Effect of the mitral valve on diastolic flow patterns
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seo, Jung Hee; Vedula, Vijay; Mittal, Rajat, E-mail: mittal@jhu.edu
2014-12-15
The leaflets of the mitral valve interact with the mitral jet and significantly impact diastolic flow patterns, but the effect of mitral valve morphology and kinematics on diastolic flow and its implications for left ventricular function have not been clearly delineated. In the present study, we employ computational hemodynamic simulations to understand the effect of mitral valve leaflets on diastolic flow. A computational model of the left ventricle is constructed based on a high-resolution contrast computed-tomography scan, and a physiological inspired model of the mitral valve leaflets is synthesized from morphological and echocardiographic data. Simulations are performed with a diodemore » type valve model as well as the physiological mitral valve model in order to delineate the effect of mitral-valve leaflets on the intraventricular flow. The study suggests that a normal physiological mitral valve promotes the formation of a circulatory (or “looped”) flow pattern in the ventricle. The mitral valve leaflets also increase the strength of the apical flow, thereby enhancing apical washout and mixing of ventricular blood. The implications of these findings on ventricular function as well as ventricular flow models are discussed.« less
Sherrid, Mark V; Kushner, Josef; Yang, Georgiana; Ro, Richard
2017-04-01
Three competing theories about the mechanism of mitral coaptation in normal subjects were evaluated by color Doppler and vector flow mapping (VFM): (1) beginning of ventricular (LV) ejection, (2) "breaking of the jet" of diastolic LV inflow, and (3) returning diastolic vortices impacting the leaflets on their LV surfaces. We analyzed 80 color Doppler frames and 320 VFM measurements. In all 20 normal subjects, coaptation occurred before LV ejection, 78±16 ms before onset. On color Doppler frames the larger anterior, and smaller posterior vortices circle back and, in all cases, strike the ventricular surfaces of the leaflets. On the first closing-begins frame, for the first time, vortex velocity normal to the ventricular surface of the anterior leaflet (AML) is greater than that in the mitral orifice, and the angle of attack of LV vortical flow onto the AML is twice as high as the angle of flow onto the valve in orifice. Thus, at the moment coaptation begins, vortical flow strikes the mitral leaflet with higher velocity, and higher angle of attack than orifice flow, and thus with greater force. According to the "breaking of the jet" theory, one would expect to see de novo LV flow perpendicular to the leaflets beginning after transmitral flow terminates. Instead, the returning continuous LV vortical flow that impacts the valve builds continuously after the P-wave. Late diastolic vortices strike the ventricular surfaces of the mitral leaflets and contribute to valve coaptation, permitted by concomitant decline in transmitral flow. © 2017, Wiley Periodicals, Inc.
On the bending properties of porcine mitral, tricuspid, aortic, and pulmonary valve leaflets.
Brazile, Bryn; Wang, Bo; Wang, Guangjun; Bertucci, Robbin; Prabhu, Raj; Patnaik, Sourav S; Butler, J Ryan; Claude, Andrew; Brinkman-Ferguson, Erin; Williams, Lakiesha N; Liao, Jun
2015-01-01
The atrioventricular valve leaflets (mitral and tricuspid) are different from the semilunar valve leaflets (aortic and pulmonary) in layered structure, ultrastructural constitution and organization, and leaflet thickness. These differences warrant a comparative look at the bending properties of the four types of leaflets. We found that the moment-curvature relationships in atrioventricular valves were stiffer than in semilunar valves, and the moment-curvature relationships of the left-side valve leaflets were stiffer than their morphological analog of the right side. These trends were supported by the moment-curvature curves and the flexural rigidity analysis (EI value decreased from mitral, tricuspid, aortic, to pulmonary leaflets). However, after taking away the geometric effect (moment of inertia I), the instantaneous effective bending modulus E showed a reversed trend. The overall trend of flexural rigidity (EI: mitral > tricuspid > aortic > pulmonary) might be correlated with the thickness variations among the four types of leaflets (thickness: mitral > tricuspid > aortic > pulmonary). The overall trend of the instantaneous effective bending modulus (E: mitral < tricuspid < aortic < pulmonary) might be correlated to the layered fibrous ultrastructures of the four types of leaflets, of which the fibers in mitral and tricuspid leaflets were less aligned, and the fibers in aortic and pulmonary leaflets were highly aligned. We also found that, for all types of leaflets, moment-curvature relationships are stiffer in against-curvature (AC) bending than in with-curvature bending (WC), which implies that leaflets tend to flex toward their natural curvature and comply with blood flow. Lastly, we observed that the leaflets were stiffer in circumferential bending compared with radial bending, likely reflecting the physiological motion of the leaflets, i.e., more bending moment and movement were experienced in radial direction than circumferential direction.
Fox, P R; Miller, M W; Liu, S K
1992-11-15
Mitral stenosis was diagnosed noninvasively by echocardiography and Doppler imaging in 2 Bull Terriers. Two-dimensional echocardiography revealed severe atrial and moderate left ventricular dilatation; severely reduced mitral valve opening excursion; doming of the cranial mitral valve leaflet into the left ventricle during diastole; thickened, nodular cranial mitral valve leaflets; and reduced mitral valve orifice. M-mode echocardiographic findings additionally indicated greatly diminished mitral valve E to F slope and abnormal caudal mitral valve leaflet motion. Color flow Doppler imaging revealed bright bursts of color with aliasing originating from the stenotic mitral valve orifice, extending into the left atrium during systole, and into the left atrium during diastole. Spectral Doppler recordings revealed transvalvular mitral valve gradients and prolonged pressure half-times. Necropsy performed on 1 dog revealed extremely thickened, nodular, and stiff mitral valves with short, thickened, and fused chordae tendineae. The diagnosis of mitral valve stenosis was easily facilitated with diagnostic ultrasonography.
Tidholm, A; Nicolle, A P; Carlos, C; Gouni, V; Caruso, J L; Pouchelon, J L; Chetboul, V
2004-04-01
A mitral valve stenosis was diagnosed in a 2-year-old female Bull Terrier by use of two-dimensional (2-D) and M-mode echocardiography, colour-flow imaging and spectral Doppler examinations. Tissue Doppler Imaging was also performed to assess the segmental radial myocardial motion. The mitral valve stenosis was characterized by a decreased mitral orifice area/left ventricle area ratio (0.14), an increased early diastolic flow velocity (E wave = 1.9 m/s), a prolonged pressure half-time (106 ms) and a decreased E-F slope (4.5 cm/s) on pulsed-wave Doppler examination. This mitral stenosis was associated with an immobile posterior leaflet, as seen on 2-D and M-mode echocardiography. Immobility of the posterior mitral leaflet is considered to be a rare finding in humans and, to our knowledge, has not been precisely documented in dogs with mitral valve stenosis.
Flow-Induced Mitral Leaflet Motion in Hypertrophic Cardiomyopathy
NASA Astrophysics Data System (ADS)
Meschini, Valentina; Mittal, Rajat; Verzicco, Roberto
2017-11-01
Hypertrophic cardiomyopathy (HCM) is considered the cause of sudden cardiac death in developed countries. Clinically it is found to be related to the thickening of the intra-ventricular septum combined with elongated mitral leaflets. During systole the low pressure, induced by the abnormal velocities in the narrowed aortic channel, can attract one or both the mitral leaflets causing the aortic obstruction and sometimes instantaneous death. In this paper a fluid structure interaction model for the flow in the left ventricle with a native mitral valve is employed to investigate the physio-pathology of HCM. The problem is studied using direct numerical simulations of the Navier-Stokes equations with a two-way coupled structural solver based on interaction potential approach for the structure dynamics. Simulations are performed for two different degrees of hypertrophy, and two values of pumping efficiency. The leaflets dynamics and the ventricle deformation resulting from the echocardiography of patients affected by HCM are well captured by the simulations. Moreover, the procedures of leaflets plication and septum myectomy are simulated in order to get insights into the efficiency and reliability of such surgery.
NASA Astrophysics Data System (ADS)
Jong, Rudiyanto P.; Osman, Kahar; Adib, M. Azrul Hisham M.
2012-06-01
Mitral valve prolapse without proper monitoring might lead to a severe mitral valve failure which eventually leads to a sudden death. Additional information on the mitral valve leaflet condition against the backflow volume would be an added advantage to the medical practitioner for their decision on the patients' treatment. A study on two dimensional echocardiography images has been conducted and the correlations between the backflow volume of the mitral regurgitation and mitral valve leaflet Young modulus have been obtained. Echocardiogram images were analyzed on the aspect of backflow volume percentage and mitral valve leaflet dimensions on different rates of backflow volume. Young modulus values for the mitral valve leaflet were obtained by using the principle of elastic deflection and deformation on the mitral valve leaflet. The results show that the backflow volume increased with the decrease of the mitral valve leaflet Young modulus which also indicate the condition of the mitral valve leaflet approaching failure at high backflow volumes. Mitral valve leaflet Young modulus values obtained in this study agreed with the healthy mitral valve leaflet Young modulus from the literature. This is an initial overview of the trend on the prediction of the behaviour between the fluid and the structure of the blood and the mitral valve which is extendable to a larger system of prediction on the mitral valve leaflet condition based on the available echocardiogram images.
FLUID-STRUCTURE INTERACTION MODELS OF THE MITRAL VALVE: FUNCTION IN NORMAL AND PATHOLOGIC STATES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kunzelman, K. S.; Einstein, Daniel R.; Cochran, R. P.
2007-08-29
Successful mitral valve repair is dependent upon a full understanding of normal and abnormal mitral valve anatomy and function. Computational analysis is one such method that can be applied to simulate mitral valve function in order to analyze the roles of individual components, and evaluate proposed surgical repair. We developed the first three-dimensional, finite element (FE) computer model of the mitral valve including leaflets and chordae tendineae, however, one critical aspect that has been missing until the last few years was the evaluation of fluid flow, as coupled to the function of the mitral valve structure. We present here ourmore » latest results for normal function and specific pathologic changes using a fluid-structure interaction (FSI) model. Normal valve function was first assessed, followed by pathologic material changes in collagen fiber volume fraction, fiber stiffness, fiber splay, and isotropic stiffness. Leaflet and chordal stress and strain, and papillary muscle force was determined. In addition, transmitral flow, time to leaflet closure, and heart valve sound were assessed. Model predictions in the normal state agreed well with a wide range of available in-vivo and in-vitro data. Further, pathologic material changes that preserved the anisotropy of the valve leaflets were found to preserve valve function. By contrast, material changes that altered the anisotropy of the valve were found to profoundly alter valve function. The addition of blood flow and an experimentally driven microstructural description of mitral tissue represent significant advances in computational studies of the mitral valve, which allow further insight to be gained. This work is another building block in the foundation of a computational framework to aid in the refinement and development of a truly noninvasive diagnostic evaluation of the mitral valve. Ultimately, it represents the basis for simulation of surgical repair of pathologic valves in a clinical and educational setting.« less
Congenital uni-leaflet mitral valve with severe stenosis: A case report with literature review.
Zhang, Weixin; Wang, Yonghuai; Ma, Chunyan; Zhang, Zhiwei; Yang, Jun
2017-03-01
Numerical abnormalities of mitral leaflets is a special entity in congenital mitral malformations. Previously reported cases of uni-leaflet mitral valve were primarily related to absence or dysplasia of certain leaflets. We present a case here with mitral leaflets that were not divided into anterior and posterior as usual, but developed as an integral structure instead, which is different from previously documented cases of uni-leaflet mitral valves. Real time three-dimensional echocardiography (RT3DE) provides a visual presentation of the abnormal mitral structure which was confirmed by surgical operation. To the best of our knowledge, this unusual form of uni-leaflet mitral valve has not been reported yet. © 2017, Wiley Periodicals, Inc.
Effect of the Mitral Valve's Anterior Leaflet on Axisymmetry of Transmitral Vortex Ring.
Falahatpisheh, Ahmad; Pahlevan, Niema M; Kheradvar, Arash
2015-10-01
The shape and formation of transmitral vortex ring are shown to be associated with diastolic function of the left ventricle (LV). Transmitral vortex ring is a flow feature that is observed to be non-axisymmetric in a healthy heart and its inherent asymmetry in the LV assists in efficient ejection of the blood during systole. This study is a first step towards understanding the effects of the mitral valve's anterior leaflet on transmitral flow. We experimentally study a single-leaflet model of the mitral valve to investigate the effect of the anterior leaflet on the axisymmetry of the generated vortex ring based on the three-dimensional data acquired using defocusing digital particle image velocimetry. Vortex rings form downstream of a D-shaped orifice in presence or absence of the anterior leaflet in various physiological stroke ratios. The results of the statistical analysis indicate that the formed vortex ring downstream of a D-shaped orifice is markedly non-axisymmetric, and presence of the anterior leaflet improves the ring's axisymmetry. This study suggests that the improvement of axisymmetry in presence of the anterior leaflet might be due to coupled dynamic interaction between rolling-up of the shear layer at the edges of the D-shaped orifice and the borders of the anterior leaflet. This interaction can reduce the non-uniformity in vorticity generation, which results in more axisymmetric behavior compared to the D-shaped orifice without the anterior leaflet.
Ro, Richard; Halpern, Dan; Sahn, David J; Homel, Peter; Arabadjian, Milla; Lopresto, Charles; Sherrid, Mark V
2014-11-11
The hydrodynamic cause of systolic anterior motion of the mitral valve (SAM) is unresolved. This study hypothesized that echocardiographic vector flow mapping, a new echocardiographic technique, would provide insights into the cause of early SAM in obstructive hypertrophic cardiomyopathy (HCM). We analyzed the spatial relationship of left ventricular (LV) flow and the mitral valve leaflets (MVL) on 3-chamber vector flow mapping frames, and performed mitral valve measurements on 2-dimensional frames in patients with obstructive and nonobstructive HCM and in normal patients. We compared 82 patients (22 obstructive HCM, 23 nonobstructive HCM, and 37 normal) by measuring 164 LV pre- and post-SAM velocity vector flow maps, 82 maximum isovolumic vortices, and 328 2-dimensional frames. We observed color flow and velocity vector flow posterior to the MVL impacting them in the early systolic frames of 95% of obstructive HCM, 22% of nonobstructive HCM, and 11% of normal patients (p < 0.001). In both pre- and post-SAM frames, we measured a high angle of attack >60° of local vector flow onto the posterior surface of the leaflets whether the flow was ejection (59%) or the early systolic isovolumic vortex (41%). Ricochet of vector flow, rebounding off the leaflet into the cul-de-sac, was noted in 82% of the obstructed HCM, 9% of nonobstructive HCM, and none (0%) of the control patients (p < 0.001). Flow velocities in the LV outflow tract on the pre-SAM frame 1 and 2 mm from the tip of the anterior leaflet were low: 39 and 43 cm/s, respectively. Early systolic flow impacts the posterior surfaces of protruding MVL initiating SAM in obstructive HCM. Copyright © 2014 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.
Grossmann, G; Giesler, M; Stein, M; Kochs, M; Höher, M; Hombach, V
1998-10-30
In patients with mitral (n=77: organic=49, functional=28) and tricuspid regurgitation (n=55: functional=54) quantified by angiography, the temporal variation of the proximal flow convergence region throughout systole was assessed by colour Doppler M-Mode, and peak and mean radius of the proximal isovelocity surface area for 28 cm/s blood flow velocity were measured. Additionally, the peak radius derived from two-dimensional colour Doppler was obtained. About 50% of the patients with mitral and tricuspid regurgitation showed a typical temporal variation of the flow convergence region related to the mechanism of regurgitation. The different proximal isovelocity surface area radii were similarly correlated to the angiographic grade in mitral and tricuspid regurgitation (rank correlation coefficients 0.55-0.89) and they differentiated mild to moderate (grade < or =II) from severe (grade > or =III) mitral and tricuspid regurgitation with comparable accuracy (82-96%). However, moderate mitral regurgitation due to leaflet prolapse in two patients was correctly classified by the mean M-mode radius and overestimated by both peak radii. Only half of the patients showed a typical variation of the flow convergence region related to the mechanism of regurgitation. The different proximal isovelocity surface area radii were suitable to quantify mitral and tricuspid regurgitation in most patients. However, in mitral regurgitation due to leaflet prolapse the use of the mean M-mode radius may avoid overestimation.
Padala, Muralidhar; Cardinau, Benedicte; Gyoneva, Lazarina I.; Thourani, Vinod H.
2013-01-01
BACKGROUND Surgical reconstruction of a flail posterior leaflet is a routine mitral valve repair, the techniques for which have evolved from leaflet resection to leaflet preservation. Artificial ePTFE neochordae are frequently used to stabilize the flail leaflet, and seldom translocation of the native secondary chordae of the valve to the leaflet free edge is used. In this study, we sought to investigate the efficacy of the two techniques to correct posterior leaflet prolapse and reduce mitral regurgitation, and quantify the acute post-repair leaflet kinematics. METHODS Adult porcine mitral valves (N =7) were studied in a pulsatile left heart experimental model in which isolated P2 flail was mimicked by marginal chordal transection. Baseline conditions were established in each valve under normal conditions (control), and followed by induction of isolated P2 flail by transecting the two marginal chordae on the posterior leaflet free edge (disease). The flail posterior leaflet was reconstructed using artificial neochordae (repair 1) and then native chordal translocation (repair 2). Reduction in leaflet flail, changes in mitral regurgitation fraction, leaflet coaptation length, and posterior leaflet mobility were measured using B-mode echocardiography or color doppler. RESULTS At baseline, all the valves were competent with no mitral regurgitation. After transection of the marginal chordae on the posterior leaflet, isolated P2 flail was evident with 13.7±13% regurgitation. Reconstruction with artificial neochordae eliminated leaflet flail and reduced mitral regurgitation to 3.2± 2.8%, and with chordal translocation leaflet flail was corrected and mitral regurgitation was measured at 2.3±2.6%. Using either repair techniques, leaflet coaptation and mobility of the repaired leaflets were adequate and comparable to the baseline measurements. CONCLUSIONS Comparable reduction leaflet flail and regurgitation, and restoration of physiological leaflet coaptation with the two techniques indicates that under acute conditions, use of artificial neochordae or native chordal translocations have similar benefits. PMID:23291143
Chan, Vincent; Chu, Michael W A; Leong-Poi, Howard; Latter, David A; Hall, Judith; Thorpe, Kevin E; de Varennes, Benoit E; Quan, Adrian; Tsang, Wendy; Dhingra, Natasha; Yared, Kibar; Teoh, Hwee; Chu, F Victor; Chan, Kwan-Leung; Mesana, Thierry G; Connelly, Kim A; Ruel, Marc; Jüni, Peter; Mazer, C David; Verma, Subodh
2017-05-30
The gold-standard treatment of severe mitral regurgitation (MR) due to degenerative disease is valve repair, which is surgically performed with either a leaflet resection or leaflet preservation approach. Recent data suggest that functional mitral stenosis (MS) may occur following valve repair using a leaflet resection strategy, which adversely affects patient prognosis. A randomised comparison of these two approaches to mitral repair on functional MS has not been conducted. This is a prospective, multicentre randomised controlled trial designed to test the hypothesis that leaflet preservation leads to better preservation of mitral valve geometry, and therefore, will be superior to leaflet resection for the primary outcome of functional MS as assessed by 12-month mean mitral valve gradient at peak exercise. Eighty-eight patients with posterior leaflet prolapse will be randomised intraoperatively once deemed by the operating surgeon to feasibly undergo mitral repair using either a leaflet resection or leaflet preservation approach. Secondary end points include comparison of repair strategies with regard to mitral valve orifice area, leaflet coaptation height, 6 min walk test and a composite major adverse event end point consisting of recurrent MR ≥2+, death or hospital readmission for congestive heart failure within 12 months of surgery. Institutional ethics approval has been obtained from all enrolling sites. Overall, there remains clinical equipoise regarding the mitral valve repair strategy that is associated with the least likelihood of functional MS. This trial hopes to introduce high-quality evidence to help surgical decision making in this context. NCT02552771. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Late leaflet fracture and embolization of a Duromedics mitral prosthesis.
Sudo, K; Sasagawa, N; Ide, H; Nunokawa, M; Fujiki, T; Tonari, K
2000-08-01
A case of leaflet fracture and embolization of a mitral prosthetic valve is described. A 54-year-old man had received mitral valve replacement with an Edwards-Duromedics 29M prosthetic valve, at 10 years ago. Emergency mitral valve replacement was performed because the patient had severe congestive left heart failure with severe acute mitral regurgitation caused by a fracture in one of the mitral valve leaflets. The leaflet, which was fractured into 2 pieces, was removed from the right common iliac artery at 3 months after valve replacement. Visual inspection revealed that the leaflet contained a midline fracture. The fracture originated within a cavitary erosion pit near the major radius of the leaflet. The patient recovered from acute renal failure, requiring hemodialysis for 80 days, and is currently without complaints. We have used a Duromedics mitral valve in 11 patients, from April 1987 to April 1988. No subsequent valve failure has occurred. The diagnosis, treatment and cause of a mechanical valve fracture are discussed.
... leaflets) that open and close, allowing blood to flow from your left atrium to your left ventricle ... does not open enough to allow sufficient blood flow. Usually this is the result of hardening (calcification) ...
Computational Modeling of Blood Flow and Valve Dynamics in Hearts with Hypertrophic Cardiomyopathy
NASA Astrophysics Data System (ADS)
Zheng, Xudong; Mittal, Rajat; Abraham, Theodore; Pinheiro, Aurelio
2010-11-01
Hypertrophic Cardiomyopathy (HCM) is a cardiovascular disease manifested by the thickening of the ventricular wall and often leads to a partial obstruction to the blood flow out of the left ventricle. HCM is recognized as one of the most common causes of sudden cardiac death in athletes. In a heart with HCM, the hypertrophy usually narrows the blood flow pathway to the aorta and produces a low pressure zone between the mitral valve and the hypertrophy during systole. This low pressure can suck the mitral valve leaflet back and completely block the blood flow into the aorta. In the current study, a sharp interface immersed boundary method flow solver is employed to study the hemodynamics and valve dynamics inside a heart with HCM. The three-dimensional motion and configuration of the left ventricle including mitral valve leaflets and aortic valves are reconstructed based on echo-cardio data sets. The mechanisms of aortic obstruction associated with HCM are investigated. The long term objective of this study is to develop a computational tool to aid in the assessment and surgical management of HCM.
Probe for production and measurement of acute mitral regurgitant flow in dog.
Kléber, A G; Simon, R; Rutishauser, W
1976-02-01
A probe for production and measurement of acute mitral regurgitation in dogs is described. It consists of a tube that is introduced into the mitral valve through the left atrial appendage. Regurgitant flow through the tube is measured by an electromagnetic device. Variation of flow and zero flow are achieved by narrowing or occluding the tube with a rubber cuff. In animals weighing 30-50 kg, the probe does not produce significant mitral stenosis and the mitral leaflets fit closely around the probe during ventricular systole. The instantaneous relationship between mitral regurgitant flow (MRF) and the gradient between left ventricular and left atrial pressure shows a marked delay of MRF at the beginning and end of regurgitation. This delay can be attributed to some extent to electrical phase lag and to the small movement of the probe relative to the mitral valve during the cardiac cycle. Measurement of regurgitant stroke volume is affected by this movement only to a small extent.
Systolic Anterior Motion of the Mitral Valve after Mitral Valve Repair
Sternik, Leonid; Zehr, Kenton J.
2005-01-01
Factors predisposing patients to systolic anterior motion of the mitral valve (SAM) with left ventricular outflow tract (LVOT) obstruction after mitral valve repair are the presence of a myxomatous mitral valve with redundant leaflets, a nondilated hyperdynamic left ventricle, and a short distance between the mitral valve coaptation point and the ventricular septum after repair. From December 1999 through March 2000, we used our surgical method in 6 patients with severely myxomatous regurgitant mitral valves who were at risk of developing SAM. Leaflets were markedly redundant in all 6. Left ventricular function was hyperdynamic in 4 patients and normal in 2. Triangular or quadrangular resection of the midportion of the posterior leaflet and posterior band annuloplasty were performed. To prevent SAM and LVOT obstruction, extra, posteriorly directed, mid-posterior-leaflet secondary chordae tendineae, which would otherwise have been resected, were transferred to the underside of the middle of the mid-anterior leaflet with a small piece of associated valve as an anchoring pledget. This kept the redundant anterior leaflet edge, which extended below the coaptation point, away from the LVOT. No post-repair SAM or LVOT obstruction was observed on intraoperative or discharge echocardiography. All patients had no or trivial residual mitral regurgitation. We conclude that extra chordae tendineae, when available, can be used in mitral valve repair to tether the redundant anterior leaflet and thus prevent it from flipping into the LVOT. This will theoretically prevent SAM and LVOT obstruction in patients with risk factors for SAM. PMID:15902821
Rim, Yonghoon; Laing, Susan T.; McPherson, David D.; Kim, Hyunggun
2013-01-01
Mitral valve repair using expanded polytetrafluoroethylene (ePTFE) sutures is an established and preferred interventional method to resolve the complex pathophysiologic problems associated with chordal rupture. We developed a novel computational evaluation protocol to determine the effect of the artificial sutures on restoring mitral valve function following valve repair. A virtual mitral valve was created using three-dimensional echocardiographic data in a patient with ruptured mitral chordae tendineae. Virtual repairs were designed by adding artificial sutures between the papillary muscles and the posterior leaflet where the native chordae were ruptured. Dynamic finite element simulations were performed to evaluate pre- and post-repair mitral valve function. Abnormal posterior leaflet prolapse and mitral regurgitation was clearly demonstrated in the mitral valve with ruptured chordae. Following virtual repair to reconstruct ruptured chordae, the severity of the posterior leaflet prolapse decreased and stress concentration was markedly reduced both in the leaflet tissue and the intact native chordae. Complete leaflet coaptation was restored when four or six sutures were utilized. Computational simulations provided quantitative information of functional improvement following mitral valve repair. This novel simulation strategy may provide a powerful tool for evaluation and prediction of interventional treatment for ruptured mitral chordae tendineae. PMID:24072489
NASA Astrophysics Data System (ADS)
Tan, Sean Guo-Dong; Kim, Sangho; Leo, Hwa Liang
2016-06-01
Mechanical heart valve prostheses are often implanted in young patients due to their durability and long-term reliability. However, existing designs are known to induce elevated levels of blood damage and blood platelet activation. As a result, there is a need for patients to undergo chronic anti-coagulation treatment to prevent thrombosis, often resulting in bleeding complications. Furthermore, recent studies have suggested that the implantation of a mechanical prosthetic valve at the mitral position results in a significant alteration of the left ventricular flow field which may contribute to flow turbulence. This study proposes a bi-leaflet mechanical heart valve design (Bio-MHV) that mimics the geometry of a human mitral valve, with the aim of reducing turbulence levels in the left ventricle by replicating physiological flow patterns. An in vitro three-dimensional particle velocimetry imaging experiment was carried out to compare the hemodynamic performance of the Bio-MHV with that of the clinically established ATS valve. The Bio-MHV was found to replicate physiological left ventricular flow patterns and produced lower turbulence levels.
Kubota, Kayoko; Otsuji, Yutaka; Ueno, Tetsuya; Koriyama, Chihaya; Levine, Robert A.; Sakata, Ryuzo; Tei, Chuwa
2010-01-01
Objective Diastolic subvalvular mitral leaflet tethering by left ventricular remodeling that restricts leaflet opening in the presence of annular size reduction by surgery for ischemic mitral regurgitation potentially causes functional mitral stenosis in the absence of organic leaflet lesions. Exercise, known to worsen systolic tethering and ischemic mitral regurgitation, might also dynamically exacerbate such mitral stenosis by increasing tethering. This study evaluates the mechanism and response of such mitral stenosis to exercise. Methods We measured the diastolic mitral valve area, annular area, and peak and mean transmitral pressure gradient by echocardiography in 20 healthy individuals and 31 patients who underwent surgical annuloplasty for ischemic mitral regurgitation. Results Although the mitral valve area and annular area did not significantly differ in healthy individuals (4.7 ± 0.6 cm2 vs 5.2 ± 0.6 cm2, not significant), mitral valve area was significantly smaller than the annular area in patients after annuloplasty (1.6 ± 0.2 cm2 vs 3.3 ± 0.5 cm2, P < .01). The mitral valve area was less than 1.5 cm2 only after the surgery (P < .01) and was significantly correlated with restricted leaflet opening (r2 = 0.74, P <.001), left ventricular dilatation (r2 = 0.17, P <.05), and New York Heart Association functional class (P <. 05). Exercise stress echocardiography of 12 patients demonstrated dynamic worsening in functional mitral stenosis (mitral valve area: 2.0 ± 0.5 cm2 to 1.4 ± 0.2 cm2, P < .01; mean pressure gradient: 1.5 ± 0.9 mm Hg to 6.0 ± 2.2 mm Hg, P < .01). Conclusions Persistent subvalvular leaflet tethering in the presence of annular size reduction by surgery in ischemic mitral regurgitation frequently causes functional mitral stenosis at the leaflet tip level, which is related to heart failure symptoms and can be dynamic with significant exercise-induced worsening. PMID:20122701
Yunoki, Junji; Minato, Naoki; Katayama, Yuji; Sato, Hisashi
2009-01-01
We treated a 61-year-old woman with mitral stenosis caused by pannus formation after Duran ring annuloplasty. Pannus overgrowth on the ring with extension onto both leaflets narrowed the mitral orifice and severely restricted the mobility of the valve leaflets. Mitral valve replacement with a St. Jude Medical mechanical heart valve prosthesis was successfully performed, and the postoperative course was uneventful. Patients undergoing Duran ring annuloplasty should be followed up with the consideration of possible mitral stenosis caused by pannus extension, as the cause for pannus formation remains unclear.
Pathophysiology of Degenerative Mitral Regurgitation: New 3-Dimensional Imaging Insights.
Antoine, Clemence; Mantovani, Francesca; Benfari, Giovanni; Mankad, Sunil V; Maalouf, Joseph F; Michelena, Hector I; Enriquez-Sarano, Maurice
2018-01-01
Despite its high prevalence, little is known about mechanisms of mitral regurgitation in degenerative mitral valve disease apart from the leaflet prolapse itself. Mitral valve is a complex structure, including mitral annulus, mitral leaflets, papillary muscles, chords, and left ventricular walls. All these structures are involved in physiological and pathological functioning of this valvuloventricular complex but up to now were difficult to analyze because of inherent limitations of 2-dimensional imaging. The advent of 3-dimensional echocardiography, computed tomography, and cardiac magnetic resonance imaging overcoming these limitations provides new insights into mechanistic analysis of degenerative mitral regurgitation. This review will detail the contribution of quantitative and qualitative dynamic analysis of mitral annulus and mitral leaflets by new imaging methods in the understanding of degenerative mitral regurgitation pathophysiology. © 2018 American Heart Association, Inc.
Oda, Takeshi; Kato, Seiya; Tayama, Eiki; Fukunaga, Shuji; Akashi, Hidetoshi; Aoyagi, Shigeaki
2009-01-01
A Carpentier-Edwards pericardial (CEP) bioprosthesis was explanted from an 81-year-old woman due to nonstructural dysfunction 9 years after mitral valve replacement. The nonstructural dysfunction produced severe regurgitation in the mitral position. During the surgery, excessive pannus overgrowth was seen on the left ventricular side of the CEP bioprosthesis. Pannus overgrowth was prominent on one leaflet. That leaflet was stiff and shortened due to the excessive overgrowth of pannus. In this patient, the distortion of one leaflet was the main reason for transvalvular leakage of the CEP bioprosthesis in the mitral position. A new CEP bioprosthesis was implanted in the mitral position. Pathological analysis revealed fibrotic pannus with a small amount of cellular material over the leaflets of the resected CEP valve. This change was marked on the distorted leaflet.
Shabsigh, Muhammad; Lawrence, Cassidy; Rosero-Britton, Byron R; Kumar, Nicolas; Kimura, Satoshi; Durda, Michael Andrew; Essandoh, Michael
2016-01-01
Mitral stenosis (MS) after mitral valve (MV) repair is a slowly progressive condition, usually detected many years after the index MV surgery. It is defined as a mean transmitral pressure gradient (TMPG) >5 mmHg or a mitral valve area (MVA) <1.5 cm(2). Pannus formation around the mitral annulus or extending to the mitral leaflets is suggested as the main mechanism for developing delayed MS after MV repair. On the other hand, early stenosis is thought to be a direct result of an undersized annuloplasty ring. Furthermore, in MS following ischemic mitral regurgitation (MR) repair, subvalvular tethering is the hypothesized pathophysiology. MS after MV repair has an incidence of 9-54%. Several factors have been associated with a higher risk for developing MS after MV repair, including the use of flexible Duran annuloplasty rings versus rigid Carpentier-Edwards rings, complete annuloplasty rings versus partial bands, small versus large anterior leaflet opening angle, and anterior leaflet tip opening length. Intraoperative echocardiography can measure the anterior leaflet opening angle, the anterior leaflet tip opening dimension, the MVA and the mean TMPG, and may help identify patients at risk for developing MS after MV repair.
Shabsigh, Muhammad; Lawrence, Cassidy; Rosero-Britton, Byron R.; Kumar, Nicolas; Kimura, Satoshi; Durda, Michael Andrew; Essandoh, Michael
2016-01-01
Mitral stenosis (MS) after mitral valve (MV) repair is a slowly progressive condition, usually detected many years after the index MV surgery. It is defined as a mean transmitral pressure gradient (TMPG) >5 mmHg or a mitral valve area (MVA) <1.5 cm2. Pannus formation around the mitral annulus or extending to the mitral leaflets is suggested as the main mechanism for developing delayed MS after MV repair. On the other hand, early stenosis is thought to be a direct result of an undersized annuloplasty ring. Furthermore, in MS following ischemic mitral regurgitation (MR) repair, subvalvular tethering is the hypothesized pathophysiology. MS after MV repair has an incidence of 9–54%. Several factors have been associated with a higher risk for developing MS after MV repair, including the use of flexible Duran annuloplasty rings versus rigid Carpentier–Edwards rings, complete annuloplasty rings versus partial bands, small versus large anterior leaflet opening angle, and anterior leaflet tip opening length. Intraoperative echocardiography can measure the anterior leaflet opening angle, the anterior leaflet tip opening dimension, the MVA and the mean TMPG, and may help identify patients at risk for developing MS after MV repair. PMID:27148540
Rabbah, Jean-Pierre; Saikrishnan, Neelakantan; Yoganathan, Ajit P.
2012-01-01
Numerical models of the mitral valve have been used to elucidate mitral valve function and mechanics. These models have evolved from simple two-dimensional approximations to complex three-dimensional fully coupled fluid structure interaction models. However, to date these models lack direct one-to-one experimental validation. As computational solvers vary considerably, experimental benchmark data are critically important to ensure model accuracy. In this study, a novel left heart simulator was designed specifically for the validation of numerical mitral valve models. Several distinct experimental techniques were collectively performed to resolve mitral valve geometry and hemodynamics. In particular, micro-computed tomography was used to obtain accurate and high-resolution (39 µm voxel) native valvular anatomy, which included the mitral leaflets, chordae tendinae, and papillary muscles. Threedimensional echocardiography was used to obtain systolic leaflet geometry for direct comparison of resultant leaflet kinematics. Stereoscopic digital particle image velocimetry provided all three components of fluid velocity through the mitral valve, resolved every 25 ms in the cardiac cycle. A strong central filling jet was observed during peak systole, with minimal out-of-plane velocities (V~0.6m/s). In addition, physiologic hemodynamic boundary conditions were defined and all data were synchronously acquired through a central trigger. Finally, the simulator is a precisely controlled environment, in which flow conditions and geometry can be systematically prescribed and resultant valvular function and hemodynamics assessed. Thus, these data represent the first comprehensive database of high fidelity experimental data, critical for extensive validation of mitral valve fluid structure interaction simulations. PMID:22965640
He, Shengqiu; Jimenez, Jorge; He, Zhaoming; Yoganathan, Ajit P
2003-05-01
Perturbations of leaflet geometry are the final end point through which left ventricular (LV) ischemia causes incomplete mitral leaflet closure and resultant mitral regurgitation (MR). Geometric inconsistencies observed with valvular or subvalvular structural alterations raise several questions. A new in-vitro LV flexible bag model was developed in order to visualize and analyze leaflet geometric changes under simulated pathological ischemic MR conditions. Papillary muscle (PM) displacement and annular dilatation decreased leaflet coaptation length, leading to significant MR. Symmetrical PM displacement shifted the coaptation line towards the leaflet edges and created central gaps along this line. Asymmetric PM displacement generated diametrically uneven coaptation with a tent-shaped leaflet at the tethered PM side, while the leaflet bulged at the opposite side towards the left atrium. Leaflet geometry during systole is affected by subvalvular structures. Asymmetric PM displacement, which may occur in regional or acute myocardial infarction, induces irregular deformation of the leaflet's coaptation line and, as a result, MR at the tethered side. Direct visualization of leaflet perturbation under these simulated pathological conditions may promote understanding of mechanisms present in ischemic MR.
Repair for mitral stenosis due to pannus formation after Duran ring annuloplasty.
Song, Seunghwan; Cho, Seong Ho; Yang, Ji-Hyuk; Park, Pyo Won
2010-12-01
Mitral stenosis after mitral repair with using an annuloplasty ring is not common and it is almost always due to pannus formation. Mitral valve replacement was required in most of the previous cases of pannus covering the mitral valve leaflet, which could not be stripped off without damaging the valve leaflets. In two cases, we removed the previous annuloplasty ring and pannus without leaflet injury, and we successfully repaired the mitral valve. During the follow-up of 4 months and 39 months respectively, we observed improvement of the patients' symptoms and good valvular function. Redo mitral repair may be a possible method for treating mitral stenosis due to pannus formation after ring annuloplasty. Copyright © 2010 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.
Stephenson, George; Wallace, Craig; Mao, Pras; Moore, Chris
2015-01-01
Abstract Acute flail mitral leaflet is a time‐sensitive, reversible cause of cardiogenic shock. Transthoracic echocardiography (echo) is increasingly becoming a vital tool for non‐cardiologist physicians who treat patients with undifferentiated chest pain and dyspnoea. The sonographic abnormalities seen in acute flail mitral leaflet are within the boundaries of a focused echo. Individually, these findings are non‐specific. As a constellation, however, they are highly suggestive of this disease process. We present a case series of three patients with acute flail mitral leaflet seen on emergency department echo along with a discussion of the findings and the disease itself. PMID:28191212
Parato, Vito Maurizio; Masia, Stefano Lucio
2018-01-01
We present a case series of two adult patients with almost complete absence of the posterior mitral valve leaflet and who are asymptomatic or mildly symptomatic, with two different degrees of mitral regurgitation.
Distribution of the microelastic properties within the human anterior mitral leaflet.
Jensen, Anne Skakkebaek; Baandrup, Ulrik; Hasenkam, J Michael; Kundu, Tribikram; Jørgensen, Claus Schiøtt
2006-12-01
Knowledge of the biomechanical properties of the mitral valve leaflets and their relation to histologic structure is of importance for understanding the leaflet movement characteristics under normal and pathologic conditions, but such knowledge is not yet available. The aim of this study was to determine biomechanical properties of the human anterior mitral leaflet on a microscopic scale. We used scanning acoustic microscopy (SAM) to examine the human anterior mitral leaflet. Sections of fixed human anterior mitral leaflet tissue were obtained from postmortem human anterior mitral leaflets (n = 5). We measured the speed of sound (nu(L)) in each histologic layer in three regions-of-interest (ROIs): these were at the annular edge, at the valve midpoint and close to the free edge. nu(L) varied in the three histologic layers (p < 0.01). It was higher in the fibrous layer (1.76 km/s) compared with the atrial layer (1.75 km/s) and ventricular layer (1.73 km/s). Also, nu(L) differed between positions along the length of the annulus-free edge line (p < 0.01), showing a decline from the annular edge (1.76 km/s) to the free edge (1.73 km/s), both as a whole and also within the atrial and the fibrous layer. These results demonstrate that the fibrous layer is stiffer than the atrial and ventricular layer and that the leaflet as a whole and within the atrial and the fibrous layer is stiffer at the annulus part in comparison with those near the free edge. (E-mail: ).
Yokoyama, Satoko; Kanemoto, Isamu; Mihara, Kippei; Ando, Takanori; Kawase, Koudai; Sahashi, Yasuaki; Iguchi, Kazuhito
2017-01-01
Mitral valve plasty (MVP) is preferred over mitral valve replacement (MVR) for mitral regurgitation in humans because of its favorable effect on quality of life. In small dogs, it is difficult to repair multiple lesions in both leaflets using MVP. Herein, we report a case of severe mitral regurgitation caused by multiple severe lesions in the posterior leaflet (PL) in a mixed Chihuahua. Initially, we had planned MVR with an artificial valve. However, MVP combined with artificial chordal reconstruction of both leaflets, semicircular suture annuloplasty, and valvuloplasty using a newly devised direct scallop suture for the PL was attempted in this dog. The dog recovered well and showed no adverse cardiac signs, surviving two major operations. The dog died 4 years and 10 months after the MVP due to non-cardiovascular disease. Our additional technique of using a direct scallop suture seemed useful for PL repair involving multiple scallops in a small dog. PMID:29201662
Bark, David L; Dasi, Lakshmi P
2016-05-01
We examine the influence of the added mass effect (fluid inertia) on mitral valve leaflet stress during isovolumetric phases. To study this effect, oscillating flow is applied to a flexible membrane at various frequencies to control inertia. Resulting membrane strain is calculated through a three-dimensional reconstruction of markers from stereo images. To investigate the effect in vivo, the analysis is repeated on a published dataset for an ovine mitral valve (Journal of Biomechanics 42(16): 2697-2701). The membrane experiment demonstrates that the relationship between pressure and strain must be corrected with a fluid inertia term if the ratio of inertia to pressure differential approaches 1. In the mitral valve, this ratio reaches 0.7 during isovolumetric contraction for an acceleration of 6 m/s(2). Acceleration is reduced by 72% during isovolumetric relaxation. Fluid acceleration also varies along the leaflet during isovolumetric phases, resulting in spatial variations in stress. These results demonstrate that fluid inertia may be the source of the temporally and spatially varying stiffness measurements previously seen through inverse finite element analysis of in vivo data during isovolumetric phases. This study demonstrates that there is a need to account for added mass effects when analyzing in vivo constitutive relationships of heart valves.
Konishi, Takao; Funayama, Naohiro; Yamamoto, Tadashi; Hotta, Daisuke; Kikuchi, Kenjiro; Ohori, Katsumi; Nishihara, Hiroshi; Tanaka, Shinya
2016-11-22
A small mitral valve aneurysm (MVA) presenting as severe mitral regurgitation (MR) is uncommon. A 47-year-old man with a history of hypertension complained of exertional chest discomfort. A transthoracic echocardiogram (TTE) revealed the presence of MR and prolapse of the posterior leaflet. A 6-mm in diameter MVA, not clearly visualized by TTE, was detected on the posterior leaflet on a three-dimensional (3D) transesophageal echocardiography (TEE). The patient underwent uncomplicated triangular resection of P2 and mitral valve annuloplasty, and was discharged from postoperative rehabilitation, 2 weeks after the operation. Histopathology of the excised leaflet showed myxomatous changes without infective vegetation or signs of rheumatic heart disease. A small, isolated MVA is a cause of severe MR, which might be overlooked and, therefore, managed belatedly. 3D TEE was helpful in imaging its morphologic details.
Partial hammock valve: surgical repair in adulthood.
Aramendi, José I; Rodríguez, Miguel A; Voces, Roberto; Pérez, Pedro; Rodrigo, David
2006-09-01
We describe a forme frustrée of hammock valve involving only the posterior mitral leaflet. Three adult patients were referred to surgery with the diagnosis of severe mitral regurgitation due to fibrosis of the posterior mitral leaflet. The final diagnosis was done intraoperatively. In all of them the posterior leaflet was attached to some accessory papillary muscles arranged en palisade, with three to four fused muscle heads producing restrictive leaflet motion in systole. Repair consisted in division of the papillary muscles, patch augmentation, and ring annuloplasty. This previously unreported lesion is congenital but manifests itself in adulthood.
Parato, Vito Maurizio; Masia, Stefano Lucio
2018-01-01
We present a case series of two adult patients with almost complete absence of the posterior mitral valve leaflet and who are asymptomatic or mildly symptomatic, with two different degrees of mitral regurgitation. PMID:29629259
Sai-Sudhakar, Chittoor B; Vandse, Rashmi; Armen, Todd A; Bickle, Katherine M; Nathan, Nadia S
2007-01-01
Background Ischemic mitral regurgitation often complicates severe ischemic heart disease and adversely affects the prognosis in these patients. There is wide variation in the clinical spectrum of ischemic mitral regurgitation due to varying location and chronicity of ischemia and anomalies in annular and ventricular remodeling. As a result, there is lack of consensus in treating these patients. Treatment has to be individualized for each patient. Most of the available surgical options do not consistently correct this condition in all the patients. Chordal cutting is one of the newer surgical approaches in which cutting a limited number of critically positioned basal chordae have found success by relieving the leaflet tethering and thereby improving the coaptation of leaflets. Three-dimensional echocardiography is a potentially valuable tool in identifying the specific pattern of tethering and thus the suitability of this procedure in a given clinical scenario. Case Presentation A 66-year-old man with cardiomyopathy and ischemic mitral regurgitation presented to us with the features of congestive heart failure. The three-dimensional echocardiography revealed severe mitral regurgitation associated with the tethering of the lateral (P1) and medial (P3) scallops of the posterior leaflet of the mitral valve due to secondary chordal attachments. The ejection fraction was only 15% with severe global systolic and diastolic dysfunction. Mitral regurgitation was successfully corrected with mitral annuloplasty and resection of the secondary chordae tethering the medial and lateral scallops of the posterior leaflet of the mitral valve. Conclusion Cutting the second order chordae along with mitral annuloplasty could be a novel method to remedy Ischemic mitral regurgitation by relieving the tethering of the valve leaflets. The preoperative three-dimensional echocardiography should be considered in all patients with Ischemic mitral regurgitation to assess the complex three-dimensional interactions between the mitral valve apparatus and the left ventricle. This aids in timely surgical planning. PMID:17894872
Sai-Sudhakar, Chittoor B; Vandse, Rashmi; Armen, Todd A; Bickle, Katherine M; Nathan, Nadia S
2007-09-25
Ischemic mitral regurgitation often complicates severe ischemic heart disease and adversely affects the prognosis in these patients. There is wide variation in the clinical spectrum of ischemic mitral regurgitation due to varying location and chronicity of ischemia and anomalies in annular and ventricular remodeling. As a result, there is lack of consensus in treating these patients. Treatment has to be individualized for each patient. Most of the available surgical options do not consistently correct this condition in all the patients. Chordal cutting is one of the newer surgical approaches in which cutting a limited number of critically positioned basal chordae have found success by relieving the leaflet tethering and thereby improving the coaptation of leaflets. Three-dimensional echocardiography is a potentially valuable tool in identifying the specific pattern of tethering and thus the suitability of this procedure in a given clinical scenario. A 66-year-old man with cardiomyopathy and ischemic mitral regurgitation presented to us with the features of congestive heart failure. The three-dimensional echocardiography revealed severe mitral regurgitation associated with the tethering of the lateral (P1) and medial (P3) scallops of the posterior leaflet of the mitral valve due to secondary chordal attachments. The ejection fraction was only 15% with severe global systolic and diastolic dysfunction. Mitral regurgitation was successfully corrected with mitral annuloplasty and resection of the secondary chordae tethering the medial and lateral scallops of the posterior leaflet of the mitral valve. Cutting the second order chordae along with mitral annuloplasty could be a novel method to remedy Ischemic mitral regurgitation by relieving the tethering of the valve leaflets. The preoperative three-dimensional echocardiography should be considered in all patients with Ischemic mitral regurgitation to assess the complex three-dimensional interactions between the mitral valve apparatus and the left ventricle. This aids in timely surgical planning.
[TECHNIQUES IN MITRAL VALVE REPAIR VIA A MINIMALLY INVASIVE APPROACH].
Ito, Toshiaki
2016-03-01
In mitral valve repair via a minimally invasive approach, resection of the leaflet is technically demanding compared with that in the standard approach. For resection and suture repair of the posterior leaflet, premarking of incision lines is recommended for precise resection. As an alternative to resection and suture, the leaflet-folding technique is also recommended. For correction of prolapse of the anterior leaflet, neochordae placement with the loop technique is easy to perform. Premeasurement with transesophageal echocardiography or intraoperative measurement using a replica of artificial chordae is useful to determine the appropriate length of the loops. Fine-tuning of the length of neochordae is possible by adding a secondary fixation point on the leaflet if the loop is too long. If the loop is too short, a CV5 Gore-Tex suture can be passed through the loop and loosely tied several times to stack the knots, with subsequent fixation to the edge of the leaflet. Finally, skill in the mitral valve replacement technique is necessary as a back-up for surgeons who perform minimally invasive mitral valve repair.
Robotic Posterior Mitral Leaflet Repair: Neochordal versus Resectional Techniques
Mihaljevic, Tomislav; Pattakos, Gregory; Gillinov, A. Marc; Bajwa, Gurjyot; Planinc, Mislav; Williams, Sarah J.; Blackstone, Eugene H.
2013-01-01
Background Resectional techniques are the established method of posterior mitral valve leaflet repair for degenerative disease; however, use of neochordae in a robotically assisted approach is gaining acceptance because of its versatility for difficult multi-segment disease. The purposes of this study were to compare the versatility, safety, and effectiveness of neochordal vs. resectional techniques for robotic posterior mitral leaflet repair. Methods From 12/2007 to 7/2010, 334 patients underwent robotic posterior mitral leaflet repair for degenerative disease by a resectional (n=248) or neochordal (n=86) technique. Outcomes were compared unadjusted and after propensity score matching. Results Neochordae were more likely to be used than resection in patients with two (28% vs. 13%, P=.002) or three (3.7% vs. 0.87%, P=.08) diseased posterior leaflet segments. Three resection patients (0.98%) but no neochordal patient required reoperation for hemodynamically significant systolic anterior motion (SAM). Residual mitral regurgitation (MR) at hospital discharge was similar for matched neochordal vs. resection patients (P=.14) (MR 0+, 82% vs. 89%; MR 1+, 14% vs. 8.2%; MR 2+, 2.3% vs. 2.6%; one neochordal patient had 4+ MR and was reoperated). Among matched patients, postoperative mortality and morbidity were similarly low. Conclusion Compared with a resectional technique, robotic posterior mitral leaflet repair with neochordae is associated with shorter operative times and no occurrence of SAM. The versatility, effectiveness, and safety of this repair make it a good choice for patients with advanced multi-segment disease. PMID:23103008
Calik, Eyup Serhat; Limandal, Husnu Kamil; Arslan, Umit; Tort, Mehmet; Yildiz, Ziya; Bayram, Ednan; Dag, Ozgur; Kaygin, Mehmet Ali; Erkut, Bilgehan
2015-12-14
Leaflet escape of prosthetic valve is rare but potentially life threatening. Early diagnosis is essential on account of avoiding mortality, and emergency surgical correction is compulsory. This complication has previously been reported for both monoleaflet and bileaflet valve models. A 30-year-old man who had undergone mitral valve replacement with a bileaflet valve 8 years prior at another center was admitted with acute-onset with cardiogenic shock as an emergency case. Transthoracic echocardiograms showed acute-starting severe mitral regurgitation associated with prosthetic mitral valve. There was a suspicious finding of a single prosthetic mitral leaflet. But the problem related with the valve wasn't specifically determined. The patient underwent emergent surgery for replacement of the damaged prosthetic valves immediately. There was no tissue impingement and thrombosis, one of the two leaflets was absent, and there were no signs of endocarditis or pannus formation in the prosthetic valve. The missing leaflet could not be found within the cardiac cavity. The abdominal fluoroscopic study and plain radiography were unable to detect the escaped leaflet during surgery. The damaged valve was removed and a replacement 29 mm bileaflet mechanical valve was inserted by right lateral thoracotomy. After post-operative week one, the abdominal computed tomography scan and the ultrasound showed the escaped leaflet in the left femoral artery. Fifteen days after the surgery the escaped leaflet was removed safely from the left femoral artery and the patient made a complete recovery. The escaped leaflet showed a fracture of one of the pivot systems caused by structural failure. Early cardiac surgery should be applied because of life-threatening problems.
A Ruptured Mitral Valve Aneurysm as Complication of a Bicuspid Aortic Valve Endocarditis.
Muscente, Francesca; Scarano, Michele; Clemente, Daniela; Pezzuoli, Franco; Parato, Vito Maurizio
2017-01-01
We present a case of a ruptured mitral valve (MV) aneurysm as a complication of a bicuspid aortic valve (BAV) endocarditis. It is about a young 35-year-old man, admitted to Cardiology Unit because of unexpected heart failure picture. We found a BAV endocarditis complicated by anterior MV-anterior leaflet aneurysm formation and subsequent severe MV regurgitation caused by aneurysm perforation. It was a particular and rare situation characterized by an infection of anterior mitral leaflet secondary to an infected regurgitant jet of a primary aortic infective endocarditis due to a BAV. A resulting aneurysm formation on the atrial side of the mitral anterior leaflet leads later to mitral perforation. In this article, we review the more relevant medical literature on this topic.
Rim, Yonghoon; Laing, Susan T; McPherson, David D; Kim, Hyunggun
2014-01-01
Mitral valve (MV) repair using expanded polytetrafluoroethylene sutures is an established and preferred interventional method to resolve the complex pathophysiologic problems associated with chordal rupture. We developed a novel computational evaluation protocol to determine the effect of the artificial sutures on restoring MV function following valve repair. A virtual MV was created using three-dimensional echocardiographic data in a patient with ruptured mitral chordae tendineae (RMCT). Virtual repairs were designed by adding artificial sutures between the papillary muscles and the posterior leaflet where the native chordae were ruptured. Dynamic finite element simulations were performed to evaluate pre- and post-repair MV function. Abnormal posterior leaflet prolapse and mitral regurgitation was clearly demonstrated in the MV with ruptured chordae. Following virtual repair to reconstruct ruptured chordae, the severity of the posterior leaflet prolapse decreased and stress concentration was markedly reduced both in the leaflet tissue and the intact native chordae. Complete leaflet coaptation was restored when four or six sutures were utilized. Computational simulations provided quantitative information of functional improvement following MV repair. This novel simulation strategy may provide a powerful tool for evaluation and prediction of interventional treatment for RMCT.
Isolated effect of geometry on mitral valve function for in silico model development.
Siefert, Andrew William; Rabbah, Jean-Pierre Michel; Saikrishnan, Neelakantan; Kunzelman, Karyn Susanne; Yoganathan, Ajit Prithivaraj
2015-01-01
Computational models for the heart's mitral valve (MV) exhibit several uncertainties that may be reduced by further developing these models using ground-truth data-sets. This study generated a ground-truth data-set by quantifying the effects of isolated mitral annular flattening, symmetric annular dilatation, symmetric papillary muscle (PM) displacement and asymmetric PM displacement on leaflet coaptation, mitral regurgitation (MR) and anterior leaflet strain. MVs were mounted in an in vitro left heart simulator and tested under pulsatile haemodynamics. Mitral leaflet coaptation length, coaptation depth, tenting area, MR volume, MR jet direction and anterior leaflet strain in the radial and circumferential directions were successfully quantified at increasing levels of geometric distortion. From these data, increase in the levels of isolated PM displacement resulted in the greatest mean change in coaptation depth (70% increase), tenting area (150% increase) and radial leaflet strain (37% increase) while annular dilatation resulted in the largest mean change in coaptation length (50% decrease) and regurgitation volume (134% increase). Regurgitant jets were centrally located for symmetric annular dilatation and symmetric PM displacement. Asymmetric PM displacement resulted in asymmetrically directed jets. Peak changes in anterior leaflet strain in the circumferential direction were smaller and exhibited non-significant differences across the tested conditions. When used together, this ground-truth data-set may be used to parametrically evaluate and develop modelling assumptions for both the MV leaflets and subvalvular apparatus. This novel data may improve MV computational models and provide a platform for the development of future surgical planning tools.
Toma, Milan; Einstein, Daniel R.; Bloodworth, Charles H.; Cochran, Richard P.; Yoganathan, Ajit P.; Kunzelman, Karyn S.
2016-01-01
Over the years, three-dimensional models of the mitral valve have generally been organized around a simplified anatomy. Leaflets have been typically modeled as membranes, tethered to discrete chordae typically modeled as one-dimensional, non-linear cables. Yet, recent, high-resolution medical images have revealed that there is no clear boundary between the chordae and the leaflets. In fact, the mitral valve has been revealed to be more of a webbed structure whose architecture is continuous with the chordae and their extensions into the leaflets. Such detailed images can serve as the basis of anatomically accurate, subject-specific models, wherein the entire valve is modeled with solid elements that more faithfully represent the chordae, the leaflets, and the transition between the two. These models have the potential to enhance our understanding of mitral valve mechanics, and to re-examine the role of the mitral valve chordae, which heretofore have been considered to be “invisible” to the fluid and to be of secondary importance to the leaflets. However, these new models also require a rethinking of modeling assumptions. In this study, we examine the conventional practice of loading the leaflets only and not the chordae in order to study the structural response of the mitral valve apparatus. Specifically, we demonstrate that fully resolved 3D models of the mitral valve require a fluid-structure interaction analysis to correctly load the valve even in the case of quasi-static mechanics. While a fluid-structure interaction mode is still more computationally expensive than a structural-only model, we also show that advances in GPU computing have made such models tractable. PMID:27342229
Toma, Milan; Einstein, Daniel R; Bloodworth, Charles H; Cochran, Richard P; Yoganathan, Ajit P; Kunzelman, Karyn S
2017-04-01
Over the years, three-dimensional models of the mitral valve have generally been organized around a simplified anatomy. Leaflets have been typically modeled as membranes, tethered to discrete chordae typically modeled as one-dimensional, non-linear cables. Yet, recent, high-resolution medical images have revealed that there is no clear boundary between the chordae and the leaflets. In fact, the mitral valve has been revealed to be more of a webbed structure whose architecture is continuous with the chordae and their extensions into the leaflets. Such detailed images can serve as the basis of anatomically accurate, subject-specific models, wherein the entire valve is modeled with solid elements that more faithfully represent the chordae, the leaflets, and the transition between the two. These models have the potential to enhance our understanding of mitral valve mechanics and to re-examine the role of the mitral valve chordae, which heretofore have been considered to be 'invisible' to the fluid and to be of secondary importance to the leaflets. However, these new models also require a rethinking of modeling assumptions. In this study, we examine the conventional practice of loading the leaflets only and not the chordae in order to study the structural response of the mitral valve apparatus. Specifically, we demonstrate that fully resolved 3D models of the mitral valve require a fluid-structure interaction analysis to correctly load the valve even in the case of quasi-static mechanics. While a fluid-structure interaction mode is still more computationally expensive than a structural-only model, we also show that advances in GPU computing have made such models tractable. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Posterior leaflet preservation during mitral valve replacement for rheumatic mitral stenosis.
Djukić, P L; Obrenović-Kirćanski, B B; Vranes, M R; Kocica, M J; Mikić, A Dj; Velinović, M M; Kacar, S M; Kovacević, N S; Parapid, B J
2006-01-01
Mitral valve replacement with posterior leaflet preservation was shown beneficial for postoperative left vetricular (LV) performance in patients with mitral regurgitation. Some authors find it beneficial even for the long term LV function. We investigated a long term effect of this technique in patients with rheumatic mitral stenosis. We studied 20 patents with mitral valve replacement due to rheumatic mitral stenosis, in the period from January 1988 to December 1989. In group A (10 patients) both leaflets and coresponding chordal excision was performed, while in group B (10 patients) the posterior leaflet was preserved. In all patients a Carbomedics valve was inserted. We compared clinical pre and postoperative status, as well as hemodynamic characteristics of the valve and left ventricle in both groups. Control echocardiographyc analysis included: maximal (PG) and mean (MG) gradients; effective valve area (AREA); telediastolic (TDV) and telesystolic (TSV) LV volume; stroke volume (SV); ejection fraction (EF); fractional shortening (FS) and segmental LV motion. The mean size of inserted valve was 26.6 in group A and 27.2 in group B. Hemodynamic data: PG (10.12 vs 11.1); MG (3.57 vs 3.87); AREA (2.35 vs 2.30); TDV 126.0 vs 114.5); TSV (42.2 vs 36.62); SV (83.7 vs 77.75); EF (63.66 vs 67.12); FS (32.66 vs 38.25). Diaphragmal segmental hypokinesis was evident in one patient from group A and in two patients from group B. In patients with rheumatic stenosis, posterior leaflet preservation did not have increased beneficial effect on left ventricular performance during long-term follow-up. An adequate posterior leaflet preservation does not change hemodynamic valvular characteristics even after long-term follow-up.
Fluid-structure interaction in the left ventricle of the human heart coupled with mitral valve
NASA Astrophysics Data System (ADS)
Meschini, Valentina; de Tullio, Marco Donato; Querzoli, Giorgio; Verzicco, Roberto
2016-11-01
In this paper Direct Numerical Simulations (DNS), implemented using a fully fluid-structure interaction model for the left ventricle, the mitral valve and the flowing blood, and laboratory experiments are performed in order to cross validate the results. Moreover a parameter affecting the flow dynamics is the presence of a mitral valve. We model two cases, one with a natural mitral valve and another with a prosthetic mechanical one. Our aim is to understand their different effects on the flow inside the left ventricle in order to better investigate the process of valve replacement. We simulate two situations, one of a healthy left ventricle and another of a failing one. While in the first case the flow reaches the apex of the left ventricle and washout the stagnant fluid with both mechanical and natural valve, in the second case the disturbance generated by the mechanical leaflets destabilizes the mitral jet, thus further decreasing its capability to penetrate the ventricular region and originating heart attack or cardiac pathologies in general.
NASA Astrophysics Data System (ADS)
Jeyhani, Morteza; Shahriari, Shahrokh; Labrosse, Michel; Kadem, Lyes
2013-11-01
Approximately 500,000 people in North America suffer from mitral valve regurgitation (MR). MR is a disorder of the heart in which the mitral valve (MV) leaflets do not close securely during systole. Edge-to-edge repair (EtER) technique can be used to surgically treat MR. This technique produces a double-orifice configuration for the MV. Under these un-physiological conditions, flow downstream of the MV forms a double jet structure that may disturb the intraventricular hemodynamics. Abnormal flow patterns following EtER are mainly characterized by high-shear stress and stagnation zones in the left ventricle (LV), which increase the potential of blood component damage. In this study, a custom-made prosthetic bicuspid MV was used to analyze the LV flow patterns after EtER by means of digital particle image velocimetry (PIV). Although the repair of a MV using EtER technique is an effective approach, this study confirms that EtER leads to changes in the LV flow field, including the generation of a double mitral jet flow and high shear stress regions.
Marsit, Ons; Royer, Olivier; Drolet, Marie-Claude; Arsenault, Marie; Couet, Jacques; Morin, Stéphane; Levine, Robert A; Pibarot, Philippe; Beaudoin, Jonathan
2017-05-01
Mitral leaflet enlargement in patients with chronic aortic regurgitation (AR) has been identified as an adaptive mechanism potentially able to prevent functional mitral regurgitation (FMR) in response to left ventricular (LV) dilatation. The timing of valve enlargement is not known, and the related mechanisms are largely unexplored. AR was induced in 58 rats, and another 54 were used as sham controls. Animals were euthanized at different time points after AR creation (48 h, one week, and three months), and AR severity, FMR and LV dilatation were assessed using echocardiography. Mitral valves were harvested to document the reactivation of embryonic growth pathways. AR animals had increased LV dimensions and mitral annulus size. No animal developed FMR. No change in leaflet length or thickness was seen at 48 h; however, anterior mitral leaflets were longer and thicker in AR animals at one week and three months. Molecular changes were present early (at 48 h and at one week), with positive staining for transforming growth factor-b1 (TGF-b1), Alpha-smooth muscle actin (α-SMA) and matrix metalloproteinase-2 (MMP-2), which suggested active matrix remodeling. Increased gene expression for collagen 1, TGF-β1, α-SMA and MMP-2 was found in the mitral valve at 48 h and at one week, but after three months their expression had returned to normal. This model of AR induces active expansion and thickening of the mitral leaflets. Growth signals are expressed acutely, but not at three months, which suggests that most of this enlargement occurs at an early stage. The stimulation of valvular growth could represent a new strategy for the prevention of FMR.
Correction of anterior mitral prolapse: the parachute technique.
Zannis, Konstantinos; Mitchell-Heggs, Laurens; Di Nitto, Valentina; Kirsch, Matthias E W; Noghin, Milena; Ghorayeb, Gabriel; Lessana, Arrigo
2012-04-01
To evaluate a new surgical technique for the correction of anterior mitral leaflet prolapse. From October 2006 to November 2011, 44 consecutive patients (28 males, mean age 55 ± 13 years) underwent mitral valve repair because of anterior mitral leaflet prolapse. Echocardiography was performed to evaluate the distance from the tip of each papillary muscle to the annular plane. A specially designed caliper was used to manufacture a parachute-like device, by looping a 4-0 polytetrafluoroethylene suture between a Dacron strip and Teflon felt pledget, according to the preoperative echocardiographic measurements. This parachute was then used to resuspend the anterior mitral leaflet to the corresponding papillary muscle. Of the 44 patients, 35 (80%) required concomitant posterior leaflet repair. Additional procedures were required in 16 patients (36%). The preoperative logistic European System for Cardiac Operative Risk Evaluation was 4.3 ± 6.9. The clinical and echocardiographic follow-up were complete. The total follow-up was 1031 patient-months and averaged 23.4 ± 17.2 months per patient. The overall mortality rate was 4.5% (n = 2). Also, 2 patients (4.5%) with recurrent mitral regurgitation required mitral valve replacement, 1 on the first postoperative day and 1 after 13 months. In the latter patient, histologic analysis showed complete endothelialization of the Dacron strip. At follow-up, all non-reoperated survivors (n = 40) were in New York Heart Association class I, with no regurgitation in 40 patients (93%) and grade 2+ mitral regurgitation in 3 (7%). This technique offers a simple and reproducible solution for correction of anterior leaflet prolapse. Echocardiography can reliably evaluate the length of the chordae. However, the long-term results must be evaluated and compared with other surgical strategies. Copyright © 2012 The American Association for Thoracic Surgery. Published by Mosby, Inc. All rights reserved.
Isolated Effect of Geometry on Mitral Valve Function for In-Silico Model Development
Siefert, Andrew William; Rabbah, Jean-Pierre Michel; Saikrishnan, Neelakantan; Kunzelman, Karyn Susanne; Yoganathan, Ajit Prithivaraj
2013-01-01
Computational models for the heart’s mitral valve (MV) exhibit several uncertainties which may be reduced by further developing these models using ground-truth data sets. The present study generated a ground-truth data set by quantifying the effects of isolated mitral annular flattening, symmetric annular dilatation, symmetric papillary muscle displacement, and asymmetric papillary muscle displacement on leaflet coaptation, mitral regurgitation (MR), and anterior leaflet strain. MVs were mounted in an in vitro left heart simulator and tested under pulsatile hemodynamics. Mitral leaflet coaptation length, coaptation depth, tenting area, MR volume, MR jet direction, and anterior leaflet strain in the radial and circumferential directions were successfully quantified for increasing levels of geometric distortion. From these data, increasing levels of isolated papillary muscle displacement resulted in the greatest mean change in coaptation depth (70% increase), tenting area (150% increase), and radial leaflet strain (37% increase) while annular dilatation resulted in the largest mean change in coaptation length (50% decrease) and regurgitation volume (134% increase). Regurgitant jets were centrally located for symmetric annular dilatation and symmetric papillary muscle displacement. Asymmetric papillary muscle displacement resulted in asymmetrically directed jets. Peak changes in anterior leaflet strain in the circumferential direction were smaller and exhibited non-significant differences across the tested conditions. When used together, this ground-truth data may be used to parametrically evaluate and develop modeling assumptions for both the MV leaflets and subvalvular apparatus. This novel data may improve MV computational models and provide a platform for the development of future surgical planning tools. PMID:24059354
Development of an off bypass mitral valve repair.
Morales, D L; Madigan, J D; Choudhri, A F; Williams, M R; Helman, D N; Elder, J B; Naka, Y; Oz, M C
1999-01-01
The Bow Tie Repair (BTR), a single edge-to-edge suture opposing the anterior and posterior leaflets of the mitral valve (MV), has led to satisfactory reduction of mitral regurgitation (MR) with few re-operations and excellent hemodynamic results. The simplicity of the repair lends itself to minimally invasive approaches. A MV grasper has been developed that will coapt both leaflets and fasten the structures with a graduated spiral screw. Eleven explanted adult human MVs were mounted in a mock circulatory loop created for simulating a variety of hemodynamic conditions. The MV grasper was used to place a screw in each valve, which was then continuously run for 300,000 to 1,000,000 cycles with a fixed transvalvular pressure gradient. At the completion of these studies, the valves were stressed to a maximal transvalvular gradient for ten minutes. In seven cases, MR was induced and subsequently repaired using the MV screw. In vivo, the MV screw was tested in nine male canines. Through a subcostal incision, the MV grasper entered the left ventricle, approximated the mitral leaflets and deployed the MV screw under direct visualization via an atriotomy. Follow-up transthoracic echocardiograms were done at postoperative week 1, 6, and 12 to identify screw migration, MV regurgitation/stenosis or clot formation. Dogs were sacrificed up to postoperative week 12 to allow gross and histologic assessment. In vitro, no MV screw detached from the valve leaflets or migrated during the durability testing period of 6.8 million cycles, including periods of stress load testing up to 350 mm Hg. The percent regurgitant flow used to assess MR statistically decreased with the placement of the screw from 72 +/- 7% to 34 +/- 17%; p = 0.0025. In vivo, seven dogs whose valves were examined within the first 48 hours revealed leaflet coaptation with an intact MV screw and no evidence of MR. Two dogs, followed for a prolonged period, had serial postoperative echocardiograms demonstrating consistent coaptation, no screw migration, no clot, and no regurgitation or stenosis. In the animal sacrificed at 12 weeks, the MV screw was integrated into the tissue of both leaflets. The MV screw has provided durable leaflet coaptation and has reduced regurgitation in human MVs. Initial data on the MV screw's biocompatibility and interactions with living valve tissue is promising. Our early success supports further efforts towards the maturation of this prototype into off bypass mitral valve repair technology.
Basic Mechanisms of Mitral Regurgitation
Dal-Bianco, Jacob P.; Beaudoin, Jonathan
2014-01-01
Any structural or functional impairment of the mitral valve (MV) apparatus that exhausts MV tissue redundancy available for leaflet coaptation will result in mitral regurgitation (MR). The mechanism responsible for MV malcoaptation and MR can be dysfunction or structural change of the left ventricle, the papillary muscles, the chordae tendineae, the mitral annulus and the MV leaflets. The rationale for MV treatment depends on the MR mechanism and therefore it is essential to identify and understand normal and abnormal MV and MV apparatus function. PMID:25151282
Movva, Rajesh; Murthy, Kinnari; Romero-Corral, Abel; Seetha Rammohan, Harish Raj; Fumo, Peter; Pressman, Gregg S
2013-10-01
Mitral annular calcification (MAC) is common in chronic kidney disease. It is associated with cardiovascular events and can cause valvular dysfunction, but it has not been systematically characterized. The aim of this prospective study was to assess the prevalence and distribution of MAC, its effects on leaflet motion, and its association with mitral stenosis and mitral regurgitation (MR) in a hemodialysis population. Echocardiograms were obtained in 75 consecutive hemodialysis outpatients. MAC extent and distribution were graded semiquantitatively using two-dimensional and three-dimensional echocardiography. Associations with the presence and severity of mitral stenosis and MR were explored. The mean age was 60 ± 14 years; 60% were men, and 87% were African American. MAC was present in 64% (moderate to severe in 48%). Calcium extended more than halfway onto the leaflet in 37% and beyond the annulus in 40%. Leaflet motion was restricted in 37%. Mitral stenosis was present in 28%, and the extent of calcification was associated with mean mitral valve gradient (P < .0001). MR was prevalent (present in 81%) but was severe in none. The severity of MAC was greater in patients with moderate MR than in those with no or mild MR (P = .04). Three-dimensional analysis suggested an uneven distribution of annular calcium; the middle and lateral anterior segments were less often calcified than the anterior-medial or posterior segments. Calcification in any annular segment was highly associated with restricted motion of the attached leaflet segment. MAC is common and often extensive in hemodialysis patients. Calcium may be unevenly distributed among the annular segments. When present, annular calcification reduces the angle of leaflet opening and can cause valvular dysfunction. Copyright © 2013 American Society of Echocardiography. Published by Mosby, Inc. All rights reserved.
Rabbah, Jean-Pierre; Saikrishnan, Neelakantan; Yoganathan, Ajit P
2013-02-01
Numerical models of the mitral valve have been used to elucidate mitral valve function and mechanics. These models have evolved from simple two-dimensional approximations to complex three-dimensional fully coupled fluid structure interaction models. However, to date these models lack direct one-to-one experimental validation. As computational solvers vary considerably, experimental benchmark data are critically important to ensure model accuracy. In this study, a novel left heart simulator was designed specifically for the validation of numerical mitral valve models. Several distinct experimental techniques were collectively performed to resolve mitral valve geometry and hemodynamics. In particular, micro-computed tomography was used to obtain accurate and high-resolution (39 μm voxel) native valvular anatomy, which included the mitral leaflets, chordae tendinae, and papillary muscles. Three-dimensional echocardiography was used to obtain systolic leaflet geometry. Stereoscopic digital particle image velocimetry provided all three components of fluid velocity through the mitral valve, resolved every 25 ms in the cardiac cycle. A strong central filling jet (V ~ 0.6 m/s) was observed during peak systole with minimal out-of-plane velocities. In addition, physiologic hemodynamic boundary conditions were defined and all data were synchronously acquired through a central trigger. Finally, the simulator is a precisely controlled environment, in which flow conditions and geometry can be systematically prescribed and resultant valvular function and hemodynamics assessed. Thus, this work represents the first comprehensive database of high fidelity experimental data, critical for extensive validation of mitral valve fluid structure interaction simulations.
Quantification and comparison of the mechanical properties of four human cardiac valves.
Pham, Thuy; Sulejmani, Fatiesa; Shin, Erica; Wang, Di; Sun, Wei
2017-05-01
Although having the same ability to permit unidirectional flow within the heart, the four main valves-the mitral valve (MV), aortic (AV), tricuspid (TV) and pulmonary (PV) valves-experience different loading conditions; thus, they exhibit different structural integrity from one another. Most research on heart valve mechanics have been conducted mainly on MV and AV or an individual valve, but none quantify and compare the mechanical and structural properties among the four valves from the same aged patient population whose death was unrelated to cardiovascular disease. A total of 114 valve leaflet samples were excised from 12 human cadavers whose death was unrelated to cardiovascular disease (70.1±3.7years old). Tissue mechanical and structural properties were characterized by planar biaxial mechanical testing and histological methods. The experimental data were then fitted with a Fung-type constitutive model. The four valves differed substantially in thickness, degree of anisotropy, and stiffness. The leaflets of the left heart (the AV leaflets and the anterior mitral leaflets, AML) were significantly stiffer and less compliant than their counterparts in the right heart. TV leaflets were the most extensible and isotropic, while AML and AV leaflets were the least extensible and the most anisotropic. Age plays a significant role in the reduction of leaflet stiffness and extensibility with nearly straightened collagen fibers observed in the leaflet samples from elderly groups (65years and older). Results from 114 human leaflet samples not only provided a baseline quantification of the mechanical properties of aged human cardiac valves, but also offered a better understanding of the age-dependent differences among the four valves. It is hoped that the experimental data collected and the associated constitutive models in this study can facilitate future studies of valve diseases, treatments and the development of interventional devices. Most research on heart valve mechanics have been conducted mainly on mitral and aortic valves or an individual valve, but none quantify and compare the mechanical and structural properties among the four valves from the same relatively healthy elderly patient population. In this study, the mechanical and microstructural properties of 114 leaflets of aortic, mitral, pulmonary and tricuspid valves from 12 human cadaver hearts were mechanically tested, analyzed and compared. Our results not only provided a baseline quantification of the mechanical properties of aged human valves, but a age range between patients (51-87years) also offers a better understanding of the age-dependent differences among the four valves. It is hoped that the obtained experimental data and associated constitutive parameters can facilitate studies of valve diseases, treatments and the development of interventional devices. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Mechanism of reduction of mitral regurgitation with vasodilator therapy.
Yoran, C; Yellin, E L; Becker, R M; Gabbay, S; Frater, R W; Sonnenblick, E H
1979-04-01
Acute mitral regurgitation was produced in six open chest dogs by excising a portion of the anterior valve leaflet. Electromagnetic flow probes were placed in the left atrium around the mitral anulus and in the ascending aorta to determine phasic left ventricular filling volume, regurgitant volume and stroke volume. The systolic pressure gradient was calculated from simultaneously measured high fidelity left atrial and left ventricular pressures. The effective mitral regurgitant orifice area was calculated from Gorlin's hydraulic equation. Infusion of nitroprusside resulted in a significant reduction in mitral regurgitation. No significant change occurred in the systolic pressure gradient between the left ventricle and the left atrium because both peak left ventricular pressure and left atrial pressure were reduced. The reduction of mitral regurgitation was largely due to reduction in the size of the mitral regurgitant orifice. Reduction of ventricular volume rather than the traditional concept of reduction of impedance of left ventricular ejection may explain the effects of vasodilators in reducing mitral regurgitation.
Zhong, Qi; Zeng, Wenhua; Huang, Xiaoyang; Zhao, Xiaojia
2014-01-01
Systolic anterior motion of the mitral valve is an uncommon complication of mitral valve repair, which requires immediate supplementary surgical action. Edge-to-edge suture is considered as an effective technique to treat post-mitral valve repair systolic anterior motion by clinical researchers. However, the fundamentals and quantitative analysis are vacant to validate the effectiveness of the additional edge-to-edge surgery to repair systolic anterior motion. In the present work, finite element models were developed to simulate a specific clinical surgery for patients with posterior leaflet prolapse, so as to analyze the edge-to-edge technique quantificationally. The simulated surgery procedure concluded several actions such as quadrangular resection, mitral annuloplasty and edge-to-edge suture. And the simulated results were compared with echocardiography and measurement data of the patients under the mitral valve surgery, which shows good agreement. The leaflets model with additional edge-to-edge suture has a shorter mismatch length than that of the model merely under quadrangular resection and mitral annuloplasty actions at systole, which assures a better coaptation status. The stress on the leaflets after edge-to-edge suture is lessened as well.
Mechanism of valvular regurgitation.
Khoo, Nee S; Smallhorn, Jeffery F
2011-10-01
Despite improvements in surgical techniques, valvular regurgitation results in major morbidity in children with heart disease. Functional anatomy, mechanisms of valve closure and adaptation to changing hemodynamic stress in normal mitral and tricuspid valves are complex and only partially understood. As well, pathology of atrioventricular valve regurgitation is further complicated by congenital valve abnormalities involving leaflet tissue, supporting chordal apparatus and displaced papillary muscles. This review provides a current understanding of the mechanisms that result in atrioventricular valve failure. Mitral valve leaflets have contractile elements, in addition to atrial muscle modulation of leaflet tension. When placed under mechanical tethering stress, the mitral valve adapts by leaflet expansion, which increases coaptation surface reserve and chordal thickening. Both pediatric and adult studies are increasingly reporting on the importance of subvalvar apparatus function in maintaining valve competency. The maintenance of efficient valve function is accomplished by a complex series of events involving atrial and annular contraction, annular deformation, active leaflet tension, chordal transmission of papillary muscle contractions and ventricular contraction.
Lehmkuhl, L B; Ware, W A; Bonagura, J D
1994-01-01
Mitral stenosis was diagnosed in 15 young to middle-aged dogs. There were 5 Newfoundlands and 4 bull terriers affected, suggesting a breed predisposition for this disorder. Clinical signs included cough, dyspnea, exercise intolerance, and syncope. Soft left apical diastolic murmurs were heard only in 4 dogs, whereas 8 dogs had systolic murmurs characteristic of mitral regurgitation. Left atrial enlargement was the most prominent radiographic feature. Left-sided congestive heart failure was detected by radiographs in 11 dogs within 1 year of diagnosis. Electrocardiographic abnormalities varied among dogs and included atrial and ventricular enlargement, as well as atrial and ventricular arrhythmias. Abnormalities on M-mode and two-dimensional echocardiograms included abnormal diastolic motion of the mitral valve characterized by decreased leaflet separation, valve doming, concordant motion of the parietal mitral valve leaflet, and a decreased E-to-F slope. Increased mitral valve inflow velocities and prolonged pressure half-times were detected by Doppler echocardiography. Cardiac catheterization, performed in 8 dogs, documented a diastolic pressure gradient between the left atrial, pulmonary capillary wedge, or pulmonary artery diastolic pressures and the left ventricular diastolic pressure. Necropsy showed mitral stenosis caused by thickened, fused mitral valve leaflets in 5 dogs and a supramitral ring in another dog. The outcome in affected dogs was poor; 9 of 15 dogs were euthanatized or died by 2 1/2 years of age.
Annulus fibrosus of the mitral valve: reality or myth.
Berdajs, Denis; Zünd, Gregor; Camenisch, Colette; Schurr, Ulrich; Turina, Marko I; Genoni, Michele
2007-01-01
Surgical repair of the mitral valve is in most cases limited to the posterior leaflet of the mitral valve and to the annulus fibrosus. The term annulus fibrosus is still used in anatomical and clinical terminology and is described as a cord like structure providing the attachment of the mitral vale. However, to date no evidence exists of a ring-or cord-like structure at this area. Herein, we describe the attachment of the mitral valve by using the macroscopical and microscopical techniques. The ventricular attachment of the posterior mitral valve leaflet was investigated in 10 human hearts. In dry dissected specimens, the intraventricular illumination was used to identify the attachment of the mitral valve to the left ventricular muscle. Using the histological techniques, we verified the position of the annulus fibrosus. The attachment of the posterior mitral valve leaflet is a band-like structure positioned between the left ventricular muscle and the left atrium. This fibrous band illustrates the morphological attachment of the mitral valve and, as thus, was interpreted as the annulus fibrosus of the mitral valve. Based on our data, no ring-like structure was found corresponding to the anatomical description of the annulus fibrosus, instead the band-like fibrous tissue was identified positioned between the mitral valve and the left ventricle. Histologicaly, we detected that this structure is part of the greater structural system that is directly connected to the membranous septum, to the left and right fibrous trigone and the attachment aortic root to the left ventricular muscle.
Tricuspid and Mitral Valve Regurgitation with Bi-fascicular Block Following a Horse Kick.
Kokubun, Tomoki; Oikawa, Masayoshi; Ichijo, Yasuhiro; Matsumoto, Yoshiyuki; Yokokawa, Tetsuro; Nakazato, Kazuhiko; Sato, Yoshiyuki; Takase, Shinya; Shinjo, Hiroharu; Yokoyama, Hitoshi; Suzuki, Hitoshi; Saitoh, Shu-Ichi; Takeishi, Yasuchika
2018-06-01
A 40-year-old man was transferred to our hospital following an isolated horse kick injury to the anterior chest wall. The case showed bi-fascicular block, severe tricuspid valve regurgitation due to ruptured chordae tendineae of the anterior leaflet, moderate mitral valve regurgitation due to prolapse of mitral anterior leaflet, and hypokinetic motion of the inferior septal wall. Both tricuspid and mitral insufficiency were completely repaired by a surgical operation. Fortunately, these injuries were not fatal in this case, but the comprehensive assessment of cardiac damage and careful observation are important for managing patients with cardiac injury.
Mitral stenosis and hypertrophic obstructive cardiomyopathy: An unusual combination.
Hong, Joonhwa; Schaff, Hartzell V; Ommen, Steve R; Abel, Martin D; Dearani, Joseph A; Nishimura, Rick A
2016-04-01
Systolic anterior motion of mitral valve (MV) leaflets is a main pathophysiologic feature of left ventricular outflow tract (LVOT) obstruction in hypertrophic obstructive cardiomyopathy. Thus, restricted leaflet motion that occurs with MV stenosis might be expected to minimize outflow tract obstruction related to systolic anterior motion. From January 1993 through February 2015, we performed MV replacement and septal myectomy in 12 patients with mitral stenosis and hypertrophic obstructive cardiomyopathy at Mayo Clinic Hospital in Rochester, Minn. Preoperative data, echocardiographic images, operative records, and postoperative outcomes were reviewed. Mean (standard deviation) age was 70 (7.6) years. Preoperative mean (standard deviation) maximal LVOT pressure gradient was 75.0 (35.0) mm Hg; MV gradient was 13.7 (2.8) mm Hg. From echocardiographic images, 4 mechanisms of outflow tract obstruction were identified: systolic anterior motion without severe limitation in MV leaflet excursion, severe limitation in MV leaflet mobility with systolic anterior motion at the tip of the MV anterior leaflet, septal encroachment toward the LVOT, and MV displacement toward the LVOT by calcification. Mitral valve replacement and extended septal myectomy relieved outflow gradients in all patients, with no death or serious morbidity. Patients with mitral stenosis and hypertrophic obstructive cardiomyopathy have multiple LVOT obstruction mechanisms, and MV replacement may not be adequate treatment. We favor septal myectomy and MV replacement in this complex subset of hypertrophic obstructive cardiomyopathy. Copyright © 2016 The American Association for Thoracic Surgery. Published by Elsevier Inc. All rights reserved.
Kumar, Gideon Praveen; Cui, Fangsen; Phang, Hui Qun; Su, Boyang; Leo, Hwa Liang; Hon, Jimmy Kim Fatt
2014-07-01
Percutaneous heart valve replacement is gaining popularity, as more positive reports of satisfactory early clinical experiences are published. However this technique is mostly used for the replacement of pulmonary and aortic valves and less often for the repair and replacement of atrioventricular valves mainly due to their anatomical complexity. While the challenges posed by the complexity of the mitral annulus anatomy cannot be mitigated, it is possible to design mitral stents that could offer good anchorage and support to the valve prosthesis. This paper describes four new Nitinol based mitral valve designs with specific features intended to address migration and paravalvular leaks associated with mitral valve designs. The paper also describes maximum possible crimpability assessment of these mitral stent designs using a crimpability index formulation based on the various stent design parameters. The actual crimpability of the designs was further evaluated using finite element analysis (FEA). Furthermore, fatigue modeling and analysis was also done on these designs. One of the models was then coated with polytetrafluoroethylene (PTFE) with leaflets sutured and put to: (i) leaflet functional tests to check for proper coaptation of the leaflet and regurgitation leakages on a phantom model and (ii) anchorage test where the stented valve was deployed in an explanted pig heart. Simulations results showed that all the stents designs could be crimped to 18F without mechanical failure. Leaflet functional test results showed that the valve leaflets in the fabricated stented valve coapted properly and the regurgitation leakage being within acceptable limits. Deployment of the stented valve in the explanted heart showed that it anchors well in the mitral annulus. Based on these promising results of the one design tested, the other stent models proposed here were also considered to be promising for percutaneous replacement of mitral valves for the treatment of mitral regurgitation, by virtue of their key features as well as effective crimping. These models will be fabricated and put to all the aforementioned tests before being taken for animal trials. Copyright © 2014 IPEM. Published by Elsevier Ltd. All rights reserved.
