNA) Cox1 gene assign its position in the pinworm lineage adapted to the Old World primates, showing divergence before the splitting of the chimpanzee and human pinworms.

  17. Biogeography of the Pistia clade (Araceae): based on chloroplast and mitochondrial DNA sequences and Bayesian divergence time inference.

    PubMed

    Renner, Susanne S; Zhang, Li-Bing

    2004-06-01

    Pistia stratiotes (water lettuce) and Lemna (duckweeds) are the only free-floating aquatic Araceae. The geographic origin and phylogenetic placement of these unrelated aroids present long-standing problems because of their highly modified reproductive structures and wide geographical distributions. We sampled chloroplast (trnL-trnF and rpl20-rps12 spacers, trnL intron) and mitochondrial sequences (nad1 b/c intron) for all genera implicated as close relatives of Pistia by morphological, restriction site, and sequencing data, and present a hypothesis about its geographic origin based on the consensus of trees obtained from the combined data, using Bayesian, maximum likelihood, parsimony, and distance analyses. Of the 14 genera closest to Pistia, only Alocasia, Arisaema, and Typhonium are species-rich, and the latter two were studied previously, facilitating the choice of representatives that span the roots of these genera. Results indicate that Pistia and the Seychelles endemic Protarum sechellarum are the basalmost branches in a grade comprising the tribes Colocasieae (Ariopsis, Steudnera, Remusatia, Alocasia, Colocasia), Arisaemateae (Arisaema, Pinellia), and Areae (Arum, Biarum, Dracunculus, Eminium, Helicodiceros, Theriophonum, Typhonium). Unexpectedly, all Areae genera are embedded in Typhonium, which throws new light on the geographic history of Areae. A Bayesian analysis of divergence times that explores the effects of multiple fossil and geological calibration points indicates that the Pistia lineage is 90 to 76 million years (my) old. The oldest fossils of the Pistia clade, though not Pistia itself, are 45-my-old leaves from Germany; the closest outgroup, Peltandreae (comprising a few species in Florida, the Mediterranean, and Madagascar), is known from 60-my-old leaves from Europe, Kazakhstan, North Dakota, and Tennessee. Based on the geographic ranges of close relatives, Pistia likely originated in the Tethys region, with Protarum then surviving on the Seychelles, which became isolated from Madagascar and India in the Late Cretaceous (85 my ago). Pistia and Protarum provide striking examples of ancient lineages that appear to have survived in unique or isolated habitats.

  18. Two new species of shovel-jaw carp Onychostoma (Teleostei: Cyprinidae) from southern Vietnam.

    PubMed

    Hoang, Huy Duc; Pham, Hung Manh; Tran, Ngan Trong

    2015-05-22

    Two new species of large shovel-jaw carps in the genus Onychostoma are described from the upper Krong No and middle Dong Nai drainages of the Langbiang Plateau in southern Vietnam. These new species are known from streams in montane mixed pine and evergreen forests between 140 and 1112 m. Their populations are isolated in the headwaters of the upper Sre Pok River of the Mekong basin and in the middle of the Dong Nai basin. Both species are differentiated from their congeners by a combination of the following characters: transverse mouth opening width greater than head width, 14-17 predorsal scales, caudal-peduncle length 3.9-4.2 times in SL, no barbels in adults and juveniles, a strong serrated last simple ray of the dorsal fin, and small eye diameter (20.3-21.5% HL). Onychostoma krongnoensis sp. nov. is differentiated from Onychostoma dongnaiensis sp. nov. by body depth (4.0 vs. 3.2 times in SL), predorsal scale number (14-17 vs. 14-15), dorsal-fin length (4.5 vs. 4.2 times in SL), caudal-peduncle length (3.9 vs. 4.2 times in SL), colour in life (dark vs. bright), and by mitochondrial DNA (0.2% sequence divergence). Molecular evidence indicates that both species are members of Onychostoma and are distinct from all congeners sampled (uncorrected sequence divergences at the 16S rRNA gene of >2.0% for all Onychostoma for which homologous 16S rRNA sequences are available).

  19. Phylogeography of the sand dollar genus Mellita: cryptic speciation along the coasts of the Americas.

    PubMed

    Coppard, Simon E; Zigler, Kirk S; Lessios, H A

    2013-12-01

    Sand dollars of the genus Mellita are members of the sandy shallow-water fauna. The genus ranges in tropical and subtropical regions on the two coasts of the Americas. To reconstruct the phylogeography of the genus we sequenced parts of the mitochondrial cytochrome oxidase I and of 16S rRNA as well as part of the nuclear 28S rRNA gene from a total of 185 specimens of all ten described morphospecies from 31 localities. Our analyses revealed the presence of eleven species, including six cryptic species. Sequences of five morphospecies do not constitute monophyletic molecular units and thus probably represent ecophenotypic variants. The fossil-calibrated phylogeny showed that the ancestor of Mellita diverged into a Pacific lineage and an Atlantic+Pacific lineage close to the Miocene/Pliocene boundary. Atlantic M. tenuis, M. quinquiesperforata and two undescribed species of Mellita have non-overlapping distributions. Pacific Mellita consist of two highly divergent lineages that became established at different times, resulting in sympatric M. longifissa and M. notabilis. Judged by modern day ranges, not all divergence in this genus conforms to an allopatric speciation model. Only the separation of M. quinquiesperforata from M. notabilis is clearly due to vicariance as the result of the completion of the Isthmus of Panama. The molecular phylogeny calibrated on fossil evidence estimated this event as having occurred ~3 Ma, thus providing evidence that, contrary to a recent proposal, the central American Isthmus was not completed until this date. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. Coinfection of Ugandan Red Colobus (Procolobus [Piliocolobus] rufomitratus tephrosceles) with Novel, Divergent Delta-, Lenti-, and Spumaretroviruses ▿

    PubMed Central

    Goldberg, Tony L.; Sintasath, David M.; Chapman, Colin A.; Cameron, Kenneth M.; Karesh, William B.; Tang, Shaohua; Wolfe, Nathan D.; Rwego, Innocent B.; Ting, Nelson; Switzer, William M.

    2009-01-01

    Nonhuman primates host a plethora of potentially zoonotic microbes, with simian retroviruses receiving heightened attention due to their roles in the origins of human immunodeficiency viruses type 1 (HIV-1) and HIV-2. However, incomplete taxonomic and geographic sampling of potential hosts, especially the African colobines, has left the full range of primate retrovirus diversity unexplored. Blood samples collected from 31 wild-living red colobus monkeys (Procolobus [Piliocolobus] rufomitratus tephrosceles) from Kibale National Park, Uganda, were tested for antibodies to simian immunodeficiency virus (SIV), simian T-cell lymphotrophic virus (STLV), and simian foamy virus (SFV) and for nucleic acids of these same viruses using genus-specific PCRs. Of 31 red colobus tested, 22.6% were seroreactive to SIV, 6.4% were seroreactive to STLV, and 97% were seroreactive to SFV. Phylogenetic analyses of SIV polymerase (pol), STLV tax and long terminal repeat (LTR), and SFV pol and LTR sequences revealed unique SIV and SFV strains and a novel STLV lineage, each divergent from corresponding retroviral lineages previously described in Western red colobus (Procolobus badius badius) or black-and-white colobus (Colobus guereza). Phylogenetic analyses of host mitochondrial DNA sequences revealed that red colobus populations in East and West Africa diverged from one another approximately 4.25 million years ago. These results indicate that geographic subdivisions within the red colobus taxonomic complex exert a strong influence on retroviral phylogeny and that studying retroviral diversity in closely related primate taxa should be particularly informative for understanding host-virus coevolution. PMID:19692478

  1. Molecular phylogenetic and dating analysis of pierid butterfly species using complete mitochondrial genomes.

    PubMed

    Cao, Y; Hao, J S; Sun, X Y; Zheng, B; Yang, Q

    2016-12-02

    Pieridae is a butterfly family whose evolutionary history is poorly understood. Due to the difficulties in identifying morphological synapomorphies within the group and the scarcity of the fossil records, only a few studies on higher phylogeny of Pieridae have been reported to date. In this study, we describe the complete mitochondrial genomes of four pierid butterfly species (Aporia martineti, Aporia hippia, Aporia bieti, and Mesapia peloria), in order to better characterize the pierid butterfly mitogenomes and perform the phylogenetic analyses using all available mitogenomic sequence data (13PCGs, rRNAs, and tRNAs) from the 18 pierid butterfly species comprising the three main subfamilies (Dismorphiinae, Coliadinae and Pierinae). Our analysis shows that the four new mitogenomes share similar features with other known pierid mitogenomes in gene order and organization. Phylogenetic analyses by maximum likelihood and Bayesian inference show that the pierid higher-level relationship is: Dismorphiinae + (Coliadinae + Pierinae), which corroborates the results of some previous molecular and morphological studies. However, we found that the Hebomoia and Anthocharis make a sister group, supporting the traditional tribe Anthocharidini; in addition, the Mesapia peloria was shown to be clustered within the Aporia group, suggesting that the genus Mesapia should be reduced to the taxonomic status of subgenus. Our molecular dating analysis indicates that the family Pieridae began to diverge during the Late Cretaceous about 92 million years ago (mya), while the subfamily Pierinae diverged from the Coliadinae at about 86 mya (Late Cretaceous).

  2. DNA Sequences Proximal to Human Mitochondrial DNA Deletion Breakpoints Prevalent in Human Disease Form G-quadruplexes, a Class of DNA Structures Inefficiently Unwound by the Mitochondrial Replicative Twinkle Helicase*

    PubMed Central

    Bharti, Sanjay Kumar; Sommers, Joshua A.; Zhou, Jun; Kaplan, Daniel L.; Spelbrink, Johannes N.; Mergny, Jean-Louis; Brosh, Robert M.

    2014-01-01

    Mitochondrial DNA deletions are prominent in human genetic disorders, cancer, and aging. It is thought that stalling of the mitochondrial replication machinery during DNA synthesis is a prominent source of mitochondrial genome instability; however, the precise molecular determinants of defective mitochondrial replication are not well understood. In this work, we performed a computational analysis of the human mitochondrial genome using the “Pattern Finder” G-quadruplex (G4) predictor algorithm to assess whether G4-forming sequences reside in close proximity (within 20 base pairs) to known mitochondrial DNA deletion breakpoints. We then used this information to map G4P sequences with deletions characteristic of representative mitochondrial genetic disorders and also those identified in various cancers and aging. Circular dichroism and UV spectral analysis demonstrated that mitochondrial G-rich sequences near deletion breakpoints prevalent in human disease form G-quadruplex DNA structures. A biochemical analysis of purified recombinant human Twinkle protein (gene product of c10orf2) showed that the mitochondrial replicative helicase inefficiently unwinds well characterized intermolecular and intramolecular G-quadruplex DNA substrates, as well as a unimolecular G4 substrate derived from a mitochondrial sequence that nests a deletion breakpoint described in human renal cell carcinoma. Although G4 has been implicated in the initiation of mitochondrial DNA replication, our current findings suggest that mitochondrial G-quadruplexes are also likely to be a source of instability for the mitochondrial genome by perturbing the normal progression of the mitochondrial replication machinery, including DNA unwinding by Twinkle helicase. PMID:25193669

  3. Tracing early stages of species differentiation: Ecological, morphological and genetic divergence of Galápagos sea lion populations

    PubMed Central

    2008-01-01

    Background Oceans are high gene flow environments that are traditionally believed to hamper the build-up of genetic divergence. Despite this, divergence appears to occur occasionally at surprisingly small scales. The Galápagos archipelago provides an ideal opportunity to examine the evolutionary processes of local divergence in an isolated marine environment. Galápagos sea lions (Zalophus wollebaeki) are top predators in this unique setting and have an essentially unlimited dispersal capacity across the entire species range. In theory, this should oppose any genetic differentiation. Results We find significant ecological, morphological and genetic divergence between the western colonies and colonies from the central region of the archipelago that are exposed to different ecological conditions. Stable isotope analyses indicate that western animals use different food sources than those from the central area. This is likely due to niche partitioning with the second Galápagos eared seal species, the Galápagos fur seal (Arctocephalus galapagoensis) that exclusively dwells in the west. Stable isotope patterns correlate with significant differences in foraging-related skull morphology. Analyses of mitochondrial sequences as well as microsatellites reveal signs of initial genetic differentiation. Conclusion Our results suggest a key role of intra- as well as inter-specific niche segregation in the evolution of genetic structure among populations of a highly mobile species under conditions of free movement. Given the monophyletic arrival of the sea lions on the archipelago, our study challenges the view that geographical barriers are strictly needed for the build-up of genetic divergence. The study further raises the interesting prospect that in social, colonially breeding mammals additional forces, such as social structure or feeding traditions, might bear on the genetic partitioning of populations. PMID:18485220

  4. Unveiling the Hidden Bat Diversity of a Neotropical Montane Forest

    PubMed Central

    Chaverri, Gloriana; Garin, Inazio; Alberdi, Antton; Jimenez, Lide; Castillo-Salazar, Cristian; Aihartza, Joxerra

    2016-01-01

    Mountain environments, characterized by high levels of endemism, are at risk of experiencing significant biodiversity loss due to current trends in global warming. While many acknowledge their importance and vulnerability, these ecosystems still remain poorly studied, particularly for taxa that are difficult to sample such as bats. Aiming to estimate the amount of cryptic diversity among bats of a Neotropical montane cloud forest in Talamanca Range—south-east Central America—, we performed a 15-night sampling campaign, which resulted in 90 captured bats belonging to 8 species. We sequenced their mitochondrial cytochrome c oxidase subunit I (COI) and screened their inter- and intraspecific genetic variation. Phylogenetic relations with conspecifics and closely related species from other geographic regions were established using Maximum Likelihood and Bayesian inference methods, as well as median-joining haplotype networks. Mitochondrial lineages highly divergent from hitherto characterized populations (> 9% COI dissimilarity) were found in Myotis oxyotus and Hylonycteris underwoodi. Sturnira burtonlimi and M. keaysi also showed distinct mitochondrial structure with sibling species and/or populations. These results suggest that mountains in the region hold a high degree of endemicity potential that has previously been ignored in bats. They also warn of the high extinction risk montane bats may be facing due to climatic change, particularly in isolated mountain systems like Talamanca Range. PMID:27706168

  5. Genetic characterization and phylogenetic position of Echinococcus felidis (Cestoda: Taeniidae) from the African lion.

    PubMed

    Hüttner, Marion; Nakao, Minoru; Wassermann, Torsten; Siefert, Ludwig; Boomker, Joop D F; Dinkel, Anke; Sako, Yasuhito; Mackenstedt, Ute; Romig, Thomas; Ito, Akira

    2008-06-01

    Echinococcus felidis had been described in 1937 from African lions, but was later included in Echinococcus granulosus as a subspecies or a strain. In the absence of any genetic characterization, most previous records of this taxon from a variety of large African mammals remained unconfirmed due to the lack of diagnostic criteria and the possible confusion with the sympatric E. granulosus sensu stricto, Echinococcus ortleppi and Echinococcus canadensis. In this study, we obtained taeniid eggs from lion feces in Uganda and amplified DNA from individual eggs. Mitochondrial and nuclear DNA sequences showed similarities with those of other Echinococcus spp., but high values of percentage divergence of mitochondrial genes indicated the presence of a distinct species. In a second step, we compared this material with the preserved specimens of adult E. granulosus felidis, which had been identified morphologically approximately 40 years ago in South Africa. All DNA fragments (<200 bp) that could be amplified from the adults showed 100% similarity with the Ugandan material. In the phylogenetic tree of Echinococcus which was constructed from the mitochondrial genes, E. felidis is positioned as a sister taxon of E. granulosus sensu stricto. The data obtained will facilitate the development of diagnostic tools necessary to study the epidemiology of this enigmatic parasite.

  6. Cryptic speciation reversal in the Etheostoma zonale (Teleostei: Percidae) species group, with an examination of the effect of recombination and introgression on species tree inference.

    PubMed

    Halas, Dominik; Simons, Andrew M

    2014-01-01

    Mitochondrial and nuclear introgression among closely related taxa can greatly complicate the process of determining their phylogenetic relationships. In the Central Highlands of North America, many fish taxa have undergone introgression; in this study, we demonstrate the existence of an unusual introgression event in the Etheostoma zonale species group. We used one mitochondrial and seven nuclear loci to determine the relationships of the taxa within the E. zonale group, and their degree of differentiation. We found evidence of multiple divergent populations within each species; much of the divergence within species has taken place during the Pleistocene. We also found evidence of a previously unknown cryptic species in the Upper Tennessee River which diverged from the remainder of the group during the Pliocene, and has undergone mitochondrial and nuclear introgression with E. zonale, in an apparent process of speciation reversal. We examined the effects that using varying types of recombination tests to eliminate the signal of recombination from nuclear loci would have on the phylogenetic placement of this introgressed lineage in our species tree analyses. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. The contribution of alu elements to mutagenic DNA double-strand break repair.