Finite element modeling of mitral leaflet tissue using a layered shell approximation
Ratcliffe, Mark B.; Guccione, Julius M.
2012-01-01
The current study presents a finite element model of mitral leaflet tissue, which incorporates the anisotropic material response and approximates the layered structure. First, continuum mechanics and the theory of layered composites are used to develop an analytical representation of membrane stress in the leaflet material. This is done with an existing anisotropic constitutive law from literature. Then, the concept is implemented in a finite element (FE) model by overlapping and merging two layers of transversely isotropic membrane elements in LS-DYNA, which homogenizes the response. The FE model is then used to simulate various biaxial extension tests and out-of-plane pressure loading. Both the analytical and FE model show good agreement with experimental biaxial extension data, and show good mutual agreement. This confirms that the layered composite approximation presented in the current study is able to capture the exponential stiffening seen in both the circumferential and radial directions of mitral leaflets. PMID:22971896
Aquila, Iolanda; González, Ariana; Fernández-Golfín, Covadonga; Rincón, Luis Miguel; Casas, Eduardo; García, Ana; Hinojar, Rocio; Jiménez-Nacher, José Julio; Zamorano, José Luis
2016-05-17
3D transesophageal echocardiography (TEE) is superior to 2D TEE in quantitative anatomic evaluation of the mitral valve (MV) but it shows limitations regarding automatic quantification. Here, we tested the inter-/intra-observer reproducibility of a novel full-automated software in the evaluation of MV anatomy compared to manual 3D assessment. Thirty-six out of 61 screened patients referred to our Cardiac Imaging Unit for TEE were retrospectively included. 3D TEE analysis was performed both manually and with the automated software by two independent operators. Mitral annular area, intercommissural distance, anterior leaflet length and posterior leaflet length were assessed. A significant correlation between both methods was found for all variables: intercommissural diameter (r = 0.84, p < 0.01), mitral annular area (r = 0.94, p > 0, 01), anterior leaflet length (r = 0.83, p < 0.01) and posterior leaflet length (r = 0.67, p < 0.01). Interobserver variability assessed by the intraclass correlation coefficient was superior for the automatic software: intercommisural distance 0.997 vs. 0.76; mitral annular area 0.957 vs. 0.858; anterior leaflet length 0.963 vs. 0.734 and posterior leaflet length 0.936 vs. 0.838. Intraobserver variability was good for both methods with a better level of agreement with the automatic software. The novel 3D automated software is reproducible in MV anatomy assessment. The incorporation of this new tool in clinical MV assessment may improve patient selection and outcomes for MV interventions as well as patient diagnosis and prognosis stratification. Yet, high-quality 3D images are indispensable.
Shimbo, Mai; Watanabe, Hiroyuki; Kimura, Shunsuke; Terada, Mai; Iino, Takako; Iino, Kenji; Ito, Hiroshi
2015-01-01
Real-time three-dimensional transesophageal echocardiography (RT3D-TEE) can provide unique visualization and better understanding of the relationship among cardiac structures. Here, we report the case of an 85-year-old woman with an obstructed mitral prosthetic valve diagnosed promptly by RT3D-TEE, which clearly showed a leaflet stuck in the closed position. The opening and closing angles of the valve leaflets measured by RT3D-TEE were compatible with those measured by fluoroscopy. Moreover, RT3D-TEE revealed, in the ring of the prosthetic valve, thrombi that were not visible on fluoroscopy. RT3D-TEE might be a valuable diagnostic technique for prosthetic mitral valve thrombosis. © 2014 Wiley Periodicals, Inc.
Armen, Todd A; Vandse, Rashmi; Crestanello, Juan A; Raman, Subha V; Bickle, Katherine M; Nathan, Nadia S
2009-01-01
Left ventricular remodelling leads to functional mitral regurgitation resulting from annular dilatation, leaflet tethering, tenting, and decreased leaflet coaptation. Mitral valve annuloplasty restores valve competency, improving the patient's functional status and ventricular function. This study was designed to evaluate the mechanisms underlying mitral valve competency after the implantation of a Geoform annuloplasty ring using three-dimensional (3D) echocardiography. Seven patients (mean age of 65 years) with ischaemic mitral regurgitation underwent mitral valve annuloplasty with the Geoform ring and coronary artery bypass surgery. Pre- and post-operative 3D echocardiograms were performed. Following mitral annuloplasty, mitral regurgitation decreased from 3.4+/-0.2 to 0.9+/-0.3 (P-value<0.0001), mitral valve tenting volume from 13+/-1.7 to 3.2+/-0.3 mL (P-value<0.001), annulus area from 12.6+/-1.0 to 3.3+/-0.2 cm2 (P-value<0.0001), valve circumference from 13+/-0.5 to 7.3+/-0.3 cm (P-value<0.0001), septolateral distance from 2.1+/-0.1 to 1.4+/-0.06 cm (P-value<0.01) and intercommissural distance from 3.4+/-0.1 to 2.7+/-0.03 cm (P-value<0.03). There was significant decrease in the septolateral distance at the level of A2-P2 with respect to other regions. These geometric changes were associated with the improvement in the NYHA class from 3.1+/-0.3 to 1.3+/-0.3 (P-value<0.002). The mitral valve annuloplasty with the Geoform ring restores leaflet coaptation and eliminates mitral regurgitation by effectively modifying the mitral annular geometry.
Surgical treatment of functional ischemic mitral regurgitation.
Jensen, Henrik
2015-03-01
In many ways we are at a crossroad in terms of what constitutes optimal FIMR treatment: is CABG combined with mitral valve ring annuloplasty better than CABG alone in moderate FIMR? Is mitral valve repair really better than replacement? And does adding a valvular repair or subvalvular reverse remodeling procedure shift that balance? In the present thesis I aim to shed further light on these questions by addressing the current status and future perspectives of the surgical treatment of FIMR. CURRENT SURGICAL TREATMENT FOR FIMR. CABG alone: The overall impression from the literature is that patients are left with a high grade of persistent/recurrent FIMR from isolated CABG. CABG is most effective to treat FIMR in patients with viable myocardium (at least five viable segments) and absence of dyssynchrony between papillary muscles (< 60 ms). Mitral valve ring annuloplasty. A vast number of different designs are available to perform mitral valve ring annuloplasty with variations over the theme of complete/partial and rigid/semi-rigid/flexible. Also, the three-dimensional shape of the rigid and semi-rigid rings is the subject of great variation. A rigid or semi-rigid down-sized mitral valve ring annuloplasty is the most advocated treatment in chronic FIMR grade 2+ or higher. Combined CABG and mitral valve ring annuloplasty: CABG combined with mitral valve ring annuloplasty leads to reverse LV remodeling and reduced volumes. Despite this, the recurrence rate after combined CABG and mitral valve ring annuloplasty is 20-30% at 2-4 years follow-up. This is also true for studies strictly using down-sized mitral valve ring annuloplasty by two sizes. A number of preoperative risk factors to develop recurrent FIMR were identified, e.g. LVEDD > 65-70 mm, coaptation depth > 10 mm, anterior leaflet angle > 27-39.5°, posterior leaflet angle > 45° and interpapillary muscle distance > 20 mm. CABG alone vs. combined CABG and mitral valve ring annuloplasty: The current available literature, including three randomized studies and a meta analysis, indicate that combined CABG and mitral valve ring annuloplasty has no late survival difference compared with CABG alone, and early mortality might even be higher. Meanwhile, adding a mitral valve ring annuloplasty results in a lower NYHA functional class, most likely as a consequence of a lower incidence of persistent or recurrent FIMR. More randomized studies are being conducted to further address this topic. Mitral valve ring annuloplasty vs. mitral valve replacement. The early survival may be higher after repair compared with replacement, meanwhile, the literature is more ambiguous in terms of late survival advantages, and recent reports find no late survival advantage from repair over replacement. The recurrence rates after ring annuloplasty addressed above were also present in this subset of patients, whereas the incidence of recurrent FIMR after valve replacement is scarcely reported. There was an overall tendency of slightly higher incidence of reoperations after ring annuloplasty. The mitral valve annulus: Innovations in mitral valve ring annuloplasty: The latest innovation in mitral valve ring annuloplasty design includes adjustable rings, allowing adjustment of septo-lateral dimensions intra- or postoperatively. Minimally invasive ring annuloplasty using indirect coronary sinus devices, has been introduced, but so far have produced suboptimal results in terms of safety and efficacy. Also, first in man testing of direct percutaneous catheter based mitral annuloplasty techniques have been conducted. Leaflets and chordae: Direct repair techniques: Surgical methods have been developed to directly address the mitral valve leaflets and chordae tendineae to correct leaflet tethering in FIMR. Both the Alfieri stich and the minimally invasive MitraClip attaches the anterior and posterior leaflets, typically the A2-P2 region, to correct incomplete leaflet coaptation. Patch augmentation of the posterior leaflet in the P2-P3 region increases coaptation in the area most prone to cause FIMR. Chordal cutting of the secondary "strut" chordae releases the anterior leaflet from the tethering due to papillary muscle displacement and improves mitral valve geometry. The mitral subvalvular apparatus: Numerous subvalvular approaches to improve outcome in patients with FIMR have been introduced. They include very invasive techniques such as surgical ventricular restoration procedure, surgical techniques directly addressing the papillary muscle dis-placement, and beating heart procedures using transventricular and epicardial devices applied in a few minutes. The role of the transventricular and epicardial devices still remains to be defined and many of these devices seem to have a hard time ganing their footing in the clinical practise and until now only constitute a footnote in the surgical literature. Meanwhile, the current results with adjunct techniques to CABG and ring annuloplasty, such as the papillary muscle approximation technique introduced by Hvass et al and the papillary muscle relocation technique introduced by Kron et al and further developed by Langer et al are gaining continuing support in the surgical community since these techniques can be used with only little added time consumption but with very good clinical outcome.
Novel pathogenetic mechanisms and structural adaptations in ischemic mitral regurgitation.
Silbiger, Jeffrey J
2013-10-01
Ischemic mitral regurgitation (MR) is a common complication of myocardial infarction thought to result from leaflet tethering caused by displacement of the papillary muscles that occurs as the left ventricle remodels. The author explores the possibility that left atrial remodeling may also play a role in the pathogenesis of ischemic MR, through a novel mechanism: atriogenic leaflet tethering. When ischemic MR is hemodynamically significant, the left ventricle compensates by dilating to preserve forward output using the Starling mechanism. Left ventricular dilatation, however, worsens MR by increasing the mitral valve regurgitant orifice, leading to a vicious cycle in which MR begets more MR. The author proposes that several structural adaptations play a role in reducing ischemic MR. In contrast to the compensatory effects of left ventricular enlargement, these may reduce, rather than increase, its severity. The suggested adaptations involve the mitral valve leaflets, the papillary muscles, the mitral annulus, and the left ventricular false tendons. This review describes the potential role each may play in reducing ischemic MR. Therapies that exploit these adaptations are also discussed. Copyright © 2013 American Society of Echocardiography. Published by Mosby, Inc. All rights reserved.
Saji, Mike; Rossi, Ann M; Ailawadi, Gorav; Dent, John; Ragosta, Michael; Lim, D Scott
2016-02-01
We evaluated intracardiac echocardiography (ICE) for adjunctively guiding the MitraClip procedure in patients with prior surgical rings. Transesophageal echocardiography (TEE) is the standard imaging modality used to guide the MitraClip procedure (Abbott Vascular, CA). However, in patients with post-surgical anatomy, clear imaging of the mitral valve leaflets may be complex because of shadowing from the surgical ring. In these patients, TEE may be suboptimal for guiding the procedure, even using three-dimensional imaging. This retrospective analysis included data from 121 consecutive patients with mitral regurgitation who underwent MitraClip procedures at the University of Virginia. ICE was used adjunctively when there was difficulty with TEE, particularly for assessing the insertion of the posterior leaflet into the MitraClip's arms. The ICE catheter was introduced transarterially into the left ventricle and flexed to obtain the short-axis view. Six patients had prior surgical rings, and in five, we used adjunctive ICE. The etiology of the mitral regurgitation was prolapse of the posterior leaflet in one patient and restriction of the posterior leaflet due to ischemic tethering in the remainder. All images were obtained from the left ventricle, and were adequate for assessing posterior leaflet insertion and the perpendicularity of the MitraClip arms. The procedural success rate was 80%. There was no adverse event related to the ICE procedure. Mitral valve repair with the MitraClip system assisted by ICE is feasible in patients with prior surgical rings, achieving an excellent risk profile and satisfactory procedural success. © 2015 Wiley Periodicals, Inc.
Catheter Entrapment During Posterior Mitral Leaflet Pushing Maneuver for MitraClip Implantation.
Castrodeza, Javier; Amat-Santos, Ignacio J; Tobar, Javier; Varela-Falcón, Luis H
2016-06-01
MitraClip (Abbott Vascular) therapy has been reported to be an effective procedure for mitral regurgitation, especially in high-risk patients. Recently, the novel pushing maneuver technique has been described for approaching restricted and short posterior leaflets with a pigtail catheter in order to facilitate grasping of the clip. However, complications or unexpected situations may occur. We report the case of an 84-year-old patient who underwent MitraClip implantation wherein the pushing maneuver was complicated by the clip accidentally gripping the pigtail catheter along with the two leaflets.
Evolving Techniques for Mitral Valve Reconstruction
Galloway, Aubrey C.; Grossi, Eugene A.; Bizekis, Costas S.; Ribakove, Greg; Ursomanno, Patricia; Delianides, Julie; Baumann, F. Gregory; Spencer, Frank C.; Colvin, Stephen B.
2002-01-01
Objective To analyze the effectiveness of new techniques of mitral valve reconstruction (MVR) that have evolved over the last decade, such as aggressive anterior leaflet repair and minimally invasive surgery using an endoaortic balloon occluder. Summary Background Data MVR via conventional sternotomy has been an established treatment for mitral insufficiency for over 20 years, primarily for the treatment of patients with posterior leaflet prolapse. Methods Between June 1980 and June 2001, 1,195 consecutive patients had MVR with ring annuloplasty. Conventional sternotomy was used in 843 patients, minimally invasive surgery in 352 (since June 1996). Anterior leaflet repair was performed in 374 patients, with increasing use over the last 10 years. Follow-up was 100% complete (mean 4.6 years, range 0.5–20.5). Results Hospital mortality was 4.7% overall and 1.4% for isolated MVR (1.1% for minimally invasive surgery vs. 1.6% for conventional sternotomy;P = .4). Multivariate analysis showed the factors predictive of increased operative risk to be age, NYHA functional class, concomitant procedures, and previous cardiac surgery. The 5-year results for freedom from cardiac death, reoperation, and valve-related complications among the 782 patients with degenerative etiology are, respectively, as follows (P > .05 for all end points): for anterior leaflet repair, 93%, 94%, 90%; for no anterior leaflet repair, 91%, 92%, 91%; for minimally invasive surgery, 97%, 89%, 93%; and for conventional sternotomy, 93%, 94%, 90%. Conclusions These findings indicate that late results of MVR after minimally invasive surgery and after anterior leaflet repair are equivalent to those achievable with conventional sternotomy and posterior leaflet repair. These options significantly expand the range of patients suitable for mitral valve repair surgery and give further evidence to support wider use of minimally invasive techniques. PMID:12192315
Prosthetic Mitral Valve Leaflet Escape
Kim, Darae; Hun, Sin Sang; Cho, In-Jeong; Shim, Chi-Young; Ha, Jong-Won; Chung, Namsik; Ju, Hyun Chul; Sohn, Jang Won
2013-01-01
Leaflet escape of prosthetic valve is rare but potentially life threatening. It is essential to make timely diagnosis in order to avoid mortality. Transesophageal echocardiography and cinefluoroscopy is usually diagnostic and the location of the missing leaflet can be identified by computed tomography (CT). Emergent surgical correction is mandatory. We report a case of fractured escape of Edward-Duromedics mitral valve 27 years after the surgery. The patient presented with symptoms of acute decompensated heart failure and cardiogenic shock. She was instantly intubated and mechanically ventilated. After prompt evaluation including transthoracic echocardiography and CT, the escape of the leaflet was confirmed. The patient underwent emergent surgery for replacement of the damaged prosthetic valves immediately. Eleven days after the surgery, the dislodged leaflet in iliac artery was removed safely and the patient recovered well. PMID:23837121
Nonlinear solid finite element analysis of mitral valves with heterogeneous leaflet layers
NASA Astrophysics Data System (ADS)
Prot, V.; Skallerud, B.
2009-02-01
An incompressible transversely isotropic hyperelastic material for solid finite element analysis of a porcine mitral valve response is described. The material model implementation is checked in single element tests and compared with a membrane implementation in an out-of-plane loading test to study how the layered structures modify the stress response for a simple geometry. Three different collagen layer arrangements are used in finite element analysis of the mitral valve. When the leaflets are arranged in two layers with the collagen on the ventricular side, the stress in the fibre direction through the thickness in the central part of the anterior leaflet is homogenized and the peak stress is reduced. A simulation using membrane elements is also carried out for comparison with the solid finite element results. Compared to echocardiographic measurements, the finite element models bulge too much in the left atrium. This may be due to evidence of active muscle fibres in some parts of the anterior leaflet, whereas our constitutive modelling is based on passive material.
Du, Dongxing; Jiang, Song; Wang, Ze; Hu, Yingying; He, Zhaoming
2014-01-01
Mitral valve (MV) edge-to-edge repair (ETER) is a surgical procedure for the correction of mitral valve regurgitation by suturing the free edge of the leaflets. The leaflets are often sutured at three different positions: central, lateral and commissural portions. To study the effects of position of suture on left ventricular (LV) fluid mechanics under mitral valve ETER, a parametric model of MV-LV system during diastole was developed. The distribution and development of vortex and atrio-ventricular pressure under different suture position were investigated. Results show that the MV sutured at central and lateral in ETER creates two vortex rings around two jets, compared with single vortex ring around one jet of the MV sutured at commissure. Smaller total orifices lead to a higher pressure difference across the atrio-ventricular leaflets in diastole. The central suture generates smaller wall shear stresses than the lateral suture, while the commissural suture generated the minimum wall shear stresses in ETER.
Mitral valve plasty for mitral regurgitation after blunt chest trauma.
Kumagai, H; Hamanaka, Y; Hirai, S; Mitsui, N; Kobayashi, T
2001-06-01
A 21 year-old woman was admitted to our hospital because of chest and back pain after blunt chest trauma. On admission, consciousness was clear and a physical examination showed labored breathing. Her vital signs were stable, but her breathing gradually worsened, and artificial respiration was started. The chest roentgenogram and a subsequent chest computed tomographic scans revealed contusions, hemothorax of the left lung and multiple rib fractures. A transthoracic echocardiography (TTE) revealed normal left ventricular wall motion and mild mitral regurgitation (MR). TTE was carried out repeatedly, and revealed gradually progressive MR and prolapse of the posterior medial leaflet, although there was no congestive heart failure. After her general condition had recovered, surgery was performed. Intraoperative transesophageal echocardiography (TEE) revealed torn chordae at the posterior medial leaflet. The leaflet where the chorda was torn was cut and plicated, and posterior mitral annuloplasty was performed using a prosthetic ring. One month later following discharge, the MR had disappeared on TTE.
Ito, Tadahiko; Okubo, Tadashi
2002-12-01
A female neonate with mitral stenosis due to accessory mitral valve with ventricular septal defect and patent ductus arteriosus is described. She was referred to our hospital because of neonatal asphyxia. Asphyxia was improved by ventilator support, but rapid deterioration of respiration with pulmonary congestion and hemorrhage appeared 8 days after birth. Echocardiography revealed an accessory mitral valve attached to the anterior mitral leaflet with a perimembranous ventricular septal defect and patent ductus arteriosus. Although there were no echocardiographical findings indicating mitral stenosis on admission, the mitral stenosis blood flow patterns were detected by color and pulsed Doppler examination performed on the eighth day after admission. Transaortic resection of accessory mitral valve tissue was performed with patch closure of the ventricular septal defect and ligation of the ductus arteriosus 35 days after birth. After operation, pulmonary congestion and hemorrhage were improved. Postoperative echocardiography showed complete resection of the accessory mitral valve and no mitral insufficiency. We concluded that the combination of the accessory mitral valve and left-to-right shunt due to ventricular septal defect or patent ducturs arteriosus might have led to a critical hemodynamic condition due to relative mitral stenosis in the neonatal period with the decrease in pulmonary vascular resistance.
Effect of Losartan on Mitral Valve Changes After Myocardial Infarction.
Bartko, Philipp E; Dal-Bianco, Jacob P; Guerrero, J Luis; Beaudoin, Jonathan; Szymanski, Catherine; Kim, Dae-Hee; Seybolt, Margo M; Handschumacher, Mark D; Sullivan, Suzanne; Garcia, Michael L; Titus, James S; Wylie-Sears, Jill; Irvin, Whitney S; Messas, Emmanuel; Hagège, Albert A; Carpentier, Alain; Aikawa, Elena; Bischoff, Joyce; Levine, Robert A
2017-09-05
After myocardial infarction (MI), mitral valve (MV) tethering stimulates adaptive leaflet growth, but counterproductive leaflet thickening and fibrosis augment mitral regurgitation (MR), doubling heart failure and mortality. MV fibrosis post-MI is associated with excessive endothelial-to-mesenchymal transition (EMT), driven by transforming growth factor (TGF)-β overexpression. In vitro, losartan-mediated TGF-β inhibition reduces EMT of MV endothelial cells. This study tested the hypothesis that profibrotic MV changes post-MI are therapeutically accessible, specifically by losartan-mediated TGF-β inhibition. The study assessed 17 sheep, including 6 sham-operated control animals and 11 with apical MI and papillary muscle retraction short of producing MR; 6 of the 11 were treated with daily losartan, and 5 were untreated, with flexible epicardial mesh comparably limiting left ventricular (LV) remodeling. LV volumes, tethering, and MV area were quantified by using three-dimensional echocardiography at baseline and at 60 ± 6 days, and excised leaflets were analyzed by histopathology and flow cytometry. Post-MI LV dilation and tethering were comparable in the losartan-treated and untreated LV constraint sheep. Telemetered sensors (n = 6) showed no significant losartan-induced changes in arterial pressure. Losartan strongly reduced leaflet thickness (0.9 ± 0.2 mm vs. 1.6 ± 0.2 mm; p < 0.05; 0.4 ± 0.1 mm sham animals), TGF-β, and downstream phosphorylated extracellular-signal-regulated kinase and EMT (27.2 ± 12.0% vs. 51.6 ± 11.7% α-smooth muscle actin-positive endothelial cells, p < 0.05; 7.2 ± 3.5% sham animals), cellular proliferation, collagen deposition, endothelial cell activation (vascular cell adhesion molecule-1 expression), neovascularization, and cells positive for cluster of differentiation (CD) 45, a hematopoietic marker associated with post-MI valve fibrosis. Leaflet area increased comparably (17%) in constrained and losartan-treated sheep. Profibrotic changes of tethered MV leaflets post-MI can be modulated by losartan without eliminating adaptive growth. Understanding the cellular and molecular mechanisms could provide new opportunities to reduce ischemic MR. Copyright © 2017 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.
Rostagno, Carlo; Droandi, Ginevra; Rossi, Alessandra; Bevilacqua, Sergio; Romagnoli, Stefano; Montesi, Gian Franco; Stefàno, Pier Luigi
2014-01-01
Barlow disease is a still challenging pathology for the surgeon. Aim of the present study is to report anatomic abnormalities of mitral valve in patients undergoing mitral valve repair. Between January 1st, 2007, and December 31st, 2010, 85 consecutive patients (54 men and 31 women, mean age 59 +/- 14 years--range: 28-85 years) with the features of a Barlow mitral valve disease underwent mitral repair Forty seven percent of patients were in New York Heart Association functional class III or IV. Preoperative transesophageal echocardiography was compared with anatomical findings at the moment of surgery. Transthoracic echocardiography diagnosis of Barlow disease according to the criteria described by Carpentier was confirmed at anatomical inspection. Annular calcifications were found in 28 patients while 7 patients presented single or multiple clefts. A flail posterior mitral leaflet was detected in 32 subjects, while a flail anterior leaflet in 8. Elongation of chordae tendineae was demonstrated in 45 patients and chordal rupture in 31. All patients showed at trans esophageal echocardiography the typical features of Barlow disease. Seventy-seven (90.6%) patients had severe mitral valve regurgitation, in the remaining 9.4% it was moderate to severe. Transesophageal echocardiography failed to identify clefts in 2/7 and chordal rupture in 4/31. bileaflet prolapse > 2 mm, billowing valve with excess tissue and thickened leaflets > or = 3 mm, and severe annular dilatation, are characteristics of Barlow disease, however the identification of the associated and complex abnormalities of mitral valve is necessary to obtain optimal valve repair.
Fast image-based mitral valve simulation from individualized geometry.
Villard, Pierre-Frederic; Hammer, Peter E; Perrin, Douglas P; Del Nido, Pedro J; Howe, Robert D
2018-04-01
Common surgical procedures on the mitral valve of the heart include modifications to the chordae tendineae. Such interventions are used when there is extensive leaflet prolapse caused by chordae rupture or elongation. Understanding the role of individual chordae tendineae before operating could be helpful to predict whether the mitral valve will be competent at peak systole. Biomechanical modelling and simulation can achieve this goal. We present a method to semi-automatically build a computational model of a mitral valve from micro CT (computed tomography) scans: after manually picking chordae fiducial points, the leaflets are segmented and the boundary conditions as well as the loading conditions are automatically defined. Fast finite element method (FEM) simulation is carried out using Simulation Open Framework Architecture (SOFA) to reproduce leaflet closure at peak systole. We develop three metrics to evaluate simulation results: (i) point-to-surface error with the ground truth reference extracted from the CT image, (ii) coaptation surface area of the leaflets and (iii) an indication of whether the simulated closed leaflets leak. We validate our method on three explanted porcine hearts and show that our model predicts the closed valve surface with point-to-surface error of approximately 1 mm, a reasonable coaptation surface area, and absence of any leak at peak systole (maximum closed pressure). We also evaluate the sensitivity of our model to changes in various parameters (tissue elasticity, mesh accuracy, and the transformation matrix used for CT scan registration). We also measure the influence of the positions of the chordae tendineae on simulation results and show that marginal chordae have a greater influence on the final shape than intermediate chordae. The mitral valve simulation can help the surgeon understand valve behaviour and anticipate the outcome of a procedure. Copyright © 2018 John Wiley & Sons, Ltd.
Mądry, Wojciech; Karolczak, Maciej A; Grabowski, Krzysztof
2017-09-01
The authors present a case of echocardiographic diagnosis of supravalvar mitral ring (a fibromembranous structure that arose from the atrial surface of the mitral leaflets) in a child with a parachute mitral valve, a ventricular septal defect, and mild narrowing of the aortic isthmus. The supravalvar mitral stenosis is a typical but very infrequently detected element of the complex of anatomical abnormalities located within the left heart and the proximal aorta, called the Shone's complex (syndrome). Diagnosing an additional, hemodynamically significant anatomic defect during echocardiography was possible thanks to the detection of marked mobility limitation of the ring-adjacent part of the mitral valve mural leaflet as well as of an atypical image of turbulence occurring during the inflow from the left atrium to the left ventricle. The early diagnosis made it possible to perform complete correction of this complex congenital defect within a single operation.
The "Polar Light Sign" is a useful tool to detect discrete membranous supravalvular mitral stenosis.
Hertwig, Christine; Haas, Nikolaus A; Habash, Sheeraz; Hanslik, Andreas; Kececioglu, Deniz; Sandica, Eugen; Laser, Kai-Thorsten
2015-02-01
Mitral valve stenosis caused by a discrete supravalvular membrane is a rare congenital malformation haemodynamically leading to significant mitral valve stenosis. When the supravalvular mitral stenosis consists of a discrete supravalvular membrane adherent to the mitral valve, it is usually not clearly detectable by routine echocardiography. We report about the typical echocardiographic finding in three young patients with this rare form of a discrete membranous supravalvular stenosis caused by a membrane adherent to the mitral valve. These cases present a typical echocardiographic feature in colour Doppler generated by the pathognomonic supramitral flow acceleration. Whereas typical supravalvular mitral stenosis caused by cor triatriatum or a clearly visible supravalvular ring is easily detectable by echocardiography, a discrete supravalvular membrane adjacent to the mitral valve leaflets resembling valvular mitral stenosis is difficult to differentiate by routine echocardiography. In our opinion, this colour phenomenon does resemble the visual impression of polar lights in the northern hemisphere; owing to its typical appearance, it may therefore be named as "Polar Light Sign". This phenomenon may help to detect this anatomical entity by echocardiography in time and therefore improve the prognosis for repair.
Premeasured Chordal Loops for Mitral Valve Repair.
Gillinov, Marc; Quinn, Reed; Kerendi, Faraz; Gaudiani, Vince; Shemin, Richard; Barnhart, Glenn; Raines, Edward; Gerdisch, Marc W; Banbury, Michael
2016-09-01
Premeasured expanded polytetrafluoroethylene chordal loops with integrated sutures for attachment to the papillary muscle and leaflet edges facilitate correction of mitral valve prolapse. Configured as a group of 3 loops (length range 12 to 24 mm), the loops are attached to a pledget that is passed through the papillary muscle and tied. Each of the loops has 2 sutures with attached needles; these needles are passed through the free edge of the leaflet and then the sutures are tied to each other, securing the chordal loop to the leaflet. Copyright © 2016 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.
Idiopathic mitral valve disease in a patient presenting with Axenfeld-Rieger syndrome.
Antevil, Jared; Umakanthan, Ramanan; Leacche, Marzia; Brewer, Zachary; Solenkova, Natalia; Byrne, John G; Greelish, James P
2009-05-01
A 33-year-old, previously healthy male presented with respiratory distress and underwent intubation. A physical examination revealed a holosystolic murmur and pupillary abnormalities. Echocardiography revealed a flail anterior mitral valve leaflet with ruptured chordae and severe mitral regurgitation. The patient underwent urgent mitral valve replacement and tolerated the procedure well. The mitral valve leaflet was myxomatous and calcified -- an unusual find in such a patient. An ophthalmology consultation was obtained and the patient diagnosed with Axenfeld-Rieger syndrome, a disorder of the anterior ocular chamber that has been associated with cardiac malformations. The present case report adds to the body of literature which suggests a correlation between Axenfeld-Rieger syndrome and valvular abnormalities. Hence, it is believed prudent that patients with Axenfeld-Rieger syndrome should undergo echocardiographic screenings for valvular abnormalities.
NASA Astrophysics Data System (ADS)
Kaiser, Alexander
2016-11-01
The mitral valve is one of four valves in the human heart. The valve opens to allow oxygenated blood from the lungs to fill the left ventricle, and closes when the ventricle contracts to prevent backflow. The valve is composed of two fibrous leaflets which hang from a ring. These leaflets are supported like a parachute by a system of strings called chordae tendineae. In this talk, I will describe a new computational model of the mitral valve. To generate geometry, general information comes from classical anatomy texts and the author's dissection of porcine hearts. An MRI image of a human heart is used to locate the tips of the papillary muscles, which anchor the chordae tendineae, in relation to the mitral ring. The initial configurations of the valve leaflets and chordae tendineae are found by solving solving an equilibrium elasticity problem. The valve is then simulated in fluid (blood) using the immersed boundary method over multiple heart cycles in a model valve tester. We aim to identify features and mechanisms that influence or control valve function. Support from National Science Foundation, Graduate Research Fellowship Program, Grant DGE 1342536.
Live 3D TEE demonstrates and guides the management of prosthetic mitral valve obstruction.
Chahal, Mangeet; Pandya, Utpal; Adlakha, Satjit; Khouri, Samer J
2011-08-01
A 43-year-old woman, with a remote history of rheumatic mitral stenosis and a St. Jude prosthetic mitral valve replacement, presented with shortness of breath and palpitations, shortly after a long flight. On admission, atrial fibrillation with a rapid ventricular response was noted in the setting of a long history of noncompliance with her anticoagulation. Transesophageal echocardiography (TEE) demonstrated multiple laminated thrombi in the left atrial appendage. Live three-dimensional (3D) TEE confirmed this diagnosis and demonstrated an immobile posterior leaflet of the mitral prosthesis, which had direct implications in her management. She successfully underwent surgery for mitral valve replacement, left atrial appendage ligation, and a Maze procedure on the following day. The multiple thrombi within the atrial appendage were confirmed intraoperatively and pannus formation was determined to be the etiology of the leaflet immobility. © 2011, Wiley Periodicals, Inc.
Malformation of the canine mitral valve complex.
Litu, S K; Tilley, L P
1975-09-15
Twenty-nine dogs, including 13 Great Danes and 5 German Shepherd Dogs and averaging 7.3 months age, were diagnosed clinically and radiographically as having mitral regurgitation. Alterations of the mitral valve complex included enlarged anulus; short thick leaflets, with an occasional cleft; short and stout or long and thin chordae tendineae; upward malposition of atrophic or hypertrophic papillary muscles; insertion of one papillary muscle directly into one or both leaflets; and diffuse endocardial fibrosis, occasionally with jet lesions in te left atrium. Other cardiac anomalies included dysplasia of the tricuspid valve (5 dogs), patent ductus afteriosus (2 dogs), aortic stenosis (2 dogs), and ventricular septal defect (1 dog).
Jorapur, Vinod; Voudouris, Apostolos; Lucariello, Richard J
2005-07-01
We hypothesized that anterior mitral leaflet length (ALL) does not differ significantly between normal subjects and patients with functional mitral regurgitation (FMR) and hence may be used as a reference measurement to quantify annular dilatation and papillary muscle separation. We prospectively studied 50 controls, 15 patients with systolic left ventricular dysfunction (LVD) with significant FMR, and 15 patients with LVD without significant FMR. Significant MR was defined as an effective regurgitant orifice area > or = 0.2 cm2 as measured by the flow convergence method. Annular diameter, interpapillary distance, and ALL were measured, and the following ratios were derived: annular diameter indexed to ALL (ADI) and interpapillary distance indexed to ALL (IPDI). There was no significant difference in ALL among the three groups. The mean ADI was 1.26 times controls in patients with LVD without significant FMR compared to 1.33 times controls in patients with LVD with significant FMR (P = 0.06, no significant difference between groups). The mean IPDI was 1.42 times controls in patients with LVD without significant FMR compared to 2.1 times controls in patients with LVD with significant FMR (P < 0.0001, significant difference between groups). There was no significant difference in ALL between controls and patients with LVD. ALL can be used as a reference measurement to quantify annular dilatation and papillary muscle separation in patients with FMR. Interpapillary distance but not annular diameter indexed to ALL correlates with severity of FMR.
Morant, Kareem; Mikami, Yoko; Nevis, Immaculate; McCarty, David; Stirrat, John; Scholl, David; Rajchl, Martin; Giannoccaro, Peter; Kolman, Louis; Heydari, Bobby; Lydell, Carmen; Howarth, Andrew; Grant, Andrew; White, James A
2017-08-01
We sought to examine whether elongation of the mitral valve leaflets in patients with hypertrophic cardiomyopathy (HCM) is synergistic to septal wall thickness (SWT) in the development of left ventricular outflow tract obstruction (LVOTO). HCM is a common genetic cardiac disease characterized by asymmetric septal hypertrophy and predisposition towards LVOTO. It has been reported that elongation of the mitral valve leaflets may be a primary phenotypic feature and contribute to LVOTO. However, the relative contribution of this finding versus SWT has not been studied. 152 patients (76 with HCM and 76 non-diseased age, race and BSA-matched controls) and 18 young, healthy volunteers were studied. SWT and the anterior mitral valve leaflet length (AMVLL) were measured using cine MRI. The combined contribution of these variables (SWT × AMVLL) was described as the Septal Anterior Leaflet Product (SALP). Peak LVOT pressure gradient was determined by Doppler interrogation and defined as "obstructive" if ≥ 30 mmHg. Patients with HCM were confirmed to have increased AMVLL compared with controls and volunteers (p < 0.01). Among HCM patients, both SWT and SALP were significantly higher in patients with LVOTO (N = 17) versus without. SALP showed modest improvement in predictive accuracy for LVOTO (AUC = 0.81) among the HCM population versus SWT alone (AUC = 0.77). However, in isolated patients this variable identified patients with LVOTO despite modest SWT. Elongation of the AMVLL is a primary phenotypic feature of HCM. While incremental contributions to LVOTO appear modest at a population level, specific patients may have dominant contribution to LVOTO. The combined marker of SALP allows for maintained identification of such patients despite modest increases in SWT.
Menciotti, G; Borgarelli, M; Aherne, M; Wesselowski, S; Häggström, J; Ljungvall, I; Lahmers, S M; Abbott, J A
2017-04-01
To assess differences in morphology of the mitral valve (MV) between healthy dogs and dogs affected by myxomatous mitral valve disease (MMVD) using real-time transthoracic three-dimensional echocardiography (RT3DE). Thirty-four were normal dogs and 79 dogs were affected by MMVD. Real-time transthoracic three-dimensional echocardiography mitral datasets were digitally recorded and analyzed using dedicated software. The following variables were obtained and compared between healthy dogs and dogs with MMVD at different stages: antero-posterior annulus diameter, anterolateral-posteromedial annulus diameter, commissural diameter, annulus height, annulus circumference, annulus area, anterior leaflet length, anterior leaflet area, posterior leaflet length, posterior leaflet area, non-planar angle, annulus sphericity index, tenting height, tenting area, tenting volume, the ratio of annulus height and commissural diameter. Dogs with MMVD had a more circular MV annulus compared to healthy dogs as demonstrated by an increased annulus sphericity index (p=0.0179). Affected dogs had a less saddle-shaped MV manifest as a decreased annulus height to commissural width ratio (p=0.0004). Tenting height (p<0.0001), area (p<0.0001), and volume (p<0.0001) were less in affected dogs. Real-time transthoracic three-dimensional echocardiography analysis demonstrated that dogs affected by MMVD had a more circular and less saddle-shaped MV annulus, as well as reduced tenting height area and volume, compared to healthy dogs. Multiple variables differed between dogs at different stages of MMVD. Diagnostic and prognostic utility of these variables, and the significance of these changes in the pathogenesis and natural history of MMVD, require further attention. Copyright © 2017 Elsevier B.V. All rights reserved.
Mitral regurgitation after previous aortic valve surgery for bicuspid aortic valve insufficiency.
Girdauskas, Evaldas; Disha, Kushtrim; Espinoza, Andres; Misfeld, Martin; Reichenspurner, Hermann; Borger, Michael A; Kuntze, Thomas
2017-06-01
Regurgitant bicuspid aortic valves (BAV) are reported to be associated with myxomatous degeneration of the anterior mitral leaflet. We examined the risk of late new-onset mitral regurgitation (MR) in patients who underwent aortic valve/aortic root surgery for BAV regurgitation and concomitant root dilatation. A total of 97 consecutive patients (47±11 years, 94% men) were identified from our institutional BAV database (N.=640) based on the following criteria: 1) BAV regurgitation; 2) aortic root diameter >40 mm; 3) no relevant mitral valve disease (i.e., MR<2+) and no simultaneous mitral intervention at the time of BAV surgery. All patients underwent isolated aortic valve replacement (AVR subgroup, N.=59) or aortic root replacement with a composite graft (i.e., for root aneurysm >50 mm) (ARR subgroup, N.=38) from 1995 through 2008. Echocardiographic follow-up (1009 patient-years) was obtained for all 96 (100%) hospital survivors. The primary endpoint was freedom from new-onset MR>2+ and redo mitral valve surgery. Nine patients (9.4%) showed new-onset MR>2+ after mean echocardiographic follow-up of 10.4±4.0 years postoperatively. Myxomatous degeneration and prolapse of the anterior mitral leaflet was found in all 9 patients, and the posterior leaflet was involved in 3 of them. Two patients (2%) in AVR subgroup underwent re-do mitral surgery. No MR>2+ occurred in ARR subgroup. Freedom from MR>2+ or mitral surgery at 15 years was significantly lower in AVR subgroup vs. ARR subgroup (i.e., 38% vs. 100%, P=0.01). The risk of new-onset MR is significantly increased in patients with BAV regurgitation and aortic root dilatation who undergo isolated AVR rather than root replacement. The mechanism by which aortic root replacement may prevent the occurrence of late MR in BAV root phenotype patients is to be determined.
Patzelt, Johannes; Zhang, Yingying; Magunia, Harry; Ulrich, Miriam; Jorbenadze, Rezo; Droppa, Michal; Zhang, Wenzhong; Lausberg, Henning; Walker, Tobias; Rosenberger, Peter; Seizer, Peter; Gawaz, Meinrad; Langer, Harald F
2017-08-01
Improved mitral valve leaflet coaptation with consecutive reduction of mitral regurgitation (MR) is a central goal of percutaneous mitral valve repair (PMVR) with the MitraClip® system. As influences of PMVR on mitral valve geometry have been suggested before, we examined the effect of the procedure on mitral annular size in relation to procedural outcome. Geometry of the mitral valve annulus was evaluated in 183 patients undergoing PMVR using echocardiography before and after the procedure and at follow-up. Mitral valve annular anterior-posterior (ap) diameter decreased from 34.0 ± 4.3 to 31.3 ± 4.9 mm (P < 0.001), and medio-lateral (ml) diameter from 33.2 ± 4.8 to 32.4 ± 4.9 mm (P < 0.001). Accordingly, we observed an increase in MV leaflet coaptation after PMVR. The reduction of mitral valve ap diameter showed a significant inverse correlation with residual MR. Importantly, the reduction of mitral valve ap diameter persisted at follow-up (31.3 ± 4.9 mm post PMVR, 28.4 ± 5.3 mm at follow-up). This study demonstrates mechanical approximation of both mitral valve annulus edges with improved mitral valve annular coaptation by PMVR using the MitraClip® system, which correlates with residual MR in patients with MR. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2017. For permissions, please email: journals.permissions@oup.com.
Balloon valvuloplasty of congenital mitral stenosis.
Arndt, Jason W; Oyama, Mark A
2013-06-01
Radiographic, echocardiographic, fluoroscopic, and angiographic images from 2 dogs with severe congenital mitral valve stenosis that underwent cardiac catheterization and balloon valvuloplasty are presented. Both dogs displayed systolic doming of the mitral valve leaflets, increased diastolic pressure gradient across the left atrium and ventricle, and decreased mitral inflow E to F slope. Balloon valvuloplasty was performed on both dogs using atrial transeptal puncture. Copyright © 2013 Elsevier B.V. All rights reserved.
Transapical endovascular implantation of neochordae using a suction and suture device.
Maisano, Francesco; Michev, Iassen; Rowe, Stanton; Addis, Alessandro; Campagnol, Marino; Guidotti, Andrea; Colombo, Antonio; Alfieri, Ottavio
2009-07-01
Neochordae implantation is a standard method for treatment of mitral valve prolapse. We describe a transcatheter technology enabling transapical endovascular chordal implantation. Six adult pigs were anesthetized. Two 10F sheaths were introduced in the femoral vessels for monitoring and intracardiac echo. After midline sternotomy, the pericardium was opened, the apex was punctured inside two 2-0 polypropylene purse strings. A 0.035 in J tipped guidewire was introduced in the left ventricle and an ultra stiff 14F sheath (guide catheter) inserted through the apex. A suction-and-suture device was introduced in the left ventricle. The mitral valve was crossed under echo guidance. Using suction, either the anterior (two cases) or posterior (four cases) leaflet was captured and a loop of 4-0 polypropylene was thrown at the edge of the leaflet. The loop, with a pledget, was exteriorized through the introducer. The introducer was removed and the purse-string tied. Under echo guidance, the neochordae suture was pulled and tied over a pledget to evoke leaflet tethering. The animals were sacrificed and gross anatomy reviewed. Leaflet capture was feasible in the intended location in all cases. Following suture tethering, variable degrees of MR were obtained. At gross anatomy, the neochordae were positioned at 1-4mm from the leaflet free edge, and were firmly attached to the leaflets. Transcatheter endovascular neochordae implantation is feasible. A prolapse model is needed to further demonstrate feasibility under pathologic conditions. The apical approach allows easy and direct route to transcatheter beating heart minimally invasive mitral repair.
Rapid pannus formation after few months of obstructing aortic mechanical prosthesis.
Al-Alao, Bassel; Simoniuk, Urszula; Heron, Brian; Parissis, Haralabos
2015-11-01
We report a rare case of a prosthetic aortic valve obstruction due to pannus formation only 3 months following aortic and mitral valve replacement. Fragments of asymmetrical pannus formation affected one of the leaflets of the bi-leaflet mechanical valve; the leaflet appeared immobile due to pannus ingrowth into the mechanical skeleton resulting in encroachment of the leaflet, which in turn became immobile. The patient successfully underwent emergency redo-aortic valve replacement.
Occluder closing behavior: a key factor in mechanical heart valve cavitation.
Wu, Z J; Wang, Y; Hwang, N H
1994-04-01
A laser sweeping technique developed in this laboratory was found to be capable of monitoring the leaflet closing motion with microsecond precision. The leaflet closing velocity was measured inside the last three degrees before impact. Mechanical heart valve (MHV) leaflets were observed to close with a three-phase motion; the approaching phase, the decelerating phase, and the rebound phase, all of which take place within one to two milliseconds. The leaflet closing behavior depends mainly on the leaflet design and the hinge mechanism. Bileaflet and monoleaflet types of mechanical heart valves were tested in the mitral position in a physiologic mock circulatory flow loop, which incorporated a computer-controlled magnetic drive and an adjustable afterload system. The test loop was tuned to produce physiologic ventricular and aortic pressure wave forms at 70-120 beats/min, with the maximum ventricular dp/dt varying between 1500-5600 mmHg/sec. The experiments were conducted by controlling the cardiac output at a constant level between 2.0-9.0 liters/min. The measured time-displacement curve of each tested MHV leaflet and its geometry were taken as the input for computation of the squeeze flow field in the narrow gap space between the approaching leaflet and the valve housing. The results indicated rapid build-up of both the pressure and velocity in the gap field within microsecs before the impact. The pressure build-up in the gap space is apparently responsible for the leaflet deceleration before the impact. When the concurrent water hammer pressure reduction at closure was combined with the high energy squeeze jet ejected from the gap space, there were strong indications of the environment which favors micro cavitation inceptions in certain types of MHV.
An experimental-computational analysis of MHV cavitation: effects of leaflet squeezing and rebound.
Makhijani, V B; Yang, H Q; Singhal, A K; Hwang, N H
1994-04-01
A combined experimental-computational study was performed to investigate the flow mechanics which could cause cavitation during the squeezing and rebounding phases of valve closure in the 29 mm mitral bileaflet Edwards-Duromedics (ED) mechanical heart valve (MHV). Leaflet closing motion was measured in vitro, and input into a computational fluid mechanics software package, CFD-ACE, to compute flow velocities and pressures in the small gap space between the occluder tip and valve housing. The possibility of cavitation inception was predicted when fluid pressures dropped below the saturated vapor pressure for blood plasma. The computational analysis indicated that cavitation is more likely to be induced during valve rebound rather than the squeezing phase of valve closure in the 29 mm ED-MHV. Also, there is a higher probability of cavitation at lower values of the gap width at the point of impact between the leaflet tip and housing. These predictions of cavitation inception are not likely to be significantly influenced by the water-hammer pressure gradient that develops during valve closure.
Retrieval of a leaflet escaped in a Tri-technologies bileaflet mechanical prosthetic valve.
Cianciulli, Tomás F; Lax, Jorge A; Saccheri, María C; Guidoin, Robert; Salvado, César M; Fernández, Adrián J; Prezioso, Horacio A
2008-01-01
The escape of the prosthetic heart valve disc is one of the causes of prosthetic dysfunction that requires emergency surgery. The removal of the embolized disc should be carried out because of the risk of a progressive extrusion on the aortic wall. Several imaging techniques can be used for the detection of the missing disc localization. In this report we describe a 32-year-old man who underwent mitral valve replacement with a Tri-technologies bileaflet valve three years ago, and was admitted in cardiogenic shock. Transesophageal echocardiography showed acute-onset massive mitral regurgitation. The patient underwent emergency replacement of the prosthetic valve. Only one of the two leaflets remained in the removed prosthetic valve. The missing leaflet could not be found within the cardiac cavity. The abdominal fluoroscopic study and plain radiography were unable to detect the escaped leaflet. The abdominal computed tomography scan and the ultrasound showed the escaped leaflet in the terminal portion of the aortic bifurcation. To retrieve the embolized disc laparotomy and aortotomy were performed three months later. The escaped leaflet shows a fracture of one of the pivot systems caused by structural failure. This kind of failure mode is usually the result of high stress concentration.
Chiappini, Bruno; Gregorini, Renato; De Remigis, Franco; Petrella, Licia; Villani, Carmine; Di Pietrantonio, Fabrizio; Pavicevic, Srdan; Mazzola, Alessandro
2009-08-01
The gold standard for the surgical treatment of prolapse of the posterior leaflet of the mitral valve (MV) for degenerative myxomatous disease has been represented by the quadrangular resection of the leaflet, according to the Carpentier technique. Since 2006 we performed a triangular resection of the prolapsing leaflet in 20 patients with myxomatous mitral regurgitation (MR). Seventeen patients (85%) underwent the triangular resection of P2; one patient (5%) had a triple scallops triangular resection (P1, P2, P3) and two (10%) a double scallops (P2, P3) resection. In this study, we report the immediate and mid-term clinical and echocardiographic results of a cohort of 20 patients, who underwent this technique. Thirty-day mortality was 0. Acute renal failure occurred in three patients (15%) and they resolved with conservative management. One patient (5%) required re-exploration for bleeding. At the mean follow-up of 13.1+/-4.2 months survival was 95%; one patient died of lymphoma during the follow-up time. All the cases were in New York Heart Association (NYHA) class I. Nineteen survivors underwent transthoracic echocardiography (TTE) (5), or transesophageal echocardiography (TEE) (13), performed by two skilled cardiologists. All patients showed no or trivial MV regurgitation. We believe that triangular resection of posterior MV leaflet (PMVL) provides excellent mid-term results providing the surgeon with a reliable and reproducible surgical option for myxomatous degenerative MV regurgitation.
Rare Combination of Pathologies Causing Mitral Stenosis and Mitral Regurgitation: A Case Report.
Nair, Anupama K; Chowdhuri, Kuntal Roy; Radhakrishnan, Sitaraman; Iyer, Krishna S; Saxena, Manish
2018-01-01
A supramitral ring is a rare cause of mitral stenosis, while an isolated mitral valve cleft is a rare cause of congenital mitral regurgitation. Fortunately, both the lesions are known to have good outcomes after surgical correction. Although each is known to be associated with a variety of other structural heart defects, their coexistence has not been reported previously. We report a case of a three- and half-year-old boy detected to have a rare combination of supramitral ring producing severe mitral stenosis with a coexisting cleft in the anterior leaflet of mitral valve causing severe mitral regurgitation. The patient underwent successful surgical repair with resolution of both mitral stenosis and regurgitation.
Zanobini, Marco; Ricciardi, Gabriella; Mammana, Francesco Liborio; Kassem, Samer; Poggio, Paolo; Di Minno, Alessandro; Cavallotti, L; Saccocci, Matteo
2017-09-01
Leaflet resection represents the reference standard for surgical treatment of mitral valve (MV) regurgitation. New approaches recently proposed place emphasis on respecting, rather than resecting, the leaflet tissue to avoid the drawbacks of the 'resection' approach. The lateral dislocation of mid portion of mitral posterior leaflet (P2) technique for MV repair is a nonresectional technique in which the prolapsed P2 segment is sutured to normal P1 segment. Our study evaluates the effectiveness of this technique. We performed the procedure on seven patients. Once ring annular sutures were placed, the prolapsed P2 segment was dislocated toward the normal P1 segment with a rotation of 90° and without any resection. If present, residual clefts between P2 and P3 segments were closed. Once the absence of residual mitral regurgitation is confirmed by saline pressure test, ring annuloplasty was completed. The valve was evaluated using transesophageal echocardiography in the operating room and by transthoracic echocardiography before discharge. At the last follow-up visit, transthoracic echocardiography revealed no mitral regurgitation and normal TRANSVALVULAR gradients. The lateral dislocation of P2 is an easily fine-tuned technique for isolated P2 prolapse, with the advantage of short aortic cross-clamp and cardiopulmonary bypass times. We think it might be very favorable in older and frail patients. Long-term follow-up is necessary to assess the durability of this technique.
Wróbel, Krzysztof; Kurnicka, Katarzyna; Zygier, Marcin; Dyk, Wojciech; Wojdyga, Ryszard; Zieliński, Dariusz; Jarzębska, Małgorzata; Juraszyński, Zbigniew; Lichodziejewska, Barbara; Pruszczyk, Piotr; Biederman, Andrzej; Speziali, Giovanni; Kasten, Uwe
2017-01-01
Artificial chord implantation to repair a flail or prolapsing mitral valve leaflet requires open heart surgery and cardiopulmonary bypass. Transapical off-pump artificial chordae implantation is a new surgical technique proposed to treat degenerative mitral valve regurgitation. The procedure is performed using the NeoChord DS1000 system (NeoChord, Inc., St. Louis Park, MN, USA), which facilitates both implantation and lenght adjustment of the artificial chordae under two (2D)- and three (3D)-dimensional transoesophageal echocardiographic (TEE) guidance on a beating heart. Two male patients aged 60 and 55 years with severe mitral regurgitation due to posterior leaflet prolapse underwent transapical off-pump artificial chordae implantation on September 3, 2015. The procedure was performed by left minithoracotomy under general anaesthesia in a cardiac surgical theatre, using 2D and 3D TEE guidance. Early procedural success as confirmed by 3D TEE was achieved in both patients, with implantation of 6 artificial chordae in the first patient and 3 artificial chordae in the second patient. Both procedures were uneventful, and no postoperative complications were noted. The patients were discharged home on the 8th and 6th postoperative day, respectively. The NeoChord DS1000 system allows both implantation and lenght adjustment of artificial chordae under 2D and 3D TEE guidance on a beating heart. Our initial experience in 2 patients with posterior mitral leaflet prolapse indicates that the procedure is feasible and safe.
Collagen birefringence assessment in heart chordae tendineae through PS-OCT
NASA Astrophysics Data System (ADS)
Real, Eusebio; Revuelta, José M.; González-Vargas, Nieves; Pontón, Alejandro; Calvo-Díez, Marta; López-Higuera, José M.; Conde, Olga M.
2017-02-01
Degenerative mitral regurgitation is a serious and frequent human heart valve disease. Malfunctioning of this valve brings the left-sided heart through a significant increase of pressure and volume overload. Severe degenerative mitral incompetence generally requires surgical repair or valve replacement with a bioprosthesis or mechanical heart valve. Degenerative disease affects the leaflets or/and the chordae tendineae, which link both leaflets to the papillary muscles. During mitral valve surgical repair, reconstruction of the valve leaflets, annulus and chordae are provided to prevent postoperative recurrence of valve regurgitation. The operative evaluation of the diseased and apparently normal chordae tendineae mainly depends of the surgeońs experience, without any other objective diagnosis tool. In this work, PS-OCT (Polarization Sensitive-Optical Coherence Tomography) is applied for the first time to evaluate the pathological condition of human chordae coming from the mitral valve. It consists on a prospective study to test the viability of this technique for the evaluation of the collagen core of chords. This core presents a strong birefringence due to the longitudinal and organized arrangement of its collagen bundles. Different densities and organizations of the collagen core translate into different birefringence indicators whose measurement become an objective marker of the core structure. Ex-vivo mitral degenerative chordae tendineae have been analyzed with PS-OCT. Intensity OCT is used to obtain complementary morphological information of the chords. Birefringence results correlate with the previously reported values for human tendinous tissue.
Robotic artificial chordal replacement for repair of mitral valve prolapse.
Brunsting, Louis A; Rankin, J Scott; Braly, Kimberly C; Binford, Robert S
2009-07-01
Artificial chordal replacement (ACR) has emerged as a superior method of mitral valve repair with excellent early and late efficacy. It is also ideal to combine with robotic techniques for correction of mitral prolapse, and this article presents a current method of robotic Gore-Tex ACR. Patients with isolated posterior leaflet prolapse are approached with the fourth-generation DaVinci robotic system and endoaortic balloon occlusion. A pledgetted anchor stitch is placed in a papillary muscle, and a 2-o Gore-Tex suture is passed through the anchor pledget. After full annuloplasty ring placement, the Gore-Tex suture is woven into the prolapsing segment and positioned temporarily with robotic forceps. Chordal length is then "adjusted" by lengthening or shortening the temporary knot over 1-cm increments as the valve is tested by injection of cold saline into the ventricle. After achieving good leaflet position and valve competence, the chord is tied permanently. The "adjustable" ACR procedure preserves leaflet surface area and produces a competent valve in the majority of patients. Postoperative transesophageal echo shows a large surface area of coaptation. Patient recovery is facilitated by the minimally invasive approach, while long-term stability of similar open ACR techniques have been excellent with a 2% to 3% failure rate over 10 years of follow-up. Robotic Gore-Tex ACR without leaflet resection is a reproducible procedure that simplifies mitral repair for prolapse. The outcomes observed in early robotic applications have been excellent. It is suggested that most patients with simple prolapse might validly be approached in this manner.
Transcatheter mitral direct annuloplasty: state of the art.
Maisano, F; Kuck, K H
2014-06-01
Transcatheter mitral interventions are emerging as a novel therapy for patients with severe symptomatic mitral regurgitation who are deemed to be high risk or inoperable. Surgical treatment of mitral regurgitation includes a wide spectrum of therapies, ranging from leaflet and annular repair, to mitral valve replacement. Annuloplasty plays a fundamental role in open heart mitral valve repair, since it is associated with longer durability and higher degree of mitral regurgitation reduction. Direct annuloplasty is the interventional methodology most closely reproducing open heart annular repair. We describe the challenges and opportunities of the most promising technologies currently under development which will become available in clinical practice in the next future.
Outlet strut fracture and leaflet escape of Bjork-Shiley convexo-concave valve.
Uchino, Gaku; Yoshida, Hideo; Sakoda, Naoya; Hattori, Shigeru; Kawabata, Takuya; Saiki, Munehiro; Fujita, Yasufumi; Yunoki, Keiji; Hisamochi, Kunikazu; Mine, Yoshinari
2017-06-01
Prosthetic valve fracture is a serious complication and may arise in patient post-valve replacement. We experienced an outlet strut fracture and leaflet escape of a Bjork-Shiley convexo-concave valve. We performed an emergency redo mitral valve replacement and successfully retrieved the fractured strut and escaped leaflet from superficial femoral artery and the abdominal aorta. The patient showed an uneventful postoperative recovery.
Leopaldi, Alberto M; Wrobel, Krzysztof; Speziali, Giovanni; van Tuijl, Sjoerd; Drasutiene, Agne; Chitwood, W Randolph
2018-01-01
Previously, cardiac surgeons and cardiologists learned to operate new clinical devices for the first time in the operating room or catheterization laboratory. We describe a biosimulator that recapitulates normal heart valve physiology with associated real-time hemodynamic performance. To highlight the advantages of this simulation platform, transventricular extruded polytetrafluoroethylene artificial chordae were attached to repair flail or prolapsing mitral valve leaflets. Guidance for key repair steps was by 2-dimensional/3-dimensional echocardiography and simultaneous intracardiac videoscopy. Multiple surgeons have assessed the use of this biosimulator during artificial chordae implantations. This simulation platform recapitulates normal and pathologic mitral valve function with associated hemodynamic changes. Clinical situations were replicated in the simulator and echocardiography was used for navigation, followed by videoscopic confirmation. This beating heart biosimulator reproduces prolapsing mitral leaflet pathology. It may be the ideal platform for surgeon and cardiologist training on many transcatheter and beating heart procedures. Copyright © 2017 The American Association for Thoracic Surgery. All rights reserved.
Oktay, Ahmet Afşşin; Gilliland, Yvonne E; Lavie, Carl J; Ramee, Stephen J; Parrino, Patrick E; Bates, Michael; Shah, Sangeeta; Cash, Michael E; Dinshaw, Homeyar; Qamruddin, Salima
2017-03-01
Degenerative mitral stenosis (DMS) is characterized by decreased mitral valve (MV) orifice area and increased transmitral pressure gradient due to chronic noninflammatory degeneration and subsequent calcification of the fibrous mitral annulus and the MV leaflets. The "true" prevalence of DMS in the general population is unknown. DMS predominantly affects elderly individuals, many of whom have multiple other comorbidities. Transcatheter MV replacement techniques, although their long-term outcomes are yet to be tested, have been gaining popularity and may emerge as more effective and relatively safer treatment option for patients with DMS. Echocardiography is the primary imaging modality for evaluation of DMS and related hemodynamic abnormalities such as increased transmitral pressure gradient and pulmonary arterial pressure. Classic echocardiographic techniques used for evaluation of mitral stenosis (pressure half time, proximal isovelocity surface area, continuity equation, and MV area planimetry) lack validation for DMS. Direct planimetry with 3-dimensional echocardiography and color flow Doppler is a reasonable technique for determining MV area in DMS. Cardiac computed tomography is an essential tool for planning potential interventions or surgeries for DMS. This article reviews the current concepts on mitral annular calcification and its role in DMS. We then discuss the epidemiology, natural history, differential diagnosis, mechanisms, and echocardiographic assessment of DMS. Copyright © 2017 Elsevier Inc. All rights reserved.
Mitral Valve Chordae Tendineae: Topological and Geometrical Characterization.
Khalighi, Amir H; Drach, Andrew; Bloodworth, Charles H; Pierce, Eric L; Yoganathan, Ajit P; Gorman, Robert C; Gorman, Joseph H; Sacks, Michael S
2017-02-01
Mitral valve (MV) closure depends upon the proper function of each component of the valve apparatus, which includes the annulus, leaflets, and chordae tendineae (CT). Geometry plays a major role in MV mechanics and thus highly impacts the accuracy of computational models simulating MV function and repair. While the physiological geometry of the leaflets and annulus have been previously investigated, little effort has been made to quantitatively and objectively describe CT geometry. The CT constitute a fibrous tendon-like structure projecting from the papillary muscles (PMs) to the leaflets, thereby evenly distributing the loads placed on the MV during closure. Because CT play a major role in determining the shape and stress state of the MV as a whole, their geometry must be well characterized. In the present work, a novel and comprehensive investigation of MV CT geometry was performed to more fully quantify CT anatomy. In vitro micro-tomography 3D images of ovine MVs were acquired, segmented, then analyzed using a curve-skeleton transform. The resulting data was used to construct B-spline geometric representations of the CT structures, enriched with a continuous field of cross-sectional area (CSA) data. Next, Reeb graph models were developed to analyze overall topological patterns, along with dimensional attributes such as segment lengths, 3D orientations, and CSA. Reeb graph results revealed that the topology of ovine MV CT followed a full binary tree structure. Moreover, individual chords are mostly planar geometries that together form a 3D load-bearing support for the MV leaflets. We further demonstrated that, unlike flow-based branching patterns, while individual CT branches became thinner as they propagated further away from the PM heads towards the leaflets, the total CSA almost doubled. Overall, our findings indicate a certain level of regularity in structure, and suggest that population-based MV CT geometric models can be generated to improve current MV repair procedures.
Increased frequency of mitral valve prolapse in patients with deviated nasal septum.
Arslan, Hasan Huseyin; Aparci, Mustafa; Arslan, Zekeriya; Ozturk, Cengiz; Isilak, Zafer; Balta, Sevket; Celik, Turgay; Iyisoy, Atila
2015-07-01
Any abnormality of collagen may affect the tissues with higher collagen content, e.g., joints, heart valves, and great arteries. Mitral valve prolapse (MVP) is a characteristic of generalized collagen abnormality. Nasal septum (NS) is constituted by osseous and cartilaginous septums that are highly rich in collagen. We evaluated the co-existence of deviation of NS (DNS) in patients with MVP. We retrospectively evaluated the recordings of echocardiographic and nasal examinations of subjects with MVP and DNS. We analyzed the features of MVP and anatomical classification of DNS among subjects. Totally, 74 patients with DNS and 38 subjects with normal nasal passage were enrolled to the study. Presence of MVP was significantly higher in patients with DNS compared to normal subjects (63 vs 26%, p < 0.001). Prolapse of anterior, posterior and both leaflets was higher in patients with DNS. Thickness of anterior mitral leaflet was significantly increased in patients with DNS (3.57 ± 0.68 vs 4.59 ± 1.1 mm, p < 0.001) compared to normal subjects. Type I, II, and III, IV DNS were higher in frequency in patients with MVP while type V and VI were higher in normal subjects. DNS is highly co-existent with MVP and increased thickness of mitral anterior leaflet. Generalized abnormality of collagen which is the main component of mitral valves and nasal septum may be accounted for co-existence of MVP and DNS. Also co-existence of them may exaggerate the symptoms of patients with MVP due to limited airflow through the nasal passage.
Kuppahally, Suman S; Paloma, Allan; Craig Miller, D; Schnittger, Ingela; Liang, David
2008-01-01
A novel multiplanar reformatting (MPR) technique in three-dimensional transthoracic echocardiography (3D TTE) was used to precisely localize the prolapsed lateral segment of posterior mitral valve leaflet in a patient symptomatic with mitral valve prolapse (MVP) and moderate mitral regurgitation (MR) before undergoing mitral valve repair surgery. Transesophageal echocardiography was avoided based on the findings of this new technique by 3D TTE. It was noninvasive, quick, reproducible and reliable. Also, it did not need the time-consuming reconstruction of multiple cardiac images. Mitral valve repair surgery was subsequently performed based on the MPR findings and corroborated the findings from the MPR examination.
Padala, Muralidhar; Gyoneva, Lazarina I; Thourani, Vinod H; Yoganathan, Ajit P
2014-01-01
Mitral valve geometry is significantly altered secondary to left ventricular remodeling in non-ischemic and ischemic dilated cardiomyopathies. Since the extent of remodeling and asymmetry of dilatation of the ventricle differ significantly between individual patients, the valve geometry and tethering also differ. The study aim was to determine if mitral valve geometry has an impact on the efficacy of surgical repairs to eliminate regurgitation and restore valve closure in a validated experimental model. Porcine mitral valves (n = 8) were studied in a pulsatile heart simulator, in which the mitral valve geometry can be precisely altered and controlled throughout the experiment. Baseline hemodynamics for each valve were measured (Control), and the valves were tethered in two distinct ways: annular dilatation with 7 mm apical papillary muscle (PM) displacement (Tether 1, symmetric), and annular dilatation with 7 mm apical, 7 mm posterior and 7 mm lateral PM displacement (Tether 2, asymmetric). Mitral annuloplasty was performed on each valve (Annular Repair), succeeded by anterior leaflet secondary chordal cutting (Sub-annular Repair). The efficacy of each repair in the setting of a given valve geometry was quantified by measuring the changes in mitral regurgitation (MR), leaflet coaptation length, tethering height and area. At baseline, none of the valves was regurgitant. Significant leaflet tethering was measured in Tether 2 over Tether 1, but both groups were significantly higher compared to baseline (60.9 +/- 31 mm2 for Control versus 129.7 +/- 28.4 mm2 for Tether 1 versus 186.4 +/- 36.3 mm2 for Tether 2). Consequently, the MR fraction was higher in Tether 2 group (23.0 +/- 5.7%) than in Tether 1 (10.5 +/- 5.5%). Mitral annuloplasty reduced MR in both groups, but remnant regurgitation after the repair was higher in Tether 2. After chordal cutting a similar trend was observed with trace regurgitation in Tether 1 group at 3.6 +/- 2.8%, in comparison to 18.6 +/- 4.2% in the Tether 2 group. In this experimental model, the tethering geometry of the mitral valve impacts the valve hemodynamics after annuloplasty and chordal cutting. The quantitative assessment of valve geometry may help in tailoring a repair to the specific tethering pattern.
NASA Astrophysics Data System (ADS)
Engelhardt, Sandy; Kolb, Silvio; De Simone, Raffaele; Karck, Matthias; Meinzer, Hans-Peter; Wolf, Ivo
2016-03-01
Mitral valve annuloplasty describes a surgical procedure where an artificial prosthesis is sutured onto the anatomical structure of the mitral annulus to re-establish the valve's functionality. Choosing an appropriate commercially available ring size and shape is a difficult decision the surgeon has to make intraoperatively according to his experience. In our augmented-reality framework, digitalized ring models are superimposed onto endoscopic image streams without using any additional hardware. To place the ring model on the proper position within the endoscopic image plane, a pose estimation is performed that depends on the localization of sutures placed by the surgeon around the leaflet origins and punctured through the stiffer structure of the annulus. In this work, the tissue penetration points are tracked by the real-time capable Lucas Kanade optical flow algorithm. The accuracy and robustness of this tracking algorithm is investigated with respect to the question whether outliers influence the subsequent pose estimation. Our results suggest that optical flow is very stable for a variety of different endoscopic scenes and tracking errors do not affect the position of the superimposed virtual objects in the scene, making this approach a viable candidate for annuloplasty augmented reality-enhanced decision support.
Fukamachi, Kiyotaka; Popović, Zoran B; Inoue, Masahiro; Doi, Kazuyoshi; Schenk, Soren; Ootaki, Yoshio; Kopcak, Michael W; McCarthy, Patrick M
2004-03-01
The objective of this study was to evaluate the changes in mitral annular and left ventricular dimensions and left ventricular pressure-volume relations produced by the Myocor Coapsys device that has been developed to treat functional mitral regurgitation (MR) off-pump. The Coapsys device, which consists of anterior and posterior epicardial pads connected by a sub-valvular chord, was implanted in seven dogs with functional MR resulting from pacing induced cardiomyopathy. The Coapsys device was then sized by drawing the posterior leaflet and annulus toward the anterior leaflet. During sizing, MR grade was assessed using color flow Doppler echocardiography. Final device size was selected when MR was eliminated or minimized. Following implantation, heart failure was maintained by continued pacing for a period of 8 weeks. Mitral annular and left ventricular dimensions and left ventricular pressure-volume relations were evaluated by two-dimensional echocardiography and a conductance catheter, respectively, at pre-sizing, post-sizing, and after 8 weeks. All implants were performed on beating hearts without cardiopulmonary bypass. Mean MR grade was reduced from 2.9+/-0.7 at pre-sizing to 0.7+/-0.8 at post-sizing (P<0.001), and was maintained at 0.8+/-0.8 after 8 weeks (P<0.01). The septal-lateral dimensions were significantly reduced at both mitral annular level [2.4+/-0.2 cm at pre-sizing, 1.5+/-0.3 cm at post-sizing (P<0.001) and 1.8+/-0.3 cm after 8 weeks (P<0.05)] and mid-papillary level [4.1+/-0.4 cm at pre-sizing, 2.4+/-0.2 cm at post-sizing (P<0.001) and 3.3+/-0.4 cm after 8 weeks (P<0.001)]. The end-systolic pressure-volume relation shifted leftward at post-sizing with a significantly steeper slope (P=0.03). There was a significant (P=0.03) leftward shift of the end-diastolic pressure-volume relation at post-sizing. After 8 weeks, these changes in pressure-volume relations tended to return to pre-sizing relations. The Coapsys device significantly reduced MR by treating both the mitral annular dilatation and the papillary muscle displacement. Despite these significant dimensional changes, the Coapsys device did not negatively affect the left ventricular pressure-volume relations.
Singh, Gagan D; Smith, Thomas W; Rogers, Jason H
2017-06-01
The goal of MitraClip therapy is to achieve mitral regurgitation reduction without iatrogenic creation of clinically significant MS. In some series, up to 35% of patients are left with mild MS. There are many contributors to the final transmitral gradient achieved in patients undergoing MitraClip therapy. Additionally, there are many modalities used for the intraprocedural assessment of MS with no one modality considered to be the benchmark. We herein describe a case which illustrates the dynamic nature of clip-leaflet interaction, and review intraprocedural techniques for invasively and noninvasively assessing MS. Copyright © 2016 Elsevier Inc. All rights reserved.
Intravalvular Implantation of Mitral Valve Prostheses
Cooley, Denton A.; Ingram, Michael T.
1987-01-01
We describe a technique of intravalvular implantation of a low-profile prosthesis that has been used in nine patients with mitral valve lesions. This technique preserves the anterior and posterior chordae and papillary mechanisms, which may decrease the incidence of postoperative left ventricular dysfunction that has been noted following standard mitral valve replacement. The technique may also be useful in some patients with aortic and tricuspid regurgitation when the annulus and leaflets are relatively normal pathologically. (Texas Heart Institute Journal 1987;14:188-193) PMID:15229740
Mitral valve-sparing procedures and prosthetic heart valve failure: A case report
Khan, Nasir A; Butany, Jagdish; Leong, Shaun W; Rao, Vivek; Cusimano, Robert J; Ross, Heather J
2009-01-01
Prosthetic heart valve dysfunction due to thrombus or pannus formation can be a life-threatening complication. The present report describes a 47-year-old woman who developed valvular cardiomyopathy after chorda-sparing mitral valve replacement, and subsequently underwent heart transplantation for progressive heart failure. The explanted mitral valve prosthesis showed significant thrombus and pannus leading to reduced leaflet mobility and valvular stenosis. The present report illustrates the role of the subvalvular apparatus and pannus in prosthesis dysfunction. PMID:19279993
Finite Element Analysis of Patient-Specific Mitral Valve with Mitral Regurgitation.
Pham, Thuy; Kong, Fanwei; Martin, Caitlin; Wang, Qian; Primiano, Charles; McKay, Raymond; Elefteriades, John; Sun, Wei
2017-03-01
Functional mitral regurgitation (FMR) is a significant complication of left ventricular dysfunction and strongly associated with a poor prognosis. In this study, we developed a patient-specific finite element (FE) model of the mitral apparatus in a FMR patient which included: both leaflets with thickness, annulus, chordae tendineae, and chordae insertions on the leaflets and origins on the papillary muscles. The FE model incorporated human age- and gender-matched anisotropic hyperelastic material properties, and MV closure at systole was simulated. The model was validated by comparing the FE results from valve closure simulation with the in vivo geometry of the MV at systole. It was found that the FE model could not replicate the in vivo MV geometry without the application of tethering pre-tension force in the chordae at diastole. Upon applying the pre-tension force and performing model optimization by adjusting the chordal length, position, and leaflet length, a good agreement between the FE model and the in vivo model was established. Not only were the chordal forces high at both diastole and systole, but the tethering force on the anterior papillary muscle was higher than that of the posterior papillary muscle, which resulted in an asymmetrical gap with a larger orifice area at the anterolateral commissure resulting in MR. The analyses further show that high peak stress and strain were found at the chordal insertions where large chordal tethering forces were found. This study shows that the pre-tension tethering force plays an important role in accurately simulating the MV dynamics in this FMR patient, particularly in quantifying the degree of leaflet coaptation and stress distribution. Due to the complexity of the disease, the patient-specific computational modeling procedure of FMR patients presented should be further evaluated using a large patient cohort. However, this study provides useful insights into the MV biomechanics of a FMR patient, and could serve as a tool to assist in pre-operative planning for MV repair or replacement surgical or interventional procedures.
Sturla, Francesco; Redaelli, Alberto; Puppini, Giovanni; Onorati, Francesco; Faggian, Giuseppe; Votta, Emiliano
2015-06-01
Mitral regurgitation is the most prevalent heart valve disease in the western population. When severe, it requires surgical treatment, repair being the preferred option. The edge-to-edge repair technique treats mitral regurgitation by suturing the leaflets together and creating a double-orifice valve. Due to its relative simplicity and versatility, it has become progressively more widespread. Recently, its percutaneous version has become feasible, and has raised interest thanks to the positive results of the Mitraclip(®) device. Edge-to-edge features and evolution have stimulated debate and multidisciplinary research by both clinicians and engineers. After providing an overview of representative studies in the field, here we propose a novel computational approach to the most recent percutaneous evolution of the edge-to-edge technique. Image-based structural finite element models of three mitral valves affected by posterior prolapse were derived from cine-cardiac magnetic resonance imaging. The models accounted for the patient-specific 3D geometry of the valve, including leaflet compound curvature pattern, patient-specific motion of annulus and papillary muscles, and hyperelastic and anisotropic mechanical properties of tissues. The biomechanics of the three valves throughout the entire cardiac cycle was simulated before and after Mitraclip(®) implantation, assessing the biomechanical impact of the procedure. For all three simulated MVs, Mitraclip(®) implantation significantly improved systolic leaflets coaptation, without inducing major alterations in systolic peak stresses. Diastolic orifice area was decreased, by up to 58.9%, and leaflets diastolic stresses became comparable, although lower, to systolic ones. Despite established knowledge on the edge-to-edge surgical repair, latest technological advances make its percutanoues implementation a challenging field of research. The modeling approach herein proposed may be expanded to analyze clinical scenarios that are currently critical for Mitraclip(®) implantation, helping the search for possible solutions.
Kim, Jong Hun; Kim, Tae Youn; Choi, Jong Bum; Kuh, Ja Hong
2017-01-01
Patients requiring redo cardiac surgery for diseased heart valves other than mitral valves may show increased pressure gradients and reduced valve areas of previously placed mechanical mitral valves due to subvalvular pannus formation. We treated four women who had mechanical mitral valves inserted greater than or equal to 20 years earlier and who presented with circular pannus that protruded into the lower margin of the valve ring but did not impede leaflet motion. Pannus removal improved the haemodynamic function of the mitral valve. © The Author 2016. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.
Leaflet escape in a new bileaflet mechanical valve: TRI technologies.
Bottio, Tomaso; Casarotto, Dino; Thiene, Gaetano; Caprili, Luca; Angelini, Annalisa; Gerosa, Gino
2003-05-13
Leaflet escape is a mode of structural valve failure for mechanical prostheses. This complication previously has been reported for both monoleaflet and bileaflet valve models. We report 2 leaflet escape occurrences observed in 2 patients who underwent valve replacement with a TRI Technologies valve prosthesis. At the University of Padua, between November 2000 and February 2002, 36 TRI Technologies valve prostheses (26 aortic and 10 mitral) were implanted in 34 patients (12 women and 22 men) with a mean age of 59.9+/-10.3 years (range, 30 to 75 years). There were 5 deaths: 3 in hospital, 1 early after discharge, and 1 late. Two patients experienced a catastrophic prosthetic leaflet escape; the first patient was a 52-year-old man who died 10 days after aortic valve and ascending aorta replacement, and the second was a 58-year-old man who underwent a successful emergency reoperation 20 months after mitral valve replacement. Examination of the explanted prostheses showed in both cases a leaflet escape caused by a leaflet's pivoting system fracture. Prophylactic replacement was then successfully accomplished so far in 12 patients, without evidence of structural valve failure in any of them. Among other significant postoperative complications, we observed 3 major thromboembolisms, 1 hemorrhage, and 1 paravalvular leak. These catastrophes prompted us to interrupt the implantation program, and they cast a shadow on the durability of the TRI Technologies valve prosthesis because of its high risk of structural failure.
Collagen organization in canine myxomatous mitral valve disease: an x-ray diffraction study.
Hadian, Mojtaba; Corcoran, Brendan M; Han, Richard I; Grossmann, J Günter; Bradshaw, Jeremy P
2007-10-01
Collagen fibrils, a major component of mitral valve leaflets, play an important role in defining shape and providing mechanical strength and flexibility. Histopathological studies show that collagen fibrils undergo dramatic changes in the course of myxomatous mitral valve disease in both dogs and humans. However, little is known about the detailed organization of collagen in this disease. This study was designed to analyze and compare collagen fibril organization in healthy and lesional areas of myxomatous mitral valves of dogs, using synchrotron small-angle x-ray diffraction. The orientation, density, and alignment of collagen fibrils were mapped across six different valves. The findings reveal a preferred collagen alignment in the main body of the leaflets between two commissures. Qualitative and quantitative analysis of the data showed significant differences between affected and lesion-free areas in terms of collagen content, fibril alignment, and total tissue volume. Regression analysis of the amount of collagen compared to the total tissue content at each point revealed a significant relationship between these two parameters in lesion-free but not in affected areas. This is the first time this technique has been used to map collagen fibrils in cardiac tissue; the findings have important applications to human cardiology.
Yoshida, Shohei; Fukushima, Satsuki; Miyagawa, Shigeru; Nakamura, Teruya; Yoshikawa, Yasushi; Hata, Hiroki; Saito, Shunsuke; Yoshioka, Daisuke; Domae, Keitaro; Kashiyama, Noriyuki; Yamamoto, Kouji; Shintani, Ayumi; Nakatani, Satoshi; Toda, Koichi; Sawa, Yoshiki
2017-10-25
Coronary artery bypass grafting (CABG) reduces functional mitral regurgitation (MR) associated with ischemic heart disease, although the predictive factors or mechanisms of reversibility of functional MR after CABG are not fully understood.We investigated whether mitral valve structure is associated with the outcome of functional MR after CABG.Methods and Results:From a consecutive series of 98 patients with mild-moderate functional MR preoperatively who underwent isolated CABG, we enrolled 66 patients who were followed up for >1 year postoperatively using echocardiography. The degree of MR was reduced in 34 patients (52%) postoperatively, in association with a lower rate of in-hospital treatment for cardiac failure in the long term, compared with the 32 patients (48%) with residual MR postoperatively. The patients with reduced MR postoperatively had longer estimated coaptation length and more anteriorly or centrally directed MR jets than those without reduced MR. On statistical analysis, the addition of estimated coaptation length and jet direction to the reported predictors (ejection fraction, left ventricular end-diastolic dimension, and tenting height) more accurately predicted changes in post-CABG MR than the reported 3 factors alone. Residual MR was associated with the emergence of congestive heart failure in the long term after CABG. A specific mitral valve structure, such as large mitral leaflet size or predominant tethering of the posterior leaflet, was a predictive factor for the reversibility of post-CABG functional MR.
Acquired discrete subaortic stenosis late after mitral valve replacement.
Mohan, Jagdish C; Shukla, Madhu; Mohan, Vishwas; Sethi, Arvind
2016-09-01
Although acquired left ventricular outflow obstruction has been reported in a variety of conditions, there are scant reports of its occurrence following mitral valve replacement (MVR). This study describes two female patients, who developed severe discrete subaortic stenosis, five years following MVR. In both cases, the mitral valve was replaced by a porcine Carpentier-Edwards 27-mm bioprosthesis with preservation of mitral valve leaflets. The risk of very late left ventricular outflow tract obstruction after bio-prosthetic MVR with preservation of subvalvular apparatus needs to be kept in mind in symptomatic patients. Copyright © 2016 Cardiological Society of India. Published by Elsevier B.V. All rights reserved.
Vincenti, Gabriella; Masci, Pier Giorgio; Rutz, Tobias; De Blois, Jonathan; Prša, Milan; Jeanrenaud, Xavier; Schwitter, Juerg; Monney, Pierre
2017-07-27
To quantify mitral regurgitation (MR) with CMR, the regurgitant volume can be calculated as the difference between the left ventricular (LV) stroke volume (SV) measured with the Simpson's method and the reference SV, i.e. the right ventricular SV (RVSV) in patients without tricuspid regurgitation. However, for patients with prominent mitral valve prolapse (MVP), the Simpson's method may underestimate the LV end-systolic volume (LVESV) as it only considers the volume located between the apex and the mitral annulus, and neglects the ventricular volume that is displaced into the left atrium but contained within the prolapsed mitral leaflets at end systole. This may lead to an underestimation of LVESV, and resulting an over-estimation of LVSV, and an over-estimation of mitral regurgitation. The aim of the present study was to assess the impact of prominent MVP on MR quantification by CMR. In patients with MVP (and no more than trace tricuspid regurgitation) MR was quantified by calculating the regurgitant volume as the difference between LVSV and RVSV. LVSV uncorr was calculated conventionally as LV end-diastolic (LVEDV) minus LVESV. A corrected LVESV corr was calculated as the LVESV plus the prolapsed volume, i.e. the volume between the mitral annulus and the prolapsing mitral leaflets. The 2 methods were compared with respect to the MR grading. MR grades were defined as absent or trace, mild (5-29% regurgitant fraction (RF)), moderate (30-49% RF), or severe (≥50% RF). In 35 patients (44.0 ± 23.0y, 14 males, 20 patients with MR) the prolapsed volume was 16.5 ± 8.7 ml. The 2 methods were concordant in only 12 (34%) patients, as the uncorrected method indicated a 1-grade higher MR severity in 23 (66%) patients. For the uncorrected/corrected method, the distribution of the MR grades as absent-trace (0 vs 11, respectively), mild (20 vs 18, respectively), moderate (11 vs 5, respectively), and severe (4 vs 1, respectively) was significantly different (p < 0.001). In the subgroup without MR, LVSV corr was not significantly different from RVSV (difference: 2.5 ± 4.7 ml, p = 0.11 vs 0) while a systematic overestimation was observed with LVSV uncorr (difference: 16.9 ± 9.1 ml, p = 0.0007 vs 0). Also, RVSV was highly correlated with aortic forward flow (n = 24, R 2 = 0.97, p < 0.001). For patients with severe bileaflet prolapse, the correction of the LVSV for the prolapse volume is suggested as it modified the assessment of MR severity by one grade in a large portion of patients.
Addetia, Karima; Mor-Avi, Victor; Weinert, Lynn; Salgo, Ivan S; Lang, Roberto M
2014-01-01
Differentiating between mitral valve (MV) prolapse (MVP) and MV billowing (MVB) on two-dimensional echocardiography is challenging. The aim of this study was to test the hypothesis that color-coded models of maximal leaflet displacement from the annular plane into the atrium derived from three-dimensional transesophageal echocardiography would allow discrimination between these lesions. Three-dimensional transesophageal echocardiographic imaging of the MV was performed in 50 patients with (n = 38) and without (n = 12) degenerative MV disease. Definitive diagnosis of MVP versus MVB was made using inspection of dynamic three-dimensional renderings and multiple two-dimensional cut planes extracted from three-dimensional data sets. This was used as a reference standard to test an alternative approach, wherein the color-coded parametric models were inspected for integrity of the coaptation line and location of the maximally displaced portion of the leaflet. Diagnostic interpretations of these models by two independent readers were compared with the reference standard. In all cases of MVP, the color-coded models depicted loss of integrity of the coaptation line and maximal leaflet displacement extending to the coaptation line. MVB was depicted by preserved leaflet apposition with maximal displacement away from the coaptation line. Interpretation of the 50 color-coded models by novice readers took 5 to 10 min and resulted in good agreement with the reference technique (κ = 0.81 and κ = 0.73 for the two readers). Three-dimensional color-coded models provide a static display of MV leaflet displacement, allowing differentiation between MVP and MVB, without the need to inspect multiple planes and while taking into account the saddle shape of the mitral annulus. Copyright © 2014 American Society of Echocardiography. Published by Mosby, Inc. All rights reserved.
Kagiyama, Nobuyuki; Hayashida, Akihiro; Toki, Misako; Fukuda, Shota; Ohara, Minako; Hirohata, Atsushi; Yamamoto, Keizo; Isobe, Mitsuaki; Yoshida, Kiyoshi
2017-03-01
The relationship between annular dilatation caused by atrial fibrillation (AF) and mitral regurgitation (MR) remains controversial. We hypothesized that the small ratio of total leaflet area/annulus area (TLA/AA), reflecting insufficient leaflet remodeling to annular dilatation, is a main component of MR in patients with AF. Three-dimensional transesophageal echocardiographic data of the mitral valve were analyzed in 28 AF patients with moderate or severe MR (MR group), age- and sex-matched 56 AF patients with mild or less MR (non-MR group), and 16 control subjects. AA was significantly greater in both the MR (645±126 mm 2 /m 2 , P <0.001) and non-MR groups (568±121 mm 2 /m 2 , P =0.001) compared with control subjects (444±108 mm 2 /m 2 ). However, TLA/AA was significantly smaller in the MR (1.29±0.10, P <0.001), but not in the non-MR group (1.65±0.24, P >0.99), compared with control subjects (1.70±0.29). In linear regression analysis, TLA/AA was inversely associated with the effective regurgitant orifice ( r =-0.73, P <0.001). The area under the receiver-operating-characteristics curve of TLA/AA was significantly greater than that of AA (0.95 versus 0.72, P <0.001). Multivariable analysis revealed that small TLA/AA ( P <0.001) was independently associated with significant MR, while AA was not ( P =0.26). In patients with AF, insufficient leaflet remodeling to annular dilatation, rather than crude annular dilatation, was strongly associated with the severity of MR. © 2017 American Heart Association, Inc.
Artificial chordae for degenerative mitral valve disease: critical analysis of current techniques
Ibrahim, Michael; Rao, Christopher; Athanasiou, Thanos
2012-01-01
The surgical repair of degenerative mitral valve disease involves a number of technical points of importance. The use of artificial chordae for the repair of degenerative disease has increased as a part of the move from mitral valve replacement to repair of the mitral valve. The use of artificial chordae provides an alternative to the techniques pioneered by Carpentier (including the quadrangular resection, transfer of native chordae and papillary muscle shortening/plasty), which can be more technically difficult. Despite a growth in their uptake and the indications for their use, a number of challenges remain for the use of artificial chordae in mitral valve repair, particularly in the determination of the correct length to ensure optimal leaflet coaptation. Here, we analyse over 40 techniques described for artificial chordae mitral valve repair in the setting of degenerative disease. PMID:22962321
DiBardino, Daniel J; ElBardissi, Andrew W; McClure, R Scott; Razo-Vasquez, Ozwaldo A; Kelly, Nicole E; Cohn, Lawrence H
2010-01-01
To determine the long-term outcomes of mitral valvuloplasty for myxomatous valve disease, rheumatic valve disease, and functional mitral regurgitation. A total of 1503 patients underwent mitral valvuloplasty by a single surgeon between February 1972 and April 2008 and were retrospectively reviewed for short- and long-term results. Overall mean age was 60.3 + or - 13.7 years, and 57% were male. The cause was rheumatic in 193 patients, myxomatous in 1042 patients, and ischemic and nonischemic functional mitral regurgitation in 236 patients. Ring annuloplasty was performed in 1306 patients (87%). Commissurotomy was the primary repair for rheumatic valves, posterior leaflet resection and reconstruction was the most common repair for myxomatous valves (527/1042 [51%]), and ring reduction annuloplasty was the primary operation for functional mitral regurgitation. The 30-day mortality was 19 of 1503 patients (1.3%) and significantly higher in the functional mitral regurgitation group (11/236 patients, 4.7% vs 0.5% in the rheumatic group and 0.6% in the myxomatous group, P < .01). The 10-, 20-, and 30-year survivals were similar for the rheumatic and myxomatous groups (77%, 56%, and 39% vs 79%, 62%, and 52%, respectively) but significantly less for the functional mitral regurgitation group (44%, 4%, and 0%, respectively, log-rank P < .0001). The 10- and 20-year freedom from reoperation rates were significantly better for the myxomatous group than for the rheumatic group (90% and 82% vs 66% and 34%, log-rank P < .0001), with a 30-year freedom from reoperation of only 10% for rheumatic repair. In the myxomatous group, freedom from reoperation was lower in patients with anterior leaflet pathology (P = .0008). Follow-up data to 36 years demonstrate that cause strongly determines survival and durability of mitral valvuloplasty; patients with rheumatic valve disease who survive more than 20 years require reoperation, whereas functional mitral regurgitation carries the highest short- and long-term mortality rates and lowest freedom from reoperation. Mitral valvuloplasty for myxomatous valves demonstrates the longest durability, with many patients free from reoperation at 30 years. Copyright 2010 The American Association for Thoracic Surgery. Published by Mosby, Inc. All rights reserved.
Zhang, Gang; Zhang, Fusheng; Zhu, Mei; Zhang, Wenlong; Fan, Quanxin; Zou, Chengwei; Wang, Anbiao
2011-10-01
Since 2008, 28 patients with congenital mitral regurgitation have undergone mitral valve repair with a modified edge-to-edge technique at our institution. The regurgitant mitral leaflet was sutured with a pledget-reinforced, horizontal mattress suture with No. 4-0 polypropylene on the ventricle side and a pledget-reinforced mattress suture with Gore-Tex sutures (W.L. Gore & Associates, Flagstaff, AZ) and Dacron pledgets (Chest, Shanghai) placed on the anterior and posterior annulus corresponding to the edge-to-edge suturing site. Early results are encouraging, but a longer follow-up is needed. Copyright © 2011 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.
Braunberger, E; Deloche, A; Berrebi, A; Abdallah, F; Celestin, J A; Meimoun, P; Chatellier, G; Chauvaud, S; Fabiani, J N; Carpentier, A
2001-09-18
Mitral valve repair is considered the gold standard in surgery of degenerative mitral valve insufficiency (MVI), but the long-term results (>20 years) are unknown. We reviewed the first 162 consecutive patients who underwent mitral valve repair between 1970 and 1984 for MVI due to nonrheumatic disease. The cause of MVI was degenerative in 146 patients (90%) and bacterial endocarditis in 16 patients (10%). MVI was isolated or, in 18 cases, associated with tricuspid insufficiency. The mean age of the 162 patients (104 men and 58 women) was 56+/-10 years (age range 22 to 77 years). New York Heart Association functional class was I, II, III, and IV in 2%, 39%, 52%, and 7% of patients, respectively. The mean cardiothoracic ratio was 0.58+/-0.07 (0.4 to 0.8), and 72 (45%) patients had atrial fibrillation. Valve analysis showed that the main mechanism of MVI was type II Carpentier's functional classification in 152 patients. The leaflet prolapse involved the posterior leaflet in 93 patients, the anterior leaflet in 28 patients, and both leaflets in 31 patients. Surgical technique included a Carpentier's ring annuloplasty in all cases, a valve resection in 126 patients, and shortening or transposition of chordae in 49 patients. During the first postoperative month, there were 3 deaths (1.9%) and 3 reoperations (2 valve replacements and 1 repeat repair [1.9%]). Six patients were lost to follow-up. The remaining 151 patients with mitral valve repair were followed during a median of 17 years (range 1 to 29 years; 2273 patient-years). The 20-year Kaplan-Meier survival rate was 48% (95% CI 40% to 57%), which is similar to the survival rate for a normal population with the same age structure. The 20-year rates were 19.3% (95% CI 11% to 27%) for cardiac death and 26% (95% CI 17% to 35%) for cardiac morbidity/mortality (including death from a cardiac cause, stroke, and reoperation). During the 20 years of follow-up, 7 patients were underwent surgery at 3, 7, 7, 8, 8, 10, or 12 years after the initial operation. Valve replacement was carried out in 5 patients, and repeat repair was carried out in 2 patients. At the end of the study, 65 patients remained alive (median follow-up 19 years). Their median age was 76 years (age range 41 to 95 years). All except 1 were in New York Heart Association functional class I/II. Mitral valve repair using Carpentier's technique in patients with nonrheumatic MVI provides excellent long-term results with a mortality rate similar to that of the general population and a very low incidence of reoperation.
Cardiac Calcified Amorphous Tumor of the Mitral Valve Presenting as Transient Ischemic Attack
Abbasi Teshnizi, Mohammad; Ghorbanzadeh, Atefeh; Zirak, Nahid; Manafi, Babak
2017-01-01
Cardiac calcified amorphous tumors (CATs) are an extremely rare nonneoplastic intracardiac masses. They have been reported in the literature in only a few cases. Thus, the incidence, pathogenesis, and best approach to the treatment are not certain. We report a case of CATs on the atrial surface of the anterior mitral valve leaflet in a 37-year-old female who was diagnosed by histopathological examination after surgical removal. PMID:28194283
Cardiac Calcified Amorphous Tumor of the Mitral Valve Presenting as Transient Ischemic Attack.
Abbasi Teshnizi, Mohammad; Ghorbanzadeh, Atefeh; Zirak, Nahid; Manafi, Babak; Moeinipour, Aliasghar
2017-01-01
Cardiac calcified amorphous tumors (CATs) are an extremely rare nonneoplastic intracardiac masses. They have been reported in the literature in only a few cases. Thus, the incidence, pathogenesis, and best approach to the treatment are not certain. We report a case of CATs on the atrial surface of the anterior mitral valve leaflet in a 37-year-old female who was diagnosed by histopathological examination after surgical removal.
Postcaesarean open-heart surgery for Streptococcus sanguinis infective endocarditis
Kongwattanakul, Kiattisak; Tribuddharat, Sirirat; Prathanee, Sompop; Pachirat, Orathai
2013-01-01
A 33-week pregnant (gravida 3), 29-year-old woman was transferred for management of Streptococcus sanguinis infective endocarditis. A vegetation was present on the posterior leaflet of the mitral valve with moderate mitral regurgitation. On admission (day 1), the ultrasound examination revealed splenic abscesses and retarded intrauterine growth albeit with normal vessels. The fetal heart rate was 140 bpm. On day 11, the baby was delivered by Caesarean, and then the mother underwent tubal ligation followed by a mitral valve repair. The splenic abscess was treated with antibiotics. The woman was clinically stable and recovered uneventfully. This successful outcome was achieved by a strategic (optimal and sequential) timeline for selecting the mode of delivery and type of mitral valve correction. PMID:24234426
Electrical conduction disturbance effects on dynamic changes of functional mitral regurgitation.
Fukuda, Shota; Grimm, Richard; Song, Jong-Min; Kihara, Takashi; Daimon, Masao; Agler, Deborah A; Wilkoff, Bruce L; Natale, Andrea; Thomas, James D; Shiota, Takahiro
2005-12-20
The aim of this study was to investigate the relationship between dynamics of functional mitral regurgitation (MR) and the degree of electrical conduction disturbance, and to evaluate the impact of cardiac resynchronization therapy (CRT) on MR severity and its phasic pattern. Mechanisms of phasic changes of functional MR, which may be determined by annulus dilation and tethering of the leaflet, remain unclear. Transthoracic two-dimensional echocardiography was performed in 60 patients with functional MR. A biventricular pacemaker was implanted in 19 patients. The mitral annulus area (MAA) and the tenting area (TA) were measured from apical views. The MR volume and fraction were assessed by the quantitative pulsed Doppler method. Instantaneous regurgitation flow rate was measured by proximal flow convergence method. A dynamic change in MR flow rate was evaluated by frame-by-frame analysis throughout systole. A phasic pattern with two peaks at early- and late-systole and decrease in mid-systole was noticed in 57 patients. The early-systolic peak of MR was larger than the late-systolic peak (128.4 +/- 64.3 ml/s vs. 73.9 +/- 55.1 ml/s, p < 0.001). The ratio of flow rate at these two peaks correlated with QRS duration (r = 0.55, p < 0.001). Early-systolic flow rate reduced after CRT (143.9 +/- 60.8 ml/s to 90.7 +/- 54.1 ml/s, p < 0.05), but late-systolic flow rate did not (61.5 +/- 55.0 ml/s to 51.2 +/- 40.9 ml/s, p = NS). A similar pattern was observed for TA, whereas MAA did not change after CRT. Biphasic pattern was found in functional MR, and the ratio of flow rate at two peaks correlated with QRS duration. The CRT decreased regurgitation flow volume by reducing early-systolic MR but not late-systolic MR, resulting in the change in phasic pattern of functional MR.
Arai, Masaru; Nagashima, Koichi; Kato, Mahoto; Akutsu, Naotaka; Hayase, Misa; Ogura, Kanako; Iwasawa, Yukino; Aizawa, Yoshihiro; Saito, Yuki; Okumura, Yasuo; Nishimaki, Haruna; Masuda, Shinobu; Hirayama, Astushi
2016-09-08
BACKGROUND Infective endocarditis (IE) involving the mitral valve can but rarely lead to complete atrioventricular block (CAVB). CASE REPORT A 74-year-old man with a history of infective endocarditis caused by Streptococcus gordonii (S. gordonii) presented to our emergency room with fever and loss of appetite, which had lasted for 5 days. On admission, results of serologic tests pointed to severe infection. Electrocardiography showed normal sinus rhythm with first-degree atrioventricular block and incomplete right bundle branch block, and transthoracic echocardiography and transesophageal echocardiography revealed severe mitral regurgitation caused by posterior leaflet perforation and 2 vegetations (5 mm and 6 mm) on the tricuspid valve. The patient was initially treated with ceftriaxone and gentamycin because blood and cutaneous ulcer cultures yielded S. agalactiae. On hospital day 2, however, sudden CAVB requiring transvenous pacing occurred, and the patient's heart failure and infection worsened. Although an emergent surgery is strongly recommended, even in patients with uncontrolled heart failure or infection, surgery was not performed because of the Child-Pugh class B liver cirrhosis. Despite intensive therapy, the patient's condition further deteriorated, and he died on hospital day 16. On postmortem examination, a 2×1-cm vegetation was seen on the perforated posterior mitral leaflet, and the infection had extended to the interventricular septum. Histologic examination revealed extensive necrosis of the AV node. CONCLUSIONS This rare case of CAVB resulting from S. agalactiae IE points to the fact that in monitoring patients with IE involving the mitral valve, clinicians should be aware of the potential for perivalvular extension of the infection, which can lead to fatal heart block.
Theron, Alexis; Pinard, Amélie; Riberi, Alberto; Zaffran, Stéphane
2016-07-01
Congenital tricuspid valve disease is a rare defect that includes regurgitation, stenosis and Ebstein's anomaly. We report a case of severe tricuspid regurgitation associated with functional mitral regurgitation in a 47-year-old man with congestive heart failure. Transthoracic echocardiography (TTE) ruled out any Ebstein's anomaly. Three-dimensional TTE revealed a 'tricuspid hole' into the anterior leaflet that was only attached to the tricuspid annulus next to both anteroseptal and anteroposterior commissures. There was no sign of leaflet tear or perforation. The surgical repair of the tricuspid and mitral valves was performed with an optimal result. No sign of endocarditis or rheumatic disease was observed during the intervention. Sequence analysis of GATA4, HEY2 and ZFPM2 genes was performed, but no causative mutation was identified. © The Author 2015. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.
A rare native mitral valve endocarditis successfully treated after surgical correction
Garcia, Daniel C; Nascimento, Rhanderson; Soto, Victor; Mendoza, Cesar E
2014-01-01
Mycobacterium abscessus and Kocuria species are rare causes of infections in humans. Endocarditis by these agents has been reported in only 11 cases. M. abscessus is a particularly resistant organism and treatment requires the association of antibiotics for a prolonged period of time. We report a case of native mitral valve bacterial endocarditis due to M. abscessus and Kocuria species in a 48-year-old man with a history of intravenous drug use. The case was complicated by a perforation of the posterior mitral valve leaflet, leading to surgical mitral valve replacement. Cultures from the blood and mitral valve disclosed M. abscessus and Kocuria species. The patient was treated for 6 months with clarithromycin, imipenem and amikacin, with resolution of symptoms. Repeated blood cultures were negative. Acid-fast staining should be done in subacute endocarditis in order to identify rapidly growing mycobacteria. PMID:25270154
The mechanobiology of mitral valve function, degeneration, and repair
Richards, Jennifer M.; Farrar, Emily J.; Kornreich, Bruce G.; Moïse, N. Sydney; Butcher, Jonathan T.
2013-01-01
In degenerative valve disease, the highly organized mitral valve leaflet matrix stratification is progressively destroyed and replaced with proteoglycan rich, mechanically inadequate tissue. This is driven by the actions of originally quiescent valve interstitial cells that become active contractile and migratory myofibroblasts. While treatment for myxomatous mitral valve disease in humans ranges from repair to total replacement, therapies in dogs focus on treating the consequences of the resulting mitral regurgitation. The fundamental gap in our understanding is how the resident valve cells respond to altered mechanical signals to drive tissue remodeling. Despite the pathological similarities and high clinical occurrence, surprisingly little mechanistic insight has been gleaned from the dog. This review presents what is known about mitral valve mechanobiology from clinical, in vivo, and in vitro data. There are a number of experimental strategies already available to pursue this significant opportunity, but success requires the collaboration between veterinary clinicians, scientists, and engineers. PMID:22366572
Mitral valve disease—morphology and mechanisms
Levine, Robert A.; Hagége, Albert A.; Judge, Daniel P.; Padala, Muralidhar; Dal-Bianco, Jacob P.; Aikawa, Elena; Beaudoin, Jonathan; Bischoff, Joyce; Bouatia-Naji, Nabila; Bruneval, Patrick; Butcher, Jonathan T.; Carpentier, Alain; Chaput, Miguel; Chester, Adrian H.; Clusel, Catherine; Delling, Francesca N.; Dietz, Harry C.; Dina, Christian; Durst, Ronen; Fernandez-Friera, Leticia; Handschumacher, Mark D.; Jensen, Morten O.; Jeunemaitre, Xavier P.; Le Marec, Hervé; Le Tourneau, Thierry; Markwald, Roger R.; Mérot, Jean; Messas, Emmanuel; Milan, David P.; Neri, Tui; Norris, Russell A.; Peal, David; Perrocheau, Maelle; Probst, Vincent; Pucéat, Michael; Rosenthal, Nadia; Solis, Jorge; Schott, Jean-Jacques; Schwammenthal, Ehud; Slaugenhaupt, Susan A.; Song, Jae-Kwan; Yacoub, Magdi H.
2016-01-01
Mitral valve disease is a frequent cause of heart failure and death. Emerging evidence indicates that the mitral valve is not a passive structure, but—even in adult life—remains dynamic and accessible for treatment. This concept motivates efforts to reduce the clinical progression of mitral valve disease through early detection and modification of underlying mechanisms. Discoveries of genetic mutations causing mitral valve elongation and prolapse have revealed that growth factor signalling and cell migration pathways are regulated by structural molecules in ways that can be modified to limit progression from developmental defects to valve degeneration with clinical complications. Mitral valve enlargement can determine left ventricular outflow tract obstruction in hypertrophic cardiomyopathy, and might be stimulated by potentially modifiable biological valvular–ventricular interactions. Mitral valve plasticity also allows adaptive growth in response to ventricular remodelling. However, adverse cellular and mechanobiological processes create relative leaflet deficiency in the ischaemic setting, leading to mitral regurgitation with increased heart failure and mortality. Our approach, which bridges clinicians and basic scientists, enables the correlation of observed disease with cellular and molecular mechanisms, leading to the discovery of new opportunities for improving the natural history of mitral valve disease. PMID:26483167
Scotten, Lawrence N; Siegel, Rolland
2015-08-01
Exploration for causes of prosthetic valve thrombogenicity has frequently focused on forward or post-closure flow detail. In prior laboratory studies, we uncovered high amplitude flow velocities of short duration close to valve closure implying potential for substantial shear stress with subsequent initiation of blood coagulation pathways. This may be relevant to widely accepted clinical disparity between mechanical and tissue valves vis-à-vis thrombogenicity. With a series of prototype bi-leaflet mechanical valves, we attempt reduction of closure related velocities with the objective of identifying a prototype valve with thrombogenic potential similar to our tissue valve control. This iterative design approach may find application in preclinical assessment of valves for anticoagulation independence. Tested valves included: prototype mechanical bi-leaflet BVs (n=56), controls (n=2) and patented early prototype mechanicals (n=2) from other investigators. Pulsatile and quasi-steady flow systems were used for testing. Projected dynamic valve area (PDVA) was measured using previously described novel technology. Flow velocity over the open and closing periods was determined by volumetric flow rate/PDVA. For the closed valve interval, use was made of data obtained from quasi-steady back pressure/flow tests. Performance was ranked by a proposed thrombogenicity potential index (TPI) relative to tissue and mechanical control valves. Optimization of the prototype valve designs lead to a 3-D printed model (BV3D). For the mitral/aortic site, BV3D has lower TPI (1.10/1.47) relative to the control mechanical valve (3.44/3.93) and similar to the control tissue valve (ideal TPI ≤1.0). Using unique technology, rapid prototyping and thrombogenicity ranking, optimization of experimental valves for reduced thrombogenic potential was expedited and simplified. Innovative mechanical valve configurations were identified that merit consideration for further development which may bring the anti-coagulation independent mechanical valve within reach.
Siegel, Rolland
2015-01-01
Background Exploration for causes of prosthetic valve thrombogenicity has frequently focused on forward or post-closure flow detail. In prior laboratory studies, we uncovered high amplitude flow velocities of short duration close to valve closure implying potential for substantial shear stress with subsequent initiation of blood coagulation pathways. This may be relevant to widely accepted clinical disparity between mechanical and tissue valves vis-à-vis thrombogenicity. With a series of prototype bi-leaflet mechanical valves, we attempt reduction of closure related velocities with the objective of identifying a prototype valve with thrombogenic potential similar to our tissue valve control. This iterative design approach may find application in preclinical assessment of valves for anticoagulation independence. Methods Tested valves included: prototype mechanical bi-leaflet BVs (n=56), controls (n=2) and patented early prototype mechanicals (n=2) from other investigators. Pulsatile and quasi-steady flow systems were used for testing. Projected dynamic valve area (PDVA) was measured using previously described novel technology. Flow velocity over the open and closing periods was determined by volumetric flow rate/PDVA. For the closed valve interval, use was made of data obtained from quasi-steady back pressure/flow tests. Performance was ranked by a proposed thrombogenicity potential index (TPI) relative to tissue and mechanical control valves. Results Optimization of the prototype valve designs lead to a 3-D printed model (BV3D). For the mitral/aortic site, BV3D has lower TPI (1.10/1.47) relative to the control mechanical valve (3.44/3.93) and similar to the control tissue valve (ideal TPI ≤1.0). Conclusions Using unique technology, rapid prototyping and thrombogenicity ranking, optimization of experimental valves for reduced thrombogenic potential was expedited and simplified. Innovative mechanical valve configurations were identified that merit consideration for further development which may bring the anti-coagulation independent mechanical valve within reach. PMID:26417581
Pathology of myxomatous mitral valve disease in the dog.
Fox, Philip R
2012-03-01
Mitral valve competence requires complex interplay between structures that comprise the mitral apparatus - the mitral annulus, mitral valve leaflets, chordae tendineae, papillary muscles, and left atrial and left ventricular myocardium. Myxomatous mitral valve degeneration is prevalent in the canine, and most adult dogs develop some degree of mitral valve disease as they age, highlighting the apparent vulnerability of canine heart valves to injury. Myxomatous valvular remodeling is associated with characteristic histopathologic features. Changes include expansion of extracellular matrix with glycosaminoglycans and proteoglycans; valvular interstitial cell alteration; and attenuation or loss of the collagen-laden fibrosa layer. These lead to malformation of the mitral apparatus, biomechanical dysfunction, and mitral incompetence. Mitral regurgitation is the most common manifestation of myxomatous valve disease and in advanced stages, associated volume overload promotes progressive valvular regurgitation, left atrial and left ventricular remodeling, atrial tears, chordal rupture, and congestive heart failure. Future studies are necessary to identify clinical-pathologic correlates that track disease severity and progression, detect valve dysfunction, and facilitate risk stratification. It remains unresolved whether, or to what extent, the pathobiology of myxomatous mitral valve degeneration is the same between breeds of dogs, between canines and humans, and how these features are related to aging and genetics. Copyright © 2012 Elsevier B.V. All rights reserved.
Dilip, D; Chandra, A; Rajashekhar, D; Padmanabhan, M
2001-05-01
Impairment of left ventricular (LV) function after mitral valve replacement (MVR) has been the most important factor to determine morbidity and mortality. With this in mind, LV performance in the postoperative period was assessed with and without preservation of papillo-annular continuity in MVR. Between March 1994 and August 1998, a total of 383 valve prostheses (202 MVR, 65 AVR, 58 MVR+AVR) were implanted in 325 patients, 177 of whom underwent MVR with Starr Edwards ball cage prostheses (the study group). Of these 177 patients, 105 had MVR with preservation of the posterior mitral leaflet (group I), and 72 had conventional MVR (group II). Predominant lesions were mitral stenosis in 81, mitral regurgitation in 42, and mixed mitral lesion (MS/MR) in 54. Concomitant tricuspid valve annuloplasty was performed in 13, and atrial septal defect repair in five. Sixteen patients underwent MVR for mitral restenosis. In-vivo performance of the prostheses and LV function was evaluated by M-mode and Doppler echocardiography. At 3-6 months clinical improvement was seen in NYHA class, with reduction in cardiothoracic ratio among patients with preserved papillo-annular continuity, irrespective of lesion type. Significant reductions (p <0.05) were seen in left atrial dimensions (54.10 +/- 8.79 preop. versus 44.64 +/- 8.54 postop.; p <0.05), left ventricular end-diastolic dimensions (LVEDD) (50.84 +/- 10.42 preop. versus 41.21 +/- 7.16 postop.; p <0.05) and end-systolic dimensions (LVESD) (34.76 +/- 7.94 preop. versus 28.81 +/- 5.79 postop.; p <0.05) in patients who had their posterior mitral leaflet preserved with significant improvement in ejection fraction (60.31 +/- 8.22 versus 64.47 +/- 7.93; p <0.05). Further analysis of data in group I patients showed significant reductions in left atrial dimensions, LVESD and peak gradient, along with improved ejection fraction compared with conventional (group II) patients. Deterioration in LV function in patients undergoing conventional MVR indicates chordal resection as a putative mechanism. This study supports the concept that maintenance of continuity between the mitral annulus and papillary muscles has a beneficial effect on postoperative LV function, and is particularly important in patients with mitral stenosis with depressed preoperative LV systolic function.
Vent-induced prosthetic leaflet thrombosis treated by open-heart valve-in-valve implantation.
Stamm, Christof; Pasic, Miralem; Buz, Semih; Hetzer, Roland
2015-09-01
A patient required emergency mitral valve replacement and extracorporeal membrane oxygenation (ECMO) support for acute biventricular failure. The left ventricular (LV) vent inserted via the left upper pulmonary vein induced thrombotic immobilization of a prosthetic valve leaflet, with significant intra-prosthesis regurgitation after ECMO explantation. Therefore, the left atrium was opened on the beating heart during conventional extracorporeal circulation, all prosthesis leaflets were excised and a 29-mm expandable Edwards Sapien prosthesis was inserted within the scaffold of the original prosthesis under direct vision. This case illustrates the benefits and potential problems of LV venting on ECMO support, and a rapid and safe way of replacing the prosthesis leaflets in a critical situation. © The Author 2015. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.
A Case of Post Myocardial Infarction Papillary Muscle Rupture.
Anuwatworn, Amornpol; Milnes, Christopher; Kumar, Vishesh; Raizada, Amol; Nykamp, Verlyn; Stys, Adam
2016-06-01
Papillary muscle rupture is a rare, life-threatening post myocardial infarction mechanical complication. Without surgical intervention, prognosis is very poor. Clinicians need to recognize this complication early, as prompt therapy is crucial. We present a case of inferior ST elevation myocardial infarction complicated by posteromedial papillary muscle rupture resulting in severe acute mitral regurgitation (flail anterior mitral leaflet), acute pulmonary edema and cardiogenic shock. In our patient, a new mitral regurgitation murmur suggested this mechanical complication. Complete disruption of papillary muscle was visualized by transesophageal echocardiography. This case illustrates the importance of good physical examination for early diagnosis of papillary muscle rupture, so that life-saving treatment can be administered without delay.
Transcatheter mitral valve repair in osteogenesis imperfecta associated mitral valve regurgitation.
van der Kley, Frank; Delgado, Victoria; Ajmone Marsan, Nina; Schalij, Martin J
2014-08-01
Osteogenesis imperfecta is associated with increased prevalence of significant mitral valve regurgitation. Surgical mitral valve repair and replacement are feasible but are associated with increased risk of bleeding and dehiscence of implanted valves may occur more frequently. The present case report describes the outcomes of transcatheter mitral valve repair in a patient with osteogenesis imperfecta. A 60 year-old patient with osteogenesis imperfecta and associated symptomatic moderate to severe mitral regurgitation underwent transthoracic echocardiography which showed a nondilated left ventricle with preserved systolic function and moderate to severe mitral regurgitation. On transoesophageal echocardiography the regurgitant jet originated between the anterolateral scallops of the anterior and posterior leaflets (A1-P1). Considering the comorbidities associated with osteogenesis imperfecta the patient was accepted for transcatheter mitral valve repair using the Mitraclip device (Abbott vascular, Menlo, CA). Under fluoroscopy and 3D transoesophageal echocardiography guidance, a Mitraclip device was implanted between the anterolateral and central scallops with significant reduction of mitral regurgitation. The postoperative evolution was uneventful. At one month follow-up, transthoracic echocardiography showed a stable position of the Mitraclip device with no mitral regurgitation. Transcatheter mitral valve repair is feasible and safe in patients with osteogenesis imperfecta and associated symptomatic significant mitral regurgitation. Copyright © 2014 Australian and New Zealand Society of Cardiac and Thoracic Surgeons (ANZSCTS) and the Cardiac Society of Australia and New Zealand (CSANZ). Published by Elsevier B.V. All rights reserved.
Kelley, Thomas M; Kashem, Mohammed; Wang, He; McCarthy, James; Carroll, Nels D; Moser, G William; Guy, T Sloane
2017-01-01
This study reported on the treatment of Carpentier type IIIa and type IIIb mitral regurgitation (MR) with a large patch anterior mitral valve leaflet augmentation technique using CorMatrix (CorMatrix Cardiovascular Inc, Alpharetta, GA) extracellular matrix (ECM). A single-site chart review was conducted on patients who underwent anterior leaflet augmentation performed with the Da Vinci surgical robot (Intuitive Surgical, Sunnyvale, CA) or through a median sternotomy. Only patients who had anterior leaflet augmentation with porcine intestine ECM or autologous pericardium were included. Follow-up echocardiography was performed on all patients. Histologic specimens were available on ECM patches from a subset of patients who required reoperation. Between August 2011 and April 2014, 44 patients (mean age, 62.6 ± 12.2 years) underwent anterior leaflet augmentation with either porcine intestinal ECM or autologous pericardium at the Temple University Hospital in Philadelphia. Two (4%) late deaths occurred, one in each group. One patient who underwent ECM augmentation died of non-cardiac-related causes 7 months after discharge as a result of complications of chronic renal failure. The second late death occurred 5 months after discharge because of complications of a stroke in a patient in the pericardial augmentation group. Eight (32%) of the patients with ECM had recurrence of severe MR on echocardiography at an average time of 201 ± 98 days. Seven (28%) patients required reoperation because of failure of the ECM patch including perforation (4%), excessive patch dilation (20%), and suture line dehiscence (4%). In contrast, none of the patients with pericardial augmentation developed severe MR or required operation. Statistical analysis of the patients with ECM augmentation demonstrated no correlation of the following: age; sex; comorbid conditions such as diabetes, chronic obstructive pulmonary disease, and hypertension; left ventricular ejection fraction; surgical approach; annuloplasty size; or type of MR with patch failure. A lower body mass index was the only factor associated with recurrent severe regurgitation on univariate analysis (p = 0.039). Histologic study of the four available explants demonstrated intense inflammation without evidence of host integration. The remaining 15 (60%) patients had normal mitral leaflet structure and function on follow-up echocardiograms out to 12 months. For type III MR, a large anterior leaflet patch technique with porcine ECM was associated with a 32% recurrence rate of severe MR related directly to patch failure. Further research and development should be performed on the use of ECM materials with a goal to decrease the failure rate experienced in this study. Copyright © 2017 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.
Jamieson, W R Eric
2006-01-01
Since the 2002 Surgical Technology International monograph on valvular prostheses, there have been significant developmental and investigative advances. Aortic bioprostheses and mechanical prostheses have undergone design changes to optimize hemodynamics and prevent patient-prosthesis mismatch to have a potential satisfactory influence on survival. There has been continual technological improvements striving to bring forward advances that improve the durability of bioprostheses and reduce the thrombogenicity of mechanical prostheses. There also has been a continuance to preserve biological tissue with glutaraldehyde, rather than clinically evaluate other cross-linking technologies, by controlling or retarding calcification with therapies to control phospholipids and residual aldehydes. The techniques of mitral valve reconstruction have now been well established and new annuloplasty rings have been designed for the potential of maintaining the anatomical and physiological characteristics of the mitral annulus. Several objectives exist for annuloplasty, namely remodeling of the length and shape of the dilated annulus, prevention of dilatation of the annulus, and support for the potentially fragile area after partial-leaflet resection. Currently, there exists an emergence of catheter-based therapies for management of aortic stenosis and mitral regurgitation. For management of selected populations with critical aortic stenosis, techniques for aortic valve substitution have been developed for both antegrade and retrograde catheter techniques, as well as apical transventricular implantation. Mitral regurgitation has been addressed by experimental transcoronary sinus, stent-like devices and transventricular, edge-to-edge leaflet devices. The devices, descriptions and pictorial images comprise this monograph.
Saddle-shaped mitral valve annuloplasty rings experience lower forces compared with flat rings.
Jensen, Morten O; Jensen, Henrik; Smerup, Morten; Levine, Robert A; Yoganathan, Ajit P; Nygaard, Hans; Hasenkam, J Michael; Nielsen, Sten L
2008-09-30
New insight into the 3D dynamic behavior of the mitral valve has prompted a reevaluation of annuloplasty ring designs. Force balance analysis indicates correlation between annulus forces and stresses in leaflets and chords. Improving this stress distribution can intuitively enhance the durability of mitral valve repair. We tested the hypothesis that saddle-shaped annuloplasty rings have superior uniform systolic force distribution compared with a nonuniform force distribution in flat annuloplasty rings. Sixteen 80-kg pigs had a flat (n=8) or saddle-shaped (n=8) mitral annuloplasty ring implanted. Mitral annulus 3D dynamic geometry was obtained with sonomicrometry before ring insertion. Strain gauges mounted on dedicated D-shaped rigid flat and saddle-shaped annuloplasty rings provided the intraoperative force distribution perpendicular to the annular plane. Average systolic annular height to commissural width ratio before ring implantation was 14.0%+/-1.6%. After flat and saddle shaped ring implantation, the annulus was fixed in the diastolic (9.0%+/-1.0%) and systolic (14.3%+/-1.3%) configuration, respectively (P<0.01). Force accumulation was seen from the anterior (0.72N+/-0.14N) and commissural annular segments (average 1.38N+/-0.27N) of the flat rings. In these segments, the difference between the 2 types of rings was statistically significant (P<0.05). The saddle-shaped annuloplasty rings did not experience forces statistically significantly larger than zero in any annular segments. Saddle-shaped annuloplasty rings provide superior uniform annular force distribution compared to flat rings and appear to represent a configuration that minimizes out-of-plane forces that could potentially be transmitted to leaflets and chords. This may have important implications for annuloplasty ring selections.
Arai, Masaru; Nagashima, Koichi; Kato, Mahoto; Akutsu, Naotaka; Hayase, Misa; Ogura, Kanako; Iwasawa, Yukino; Aizawa, Yoshihiro; Saito, Yuki; Okumura, Yasuo; Nishimaki, Haruna; Masuda, Shinobu; Hirayama, Atsushi
2016-01-01
Patient: Male, 74 Final Diagnosis: Infective endocarditis Symptoms: Apetite loss • fever Medication: — Clinical Procedure: Transesophageal echocardiography Specialty: Cardiology Objective: Rare co-existance of disease or pathology Background: Infective endocarditis (IE) involving the mitral valve can but rarely lead to complete atrioventricular block (CAVB). Case Report: A 74-year-old man with a history of infective endocarditis caused by Streptococcus gordonii (S. gordonii) presented to our emergency room with fever and loss of appetite, which had lasted for 5 days. On admission, results of serologic tests pointed to severe infection. Electrocardiography showed normal sinus rhythm with first-degree atrioventricular block and incomplete right bundle branch block, and transthoracic echocardiography and transesophageal echocardiography revealed severe mitral regurgitation caused by posterior leaflet perforation and 2 vegetations (5 mm and 6 mm) on the tricuspid valve. The patient was initially treated with ceftriaxone and gentamycin because blood and cutaneous ulcer cultures yielded S. agalactiae. On hospital day 2, however, sudden CAVB requiring transvenous pacing occurred, and the patient’s heart failure and infection worsened. Although an emergent surgery is strongly recommended, even in patients with uncontrolled heart failure or infection, surgery was not performed because of the Child-Pugh class B liver cirrhosis. Despite intensive therapy, the patient’s condition further deteriorated, and he died on hospital day 16. On postmortem examination, a 2×1-cm vegetation was seen on the perforated posterior mitral leaflet, and the infection had extended to the interventricular septum. Histologic examination revealed extensive necrosis of the AV node. Conclusions: This rare case of CAVB resulting from S. agalactiae IE points to the fact that in monitoring patients with IE involving the mitral valve, clinicians should be aware of the potential for perivalvular extension of the infection, which can lead to fatal heart block. PMID:27604147
Rossi, Andrea; Gaibazzi, Nicola; Dandale, Raje; Agricola, Eustachio; Moreo, Antonella; Berlinghieri, Nicola; Sartorio, Daniele; Loffi, Marco; De Chiara, Benedetta; Rigo, Fausto; Vassanelli, Corrado; Faggiano, Pompilio
2014-03-15
There are no studies analyzing the association between aortic valve sclerosis (AVS) and coronary artery disease (CAD) in a large and multicenter patient population with an overall low prevalence of CAD. We hypothesized that AVS could predict the presence and degree of CAD in patients with severe organic mitral regurgitation. We retrospectively analyzed consecutive patients with flail mitral leaflet who had coronary angiography for pre-surgical screening and not because suspect of CAD. End-points were considered: 1) any degree of CAD (stenosis>20%) and 2) obstructive CAD (stenosis>75% of at least one coronary artery). AVS was defined as focal areas of increased echogenicity and thickening of the leaflets. Traditional clinical risk factors were considered: age, male gender, hypertension (>140/90 mmHg or medical therapy), hypercholesterolemia (total cholesterol>200 mg/dl or statin), diabetes, family history of CAD and smoking habit. 675 patients (mean age: 64±12; 27% female) formed the study population. Among patients with AVS, 60% and 39% had any-CAD and ob-CAD respectively, on the opposite among patients without AVS 12% and 7% had any-CAD and ob-cad. After adjustment for clinical risk factors, AVS was associated with a 22.7 fold increased risk of any degree of CAD (95% CI 8.1 63.6 p<0.0001) and with a 21.8 fold increased risk of obstructive-CAD (95% CI 6.6 71.9; p<0.0001). In a large and multicenter sample of patient with flail mitral leaflet, AVS was strongly associated with the presence and degree of CAD independently of clinical risk factors. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Percutaneous Mitral Valve Dilatation: Single Balloon versus Double Balloon - A Finite Element Study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schievano, Silvia; Kunzelman, Karyn; Nicosia, Mark
2009-01-01
Background: Percutaneous mitral valve (MV) dilatation is performed with either a single balloon (SB) or double balloon (DB) technique. The aim of this study was to compare the two balloon system results using the finite element (FE) method. Methods and Results: An established FE model of the MV was modified by fusing the MV leaflet edges at commissure level to simulate a stenotic valve (orifice area=180mm2). A FE model of a 30mm SB (low-pressure, elastomeric balloon) and an 18mm DB system (high-pressure, non-elastic balloon) was created. Both SB and DB simulations resulted in splitting of the commissures and subsequent stenosismore » dilatation (final MV area=610mm2 and 560mm2 respectively). Stresses induced by the two balloon systems varied across the valve. At the end of inflation, SB showed higher stresses in the central part of the leaflets and at the commissures compared to DB simulation, which demonstrated a more uniform stress distribution. The higher stresses in the SB analysis were due to the mismatch of the round balloon shape with the oval mitral orifice. The commissural split was not easily accomplished with the SB due to its high compliance. The high pressure applied to the DB guaranteed the commissural split even when high forces were required to break the commissure welds. Conclusions: The FE model demonstrated that MV dilatation can be accomplished by both SB and DB techniques. However, the DB method resulted in higher probability of splitting of the fused commissures and less damage caused to the MV leaflets by overstretching.« less
Mitral valve repair in dogs using an ePTFE chordal implantation device: a pilot study.
Borgarelli, M; Lanz, O; Pavlisko, N; Abbott, J A; Menciotti, G; Aherne, M; Lahmers, S M; Lahmers, K K; Gammie, J S
2017-06-01
Mitral valve (MV) regurgitation due to degenerative MV disease is the leading cause of cardiac death in dogs. We carried out preliminary experiments to determine the feasibility and short-term effects of beating-heart MV repair using an expanded polytetrafluorethylene (ePTFE) chordal implantation device (Harpoon TSD-5) in dogs. This study involved six healthy purpose-bred Beagles (weight range 8.9-11.4 kg). Following a mini-thoracotomy performed under general anesthesia, the TSD-5 was used to place 1 or 2 artificial ePTFE cords on the anterior MV leaflet or the posterior MV leaflet via a left-ventricular transapical approach. The procedure was guided and monitored by transesophageal echocardiography. Postoperative antithrombotic treatment consisted of clopidogrel or a combination of clopidogrel and apixaban. Dogs were serially evaluated by transthoracic echocardiography at day 1, 7, 14, 21, and 30. The hearts were then examined for evaluation of tissues reactions and to detect signs of endothelialization. One or two chords were successfully implanted in five dogs. Four dogs completed the 30 days follow-up. One dog died intra-operatively because of aortic perforation. One dog died early post-operatively from a hemorrhagic pleural effusion attributed to overly aggressive antithrombotic treatment. One dog developed a thrombus surrounding both the knot and the synthetic cord. Postmortem exam confirmed secure placement of ePTFE knots in the mitral leaflets in all dogs and the presence of endothelialization of the knots and chords. These preliminary results demonstrate the feasibility of artificial chordal placement using an ePTFE cordal implantation device in dogs. Copyright © 2017 Elsevier B.V. All rights reserved.
Early Results of Rheumatic Mitral Valve Repair.
Petrone, Giuseppe; Theodoropoulos, Panagiotis; Punjabi, Prakash P
2016-11-01
Mitral valve repair (MVr) in rheumatic heart disease (RHD) remains challenging. The present authors' surgical experience of MVr in 56 patients with RHD operated in between January 2011 and September 2014 is reported. Among the patients (mean age 32 ± 11 years), 11 were in NYHA functional class II, 32 in class III, and seven in class IV. An adequate or oversized autologous pericardial patch was sutured to extend the coaptating edge of both the anterior leaflet (in 18 patients) and the posterior leaflet (in 30 patients). Neochordae were implanted as needed (n = 43), and leaflet thinning (n = 13), commissurotomy (n = 15) and chordal splitting (n = 9) were also performed. A rigid annuloplasty ring was implanted in 32 patients, and in 24 patients a complete flexible annuloplasty ring made from pericardium, 4 mm Gore-Tex tube graft or a Dacron patch was constructed. Repair was not attempted in 16 patients, with replacement using a mechanical bileaflet prosthesis being considered the only option. Intraoperative post-repair transesophageal echocardiography demonstrated competency, with trivial mitral regurgitation (MR) up to grade I in all patients and a minimum coaptation depth ≥5 mm. There were no intraoperative or in-hospital deaths. Clinical and echocardiographic evaluations were performed up to six weeks after surgery, at which time 51 patients were in NYHA classes I-II and five were in class III. Residual mild MR up to grade I was identified in six patients. No recurrence of MR was observed in any of the patients, and no patients were reoperated on. The lack of adequate access to anticoagulation medication and monitoring, in addition to religious/cultural bias to the type of prosthetic valve used in low-income countries, necessitates an increase in the numbers of rheumatic MVr.
Progression of degenerative mitral stenosis: insights from a cohort of 254 patients.
Tyagi, Gaurav; Dang, Patricia; Pasca, Ioana; Patel, Reena; Pai, Ramdas G
2014-11-01
Degenerative mitral stenosis (DMS) is an increasingly common echocardiographic finding, yet the clinical and biological behavior and rate of progression of the condition are unknown. A total of 254 patients was identified from the authors' echocardiographic database with DMS, defined as severe mitral annular calcification with extension into the mitral leaflets resulting in transmitral flow acceleration with a mean diastolic gradient of >2 mmHg in the absence of commissural fusion. Each patient required paired echocardiograms to have been recorded at least three months apart. Clinical, biochemical and pharmacological data were collected from each patient and related to the annualized rate of increase in mean diastolic mitral gradient and stenosis severity on a scale of 0 to 3. The characteristics of the patients were as follows: mean age 71 +/- 15 years; female gender 73%; and left ventricular ejection fraction 66 +/- 13%. Diabetes was present in 50% of patients, renal insufficiency in 40%, and coronary artery disease in 50%. Over a follow up period of 2.6 +/- 2.2 years, the mean gradient was increased by 0.8 +/- 2.4 mmHg (range: 0-15 mmHg) per year, while the stenosis grade was increased by 0.18 +/- 0.5 (range: 0-3) per year. The rate of progression was faster in patients with lesser degrees of stenosis (p = 0.01) and low serum albumen levels (p = 0.04), and slower in those receiving beta-blockers (p = 0.01). Milder stenosis, diabetes mellitus and lack of beta-blocker use were independent predictors of faster DMS progression. DMS progression is highly variable, but generally slow; its progression is accelerated in the presence of diabetes mellitus, but is retarded by beta-blocker use. DMS may be an active biological process offering potentially modifiable targets for intervention.
Shiraishi, Y; Yambe, T; Yoshizawa, M; Hashimoto, H; Yamada, A; Miura, H; Hashem, M; Kitano, T; Shiga, T; Homma, D
2012-01-01
Annuloplasty for functional mitral or tricuspid regurgitation has been made for surgical restoration of valvular diseases. However, these major techniques may sometimes be ineffective because of chamber dilation and valve tethering. We have been developing a sophisticated intelligent artificial papillary muscle (PM) by using an anisotropic shape memory alloy fiber for an alternative surgical reconstruction of the continuity of the mitral structural apparatus and the left ventricular myocardium. This study exhibited the mitral regurgitation with regard to the reduction in the PM tension quantitatively with an originally developed ventricular simulator using isolated goat hearts for the sophisticated artificial PM. Aortic and mitral valves with left ventricular free wall portions of isolated goat hearts (n=9) were secured on the elastic plastic membrane and statically pressurized, which led to valvular leaflet-papillary muscle positional change and central mitral regurgitation. PMs were connected to the load cell, and the relationship between the tension of regurgitation and PM tension were measured. Then we connected the left ventricular specimen model to our hydraulic ventricular simulator and achieved hemodynamic simulation with the controlled tension of PMs.
Surgical treatment of atrioventricular canal defect.
Hardesty, R L; Zuberbuhler, J R; Bahnson, H T
1975-11-01
Fifty-nine patients with congenital anomalies of the atrioventricular canal underwent operation and all survivors were followed up. In 42 patients with partial atrioventricular canal defects, ten had preoperative congestive heart failure. Three, or 7.1%, died of endomyocardial fibroelastosis, high pulmonary vascular resistance, and severe mitral regurgitation. A fourth patient later died of Wolff-Parkinson-White syndrome and fibrilation. Reoperations in five patients were all successful. No patients had persistent atrioventricular blocks, and all patients are asymptomatic. Two of these subjects continue to receive digoxin therapy, and one of them is believed to have substantial mitral insufficiency. Of the 17 patients who had complete atrioventricular canal defects, 13 had a divided common anterior leaflet attached to the septum by chordae tendineae, and four had undivided and unattached anterior leaflets. Two had previously undergone pulmonary banding, and nine were treated for congestive heart failure. Six died after operation. There were no reoperations. No patient presently has required a pacemaker. Two subjects have persistent cardiomegaly.
Clinical Significance of Markers of Collagen Metabolism in Rheumatic Mitral Valve Disease
Banerjee, Tanima; Mukherjee, Somaditya; Ghosh, Sudip; Biswas, Monodeep; Dutta, Santanu; Pattari, Sanjib; Chatterjee, Shelly; Bandyopadhyay, Arun
2014-01-01
Background Rheumatic Heart Disease (RHD), a chronic acquired heart disorder results from Acute Rheumatic Fever. It is a major public health concern in developing countries. In RHD, mostly the valves get affected. The present study investigated whether extracellular matrix remodelling in rheumatic valve leads to altered levels of collagen metabolism markers and if such markers can be clinically used to diagnose or monitor disease progression. Methodology This is a case control study comprising 118 subjects. It included 77 cases and 41 healthy controls. Cases were classified into two groups- Mitral Stenosis (MS) and Mitral Regurgitation (MR). Carboxy-terminal propeptide of type I procollagen (PICP), amino-terminal propeptide of type III procollagen (PIIINP), total Matrix Metalloproteinase-1(MMP-1) and Tissue Inhibitor of Metalloproteinase-1 (TIMP-1) were assessed. Histopathology studies were performed on excised mitral valve leaflets. A p value <0.05 was considered statistically significant. Results Plasma PICP and PIIINP concentrations increased significantly (p<0.01) in MS and MR subjects compared to controls but decreased gradually over a one year period post mitral valve replacement (p<0.05). In MS, PICP level and MMP-1/TIMP-1 ratio strongly correlated with mitral valve area (r = −0.40; r = 0.49 respectively) and pulmonary artery systolic pressure (r = 0.49; r = −0.49 respectively); while in MR they correlated with left ventricular internal diastolic (r = 0.68; r = −0.48 respectively) and systolic diameters (r = 0.65; r = −0.55 respectively). Receiver operating characteristic curve analysis established PICP as a better marker (AUC = 0.95; 95% CI = 0.91−0.99; p<0.0001). A cut-off >459 ng/mL for PICP provided 91% sensitivity, 90% specificity and a likelihood ratio of 9 in diagnosing RHD. Histopathology analysis revealed inflammation, scarring, neovascularisation and extensive leaflet fibrosis in diseased mitral valve. Conclusions Levels of collagen metabolism markers correlated with echocardiographic parameters for RHD diagnosis. PMID:24603967
Vortex shedding in bileaflet heart valve prostheses.
Gross, J M; Shermer, C D; Hwang, N H
1988-01-01
A dynamic study of two geometrically similar bileaflet heart valve prostheses (HVP) was performed using a physiologic mock circulatory flow loop. The HVPs studied were the 25 mm St. Jude Medical (SJM) and the 25 mm Carbomedics (CMI) in the aortic position and the 27 mm SJM and 27 mm CMI in the mitral position. All data were collected at a heart rate of 70 beats/min and a cardiac output of 5.0 L/min. Flow visualization was conducted in the transparent flow chambers of the pulsatile mock circulatory flow loop using a 15 mW He-Ne laser light source. A cylindrical lens and optics system converted the incident laser beam into a thin parallel light plane, and 420 microns tracer particles were suspended in the testing fluid to illuminate the flow field at selected planes. Frame-by-frame analysis of the 16 mm high-speed cine provides detailed phasic flow patterns in the vicinity of the HVP. A series of still photographs of flow patterns, taken at approximately 22.5 degrees phase intervals, are sequentially presented for each HVP. In the aortic position, a Karman-like vortex pattern appears downstream of the SJM at the end of the ejection phase. The CMI exhibits a rather symmetrical ejection flow pattern that turns into random motion immediately after the onset of ejection. In the mitral position, the SJM again exhibits a strong core flow during ventricular filling, whereas the CMI produces a more diffuse pattern during the same period. A pair of vortices shed from both the SJM and CMI are clearly visible toward the end of the ventricular filling phase. The vortex mechanisms are discussed in light of leaflet boundary layer formation.
Nampiaparampil, Robert G; Swistel, Daniel G; Schlame, Michael; Saric, Muhamed; Sherrid, Mark V
2018-03-01
Transesophageal echocardiography is essential in guiding the surgical approach for patients with obstructive hypertrophic cardiomyopathy. Septal hypertrophy, elongated mitral valve leaflets, and abnormalities of the subvalvular apparatus are prominent features, all of which may contribute to left ventricular outflow tract obstruction. Surgery aims to alleviate the obstruction via an extended myectomy, often with an intervention on the mitral valve and subvalvular apparatus. The goal of intraoperative echocardiography is to assess the anatomic pathology and pathophysiology in order to achieve a safe intraoperative course and a successful repair. This guide summarizes the systematic evaluation of these patients to determine the best surgical plan. Copyright © 2017 American Society of Echocardiography. Published by Elsevier Inc. All rights reserved.
Fluid-Structure Interaction Analysis of Ruptured Mitral Chordae Tendineae.
Toma, Milan; Bloodworth, Charles H; Pierce, Eric L; Einstein, Daniel R; Cochran, Richard P; Yoganathan, Ajit P; Kunzelman, Karyn S
2017-03-01
The chordal structure is a part of mitral valve geometry that has been commonly neglected or simplified in computational modeling due to its complexity. However, these simplifications cannot be used when investigating the roles of individual chordae tendineae in mitral valve closure. For the first time, advancements in imaging, computational techniques, and hardware technology make it possible to create models of the mitral valve without simplifications to its complex geometry, and to quickly run validated computer simulations that more realistically capture its function. Such simulations can then be used for a detailed analysis of chordae-related diseases. In this work, a comprehensive model of a subject-specific mitral valve with detailed chordal structure is used to analyze the distinct role played by individual chordae in closure of the mitral valve leaflets. Mitral closure was simulated for 51 possible chordal rupture points. Resultant regurgitant orifice area and strain change in the chordae at the papillary muscle tips were then calculated to examine the role of each ruptured chorda in the mitral valve closure. For certain subclassifications of chordae, regurgitant orifice area was found to trend positively with ruptured chordal diameter, and strain changes correlated negatively with regurgitant orifice area. Further advancements in clinical imaging modalities, coupled with the next generation of computational techniques will enable more physiologically realistic simulations.
Fluid-Structure Interaction Analysis of Ruptured Mitral Chordae Tendineae
Toma, Milan; Bloodworth, Charles H.; Pierce, Eric L.; Einstein, Daniel R.; Cochran, Richard P.; Yoganathan, Ajit P.; Kunzelman, Karyn S.
2016-01-01
The chordal structure is a part of mitral valve geometry that has been commonly neglected or simplified in computational modeling due to its complexity. However, these simplifications cannot be used when investigating the roles of individual chordae tendineae in mitral valve closure. For the first time, advancements in imaging, computational techniques, and hardware technology make it possible to create models of the mitral valve without simplifications to its complex geometry, and to quickly run validated computer simulations that more realistically capture its function. Such simulations can then be used for a detailed analysis of chordae-related diseases. In this work, a comprehensive model of a subject-specific mitral valve with detailed chordal structure is used to analyze the distinct role played by individual chordae in closure of the mitral valve leaflets. Mitral closure was simulated for 51 possible chordal rupture points. Resultant regurgitant orifice area and strain change in the chordae at the papillary muscle tips were then calculated to examine the role of each ruptured chorda in the mitral valve closure. For certain subclassifications of chordae, regurgitant orifice area was found to trend positively with ruptured chordal diameter, and strain changes correlated negatively with regurgitant orifice area. Further advancements in clinical imaging modalities, coupled with the next generation of computational techniques will enable more physiologically realistic simulations. PMID:27624659
Can the learning curve of totally endoscopic robotic mitral valve repair be short-circuited?
Yaffee, David W; Loulmet, Didier F; Kelly, Lauren A; Ward, Alison F; Ursomanno, Patricia A; Rabinovich, Annette E; Neuburger, Peter J; Krishnan, Sandeep; Hill, Frederick T; Grossi, Eugene A
2014-01-01
A concern with the initiation of totally endoscopic robotic mitral valve repair (TERMR) programs has been the risk for the learning curve. To minimize this risk, we initiated a TERMR program with a defined team and structured learning approach before clinical implementation. A dedicated team (two surgeons, one cardiac anesthesiologist, one perfusionist, and two nurses) was trained with clinical scenarios, simulations, wet laboratories, and "expert" observation for 3 months. This team then performed a series of TERMRs of varying complexity. Thirty-two isolated TERMRs were performed during the first programmatic year. All operations included mitral valve repair, left atrial appendage exclusion, and annuloplasty device implantation. Additional procedures included leaflet resection, neochordae insertion, atrial ablation, and papillary muscle shortening. Longer clamp times were associated with number of neochordae (P < 0.01), papillary muscle procedures (P < 0.01), and leaflet resection (P = 0.06). Sequential case number had no impact on cross-clamp time (P = 0.3). Analysis of nonclamp time demonstrated a 71.3% learning percentage (P < 0.01; ie, 28.7% reduction in nonclamp time with each doubling of case number). There were no hospital deaths or incidences of stroke, myocardial infarction, unplanned reoperation, respiratory failure, or renal failure. Median length of stay was 4 days. All patients were discharged home. Totally endoscopic robotic mitral valve repair can be safely performed after a pretraining regimen with emphasis on experts' current practice and team training. After a pretraining regimen, cross-clamp times were not subject to learning curve phenomena but were dependent on procedural complexity. Nonclamp times were associated with a short learning curve.
El Sabbagh, Abdallah; Eleid, Mackram F; Matsumoto, Jane M; Anavekar, Nandan S; Al-Hijji, Mohammed A; Said, Sameh M; Nkomo, Vuyisile T; Holmes, David R; Rihal, Charanjit S; Foley, Thomas A
2018-01-23
Three-dimensional (3D) prototyping is a novel technology which can be used to plan and guide complex procedures such as transcatheter mitral valve replacement (TMVR). Eight patients with severe mitral annular calcification (MAC) underwent TMVR. 3D digital models with digital balloon expandable valves were created from pre-procedure CT scans using dedicated software. Five models were printed. These models were used to assess prosthesis sizing, anchoring, expansion, paravalvular gaps, left ventricular outflow tract (LVOT) obstruction, and other potential procedure pitfalls. Results of 3D prototyping were then compared to post procedural imaging to determine how closely the achieved procedural result mirrored the 3D modeled result. 3D prototyping simulated LVOT obstruction in one patient who developed it and in another patient who underwent alcohol septal ablation prior to TMVR. Valve sizing correlated with actual placed valve size in six out of the eight patients and more than mild paravalvular leak (PVL) was simulated in two of the three patients who had it. Patients who had mismatch between their modeled valve size and post-procedural imaging were the ones that had anterior leaflet resection which could have altered valve sizing and PVL simulation. 3D printed model of one of the latter patients allowed modification of anterior leaflet to simulate surgical resection and was able to estimate the size and location of the PVL after inserting a valve stent into the physical model. 3D prototyping in TMVR for severe MAC is feasible for simulating valve sizing, apposition, expansion, PVL, and LVOT obstruction. © 2018 Wiley Periodicals, Inc.
Siminiak, Tomasz; Dankowski, Rafał; Baszko, Artur; Lee, Christopher; Firek, Ludwik; Kałmucki, Piotr; Szyszka, Andrzej; Groothuis, Adam
2013-01-01
Functional mitral regurgitation (FMR) is known to contribute to a poor prognosis in patients with heart failure (HF). Current guidelines do not recommend cardiac surgery in patients with FMR and impaired ejection fraction due to the high procedural risk. Percutaneous techniques aimed at mitral valve repair may constitute an alternative to currently used routine medical treatment. To provide a description of a novel percutaneous suture-based technique of direct mitral annuloplasty using the Mitralign Bident system, as well as report our first case successfully treated with this method. A deflectable guiding catheter is advanced via the femoral route across the aortic valve to the posterior wall of the ventricle. A nested deflectable catheter is advanced through the guide toward the mitral annulus that allows the advancement of an insulated radiofrequency wire to cross the annulus. The wire is directed across the annulus in a target area that is 2-5 mm from the base of the leaflet into the annulus, as assessed by real-time 3D transoesophageal echocardiography. After placement of the first wire, another wire is positioned using a duel lumen bident delivery catheter, which provides a predetermined separation between wires (i.e. 14, 17 or 21 mm). Each wire provides a guide rail for implantation of sutured pledget implants within the annulus. Two pairs of pledgets are implanted, one pair in each of the P1 and P3 scallop regions of the posterior mitral annulus. A dedicated plication lock device is used to provide a means for plication of the annulus within each pair of the pledgets, and to retain the plication by delivering a suture locking implant. The plications result in improved leaflet coaptation and a reduction of the regurgitant orifice area. A 60-year-old female with diagnosed dilated cardiomyopathy, concomitant FMR class III and congestive HF was successfully treated with the Mitralign Bident system. Two pairs of pledgets were implanted resulting in an improvement of transoesophageal echocardiographic parameters, including proximal isovelocity surface area radius (0.7 cm to 0.4 cm), effective regurgitant orfice area (0.3 cm² to 0.1 cm²) and mitral regurgitant volume (49 mL to 10 mL). Percutaneous mitral annuloplasty with the Mitralign Bident system is feasible. Future clinical trials are needed to assess its safety and efficacy.
Annular dynamics of memo3D annuloplasty ring evaluated by 3D transesophageal echocardiography.
Nishi, Hiroyuki; Toda, Koichi; Miyagawa, Shigeru; Yoshikawa, Yasushi; Fukushima, Satsuki; Yoshioka, Daisuke; Sawa, Yoshiki
2018-04-01
We assessed the mitral annular motion after mitral valve repair with the Sorin Memo 3D® (Sorin Group Italia S.r.L., Saluggia, Italy), which is a unique complete semirigid annuloplasty ring intended to restore the systolic profile of the mitral annulus while adapting to the physiologic dynamism of the annulus, using transesophageal real-time three-dimensional echocardiography. 17 patients (12 male; mean age 60.4 ± 14.9 years) who underwent mitral annuloplasty using the Memo 3D ring were investigated. Mitral annular motion was assessed using QLAB®version8 allowing for a full evaluation of the mitral annulus dynamics. The mitral annular dimensions were measured throughout the cardiac cycle using 4D MV assessment2® while saddle shape was assessed through sequential measurements by RealView®. Saddle shape configuration of the mitral annulus and posterior and anterior leaflet motion could be observed during systole and diastole. The mitral annular area changed during the cardiac cycle by 5.7 ± 1.8%.The circumference length and diameter also changed throughout the cardiac cycle. The annular height was significantly higher in mid-systole than in mid-diastole (p < 0.05). The Memo 3D ring maintained a physiological saddle-shape configuration throughout the cardiac cycle. Real-time three-dimensional echocardiography analysis confirmed the motion and flexibility of the Memo 3D ring upon implantation.
Mejean, Simon; Bouvier, Erik; Bataille, Vincent; Seknadji, Patrick; Fourchy, Dominique; Tabet, Jean-Yves; Lairez, Olivier; Cormier, Bertrand
2016-10-15
Mitral annular calcium (MAC) is a common finding in older patients referred for transcatheter aortic valve implantation (TAVI). Multidetector computed tomography (MDCT) allows fine quantification of the calcific deposits. Our objective was to estimate the prevalence of MAC and associated mitral stenosis (MS) in patients referred for TAVI using MDCT. A cohort of 346 consecutive patients referred for TAVI evaluation was screened by MDCT for MAC: 174 had MAC (50%). Of these patients, 165 patients (95%) had mitral valve area (MVA) assessable by MDCT planimetry (age 83.8 ± 5.9 years). Median mitral calcium volume and MVA were 545 mm 3 (193 to 1,253 mm 3 ) and 234 mm 2 (187 to 297 mm 2 ), respectively. The MS was very severe, severe, and moderate in 2%, 22%, and 10% patients, respectively. By multivariate analysis, MVA was independently correlated to mitral calcium volume, aortic annular area, and some specific patterns of mitral leaflet calcium. Based on these findings, a formula was elaborated to predict the presence of a significant MS. In conclusion, MDCT allows detailed assessment of MAC in TAVI populations, demonstrating a high prevalence. Mitral analysis should become routine during MDCT screening before TAVI as it may alter therapeutic strategy. Copyright © 2016 Elsevier Inc. All rights reserved.
Prevalence and clinical characteristics of degenerative mitral stenosis.
Ukita, Yasuyuki; Yuda, Satoshi; Sugio, Hideaki; Yonezawa, Ayaka; Takayanagi, Yuka; Masuda-Yamamoto, Hitomi; Tanaka-Saito, Norie; Ohnishi, Hirofumi; Miura, Tetsuji
2016-09-01
Degenerative mitral stenosis (DMS) is found in the elderly population. However, there are a few reports regarding the prevalence rate of DMS and, its clinical characteristics. The aim of this study was to determine the relationship between age, gender, and the prevalence rate of DMS. Patients with DMS and rheumatic mitral stenosis (RMS) were searched retrospectively in consecutive patients who underwent echocardiography from January 2011 to December 2013 in a community hospital. DMS was defined as presence of both turbulent antegrade flow with a mean transmitral pressure gradient (PG) of ≥2mmHg and mitral annular calcification without restriction of leaflets tip motion. We identified 19 patients (17 female and 2 male) with DMS (0.22%) and 19 patients with RMS in 8683 patients. The prevalence rate of DMS significantly increased with aging, especially in patients >90 years old. There was no significant difference in the prevalence rates of RMS among the age groups. Patients with DMS were older (86±8 years vs. 73±10 years, p<0.01) and had higher rates of hypertension and aortic stenosis, larger left ventricular mass index, and mean PG of aortic valve, smaller aortic valve area, less degree of left atrial dilatation, and lower rate of atrial fibrillation, compared with those values in patients with RMS. DMS is rare (0.22%) and almost exclusively found in females in routine echocardiography. The prevalence of DMS increases with aging to 2.5% in patients >90 years of age, and DMS is often associated with aortic valve stenosis. Copyright © 2015 Japanese College of Cardiology. Published by Elsevier Ltd. All rights reserved.
When what appears to be mitral stenosis is not: diagnostic and therapeutic implications.
Almeida, Inês; Caetano, Francisca; Trigo, Joana; Mota, Paula; Cachulo, Maria do Carmo; Antunes, Manuel; Leitão Marques, António
2014-01-01
The authors report the case of a 53-year-old man, with a long-standing history of mild mitral stenosis, admitted for worsening fatigue. Transthoracic echocardiography (limited by poor image quality) showed mitral annular calcification, leaflets that were difficult to visualize and an estimated mitral valve area of 1.8 cm(2) by the pressure half-time method. However, elevated mean transmitral and right ventricle/right atrium gradients were identified (39 and 117 mmHg, respectively). This puzzling discrepancy in the echocardiographic findings prompted investigation by transesophageal echocardiography, which revealed an echogenic structure adjacent to the mitral annulus, causing severe obstruction (effective orifice area 0.7 cm(2)). The suspicion of supravalvular mitral ring was confirmed during surgery. Following ring resection and mitral valve replacement there was significant improvement in the patient's clinical condition and normalization of the left atrium/left ventricle gradient. Supravalvular mitral ring is an unusual cause of congenital mitral stenosis, characterized by an abnormal ridge of connective tissue on the atrial side of the mitral valve, which often obstructs mitral valve inflow. Few cases have been reported, most of them in children with concomitant congenital abnormalities. Diagnosis of a supravalvular mitral ring is challenging, since it is very difficult to visualize in most diagnostic tests. It was the combination of clinical and various echocardiographic findings that led us to suspect this very rare condition, enabling appropriate treatment, with excellent long-term results. Copyright © 2013 Sociedade Portuguesa de Cardiologia. Published by Elsevier España. All rights reserved.
Unusual course of infective endocarditis: acute renal failure progressing to chronic renal failure.
Sevinc, Alper; Davutoglu, Vedat; Barutcu, Irfan; Kocoglu, M Esra
2006-04-01
Infective endocarditis is an infection of the endocardium that usually involves the valves and adjacent structures. The classical fever of unknown origin presentation represents a minority of infective endocarditis. The presented case was a 21-yearold young lady presenting with acute renal failure and fever to the emergency room. Cardiac auscultation revealed a soft S1 and 4/6 apical holosystolic murmur extended to axilla. Echocardiography showed mobile fresh vegetation under the mitral posterior leaflet. She was diagnosed as having infective endocarditis. Hemodialysis was started with antimicrobial therapy. However, because of the presence of severe mitral regurgitation with left ventricle dilatation and large mobile vegetation, mitral prosthetic mechanical valve replacement was performed. Although treated with antibiotics combined with surgery, renal functions were deteriorated and progressed to chronic renal failure.
Leaflet embolisation from Duromedics valves: a report of two cases.
Kumar, N; Balasundaram, S; Rickard, M; al Halees, Z; Duran, C M
1991-12-01
Embolization of parts of mechanical valves has been reported since the inception of prosthetic valve implantation. We report here two cases of embolization of one hemileaflet of a Duromedic bileaflet prosthesis in the mitral position due to a pivot fracture. Both presented with moderately severe mitral regurgitation and pulmonary edema and were successfully managed by replacement of the malfunctioning prostheses. The embolised disc was located in the left common iliac artery by abdominal ultrasound and removed by an inguinal, retroperitoneal approach with low morbidity. Both patients left hospital and are doing well to-date.
Ultrasound based mitral valve annulus tracking for off-pump beating heart mitral valve repair
NASA Astrophysics Data System (ADS)
Li, Feng P.; Rajchl, Martin; Moore, John; Peters, Terry M.
2014-03-01
Mitral regurgitation (MR) occurs when the mitral valve cannot close properly during systole. The NeoChordtool aims to repair MR by implanting artificial chordae tendineae on flail leaflets inside the beating heart, without a cardiopulmonary bypass. Image guidance is crucial for such a procedure due to the lack of direct vision of the targets or instruments. While this procedure is currently guided solely by transesophageal echocardiography (TEE), our previous work has demonstrated that guidance safety and efficiency can be significantly improved by employing augmented virtuality to provide virtual presentation of mitral valve annulus (MVA) and tools integrated with real time ultrasound image data. However, real-time mitral annulus tracking remains a challenge. In this paper, we describe an image-based approach to rapidly track MVA points on 2D/biplane TEE images. This approach is composed of two components: an image-based phasing component identifying images at optimal cardiac phases for tracking, and a registration component updating the coordinates of MVA points. Preliminary validation has been performed on porcine data with an average difference between manually and automatically identified MVA points of 2.5mm. Using a parallelized implementation, this approach is able to track the mitral valve at up to 10 images per second.
Patient-specific pediatric silicone heart valve models based on 3D ultrasound
NASA Astrophysics Data System (ADS)
Ilina, Anna; Lasso, Andras; Jolley, Matthew A.; Wohler, Brittany; Nguyen, Alex; Scanlan, Adam; Baum, Zachary; McGowan, Frank; Fichtinger, Gabor
2017-03-01
PURPOSE: Patient-specific heart and valve models have shown promise as training and planning tools for heart surgery, but physically realistic valve models remain elusive. Available proprietary, simulation-focused heart valve models are generic adult mitral valves and do not allow for patient-specific modeling as may be needed for rare diseases such as congenitally abnormal valves. We propose creating silicone valve models from a 3D-printed plastic mold as a solution that can be adapted to any individual patient and heart valve at a fraction of the cost of direct 3D-printing using soft materials. METHODS: Leaflets of a pediatric mitral valve, a tricuspid valve in a patient with hypoplastic left heart syndrome, and a complete atrioventricular canal valve were segmented from ultrasound images. A custom software was developed to automatically generate molds for each valve based on the segmentation. These molds were 3D-printed and used to make silicone valve models. The models were designed with cylindrical rims of different sizes surrounding the leaflets, to show the outline of the valve and add rigidity. Pediatric cardiac surgeons practiced suturing on the models and evaluated them for use as surgical planning and training tools. RESULTS: Five out of six surgeons reported that the valve models would be very useful as training tools for cardiac surgery. In this first iteration of valve models, leaflets were felt to be unrealistically thick or stiff compared to real pediatric leaflets. A thin tube rim was preferred for valve flexibility. CONCLUSION: The valve models were well received and considered to be valuable and accessible tools for heart valve surgery training. Further improvements will be made based on surgeons' feedback.
Pregnancy-induced remodeling of heart valves.
Pierlot, Caitlin M; Moeller, Andrew D; Lee, J Michael; Wells, Sarah M
2015-11-01
Recent studies have demonstrated remodeling of aortic and mitral valves leaflets under the volume loading and cardiac expansion of pregnancy. Those valves' leaflets enlarge with altered collagen fiber architecture, content, and cross-linking and biphasic changes (decreases, then increases) in extensibility during gestation. This study extends our analyses to right-sided valves, with additional compositional measurements for all valves. Valve leaflets were harvested from nonpregnant heifers and pregnant cows. Leaflet structure was characterized by leaflet dimensions, and ECM composition was determined using standard biochemical assays. Histological studies assessed changes in cellular and ECM components. Leaflet mechanical properties were assessed using equibiaxial mechanical testing. Collagen thermal stability and cross-linking were assessed using denaturation and hydrothermal isometric tension tests. Pulmonary and tricuspid leaflet areas increased during pregnancy by 35 and 55%, respectively. Leaflet thickness increased by 20% only in the pulmonary valve and largely in the fibrosa (30% thickening). Collagen crimp length was reduced in both the tricuspid (61%) and pulmonary (42%) valves, with loss of crimped area in the pulmonary valve. Thermomechanics showed decreased collagen thermal stability with surprisingly maintained cross-link maturity. The pulmonary leaflet exhibited the biphasic change in extensibility seen in left side valves, whereas the tricuspid leaflet mechanics remained largely unchanged throughout pregnancy. The tricuspid valve exhibits a remodeling response during pregnancy that is significantly diminished from the other three valves. All valves of the heart remodel in pregnancy in a manner distinct from cardiac pathology, with much similarity valve to valve, but with interesting valve-specific responses in the aortic and tricuspid valves. Copyright © 2015 the American Physiological Society.
Initial Experience With a New Mitral Ring Designed to Simplify Length Determination of Neochords.
Prinzing, Anatol; Bleiziffer, Sabine; Krane, Markus; Lange, Ruediger
2018-06-01
Artificial chord implantation has become one of the most applied techniques for mitral valve repair (MVR). Many techniques have been described, with the goal of optimizing neochord implantation. A new annuloplasty device designed to simplify the determination of the appropriate neochord length has been recently introduced. We describe our initial experience with this new device. The semirigid device is equipped with removable loops on the posterior aspect of the ring. Neochords are tied to the loops, which are subsequently removed. The device was implanted in 47 symptomatic patients from January 2015 to August 2016 through a median sternotomy in 33 patients (70.2%) and a right anterolateral minithoracotomy in 14 (29.8%). The cause of mitral valve insufficiency was degenerative in all patients, and most patients presented with isolated prolapse of the posterior leaflet. Before and after cardiopulmonary bypass, all patients underwent evaluation with transesophageal echocardiography, and transthoracic echocardiography was performed at discharge. A median of 2 neochords were implanted (minimum, 1; maximum, 6). Mean cardiopulmonary bypass time and aortic cross-clamp times were 141.7 ± 32.3 and 104.8 ± 28.5 minutes for combined and 133 ± 53.9 and 98.3 ± 41.6 minutes for isolated MVR. At discharge, echocardiography revealed no or only mild mitral insufficiency in 45 patients (mean gradient, 2.9 ± 1.3 mm Hg). This new annuloplasty ring facilitated determination of appropriate neochord length and was used to successfully treat different degenerative pathologies affecting both leaflets. This new device simplified length determination of the neochords. Copyright © 2018 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.
Contractor, Tahmeed; Bell, Adrian; Khasnis, Atul; Silverberg, Bruce J; Martinez, Matthew W
2013-01-01
Non-bacterial endocarditis lesions associated with antiphospholipid antibodies (aPLs) in the absence of other criteria for antiphospholipid syndrome or systemic lupus erythematosus is termed an aPL-associated cardiac valve disease. Evidence regarding the management of this condition is sparse. A rare case is described of a 20-year-old female who presented with an incidental finding of 'vegetations on a heart valve'. Echocardiography revealed mitral valve leaflet thickening and echodensities with moderate mitral regurgitation. She had an elevated partial thromboplastin time that did not correct with a mixing study, and elevated levels of antiocardiolipin antibodies. Hence, a diagnosis of aPL-associated cardiac valve disease was made, and the patient commenced on warfarin, hydroxychloroquine, and a short course of oral prednisone. At one year after diagnosis the patient remained symptom-free, and follow up echocardiography revealed resolution of the vegetations with minimal mitral regurgitation. Further evidence is needed to guide the therapy of this rare condition.
Quantification of mitral regurgitation using proximal isovelocity surface area method in dogs.
Choi, Hojung; Lee, Kichang; Lee, Heechun; Lee, Youngwon; Chang, Dongwoo; Eom, Kidong; Youn, Hwayoung; Choi, Mincheol; Yoon, Junghee
2004-06-01
The present study was performed to determine the accuracy and reproducibility of calculating the mitral regurgitant orifice area with the proximal isovelocity surface area (PISA) method in dogs with experimental mitral regurgitation and in canine patients with chronic mitral insufficiency and to evaluate the effect of general anesthesia on mitral regurgitation. Eight adult, Beagle dogs for experimental mitral regurgitation and 11 small breed dogs with spontaneous mitral regurgitation were used. In 8 Beagle dogs, mild mitral regurgitation was created by disrupting mitral chordae or leaflets. Effective regurgitant orifice (ERO) area was measured by the PISA method and compared with the measurements simultaneously obtained by quantitative Doppler echocardiography 4 weeks after creation of mitral regurgitation. The same procedure was performed in 11 patients with isolated mitral regurgitation and in 8 Beagle dogs under two different protocols of general anesthesia. ERO and regurgitant stroke volume (RSV) by the PISA method correlated well with values by the quantitative Doppler technique with a small error in experimental dogs (r = 0.914 and r = 0.839) and 11 patients (r = 0.990 and r = 0.996). The isoflurane anesthetic echocardiography demonstrated a significant decrease of RSV, and there was no significant change in fractional shortening (FS), ERO area, LV end-diastolic and LV end-systolic volume. ERO area showed increasing tendency after ketamine-xylazine administration, but not statistically significant. RSV, LV end-systolic and LV end-diastolic volume increased significantly (p < 0.01), whereas FS significantly decreased (p < 0.01). The PISA method is accurate and reproducible in experimental mitral regurgitation model and in a clinical setting. ERO area is considered and preferred as a hemodynamic-nondependent factor than other traditional measurements.
Percutaneous repair or surgery for mitral regurgitation.
Feldman, Ted; Foster, Elyse; Glower, Donald D; Glower, Donald G; Kar, Saibal; Rinaldi, Michael J; Fail, Peter S; Smalling, Richard W; Siegel, Robert; Rose, Geoffrey A; Engeron, Eric; Loghin, Catalin; Trento, Alfredo; Skipper, Eric R; Fudge, Tommy; Letsou, George V; Massaro, Joseph M; Mauri, Laura
2011-04-14
Mitral-valve repair can be accomplished with an investigational procedure that involves the percutaneous implantation of a clip that grasps and approximates the edges of the mitral leaflets at the origin of the regurgitant jet. We randomly assigned 279 patients with moderately severe or severe (grade 3+ or 4+) mitral regurgitation in a 2:1 ratio to undergo either percutaneous repair or conventional surgery for repair or replacement of the mitral valve. The primary composite end point for efficacy was freedom from death, from surgery for mitral-valve dysfunction, and from grade 3+ or 4+ mitral regurgitation at 12 months. The primary safety end point was a composite of major adverse events within 30 days. At 12 months, the rates of the primary end point for efficacy were 55% in the percutaneous-repair group and 73% in the surgery group (P=0.007). The respective rates of the components of the primary end point were as follows: death, 6% in each group; surgery for mitral-valve dysfunction, 20% versus 2%; and grade 3+ or 4+ mitral regurgitation, 21% versus 20%. Major adverse events occurred in 15% of patients in the percutaneous-repair group and 48% of patients in the surgery group at 30 days (P<0.001). At 12 months, both groups had improved left ventricular size, New York Heart Association functional class, and quality-of-life measures, as compared with baseline. Although percutaneous repair was less effective at reducing mitral regurgitation than conventional surgery, the procedure was associated with superior safety and similar improvements in clinical outcomes. (Funded by Abbott Vascular; EVEREST II ClinicalTrials.gov number, NCT00209274.).
Nath, Ranjit Kumar; Soni, Dheeraj Kumar
2016-08-01
A 24-year-old female patient presented to us with progressive dyspnea on exertion for last three year. She was not a known case of rheumatic heart disease. Her physical examination showed regular pulse and her blood pressure was 100/76 mm Hg. Cardiac palpation showed grade 3 parasternal heave and auscultation revelled an accentuated first heart sound, loud P2 and mid-diastolic long rumbling murmur at apex and pansystolic murmur of tricuspid regurgitation at lower left sterna border. Chest X-ray showed evidence of grade 3 pulmonary venous congestion. Transthoracic and transesophageal two-dimensional echocardiography revealed a double-orifice mitral valve of complete bridge type at the leaflet level. Both orifice sizes were unequal, with the anterolateral orifice being smaller than its counterpart. There was moderate subvalvular fusion and both commisures were fused. Color doppler examination showed two separate mitral diastolic flows with mean gradients of 22 mm and 20 mm of Hg, respectively. There was no mitral regurgitation and no left atrial or appendage clot was seen by transesophageal echocardiography. Transseptal puncture was done by the modified fluoroscopic method. Posteromedial orifice was crossed with a 24 mm Inoue balloon and dilated using the stepwise dilation technique. Anterolateral orifice was not crossed by Inuoe balloon after multiple attempts. A TYSHAK (NuMAD Canada Inc.) balloon (16 × 40mm) was taken over the wire and inflated successfully across the anterolateral orifice with the help of transthoracic echocardiography guidance. Mean gradient become 9 and 8 mm across the medial and lateral orifice. Patient was discharged in stable condition after two day. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.
Assessment of insulin-like growth factor-1 (IGF-I) level in patients with rheumatic mitral stenosis.
Deveci, Onur S; Yavuz, Bunyamin; Sen, Omer; Deniz, Ali; Ozkan, Selcuk; Dal, Kursat; Ata, Naim; Baser, Salih; Akin, Kadir O; Kucukazman, Metin; Beyan, Esin; Ertugrul, Derun T
2015-03-01
Insulin-like growth factor-1 may serve some regulatory function in the immune system. Rheumatic mitral stenosis is related to autoimmune heart valve damage after streptococcal infection. The aim of this study was to assess the level of insulin-like growth factor-1 and its correlation with the Wilkins score in patients with rheumatic mitral stenosis. A total of 65 patients with rheumatic mitral stenosis and 62 age- and sex-matched control subjects were enrolled in this study. All subjects underwent transthoracic echocardiography. The mitral valve area and Wilkins score were evaluated for all patients. Biochemical parameters and serum insulin-like growth factor-1 levels were measured. Demographic data were similar in the rheumatic mitral stenosis and control groups. The mean mitral valve area was 1.6±0.4 cm2 in the rheumatic mitral stenosis group. The level of insulin-like growth factor-1 was significantly higher in the rheumatic mitral stenosis group than in the control group (104 (55.6-267) versus 79.1 (23.0-244.0) ng/ml; p=0.039). There was a significant moderate positive correlation between insulin-like growth factor-1 and thickening of leaflets score of Wilkins (r=0.541, p<0.001). The present study demonstrated that serum insulin-like growth factor-1 levels were significantly higher in the rheumatic mitral stenosis group compared with control subjects and that insulin-like growth factor-1 level was also correlated with the Wilkins score. It can be suggested that there may be a link between insulin-like growth factor-1 level and immune pathogenesis of rheumatic mitral stenosis.
[Valvuloplasty with balloon catheter in biologic prosthesis. Reality or illusion].
Ledesma Velasco, M; Verdín Vázquez, R; Acosta Valdez, J L; Munayer Calderón, J; Salgado Escobar, J L; Arias Monroy, L; Flores Mendoza, J
1989-01-01
We performed catheter balloon valvuloplasty (CBV) on 8 stenotic operatively-excised bioprosthetic valves (2 Hancock and 6 Ionescu Shiley). Pathology of valves before CBV included degenerative changes: commissural fusion by mounds of calcific deposits (2 valves), fibrotic and focally calcified leaflets (7 valves) and stiff and thick valves (1 valve). Inflation of the balloon resulted in commissural splitting (2 valves), leaflet cracks and fractures (3 valves). Removal of the deflated balloon catheter was associated with debris dislodgement (3 valves). In one case the valve was unable to close with potential for acute regurgitation. Thus, CBV of bioprosthetic valves can split fused commissures by similar mechanisms as in native valves. CBV may fracture calcific deposits causing acute emboli. It can also disrupt the leaflets causing acute insufficiency. The findings suggest a limited role of CBV in the treatment of stenotic bioprosthetic valves in mitral and aortic position.