    PubMed

    Morales, Maria E; White, Travis B; Streva, Vincent A; DeFreece, Cecily B; Hedges, Dale J; Deininger, Prescott L

    2015-03-01

    Alu elements make up the largest family of human mobile elements, numbering 1.1 million copies and comprising 11% of the human genome. As a consequence of evolution and genetic drift, Alu elements of various sequence divergence exist throughout the human genome. Alu/Alu recombination has been shown to cause approximately 0.5% of new human genetic diseases and contribute to extensive genomic structural variation. To begin understanding the molecular mechanisms leading to these rearrangements in mammalian cells, we constructed Alu/Alu recombination reporter cell lines containing Alu elements ranging in sequence divergence from 0%-30% that allow detection of both Alu/Alu recombination and large non-homologous end joining (NHEJ) deletions that range from 1.0 to 1.9 kb in size. Introduction of as little as 0.7% sequence divergence between Alu elements resulted in a significant reduction in recombination, which indicates even small degrees of sequence divergence reduce the efficiency of homology-directed DNA double-strand break (DSB) repair. Further reduction in recombination was observed in a sequence divergence-dependent manner for diverged Alu/Alu recombination constructs with up to 10% sequence divergence. With greater levels of sequence divergence (15%-30%), we observed a significant increase in DSB repair due to a shift from Alu/Alu recombination to variable-length NHEJ which removes sequence between the two Alu elements. This increase in NHEJ deletions depends on the presence of Alu sequence homeology (similar but not identical sequences). Analysis of recombination products revealed that Alu/Alu recombination junctions occur more frequently in the first 100 bp of the Alu element within our reporter assay, just as they do in genomic Alu/Alu recombination events. This is the first extensive study characterizing the influence of Alu element sequence divergence on DNA repair, which will inform predictions regarding the effect of Alu element sequence divergence on both the rate and nature of DNA repair events.

  8. The roles of ecology, behaviour and effective population size in the evolution of a community.

    PubMed

    Hung, Chih-Ming; Drovetski, Sergei V; Zink, Robert M

    2017-07-01

    Organismal traits such as ecological specialization and migratory behaviour may affect colonization potential, population persistence and degree of isolation, factors that determine the composition and genetic structure of communities. However, studies focusing on community assembly rarely consider these factors jointly. We sequenced 16 nuclear genes and one mitochondrial gene from Caucasian and European populations of 30 forest-dwelling avian species that represent diverse ecological (specialist-generalist) and behavioural (migratory-resident) backgrounds. We tested the effects of organismal traits on population divergence and community assembly in the Caucasus forest, a continental mountain island setting. We found that (i) there is no concordance in divergence times between the Caucasus forest bird populations and their European counterparts, (ii) habitat specialists tend to be more divergent than generalists and (iii) residents tend to be more divergent than migrants. Thus, specialists and residents contribute to the high level of endemism of Caucasus forest avifauna more than do generalists and migrants. Patterns of genetic differentiation are better explained by differences in effective population sizes, an often overlooked factor in comparative studies of phylogeography and speciation, than by divergence times or levels of gene flow. Our results suggest that the Caucasus forest avifauna was assembled through time via dispersal and/or multiple vicariant events, rather than originating simultaneously via a single isolation event. Our study is one of the first multilocus, multispecies analyses revealing how ecological and migratory traits impact the evolutionary history of community formation on a continental island. © 2017 John Wiley & Sons Ltd.

  9. IMGD: an integrated platform supporting comparative genomics and phylogenetics of insect mitochondrial genomes

    PubMed Central

    Lee, Wonhoon; Park, Jongsun; Choi, Jaeyoung; Jung, Kyongyong; Park, Bongsoo; Kim, Donghan; Lee, Jaeyoung; Ahn, Kyohun; Song, Wonho; Kang, Seogchan; Lee, Yong-Hwan; Lee, Seunghwan

    2009-01-01

    Background Sequences and organization of the mitochondrial genome have been used as markers to investigate evolutionary history and relationships in many taxonomic groups. The rapidly increasing mitochondrial genome sequences from diverse insects provide ample opportunities to explore various global evolutionary questions in the superclass Hexapoda. To adequately support such questions, it is imperative to establish an informatics platform that facilitates the retrieval and utilization of available mitochondrial genome sequence data. Results The Insect Mitochondrial Genome Database (IMGD) is a new integrated platform that archives the mitochondrial genome sequences from 25,747 hexapod species, including 112 completely sequenced and 20 nearly completed genomes and 113,985 partially sequenced mitochondrial genomes. The Species-driven User Interface (SUI) of IMGD supports data retrieval and diverse analyses at multi-taxon levels. The Phyloviewer implemented in IMGD provides three methods for drawing phylogenetic trees and displays the resulting trees on the web. The SNP database incorporated to IMGD presents the distribution of SNPs and INDELs in the mitochondrial genomes of multiple isolates within eight species. A newly developed comparative SNU Genome Browser supports the graphical presentation and interactive interface for the identified SNPs/INDELs. Conclusion The IMGD provides a solid foundation for the comparative mitochondrial genomics and phylogenetics of insects. All data and functions described here are available at the web site . PMID:19351385

  10. A new method for locating changes in a tree reveals distinct nucleotide polymorphism vs. divergence patterns in mouse mitochondrial control region.

    PubMed

    Galtier, N; Boursot, P

    2000-03-01

    A new, model-based method was devised to locate nucleotide changes in a given phylogenetic tree. For each site, the posterior probability of any possible change in each branch of the tree is computed. This probabilistic method is a valuable alternative to the maximum parsimony method when base composition is skewed (i.e., different from 25% A, 25% C, 25% G, 25% T): computer simulations showed that parsimony misses more rare --> common than common --> rare changes, resulting in biased inferred change matrices, whereas the new method appeared unbiased. The probabilistic method was applied to the analysis of the mutation and substitution processes in the mitochondrial control region of mouse. Distinct change patterns were found at the polymorphism (within species) and divergence (between species) levels, rejecting the hypothesis of a neutral evolution of base composition in mitochondrial DNA.

  11. Lack of genetic structure among ecologically adapted populations of an Australian rainforest Drosophila species as indicated by microsatellite markers and mitochondrial DNA sequences.

    PubMed

    Schiffer, Michele; Kennington, W J; Hoffmann, A A; Blacket, M J

    2007-04-01

    Although fragmented rainforest environments represent hotspots for invertebrate biodiversity, few genetic studies have been conducted on rainforest invertebrates. Thus, it is not known if invertebrate species in rainforests are highly genetically fragmented, with the potential for populations to show divergent selection responses, or if there are low levels of gene flow sufficient to maintain genetic homogeneity among fragmented populations. Here we use microsatellite markers and DNA sequences from the mitochondrial ND5 locus to investigate genetic differences among Drosophila birchii populations from tropical rainforests in Queensland, Australia. As found in a previous study, mitochondrial DNA diversity was low with no evidence for population differentiation among rainforest fragments. The pattern of mitochondrial haplotype variation was consistent with D. birchii having undergone substantial past population growth. Levels of nuclear genetic variation were high in all populations while F(ST) values were very low, even for flies from geographically isolated areas of rainforest. No significant differentiation was observed between populations on either side of the Burdekin Gap (a long-term dry corridor), although there was evidence for higher gene diversity in low-latitude populations. Spatial autocorrelation coefficients were low and did not differ significantly from random, except for one locus which revealed a clinal-like pattern. Comparisons of microsatellite differentiation contrasted with previously established clinal patterns in quantitative traits in D. birchii, and indicate that the patterns in quantitative traits are likely to be due to selection. These results suggest moderate gene flow in D. birchii over large distances. Limited population structure in this species appears to be due to recent range expansions or cycles of local extinctions followed by recolonizations/expansions. Nevertheless, patterns of local adaptation have developed in D. birchii that may result in populations showing different selection responses when faced with environmental change.

  12. Functional analysis of TMLH variants and definition of domains required for catalytic activity and mitochondrial targeting.

    PubMed

    Monfregola, Jlenia; Cevenini, Armando; Terracciano, Antonio; van Vlies, Naomi; Arbucci, Salvatore; Wanders, Ronald J A; D'Urso, Michele; Vaz, Frédéric M; Ursini, Matilde Valeria

    2005-09-01

    epsilon-N-Trimethyllysine hydroxylase (TMLH) (EC 1.14.11.8) is a non-heme-ferrous iron hydroxylase, Fe(++) and 2-oxoglutarate (2OG) dependent, catalyzing the first of four enzymatic reactions of the highly conserved carnitine biosynthetic pathway. Otherwise from all the other enzymes of carnitine biosynthesis, TMLH was found to be associated to the mitochondrial fraction. We here report molecular cloning of two alternative spliced forms of TMLH, which appear ubiquitously expressed in human adult and fetal tissues. The deduced proteins are designated TMLH-a and TMLH-b, and contain 421 and 399 amino acids, respectively. They share the first N-terminal 332 amino acids, including a mitochondrial targeting signal, but diverge at the C-terminal end. TMLH-a and TMLH-b exogenous expression in COS-1 cells shows that the first 15 amino acids are necessary and sufficient for mitochondrial import. Furthermore, comparative evolutionary analysis of the C-terminal portion of TMLH-a identifies a conserved domain characterized by a key triad of residues, His242-Glu244-His389 predicted to bind 2OG end. This sequence is conserved in the TMLH enzyme from all species but is partially substituted by a unique sequence in the TMLH-b variant. Indeed, TMLH-b is not functional by itself as well as a TMLH-H389L mutant produced by site directed mutagenesis. As great interest, we found that TMLH-b and TMLH-H389L, individually co-expressed with TMLH-a in COS-1 cells, negatively affect TMLH activity. Therefore, our studies on the TMLH alternative form provide relevant novel information, first that the C-terminal region of TMLH contains the main determinants for its enzymatic activity including a key H389 residue, and second that TMLH-b could act as a crucial physiological negative regulator of TMLH. Copyright 2005 Wiley-Liss, Inc.

  13. Historical biogeography of Reticulitermes termites (Isoptera: Rhinotermitidae) inferred from analyses of mitochondrial and nuclear loci.

    PubMed

    Dedeine, Franck; Dupont, Simon; Guyot, Sylvain; Matsuura, Kenji; Wang, Changlu; Habibpour, Behzad; Bagnères, Anne-Geneviève; Mantovani, Barbara; Luchetti, Andrea

    2016-01-01

    Termites of the genus Reticulitermes are ecologically and economically important wood-feeding social insects that are widespread in the Holarctic region. Despite their importance, no study has yet attempted to reconstruct a global time-scaled phylogeny of Reticulitermes termites. In this study, we sequenced mitochondrial (2096bp) and nuclear (829bp) loci from 61 Reticulitermes specimens, collected across the genus' entire range, and one specimen of Coptotermes formosanus, which served as an outgroup. Bayesian and Maximum likelihood analyses conducted on the mitochondrial and nuclear sequences support the existence of four main lineages that span four global geographical regions: North America (NA lineage), western Europe (WE lineage), a region including eastern Europe and western Asia (EA+WA lineage), and eastern Asia (EA lineage). The mitochondrial data allowed us to clarify the phylogenetic relationships among these lineages. They were also used to infer a chronogram that was time scaled based on age estimates for termite fossils (including the oldest Reticulitermes fossils, which date back to the late Eocene-early Oligocene). Our results support the hypothesis that the extant Reticulitermes lineage first differentiated in North America. The first divergence event in the ancestral lineage of Reticulitermes occurred in the early Miocene and separated the Nearctic lineages (i.e., the NA lineages) from the Palearctic lineages (i.e., WE, EE+WA, and EA lineages). Our analyses revealed that the main lineages of Reticulitermes diversified because of vicariance and migration events, which were probably induced by major paleogeographic and paleoclimatic changes that occurred during the Cenozoic era. This is the first global and comprehensive phylogenetic study of Reticulitermes termites, and it provides a crucial foundation for studying the evolution of phenotypic and life-history traits in Reticulitermes. For instance, the phylogeny we obtained suggested that 'asexual queen succession', a unique reproductive system, independently evolved at least three times during the diversification of the genus. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Speciation in the large-spored Metschnikowia clade and establishment of a new species, Metschnikowia borealis comb. nov.

    PubMed

    Marinoni, Gaëlle; Lachance, Marc-André

    2004-03-01

    The reproductive boundaries among species in the large-spored Metschnikowia clade were studied by prototrophic recombinant selection, electrophoretic karyotyping, mitochondrial DNA restriction analysis, and DNA sequence analysis. Inviable ascospores arose from crosses between the two varieties of Metschnikowia continentalis, indicating that they should be recognized as separate species. Prototrophic recombinants were recovered from crosses between auxotrophic mutants of Metschnikowia borealis, M. continentalis, Metschnikowia lochheadii, Metschnikowia sp. UWO(PS)00-154.1, and Candida ipomoeae, showing that some genetic exchange is possible in spite of the sterility of the asci formed in interspecific crosses. Metschnikowia hawaiiensis, although capable of ascus formation when its h(-) mating type is crossed with the h(+) mating type of the other species, did not give rise to recombinants. In the other species, some recombinants acquired the ability to form asci directly from single cells. These often contained the chromosomes of both parents, suggesting formation of allodiploid hybrids. Other recombinants behaved as haploids and were similar to one parent except for having inherited the selectable wild-type allele from the other parent. In most, but not all cases, inheritance of the mitochondrial genome was uniparental and correlated with the inheritance of the nuclear chromosome complement. In some cases, what appeared to be a recombinant mitochondrial genome was observed. Phylogenies derived from the sequences of various DNA regions were not congruent, indicating that hybridization may have taken place in nature as the large-spored species diverged from their common ancestor. Further evidence that C. ipomoeae arose from a natural recombination event was obtained, but a pair of Metschnikowia species that might represent derived forms of the parents could not be identified conclusively. C. ipomoeae and most of its closely related Metschnikowia species contained a group-II intron in the mitochondrial small-subunit ribosomal gene. The intron was absent in M. borealis, M. hawaiiensis, and other species in the genus Metschnikowia.

  15. Mitochondrial comparative genomics and phylogenetic signal assessment of mtDNA among arbuscular mycorrhizal fungi.

    PubMed

    Nadimi, Maryam; Daubois, Laurence; Hijri, Mohamed

    2016-05-01

    Mitochondrial (mt) genes, such as cytochrome C oxidase genes (cox), have been widely used for barcoding in many groups of organisms, although this approach has been less powerful in the fungal kingdom due to the rapid evolution of their mt genomes. The use of mt genes in phylogenetic studies of Dikarya has been met with success, while early diverging fungal lineages remain less studied, particularly the arbuscular mycorrhizal fungi (AMF). Advances in next-generation sequencing have substantially increased the number of publically available mtDNA sequences for the Glomeromycota. As a result, comparison of mtDNA across key AMF taxa can now be applied to assess the phylogenetic signal of individual mt coding genes, as well as concatenated subsets of coding genes. Here we show comparative analyses of publically available mt genomes of Glomeromycota, augmented with two mtDNA genomes that were newly sequenced for this study (Rhizophagus irregularis DAOM240159 and Glomus aggregatum DAOM240163), resulting in 16 complete mtDNA datasets. R. irregularis isolate DAOM240159 and G. aggregatum isolate DAOM240163 showed mt genomes measuring 72,293bp and 69,505bp with G+C contents of 37.1% and 37.3%, respectively. We assessed the phylogenies inferred from single mt genes and complete sets of coding genes, which are referred to as "supergenes" (16 concatenated coding genes), using Shimodaira-Hasegawa tests, in order to identify genes that best described AMF phylogeny. We found that rnl, nad5, cox1, and nad2 genes, as well as concatenated subset of these genes, provided phylogenies that were similar to the supergene set. This mitochondrial genomic analysis was also combined with principal coordinate and partitioning analyses, which helped to unravel certain evolutionary relationships in the Rhizophagus genus and for G. aggregatum within the Glomeromycota. We showed evidence to support the position of G. aggregatum within the R. irregularis 'species complex'. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Phylogeography and population genetic structure of double-crested cormorants (Phalacrocorax auritus)

    USGS Publications Warehouse

    Mercer, Dacey; Haig, Susan M.; Roby, Daniel D.

    2013-01-01

    is genetically divergent from other populations in North America (net sequence divergence = 5.85 %;UST for mitochondrial control region = 0.708; FST for microsatellite loci = 0.052). Historical records, contemporary population estimates, and field observations are consistent with recognition of the Alaskan subspecies as distinct and potentially of conservation interest. Our data also indicated the presence of another divergent lineage, associated with the southwestern portion of the species range, as evidenced by highly unique haplotypes sampled in southern California. In contrast, there was little support for recognition of subspecies within the conterminous U.S. and Canada. Rather than genetically distinct regions corresponding to the putative subspecies [P. a. albociliatus (Pacific), P. a. auritus (Interior and North Atlantic), and P. a. floridanus (Southeast)], we observed a distribution of genetic variation consistent with a pattern of isolation by distance. This pattern implies that genetic differences across the range are due to geographic distance, rather than discrete subspecific breaks. Although three of the four traditional subspecies were not genetically distinct, possible demographic separation, habitat differences, and documented declines at some colonies within the regions, suggests that the Pacific and possibly North Atlantic portions of the breeding range may warrant differential consideration from the Interior and Southeast breeding regions.