Huang, H; Zhou, Y; Shao, J; Cai, J; Mei, Y; Wang, Y
2012-12-01
The aim of this paper was to develop a new self-expandable aortic valved stent following the shape of the sinus of Valsalva, which can be deployed above native leaflets for aortic regurgitation, and study it's effect on coronary artery flow when orthotopic implantation in and above native leaflets. New self-expandable aortic valved stent consist of nitinol stent and bovine pericardium, and was designed following the shape of the sinus of Valsalva, the bovine pericardium was tailed as native leaflet. Thirty-six swine hearts were divided into three equal groups of twelve. In Group A (N.=12), the new self-expandable aortic valved stents deployed in native leaflets. In Group B (N.=12), the new self-expandable aortic valved stents deployed above native leaflets. In Group C (N.=12), the cylinder-like valved stents deployed only in native leaflets. The measurements of each coronary flow rate and endoscopic inspections were repeated post-implantation. In Group A and C, valve implantation in native leaflets resulted in a significant decrease in both left and right coronary flows. In Group B, no significant change in either right or left coronary flow was found after new self-expandable aortic valved stent placement. Endoscopic inspections showed that in group A and C the native leaflets sandwiched between valved stent and aortic wall, whereas, in group B the native leaflets were under the artificial leaflets. Two kinds of stents deployed in native leaflets affect left and right coronary flows significantly. No significant effect was found when the new self-expandable aortic valved stent deployed above native leaflets. This new self-expandable aortic valved stent can be deployed above the native leaflets, which avoids the obstruction of native leaflets on coronary flow.
Messas, Emmanuel; Bel, Alain; Szymanski, Catherine; Cohen, Iris; Touchot, Bernard; Handschumacher, Mark D; Desnos, Michel; Carpentier, Alain; Menasché, Philippe; Hagège, Albert A; Levine, Robert A
2010-11-01
one of the key targets in treating mitral regurgitation (MR) is reducing the otherwise progressive left ventricular (LV) remodeling that exacerbates MR and conveys adverse prognosis. We have previously demonstrated that severing 2 second-order chordae to the anterior mitral leaflet relieves tethering and ischemic MR acutely. The purpose of this study was to test whether this technique reduces the progression of LV remodeling in the chronic ischemic MR setting. a posterolateral MI was created in 18 sheep by obtuse marginal branch ligation. After chronic remodeling and MR development at 3 months, 6 sheep were randomized to sham surgery (control group) and 12 to second-order chordal cutting (6 each to anterior leaflet [AntL] and bileaflet [BiL] chordal cutting, techniques that are in clinical application). At baseline, chronic infarction (3 months), and follow-up at a mean of 6.6 months post-myocardial infarction (MI) (euthanasia), we measured LV end-diastolic (EDV) and end-systolic volume (ESV), ejection fraction, wall motion score index, and posterior leaflet (PL) restriction angle relative to the annulus by 2D and 3D echocardiography. All measurements were comparable among groups at baseline and chronic MI. At euthanasia, AntL and BiL chordal cutting limited the progressive remodeling seen in controls. LVESV increased relative to chronic MI by 109±8.7% in controls versus 30.5±6.1% with chordal cutting (P<0.01) (LVESV in controls, 82.5±2.6 mL; in AntL, 60.6±5.1 mL; in BiL, 61.8±4.1 mL). LVEDV increased by 63±2.0% in controls versus 26±5.5% and 22±3.4% with chordal cutting (P<0.01). LV ejection fraction and wall motion score index were not significantly different at follow-up among the chordal cutting and control groups. MR progressively increased to moderate in controls but decreased to trace-mild with AntL and BiL chordal cutting (MR vena contracta in controls, 5.9±1.1 mm; in AntL, 2.6±0.1 mm; in BiL, 1.7±0.1 mm; P<0.01). BiL chordal cutting provided greater PL mobility (decreased PL restriction angle to 54.2±5.0° versus 83±3.2° with AntL chordal cutting; P<0.01). reduced leaflet tethering by chordal cutting in the chronic post-MI setting substantially decreases the progression of LV remodeling with sustained reduction of MR over a chronic follow-up. These benefits have the potential to improve clinical outcomes.
Flow-induced Flutter of Heart Valves: Experiments with Canonical Models
NASA Astrophysics Data System (ADS)
Dou, Zhongwang; Seo, Jung-Hee; Mittal, Rajat
2017-11-01
For the better understanding of hemodynamics associated with valvular function in health and disease, the flow-induced flutter of heart valve leaflets is studied using benchtop experiments with canonical valve models. A simple experimental model with flexible leaflets is constructed and a pulsatile pump drives the flow through the leaflets. We quantify the leaflet dynamics using digital image analysis and also characterize the dynamics of the flow around the leaflets using particle imaging velocimetry. Experiments are conducted over a wide range of flow and leaflet parameters and data curated for use as a benchmark for validation of computational fluid-structure interaction models. The authors would like to acknowledge Supported from NSF Grants IIS-1344772, CBET-1511200 and NSF XSEDE Grant TG-CTS100002.
Jyrala, Aarne; Gatto, Nicole M; Kay, Gregory L
2010-01-01
The aim of this report is to evaluate short- and long-term outcomes of annuloplasty method of our choice: measured posterior annuloplasty (MPA). MPA is a piece of a Duran ring cut to the length of free-edge of anterior mitral leaflet (AML) and anchored with multiple pledgeted U-sutures from trigone to trigone into the posterior annulus. From 1988 to 2000, 103 consecutive patients with non-ischemic mitral regurgitation were scheduled preoperatively to be repaired by MPA. Preoperative mitral valve regurgitation (MR) grade was 3.8+/-0.5 and decreased to 0.1+/-0.3 (P<0.0001) after repair. One patient was converted to insertion of mechanical prosthesis after grade 3 MR persisted after septal myectomy and MPA. Three patients needed instant revision of the repair one due to SAM and two due to stenosis. No patient had a stenosis or unacceptable (>1) MR after the procedure. There was one operative death (1.0%) and 3 hospital/30-day deaths (2.9%). Sixteen patients (16.3%) expired during the follow-up to 91 months (mean 57.4+/-19.5, median 60 months) none due to failure of MPA. There were no reoperations due to failure of MPA. Three patients had a reoperation, one for dehiscence of reconstruction after P2 resection and two patients due to progression of anterior leaflet degeneration and calcification with 4+ MR. New York Heart Association (NYHA) functional classification decreased from 2.3+/-0.8 to 1.4+/-0.6 (P<0.0001) and only one patient had an increase from II to III. Eighty-eight patients (96.7%) were in NYHA class I-II. Ten patients had an increase of MR from 0 to trace or 1 and one from 0 to 2. Two patients were diagnosed with mild stenosis without need of reoperation. MPA is a durable and stable alternative for repair of non-ischemic mitral regurgitation of different etiologies. The technique gives an objective measure of the length of the band and no patient is left with a significant MR or mitral valve stenosis (MS). First-time success rate is very high and instant repairs few and minor. Freedom of MPA related reoperations is 100%.
Patzelt, Johannes; Zhang, Yingying; Seizer, Peter; Magunia, Harry; Henning, Andreas; Riemlova, Veronika; Patzelt, Tara A E; Hansen, Marc; Haap, Michael; Riessen, Reimer; Lausberg, Henning; Walker, Tobias; Reutershan, Joerg; Schlensak, Christian; Grasshoff, Christian; Simon, Dan I; Rosenberger, Peter; Schreieck, Juergen; Gawaz, Meinrad; Langer, Harald F
2016-01-25
This study sought to evaluate a ventilation maneuver to facilitate percutaneous edge-to-edge mitral valve repair (PMVR) and its effects on heart geometry. In patients with challenging anatomy, the application of PMVR is limited, potentially resulting in insufficient reduction of mitral regurgitation (MR) or clip detachment. Under general anesthesia, however, ventilation maneuvers can be used to facilitate PMVR. A total of 50 consecutive patients undergoing PMVR were included. During mechanical ventilation, different levels of positive end-expiratory pressure (PEEP) were applied, and parameters of heart geometry were assessed using transesophageal echocardiography. We found that increased PEEP results in elevated central venous pressure. Specifically, central venous pressure increased from 14.0 ± 6.5 mm Hg (PEEP 3 mm Hg) to 19.3 ± 5.9 mm Hg (PEEP 20 mm Hg; p < 0.001). As a consequence, the reduced pre-load resulted in reduction of the left ventricular end-systolic diameter from 43.8 ± 10.7 mm (PEEP 3 mm Hg) to 39.9 ± 11.0 mm (PEEP 20 mm Hg; p < 0.001), mitral valve annulus anterior-posterior diameter from 32.4 ± 4.3 mm (PEEP 3 mm Hg) to 30.5 ± 4.4 mm (PEEP 20 mm Hg; p < 0.001), and the medio-lateral diameter from 35.4 ± 4.2 mm to 34.1 ± 3.9 mm (p = 0.002). In parallel, we observed a significant increase in leaflet coaptation length from 3.0 ± 0.8 mm (PEEP 3 mm Hg) to 5.4 ± 1.1 mm (PEEP 20 mm Hg; p < 0.001). The increase in coaptation length was more pronounced in MR with functional or mixed genesis. Importantly, a coaptation length >4.9 mm at PEEP of 10 mm Hg resulted in a significant reduction of PMVR procedure time (152 ± 49 min to 116 ± 26 min; p = 0.05). In this study, we describe a novel ventilation maneuver improving mitral valve coaptation length during the PMVR procedure, which facilitates clip positioning. Our observations could help to improve PMVR therapy and could make nonsurgical candidates accessible to PMVR therapy, particularly in challenging cases with functional MR. Copyright © 2016 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.
Nagoshi, H; Miyairi, M; Asato, T; Naito, M; Honda, M
1983-03-01
A backward flow signal in the left atrium masquerading as mitral regurgitation was studied by a pulsed Doppler method. The subjects consisted of 20 normal volunteers, 12 cases with mitral valve prolapse syndrome, five cases with rheumatic mitral regurgitation, five cases with lone atrial fibrillation, four cases with asymmetric septal hypertrophy and three cases with the Björk-Shiley tilting disc valve in the mitral position. In two-dimensional echocardiography combined with pulsed Doppler method, a Doppler signal was recorded by locating a sample volume in the left atrium. In all of the cases with mitral valve prolapse syndrome and the cases with the prosthetic valve as well as in all of the normal subjects, the backward flow signal was observed in the left atrium. In three cases with mitral valve prolapse syndrome, it was differentiated from a transvalvular regurgitant flow signal. In all cases with rheumatic mitral regurgitation, the backward flow signal was masked by a turbulent flow signal representing regurgitation. In cases with mitral stenosis, the backward flow signal was scarcely recognized. The duration of the backward flow signal had no relationship with heart rate. The histogram of incidence on the scale of R-R interval revealed normal distribution with a mean value of 0.24 sec (+/- 0.09 sec). Therefore, in cases with tachycardia, the backward flow signal was seen throughout systole. The peak backward flow velocity of Doppler signals was correlated (r = 0.71, p less than 0.01) with the peak forward flow velocity in diastole. The faint backward flow signal seen in cases with mitral stenosis and post-extrasystolic potentiation of the backward flow signal were suggestive of the foregoing relationship. The mechanism producing the backward flow was postulated as a water hammer phenomenon caused by closure of the mitral valve.
A technique of snaring method for fitting a prosthetic valve into the annulus.
Nagasaka, Shigeo; Kawata, Tetsuji; Matsuta, Masahiro; Taniguchi, Shigeki
2005-01-01
Tourniquetting technique to fit a prosthetic valve (PV) into the annulus in valve replacement surgery has been previously reported. We modified the previously reported method and designed a simpler tying technique. We performed 11 aortic (AVR: including four cases for calcified aortic stenosis (AS) with a small annulus and one cases for infective endocarditis with intramuscular abscess cavity), eight mitral valve replacements (MVR), and one tricuspid valve replacement (TVR: for corrected transposition of the great arteries). A PV was implanted using 2-0 polyester mattress sutures with a pledget. Each of the two tourniquets held a suture at the bottom of the annulus and at the opposite position to fit a PV. The sutures between each snare were tied down from the bottom to the top. In MVR, after seating of a PV with two tourniquets, we could make sure that no native tissue of any preserved mitral apparatus disturbed PV leaflet motion. In calcific AS, a PV had a good fitting into the annulus because of tourniquets applied to unseated part during tying sutures. In AVR for infective endocarditis, mattress sutures supported by a Teflon pledget were placed to close the abscess cavity. After snaring on one of these sutures, we tied down the sutures, ensuring that they did not cut through the friable tissues. In TVR, we found that native leaflets interfered with PV motion after seating down the prosthesis and those leaflets were resected before tying down the sutures. Postoperative transesophageal echocardiography showed no paravalvular leakage in any patients and excellent PV functions.
Pouch, Alison M; Aly, Ahmed H; Lai, Eric K; Yushkevich, Natalie; Stoffers, Rutger H; Gorman, Joseph H; Cheung, Albert T; Gorman, Joseph H; Gorman, Robert C; Yushkevich, Paul A
2017-09-01
Transesophageal echocardiography is the primary imaging modality for preoperative assessment of mitral valves with ischemic mitral regurgitation (IMR). While there are well known echocardiographic insights into the 3D morphology of mitral valves with IMR, such as annular dilation and leaflet tethering, less is understood about how quantification of valve dynamics can inform surgical treatment of IMR or predict short-term recurrence of the disease. As a step towards filling this knowledge gap, we present a novel framework for 4D segmentation and geometric modeling of the mitral valve in real-time 3D echocardiography (rt-3DE). The framework integrates multi-atlas label fusion and template-based medial modeling to generate quantitatively descriptive models of valve dynamics. The novelty of this work is that temporal consistency in the rt-3DE segmentations is enforced during both the segmentation and modeling stages with the use of groupwise label fusion and Kalman filtering. The algorithm is evaluated on rt-3DE data series from 10 patients: five with normal mitral valve morphology and five with severe IMR. In these 10 data series that total 207 individual 3DE images, each 3DE segmentation is validated against manual tracing and temporal consistency between segmentations is demonstrated. The ultimate goal is to generate accurate and consistent representations of valve dynamics that can both visually and quantitatively provide insight into normal and pathological valve function.
Navia, José L; Elgharably, Haytham; Javadikasgari, Hoda; Ibrahim, Ahmed; Koprivanac, Marijan; Lowry, Ashley M; Blackstone, Eugene H; Klein, Allan L; Gillinov, A Marc; Roselli, Eric E; Svensson, Lars G
2017-08-01
Tricuspid regurgitation (TR) often accompanies ischemic mitral regurgitation and is generally assumed to be a secondary consequence of altered hemodynamics of the left-sided regurgitation. We hypothesized that it may also be a direct consequence of right-sided ischemic disease. Therefore, our objectives were to (1) characterize the nature of this TR and (2) describe its time course after mitral valve surgery for ischemic mitral regurgitation, with or without concomitant tricuspid valve repair. From 2001 to 2011, 568 patients with ischemic mitral regurgitation underwent mitral valve surgery. They had varying degrees of TR and altered right-side heart morphology and function; 131 had concomitant tricuspid valve repair. Postoperatively, 1,395 echocardiograms were available to assess residual and recurrent TR. Greater severity of preoperative TR was accompanied by larger tricuspid valve diameter, greater leaflet tethering, worse right ventricular function, and higher right ventricular pressure (all p [trend] ≤ 0.002). Without tricuspid valve repair, 31% of patients with no preoperative TR had moderate or greater TR by 5 years, as did 62% with moderate TR. With tricuspid valve repair, 25% with moderate preoperative TR remained in that grade at 5 years, but 11% had severe TR. Tricuspid regurgitation accompanying ischemic mitral regurgitation is associated with right-side heart remodeling and dysfunction often mirroring that occurring in the left side of the heart-ischemic TR. Tricuspid valve repair is effective initially, but as with mitral valve repair, TR progressively returns. Therefore, when the severity of TR and right-sided remodeling reaches the point of irreversibility, it may be an indication to eliminate the TR by replacing the tricuspid valve. Copyright © 2017 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.
Simple versus complex degenerative mitral valve disease.
Javadikasgari, Hoda; Mihaljevic, Tomislav; Suri, Rakesh M; Svensson, Lars G; Navia, Jose L; Wang, Robert Z; Tappuni, Bassman; Lowry, Ashley M; McCurry, Kenneth R; Blackstone, Eugene H; Desai, Milind Y; Mick, Stephanie L; Gillinov, A Marc
2018-07-01
At a center where surgeons favor mitral valve (MV) repair for all subsets of leaflet prolapse, we compared results of patients undergoing repair for simple versus complex degenerative MV disease. From January 1985 to January 2016, 6153 patients underwent primary isolated MV repair for degenerative disease, 3101 patients underwent primary isolated MV repair for simple disease (posterior prolapse), and 3052 patients underwent primary isolated MV repair for complex disease (anterior or bileaflet prolapse), based on preoperative echocardiographic images. Logistic regression analysis was used to generate propensity scores for risk-adjusted comparisons (n = 2065 matched pairs). Durability was assessed by longitudinal recurrence of mitral regurgitation and reoperation. Compared with patients with simple disease, those undergoing repair of complex pathology were more likely to be younger and female (both P values < .0001) but with similar symptoms (P = .3). The most common repair technique was ring/band annuloplasty (3055/99% simple vs 3000/98% complex; P = .5), followed by leaflet resection (2802/90% simple vs 2249/74% complex; P < .0001). Among propensity-matched patients, recurrence of severe mitral regurgitation 10 years after repair was 6.2% for simple pathology versus 11% for complex pathology (P = .007), reoperation at 18 years was 6.3% for simple pathology versus 11% for complex pathology, and 20-year survival was 62% for simple pathology versus 61% for complex pathology (P = .6). Early surgical intervention has become more common in patients with degenerative MV disease, regardless of valve prolapse complexity or symptom status. Valve repair was associated with similarly low operative risk and time-related survival but less durability in complex disease. Lifelong annual echocardiographic surveillance after MV repair is recommended, particularly in patients with complex disease. Copyright © 2018 The American Association for Thoracic Surgery. Published by Elsevier Inc. All rights reserved.
Elbaz, Mohammed S M; Calkoen, Emmeline E; Westenberg, Jos J M; Lelieveldt, Boudewijn P F; Roest, Arno A W; van der Geest, Rob J
2014-09-27
LV diastolic vortex formation has been suggested to critically contribute to efficient blood pumping function, while altered vortex formation has been associated with LV pathologies. Therefore, quantitative characterization of vortex flow might provide a novel objective tool for evaluating LV function. The objectives of this study were 1) assess feasibility of vortex flow analysis during both early and late diastolic filling in vivo in normal subjects using 4D Flow cardiovascular magnetic resonance (CMR) with retrospective cardiac gating and 3D vortex core analysis 2) establish normal quantitative parameters characterizing 3D LV vortex flow during both early and late ventricular filling in normal subjects. With full ethical approval, twenty-four healthy volunteers (mean age: 20±10 years) underwent whole-heart 4D Flow CMR. The Lambda2-method was used to extract 3D LV vortex ring cores from the blood flow velocity field during early (E) and late (A) diastolic filling. The 3D location of the center of vortex ring core was characterized using cylindrical cardiac coordinates (Circumferential, Longitudinal (L), Radial (R)). Comparison between E and A filling was done with a paired T-test. The orientation of the vortex ring core was measured and the ring shape was quantified by the circularity index (CI). Finally, the Spearman's correlation between the shapes of mitral inflow pattern and formed vortex ring cores was tested. Distinct E- and A-vortex ring cores were observed with centers of A-vortex rings significantly closer to the mitral valve annulus (E-vortex L=0.19±0.04 versus A-vortex L=0.15±0.05; p=0.0001), closer to the ventricle's long-axis (E-vortex: R=0.27±0.07, A-vortex: R=0.20±0.09, p=0.048) and more elliptical in shape (E-vortex: CI=0.79±0.09, A-vortex: CI=0.57±0.06; <0.001) compared to E-vortex. The circumferential location and orientation relative to LV long-axis for both E- and A-vortex ring cores were similar. Good to strong correlation was found between vortex shape and mitral inflow shape through both the annulus (r=0.66) and leaflet tips (r=0.83). Quantitative characterization and comparison of 3D vortex rings in LV inflow during both early and late diastolic phases is feasible in normal subjects using retrospectively-gated 4D Flow CMR, with distinct differences between early and late diastolic vortex rings.
[Hyperthyroidism, eosinophilia, and fever in a 64-year-old patient].
Tack, C; Stierle, U; Heydrich, D; Petersohn, S; Sievers, H H; Feller, A C; Schneider, B
2012-10-01
We report on a male patient suffering from loss of weight, fatigue, fever, eosinophilia, and hyperthyreoidism. The echocardiogram revealed a left atrial mass originating from the posterior mitral leaflet. In combination with the constitutional symptoms a left atrial myxoma was diagnosed. The tumor was surgically removed. Postoperatively therapy with corticosteroids and thiamazole was stopped. During follow-up, eosinophilia and hyperthyreodism could no longer be detected.
Lee, Chung-Hao; Amini, Rouzbeh; Gorman, Robert C.; Gorman, Joseph H.; Sacks, Michael S.
2013-01-01
Estimation of regional tissue stresses in the functioning heart valve remains an important goal in our understanding of normal valve function and in developing novel engineered tissue strategies for valvular repair and replacement. Methods to accurately estimate regional tissue stresses are thus needed for this purpose, and in particular to develop accurate, statistically informed means to validate computational models of valve function. Moreover, there exists no currently accepted method to evaluate engineered heart valve tissues and replacement heart valve biomaterials undergoing valvular stresses in blood contact. While we have utilized mitral valve anterior leaflet valvuloplasty as an experimental approach to address this limitation, robust computational techniques to estimate implant stresses are required. In the present study, we developed a novel numerical analysis approach for estimation of the in-vivo stresses of the central region of the mitral valve anterior leaflet (MVAL) delimited by a sonocrystal transducer array. The in-vivo material properties of the MVAL were simulated using an inverse FE modeling approach based on three pseudo-hyperelastic constitutive models: the neo-Hookean, exponential-type isotropic, and full collagen-fiber mapped transversely isotropic models. A series of numerical replications with varying structural configurations were developed by incorporating measured statistical variations in MVAL local preferred fiber directions and fiber splay. These model replications were then used to investigate how known variations in the valve tissue microstructure influence the estimated ROI stresses and its variation at each time point during a cardiac cycle. Simulations were also able to include estimates of the variation in tissue stresses for an individual specimen dataset over the cardiac cycle. Of the three material models, the transversely anisotropic model produced the most accurate results, with ROI averaged stresses at the fully-loaded state of 432.6±46.5 kPa and 241.4±40.5 kPa in the radial and circumferential directions, respectively. We conclude that the present approach can provide robust instantaneous mean and variation estimates of tissue stresses of the central regions of the MVAL. PMID:24275434
Panos, Aristotelis; Vlad, Sylvio; Milas, Fotios; Myers, Patrick O
2015-06-01
Traditional resectional techniques and chordal transfer are difficult to apply in video-assisted mitral valve repair. Using artificial chords appears easier in this setting. The purpose of this study was to review the effectiveness and reproducibility of neochordal repair as a routine approach to minimally invasive mitral repair, and to assess the stability of neochord implantation using the figure-of-eight suture without pledgets in this setting. This is a retrospective review of all patients who underwent minimally invasive video-assisted mitral valve repair from 2008 to 2013. The primary endpoints were recurrent mitral regurgitation and reoperation. A total of 426 consecutive patients were included during the study period, with a mean age of 55 ± 18 years. Neochords were used in all patients, and in association with leaflet resection in 47 patients. One patient was not repairable and underwent valve replacement (repair rate, 99.8%). Fifteen patients had Grade I (3.5%) regurgitation, whereas the remainder had none. Patients were fast-tracked, with 25% extubated in the operation theatre and the remainder within 6 h. There were 5 deaths within 30 days (1.2%). Follow-up ranged 3-60 months, during which all of the patients remained with no or trace mitral regurgitation. No de-insertion or rupture of any neochords was found, and no patients required a reoperation. Minimally invasive mitral valve repair using neochords provided a high rate of repair, reproducible results in a routine cardiac surgery setting and stable repair during follow-up. This has become our preferred technique for mitral valve surgery. © The Author 2015. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.
Jouan, Jérôme; Berrebi, Alain; Chauvaud, Sylvain; Menasché, Philippe; Carpentier, Alain; Fabiani, Jean-Noël
2012-04-01
Owing to the complexity of the underlying lesions, Barlow disease remains a challenge for surgeons performing mitral valve repair. We aimed to assess whether our most recent results involving several surgeons were comparable with those of a previous experience in which mitral valve repair was performed by a more limited group of surgeons. From September 2000 to January 2007, 200 patients with Barlow disease (135 men and 65 women; mean age, 56 ± 13 years) were referred to our institution for surgical treatment of their mitral regurgitation. We retrospectively analysed the mitral lesions characteristics, the surgical techniques used, and clinical outcomes. Follow-up echocardiograms were biannually reviewed. Lesions comprised annular dilatation, excess tissue, and leaflet prolapse in all cases. The most frequent prolapsed segments were P2 (88.5%; n = 177) and A2 (55.5%; n = 111). Annular calcifications and restrictive valvular motion were associated in 20% (n = 40). Repair was feasible in 94.7% (n = 179/189) of non-redo interventions. Immediate postoperative echocardiography showed residual mitral regurgitation greater than 1+ in 6 cases; these patients were all reoperated on within the next months. Operative mortality was 1.5% (n = 3). Mean follow-up was 77.5 ± 25.6 months. At 8 years postoperatively, overall survival was 88.6% ± 3.1%, freedom from reintervention was 95.3% ± 1.7%, and freedom from late recurrent moderate mitral regurgitation (>2+) was 90.2% ± 3.1% Provided that the fundamental principles of mitral valve reconstruction are respected, the surgical techniques are highly reproducible with good long-term results, similar to those published during the pioneering phase of this surgery. Copyright © 2012 The American Association for Thoracic Surgery. Published by Mosby, Inc. All rights reserved.
Echocardiographic predictors of survival in dogs with myxomatous mitral valve disease.
Sargent, Julia; Muzzi, Ruthnea; Mukherjee, Rajat; Somarathne, Sharlene; Schranz, Katherine; Stephenson, Hannah; Connolly, David; Brodbelt, David; Fuentes, Virginia Luis
2015-03-01
To evaluate vena contracta and other echocardiographic measures of myxomatous mitral valve disease (MMVD) severity in a multivariable analysis of survival in dogs. 70 dogs diagnosed with MMVD from stored echocardiographic images that met study inclusion criteria. Left heart dimensions were measured as well as mitral regurgitant jet area/left atrial area (JAR), early mitral filling velocity (Evel), extent of mitral valve prolapse in right and left views (ProlR, ProlL), Prol indexed to aortic diameter (ProlR:Ao, ProlL:Ao), presence of a flail leaflet (FlailR, FlailL), and mitral regurgitation vena contracta diameter (VCR, VCL) indexed to aortic diameter (VCR:Ao, VCL:Ao). Follow-up from referring veterinarians was obtained by questionnaire or telephone to determine survival times. Inter- and intra-observer agreement was evaluated with Bland-Altman plots and weighted Kappa analysis. Survival was analyzed using Kaplan-Meier curves, logrank tests and Cox's proportional hazards. Logrank analysis showed VCL:Ao, VCR:Ao, FlailL, ProlR:Ao, ProlL:Ao, left ventricular internal dimension in diastole indexed to aortic diameter (LVIDD:Ao) >2.87, left atrium to aorta ratio (LA/Ao) >1.6, and Evel >1.4 m/s were predictors of cardiac mortality. In a multivariable analysis, the independent predictors of cardiac mortality were Evel >1.4 m/s [hazard ratio (HR) 5.0, 95% confidence interval (CI) 2.5-10.3], FlailL (HR 3.1, 95% CI 1.3-7.9), and ProlR:Ao (HR 2.8, 95% CI 1.3-6.3). Echocardiographic measures of mitral regurgitation severity and mitral valve pathology provide valuable prognostic information independent of chamber enlargement in dogs with MMVD. Copyright © 2014 Elsevier B.V. All rights reserved.
Mechanisms and Predictors of Mitral Regurgitation after High-Risk Myocardial Infarction
Meris, Alessandra; Amigoni, Maria; Verma, Anil; Thune, Jens Jakob; Køber, Lars; Velazquez, Eric; McMurray, John J. V.; Pfeffer, Marc A.; Califf, Robert; Levine, Robert A.; Solomon, Scott D.
2012-01-01
Background Mitral regurgitation (MR) has been associated with adverse outcomes after myocardial infarction (MI). Without structural valve disease, functional MR has been related to left ventricular (LV) remodeling and geometric deformation of the mitral apparatus. The aims of this study were to elucidate the mechanistic components of MR after high-risk MI and to identify predictors of MR progression during follow-up. Methods The Valsartan in Acute Myocardial Infarction Echo substudy prospectively enrolled 610 patients with LV dysfunction, heart failure, or both after MI. MR at baseline, 1 month, and 20 months was quantified by mapping jet expansion in the left atrium in 341 patients with good-quality echocardiograms. Indices of LV remodeling, left atrial size, and diastolic function and parameters of mitral valve deformation, including tenting area, coaptation depth, anterior leaflet concavity, annular diameters, and contractility, were assessed and related to baseline MR. The progression of MR was further analyzed, and predictors of worsening among the baseline characteristics were identified. Results Tenting area, coaptation depth, annular dilatation, and left atrial size were all associated with the degree of baseline MR. Tenting area was the only significant and independent predictor of worsening MR; a tenting area of 4 cm2 was a useful cutoff to identify worsening of MR after MI and moderate to severe MR after 20 months. Conclusions Increased mitral tenting and larger mitral annular area are determinants of MR degree at baseline, and tenting area is an independent predictor of progression of MR after MI. Although LV remodeling itself contributes to ischemic MR, this influence is directly dependent on alterations in mitral geometry. PMID:22305962
Simple repair approach for mitral regurgitation in Barlow disease.
Ben Zekry, Sagit; Spiegelstein, Dan; Sternik, Leonid; Lev, Innon; Kogan, Alexander; Kuperstein, Rafael; Raanani, Ehud
2015-11-01
Mitral valve repair for myxomatous Barlow disease is a challenging procedure requiring complex surgery with less than optimal results. The use of ring-only repair has been previously reported but never analyzed or followed-up. We investigated this simple valve repair approach for patients with Barlow disease and multisegment involvement causing mainly central jet. Of 572 patients who underwent mitral valve repair for mitral regurgitation at our medical center, 24 with Barlow disease (aged 47 ± 14 years; 46% male) underwent ring-only repair. Patients were characterized by severely enlarged mitral valve annulus, multisegment prolapse involving both leaflets, and demonstrated mainly a central wide regurgitant jet. Surgical technique included only the implantation of a large mitral annuloplasty ring. Early and late outcome results were compared with those of the remaining patients who underwent conventional mitral valve repair for degenerative disease (controls). All ring-only patients presented with moderate-severe/severe mitral regurgitation (vena contracta, 0.6 ± 0.1 cm; regurgitation volume, 52 ± 17 mL), with mainly a central jet and almost preserved ejection fraction (59% ± 6%). Cardiopulmonary bypass and crossclamp times were significantly shorter compared with controls (P < .0001). At follow-up (ring-only, 38 ± 36 months and controls, 36 ± 29 months), there were no late deaths in the ring-only group compared with 19 (4%) in the controls. Late follow-up revealed New York Heart Association functional class I or II in 95% of ring-only patients, compared with 90% of controls. Freedom from recurrent moderate or severe mitral regurgitation was 100% and 89% in the ring-only and control groups, respectively. Mitral annuloplasty for Barlow disease patients with multisegment involvement and mainly central regurgitant jet is both simple and reproducible with excellent late outcomes. Copyright © 2015 The American Association for Thoracic Surgery. Published by Elsevier Inc. All rights reserved.
Interrelationship of mid-diastolic mitral valve motion, pulmonary venous flow, and transmitral flow.
Keren, G; Meisner, J S; Sherez, J; Yellin, E L; Laniado, S
1986-07-01
This study offers a unifying mechanism of left ventricular filling dynamics to link the unexplained mid-diastolic motion of the mitral valve with an associated increase in transmitral flow, with the phasic character of pulmonary vein flow, and with changes in the atrioventricular pressure difference. M mode echograms of mitral valve motion and Doppler echocardiograms of mitral and pulmonary vein flow velocities were recorded in 12 healthy volunteers (heart rate = 60 +/- 9 beats/min). All echocardiograms showed an undulation in the mitral valve (L motion) at a relatively constant delay from the peak of the diastolic phase of pulmonary vein flow (K phase). In six subjects, the L motion was also associated with a distinct wave of mitral flow (L wave). Measured from the onset of the QRS complex, Q-K was 577 +/- 39 msec; Q-L was 703 +/- 42 msec, and K-L was 125 +/- 16 msec. Multiple measurements within each subject during respiratory variations in RR interval indicated exceptionally small differences in the temporal relationships (mean coefficient of variation 2%). Early rapid flow deceleration is caused by a reversal of the atrioventricular pressure gradient, and the L wave arises from the subsequent reestablishment of a positive gradient due to left atrial filling via the pulmonary veins. The mitral valve moves passively in response to the flowing blood and the associated pressure difference. This interpretation is confirmed by (1) a computational model, and (2) a retrospective analysis of data from patients with mitral stenosis and from conscious dogs instrumented to measure transmitral pressure-flow relationships.
Asgar, Anita W; Khairy, Paul; Guertin, Marie-Claude; Cournoyer, Daniel; Ducharme, Anique; Bonan, Raoul; Basmadjian, Arsene; Tardif, Jean-Claude; Cohen, David J
2017-01-01
Mitral regurgitation (MR) is a common valvular heart disorder requiring intervention once it becomes severe. Transcatheter mitral repair with the MitraClip device is a safe and effective therapy for selected patients denied surgery. The authors sought to evaluate the clinical outcomes and economic impact of this therapy compared to medical management in heart-failure patients with symptomatic mitral regurgitation. The study was comprised of two phases; an observational study of patients with heart failure and mitral regurgitation treated with either medical therapy or the MitraClip, and an economic model. Results of the observational study were used to estimate parameters for the decision model, which estimated costs, and benefits in a hypothetical cohort of patients with heart failure and moderate-to-severe mitral regurgitation treated with either standard medical therapy or MitraClip. The cohort of patients treated with the MitraClip was propensity matched to a population of heart failure patients, and their outcomes compared. At a mean follow-up of 22 months, all-cause mortality was 21% in the MitraClip cohort and 42% in the medical management cohort (p = .007). The decision model demonstrated that MitraClip increased life expectancy from 1.87-3.60 years and quality-adjusted life years (QALY) from 1.13-2.76 years. The incremental cost was $52,500 Canadian dollars, corresponding to an incremental cost-effectiveness ratio (ICER) of $32,300.00 per QALY gained. Results were sensitive to the survival benefit. In heart failure patients with symptomatic moderate-severe mitral regurgitation, therapy with the MitraClip is associated with superior survival and is cost-effective compared to medical therapy.
NASA Technical Reports Server (NTRS)
Kwan, Jun; Shiota, Takahiro; Agler, Deborah A.; Popovic, Zoran B.; Qin, Jian Xin; Gillinov, Marc A.; Stewart, William J.; Cosgrove, Delos M.; McCarthy, Patrick M.; Thomas, James D.
2003-01-01
BACKGROUND: This study was conducted to elucidate the geometric differences of the mitral apparatus in patients with significant mitral regurgitation caused by ischemic cardiomyopathy (ICM-MR) and by idiopathic dilated cardiomyopathy (DCM-MR) by use of real-time 3D echocardiography (RT3DE). METHODS AND RESULTS: Twenty-six patients with ICM-MR caused by posterior infarction, 18 patients with DCM-MR, and 8 control subjects were studied. With the 3D software, commissure-commissure plane and 3 perpendicular anteroposterior (AP) planes were generated for imaging the medial, central, and lateral sides of the mitral valve (MV) during mid systole. In 3 AP planes, the angles between the annular plane and each leaflet (anterior, Aalpha; posterior, Palpha) were measured. In ICM-MR, Aalpha measured in the medial and central planes was significantly larger than that in the lateral plane (39+/-5 degrees, 34+/-6 degrees, and 27+/-5 degrees, respectively; P<0.01), whereas Palpha showed no significant difference in any of the 3 AP planes (61+/-7 degrees, 57+/-7 degrees, and 56+/-7 degrees, P>0.05). In DCM-MR, both Aalpha (38+/-8 degrees, 37+/-9 degrees, and 36+/-7 degrees, P>0.05) and Palpha (59+/-6 degrees, 58+/-5 degrees, and 57+/-6 degrees, P>0.05) revealed no significant differences in the 3 planes. CONCLUSIONS: The pattern of MV deformation from the medial to the lateral side was asymmetrical in ICM-MR, whereas it was symmetrical in DCM-MR. RT3DE is a helpful tool for differentiating the geometry of the mitral apparatus between these 2 different types of functional mitral regurgitation.
Patient-specific indirectly 3D printed mitral valves for pre-operative surgical modelling
NASA Astrophysics Data System (ADS)
Ginty, Olivia; Moore, John; Xia, Wenyao; Bainbridge, Dan; Peters, Terry
2017-03-01
Significant mitral valve regurgitation affects over 2% of the population. Over the past few decades, mitral valve (MV) repair has become the preferred treatment option, producing better patient outcomes than MV replacement, but requiring more expertise. Recently, 3D printing has been used to assist surgeons in planning optimal treatments for complex surgery, thus increasing the experience of surgeons and the success of MV repairs. However, while commercially available 3D printers are capable of printing soft, tissue-like material, they cannot replicate the demanding combination of echogenicity, physical flexibility and strength of the mitral valve. In this work, we propose the use of trans-esophageal echocardiography (TEE) 3D image data and inexpensive 3D printing technology to create patient specific mitral valve models. Patient specific 3D TEE images were segmented and used to generate a profile of the mitral valve leaflets. This profile was 3D printed and integrated into a mold to generate a silicone valve model that was placed in a dynamic heart phantom. Our primary goal is to use silicone models to assess different repair options prior to surgery, in the hope of optimizing patient outcomes. As a corollary, a database of patient specific models can then be used as a trainer for new surgeons, using a beating heart simulator to assess success. The current work reports preliminary results, quantifying basic morphological properties. The models were assessed using 3D TEE images, as well as 2D and 3D Doppler images for comparison to the original patient TEE data.
Development of mitral stenosis after single MitraClip insertion for severe mitral regurgitation.
Cockburn, James; Fragkou, Paraskevi; Hildick-Smith, David
2014-02-01
We report the first case of mitral stenosis following Mitra-Clip insertion in a patient with symptomatic NYHA IV heart failure, secondary to severe mitral regurgitation (MR). A 79-year-old female with a history of prior aortic valve replacement underwent percutaneous mitral valve (MV) repair. A single clip was advanced coaxially down onto the MV under TOE guidance, with the anterior and posterior leaflets clipped together between A2 and P2. TOE confirmed a significant reduction in MR (grade 4 to grade 1). Despite initial symptomatic relief, she represented 3 months later with similar symptoms. Repeat TOE confirmed a well positioned Mitra-Clip with mild residual MR. However, the possibility of significant mitral stenosis was raised due to the presence of significant turbulence through the bi-orifice valve, with a peak gradient of 25 mm Hg. In addition there was evidence of severe functional tricuspid valve (TV) regurgitation with elevated pulmonary artery pressures (PAP 90 mm Hg), confirmed on subsequent right heart catheterization. After repeated heart team discussions and a failure of optimal medical therapy, and despite a logistic EuroScore of 35.5, minimally invasive surgical replacement of the MV and simultaneous TV repair was undertaken via a right thoracotomy. Despite procedural success and initial good postoperative response, the patient died subsequently from a combination of hospital-acquired pneumonia and significant gastrointestinal bleeding (post operative day 35). Mitra-Clip is a promising novel approach to MV repair. The establishment of further clinical and echocardiographic based selection criteria will help identify the correct patients for this treatment. Copyright © 2013 Wiley Periodicals, Inc.
Toma, Milan; Jensen, Morten Ø; Einstein, Daniel R; Yoganathan, Ajit P; Cochran, Richard P; Kunzelman, Karyn S
2016-04-01
Numerical models of native heart valves are being used to study valve biomechanics to aid design and development of repair procedures and replacement devices. These models have evolved from simple two-dimensional approximations to complex three-dimensional, fully coupled fluid-structure interaction (FSI) systems. Such simulations are useful for predicting the mechanical and hemodynamic loading on implanted valve devices. A current challenge for improving the accuracy of these predictions is choosing and implementing modeling boundary conditions. In order to address this challenge, we are utilizing an advanced in vitro system to validate FSI conditions for the mitral valve system. Explanted ovine mitral valves were mounted in an in vitro setup, and structural data for the mitral valve was acquired with [Formula: see text]CT. Experimental data from the in vitro ovine mitral valve system were used to validate the computational model. As the valve closes, the hemodynamic data, high speed leaflet dynamics, and force vectors from the in vitro system were compared to the results of the FSI simulation computational model. The total force of 2.6 N per papillary muscle is matched by the computational model. In vitro and in vivo force measurements enable validating and adjusting material parameters to improve the accuracy of computational models. The simulations can then be used to answer questions that are otherwise not possible to investigate experimentally. This work is important to maximize the validity of computational models of not just the mitral valve, but any biomechanical aspect using computational simulation in designing medical devices.
Pressman, Gregg S; Rodriguez-Ziccardi, Mary; Gartman, Charles H; Obasare, Edinrin; Melendres, Emmanuel; Arguello, Vivian; Bhalla, Vikas
2017-06-01
Mitral annular calcification (MAC) is a chronic inflammatory process with similarities to atherosclerosis. It is common in elderly patients and those with renal dysfunction. Although MAC is associated with cardiovascular morbidity, its relationship to infective endocarditis is unclear. The aim of this study was to test the hypothesis that MAC would be prevalent in patients with mitral valve vegetations and that vegetations would frequently occur on calcific nodules. A secondary aim was to look for possible bacteriological differences between vegetations attached to the calcified annulus versus leaflet vegetations. We retrospectively reviewed all echocardiographic studies of patients with native mitral valve vegetations from January 2007 to August 2015 (N = 56). We searched for (1) presence of MAC, (2) location of MAC, and (3) vegetation location (on calcium deposits or distant). MAC was defined as focal echo brightness in a nodular or band-like pattern. The modified Duke criteria were used to confirm the diagnosis of infective endocarditis. Transthoracic, transesophageal, and three-dimensional echocardiograms (when available) at the time of infection were evaluated by a single reader. Twenty-eight subjects were infected with Staphylococcus aureus, 17 with a streptococcal species, and five with other organisms; blood cultures were sterile in 6. Thirty-four (61%) subjects had some degree of MAC, while 22 (39%) had none. Among those with MAC, the vegetation was located on the calcium deposits in 22 (65%), versus in 12 (35%) where it was not. Among all 56 subjects, when S. aureus was the infecting organism it was present on MAC in 16/28 (57%) versus 6/28 (21%; P = .01) for other bacterial species. By contrast, streptococcal infections more frequently involved the leaflets (16/17 [94%]) versus nonstreptococcal infections (18/39 [46%]; P = .0008). MAC may act as a nidus for infection especially with S. aureus. Differences in mechanism of attachment between S. aureus and streptococci may account for the observed difference in frequency of attachment of vegetations to MAC. Copyright © 2017 American Society of Echocardiography. Published by Elsevier Inc. All rights reserved.
Ho, Natalie; Shields, Robert W.; Cremer, Paul; Rodriguez, L. Leonardo
2018-01-01
A 36-year-old female with symptoms of orthostatic intolerance and syncope was diagnosed with vasovagal syncope on a tilt table test and with postural tachycardia syndrome (POTS) after a repeat tilt table test. However, an echocardiogram at our institution revealed obstructive cardiomyopathy without severe septal hypertrophy, with a striking increase in left ventricular outflow tract gradient from 7 mmHg at rest to 75 mmHg during Valsalva, with a septal thickness of only 1.3 cm. Cardiac MRI showed an apically displaced multiheaded posteromedial papillary muscle with suggestion of aberrant chordal attachments to the anterior mitral leaflet contributing to systolic anterior motion of the mitral valve. She underwent surgery with reorientation of the posterior medial papillary muscle head, resection of the tethering secondary chordae to the A1 segment of the mitral valve, chordal shortening and tacking of the chordae to the A1 and A2 segments of the mitral valve, and gentle septal myectomy. After surgery, she had significant improvement in her prior symptoms. To our knowledge, this is the first reported case of obstructive cardiomyopathy without severe septal hypertrophy with abnormalities in papillary muscle and chordal attachment, in a patient diagnosed with vasovagal syncope and POTS. PMID:29850268
Mayuga, Kenneth A; Ho, Natalie; Shields, Robert W; Cremer, Paul; Rodriguez, L Leonardo
2018-01-01
A 36-year-old female with symptoms of orthostatic intolerance and syncope was diagnosed with vasovagal syncope on a tilt table test and with postural tachycardia syndrome (POTS) after a repeat tilt table test. However, an echocardiogram at our institution revealed obstructive cardiomyopathy without severe septal hypertrophy, with a striking increase in left ventricular outflow tract gradient from 7 mmHg at rest to 75 mmHg during Valsalva, with a septal thickness of only 1.3 cm. Cardiac MRI showed an apically displaced multiheaded posteromedial papillary muscle with suggestion of aberrant chordal attachments to the anterior mitral leaflet contributing to systolic anterior motion of the mitral valve. She underwent surgery with reorientation of the posterior medial papillary muscle head, resection of the tethering secondary chordae to the A1 segment of the mitral valve, chordal shortening and tacking of the chordae to the A1 and A2 segments of the mitral valve, and gentle septal myectomy. After surgery, she had significant improvement in her prior symptoms. To our knowledge, this is the first reported case of obstructive cardiomyopathy without severe septal hypertrophy with abnormalities in papillary muscle and chordal attachment, in a patient diagnosed with vasovagal syncope and POTS.
Initial Experience and Early Results of Mitral Valve Repair with Cardiocel Pericardial Patch.
Tomšič, Anton; Bissessar, Daniella D; van Brakel, Thomas J; Marsan, Nina Ajmone; Klautz, Robert J M; Palmen, Meindert
2018-06-07
To assess the performance of a tissue engineering process-treated bovine pericardium patch (CardioCel) in the setting of reconstructive mitral valve surgery. Between 3/2014 and 4/2016, 30 patients (57.2±14.3 years, 27% female) underwent mitral valve leaflet repair with a CardioCel patch. Perioperative mortality was 7% (2 patients, non-graft-related). In 28 remaining patients, pre-discharge echocardiography demonstrated good repaired valve function. At a mean follow-up of 1.7±0.9 years, 3 additional deaths occurred (2 due to infective endocarditis, 1 non-cardiac related). On follow-up echocardiography [follow-up time 1.7±0.8 years, available for 26/28 (93%) hospital survivors], recurrent regurgitation was seen in 2 patients (both infective endocarditis) and 1 underwent reoperation (no infection at the level of patch repair was observed). In the remaining patients, the most recent echocardiogram demonstrated ≤mild regurgitation and stable gradients. The thickness and echodensity of the implanted patch on follow-up echocardiograms were comparable with postoperative echocardiograms. Initial results of the CardioCel patch in mitral valve repair surgery are satisfactory. The resistance to infection and late degeneration will need to be assessed in the future. Copyright © 2018. Published by Elsevier Inc.
Ex Vivo Methods for Informing Computational Models of the Mitral Valve
Bloodworth, Charles H.; Pierce, Eric L.; Easley, Thomas F.; Drach, Andrew; Khalighi, Amir H.; Toma, Milan; Jensen, Morten O.; Sacks, Michael S.; Yoganathan, Ajit P.
2016-01-01
Computational modeling of the mitral valve (MV) has potential applications for determining optimal MV repair techniques and risk of recurrent mitral regurgitation. Two key concerns for informing these models are (1) sensitivity of model performance to the accuracy of the input geometry, and, (2) acquisition of comprehensive data sets against which the simulation can be validated across clinically relevant geometries. Addressing the first concern, ex vivo micro-computed tomography (microCT) was used to image MVs at high resolution (~40 micron voxel size). Because MVs distorted substantially during static imaging, glutaraldehyde fixation was used prior to microCT. After fixation, MV leaflet distortions were significantly smaller (p<0.005), and detail of the chordal tree was appreciably greater. Addressing the second concern, a left heart simulator was designed to reproduce MV geometric perturbations seen in vivo in functional mitral regurgitation and after subsequent repair, and maintain compatibility with microCT. By permuting individual excised ovine MVs (n=5) through each state (healthy, diseased and repaired), and imaging with microCT in each state, a comprehensive data set was produced. Using this data set, work is ongoing to construct and validate high-fidelity MV biomechanical models. These models will seek to link MV function across clinically relevant states. PMID:27699507
Tamura, Shinjiro; Kitaoka, Hiroaki; Yamasaki, Naohito; Okawa, Makoto; Kubo, Toru; Matsumura, Yoshihisa; Furuno, Takashi; Takata, Jun; Nishinaga, Masanori; Sasaguri, Shiro; Doi, Yoshinori
2005-09-01
A 83-year-old man was admitted because of heart failure due to severe aortic stenosis and mitral regurgitation secondary to chordal rupture of the anterior leaflet. Mild anemia and elevated serum lactate dehydrogenase were present with reticulocytosis and haptoglobinemia. Direct Coombs test was positive. Coexistence of autoimmune hemolytic anemia was identified, but the main cause of his hemolysis was thought to be mechanical hemolysis due to stenotic valve and/or ruptured chordae because of the presence of red cell fragmentation. The patient successfully underwent double valve replacement. Improvement of anemia was coupled with reduction of the serum lactate dehydrogenase level. Valvular shear stress on the red cells and reduction of red cell deformability secondary to autoimmune hemolytic anemia were thought to be responsible for his hemolysis.
Igarashi, Takashi; Iwai-Takano, Masumi; Wakamatsu, Hiroki; Haruta, Mineyuki; Omata, Sadao; Yokoyama, Hitoshi
2018-01-01
This study aimed to assess the deformation of the mitral valve complex during the displacement of the beating heart by using three-dimensional echocardiography in a porcine off-pump coronary artery bypass grafting (OPCAB) model. In nine healthy swine, we positioned the beating heart as an OPCAB model, i.e. control, left anterior descending artery (LAD), right coronary artery (RCA), and left circumflex artery (LCX) positions. In each position, three-dimensional echocardiography was performed to assess the mitral valve complex with hemodynamic parameters. We analyzed the deformation of the mitral valve and the three-dimensional coordinates of the papillary muscles. There was a significant increase in maximum tenting length and tenting volume (control 0.70±0.30, LAD 0.65±0.27, RCA 0.79±0.23, LCX 0.95±0.34cm 3 , p<0.05) in the LCX position compared with the other positions. The posterior papillary muscle (PPM) angle had a significant relationship with the tenting volume (r=-0.643, p<0.001). The PPM was displaced to the medial side in the LAD and LCX positions (p<0.01). The prime cause of the deformation of the mitral leaflets is suggested to be the displacement of the PPM associated with the change in geometry of the left ventricle in a porcine model. Copyright © 2017 Japanese College of Cardiology. Published by Elsevier Ltd. All rights reserved.
Mehra, Lalit; Raheja, Shashi; Agarwal, Sneh; Rani, Yashoda; Kaur, Kulwinder; Tuli, Anita
2016-03-01
Percutaneous transvenous mitral annuloplasty (PTMA) has evolved as a latest procedure for the treatment of functional mitral regurgitation. It reduces mitral valve annulus (MVA) size and increases valve leaflet coaptation via compression of coronary sinus (CS). Anatomical considerations for this procedure were elucidated in the present study. In 40 formalin fixed adult cadaveric human hearts, relation of the venous channel formed by CS and great cardiac vein (GCV) to MVA and the adjacent arteries was described, at 6 points by making longitudinal sections perpendicular to the plane of MVA, numbered 1-6 starting from CS ostium. CS/GCV formed a semicircular venous channel on the atrial side of MVA. Based on the distance of CS/GCV from MVA, two patterns were identified. In 37 hearts, the venous channel at point 2 was widely separated from the MVA compared to the two ends and in three hearts a nonconsistent pattern was observed. GCV crossed circumflex artery superficially. GCV or CS crossed the left marginal artery and ventricular branches of circumflex artery superficially in 17 and 23 hearts, respectively. As the venous channel was related more to the left atrial wall, PTMA devices probably exert an indirect traction on MVA. The arteries crossing deep to the venous channel may be compressed by PTMA device leading to myocardial ischemia. Knowledge of the spatial relations of MVA and a preoperative and postoperative angiogram may help to reduce such complications during PTMA.
Brucella endocarditis: an occupational hazard!
Agarwal, Sanjeev Kumar; Rajani, Ali Raza; Hussain, Kosar; Dande, Mangesh Manoharrao
2013-04-22
A young man presented with a 2-month history of fever and malaise. Cardiac auscultation revealed the presence of a diastolic murmur. Subsequently, a cardiac echocardiogram was done, which showed a large vegetation adherent to an anterior mitral leaflet. The blood culture was positive for Brucella species. The patient was given antibiotic therapy for brucellosis and referred for surgery. Brucella endocarditis is one of the rarest, yet most notorious complications of this infection. This condition requires a high degree of clinical suspicion in order to facilitate prompt diagnosis and treatment.
TexMi: Development of Tissue-Engineered Textile-Reinforced Mitral Valve Prosthesis
Moreira, Ricardo; Gesche, Valentine N.; Hurtado-Aguilar, Luis G.; Schmitz-Rode, Thomas; Frese, Julia
2014-01-01
Mitral valve regurgitation together with aortic stenosis is the most common valvular heart disease in Europe and North America. Mechanical and biological prostheses available for mitral valve replacement have significant limitations such as the need of a long-term anticoagulation therapy and failure by calcifications. Both types are unable to remodel, self-repair, and adapt to the changing hemodynamic conditions. Moreover, they are mostly designed for the aortic position and do not reproduce the native annular-ventricular continuity, resulting in suboptimal hemodynamics, limited durability, and gradually decreasing ventricular pumping efficiency. A tissue-engineered heart valve specifically designed for the mitral position has the potential to overcome the limitations of the commercially available substitutes. For this purpose, we developed the TexMi, a living textile-reinforced mitral valve, which recapitulates the key elements of the native one: annulus, asymmetric leaflets (anterior and posterior), and chordae tendineae to maintain the native annular-ventricular continuity. The tissue-engineered valve is based on a composite scaffold consisting of the fibrin gel as a cell carrier and a textile tubular structure with the twofold task of defining the gross three-dimensional (3D) geometry of the valve and conferring mechanical stability. The TexMi valves were molded with ovine umbilical vein cells and stimulated under dynamic conditions for 21 days in a custom-made bioreactor. Histological and immunohistological stainings showed remarkable tissue development with abundant aligned collagen fibers and elastin deposition. No cell-mediated tissue contraction occurred. This study presents the proof-of-principle for the realization of a tissue-engineered mitral valve with a simple and reliable injection molding process readily adaptable to the patient's anatomy and pathological situation by producing a patient-specific rapid prototyped mold. PMID:24665896
Glaveckaite, Sigita; Uzdavinyte-Gateliene, Egle; Petrulioniene, Zaneta; Palionis, Darius; Valeviciene, Nomeda; Kalinauskas, Gintaras; Serpytis, Pranas; Laucevicius, Aleksandras
2018-03-09
We aimed to evaluate (i) the effectiveness of combined surgery (coronary artery bypass grafting with restrictive mitral valve annuloplasty) and (ii) the late gadolinium enhancement cardiovascular magnetic resonance-based predictors of ischaemic mitral regurgitation (IMR) recurrence. The prospective analysis included 40 patients with multivessel coronary artery disease, IMR >II° and left ventricular (LV) dysfunction undergoing combined surgery. The degree of IMR and LV parameters were assessed preoperatively by transthoracic echocardiography, 3D transoesophageal echocardiography and cardiovascular magnetic resonance and postoperatively by transthoracic echocardiography. The effective mitral valve repair group (n = 30) was defined as having recurrent ischaemic mitral regurgitation (RIMR) ≤II° at the end of follow-up (25 ± 11 months). The surgery was effective: freedom from RIMR >II° at 1 and 2 years after surgery was 80% and 75%, respectively. Using multivariable logistic regression, 2 independent predictors of RIMR >II° were identified: ≥3 non-viable LV segments (odds ratio 22, P = 0.027) and ≥1 non-viable segment in the LV posterior wall (odds ratio 11, P = 0.026). Using classification trees, the best combinations of cardiovascular magnetic resonance-based and 3D transoesophageal echocardiography-based predictors for RIMR >II° were (i) posterior mitral valve leaflet angle >40° and LV end-systolic volume index >45 ml/m2 (sensitivity 100%, specificity 89%) and (ii) scar transmurality >68% in the inferior LV wall and EuroSCORE II >8 (sensitivity 83%, specificity 78%). There is a clear relationship between the amount of non-viable LV segments, especially in the LV posterior and inferior walls, and the recurrence of IMR after the combined surgery.
Red flag in the emergency department: fracture and primary failure of a prosthetic valve.
Ozsarac, Murat; Karcioglu, Ozgur; Ayrik, Cuneyt; Bozkurt, Seyran; Turkcuer, Ibrahim; Gumrukcu, Serhat
2005-07-01
This case report concerns a patient with fracture and primary dysfunction of a prosthetic valve. A 40-year-old man presented to the Emergency Department with a chief complaint of breakthrough pleuritic back pain and shortness of breath. Past surgical history was significant only for an aortic valve replacement and mitral valve replacement performed 16 years prior. The transthoracic echocardiography raised suspicion of prosthesis malposition. The patient was taken to the operating room by cardiothoracic surgeons for valve replacement. Operative findings revealed that a prosthetic valve leaflet in the mitral position had broken off. Primary prosthetic valve failure should not be overlooked in the differential diagnosis of patients with valve replacement and a rapidly deteriorating clinical course. Emergency echocardiography is a guide to convenient diagnosis and management. Early surgical consultation and early reparative surgery might prevent unnecessary morbidity and mortality.
Machado, Lucia R; Meneghelo, Zilda M; Le Bihan, David C S; Barretto, Rodrigo B M; Carvalho, Antonio C; Moises, Valdir A
2014-11-06
Left atrium enlargement has been associated with cardiac events in patients with mitral regurgitation (MR). Left atrium reverse remodeling (LARR) occur after surgical correction of MR, but the preoperative predictors of this phenomenon are not well known. It is therefore important to identify preoperative predictors for postoperative LARR. We enrolled 62 patients with chronic severe MR (prolapse or flail leaflet) who underwent successful mitral valve surgery (repair or replacement); all with pre- and postoperative echocardiography. LARR was defined as a reduction in left atrium volume index (LAVI) of ≥ 25%. Stepwise multiple regression analysis was used to identify independent predictors of LARR. LARR occurred in 46 patients (74.2%), with the mean LAVI decreasing from 85.5 mL/m2 to 49.7 mL/m2 (p <0.001). These patients had a smaller preoperative left ventricular systolic volume (p =0.022) and a higher left ventricular ejection fraction (LVEF) (p =0.034). LVEF was identified as the only preoperative variable significantly associated with LARR (odds ratio, 1.086; 95% confidence interval, 1.002-1.178). A LVEF cutoff value of 63.5% identified patients with LARR of ≥ 25% with a sensitivity of 71.7% and a specificity of 56.3%. LARR occurs frequently after mitral valve surgery and is associated with preoperative LVEF higher than 63.5%.
Fluid dynamics model of mitral valve flow: description with in vitro validation.
Thomas, J D; Weyman, A E
1989-01-01
A lumped variable fluid dynamics model of mitral valve blood flow is described that is applicable to both Doppler echocardiography and invasive hemodynamic measurement. Given left atrial and ventricular compliance, initial pressures and mitral valve impedance, the model predicts the time course of mitral flow and atrial and ventricular pressure. The predictions of this mathematic formulation have been tested in an in vitro analog of the left heart in which mitral valve area and atrial and ventricular compliance can be accurately controlled. For the situation of constant chamber compliance, transmitral gradient is predicted to decay as a parabolic curve, and this has been confirmed in the in vitro model with r greater than 0.99 in all cases for a range of orifice area from 0.3 to 3.0 cm2, initial pressure gradient from 2.4 to 14.2 mm Hg and net chamber compliance from 16 to 29 cc/mm Hg. This mathematic formulation of transmitral flow should help to unify the Doppler echocardiographic and catheterization assessment of mitral stenosis and left ventricular diastolic dysfunction.
A study of the pulsatile flow and its interaction with rectangular leaflets
NASA Astrophysics Data System (ADS)
Ledesma, Rene; Zenit, Roberto; Pulos, Guillermo
2009-11-01
To avoid the complexity and limited understanding of the 3D pulsatile flow field through heart valves, a cardiac-like flow circuit and a test channel were designed to study the behavior of bidimensional leaflets made of hyperelastic materials. We study a simple 2D arrangement to understand the basic physics of the flow-leaflet interaction. Creating a periodic pressure gradient, measurements of leaflet deflection were obtained for different flow conditions, geometries and materials. Using PIV and Phase Locking techniques, we have obtained the leaflet motion and the time-dependent flow velocity fields. The results show that two dimensionless parameters determine the performance of a simple bi-dimensional valve, in accordance with the flow conditions applied: π1=f(sw)^1/2(E/ρ)^1/2 and π2=V/(2slw), where f is the pulsation frequency, V is the stroke volume, s, w and l are the dimensions on the leaftlet and E and ρ are the elastic modulus and density of the material, respectively. Furthermore, we have identified the conditions for which the fluid stresses can be minimized. With these results we propose a new set of parameters to improve the performance of prosthetic heart valves and, in consequence, to reduce blood damage.
Energy dynamics of the intraventricular vortex after mitral valve surgery.
Nakashima, Kouki; Itatani, Keiichi; Kitamura, Tadashi; Oka, Norihiko; Horai, Tetsuya; Miyazaki, Shohei; Nie, Masaki; Miyaji, Kagami
2017-09-01
Mitral valve morphology after mitral valve surgery affects postoperative intraventricular flow patterns and long-term cardiac performance. We visualized ventricular flow by echocardiography vector flow mapping (VFM) to reveal the impact of different mitral valve procedures. Eleven cases of mechanical mitral valve replacement (nine in the anti-anatomical and two in the anatomical position), three bioprosthetic mitral valve replacements, and four mitral valve repairs were evaluated. The mean age at the procedure was 57.4 ± 17.8 year, and the echocardiography VFM in the apical long-axis view was performed 119.9 ± 126.7 months later. Flow energy loss (EL), kinetic pressure (KP), and the flow energy efficiency ratio (EL/KP) were measured. The cases with MVR in the anatomical position and with valve repair had normal vortex directionality ("Clockwise"; N = 6), whereas those with MVR in the anti-anatomical position and with a bioprosthetic mitral valve had the vortex in the opposite direction ("Counterclockwise"; N = 12). During diastole, vortex direction had no effect on EL ("Clockwise": 0.080 ± 0.025 W/m; "Counterclockwise": 0.083 ± 0.048 W/m; P = 0.31) or KP ("Clockwise": 0.117 ± 0.021 N; "Counterclockwise": 0.099 ± 0.057 N; P = 0.023). However, during systole, the EL/KP ratio was significantly higher in the "Counterclockwise" vortex than that in the "Clockwise" vortex (1.056 ± 0.463 vs. 0.617 ± 0.158; P = 0.009). MVP and MVR with a mechanical valve in the anatomical position preserve the physiological vortex, whereas MVR with a mechanical valve in the anti-anatomical position and a bioprosthetic mitral valve generate inefficient vortex flow patterns, resulting in a potential increase in excessive cardiac workload.
NASA Technical Reports Server (NTRS)
Mikic, I.; Krucinski, S.; Thomas, J. D.
1998-01-01
This paper presents a method for segmentation and tracking of cardiac structures in ultrasound image sequences. The developed algorithm is based on the active contour framework. This approach requires initial placement of the contour close to the desired position in the image, usually an object outline. Best contour shape and position are then calculated, assuming that at this configuration a global energy function, associated with a contour, attains its minimum. Active contours can be used for tracking by selecting a solution from a previous frame as an initial position in a present frame. Such an approach, however, fails for large displacements of the object of interest. This paper presents a technique that incorporates the information on pixel velocities (optical flow) into the estimate of initial contour to enable tracking of fast-moving objects. The algorithm was tested on several ultrasound image sequences, each covering one complete cardiac cycle. The contour successfully tracked boundaries of mitral valve leaflets, aortic root and endocardial borders of the left ventricle. The algorithm-generated outlines were compared against manual tracings by expert physicians. The automated method resulted in contours that were within the boundaries of intraobserver variability.
Application of color Doppler flow mapping to calculate orifice area of St Jude mitral valve
NASA Technical Reports Server (NTRS)
Leung, D. Y.; Wong, J.; Rodriguez, L.; Pu, M.; Vandervoort, P. M.; Thomas, J. D.
1998-01-01
BACKGROUND: The effective orifice area (EOA) of a prosthetic valve is superior to transvalvular gradients as a measure of valve function, but measurement of mitral prosthesis EOA has not been reliable. METHODS AND RESULTS: In vitro flow across St Jude valves was calculated by hemispheric proximal isovelocity surface area (PISA) and segment-of-spheroid (SOS) methods. For steady and pulsatile conditions, PISA and SOS flows correlated with true flow, but SOS and not PISA underestimated flow. These principles were then used intraoperatively to calculate cardiac output and EOA of newly implanted St Jude mitral valves in 36 patients. Cardiac output by PISA agreed closely with thermodilution (r=0.91, Delta=-0.05+/-0.55 L/min), but SOS underestimated it (r=0.82, Delta=-1.33+/-0.73 L/min). Doppler EOAs correlated with Gorlin equation estimates (r=0.75 for PISA and r=0.68 for SOS, P<0.001) but were smaller than corresponding in vitro EOA estimates. CONCLUSIONS: Proximal flow convergence methods can calculate forward flow and estimate EOA of St Jude mitral valves, which may improve noninvasive assessment of prosthetic mitral valve obstruction.
Borgarelli, Michele; Tursi, Massimiliano; La Rosa, Giuseppe; Savarino, Paolo; Galloni, Marco
2011-09-01
To compare echocardiographic variables of dogs with postmortem anatomic measurements and histologic characteristics of the mitral valve (MV). 21 cardiologically normal dogs. The MV was measured echocardiographically by use of the right parasternal 5-chamber long-axis view. Dogs were euthanized, and anatomic measurements of the MV annulus (MVa) were performed at the level of the left circumflex coronary artery. Mitral valve leaflets (MVLs) and chordae tendineae were measured. Structure of the MVLs was histologically evaluated in 3 segments (proximal, middle, and distal). Echocardiographic measurements of MVL length did not differ significantly from anatomic measurements. A positive correlation was detected between body weight and MVa area. There was a negative correlation between MVa area and the percentage by which the MVL area exceeded the MVa area. Anterior MVLs had a significantly higher number of chordae tendineae than did posterior MVLs. Histologically, layering of MVLs was less preserved in the distal segment, whereas the muscular component and adipose tissue were significantly more diffuse in the proximal and middle segments. The MV in cardiologically normal dogs had wide anatomic variability. Anatomic measurements of MVL length were correlated with echocardiographic measurements.
Deformation Differences between Tricuspid and Bicuspid Aortic Valves in Vitro
NASA Astrophysics Data System (ADS)
Szeto, Kai; Rodriguez-Rodriguez, Javier; Pastuszko, Peter; Nigam, Vishal; Lasheras, Juan C.
2011-11-01
It has been shown in clinical studies that patients with congenital bicuspid aortic valves (CBAVs) develop degenerative calcification of the leaflets at young ages compared to patients with the normal tricuspid aortic valves (TAVs). It has been hypothesized that the asymmetrical geometry of the leaflets in CBAVs, flow shear stresses (SS), disturbed flow, and excessive strain rate levels are possible causes for the early calcification and stenosis. Central to the validation of this hypothesis is the need to quantify the differences in strain rate levels between the BAVs and TAVs. We simulate the CBAVs by surgically stitching two of the leaflets of a porcine aortic valve together. To quantify strain differences, we performed in-vitro experiments in both trileaflet and bileaflet valves by tracking the motion of small ink dots marked on each leaflet surface. We then used phase-locked stereo photogrammetry to reconstruct at each instant of time the 3D surface of the leaflets and measure the strain rates in both radial and circumferential directions during the whole cardiac cycle. Our results indicate that the total strain rate of the simulated BAVs is about 15 to 20% higher than the normal leaflets of TAVs at systole. In the BAVs' case, the fused leaflet stretches radially up to 25% higher than the reference length. The excessive stretching in both directions in the fused leaflet results in large changes in the flow patterns and associated wall SS.
Alozie, Anthony; Westphal, Bernd; Kische, Stephan; Kaminski, Alexander; Paranskaya, Liliya; Bozdag-Turan, Ilkay; Ortak, Jasmin; Schubert, Jochen; Steinhoff, Gustav; Ince, Hüseyin
2014-07-01
Percutaneous edge-to-edge devices for non-surgical repair of mitral valve regurgitation are under clinical evaluation in high-risk patients deemed not suitable for conventional surgery. To address guidelines for initial therapy decision, we here report on 13 cases of surgery after failed percutaneous edge-to-edge mitral valve repair or attempted repair, and discuss methodology and prognostic factors for operative outcome in this high-risk situation. Thirteen patients referred to our cardiothoracic unit after failed percutaneous mitral valve repair or attempted repair using the edge-to-edge technique, were treated surgically for mitral valve failure between June 2010 and December 2012. Pathology of mitral valve before and after interventional mitral valve repair (especially prevalent mode of failure) was evaluated and classified for each individual patient by echocardiography and intraoperative direct visualization. Number of implanted edge-to-edge devices were identified. Preoperative risk scores were matched with intraoperative observations and histopathological findings of valve tissue. Postoperative morbidity and mortality were analysed with respect to mitral valve and patient-related data. Three of 10 patients were referred with severe mitral valve regurgitation/stenosis after initially successful percutaneous edge-to-edge therapy or attempted therapy. In 3 patients, ≥ 2 edge-to-edge devices were implanted leading to very tight edge-to-edge leaflet connection and fibrosis. All patients underwent successful surgical mitral valve replacement and concomitant complete cardiac surgery (CABG, aortic or tricuspid valve surgery, ASD closure and pulmonary vein isolation for atrial fibrillation). The likelihood of repair was reduced with respect to multiple edge-to-edge technology. One device could not be harvested surgically because of embolization. One patient died on the second postoperative day due to sepsis with multiple organ failure. The remaining 12 patients were discharged with excellent valve prosthesis function and followed up to 2 years post-surgery. The current long-term survival rate is 77%. Our series demonstrate that highest risk patients can survive mitral valve surgery after failed multiple edge-to-edge interventional mitral valve repair. As long-term results of the MitraClip therapy are pending, we recommend close meshed follow-up of patients treated with the MitraClip device, especially within the first year of the index procedure as delays in salvage management, interventional or surgical, when the index procedure fails may increase morbidity and mortality. © The Author 2013. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.
Shi, Yubing; Yeo, Tony Joon Hock; Zhao, Yong; Hwang, Ned H C
2006-12-01
Particle Image Velocimetry (PIV) is an important technique in studying blood flow in heart valves. Previous PIV studies of flow around prosthetic heart valves had different research concentrations, and thus never provided the physical flow field pictures in a complete heart cycle, which compromised their pertinence for a better understanding of the valvular mechanism. In this study, a digital PIV (DPIV) investigation was carried out with improved accuracy, to analyse the pulsatile flow field around the bi-leaflet mechanical heart valve (MHV) in a complete heart cycle. For this purpose a pulsatile flow test rig was constructed to provide the necessary in vitro test environment, and the flow field around a St. Jude size 29 bi-leaflet MHV and a similar MHV model were studied under a simulated physiological pressure waveform with flow rate of 5.2 l/min and pulse rate at 72 beats/min. A phase-locking method was applied to gate the dynamic process of valve leaflet motions. A special image-processing program was applied to eliminate optical distortion caused by the difference in refractive indexes between the blood analogue fluid and the test section. Results clearly showed that, due to the presence of the two leaflets, the valvular flow conduit was partitioned into three flow channels. In the opening process, flow in the two side channels was first to develop under the presence of the forward pressure gradient. The flow in the central channel was developed much later at about the mid-stage of the opening process. Forward flows in all three channels were observed at the late stage of the opening process. At the early closing process, a backward flow developed first in the central channel. Under the influence of the reverse pressure gradient, the flow in the central channel first appeared to be disturbed, which was then transformed into backward flow. The backward flow in the central channel was found to be the main driving factor for the leaflet rotation in the valve closing process. After the valve was fully closed, local flow activities in the proximity of the valve region persisted for a certain time before slowly dying out. In both the valve opening and closing processes, maximum velocity always appeared near the leaflet trailing edges. The flow field features revealed in the present paper improved our understanding of valve motion mechanism under physiological conditions, and this knowledge is very helpful in designing the new generation of MHVs.
Aslanabadi, Naser; Toufan, Mehrnoush; Salehi, Rezvaneyeh; Alizadehasl, Azin; Ghaffari, Samad; Sohrabi, Bahram; Separham, Ahmad; Manafi, Ataolaah; Mehdizadeh, Mohammad Bagher; Habibzadeh, Afshin
2014-01-01
Abstract Background: Percutaneous balloon mitral valvotomy (BMV) is the gold standard treatment for rheumatic mitral stenosis (MS) in that it causes significant changes in mitral valve area (MVA) and improves leaflet mobility. Development of or increase in mitral regurgitation (MR) is common after BMV. This study evaluated MR severity and its changes after BMV in Iranian patients. Methods: We prospectively evaluated consecutive patients with severe rheumatic MS undergoing BMV using the Inoue balloon technique between February 2010 and January 2013 in Madani Heart Center, Tabriz, Iran. New York Heart Association (NYHA) functional class and echocardiographic and catheterization data, including MVA, mitral valve mean and peak gradient (MVPG and MVMG), left atrial (LA) pressure, pulmonary artery systolic pressure (PAPs), and MR severity before and after BMV, were evaluated. Results: Totally, 105 patients (80% female) at a mean age of 45.81 ± 13.37 years were enrolled. NYHA class was significantly improved after BMV: 55.2% of the patients were in NYHA functional class III before BMV compared to 36.2% after the procedure (p value < 0.001). MVA significantly increased (mean area = 0.64 ± 0.29 cm2 before BMV vs. 1.90 ± 0.22 cm2 after BMV; p value < 0.001) and PAPs, LA pressure, MVPG, and MVMG significantly decreased. MR severity did not change in 82 (78.1%) patients, but it increased in 18 (17.1%) and decreased in 5 (4.8%) patients. Patients with increased MR had a significantly higher calcification score (2.03 ± 0.53 vs.1.50 ± 0.51; p value < 0.001) and lower MVA before BMV (0.81 ± 0.23 vs.0.94 ± 0.18; p value = 0.010). There were no major complications. Conclusion: In our study, BMV had excellent immediate hemodynamic and clinical results inasmuch as MR severity increased only in some patients and, interestingly, decreased in a few. Our results, underscore BMV efficacy in severe MS. The echocardiographic calcification score was useful for identifying patients likely to have MR development or MR increase after BMV. PMID:25870627
Repair for Congenital Mitral Valve Stenosis.
Delmo Walter, Eva Maria; Hetzer, Roland
2018-03-01
We report the techniques and long-term outcome of mitral valve (MV) repair to correct congenital mitral stenosis in children. Between 1986 and 2014, 137 children (mean age 4.1 ± 5.0, range 1 month-16.8 years) underwent repair of congenital mitral stenosis (CMS). In 48 patients, CMS is involved in Shone's anomaly. The typical congenital MS (type I) was seen in 56 patients. Hypoplastic MV (type II, n = 15) was associated with severe left ventricular outflow tract abnormalities and hypoplastic left ventricular cavity and muscle mass. Supravalvar ring (type III, n = 48) ranged from a thin membrane to a thick discrete fibrous ridge. Parachute MV (type IV, n = 10) have 2 leaflets and barely distinguishable commissures, but all chordae merged either into 1 major papillary muscle or asymmetric papillary muscles-1 dominant and the other minuscule. Hammock valve (type IV, n = 8) appeared dysplastic with shortened chordae directly inserted into the posterior left ventricular muscle mass. MV repair was performed using commissurotomy, chordal division, papillary muscle splitting and fenestration, and mitral ring resection, each applied according to the presenting morphology. During the 28-year follow-up period, 23 patients underwent repeat MV repair and 3 underwent MV replacement after failed attempts at repeat repair. At 1 and 15 years postoperatively, freedom from reoperation was 89.3 ± 5.1% and 52.8 ± 11.8%, and cumulative survival rates were 92.3 ± 4.3% and 70.3 ± 8.9, respectively. Mortality unrelated to repair accounted for 9 (20%) deaths. Long-term functional outcome of MV repair in children with CMS is satisfactory. Repeat repair or replacement may be deemed necessary during the course of follow-up. Copyright © 2017 Elsevier Inc. All rights reserved.
Learning curve analysis of mitral valve repair using telemanipulative technology.
Charland, Patrick J; Robbins, Tom; Rodriguez, Evilio; Nifong, Wiley L; Chitwood, Randolph W
2011-08-01
To determine if the time required to perform mitral valve repairs using telemanipulation technology decreases with experience and how that decrease is influenced by patient and procedure variables. A single-center retrospective review was conducted using perioperative and outcomes data collected contemporaneously on 458 mitral valve repair surgeries using telemanipulative technology. A regression model was constructed to assess learning with this technology and predict total robot time using multiple predictive variables. Statistical analysis was used to determine if models were significantly useful, to rule out correlation between predictor variables, and to identify terms that did not contribute to the prediction of total robot time. We found a statistically significant learning curve (P < .01). The institutional learning percentage∗ derived from total robot times† for the first 458 recorded cases of mitral valve repair using telemanipulative technology is 95% (R(2) = .40). More than one third of the variability in total robot time can be explained through our model using the following variables: type of repair (chordal procedures, ablations, and leaflet resections), band size, use of clips alone in band implantation, and the presence of a fellow at bedside (P < .01). Learning in mitral valve repair surgery using telemanipulative technology occurs at the East Carolina Heart Institute according to a logarithmic curve, with a learning percentage of 95%. From our regression output, we can make an approximate prediction of total robot time using an additive model. These metrics can be used by programs for benchmarking to manage the implementation of this new technology, as well as for capacity planning, scheduling, and capital budget analysis. Copyright © 2011 The American Association for Thoracic Surgery. All rights reserved.
Shiota, T; Jones, M; Teien, D E; Yamada, I; Passafini, A; Ge, S; Sahn, D J
1995-08-01
The aim of the present study was to investigate dynamic changes in the mitral regurgitant orifice using electromagnetic flow probes and flowmeters and the color Doppler flow convergence method. Methods for determining mitral regurgitant orifice areas have been described using flow convergence imaging with a hemispheric isovelocity surface assumption. However, the shape of flow convergence isovelocity surfaces depends on many factors that change during regurgitation. In seven sheep with surgically created mitral regurgitation, 18 hemodynamic states were studied. The aliasing distances of flow convergence were measured at 10 sequential points using two ranges of aliasing velocities (0.20 to 0.32 and 0.56 to 0.72 m/s), and instantaneous flow rates were calculated using the hemispheric assumption. Instantaneous regurgitant areas were determined from the regurgitant flow rates obtained from both electromagnetic flowmeters and flow convergence divided by the corresponding continuous wave velocities. The regurgitant orifice sizes obtained using the electromagnetic flow method usually increased to maximal size in early to midsystole and then decreased in late systole. Patterns of dynamic changes in orifice area obtained by flow convergence were not the same as those delineated by the electromagnetic flow method. Time-averaged regurgitant orifice areas obtained by flow convergence using lower aliasing velocities overestimated the areas obtained by the electromagnetic flow method ([mean +/- SD] 0.27 +/- 0.14 vs. 0.12 +/- 0.06 cm2, p < 0.001), whereas flow convergence, using higher aliasing velocities, estimated the reference areas more reliably (0.15 +/- 0.06 cm2). The electromagnetic flow method studies uniformly demonstrated dynamic change in mitral regurgitant orifice area and suggested limitations of the flow convergence method.
Hwang, J J; Lin, J M; Hsu, K L; Lai, L P; Tseng, Y Z; Lee, Y T; Lien, W P
1999-01-01
To evaluate the correlation of the flow patterns of the four pulmonary veins as assessed by transesophageal echocardiography and the influence of significant mitral regurgitation on this correlation. Eighty-eight patients with normal sinus rhythm and variable underlying cardiovascular diseases underwent transthoracic and transesophageal echocardiographic studies. Doppler flow of the four pulmonary veins could not be adequately interpreted in 19 patients (22%). The left atrial dimension of these patients was significantly larger than that of the patients with complete study of the flow in the four pulmonary veins (49 +/- 6 vs. 43 +/- 7 mm; p < 0.05). Of the 69 patients with complete evaluation of the four pulmonary veins, 48 patients without significant mitral regurgitation were analyzed as group A, and the remaining 21 patients as group B. The peak systolic and diastolic forward flow velocities of the four pulmonary veins were measured and the ratio of peak systolic (S) to diastolic (D) flow velocity was calculated. Group A had a significantly larger S/D ratio in all four pulmonary veins than group B (p < 0.05 in each pulmonary vein measurement). There was good correlation of the flow pattern represented as S/D ratio between left upper and lower pulmonary veins (r = 0.90) and between right upper and lower pulmonary veins (r = 0.89) in group A. The correlation of the flow pattern among the four pulmonary veins deteriorated in group B. Pulmonary veins on the same side share rather similar flow patterns in comparison with pulmonary veins on the opposite sides. The correlation of flow patterns among the four pulmonary veins is good in subjects without significant mitral regurgitation, but it worsens in patients with significant mitral regurgitation. Therefore, cautious interpretation of flow patterns of the four pulmonary veins in patients with significant regurgitation is indicated for grading the severity of mitral regurgitation.
Pulmonary venous flows reflect changes in left atrial hemodynamics during mitral balloon valvotomy.
Yalçin, Fatih; El-Amrousy, Mahmoud; Müderrisoğlu, Haldun; Korkmaz, Mehmet; Flachskampf, Frank; Tuzcu, Murat; Garcia, Mario G; Thomas, James D
2002-01-01
Patients with mitral stenosis have usually blunted pulmonary venous (PV) flow, because of decreased mitral valve area and diastolic dysfunction. The authors compared changes in Doppler PV velocities by using transesophageal echocardiography (TEE) against hemodynamics parameters before and after mitral balloon valvotomy to observe relevance of PV velocities and endsystolic left atrial (LA) pressure-volume relationship. In 25 patients (aged 35 +/- 17 years) with mitral stenosis in sinus rhythm, changes in LA pressure and volumes were compared with PV velocities before and after valvotomy. Mitral valve area, mitral gradients, and deceleration time were obtained. Mitral valve area and mitral gradients changed from 1 +/- 0.2 cm2 and 14.6 +/- 5.4 mmHg to 1.9 +/- 0.3 cm2 and 6.3 +/- 1.7 mmHg, respectively (p<0.001). AR peak reverse flow velocity and AR duration decreased from 29 +/- 13 cm/s and 110 =/- 30 msec to 19 +/- 6 cm/s and 80 +/- 29 msec respectively (p<0.001). Transmitral Doppler E wave deceleration time decreased from 327 +/- 85 to 209 +/- 61 s and cardiac output increased from 4.2 +/- 1.0 to 5.2 +/- 1.1 L/minute (p<0.001). The changes in LA pressure were correlated with changes in S/D (r=0.57, p<0.05). The changes in endsystolic LA pressure-volume relationship were also correlated with changes in S/D (r=0.52, p<0.05). Endsystolic LA pressure-volume relationship decreased after mitral balloon valvotomy, as a result of a large decrease in pressure. PV systolic/diastolic (S/D) waves ratio reflects endsystolic LA pressure-volume relationship and may be used as another indicator of successful valvotomy.
Pulmonary venous flows reflect changes in left atrial hemodynamics during mitral balloon valvotomy
NASA Technical Reports Server (NTRS)
Yalcin, Fatih; El-Amrousy, Mahmoud; Muderrisoglu, Haldun; Korkmaz, Mehmet; Flachskampf, Frank; Tuzcu, Murat; Garcia, Mario G.; Thomas, James D.
2002-01-01
Patients with mitral stenosis have usually blunted pulmonary venous (PV) flow, because of decreased mitral valve area and diastolic dysfunction. The authors compared changes in Doppler PV velocities by using transesophageal echocardiography (TEE) against hemodynamics parameters before and after mitral balloon valvotomy to observe relevance of PV velocities and endsystolic left atrial (LA) pressure-volume relationship. In 25 patients (aged 35 +/- 17 years) with mitral stenosis in sinus rhythm, changes in LA pressure and volumes were compared with PV velocities before and after valvotomy. Mitral valve area, mitral gradients, and deceleration time were obtained. Mitral valve area and mitral gradients changed from 1 +/- 0.2 cm2 and 14.6 +/- 5.4 mmHg to 1.9 +/- 0.3 cm2 and 6.3 +/- 1.7 mmHg, respectively (p<0.001). AR peak reverse flow velocity and AR duration decreased from 29 +/- 13 cm/s and 110 =/- 30 msec to 19 +/- 6 cm/s and 80 +/- 29 msec respectively (p<0.001). Transmitral Doppler E wave deceleration time decreased from 327 +/- 85 to 209 +/- 61 s and cardiac output increased from 4.2 +/- 1.0 to 5.2 +/- 1.1 L/minute (p<0.001). The changes in LA pressure were correlated with changes in S/D (r=0.57, p<0.05). The changes in endsystolic LA pressure-volume relationship were also correlated with changes in S/D (r=0.52, p<0.05). Endsystolic LA pressure-volume relationship decreased after mitral balloon valvotomy, as a result of a large decrease in pressure. PV systolic/diastolic (S/D) waves ratio reflects endsystolic LA pressure-volume relationship and may be used as another indicator of successful valvotomy.
Tang, Gilbert H L; Kaple, Ryan; Cohen, Martin; Dutta, Tanya; Undemir, Cenap; Ahmad, Hasan; Poniros, Angelica; Bennett, Joanne; Feng, Cheng; Lansman, Steven
2017-02-03
Pacemaker lead-associated severe tricuspid regurgitation (TR) can lead to right heart failure and poor prognosis. Surgery in these patients carries significant morbidities. We describe a successful treatment of symptomatic severe TR by leadless pacemaker implantation followed by tricuspid valve (TV) repair with the MitraClip NT. A 71-year-old frail female with poor functional status, chronic atrial fibrillation and permanent pacemaker implantation in 2012 presented with symptomatic moderate-severe mitral regurgitation (MR) and severe TR with the pacemaker lead as the culprit. She was deemed extreme risk for double valve surgery and, because of her pacemaker dependency, the decision was to stage her interventions first with transcatheter mitral repair, then laser lead extraction and leadless pacemaker implantation to free the TV from tethering, then TV repair. An obstructive LAD lesion was identified and treated during mitral repair with the MitraClip NT. The Micra leadless pacemaker implantation and subsequent TV repair with the MitraClip NT were successful and the patient's MR improved to mild and TR to moderate, respectively. We report here a first successful transcatheter strategy to treat lead-associated severe TR by leadless pacemaker and MitraClip. Removing the pacemaker lead relieved leaflet tethering and improved the reparability of the TV.