  17. Multilocus resolution of phylogeny and timescale in the extant adaptive radiation of Hawaiian honeycreepers.

    PubMed

    Lerner, Heather R L; Meyer, Matthias; James, Helen F; Hofreiter, Michael; Fleischer, Robert C

    2011-11-08

    Evolutionary theory has gained tremendous insight from studies of adaptive radiations. High rates of speciation, morphological divergence, and hybridization, combined with low sequence variability, however, have prevented phylogenetic reconstruction for many radiations. The Hawaiian honeycreepers are an exceptional adaptive radiation, with high phenotypic diversity and speciation that occurred within the geologically constrained setting of the Hawaiian Islands. Here we analyze a new data set of 13 nuclear loci and pyrosequencing of mitochondrial genomes that resolves the Hawaiian honeycreeper phylogeny. We show that they are a sister taxon to Eurasian rosefinches (Carpodacus) and probably came to Hawaii from Asia. We use island ages to calibrate DNA substitution rates, which vary substantially among gene regions, and calculate divergence times, showing that the radiation began roughly when the oldest of the current large Hawaiian Islands (Kauai and Niihau) formed, ~5.7 million years ago (mya). We show that most of the lineages that gave rise to distinctive morphologies diverged after Oahu emerged (4.0-3.7 mya) but before the formation of Maui and adjacent islands (2.4-1.9 mya). Thus, the formation of Oahu, and subsequent cycles of colonization and speciation between Kauai and Oahu, played key roles in generating the morphological diversity of the extant honeycreepers. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. The Complete Mitochondrial Genome of Galba pervia (Gastropoda: Mollusca), an Intermediate Host Snail of Fasciola spp

    PubMed Central

    Huang, Wei-Yi; Zhao, Guang-Hui; Wei, Shu-Jun; Song, Hui-Qun; Xu, Min-Jun; Lin, Rui-Qing; Zhou, Dong-Hui; Zhu, Xing-Quan

    2012-01-01

    Complete mitochondrial (mt) genomes and the gene rearrangements are increasingly used as molecular markers for investigating phylogenetic relationships. Contributing to the complete mt genomes of Gastropoda, especially Pulmonata, we determined the mt genome of the freshwater snail Galba pervia, which is an important intermediate host for Fasciola spp. in China. The complete mt genome of G. pervia is 13,768 bp in length. Its genome is circular, and consists of 37 genes, including 13 genes for proteins, 2 genes for rRNA, 22 genes for tRNA. The mt gene order of G. pervia showed novel arrangement (tRNA-His, tRNA-Gly and tRNA-Tyr change positions and directions) when compared with mt genomes of Pulmonata species sequenced to date, indicating divergence among different species within the Pulmonata. A total of 3655 amino acids were deduced to encode 13 protein genes. The most frequently used amino acid is Leu (15.05%), followed by Phe (11.24%), Ser (10.76%) and IIe (8.346%). Phylogenetic analyses using the concatenated amino acid sequences of the 13 protein-coding genes, with three different computational algorithms (maximum parsimony, maximum likelihood and Bayesian analysis), all revealed that the families Lymnaeidae and Planorbidae are closely related two snail families, consistent with previous classifications based on morphological and molecular studies. The complete mt genome sequence of G. pervia showed a novel gene arrangement and it represents the first sequenced high quality mt genome of the family Lymnaeidae. These novel mtDNA data provide additional genetic markers for studying the epidemiology, population genetics and phylogeographics of freshwater snails, as well as for understanding interplay between the intermediate snail hosts and the intra-mollusca stages of Fasciola spp.. PMID:22844544

  19. The mitochondrial genome of the legume Vigna radiata and the analysis of recombination across short mitochondrial repeats.

    PubMed

    Alverson, Andrew J; Zhuo, Shi; Rice, Danny W; Sloan, Daniel B; Palmer, Jeffrey D

    2011-01-20

    The mitochondrial genomes of seed plants are exceptionally fluid in size, structure, and sequence content, with the accumulation and activity of repetitive sequences underlying much of this variation. We report the first fully sequenced mitochondrial genome of a legume, Vigna radiata (mung bean), and show that despite its unexceptional size (401,262 nt), the genome is unusually depauperate in repetitive DNA and "promiscuous" sequences from the chloroplast and nuclear genomes. Although Vigna lacks the large, recombinationally active repeats typical of most other seed plants, a PCR survey of its modest repertoire of short (38-297 nt) repeats nevertheless revealed evidence for recombination across all of them. A set of novel control assays showed, however, that these results could instead reflect, in part or entirely, artifacts of PCR-mediated recombination. Consequently, we recommend that other methods, especially high-depth genome sequencing, be used instead of PCR to infer patterns of plant mitochondrial recombination. The average-sized but repeat- and feature-poor mitochondrial genome of Vigna makes it ever more difficult to generalize about the factors shaping the size and sequence content of plant mitochondrial genomes.

  20. New features of mitochondrial DNA replication system in yeast and man.

    PubMed

    Lecrenier, N; Foury, F

    2000-04-04

    In this review, we sum up the research carried out over two decades on mitochondrial DNA (mtDNA) replication, primarily by comparing this system in Saccharomyces cerevisiae and Homo sapiens. Brief incursions into systems of other organisms have also been achieved when they provide new information.S. cerevisiae and H. sapiens mitochondrial DNA (mtDNA) have been thought for a long time to share closely related architecture and replication mechanisms. However, recent studies suggest that mitochondrial genome of S. cerevisiae may be formed, at least partially, from linear multimeric molecules, while human mtDNA is circular. Although several proteins involved in the replication of these two genomes are very similar, divergences are also now increasingly evident. As an example, the recently cloned human mitochondrial DNA polymerase beta-subunit has no counterpart in yeast. Yet, yeast Abf2p and human mtTFA are probably not as closely functionally related as thought previously. Some mtDNA metabolism factors, like DNA ligases, were until recently largely uncharacterized, and have been found to be derived from alternative nuclear products. Many factors involved in the metabolism of mitochondrial DNA are linked through genetic or biochemical interconnections. These links are presented on a map. Finally, we discuss recent studies suggesting that the yeast mtDNA replication system diverges from that observed in man, and may involve recombination, possibly coupled to alternative replication mechanisms like rolling circle replication.

  1. Length Variation, Heteroplasmy and Sequence Divergence in the Mitochondrial DNA of Four Species of Sturgeon (Acipenser)

    PubMed Central

    Brown, J. R.; Beckenbach, K.; Beckenbach, A. T.; Smith, M. J.

    1996-01-01

    The extent of mtDNA length variation and heteroplasmy as well as DNA sequences of the control region and two tRNA genes were determined for four North American sturgeon species: Acipenser transmontanus, A. medirostris, A. fulvescens and A. oxyrhnychus. Across the Continental Divide, a division in the occurrence of length variation and heteroplasmy was observed that was concordant with species biogeography as well as with phylogenies inferred from restriction fragment length polymorphisms (RFLP) of whole mtDNA and pairwise comparisons of unique sequences of the control region. In all species, mtDNA length variation was due to repeated arrays of 78-82-bp sequences each containing a D-loop strand synthesis termination associated sequence (TAS). Individual repeats showed greater sequence conservation within individuals and species rather than between species, which is suggestive of concerted evolution. Differences in the frequencies of multiple copy genomes and heteroplasmy among the four species may be ascribed to differences in the rates of recurrent mutation. A mechanism that may offset the high rate of mutation for increased copy number is suggested on the basis that an increase in the number of functional TAS motifs might reduce the frequency of successfully initiated H-strand replications. PMID:8852850

  2. Unique mitochondrial DNA lineages in Irish stickleback populations: cryptic refugium or rapid recolonization?

    PubMed

    Ravinet, Mark; Harrod, Chris; Eizaguirre, Christophe; Prodöhl, Paulo A

    2014-06-01

    Repeated recolonization of freshwater environments following Pleistocene glaciations has played a major role in the evolution and adaptation of anadromous taxa. Located at the western fringe of Europe, Ireland and Britain were likely recolonized rapidly by anadromous fishes from the North Atlantic following the last glacial maximum (LGM). While the presence of unique mitochondrial haplotypes in Ireland suggests that a cryptic northern refugium may have played a role in recolonization, no explicit test of this hypothesis has been conducted. The three-spined stickleback is native and ubiquitous to aquatic ecosystems throughout Ireland, making it an excellent model species with which to examine the biogeographical history of anadromous fishes in the region. We used mitochondrial and microsatellite markers to examine the presence of divergent evolutionary lineages and to assess broad-scale patterns of geographical clustering among postglacially isolated populations. Our results confirm that Ireland is a region of secondary contact for divergent mitochondrial lineages and that endemic haplotypes occur in populations in Central and Southern Ireland. To test whether a putative Irish lineage arose from a cryptic Irish refugium, we used approximate Bayesian computation (ABC). However, we found no support for this hypothesis. Instead, the Irish lineage likely diverged from the European lineage as a result of postglacial isolation of freshwater populations by rising sea levels. These findings emphasize the need to rigorously test biogeographical hypothesis and contribute further evidence that postglacial processes may have shaped genetic diversity in temperate fauna.

  3. Unique mitochondrial DNA lineages in Irish stickleback populations: cryptic refugium or rapid recolonization?

    PubMed Central

    Ravinet, Mark; Harrod, Chris; Eizaguirre, Christophe; Prodöhl, Paulo A

    2014-01-01

    Repeated recolonization of freshwater environments following Pleistocene glaciations has played a major role in the evolution and adaptation of anadromous taxa. Located at the western fringe of Europe, Ireland and Britain were likely recolonized rapidly by anadromous fishes from the North Atlantic following the last glacial maximum (LGM). While the presence of unique mitochondrial haplotypes in Ireland suggests that a cryptic northern refugium may have played a role in recolonization, no explicit test of this hypothesis has been conducted. The three-spined stickleback is native and ubiquitous to aquatic ecosystems throughout Ireland, making it an excellent model species with which to examine the biogeographical history of anadromous fishes in the region. We used mitochondrial and microsatellite markers to examine the presence of divergent evolutionary lineages and to assess broad-scale patterns of geographical clustering among postglacially isolated populations. Our results confirm that Ireland is a region of secondary contact for divergent mitochondrial lineages and that endemic haplotypes occur in populations in Central and Southern Ireland. To test whether a putative Irish lineage arose from a cryptic Irish refugium, we used approximate Bayesian computation (ABC). However, we found no support for this hypothesis. Instead, the Irish lineage likely diverged from the European lineage as a result of postglacial isolation of freshwater populations by rising sea levels. These findings emphasize the need to rigorously test biogeographical hypothesis and contribute further evidence that postglacial processes may have shaped genetic diversity in temperate fauna. PMID:25360281

  4. Geographic Patterns of Genetic Variation in a Broadly Distributed Marine Vertebrate: New Insights into Loggerhead Turtle Stock Structure from Expanded Mitochondrial DNA Sequences

    PubMed Central

    Shamblin, Brian M.; Bolten, Alan B.; Abreu-Grobois, F. Alberto; Bjorndal, Karen A.; Cardona, Luis; Carreras, Carlos; Clusa, Marcel; Monzón-Argüello, Catalina; Nairn, Campbell J.; Nielsen, Janne T.; Nel, Ronel; Soares, Luciano S.; Stewart, Kelly R.; Vilaça, Sibelle T.; Türkozan, Oguz; Yilmaz, Can; Dutton, Peter H.

    2014-01-01

    Previous genetic studies have demonstrated that natal homing shapes the stock structure of marine turtle nesting populations. However, widespread sharing of common haplotypes based on short segments of the mitochondrial control region often limits resolution of the demographic connectivity of populations. Recent studies employing longer control region sequences to resolve haplotype sharing have focused on regional assessments of genetic structure and phylogeography. Here we synthesize available control region sequences for loggerhead turtles from the Mediterranean Sea, Atlantic, and western Indian Ocean basins. These data represent six of the nine globally significant regional management units (RMUs) for the species and include novel sequence data from Brazil, Cape Verde, South Africa and Oman. Genetic tests of differentiation among 42 rookeries represented by short sequences (380 bp haplotypes from 3,486 samples) and 40 rookeries represented by long sequences (∼800 bp haplotypes from 3,434 samples) supported the distinction of the six RMUs analyzed as well as recognition of at least 18 demographically independent management units (MUs) with respect to female natal homing. A total of 59 haplotypes were resolved. These haplotypes belonged to two highly divergent global lineages, with haplogroup I represented primarily by CC-A1, CC-A4, and CC-A11 variants and haplogroup II represented by CC-A2 and derived variants. Geographic distribution patterns of haplogroup II haplotypes and the nested position of CC-A11.6 from Oman among the Atlantic haplotypes invoke recent colonization of the Indian Ocean from the Atlantic for both global lineages. The haplotypes we confirmed for western Indian Ocean RMUs allow reinterpretation of previous mixed stock analysis and further suggest that contemporary migratory connectivity between the Indian and Atlantic Oceans occurs on a broader scale than previously hypothesized. This study represents a valuable model for conducting comprehensive international cooperative data management and research in marine ecology. PMID:24465810

  5. Comparative mitochondrial genomics of snakes: extraordinary substitution rate dynamics and functionality of the duplicate control region

    PubMed Central

    Jiang, Zhi J; Castoe, Todd A; Austin, Christopher C; Burbrink, Frank T; Herron, Matthew D; McGuire, Jimmy A; Parkinson, Christopher L; Pollock, David D

    2007-01-01

    Background The mitochondrial genomes of snakes are characterized by an overall evolutionary rate that appears to be one of the most accelerated among vertebrates. They also possess other unusual features, including short tRNAs and other genes, and a duplicated control region that has been stably maintained since it originated more than 70 million years ago. Here, we provide a detailed analysis of evolutionary dynamics in snake mitochondrial genomes to better understand the basis of these extreme characteristics, and to explore the relationship between mitochondrial genome molecular evolution, genome architecture, and molecular function. We sequenced complete mitochondrial genomes from Slowinski's corn snake (Pantherophis slowinskii) and two cottonmouths (Agkistrodon piscivorus) to complement previously existing mitochondrial genomes, and to provide an improved comparative view of how genome architecture affects molecular evolution at contrasting levels of divergence. Results We present a Bayesian genetic approach that suggests that the duplicated control region can function as an additional origin of heavy strand replication. The two control regions also appear to have different intra-specific versus inter-specific evolutionary dynamics that may be associated with complex modes of concerted evolution. We find that different genomic regions have experienced substantial accelerated evolution along early branches in snakes, with different genes having experienced dramatic accelerations along specific branches. Some of these accelerations appear to coincide with, or subsequent to, the shortening of various mitochondrial genes and the duplication of the control region and flanking tRNAs. Conclusion Fluctuations in the strength and pattern of selection during snake evolution have had widely varying gene-specific effects on substitution rates, and these rate accelerations may have been functionally related to unusual changes in genomic architecture. The among-lineage and among-gene variation in rate dynamics observed in snakes is the most extreme thus far observed in animal genomes, and provides an important study system for further evaluating the biochemical and physiological basis of evolutionary pressures in vertebrate mitochondria. PMID:17655768

  6. DNA Barcoding of Metazoan Zooplankton Copepods from South Korea

    PubMed Central

    Ryu, Shi Hyun; Kim, Sang Ki; Lee, Jin Hee; Lim, Young Jin; Lee, Jimin; Jun, Jumin; Kwak, Myounghai; Lee, Young-Sup; Hwang, Jae-Sam; Venmathi Maran, Balu Alagar; Chang, Cheon Young; Kim, Il-Hoi; Hwang, Ui Wook

    2016-01-01

    Copepods, small aquatic crustaceans, are the most abundant metazoan zooplankton and outnumber every other group of multicellular animals on earth. In spite of ecological and biological importance in aquatic environment, their morphological plasticity, originated from their various lifestyles and their incomparable capacity to adapt to a variety of environments, has made the identification of species challenging, even for expert taxonomists. Molecular approaches to species identification have allowed rapid detection, discrimination, and identification of cryptic or sibling species based on DNA sequence data. We examined sequence variation of a partial mitochondrial cytochrome C oxidase I gene (COI) from 133 copepod individuals collected from the Korean Peninsula, in order to identify and discriminate 94 copepod species covering six copepod orders of Calanoida, Cyclopoida, Harpacticoida, Monstrilloida, Poecilostomatoida and Siphonostomatoida. The results showed that there exists a clear gap with ca. 20 fold difference between the averages of within-specific sequence divergence (2.42%) and that of between-specific sequence divergence (42.79%) in COI, suggesting the plausible utility of this gene in delimitating copepod species. The results showed, with the COI barcoding data among 94 copepod species, that a copepod species could be distinguished from the others very clearly, only with four exceptions as followings: Mesocyclops dissimilis–Mesocyclops pehpeiensis (0.26% K2P distance in percent) and Oithona davisae–Oithona similis (1.1%) in Cyclopoida, Ostrincola japonica–Pseudomyicola spinosus (1.5%) in Poecilostomatoida, and Hatschekia japonica–Caligus quadratus (5.2%) in Siphonostomatoida. Thus, it strongly indicated that COI may be a useful tool in identifying various copepod species and make an initial progress toward the construction of a comprehensive DNA barcode database for copepods inhabiting the Korean Peninsula. PMID:27383475

  7. Mitochondrial transcription factor A (Tfam) gene sequencing and mitochondrial evaluation in inherited retinal dysplasia in miniature schnauzer dogs

    PubMed Central

    Bauer, Bianca S.; Forsyth, George W.; Sandmeyer, Lynne S.; Grahn, Bruce H.

    2011-01-01

    Mitochondrial transcription factor A (Tfam) has been implicated in the pathogenesis of retinal dysplasia in miniature schnauzer dogs and it has been proposed that affected dogs have altered mitochondrial numbers, size, and morphology. To test these hypotheses the Tfam gene of affected and normal miniature schnauzer dogs with retinal dysplasia was sequenced and lymphocyte mitochondria were quantified, measured, and the morphology was compared in normal and affected dogs using transmission electron microscopy. For Tfam sequencing, retina, retinal pigment epithelium (RPE), and whole blood samples were collected. Total RNA was isolated from the retina and RPE and reverse transcribed to make cDNA. Genomic DNA was extracted from white blood cell pellets obtained from the whole blood samples. The Tfam coding sequence, 5′ promoter region, intron1 and the 3′ non-coding sequence of normal and affected dogs were amplified using polymerase chain reaction (PCR), cloned and sequenced. For electron microscopy, lymphocytes from affected and normal dogs were photographed and the mitochondria within each cross-section were identified, quantified, and the mitochondrial area (μm2) per lymphocyte cross-section was calculated. Lastly, using a masked technique, mitochondrial morphology was compared between the 2 groups. Sequencing of the miniature schnauzer Tfam gene revealed no functional sequence variation between affected and normal dogs. Lymphocyte and mitochondrial area, mitochondrial quantification, and morphology assessment also revealed no significant difference between the 2 groups. Further investigation into other candidate genes or factors causing retinal dysplasia in the miniature schnauzer is warranted. PMID:21731185

  8. Mitochondrial transcription factor A (Tfam) gene sequencing and mitochondrial evaluation in inherited retinal dysplasia in miniature schnauzer dogs.

    PubMed

    Bauer, Bianca S; Forsyth, George W; Sandmeyer, Lynne S; Grahn, Bruce H

    2011-04-01

    Mitochondrial transcription factor A (Tfam) has been implicated in the pathogenesis of retinal dysplasia in miniature schnauzer dogs and it has been proposed that affected dogs have altered mitochondrial numbers, size, and morphology. To test these hypotheses the Tfam gene of affected and normal miniature schnauzer dogs with retinal dysplasia was sequenced and lymphocyte mitochondria were quantified, measured, and the morphology was compared in normal and affected dogs using transmission electron microscopy. For Tfam sequencing, retina, retinal pigment epithelium (RPE), and whole blood samples were collected. Total RNA was isolated from the retina and RPE and reverse transcribed to make cDNA. Genomic DNA was extracted from white blood cell pellets obtained from the whole blood samples. The Tfam coding sequence, 5' promoter region, intron1 and the 3' non-coding sequence of normal and affected dogs were amplified using polymerase chain reaction (PCR), cloned and sequenced. For electron microscopy, lymphocytes from affected and normal dogs were photographed and the mitochondria within each cross-section were identified, quantified, and the mitochondrial area (μm²) per lymphocyte cross-section was calculated. Lastly, using a masked technique, mitochondrial morphology was compared between the 2 groups. Sequencing of the miniature schnauzer Tfam gene revealed no functional sequence variation between affected and normal dogs. Lymphocyte and mitochondrial area, mitochondrial quantification, and morphology assessment also revealed no significant difference between the 2 groups. Further investigation into other candidate genes or factors causing retinal dysplasia in the miniature schnauzer is warranted.

  9. Four new bat species (Rhinolophus hildebrandtii complex) reflect Plio-Pleistocene divergence of dwarfs and giants across an Afromontane archipelago.

    PubMed

    Taylor, Peter J; Stoffberg, Samantha; Monadjem, Ara; Schoeman, Martinus Corrie; Bayliss, Julian; Cotterill, Fenton P D

    2012-01-01

    Gigantism and dwarfism evolve in vertebrates restricted to islands. We describe four new species in the Rhinolophus hildebrandtii species-complex of horseshoe bats, whose evolution has entailed adaptive shifts in body size. We postulate that vicissitudes of palaeoenvironments resulted in gigantism and dwarfism in habitat islands fragmented across eastern and southern Africa. Mitochondrial and nuclear DNA sequences recovered two clades of R. hildebrandtii senso lato which are paraphyletic with respect to a third lineage (R. eloquens). Lineages differ by 7.7 to 9.0% in cytochrome b sequences. Clade 1 includes R. hildebrandtii sensu stricto from the east African highlands and three additional vicariants that speciated across an Afromontane archipelago through the Plio-Pleistocene, extending from the Kenyan Highlands through the Eastern Arc, northern Mozambique and the Zambezi Escarpment to the eastern Great Escarpment of South Africa. Clade 2 comprises one species confined to lowland savanna habitats (Mozambique and Zimbabwe). A third clade comprises R. eloquens from East Africa. Speciation within Clade 1 is associated with fixed differences in echolocation call frequency, and cranial shape and size in populations isolated since the late Pliocene (ca 3.74 Mya). Relative to the intermediate-sized savanna population (Clade 2), these island-populations within Clade 1 are characterised by either gigantism (South African eastern Great Escarpment and Mts Mabu and Inago in Mozambique) or dwarfism (Lutope-Ngolangola Gorge, Zimbabwe and Soutpansberg Mountains, South Africa). Sympatry between divergent clades (Clade 1 and Clade 2) at Lutope-Ngolangola Gorge (NW Zimbabwe) is attributed to recent range expansions. We propose an "Allometric Speciation Hypothesis", which attributes the evolution of this species complex of bats to divergence in constant frequency (CF) sonar calls. The origin of species-specific peak frequencies (overall range = 32 to 46 kHz) represents the allometric effect of adaptive divergence in skull size, represented in the evolution of gigantism and dwarfism in habitat islands.

  10. Four New Bat Species (Rhinolophus hildebrandtii Complex) Reflect Plio-Pleistocene Divergence of Dwarfs and Giants across an Afromontane Archipelago

    PubMed Central

    Taylor, Peter J.; Stoffberg, Samantha; Monadjem, Ara; Schoeman, Martinus Corrie; Bayliss, Julian; Cotterill, Fenton P. D.

    2012-01-01

    Gigantism and dwarfism evolve in vertebrates restricted to islands. We describe four new species in the Rhinolophus hildebrandtii species-complex of horseshoe bats, whose evolution has entailed adaptive shifts in body size. We postulate that vicissitudes of palaeoenvironments resulted in gigantism and dwarfism in habitat islands fragmented across eastern and southern Africa. Mitochondrial and nuclear DNA sequences recovered two clades of R. hildebrandtii senso lato which are paraphyletic with respect to a third lineage (R. eloquens). Lineages differ by 7.7 to 9.0% in cytochrome b sequences. Clade 1 includes R. hildebrandtii sensu stricto from the east African highlands and three additional vicariants that speciated across an Afromontane archipelago through the Plio-Pleistocene, extending from the Kenyan Highlands through the Eastern Arc, northern Mozambique and the Zambezi Escarpment to the eastern Great Escarpment of South Africa. Clade 2 comprises one species confined to lowland savanna habitats (Mozambique and Zimbabwe). A third clade comprises R. eloquens from East Africa. Speciation within Clade 1 is associated with fixed differences in echolocation call frequency, and cranial shape and size in populations isolated since the late Pliocene (ca 3.74 Mya). Relative to the intermediate-sized savanna population (Clade 2), these island-populations within Clade 1 are characterised by either gigantism (South African eastern Great Escarpment and Mts Mabu and Inago in Mozambique) or dwarfism (Lutope-Ngolangola Gorge, Zimbabwe and Soutpansberg Mountains, South Africa). Sympatry between divergent clades (Clade 1 and Clade 2) at Lutope-Ngolangola Gorge (NW Zimbabwe) is attributed to recent range expansions. We propose an “Allometric Speciation Hypothesis”, which attributes the evolution of this species complex of bats to divergence in constant frequency (CF) sonar calls. The origin of species-specific peak frequencies (overall range = 32 to 46 kHz) represents the allometric effect of adaptive divergence in skull size, represented in the evolution of gigantism and dwarfism in habitat islands. PMID:22984399

  11. Adaptive Genetic Divergence Despite Significant Isolation-by-Distance in Populations of Taiwan Cow-Tail Fir (Keteleeria davidiana var. formosana)

    PubMed Central

    Shih, Kai-Ming; Chang, Chung-Te; Chung, Jeng-Der; Chiang, Yu-Chung; Hwang, Shih-Ying

    2018-01-01

    Double digest restriction site-associated DNA sequencing (ddRADseq) is a tool for delivering genome-wide single nucleotide polymorphism (SNP) markers for non-model organisms useful in resolving fine-scale population structure and detecting signatures of selection. This study performs population genetic analysis, based on ddRADseq data, of a coniferous species, Keteleeria davidiana var. formosana, disjunctly distributed in northern and southern Taiwan, for investigation of population adaptive divergence in response to environmental heterogeneity. A total of 13,914 SNPs were detected and used to assess genetic diversity, FST outlier detection, population genetic structure, and individual assignments of five populations (62 individuals) of K. davidiana var. formosana. Principal component analysis (PCA), individual assignments, and the neighbor-joining tree were successful in differentiating individuals between northern and southern populations of K. davidiana var. formosana, but apparent gene flow between the southern DW30 population and northern populations was also revealed. Fifteen of 23 highly differentiated SNPs identified were found to be strongly associated with environmental variables, suggesting isolation-by-environment (IBE). However, multiple matrix regression with randomization analysis revealed strong IBE as well as significant isolation-by-distance. Environmental impacts on divergence were found between populations of the North and South regions and also between the two southern neighboring populations. BLASTN annotation of the sequences flanking outlier SNPs gave significant hits for three of 23 markers that might have biological relevance to mitochondrial homeostasis involved in the survival of locally adapted lineages. Species delimitation between K. davidiana var. formosana and its ancestor, K. davidiana, was also examined (72 individuals). This study has produced highly informative population genomic data for the understanding of population attributes, such as diversity, connectivity, and adaptive divergence associated with large- and small-scale environmental heterogeneity in K. davidiana var. formosana. PMID:29449860

  12. Phylogeography on the rocks: The contribution of current and historical factors in shaping the genetic structure of Chthamalus montagui (Crustacea, Cirripedia).

    PubMed

    Pannacciulli, Federica G; Maltagliati, Ferruccio; de Guttry, Christian; Achituv, Yair

    2017-01-01

    The model marine broadcast-spawner barnacle Chthamalus montagui was investigated to understand its genetic structure and quantify levels of population divergence, and to make inference on historical demography in terms of time of divergence and changes in population size. We collected specimens from rocky shores of the north-east Atlantic Ocean (4 locations), Mediterranean Sea (8) and Black Sea (1). The 312 sequences 537 bp) of the mitochondrial cytochrome c oxidase I allowed to detect 130 haplotypes. High within-location genetic variability was recorded, with haplotype diversity ranging between h = 0.750 and 0.967. Parameters of genetic divergence, haplotype network and Bayesian assignment analysis were consistent in rejecting the hypothesis of panmixia. C. montagui is genetically structured in three geographically discrete populations, which corresponded to north-eastern Atlantic Ocean, western-central Mediterranean Sea, and Aegean Sea-Black Sea. These populations are separated by two main effective barriers to gene flow located at the Almeria-Oran Front and in correspondence of the Cyclades Islands. According to the 'isolation with migration' model, adjacent population pairs diverged during the early to middle Pleistocene transition, a period in which geological events provoked significant changes in the structure and composition of palaeocommunities. Mismatch distributions, neutrality tests and Bayesian skyline plots showed past population expansions, which started approximately in the Mindel-Riss interglacial, in which ecological conditions were favourable for temperate species and calcium-uptaking marine organisms.

  13. Phylogeography on the rocks: The contribution of current and historical factors in shaping the genetic structure of Chthamalus montagui (Crustacea, Cirripedia)

    PubMed Central

    Pannacciulli, Federica G.; de Guttry, Christian; Achituv, Yair

    2017-01-01

    The model marine broadcast-spawner barnacle Chthamalus montagui was investigated to understand its genetic structure and quantify levels of population divergence, and to make inference on historical demography in terms of time of divergence and changes in population size. We collected specimens from rocky shores of the north-east Atlantic Ocean (4 locations), Mediterranean Sea (8) and Black Sea (1). The 312 sequences 537 bp) of the mitochondrial cytochrome c oxidase I allowed to detect 130 haplotypes. High within-location genetic variability was recorded, with haplotype diversity ranging between h = 0.750 and 0.967. Parameters of genetic divergence, haplotype network and Bayesian assignment analysis were consistent in rejecting the hypothesis of panmixia. C. montagui is genetically structured in three geographically discrete populations, which corresponded to north-eastern Atlantic Ocean, western-central Mediterranean Sea, and Aegean Sea-Black Sea. These populations are separated by two main effective barriers to gene flow located at the Almeria-Oran Front and in correspondence of the Cyclades Islands. According to the ‘isolation with migration’ model, adjacent population pairs diverged during the early to middle Pleistocene transition, a period in which geological events provoked significant changes in the structure and composition of palaeocommunities. Mismatch distributions, neutrality tests and Bayesian skyline plots showed past population expansions, which started approximately in the Mindel-Riss interglacial, in which ecological conditions were favourable for temperate species and calcium-uptaking marine organisms. PMID:28594840

  14. Mitochondrial DNA evolution in the Anaxyrus boreas species group

    USGS Publications Warehouse

    Goebel, A.M.; Ranker, T.A.; Corn, P.S.; Olmstead, R.G.

    2009-01-01

    The Anaxyrus boreas species group currently comprises four species in western North America including the broadly distributed A. boreas, and three localized species, Anaxyrus nelsoni, Anaxyrus exsul and Anaxyrus canorus. Phylogenetic analyses of the mtDNA 12S rDNA, cytochrome oxidase I, control region, and restriction sites data, identified three major haplotype clades. The Northwest clade (NW) includes both subspecies of A. boreas and divergent minor clades in the middle Rocky Mountains, coastal, and central regions of the west and Pacific Northwest. The Southwest (SW) clade includes A. exsul, A. nelsoni, and minor clades in southern California. Anaxyrus canorus, previously identified as paraphyletic, has populations in both the NW and SW major clades. The Eastern major clade (E) includes three divergent lineages from southern Utah, the southern Rocky Mountains, and north of the Great Basin at the border of Utah and Nevada. These results identify new genetic variation in the eastern portion of the toad's range and are consistent with previous regional studies from the west coast. Low levels of control region sequence divergence between major clades (2.2-4.7% uncorrected pair-wise distances) are consistent with Pleistocene divergence and suggest that the phylogeographic history of the group was heavily influenced by dynamic Pleistocene glacial and climatic changes, and especially pluvial changes, in western North America. Results reported here may impact conservation plans in that the current taxonomy does not reflect the diversity in the group. ?? 2008 Elsevier Inc.

  15. Evaluation of the Systematic Status of Geographical Variations in Arcuphantes hibanus (Arachnida: Araneae: Linyphiidae), with Descriptions of Two New Species.

    PubMed

    Nakano, Takafumi; Ihara, Yoh; Kumasaki, Yusuke; Baba, Yuki G; Tomikawa, Ko

    2017-08-01

    The systematic status of geographical variants of Arcuphantes hibanus Saito, 1992 belonging to the A. longiscapus species group, indigenous to western Honshu and Shikoku, Japan, was evaluated using morphological and molecular data. Two species, A. enmusubi Ihara, Nakano and Tomikawa, sp. nov. and A. occidentalis Ihara, Nakano and Tomikawa, sp. nov., are described, and A. hibanus is redescribed with redefinition of its taxonomic status. These three species are diagnosed by the characteristics of paracymbium, pseudolamella, and epigynal basal part. Phylogenetic trees obtained with mitochondrial cytochrome c oxidase subunit I and 16S rRNA markers showed that the variants are mutually genetically highly diverged. However, the mtDNA phylogenies failed to recover the monophyly of A. hibanus redefined herein. Contrary to the mtDNA phylogenetic analyses, a neighbor-network analysis of nuclear internal transcribed spacer 1 sequences of A. hibanus, A. enmusubi and A. occidentalis spiders showed that each of them forms a cluster. The results of mitochondrial and nuclear DNA analyses in each of the three species are briefly discussed, along with their taxonomic identities.

  16. Multiple instances of paraphyletic species and cryptic taxa revealed by mitochondrial and nuclear RAD data for Calandrella larks (Aves: Alaudidae).

    PubMed

    Stervander, Martin; Alström, Per; Olsson, Urban; Ottosson, Ulf; Hansson, Bengt; Bensch, Staffan

    2016-09-01

    The avian genus Calandrella (larks) was recently suggested to be non-monophyletic, and was divided into two genera, of which Calandrella sensu stricto comprises 4-5 species in Eurasia and Africa. We analysed mitochondrial cytochrome b (cytb) and nuclear Restriction-site Associated DNA (RAD) sequences from all species, and for cytb we studied 21 of the 22 recognised subspecies, with the aim to clarify the phylogenetic relationships within the genus and to compare large-scale nuclear sequence patterns with a widely used mitochondrial marker. Cytb indicated deep splits among the currently recognised species, although it failed to support the interrelationships among most of these. It also revealed unexpected deep divergences within C. brachydactyla, C. blanfordi/C. erlangeri, C. cinerea, and C. acutirostris. It also suggested that both C. brachydactyla and C. blanfordi, as presently circumscribed, are paraphyletic. In contrast, most of the many subspecies of C. brachydactyla and C. cinerea were unsupported by cytb, although two populations of C. cinerea were found to be genetically distinct. The RAD data corroborated the cytb tree (for the smaller number of taxa analysed) and recovered strongly supported interspecific relationships. However, coalescence analyses of the RAD data, analysed in SNAPP both with and without an outgroup, received equally strong support for two conflicting topologies. We suggest that the tree rooted with an outgroup - which is not recommended for SNAPP - is more trustworthy, and suggest that the reliability of analyses performed without any outgroup species should be thoroughly evaluated. We also demonstrate that degraded museum samples can be phylogenetically informative in RAD analyses following careful bioinformatic treatment. We note that the genus Calandrella is in need of taxonomic revision. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Climate oscillations, glacial refugia, and dispersal ability: factors influencing the genetic structure of the least salmonfly, Pteronarcella badia (Plecoptera), in Western North America.