Rogers, Jason H; Thomas, Martyn; Morice, Marie-Claude; Narbute, Inga; Zabunova, Milana; Hovasse, Thomas; Poupineau, Mathieu; Rudzitis, Ainars; Kamzola, Ginta; Zvaigzne, Ligita; Greene, Samantha; Erglis, Andrejs
2015-07-01
MAVERIC (Mitral Valve Repair Clinical Trial) reports the safety and efficacy of the ARTO system in patients with symptomatic heart failure and functional mitral regurgitation (FMR). The ARTO system percutaneously modifies the mitral annulus to improve leaflet coaptation in FMR. The MAVERIC trial is a prospective, nonrandomized first-in-human study. Key inclusion criteria were systolic heart failure New York Heart Association functional classes II to IV, FMR grade ≥2+, left ventricular (LV) ejection fraction ≤40%, LV end-diastolic diameter >50 mm and ≤75 mm. Exclusion criteria were clinical variables that precluded feasibility of the ARTO procedure. Primary outcomes were safety (30-day major adverse events) and efficacy (MR reduction, LV volumes, and functional status). Eleven patients received the ARTO system, and there were no procedural adverse events. From baseline to 30 days, there were meaningful improvements. Effective regurgitant orifice area decreased from 30.3 ± 11.1 mm(2) to 13.5 ± 7.1 mm(2) and regurgitant volumes from 45.4 ± 15.0 ml to 19.5 ± 10.2 ml. LV end-systolic volume index improved from 77.5 ± 24.3 ml/m(2) to 68.5 ± 21.4 ml/m(2), and LV end-diastolic volume index 118.7 ± 28.6 ml/m(2) to 103.9 ± 21.2 ml/m(2). Mitral annular anteroposterior diameter decreased from 45.0 ± 3.3 mm to 38.7 ± 3.0 mm. Functional status was 81.8% New York Heart Association functional class III/IV improving to 54.6% functional class I/II. At 30 days, there were 2 adverse events: 1 pericardial effusion requiring surgical drainage; and 1 asymptomatic device dislodgement. The ARTO system is a novel transcatheter device that can be used safely with meaningful efficacy in the treatment of FMR. (Mitral Valve Repair Clinical Trial [MAVERIC]; NCT02302872). Copyright © 2015 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.
Hsi, David H; Ryan, Gerald F; Taft, Janice; Arnone, Thomas J
2003-01-01
An 81-year-old woman was evaluated for prosthetic mitral valve function. She had received a Harken disk mitral valve 29 years earlier due to severe mitral valve disease. This particular valve prosthesis is known for premature disk edge wear and erosion. The patients 2-dimensional Doppler echocardiogram showed the distinctive appearance of a disk mitral valve prosthesis. Color Doppler in diastole showed a unique crown appearance, with initial flow acceleration around the disk followed by convergence to laminar flow in the left ventricle. Cineradiographic imaging revealed normal valve function and minimal disk erosion. We believe this to be the longest reported follow-up of a surviving patient with a rare Harken disk valve. We present images with unique echocardiographic and cineangiographic features.
A 29-Year-Old Harken Disk Mitral Valve
Hsi, David H.; Ryan, Gerald F.; Taft, Janice; Arnone, Thomas J.
2003-01-01
An 81-year-old woman was evaluated for prosthetic mitral valve function. She had received a Harken disk mitral valve 29 years earlier due to severe mitral valve disease. This particular valve prosthesis is known for premature disk edge wear and erosion. The patient's 2-dimensional Doppler echocardiogram showed the distinctive appearance of a disk mitral valve prosthesis. Color Doppler in diastole showed a unique crown appearance, with initial flow acceleration around the disk followed by convergence to laminar flow in the left ventricle. Cineradiographic imaging revealed normal valve function and minimal disk erosion. We believe this to be the longest reported follow-up of a surviving patient with a rare Harken disk valve. We present images with unique echocardiographic and cineangiographic features. (Tex Heart Inst J 2003;30:319–21) PMID:14677746
Mechanisms of mechanical heart valve cavitation: investigation using a tilting disk valve model.
He, Z; Xi, B; Zhu, K; Hwang, N H
2001-09-01
The induction of mechanical heart valve (MHV) cavitation was investigated using a 27 mm Medtronic Hall (MH27) tilting disk valve. The MH27 valve was mounted in the mitral position of a simulating pulse flow system, and stroboscopic lighting used to visualize cavitation bubbles on the occluder inflow surface at the instant of valve closure. MHV cavitation was monitored using a digital camera with 0.04 mm/pixel resolution sufficient to render the tiny bubbles clearly visible on the computer monitor screen. Cavitation on MH27 valve was classified as five types according to the time, site and shape of the cavitation bubbles. Valve cavitation occurred at the instant of occluder impact with the valve seat at closing. The impact motion was subdivided into three temporal phases: (i) squeezing flow; (ii) elastic collision; and (iii) leaflet rebound. MHV cavitation caused by vortices was found to be initiated by the squeezing jet and/or by the transvalvular leakage jets. By using a tension wave which swept across the occluder surface immediately upon elastic impact, nuclei in the vortex core were expanded to form cavitation bubbles. Analysis of the shape and location of the cavitation bubbles permitted a better understanding of MHV cavitation mechanisms, based on the fluid dynamics of jet vortex and tension wave propagations.
Seeburger, Joerg; Noack, Thilo; Winkfein, Michael; Ender, Joerg; Mohr, Friedrich Wilhelm
2010-01-01
The loop technique facilitates mitral valve repair for leaflet prolapse by implantation of Gore-Tex neo-chordae. The key feature of the technique is a premade bundle of four loops made out of one suture. The loops are available in different lengths ranging from 10 to 26 mm. After assessment of the ideal length of neo-chordae with a caliper the loops are then secured to the body of the papillary muscle over an additional felt pledget. In the following step, the free ends of the loops are distributed along the free margin of the prolapsing segment using one additional suture for each loop.
Ozkan, Mehmet; Astarcioglu, Mehmet Ali; Karakoyun, Suleyman; Balkanay, Mehmet
2012-02-01
Obstruction to a prosthetic cardiac valve is a well-recognized complication of cardiac valve replacement. Malfunction of the mobile component of a prosthetic valve to open or close correctly may occur in consequence of intrinsic or extrinsic causes (thrombus, vegetation, entrapment of left ventricular myocardium, suture entanglement, and pannus formation) that may result prosthetic valve stenosis and/or insufficiency. In the case we report a 48-year-old female with valve dysfunction occurred early after surgery, as one valve leaflet was only able to partially open due to suture entrapment. © 2011, Wiley Periodicals, Inc.
Kleinman, J P; Czer, L S; DeRobertis, M; Chaux, A; Maurer, G
1989-11-15
Epicardial and transesophageal color Doppler echocardiography are both widely used for the intraoperative assessment of mitral regurgitation (MR); however, it has not been established whether grading of regurgitation is comparable when evaluated by these 2 techniques. MR jet size was quantitatively compared in 29 hemodynamically and temporally matched open-chest epicardial and transesophageal color Doppler echocardiography studies from 22 patients (18 with native and 4 with porcine mitral valves) scheduled to undergo mitral valve repair or replacement. Jet area, jet length and left atrial area were analyzed. Comparison of jet area measurements as assessed by epicardial and transesophageal color flow mapping revealed an excellent correlation between the techniques (r = 0.95, p less than 0.001). Epicardial and transesophageal jet length measurements were also similar (r = 0.77, p less than 0.001). Left atrial area could not be measured in 18 transesophageal studies (62%) due to foreshortening, and in 5 epicardial studies (17%) due to poor image resolution. Acoustic interference with left atrial and color flow mapping signals was noted in all patients with mitral valve prostheses when imaged by epicardial echocardiography, but this did not occur with transesophageal imaging. Thus, in patients undergoing valve repair or replacement, transesophageal and epicardial color flow mapping provide similar quantitative assessment of MR jet size. Jet area to left atrial area ratios have limited applicability in transesophageal color flow mapping, due to foreshortening of the left atrial borders in transesophageal views. Transesophageal color flow mapping may be especially useful in assessing dysfunctional mitral prostheses due to the lack of left atrial acoustic interference.
Thyrotoxic Valvulopathy: Case Report and Review of the Literature
Pierre, Keniel; Gadde, Sushee; Omar, Bassam; Awan, G. Mustafa; Malozzi, Christopher
2017-01-01
We report a 42-year-old female who was admitted for abdominal pain, and also endorsed dyspnea, fatigue and chronic palpitations. Past medical history included asthma, patent ductus arteriosus repaired in childhood and ill-defined thyroid disease. Physical examination revealed blood pressure of 136/88 mm Hg and heart rate of 149 beats per minute. Cardiovascular exam revealed an irregularly irregular rhythm, and pulmonary exam revealed mild expiratory wheezing. Abdomen was tender. Electrocardiogram revealed atrial fibrillation with rapid ventricular response which responded to intravenous diltiazem. Labs revealed TSH of < 0.1 mU/L and free T4 of 2.82 ng/dL, a positive TSH-receptor and thyroid peroxidase antibodies suggesting Grave’s thyrotoxicosis. A transthoracic echocardiogram reported an ejection fraction of 55-60%, with mild to moderate mitral regurgitation (MR) and moderate to severe tricuspid regurgitation (TR) and dilated right heart chambers. Pulmonary artery systolic pressure was 52 mm Hg. Transesophageal echocardiogram revealed a myxomatous tricuspid valve with thickening and malcoaptation of the leaflets and moderate to severe TR, mild to moderate MR with mild thickening of the mitral valve leaflets. Abdominal ultrasound revealed wall thickening of the gall bladder concerning for acute cholecystitis. She underwent laparoscopic cholecystectomy and was discharged in stable condition on methimazole for her thyroid disease, and on oral diltiazem for rate control and anticoagulation for atrial fibrillation. Follow-up visit with her cardiologist few months later documented absence of cardiac symptoms, and no murmurs were reported on physical examination. This case underscores the importance of maintaining a high index of suspicion for hyperthyroidism when faced with significant newly diagnosed pulmonary hypertension and TR, as treatment of the thyroid abnormalities can reverse these cardiac findings. PMID:28725332
Cardiac findings in Quarter Horses with heritable equine regional dermal asthenia.
Brinkman, Erin L; Weed, Benjamin C; Patnaik, Sourav S; Brazile, Bryn L; Centini, Ryan M; Wills, Robert W; Olivier, Bari; Sledge, Dodd G; Cooley, Jim; Liao, Jun; Rashmir-Raven, Ann M
2017-03-01
OBJECTIVE To compare biomechanical and histologic features of heart valves and echocardiographic findings between Quarter Horses with and without heritable equine regional dermal asthenia (HERDA). DESIGN Prospective case-control study. ANIMALS 41 Quarter Horses. PROCEDURES Ultimate tensile strength (UTS) of aortic and mitral valve leaflets was assessed by biomechanical testing in 5 horses with HERDA and 5 horses without HERDA (controls). Histologic evaluation of aortic and mitral valves was performed for 6 HERDA-affected and 3 control horses. Echocardiography was performed in 14 HERDA-affected and 11 control horses. Biomechanical data and echocardiographic variables of interest were compared between groups by statistical analyses, RESULTS Mean values for mean and maximum UTS of heart valves were significantly lower in HERDA-affected horses than in controls. Blood vessels were identified in aortic valve leaflets of HERDA-affected but not control horses. Most echocardiographic data did not differ between groups. When the statistical model for echocardiographic measures was controlled for body weight, mean and maximum height and width of the aorta at the valve annulus in short-axis images were significantly associated with HERDA status and were smaller for affected horses. CONCLUSIONS AND CLINICAL RELEVANCE Lower UTS of heart valves in HERDA-affected horses, compared with those of control horses, supported that tissues other than skin with high fibrillar collagen content are abnormal in horses with HERDA. Lack of significant differences in most echocardiographic variables between affected and control horses suggested that echocardiography may not be useful to detect a substantial loss of heart valve tensile strength. Further investigation is warranted to confirm these findings. Studies in horses with HERDA may provide insight into cardiac abnormalities in people with collagen disorders.
Simulation of Blood flow in Different Configurations Design of Bi-leaflet Mechanical Heart Valve
NASA Astrophysics Data System (ADS)
Hafizah Mokhtar, N.; Abas, Aizat
2018-05-01
In this work, two different designs of artificial heart valve were devised and then compared by considering the thrombosis, wear and valve orifice to anatomical orifice ratio of each mechanical heart valve. These different design configurations of bi-leaflet mechanical heart valves model are created through the use of Computer-aided design (CAD) modelling and simulated using Computational fluid dynamic (CFD) software. Design 1 is based on existing conventional bi-leaflet valve and design 2 based on modified bi-leaflet respectively. The flow pattern, velocity, vorticity and stress analysis have been done to justify the best design. Based on results, both of the designs show a Doppler velocity index of less than the allowable standard of 2.2 which is safe to be used as replacement of the human heart valve. However, design 2 shows that it has a lower possibility of cavitation issue which will lead to lower thrombosis and provide good central flow area of blood as compared to design 1.
Solis, Jorge; Levine, Robert A.; Johnson, Benjamin; Guerrero, J. Luis; Handschumacher, Mark D.; Suzanne, Suzanne; Lam, Kaitlyn; Berlin, Jason; Braithwaite, Gavin J.C.; Muratoglu, Orhun K.; Vlahakes, Gus J.; Hung, Judy
2010-01-01
Ischemic mitral regurgitation (IMR) results from displacement of the papillary muscles due to ischemic ventricular distortion. Recurrent IMR is frequent after annuloplasty, particularly when left ventricular remodeling continues to progress. Our hypothesis is that repositioning of the papillary muscles can be achieved by injection of polyvinyl-alcohol (PVA) hydrogel polymer into the myocardium in chronic MR despite advanced left ventricular remodeling. Methods Nine sheep underwent ligation of circumflex branches to produce chronic ischemic MR over eight weeks. Once MR developed, PVA was injected into the myocardium underlying the infarcted PM. 2D and 3D echocardiograms and hemodynamic data were obtained pre infarct (baseline), pre PVA (Chronic MR) and post PVA. Results One animal died early, one did not develop MR, and the remaining 7 developed moderate MR. PVA injection significantly decreased the MR from moderate to trace. This was associated with a decrease in infarcted papillary muscle-to-mitral annulus tethering distance (32.6 ± 4.4 to 27.6 ± 4.2 mm, P<0.05), tenting volume (2.1±0.3 to 1.6 ± 0.3 mm2 P<0.05) and leaflet closure area (9.3 ± 0.8 to 8.2 ± 0.7 mm2, P<0.04). PVA was not associated with significant decreases in LVEF (42 ± 3 % vs 40 ± 2 %, p=ns) or end-systolic elastance. Measures of left ventricular diastolic function, tau (99 ± 55 ms to 87 ± 36;) and left ventricular stiffness coefficient (0.04 ± 0.03 to 0.05 ± 0.03) did not increase post PVA. Conclusions PVA hydrogel injections improve coaptation and reduce remodeling in chronic MR without impairing LV systolic and diastolic function. This new approach offers a potential alternative for relieving ischemic mitral regurgitation by correcting papillary muscle position, thus relieving tethering that causes ischemic mitral regurgitation. PMID:20736444
Grossi, Eugene A; Crooke, Gregory A; DiGiorgi, Paul L; Schwartz, Charles F; Jorde, Ulrich; Applebaum, Robert M; Ribakove, Greg H; Galloway, Aubrey C; Grau, Juan B; Colvin, Stephen B
2006-07-04
Mild and moderate functional ischemic mitral insufficiency present at the time of surgical revascularization present clinical uncertainty. It is unclear whether the relatively poor outcomes in this cohort are dependent on valvular function or related to left ventricular dysfunction. The purpose of this study was to examine the early and late outcomes in patients with less-than-severe functional ischemic mitral insufficiency at the time of isolated coronary artery bypass grafting (CABG). From 1996 through 2004, 2242 consecutive patients undergoing isolated CABG were identified as having none to moderate mitral regurgitation (MR) and no valve leaflet pathology. All of the patients at this single institution routinely had an intraoperative transesophageal echocardiography, prospectively quantified MR, and ejection fraction (EF). The New York State Cardiac Surgery Reporting System infrastructure was used to prospectively collect in-hospital patient variables and outcomes. Social Security Death Benefit Index was used to determine long-term survival. Odds ratio and significance (P value) are presented for each determined risk factor. There were 841 patients (37.5%) with no MR, 1137 (50.7%) with mild MR, and 264 (11.8%) with moderate MR. The patients with moderate MR were more likely to be older, female, and have more renal disease, previous MI, congestive heart failure, previous cardiac surgery, and lower EFs. Hospital mortality was independently and significantly associated with renal disease, decreasing EF, increasing age, previous cardiac operation, and cerebral vascular disease. Multivariable analysis revealed decreased survival with increasing age, previous operation, congestive heart failure, diabetes, nonelective operation, decreasing EF, and the presence of moderate MR (expbeta = 1.49; P=0.007) and mild MR (expbeta = 1.34; P=0.033). Independent of ventricular function, mild and moderate functional mitral insufficiency are associated with significantly decreased survival in patients undergoing CABG. Whether correction of moderate functional MR at the time of CABG improves outcome still needs to be determined.
Observation of cavitation in a mechanical heart valve in a total artificial heart.
Lee, Hwansung; Tsukiya, Tomonori; Homma, Akihiko; Kamimura, Tadayuki; Takewa, Yoshiaki; Nishinaka, Tomohiro; Tatsumi, Eisuke; Taenaka, Yoshiyuki; Takano, Hisateru; Kitamura, Soichiro
2004-01-01
Recently, cavitation on the surface of mechanical heart valves has been studied as a cause of fractures occurring in implanted mechanical heart valves. The cause of cavitation in mechanical heart valves was investigated using the 25 mm Medtronic Hall valve and the 23 mm Omnicarbon valve. Closing of these valves in the mitral position was simulated in an electrohydraulic totally artificial heart. Tests were conducted under physiologic pressures at heart rates from 60 to 100 beats per minute with cardiac outputs from 4.8 to 7.7 L/min. The disk closing motion was measured by a laser displacement sensor. A high-speed video camera was used to observe the cavitation bubbles in the mechanical heart valves. The maximum closing velocity of the Omnicarbon valve was faster than that of the Medtronic Hall valve. In both valves, the closing velocity of the leaflet, used as the cavitation threshold, was approximately 1.3-1.5 m/s. In the case of the Medtronic Hall valve, cavitation bubbles were generated by the squeeze flow and by the effects of the venturi and the water hammer. With the Omnicarbon valve, the cavitation bubbles were generated by the squeeze flow and the water hammer. The mechanism leading to the development of cavitation bubbles depended on the valve closing velocity and the valve stop geometry. Most of the cavitation bubbles were observed around the valve stop and were generated by the squeeze flow.
Gould, Russell A; Yalcin, Huseyin C; MacKay, Joanna L; Sauls, Kimberly; Norris, Russell; Kumar, Sanjay; Butcher, Jonathan T
2016-01-11
During valvulogenesis, globular endocardial cushions elongate and remodel into highly organized thin fibrous leaflets. Proper regulation of this dynamic process is essential to maintain unidirectional blood flow as the embryonic heart matures. In this study, we tested how mechanosensitive small GTPases, RhoA and Rac1, coordinate atrioventricular valve (AV) differentiation and morphogenesis. RhoA activity and its regulated GTPase-activating protein FilGAP are elevated during early cushion formation but decreased considerably during valve remodeling. In contrast, Rac1 activity was nearly absent in the early cushions but increased substantially as the valve matured. Using gain- and loss-of-function assays, we determined that the RhoA pathway was essential for the contractile myofibroblastic phenotype present in early cushion formation but was surprisingly insufficient to drive matrix compaction during valve maturation. The Rac1 pathway was necessary to induce matrix compaction in vitro through increased cell adhesion, elongation, and stress fiber alignment. Facilitating this process, we found that acute cyclic stretch was a potent activator of RhoA and subsequently downregulated Rac1 activity via FilGAP. On the other hand, chronic cyclic stretch reduced active RhoA and downstream FilGAP, which enabled Rac1 activation. Finally, we used partial atrial ligation experiments to confirm in vivo that altered cyclic mechanical loading augmented or restricted cushion elongation and thinning, directly through potentiation of active Rac1 and active RhoA, respectively. Together, these results demonstrate that cyclic mechanical signaling coordinates the RhoA to Rac1 signaling transition essential for proper embryonic mitral valve remodeling. Copyright © 2016 Elsevier Ltd. All rights reserved.
[Anesthetic management of a patient with HOCM even after PTSMA].
Fujimoto, Hiroko; Kamiya, Yoshinori; Ohki, Hiroshi; Goto, Takahisa
2008-10-01
A 74-year-old woman previously treated with percutaneous transluminnal septal myocardial ablation (PTSMA) for severe hypertrophic obstructive cardiomyopathy (HOCM) underwent laparoscopic cholecystectomy under general anesthesia. The PTSMA was performed for HOCM 5 month before surgery and the left ventricular outflow pressure gradient (LVOTG) was reduced from 100 mmHg to 30 mmHg. After anesthetic induction, severe hypotension occurred concomitantly with asymmetrical septal hypertrophy (ASH) and systolic anterior movement of the mitral valve leaflet (SAM). Hypotension was treated with fluid therapy and the vasopressors (methoxamine and noradrenaline). Care should be taken for the anesthetic management of a patient with HOCM even after PTSMA.
Curved butterfly bileaflet prosthetic cardiac valve
McQueen, David M.; Peskin, Charles S.
1991-06-25
An annular valve body having a central passageway for the flow of blood therethrough with two curved leaflets each of which is pivotally supported on an accentric positioned axis in the central passageway for moving between a closed position and an open position. The leaflets are curved in a plane normal to the eccentric axis and positioned with the convex side of the leaflets facing each other when the leaflets are in the open position. Various parameters such as the curvature of the leaflets, the location of the eccentric axis, and the maximum opening angle of the leaflets are optimized according to the following performance criteria: maximize the minimum peak velocity through the valve, maximize the net stroke volume, and minimize the mean forward pressure difference, thereby reducing thrombosis and improving the hemodynamic performance.
MitraClip in CRT non-responders with severe mitral regurgitation.
Seifert, Martin; Schau, Thomas; Schoepp, Maren; Arya, Anita; Neuss, Michael; Butter, Christian
2014-11-15
Severe mitral regurgitation (MR) ≥ 3+ and left ventricular dyssynchrony in heart failure patients are markers of CRT non response. The MitraClip (MC) implantation is a therapy for MR ≥ 3+ in patients with high surgical risk of mitral valve reconstruction. We investigated 42 patients with CRT and MR ≥ 3+ who received an MC device at our center. One and two year mortality rates were compared with the predicted mortality by Seattle Heart Failure Model (SHFM) and meta-analysis global group in chronic heart failure (MAGGIC), using the baseline characteristics of patients at the time of MC implantation. The median time interval between CRT and MC implantation was 20.1 (4.5-43.3) months. In 19 patients we observed a functional regurgitation with normal leaflets and in 23 patients a degenerative mechanism for mitral regurgitation. There was no change in mean QRS duration by biventricular pacing or MC implantation. The use of MC led to significant reductions in: median N-terminal pro-brain natriuretic peptide (NT-proBNP) level (pg/ml) from 3923 to 2636 (p = 0.02), tricuspid regurgitation pressure gradient (TRPG) from 43 to 35 mmHg (p = 0.019) and in left ventricular end-diastolic volume (LVEDV) by MC (p = 0.008). At the 2 year follow-up interval the all-cause mortality was 25%. MC implantation leads to an improvement of NT-proBNP level, TRPG and LVEDV in both functional and degenerative MR but does not influence QRS duration. Two year all-cause mortality was 25% and did not differ significantly from that predicted by SHFM and MAGGIC. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Fucci, Carlo; Faggiano, Pompilio; Nardi, Matilde; D'Aloia, Antonio; Coletti, Giuseppe; De Cicco, Giuseppe; Latini, Leonardo; Vizzardi, Enrico; Lorusso, Roberto
2013-09-10
Barlow disease represents a surgical challenge for mitral valve repair (MR) in the presence of mitral insufficiency (MI) with multiple regurgitant jets. We hereby present our mid-term experience using a modified edge-to-edge technique to address this peculiar MI. From March 2003 till December 2010, 25 consecutive patients (mean age 54 ± 7 years, 14 males) affected by severe Barlow disease with multiple regurgitant jets were submitted to MR. Preoperative transesophageal echo (TEE) in all the cases showed at least 2 regurgitant jets, involving one or both leaflets in more than one segment. In all the patients, a triple orifice valve (TOV) repair with annuloplasty was performed. Intra-operative TEE and postoperative transthoracic echocardiography (TTE) were carried out to evaluate results of the TOV repair. There was no in-hospital death and one late death (non-cardiac related). At intra-operative TEE, the three orifices showed a mean total valve area of 2.9 ± 0.1cm(2) (range 2.5-3.3 cm(2)) with no residual regurgitation (2 cases of trivial MI) and no sign of valve stenosis (mean transvalvular gradient 4.6 ± 1.5 mmHg). At follow up (mean 38 ± 22 months), TTE showed favourable MR and no recurrence of significant MI (6 cases of trivial and 1 of mild MI). Stress TTE was performed in 5 cases showing persistent effective valve function (2 cases of trivial MI at peak exercise). All the patients showed significant NYHA functional class improvement. This report indicates that the TOV technique is effective in correcting complex Barlow mitral valves with multiple jets. Further studies are required to confirm long-term applicability and durability in more numerous clinical cases. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Coronary flow reserve in mitral stenosis before and after percutaneous balloon mitral valvuloplasty.
Mahfouz, Ragab A; Gouda, Mohammad; Elawdy, Waleed; Dewedar, Ashraf
2017-09-01
We aimed to evaluate the coronary flow reserve (CFR) before and after percutaneous balloon mitral valvuloplasty (PBMV) in patients with mitral stenosis (MS) and its association to clinical events. A prospective study included 45 patients with mitral stenosis candidate for PBMV (age 38 ± 19 years, 27 were females) and 20 with matched age and sex, healthy controls were included in the study. Noninvasive CFR was measured using transthoracic echocardiography and utilizing adenosine stress echocardiography (0.14 mg/kg/min) before PMBV, and one weak post PBMV using multi-tract balloon valvuloplasty technique. CFR was significantly lower in patients with MS compared to controls (P < 0.001). Moreover the CFR was significantly increased post-PBMV (P < 0.001) associated with significant increase in LVEF% (P < 0.05), decrease in systolic pulmonary artery pressure (P < 0.001), significant increase in TAPSE (P < 0.001). CFR was significantly correlated with the degree of change (Δ) in MVA, TAPSE, LVEF%, mean mitral PG and sPAP (r = 0.77, P < 0.001, r = 0.63; P < 0.001; r = 0.42; P < 0.05; r = -0.81; P < 0.001 and r = -0.65; P < 0.001). Mitral valve stenosis was associated with significantly impaired coronary flow reserve that significantly improved after PMBV. The improved CFR values were significantly correlated with the gain in the MVA and the improvement in the functions of both left and right ventricles.
Computational fluid dynamics simulation of transcatheter aortic valve degeneration.
Dwyer, Harry A; Matthews, Peter B; Azadani, Ali; Jaussaud, Nicolas; Ge, Liang; Guy, T Sloane; Tseng, Elaine E
2009-08-01
Studied under clinical trials, transcatheter aortic valves (TAV) have demonstrated good short-term feasibility and results in high-risk surgical patients with severe aortic stenosis. However, their long-term safety and durability are unknown. The objective of this study is to evaluate hemodynamic changes within TAV created by bioprosthetic leaflet degeneration. Computational fluid dynamics (CFD) simulations were performed to evaluate the hemodynamics through TAV sclerosis (35% orifice reduction) and stenosis (78% orifice reduction). A three-dimensional surface mesh of the TAV within the aortic root was generated for each simulation. Leaflets were contained within an open, cylindrical body without attachment to the sinus commissures representing the stent. A continuous surface between the annulus and TAV excluded the geometry of the native calcified leaflets and prevented paravalvular leak. Unsteady control volume analysis throughout systole was used to calculate leaflet shear stress and total force on the TAV. Sclerosis increased total force on the TAV by 63% (0.602-0.98 N). Advancement of degeneration from sclerosis to stenosis was accompanied by an 86% increase in total force (1.82 N) but only a 32% increase in peak wall shear stress on the leaflets. Of the total force exerted on the TAV, 99% was in the direction of axial flow. Shear stresses on the TAV were greatest during peak systolic flow with stress concentrations on the tips of the leaflets. In the normal TAV, the aortic root geometry and physiologic flow dominate location and magnitude of shear stress. Following leaflet degeneration, the specific geometry of the stenosis dictates the profile of axial velocity leaving the TAV and shear stress on the leaflets. A dramatic increase in peak leaflet shear stress was observed (115 Pa stenosis vs. 87 Pa sclerosis and 29 Pa normal). CFD simulations in this study provide the first of its kind data quantifying hemodynamics within stenosed TAV. Stenosis leads to significant forces of TAV during systole; however, diastolic forces predominate even with significant stenosis. Substantial changes in peak shear stress occur with TAV degeneration. As the first implanted TAV begin to stenose, the authors recommend watchful examination for device failure.
Sigüenza, Julien; Pott, Desiree; Mendez, Simon; Sonntag, Simon J; Kaufmann, Tim A S; Steinseifer, Ulrich; Nicoud, Franck
2018-04-01
The complex fluid-structure interaction problem associated with the flow of blood through a heart valve with flexible leaflets is investigated both experimentally and numerically. In the experimental test rig, a pulse duplicator generates a pulsatile flow through a biomimetic rigid aortic root where a model of aortic valve with polymer flexible leaflets is implanted. High-speed recordings of the leaflets motion and particle image velocimetry measurements were performed together to investigate the valve kinematics and the dynamics of the flow. Large eddy simulations of the same configuration, based on a variant of the immersed boundary method, are also presented. A massively parallel unstructured finite-volume flow solver is coupled with a finite-element solid mechanics solver to predict the fluid-structure interaction between the unsteady flow and the valve. Detailed analysis of the dynamics of opening and closure of the valve are conducted, showing a good quantitative agreement between the experiment and the simulation regarding the global behavior, in spite of some differences regarding the individual dynamics of the valve leaflets. A multicycle analysis (over more than 20 cycles) enables to characterize the generation of turbulence downstream of the valve, showing similar flow features between the experiment and the simulation. The flow transitions to turbulence after peak systole, when the flow starts to decelerate. Fluctuations are observed in the wake of the valve, with maximum amplitude observed at the commissure side of the aorta. Overall, a very promising experiment-vs-simulation comparison is shown, demonstrating the potential of the numerical method. Copyright © 2017 John Wiley & Sons, Ltd.
Espino, Daniel M; Shepherd, Duncan E T; Hukins, David W L
2014-01-01
A transient multi-physics model of the mitral heart valve has been developed, which allows simultaneous calculation of fluid flow and structural deformation. A recently developed contact method has been applied to enable simulation of systole (the stage when blood pressure is elevated within the heart to pump blood to the body). The geometry was simplified to represent the mitral valve within the heart walls in two dimensions. Only the mitral valve undergoes deformation. A moving arbitrary Lagrange-Euler mesh is used to allow true fluid-structure interaction (FSI). The FSI model requires blood flow to induce valve closure by inducing strains in the region of 10-20%. Model predictions were found to be consistent with existing literature and will undergo further development.
Dissociation of end systole from end ejection in patients with long-term mitral regurgitation.
Brickner, M E; Starling, M R
1990-04-01
To determine whether left ventricular (LV) end systole and end ejection uncouple in patients with long-term mitral regurgitation, 59 patients (22 control patients with atypical chest pain, 21 patients with aortic regurgitation, and 16 patients with mitral regurgitation) were studied with micromanometer LV catheters and radionuclide angiograms. End systole was defined as the time of occurrence (Tmax) of the maximum time-varying elastance (Emax), and end ejection was defined as the time of occurrence of minimum ventricular volume (minV) and zero systolic flow as approximated by the aortic dicrotic notch (Aodi). The temporal relation between end systole and end ejection in the control patients was Tmax (331 +/- 42 [SD] msec), minV (336 +/- 36 msec), and then, zero systolic flow (355 +/- 23 msec). This temporal relation was maintained in the patients with aortic regurgitation. In contrast, in the patients with mitral regurgitation, the temporal relation was Tmax (266 +/- 49 msec), zero systolic flow (310 +/- 37 msec, p less than 0.01 vs. Tmax), and then, minV (355 +/- 37 msec, p less than 0.001 vs. Tmax and p less than 0.01 vs. Aodi). Additionally, the average Tmax occurred earlier in the patients with mitral regurgitation than in the control patients and patients with aortic regurgitation (p less than 0.01, for both), whereas the average time to minimum ventricular volume was similar in all three patient groups. Moreover, the average time to zero systolic flow also occurred earlier in the patients with mitral regurgitation than in the control patients (p less than 0.01) and patients with aortic regurgitation (p less than 0.05). Because of the dissociation of end systole from minimum ventricular volume in the patients with mitral regurgitation, the end-ejection pressure-volume relations calculated at minimum ventricular volume did not correlate (r = -0.09), whereas those calculated at zero systolic flow did correlate (r = 0.88) with the Emax slope values. We conclude that end ejection, defined as minimum ventricular volume, dissociates from end systole in patients with mitral regurgitation because of the shortened time to LV end systole in association with preservation of the time to LV end ejection due to the low impedance to ejection presented by the left atrium. Therefore, pressure-volume relations calculated at minimum ventricular volume might not be useful for assessing LV chamber performance in some patients with mitral regurgitation.
[Aneurysm of the atrial septum diagnosed by trans-esophageal echocardiography].
Juszczyk, Z; Attir, A; Kamińska, M
1991-01-01
We report an uncommon case of atrial septal aneurysm associated with mitral valve prolapse. A 28 year old woman was studied with transthoracic and transesophageal echocardiography (TEE). Transthoracic echocardiography suggested mitral valve prolapse. TEE with color mapping was performed. Atrial septal aneurysm and mitral valve prolapse was found. The study has shown that TEE can evaluate accurately some of the anatomic features of atrial septal aneurysm and color flow mapping can provide accurate information about the blood flow in the lesion. We believe that TEE may be the safest and most accurate investigative technique for diagnosing this rare lesion.
Mitral valve surgery - minimally invasive
... flow. Your valve has developed an infection (infectious endocarditis). You have severe mitral valve prolapse that is ... function. Damage to your heart valve from infection (endocarditis). A minimally invasive procedure has many benefits. There ...
Swirling flow in bileaflet mechanical heart valve
NASA Astrophysics Data System (ADS)
Gataulin, Yakov A.; Khorobrov, Svyatoslav V.; Yukhnev, Andrey D.
2018-05-01
Bileaflet mechanical valves are most commonly used for heart valve replacement. Nowadays swirling blood flow is registered in different parts of the cardiovascular system: left ventricle, aorta, arteries and veins. In present contribution for the first time the physiological swirling flow inlet conditions are used for numerical simulation of aortic bileaflet mechanical heart valve hemodynamics. Steady 3-dimensional continuity and RANS equations are employed to describe blood motion. The Menter SST model is used to simulate turbulence effects. Boundary conditions are corresponded to systolic peak flow. The domain was discretized into hybrid tetrahedral and hexahedral mesh with an emphasis on wall boundary layer. A system of equations was solved in Ansys Fluent finite-volume package. Noticeable changes in the flow structure caused by inlet swirl are shown. The swirling flow interaction with the valve leaflets is analyzed. A central orifice jet changes its cross-section shape, which leads to redistribution of wall shear stress on the leaflets. Transvalvular pressure gradient and area-averaged leaflet wall shear stress increase. Physiological swirl intensity noticeably reduces downstream of the valve.
Alarming atrioventricular block and mitral valve prolapse in the Kearns-Sayre syndrome.
Katsanos, Konstantinos H; Pappas, Christos J; Patsouras, Dimitrios; Michalis, Lambros K; Kitsios, Georgios; Elisaf, Moses; Tsianos, Epameinondas V
2002-05-01
Kearns-Sayre syndrome (KSS) is a multisystem mitochondrial disorder characterized by the invariant triad: onset before 20, progressive external ophthalmoplegia and pigmentary retinal degeneration, plus at least one of the following: complete (or not) heart block, cereberal dysfunction and CSF protein above 100 mg/dl. Autopsies from patients with KSS revealed widespread tissue distribution mtDNA deletions. These deletions result in significantly lower activities of the enzymes of the respiratory chain. The same deletion of mitochondrial DNA present in skeletal muscle is found in myocardial tissue. An 18-year-old girl diagnosed with the KSS was admitted to our hospital because of an upper respiratory tract infection and dysphagia. ECG showed cardiac conduction defects. The patient had no history of syncope. At her surface ECG there was a complete RBBB (QRS duration approximately 130 ms), a clockwise rotation with an axis of approximately 90 degrees and a slight QT prolongation (420 ms). Echocardiography showed prolapse with thickening and degeneration of both mitral valve leaflets but without mitral regurgitation. The patient was started on a diet rich in potassium and pharmaceutical therapy with magnesium oxide (240 mg of elemental Mg p.o. per day), 1 g of calcium carbonate t.i.d., vitamin D (calcitriol 0.25 microg p.o. per day) and coenzyme Q(10) 100 mg daily and discharged 6 days later with slightly improved biochemical profile but apparent clinical improvement. Urgent pacemaker implantation was decided but unfortunately the patient died due to acute cardiac arrest 10 days later.
Adult women with mitral valve prolapse are more flexible
Araujo, C; Chaves, C
2005-01-01
Background: Mitral valve prolapse (MVP) is common in women. Other clinical features such as flexibility and hyperlaxity are often associated with MVP, as there is a common biochemical and histological basis for collagen tissue characteristics, range of joint motion, and mitral leaflet excursion. Objective: To confirm whether adult women with MVP are more flexible and hypermobile than those without. Methods: Data from 125 women (mean age 50 years), 31 of them with MVP, were retrospectively analysed with regard to clinical and kinanthropometric aspects. Passive joint motion was evaluated in 20 body movements using Flexitest and three laxity tests. Flexitest individual movements (0 to 4) and overall Flexindex scores were obtained in all subjects by the same investigator. Results: Women with MVP were lighter, less endomorphic and mesomorphic, and more linear. The Flexindex was significantly higher in the women with MVP, both absolute (48 (1.6) v 41 (1.3); p<0.01) and centile for age (67 v 42; p<0.01) values. In 13 out of 20 movements, the Flexitest scores were significantly higher for the women with MVP. Signs of hyperlaxity were about five times more common in these women: 74% v 16% (p<0.01). Scores of 0 and 1 in elbow extension, absence of hyperlaxity, and a Flexindex centile below 65 were almost never found in women with MVP. Conclusion: Flexitest, alone or combined with hyperlaxity tests, may be useful in the assessment of adult women with MVP. PMID:16183767
The closing behavior of mechanical aortic heart valve prostheses.
Lu, Po-Chien; Liu, Jia-Shing; Huang, Ren-Hong; Lo, Chi-Wen; Lai, Ho-Cheng; Hwang, Ned H C
2004-01-01
Mechanical artificial heart valves rely on reverse flow to close their leaflets. This mechanism creates regurgitation and water hammer effects that may form cavitations, damage blood cells, and cause thromboembolism. This study analyzes closing mechanisms of monoleaflet (Medtronic Hall 27), bileaflet (Carbo-Medics 27; St. Jude Medical 27; Duromedics 29), and trileaflet valves in a circulatory mock loop, including an aortic root with three sinuses. Downstream flow field velocity was measured via digital particle image velocimetry (DPIV). A high speed camera (PIVCAM 10-30 CCD video camera) tracked leaflet movement at 1000 frames/s. All valves open in 40-50 msec, but monoleaflet and bileaflet valves close in much less time (< 35 msec) than the trileaflet valve (>75 msec). During acceleration phase of systole, the monoleaflet forms a major and minor flow, the bileaflet has three jet flows, and the trileaflet produces a single central flow like physiologic valves. In deceleration phase, the aortic sinus vortices hinder monoleaflet and bileaflet valve closure until reverse flows and high negative transvalvular pressure push the leaflets rapidly for a hard closure. Conversely, the vortices help close the trileaflet valve more softly, probably causing less damage, lessening back flow, and providing a washing effect that may prevent thrombosis formation.
Multiphoton microscopy of ECM proteins in baboon aortic leaflet
NASA Astrophysics Data System (ADS)
Gonzalez, Mariacarla; Saytashev, Ilyas; Luna, Camila; Gonzalez, Brittany; Pinero, Alejandro; Perez, Manuel; Ramaswamy, Sharan; Ramella-Roman, Jessica
2018-02-01
The extracellular matrix (ECM) plays crucial role in defining mechanical properties of a heart valve yet the mechanobiological role of the ECM proteins - collagen and elastin - in living heart valve leaflets is still poorly understood. In this study, non-linear microscopy was used to obtain three dimensional images of collagen and elastin arrangement in aortic leaflets under combined steady flow (850 ml/min) and cyclic flexure (1 Hz) mechanical (dynamic) training. A novel bioreactor capable of mimicking the flow conditions in a living heart was used in this study and was optimized for microscopic imagery. A custom made non-linear microscope was used in this study to provide Second Harmonic Generation (SHG) imaging of collagen arrangement and two-photon imaging of elastin. Two control and three trained leaflet samples from static and dynamic tissue culture were imaged to observe protein changes in the tissue for a period of seven days. Dynamic training led to a decrease in alignment index of the protein fibers compared to the static treatment.
The effect of vortex formation on left ventricular filling and mitral valve efficiency.
Pierrakos, Olga; Vlachos, Pavlos P
2006-08-01
A new mechanism for quantifying the filling energetics in the left ventricle (LV) and past mechanical heart valves (MHV) is identified and presented. This mechanism is attributed to vortex formation dynamics past MHV leaflets. Recent studies support the conjecture that the natural healthy left ventricle (LV) performs in an optimum, energy-preserving manner by redirecting the flow with high efficiency. Yet to date, no quantitative proof has been presented. The present work provides quantitative results and validation of a theory based on the dynamics of vortex ring formation, which is governed by a critical formation number (FN) that corresponds to the dimensionless time at which the vortex ring has reached its maximum circulation content, in support of this hypothesis. Herein, several parameters (vortex ring circulation, vortex ring energy, critical FN, hydrodynamic efficiencies, vortex ring propagation speed) have been quantified and presented as a means of bridging the physics of vortex formation in the LV. In fact, the diastolic hydrodynamic efficiencies were found to be 60, 41, and 29%, respectively, for the porcine, anti-anatomical, and anatomical valve configurations. This assessment provides quantitative proof of vortex formation, which is dependent of valve design and orientation, being an important flow characteristic and associated to LV energetics. Time resolved digital particle image velocimetry with kilohertz sampling rate was used to study the ejection of fluid into the LV and resolve the spatiotemporal evolution of the flow. The clinical significance of this study is quantifying vortex formation and the critical FN that can potentially serve as a parameter to quantify the LV filling process and the performance of heart valves.
Muller, David W M; Farivar, Robert Saeid; Jansz, Paul; Bae, Richard; Walters, Darren; Clarke, Andrew; Grayburn, Paul A; Stoler, Robert C; Dahle, Gry; Rein, Kjell A; Shaw, Marty; Scalia, Gregory M; Guerrero, Mayra; Pearson, Paul; Kapadia, Samir; Gillinov, Marc; Pichard, Augusto; Corso, Paul; Popma, Jeffrey; Chuang, Michael; Blanke, Philipp; Leipsic, Jonathon; Sorajja, Paul
2017-01-31
Symptomatic mitral regurgitation (MR) is associated with high morbidity and mortality that can be ameliorated by surgical valve repair or replacement. Despite this, many patients with MR do not undergo surgery. Transcatheter mitral valve replacement (TMVR) may be an option for selected patients with severe MR. This study aimed to examine the effectiveness and safety of TMVR in a cohort of patients with native valve MR who were at high risk for cardiac surgery. Patients underwent transcatheter, transapical delivery of a self-expanding mitral valve prosthesis and were examined in a prospective registry for short-term and 30-day outcomes. Thirty patients (age 75.6 ± 9.2 years; 25 men) with grade 3 or 4 MR underwent TMVR. The MR etiology was secondary (n = 23), primary (n = 3), or mixed pathology (n = 4). The Society of Thoracic Surgeons Predicted Risk of Mortality was 7.3 ± 5.7%. Successful device implantation was achieved in 28 patients (93.3%). There were no acute deaths, strokes, or myocardial infarctions. One patient died 13 days after TMVR from hospital-acquired pneumonia. Prosthetic leaflet thrombosis was detected in 1 patient at follow-up and resolved after increased oral anticoagulation with warfarin. At 30 days, transthoracic echocardiography showed mild (1+) central MR in 1 patient, and no residual MR in the remaining 26 patients with valves in situ. The left ventricular end-diastolic volume index decreased (90.1 ± 28.2 ml/m 2 at baseline vs. 72.1 ± 19.3 ml/m 2 at follow-up; p = 0.0012), as did the left ventricular end-systolic volume index (48.4 ± 19.7 ml/m 2 vs. 43.1 ± 16.2 ml/m 2 ; p = 0.18). Seventy-five percent of the patients reported mild or no symptoms at follow-up (New York Heart Association functional class I or II). Successful device implantation free of cardiovascular mortality, stroke, and device malfunction at 30 days was 86.6%. TMVR is an effective and safe therapy for selected patients with symptomatic native MR. Further evaluation of TMVR using prostheses specifically designed for the mitral valve is warranted. This intervention may help address an unmet need in patients at high risk for surgery. (Early Feasibility Study of the Tendyne Mitral Valve System [Global Feasibility Study]; NCT02321514). Copyright © 2017 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.
Value of Robotically Assisted Surgery for Mitral Valve Disease
Mihaljevic, Tomislav; Koprivanac, Marijan; Kelava, Marta; Goodman, Avi; Jarrett, Craig; Williams, Sarah J.; Gillinov, A. Marc; Bajwa, Gurjyot; Mick, Stephanie L.; Bonatti, Johannes; Blackstone, Eugene H.
2014-01-01
Importance The value of robotically assisted surgery for mitral valve disease is questioned because the high cost of care associated with robotic technology may outweigh its clinical benefits. Objective To investigate conditions under which benefits of robotic surgery mitigate high technology costs. Design Clinical cohort study comparing costs of robotic vs. three contemporaneous conventional surgical approaches for degenerative mitral disease. Surgery was performed from 2006–2011, and comparisons were based on intent-to-treat, with propensity-matching used to reduce selection bias. Setting Large multi-specialty academic medical center. Participants 1,290 patients aged 57±11 years, 27% women, underwent mitral repair for regurgitation from posterior leaflet prolapse. Robotic surgery was used in 473, complete sternotomy in 227, partial sternotomy in 349, and anterolateral thoracotomy in 241. Three propensity-matched groups were formed based on demographics, symptoms, cardiac and noncardiac comorbidities, valve pathophysiology, and echocardiographic measurements: robotic vs. sternotomy (n=198 pairs) vs. partial sternotomy (n=293 pairs) vs. thoracotomy (n=224 pairs). Interventions Mitral valve repair. Main Outcome Measures Cost of care, expressed as robotic capital investment, maintenance, and direct technical hospital cost, and benefit of care, based on differences in recovery time. Results Median cost of care for robotically assisted surgery exceeded the cost of alternative approaches by 27% (−5%, 68%), 32% (−6%, 70%), and 21% (−2%, 54%) (median [15th, 85th percentiles]) for complete sternotomy, partial sternotomy, and anterolateral thoracotomy, respectively. Higher operative costs were partially offset by lower postoperative costs and earlier return to work: median 35 days for robotic surgery, 49 for complete sternotomy, 56 for partial sternotomy, and 42 for anterolateral thoracotomy. Resulting net differences in cost of robotic surgery vs. the three alternatives were 16% (−15%, 55%), 16% (−19%, 51%), and 15% (−7%, 49%), respectively. Beyond a volume threshold of 55–100 robotic cases per year, confidence limits for the cost of robotic surgery broadly overlapped those of conventional approaches. Conclusions In exchange for higher procedural costs, robotically assisted mitral valve surgery offers the clinical benefit of least invasive surgery, lowest postoperative cost, and fastest return to work. The value of robotically assisted surgery comparable to conventional approaches can only be realized in high-volume centers. PMID:24848944
Pivot design in bileaflet valves.
Vallana, F; Rinaldi, S; Galletti, P M; Nguyen, A; Piwnica, A
1992-01-01
The design criteria leading to the development of a new bileaflet valve (Sorin Bicarbon) were derived from the analysis of functional requirements, the performance of existing prostheses, and the availability of an advanced carbon coating technology (Carbofilm). The hinge is the critical element affecting fluid dynamics, durability, and thrombus formation in bileaflet valves. A comparative study of three existing models led to a new hinge design that was based on coupling two spheric surfaces with different radii of curvature (leaflet pivot and hinge recess) and obtained by electroerosion into a Carbofilm-coated metallic housing. In this valve, the point of contact moves continuously by rolling, not sliding. This minimizes friction and wear and allows uninterrupted washing of the blood exposed surfaces even during diastole (a finding established in patients using transesophageal echocardiography). Tricuspid implantation without anticoagulation in 33 sheep did not lead to thrombotic events (follow-up, 40-400 days). In the first 36 clinical implants observed for 15 months (mitral position, size 29; two unrelated deaths), the mean diastolic gradient by echo Doppler was 4 +/- 1.25 mmHg; the functional area was 3.2 +/- 0.6 cm2. No leaflet fracture and no thrombotic or embolic complications were observed clinically using a standard anticoagulant regimen.
Prosthetic Tricuspid Valve Thrombosis: Three Case Reports and Literature Review
Yaminisharif, Ahmad; Alemzadeh-Ansari, Mohammad Javad; Ahmadi, Seyed Hossein
2012-01-01
A common complication of prosthetic heart valves is thrombosis. Although the incidence of prosthetic valve thrombosis (PVT) in the tricuspid position is high, there are not enough data on the management of it, in contrast to left-sided PVT. Here, we describe three cases of tricuspid PVT with three different management approaches: thrombolytic therapy; close observation with oral anticoagulants; and surgery. The first case was a woman who suffered from recurrent PVT, for which we successfully used Tenecteplase for second and third episodes. We employed Tenecteplase in this case for the first time in the therapy of tricuspid PVT. The second case had fixed leaflets in open position while being symptomless. At six months' follow-up, with the patient having taken oral anticoagulants, the motion of the leaflets was restricted and she was symptomfree. The last case was a woman who had a large thrombus in the right atrium immediately after mitral and tricuspid valvular replacement. The patient underwent re-replacement surgery and a new biological valve was implanted in the tricuspid position. Also, we review the literature on the pathology, signs and symptoms, diagnosis, and management of tricuspid PVT. PMID:23323074
Ultrasonic Doppler measurement of renal artery blood flow
NASA Technical Reports Server (NTRS)
Freund, W. R.; Beaver, W. L.; Meindl, J. D.
1976-01-01
Studies were made of (1) blood flow redistribution during lower body negative pressure (LBNP), (2) the profile of blood flow across the mitral annulus of the heart (both perpendicular and parallel to the commissures), (3) testing and evaluation of a number of pulsed Doppler systems, (4) acute calibration of perivascular Doppler transducers, (5) redesign of the mitral flow transducers to improve reliability and ease of construction, and (6) a frequency offset generator designed for use in distinguishing forward and reverse components of blood flow by producing frequencies above and below the offset frequency. Finally methodology was developed and initial results were obtained from a computer analysis of time-varying Doppler spectra.
A review of state-of-the-art numerical methods for simulating flow through mechanical heart valves.
Sotiropoulos, Fotis; Borazjani, Iman
2009-03-01
In nearly half of the heart valve replacement surgeries performed annually, surgeons prefer to implant bileaflet mechanical heart valves (BMHV) because of their durability and long life span. All current BMHV designs, however, are prone to thromboembolic complications and implant recipients need to be on a life-long anticoagulant medication regiment. Non-physiologic flow patterns and turbulence generated by the valve leaflets are believed to be the major culprit for the increased risk of thromboembolism in BMHV implant recipients. In this paper, we review recent advances in developing predictive fluid-structure interaction (FSI) algorithms that can simulate BMHV flows at physiologic conditions and at resolution sufficiently fine to start probing the links between hemodynamics and blood-cell damage. Numerical simulations have provided the first glimpse into the complex hemodynamic environment experienced by blood cells downstream of the valve leaflets and successfully resolved for the first time the experimentally observed explosive transition to a turbulent-like state at the start of the decelerating flow phase. The simulations have also resolved a number of subtle features of experimentally observed valve kinematics, such as the asymmetric opening and closing of the leaflets and the leaflet rebound during closing. The paper also discusses a future research agenda toward developing a powerful patient-specific computational framework for optimizing valve design and implantation in a virtual surgery environment.
A review of state-of-the-art numerical methods for simulating flow through mechanical heart valves
Borazjani, Iman
2009-01-01
In nearly half of the heart valve replacement surgeries performed annually, surgeons prefer to implant bileaflet mechanical heart valves (BMHV) because of their durability and long life span. All current BMHV designs, however, are prone to thromboembolic complications and implant recipients need to be on a life-long anticoagulant medication regiment. Non-physiologic flow patterns and turbulence generated by the valve leaflets are believed to be the major culprit for the increased risk of thromboembolism in BMHV implant recipients. In this paper, we review recent advances in developing predictive fluid–structure interaction (FSI) algorithms that can simulate BMHV flows at physiologic conditions and at resolution sufficiently fine to start probing the links between hemodynamics and blood-cell damage. Numerical simulations have provided the first glimpse into the complex hemodynamic environment experienced by blood cells downstream of the valve leaflets and successfully resolved for the first time the experimentally observed explosive transition to a turbulent-like state at the start of the decelerating flow phase. The simulations have also resolved a number of subtle features of experimentally observed valve kinematics, such as the asymmetric opening and closing of the leaflets and the leaflet rebound during closing. The paper also discusses a future research agenda toward developing a powerful patient-specific computational framework for optimizing valve design and implantation in a virtual surgery environment. PMID:19194734
Niimi, Yoshinari; Murata, Seiichiro; Mitou, Yumi; Ohno, Yusuke
2018-03-01
We developed a novel open cardiopulmonary bypass (CPB) system, a drainage flow servo-controlled CPB system (DS-CPB), in which rotational speed of the main roller pump is servo-controlled to generate the same amount of flow as the systemic venous drainage. It was designed to safely decrease the priming volume while maintaining a constant reservoir level, even during fluctuations of the drainage flow. We report a successful use of a novel DS-CPB system in an elderly Jehovah's Witness patient with dehydration who underwent mitral valve replacement.
On the Presence of Affine Fibril and Fiber Kinematics in the Mitral Valve Anterior Leaflet
Lee, Chung-Hao; Zhang, Will; Liao, Jun; Carruthers, Christopher A.; Sacks, Jacob I.; Sacks, Michael S.
2015-01-01
In this study, we evaluated the hypothesis that the constituent fibers follow an affine deformation kinematic model for planar collagenous tissues. Results from two experimental datasets were utilized, taken at two scales (nanometer and micrometer), using mitral valve anterior leaflet (MVAL) tissues as the representative tissue. We simulated MVAL collagen fiber network as an ensemble of undulated fibers under a generalized two-dimensional deformation state, by representing the collagen fibrils based on a planar sinusoidally shaped geometric model. The proposed approach accounted for collagen fibril amplitude, crimp period, and rotation with applied macroscopic tissue-level deformation. When compared to the small angle x-ray scattering measurements, the model fit the data well, with an r2 = 0.976. This important finding suggests that, at the homogenized tissue-level scale of ∼1 mm, the collagen fiber network in the MVAL deforms according to an affine kinematics model. Moreover, with respect to understanding its function, affine kinematics suggests that the constituent fibers are largely noninteracting and deform in accordance with the bulk tissue. It also suggests that the collagen fibrils are tightly bounded and deform as a single fiber-level unit. This greatly simplifies the modeling efforts at the tissue and organ levels, because affine kinematics allows a straightforward connection between the macroscopic and local fiber strains. It also suggests that the collagen and elastin fiber networks act independently of each other, with the collagen and elastin forming long fiber networks that allow for free rotations. Such freedom of rotation can greatly facilitate the observed high degree of mechanical anisotropy in the MVAL and other heart valves, which is essential to heart valve function. These apparently novel findings support modeling efforts directed toward improving our fundamental understanding of tissue biomechanics in healthy and diseased conditions. PMID:25902446
Left ventricular inflow tract obstruction secondary to a myxoma in a dog.
Fernandez-del Palacio, M Josefa; Sanchez, Joaquin; Talavera, Jesus; Martínez, Carlos
2011-01-01
This is the first description of a left ventricular inflow tract obstruction secondary to a myxoma in a dog. A 4 yr old, male fox terrier presented with a 1 mo history of cough and exercise intolerance. Expiratory dyspnea, pulmonary crackles, irregular cardiac rhythm, and a grade 4/6 pansystolic cardiac murmur over the left cardiac apex were the most important features on physical examination. The electrocardiogram revealed atrial fibrillation. Thoracic radiographs showed left-sided cardiac enlargement and mild pulmonary edema, especially in the hilar area. Two-dimensional transthoracic echocardiography showed severe left atrial dilation and a homogenous, echodense mass involving both leaflets of the mitral valve and the posteromedial papillary muscle, inducing mitral stenosis. Spectral Doppler echocardiography was consistent with severe left ventricular inflow tract obstruction secondary to a mass. Therapy for congestive heart failure was prescribed. Follow-up examinations of the dog 1 mo, 2 mo, and 6 mo after diagnosis showed an improvement in clinical signs, but similar echocardiographic features. Eleven months after diagnosis, the dog was euthanized at the owner's request because of recurrent congestive heart failure. The postmortem examination showed the cardiac tumor was consistent with a myxoma.
An unusual case of infective endocarditis presenting as acute myocardial infarction.
Chen, Zhong; Ng, Francesca; Nageh, Thuraia
2007-06-01
A 39-year-old Zimbabwean man presented with a 1 week history of fever, general malaise and acute-onset chest pain. He had a urethral stricture, which had been managed with an indwelling supra-pubic catheter. The electrocardiography on admission showed inferior ST-T segments elevation. His chest pain and electrocardiography changes resolved subsequent to thrombolysis, and he remained haemodynamically stable. The 12-h troponin I was increased at 10.5 microg/l (NR <0.04 microg/l). Echocardiography confirmed severe mitral regurgitation and a flail anterior mitral valve leaflet with an independently oscillating mobile vegetation. Enterococci faecalis were grown on blood cultures. A diagnosis of enterococci infective endocarditis with concomitant acute myocardial infarction due to possible septic emboli was made. Despite the successful outcome from thrombolysis in the setting of acute myocardial infarction with infective endocarditis, the case highlights the current lack of definitive data on the optimal acute management of such an unusual clinical scenario. Although there is serious concern that thrombolytic treatment for myocardial infarction in the setting of infective endocarditis may be associated with higher risk of cerebral haemorrhage, there is little documented evidence supporting the safety of primary percutaneous coronary intervention with these patients.
Effects of Leaflet Design on Transvalvular Gradients of Bioprosthetic Heart Valves.
Dabiri, Yaghoub; Ronsky, Janet; Ali, Imtiaz; Basha, Ameen; Bhanji, Alisha; Narine, Kishan
2016-12-01
Bioprosthetic aortic valves (BAVs) are becoming the prostheses of choice in heart valve replacement. The objective of this paper is to assess the effects of leaflet geometry on the mechanics and hemodynamics of BAVs in a fluid structure interaction model. The curvature and angle of leaflets were varied in 10 case studies whereby the following design parameters were altered: a circular arch, a line, and a parabola for the radial curvature, and a circular arch, a spline, and a parabola for the circumferential curvature. Six different leaflet angles (representative of the inclination of the leaflets toward the surrounding aortic wall) were analyzed. The 3-dimensional geometry of the models were created using SolidWorks, Pointwise was used for meshing, and Comsol Multiphysics was used for implicit finite element calculations. Realistic loading was enforced by considering the time-dependent strongly-coupled interaction between blood flow and leaflets. Higher mean pressure gradients as well as von Mises stresses were obtained with a parabolic or circular curvature for radial curvature or a parabolic or spline curvature for the circumferential curvature. A smaller leaflet angle was associated with a lower pressure gradient, and, a lower von Mises stress. The leaflet curvature and angle noticeably affected the speed of valve opening, and closing. When a parabola was used for circumferential or radial curvature, leaflets displacements were asymmetric, and they opened and closed more slowly. A circular circumferential leaflet curvature, a linear leaflet radial curvature, and leaflet inclination toward the surrounding aortic wall were associated with superior BAVs mechanics.
Jamil, Muhammad; Ahmad, Omar; Poh, Kian Keong; Yap, Choon Hwai
2017-07-01
Current Doppler echocardiography quantification of mitral regurgitation (MR) severity has shortcomings. Proximal isovelocity surface area (PISA)-based methods, for example, are unable to account for the fact that ultrasound Doppler can measure only one velocity component: toward or away from the transducer. In the present study, we used ultrasound-based computational fluid dynamics (Ub-CFD) to quantify mitral regurgitation and study its advantages and disadvantages compared with 2-D and 3-D PISA methods. For Ub-CFD, patient-specific mitral valve geometry and velocity data were obtained from clinical ultrasound followed by 3-D CFD simulations at an assumed flow rate. We then obtained the average ratio of the ultrasound Doppler velocities to CFD velocities in the flow convergence region, and scaled CFD flow rate with this ratio as the final measured flow rate. We evaluated Ub-CFD, 2-D PISA and 3-D PISA with an in vitro flow loop, which featured regurgitation flow through (i) a simplified flat plate with round orifice and (ii) a 3-D printed realistic mitral valve and regurgitation orifice. The Ub-CFD and 3-D PISA methods had higher precision than the 2-D PISA method. Ub-CFD had consistent accuracy under all conditions tested, whereas 2-D PISA had the lowest overall accuracy. In vitro investigations indicated that the accuracy of 2-D and 3-D PISA depended significantly on the choice of aliasing velocity. Evaluation of these techniques was also performed for two clinical cases, and the dependency of PISA on aliasing velocity was similarly observed. Ub-CFD was robustly accurate and precise and has promise for future translation to clinical practice. Copyright © 2017 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.
Schnittger, I; Appleton, C P; Hatle, L K; Popp, R L
1988-01-01
The purpose of this study was to prospectively determine the incidence of diastolic mitral and tricuspid regurgitation in atrioventricular (AV) block using Doppler echocardiography. The temporal relation between mitral and tricuspid diastolic insufficiency and the diastolic murmur recorded in patients with complete heart block was also investigated. Twenty-two consecutive patients with AV block (referred to the Echo-Doppler laboratory for routine clinical studies), aged 18 to 87 years, were enrolled in the study. Eleven patients had third degree AV block and a ventricular-inhibited (VVI) pacemaker, two patients had second degree AV block, seven patients had first degree AV block, one patient had blocked premature atrial complexes and one patient had atrial flutter with 4:1 AV block. Diastolic mitral regurgitation was detected in 20 patients, and diastolic tricuspid regurgitation in 21. A mid-diastolic murmur was detected in all patients except in the three youngest. The murmur occurred before diastolic regurgitation and coincided with peak forward flow through the AV valve after atrial contraction. M-mode mitral valve echocardiograms obtained in nine patients demonstrated near closure of some portions of the mitral valve after atrial contraction. Effective closure of the valve, however, did not occur unless ventricular systole supervened. In conclusion, diastolic mitral and tricuspid regurgitation are almost universally present in patients with AV block and are associated with a diastolic murmur. The murmur coincides with forward AV valve flow. Diastolic regurgitation is silent. Effective AV valve closure is not established until ventricular systole occurs, as demonstrated by M-mode echocardiographic recording of the mitral valve.
2011-01-01
Background Valve dysfunction is a common cardiovascular pathology. Despite significant clinical research, there is little formal study of how valve dysfunction affects overall circulatory dynamics. Validated models would offer the ability to better understand these dynamics and thus optimize diagnosis, as well as surgical and other interventions. Methods A cardiovascular and circulatory system (CVS) model has already been validated in silico, and in several animal model studies. It accounts for valve dynamics using Heaviside functions to simulate a physiologically accurate "open on pressure, close on flow" law. However, it does not consider real-time valve opening dynamics and therefore does not fully capture valve dysfunction, particularly where the dysfunction involves partial closure. This research describes an updated version of this previous closed-loop CVS model that includes the progressive opening of the mitral valve, and is defined over the full cardiac cycle. Results Simulations of the cardiovascular system with healthy mitral valve are performed, and, the global hemodynamic behaviour is studied compared with previously validated results. The error between resulting pressure-volume (PV) loops of already validated CVS model and the new CVS model that includes the progressive opening of the mitral valve is assessed and remains within typical measurement error and variability. Simulations of ischemic mitral insufficiency are also performed. Pressure-Volume loops, transmitral flow evolution and mitral valve aperture area evolution follow reported measurements in shape, amplitude and trends. Conclusions The resulting cardiovascular system model including mitral valve dynamics provides a foundation for clinical validation and the study of valvular dysfunction in vivo. The overall models and results could readily be generalised to other cardiac valves. PMID:21942971
Mahmood, Feroze; Karthik, Swaminathan; Subramaniam, Balachundhar; Panzica, Peter J; Mitchell, John; Lerner, Adam B; Jervis, Karinne; Maslow, Andrew D
2008-04-01
To study the feasibility of using 3-dimensional (3D) echocardiography in the operating room for mitral valve repair or replacement surgery. To perform geometric analysis of the mitral valve before and after repair. Prospective observational study. Academic, tertiary care hospital. Consecutive patients scheduled for mitral valve surgery. Intraoperative reconstruction of 3D images of the mitral valve. One hundred and two patients had 3D analysis of their mitral valve. Successful image reconstruction was performed in 93 patients-8 patients had arrhythmias or a dilated mitral valve annulus resulting in significant artifacts. Time from acquisition to reconstruction and analysis was less than 5 minutes. Surgeon identification of mitral valve anatomy was 100% accurate. The study confirms the feasibility of performing intraoperative 3D reconstruction of the mitral valve. This data can be used for confirmation and communication of 2-dimensional data to the surgeons by obtaining a surgical view of the mitral valve. The incorporation of color-flow Doppler into these 3D images helps in identification of the commissural or perivalvular location of regurgitant orifice. With improvements in the processing power of the current generation of echocardiography equipment, it is possible to quickly acquire, reconstruct, and manipulate images to help with timely diagnosis and surgical planning.
Fluid-structure interaction analysis of the flow through a stenotic aortic valve
NASA Astrophysics Data System (ADS)
Maleki, Hoda; Labrosse, Michel R.; Durand, Louis-Gilles; Kadem, Lyes
2009-11-01
In Europe and North America, aortic stenosis (AS) is the most frequent valvular heart disease and cardiovascular disease after systemic hypertension and coronary artery disease. Understanding blood flow through an aortic stenosis and developing new accurate non-invasive diagnostic parameters is, therefore, of primarily importance. However, simulating such flows is highly challenging. In this study, we considered the interaction between blood flow and the valve leaflets and compared the results obtained in healthy valves with stenotic ones. One effective method to model the interaction between the fluid and the structure is to use Arbitrary Lagrangian-Eulerian (ALE) approach. Our two-dimensional model includes appropriate nonlinear and anisotropic materials. It is loaded during the systolic phase by applying pressure curves to the fluid domain at the inflow. For modeling the calcified stenotic valve, calcium will be added on the aortic side of valve leaflets. Such simulations allow us to determine the effective orifice area of the valve, one of the main parameters used clinically to evaluate the severity of an AS, and to correlate it with changes in the structure of the leaflets.
Role of vortices in growth of microbubbles at mitral mechanical heart valve closure.
Rambod, Edmond; Beizai, Masoud; Sahn, David J; Gharib, Morteza
2007-07-01
This study is aimed at refining our understanding of the role of vortex formation at mitral mechanical heart valve (MHV) closure and its association with the high intensity transient signals (HITS) seen in echocardiographic studies with MHV recipients. Previously reported numerical results described a twofold process leading to formation of gas-filled microbubbles in-vitro: (1) nucleation and (2) growth of micron size bubbles. The growth itself consists of two processes: (a) diffusion and (b) sudden pressure drop due to valve closure. The role of diffusion has already been shown to govern the initial growth of nuclei. Pressure drop at mitral MHV closure may be attributed to other phenomena such as squeezed flow, water hammer and primarily, vortex cavitation. Mathematical analysis of vortex formation at mitral MHV closure revealed that a closing velocity of approximately 12 m/s can induce a strong regurgitant vortex which in return can instigate a local pressure drop of about 0.9 atm. A 2D experimental model of regurgitant flows was used to substantiate the impact of vortices. At simulated flow and pressure conditions, a regurgitant vortex was observed to drastically enlarge micron size hydrogen bubbles at its core.
NASA Technical Reports Server (NTRS)
Tabata, Tomotsugu; Cardon, Lisa A.; Armstrong, Guy P.; Fukamach, Kiyotaka; Takagaki, Masami; Ochiai, Yoshie; McCarthy, Patrick M.; Thomas, James D.
2003-01-01
BACKGROUND: Doppler tissue echocardiography and color M-mode Doppler flow propagation velocity have proven useful in evaluating cross-sections of patients with left ventricular (LV) dysfunction, but experience with serial changes is limited. Purpose and methods: We tested their use by evaluating the temporal changes of LV function in a pacing-induced congestive heart failure model. Rapid ventricular pacing was initiated and maintained in 20 dogs for 4 weeks. Echocardiography was performed at baseline and weekly during brief pacing cessation. RESULTS: With rapid pacing, LV volume significantly increased and ejection fraction (57%-28%), stroke volume (37-18 mL), and mitral annulus systolic velocity (16.1-6.6 cm/s) by Doppler tissue echocardiography significantly decreased, with ejection fraction and mitral annulus systolic velocity closely correlated (r = 0.706, P <.0001). In contrast to the mitral inflow velocities, mitral annulus early diastolic velocity decreased steadily (12.3-7.3 cm/s) resulting in a dramatic decrease in mitral annulus early/late (1.22-0.57) diastolic velocity with no tendency toward pseudonormalization. The color M-mode Doppler flow propagation velocity also showed significant steady decrease (57-24 cm/s) throughout the pacing period. Multiple regression analysis chose mitral annulus systolic velocity (r = 0.895, P <.0001) and propagation velocity (r = 0.782, P <.0001) for the most important factor predicting LV systolic and diastolic function, respectively. CONCLUSIONS: Doppler tissue echocardiography and color M-mode Doppler flow could evaluate the serial deterioration in LV dysfunction throughout the pacing period. These were more useful in quantifying progressive LV dysfunction than conventional ehocardiographic techniques, and were probably relatively independent of preload. These techniques could be suitable for longitudinal evaluation in addition to the cross-sectional study.
Vascular Adaptations to Transverse Aortic Banding in Mice
2001-10-25
hypertrophy (B-C) via pressure overload. A Doppler probe (D) was used to measure flow velocity at the aortic valve (1), the mitral valve (2), the...L) carotid artery (CA), aortic, and mitral blood velocity 1 day later. At 7 days the heart- weight/body-weight ratio (HW/BW) was measured. Mean...aortic, mitral , and carotid velocities were similar in sham and banded mice, but peak RCA/LCA velocities were much higher in banded mice and were highly
Prediction of oxygen distribution in aortic valve leaflet considering diffusion and convection.
Wang, Ling; Korossis, Sotirios; Fisher, John; Ingham, Eileen; Jin, Zhongmin
2011-07-01
Oxygen supply and transport is an important consideration in the development of tissue engineered constructs. Previous studies from our group have focused on the effect of tissue thickness on the oxygen diffusion within a three-dimensional aortic valve leaflet model, and highlighted the necessity for additional transport mechanisms such as oxygen convection. The aims of this study were to investigate the effect of interstitial fluid flow within the aortic valve leaflet, induced by the cyclic loading of the leaflet, on oxygen transport. Indentation testing and finite element modelings were employed to derive the biphasic properties of the leaflet tissue. The biphasic properties were subsequently used in the computational modeling of oxygen convection in the leaflet, which was based on the effective interstitial fluid velocity and the tissue deformation. Subsequently, the oxygen profile was predicted within the valve leaflet model by solving the diffusion and convection equation simultaneously utilizing the finite difference method. The compression modulus (E) and hydraulic permeability were determined by adapting a finite element model to the experimental indentation test on valvular tissue, E = 0.05MPa, and k =2.0 mm4/Ns. Finite element model of oxygen convection in valvular tissue incorporating the predicted biphasic properties was developed and the interstitial fluid flow rate was calculated falling in range of 0.025-0.25 mm/s depending on the tissue depth. Oxygen distribution within valvular tissue was predicted using one-dimensional oxygen diffusion model taking into consider the interstitial fluid effect. It was found that convection did enhance the oxygen transport in valvular tissue by up to 68% increase in the minimum oxygen tension within the tissue, depending on the strain level of the tissue as reaction of the magnitude and frequencies of the cardiac loading. The effective interstitial fluid velocity was found to play an important role in enhancing the oxygen transport within the valve leaflet. Such an understanding is important in the development of valvular tissue engineered constructs.
Teramoto, Chikao; Kawaguchi, Osamu; Araki, Yoshimori; Yoshikawa, Masaharu; Uchida, Wataru; Takemura, Gennta; Makino, Naoki
2016-08-01
In patients with Marfan syndrome, cardiovascular complication due to aortic dissection represents the primary cause of death. Iatrogenic acute aortic dissection during cardiac surgery is a rare, but serious adverse event. A 51-year-old woman with Marfan syndrome underwent elective aortic surgery and mitral valve reconstruction surgery for the enlarged aortic root and severe mitral regurgitation. We replaced the aortic root and ascending aorta based on reimplantation technique. During subsequent mitral valve reconstruction, we found the heart pushed up from behind. Trans-esophageal echocardiography revealed a dissecting flap in the thoracic descending aorta. There was just weak signal of blood flow in the pseudolumen. We did not add any additional procedures such as an arch replacement. Cardio-pulmonary bypass was successfully discontinued. After protamine sulfate administration and blood transfusion, blood flow in the pseudolumen disappeared. The patient was successfully discharged from the hospital on 33th postoperative day without significant morbidities.
Percutaneous edge-to-edge mitral valve repair in high-surgical-risk patients: do we hit the target?
Van den Branden, Ben J L; Swaans, Martin J; Post, Martijn C; Rensing, Benno J W M; Eefting, Frank D; Jaarsma, Wybren; Van der Heyden, Jan A S
2012-01-01
This study sought to assess the feasibility and safety of percutaneous edge-to-edge mitral valve (MV) repair in patients with an unacceptably high operative risk. MV repair for mitral regurgitation (MR) can be accomplished by use of a clip that approximates the free edges of the mitral leaflets. All patients were declined for surgery because of a high logistic EuroSCORE (>20%) or the presence of other specific surgical risk factors. Transthoracic echocardiography was performed before and 6 months after the procedure. Differences in New York Heart Association (NYHA) functional class, quality of life (QoL) using the Minnesota questionnaire, and 6-min walk test (6-MWT) distances were reported. Fifty-five procedures were performed in 52 patients (69.2% male, age 73.2 ± 10.1 years, logistic EuroSCORE 27.1 ± 17.0%). In 3 patients, partial clip detachment occurred; a second clip was placed successfully. One patient experienced cardiac tamponade. Two patients developed inguinal bleeding, of whom 1 needed surgery. Six patients (11.5%) died during 6-month follow-up (5 patients as a result of progressive heart failure and 1 noncardiac death). The MR grade before repair was ≥3 in 100%; after 6 months, a reduction in MR grade to ≤2 was present in 79% of the patients. Left ventricular (LV) end-diastolic diameter, LV ejection fraction, and systolic pulmonary artery pressure improved significantly. Accompanied improvements in NYHA functional class, QoL index, 6-MWT distances, and log N-terminal pro-B-type natriuretic peptide were observed. In a high-risk population, MR reduction can be achieved by percutaneous edge-to-edge valve repair, resulting in LV remodeling with improvement of functional capacity after 6 months. Copyright © 2012 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.
Amstrup Funder, Jonas; Christian Danielsen, Carl; Baandrup, Ulrik; Martin Bibby, Bo; Carl Andelius, Ted; Toft Brøndum, Emil; Wang, Tobias; Michael Hasenkam, J
2017-01-01
Heart valves which exist naturally in an extreme-pressure system must have evolved in a way to resist the stresses of high pressure. Giraffes are interesting as they naturally have a blood pressure twice that of humans. Thus, knowledge regarding giraffe heart valves may aid in developing techniques to design improved pressure-resistant biological heart valves. Heart valves from 12 giraffes and 10 calves were explanted and subjected to either biomechanical or morphological examinations. Strips from the heart valves were subjected to cyclic loading tests, followed by failure tests. Thickness measurements and analyses of elastin and collagen content were also made. Valve specimens were stained with hematoxylin and eosin, elastic van Gieson stain, Masson's trichrome and Fraser-Lendrum stain, as well as immunohistochemical reactions for morphological examinations. The aortic valve was shown to be 70% (95% CI 42-103%) stronger in the giraffe than in its bovine counterpart (p <0.001). No significant difference was found between mitral or pulmonary valves. After normalization for collagen, no significant differences were found in strength between species. The giraffe aortic valve was found to be significantly stiffer than the bovine aortic valve (p <0.001), with no significant difference between mitral and pulmonary valves. On a dry weight basis, the aortic (10.9%), pulmonary (4.3%), and mitral valves (9.6%) of giraffes contained significantly more collagen than those of calves. The elastin contents of the pulmonary valves (2.5%) and aortic valves (1.5%) were also higher in giraffes. The greater strength of the giraffe aortic valve is most likely due to a compact collagen construction. Both, collagen and elastin contents were higher in giraffes than in calves, which would make giraffe valves more resistant to the high-pressure forces. However, collagen also stiffens and thickens the valves. The mitral leaflets showed similar (but mostly insignificant) trends in strength, stiffness, and collagen content.
Bade, Arun Shivajirao; Shaikh, Shakil Sattar Ahmed; Khemani, Hemant; Singh, Gurkirat; Bansal, Narender Omprakash
2018-01-01
Background Thrombosis is a complication of prosthetic valves on oral anticoagulants which is associated with significant morbidity and mortality. A re-operation carries a substantial risk, with mortality rate from 10% to 15% in selected series, which may be 2- or 3-folds higher in critically ill patients. This study conducted in a tertiary care cardiology unit aimed to evaluate the effectiveness and safety of thrombolytic therapy in stuck mitral bileaflet heart valves. Methods As a prospective observational study, clinical symptoms and fluoroscopy were the mainstay in diagnosis of stuck mitral valve. Gradient across the valve by transthoracic echocardiography was used to monitor the therapy every 6 h. Fall of mean gradient more than 50% was considered as successful thrombolysis. And final results were again checked by fluoroscopy with documentation of improved leaflet movement. Results Totally we studied 34 patients. Patients receiving thrombolytic therapy with streptokinase achieved an overall 91.2% freedom from a repeat operation or major complications, a large subcutaneous hematoma occurred in one ( 2.9%), reoperation required in two due to failure of treatment (5.9%), allergic reaction in one (2.9%), one patient developed transient neurologic dysfunction (2.9%) and one patient died during therapy due to refractory cardiogenic shock(2.9%). All patients including those with delayed presentation (> 14 days) and hemodynamically unstable patients had good results similar to those who presented within 14 days and hemodynamically stable. Mortality was higher in unstable patients and reoperation was higher with delayed presentation. Conclusions Thrombolysis with streptokinase is highly successful and safe therapy in hemodynamically stable as well as unstable patients, or those with early or delayed presentation with stuck bileaflet mitral valves, especially in centers where round the clock cardiothoracic surgery backup is not available. PMID:29904451
De Pasquale, Valeria; Cocchiaro, Pasquale; Paciello, Orlando; Avallone, Luigi; Belfiore, Maria Paola; Iacobellis, Francesca; Di Napoli, Daniele; Magliulo, Fabio; Perrino, Cinzia; Trimarco, Bruno; Esposito, Giovanni; Di Natale, Paola; Pavone, Luigi Michele
2015-01-01
Mucopolysaccharidosis (MPS) IIIB is a lysosomal disease due to the deficiency of the enzyme α-N-acetylglucosaminidase (NAGLU) required for heparan sulfate (HS) degradation. The disease is characterized by mild somatic features and severe neurological disorders. Very little is known on the cardiac dysfunctions in MPS IIIB. In this study, we used the murine model of MPS IIIB (NAGLU knockout mice, NAGLU-/-) in order to investigate the cardiac involvement in the disease. Echocardiographic analysis showed a marked increase in left ventricular (LV) mass, reduced cardiac function and valvular defects in NAGLU-/- mice as compared to wild-type (WT) littermates. The NAGLU-/- mice exhibited a significant increase in aortic and mitral annulus dimension with a progressive elongation and thickening of anterior mitral valve leaflet. A severe mitral regurgitation with reduction in mitral inflow E-wave-to-A-wave ratio was observed in 32-week-old NAGLU-/- mice. Compared to WT mice, NAGLU-/- mice exhibited a significantly lower survival with increased mortality observed in particular after 25 weeks of age. Histopathological analysis revealed a significant increase of myocardial fiber vacuolization, accumulation of HS in the myocardial vacuoles, recruitment of inflammatory cells and collagen deposition within the myocardium, and an increase of LV fibrosis in NAGLU-/- mice compared to WT mice. Biochemical analysis of heart samples from affected mice showed increased expression levels of cardiac failure hallmarks such as calcium/calmodulin-dependent protein kinase II, connexin43, α-smooth muscle actin, α-actinin, atrial and brain natriuretic peptides, and myosin heavy polypeptide 7. Furthermore, heart samples from NAGLU-/- mice showed enhanced expression of the lysosome-associated membrane protein-2 (LAMP2), and the autophagic markers Beclin1 and LC3 isoform II (LC3-II). Overall, our findings demonstrate that NAGLU-/- mice develop heart disease, valvular abnormalities and cardiac failure associated with an impaired lysosomal autophagic flux. PMID:26147524
Intra-Aortic Missile After Gunshot Wound to Chest: An Interesting Case of Traumatic Cardiac Injury.
Fraser, Charles D; Goeddel, Lee; Patel, Nishant D; Azoury, Said C; Grimm, Joshua C; Sheinberg, Rosanne B; Sciortino, Christopher M
2017-05-01
Missile embolus to the heart, although uncommon, is one of the most challenging scenarios in trauma. We describe a 36-year-old man who presented with a gunshot wound to the left chest and a chest x-ray revealing a foreign body in the mediastinum. A median sternotomy was performed and an injury to the left ventricle was identified. After intraoperative echocardiography and fluoroscopy confirmed a foreign body in the aortic root, cardiopulmonary bypass was implemented. A bullet was retrieved from the noncoronary sinus of the aortic valve. Injuries to the anterior leaflet of the mitral valve and left ventricle were repaired. Copyright © 2017 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.
Kim, Hyue Mee; Kim, Hack-Lyoung; Lee, Hak Seung; Jung, Ji-Hyun; Kim, Chee Hae; Oh, Sooyeon; Kim, Jung Ho; Zo, Joo-Hee
2014-05-01
Ante mortem cases of venous thrombosis in patients with nonbacterial thrombotic endocarditis (NBTE) have not yet been reported. We describe a rare case of NBTE in a patient with mesenteric vein thrombosis. A healthy 37-year-old man with abdominal pain and fever underwent emergency small bowel resection due to bowel ischemia resulting from mesenteric vein thrombosis. Transthoracic echocardiography revealed multiple mobile masses attached to the anterior leaflet of the mitral valves and their chordae tendineae. On suspicion of infective endocarditis, the cardiac masses were excised through open-heart surgery. However, pathologic reviews were compatible with NBTE. The patient was stable after the cardiac surgery and was treated with warfarin. Laboratory and imaging findings regarding his hypercoagulable condition were all negative.
Lee, Chung-Hao; Rabbah, Jean-Pierre; Yoganathan, Ajit P.; Gorman, Robert C.; Gorman, Joseph H.
2016-01-01
Recent long-term studies showed an unsatisfactory recurrence rate of severe mitral regurgitation 3–5 years after surgical repair, suggesting that excessive tissue stresses and the resulting strain-induced tissue failure are potential etiological factors controlling the success of surgical repair for treating mitral valve (MV) diseases. We hypothesized that restoring normal MV tissue stresses in MV repair techniques would ultimately lead to improved repair durability through the restoration of MV normal homeostatic state. Therefore, we developed a micro- and macro- anatomically accurate MV finite element model by incorporating actual fiber microstructural architecture and a realistic structure-based constitutive model. We investigated MV closing behaviors, with extensive in vitro data used for validating the proposed model. Comparative and parametric studies were conducted to identify essential model fidelity and information for achieving desirable accuracy. More importantly, for the first time, the interrelationship between the local fiber ensemble behavior and the organ-level MV closing behavior was investigated using a computational simulation. These novel results indicated not only the appropriate parameter ranges, but also the importance of the microstructural tuning (i.e., straightening and re-orientation) of the collagen/elastin fiber networks at the macroscopic tissue level for facilitating the proper coaptation and natural functioning of the MV apparatus under physiological loading at the organ level. The proposed computational model would serve as a logical first step toward our long-term modeling goal—facilitating simulation-guided design of optimal surgical repair strategies for treating diseased MVs with significantly enhanced durability. PMID:25947879
Alavi, S. Hamed; Ruiz, Victor; Krasieva, Tatiana; Botvinick, Elliot L.; Kheradvar, Arash
2014-01-01
When implanted inside the body, bioprosthetic heart valve leaflets experience a variety of cyclic mechanical stresses such as shear stress due to blood flow when the valve is open, flexural stress due to cyclic opening and closure of the valve, and tensile stress when the valve is closed. These types of stress lead to a variety of failure modes. In either a natural valve leaflet or a processed pericardial tissue leaflet, collagen fibers reinforce the tissue and provide structural integrity such that the very thin leaflet can stand enormous loads related to cyclic pressure changes. The mechanical response of the leaflet tissue greatly depends on collagen fiber concentration, characteristics, and orientation. Thus, understating the microstructure of pericardial tissue and its response to dynamic loading is crucial for the development of more durable heart valve, and computational models to predict heart valves’ behavior. In this work, we have characterized the 3D collagen fiber arrangement of bovine pericardial tissue leaflets in response to a variety of different loading conditions under Second-Harmonic Generation Microscopy. This real-time visualization method assists in better understanding of the effect of cyclic load on collagen fiber orientation in time and space. PMID:23180029
Wang, Zhongkai; Chen, Tao; Chen, Liang; Qin, Yongwen; Zhao, Xianxian
2016-01-01
Transcatheter closure is the usual treatment for patent ductus arteriosus (PDA), but its safety and efficacy have not been reported in adult PDA patients with severe mitral regurgitation. A retrospective study on 27 consecutive patients diagnosed with PDA and severe mitral regurgitation and treated using transcatheter closure between September 2010 and September 2012 at the Department of Cardiology of Changhai Hospital in Changhai, China. Left ventricular (LV) diastolic volume and function, pulmonary artery pressure, and instantaneous reverse-flow volume were examined by echocardiography before PDA closure, immediately after closure, and 1 year after closure. After the procedure, the LV diastolic volume (P<.05) and instantaneous reverse-flow volume (P<.001) were significantly decreased. There was no effect on the ejection fraction (P>.05). Pulmonary arterial systolic pressure was unchanged 1 year after closure (from 46.41 ± 19.92 mm Hg to 45.43 ± 13.64 mm Hg; P=.58). All procedures were uneventful and only mild complications occurred (hemolysis in 2 cases, subcutaneous hematoma in 4 cases, and fever in 2 cases). Transcatheter closure can decrease the LV volume and instantaneous reverse-flow volume in adult PDA patients with severe mitral regurgitation. This procedure is effective and has a good safety profile.