    PubMed

    Sproul, John S; Houston, Derek D; Nelson, C Riley; Evans, R Paul; Crandall, Keith A; Shiozawa, Dennis K

    2015-12-12

    Phylogeographic studies of aquatic insects provide valuable insights into mechanisms that shape the genetic structure of communities, yet studies that include broad geographic areas are uncommon for this group. We conducted a broad scale phylogeographic analysis of the least salmonfly Pteronarcella badia (Plecoptera) across western North America. We tested hypotheses related to mode of dispersal and the influence of historic climate oscillations on population genetic structure. In order to generate a larger mitochondrial data set, we used 454 sequencing to reconstruct the complete mitochondrial genome in the early stages of the project. Our analysis revealed high levels of population structure with several deeply divergent clades present across the sample area. Evidence from five mitochondrial genes and one nuclear locus identified a potentially cryptic lineage in the Pacific Northwest. Gene flow estimates and geographic clade distributions suggest that overland flight during the winged adult stage is an important dispersal mechanism for this taxon. We found evidence of multiple glacial refugia across the species distribution and signs of secondary contact within and among major clades. This study provides a basis for future studies of aquatic insect phylogeography at the inter-basin scale in western North America. Our findings add to an understanding of the role of historical climate isolations in shaping assemblages of aquatic insects in this region. We identified several geographic areas that may have historical importance for other aquatic organisms with similar distributions and dispersal strategies as P. badia. This work adds to the ever-growing list of studies that highlight the potential of next-generation DNA sequencing in a phylogenetic context to improve molecular data sets from understudied groups.

  18. The evolutionary history of termites as inferred from 66 mitochondrial genomes.

    PubMed

    Bourguignon, Thomas; Lo, Nathan; Cameron, Stephen L; Šobotník, Jan; Hayashi, Yoshinobu; Shigenobu, Shuji; Watanabe, Dai; Roisin, Yves; Miura, Toru; Evans, Theodore A

    2015-02-01

    Termites have colonized many habitats and are among the most abundant animals in tropical ecosystems, which they modify considerably through their actions. The timing of their rise in abundance and of the dispersal events that gave rise to modern termite lineages is not well understood. To shed light on termite origins and diversification, we sequenced the mitochondrial genome of 48 termite species and combined them with 18 previously sequenced termite mitochondrial genomes for phylogenetic and molecular clock analyses using multiple fossil calibrations. The 66 genomes represent most major clades of termites. Unlike previous phylogenetic studies based on fewer molecular data, our phylogenetic tree is fully resolved for the lower termites. The phylogenetic positions of Macrotermitinae and Apicotermitinae are also resolved as the basal groups in the higher termites, but in the crown termitid groups, including Termitinae + Syntermitinae + Nasutitermitinae + Cubitermitinae, the position of some nodes remains uncertain. Our molecular clock tree indicates that the lineages leading to termites and Cryptocercus roaches diverged 170 Ma (153-196 Ma 95% confidence interval [CI]), that modern Termitidae arose 54 Ma (46-66 Ma 95% CI), and that the crown termitid group arose 40 Ma (35-49 Ma 95% CI). This indicates that the distribution of basal termite clades was influenced by the final stages of the breakup of Pangaea. Our inference of ancestral geographic ranges shows that the Termitidae, which includes more than 75% of extant termite species, most likely originated in Africa or Asia, and acquired their pantropical distribution after a series of dispersal and subsequent diversification events. © The Author 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  19. Global population genetic dynamics of a highly migratory, apex predator shark.

    PubMed

    Bernard, Andrea M; Feldheim, Kevin A; Heithaus, Michael R; Wintner, Sabine P; Wetherbee, Bradley M; Shivji, Mahmood S

    2016-11-01

    Knowledge of genetic connectivity dynamics in the world's large-bodied, highly migratory, apex predator sharks across their global ranges is limited. One such species, the tiger shark (Galeocerdo cuvier), occurs worldwide in warm temperate and tropical waters, uses remarkably diverse habitats (nearshore to pelagic) and possesses a generalist diet that can structure marine ecosystems through top-down processes. We investigated the phylogeography and the global population structure of this exploited, phylogenetically enigmatic shark by using 10 nuclear microsatellites (n = 380) and sequences from the mitochondrial control region (CR, n = 340) and cytochrome oxidase I gene (n = 100). All three marker classes showed the genetic differentiation between tiger sharks from the western Atlantic and Indo-Pacific ocean basins (microsatellite F ST  > 0.129; CR Φ ST  > 0.497), the presence of North vs. southwestern Atlantic differentiation and the isolation of tiger sharks sampled from Hawaii from other surveyed locations. Furthermore, mitochondrial DNA revealed high levels of intraocean basin matrilineal population structure, suggesting female philopatry and sex-biased gene flow. Coalescent- and genetic distance-based estimates of divergence from CR sequences were largely congruent (d corr  = 0.0015-0.0050), indicating a separation of Indo-Pacific and western Atlantic tiger sharks <1 million years ago. Mitochondrial haplotype relationships suggested that the western South Atlantic Ocean was likely a historical connection for interocean basin linkages via the dispersal around South Africa. Together, the results reveal unexpectedly high levels of population structure in a highly migratory, behaviourally generalist, cosmopolitan ocean predator, calling for management and conservation on smaller-than-anticipated spatial scales. © 2016 John Wiley & Sons Ltd.

  20. Capturing the Biofuel Wellhead and Powerhouse: The Chloroplast and Mitochondrial Genomes of the Leguminous Feedstock Tree Pongamia pinnata

    PubMed Central

    Kazakoff, Stephen H.; Imelfort, Michael; Edwards, David; Koehorst, Jasper; Biswas, Bandana; Batley, Jacqueline; Scott, Paul T.; Gresshoff, Peter M.

    2012-01-01

    Pongamia pinnata (syn. Millettia pinnata) is a novel, fast-growing arboreal legume that bears prolific quantities of oil-rich seeds suitable for the production of biodiesel and aviation biofuel. Here, we have used Illumina® ‘Second Generation DNA Sequencing (2GS)’ and a new short-read de novo assembler, SaSSY, to assemble and annotate the Pongamia chloroplast (152,968 bp; cpDNA) and mitochondrial (425,718 bp; mtDNA) genomes. We also show that SaSSY can be used to accurately assemble 2GS data, by re-assembling the Lotus japonicus cpDNA and in the process assemble its mtDNA (380,861 bp). The Pongamia cpDNA contains 77 unique protein-coding genes and is almost 60% gene-dense. It contains a 50 kb inversion common to other legumes, as well as a novel 6.5 kb inversion that is responsible for the non-disruptive, re-orientation of five protein-coding genes. Additionally, two copies of an inverted repeat firmly place the species outside the subclade of the Fabaceae lacking the inverted repeat. The Pongamia and L. japonicus mtDNA contain just 33 and 31 unique protein-coding genes, respectively, and like other angiosperm mtDNA, have expanded intergenic and multiple repeat regions. Through comparative analysis with Vigna radiata we measured the average synonymous and non-synonymous divergence of all three legume mitochondrial (1.59% and 2.40%, respectively) and chloroplast (8.37% and 8.99%, respectively) protein-coding genes. Finally, we explored the relatedness of Pongamia within the Fabaceae and showed the utility of the organellar genome sequences by mapping transcriptomic data to identify up- and down-regulated stress-responsive gene candidates and confirm in silico predicted RNA editing sites. PMID:23272141

  1. Capturing the biofuel wellhead and powerhouse: the chloroplast and mitochondrial genomes of the leguminous feedstock tree Pongamia pinnata.

    PubMed

    Kazakoff, Stephen H; Imelfort, Michael; Edwards, David; Koehorst, Jasper; Biswas, Bandana; Batley, Jacqueline; Scott, Paul T; Gresshoff, Peter M

    2012-01-01

    Pongamia pinnata (syn. Millettia pinnata) is a novel, fast-growing arboreal legume that bears prolific quantities of oil-rich seeds suitable for the production of biodiesel and aviation biofuel. Here, we have used Illumina® 'Second Generation DNA Sequencing (2GS)' and a new short-read de novo assembler, SaSSY, to assemble and annotate the Pongamia chloroplast (152,968 bp; cpDNA) and mitochondrial (425,718 bp; mtDNA) genomes. We also show that SaSSY can be used to accurately assemble 2GS data, by re-assembling the Lotus japonicus cpDNA and in the process assemble its mtDNA (380,861 bp). The Pongamia cpDNA contains 77 unique protein-coding genes and is almost 60% gene-dense. It contains a 50 kb inversion common to other legumes, as well as a novel 6.5 kb inversion that is responsible for the non-disruptive, re-orientation of five protein-coding genes. Additionally, two copies of an inverted repeat firmly place the species outside the subclade of the Fabaceae lacking the inverted repeat. The Pongamia and L. japonicus mtDNA contain just 33 and 31 unique protein-coding genes, respectively, and like other angiosperm mtDNA, have expanded intergenic and multiple repeat regions. Through comparative analysis with Vigna radiata we measured the average synonymous and non-synonymous divergence of all three legume mitochondrial (1.59% and 2.40%, respectively) and chloroplast (8.37% and 8.99%, respectively) protein-coding genes. Finally, we explored the relatedness of Pongamia within the Fabaceae and showed the utility of the organellar genome sequences by mapping transcriptomic data to identify up- and down-regulated stress-responsive gene candidates and confirm in silico predicted RNA editing sites.

  2. Do genes lie? Mitochondrial capture masks the Red Sea collector urchin's true identity (Echinodermata: Echinoidea: Tripneustes).

    PubMed

    Bronstein, Omri; Kroh, Andreas; Haring, Elisabeth

    2016-11-01

    Novel COI and bindin sequences of the Red Sea collector echinoid Tripneustes gratilla elatensis are used to show that (1) discordance between mitochondrial and nuclear loci exists in this echinoid genus, (2) Tripneustes gratilla as currently defined possibly comprises a complex of cryptic species, and (3) Red Sea Tripneustes form a genetically distinct clade in the bindin tree, which diverged from other Tripneustes clades at least 2-4million years ago. Morphological reassessment of T. gratilla elatensis shows perfect congruence between identification based on skeletal features and genetic data based on a nuclear marker sequence. Hence the Red Sea Tripneustes subspecies established by Dafni in 1983 is a distinct biological unit. All T. g. elatensis samples analyzed are highly similar to or share mtDNA haplotypes with Philippine T. g. gratilla, as do representatives from other edge-of-range occurrences. This lack of genetic structure in Indo-Pacific Tripneustes is interpreted as a result of wide-spread mitochondrial introgression. New fossil specimens from the Red Sea area confirm the sympatric occurrence of T. g. elatensis and T. g. gratilla in the northern Red Sea during Late Pleistocene, identifying a possible timing for the introgression. In addition, present-day distribution shows a contact zone in the Southern Red Sea (in the Dahlak Archipelago). T. g. elatensis, is yet another example of a Red Sea taxon historically identified as conspecific with its Indo-Pacific relatives, but which turned out to be a morphologically and genetically distinct endemic taxon, suggesting that the level of endemism in the Red Sea may still be underestimated. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Evolutionary origins and genetic variation of the Seychelles treefrog, Tachycnemis seychellensis (Duméril and Bibron, 1841) (Amphibia: Anura: Hyperoliidae).

    PubMed

    Maddock, Simon T; Day, Julia J; Nussbaum, Ronald A; Wilkinson, Mark; Gower, David J

    2014-06-01

    The hyperoliid frog Tachycnemis seychellensis, the only species of its genus, is endemic to the four largest granitic islands of the Seychelles archipelago and is reliant on freshwater bodies for reproduction. Its presence in the Seychelles is thought to be the product of a transoceanic dispersal, diverging from the genus Heterixalus, its closest living relative (currently endemic to Madagascar), between approximately 10-35Ma. A previous study documented substantial intraspecific morphological variation among island populations and also among populations within the largest island (Mahé). To assess intraspecific genetic variation and to infer the closest living relative(s) of T. seychellensis, DNA sequence data were generated for three mitochondrial and four nuclear markers. These data support a sister-group relationship between T. seychellensis and Heterixalus, with the divergence between the two occurring between approximately 11-19Ma based on cytb p-distances. Low levels of genetic variation were found among major mitochondrial haplotype clades of T. seychellensis (maximum 0.7% p-distance concatenated mtDNA), and samples from each of the islands (except La Digue) comprised multiple mitochondrial haplotype clades. Two nuclear genes (rag1 and tyr) showed no variation, and the other two (rho and pomc) lacked any notable geographic structuring, counter to patterns observed within presumably more vagile Seychelles taxa such as lizards. The low levels of genetic variation and phylogeographic structure support an interpretation that there is a single but morphologically highly variable species of Seychelles treefrog. The contrasting genetic and morphological intraspecific variation may be attributable to relatively recent admixture during low sea-level stands, ecophenotypic plasticity, local adaptation to different environmental conditions, and/or current and previously small population sizes. Low genetic phylogeographic structure but substantial morphological variation is unusual within anurans. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Integrative taxonomy of Metrichia Ross (Trichoptera: Hydroptilidae: Ochrotrichiinae) microcaddisflies from Brazil: descriptions of twenty new species

    PubMed Central

    Takiya, Daniela M.; Nessimian, Jorge L.

    2016-01-01

    Metrichia is assigned to the Ochrotrichiinae, a group of almost exclusively Neotropical microcaddisflies. Metrichia comprises over 100 described species and, despite its diversity, only one species has been described from Brazil so far. In this paper, we provide descriptions for 20 new species from 8 Brazilian states: M. acuminata sp. nov., M. azul sp. nov., M. bonita sp. nov., M. bracui sp. nov., M. caraca sp. nov., M. circuliforme sp. nov., M. curta sp. nov., M. farofa sp. nov., M. forceps sp. nov., M. formosinha sp. nov., M. goiana sp. nov., M. itabaiana sp. nov., M. longissima sp. nov., M. peluda sp. nov., M. rafaeli sp. nov., M. simples sp. nov., M. talhada sp. nov., M. tere sp. nov., M. ubajara sp. nov., and M. vulgaris sp. nov. DNA barcode sequences (577 bp of the mitochondrial gene COI) were generated for 13 of the new species and two previously known species of Metrichia resulting in 64 sequences. In addition, COI sequences were obtained for other genera of Ochrotrichiinae (Angrisanoia, Nothotrichia, Ochrotrichia, Ragatrichia, and Rhyacopsyche). DNA sequences and morphological data were integrated to evaluate species delimitations. K2P pairwise distances were calculated to generate a neighbor-joining tree. COI sequences also were submitted to ABGD and GMYC methods to assess ‘potential species’ delimitation. Analyses showed a conspicuous barcoding gap among Metrichia sequences (highest intraspecific divergence: 4.8%; lowest interspecific divergence: 12.6%). Molecular analyses also allowed the association of larvae and adults of Metrichia bonita sp. nov. from Mato Grosso do Sul, representing the first record of microcaddisfly larvae occurring in calcareous tufa (or travertine). ABGD results agreed with the morphological delimitation of Metrichia species, while GMYC estimated a slightly higher number of species, suggesting the division of two morphological species, each one into two potential species. Because this could be due to unbalanced sampling and the lack of morphological diagnostic characters, we have maintained these two species as undivided. PMID:27169001

  5. Identification of Paramecium bursaria syngens through molecular markers--comparative analysis of three loci in the nuclear and mitochondrial DNA.

    PubMed

    Greczek-Stachura, Magdalena; Potekhin, Alexey; Przyboś, Ewa; Rautian, Maria; Skoblo, Inna; Tarcz, Sebastian

    2012-09-01

    This is the first attempt to resolve the phylogenetic relationship between different syngens of Paramecium bursaria and to investigate at a molecular level the intraspecific differentiation of strains originating from very distant geographical locations. Herein we introduce a new collection of five P. bursaria syngens maintained at St Petersburg State University, as the international collection of syngens was lost in the 1960s. To analyze the degree of speciation within Paramecium bursaria, we examined 26 strains belonging to five different syngens from distant and geographically isolated localities using rDNA (ITS1-5.8S-ITS2-5'LSU) fragments, mitochondrial cytochrome c oxidase subunit I (COI), and H4 gene fragments. It was shown that P. bursaria strains of the same syngens cluster together in all three inferred molecular phylogenies. The genetic diversity among the studied P. bursaria strains based on rDNA sequences was rather low. The COI divergence of Paramecium bursaria was also definitely lower than that observed in the Paramecium aurelia complex. The nucleotide sequences of the H4 gene analyzed in the present study indicate the extent of genetic differences between the syngens of Paramecium bursaria. Our study demonstrates the diagnostic value of molecular markers, which are important tools in the identification of Paramecium bursaria syngens. Copyright © 2011 Elsevier GmbH. All rights reserved.

  6. Mitochondrial control-region sequence variation in aboriginal Australians.

    PubMed Central

    van Holst Pellekaan, S; Frommer, M; Sved, J; Boettcher, B

    1998-01-01

    The mitochondrial D-loop hypervariable segment 1 (mt HVS1) between nucleotides 15997 and 16377 has been examined in aboriginal Australian people from the Darling River region of New South Wales (riverine) and from Yuendumu in central Australia (desert). Forty-seven unique HVS1 types were identified, varying at 49 nucleotide positions. Pairwise analysis by calculation of BEPPI (between population proportion index) reveals statistically significant structure in the populations, although some identical HVS1 types are seen in the two contrasting regions. mt HVS1 types may reflect more-ancient distributions than do linguistic diversity and other culturally distinguishing attributes. Comparison with sequences from five published global studies reveals that these Australians demonstrate greatest divergence from some Africans, least from Papua New Guinea highlanders, and only slightly more from some Pacific groups (Indonesian, Asian, Samoan, and coastal Papua New Guinea), although the HVS1 types vary at different nucleotide sites. Construction of a median network, displaying three main groups, suggests that several hypervariable nucleotide sites within the HVS1 are likely to have undergone mutation independently, making phylogenetic comparison with global samples by conventional methods difficult. Specific nucleotide-site variants are major separators in median networks constructed from Australian HVS1 types alone and for one global selection. The distribution of these, requiring extended study, suggests that they may be signatures of different groups of prehistoric colonizers into Australia, for which the time of colonization remains elusive. PMID:9463317

  7. The Reverse Transcriptase/RNA Maturase Protein MatR Is Required for the Splicing of Various Group II Introns in Brassicaceae Mitochondria

    PubMed Central

    Sultan, Laure D.; Grewe, Felix; Rolle, Katarzyna; Abudraham, Sivan; Shevtsov, Sofia; Klipcan, Liron; Barciszewski, Jan; Dietrich, André

    2016-01-01

    Group II introns are large catalytic RNAs that are ancestrally related to nuclear spliceosomal introns. Sequences corresponding to group II RNAs are found in many prokaryotes and are particularly prevalent within plants organellar genomes. Proteins encoded within the introns themselves (maturases) facilitate the splicing of their own host pre-RNAs. Mitochondrial introns in plants have diverged considerably in sequence and have lost their maturases. In angiosperms, only a single maturase has been retained in the mitochondrial DNA: the matR gene found within NADH dehydrogenase 1 (nad1) intron 4. Its conservation across land plants and RNA editing events, which restore conserved amino acids, indicates that matR encodes a functional protein. However, the biological role of MatR remains unclear. Here, we performed an in vivo investigation of the roles of MatR in Brassicaceae. Directed knockdown of matR expression via synthetically designed ribozymes altered the processing of various introns, including nad1 i4. Pull-down experiments further indicated that MatR is associated with nad1 i4 and several other intron-containing pre-mRNAs. MatR may thus represent an intermediate link in the gradual evolutionary transition from the intron-specific maturases in bacteria into their versatile spliceosomal descendants in the nucleus. The similarity between maturases and the core spliceosomal Prp8 protein further supports this intriguing theory. PMID:27760804

  8. Divergence among barking frogs (Eleutherodactylus augusti) in the southwestern United States

    USGS Publications Warehouse

    Goldberg, Caren S.; Sullivan, Brian K.; Malone, John H.; Schwalbe, Cecil R.

    2004-01-01

    Barking frogs (Eleutherodactylus augusti) are distributed from southern Mexico along the Sierra Madre Occidental into Arizona and the Sierra Madre Oriental into Texas and New Mexico. Barking frogs in Arizona and most of Texas live in rocky areas in oak woodland, while those in New Mexico and far western Texas live in rodent burrows in desertscrub. Barking frogs in each of the three states have distinct coloration and differ in sexually dimorphic characters, female vocalization, and skin toxicity. We analyzed advertisement call variation and conducted a phylogenetic analysis using mitochondrial DNA sequences (ND2 and tRNA regions) for barking frogs from these three states. Advertisement calls of frogs from Arizona were significantly longer in duration, higher in frequency, and had longer duration pulses than those of frogs from either New Mexico or Texas; frogs from these latter two sites were indistinguishable in these call variables. Phylogenetic analysis showed deep divisions among barking frogs from the three states. Differences in call structure, coloration, and mitochondrial DNA sequences strongly suggest that barking frogs in Arizona are reproductively isolated from those in New Mexico and Texas. Our results indicate that either northern populations are connected via gene flow through southern Mexico (i.e., they are subspecies as currently recognized), or represent independent lineages as originally described (i.e., western barking frogs, E. cactorum in AZ, and the eastern barking frogs, E. latrans in NM, TX).

  9. Two mitochondrial genomes in Alcedinidae (Ceryle rudis/Halcyon pileata) and the phylogenetic placement of Coraciiformes.

    PubMed

    Sun, Xiaomin; Zhao, Ruoping; Zhang, Ting; Gong, Jie; Jing, Meidong; Huang, Ling

    2017-10-01

    Coraciiformes comprises 209 species belonging to ten families with significant divergence on external morphologies and life styles. The phylogenetic placement of Coraciiformes was still in debate. Here, we determined the complete mitochondrial genomes (mitogenomes) of Crested Kingfisher (Ceryle rudis) and Black-capped Kingfisher (Halcyon pileata). The mitogenomes were 17,355 bp (C. rudis) and 17,612 bp (H. pileata) in length, and both of them contained 37 genes (two rRNA genes, 22 tRNA genes and 13 protein-coding genes) and one control region. The gene organizations and characters of two mitogenomes were similar with those of other mitogenomes in Coraciiformes, however the sizes and nucleotide composition of control regions in different mitogenomes were significantly different. Phylogenetic trees were constructed with both Bayesian and Maximum Likelihood methods based on mitogenome sequences from 11 families of six orders. The trees based on two different data sets supported the basal position of Psittacidae (Psittaciformes), the closest relationship between Cuculiformes (Cuculidae) and Trogoniformes (Trogonidae), and the close relationship between Coraciiformes and Piciformes. The phylogenetic placement of the clade including Cuculiformes and Trogoniformes has not been resolved in present study, which need further investigations with more molecular markers and species. The mitogenome sequences presented here provided valuable data for further taxonomic studies on Coraciiformes and other related groups.

  10. Ancient islands and modern invasions: disparate phylogeographic histories among Hispaniola's endemic birds.

    PubMed

    Sly, Nicholas D; Townsend, Andrea K; Rimmer, Christopher C; Townsend, Jason M; Latta, Steven C; Lovette, Irby J

    2011-12-01

    With its large size, complex topography and high number of avian endemics, Hispaniola appears to be a likely candidate for the in situ speciation of its avifauna, despite the worldwide rarity of avian speciation within single islands. We used multilocus comparative phylogeography techniques to examine the pattern and history of divergence in 11 endemic birds representing potential within-island speciation events. Haplotype and allele networks from mitochondrial ND2 and nuclear intron loci reveal a consistent pattern: phylogeographic divergence within or between closely related species is correlated with the likely distribution of ancient sea barriers that once divided Hispaniola into several smaller paleo-islands. Coalescent and mitochondrial clock dating of divergences indicate species-specific response to different geological events over the wide span of the island's history. We found no evidence that ecological or topographical complexity generated diversity, either by creating open niches or by restricting long-term gene flow. Thus, no true within-island speciation appears to have occurred among the species sampled on Hispaniola. Divergence events predating the merging of Hispaniola's paleo-island blocks cannot be considered in situ divergence, and postmerging divergence in response to episodic island segmentation by marine flooding probably represents in situ vicariance or interarchipelago speciation by dispersal. Our work highlights the necessity of considering island geologic history while investigating the speciation-area relationship in birds and other taxa. © 2011 Blackwell Publishing Ltd.

  11. Indigenous species barcode database improves the identification of zooplankton

    PubMed Central

    Yang, Jianghua; Zhang, Wanwan; Sun, Jingying; Xie, Yuwei; Zhang, Yimin; Burton, G. Allen; Yu, Hongxia

    2017-01-01

    Incompleteness and inaccuracy of DNA barcode databases is considered an important hindrance to the use of metabarcoding in biodiversity analysis of zooplankton at the species-level. Species barcoding by Sanger sequencing is inefficient for organisms with small body sizes, such as zooplankton. Here mitochondrial cytochrome c oxidase I (COI) fragment barcodes from 910 freshwater zooplankton specimens (87 morphospecies) were recovered by a high-throughput sequencing platform, Ion Torrent PGM. Intraspecific divergence of most zooplanktons was < 5%, except Branchionus leydign (Rotifer, 14.3%), Trichocerca elongate (Rotifer, 11.5%), Lecane bulla (Rotifer, 15.9%), Synchaeta oblonga (Rotifer, 5.95%) and Schmackeria forbesi (Copepod, 6.5%). Metabarcoding data of 28 environmental samples from Lake Tai were annotated by both an indigenous database and NCBI Genbank database. The indigenous database improved the taxonomic assignment of metabarcoding of zooplankton. Most zooplankton (81%) with barcode sequences in the indigenous database were identified by metabarcoding monitoring. Furthermore, the frequency and distribution of zooplankton were also consistent between metabarcoding and morphology identification. Overall, the indigenous database improved the taxonomic assignment of zooplankton. PMID:28977035

  12. Speciation, Divergence, and the Origin of Gryllus rubens: Behavior, Morphology, and Molecules

    PubMed Central

    Gray, David A.

    2011-01-01

    The last 25 years or so has seen a huge resurgence of interest in speciation research. This has coincided with the development and widespread use of new tools in molecular genetics, especially DNA sequencing, to inform ecological and evolutionary questions. Here I review about a decade of work on the sister species of field crickets Gryllus texensis and G. rubens. This work has included analysis of morphology, behavior, and the mitochondrial DNA molecule. The molecular work in particular has dramatically re-shaped my interpretation of the speciational history of these taxa, suggesting that rather than ‘sister’ species we should consider these taxa as ‘mother-daughter’ species with G. rubens derived from within a subset of ancestral G. texensis. PMID:26467622

  13. Phylogenetic relationship among East Asian species of the Stegana genus group (Diptera, Drosophilidae).

    PubMed

    Li, Tong; Gao, Jian-jun; Lu, Jin-ming; Ji, Xing-lai; Chen, Hong-wei

    2013-01-01

    The phylogenetic relationship among 27 East Asian species of the Stegana genus group was reconstructed using DNA sequences of mitochondrial (COI and ND2) and nuclear (28S) genes. The results lent support to the current generic/subgeneric taxonomic classification in the genus group with the exceptions of the paraphyly of the genus Parastegana and the subgenus Oxyphortica in the genus Stegana. The ancestral areas and divergence times in the genus group were reconstructed/estimated, and accordingly, the biogeographical history of this important clade was discussed. It was proposed that, the evolution of the plant family Fagaceae, especially Quercus, may have played a certain role in facilitating the diversification of the Stegana genus group. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. The non-LTR retrotransposon R2 in termites (Insecta, Isoptera): characterization and dynamics.

    PubMed

    Ghesini, Silvia; Luchetti, Andrea; Marini, Mario; Mantovani, Barbara

    2011-03-01

    The full-length element of the non-LTR retrotransposon R2 is here characterized in three European isopteran species: the more primitive Kalotermes flavicollis (Kalotermitidae), including two highly divergent mitochondrial lineages, and the more derived Reticulitermes lucifugus and R. urbis (Rhinotermitidae). Partial 3' sequences for R. grassei and R. balkanensis were also analyzed. The essential structural features of R2 elements are conserved in termites. Phylogenetic analysis revealed that termite elements belong to the same clade and that their phylogeny is fully compatible with the phylogeny of their host species. The study of the number and the frequency of R2 insertion variants in four R. urbis colonies suggests a greatly reduced, or completely absent, recent element activity.

  15. Median network analysis of defectively sequenced entire mitochondrial genomes from early and contemporary disease studies.

    PubMed

    Bandelt, Hans-Jürgen; Yao, Yong-Gang; Bravi, Claudio M; Salas, Antonio; Kivisild, Toomas

    2009-03-01

    Sequence analysis of the mitochondrial genome has become a routine method in the study of mitochondrial diseases. Quite often, the sequencing efforts in the search of pathogenic or disease-associated mutations are affected by technical and interpretive problems, caused by sample mix-up, contamination, biochemical problems, incomplete sequencing, misdocumentation and insufficient reference to previously published data. To assess data quality in case studies of mitochondrial diseases, it is recommended to compare any mtDNA sequence under consideration to their phylogenetically closest lineages available in the Web. The median network method has proven useful for visualizing potential problems with the data. We contrast some early reports of complete mtDNA sequences to more recent total mtDNA sequencing efforts in studies of various mitochondrial diseases. We conclude that the quality of complete mtDNA sequences generated in the medical field in the past few years is somewhat unsatisfactory and may even fall behind that of pioneer manual sequencing in the early nineties. Our study provides a paradigm for an a posteriori evaluation of sequence quality and for detection of potential problems with inferring a pathogenic status of a particular mutation.

  16. Mitochondrial evidence for multiple radiations in the evolutionary history of small apes

    PubMed Central

    2010-01-01

    Background Gibbons or small apes inhabit tropical and subtropical rain forests in Southeast Asia and adjacent regions, and are, next to great apes, our closest living relatives. With up to 16 species, gibbons form the most diverse group of living hominoids, but the number of taxa, their phylogenetic relationships and their phylogeography is controversial. To further the discussion of these issues we analyzed the complete mitochondrial cytochrome b gene from 85 individuals representing all gibbon species, including most subspecies. Results Based on phylogenetic tree reconstructions, several monophyletic clades were detected, corresponding to genera, species and subspecies. A significantly supported branching pattern was obtained for members of the genus Nomascus but not for the genus Hylobates. The phylogenetic relationships among the four genera were also not well resolved. Nevertheless, the new data permitted the estimation of divergence ages for all taxa for the first time and showed that most lineages emerged during four short time periods. In the first, between ~6.7 and ~8.3 mya, the four gibbon genera diverged from each other. In the second (~3.0 - ~3.9 mya) and in the third period (~1.3 - ~1.8 mya), Hylobates and Hoolock differentiated. Finally, between ~0.5 and ~1.1 mya, Hylobates lar diverged into subspecies. In contrast, differentiation of Nomascus into species and subspecies was a continuous and prolonged process lasting from ~4.2 until ~0.4 mya. Conclusions Although relationships among gibbon taxa on various levels remain unresolved, the present study provides a more complete view of the evolutionary and biogeographic history of the hylobatid family, and a more solid genetic basis for the taxonomic classification of the surviving taxa. We also show that mtDNA constitutes a useful marker for the accurate identification of individual gibbons, a tool which is urgently required to locate hunting hotspots and select individuals for captive breeding programs. Further studies including nuclear sequence data are necessary to completely understand the phylogeny and phylogeography of gibbons. PMID:20226039

  17. Phylogeny and biogeography of highly diverged freshwater fish species (Leuciscinae, Cyprinidae, Teleostei) inferred from mitochondrial genome analysis.

    PubMed

    Imoto, Junichi M; Saitoh, Kenji; Sasaki, Takeshi; Yonezawa, Takahiro; Adachi, Jun; Kartavtsev, Yuri P; Miya, Masaki; Nishida, Mutsumi; Hanzawa, Naoto

    2013-02-10

    The distribution of freshwater taxa is a good biogeographic model to study pattern and process of vicariance and dispersal. The subfamily Leuciscinae (Cyprinidae, Teleostei) consists of many species distributed widely in Eurasia and North America. Leuciscinae have been divided into two phyletic groups, leuciscin and phoxinin. The phylogenetic relationships between major clades within the subfamily are poorly understood, largely because of the overwhelming diversity of the group. The origin of the Far Eastern phoxinin is an interesting question regarding the evolutionary history of Leuciscinae. Here we present phylogenetic analysis of 31 species of Leuciscinae and outgroups based on complete mitochondrial genome sequences to clarify the phylogenetic relationships and to infer the evolutionary history of the subfamily. Phylogenetic analysis suggests that the Far Eastern phoxinin species comprised the monophyletic clades Tribolodon, Pseudaspius, Oreoleuciscus and Far Eastern Phoxinus. The Far Eastern phoxinin clade was independent of other Leuciscinae lineages and was closer to North American phoxinins than European leuciscins. All of our analysis also suggested that leuciscins and phoxinins each constituted monophyletic groups. Divergence time estimation suggested that Leuciscinae species diverged from outgroups such as Tincinae to be 83.3 million years ago (Mya) in the Late Cretaceous and leuciscin and phoxinin shared a common ancestor 70.7 Mya. Radiation of Leuciscinae lineages occurred during the Late Cretaceous to Paleocene. This period also witnessed the radiation of tetrapods. Reconstruction of ancestral areas indicates Leuciscinae species originated within Europe. Leuciscin species evolved in Europe and the ancestor of phoxinin was distributed in North America. The Far Eastern phoxinins would have dispersed from North America to Far East across the Beringia land bridge. The present study suggests important roles for the continental rearrangements during the Late Cretaceous to form the present-day distribution of organisms. Furthermore, the Late Cretaceous biotic turnover influenced for the modern terrestrial biodiversity. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Past climate change and recent anthropogenic activities affect genetic structure and population demography of the greater long-tailed hamster in northern China.