A new method for the adjustment of neochordal length: the adjustable slip knot technique.
Yano, Mitsuhiro; Sakaguchi, Syuuhei; Furukawa, Kohji; Nakamura, Eisaku
2015-08-01
The use of expanded polytetrafluoroethylene (ePTFE) sutures for the correction of mitral valve prolapse has become a standardized procedure. Adjustment of neochordal length is crucial to the efficacy of this technique. Various methods have been described for this purpose; however, the fine adjustment of neochordal length is technically challenging. We describe a simple and effective technique for the implantation of neochordae, which we have termed the 'adjustable slip knot technique'. The first step of this technique is reinforcement of the papillary muscle by a Teflon pledget with or without polytetrafluoroethylene (CV-4) loops. The second step is the formation of a neochordal loop by introducing an ePTFE suture between the affected mitral leaflet and the papillary muscle or ePTFE loops. The third step is the adjustment of the length of neochordae. The formation of a slip knot in one arm of the ePTFE suture is the pivot of this technique. The neochordal loop can be constricted by the application of tension to one arm of the suture. We applied this technique in 5 patients with satisfactory results. © The Author 2015. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.
No patch technique for complete atrioventricular canal repair.
Aramendi, José Ignacio; Rodriguez, Miguel Angel; Luis, Teresa; Voces, Roberto
2006-08-01
We describe our initial experience with a new technique, consisting in direct closure of the ventricular septal defect component of the AV canal, by directly attaching the common bridging leaflets to the crest of the ventricular septum with interrupted sutures. After closure of the cleft, the ostium primum defect was closed with a running suture suturing the border of the septum primum to the newly created AV valve annulus. Three patients were operated upon. There was no mortality. Mean ischemic time was 39 min and mean pump time 77 min. All patients remained in sinus rhythm. At follow-up only trivial or mild mitral regurgitation was observed. This new technique permits the repair of complete AV canal without the need for any patch. It is fast, simple and reproducible.
Chiarito, Mauro; Pagnesi, Matteo; Martino, Enrico Antonio; Pighi, Michele; Scotti, Andrea; Biondi-Zoccai, Giuseppe; Latib, Azeem; Landoni, Giovanni; Mario, Carlo Di; Margonato, Alberto; Maisano, Francesco; Feldman, Ted; Alfieri, Ottavio; Colombo, Antonio; Godino, Cosmo
2018-02-01
Differences in terms of safety and efficacy of percutaneous edge-to-edge mitral repair between patients with functional and degenerative mitral regurgitation (MR) are not well established. We performed a systematic review and meta-analysis to clarify these differences. PubMed, EMBASE, Google scholar database and international meeting abstracts were searched for all studies about MitraClip. Studies with <25 patients or where 1-year results were not delineated between MR aetiology were excluded. This study is registered with PROSPERO. A total of nine studies investigating the mid-term outcome of percutaneous edge-to-edge repair in patients with functional versus degenerative MR were included in the meta-analysis (n=2615). At 1 year, there were not significant differences among groups in terms of patients with MR grade≤2 (719/1304 vs 295/504; 58% vs 54%; risk ratio (RR) 1.12; 95% CI: 0.86 to 1.47; p=0.40), while there was a significantly lower rate of mitral valve re-intervention in patients with functional MR compared with those with degenerative MR (77/1770 vs 80/818; 4% vs 10%; RR 0.60; 95% CI: 0.38 to 0.97; p=0.04). One-year mortality rate was 16% (408/2498) and similar among groups (RR 1.26; 95% CI: 0.90 to 1.77; p=0.18). Functional MR group showed significantly higher percentage of patients in New York Heart Association class III/IV (234/1480 vs 49/583; 16% vs 8%; p<0.01) and re-hospitalisation for heart failure (137/605 vs 31/220; 23% vs 14%; p=0.03). No differences were found in terms of single leaflet device attachment (25/969 vs 20/464; 3% vs 4%; p=0.81) and device embolisation (no events reported in both groups) at 1 year. This meta-analysis suggests that percutaneous edge-to-edge repair is likely to be an efficacious and safe option in patients with both functional and degenerative MR. Large, randomised studies are ongoing and awaited to fully assess the clinical impact of the procedure in these two different MR aetiologies. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Plasma proANP and SDMA and microRNAs are associated with chronic mitral regurgitation in a pig model
Cirera, Susanna; Moesgaard, Sophia G; Zois, Nora E; Ravn, Nathja; Goetze, Jens P; Cremer, Signe E; Teerlink, Tom; Leifsson, Páll S; Honge, Jesper L; Hasenkam, J Michael; Olsen, Lisbeth H
2013-01-01
Objective Non-ischemic mitral regurgitation (MR) is primarily caused by myxomatous mitral valve (MV) disease leading to adaptive remodeling, enlargement, and dysfunction of the left ventricle. The aim of this study was to examine the regulation of plasma markers and several cardiac key genes in a novel porcine model of non-ischemic MR. Methods and results Twenty-eight production pigs (Sus scrofa) were randomized to experimental MR or sham surgery controls. MR was induced by external suture(s) through the posterior MV leaflet and quantified using echocardiography. The experimental group was subdivided into mild MR (mMR, MR=20–50%, n=10) and moderate/severe MR (sMR, MR >50%, n=6) and compared with controls (CON, MR ≤10%, n=12). Eight weeks postoperatively, follow-up examinations were performed followed by killing. Circulating concentrations of pro-atrial natriuretic peptide (proANP), l-arginine, asymmetric dimethylarginine, and symmetric dimethylarginine (SDMA) were measured. MV, anterior papillary muscle, and left ventricular free wall tissues were collected to quantify mRNA expression of eNOS (NOS3), iNOS (NOS2), MMP9, MMP14, ANP (NPPA), BNP (NPPB), and TGFB1, 2, and 3 and five microRNAs by quantitative real-time PCR. Pigs with sMR displayed markedly increased plasma proANP and SDMA concentrations compared with both controls and mMR (P<0.05). The expression of all genes examined differed significantly between the three localizations in the heart. miR-21 and miR-133a were differently expressed among the experimental groups (P<0.05). Conclusions Plasma proANP and SDMA levels and tissue expression of miR-21 and miR-133a are associated with severity of chronic MR in an experimental porcine model. PMID:24029364
Borgarelli, M; Savarino, P; Crosara, S; Santilli, R A; Chiavegato, D; Poggi, M; Bellino, C; La Rosa, G; Zanatta, R; Haggstrom, J; Tarducci, A
2008-01-01
There are few studies evaluating the natural history and prognostic variables in chronic mitral valve disease (CMVI) in a heterogeneous population of dogs. To estimate survival and prognostic value of clinical and echocardiographic variables in dogs with CMVI of varying severity. Five hundred and fifty-eight dogs belonging to 36 breeds were studied. Dogs were included after clinical examination and echocardiography. Long-term outcome was assessed by telephone interview with the owner. The mean follow-up time was 22.7 +/- 13.6 months, and the median survival time was 19.5 +/- 13.2 months. In univariate analysis, age>8 years, syncope, HR>140 bpm, dyspnea, arrhythmias, class of heart failure (International Small Animal Cardiac Health Council), furosemide therapy, end-systolic volume-index (ESV-I)>30 mL/m(2), left atrial to aortic root ratio (LA/Ao)>1.7, E wave transmitral peak velocity (Emax)>1.2 m/s, and bilateral mitral valve leaflet engagement were associated with survival time when all causes of death were included. For the cardiac-related deaths, all the previous variables except dyspnea and EDV-I>100 mL/m(2) were significantly associated with survival time. Significant variables in multivariate analysis (all causes of death) were syncope, LA/Ao>1.7 m/s, and Emax>1.2 m/s. For cardiac-related death, the only significant variable was LA/Ao>1.7. Mild CMVI is a relatively benign condition in dogs. However, some clinical variables can identify dogs at a higher risk of death; these variables might be useful to identify individuals that need more frequent monitoring or therapeutic intervention.
Aupperle, H; März, I; Thielebein, J; Schoon, H-A
2008-01-01
The pathogenesis of chronic valvular disease (CVD) in dogs remains unclear, but activation and proliferation of valvular stromal cells (VSC) and their transdifferentiation into myofibroblast-like cells has been described. These alterations may be influenced by transforming growth factor-beta (TGF-beta), a cytokine involved in extracellular matrix (ECM) regulation and mesenchymal cell differentiation. The present study investigates immunohistochemically the expression of TGF-beta1, -beta2, -beta3 and smooth muscle alpha actin (alpha-SMA) in normal canine mitral valves (MVs) (n=10) and in the valves of dogs with mild (n=7), moderate (n=14) and severe (n=9) CVD. In normal mitral valves there was no expression of alpha-SMA but VSC displayed variable expression of TGF-beta1 (10% of VSC labelled), TGF-beta2 (1-5% labelled) and TGF-beta3 (50% labelled). In mild CVD the affected atrialis contain activated and proliferating alpha-SMA-positive VSC, which strongly expressed TGF-beta1 and -beta3, but only 10% of these cells expressed TGF-beta2. In unaffected areas of the leaflet there was selective increase in expression of TGF-beta1 and -beta3. In advanced CVD the activated subendothelial VSC strongly expressed alpha-SMA, TGF-beta1 and -beta3. Inactive VSC within the centre of the nodules had much less labelling for TGF-beta1 and -beta3. TGF-beta1 labelling was strong within the ECM. These data suggest that TGF-beta plays a role in the pathogenesis of CVD by inducing myofibroblast-like differentiation of VSC and ECM secretion. Changed haemodynamic forces and expression of matrix metalloproteinases (MMPs) may in turn regulate TGF-beta expression.
Bicuspid aortic valve hemodynamics: a fluid-structure interaction study
NASA Astrophysics Data System (ADS)
Chandra, Santanu; Seaman, Clara; Sucosky, Philippe
2011-11-01
The bicuspid aortic valve (BAV) is a congenital defect in which the aortic valve forms with two leaflets instead of three. While calcific aortic valve disease (CAVD) also develops in the normal tricuspid aortic valve (TAV), its progression in the BAV is more rapid. Although studies have suggested a mechano-potential root for the disease, the native BAV hemodynamics remains largely unknown. This study aimed at characterizing BAV hemodynamics and quantifying the degree of wall-shear stress (WSS) abnormality on BAV leaflets. Fluid-structure interaction models validated with particle-image velocimetry were designed to predict the flow and leaflet dynamics in idealized TAV and BAV anatomies. Valvular function was quantified in terms of the effective orifice area. The regional leaflet WSS was characterized in terms of oscillatory shear index, temporal shear magnitude and temporal shear gradient. The predictions indicate the intrinsic degree of stenosis of the BAV anatomy, reveal drastic differences in shear stress magnitude and pulsatility on BAV and TAV leaflets and confirm the side- and site-specificity of the leaflet WSS. Given the ability of abnormal fluid shear stress to trigger valvular inflammation, these results support the existence of a mechano-etiology of CAVD in the BAV.
Architecture of an in vivo-tissue engineered autologous conduit "Biovalve".
Hayashida, Kyoko; Kanda, Keiichi; Oie, Tomonori; Okamoto, Yoshihiro; Ishibashi-Ueda, Hatsue; Onoyama, Masaaki; Tajikawa, Tsutomu; Ohba, Kenkichi; Yaku, Hitoshi; Nakayama, Yasuhide
2008-07-01
As a practical concept of regenerative medicine, we have focused on in vivo tissue engineering utilizing the foreign body reaction. Plastic substrates for valvular leaflet organization, consisting of two pieces assembled with a small aperture were inserted into a microporous polyurethane conduit scaffold. The assembly was placed in the subcutaneous spaces of Japanese white rabbits for 1 month. After the substrates were pulled out from the harvested implant, valve leaflet-shaped membranous tissue was formed inside the tubular scaffold as designed. The valve leaflet was composed of the same collagen-rich tissue, with the absence of any elastic fiber, as that which had ingrown or covered the scaffold. No abnormal collection or infiltration of inflammatory cells in the leaflet and the scaffold could be demonstrated. According to the immunohistochemical staining, the leaflet was comprised of numerous vimentin- or alpha-SMA-positive cells, corresponding to fibroblasts or myofibroblats, but contained no desmin-positive cells. The analysis of the video data of the valve movement showed that, in synchronization with the backward flow in the diastolic phase, the valve closed rapidly and tightly and, in the transition phase of the flow direction, the valve opened smoothly without flapping or hitting the scaffold wall. Using mold designs, consisting of two different plastic substrates and the tubular scaffold, in conjunction with "in body tissue architecture," the complex 3-dimensional autologous conduit-typed Biovalve was developed for the first time. 2007 Wiley Periodicals, Inc.
Wang, J; Chung Ann Choo, D; Zhang, X; Yang, Q; Xian, T; Lu, D; Jiang, S
2000-07-01
Spontaneous echo contrast (SEC) is a phenomenon that is commonly seen in areas of blood stasis. It is a slowly moving, cloud-like swirling pattern of "smoke" or increased echogenicity recorded on echocardiography. SEC is commonly seen in the left atrium of patients with mitral stenosis or atrial fibrillation. The presence of SEC has been shown to be a marker of increased thromboembolic risk. By using transesophageal echocardiography during percutaneous balloon mitral valvotomy (PBMV), the study investigated the relationship between SEC and varying left atrial appendage (LAA) blood flow velocity in the human heart. Thirty-five patients with rheumatic mitral stenosis underwent percutaneous balloon mitral valvotomy with intraoperative transesophageal echocardiography monitoring. We alternatively measured LAA velocities and observed the left atrium for various grades of SEC (0 = none to 4 = severe) before and after each balloon inflation. Left atrial appendage maximal ejection velocity was reduced from 35 +/- 14 to 6 +/- 2 mm/s at peak balloon inflation and increased to 40 +/- 16 mm/s after balloon deflation. In comparison with the values before balloon inflation and after balloon deflation, LAA velocities were significantly lower (p < 0.001). New or increased SEC grade was observed during 54 of 61 (88%) inflations and unchanged in 7 (12%) inflations at peak balloon inflation. Spontaneous echo contrast became lower in grade after 55 balloon deflations (90%), completely disappeared after 18 deflations (30%), and remained unchanged after 6 deflations (10%). The mean time to achieve maximal SEC grade (2.5 +/- 1.2 s) coincided with the mean time to trough LAA velocities (2.3 +/- 1.1 s) after balloon inflation. Upon deflation, the mean time to lowest SEC grade (2.9 +/- 1.8 s) coincided with mean time to achieve maximal LAA velocities (2.7 +/- 1.6 s). During balloon inflation, the severity of SEC was enhanced with corresponding reduction in LAA flow velocity. Upon balloon deflation, SEC lightens or disappears with increase in LAA flow velocity.
El-Dosouky, I
2016-12-01
Mitral valve resistance (MVR) is a hemodynamic consequence of mitral stenosis but it has no clear threshold and it has a shortage of data to be reliable. is to investigate match and mismatch between opening area and resistance especially in patients with moderate and mild mitral stenosis. This cross section case control study comprised 88 patients with moderate and mild rheumatic mitral stenosis. Transthorathic echocardiographic study estimated: mitral valve area (MVA) both by planimerty (2D) and pressure half time (PHT), mitral valve score (MVS), mean transmitral pressure gradient (MPG), diastolic filling time(DFT), left ventricular out flow tract diameter (LVOTd) and velocity time integral (LVOT vti) , the MVR was calculated as: MPG/aortic flow ratio [(LVOTd) (LVOTvti)/ DFT] in dynes.sec.cm5, NYHA function class of all patients was estimated. We classified our patients into 2 groups, group 1 (51 patients) with matched MVR and group 2 (37 patients) with unmatched MVR (unexpected high MVR in relation to valve area). Patients with moderate mitral stenosis have MVR less than 105 dynes.sec/cm5, while patient with mild mitral stenosis have MVR less than 76 dynes.sec/cm5 this is in the matched group, but there are patients with unmatched higher MVR. Group 2 compared to group 1; had higher NYHA function class (1.4±0.6 vs. 1.2±0.4, P < 0.05), MVS (8.1±1.8 vs 7±0.9, P < 0.05), MPG (11,3±3.7 vs.7.8±2.5 mmHg, P < 0.01) and higher MVR (122.37±29.87 vs. 67.18±20.12 dynes.sec/cm5 , P < 0.01), MVR showed positive correlation with MVS (r=0.5, P < 0.05), Step wise logistic regression analysis showed that MVS is the only independent predictor of the MVR severity in the mismatched (unexpected high) group , so the higher the MVS the higher the expected MVR whatever the MVA is ; (B±SE=6.997±2.826, t=2.476, 95% CI 1.241±12.752 with an odds ratio=0.412, P < 0.05). It would make much more sense to investigate match and mismatch between opening area and resistance in rheumatic mitral stenosis, the only independent predictor of mismatch is the mitral valve score. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2016. For permissions please email: Journals.permissions@oup.com.
Mitral annular calcification associated with impaired coronary microvascular function.
Bozbas, Huseyin; Pirat, Bahar; Yildirir, Aylin; Simşek, Vahide; Sade, Elif; Altin, Cihan; Muderrisoglu, Haldun
2008-05-01
Mitral annular calcification (MAC) has been shown to be associated with atherosclerosis, and is a predictor of cardiovascular events. Coronary flow reserve (CFR) determined by transthoracic echocardiography has been introduced as a reliable indicator for coronary microvascular function. In this study we sought to investigate CFR in patients with and without MAC. Seventy patients (mean age, 68.2+/-6.6 years) who were free of coronary artery disease or diabetes mellitus were involved; 35 patients with MAC constituted the experimental group while 35 patients without MAC served as controls. Using transthoracic Doppler echocardiography coronary peak flow velocities were measured at baseline and after dipyridamole infusion. CFR was calculated as the ratio of hyperemic to baseline diastolic peak flow velocities. The clinical and demographic characteristics including age, sex, and traditional coronary risk factors did not differ between the groups (P>.05). The mean value of CFR was significantly lower in participants with mitral annular calcification than it was in controls (2.25+/-0.41 vs. 2.64+/-0.57; P<.0001). Multivariable regression analysis identified MAC (beta=-0.40, P=.004), smoking (beta=-0.36, P=.007), and C-reactive protein levels (beta=-0.28, P=.04) as the independent variables significantly associated with CFR. Our results demonstrate that CFR is impaired in patients with mitral annular calcification suggesting that coronary microvascular-endothelial dysfunction, an early finding of atherosclerosis, is present in these patients.
Atrial contribution to ventricular filling in mitral stenosis.
Meisner, J S; Keren, G; Pajaro, O E; Mani, A; Strom, J A; Frater, R W; Laniado, S; Yellin, E L
1991-10-01
The importance of the contribution of atrial systole to ventricular filling in mitral stenosis is controversial. The cause of reduced cardiac output following the onset of atrial fibrillation may be due to an increased heart rate, a loss of booster pump function, or both. We studied the atrial contribution to filling under a variety of conditions by combining noninvasive studies of patients with computer modeling. Thirty patients in sinus rhythm with mild-to-severe stenosis were studied with two-dimensional and Doppler echocardiography for measurement of mitral flow velocity and mitral valve area (MVA). The mean +/- SD atrial contribution to left ventricular filling volume was 18 +/- 10% and varied inversely with mitral resistance. Patients with mild mitral stenosis (MVA, 1.8 +/- 0.7 cm2) and severe mitral stenosis (MVA, 0.9 +/- 0.2 cm2) had atrial contributions of 29 +/- 4% and 9 +/- 5%, respectively. The pathophysiological mechanisms responsible for these trends were further investigated by the computer model. In modeled severe mitral stenosis, increasing heart rate from 75 to 150 beats/min caused an increase of 5.2 mm Hg in mean left atrial pressure, whereas loss of atrial contraction at a heart rate of 150 beats/min caused only a 1.3 mm Hg increase. The atrial booster pump contributes less to ventricular filling in mitral stenosis than in the normal heart, and the loss of atrial pump function is less important than the effect of increasing heart rate as the cause of decompensation during atrial fibrillation.
Petrovskiĭ, P F; Torbina, A M; Klemborskiĭ, A A
1988-09-01
A combined analysis of ventricular contractility and intracardiac hemodynamic compensatory mechanisms was carried out, on the basis of angiocardiographic findings, in 37 patients with rheumatic mitral incompetence. Atrial fibrillation aggravates essentially the defect's hemodynamics, while added tricuspid incompetence is accompanied by a certain off-loading in the lesser circulation network. A grossly perversed phasic structure of intramyocardial stress was noted, apparently being a compensatory mechanism. Reduced specific coronary flow and diastolic perfusion gradient in intact coronary arteries are shown to be causes of clinical angina.
Kumar, Vipin; Jose, John; Jose, V Jacob
2014-01-01
62-year-old female presented with progressive dyspnea NYHA class III for six months. Echocardiography showed normal left ventricular (LV) systolic function, mild biatrial enlargement, an L wave in pulse wave Doppler at mitral inflow and in M mode echocardiography across mitral valve. Tissue Doppler imaging at medial mitral annulus showed an L' wave in mid diastole in addition to E' and A' wave. An L wave in pulse wave Doppler and M mode echocardiography represents continued pulmonary vein mid diastolic flow through the left atrium in to LV across mitral valve after early rapid filling. Presence of an L' wave in these patients associated with higher E/E' is indicative of advance diastolic dysfunction with elevated filling pressures. Copyright © 2014 Cardiological Society of India. Published by Elsevier B.V. All rights reserved.
Gripari, Paola; Mapelli, Massimo; Bellacosa, Ilaria; Piazzese, Concetta; Milo, Maria; Fusini, Laura; Muratori, Manuela; Ali, Sarah Ghulam; Tamborini, Gloria; Pepi, Mauro
2018-02-26
Successful mitral valve (MV) repair for degenerative mitral regurgitation (DMR) is mainly related to surgical expertise and MV anatomy. Although 2D echocardiography, specifically transoesophageal (TOE), provides precise information regarding MV anatomy, recent advancements in matrix technology meant a decisive step forward to the point where segmental MV analysis can be accurately performed from a noninvasive 3D transthoracic (TTE) approach. The aims of this study were: (a) to evaluate the feasibility and time required for real-time 3D TTE in a large consecutive cohort of patients with severe DMR in the assessment of MV anatomy; (b) to compare the accuracy of 3D TTE and 2D TOE versus surgical inspection in the recognition and localization of all components of the MV leaflets; (c) to establish the added diagnostic value of 3D colourDoppler examination to pure 3D morphologic evaluation. 149 consecutive patients with severe DMR underwent complete 3D TTE before surgery and 2D TOE in the operating room. Echocardiographic data obtained by the different techniques were compared with surgical inspection. 3D TTE was feasible in a relatively short time (8 ± 4 min), with good (49%) and optimal (33%) imaging quality in the majority of cases. 3D TTE had significant better overall accuracy compared to 2D TOE (93 and 91%, p < 0.05, respectively). 2D TOE was significantly more specific than 3D TTE in the identification of A3 prolapse (99 vs. 96%). The colourDoppler mode did not improve significantly the accuracy of 3D TTE, albeit it determined a better sensitivity in the detection of A2 prolapse if compared to 2D TOE (95 vs. 85%). 3D TTE with or without colourDoppler is a feasible and useful method in the analysis of MV prolapse; it allows a preoperative and noninvasive description of the pathology as accurate as the 2D TOE.
NASA Astrophysics Data System (ADS)
Saaid, Hicham; Segers, Patrick; Novara, Matteo; Claessens, Tom; Verdonck, Pascal
2018-03-01
The characterization of flow patterns in the left ventricle may help the development and interpretation of flow-based parameters of cardiac function and (patho-)physiology. Yet, in vivo visualization of highly dynamic three-dimensional flow patterns in an opaque and moving chamber is a challenging task. This has been shown in several recent multidisciplinary studies where in vivo imaging methods are often complemented by in silico solutions, or by in vitro methods. Because of its distinctive features, particle image velocimetry (PIV) has been extensively used to investigate flow dynamics in the cardiovascular field. However, full volumetric PIV data in a dynamically changing geometry such as the left ventricle remain extremely scarce, which justifies the present study. An investigation of the left ventricle flow making use of a customized cardiovascular simulator is presented; a multiplane scanning-stereoscopic PIV setup is used, which allows for the measurement of independent planes across the measurement volume. Due to the accuracy in traversing the illumination and imaging systems, the present setup allows to reconstruct the flow in a 3D volume performing only one single calibration. The effects of the orientation of a prosthetic mitral valve in anatomical and anti-anatomical configurations have been investigated during the diastolic filling time. The measurement is performed in a phase-locked manner; the mean velocity components are presented together with the vorticity and turbulent kinetic energy maps. The reconstructed 3D flow structures downstream the bileaflet mitral valve are shown, which provides additional insight of the highly three-dimensional flow.
Weinberger, J; Goldman, M
1985-01-01
Patients with symptoms of cerebral ischemia are often evaluated with non-invasive carotid artery testing. An abnormal carotid Doppler ultrasound frequency shift pattern of early systolic flutter (ESF) was demonstrated by auscultation and velocity wave form analysis in patients with normal carotid bifurcations. Ten of these patients were studied with echocardiography (echo) and eight had mitral valve prolapse (MVP). To evaluate the association between ESF and MVP, a prospective blinded study was performed, recording carotid Doppler frequency shift in 50 patients referred for routine echocardiography. A total of 18 patients had ESF: 9/12 patients with MVP by echocardiography had ESF. Nine additional patients without MVP had ESF (two with mitral regurgitation and two with redundant mitral valves). The association of ESF with MVP was significant (p less than 0.001). The findings of ESF with a normal carotid artery by non-invasive testing suggests a possible mitral valve origin for symptoms of cerebrovascular disease.
Sandoval, Elena; Singh, Steve K; Carillo, Julius A; Baldwin, Andrew C W; Ono, Masahiro; Anand, Jatin; Frazier, O H; Mallidi, Hari R
2017-10-01
Mitral regurgitation (MR) is common in patients with end-stage heart failure. We assessed the effect of performing concomitant mitral valve repair during continuous-flow left ventricular assist device (CF-LVAD) implantation in patients with severe preoperative MR. We performed a single-centre, retrospective review of all patients who underwent CF-LVAD implantation between December 1999 and December 2013 (n = 469). Patients with severe preoperative MR (n = 78) were identified and then stratified according to whether they underwent concomitant valve repair. Univariate and survival analyses were performed, and multivariable regression was used to determine predictors of survival. Of the 78 patients with severe MR, 21 underwent valve repair at the time of CF-LVAD implantation (repair group) and 57 did not (non-repair group). A comparison of the 2 groups showed significant differences between groups: INTERMACS I 16.985 vs 9.52%, (P = 0.039), cardiopulmonary bypass time 82.09 vs 109.4 min (P = 0.0042) and the use of HeartMate II 63.16 vs 100% (P = 0.001). Survival analysis suggested trends towards improved survival and a lower incidence of heart failure-related readmissions in the repair group. Multivariable regression analysis showed no significant independent predictors of survival (mitral valve repair: odds ratio 0.4, 95% confidence interval 0.8-1.5; P = 0.2). Despite the lack of statistical significance, trends towards improved survival and a lower incidence of heart failure events suggest that mitral valve repair may be beneficial in patients undergoing CF-LVAD implantation. Given the known relationship between severe MR and mortality, further study is encouraged to confirm the value of mitral valve repair in these patients. © The Author 2017. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.
El-Dosouky, Ibtesam Ibrahim
2016-12-01
Mitral valve resistance (MVR) is a hemodynamic consequence of mitral stenosis (MS), but it has no clear threshold with a shortage of data to be reliable. We aimed to investigate match and mismatch between opening area and resistance especially in patients with moderate and mild MS. This study comprised 88 patients with moderate and mild rheumatic MS. Transthoracic echocardiographic study estimated the following: mitral valve area (MVA) by both planimetry (2D) and pressure half-time (PHT), mitral valve score (MVS), mean transmitral pressure gradient (MPG), diastolic filling time (DFT), left ventricular out flow tract diameter (LVOTd) and velocity-time integral (LVOTvti), and MVR = MPG/aortic flow ratio [(LVOTd) (LVOTvti)/DFT] in dynes·s/cm 5 . Patients were classified into two groups: group 1 (51 patients) with matched MVR and group 2 (37 patients) with mismatched higher MVR. In the matched group, moderate MS showed MVR <105 dynes·s/cm 5 and <76dynes·s/cm 5 with mild MS. Group 2 compared to group 1 had higher NYHA class (1.4±0.6 vs 1.2±0.4, P<.05) and higher MVS (8.1±1.8 vs 7±0.9, P<.05). MVR showed positive correlation with MVS (r=.5, P<.05), and logistic regression analysis showed that MVS is the only independent predictor of the MVR severity in the mismatched group (i.e., with higher MVR compared to the ROC analysis results) (B±SE=6.997±2.826, t=2.476, 95% CI 1.241±12.752 with an odds ratio=0.412, P<.05). On investigating match and mismatch between opening area and resistance, the only independent predictor of mismatch is the mitral valve score. © 2016, Wiley Periodicals, Inc.
Effect of the prosthetic mitral valve on vortex dynamics and turbulence of the left ventricular flow
NASA Astrophysics Data System (ADS)
Querzoli, G.; Fortini, S.; Cenedese, A.
2010-04-01
Mechanical heart valves implanted in mitral position have a great effect on the ventricular flow. Changes include alteration of the dynamics of the vortical structures generated during the diastole and the onset of turbulence, possibly affecting the efficiency of the heart pump or causing blood cell damage. Modifications to the hemodynamics in the left ventricle, when the inflow through the mitral orifice is altered, were investigated in vitro using a silicone rubber, flexible ventricle model. Velocity fields were measured in space and time by means of an image analysis technique: feature tracking. Three series of experiments were performed: one with a top hat inflow velocity profile (schematically resembling physiological conditions), and two with mechanical prosthetic valves of different design, mounted in mitral position—one monoleaflet and the other bileaflet. In each series of runs, two different cardiac outputs have been examined by changing the stroke volume. The flow was investigated in terms of phase averaged velocity field and second order moments of turbulent fluctuations. Results show that the modifications in the transmitral flow change deeply the interaction between the coherent structures generated during the first phase of the diastole and the incoming jet during the second diastolic phase. Top hat inflow gives the coherent structures which are optimal, among the compared cases, for the systolic function. The flow generated by the bileaflet valve preserves most of the beneficial features of the top hat inflow, whereas the monoleaflet valve generates a strong jet which discourages the permanence of large coherent structures at the end of the diastole. Moreover, the average shear rate magnitudes induced by the smoother flow pattern of the case of top hat inflow are nearly halved in comparison with the values measured with the mechanical valves. Finally, analysis of the turbulence statistics shows that the monoleaflet valves yield higher turbulence intensity in comparison with the bileaflet and, with top hat inflow, there is not a complete transition to turbulence.
Tricuspid regurgitation after successful mitral valve surgery
Katsi, Vasiliki; Raftopoulos, Leonidas; Aggeli, Constantina; Vlasseros, Ioannis; Felekos, Ioannis; Tousoulis, Dimitrios; Stefanadis, Christodoulos; Kallikazaros, Ioannis
2012-01-01
The tricuspid valve (TV) is inseparably connected with the mitral valve (MV) in terms of function. Any pathophysiological condition concerning the MV is potentially a threat for the normal function of the TV as well. One of the most challenging cases is functional tricuspid regurgitation (TR) after surgical MV correction. In the past, TR was considered to progressively revert with time after left-sided valve restoration. Nevertheless, more recent studies showed that TR could develop and evolve postoperatively over time, as well as being closely associated with a poorer prognosis in terms of morbidity and mortality. Pressure and volume overload are usually the underlying pathophysiological mechanisms; structural alterations, like tricuspid annulus dilatation, increased leaflet tethering and right ventricular remodelling are almost always present when regurgitation develops. The most important risk factors associated with a higher probability of late TR development involve the elderly, female gender, larger left atrial size, atrial fibrillation, right chamber dilatation, higher pulmonary artery systolic pressures, longer times from the onset of MV disease to surgery, history of rheumatic heart disease, ischaemic heart disease and prosthetic valve malfunction. The time of TR manifestation can be up to 10 years or more after an MV surgery. Echocardiography, including the novel 3D Echo techniques, is crucial in the early diagnosis and prognosis of future TV disease development. Appropriate surgical technique and timing still need to be clarified. PMID:22457188
COMPUTATIONAL MITRAL VALVE EVALUATION AND POTENTIAL CLINICAL APPLICATIONS
Chandran, Krishnan B.; Kim, Hyunggun
2014-01-01
The mitral valve (MV) apparatus consists of the two asymmetric leaflets, the saddle-shaped annulus, the chordae tendineae, and the papillary muscles. MV function over the cardiac cycle involves complex interaction between the MV apparatus components for efficient blood circulation. Common diseases of the MV include valvular stenosis, regurgitation, and prolapse. MV repair is the most popular and most reliable surgical treatment for early MV pathology. One of the unsolved problems in MV repair is to predict the optimal repair strategy for each patient. Although experimental studies have provided valuable information to improve repair techniques, computational simulations are increasingly playing an important role in understanding the complex MV dynamics, particularly with the availability of patient-specific real-time imaging modalities. This work presents a review of computational simulation studies of MV function employing finite element (FE) structural analysis and fluid-structure interaction (FSI) approach reported in the literature to date. More recent studies towards potential applications of computational simulation approaches in the assessment of valvular repair techniques and potential pre-surgical planning of repair strategies are also discussed. It is anticipated that further advancements in computational techniques combined with the next generations of clinical imaging modalities will enable physiologically more realistic simulations. Such advancement in imaging and computation will allow for patient-specific, disease-specific, and case-specific MV evaluation and virtual prediction of MV repair. PMID:25134487
Toma, Milan; Bloodworth, Charles H; Einstein, Daniel R; Pierce, Eric L; Cochran, Richard P; Yoganathan, Ajit P; Kunzelman, Karyn S
2016-12-01
The diversity of mitral valve (MV) geometries and multitude of surgical options for correction of MV diseases necessitates the use of computational modeling. Numerical simulations of the MV would allow surgeons and engineers to evaluate repairs, devices, procedures, and concepts before performing them and before moving on to more costly testing modalities. Constructing, tuning, and validating these models rely upon extensive in vitro characterization of valve structure, function, and response to change due to diseases. Micro-computed tomography ([Formula: see text]CT) allows for unmatched spatial resolution for soft tissue imaging. However, it is still technically challenging to obtain an accurate geometry of the diastolic MV. We discuss here the development of a novel technique for treating MV specimens with glutaraldehyde fixative in order to minimize geometric distortions in preparation for [Formula: see text]CT scanning. The technique provides a resulting MV geometry which is significantly more detailed in chordal structure, accurate in leaflet shape, and closer to its physiological diastolic geometry. In this paper, computational fluid-structure interaction (FSI) simulations are used to show the importance of more detailed subject-specific MV geometry with 3D chordal structure to simulate a proper closure validated against [Formula: see text]CT images of the closed valve. Two computational models, before and after use of the aforementioned technique, are used to simulate closure of the MV.
2012-01-01
Background Pulsed wave (PW) Doppler echocardiography has become a routine non invasive cardiac diagnostic tool in most species. However, evaluation of intracardiac blood flow requires reference values, which are poorly documented in goats. The aim of this study was to test the repeatability, the variability, and to establish the reference values of PW measurements in healthy adult Saanen goats. Using a standardised PW Doppler echocardiographic protocol, 10 healthy adult unsedated female Saanen goats were investigated three times at one day intervals by the same observer. Mitral, tricuspid, aortic and pulmonary flows were measured from a right parasternal view, and mitral and aortic flows were also measured from a left parasternal view. The difference between left and right side measurements and the intra-observer inter-day repeatability were tested and then the reference values of PW Doppler echocardiographic parameters in healthy adult female Saanen goats were established. Results As documented in other species, all caprine PW Doppler parameters demonstrated a poor inter-day repeatability and a moderate variability. Tricuspid and pulmonary flows were best evaluated on the right side whereas mitral and aortic flows were best obtained on the left side, and reference values are reported for healthy adult Saanen goats. Conclusions PW Doppler echocardiography allows the measurement of intracardiac blood flow indices in goats. The reference values establishment will help interpreting these indices of cardiac function in clinical cardiac cases and developing animal models for human cardiology research. PMID:23067875
Effects of heart rate on experimentally produced mitral regurgitation in dogs.
Yoran, C; Yellin, E L; Hori, M; Tsujioka, K; Laniado, S; Sonnenblick, E H; Frater, R W
1983-12-01
The effects of increasing heart rate (HR) on the hemodynamics of acute mitral regurgitation (MR) were studied in 8 open-chest dogs. Filling volume, regurgitant volume and stroke volume were calculated from electromagnetic probe measurements of mitral and aortic flows. The left atrial-left ventricular systolic pressure gradient was measured with micromanometers. The calculated effective mitral regurgitant orifice area varied from 10 to 128 mm2, with a consequent regurgitant fraction (regurgitant volume/filling volume) of 24 to 62%. After crushing the sinus node, HR was increased stepwise from 90 to 180 beats/min by atrial pacing while maintaining aortic pressure constant. With increasing HR, filling volume, stroke volume, regurgitant volume and regurgitant time decreased; total cardiac output, forward cardiac output, regurgitant output, systolic pressure gradient, regurgitant fraction and the regurgitant orifice did not change; left ventricular end-diastolic pressure decreased; and left atrial v-wave amplitude increased. These results indicate that in acute experimental MR with a wide spectrum of incompetence, the relative distribution of forward and regurgitant flows did not change with large increases in HR. At rates greater than 150 beats/min the atrial contraction occurs early and increases the amplitude of the left atrial v wave. This may contribute to the severity of pulmonary congestion in patients with MR.
Nakamura, Makoto; Muraoka, Arata; Aizawa, Kei; Akutsu, Hirohiko; Kurumisawa, Soki; Misawa, Yoshio
2015-07-01
A 77-year-old man presented with exertional dyspnea. He had undergone aortic and mitral valve replacement with tissue valves 6-years earlier. The patient's hemoglobin level was 9.8 g/dl and serum aspartate aminotransferase (70 mU/ml) and lactate dehydrogenase (1,112 mU/ml) were elevated. Echocardiography revealed stenosis of the prosthetic valve in the aortic position with peak flow velocity of 3.8 m/second and massive mitral regurgitation. The patient underwent repeat valve replacement. Pannus formation around both implanted valves was observed. The aortic valve orifice was narrowed by the pannus, and one cusp of the prosthesis in the mitral position was fixed and caused the regurgitation, but they were free from cusp laceration or calcification. The patient's postoperative course was uneventful, and he continues to do well 14 months after surgery.
Kinematic, Dynamic, and Energy Characteristics of Diastolic Flow in the Left Ventricle
Khalafvand, Seyed Saeid; Hung, Tin-Kan; Ng, Eddie Yin-Kwee; Zhong, Liang
2015-01-01
Blood flow characteristics in the normal left ventricle are studied by using the magnetic resonance imaging, the Navier-Stokes equations, and the work-energy equation. Vortices produced during the mitral valve opening and closing are modeled in a two-dimensional analysis and correlated with temporal variations of the Reynolds number and pressure drop. Low shear stress and net pressures on the mitral valve are obtained for flow acceleration and deceleration. Bernoulli energy flux delivered to blood from ventricular dilation is practically balanced by the energy influx and the rate change of kinetic energy in the ventricle. The rates of work done by shear and energy dissipation are small. The dynamic and energy characteristics of the 2D results are comparable to those of a 3D model. PMID:26417381
The Electrophysiologic Effects of Acute Mitral Regurgitation in a Canine Model.
Lawrance, Christopher P; Henn, Matthew C; Miller, Jacob R; Kopek, Michael A; Zhang, Andrew J; Schuessler, Richard B; Damiano, Ralph J
2017-04-01
Atrial fibrillation (AF) occurs in 30% of patients with mitral regurgitation referred for surgical intervention. However, the underlying mechanisms in this population are poorly understood. This study examined the effects of acute left atrial volume overload on atrial electrophysiology and the inducibility of AF. Ten canines underwent insertion of an atrioventricular shunt between the left ventricle and left atrium. Shunt and aortic flows were calculated, and the shunt was titrated to a shunt fraction to 40% to 50% of cardiac output. An epicardial plaque with 250 bipolar electrodes was used to determine activation and refractory periods. Biatrial pressures and volumes, conduction times, and atrial fibrillation inducibility were recorded. Data were collected at baseline and 20 minutes after shunt opening and closure. Mean shunt flow was 1.3 ± 0.5 L/min with a shunt fraction of 43% ± 6% simulating moderate to severe mitral regurgitation. Compared with baseline, left atrial volumes and maximum pressures increased by 27% and 29%, respectively, after shunt opening. Biatrial effective refractory periods did not change significantly after shunt opening or closure. Conduction times increased by 9% with shunt opening and returned to baseline after closure. AF duration or inducibility did not change with shunt opening. This canine model of mitral regurgitation demonstrated that acute left atrial volume overload did not increase the inducibility of atrial arrhythmias in contrast with experimental and clinical findings of chronic left atrial volume overload. This suggests that the substrates for AF in patients with mitral regurgitation are a result of chronic remodeling. Copyright © 2017 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.
Quaini, A; Canic, S; Glowinski, R; Igo, S; Hartley, C J; Zoghbi, W; Little, S
2012-01-10
This work presents a validation of a fluid-structure interaction computational model simulating the flow conditions in an in vitro mock heart chamber modeling mitral valve regurgitation during the ejection phase during which the trans-valvular pressure drop and valve displacement are not as large. The mock heart chamber was developed to study the use of 2D and 3D color Doppler techniques in imaging the clinically relevant complex intra-cardiac flow events associated with mitral regurgitation. Computational models are expected to play an important role in supporting, refining, and reinforcing the emerging 3D echocardiographic applications. We have developed a 3D computational fluid-structure interaction algorithm based on a semi-implicit, monolithic method, combined with an arbitrary Lagrangian-Eulerian approach to capture the fluid domain motion. The mock regurgitant mitral valve corresponding to an elastic plate with a geometric orifice, was modeled using 3D elasticity, while the blood flow was modeled using the 3D Navier-Stokes equations for an incompressible, viscous fluid. The two are coupled via the kinematic and dynamic conditions describing the two-way coupling. The pressure, the flow rate, and orifice plate displacement were measured and compared with numerical simulation results. In-line flow meter was used to measure the flow, pressure transducers were used to measure the pressure, and a Doppler method developed by one of the authors was used to measure the axial displacement of the orifice plate. The maximum recorded difference between experiment and numerical simulation for the flow rate was 4%, the pressure 3.6%, and for the orifice displacement 15%, showing excellent agreement between the two. Copyright © 2011 Elsevier Ltd. All rights reserved.
Volumetric velocimetry downstream of a percutaneous heart valve
NASA Astrophysics Data System (ADS)
Raghav, Vrishank; Clifford, Christopher; Midha, Prem; Okafor, Ikechukwu; Thurow, Brian; Yoganathan, Ajit; Auburn University Collaboration; Georgia Institute of Technology Collaboration
2017-11-01
Transcatheter aortic valve replacement has emerged as a safe and effective treatment for severe, symptomatic aortic stenosis in intermediate or greater surgical risk patients. However, despite excellent short-term outcomes, improved imaging and awareness has led to the identification of leaflet thrombosis on the aortic side of the prosthesis. Upon implantation, the transcatheter heart valve (THV) becomes enclosed in the native aortic valve leaflet tissue dividing the native sinus into two regions - a smaller anatomical sinus and a neo-sinus. To understand the causes for thrombosis, plenoptic Particle Image Velocimetry (PIV) is used to investigate the pulsatile three-dimensional flow in the sinus and neo-sinus region of the THV. Experiments are conducted on both a real and a transparent THV model in a pulsatile flow loop capable of replicating physiological hemodynamics. Comparisons with planar PIV results demonstrate the feasibility of using Plenoptic PIV to study heart valve fluid dynamics. Large three-dimensional regions of low velocity magnitude and low viscous shear stress were observed near the heart valve which could increase particle residence time potentially leading to formation of clots the THV leaflet.
Successful surgical treatment of mitral valve stenosis in a dog.
Borenstein, N; Daniel, P; Behr, L; Pouchelon, J L; Carbognani, D; Pierrel, A; Macabet, V; Lacheze, A; Jamin, G; Carlos, C; Chetboul, V; Laborde, F
2004-01-01
To report the successful surgical management (open mitral commissurotomy, OMC) of mitral stenosis (MS), incorporating heart-beating cardiopulmonary bypass (CPB), in a 1-year-old dog. Clinical case. One-year-old Cairn Terrier with MS. Diagnosis of MS was confirmed by means of 2-dimensional, continuous-wave and color-flow Doppler echocardiography. Surgery was performed through a left intercostal thoracotomy. CPB was initiated and the heart was kept beating. The fused commissures of the mitral valve were incised to free the cusps of the valve. Left intercostal thoracotomy allowed easy observation of the mitral orifice during heart-beating OMC. Persistent bleeding from the atriotomy site required a second surgical procedure after which the dog had an uneventful recovery. Echocardiography at 2 weeks and 1 year postoperatively indicated substantial improvement in left ventricular filling (pressure half-time=187 ms before surgery, 105 ms [2 weeks] and 110 ms [1 year] after surgery). Enlargement of the left atrium resolved; however, moderate mitral valve regurgitation was still present. MS can be successfully treated by OMC, facilitated by use of CPB. Substantial improvement in cardiac function was evident by ultrasound and Doppler examination postoperatively. OMC under heart-beating CPB should be considered for the treatment of MS in the dog.
Seitz, W; Marino, P; Zanolla, L; Buonanno, C; McIlroy, M; Spiel, M
1984-11-01
An orifice equation is developed which relates the effective mitral valve area (A), the average mitral valve pressure gradient (dP), the cardiac output (Q) and the heart frequency (f) through considerations of momentum conservation across the mitral valve. The form of the new equation is A = (4.75 X 10(-5)Qf/dP, where A, Q, and dP are expressed in cm2, ml X min-1 and mmHg respectively. Mitral valve areas computed with the new orifice formula are found to correlate with those computed by the Gorlin formula in conditions of equilibrium associated with the resting state at a level of r = 0.95, SE = 0.15 cm2, with autopsy measurements at a level of r = 0.85, SE = 0.18 cm2 and with direct anatomical measurements of excised valves at a level of r = 0.78, SE = 0.41 cm2. The results suggest that the new formula may be considered as an independent orifice equation enjoying a similar domain of validity as the Gorlin formula. The new equation offers the possibility of deriving additional useful haemodynamic relationships when used in combination with established cardiological formulas.
Murphy, I G; Collins, J; Powell, A; Markl, M; McCarthy, P; Malaisrie, S C; Carr, J C; Barker, A J
2017-08-01
Bicuspid aortic valve (BAV) disease is heterogeneous and related to valve dysfunction and aortopathy. Appropriate follow up and surveillance of patients with BAV may depend on correct phenotypic categorization. There are multiple classification schemes, however a need exists to comprehensively capture commissure fusion, leaflet asymmetry, and valve orifice orientation. Our aim was to develop a BAV classification scheme for use at MRI to ascertain the frequency of different phenotypes and the consistency of BAV classification. The BAV classification scheme builds on the Sievers surgical BAV classification, adding valve orifice orientation, partial leaflet fusion and leaflet asymmetry. A single observer successfully applied this classification to 386 of 398 Cardiac MRI studies. Repeatability of categorization was ascertained with intraobserver and interobserver kappa scores. Sensitivity and specificity of MRI findings was determined from operative reports, where available. Fusion of the right and left leaflets accounted for over half of all cases. Partial leaflet fusion was seen in 46% of patients. Good interobserver agreement was seen for orientation of the valve opening (κ = 0.90), type (κ = 0.72) and presence of partial fusion (κ = 0.83, p < 0.0001). Retrospective review of operative notes showed sensitivity and specificity for orientation (90, 93%) and for Sievers type (73, 87%). The proposed BAV classification schema was assessed by MRI for its reliability to classify valve morphology in addition to illustrating the wide heterogeneity of leaflet size, orifice orientation, and commissural fusion. The classification may be helpful in further understanding the relationship between valve morphology, flow derangement and aortopathy.
Mao, Wenbin; Li, Kewei; Sun, Wei
2016-01-01
Computational modeling of heart valve dynamics incorporating both fluid dynamics and valve structural responses has been challenging. In this study, we developed a novel fully-coupled fluid-structure interaction (FSI) model using smoothed particle hydrodynamics (SPH). A previously developed nonlinear finite element (FE) model of transcatheter aortic valves (TAV) was utilized to couple with SPH to simulate valve leaflet dynamics throughout the entire cardiac cycle. Comparative simulations were performed to investigate the impact of using FE-only models versus FSI models, as well as an isotropic versus an anisotropic leaflet material model in TAV simulations. From the results, substantial differences in leaflet kinematics between FE-only and FSI models were observed, and the FSI model could capture the realistic leaflet dynamic deformation due to its more accurate spatial and temporal loading conditions imposed on the leaflets. The stress and the strain distributions were similar between the FE and FSI simulations. However, the peak stresses were different due to the water hammer effect induced by the flow inertia in the FSI model during the closing phase, which led to 13%–28% lower peak stresses in the FE-only model compared to that of the FSI model. The simulation results also indicated that tissue anisotropy had a minor impact on hemodynamics of the valve. However, a lower tissue stiffness in the radial direction of the leaflets could reduce the leaflet peak stress caused by the water hammer effect. It is hoped that the developed FSI models can serve as an effective tool to better assess valve dynamics and optimize next generation TAV designs. PMID:27844463
Infective endocarditis of native valve after anterior nasal packing.
Jayawardena, Suriya; Eisdorfer, Jacob; Indulkar, Shalaka; Zarkaria, Muhammad
2006-01-01
We present a case report of a patient who was previously treated for spontaneous epistaxis with a petroleum jelly gauze (0.5 in x 72 in) anterior nasal packing filled with an antibiotic ointment, along with prophylactic oral clindamycin. The patient presented with fever and hypotension 3 days after the nasal packing. Her blood cultures grew methicillin-resistant Staphylococcus aureus and the transesophageal echocardiography showed vegetation on the atrial surface of the posterior mitral valve leaflet, confirming the diagnosis of bacterial endocarditis attributable to nasal packing. Several case reports discuss toxic shock syndrome after nasal packing, but none describe endocarditis of the native heart valves subsequent to anterior nasal packing. Current guidelines on endocarditis prophylaxis produced by the American Heart Association, European Cardiac Society, and British Cardiac Society together with published evidence do not recommend endocarditis prophylaxis for patients with native heart valves undergoing anterior nasal packing.
Subaortic membrane mimicking hypertrophic cardiomyopathy.
Anderson, Mark Joseph; Arruda-Olson, Adelaide; Gersh, Bernard; Geske, Jeffrey
2015-11-04
A 34-year-old man was referred for progressive angina and exertional dyspnoea refractory to medical therapy, with a presumptive diagnosis of hypertrophic cardiomyopathy (HCM). Transthoracic echocardiography (TTE) revealed asymmetric septal hypertrophy without systolic anterior motion of the mitral valve leaflet and with no dynamic left ventricular outflow tract (LVOT) obstruction. However, the LVOT velocity was elevated at rest as well as with provocation, without the characteristic late peaking obstruction seen in HCM. Focused TTE to evaluate for suspected fixed obstruction demonstrated a subaortic membrane 2.2 cm below the aortic valve. Coronary CT angiography confirmed the presence of the subaortic membrane and was negative for concomitant coronary artery disease. Surgical resection of the subaortic membrane and septal myectomy resulted in significant symptomatic relief and lower LVOT velocities on postoperative TTE. This case reminds the clinician to carefully evaluate for alternative causes of LVOT obstruction, especially subaortic membrane, as a cause of symptoms mimicking HCM. 2015 BMJ Publishing Group Ltd.
Subaortic membrane mimicking hypertrophic cardiomyopathy
Anderson, Mark Joseph; Arruda-Olson, Adelaide; Gersh, Bernard; Geske, Jeffrey
2015-01-01
A 34-year-old man was referred for progressive angina and exertional dyspnoea refractory to medical therapy, with a presumptive diagnosis of hypertrophic cardiomyopathy (HCM). Transthoracic echocardiography (TTE) revealed asymmetric septal hypertrophy without systolic anterior motion of the mitral valve leaflet and with no dynamic left ventricular outflow tract (LVOT) obstruction. However, the LVOT velocity was elevated at rest as well as with provocation, without the characteristic late peaking obstruction seen in HCM. Focused TTE to evaluate for suspected fixed obstruction demonstrated a subaortic membrane 2.2 cm below the aortic valve. Coronary CT angiography confirmed the presence of the subaortic membrane and was negative for concomitant coronary artery disease. Surgical resection of the subaortic membrane and septal myectomy resulted in significant symptomatic relief and lower LVOT velocities on postoperative TTE. This case reminds the clinician to carefully evaluate for alternative causes of LVOT obstruction, especially subaortic membrane, as a cause of symptoms mimicking HCM. PMID:26538250
Sickle cell anemia and mitral valve replacement. Case report.
Bomfim, V; Ribeiro, A; Gouvea, F; Pereira, J; Björk, V
1989-01-01
An 8-year-old black boy with sickle cell disease and severe hemolytic anemia crisis (95% hemoglobin S) also had mitral incompetence due to rheumatic valve disease. A 27 mm monostrut Björk-Shiley valve prosthesis was implanted after partial exchange transfusions had reduced the hemoglobin S to less than 40%. High-flow normothermic perfusion was used during extracorporeal circulation, with care taken to avoid hypoxia and acidosis. Postoperative recovery was uneventful.
Emmert, Maximilian Y; Weber, Benedikt; Behr, Luc; Sammut, Sebastien; Frauenfelder, Thomas; Wolint, Petra; Scherman, Jacques; Bettex, Dominique; Grünenfelder, Jürg; Falk, Volkmar; Hoerstrup, Simon P
2014-01-01
While transcatheter aortic valve implantation (TAVI) has rapidly evolved for the treatment of aortic valve disease, the currently used bioprostheses are prone to continuous calcific degeneration. Thus, autologous, cell-based, living, tissue-engineered heart valves (TEHVs) with regeneration potential have been suggested to overcome these limitations. We investigate the technical feasibility of combining the concept of TEHV with transapical implantation technology using a state-of-the-art transcatheter delivery system facilitating the exact anatomical position in the systemic circulation. Trileaflet TEHVs fabricated from biodegradable synthetic scaffolds were sewn onto self-expanding Nitinol stents seeded with autologous marrow stromal cells, crimped and transapically delivered into the orthotopic aortic valve position of adult sheep (n = 4) using the JenaValve transapical TAVI System (JenaValve, Munich, Germany). Delivery, positioning and functionality were assessed by angiography and echocardiography before the TEHV underwent post-mortem gross examination. For three-dimensional reconstruction of the stent position of the anatomically oriented system, a computed tomography analysis was performed post-mortem. Anatomically oriented, transapical delivery of marrow stromal cell-based TEHV into the orthotopic aortic valve position was successful in all animals (n = 4), with a duration from cell harvest to TEHV implantation of 101 ± 6 min. Fluoroscopy and echocardiography displayed sufficient positioning, thereby entirely excluding the native leaflets. There were no signs of coronary obstruction. All TEHV tolerated the loading pressure of the systemic circulation and no acute ruptures occurred. Animals displayed intact and mobile leaflets with an adequate functionality. The mean transvalvular gradient was 7.8 ± 0.9 mmHg, and the mean effective orifice area was 1.73 ± 0.02 cm(2). Paravalvular leakage was present in two animals, and central aortic regurgitation due to a single-leaflet prolapse was detected in two, which was primarily related to the leaflet design. No stent dislocation, migration or affection of the mitral valve was observed. For the first time, we demonstrate the technical feasibility of a transapical TEHV delivery into the aortic valve position using a commercially available and clinically applied transapical implantation system that allows for exact anatomical positioning. Our data indicate that the combination of TEHV and a state-of-the-art transapical delivery system is feasible, representing an important step towards translational, transcatheter-based TEHV concepts.
Patient-specific CFD simulation of intraventricular haemodynamics based on 3D ultrasound imaging.
Bavo, A M; Pouch, A M; Degroote, J; Vierendeels, J; Gorman, J H; Gorman, R C; Segers, P
2016-09-09
The goal of this paper is to present a computational fluid dynamic (CFD) model with moving boundaries to study the intraventricular flows in a patient-specific framework. Starting from the segmentation of real-time transesophageal echocardiographic images, a CFD model including the complete left ventricle and the moving 3D mitral valve was realized. Their motion, known as a function of time from the segmented ultrasound images, was imposed as a boundary condition in an Arbitrary Lagrangian-Eulerian framework. The model allowed for a realistic description of the displacement of the structures of interest and for an effective analysis of the intraventricular flows throughout the cardiac cycle. The model provides detailed intraventricular flow features, and highlights the importance of the 3D valve apparatus for the vortex dynamics and apical flow. The proposed method could describe the haemodynamics of the left ventricle during the cardiac cycle. The methodology might therefore be of particular importance in patient treatment planning to assess the impact of mitral valve treatment on intraventricular flow dynamics.
Loss of Axin2 results in impaired heart valve maturation and subsequent myxomatous valve disease.
Hulin, Alexia; Moore, Vicky; James, Jeanne M; Yutzey, Katherine E
2017-01-01
Myxomatous valve disease (MVD) is the most common aetiology of primary mitral regurgitation. Recent studies suggest that defects in heart valve development can lead to heart valve disease in adults. Wnt/β-catenin signalling is active during heart valve development and has been reported in human MVD. The consequences of increased Wnt/β-catenin signalling due to Axin2 deficiency in postnatal valve remodelling and pathogenesis of MVD were determined. To investigate the role of Wnt/β-catenin signalling, we analysed heart valves from mice deficient in Axin2 (KO), a negative regulator of Wnt/β-catenin signalling. Axin2 KO mice display enlarged mitral and aortic valves (AoV) after birth with increased Wnt/β-catenin signalling and cell proliferation, whereas Sox9 expression and collagen deposition are decreased. At 2 months in Axin2 KO mice, the valve extracellular matrix (ECM) is stratified but distal AoV leaflets remain thickened and develop aortic insufficiency. Progressive myxomatous degeneration is apparent at 4 months with extensive ECM remodelling and focal aggrecan-rich areas, along with increased BMP signalling. Infiltration of inflammatory cells is also observed in Axin2 KO AoV prior to ECM remodelling. Overall, these features are consistent with the progression of human MVD. Finally, Axin2 expression is decreased and Wnt/β-catenin signalling is increased in myxomatous mitral valves in a murine model of Marfan syndrome, supporting the importance of Wnt/β-catenin signalling in the development of MVD. Altogether, these data indicate that Axin2 limits Wnt/β-catenin signalling after birth and allows proper heart valve maturation. Moreover, dysregulation of Wnt/β-catenin signalling resulting from loss of Axin2 leads to progressive MVD. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2016. For Permissions, please email: journals.permissions@oup.com.
Solis, Jorge; Levine, Robert A; Johnson, Benjamin; Guerrero, J Luis; Handschumacher, Mark D; Sullivan, Suzanne; Lam, Kaitlyn; Berlin, Jason; Braithwaite, Gavin J C; Muratoglu, Orhun K; Vlahakes, Gus J; Hung, Judy
2010-10-01
Ischemic mitral regurgitation (MR) results from displacement of the papillary muscles caused by ischemic ventricular distortion. Progressive left ventricular (LV) remodeling has challenged therapy. Our hypothesis is that repositioning of the papillary muscles can be achieved by injection of polyvinyl-alcohol (PVA) hydrogel polymer into the myocardium in chronic MR despite advanced LV remodeling. Ten sheep underwent ligation of the circumflex branches to produce chronic ischemic MR over 8 weeks. PVA was injected into the myocardium underlying the infarcted papillary muscle. Two-dimensional and 3D echocardiograms and hemodynamic data were obtained before infarct (baseline), before PVA (chronic MR), and after PVA. PVA injection significantly decreased MR from moderate to severe to trace (MR vena contracta, 5.8±1.2 to1.8±1.3 mm; chronic MR to post-PVA stage; P=0.0003). This was associated with a decrease in infarcted papillary muscle-to-mitral annulus tethering distance (30.3±5.7 to 25.9±4.6 mm, P=0.02), tenting volume (1.8±0.7 to 1.4±0.5 mL, P=0.01), and leaflet closure area (8.8±1.3 cm(2)to 7.6±1.3 cm(2), P=0.004) from chronic MR to post-PVA stages. PVA was not associated with significant decreases in LV ejection fraction (41±3% versus 40±3%, P=NS), end-systolic elastance, τ (82±36 ms to 72±26, P=NS), or LV stiffness coefficient (0.05±0.04 to 0.03±0.01). PVA hydrogel injections improve coaptation and reduce remodeling in chronic MR without impairing LV systolic and diastolic function. This new approach offers a potential alternative for relieving tethering and ischemic MR by correcting papillary muscle position.
Interaction between bending and tension forces in bilayer membranes.
Secomb, T W
1988-01-01
A theoretical analysis is presented of the bending mechanics of a membrane consisting of two tightly-coupled leaflets, each of which shears and bends readily but strongly resists area changes. Structures of this type have been proposed to model biological membranes such as red blood cell membrane. It is shown that when such a membrane is bent, anisotropic components of resultant membrane tension (shear stresses) are induced, even when the tension in each leaflet is isotropic. The induced shear stresses increase as the square of the membrane curvature, and become significant for moderate curvatures (when the radius of curvature is much larger than the distance between the leaflets). This effect has implications for the analysis of shape and deformation of freely suspended and flowing red blood cells. PMID:3224154
Leibundgut, Gregor; Bernheim, Alain M
2010-04-01
The authors report the case of a 77-year-old male patient with sinus rhythm and a first-degree atrioventricular (AV) block who was referred for echocardiographic follow-up 18 years after aortic valve replacement. Left ventricular systolic function as well as the function of the aortic prosthesis was normal. Systolic mitral regurgitation (MR) was virtually absent, but isolated late diastolic MR was detected by colour Doppler imaging. Coincidental to the occurrence of diastolic MR, a second late diastolic forward flow in the pulmonary veins was observed. Therefore, during the prolonged left atrial relaxation caused by first-degree AV block, the left atrial pressure drops below the pressure in both adjacent chambers in late diastole, resulting in both late diastolic MR and a second diastolic pulmonary venous forward flow.
Pinheiro, Aurélio Carvalho; Mancuso, Frederico José Neves; Hemerly, Daniela Fernanda Alli; Kiyose, Alberto Takeshi; Campos, Orlando; de Andrade, José Lázaro; de Paola, Angelo Amato Vicenzo; de Camargo Carvalho, Antonio Carlos; Moises, Valdir Ambrosio
2007-10-01
The objective was to analyze the diagnostic value of the echocardiographic methods used for quantification of mitral regurgitation (MR) in patients with mitral valve prolapse (MVP) or rheumatic heart disease (RHD). The study included 50 patients with MR (mean age of 46.1 years; 35 women), 27 (54%) with RHD and 23 (46%) with MVP. Quantification of the mitral valve regurgitation was obtained by regurgitant orifice area (ROA) and regurgitant volume (RV) by the flow convergence region (FCR) and two-dimensional Doppler echocardiographic methods, regurgitant fraction, jet area (JA), jet area/left atrial area ratio (JA/LAA), and vena contracta (VC). Patients were clinically followed to identify cardiovascular events. Data were analyzed by Pearson, kappa, and receiver operator characteristic curve tests; significance was defined as a P value less than .05. The correlation between the two methods for ROA and RV were r = 0.79 and r = 0.80, respectively, and between these parameters and regurgitant fraction, VC, JA, and JA/LAA varied from r = 0.54 to r = 0.94 (P lt; .05); the agreement varied from kappa = 0.19 to kappa = 0.83. The highest accuracy to identify patients with clinically significant MR (events at follow-up) was 96% for ROA by FCR, 94% for VC, 86% for RV by FCR, and 86% for JA. No method showed a significant difference between MVP and RHD. The methods analyzed had significant correlation and good agreement. ROA by FCR and VC had the best performance to identify severe MR; no significant difference between MVP and RHD was observed.
Tuna cornea as biomaterial for cardiac applications.
Parravicini, Roberto; Cocconcelli, Flavio; Verona, Alessandro; Parravicini, Valeriano; Giuliani, Enrico; Barbieri, Alberto
2012-01-01
Among available biomaterials, cornea is almost completely devoid of cells and is composed only of collagen fibers oriented in an orderly pattern, which contributes to low antigenicity. Thunnus thynnus, the Atlantic bluefin tuna, is a fish with large eyes that can withstand pressures of approximately 10 MPa. We evaluated the potential of this tuna cornea in cardiac bioimplantation. Eyes from freshly caught Atlantic bluefin tuna were harvested and preserved in a fixative solution. Sterilized samples of corneal stroma were embedded in paraffin and stained with hematoxylin and eosin, and the histologic features were studied. Physical and mechanical resistance tests were performed in comparison with bovine pericardial strips and porcine mitral valves. Corneal material was implanted subcutaneously in 7 rats, to evaluate in vivo calcification rates. Mitral valves made from tuna corneal leaflets were implanted in 9 sheep. We found that the corneal tissue consisted only of parallel collagen fibers without evidence of vascular or neural structures. In tensile strength, the tuna corneal specimens were substantially similar to bovine pericardium. After 23 days, the rat-implanted samples showed no calcium or calcium salt deposition. Hydrodynamic and fatigue testing of valve prototypes yielded acceptable functional and long-term behavioral results. In the sheep, valvular performance was stable during the 180-day follow-up period, with no instrumental sign of calcification at the end of observation. We conclude that low antigenicity and favorable physical properties qualify tuna cornea as a potential material for durable bioimplantation. Further study is warranted.
Seaman, Clara; Akingba, A George; Sucosky, Philippe
2014-04-01
The bicuspid aortic valve (BAV), which forms with two leaflets instead of three as in the normal tricuspid aortic valve (TAV), is associated with a spectrum of secondary valvulopathies and aortopathies potentially triggered by hemodynamic abnormalities. While studies have demonstrated an intrinsic degree of stenosis and the existence of a skewed orifice jet in the BAV, the impact of those abnormalities on BAV hemodynamic performance and energy loss has not been examined. This steady-flow study presents the comparative in vitro assessment of the flow field and energy loss in a TAV and type-I BAV under normal and simulated calcified states. Particle-image velocimetry (PIV) measurements were performed to quantify velocity, vorticity, viscous, and Reynolds shear stress fields in normal and simulated calcified porcine TAV and BAV models at six flow rates spanning the systolic phase. The BAV model was created by suturing the two coronary leaflets of a porcine TAV. Calcification was simulated via deposition of glue beads in the base of the leaflets. Valvular performance was characterized in terms of geometric orifice area (GOA), pressure drop, effective orifice area (EOA), energy loss (EL), and energy loss index (ELI). The BAV generated an elliptical orifice and a jet skewed toward the noncoronary leaflet. In contrast, the TAV featured a circular orifice and a jet aligned along the valve long axis. While the BAV exhibited an intrinsic degree of stenosis (18% increase in maximum jet velocity and 7% decrease in EOA relative to the TAV at the maximum flow rate), it generated only a 3% increase in EL and its average ELI (2.10 cm2/m2) remained above the clinical threshold characterizing severe aortic stenosis. The presence of simulated calcific lesions normalized the alignment of the BAV jet and resulted in the loss of jet axisymmetry in the TAV. It also amplified the degree of stenosis in the TAV and BAV, as indicated by the 342% and 404% increase in EL, 70% and 51% reduction in ELI and 48% and 51% decrease in EOA, respectively, relative to the nontreated valve models at the maximum flow rate. This study indicates the ability of the BAV to function as a TAV despite its intrinsic degree of stenosis and suggests the weak dependence of pressure drop on orifice area in calcified valves.
Purser, Molly F.; Richards, Andrew L.; Cook, Richard C.; Osborne, Jason A.; Cormier, Denis R.; Buckner, Gregory D.
2013-01-01
Purpose An in vitro study using explanted porcine hearts was conducted to evaluate a novel annuloplasty band, reinforced with a two-phase, shape memory alloy, designed specifically for minimally invasive mitral valve repair. Description In its rigid (austenitic) phase, this band provides the same mechanical properties as the commercial semi-rigid bands. In its compliant (martensitic) phase, this band is flexible enough to be introduced through an 8-mm trocar and is easily manipulated within the heart. Evaluation In its rigid phase, the prototype band displayed similar mechanical properties to commercially available semi-rigid rings. Dynamic flow testing demonstrated no statistical differences in the reduction of mitral valve regurgitation. In its flexible phase, the band was easily deployed through an 8-mm trocar, robotically manipulated and sutured into place. Conclusions Experimental results suggest that the shape memory alloy reinforced band could be a viable alternative to flexible and semi-rigid bands in minimally invasive mitral valve repair. PMID:19766827
Chandra, Sonal; Salgo, Ivan S; Sugeng, Lissa; Weinert, Lynn; Settlemier, Scott H; Mor-Avi, Victor; Lang, Roberto M
2011-09-01
Mitral effective regurgitant orifice area (EROA) using the flow convergence (FC) method is used to quantify the severity of mitral regurgitation (MR). However, it is challenging and prone to interobserver variability in complex valvular pathology. We hypothesized that real-time three-dimensional (3D) transesophageal echocardiography (RT3D TEE) derived anatomic regurgitant orifice area (AROA) can be a reasonable adjunct, irrespective of valvular geometry. Our goals were to 1) to determine the regurgitant orifice morphology and distance suitable for FC measurement using 3D computational flow dynamics and finite element analysis (FEA), and (2) to measure AROA from RT3D TEE and compare it with 2D FC derived EROA measurements. We studied 61 patients. EROA was calculated from 2D TEE images using the 2D-FC technique, and AROA was obtained from zoomed RT3DE TEE acquisitions using prototype software. 3D computational fluid dynamics by FEA were applied to 3D TEE images to determine the effects of mitral valve (MV) orifice geometry on FC pattern. 3D FEA analysis revealed that a central regurgitant orifice is suitable for FC measurements at an optimal distance from the orifice but complex MV orifice resulting in eccentric jets yielded nonaxisymmetric isovelocity contours close to the orifice where the assumptions underlying FC are problematic. EROA and AROA measurements correlated well (r = 0.81) with a nonsignificant bias. However, in patients with eccentric MR, the bias was larger than in central MR. Intermeasurement variability was higher for the 2D FC technique than for RT3DE-based measurements. With its superior reproducibility, 3D analysis of the AROA is a useful alternative to quantify MR when 2D FC measurements are challenging.
Transmembrane protein diffusion in gel-supported dual-leaflet membranes.
Wang, Chih-Ying; Hill, Reghan J
2014-11-18
Tools to measure transmembrane-protein diffusion in lipid bilayer membranes have advanced in recent decades, providing a need for predictive theoretical models that account for interleaflet leaflet friction on tracer mobility. Here we address the fully three-dimensional flows driven by a (nonprotruding) transmembrane protein embedded in a dual-leaflet membrane that is supported above and below by soft porous supports (e.g., hydrogel or extracellular matrix), each of which has a prescribed permeability and solvent viscosity. For asymmetric configurations, i.e., supports with contrasting permeability, as realized for cells in contact with hydrogel scaffolds or culture media, the diffusion coefficient can reflect interleaflet friction. Reasonable approximations, for sufficiently large tracers on low-permeability supports, are furnished by a recent phenomenological theory from the literature. Interpreting literature data, albeit for hard-supported membranes, provides a theoretical basis for the phenomenological Stokes drag law as well as strengthening assertions that nonhydrodynamic interactions are important in supported bilayer systems, possibly leading to overestimates of the membrane/leaflet viscosity. Our theory provides a theoretical foundation for future experimental studies of tracer diffusion in gel-supported membranes.
Dekker, André L A J; Reesink, Koen D; van der Veen, Frederik H; van Ommen, G Vincent A; Geskes, Gijs G; Soemers, A Cecilia M; Maessen, Jos G
2003-04-01
Acute mitral regurgitation (MR) is present in 10% of patients presenting with cardiogenic shock. To stabilize these patients, intra-aortic balloon pumping (IABP) is recommended, but the mechanism of IABP support in these patients is unknown. This animal study was designed to describe the hemodynamic effect of intra-aortic balloon pumping during cardiogenic shock induced by acute MR. In eight calves, left ventricular pressure-volume loops, aortic and left atrial pressure, and aortic, carotid artery, and coronary blood flow were recorded. Acute MR (range 36%-79%) was created by placing a metal cage in the mitral valve. Hemodynamic data was obtained at control, during acute MR, and during acute MR with 1:1 IABP support. Acute MR caused a decrease in cardiac output (-32%, P = 0.018), blood pressure, and carotid artery flow, whereas left ventricular output (+127%, P = 0.018), end-diastolic volume, and left atrial pressure all significantly increased. Stroke work, ejection fraction, and coronary blood flow were not significantly changed, and no signs of ischemia were seen on the ECG. The IABP raised average cardiac output by 31% (P = 0.012) and significantly raised blood pressure and flow to the brain while decreasing systemic vascular resistance. Left ventricular function and mean coronary blood flow did not change, but diastolic coronary flow became more important as shown by the increase in diastolic fraction from 64% to 95%. (P = 0.028). Average MR dropped by 7.5% (P = 0.025). In conclusion, application of the IABP during acute MR lowers aortic impedance, resulting in less MR and more output toward the aorta without changing left ventricular function.
NASA Astrophysics Data System (ADS)
Hatoum, Hoda; Dasi, Lakshmi Prasad
2017-11-01
Understanding blood flow related adverse complications such as leaflet thrombosis post-transcatheter aortic valve implantation (TAVI) requires a deeper understanding of how patient-specific anatomic and hemodynamic factors, and relative valve positioning dictate sinus vortex flow and stasis regions. High resolution time-resolved particle image velocimetry measurements were conducted in compliant and transparent 3D printed patient-specific models of stenotic bicuspid and tricuspid aortic valve roots from patients who underwent TAVI. Using Lagrangian particle tracking analysis of sinus vortex flows and probability distributions of residence time and blood damage indices we show that (a) patient specific modeling provides a more realistic assessment of TAVI flows, (b) TAVI deployment alters sinus flow patterns by significantly decreasing sinus velocity and vorticity, and (c) relative valve positioning can control critical vortex structures that may explain preferential leaflet thrombosis corresponding to separated flow recirculation, secondary to valve jet vectoring relative to the aorta axis. This work provides new methods and understanding of the spatio-temporal aortic sinus vortex dynamics in post TAVI pathology. This study was supported by the Ohio State University DHLRI Trifit Challenge award.
Diana, Alessia; Guglielmini, Carlo; Pivetta, Mauro; Sanacore, Antonina; Di Tommaso, Morena; Lord, Peter F; Cipone, Mario
2009-11-01
To evaluate radiographic distribution of pulmonary edema (PE) in dogs with mitral regurgitation (MR) and investigate the association between location of radiographic findings and direction of the mitral regurgitant jet (MRJ). Retrospective case series. 61 dogs with cardiogenic PE and MR resulting from mitral valve disease (MVD; 51 dogs), dilated cardiomyopathy (9), and hypertrophic cardiomyopathy (1). Thoracic radiographs of dogs with Doppler echocardiographic evidence of MR were reviewed for location (diffuse, perihilar, or focal) of PE. Also, direction (central or eccentric) of the MRJ, as evaluated by Doppler color flow mapping (DCFM), and distribution (symmetric or asymmetric) of radiographic findings were evaluated. Diffuse, perihilar, and focal increases in pulmonary opacity were observed in 11 (18.0%), 7 (11.5%), and 43 (70.5%) of 61 dogs, respectively. Radiographic evidence of asymmetric PE in a single lung lobe or 2 ipsilateral lobes was found in 21 dogs, with involvement of only the right caudal lung lobe in 17 dogs. Doppler color flow mapping of the MRJ was available for 46 dogs. Of 31 dogs with a central MRJ, 28 had radiographic findings indicative of symmetric PE. Of 15 dogs with eccentric MRJ, 11 had radiographic evidence of asymmetric PE, and all of these dogs had MVD. In dogs with cardiogenic PE, a symmetric radiographic distribution of increased pulmonary opacity was predominantly associated with a central MRJ, whereas an asymmetric radiographic distribution was usually associated with eccentric MRJ, especially in dogs with MVD.
klf2a couples mechanotransduction and zebrafish valve morphogenesis through fibronectin synthesis
Steed, Emily; Faggianelli, Nathalie; Roth, Stéphane; Ramspacher, Caroline; Concordet, Jean-Paul; Vermot, Julien
2016-01-01
The heartbeat and blood flow signal to endocardial cell progenitors through mechanosensitive proteins that modulate the genetic program controlling heart valve morphogenesis. To date, the mechanism by which mechanical forces coordinate tissue morphogenesis is poorly understood. Here we use high-resolution imaging to uncover the coordinated cell behaviours leading to heart valve formation. We find that heart valves originate from progenitors located in the ventricle and atrium that generate the valve leaflets through a coordinated set of endocardial tissue movements. Gene profiling analyses and live imaging reveal that this reorganization is dependent on extracellular matrix proteins, in particular on the expression of fibronectin1b. We show that blood flow and klf2a, a major endocardial flow-responsive gene, control these cell behaviours and fibronectin1b synthesis. Our results uncover a unique multicellular layering process leading to leaflet formation and demonstrate that endocardial mechanotransduction and valve morphogenesis are coupled via cellular rearrangements mediated by fibronectin synthesis. PMID:27221222
Lo, Chi-Wen; Liu, Jia-Shing; Li, Chi-Pei; Lu, Po-Chien; Hwang, Ned H
2008-01-01
Accelerated testing provides a substantial amount of data on mechanical heart valve durability in a short period of time, but such conditions may not accurately reflect in vivo performance. Cavitation, which occurs during mechanical heart valve closure when local flow field pressure decreases below vapor pressure, is thought to play a role in valve damage under accelerated conditions. The underlying flow dynamics and mechanisms behind cavitation bubble formation are poorly understood. Under physiologic conditions, random perivalvular cavitation is difficult to capture. We applied accelerated testing at a pulse rate of 600 bpm and transvalvular pressure of 120 mm Hg, with synchronized videographs and high-frequency pressure measurements, to study cavitation of the Medtronic Hall Standard (MHS), Medtronic Hall D-16 (MHD), and Omni Carbon (OC) valves. Results showed cavitation bubbles between 340 and 360 micros after leaflet/housing impact of the MHS, MHD, and OC valves, intensified by significant leaflet rebound. Squeeze flow, Venturi, and water hammer effects each contributed to cavitation, depending on valve design.
Flow in the left anterior descending coronary artery in patients with migraine headache.
Aslan, Gamze; Sade, Leyla Elif; Yetis, Begum; Bozbas, Huseyin; Eroglu, Serpil; Pirat, Bahar; Can, Ufuk; Muderrisoglu, Haldun
2013-11-15
Migraine is a common neurovascular disorder characterized by attacks of severe headache, autonomic and neurologic symptoms. Migraine can affect many systems in the body, yet its effects on cardiovascular system are unclear. We hypothesized that migraine and coronary microvascular angina may be manifestations of a common systemic microvascular dysfunction and clinically associated. Forty patients with migraine and 35 healthy volunteers were included into the study. Using transthoracic Doppler echocardiography, coronary flow was visualized in the middle or distal part of the left anterior descending artery. Coronary diastolic peak flow velocities were measured with pulse wave Doppler at baseline and after dipyridamole infusion (0.56 mg/kg/4 min). Coronary flow reserve of <2 was considered normal. In addition, thorough 2-dimensional and Doppler echocardiographic examinations were also performed. Fifty-two women and 23 men were included. Coronary flow reserve was significantly lesser in the migraine group than in the control group (1.99 ± 0.3 vs 2.90 ± 0.5, p <0.05). In addition, mitral annular velocities were lower and the ratio of early mitral inflow velocity to early mitral annular velocity (E/E' lateral and E/E' septal) was higher in migraineurs than in the control group (p <0.05 for all), indicating diastolic function abnormalities in the migraine group. In conclusion, these findings suggest that there is an association between coronary microvascular dysfunction and migraine independently of the metabolic state of the patients. A common pathophysiologic pathway of impaired endothelial vasodilatation, vasomotor dysfunction, and increased systemic inflammatory factors may play a role in these 2 clinical conditions and could be the underlying cause of subclinical systolic and diastolic left ventricular dysfunction in migraineurs. Copyright © 2013 Elsevier Inc. All rights reserved.
Jang, Jeong Yoon; Kang, Joon-Won; Yang, Dong Hyun; Lee, Sahmin; Sun, Byung Joo; Kim, Dae-Hee; Song, Jong-Min; Kang, Duk-Hyun; Song, Jae-Kwan
2018-03-01
Overestimation of the severity of mitral regurgitation (MR) by the proximal isovelocity surface area (PISA) method has been reported. We sought to test whether angle correction (AC) of the constrained flow field is helpful to eliminate overestimation in patients with eccentric MR. In a total of 33 patients with MR due to prolapse or flail mitral valve, both echocardiography and cardiac magnetic resonance image (CMR) were performed to calculate regurgitant volume (RV). In addition to RV by conventional PISA (RV PISA ), convergence angle (α) was measured from 2-dimensional Doppler color flow maps and RV was corrected by multiplying by α/180 (RV AC ). RV measured by CMR (RV CMR ) was used as a gold standard, which was calculated by the difference between total stroke volume measured by planimetry of the short axis slices and aortic stroke volume by phase-contrast image. The correlation between RV CMR and RV by echocardiography was modest [RV CMR vs. RV PISA (r = 0.712, p < 0.001) and RV CMR vs. RV AC (r = 0.766, p < 0.001)]. However, RV PISA showed significant overestimation (RV PISA - RV CMR = 50.6 ± 40.6 mL vs. RV AC - RV CMR = 7.7 ± 23.4 mL, p < 0.001). The overall accuracy of RV PISA for diagnosis of severe MR, defined as RV ≥ 60 mL, was 57.6% (19/33), whereas it increased to 84.8% (28/33) by using RV AC ( p = 0.028). Conventional PISA method tends to provide falsely large RV in patients with eccentric MR and a simple geometric AC of the proximal constraint flow largely eliminates overestimation.
NASA Astrophysics Data System (ADS)
Miramontes, Marissa; Rossini, Lorenzo; Braun, Oscar; Brambatti, Michela; Almeida, Shone; Mizeracki, Adam; Martinez-Legazpi, Pablo; Benito, Yolanda; Bermejo, Javier; Kahn, Andrew; Adler, Eric; Del Álamo, Juan C.
2017-11-01
In heart failure patients, left ventricular (LV) assist devices (LVADs) decrease mortality and improve quality of life. We hypothesize echo color Doppler velocimetry (echo-CDV), an echocardiographic flow mapping modality, can non-invasively characterize the effect of LVAD support, optimize the device, thereby decreasing the stoke rate present in these patients. We used echo-CDV to image LV flow at baseline LVAD speed and during a ramp test in LVAD patients (Heartmate II, N =10). We tracked diastolic vortices and mapped blood stasis and cumulative shear. Compared to dilated cardiomyopathy (DCM) patients without LVADs, the flow had a less prominent diastolic vortex ring, and transited directly from mitral valve to cannula. Residence time and shear were significantly lower compared to healthy controls and DCMs. Aortic regurgitation and a large LV vortex presence or a direct mitral jet towards the cannula affected blood stasis region location and size. Flow patterns, residence time and shear depended on LV geometry, valve function and LVAD speed in a patient specific manner. This new methodology could be used with standard echo, hemodynamics and clinical information to find the flow optimizing LAVD setting minimizing stasis for each patient.
Dynamic cycling in atrial size and flow during obstructive apnoea.
Pressman, Gregg S; Cepeda-Valery, Beatriz; Codolosa, Nicolas; Orban, Marek; Samuel, Solomon P; Somers, Virend K
2016-01-01
Obstructive sleep apnoea (OSA) is strongly associated with cardiovascular disease. However, acute cardiovascular effects of repetitive airway obstruction are poorly understood. While past research used a sustained Mueller manoeuver to simulate OSA we employed a series of gasping efforts to better simulate true obstructive apnoeas. This report describes acute changes in cardiac anatomy and flow related to sudden changes in intrathoracic pressure. 26 healthy, normal weight participants performed 5-6 gasping efforts (target intrathoracic pressure -40 mm Hg) while undergoing Doppler echocardiography. 14 participants had sufficient echocardiographic images to allow comparison of atrial areas during the manoeuver with baseline measurements. Mitral and tricuspid E-wave and A-wave velocities postmanoeuver were compared with baseline in all participants. Average atrial areas changed little during the manoeuver, but variance in both atrial areas was significantly greater than baseline. Further, an inverse relationship was noted with left atrial collapse and right atrial enlargement at onset of inspiratory effort. Significant inverse changes were noted in Doppler flow when comparing the first beat postmanoeuver (pMM1) with baseline. Mitral E-wave velocity increased 9.1 cm/s while tricuspid E-wave velocity decreased 7.0 cm/s; by the eighth beat postmanoeuver (pMM8) values were not different from baseline. Mitral and tricuspid A-wave velocities were not different from baseline at pMM1, but both were significantly higher by pMM8. Repetitive obstructive apnoeas produce dynamic, inverse changes in atrial size and Doppler flow across the atrioventricular valves. These observations have important implications for understanding the pathophysiology of OSA.