    PubMed

    Ye, Junbin; Xiao, Zhenlong; Li, Chuanhai; Wang, Fusheng; Liao, Jicheng; Fu, Jinzhong; Zhang, Zhibin

    2015-09-01

    The genetic diversity and the spatial structure of a species are likely consequences of both past and recent evolutionary processes, but relevant studies are still rare in East Asia where the Pleistocene climate has unique influences. In this study, we examined the impact of past climate change and recent anthropogenic activities on the genetic structure and population size of the greater long-tailed hamster (Tscherskia triton), an agricultural rodent pest species in northern China. DNA sequence data of 2 mitochondrial genes and genotypic data of 11 microsatellite DNA loci from 41 populations (545 individuals) were gathered. Phylogenetic and population genetic analyses, as well as species distribution modeling and coalescent simulations, were conducted to infer its historical and demographic patterns and processes. Two deeply diverged mitochondrial clades were recovered. A small one was restricted to the Shandong Peninsula while the main clade was further divided into 3 geographic clusters by their microsatellite DNA genotypes: Northwest, North-center and Northeast. Divergence dating indicated a Middle-to-Late Pleistocene divergence between the 2 clades. Demographic analysis indicated that all 3 and pooled populations showed consistent long-period expansions during last glacial period; but not during the Holocene, probably due to the impact of climate warming and human disturbances. Conflicting patterns between mtDNA and microsatellite markers imply an anthropogenic impact on North-center populations due to intensified agricultural cultivation in this region. Our study demonstrated that the impact of past glaciation on organisms in East Asia significantly differs from that of Europe and North America, and human activity is an important factor in determining the genetic diversity of a species, as well as its spatial structure. © 2015 International Society of Zoological Sciences, Institute of Zoology/Chinese Academy of Sciences and Wiley Publishing Asia Pty Ltd.

  19. Phylogeography of the sandy beach amphipod Haustorioides japonicus along the Sea of Japan: Paleogeographical signatures of cryptic regional divergences

    NASA Astrophysics Data System (ADS)

    Takada, Yoshitake; Sakuma, Kay; Fujii, Tetsuo; Kojima, Shigeaki

    2018-01-01

    Recent findings of genetic breaks within apparently continuous marine populations challenge the traditional vicariance paradigm in population genetics. Such "invisible" boundaries are sometimes associated with potential geographic barriers that have forced divergence of an ancestral population, habitat discontinuities, biogeographic disjunctions due to environmental gradients, or a combination of these factors. To explore the factors that influence the genetic population structure of apparently continuous populations along the Sea of Japan, the sandy beach amphipod Haustorioides japonicus was examined. We sampled a total of 300 individuals of H. japonicus from the coast of Japan, and obtained partial sequences of the mitochondrial COI gene. The sequences from 19 local populations were clustered into five groups (Northwestern Pacific, Northern, Central, Southern Sea of Japan, and East China Sea) based on a spatial genetic mixture analysis and a minimum-spanning network. AMOVA and pairwise Fst tests further supported the significant divergence of the five groups. Phylogenetic analysis revealed the relationship among the haplotypes of H. japonicus and outgroups, which inferred the northward range expansion of the species. A relaxed molecular-clock Bayesian analysis inferred the early-to middle-Pleistocene divergence of the populations. Among the five clusters, the Central Sea of Japan showed the highest values for genetic diversity indices indicating the existence of a relatively stable and large population there. The hypothesis is also supported by Bayesian Skyline Plots that showed sudden population expansion for all the clusters except for Central Sea of Japan. The present study shows genetic boundaries between the Sea of Japan and the neighboring seas, probably due to geographic isolation during the Pleistocene glacial periods. We further found divergence between the populations along the apparently continuous coast of the Sea of Japan. Historical changes in the geographic range of H. japonicus in relation to sandy beach habitat availability, account for the genetic breaks among the three populations in the Sea of Japan. The present results infer that the past geographic events influenced the population formation of H. japonicus.

  20. Genetic differentiation in the Mexican endemic Rufous-backed Robin, Turdus rufopalliatus (Passeriformes: Turdidae).

    PubMed

    Montaño-Rendón, Mauricio; Sánchez-González, Luis A; Hernández-Alonso, Germán; Navarro-Sigüenza, Adolfo G

    2015-10-30

    The Rufous-backed Robin (Turdus rufopalliatus) is endemic to deciduous and semideciduous tropical forests of western Mexico. Of the currently recognized subspecies, T. r. graysoni, from the Tres Marías Islands and nearby coastal Nayarit, has been considered a separate species; however, this treatment has been challenged due to an apparent contact zone on the mainland, although no hybrids have ever been recorded. Here, we use mitochondrial DNA sequences from individuals sampled across the species' range to assess their phylogeographic relationships. We found reciprocal monophyly between Tres Marías Islands and mainland populations, which share no haplotypes between them. Evolutionary divergence detected within T. rufopalliatus suggests that mainland and island populations have been isolated from each other, and divergence decreases if insular populations are excluded. Demographic parameters suggest that populations are in the process of a rapid expansion from ancestral populations with a lower population size. These results are consistent with morphometric and plumage differences that have been used to recognize the Tres Marías Islands populations from the mainland ones, thus suggesting species status of the island form.

  1. Hidden in the mangrove forest: the cryptic intertidal mite Carinozetes mangrovi sp. nov. (Acari, Oribatida, Selenoribatidae).

    PubMed

    Pfingstl, Tobias; Lienhard, Andrea; Jagersbacher-Baumann, Julia

    2014-08-01

    The small archipelago of Bermuda is a geologically young landmass in the Western Atlantic Ocean and recently turned out to be inhabited by a number of intertidal oribatid mites. One newly described species, Carinozetes bermudensis, showed an unusual vast range of habitats like sandy beaches, rocky substrate and mangroves. In the present study, 13 Bermudian populations of C. bermudensis were analysed to verify species integrity of specimens from different microhabitats. A morphometric analysis of 17 continuous variables as well as a molecular genetic investigation of the mitochondrial cytochrome oxidase subunit I revealed the existence of a new species Carinozetes mangrovi sp. nov., inhabiting exclusively intertidal algae growing on mangrove roots. Although both species are morphologically nearly identical, the configuration of the genus-specific ventral carinae represents a clear diagnostic character. The high genetic divergence of approximately 12 % of the cytochrome oxidase subunit I gene sequence between C. bermudensis and C. mangrovi sp. nov. suggests that these two species diverged before the emergence of the Bermuda islands. Accordingly, both of them are older than the geologically young archipelago of Bermuda.

  2. In-solution hybridization for mammalian mitogenome enrichment: pros, cons and challenges associated with multiplexing degraded DNA.

    PubMed

    Hawkins, Melissa T R; Hofman, Courtney A; Callicrate, Taylor; McDonough, Molly M; Tsuchiya, Mirian T N; Gutiérrez, Eliécer E; Helgen, Kristofer M; Maldonado, Jesus E

    2016-09-01

    Here, we present a set of RNA-based probes for whole mitochondrial genome in-solution enrichment, targeting a diversity of mammalian mitogenomes. This probes set was designed from seven mammalian orders and tested to determine the utility for enriching degraded DNA. We generated 63 mitogenomes representing five orders and 22 genera of mammals that yielded varying coverage ranging from 0 to >5400X. Based on a threshold of 70% mitogenome recovery and at least 10× average coverage, 32 individuals or 51% of samples were considered successful. The estimated sequence divergence of samples from the probe sequences used to construct the array ranged up to nearly 20%. Sample type was more predictive of mitogenome recovery than sample age. The proportion of reads from each individual in multiplexed enrichments was highly skewed, with each pool having one sample that yielded a majority of the reads. Recovery across each mitochondrial gene varied with most samples exhibiting regions with gaps or ambiguous sites. We estimated the ability of the probes to capture mitogenomes from a diversity of mammalian taxa not included here by performing a clustering analysis of published sequences for 100 taxa representing most mammalian orders. Our study demonstrates that a general array can be cost and time effective when there is a need to screen a modest number of individuals from a variety of taxa. We also address the practical concerns for using such a tool, with regard to pooling samples, generating high quality mitogenomes and detail a pipeline to remove chimeric molecules. © 2015 John Wiley & Sons Ltd.

  3. Morphological and molecular reassessment of graptemys oculifera and Graptemys flavimaculata (Testudines: Emydidae)

    USGS Publications Warehouse

    Ennen, J.R.; Kreiser, B.R.; Qualls, C.P.; Lovich, J.E.

    2010-01-01

    The turtle genus Graptemys consists of 15 recognized taxa, distinguished largely on the basis of pigmentation pattern (i.e., soft tissue and shell), head size, and shell morphology. However, phylogenetic studies have shown limited sequence divergence within the genus and between Graptemys oculifera and Graptemys flavimaculata relative to most other members of the Emydidae. Graptemys oculifera of the Pearl River drainage and G. flavimaculata of the Pascagoula River drainage have been recognized as species since 1890 and 1954, respectively. However, the description of G. flavimaculata was based on a limited number of morphological characters. Several of these characters overlap between G. flavimaculata and G. oculifera, and no attempt was made to test for significant morphological differentiation. In this study, we reevaluated the morphological and genetic distinctiveness of G. flavimaculata and G. oculifera with (1) multivariate statistical analyses of 44 morphological characters and (2) 1,560 bp of sequence data from two mitochondrial genes (control region and ND4). The morphological and molecular analyses produced incongruent results. The principal components analysis ordinations separated the two species along a pigmentation gradient with G. flavimaculata having more yellow pigmentation than G. oculifera. Likewise, clustering analyses separated the specimens into two distinct groups with little overlap between the species. Our mitochondrial data supported previous findings of limited genetic differentiation between the two species. However, the results of our morphological analyses, in conjunction with recently published nuclear gene sequence data, support the continued recognition of the two species. Copyright 2010 Society for the Study of Amphibians and Reptiles.

  4. Comparing COI and ITS as DNA barcode markers for mushrooms and allies (Agaricomycotina).

    PubMed

    Dentinger, Bryn T M; Didukh, Maryna Y; Moncalvo, Jean-Marc

    2011-01-01

    DNA barcoding is an approach to rapidly identify species using short, standard genetic markers. The mitochondrial cytochrome oxidase I gene (COI) has been proposed as the universal barcode locus, but its utility for barcoding in mushrooms (ca. 20,000 species) has not been established. We succeeded in generating 167 partial COI sequences (~450 bp) representing ~100 morphospecies from ~650 collections of Agaricomycotina using several sets of new primers. Large introns (~1500 bp) at variable locations were detected in ~5% of the sequences we obtained. We suspect that widespread presence of large introns is responsible for our low PCR success (~30%) with this locus. We also sequenced the nuclear internal transcribed spacer rDNA regions (ITS) to compare with COI. Among the small proportion of taxa for which COI could be sequenced, COI and ITS perform similarly as a barcode. However, in a densely sampled set of closely related taxa, COI was less divergent than ITS and failed to distinguish all terminal clades. Given our results and the wealth of ITS data already available in public databases, we recommend that COI be abandoned in favor of ITS as the primary DNA barcode locus in mushrooms.

  5. Comparing COI and ITS as DNA Barcode Markers for Mushrooms and Allies (Agaricomycotina)

    PubMed Central

    Dentinger, Bryn T. M.; Didukh, Maryna Y.; Moncalvo, Jean-Marc

    2011-01-01

    DNA barcoding is an approach to rapidly identify species using short, standard genetic markers. The mitochondrial cytochrome oxidase I gene (COI) has been proposed as the universal barcode locus, but its utility for barcoding in mushrooms (ca. 20,000 species) has not been established. We succeeded in generating 167 partial COI sequences (∼450 bp) representing ∼100 morphospecies from ∼650 collections of Agaricomycotina using several sets of new primers. Large introns (∼1500 bp) at variable locations were detected in ∼5% of the sequences we obtained. We suspect that widespread presence of large introns is responsible for our low PCR success (∼30%) with this locus. We also sequenced the nuclear internal transcribed spacer rDNA regions (ITS) to compare with COI. Among the small proportion of taxa for which COI could be sequenced, COI and ITS perform similarly as a barcode. However, in a densely sampled set of closely related taxa, COI was less divergent than ITS and failed to distinguish all terminal clades. Given our results and the wealth of ITS data already available in public databases, we recommend that COI be abandoned in favor of ITS as the primary DNA barcode locus in mushrooms. PMID:21966418

  6. Reclassification of the Indo-Pacific Hawkfish Cirrhitus pinnulatus (Forster).

    PubMed

    Gaither, Michelle R; Randall, John E

    2013-01-04

    The hawkfish Cirrhitus pinnulatus Forster (in Bloch & Schneider 1801) was regarded as one wide-ranging Indo-Pacific species, from the Red Sea and east coast of Africa to the Hawaiian Islands and the islands of French Polynesia. Schultz (1950) resurrected the name C. alternatus Gill for the population in the Hawaiian Islands and Johnston Atoll, and described the Red Sea population as a new species, C. spilotoceps, based on morphological data. Randall (1963) confirmed the differences that Schultz used to separate Cirrhitus pinnulatus into three species, but preferred to regard them as subspecies. We examined more specimens, colour photographs, and used genetic comparisons to determine the validity of the three species recognized by Schultz (1950). Combining mitochondrial cytochrome oxidase I and cytochrome b sequence data from specimens of C. pinnulatus pinnulatus from the Indo-Pacific, C. spilotoceps from the Red Sea, and C. pinnulatus maculosus from Hawai'i, we detected levels of sequence divergence (5-12%) that support the species-level designation of C. spilotoceps. We detected no genetic differentiation but maintain the subspecies designation of the Hawaiian form based on morphological and colour differences. We found a third genetic lineage in the Indian Ocean and Western Pacific that is 5% divergent from C. spilotoceps. We refrain from designating this group as a separate subspecies until further morphological and genetic study can be completed.

  7. The genetic signature of recent speciation in manta rays (Manta alfredi and M. birostris).

    PubMed

    Kashiwagi, Tom; Marshall, Andrea D; Bennett, Michael B; Ovenden, Jennifer R

    2012-07-01

    Manta rays have been taxonomically revised as two species, Manta alfredi and M. birostris, on the basis of morphological and meristic data, yet the two species occur in extensive mosaic sympatry. We analysed the genetic signatures of the species boundary using a portion of the nuclear RAG1 (681 base pairs), mitochondrial CO1 (574 bp) and ND5 genes (1188 bp). The assay with CO1 sequences, widely used in DNA barcoding, failed to distinguish the two species. The two species were clearly distinguishable, however, with no shared RAG1 or ND5 haplotypes. The species were reciprocally monophyletic for RAG1, but paraphyletic for ND5 sequences. Qualitative evidence and statistical inferences using the 'Isolation-with-Migration models' indicated that these results were better explained with post-divergence gene flow in the recent past rather than incomplete lineage sorting with zero gene flow since speciation. An estimate of divergence time was less than 0.5 Ma with an upper confidence limit of within 1 Ma. Recent speciation of highly mobile species in the marine environment is of great interest, as it suggests that speciation may have occurred in the absence of long-term physical barriers to gene flow. We propose that the ecologically driven forces such as habitat choice played a significant role in speciation in manta rays. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. DNA barcoding of fishes of Laguna de Bay, Philippines.

    PubMed

    Aquino, Luis Miguel G; Tango, Jazzlyn M; Canoy, Reynand Jay C; Fontanilla, Ian Kendrich C; Basiao, Zubaida U; Ong, Perry S; Quilang, Jonas P

    2011-08-01

    Laguna de Bay, the largest lake in the Philippines, is an important part of the country's fisheries industry. It is also home to a number of endemic fishes including Gobiopterus lacustris (Herre 1927) of family Gobiidae, Leiopotherapon plumbeus (Kner 1864) of family Terapontidae, Zenarchopterus philippinus (Peters 1868) of family Hemiramphidae and Arius manillensis Valenciennes 1840 of family Ariidae. Over the years, a steady decline has been observed in the abundance and diversity of native fishes in the lake due to anthropogenic disturbances. In this study, a total of 71 specimens of 18 different species belonging to 18 genera, 16 families, and seven orders were DNA barcoded using the mitochondrial cytochrome c oxidase subunit I (COI) gene. All of the fish species were discriminated by their COI sequences and one endemic species G. lacustris, showing deep genetic divergence, was highlighted for further taxonomic investigation. Average Kimura 2-parameter genetic distances within species, family, and order were 1.33%, 18.91%, and 24.22%, respectively. These values show that COI divergence increases as taxa become less exclusive. All of the COI sequences obtained were grouped together according to their species designation in the Neighbor-joining tree that was constructed. This study demonstrated that DNA barcoding has great potential as a tool for fast and accurate species identification and also for highlighting species that warrant further taxonomic investigation.

  9. A molecular phylogeny of the Canidae based on six nuclear loci.

    PubMed

    Bardeleben, Carolyne; Moore, Rachael L; Wayne, Robert K

    2005-12-01

    We have reconstructed the phylogenetic relationships of 23 species in the dog family, Canidae, using DNA sequence data from six nuclear loci. Individual gene trees were generated with maximum parsimony (MP) and maximum likelihood (ML) analysis. In general, these individual gene trees were not well resolved, but several identical groupings were supported by more than one locus. Phylogenetic analysis with a data set combining the six nuclear loci using MP, ML, and Bayesian approaches produced a more resolved tree that agreed with previously published mitochondrial trees in finding three well-defined clades, including the red fox-like canids, the South American foxes, and the wolf-like canids. In addition, the nuclear data set provides novel indel support for several previously inferred clades. Differences between trees derived from the nuclear data and those from the mitochondrial data include the grouping of the bush dog and maned wolf into a clade with the South American foxes, the grouping of the side-striped jackal (Canis adustus) and black-backed jackal (Canis mesomelas) and the grouping of the bat-eared fox (Otocyon megalotis) with the raccoon dog (Nycteruetes procyonoides). We also analyzed the combined nuclear+mitochondrial tree. Many nodes that were strongly supported in the nuclear tree or the mitochondrial tree remained strongly supported in the nuclear+mitochondrial tree. Relationships within the clades containing the red fox-like canids and South American canids are well resolved, whereas the relationships among the wolf-like canids remain largely undetermined. The lack of resolution within the wolf-like canids may be due to their recent divergence and insufficient time for the accumulation of phylogenetically informative signal.