Kocuria kristinae endocarditis related to diabetic foot infection.
Citro, Rodolfo; Prota, Costantina; Greco, Luigi; Mirra, Marco; Masullo, Alfonso; Silverio, Angelo; Bossone, Eduardo; Piscione, Federico
2013-06-01
We report an unusual case of endocarditis occurring in a 74-year-old man with a history of systemic hypertension, diabetes mellitus and minor amputation for left forefoot ulcer. The patient was hospitalized for vacuum-assisted closure therapy to aid in wound healing. After the first treatment session, the patient reported abdominal pain with haematemesis and fever (40 °C). Owing to persistent fever, three blood cultures were performed, all positive for Kocuria kristinae. The identification was based on biochemical tests and automated systems. The speciation of the micro-organism was achieved with MALDI-TOF and then confirmed by 16S rRNA gene sequencing. Transthoracic echocardiographic examination showed the presence of a large vegetation (38×20 mm) on the posterior mitral leaflet and moderate mitral regurgitation. Since there are no current guidelines for the treatment of K. kristinae endocarditis, empiric antibiotic therapy with intravenous sulbactam/ampicillin (1.5 g twice daily) and gentamicin (6 mg kg(-1) per day) was started. After 7 days of hospitalization, the patient's condition suddenly worsened because of the occurrence of haemorrhagic stroke. Despite inotropic support and rifampicin infusion, the haemodynamic status progressively deteriorated. After an initial improvement, he worsened again, becoming stuporous, hypotensive and dyspnoeic. In the following days, the patient developed compartment syndrome resulting in right foot ischaemia. Unfortunately, 25 days after hospitalization, the patient died of multiple organ failure from overwhelming sepsis. To the best of our knowledge, this is the first case of K. kristinae endocarditis on a native valve that is not related to a central venous catheter but associated with diabetic foot infection.
Lurz, Philipp; Besler, Christian; Noack, Thilo; Forner, Anna Flo; Bevilacqua, Carmine; Seeburger, Joerg; Rommel, Karl-Philipp; Blazek, Stephan; Hartung, Philipp; Zimmer, Marion; Mohr, Friedrich; Schuler, Gerhard; Linke, Axel; Ender, Joerg; Thiele, Holger
2018-04-10
To analyze the feasibility, safety and effectiveness of Tricuspid valve (TV) repair using the MitraClip system in patients at high surgical risk. Forty-two elderly high-risk patients (76.8±7.3 years, EuroScore II 8.1±5.7) with isolated TR or combined TR and mitral regurgitation (MR) underwent edge-to-edge repair of the TV (n=11) or combined edge-to-edge repair of the TV and mitral valve (n=31). Procedural details, success rate, impact on TR severity and predictors for success at 30 day follow-up were analyzed. Successful edge-to-edge repair of TR was achieved in 35/42 patients (83%, 68 clips in total, 94% in the anteroseptal commissure, 6% in the posteroseptal commissure). In 5 patients, grasping of the leaflets was impossible and two patients had no decrease in TR after clipping. In those with procedural success, clipping of the TV led to a reduction in effective regurgitant orifice area by -62,5 % (from 0.8±0.4 to 0.3±0.2 cm2; p<0.0001). In both, patients with isolated TV and combined procedures, 6 minute walking distance improved (from 285±118 to 344±81 and 225±113 to 261±130 m, p=0.02 and 0.03, respectively). Predominant anteroseptal or central TR was identified as predictor of procedural success (p=0.025). Edge-to-edge repair of the TV is feasible with promising reduction in TR, which could result in clinical improvement.
Chai, Norin; Petit, Thierry; Kohl, Muriel; Bourgeois, Aude; Gouni, Vassiliki; Trehiou-Sechi, Emilie; Misbach, Charlotte; Petit, Amandine; Damoiseaux, Cécile; Garrigou, Audrey; Guepin, Raphaëlle; Pouchelon, Jean Louis; Chetboul, Valérie
2015-09-01
The purpose of this prospective study was to evaluate transthoracic echocardiograms from clinically healthy large felids for the presence of valvular regurgitations (VR). Physiologic VR commonly occur in normal dogs and cats, but the percentage of large felids with VR has not been previously reported. During a 5-yr study period (2008-2013), 28 healthy animals were evaluated under general anesthesia: 16 cheetahs (Acinonyx jubatus soemmeringuii) with a mean age of 1.5±0.8 yr (range 0.7-3.5 yr), 5 Amur leopards (Panthera pardus orientalis), 1 snow leopard (Uncia uncia), and 6 clouded leopards (Neofelis nebulosa). For this study, all the leopards were gathered in one so-called "leopards group" with a mean age of 2.8±3.4 yr (range 0.3-10.7 yr). All valves observed in each view were examined for evidence of regurgitant jets and turbulent blood flow using the color-flow Doppler mode. Valves were also examined for structural changes. Mitral valve and aortic cusp abnormalities were considered to be of congenital origin. Mitral valve lesions led to mitral insufficiency in all the felids. Aortic cusp abnormalities led to aortic regurgitation in 94% of the cheetahs and 67% of the leopards. Leopards showed a predominance of early systolic mitral regurgitations, whereas all the mitral regurgitation jets in cheetahs were holosystolic. Tricuspid regurgitation was found in 81% of the cheetahs and in 50% of the leopards, whereas pulmonic regurgitation was detected in 44% of the cheetahs and 33% of the leopards. Interestingly, none of these tricuspid and pulmonic regurgitations were associated with two-dimensional structural valve abnormalities, thus suggesting their physiologic origin, as described in humans, cats, and dogs. In conclusion, subclinical valvular diseases are common in apparently healthy leopards and cheetahs. Longitudinal follow-up of affected animals is therefore required to assess their clinical outcome.
Izzo, Richard L; O'Hara, Ryan P; Iyer, Vijay; Hansen, Rose; Meess, Karen M; Nagesh, S V Setlur; Rudin, Stephen; Siddiqui, Adnan H; Springer, Michael; Ionita, Ciprian N
2016-02-27
3D printing an anatomically accurate, functional flow loop phantom of a patient's cardiac vasculature was used to assist in the surgical planning of one of the first native transcatheter mitral valve replacement (TMVR) procedures. CTA scans were acquired from a patient about to undergo the first minimally-invasive native TMVR procedure at the Gates Vascular Institute in Buffalo, NY. A python scripting library, the Vascular Modeling Toolkit (VMTK), was used to segment the 3D geometry of the patient's cardiac chambers and mitral valve with severe stenosis, calcific in nature. A stereolithographic (STL) mesh was generated and AutoDesk Meshmixer was used to transform the vascular surface into a functioning closed flow loop. A Stratasys Objet 500 Connex3 multi-material printer was used to fabricate the phantom with distinguishable material features of the vasculature and calcified valve. The interventional team performed a mock procedure on the phantom, embedding valve cages in the model and imaging the phantom with a Toshiba Infinix INFX-8000V 5-axis C-arm bi-Plane angiography system. After performing the mock-procedure on the cardiac phantom, the cardiologists optimized their transapical surgical approach. The mitral valve stenosis and calcification were clearly visible. The phantom was used to inform the sizing of the valve to be implanted. With advances in image processing and 3D printing technology, it is possible to create realistic patient-specific phantoms which can act as a guide for the interventional team. Using 3D printed phantoms as a valve sizing method shows potential as a more informative technique than typical CTA reconstruction alone.
NASA Technical Reports Server (NTRS)
Greenberg, N. L.; Castro, P. L.; Drinko, J.; Garcia, M. J.; Thomas, J. D.
2000-01-01
Color M-mode echocardiography has recently been utilized to describe diastolic flow propagation velocity (Vp) in the left ventricle. While increasing temporal resolution from 15 to 200 Hz, this M-mode technique requires the user to select a single scanline, potentially limiting quantification of Vp due to the complex three-dimensional inflow pattern. We previously performed computational fluid dynamics simulations to demonstrate the insignificance of the scanline orientation, however geometric complexity was limited. The purpose of this study was to utilize high frame-rate 2D color Doppler images to investigate the importance of scanline selection in patients for the quantification of Vp. 2D color Doppler images were digitally acquired at 50 frames/s in 6 subjects from the apical 4-chamber window (System 5, GE/Vingmed, Milwaukee, WI). Vp was determined for a set of scanlines positioned through 5 locations across the mitral annulus (from the anterior to posterior mitral annulus). An analysis of variance was performed to examine the differences in Vp as a function of scanline position. Vp was not effected by scanline position in sampled locations from the center of the mitral valve towards the posterior annulus. Although not statistically significant, there was a trend to slower propagation velocities on the anterior side of the valve (60.8 +/- 16.7 vs. 54.4 +/- 13.6 cm/s). This study clinically validates our previous numerical experiment showing that Vp is insensitive to small perturbations of the scanline through the mitral valve. However, further investigation is necessary to examine the impact of ventricular geometry in pathologies including dilated cardiomyopathy.
NASA Astrophysics Data System (ADS)
Izzo, Richard L.; O'Hara, Ryan P.; Iyer, Vijay; Hansen, Rose; Meess, Karen M.; Nagesh, S. V. Setlur; Rudin, Stephen; Siddiqui, Adnan H.; Springer, Michael; Ionita, Ciprian N.
2016-03-01
3D printing an anatomically accurate, functional flow loop phantom of a patient's cardiac vasculature was used to assist in the surgical planning of one of the first native transcatheter mitral valve replacement (TMVR) procedures. CTA scans were acquired from a patient about to undergo the first minimally-invasive native TMVR procedure at the Gates Vascular Institute in Buffalo, NY. A python scripting library, the Vascular Modeling Toolkit (VMTK), was used to segment the 3D geometry of the patient's cardiac chambers and mitral valve with severe stenosis, calcific in nature. A stereolithographic (STL) mesh was generated and AutoDesk Meshmixer was used to transform the vascular surface into a functioning closed flow loop. A Stratasys Objet 500 Connex3 multi-material printer was used to fabricate the phantom with distinguishable material features of the vasculature and calcified valve. The interventional team performed a mock procedure on the phantom, embedding valve cages in the model and imaging the phantom with a Toshiba Infinix INFX-8000V 5-axis Carm bi-Plane angiography system. Results: After performing the mock-procedure on the cardiac phantom, the cardiologists optimized their transapical surgical approach. The mitral valve stenosis and calcification were clearly visible. The phantom was used to inform the sizing of the valve to be implanted. Conclusion: With advances in image processing and 3D printing technology, it is possible to create realistic patientspecific phantoms which can act as a guide for the interventional team. Using 3D printed phantoms as a valve sizing method shows potential as a more informative technique than typical CTA reconstruction alone.
A D-Shaped Bileaflet Bioprosthesis which Replicates Physiological Left Ventricular Flow Patterns
Tan, Sean Guo-Dong; Kim, Sangho; Hon, Jimmy Kim Fatt; Leo, Hwa Liang
2016-01-01
Prior studies have shown that in a healthy heart, there exist a large asymmetric vortex structure that aids in establishing a steady flow field in the left ventricle. However, the implantation of existing artificial heart valves at the mitral position is found to have a negative effect on this physiological flow pattern. In light of this, a novel D-shaped bileaflet porcine bioprosthesis (GD valve) has been designed based on the native geometry mitral valve, with the hypothesis that biomimicry in valve design can restore physiological left ventricle flow patterns after valve implantation. An in-vitro experiment using two dimensional particle velocimetry imaging was carried out to determine the hemodynamic performance of the new bileaflet design and then compared to that of the well-established St. Jude Epic valve which functioned as a control in the experiment. Although both valves were found to have similar Reynolds shear stress and Turbulent Kinetic Energy levels, the novel D-shape valve was found to have lower turbulence intensity and greater mean kinetic energy conservation. PMID:27258099
The Double-Orifice Valve Technique to Treat Tricuspid Valve Incompetence.
Hetzer, Roland; Javier, Mariano; Delmo Walter, Eva Maria
2016-01-01
A straightforward tricuspid valve (TV) repair technique was used to treat either moderate or severe functional (normal valve with dilated annulus) or for primary/organic (Ebstein's anomaly, leaflet retraction/tethering and chordal malposition/tethering, with annular dilatation) TV incompetence, and its long-term outcome assessed. A double-orifice valve technique was employed in 91 patients (mean age 52.6 ± 23.2 years; median age 56 years; range: 0.6-82 years) with severe tricuspid regurgitation. Among the patients, three had post-transplant iatrogenic chordal rupture, five had infective endocarditis, 11 had mitral valve insufficiency, 23 had Ebstein's anomaly, and 47 had isolated severe TV incompetence. The basic principle was to reduce the distance between the coapting leaflets, wherein the most mobile leaflet could coapt to the opposite leaflet, by creating two orifices, ensuring valve competence. The TV repair was performed through a median sternotomy or right anterior thoracotomy in the fifth intercostal space under cardiopulmonary bypass. The degree and extent of creating a double-valve orifice was determined by considering the minimal body surface area (BSA)-related acceptable TV diameter. Repair was accomplished by passing pledgeted mattress sutures from the middle of the true anterior annulus to a spot on the opposite septal annulus, located approximately two-thirds of the length of the septal annulus to avoid injury to the bundle of His. The annular apposition divides the TV into a larger anterior and a smaller posterior orifices, enabling valve closure, on both sides. In adults, the diameter of the anterior valve orifice should be 23-25 mm, and the posterior orifice 15-18 mm; thus, the total valve orifice area is 5-6 cm2. In children, the total valve orifice should be a standard deviation of 1.7 mm for a BSA of <1. 0m2, and 1.5 mm for a BSA of >1.0m2. During a mean follow up of 8.7 ± 1.34 years (median 10 years; range: 1.5-25.9 years) there have been no reoperations for TV insufficiency or stenosis. Reoperations on three patients (mean age 42.5 ± 8.7 years) were indicated for aortic valve replacement at 14 months postoperatively (n = 1) and for assist device implantation (n = 2) who eventually underwent heart transplant at 18 and 20 months after TV repair, respectively. The cumulative 12-year survival rate was 86.9%. This double-orifice technique is technically a straightforward repair to abolish TV incompetence with highly satisfactory results, particularly in patients with severe annular dilatation or with leaflet and chordal tethering. In the present series, the technique provided no pitfalls (if the location of the conduction system was borne in mind), requiring only a gentle placement of sutures. It also led to no residual regurgitation or reoperation during the follow up period.
Thavendiranathan, Paaladinesh; Verhaert, David; Walls, Michael C.; Bender, Jacob A.; Rajagopalan, Sanjay; Chung, Yiu-Cho; Simonetti, Orlando P.; Raman, Subha V.
2015-01-01
OBJECTIVES The purpose of this study was to evaluate the ability of a novel cardiac magnetic resonance (CMR) real-time phase contrast (RT-PC) flow measurement technique to reveal the discordant respirophasic changes in mitral and tricuspid valve in flow indicative of the abnormal hemodynamics seen in constrictive pericarditis (CP). BACKGROUND Definitive diagnosis of CP requires identification of constrictive hemodynamics with or without pericardial thickening. CMR to date has primarily provided morphological assessment of the pericardium. METHODS Sixteen patients (age 57 ± 13 years) undergoing CMR to assess known or suspected CP and 10 controls underwent RT-PC that acquired simultaneous mitral valve and tricuspid valve inflow velocities over 10 s of unrestricted breathing. The diagnosis of CP was confirmed via clinical history, diagnostic imaging, cardiac catheterization, intraoperative findings, and histopathology. RESULTS Ten patients had CP, all with increased pericardial thickness (6.2 ± 1.0 mm). RT-PC imaging demonstrated discordant respirophasic changes in atrioventricular valve inflow velocities in all CP patients, with mean ± SD mitral valve and tricuspid valve inflow velocity variation of 46 ± 20% and 60 ± 15%, respectively, compared with 16 ± 8% and 24 ± 11% in patients without CP (p < 0.004 vs. patients with CP for both) and 17 ± 5% and 31 ± 13% in controls (p < 0.001 vs. patients with CP for both). There was no difference in atrioventricular valve inflow velocity variation between patients without CP compared with controls (p > 0.3 for both). Respiratory variation exceeding 25% across the mitral valve yielded a sensitivity of 100%, a specificity of 100%, and an area under the receiver-operating characteristic curve of 1.0 to detect CP physiology. Using a cutoff of 45%, variation of transtricuspid valve velocity had a sensitivity of 90%, a specificity of 88%, and an area under the receiver-operating characteristic curve of 0.98. CONCLUSIONS Accentuated and discordant respirophasic changes in mitral valve and tricuspid valve inflow velocities characteristic of CP can be identified noninvasively with RT-PC CMR. When incorporated into existing CMR protocols for imaging pericardial morphology, RT-PC CMR provides important hemodynamic evidence with which to make a definite diagnosis of CP. PMID:22239888
A Quantitative Study of Simulated Bicuspid Aortic Valves
NASA Astrophysics Data System (ADS)
Szeto, Kai; Nguyen, Tran; Rodriguez, Javier; Pastuszko, Peter; Nigam, Vishal; Lasheras, Juan
2010-11-01
Previous studies have shown that congentially bicuspid aortic valves develop degenerative diseases earlier than the standard trileaflet, but the causes are not well understood. It has been hypothesized that the asymmetrical flow patterns and turbulence found in the bileaflet valves together with abnormally high levels of strain may result in an early thickening and eventually calcification and stenosis. Central to this hypothesis is the need for a precise quantification of the differences in the strain rate levels between bileaflets and trileaflet valves. We present here some in-vitro dynamic measurements of the spatial variation of the strain rate in pig aortic vales conducted in a left ventricular heart flow simulator device. We measure the strain rate of each leaflet during the whole cardiac cycle using phase-locked stereoscopic three-dimensional image surface reconstruction techniques. The bicuspid case is simulated by surgically stitching two of the leaflets in a normal valve.
Villemain, Olivier; Kwiecinski, Wojciech; Bel, Alain; Robin, Justine; Bruneval, Patrick; Arnal, Bastien; Tanter, Mickael; Pernot, Mathieu; Messas, Emmanuel
2016-10-01
Basal chordae surgical section has been shown to be effective in reducing ischaemic mitral regurgitation (IMR). Achieving this section by non-invasive mean can considerably decrease the morbidity of this intervention on already infarcted myocardium. We investigated in vitro and in vivo the feasibility and safety of pulsed cavitational focused ultrasound (histotripsy) for non-invasive chordal cutting guided by real-time 3D echocardiography. Experiments were performed on 12 sheep hearts, 5 in vitro on explanted sheep hearts and 7 in vivo on beating sheep hearts. In vitro, the mitral valve (MV) apparatus including basal and marginal chordae was removed and fixed on a holder in a water tank. High-intensity ultrasound pulses were emitted from the therapeutic device (1-MHz focused transducer, pulses of 8 µs duration, peak negative pressure of 17 MPa, repetition frequency of 100 Hz), placed at a distance of 64 mm under 3D echocardiography guidance. In vivo, after sternotomy, the same therapeutic device was applied on the beating heart. We analysed MV coaptation and chordae by real-time 3D echocardiography before and after basal chordal cutting. After sacrifice, the MV apparatus were harvested for anatomical and histological post-mortem explorations to confirm the section of the chordae. In vitro, all chordae were completely cut after a mean procedure duration of 5.5 ± 2.5 min. The procedure duration was found to increase linearly with the chordae diameter. In vivo, the central basal chordae of the anterior leaflet were completely cut. The mean procedure duration was 20 ± 9 min (min = 14, max = 26). The sectioned chordae was visible on echocardiography, and MV coaptation remained normal with no significant mitral regurgitation. Anatomical and histological post-mortem explorations of the hearts confirmed the section of the chordae. Histotripsy guided by 3D echo achieved successfully to cut MV chordae in vitro and in vivo in beating heart. We hope that this technique will open the door in the near future to the non-invasive treatment of functional IMR. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2016. For permissions please email: journals.permissions@oup.com.
Kim, Kyung-Hee; Kim, Yong-Jin; Ohn, Jung-Hun; Yang, Jimin; Lee, Sang-Eun; Lee, Sae-Won; Kim, Hyung-Kwan; Seo, Jeong-Wook; Sohn, Dae-Won
2012-03-20
We tested the hypothesis that chronic treatment with sildenafil attenuates left ventricular (LV) remodeling and prevents exercise intolerance in chronic mitral regurgitation (MR). MR was created in Sprague-Dawley rats by making a hole on the mitral leaflet. Two weeks after MR creation, MR and LV dilatation were confirmed by echocardiography, and rats were randomly assigned to sildenafil treatment (MR+sildenafil group; 50 mg/kg PO twice a day; n=16) or normal saline only (MR group; n=16) and continued for 4 months. Sixteen sham rats were compared with MR rats. After 4 months, LV size was smaller in the MR+sildenafil compared with the MR group (LV end-systolic dimension, 4.7±0.3 for sham versus 5.9±0.3 for MR+sildenafil versus 7.4±0.5 mm for MR; P<0.05; LV end-diastolic dimension, 8.3±0.4 versus 10.5±0.2 versus 11.7±0.61 mm, respectively; P<0.05). LV ejection fraction was greater in the MR+sildenafil group than in the MR group (70.2±2.2 for sham versus 67.0±4.2 for MR+sildenafil versus 58.9±2.5 for MR; P=0.01). Serial treadmill test revealed that exercise capacity was reduced in the MR but not in the MR+sildenafil group. Transcriptional profiling of cardiac apical tissues revealed that gene sets related to inflammatory response, DNA damage response, cell cycle checkpoint, and cellular signaling pathways were significantly enriched by genes with reciprocal changes. Pathological analysis showed that perivascular fibrosis was more prominent in the MR than in the MR+sildenafil group and that the percentage of terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling-positive cells was 2-fold greater in the MR compared with the MR+sildenafil group. Sildenafil significantly attenuates LV remodeling and prevents exercise intolerance in a rat model of chronic MR. This benefit may be associated with the antiapoptotic, anti-inflammatory effects of sildenafil.
Disturbances of Pulmonary Function in Mitral Valve Disease
Palmer, Wilfred H.; Gee, J. B. L.; Mills, F. C.; Bates, D. V.
1963-01-01
To study the sequence of changes in respiratory function that occur in the natural history of mitral stenosis, and the physiological basis of “cardiac dyspnea”, 30 patients with chronic mitral valve disease were subjected to detailed pulmonary function tests. There was no significant change in vital capacity and functional residual capacity. The reduction in maximal mid-expiratory flow rate showed excellent correlation with the respiratory symptoms. The pulmonary capillary blood volume was increased in moderately advanced cases but was consistently reduced in the severest cases. Hyperventilation was due to an increased respiratory rate. Dyspnea was associated with increased respiratory work owing to the interrelation between the reduction in diffusion capacity, compliance, cardiac output, the increase in airway resistance, and the uneven ventilation and perfusion of the lungs. The amount of “effort” required to breathe is incommensurate with the external load in these patients. PMID:14060164
Advances in cardiovascular fluid mechanics: bench to bedside.
Dasi, Lakshmi P; Sucosky, Philippe; de Zelicourt, Diane; Sundareswaran, Kartik; Jimenez, Jorge; Yoganathan, Ajit P
2009-04-01
This paper presents recent advances in cardiovascular fluid mechanics that define the current state of the art. These studies include complex multimodal investigations with advanced measurement and simulation techniques. We first discuss the complex flows within the total cavopulmonary connection in Fontan patients. We emphasize the quantification of energy losses by studying the importance of caval offsets as well as the differences among various Fontan surgical protocols. In our studies of the fluid mechanics of prosthetic heart valves, we reveal for the first time the full three-dimensional complexity of flow fields in the vicinity of bileaflet and trileaflet valves and the microscopic hinge flow dynamics. We also present results of these valves functioning in a patient-specific native aorta geometry. Our in vitro mitral valve studies show the complex mechanism of the native mitral valve apparatus. We demonstrate that the different components of the mitral valve have independent and synergistically complex functions that allow the valve to operate efficiently. We also show how valve mechanics change under pathological and repair conditions associated with enlarged ventricles. Finally, our ex vivo studies on the interactions between the aortic valve and its surrounding hemodynamic environment are aimed at providing insights into normal valve function and valve pathology. We describe the development of organ- and tissue-culture systems and the biological response of the tissue subjected to their respective simulated mechanical environment. The studies noted above have enhanced our understanding of the complex fluid mechanics associated with the cardiovascular system and have led to new translational technologies.
Pressman, Gregg S; Orban, Marek; Leinveber, Pavel; Parekh, Kunal; Singh, Manmeet; Kara, Tomas; Somers, Virend K
2015-06-01
Obstructive sleep apnea is prevalent and adversely affects cardiovascular health. However, little is known of the acute effects of an obstructive apnea on cardiovascular physiology. We hypothesized that pre-existing functional mitral regurgitation (MR) would worsen during performance of a Mueller maneuver (MM) used to simulate an obstructive apnea; 15 subjects with an ejection fraction ≤35% and pre-existing functional MR were studied with Doppler echocardiography. The radius of the proximal flow convergence was used as a measure of mitral regurgitant flow. Measurements were made at baseline, during the MM, and post-MM. Areas of all 4 chambers were also measured at these time points, both in systole and diastole. Mean flow convergence radius for the group decreased significantly during the transition from the late-MM to post-MM (0.65 → 0.57 mm, p = 0.001), implying increased MR during the MM. In addition, in 3 subjects, duration of MR increased during the MM. Right atrial (RA) areas, both systolic and diastolic, increased during the maneuver, whereas RA fractional area change decreased, indicating reduced RA emptying. Left ventricular emptying decreased early in the maneuver, probably because of the increased afterload burden, and then recovered. In conclusion, high negative intrathoracic pressure produces changes that, repeated hundreds of times per night in patients with obstructive sleep apnea, have the potential to worsen heart failure and predispose affected subjects to atrial fibrillation. Copyright © 2015 Elsevier Inc. All rights reserved.
Pressman, Gregg S.; Orban, Marek; Leinveber, Pavel; Parekh, Kunal; Singh, Manmeet; Kara, Tomas; Somers, Virend K.
2016-01-01
Obstructive sleep apnea (OSA) is prevalent and adversely impacts cardiovascular health. However, little is known of the acute effects of an obstructive apnea on cardiovascular physiology. We hypothesized that pre-existing functional mitral regurgitation (MR) would worsen during performance of a Mueller maneuver (MM) used to simulate an obstructive apnea. 15 subjects with an ejection fraction ≤35% and pre-existing functional MR were studied with Doppler echocardiography. The radius of the proximal flow convergence was used as a measure of mitral regurgitant flow. Measurements were made at baseline, during the MM, and post-MM. Areas of all 4 chambers were also measured at these time points, both in systole and diastole. Mean flow convergence radius for the group decreased significantly during the transition from the late-MM to post-MM (0.65 mm → 0.57 mm, p = 0.001), implying increased MR during the MM. In addition, in 3 subjects duration of MR increased during the MM. Right atrial (RA) areas, both systolic and diastolic, increased during the maneuver while RA fractional area change decreased, indicating reduced RA emptying. Left ventricular (LV) emptying decreased early in the maneuver, probably due to the increased afterload burden, and then recovered. In conclusion, high negative intrathoracic pressure produces changes which, repeated hundreds of times per night in OSA patients, have the potential to worsen heart failure and predispose affected individuals to atrial fibrillation. PMID:25846766
Effect of the sinus of valsalva on the closing motion of bileaflet prosthetic heart valves.
Ohta, Y; Kikuta, Y; Shimooka, T; Mitamura, Y; Yuhta, T; Dohi, T
2000-04-01
Conventional bileaflet prosthetic mechanical heart valves close passively with backflow. Naturally, the valve has problems associated with closure, such as backflow, water hammer effect, and fracture of the leaflet. On the other hand, in the case of the natural aortic valve, the vortex flow in the sinus of Valsalva pushes the leaflet to close, and the valve starts the closing motion earlier than the prosthetic valve as the forward flow decelerates. This closing mechanism is thought to decrease backflow at valve closure. In this study, we propose a new bileaflet mechanical valve resembling a drawbridge in shape, and the prototype valve was designed so that the leaflet closes with the help of the vortex flow in the sinus. The test valve was made of aluminum alloy, and its closing motion was compared to that of the CarboMedics (CM) valve. Both valves were driven by a computer controlled hydraulic mock circulator and were photographed at 648 frames/s by a high speed charge-coupled device (CCD) camera. Each frame of the valve motion image was analyzed with a personal computer, and the opening angles were measured. The flow rate was set as 5.0 L/min. The system was pulsed with 70 bpm, and the systolic/diastolic ratio was 0.3. Glycerin water was used as the circulation fluid at room temperature, and polystyrene particles were used to visualize the streamline. The model of the sinus of Valsalva was made of transparent silicone rubber. As a result, high speed video analysis showed that the test valve started the closing motion 41 ms earlier than the CM valve, and streamline analysis showed that the test valve had a closing mechanism similar to the natural one with the effect of vortex flow. The structure of the test valve was thought to be effective for soft closure and could solve problems associated with closure.
NASA Technical Reports Server (NTRS)
Qin, Jian Xin; Shiota, Takahiro; Lever, Harry M.; Rubin, David N.; Bauer, Fabrice; Kim, Yong Jin; Sitges, Marta; Greenberg, Neil L.; Drinko, Jeanne K.; Martin, Maureen;
2002-01-01
OBJECTIVES: The aim of this study was to use real-time three-dimensional echocardiography (3DE) to investigate the quantitative relation between minimal left ventricular (LV) outflow tract area (A(LVOT)) and maximal LV outflow tract (LVOT) velocity in patients with hypertrophic obstructive cardiomyopathy (HCM). BACKGROUND: In patients with HCM, LVOT velocity should change inversely with minimal A(LVOT) unless LVOT obstruction reduces the pumping capacity of the ventricle. METHODS: A total of 25 patients with HCM with systolic anterior motion (SAM) of the mitral valve leaflets underwent real-time 3DE. The smallest A(LVOT) during systole was measured using anatomically oriented two-dimensional "C-planes" within the pyramidal 3DE volume. Maximal velocity across LVOT was evaluated by two-dimensional Doppler echocardiography (2DE). For comparison with 3DE A(LVOT), the SAM-septal distance was determined by 2DE. RESULTS: Real-time 3DE provided unique information about the dynamic SAM-septal relation during systole, with A(LVOT) ranging from 0.6 to 5.2 cm(2) (mean: 2.2 +/- 1.4 cm(2)). Maximal velocity (v) correlated inversely with A(LVOT) (v = 496 A(LVOT)(-0.80), r = -0.95, p < 0.001), but the exponent (-0.80) was significantly different from -1.0 (95% confidence interval: -0.67 to -0.92), indicating a significant impact of small A(LVOT) on the peak LVOT flow rate. By comparison, the best correlation between velocity and 2DE SAM-septal distance was significantly (p < 0.01) poorer at -0.83, indicating the superiority of 3DE for assessing A(LVOT). CONCLUSIONS: Three-dimensional echocardiography-measured A(LVOT) provides an assessment of HCM geometry that is superior to 2DE methods. These data indicate that the peak LVOT flow rate appears to be significantly decreased by reduced A(LVOT). Real-time 3DE is a potentially valuable clinical tool for assessing patients with HCM.
Laser Doppler anemometry measurements of steady flow through two bi-leaflet prosthetic heart valves
Bazan, Ovandir; Ortiz, Jayme Pinto; Vieira Junior, Francisco Ubaldo; Vieira, Reinaldo Wilson; Antunes, Nilson; Tabacow, Fabio Bittencourt Dutra; Costa, Eduardo Tavares; Petrucci Junior, Orlando
2013-01-01
Introduction In vitro hydrodynamic characterization of prosthetic heart valves provides important information regarding their operation, especially if performed by noninvasive techniques of anemometry. Once velocity profiles for each valve are provided, it is possible to compare them in terms of hydrodynamic performance. In this first experimental study using laser doppler anemometry with mechanical valves, the simulations were performed at a steady flow workbench. Objective To compare unidimensional velocity profiles at the central plane of two bi-leaflet aortic prosthesis from St. Jude (AGN 21 - 751 and 21 AJ - 501 models) exposed to a steady flow regime, on four distinct sections, three downstream and one upstream. Methods To provide similar conditions for the flow through each prosthesis by a steady flow workbench (water, flow rate of 17L/min. ) and, for the same sections and sweeps, to obtain the velocity profiles of each heart valve by unidimensional measurements. Results It was found that higher velocities correspond to the prosthesis with smaller inner diameter and instabilities of flow are larger as the section of interest is closer to the valve. Regions of recirculation, stagnation of flow, low pressure, and flow peak velocities were also found. Conclusions Considering the hydrodynamic aspect and for every section measured, it could be concluded that the prosthesis model AGN 21 - 751 (RegentTM) is superior to the 21 AJ - 501 model (Master Series). Based on the results, future studies can choose to focus on specific regions of the these valves. PMID:24598950
Dynamic cycling in atrial size and flow during obstructive apnoea
Pressman, Gregg S; Cepeda-Valery, Beatriz; Codolosa, Nicolas; Orban, Marek; Samuel, Solomon P; Somers, Virend K
2016-01-01
Objective Obstructive sleep apnoea (OSA) is strongly associated with cardiovascular disease. However, acute cardiovascular effects of repetitive airway obstruction are poorly understood. While past research used a sustained Mueller manoeuver to simulate OSA we employed a series of gasping efforts to better simulate true obstructive apnoeas. This report describes acute changes in cardiac anatomy and flow related to sudden changes in intrathoracic pressure. Methods and results 26 healthy, normal weight participants performed 5–6 gasping efforts (target intrathoracic pressure −40 mm Hg) while undergoing Doppler echocardiography. 14 participants had sufficient echocardiographic images to allow comparison of atrial areas during the manoeuver with baseline measurements. Mitral and tricuspid E-wave and A-wave velocities postmanoeuver were compared with baseline in all participants. Average atrial areas changed little during the manoeuver, but variance in both atrial areas was significantly greater than baseline. Further, an inverse relationship was noted with left atrial collapse and right atrial enlargement at onset of inspiratory effort. Significant inverse changes were noted in Doppler flow when comparing the first beat postmanoeuver (pMM1) with baseline. Mitral E-wave velocity increased 9.1 cm/s while tricuspid E-wave velocity decreased 7.0 cm/s; by the eighth beat postmanoeuver (pMM8) values were not different from baseline. Mitral and tricuspid A-wave velocities were not different from baseline at pMM1, but both were significantly higher by pMM8. Conclusions Repetitive obstructive apnoeas produce dynamic, inverse changes in atrial size and Doppler flow across the atrioventricular valves. These observations have important implications for understanding the pathophysiology of OSA. PMID:27127636
Enzyme replacement therapy with agalsidase beta improves cardiac involvement in Fabry's disease.
Spinelli, L; Pisani, A; Sabbatini, M; Petretta, M; Andreucci, M V; Procaccini, D; Lo Surdo, N; Federico, S; Cianciaruso, B
2004-08-01
Fabry's disease is an X-linked lysosomal storage disease caused by a deficiency of alpha-galactosidase that results in an accumulation of neutral glycosphingolipids throughout the body, including the cardiovascular system. Fabry cardiomyopathy, characterized by progressive severe concentric left ventricular (LV) hypertrophy, is very frequent and is the most important cause of death in affected patients. Enzyme replacement therapy (ERT) allows a specific treatment for this disease, however, there are very few data on the effectiveness of therapy on cardiac involvement. Nine patients with Fabry cardiac disease were studied on basal condition and after 6 and 12 months of treatment with algasidase beta (Fabrazyme). A complete clinical, electrocardiographic and echocardiographic evaluation was performed in all patients. Interpretable Doppler recordings of transmitral flow and pulmonary flow velocity curves were also acquired. At baseline, the patients with Fabry's disease had increased LV septum and posterior wall thickness, normal LV fractional shortening, LV ejection fraction, normal Doppler parameters of mitral inflow but a duration of pulmonary vein flow velocity wave exceeding that of the mitral wave at atrial systole. ERT did not affect heart rate and arterial pressure. LV internal diameters did not change, there was a slight but not significant decrease in the LV posterior wall thickening and a progressive decrease in the interventricular septum thickening (p < 0.025) and in LV mass (p < 0.001) The difference in duration between pulmonary vein flow velocity wave and mitral wave at atrial systole significantly decreased (p < 0.001). These results suggest that ERT in patients with Fabry cardiomyopathy is able to reduce the LV mass and ameliorate the LV stiffness. Copyright 2004 Blackwell Munksgaard
Complex blood flow patterns in an idealized left ventricle: A numerical study
NASA Astrophysics Data System (ADS)
Tagliabue, Anna; Dedè, Luca; Quarteroni, Alfio
2017-09-01
In this paper, we study the blood flow dynamics in a three-dimensional (3D) idealized left ventricle of the human heart whose deformation is driven by muscle contraction and relaxation in coordination with the action of the mitral and aortic valves. We propose a simplified but realistic mathematical treatment of the valves function based on mixed time-varying boundary conditions (BCs) for the Navier-Stokes equations modeling the flow. These switchings in time BCs, from natural to essential and vice versa, model either the open or the closed configurations of the valves. At the numerical level, these BCs are enforced by means of the extended Nitsche's method (Tagliabue et al., Int. J. Numer. Methods Fluids, 2017). Numerical results for the 3D idealized left ventricle obtained by means of Isogeometric Analysis are presented, discussed in terms of both instantaneous and phase-averaged quantities of interest and validated against those available in the literature, both experimental and computational. The complex blood flow patterns are analysed to describe the characteristic fluid properties, to show the transitional nature of the flow, and to highlight its main features inside the left ventricle. The sensitivity of the intraventricular flow patterns to the mitral valve properties is also investigated.
Harada, K; Reller, M D; Shiota, T; Marcella, C P; Sahn, D J
1997-03-01
Several noninvasive echocardiographic indexes were found to correlate with biopsy-confirmed cardiac rejection. Of these, changes in the diastolic flow profile across the mitral valve showed the best correlation.
Effect of mitral orifice shape on intra-ventricular filling fluid dynamics
NASA Astrophysics Data System (ADS)
Okafor, Ikechukwu; Angirish, Yagna; Yoganathan, Ajit; Santhanakrishnan, Arvind
2013-11-01
The natural geometry of the mitral orifice is D-shaped. However, most current designs of prosthetic valves employ O-shaped orifice geometry. The goal of this study was to compare the effect of geometrical modification between the D and O orifice on the intra-ventricular fluid dynamics during diastolic filling. The different mitral orifice geometries were incorporated into an in vitro left heart simulator consisting of a flexible-walled anatomical left ventricle (LV) physical model enclosed in an acrylic housing. Physiological flow rates and pressures were obtained via tuning systemic resistance and compliance elements in the flow loop. A programmable piston pump was used to generate the LV model wall motion. 2D Particle image velocimetry measurements were conducted along multiple longitudinal planes perpendicular to the annulus plane. During peak diastole, the incoming jet width at the LV central plane was smaller for the D-orifice than that of the O-orifice. Further, the core of the vortex ring in the D-orifice was reduced in size compared to that of the O-orifice. The spatiotemporal spreading of the inflow jet as well as the propagation of the vortex ring will be discussed. This study was funded by a grant from the National Heart, Lung and Blood Institute (RO1HL70262).
Analysis of hydrodynamic losses for various types of aortic valves
NASA Astrophysics Data System (ADS)
Starobin, I. M.; Lupachev, S. P.; Dolgopolov, R. V.; Zaiko, V. M.; Kas'yanov, V. A.; Mungalov, D. D.; Morov, G. V.
1985-05-01
The creation of an automated computer-controlled hydraulic stand made it possible to measure the main hydrodynamic parameters of the flow through the investigated HVP and to determine the coefficients of Eq. (2) of fluid flow in the test chamber of the stand. The coefficients found can serve as a criterion of a comparative assessment of the hydrodynamics of HVPs. An analysis of the coefficients showed that the main contribution to pressure losses across ball and disc valves is made by viscous and convective effects. An analysis of inertial losses confirmed the presence of oscillations of the ball closing elements of the AKCh-3-06 valve around the props of the stroke limiters and made it possible to assess them quantitatively. For leaflet valves the contribution of inertial losses to the total pressure losses is more considerable than in the case of disc and ball valves both in the regime of an increase of power of the output and in the regime of a constant power. The mechanical properties of the material of leaflet valves have an effect on the hydrodynamic characteristics. The advantage of the investigated leaflet valves consists not only in that they have smaller total hydraulic losses compared with the other valves, but also in that they provide a high amplitude of pulsations of the blood stream in the case of insufficient contractility of the heart.
Izzo, Richard L.; O’Hara, Ryan P.; Iyer, Vijay; Hansen, Rose; Meess, Karen M.; Nagesh, S.V. Setlur; Rudin, Stephen; Siddiqui, Adnan H.; Springer, Michael; Ionita, Ciprian N.
2017-01-01
3D printing an anatomically accurate, functional flow loop phantom of a patient’s cardiac vasculature was used to assist in the surgical planning of one of the first native transcatheter mitral valve replacement (TMVR) procedures. CTA scans were acquired from a patient about to undergo the first minimally-invasive native TMVR procedure at the Gates Vascular Institute in Buffalo, NY. A python scripting library, the Vascular Modeling Toolkit (VMTK), was used to segment the 3D geometry of the patient’s cardiac chambers and mitral valve with severe stenosis, calcific in nature. A stereolithographic (STL) mesh was generated and AutoDesk Meshmixer was used to transform the vascular surface into a functioning closed flow loop. A Stratasys Objet 500 Connex3 multi-material printer was used to fabricate the phantom with distinguishable material features of the vasculature and calcified valve. The interventional team performed a mock procedure on the phantom, embedding valve cages in the model and imaging the phantom with a Toshiba Infinix INFX-8000V 5-axis C-arm bi-Plane angiography system. Results After performing the mock-procedure on the cardiac phantom, the cardiologists optimized their transapical surgical approach. The mitral valve stenosis and calcification were clearly visible. The phantom was used to inform the sizing of the valve to be implanted. Conclusion With advances in image processing and 3D printing technology, it is possible to create realistic patient-specific phantoms which can act as a guide for the interventional team. Using 3D printed phantoms as a valve sizing method shows potential as a more informative technique than typical CTA reconstruction alone. PMID:28615797
Kawai, Junichi; Tanabe, Kazuaki; Matsuzaki, Masashi; Yamaguchi, Kazuto; Yagi, Toshikazu; Fujii, Yoko; Konda, Toshiko; Ui, Kazuyo; Sumida, Toshiaki; Okada, Midori; Tani, Tomoko; Morioka, Shigefumi
2003-10-01
This study evaluated the accuracy of the directional color power Doppler (DCPD) and continuous wave Doppler (CWD) methods incorporated in the new hand-carried SonoSite 180PLUS ultrasound device. The hand-held ultrasound system with 2.5 MHz transducer and SONOS 5500 was used as a standard ultrasound system with a 2 to 4 MHz wideband transducer. The experimental study used a Doppler wire phantom to evaluate the influence of target wire speed and angle of transducer on DCPD imaging. The clinical study included 48 consecutive patients. DCPD assessment of valvular regurgitation measured the distances of DCPD signals of mitral, aortic and tricuspid valve regurgitation using the apical four-chamber view for comparison with standard echocardiography. CWD assessment measured the peak velocities of the aortic flow and tricuspid valve regurgitant flow for comparison with standard echocardiography. In the experimental study, DCPD signals were not influenced by target wire speed changes and transducer incident angles. In the clinical study, agreements for mitral, aortic and tricuspid regurgitation between the two methods were 89.6%, 81.8% and 78.7%, respectively. The distances of DCPD valve regurgitant signals by the hand-carried ultrasound device showed good correlation (mitral regurgitation: y = 0.84x + 0.55; r = 0.93, aortic regurgitation: y = 0.95x + 0.27; r = 0.94, tricuspid regurgitation: y = 0.86x + 0.61; r = 0.90) with those by standard echocardiography. Evaluation of CWD velocity measurements showed good agreement for the lower flow velocities (< 2.0 m/sec). However, underestimation occurred for the high flow velocities (> 2.0 m/sec) compared with those by standard echocardiography (aortic flow: y = 0.80x + 0.11; r = 0.95, tricuspid regurgitation: y = 1.00x - 0.23; r = 0.90). The new hand-carried ultrasound device (SonoSite 180PLUS equipped with DCPD and CWD) is clinically useful for evaluating valvular regurgitations and flow velocities. Further studies are needed to determine the mechanism of the underestimation of high flow velocities by CWD.
NASA Technical Reports Server (NTRS)
Sitges, Marta; Jones, Michael; Shiota, Takahiro; Qin, Jian Xin; Tsujino, Hiroyuki; Bauer, Fabrice; Kim, Yong Jin; Agler, Deborah A.; Cardon, Lisa A.; Zetts, Arthur D.;
2003-01-01
BACKGROUND: Pitfalls of the flow convergence (FC) method, including 2-dimensional imaging of the 3-dimensional (3D) geometry of the FC surface, can lead to erroneous quantification of mitral regurgitation (MR). This limitation may be mitigated by the use of real-time 3D color Doppler echocardiography (CE). Our objective was to validate a real-time 3D navigation method for MR quantification. METHODS: In 12 sheep with surgically induced chronic MR, 37 different hemodynamic conditions were studied with real-time 3DCE. Using real-time 3D navigation, the radius of the largest hemispherical FC zone was located and measured. MR volume was quantified according to the FC method after observing the shape of FC in 3D space. Aortic and mitral electromagnetic flow probes and meters were balanced against each other to determine reference MR volume. As an initial clinical application study, 22 patients with chronic MR were also studied with this real-time 3DCE-FC method. Left ventricular (LV) outflow tract automated cardiac flow measurement (Toshiba Corp, Tokyo, Japan) and real-time 3D LV stroke volume were used to quantify the reference MR volume (MR volume = 3DLV stroke volume - automated cardiac flow measurement). RESULTS: In the sheep model, a good correlation and agreement was seen between MR volume by real-time 3DCE and electromagnetic (y = 0.77x + 1.48, r = 0.87, P <.001, delta = -0.91 +/- 2.65 mL). In patients, real-time 3DCE-derived MR volume also showed a good correlation and agreement with the reference method (y = 0.89x - 0.38, r = 0.93, P <.001, delta = -4.8 +/- 7.6 mL). CONCLUSIONS: real-time 3DCE can capture the entire FC image, permitting geometrical recognition of the FC zone geometry and reliable MR quantification.
Early signs that predict later haemodynamically significant patent ductus arteriosus.
Engür, Defne; Deveci, Murat; Türkmen, Münevver K
2016-03-01
Our aim was to determine the optimal cut-off values, sensitivity, specificity, and diagnostic power of 12 echocardiographic parameters on the second day of life to predict subsequent ductal patency. We evaluated preterm infants, born at ⩽32 weeks of gestation, starting on their second day of life, and they were evaluated every other day until ductal closure or until there were clinical signs of re-opening. We measured transductal diameter; pulmonary arterial diastolic flow; retrograde aortic diastolic flow; pulsatility index of the left pulmonary artery and descending aorta; left atrium and ventricle/aortic root ratio; left ventricular output; left ventricular flow velocity time integral; mitral early/late diastolic flow; and superior caval vein diameter and flow as well as performed receiver operating curve analysis. Transductal diameter (>1.5 mm); pulmonary arterial diastolic flow (>25.6 cm/second); presence of retrograde aortic diastolic flow; ductal diameter by body weight (>1.07 mm/kg); left pulmonary arterial pulsatility index (⩽0.71); and left ventricle to aortic root ratio (>2.2) displayed high sensitivity and specificity (p0.9). Parameters with moderate sensitivity and specificity were as follows: left atrial to aortic root ratio; left ventricular output; left ventricular flow velocity time integral; and mitral early/late diastolic flow ratio (p0.05) had low diagnostic value. Left pulmonary arterial pulsatility index, left ventricle/aortic root ratio, and ductal diameter by body weight are useful adjuncts offering a broader outlook for predicting ductal patency.
Cardiac Calcifications on Echocardiography Are Associated with Mortality and Stroke.
Lu, Marvin Louis Roy; Gupta, Shuchita; Romero-Corral, Abel; Matejková, Magdaléna; De Venecia, Toni; Obasare, Edinrin; Bhalla, Vikas; Pressman, Gregg S
2016-12-01
Calcium deposits in the aortic valve and mitral annulus have been associated with cardiovascular events and mortality. However, there is no accepted standard method for scoring such cardiac calcifications, and most existing methods are simplistic. The aim of this study was to test the hypothesis that a semiquantitative score, one that accounts for all visible calcium on echocardiography, could predict all-cause mortality and stroke in a graded fashion. This was a retrospective study of 443 unselected subjects derived from a general echocardiography database. A global cardiac calcium score (GCCS) was applied that assigned points for calcification in the aortic root and valve, mitral annulus and valve, and submitral apparatus, and points for restricted leaflet mobility. The primary outcome was all-cause mortality, and the secondary outcome was stroke. Over a mean 3.8 ± 1.7 years of follow-up, there were 116 deaths and 34 strokes. Crude mortality increased in a graded fashion with increasing GCCS. In unadjusted proportional hazard analysis, the GCCS was significantly associated with total mortality (hazard ratio, 1.26; 95% CI, 1.17-1.35; P < .0001) and stroke (hazard ratio, 1.23; 95% CI, 1.07-1.40; P = .003). After adjusting for demographic and clinical factors (age, gender, body mass index, diabetes, hypertension, dyslipidemia, smoking, family history of coronary disease, chronic kidney disease, history of atrial fibrillation, and history of stroke), these associations remained significant. The GCCS is easily applied to routinely acquired echocardiograms and has clinically significant associations with total mortality and stroke. Copyright © 2016 American Society of Echocardiography. Published by Elsevier Inc. All rights reserved.
Ramaswamy, Prema; Rafii, Daniela; Osmolovsky, Marina; Agarwal, Arpit; Amirtharaj, Cynthia
2016-12-01
Evidence suggests an association between left heart obstructive lesions and dilated coronary sinus (DCS), but this has not been studied in fetuses. A retrospective review of fetal echocardiograms (FE) over an 8-year period was conducted, and patients with DCS were identified and confirmed postnatally. There were 5840 FE performed on 4920 women during this period. Of 49 patients with DCS, 22 had normal intracardiac anatomy and 27 patients had congenital heart disease (CHD) yielding an incidence of 4.6 % in the presence of CHD (27/584). Of 27 patients with DCS and CHD, approximately a third had either hypoplastic left ventricles and/or coarctations (10/27, 37 %). The incidence of left heart obstructive lesions was much higher in the presence of a DCS (37 % vs 45/557, 8 %, p < 0.0001). The odds ratio of left heart hypoplasia in fetuses with CHD and a DCS was 6.6 (95 % CI 2.8-15.3). Comparison of patients with postnatally confirmed coarctation with those with normal intracardiac anatomy with DCS, revealed that in the former, the right ventricle (p = 0.005), pulmonic valve annulus (p = 0.0001) and the tricuspid inflow were larger (p = 0.001) compared to corresponding left-sided structures. The size of the DCS was not significantly different between the two groups, but in the former, the DCS was more closely related to the posterior leaflet of the mitral valve and caused a significant diminution of the mitral inflow. Our study suggests a strong association, possibly causal, between left heart obstructive lesions and DCS in utero.
Impact of timing and surgical approach on outcomes after mitral valve regurgitation operations.
Stevens, Louis-Mathieu; Rodriguez, Evelio; Lehr, Eric J; Kindell, Linda C; Nifong, L Wiley; Ferguson, T Bruce; Chitwood, W Randolph
2012-05-01
This study investigated whether the timing of mitral valve (MV) repair or surgical approach affects outcomes in patients with MV regurgitation. Between 1992 and 2009, 2,255 patients underwent MV operations, including 1,305 with isolated MV regurgitation operations (1,054 repairs, 251 replacements). Surgical approaches were sternotomy in 377, video-assisted right minithoracotomy in 481, or robot-assisted in 447. Mean follow-up was 6.4±4.5 years (maximum, 19 years). Sternotomy MV repairs decreased during the study while minimally invasive MV repairs increased. Robotic MV repair patients were younger, with fewer women, had better left ventricular ejection fractions, and were more likely to have myxomatous degeneration (all p<0.001). The robotic approach led to a higher MV repair rate and increased use of leaflet/chordal procedures but had longer cardiopulmonary bypass and aortic cross-clamp times (all p<0.001). The 30-day mortality for isolated MV repair was similar for all approaches (p=0.409). Fewer neurological events were observed in the videoscopic and robotic groups (p=0.013). Adjusted survival was similar for all approaches (p=0.357). Survival in patients in New York Heart Association class I to II with myxomatous degeneration or annular dilatation was similar to a matched population but was worse for patients in class III to IV or undergoing MV replacement. MV repair in patients with severe MV regurgitation should be performed before New York Heart Association class III to IV symptoms develop. Minimally invasive MV repair techniques render similar outcomes as the sternotomy approach. Copyright © 2012 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.
Recurrent left atrial myxoma in Carney complex
Wang, Liaoyuan; Wang, Qing; Zhou, Yue; Xue, Qian; Sun, Xiao; Wang, Zhinong; Ji, Guangyu
2018-01-01
Abstract Rationale: Carney complex (CNC) accounts for up to two-thirds of familial cardiac myxoma, which is a rare autosomal dominant syndrome characterized by multiple mucocutaneous lesions and endocrine tumors. Mutation in the cAMP-dependent protein kinase A (PKA) regulatory (R) subunit 1 (PRKAR1A) gene has been identified as a cause of CNC. In this article, we report 3 first-degree relatives with cardiac myxoma who were diagnosed with CNC and underwent surgical resection. Presenting concerns: The recurrence of cardiac myxoma was detected in a 45-year-old male by echocardiography 5 years after the resection was carried out, without any additional symptoms. Family screening indicated that his brother and his brother's son also had a history of cardiac myxoma. Diagnosis: The echocardiography of the patient showed a 43 mm × 28 mm echo mass at the bottom of the atrial septum near anterior mitral leaflet. Sequencing of the patient's genomic DNA obtained from peripheral blood identified a p.E17X (c.491-492delTG) mutation in PRKAR1A, which encodes the type Iα regulatory subunit of protein kinase A. Interventions: The patient received redo cardiac myxoma resection and mitral valve repair under cardiopulmonary bypass. Echocardiographic surveillance was conducted after the surgery. Outcomes: The patient recovered quickly after the surgery and was discharged without any abnormality detected by echocardiography. Follow-up after 1 year showed no recurrence of the cardiac myxoma. Main lesson: We recommend echocardiographic surveillance of the affected individuals and their first-degree relatives at regular intervals, given the high risk of recurrence and the morbidity and mortality associated with cardiac tumors in any location. PMID:29561454
Torres-Miranda, Daisy; Al-Saffar, Farah; Ibrahim, Saif; Font-Diaz, Stephanie
2015-01-01
This report describes a 64-years-old male patient that presented to our hospital with a chief complaint of acute worsening of his usual chronic lower back pain, progressive weakness in lower extremities and subjective fevers at home. Spine CT failed to demonstrate any infectious foci but showed partially visualized lung cavitary lesion and renal pole abnormalities. Blood cultures grew methicillin-sensitive Staphylococcus Aureus (MSSA). Transthoracic echocardiogram (TTE) showed no signs of infective endocarditis (IE). Later, the patient experienced an acute deterioration on clinical status and examination showed development of a new murmur. He also developed new hemiparesis with up-going babinski reflex. A head MRI showed multiple infarcts. MRI spine displayed osteomyelitis at T12-L1. Cerebro-spinal fluid was positive for meningitis. A transesophageal echocardiogram (TEE) was performed demonstrating new severe mitral and mild tricuspid regurgitations with a definitive 1.5 cm mobile vegetation on posterior mitral leaflet. We present is a very interesting case of a rapidly progressive MSSA infection. MSSA meningitis is a rare disease; there are only few reported cases in the literature to date. We describe a case of MSSA bacteremia, of questionable source, that resulted in MSSA endocarditis affecting right and left heart in a patient who did not have a history of intravenous drug use (IVDU) or immunosuppression. The case was complicated by septic emboli to systemic circulation involving the kidneys, vertebral spine (osteomyelitis), lungs and brain with consequent meningitis and stroke. Even when MSSA infections are well known, to our knowledge there are no previous case reports describing such an acute-simultaneous-manifestation of multi-end-organ failure, including meningitis and stroke. These latter are rarely reported, even individually.
Immersed boundary-finite element model of fluid-structure interaction in the aortic root
NASA Astrophysics Data System (ADS)
Flamini, Vittoria; DeAnda, Abe; Griffith, Boyce E.
2016-04-01
It has long been recognized that aortic root elasticity helps to ensure efficient aortic valve closure, but our understanding of the functional importance of the elasticity and geometry of the aortic root continues to evolve as increasingly detailed in vivo imaging data become available. Herein, we describe a fluid-structure interaction model of the aortic root, including the aortic valve leaflets, the sinuses of Valsalva, the aortic annulus, and the sinotubular junction, that employs a version of Peskin's immersed boundary (IB) method with a finite element description of the structural elasticity. As in earlier work, we use a fiber-based model of the valve leaflets, but this study extends earlier IB models of the aortic root by employing an incompressible hyperelastic model of the mechanics of the sinuses and ascending aorta using a constitutive law fit to experimental data from human aortic root tissue. In vivo pressure loading is accounted for by a backward displacement method that determines the unloaded configuration of the root model. Our model yields realistic cardiac output at physiological pressures, with low transvalvular pressure differences during forward flow, minimal regurgitation during valve closure, and realistic pressure loads when the valve is closed during diastole. Further, results from high-resolution computations indicate that although the detailed leaflet and root kinematics show some grid sensitivity, our IB model of the aortic root nonetheless produces essentially grid-converged flow rates and pressures at practical grid spacings for the high Reynolds number flows of the aortic root. These results thereby clarify minimum grid resolutions required by such models when used as stand-alone models of the aortic valve as well as when used to provide models of the outflow valves in models of left-ventricular fluid dynamics.
Double Outlet Right Ventricle With Intact Ventricular Septum: Avulsion or Exclusion.
Menon, Sabarinath; Kumar, C J Ashok; Mathew, Thomas; Venkateshwarn, S; Jayakumar, K; Dharan, Baiju S
2016-03-01
Double outlet right ventricle (DORV) is almost always associated with a ventricular septal defect. The variant of DORV with intact ventricular septum is very uncommon and may be associated with fetal demise or death immediately after birth. Reports of successful palliation of these patients to the stage of superior cavopulmonary anastomosis (bidirectional Glenn shunt) are rare. We describe the case of a child with DORV with intact ventricular septum who underwent successful palliation. This condition often provides a diagnostic, interventional, and surgical challenge. Patients generally require either balloon atrial septostomy or surgical atrial septectomy for survival, with the addition of a Blalock-Tausig shunt or pulmonary artery band depending on the pulmonary blood flow. Very few patients survive to a Glenn procedure. For those who do survive, a decision must be made regarding the management of the hypertensive and hypoplastic left ventricle (LV) and associated mitral regurgitation. The LV can be excluded by either mitral valve avulsion or closure (exclusion) of the mitral valve with a patch. The choice of the technique should be carefully made and depends in part on the size of the LV. In our patient, who was successfully palliated by bidirectional Glenn shunt, the LV was managed by means of mitral valve avulsion. © The Author(s) 2015.
Bavo, A M; Pouch, A M; Degroote, J; Vierendeels, J; Gorman, J H; Gorman, R C; Segers, P
2017-01-04
As the intracardiac flow field is affected by changes in shape and motility of the heart, intraventricular flow features can provide diagnostic indications. Ventricular flow patterns differ depending on the cardiac condition and the exploration of different clinical cases can provide insights into how flow fields alter in different pathologies. In this study, we applied a patient-specific computational fluid dynamics model of the left ventricle and mitral valve, with prescribed moving boundaries based on transesophageal ultrasound images for three cardiac pathologies, to verify the abnormal flow patterns in impaired hearts. One case (P1) had normal ejection fraction but low stroke volume and cardiac output, P2 showed low stroke volume and reduced ejection fraction, P3 had a dilated ventricle and reduced ejection fraction. The shape of the ventricle and mitral valve, together with the pathology influence the flow field in the left ventricle, leading to distinct flow features. Of particular interest is the pattern of the vortex formation and evolution, influenced by the valvular orifice and the ventricular shape. The base-to-apex pressure difference of maximum 2mmHg is consistent with reported data. We used a CFD model with prescribed boundary motion to describe the intraventricular flow field in three patients with impaired diastolic function. The calculated intraventricular flow dynamics are consistent with the diagnostic patient records and highlight the differences between the different cases. The integration of clinical images and computational techniques, therefore, allows for a deeper investigation intraventricular hemodynamics in patho-physiology. Copyright © 2016 Elsevier Ltd. All rights reserved.
Doctors and pharmacists provision and opinions of medicines information leaflets in New Zealand.
Young, Amber; Tordoff, June; Leitch, Sharon; Smith, Alesha
2018-06-01
Background Providing verbal medicines information to patients may be insufficient. Providing medicine information leaflets could support verbal information, however New Zealand health professionals' opinions or use of leaflets is unknown. Objective To examine self-reported provision and health professionals' views about medicine information leaflets and to determine their support for tailoring patient leaflets. Setting A cross sectional survey of general practitioners (GPs) and community pharmacists in New Zealand primary care. Method GPs and pharmacists completed validated questionnaires. Data was collected using SurveyMonkey® and where applicable, Chi squared analysis was carried out. Main outcome measures Frequency of leaflet provision, how leaflets are used in practice and why, likes and dislikes of available leaflets, and opinions on providing tailored information. Results 143 GPs and 126 pharmacists responded. For new medicines, significantly more pharmacists than GPs reported providing leaflets all or most of the time. For repeat medicines, leaflets were more likely to be given only on request. Leaflets were given to ensure patients are well-informed. Most GPs and pharmacists report discussing sections of leaflets with patients. The likes and dislikes of leaflets were mostly about design and content. Both professions support tailoring leaflets to meet individual's requirements. Conclusions Provision of medicines information needs to be re-evaluated. Relying on verbal communication is inadequate and leaflet provision appears to be suboptimal. Making leaflets more patient-centred and accessible could improve health professionals' perceptions and use of them. Automated creation and provision of tailored summary leaflets would be beneficial. Further advantage could be gained by digital patient access.
Rovira, S; Muñoz, A; Rodilla, V
2009-04-01
Scaling in biology is usually allometric, and therefore, the size of the heart may be expressed as a power function of body weight (BW). The present research analyses the echocardiographic measurements in 68 healthy Spanish foals weighed between 70 and 347kg in order to determine the correct scaling exponent for the allometric equation. The echocardiographic parameters measured were: left ventricular internal dimensions (LVID), free wall thickness (LVFWT), interventricular septum thickness (IVST) at systole (s) and diastole (d), EPSS (distance between the point E of the mitral valve and the interventricular septum), and aorta diameters at the level of the aortic valve (AOD), base of valve leaflets (ABS), sinus of Valsalva (ASV) and sino-tubular junction (AJT). Indices of left ventricular performance were calculated. It was found that LVIDd, IVSTs, AOD, and ASV have a relationship to BW raised to 0.300-0.368 power, whereas left ventricular end-diastolic volume and stroke volume scaled to BW raised to 0.731-0.712 power. With these data, appropriate values can be calculated for normal Spanish foals.
Einstein, Daniel R.; Del Pin, Facundo; Jiao, Xiangmin; Kuprat, Andrew P.; Carson, James P.; Kunzelman, Karyn S.; Cochran, Richard P.; Guccione, Julius M.; Ratcliffe, Mark B.
2009-01-01
SUMMARY The remodeling that occurs after a posterolateral myocardial infarction can alter mitral valve function by creating conformational abnormalities in the mitral annulus and in the posteromedial papillary muscle, leading to mitral regurgitation (MR). It is generally assumed that this remodeling is caused by a volume load and is mediated by an increase in diastolic wall stress. Thus, mitral regurgitation can be both the cause and effect of an abnormal cardiac stress environment. Computational modeling of ischemic MR and its surgical correction is attractive because it enables an examination of whether a given intervention addresses the correction of regurgitation (fluid-flow) at the cost of abnormal tissue stress. This is significant because the negative effects of an increased wall stress due to the intervention will only be evident over time. However, a meaningful fluid-structure interaction model of the left heart is not trivial; it requires a careful characterization of the in-vivo cardiac geometry, tissue parameterization though inverse analysis, a robust coupled solver that handles collapsing Lagrangian interfaces, automatic grid-generation algorithms that are capable of accurately discretizing the cardiac geometry, innovations in image analysis, competent and efficient constitutive models and an understanding of the spatial organization of tissue microstructure. In this manuscript, we profile our work toward a comprehensive fluid-structure interaction model of the left heart by reviewing our early work, presenting our current work and laying out our future work in four broad categories: data collection, geometry, fluid-structure interaction and validation. PMID:20454531
Fixation and mounting of porcine aortic valves for use in mock circuits.
Schlöglhofer, Thomas; Aigner, Philipp; Stoiber, Martin; Schima, Heinrich
2013-10-01
Investigations of the circulatory system in vitro use mock circuits that require valves to mimic the cardiac situation. Whereas mechanical valves increase water hammer effects due to inherent stiffness and do not allow the use of pressure lines or catheters, bioprosthetic valves are expensive and of limited durability in test fluids. Therefore, we developed a cheap, fast, alternative method to mount valves obtained from the slaughterhouse in mock circuits. Porcine aortic roots were obtained from the abattoir and used either in native condition or after fixation. Fixation was performed at a constant retrograde pressure to ensure closed valve position. Fixation time was 4 h in a 0.5%-glutaraldehyde phosphate buffer. The fixed valves were molded into a modular mock circulation connector using a fast curing silicone. Valve functionality was evaluated in a pulsatile setting (cardiac output = 4.7 l/min, heart rate = 80 beats/min) and compared before and after fixation. Leaflet motion was recorded with a high-speed camera and valve insufficiency was quantified by leakage flow under steady pressure application (80 mmHg). Under physiological conditions the aortic valves showed almost equal leaflet motion in native and fixed conditions. However, the leaflets of the native valves showed lower stiffness and more fluttering during systole than the fixed specimens. Under retrograde pressure, fresh and fixed valves showed small leakage flows of <30 ml/min. The new mounting and fixation procedure is a fast method to fabricate low cost biologic valves for the use in mock circuits.
The Fluid Mechanics of Transcatheter Heart Valve Leaflet Thrombosis in the Neosinus.
Midha, Prem A; Raghav, Vrishank; Sharma, Rahul; Condado, Jose F; Okafor, Ikechukwu U; Rami, Tanya; Kumar, Gautam; Thourani, Vinod H; Jilaihawi, Hasan; Babaliaros, Vasilis; Makkar, Raj R; Yoganathan, Ajit P
2017-10-24
Transcatheter heart valve (THV) thrombosis has been increasingly reported. In these studies, thrombus quantification has been based on a 2-dimensional assessment of a 3-dimensional phenomenon. Postprocedural, 4-dimensional, volume-rendered CT data of patients with CoreValve, Evolut R, and SAPIEN 3 transcatheter aortic valve replacement enrolled in the RESOLVE study (Assessment of Transcatheter and Surgical Aortic Bioprosthetic Valve Dysfunction With Multimodality Imaging and Its Treatment with Anticoagulation) were included in this analysis. Patients on anticoagulation were excluded. SAPIEN 3 and CoreValve/Evolut R patients with and without hypoattenuated leaflet thickening were included to study differences between groups. Patients were classified as having THV thrombosis if there was any evidence of hypoattenuated leaflet thickening. Anatomic and THV deployment geometries were analyzed, and thrombus volumes were computed through manual 3-dimensional reconstruction. We aimed to identify and evaluate risk factors that contribute to THV thrombosis through the combination of retrospective clinical data analysis and in vitro imaging in the space between the native and THV leaflets (neosinus). SAPIEN 3 valves with leaflet thrombosis were on average 10% further expanded (by diameter) than those without (95.5±5.2% versus 85.4±3.9%; P <0.001). However, this relationship was not evident with the CoreValve/Evolut R. In CoreValve/Evolut Rs with thrombosis, the thrombus volume increased linearly with implant depth ( R 2 =0.7, P <0.001). This finding was not seen in the SAPIEN 3. The in vitro analysis showed that a supraannular THV deployment resulted in a nearly 7-fold decrease in stagnation zone size (velocities <0.1 m/s) when compared with an intraannular deployment. In addition, the in vitro model indicated that the size of the stagnation zone increased as cardiac output decreased. Although transcatheter aortic valve replacement thrombosis is a multifactorial process involving foreign materials, patient-specific blood chemistry, and complex flow patterns, our study indicates that deployed THV geometry may have implications on the occurrence of thrombosis. In addition, a supraannular neosinus may reduce thrombosis risk because of reduced flow stasis. Although additional prospective studies are needed to further develop strategies for minimizing thrombus burden, these results may help identify patients at higher thrombosis risk and aid in the development of next-generation devices with reduced thrombosis risk. © 2017 American Heart Association, Inc.
Li, Xiaokui; Wanitkun, Suthep; Li, Xiang-Ning; Hashimoto, Ikuo; Mori, Yoshiki; Rusk, Rosemary A; Hicks, Shannon E; Sahn, David J
2002-10-01
Our study was intended to test the accuracy of a 3-dimensional (3D) digital color Doppler flow convergence (FC) method for assessing the effective orifice area (EOA) in a new dynamic orifice model mimicking a variety of mitral regurgitation. FC surface area methods for detecting EOA have been reported to be useful for quantifying the severity of valvular regurgitation. With our new 3D digital direct FC method, all raw velocity data are available and variable Nyquist limits can be selected for computation of direct FC surface area for computing instantaneous flow rate and temporal change of EOA. A 7.0-MHz multiplane transesophageal probe from an ultrasound system (ATL HDI 5000) was linked and controlled by a computer workstation to provide 3D images. Three differently shaped latex orifices (zigzag, arc, and straight slit, each with cutting-edge length of 1 cm) were used to mimic the dynamic orifice of mitral regurgitation. 3D FC surface computation was performed on parallel slices through the 3D data set at aliasing velocities (14-48 cm/s) selected to maximize the regularity and minimize lateral dropout of the visualized 3D FC at 5 points per cardiac cycle. Using continuous wave velocity for each, 3D-calculated EOA was compared with EOA determined by using continuous wave Doppler and the flow rate from a reference ultrasonic flow meter. Simultaneous digital video images were also recorded to define the actual orifice size for 9 stroke volumes (15-55 mL/beat with maximum flow rates 45-182 mL/s). Over the 9 pulsatile flow states and 3 orifices, 3D FC EOAs (0.05-0.63 cm(2)) from different phases of the cardiac cycle in each pump setting correlated well with reference EOA (r = 0.89-0.92, SEE = 0.027-0.055cm(2)) and they also correlated well with digital video images of the actual orifice peak (r = 0.97-0.98, SEE = 0.016-0.019 cm(2)), although they were consistently smaller, as expected by the contraction coefficient. The digital 3D FC method can accurately predict flow rate, and, thus, EOA (in conjunction with continuous wave Doppler), because it allows direct FC surface measurement despite temporal variability of FC shape.
Flow in prosthetic heart valves: state-of-the-art and future directions.
Yoganathan, Ajit P; Chandran, K B; Sotiropoulos, Fotis
2005-12-01
Since the first successful implantation of a prosthetic heart valve four decades ago, over 50 different designs have been developed including both mechanical and bioprosthetic valves. Today, the most widely implanted design is the mechanical bileaflet, with over 170,000 implants worldwide each year. Several different mechanical valves are currently available and many of them have good bulk forward flow hemodynamics, with lower transvalvular pressure drops, larger effective orifice areas, and fewer regions of forward flow stasis than their earlier-generation counterparts such as the ball-and-cage and tilting-disc valves. However, mechanical valve implants suffer from complications resulting from thrombus deposition and patients implanted with these valves need to be under long-term anti-coagulant therapy. In general, blood thinners are not needed with bioprosthetic implants, but tissue valves suffer from structural failure with, an average life-time of 10-12 years, before replacement is needed. Flow-induced stresses on the formed elements in blood have been implicated in thrombus initiation within the mechanical valve prostheses. Regions of stress concentration on the leaflets during the complex motion of the leaflets have been implicated with structural failure of the leaflets with bioprosthetic valves. In vivo and in vitro experimental studies have yielded valuable information on the relationship between hemodynamic stresses and the problems associated with the implants. More recently, Computational Fluid Dynamics (CFD) has emerged as a promising tool, which, alongside experimentation, can yield insights of unprecedented detail into the hemodynamics of prosthetic heart valves. For CFD to realize its full potential, however, it must rely on numerical techniques that can handle the enormous geometrical complexities of prosthetic devices with spatial and temporal resolution sufficiently high to accurately capture all hemodynamically relevant scales of motion. Such algorithms do not exist today and their development should be a major research priority. For CFD to further gain the confidence of valve designers and medical practitioners it must also undergo comprehensive validation with experimental data. Such validation requires the use of high-resolution flow measuring tools and techniques and the integration of experimental studies with CFD modeling.
Medicine information leaflets for non-steroidal anti-inflammatory drugs in Thailand.
Phueanpinit, Pacharaporn; Pongwecharak, Juraporn; Krska, Janet; Jarernsiripornkul, Narumol
2016-02-01
The importance of promoting the use of patient-oriented medicines leaflets is recognized in many countries. Leaflets should include basic information plus specific warnings, and be provided with all medicines, but there is little attempt at enforcement of these requirements in Thailand. To determine content and availability of Thai information leaflets for nonsteroidal anti-inflammatory drugs (NSAIDs). Leaflets for all NSAIDs available for purchase from 34 pharmacies in a large city were evaluated against a checklist and number of leaflets assessed against number of medicine packs available in each pharmacy. Of the 76 leaflets for ten different NSAIDs, 67 (88 %) were for locally manufactured products. Only 22 % of 76 leaflets were sufficient in number for distribution with medicines, while only 4 % had patient-oriented leaflets. No leaflet covered all topics in the checklist. Less than half included safety information, such as contraindications (46 %), precautions (47 %), and adverse drug reactions (34 %). Locally-produced leaflets provided less information than those for originator products and no leaflet included all the warnings required by Thai regulations. This study illustrates the variable availability and quality of NSAID information leaflets. The lack of accessible essential information about medicines in Thailand requires urgent attention to enable patients to minimise adverse reactions.
Sritharan, Deepa; Fathi, Parinaz; Weaver, Jason D; Retta, Stephen M; Wu, Changfu; Duraiswamy, Nandini
2018-06-12
After implantation of a transcatheter bioprosthetic heart valve its original circular circumference may become distorted, which can lead to changes in leaflet coaptation and leaflets that are stretched or sagging. This may lead to early structural deterioration of the valve as seen in some explanted transcatheter heart valves. Our in vitro study evaluates the effect of leaflet deformations seen in elliptical configurations on the damage patterns of the leaflets, with circular valve deformation as the control. Bovine pericardial tissue heart valves were subjected to accelerated wear testing under both circular (N = 2) and elliptical (N = 4) configurations. The elliptical configurations were created by placing the valve inside custom-made elliptical holders, which caused the leaflets to sag or stretch. The hydrodynamic performance of the valves was monitored and high resolution images were acquired to evaluate leaflet damage patterns over time. In the elliptically deformed valves, sagging leaflets experienced more damage from wear compared to stretched leaflets; the undistorted leaflets of the circular valves experienced the least leaflet damage. Free-edge thinning and tearing were the primary modes of damage in the sagging leaflets. Belly region thinning was seen in the undistorted and stretched leaflets. Leaflet and fabric tears at the commissures were seen in all valve configurations. Free-edge tearing and commissure tears were the leading cause of valve hydrodynamic incompetence. Our study shows that mechanical wear affects heart valve pericardial leaflets differently based on whether they are undistorted, stretched, or sagging in a valve configuration. Sagging leaflets are more likely to be subjected to free-edge tear than stretched or undistorted leaflets. Reducing leaflet stress at the free edge of non-circular valve configurations should be an important factor to consider in the design and/or deployment of transcatheter bioprosthetic heart valves to improve their long-term performance.
Terada, Tomomasa; Mori, Kazuhiro; Inoue, Miki; Yasunobu, Hayabuchi
2016-11-01
Assessment of longitudinal left ventricular (LV) function is important for early detection of cardiac dysfunction. Although mitral annular plane systolic excursion (MAPSE) obtained by M-mode echocardiography offers a simple method for assessing longitudinal LV function, normal values of MAPSE for children change according to body size. To minimize the effects of body size, MAPSE was divided by LV long-axis length (MAPSE/L). MAPSE/L was measured in 210 healthy children from birth to 15 years of age and classified into five subgroups. MAPSE/L was then compared with 10 parameters in 136 children (age, heart rate, mean blood pressure, ejection fraction of the LV (EF), peak atrial flow velocity/peak early diastolic flow velocity of mitral flow, tissue Doppler velocity during systole (s') and early diastole (e'), E/e' ratio, Tei index, and global longitudinal strain (GLS) of the LV by the speckle tracking method). MAPSE/L was significantly lower in the neonate group than in the remaining four groups. MAPSE/L then increased with age to peak at 1-5 years and gradually decreased thereafter. In all cases beyond the neonatal period, MAPSE/L was more than 0.17. Among various parameters, GLS, age, EF, Tei index and s' were significantly associated with MAPSE/L in that order. In univariate analysis, GLS was most significantly associated with MAPSE/L (r=.56). We have established normal reference values for MPSE/L in healthy children. MAPSE/L is expected to offer a simple parameter to evaluate LV longitudinal systolic function during daily routine echocardiography in children. © 2016, Wiley Periodicals, Inc.
Sheng, Siyuan P; Howell, Lucius A; Caughey, Melissa C; Yeung, Michael; Vavalle, John P
2018-01-15
Patients with calcific aortic stenosis (AS) often have diffuse cardiac calcification involving the mitral valve apparatus and coronary arteries. We examined the association between global cardiac calcification quantified by a previously validated echocardiographic calcium score (eCS) with the severity of mitral stenosis (MS) and coronary artery disease (CAD) in patients with a clinical diagnosis of severe calcific AS. In this sample of 147 patients (mean age 81 ± 9 years, 50% male), 81 patients (55%) were determined by echocardiography to have some degree of MS. Higher mean eCS was observed in patients with more severe MS (r = 0.54, p < 0.0001). Higher eCS was also inversely associated with mitral valve area (r = -0.31, p = 0.001) and positively associated with mitral valve mean pressure gradient (r = 0.46, p < 0.0001) and mitral valve peak flow velocity (r = 0.55, p < 0.0001). The area under the receiver operating characteristic curve for using eCS to predict the presence of MS was 0.76. An eCS ≥ 8 predicted MS with a sensitivity of 68%, specificity of 76%, positive predictive value of 77%, and negative predictive value of 66%. High eCS, relative to low eCS, was associated with 2.70 times the adjusted odds of CAD (odds ratio = 2.70, 95% confidence interval 1.02 to 7.17). In conclusion, global cardiac calcification is associated with MS and CAD in patients with severe calcific AS, and eCS shows ability to predict the presence of MS. This study suggests that a simple eCS may be used as part of a risk-stratification tool in patients with severe calcific aortic valve stenosis. Copyright © 2017 Elsevier Inc. All rights reserved.
Continuous-flow cardiac assistance: effects on aortic valve function in a mock loop.
Tuzun, Egemen; Rutten, Marcel; Dat, Marco; van de Vosse, Frans; Kadipasaoglu, Cihan; de Mol, Bas
2011-12-01
As the use of left ventricular assist devices (LVADs) to treat end-stage heart failure has become more widespread, leaflet fusion--with resul-tant aortic regurgitation--has been observed more frequently. To quantitatively assess the effects of nonpulsatile flow on aortic valve function, we tested a continuous-flow LVAD in a mock circulatory system (MCS) with an interposed valve. To mimic the hemodynamic characteristics of LVAD patients, we utilized an MCS in which a Jarvik 2000 LVAD was positioned at the base of a servomotor-operated piston pump (left ventricular chamber). We operated the LVAD at 8000 to 12,000 rpm, changing the speed in 1000-rpm increments. At each speed, we first varied the outflow resistance at a constant stroke volume, then varied the stroke volume at a constant outflow resistance. We measured the left ventricular pressure, aortic pressure, pump flow, and total flow, and used these values to compute the change, if any, in the aortic duty cycle (aortic valve open time) and transvalvular aortic pressure loads. Validation of the MCS was demonstrated by the simulation of physiologic pressure and flow waveforms. At increasing LVAD speeds, the mean aortic pressure load steadily increased, while the aortic duty cycle steadily decreased. Changes were consistent for each MCS experimental setting, despite variations in stroke volume and outflow resistance. Increased LVAD flow results in an impaired aortic valve-open time due to a pressure overload above the aortic valve. Such an overload may initiate structural changes, causing aortic leaflet fusion and/or regurgitation. Copyright © 2011 Elsevier Inc. All rights reserved.
Atrial and ventricular function after cardioversion of atrial fibrillation.
Xiong, C.; Sonnhag, C.; Nylander, E.; Wranne, B.
1995-01-01
OBJECTIVE--Previous studies on atrial recovery after cardioversion of atrial fibrillation have not taken into account new knowledge about the pathophysiology of transmitral and transtricuspid flow velocity patterns. It is possible to shed further light on this problem if atrioventricular inflow velocity, venous filling pattern, and atrioventricular annulus motion are recorded and interpreted together. DESIGN--Prospective examinations of mitral and tricuspid transvalvar flow velocities, superior caval and pulmonary venous filling, and mitral and tricuspid annulus motion were recorded using Doppler echocardiography. Examinations were performed before and 24 hours, 1 month, and 20 months after cardioversion. SETTING--Tertiary referral centre for cardiac disease with facilities for invasive and non-invasive investigation. PATIENTS--16 patients undergoing cardioversion of atrial fibrillation in whom sinus rhythm had persisted for 24 hours or more. RESULTS--Before conversion there was no identifiable A wave in transvalvar flow recordings. The total motion of the tricuspid and mitral annulus was subnormal and there was no identifiable atrial component. Venous flow patterns in general showed a low systolic velocity. After conversion, A waves and atrial components were seen in all patients and increased significantly (P < 0.01) with time. There was a similar time course for the amplitude of annulus atrial components, an increased systolic component of venous inflow, an increased A wave velocity, and a decreased E/A ratio of the transvalvar velocity curves. The ventricular component of annulus motion was unchanged. Changes in general occurred earlier on the right side than the left. CONCLUSIONS--This study indicates that, in addition to the previously known electromechanical dissociation of atrial recovery that exists after cardioversion of atrial fibrillation, there may also be a transient deterioration of ventricular function modulating the transvalvar inflow velocity recordings. Function on the right side generally becomes normal earlier than on the left. Integration of information from transvalvar inflow curves, annulus motion, and venous filling patterns gives additional insight into cardiac function. PMID:7547019
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liao,J.; Yang, L.; Grashow, J.
2007-01-01
We have recently demonstrated that the mitral valve anterior leaflet (MVAL) exhibited minimal hysteresis, no strain rate sensitivity, stress relaxation but not creep (Grashow et al., 2006, Ann Biomed Eng., 34(2), pp. 315-325; Grashow et al., 2006, Ann Biomed. Eng., 34(10), pp. 1509-1518). However, the underlying structural basis for this unique quasi-elastic mechanical behavior is presently unknown. As collagen is the major structural component of the MVAL, we investigated the relation between collagen fibril kinematics (rotation and stretch) and tissue-level mechanical properties in the MVAL under biaxial loading using small angle X-ray scattering. A novel device was developed and utilizedmore » to perform simultaneous measurements of tissue level forces and strain under a planar biaxial loading state. Collagen fibril D-period strain ({epsilon}{sub D}) and the fibrillar angular distribution were measured under equibiaxial tension, creep, and stress relaxation to a peak tension of 90 N/m. Results indicated that, under equibiaxial tension, collagen fibril straining did not initiate until the end of the nonlinear region of the tissue-level stress-strain curve. At higher tissue tension levels, {epsilon}{sub D} increased linearly with increasing tension. Changes in the angular distribution of the collagen fibrils mainly occurred in the tissue toe region. Using {epsilon}{sub D}, the tangent modulus of collagen fibrils was estimated to be 95.5{+-}25.5 MPa, which was {approx}27 times higher than the tissue tensile tangent modulus of 3.58{+-}1.83 MPa. In creep tests performed at 90 N/m equibiaxial tension for 60 min, both tissue strain and D remained constant with no observable changes over the test length. In contrast, in stress relaxation tests performed for 90 min {epsilon}{sub D} was found to rapidly decrease in the first 10 min followed by a slower decay rate for the remainder of the test. Using a single exponential model, the time constant for the reduction in collagen fibril strain was 8.3 min, which was smaller than the tissue-level stress relaxation time constants of 22.0 and 16.9 min in the circumferential and radial directions, respectively. Moreover, there was no change in the fibril angular distribution under both creep and stress relaxation over the test period. Our results suggest that (1) the MVAL collagen fibrils do not exhibit intrinsic viscoelastic behavior, (2) tissue relaxation results from the removal of stress from the fibrils, possibly by a slipping mechanism modulated by noncollagenous components (e.g. proteoglycans), and (3) the lack of creep but the occurrence of stress relaxation suggests a 'load-locking' behavior under maintained loading conditions. These unique mechanical characteristics are likely necessary for normal valvular function.« less
Vortex formation and instability in the left ventricle
NASA Astrophysics Data System (ADS)
Le, Trung Bao; Sotiropoulos, Fotis; Coffey, Dane; Keefe, Daniel
2012-09-01
We study the formation of the mitral vortex ring during early diastolic filling in a patient-specific left ventricle (LV) using direct numerical simulation. The geometry of the left ventricle is reconstructed from Magnetic Resonance Imaging (MRI) data of a healthy human subject. The left ventricular kinematics is modeled via a cell-based activation methodology, which is inspired by cardiac electro-physiology and yields physiologic LV wall motion. In the fluid dynamics videos, we describe in detail the three-dimensional structure of the mitral vortex ring, which is formed during early diastolic filling. The ring starts to deform as it propagates toward the apex of the heart and becomes inclined. The trailing secondary vortex tubes are formed as the result of interaction between the vortex ring and the LV wall. These vortex tubes wrap around the circumference and begin to interact with and destabilize the mitral vortex ring. At the end of diastole, the vortex ring impinges on the LV wall and the large-scale intraventricular flow rotates in clockwise direction. We show for the first time that the mitral vortex ring evolution is dominated by a number of vortex-vortex and vortex-wall interactions, including lateral straining and deformation of vortex ring, the interaction of two vortex tubes with unequal strengths, helicity polarization of vortex tubes and twisting instabilities of the vortex cores.