  10. An integrative taxonomic study reveals a new species of Tylodelphys Diesing, 1950 (Digenea: Diplostomidae) in central and northern Mexico.

    PubMed

    García-Varela, M; Sereno-Uribe, A L; Pinacho-Pinacho, C D; Hernández-Cruz, E; Pérez-Ponce de León, G

    2016-11-01

    Tylodelphys aztecae n. sp. (Digenea: Diplostomidae) is described from adult specimens obtained from the intestine of the pied-billed grebe (Podilymbus podiceps) and the metacercariae found in the body cavity of freshwater fishes of the families Goodeidae and Cyprinidae in eight localities across central and northern Mexico. The new species is mainly distinguished from the other four described species of Tylodelphys from the Americas (T. adulta, T. americana, T. elongata and T. brevis) by having a forebody slightly concave, a larger ventral sucker, two larger pseudosuckers and by having between 2 and 7 eggs in the uterus. Partial DNA sequences of the mitochondrial gene cytochrome c oxidase subunit I (cox1), and the internal transcribed spacers (ITS1+5.8S+ ITS2) of the ribosomal DNA, were generated for both developmental stages and compared with available sequences in GenBank of other congeners. The genetic divergence estimated among Tylodelphys aztecae n. sp. and other congeneric species varied from 12 to 15% for cox1, and from 3 to 11% for ITS. In contrast, the genetic divergence among metacercariae and adults of the new species was very low, ranging between 0 and 1% for cox1 and between 0 and 0.3% for ITS. Phylogenetic analyses inferred with both molecular markers using maximum likelihood and Bayesian inference placed the adults and their metacercariae in a single clade, confirming that both stages are conspecific. The morphological evidence and the genetic divergence, in combination with the reciprocal monophyly in both phylogenetic trees, support the hypothesis that the diplostomids found in the intestines of the pied-billed grebe bird and the body cavity from goodeid and cyprinid fishes in central and northern Mexico represent a new species.

  11. Highly divergent mussel lineages in isolated Indonesian marine lakes

    PubMed Central

    de Leeuw, Christiaan A.; Knegt, Bram; Maas, Diede L.; de Voogd, Nicole J.; Abdunnur; Suyatna, Iwan; Peijnenburg, Katja T.C.A.

    2016-01-01

    Marine lakes, with populations in landlocked seawater and clearly delineated contours, have the potential to provide a unique model to study early stages of evolution in coastal marine taxa. Here we ask whether populations of the mussel Brachidontes from marine lakes in Berau, East Kalimantan (Indonesia) are isolated from each other and from the coastal mangrove systems. We analyzed sequence data of one mitochondrial marker (Cytochrome Oxidase I (COI)), and two nuclear markers (18S and 28S). In addition, we examined shell shape using a geometric morphometric approach. The Indonesian populations of Brachidontes spp. harbored four deeply diverged lineages (14–75% COI corrected net sequence divergence), two of which correspond to previously recorded lineages from marine lakes in Palau, 1,900 km away. These four lineages also showed significant differences in shell shape and constitute a species complex of at least four undescribed species. Each lake harbored a different lineage despite the fact that the lakes are separated from each other by only 2–6 km, while the two mangrove populations, at 20 km distance from each other, harbored the same lineage and shared haplotypes. Marine lakes thus represent isolated habitats. As each lake contained unique within lineage diversity (0.1–0.2%), we suggest that this may have resulted from in situdivergence due to isolation of founder populations after the formation of the lakes (6,000–12,000 years before present). Combined effects of stochastic processes, local adaptation and increased evolutionary rates could produce high levels of differentiation in small populations such as in marine lake environments. Such short-term isolation at small spatial scales may be an important contributing factor to the high marine biodiversity that is found in the Indo-Australian Archipelago. PMID:27761314

  12. Selection and geographic isolation influence hummingbird speciation: genetic, acoustic and morphological divergence in the wedge-tailed sabrewing (Campylopterus curvipennis).

    PubMed

    González, Clementina; Ornelas, Juan Francisco; Gutiérrez-Rodríguez, Carla

    2011-02-08

    Mesoamerica is one of the most threatened biodiversity hotspots in the world, yet we are far from understanding the geologic history and the processes driving population divergence and speciation for most endemic taxa. In species with highly differentiated populations selective and/or neutral factors can induce rapid changes to traits involved in mate choice, promoting reproductive isolation between allopatric populations that can eventually lead to speciation. We present the results of genetic differentiation, and explore drift and selection effects in promoting acoustic and morphological divergence among populations of Campylopterus curvipennis, a lekking hummingbird with an extraordinary vocal variability across Mesoamerica. Analyses of two mitochondrial genes and ten microsatellite loci genotyped for 160 individuals revealed the presence of three lineages with no contemporary gene flow: C. c. curvipennis, C. c. excellens, and C. c. pampa disjunctly distributed in the Sierra Madre Oriental, the Tuxtlas region and the Yucatan Peninsula, respectively. Sequence mtDNA and microsatellite data were congruent with two diversification events: an old vicariance event at the Isthmus of Tehuantepec (c. 1.4 Ma), and a more recent Pleistocene split, isolating populations in the Tuxtlas region. Hummingbirds of the excellens group were larger, and those of the pampa group had shorter bills, and lineages that have been isolated the longest shared fewer syllables and differed in spectral and temporal traits of a shared syllable. Coalescent simulations showed that fixation of song types has occurred faster than expected under neutrality but the null hypothesis that morphological divergence resulted from drift was not rejected. Our phylogeographic analyses uncovered the presence of three Mesoamerican wedge-tailed sabrewing lineages, which diverged at different time scales. These results highlight the importance of the Isthmus of Tehuantepec and more recent Pleistocene climatic events in driving isolation and population divergence. Coalescent analyses of the evolution of phenotypic traits suggest that selection is driving song evolution in wedge-tailed sabrewings but drift could not be rejected as a possibility for morphological divergence.

  13. Intraspecific phylogeography of Lasmigona subviridis (Bivalvia: Unionidae): Conservation implications of range discontinuity

    USGS Publications Warehouse

    King, T.L.; Eackles, M.S.; Gjetvaj, B.; Hoeh, W.R.

    1999-01-01

    A nucleotide sequence analysis of the first internal transcribed spacer region (ITS-1) between the 5.8S and 18S ribosomal DNA genes (640 bp) and cytochrome c oxidase subunit I (COI) of mitochondrial DNA (mtDNA) (576 bp) was conducted for the freshwater bivalve Lasmigona subviridis and three congeners to determine the utility of these regions in identifying phylogeographic and phylogenetic structure. Sequence analysis of the ITS-1 region indicated a zone of discontinuity in the genetic population structure between a group of L. subviridis populations inhabiting the Susquehanna and Potomac Rivers and more southern populations. Moreover, haplotype patterns resulting from variation in the COI region suggested an absence of gene exchange between tributaries within two different river drainages, as well as between adjacent rivers systems. The authors recommend that the northern and southern populations, which are reproductively isolated and constitute evolutionarily significant lineages, be managed as separate conservation units. Results from the COI region suggest that, in some cases, unionid relocations should be avoided between tributaries of the same drainage because these populations may have been reproductively isolated for thousands of generations. Therefore, unionid bivalves distributed among discontinuous habitats (e.g. Atlantic slope drainages) potentially should be considered evolutionarily distinct. The DNA sequence divergences observed in the nuclear and mtDNA regions among the Lasmigona species were congruent, although the level of divergence in the COI region was up to three times greater. The genus Lasmigona, as represented by the four species surveyed in this study, may not be monophyletic.

  14. Phylogenomic evidence for ancient hybridization in the genomes of living cats (Felidae)

    PubMed Central

    Li, Gang; Davis, Brian W.; Eizirik, Eduardo; Murphy, William J.

    2016-01-01

    Inter-species hybridization has been recently recognized as potentially common in wild animals, but the extent to which it shapes modern genomes is still poorly understood. Distinguishing historical hybridization events from other processes leading to phylogenetic discordance among different markers requires a well-resolved species tree that considers all modes of inheritance and overcomes systematic problems due to rapid lineage diversification by sampling large genomic character sets. Here, we assessed genome-wide phylogenetic variation across a diverse mammalian family, Felidae (cats). We combined genotypes from a genome-wide SNP array with additional autosomal, X- and Y-linked variants to sample ∼150 kb of nuclear sequence, in addition to complete mitochondrial genomes generated using light-coverage Illumina sequencing. We present the first robust felid time tree that accounts for unique maternal, paternal, and biparental evolutionary histories. Signatures of phylogenetic discordance were abundant in the genomes of modern cats, in many cases indicating hybridization as the most likely cause. Comparison of big cat whole-genome sequences revealed a substantial reduction of X-linked divergence times across several large recombination cold spots, which were highly enriched for signatures of selection-driven post-divergence hybridization between the ancestors of the snow leopard and lion lineages. These results highlight the mosaic origin of modern felid genomes and the influence of sex chromosomes and sex-biased dispersal in post-speciation gene flow. A complete resolution of the tree of life will require comprehensive genomic sampling of biparental and sex-limited genetic variation to identify and control for phylogenetic conflict caused by ancient admixture and sex-biased differences in genomic transmission. PMID:26518481

  15. The minimal kinome of Giardia lamblia illuminates early kinase evolution and unique parasite biology

    PubMed Central

    2011-01-01

    Background The major human intestinal pathogen Giardia lamblia is a very early branching eukaryote with a minimal genome of broad evolutionary and biological interest. Results To explore early kinase evolution and regulation of Giardia biology, we cataloged the kinomes of three sequenced strains. Comparison with published kinomes and those of the excavates Trichomonas vaginalis and Leishmania major shows that Giardia's 80 core kinases constitute the smallest known core kinome of any eukaryote that can be grown in pure culture, reflecting both its early origin and secondary gene loss. Kinase losses in DNA repair, mitochondrial function, transcription, splicing, and stress response reflect this reduced genome, while the presence of other kinases helps define the kinome of the last common eukaryotic ancestor. Immunofluorescence analysis shows abundant phospho-staining in trophozoites, with phosphotyrosine abundant in the nuclei and phosphothreonine and phosphoserine in distinct cytoskeletal organelles. The Nek kinase family has been massively expanded, accounting for 198 of the 278 protein kinases in Giardia. Most Neks are catalytically inactive, have very divergent sequences and undergo extensive duplication and loss between strains. Many Neks are highly induced during development. We localized four catalytically active Neks to distinct parts of the cytoskeleton and one inactive Nek to the cytoplasm. Conclusions The reduced kinome of Giardia sheds new light on early kinase evolution, and its highly divergent sequences add to the definition of individual kinase families as well as offering specific drug targets. Giardia's massive Nek expansion may reflect its distinctive lifestyle, biphasic life cycle and complex cytoskeleton. PMID:21787419

  16. Helix Unwinding and Base Flipping Enable Human MTERF1 to Terminate Mitochondrial Transcription

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yakubovskaya, E.; Mejia, E; Byrnes, J

    2010-01-01

    Defects in mitochondrial gene expression are associated with aging and disease. Mterf proteins have been implicated in modulating transcription, replication and protein synthesis. We have solved the structure of a member of this family, the human mitochondrial transcriptional terminator MTERF1, bound to dsDNA containing the termination sequence. The structure indicates that upon sequence recognition MTERF1 unwinds the DNA molecule, promoting eversion of three nucleotides. Base flipping is critical for stable binding and transcriptional termination. Additional structural and biochemical results provide insight into the DNA binding mechanism and explain how MTERF1 recognizes its target sequence. Finally, we have demonstrated that themore » mitochondrial pathogenic G3249A and G3244A mutations interfere with key interactions for sequence recognition, eliminating termination. Our results provide insight into the role of mterf proteins and suggest a link between mitochondrial disease and the regulation of mitochondrial transcription.« less

  17. Diagnosis of mitochondrial disorders by concomitant next-generation sequencing of the exome and mitochondrial genome

    PubMed Central

    Dinwiddie, Darrell L.; Smith, Laurie D.; Miller, Neil A.; Atherton, Andrea M.; Farrow, Emily G.; Strenk, Meghan E.; Soden, Sarah E.; Saunders, Carol J.; Kingsmore, Stephen F.

    2015-01-01

    Mitochondrial diseases are notoriously difficult to diagnose due to extreme locus and allelic heterogeneity, with both nuclear and mitochondrial genomes potentially liable. Using exome sequencing we demonstrate the ability to rapidly and cost effectively evaluate both the nuclear and mitochondrial genomes to obtain a molecular diagnosis for four patients with three distinct mitochondrial disorders. One patient was found to have Leigh syndrome due to a mutation in MT-ATP6, two affected siblings were discovered to be compound heterozygous for mutations in the NDUFV1 gene, which causes mitochondrial complex I deficiency, and one patient was found to have coenzyme Q10 deficiency due to compound heterozygous mutations in COQ2. In all cases conventional diagnostic testing failed to identify a molecular diagnosis. We suggest that additional studies should be conducted to evaluate exome sequencing as a primary diagnostic test for mitochondrial diseases, including those due to mtDNA mutations. PMID:23631824

  18. Role of Mitochondrial Inheritance on Prostate Cancer Outcome in African American Men. Addendum

    DTIC Science & Technology

    2016-11-01

    DNA sequencing technique developed by our collaborator using single amplicon long-range PCR that permits deep coverage (10,000-20,000X on average) of...the mitochondrial genome. We have sequenced 652 samples derived from frozen fully using this technology. The additional DNA samples derived from...paraffin embedded (FFPE) tissue were more challenging, but have now been sequenced . Mapping of DNA variants in our sequenced genomes to mitochondrial

  19. Population divergence and gene flow in an endangered and highly mobile seabird

    PubMed Central

    Welch, A J; Fleischer, R C; James, H F; Wiley, A E; Ostrom, P H; Adams, J; Duvall, F; Holmes, N; Hu, D; Penniman, J; Swindle, K A

    2012-01-01

    Seabirds are highly vagile and can disperse up to thousands of kilometers, making it difficult to identify the factors that promote isolation between populations. The endemic Hawaiian petrel (Pterodroma sandwichensis) is one such species. Today it is endangered, and known to breed only on the islands of Hawaii, Maui, Lanai and Kauai. Historical records indicate that a large population formerly bred on Molokai as well, but this population has recently been extirpated. Given the great dispersal potential of these petrels, it remains unclear if populations are genetically distinct and which factors may contribute to isolation between them. We sampled petrels from across their range, including individuals from the presumably extirpated Molokai population. We sequenced 524 bp of mitochondrial DNA, 741 bp from three nuclear introns, and genotyped 18 microsatellite loci in order to examine the patterns of divergence in this species and to investigate the potential underlying mechanisms. Both mitochondrial and nuclear data sets indicated significant genetic differentiation among all modern populations, but no differentiation was found between historic samples from Molokai and modern birds from Lanai. Population-specific nonbreeding distribution and strong natal philopatry may reduce gene flow between populations. However, the lack of population structure between extirpated Molokai birds and modern birds on Lanai indicates that there was substantial gene flow between these populations and that petrels may be able to overcome barriers to dispersal prior to complete extirpation. Hawaiian petrel populations could be considered distinct management units, however, the dwindling population on Hawaii may require translocation to prevent extirpation in the near future. PMID:22434012

  20. The Atlantic Ocean: An Impassable Barrier for the Common Octopus, Octopus vulgaris

    NASA Astrophysics Data System (ADS)

    Perez-Viscasillas, J.; Schizas, N. V.; Jassoud, A.

    2016-02-01

    Octopus vulgaris (Lamarck 1798) inhabits the Mediterranean, the temperate and tropical coastal waters of the Atlantic Ocean and is also present in the south Indian Ocean and Japan. We questioned the reported widespread distribution and especially the amphi-Atlantic distribution of O. vulgaris by comparing patterns of genetic variation in the Cytochrome Oxidase Subunit I (COI), the 17th intron of the Na(+)/K(+)-ATPase alpha subunit (Na/K-ATPase 17th intron), and 16S genes from several populations throughout the presumed distribution. Bayesian genealogies based on COI sequences resulted in three monophyletic lineages: a Caribbean, a Eurafrican and a Japanese one. The Eurafrican lineage is more closely related to the Japanese than to the Caribbean lineage. Within the Caribbean, the most common mitochondrial haplotype is shared by all sampled locations except for Curaçao. The most common COI haplotype in the Eurafrican group is shared by all populations. The Caribbean octopus exhibits a divergence of 11.5% compared to the Eurafrican and Japanese octopus, whereas the latter groups are 3.1% divergent. The Na/K-ATPase 17th intron data from Caribbean and Mediterranean/Atlantic Spain octopods is concordant with the mitochondrial data set, separating these two populations. The 16s data is still being analysed, but preliminary analysis supports the dual population hypothesis. The reciprocal monophyly observed with both COI and Na/K-ATPase 17th intron between the Caribbean and European O. vulgaris suggests the historical cessation of gene flow between the two sides of the Atlantic and highlights the presence of a highly differentiated Caribbean lineage.

Top