Sampaio, Francisco; Ladeiras-Lopes, Ricardo; Almeida, João; Fonseca, Paulo; Fontes-Carvalho, Ricardo; Ribeiro, José; Gama, Vasco
2017-07-01
Management of patients with mitral stenosis (MS) depends heavily on the accurate quantification of mitral valve area (MVA) using echocardiography. All currently used two-dimensional (2D) methods have limitations. Estimation of MVA using the proximal isovelocity surface area (PISA) method with real time three-dimensional (3D) echocardiography may circumvent those limitations. We aimed to evaluate the accuracy of 3D direct measurement of PISA in the estimation of MVA. Twenty-seven consecutive patients (median age of 63 years; 77.8% females) with rheumatic MS were prospectively studied. Transthoracic and transesophageal echocardiography with 2D and 3D acquisitions were performed on the same day. The reference method for MVA quantification was valve planimetry after 3D-volume multiplanar reconstruction. A semi-automated software was used to calculate the 3D flow convergence volume. Compared to MVA estimation using 3D planimetry, 3D PISA showed the best correlation (rho=0.78, P<.0001), followed by pressure half-time (PHT: rho=0.66, P<.001), continuity equation (CE: rho=0.61, P=.003), and 2D PISA (rho=0.26, P=.203). Bland-Altman analysis revealed a good agreement for MVA estimation with 3D PISA (mean difference -0.03 cm 2 ; limits of agreement (LOA) -0.40-0.35), in contrast to wider LOA for 2D methods: CE (mean difference 0.02 cm 2 , LOA -0.56-0.60); PHT (mean difference 0.31 cm 2 , LOA -0.32-0.95); 2D PISA (mean difference -0.03 cm 2 , LOA -0.92-0.86). MVA estimation using 3D PISA was feasible and more accurate than 2D methods. Its introduction in daily clinical practice seems possible and may overcome technical limitations of 2D methods. © 2017, Wiley Periodicals, Inc.
Cho, In-Jeong; Chang, Hyuk-Jae; Lee, Soo Yeon; Shim, Chi Young; Hong, Geu-Ru; Chung, Namsik
2017-06-01
Net atrioventricular compliance (Cn), a parameter for the net compliance of the left atrium and left ventricle, is known to be a useful predictor of outcomes in patients with mitral stenosis (MS). The present study aimed to evaluate whether the impact of Cn on symptom status and clinical outcomes, as well as its contribution toward systolic pulmonary artery pressure (SPAP), differed according to cardiac rhythm. We retrospectively reviewed patients (N = 308) with rheumatic pure MS. Doppler-derived Cn was calculated using planimetered mitral valve area and E-wave downslope of transmitral flow. The primary endpoint was defined as a composite of all-cause death, percutaneous mitral valvotomy, surgical mitral valve replacement, admission for heart failure, and stroke. Overall, there were 178 patients (58%) with sinus rhythm (SR) and 130 patients (42%) with atrial fibrillation (AF). In multivariable linear regression analysis, there was a significant independent association between Cn and SPAP in patients with SR (P = .014), but not in those with AF (P = .112). During a median follow-up of 38 months, 130 patients (27%) experienced the study endpoint. In multivariable Cox regression, high Cn was associated with a more favorable prognosis in patients with SR (hazard ratio = 0.83; 95% CI, 0.69-0.99; P = .038). Conversely, high Cn was not found to offset the burden of adverse clinical outcomes in those with AF (hazard ratio = 1.18; 95% CI, 0.99-1.40; P = .071). Cn appears to be associated with SPAP and clinical outcomes in MS patients with SR. The predictive role of Cn in patients with AF requires further clarification. Copyright © 2017 American Society of Echocardiography. Published by Elsevier Inc. All rights reserved.
Factors associated with atrial fibrillation in rheumatic mitral stenosis.
Pourafkari, Leili; Ghaffari, Samad; Bancroft, George R; Tajlil, Arezou; Nader, Nader D
2015-01-01
Atrial fibrillation is a complication of mitral valve stenosis that causes several adverse neurologic outcomes. Our objective was to establish a mathematical model to predict the risk of atrial fibrillation in patients with mitral stenosis. Of 819 patients with mitral stenosis who were screened, 603 were enrolled in the study and grouped according to whether they were in sinus rhythm or atrial fibrillation. Demographic, echocardiographic, and hemodynamic data were recorded. Logistic regression models were constructed to identify the relative risks for each contributing factor and calculate the probability of developing atrial fibrillation. Receiver operating characteristic curves were plotted. Two hundred (33%) patients had atrial fibrillation; this group was older, in a higher functional class, more likely to have suffered previous thromboembolic events, and had significantly larger left atrial diameters, lower ejection fractions, and lower left atrial appendage emptying flow velocity. The factors independently associated with atrial fibrillation were left atrial strain (odds ratio = 7.53 [4.47-12.69], p < 0.001), right atrial pressure (odds ratio = 1.09 [1.02-1.17], p = 0.01), age (odds ratio = 1.14 [1.05-1.25], p = 0.002), and ejection fraction (odds ratio = 0.92 [0.87-0.97], p = 0.003). The area under the curve for the combined receiver operating characteristic for this model was 0.90 ± 0.12. Age, right atrial pressure, ejection fraction, and left atrial strain can be used to construct a mathematical model to predict the development of atrial fibrillation in rheumatic mitral stenosis. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.
NASA Astrophysics Data System (ADS)
Zhao, Enfa; Zhang, Yafei; Kang, Chunmiao; Niu, Hua; Zhao, Jing; Sun, Lei; Liu, Baomin
2017-03-01
The purpose of this study was to investigate the influence of the Valsalva maneuver (VM) on cardiac hemodynamics in patients with patent foramen ovale (PFO). Sixty-five patients who were highly suspected to have PFO were included. The changes in E, A, E/A ratio of mitral valve blood flow, E, A, E/A ratio of tricuspid valve blood flow, left ventricular end-diastolic volume, area and right atrial area during the resting state and the strain phase of the Valsalva maneuver were observed by transthoracic echocardiography (TTE). Statistical analyses were performed using SPSS Version18.0. Compared to the resting state, mitral valve diastolic velocity E and A peaks at the strain phase of the Valsalva maneuver significantly decreased (P < 0.05), left ventricular end diastolic volume(LVEDV) and area(LVEDA) decreased significantly (P < 0.05), while E/A ratio of mitral valve, tricuspid valve systolic velocity E and A peaks and E/A ratio remained unchanged (P > 0.05). PFO hemodynamic changes mainly occurred in the left ventricle when the Valsalva maneuver was performed. The Valsalva maneuver increased pressure in the chest, then pulmonary venous return was impeded, which resulted in left ventricular limited filling, and E and A peaks decreased. The pressure of the left ventricle and atrium was lower than that of the right side, which resulted in right-to-left shunt (RLS) through PFO.
Effects of pimobendan for mitral valve regurgitation in dogs.
Kanno, Nobuyuki; Kuse, Hiroshi; Kawasaki, Masaya; Hara, Akashi; Kano, Rui; Sasaki, Yoshihide
2007-04-01
Pimobendan has a dual mechanism of action: it increases myocardial contractility by increasing calcium sensitization to troponin C and it promotes vasodilation by inhibiting PDEIII. This study examined the effects of pimobendan on cardiac function, hemodynamics, and neurohormonal factors in dogs with mild mitral regurgitation (MR). The dogs were given 0.25 mg/kg of pimobendan orally every 12 hr for 4 weeks. With pimobendan, the heart rate and stroke volume did not change, but the systolic blood pressure gradually decreased and the degree of mitral valve regurgitation tended to decrease. Renal blood flow was significantly increased and the glomerular filtration rate was slightly increased at 2 and 4 weeks. Furthermore, over the 4-week period, the plasma norepinephrine concentration decreased significantly, the systolic index increased slightly, the left atrial diameter and the left ventricular diameters decreased significantly, and the heart size improved. Given these results, pimobendan appears to be useful for treating MR in dogs. However, further long-term studies of pimobendan involving a larger number of dogs with mild and moderate MR are needed to establish the safety of pimobendan and document improvements in quality of life.
The readability and suitability of sexual health promotion leaflets.
Corcoran, Nova; Ahmad, Fatuma
2016-02-01
To investigate the readability and suitability of sexual health promotion leaflets. Application of SMOG, FRY and SAM tests to assess the readability and suitability of a selection of sexual health leaflets. SMOG and FRY scores illustrate an average reading level of grade 9. SAM scores indicate that 59% of leaflets are superior in design and 41% are average in design. Leaflets generally perform well in the categories of content, literacy demand, typography and layout. They perform poorly in use of graphics, learning stimulation/motivation and cultural appropriateness. Sexual health leaflets have a reading level that is too high. Leaflets perform well on the suitability scores indicating they are reasonably suitable. There are a number of areas where sexual health leaflets could improve their design. Numerous practical techniques are suggested for improving the readability and suitability of sexual health leaflets. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Martin, Caitlin
2014-01-01
One of the major failure modes of bioprosthetic heart valves (BHVs) is noncalcific structural deterioration due to fatigue of the tissue leaflets; yet, the mechanisms of fatigue are not well understood. BHV durability is primarily assessed based on visual inspection of the leaflets following accelerated wear testing. In this study, we developed a computational framework to simulate BHV leaflet fatigue, which is both efficient and quantitative, making it an attractive alternative to traditional accelerated wear testing. We utilize a phenomenological soft tissue fatigue damage model developed previously to describe the stress softening and permanent set of the glutaraldehyde-treated bovine pericardium leaflets in BHVs subjected to cyclic loading. A parametric study was conducted to determine the effects of altered leaflet and stent elastic properties on the fatigue of the leaflets. The simulation results show that heterogeneity of the leaflet elastic properties, poor leaflet coaptation, and little stent-tip deflection may accelerate leaflet fatigue, which agrees with clinical findings. Therefore, the developed framework may be an invaluable tool for evaluating leaflet durability in new tissue valve designs, including traditional BHVs as well as new transcatheter valves. PMID:24092257
Content analysis of nutritional information in paediatric oral health education leaflets.
Arora, Amit; Doan, Jenny; Martinez, Jessamine; Phan, Colin; Kolt, Gregory S; Bhole, Sameer; Harris, Mark Fort; Scott, Jane Anne; Hector, Debra
2017-02-20
The aim of this study was to determine if paediatric oral health education leaflets with a food and nutritional focus provide messages that are clear and consistent with the current Australian Dietary Guidelines and the Infant Feeding Guidelines. Forty-three leaflets aimed at parents were sourced from Australian state and territory Health Departments, oral health industry partners and commercial organisations, and a content analysis was performed. Recommendations on food and drink type, consumption frequency and general diet and nutrition advice were considered and cross-referenced with the Australian Dietary Guidelines and the Infant Feeding Guidelines to identify areas of consistency and discrepancy. Twenty leaflets recommended reducing the consumption of sugary and/or acidic food, while 23 leaflets recommended reducing the consumption of sugary and/or acidic drinks. The majority of the leaflets advised water (n = 35) and milk (n = 23) to drink. Although 33 leaflets encouraged a healthy diet, seven of these did not specify what a healthy diet was. Twenty-eight leaflets provided early childhood-related (0-2 years) feeding advice. Confusing messages were found in nine leaflets, with ambiguous recommendations that were open to individual interpretation. There were some inconsistencies between the leaflets and the dietary and infant feeding guidelines in Australia; and across the leaflets, as not all important messages were included in any one leaflet. Government Health Departments and other relevant agencies should ensure that advisory messages regarding diet, particularly those with dental implications, are clear, complete and consistent across all dental educational leaflets.
Crutches, confetti or useful tools? Professionals' views on and use of health education leaflets.
Murphy, S; Smith, C
1993-06-01
This paper examines the views on and use of health education leaflets by a number of professional groups: health visitors, midwives, occupational health workers, pharmacists and school health education co-ordinators. Eighty nine percent currently obtain leaflets from health promotion units, with the exception of health visitors, professionals are largely satisfied with the units' service. Seventy six percent use commercial or sponsored leaflets primarily because of the large numbers and topics that are available. The numbers and type of leaflets used were found to vary across the professions. All professionals see an increasingly important role for leaflets in their work. A number of them, pharmacists and occupational health workers in particular, saw the numbers they use rising. These views were accompanied by lower levels of belief in a leaflets ability to increase knowledge and behaviour as well as lower levels of satisfaction with current leaflet use and a concern over the public's reception of leaflets. Methods of leaflet distribution to the public largely reflect the professionals' work contexts. Most popular were handing out leaflets with advice, leaving them in a public place and using them as a back-up to a meeting. A number of contradictions emerge between distribution practices and perceived effectiveness. Few professionals thought leaving leaflets in a public place was effective, and few health visitors and midwives believed giving leaflets to the family of a client was effective despite large numbers doing so. The implications of these findings for health promotion policy and practice are discussed.
Particle Image Velocimetry studies of bicuspid aortic valve hemodynamics
NASA Astrophysics Data System (ADS)
Saikrishnan, Neelakantan; Yap, Choon-Hwai; Yoganathan, Ajit P.
2010-11-01
Bicuspid aortic valves (BAVs) are a congenital anomaly of the aortic valve with two fused leaflets, affecting about 1-2% of the population. BAV patients have much higher incidence of valve calcification & aortic dilatation, which may be related to altered mechanical forces from BAV hemodynamics. This study aims to characterize BAV hemodynamics using Particle Image Velocimetry(PIV). BAV models are constructed from normal explanted porcine aortic valves by suturing two leaflets together. The valves are mounted in an acrylic chamber with two sinuses & tested in a pulsatile flow loop at physiological conditions. 2D PIV is performed to obtain flow fields in three planes downstream of the valve. The stenosed BAV causes an eccentric jet, resulting in a very strong vortex in the normal sinus. The bicuspid sinus vortex appears much weaker, but more unstable. Unsteady oscillatory shear stresses are also observed, which have been associated with adverse biological response; characterization of the hemodynamics of BAVs will provide the first step to understanding these processes better. Results from multiple BAV models of varying levels of stenosis will be presented & higher stenosis corresponded to stronger jets & increased aortic wall shear stresses.
A bio-inspired microstructure induced by slow injection moulding of cylindrical block copolymers.
Stasiak, Joanna; Brubert, Jacob; Serrani, Marta; Nair, Sukumaran; de Gaetano, Francesco; Costantino, Maria Laura; Moggridge, Geoff D
2014-08-28
It is well known that block copolymers with cylindrical morphology show alignment with shear, resulting in anisotropic mechanical properties. Here we show that well-ordered bi-directional orientation can be achieved in such materials by slow injection moulding. This results in a microstructure, and anisotropic mechanical properties, similar to many natural tissues, making this method attractive for engineering prosthetic fibrous tissues. An application of particular interest to us is prosthetic polymeric heart valve leaflets, mimicking the shape, microstructure and hence performance of the native valve. Anisotropic layers have been observed for cylinder-forming block copolymers centrally injected into thin circular discs. The skin layers exhibit orientation parallel to the flow direction, whilst the core layer shows perpendicularly oriented domains; the balance of skin to core layers can be controlled by processing parameters such as temperature and injection rate. Heart valve leaflets with a similar layered structure have been prepared by injection moulding. Numerical modelling demonstrates that such complex orientation can be explained and predicted by the balance of shear and extensional flow.
Characterization of Fluid Flow through a Simplified Heart Valve Model
NASA Astrophysics Data System (ADS)
Katija, Kakani
2005-11-01
Research has shown that the leading vortex of a starting jet makes a larger contribution to mass transport than a straight jet. Physical processes terminate growth of the leading vortex ring at a stroke ratio (L/D) between 3.5 and 4.5. This has enhanced the idea that biological systems optimize vortex formation for fluid transport. Of present interest is how fluid transport through a heart valve induces flutter of the valve leaflets. An attempt to characterize the fluid flow through a heart valve was made using a simplified cylinder-string system. Experiments were conducted in a water tank where a piston pushed fluid out of a cylinder (of diameter D) into surrounding fluid. A latex string was attached to the end of the cylinder to simulate a heart valve leaflet. The FFT of the string motion was computed to quantify the flutter behavior observed in the cylinder-string system. By increasing the stroke ratio, the amplitude of transverse oscillations for all string lengths increases. For the string length D/2, the occurrence of flutter coincides with the formation of the vortex ring trailing jet.
Heg1 and Ccm1/2 proteins control endocardial mechanosensitivity during zebrafish valvulogenesis
Otten, Cécile; Renz, Marc
2018-01-01
Endothelial cells respond to different levels of fluid shear stress through adaptations of their mechanosensitivity. Currently, we lack a good understanding of how this contributes to sculpting of the cardiovascular system. Cerebral cavernous malformation (CCM) is an inherited vascular disease that occurs when a second somatic mutation causes a loss of CCM1/KRIT1, CCM2, or CCM3 proteins. Here, we demonstrate that zebrafish Krit1 regulates the formation of cardiac valves. Expression of heg1, which encodes a binding partner of Krit1, is positively regulated by blood-flow. In turn, Heg1 stabilizes levels of Krit1 protein, and both Heg1 and Krit1 dampen expression levels of klf2a, a major mechanosensitive gene. Conversely, loss of Krit1 results in increased expression of klf2a and notch1b throughout the endocardium and prevents cardiac valve leaflet formation. Hence, the correct balance of blood-flow-dependent induction and Krit1 protein-mediated repression of klf2a and notch1b ultimately shapes cardiac valve leaflet morphology. PMID:29364115
Aortic or Mitral Valve Replacement With the Biocor and Biocor Supra
2017-04-26
Aortic Valve Insufficiency; Aortic Valve Regurgitation; Aortic Valve Stenosis; Aortic Valve Incompetence; Mitral Valve Insufficiency; Mitral Valve Regurgitation; Mitral Valve Stenosis; Mitral Valve Incompetence
Advertising, expectations and informed consent: the contents and functions of acupuncture leaflets.
Bishop, Felicity L; Salmon, Cathy
2013-12-01
To evaluate the content of patient information leaflets about acupuncture. 401 patient information leaflets were obtained from practising UK acupuncturists and subjected to content and thematic analysis. 59% of included leaflets were from NHS physiotherapists. Almost all the leaflets defined acupuncture and the majority explained how it might work, described the treatment process and placed it in a historical context. Most described possible benefits and risks of acupuncture and discussed contraindications and safety. Just under a third of leaflets (120, 30%) suggested conditions that might be helped by acupuncture, most commonly musculoskeletal pain, arthritis and injuries. By emphasising differences between individuals in acupuncture treatments and responsiveness, the leaflets fostered hope for positive effects without making any guarantees. Information leaflets are broadly consistent with the evidence for acupuncture, but some claims are inconsistent with official advice from advertising regulators. An ethically sound, scientifically grounded and psychologically effective leaflet should accurately convey both benefits and risks of treatment, optimise patients' expectations and allay concerns about needling. This study suggests that acupuncture leaflets might achieve these multiple functions but care should be taken to ensure adequate coverage of risks.
Real-time 3D visualization of cellular rearrangements during cardiac valve formation
Pestel, Jenny; Ramadass, Radhan; Gauvrit, Sebastien; Helker, Christian; Herzog, Wiebke
2016-01-01
During cardiac valve development, the single-layered endocardial sheet at the atrioventricular canal (AVC) is remodeled into multilayered immature valve leaflets. Most of our knowledge about this process comes from examining fixed samples that do not allow a real-time appreciation of the intricacies of valve formation. Here, we exploit non-invasive in vivo imaging techniques to identify the dynamic cell behaviors that lead to the formation of the immature valve leaflets. We find that in zebrafish, the valve leaflets consist of two sets of endocardial cells at the luminal and abluminal side, which we refer to as luminal cells (LCs) and abluminal cells (ALCs), respectively. By analyzing cellular rearrangements during valve formation, we observed that the LCs and ALCs originate from the atrium and ventricle, respectively. Furthermore, we utilized Wnt/β-catenin and Notch signaling reporter lines to distinguish between the LCs and ALCs, and also found that cardiac contractility and/or blood flow is necessary for the endocardial expression of these signaling reporters. Thus, our 3D analyses of cardiac valve formation in zebrafish provide fundamental insights into the cellular rearrangements underlying this process. PMID:27302398
Real-time 3D visualization of cellular rearrangements during cardiac valve formation.
Pestel, Jenny; Ramadass, Radhan; Gauvrit, Sebastien; Helker, Christian; Herzog, Wiebke; Stainier, Didier Y R
2016-06-15
During cardiac valve development, the single-layered endocardial sheet at the atrioventricular canal (AVC) is remodeled into multilayered immature valve leaflets. Most of our knowledge about this process comes from examining fixed samples that do not allow a real-time appreciation of the intricacies of valve formation. Here, we exploit non-invasive in vivo imaging techniques to identify the dynamic cell behaviors that lead to the formation of the immature valve leaflets. We find that in zebrafish, the valve leaflets consist of two sets of endocardial cells at the luminal and abluminal side, which we refer to as luminal cells (LCs) and abluminal cells (ALCs), respectively. By analyzing cellular rearrangements during valve formation, we observed that the LCs and ALCs originate from the atrium and ventricle, respectively. Furthermore, we utilized Wnt/β-catenin and Notch signaling reporter lines to distinguish between the LCs and ALCs, and also found that cardiac contractility and/or blood flow is necessary for the endocardial expression of these signaling reporters. Thus, our 3D analyses of cardiac valve formation in zebrafish provide fundamental insights into the cellular rearrangements underlying this process. © 2016. Published by The Company of Biologists Ltd.
Xuan, Yue; Krishnan, Kapil; Ye, Jian; Dvir, Danny; Guccione, Julius M; Ge, Liang; Tseng, Elaine E
2017-05-01
Transcatheter aortic valve replacement is established therapy for high-risk and inoperable patients with severe aortic stenosis, but questions remain regarding long-term durability. Valve design influences durability. Increased leaflet stresses in surgical bioprostheses have been correlated with degeneration; however, transcatheter valve leaflet stresses are unknown. From 2007 to 2014, a majority of US patients received first-generation balloon-expandable transcatheter valves. Our goal was to determine stent and leaflet stresses in this valve design using finite element analyses. A 26-mm Sapien Transcatheter Heart Valve (Edwards Lifesciences, Inc, Irvine, Calif) underwent high-resolution microcomputed tomography scanning to develop precise 3-dimensional geometry of the leaflets, the stent, and the polyethylene terephthalate elements. The stent was modeled using 3-dimensional elements and the leaflets were modeled using shell elements. Stent material properties were based on stainless steel, whereas those for leaflets were obtained from surgical bioprostheses. Noncylindrical Sapien valve geometry was also simulated. Pressure loading to 80 mm Hg and 120 mm Hg was performed using ABAQUS finite element software (Dassault Systèmes, Waltham, Mass). At 80 mm Hg, maximum principal stresses on Sapien leaflets were 1.31 megaspascals (MPa). Peak leaflet stress was observed at commissural tips where leaflets connected to the stent. Maximum principal stresses for the stent were 188.91 MPa and located at stent tips where leaflet commissures were attached. Noncylindrical geometry increased peak principal leaflet stresses by 16%. Using exact geometry from high-resolution scans, the 26-mm Sapien Transcatheter Heart Valve showed that peak stresses for both stent and leaflets were present at commissural tips where leaflets were attached. These regions would be prone to leaflet degeneration. Understanding stresses in first-generation transcatheter valves allows comparison to future designs for relative durability. Copyright © 2017 The American Association for Thoracic Surgery. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Poręba, Rafał, E-mail: sogood@poczta.onet.pl; Skoczyńska, Anna; Gać, Paweł
2012-09-15
The aim of the study was to evaluate left ventricular diastolic function in workers occupationally exposed to mercury vapour without clinical presentation of cardiac involvement. The studies included 115 workers (92 men and 23 women) occupationally exposed to mercury vapour without clinical presentation of cardiac involvement (mean age: 47.83 ± 8.29). Blood samples were taken to determine blood lipid profile, urine was collected to estimate mercury concentration (Hg-U) and echocardiographic examination was performed to evaluate diastolic function of the left ventricle. In the entire group of workers occupationally exposed to mercury vapour without clinical presentation of cardiac involvement, Spearman correlationsmore » analysis demonstrated the following significant linear relationships: between body mass index (BMI) and ratio of maximal early diastolic mitral flow velocity/early diastolic mitral annular velocity (E/E') (r = 0.32, p < 0.05), between serum HDL concentration and E/E' (r = − 0.22, p < 0.05), between Hg-U and E/E' (r = 0.35, p < 0.05), between Hg-U and isovolumetric relaxation time (IVRT') (r = 0.41, p < 0.05), between Hg-U and ratio of maximal early diastolic mitral flow velocity/maximal late diastolic mitral flow velocity (E/A) (r = − 0.31, p < 0.05) and between serum HDL concentration and E/A (r = 0.43, p < 0,05). In logistic regression analysis it as shown that independent factors of left ventricular diastolic dysfunction risk in the study group included a higher urine mercury concentration, a higher value of BMI and a lower serum HDL concentration (OR{sub Hg}-{sub U} = 1.071, OR{sub BMI} = 1.200, OR{sub HDL} = 0.896, p < 0.05). Summing up, occupational exposure to mercury vapour may be linked to impaired left ventricular diastolic function in workers without clinical presentation of cardiac involvement. -- Highlights: ► Study aimed at evaluation of LVDD in workers occupationally exposed to Hg. ► There was significant linear relationships between Hg-U and E/E'. ► Independent risk factor of LVDD in study group included higher Hg-U. ► Independent risk factor of LVDD in study group included higher BMI and lower HDL. ► Occupational exposure to Hg may be linked to LVDD.« less
Inoue Balloon Mitral Valvotomy in a 4-Year-Old Boy
Kapoor, Aditya; Moorthy, Nagaraja; Kumar, Sudeep
2012-01-01
Mitral stenosis in children often has a fulminant and rapid course. Percutaneous transvenous mitral commissurotomy is accepted as the treatment of choice for mitral stenosis not only in adults, but also in younger patients who have pliable valves. Balloon mitral valvotomy has yielded good immediate and long-term results. Herein, we report successful Inoue balloon mitral valvotomy in a 4-year-old boy who had severe, symptomatic rheumatic mitral stenosis. To our knowledge, our patient is the youngest to have undergone this procedure. In addition to the case description, we discuss the features of juvenile rheumatic mitral stenosis and several technical aspects of performing the Inoue balloon mitral valvotomy procedure in children. PMID:22412242
Percutaneous transluminal mitral commissurotomy for rheumatic mitral stenosis in a 5-year-old child.
Ullah, Maad; Sultan, Mehboob; Akbar, Hajira; Sadiq, Nadeem
2012-06-01
We report a 5-year-old boy weighing 11 kg, with severe mitral valve stenosis of rheumatic aetiology, who underwent successful percutaneous transluminal mitral commissurotomy (PTMC) with valvuloplasty balloon. Postprocedural mean pressure gradient across the mitral valve decreased to 6 mmHg from an initially recorded value of 22 mmHg. In addition to symptomatic improvement, the mitral valvular area increased from 0.4 to 0.8 cm(2) without significant change in mitral regurgitation. At 1- and 3-month follow up, transthoracic echocardiography revealed further improvement with an increase in mitral valve area to 1.0 cm(2), a decrease in pulmonary arterial pressure, and a mean mitral valve pressure gradient of 8 mmHg with trivial mitral regurgitation. To best of our knowledge, this is the first successful PTMC procedure performed in the youngest and smallest ever reported child with rheumatic mitral stenosis (MS). We conclude that PTMC with valvuloplasty balloon could be a logical alternative to surgery in young patients with rheumatic MS.
Lu, LinXiang; Hong, Lang; Fang, Jun; Chen, LiangLong
2016-01-01
This study is designed to test whether percutaneous balloon mitral valvuloplasty (PBMV) is effective for rheumatic mitral stenosis in Chinese patients with moderate to severe mitral regurgitation. Fifty-six patients with rheumatic mitral valve stenosis were divided into the mild, moderate, and severe regurgitation groups. Cardiac ultrasonography was measured before and 1 to 2 days after PBMV. Following PBMV, the mitral orifice was enlarged, and the left atrial diameter was reduced in the 3 patient groups. The enlargement of the mitral orifice in the mild regurgitation group was greater than that observed in the moderate and severe regurgitation groups. The size of the regurgitation area increased in the mild regurgitation group and decreased in the moderate and severe regurgitation groups, with the decrease in the severe regurgitation group being greater than that in the moderate regurgitation group. Therefore, PBMV is effective for treating rheumatic mitral stenosis in Chinese patients with mild to severe mitral regurgitation. PMID:27034933
Helder, Meghana R K; Schaff, Hartzell V; Dearani, Joseph A; Li, Zhuo; Stulak, John M; Suri, Rakesh M; Connolly, Heidi M
2014-09-01
The study objective was to evaluate patients with Marfan syndrome and mitral valve regurgitation undergoing valve repair or replacement and to compare them with patients undergoing repair for myxomatous mitral valve disease. We reviewed the medical records of consecutive patients with Marfan syndrome treated surgically between March 17, 1960, and September 12, 2011, for mitral regurgitation and performed a subanalysis of those with repairs compared with case-matched patients with myxomatous mitral valve disease who had repairs (March 14, 1995, to July 5, 2013). Of 61 consecutive patients, 40 underwent mitral repair and 21 underwent mitral replacement (mean [standard deviation] age, 40 [18] vs 31 [19] years; P = .09). Concomitant aortic surgery was performed to a similar extent (repair, 45% [18/40] vs replacement, 43% [9/21]; P = .87). Ten-year survival was significantly better in patients with Marfan syndrome with mitral repair than in those with replacement (80% vs 41%; P = .01). Mitral reintervention did not differ between mitral repair and replacement (cumulative risk of reoperation, 27% vs 15%; P = .64). In the matched cohort, 10-year survival after repair was similar for patients with Marfan syndrome and myxomatous mitral disease (84% vs 78%; P = .63), as was cumulative risk of reoperation (17% vs 12%; P = .61). Patients with Marfan syndrome and mitral regurgitation have better survival with repair than with replacement. Survival and risk of reoperation for patients with Marfan syndrome were similar to those for patients with myxomatous mitral disease. These results support the use of mitral valve repair in patients with Marfan syndrome and moderate or more mitral regurgitation, including those having composite replacement of the aortic root. Copyright © 2014 The American Association for Thoracic Surgery. Published by Mosby, Inc. All rights reserved.
'What do patients want?' Tailoring medicines information to meet patients' needs.
Young, Amber; Tordoff, June; Smith, Alesha
2017-11-01
Medicines information leaflets can equip patients to be in control of their own healthcare and support the safe and effective use of medicines. The design and content of leaflets influences patients' willingness to read them, and poor examples can cause patient confusion and anxiety. Researchers examined the literature over the past 8 years to determine the content and design of medicine information leaflets that patients prefer in order to read, understand, and use them effectively. It was found that existing leaflets do not meet patients' needs and appear ineffective. Leaflets lack the information patients seek and may contain non-essential material, affecting patients' perception of, and willingness to read them. Additionally, the acceptable leaflet length varies between patients. Application of good design principles improves readability, comprehension, and ability to locate information. Medicine information leaflets must meet patients' needs and be well designed. Tailoring information leaflets to patient characteristics and requirements would enhance effectiveness. Passive provision of pre-printed leaflets is outdated, unvalued and ineffective. Using automated computer systems for leaflet tailoring with the ability to further adapt patients' information might be the best way forward. Copyright © 2016 Elsevier Inc. All rights reserved.
Sweet, W D; Schroeder, F
1986-01-01
The functional consequences of the differences in lipid composition and structure between the two leaflets of the plasma membrane were investigated. Fluorescence of 1,6-diphenylhexa-1,3,5-triene(DPH), quenching, and differential polarized phase fluorimetry demonstrated selective fluidization by local anaesthetics of individual leaflets in isolated LM-cell plasma membranes. As measured by decreased limiting anisotropy of DPH fluorescence, cationic (prilocaine) and anionic (phenobarbital and pentobarbital) amphipaths preferentially fluidized the cytofacial and exofacial leaflets respectively. Unlike prilocaine, procaine, also a cation, fluidized both leaflets of these membranes equally. Pentobarbital stimulated 5'-nucleotidase between 0.1 and 5 mM and inhibited at higher concentrations, whereas phenobarbital only inhibited, at higher concentrations. Cationic drugs were ineffective. Two maxima of (Na+ + K+)-ATPase activation were obtained with both anionic drugs. Only one activation maximum was obtained with both cationic drugs. The maximum in activity below 1 mM for all four drugs clustered about a single limiting anisotropy value in the cytofacial leaflet, whereas there was no correlation between activity and limiting anisotropy in the exofacial leaflets. Therefore, although phenobarbital and pentobarbital below 1 mM fluidized the exofacial leaflet more than the cytofacial leaflet, the smaller fluidization in the cytofacial leaflet was functionally significant for (Na+ + K+)-ATPase. Mg2+-ATPase was stimulated at 1 mM-phenobarbital, unaffected by pentobarbital and slightly stimulated by both cationic drugs at concentrations fluidizing both leaflets. Thus the activity of (Na+ + K+)-ATPase was highly sensitive to selective fluidization of the leaflet containing its active site, whereas the other enzymes examined were little affected by fluidization of either leaflet. PMID:3028369
Arora, Amit; Al-Salti, Ibrahim; Murad, Hussam; Tran, Quang; Itaoui, Rhonda; Bhole, Sameer; Ajwani, Shilpi; Jones, Charlotte; Manohar, Narendar
2018-01-10
The purpose of this study was to gain an in-depth understanding of Arabic-speaking mothers views on the usefulness of existing oral health education leaflets aimed at young children and also to record their views on the tailored versions of these leaflets. This qualitative study was nested within a large ongoing birth cohort study in South Western Sydney, Australia. Arabic-speaking mothers (n = 19) with young children were purposively selected and approached for a semi-structured interview. Two original English leaflets giving advice on young children's oral health were sent to mother's prior to the interview. On the day of interview, mothers were given simplified-English and Arabic versions of both the leaflets and were asked to compare the three versions. Interviews were audio-recorded, subsequently transcribed verbatim and analysed by thematic analysis. Ethical approval was obtained from Human Research Ethics Committees of the former Sydney South West Area Health Service, University of Sydney and Western Sydney University. Mothers reported that simplified English together with the Arabic version of the leaflets were useful sources of information. Although many mothers favoured the simplified version over original English leaflets, the majority favoured the leaflets in Arabic. Ideally, a "dual Arabic - simplified English leaflet" was preferred. The understanding of key health messages was optimised through a simple layout and visual images. There is a need to tailor oral health education leaflets for Arabic-speaking migrants. Producers of dental leaflets should also consider a "dual Arabic - simplified English leaflet" to improve oral health knowledge of Arabic-speaking migrants. The use of simple layout and pictures assists Arabic-speaking migrants to understand the content of dental leaflets.
Li, Kewei; Sun, Wei
2017-03-01
In this study, we developed a computational framework to investigate the impact of leaflet geometry of a transcatheter aortic valve (TAV) on the leaflet stress distribution, aiming at optimizing TAV leaflet design to reduce its peak stress. Utilizing a generic TAV model developed previously [Li and Sun, Annals of Biomedical Engineering, 2010. 38(8): 2690-2701], we first parameterized the 2D leaflet geometry by mathematical equations, then by perturbing the parameters of the equations, we could automatically generate a new leaflet design, remesh the 2D leaflet model and build a 3D leaflet model from the 2D design via a Python script. Approximately 500 different leaflet designs were investigated by simulating TAV closure under the nominal circular deployment and physiological loading conditions. From the simulation results, we identified a new leaflet design that could reduce the previously reported valve peak stress by about 5%. The parametric analysis also revealed that increasing the free edge width had the highest overall impact on decreasing the peak stress. A similar computational analysis was further performed for a TAV deployed in an abnormal, asymmetric elliptical configuration. We found that a minimal free edge height of 0.46 mm should be adopted to prevent central backflow leakage. This increase of the free edge height resulted in an increase of the leaflet peak stress. Furthermore, the parametric study revealed a complex response surface for the impact of the leaflet geometric parameters on the peak stress, underscoring the importance of performing a numerical optimization to obtain the optimal TAV leaflet design. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
All in the family: matrimonial mitral valve clicks.
Desser, K B; Bokhari, S I; Benchimol, A; Romney, D
1981-05-01
Mitral valve clicks with or without late systolic murmurs were detected in genetically unrelated marital partners of 5 families. The first family represented 2 successive nonconsanguineous marital unions with 3 generations of mitral valve clicks. The second family included 1 natural and 2 adopted children with clinical and echographic evidence of mitral valve prolapse. The third family was comprised of asymptomatic parents, both with nonejection clicks and mitral valve prolapse, whose daughter presented 3 years previously with syncope, palpitations, and combined mitral and tricuspid valve prolapse. The fourth family had 3 members with auscultatory and ultrasonic manifestations of billowing mitral valve, whereas the fourth member had "silent mitral valve prolapse." The fifth family represented a mother with auscultatory and echographic evidence of mitral valve prolapse; her 14-year-old daughter had both mitral and tricuspid valve prolapse, whereas the son had a bicuspid aortic valve. Both children were products of a prior marriage, and her husband has symptomatic mitral valve prolapse. We conclude that matrimonial mitral valve prolapse probably reflects the purported (6--10%) prevalence of this disorder in the general population. The consequences of such marital union on progeny is currently unclear and warrants future investigation.
Mizuno, T; Mizukoshi, T; Uechi, M
2013-02-01
Mitral valve repair under cardiopulmonary bypass was performed in three dogs with clinical signs associated with mitral regurgitation that were not controlled by medication. Mitral valve repair comprised circumferential annuloplasty and chordal replacement with expanded polytetrafluoroethylene. One dog died 2 years after surgery because of severe mitral regurgitation resulting from partial circumferential suture detachment. The others survived for over 5 years, but mild mitral valve stenosis persisted in one. The replaced chordae did not rupture in any dog. Mitral valve repair appears to be an effective treatment for mitral regurgitation in dogs. Chordal replacement with expanded polytetrafluoroethylene is a feasible technique, demonstrating long-term durability in dogs. However, mitral annuloplasty techniques need improvement. © 2012 British Small Animal Veterinary Association.
Transesophageal color Doppler evaluation of obstructive lesions using the new "Quasar" technology.
Fan, P; Nanda, N C; Gatewood, R P; Cape, E G; Yoganathan, A P
1995-01-01
Due to the unavoidable problem of aliasing, color flow signals from high blood flow velocities cannot be measured directly by conventional color Doppler. A new technology termed Quantitative Un-Aliased Speed Algorithm Recognition (Quasar) has been developed to overcome this limitation. Employing this technology, we used transesophageal color Doppler echocardiography to investigate whether the velocities detected by the Quasar would correlate with those obtained by continuous-wave Doppler both in vitro and in vivo. In the in vitro study, a 5.0 MHz transesophageal transducer of a Kontron Sigma 44 color Doppler flow system was used. Fourteen different peak velocities calculated and recorded by color Doppler-guided continuous-wave Doppler were randomly selected. In the clinical study, intraoperative transesophageal echocardiography was performed using the same transducer 18 adults (13 aortic valve stenosis, 2 aortic and 2 mitral stenosis, 2 hypertrophic obstructive cardiomyopathy and 1 mitral valve stenosis). Following each continuous-wave Doppler measurement, the Quasar was activated, and a small Quasar marker was placed in the brightest area of the color flow jet to obtain the maximum mean velocity readout. The maximum mean velocities measured by Quasar closely correlated with maximum peak velocities obtained by color flow guided continuous-wave Doppler in both in vitro (0.53 to 1.65 m/s, r = 0.99) and in vivo studies (1.50 to 6.01 m/s, r = 0.97). We conclude that the new Quasar technology can accurately measure high blood flow velocities during transesophageal color Doppler echocardiography. This technique has the potential of obviating the need for continuous-wave Doppler.
NASA Astrophysics Data System (ADS)
Pitton, Giuseppe; Quaini, Annalisa; Rozza, Gianluigi
2017-09-01
We focus on reducing the computational costs associated with the hydrodynamic stability of solutions of the incompressible Navier-Stokes equations for a Newtonian and viscous fluid in contraction-expansion channels. In particular, we are interested in studying steady bifurcations, occurring when non-unique stable solutions appear as physical and/or geometric control parameters are varied. The formulation of the stability problem requires solving an eigenvalue problem for a partial differential operator. An alternative to this approach is the direct simulation of the flow to characterize the asymptotic behavior of the solution. Both approaches can be extremely expensive in terms of computational time. We propose to apply Reduced Order Modeling (ROM) techniques to reduce the demanding computational costs associated with the detection of a type of steady bifurcations in fluid dynamics. The application that motivated the present study is the onset of asymmetries (i.e., symmetry breaking bifurcation) in blood flow through a regurgitant mitral valve, depending on the Reynolds number and the regurgitant mitral valve orifice shape.
Gehlen, H; Kroker, K; Deegen, E; Stadler, P
2004-03-01
30 warmblood horses were examined before and after sedation with 20 micrograms/kg BW detomidine, to determine changes of cardiac function parameters, using B-mode, M-mode and Doppler echocardiography. 15 horses showed a heart murmur, but no clinical signs of cardiac heart failure, 15 horses had neither a heart murmur nor other signs of cardiac disease. After sedation with detomidine we could recognise a significant increase of end-diastolic left atrium diameter, an increase of end-systolic left ventricular diameter and aortic root diameter. The end-systolic thickness of papillary muscle and interventricular septum showed a decrease. Fractional shortening and amplitude of left ventricular wall motion was decreased after sedation. The mitral valve echogram revealed a presystolic valve closure and an inflection in the Ac slope (B-notch) in xy horses before sedation. Both increased after sedation with detomidine. Doppler echocardiography showed a decrease of blood flow velocity and velocity time integral (VTI) in the left and right ventricular outflow tract after sedation. Regurgitant flow signals were intensified following sedation in xy horses, especially at the mitral valve.
Heart valve replacement with the Sorin tilting-disc prosthesis. A 10-year experience.
Milano, A; Bortolotti, U; Mazzucco, A; Mossuto, E; Testolin, L; Thiene, G; Gallucci, V
1992-02-01
From 1978 to 1988, 697 patients with a mean age of 48 +/- 11 years (range 5 to 75 years) received a Sorin tilting-disc prosthesis; 358 had had aortic valve replacement, 247 mitral valve replacement, and 92 mitral and aortic valve replacement. Operative mortality rates were 7.8%, 11.3%, and 10.8%, respectively, in the three groups. Cumulative duration of follow-up is 1650 patient-years for aortic valve replacement (maximum follow-up 11.4 years), 963 patient-years for mitral valve replacement (maximum follow-up 9.9 years) and 328 patient-years for mitral and aortic valve replacement (maximum follow-up 9.4 years). Actuarial survival at 9 years is 72% +/- 4% after mitral valve replacement, 70% +/- 3% after aortic valve replacement, and 50% +/- 12% after mitral and aortic valve replacement, and actuarial freedom from valve-related deaths is 97% +/- 2% after mitral valve replacement, 92% +/- 2% after aortic valve replacement, and 62% +/- 15% after mitral and aortic valve replacement. Thromboembolic events occurred in 21 patients with aortic valve replacement (1.3% +/- 0.2%/pt-yr), in 12 with mitral valve replacement (1.2% +/- 0.3% pt-yr), and in seven with mitral and aortic valve replacement (2.1% +/- 0.8%), with one case of prosthetic thrombosis in each group; actuarial freedom from thromboembolism at 9 years is 92% +/- 3% after mitral valve replacement, 91% +/- 3% after aortic valve replacement, and 74% +/- 16% after mitral and aortic valve replacement. Anticoagulant-related hemorrhage was observed in 15 patients after aortic valve replacement (0.9% +/- 0.2%/pt-yr), in 9 after mitral valve replacement (0.9% +/- 0.3%/pt-yr), and in 6 with mitral and aortic valve replacement (0.9% +/- 0.5%/pt-yr); actuarial freedom from this complication at 9 years is 94% +/- 2% after aortic valve replacement, 91% +/- 4% after mitral valve replacement, and 68% +/- 16% after mitral and aortic valve replacement. Actuarial freedom from reoperation at 9 years is 97% +/- 2% after mitral and aortic valve replacement, 92% +/- 4% after mitral valve replacement, and 89% +/- 3% after aortic valve replacement, with no cases of mechanical fracture. The Sorin valve has shown a satisfactory long-term overall performance, comparable with other mechanical prostheses, and an excellent durability that renders it a reliable heart valve substitute for the mitral and aortic positions.
Gunning, Paul S.; Saikrishnan, Neelakantan; Yoganathan, Ajit P.; McNamara, Laoise M.
2015-01-01
Transcatheter aortic valve replacements (TAVRs) are a percutaneous alternative to surgical aortic valve replacements and are used to treat patients with aortic valve stenosis. This minimally invasive procedure relies on expansion of the TAVR stent to radially displace calcified aortic valve leaflets against the aortic root wall. However, these calcium deposits can impede the expansion of the device causing distortion of the valve stent and pericardial tissue leaflets. The objective of this study was to elucidate the impact of eccentric TAVR stent distortion on the dynamic deformation of the tissue leaflets of the prosthesis in vitro. Dual-camera stereophotogrammetry was used to measure the regional variation in strain in a leaflet of a TAVR deployed in nominal circular and eccentric (eccentricity index = 28%) orifices, representative of deployed TAVRs in vivo. It was observed that (i) eccentric stent distortion caused incorrect coaptation of the leaflets at peak diastole resulting in a ‘peel-back’ leaflet geometry that was not present in the circular valve and (ii) adverse bending of the leaflet, arising in the eccentric valve at peak diastole, caused significantly higher commissure strains compared with the circular valve in both normotensive and hypertensive pressure conditions (normotension: eccentric = 13.76 ± 2.04% versus circular = 11.77 ± 1.61%, p = 0.0014, hypertension: eccentric = 15.07 ± 1.13% versus circular = 13.56 ± 0.87%, p = 0.0042). This study reveals that eccentric distortion of a TAVR stent can have a considerable impact on dynamic leaflet deformation, inducing deleterious bending of the leaflet and increasing commissures strains, which might expedite leaflet structural failure compared to leaflets in a circular deployed valve. PMID:26674192
NASA Technical Reports Server (NTRS)
Firstenberg, M. S.; Vandervoort, P. M.; Greenberg, N. L.; Smedira, N. G.; McCarthy, P. M.; Garcia, M. J.; Thomas, J. D.
2000-01-01
OBJECTIVES: We hypothesized that color M-mode (CMM) images could be used to solve the Euler equation, yielding regional pressure gradients along the scanline, which could then be integrated to yield the unsteady Bernoulli equation and estimate noninvasively both the convective and inertial components of the transmitral pressure difference. BACKGROUND: Pulsed and continuous wave Doppler velocity measurements are routinely used clinically to assess severity of stenotic and regurgitant valves. However, only the convective component of the pressure gradient is measured, thereby neglecting the contribution of inertial forces, which may be significant, particularly for nonstenotic valves. Color M-mode provides a spatiotemporal representation of flow across the mitral valve. METHODS: In eight patients undergoing coronary artery bypass grafting, high-fidelity left atrial and ventricular pressure measurements were obtained synchronously with transmitral CMM digital recordings. The instantaneous diastolic transmitral pressure difference was computed from the M-mode spatiotemporal velocity distribution using the unsteady flow form of the Bernoulli equation and was compared to the catheter measurements. RESULTS: From 56 beats in 16 hemodynamic stages, inclusion of the inertial term ([deltapI]max = 1.78+/-1.30 mm Hg) in the noninvasive pressure difference calculation significantly increased the temporal correlation with catheter-based measurement (r = 0.35+/-0.24 vs. 0.81+/-0.15, p< 0.0001). It also allowed an accurate approximation of the peak pressure difference ([deltapc+I]max = 0.95 [delta(p)cathh]max + 0.24, r = 0.96, p<0.001, error = 0.08+/-0.54 mm Hg). CONCLUSIONS: Inertial forces are significant components of the maximal pressure drop across the normal mitral valve. These can be accurately estimated noninvasively using CMM recordings of transmitral flow, which should improve the understanding of diastolic filling and function of the heart.
Echocardiographic features of the normofunctional Labcor-Santiago pericardial bioprosthesis.
Gonzalez-Juanatey, J R; Garcia-Bengoechea, J B; Vega, M; Rubio, J; Sierra, J; Duran, D; Amaro, A; Gil, M
1994-09-01
Echocardiography was performed in 94 patients with a total of 99 normally functioning Labcor-Santiago bioprostheses, 62 in the aortic and 37 in the mitral position. The following variables were measured: peak and mean transvalvular velocities, peak and mean instantaneous pressure gradients as calculated from the modified Bernoulli equation, pressure half-time, cardiac index, stroke volume and effective orifice area (using continuity and Hatle equations). Regurgitation patterns were sought by transthoracic echocardiography (all valves) and, for selected mitral bioprostheses, by transesophageal echocardiography. Calculated mean aortic pressure gradient ranged from six to 10 mmHg and calculated effective aortic orifice area increased with ring diameter, with means of 1.27 cm2 for the 19 mm valve and 2.58 cm2 for the 27 mm valve. For mitral bioprostheses, mean pressure gradient ranged from 3.0 to 4.5 mmHg and calculated effective orifice area from 2.27 to 2.73 cm2. Only central regurgitation was observed. The Labcor-Santiago pericardial bioprostheses created little resistance to forward flow. In the small aortic root their hemodynamic performance was as good or better than that of other currently available devices. It is hoped that this new design will contribute increased in vivo mechanical durability.
Goldstein, James A; Dixon, Simon R; Douglas, Pamela S; Ohman, E Magnus; Moses, Jeffrey; Popma, Jeffrey J; O'Neill, William W
2017-10-08
The Impella 2.5 axial flow pump, which is positioned across the aortic valve, is widely employed for hemodynamic support. The present study compared structural and functional integrity of the left heart valves in patients undergoing Impella vs intra-aortic balloon pump in the randomized PROTECT II trial. Transthoracic echocardiograms were performed at baseline, 1 and 3 months in 445 patients in the PROTECT II trial. Serial studies were analyzed by an independent echocardiography core laboratory for aortic and mitral valve structure and function, and left ventricular ejection fraction (LVEF). During Impella support there was no appreciable change in the degree of baseline valvular regurgitation. There were no cases of structural derangement of the mitral or aortic valve after use of the Impella device. At 90-day follow-up, there was an average 22% relative increase in LVEF from baseline (27% ± 9 vs. 33% ± 11, P < 0.001). The present echocardiographic analysis of the PROTECT II study confirms prior observations regarding the safety of the Impella 2.5 device with respect to mitral and aortic valve function. © 2017 Wiley Periodicals, Inc.
Behavior of Bilayer Leaflets in Asymmetric Model Membranes: Atomistic Simulation Studies
Tian, Jianhui; Nickels, Jonathan; Katsaras, John; ...
2016-04-27
Spatial organization within lipid bilayers is an important feature for a range of biological processes. Leaflet compositional asymmetry and lateral lipid organization are just two of the ways in which membrane structure appears to be more complex than initially postulated by the fluid mosaic model. This raises the question of how the phase behavior in one bilayer leaflet may affect the apposing leaflet and how one begins to construct asymmetric model systems to investigate these interleaflet interactions. In this paper, we report on all-atom molecular dynamics simulations (a total of 4.1 μs) of symmetric and asymmetric bilayer systems composed ofmore » liquid-ordered (Lo) or liquid-disordered (Ld) leaflets, based on the nanodomain-forming POPC/DSPC/cholesterol system. We begin by analyzing an asymmetric bilayer with leaflets derived from simulations of symmetric Lo and Ld bilayers. In this system, we observe that the properties of the Lo and Ld leaflets are similar to those of the Lo and Ld leaflets in corresponding symmetric systems. However, it is not obvious that mixing the equilibrium structures of their symmetric counterparts is the most appropriate way to construct asymmetric bilayers nor that these structures will manifest interleaflet couplings that lead to domain registry/antiregistry. We therefore constructed and simulated four additional asymmetric bilayer systems by systematically adding or removing lipids in the Ld leaflet to mimic potential density fluctuations. We find that the number of lipids in the Ld leaflet affects its own properties, as well as those of the apposing Lo leaflet. Collectively, the simulations reveal the presence of weak acyl chain interdigitation across bilayer leaflets, suggesting that interdigitation alone does not contribute significantly to the interleaflet coupling in nonphase-separated bilayers of this chemical composition. Finally, however, the properties of both leaflets appear to be sensitive to changes in in-plane lipid packing, possibly providing a mechanism for interleaflet coupling by modulating local density and/or curvature fluctuations.« less
Mateti, Uday Venkat; Nagappa, Anantha Naik; Attur, Ravindra Prabhu; Bairy, Manohar; Nagaraju, Shankar Prasad; Mallayasamy, Surulivelrajan; Vilakkathala, Rajesh; Guddattu, Vasudev; Balkrishnan, Rajesh
2015-11-01
Patient information leaflets are universally-accepted resources to educate the patients/users about their medications, disease and lifestyle modification. The objective of the study was to prepare, validate and perform user-testing of pictogram-based patient information leaflets (P-PILs) among hemodialysis (HD) patients. The P-PILs are prepared by referring to the primary, secondary and tertiary resources. The content and pictograms of the leaflet have been validated by an expert committee consisting of three nephrologists and two academic pharmacists. The Baker Able Leaflet Design has been applied to develop the layout and design of the P-PILs. Quasi-experimental pre- and post-test design without control group was conducted on 81 HD patients for user-testing of P-PILs. The mean Baker Able Leaflet Design assessment score for English version of the leaflet was 28, and 26 for Kannada version. The overall user-testing knowledge assessment mean scores were observed to have significantly improved from 44.25 to 69.62 with p value <0.001. The overall user opinion of content and legibility of the leaflets was good. Pictogram-based patient information leaflets can be considered an effective educational tool for HD patients.
Relation of Mitral Valve Surgery Volume to Repair Rate, Durability, and Survival.
Chikwe, Joanna; Toyoda, Nana; Anyanwu, Anelechi C; Itagaki, Shinobu; Egorova, Natalia N; Boateng, Percy; El-Eshmawi, Ahmed; Adams, David H
2017-04-24
Degenerative mitral valve repair rates remain highly variable, despite established benefits of repair over replacement. The contribution of surgeon-specific factors is poorly defined. This study evaluated the influence of surgeon case volume on degenerative mitral valve repair rates and outcomes. A mandatory New York State database was queried and 5,475 patients were identified with degenerative mitral disease who underwent mitral valve operations between 2002 and 2013. Mitral repair rates, mitral reoperations within 12 months of repair, and survival were analyzed using multivariable Cox modeling and restricted cubic spline function. Median annual surgeon volume of any mitral operations was 10 (range 1 to 230), with a mean repair rate of 55% (n = 20,797 of 38,128). In the subgroup of patients with degenerative disease, the mean repair rate was 67% (n = 3,660 of 5,475), with a range of 0% to 100%. Mean repair rates ranged from 48% (n = 179 of 370) for surgeons with total annual volumes of ≤10 mitral operations to 77% (n = 1,710 of 2,216) for surgeons with total annual volumes of >50 mitral operations (p < 0.001). Higher total annual surgeon volume was associated with increased repair rates of degenerative mitral valve disease (adjusted odds ratio [OR]: 1.13 for every additional 10 mitral operations; 95% confidence interval [CI]: 1.10 to 1.17; p < 0.001); a steady decrease in reoperation risk until 25 total mitral operations annually; and improved 1-year survival (adjusted hazard ratio: 0.95 for every additional 10 operations; 95% CI: 0.92 to 0.98; p = 0.001). For surgeons with a total annual volume of ≤25 mitral operations, repair rates were higher (63.8%; n = 180 of 282) if they operated in the same institution as a surgeon with total annual mitral volumes of >50 and degenerative mitral valve repair rates of >70%, compared with surgeons operating in the other institutions (51.3%; n = 580 of 1,130) (adjusted OR: 1.79; 95% CI: 1.24 to 2.60; p < 0.001). This study suggests that individual surgeon volume is a determinant of not only mitral repair rates, but also freedom from reoperation, and survival. The data from this study support the guideline's concept of reference referral to experienced mitral surgeons to improve outcomes in patients with degenerative mitral valve disease. Copyright © 2017. Published by Elsevier Inc.
Abbasi, Mostafa; Azadani, Ali N
2017-07-01
In order to accommodate transcatheter valves to miniaturized catheters, the leaflet thickness must be reduced to a value which is typically less than that of surgical bioprostheses. The study aim was to use finite-element simulations to determine the impact of the thickness reduction on stress and strain distribution. A 23 mm transcatheter aortic valve (TAV) was modelled based on the Edwards SAPIEN XT (Edwards Lifesciences, Irvine, CA, USA). Finite-element (FE) analysis was performed using the ABAQUS/Explicit solver. An ensemble-averaged transvalvular pressure waveform measured from in-vitro tests conducted in a pulse duplicator was applied to the leaflets. Through a parametric study, uniform TAV leaflet thickness was reduced from 0.5 to 0.18 mm. By reducing leaflet thickness, significantly higher stress values were found in the leaflet's fixed edge during systole, and in the commissures during diastole. Through dynamic FE simulations, the highest stress values were found during systole in the leaflet fixed edge. In contrast, at the peak of diastole high-stress regions were mainly observed in the commissures. The peak stress was increased by 178% and 507% within the leaflets after reducing the thickness of 0.5 mm to 0.18 mm at the peak of systole and diastole, respectively. The study results indicated that, the smaller the leaflet thickness, the higher the maximum principal stress. Increased mechanical stress on TAV leaflets may lead to accelerated tissue degeneration. By using a thinner leaflet, TAV durability may not atch with that of surgical bioprostheses.
NASA Technical Reports Server (NTRS)
Sun, J. P.; Yang, X. S.; Qin, J. X.; Greenberg, N. L.; Zhou, J.; Vazquez, C. J.; Griffin, B. P.; Stewart, W. J.; Thomas, J. D.
1998-01-01
OBJECTIVES: To develop and validate an automated noninvasive method to quantify mitral regurgitation. BACKGROUND: Automated cardiac output measurement (ACM), which integrates digital color Doppler velocities in space and in time, has been validated for the left ventricular (LV) outflow tract but has not been tested for the LV inflow tract or to assess mitral regurgitation (MR). METHODS: First, to validate ACM against a gold standard (ultrasonic flow meter), 8 dogs were studied at 40 different stages of cardiac output (CO). Second, to compare ACM to the LV outflow (ACMa) and inflow (ACMm) tracts, 50 normal volunteers without MR or aortic regurgitation (44+/-5 years, 31 male) were studied. Third, to compare ACM with the standard pulsed Doppler-two-dimensional echocardiographic (PD-2D) method for quantification of MR, 51 patients (61+/-14 years, 30 male) with MR were studied. RESULTS: In the canine studies, CO by ACM (1.32+/-0.3 liter/min, y) and flow meter (1.35+/-0.3 liter/min, x) showed good correlation (r=0.95, y=0.89x+0.11) and agreement (deltaCO(y-x)=0.03+/-0.08 [mean+/-SD] liter/min). In the normal subjects, CO measured by ACMm agreed with CO by ACMa (r=0.90, p < 0.0001, deltaCO=-0.09+/-0.42 liter/min), PD (r=0.87, p < 0.0001, deltaCO=0.12+/-0.49 liter/min) and 2D (r=0.84, p < 0.0001, deltaCO=-0.16+/-0.48 liter/min). In the patients, mitral regurgitant volume (MRV) by ACMm-ACMa agreed with PD-2D (r= 0.88, y=0.88x+6.6, p < 0.0001, deltaMRV=2.68+/-9.7 ml). CONCLUSIONS: We determined that ACM is a feasible new method for quantifying LV outflow and inflow volume to measure MRV and that ACM automatically performs calculations that are equivalent to more time-consuming Doppler and 2D measurements. Additionally, ACM should improve MR quantification in routine clinical practice.
Diet and Colorectal Cancer Risk: Evaluation of a Nutrition Education Leaflet
ERIC Educational Resources Information Center
Dyer, K. J.; Fearon, K. C. H.; Buckner, K.; Richardson, R. A.
2005-01-01
Objective: To evaluate the effect of a needs-based, nutrition education leaflet on nutritional knowledge. Design: Comparison of nutritional knowledge levels before and after exposure to a nutrition education leaflet. Setting: A regional colorectal out-patient clinic in Edinburgh. Method: A nutrition education leaflet, based on an earlier…
Subvalvular Pannus Overgrowth after Mosaic Bioprosthesis Implantation in the Aortic Position
Isomura, Tadashi; Yoshida, Minoru; Katsumata, Chieko; Ito, Fusahiko; Watanabe, Masazumi
2015-01-01
Purpose: Although pannus overgrowth by itself was not the pathology of structural valve deterioration (SVD), it might be related to reoperation for SVD of the bioprostheses. Methods: We retrospectively reviewed patients undergoing reoperation for SVD after implantation of the third-generation Mosaic aortic bioprosthesis and macroscopic appearance of the explanted valves was examined to detect the presence of pannus. Results: There were 10 patients and the age for the initial aortic valve replacement was 72 ± 10 years old. The duration of durability was 9.9 ± 2.0 years. Deteriorated valve presented stenosis (valvular area of 0.96 ± 0.20 cm2; pressure gradient of 60 ± 23 mmHg). Coexisting regurgitant flow was detected in two cases. Macroscopically, subvalvular pannus overgrowth was detected in 8 cases (80%). The proportion of overgrowth from the annulus was almost even and pannus overgrowth created subvalvular membrane, which restricted the area especially for each commissure. In contrast, opening and mobility of each leaflet was not severely limited and pannus overgrowth would restrict the area, especially for each commissure. In other two cases with regurgitation, tear of the leaflet on the stent strut was detected and mild calcification of each leaflet restricted opening. Conclusion: In patients with the Mosaic aortic bioprosthesis, pannus overgrowth was the major cause for reoperation. PMID:26633541
Subvalvular Pannus Overgrowth after Mosaic Bioprosthesis Implantation in the Aortic Position.
Hirota, Masanori; Isomura, Tadashi; Yoshida, Minoru; Katsumata, Chieko; Ito, Fusahiko; Watanabe, Masazumi
2016-01-01
Although pannus overgrowth by itself was not the pathology of structural valve deterioration (SVD), it might be related to reoperation for SVD of the bioprostheses. We retrospectively reviewed patients undergoing reoperation for SVD after implantation of the third-generation Mosaic aortic bioprosthesis and macroscopic appearance of the explanted valves was examined to detect the presence of pannus. There were 10 patients and the age for the initial aortic valve replacement was 72 ± 10 years old. The duration of durability was 9.9 ± 2.0 years. Deteriorated valve presented stenosis (valvular area of 0.96 ± 0.20 cm(2); pressure gradient of 60 ± 23 mmHg). Coexisting regurgitant flow was detected in two cases. Macroscopically, subvalvular pannus overgrowth was detected in 8 cases (80%). The proportion of overgrowth from the annulus was almost even and pannus overgrowth created subvalvular membrane, which restricted the area especially for each commissure. In contrast, opening and mobility of each leaflet was not severely limited and pannus overgrowth would restrict the area, especially for each commissure. In other two cases with regurgitation, tear of the leaflet on the stent strut was detected and mild calcification of each leaflet restricted opening. In patients with the Mosaic aortic bioprosthesis, pannus overgrowth was the major cause for reoperation.
Sanati, Hamidreza; Zolfaghari, Reza; Samiei, Niloufar; Rezaei, Yousef; Chitsazan, Mitra; Zahedmehr, Ali; Shakerian, Farshad; Kiani, Reza; Firouzi, Ata; Rezaei Tabrizi, Reza
2017-02-01
The mitral valve area (MVA) poorly reflects the hemodynamic status of (MS). In this study, we compared the MVA with mitral valve resistance (MVR) with regard to the determination of hemodynamic consequences of MS and the immediate outcomes of percutaneous balloon mitral valvuloplasty (PBMV). In a prospective study, 36 patients with severe rheumatic MS with left ventricular ejection fraction (LVEF) >50% were evaluated. They underwent transthoracic echocardiography (TTE) and catheterization. The MVA was measured by two-dimensional planimetry and pressure half-time (PHT), and the MVR was calculated using the equation: 1333 × transmitral pressure gradient mean transmitral diastolic flow rate. The patients' mean age was 47.8±10.5 years. MVR ≥140.6 dynes·s/cm 5 detected systolic pulmonary arterial pressure (sPAP) >55 mm Hg with a sensitivity of 100% and a specificity of 74%. The sensitivity and specificity of MVA<0.75 cm 2 to discriminate elevated sPAP were 81% and 89%, respectively. PHT ≥323.5 mseconds had a sensitivity of 78% and a specificity of 96% to detect an elevated sPAP. To predict a successful PBMV, preprocedural MVR ≥106.1 dynes·s/cm 5 had a sensitivity of 100% and a specificity of 67% (area under the curve [AUC]=0.763; 95% confidence interval [CI]=0.520-1.006; P=.034); preprocedural MVA <0.95 cm 2 had a sensitivity of 78% and a specificity of 73% (AUC=0.730; 95% CI=0.503-0.956; P=.065); and preprocedural PHT ≥210.5 mseconds had a sensitivity of 73% and a specificity of 78% (AUC=0.707; 95% CI=0.474-0.941; P=.095). MVR seems to be more accurate than MVA in determining the hemodynamic consequences of severe MS as determined by sPAP. In addition, preprocedural MVR detected successful PBMVs. © 2017, Wiley Periodicals, Inc.
Mitral valve prolapse and hyperthyroidism: effect of patient selection.
Zullo, M A; Devereux, R B; Kramer-Fox, R; Lutas, E M; Brown, W T
1985-11-01
Patients with mitral valve prolapse and hyperthyroidism have common symptoms; the most outstanding symptom is palpitation. To determine whether or not common symptoms contributed to the reported association of these conditions, we evaluated 220 patients with symptomatic mitral valve prolapse and 216 first-degree relatives in 72 families; 65 relatives with mitral valve prolapse and 151 relatives without mitral valve prolapse, all greater than or equal to 16 years of age. Thirty subjects, aged 49 +/- 13 years (p less than 0.025 vs entire study group), had thyroid disease (23 subjects had definite thyroid disease, seven subjects had probable); 27 of 30 subjects with thyroid disease (90%) were female (p less than 0.005). The age- and sex-adjusted prevalence of hyperthyroidism was significantly higher in probands with mitral valve prolapse than in family members without mitral valve prolapse (3.5% vs 0%, p = 0.03), while an intermediate prevalence of hyperthyroidism (2.2%) was observed in family members with mitral valve prolapse. Thus, the prevalence of hyperthyroidism is increased among symptomatic patients with mitral valve prolapse as compared to family members without mitral valve prolapse, but the prevalence of thyroid conditions is similar among family members with or without this condition. These findings are explained by the effect of common symptoms on clinical detection of both mitral valve prolapse and hyperthyroidism.
Mitral stenosis is a heart valve disorder that narrows or obstructs the mitral valve opening. Narrowing of the ... to the body. The main risk factor for mitral stenosis is a history of rheumatic fever but it ...
Efficacy of a new intraaortic propeller pump vs the intraaortic balloon pump: an animal study.
Dekker, André; Reesink, Koen; van der Veen, Erik; Van Ommen, Vincent; Geskes, Gijs; Soemers, Cecile; Maessen, Jos
2003-06-01
To compare the efficacy of a new intraaortic propeller pump (PP) to provide hemodynamic support to the intraaortic balloon pump (IABP) in an acute mitral regurgitation (MR) animal model. A new intraaortic PP (Reitan catheter pump; Jomed; Helsingborg, Sweden) recently has been introduced. The pump's aim is a reduction in afterload via a deployable propeller that is placed in the high descending aorta and can be set at rotational speeds of
Promotion of family planning services in practice leaflets.
Marshall, M N; Gray, D J; Pearson, V; Phillips, D R; Owen, M
1994-10-08
Providing 75% of family planning services in the United Kingdom, general practitioners are required to produce leaflets which describe the contraceptive services they provide. The authors analyzed information about family planning provided to clients through practice leaflets. 88% of practice leaflets from the 198 practices in Devon were available from the Devon Family Health Services Authority for analysis. It was determined that the leaflets are not being best used to advertise the range and potential of family planning services. Although all practices in Devon offer contraceptive services, only 90% of leaflets mentioned that the services are available. Reference to postcoital contraception and information about services outside the practice for people who might not want to see their family doctor are also sorely lacking. A clear need exists to provide patients with more information. Finally, the authors found that group practices and those with female partners are most likely to give high priority to family planning issues in their leaflets.
[Evaluation of a self-care leaflet].
Lystad, N; Heian, F
1989-01-20
A self care leaflet of 50 pages was distributed in Tingvoll, a municipality with 3,500 inhabitants. The leaflet gives advice about self treatment and prevention of common health problems, and guidelines for contacting the health services. In surveys conducted just before and 10 months after the distribution, we documented -- how the leaflet was accepted and used --changes in knowledge about the health problems mentioned in the leaflet. The leaflet was well accepted. It was characterized as easy to read and to use. 10 months after distribution to read and to use. 10 months after distribution 90% found it within five minutes. 63% used the leaflet when they had a health problem. 90% of those using the leaflet felt more sure that they acted correctly after consulting it, and 60% changed their mind about consulting a general practitioner. We consider the level of knowledge about health problems to be low. The evaluation showed increased knowledge in all groups, except for persons "responsible for caring for elderly relatives". The increase was most marked for "men" and for "persons with health education".
Takami, Yoshiyuki; Tajima, Kazuyoshi
2016-02-01
Limited data exis t on clinical relevance of aortic valve stenosis (AVS) and mitral annular calcification (MAC), although with similar pathophysiologic basis. We sought to reveal the prevalence of MAC and its clinical features in the patients undergoing aortic valve replacement (AVR) for AVS. We reviewed 106 consecutive patients who underwent isolated AVR from 2004 to 2010. Before AVR, CT scans were performed to identify MAC, whose severity was graded on a scale of 0-4, with grade 0 denoting no MAC and grade 4 indicating severe MAC. Echocardiography was performed before AVR and at follow-up over 2 years after AVR. MAC was identified in 56 patients with grade 1 (30 %), 2 (39 %), 3 (18 %), and 4 (13 %), respectively. Patients with MAC presented older age (72 ± 8 versus 66 ± 11 years), higher rate of dialysis-dependent renal failure (43 versus 4 %), and less frequency of bicuspid aortic valve (9 versus 36 %), when compared to those without MAC. No significant differences were seen in short- and mid-term mortality after AVR between the groups. In patients with MAC, progression of neither mitral regurgitation nor stenosis was observed at follow-up of 53 ± 23 months for 102 survivors, although the transmitral flow velocities were higher than in those without MAC. In conclusion, MAC represented 53 % of the patients undergoing isolated AVR for AVS, usually appeared in dialysis-dependent elder patients with tricuspid AVS. MAC does not affect adversely upon the survival, without progression of mitral valve disease, at least within 2 years after AVR.
Ishikawa, Taisuke; Fukushima, Ryuji; Suzuki, Shuji; Miyaishi, Yuka; Nishimura, Taiki; Hira, Satoshi; Hamabe, Lina; Tanaka, Ryou
2011-08-01
Non-invasive and immediate estimation of left atrial pressure (LAP) is very useful for the management of mitral regurgitation (MR), and many reports have assessed echocardiographic estimations of LAP to date. However, it has been unclear of which examination and evaluate article possess the best accuracy for the MR severity. The present research aims to establish the echocardiographic estimation equation of LAP that is well applicable for clinical MR dogs. After the chordae tendineae rupture was experimentally induced via left atriotomy in six healthy beagle dogs (three males and three females, two years old, weighing between 9.8 to 12.8 kg), a radio telemetry transmitter catheter was inserted, which allows the continuous recordings of LAP without the use of sedation. Approximately 5 weeks after the surgery, echocardiographic examination, indirect blood pressure measurement, measurement of plasma atrial natriuretic peptide (ANP) and LAP measurement by way of the radio telemetry system was performed simultaneously. Subsequently, simple linear regression equations between LAP and each variable were obtained, and the equations were evaluated whether to be applicable for clinical MR dogs. As a result, the ratio of early diastolic mitral flow to early diastolic lateral mitral annulus velocity (E/Ea) had the strongest correlation as maximum LAP=7.03*(E/Ea)-54.86 (r=0.74), and as mean LAP=4.94*(E/Ea)-40.37 (r=0.70) among the all variables. Therefore, these two equations associated with E/Ea should bring more precise and instant estimations of maximum and mean LAP in clinical MR dogs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eicher, Barbara; Marquardt, Drew; Heberle, Frederick A.
We measured the effect of intrinsic lipid curvature, J 0, on structural properties of asymmetric vesicles made of palmitoyl-oleoyl-phosphatidylethanolamine (POPE; J 0 < 0) and palmitoyl-oleoyl-phosphatidylcholine (POPC; J 0 ~ 0). Electron microscopy and dynamic light scattering were used to determine vesicle size and morphology, and x-ray and neutron scattering, combined with calorimetric experiments and solution NMR, yielded insights into leaflet-specific lipid packing and melting processes. Below the lipid melting temperature we observed strong interleaflet coupling in asymmetric vesicles with POPE inner bilayer leaflets and outer leaflets enriched in POPC. This lipid arrangement manifested itself by lipids melting cooperatively inmore » both leaflets, and a rearrangement of lipid packing in both monolayers. On the other hand, no coupling was observed in vesicles with POPC inner bilayer leaflets and outer leaflets enriched in POPE. In this case, the leaflets melted independently and did not affect each other’s acyl chain packing. Furthermore, we found no evidence for transbilayer structural coupling above the melting temperature of either sample preparation. Our results are consistent with the energetically preferred location of POPE residing in the inner leaflet, where it also resides in natural membranes, most likely causing the coupling of both leaflets. The loss of this coupling in the fluid bilayers is most likely the result of entropic contributions.« less
Minich, L L; Tani, L Y; Pantalos, G M; Bolland, B L; Knorr, B K; Hawkins, J A
1998-11-01
Pediatric intraaortic balloon pumping (IABP) has met with little success because of technical difficulty in tracking rapid heart rates. This study was designed to evaluate the efficacy of M-mode echocardiography for IABP timing in a neonatal piglet model. Two groups of piglets underwent mitral valve avulsion to create a model of shock. Group 1 (n = 8; mean weight, 7.7+/-1.8 kg) underwent IABP timed with both the ascending aortic pressure and M-mode echocardiogram. Group 2 (n = 6; mean weight, 7.5+/-1.4 kg) underwent two separate periods of IABP: one with echocardiographic timing and the second using standard timing points from the femoral arterial pressure tracing and electrocardiogram. Measurements included ascending aortic flow, left anterior descending arterial flow, ascending aortic pressure, left atrial pressure, and heart rate. Mitral valve avulsion produced a shock model with a significant decrease in mean aortic pressure and aortic flow and a significant increase in left atrial pressure and heart rate. Compared with the shock state, IABP in group 1 animals resulted in a significant increase in aortic flow (353+/-152 versus 454+/-109 mL/min; p < 0.05) and a significant decrease in left atrial pressure (23+/-6 versus 17+/-7 mm Hg; p < 0.05). Group 2 animals with echocardiogram-timed IABP had significantly increased aortic flow (365+/-106 versus 458+/-107 mL/min; p < 0.05) and mean aortic pressure (43+/-11 versus 52+/-8 mm Hg; p < 0.05). However, standard-timed IABP failed to show any improvement. In piglets with rapid heart rates, echocardiogram-timed IABP results in increased aortic flow and pressure and decreased left atrial pressure compared with standard-timed IABP.
Ussia, Gian Paolo; Quadri, Arshad; Cammalleri, Valeria; De Vico, Pasquale; Muscoli, Saverio; Marchei, Massimo; Ruvolo, Giovanni; Sondergaard, Lars; Romeo, Francesco
2016-02-01
Transcatheter mitral valve implantation for mitral valve regurgitation is in the very early phase of development because of challenging anatomy and device dimensions. We describe the procedure of a transfemoral-transseptal implantation of the second-generation CardiAQ mitral valve bioprosthesis and 30-day follow-up. The procedure was performed percutaneously, without any left extracorporeal circulatory support. The patient had severe mitral regurgitation with severely depressed ventricular function and other comorbidities. The patient was deemed extreme high risk for conventional cardiac surgery by a multidisciplinary team. The main procedural steps were the creation of an arteriovenous loop with an exchange nitinol wire, and the use of a customised "steerable snare system" to facilitate the catheter delivery system into the mitral annulus. Transoesophageal echocardiography and fluoroscopy were utilised for device positioning and deployment. The mitral valve prosthesis was implanted with mild mitral regurgitation. The postoperative course was uneventful and at 30-day follow-up the patient is in NYHA Class I, with good function of the mitral valve bioprosthesis. This procedure shows that percutaneous transfemoral transcatheter mitral valve implantation is feasible, safe and successful. Further experience is needed to render this procedure clinically available.
Sargent, J; Connolly, D J; Watts, V; Mõtsküla, P; Volk, H A; Lamb, C R; Fuentes, V Luis
2015-11-01
Echocardiography is used routinely to assess mitral regurgitation severity, but echocardiographic measures of mitral regurgitation in dogs have not been compared with other quantitative methods. The study aim was to compare echocardiographic measures of mitral regurgitation with cardiac magnetic resonance imaging-derived mitral regurgitant fraction in small-breed dogs. Dogs with myxomatous mitral valve disease scheduled for magnetic resonance imaging assessment of neurological disease were recruited. Correlations were tested between cardiac magnetic resonance imaging-derived mitral regurgitant fraction and the following echocardiographic measures: vena contracta/aortic diameter, transmitral E-wave velocity, amplitude of mitral prolapse/aortic diameter, diastolic left ventricular diameter:aortic diameter, left atrium:aortic diameter, mitral regurgitation jet area ratio and regurgitant fraction calculated using the proximal isovelocity surface area method. Measurement of cardiac magnetic resonance imaging-derived mitral regurgitant fraction was attempted in 21 dogs. Twelve consecutive, complete studies were obtained and 10 dogs were included in the final analysis: vena contracta/aortic diameter (r = 0 · 89, p = 0 · 001) and E-wave velocity (r = 0 · 86, p = 0 · 001) had the strongest correlations with cardiac magnetic resonance imaging-derived mitral regurgitant fraction. E velocity had superior repeatability and could be measured in all dogs. The presence of multiple jets precluded vena contracta/aortic diameter measurement in one dog. Measurement of cardiac magnetic resonance imaging-derived mitral regurgitant fraction is feasible but technically demanding. The echocardiographic measures that correlated most closely with cardiac magnetic resonance imaging-derived mitral regurgitant fraction were vena contracta/aortic diameter and E-wave velocity. © 2015 British Small Animal Veterinary Association.
Ahmed, Rehan; Kazmi, Nasir; Naz, Farhat; Malik, Saqib; Gillani, Saima
2016-01-01
Rheumatic heart disease is a common ailment in Pakistan and Mitral stenosis is its flag bearer Severity of mitral stenosis is the key factor in deciding for mitral valve surgery. This case series study was conducted at Ayub Teaching Hospital .Cases of Rheumatic heart disease with mitral stenosis were diagnosed clinically. 2D echocardiography was used to find severity of mitral stenosis. Data was entered into SPSS-17.0 and results were recorded and analysed. Pearson's two tailed correlation was used to find the correlation between presence of tricuspid regurgitation in patients with severe mitral stenosis, p was <0.05. A total 35 patients with pure mitral stenosis were included in study, out of which 8 were male and 27 were females. Mean age in males was 34.5±15.85 years while in females it was 31±8 years. Twenty-two out of 35 (62.86%) patients had tricuspid regurgitation while 13 out 35 (37.14%) had no tricuspid regurgitation. Mean (MVA) mitral valve area in patients with tricuspid regurgitation was 0.84±0.3 cm2 while mean (MVA) mitral valve area in patients without tricuspid regurgitation was 1.83±0.7 cm2. Mean left atrial (L.A) size was 45.23±1.5 mm2 in patients with tricuspid regurgitation, while it was 44.13±6.14 mm2 in patients without tricuspid regurgitation. Mean RSVP was 57.5mmHg in patients with tricuspid regurgitation while RSVP could not be calculated in patients without tricuspid regurgitation. It was concluded that tricuspid regurgitation was strongly associated with severe mitral stenosis as almost all patients with severe mitral stenosis had tricuspid regurgitation and none of the patients with mild mitral stenosis had tricuspid regurgitation.
Byrom, J; Dunn, P D J; Hughes, G M; Lockett, J; Johnson, A; Neale, J; Redman, C W E
2003-01-01
To evaluate whether the information leaflets produced by UK colposcopy clinics provide women with the information they desire and to determine when they would like to receive this information. Questionnaire study and structured evaluation. The colposcopy clinic of a UK cancer centre. Forty-two women attending a pre-colposcopy counselling session and 100 consecutive women attending the colposcopy clinic. Thirty-eight standards derived from the concerns/questions asked by women attending a pre-colposcopy counselling session were used to assess locally produced colposcopy clinic leaflets from UK colposcopy clinics, the leaflets produced by the Royal College of Obstetricians and Gynaecologists and the National Health Service Cervical Screening Programme (NHSCSP), and two "leaflets" obtained from internet sites. The Gunning fog test was used to assess the leaflets' readability. A questionnaire survey of 100 women attending the colposcopy clinic was used to determine when women wanted to receive information about colposcopy. Percentage of questions answered by a given leaflet and Gunning fog scores for readability. The information leaflets of 128 colposcopy clinics were received and assessed. Thirty-two clinics only sent women the NHSCSP leaflet. No leaflet answered all 38 questions. Less than half (36/100) of the leaflets answered more than 50% of the questions. In addition to the lack of advice given, different leaflets frequently gave conflicting advice. The average Gunning fog score was 9.7 (range 5.5-15.5). The majority of women (70%) wanted to receive information about colposcopy at or prior to the time of receiving their abnormal smear test result, although only 42% of women actually received information at this time. Many UK colposcopy clinics do not appear to be providing women with the information they require to understand their condition and the procedure that they are about to undergo. Furthermore, this information is often not provided at the appropriate time in the screening process.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tian, Jianhui; Nickels, Jonathan; Katsaras, John
Spatial organization within lipid bilayers is an important feature for a range of biological processes. Leaflet compositional asymmetry and lateral lipid organization are just two of the ways in which membrane structure appears to be more complex than initially postulated by the fluid mosaic model. This raises the question of how the phase behavior in one bilayer leaflet may affect the apposing leaflet and how one begins to construct asymmetric model systems to investigate these interleaflet interactions. In this paper, we report on all-atom molecular dynamics simulations (a total of 4.1 μs) of symmetric and asymmetric bilayer systems composed ofmore » liquid-ordered (Lo) or liquid-disordered (Ld) leaflets, based on the nanodomain-forming POPC/DSPC/cholesterol system. We begin by analyzing an asymmetric bilayer with leaflets derived from simulations of symmetric Lo and Ld bilayers. In this system, we observe that the properties of the Lo and Ld leaflets are similar to those of the Lo and Ld leaflets in corresponding symmetric systems. However, it is not obvious that mixing the equilibrium structures of their symmetric counterparts is the most appropriate way to construct asymmetric bilayers nor that these structures will manifest interleaflet couplings that lead to domain registry/antiregistry. We therefore constructed and simulated four additional asymmetric bilayer systems by systematically adding or removing lipids in the Ld leaflet to mimic potential density fluctuations. We find that the number of lipids in the Ld leaflet affects its own properties, as well as those of the apposing Lo leaflet. Collectively, the simulations reveal the presence of weak acyl chain interdigitation across bilayer leaflets, suggesting that interdigitation alone does not contribute significantly to the interleaflet coupling in nonphase-separated bilayers of this chemical composition. Finally, however, the properties of both leaflets appear to be sensitive to changes in in-plane lipid packing, possibly providing a mechanism for interleaflet coupling by modulating local density and/or curvature fluctuations.« less
Wegwarth, O; Kurzenhäuser-Carstens, S; Gigerenzer, G
2014-03-10
Informed decision making requires transparent and evidence-based (=balanced) information on the potential benefit and harms of medical preventions. An analysis of German HPV vaccination leaflets revealed, however, that none met the standards of balanced risk communication. We surveyed a sample of 225 girl-parent pairs in a before-after design on the effects of balanced and unbalanced risk communication on participants' knowledge about cervical cancer and the HPV vaccination, their perceived risk, their intention to have the vaccine, and their actual vaccination decision. The balanced leaflet increased the number of participants who were correctly informed about cervical cancer and the HPV vaccine by 33 to 66 absolute percentage points. In contrast, the unbalanced leaflet decreased the number of participants who were correctly informed about these facts by 0 to 18 absolute percentage points. Whereas the actual uptake of the HPV vaccination 14 months after the initial study did not differ between the two groups (22% balanced leaflet vs. 23% unbalanced leaflet; p=.93, r=.01), the originally stated intention to have the vaccine reliably predicted the actual vaccination decision for the balanced leaflet group only (concordance between intention and actual uptake: 97% in the balanced leaflet group, rs=.92, p=.00; 60% in the unbalanced leaflet group, rs=.37, p=.08). In contrast to a unbalanced leaflet, a balanced leaflet increased people's knowledge of the HPV vaccination, improved perceived risk judgments, and led to an actual vaccination uptake, which first was robustly predicted by people's intention and second did not differ from the uptake in the unbalanced leaflet group. These findings suggest that balanced reporting about HPV vaccination increases informed decisions about whether to be vaccinated and does not undermine actual uptake. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.
Fay, J P; Cheng, K J; Hanna, M R; Howarth, R E; Costerton, J W
1981-04-01
A newly developed technique using ruthenium red to detect foci of bacterial digestion in mounts of whole leaflets that had been incubated with rumen bacteria was used to compare the digestion of alfalfa, a bloat-causing legume, and sainfoin, a bloat-safe legume. When whole leaflets were suspended in an artificial rumen medium and inoculated with rumen bacteria, massive bacterial adhesion and proliferation were noted at the stomata of alfalfa leaflets after 6 h of incubation, whereas only a few isolated bacteria adhered near the stomata of sainfoin leaflets After 22 h of incubation, the epidermal layers of alfalfa leaflets had peeled away in many areas, revealing an extensive bacterial invasion of the underlying mesophyll tissue in which large bacterial microcolonies had formed in intercellular spaces, and in intracellular spaces in several areas where plant cell walls had broken down. After 22 h of incubation, the surface of sainfoin leaflets resembled that of alfalfa leaflets at 6 h, with bacterial microcolonies adhering to the area surrounding the stomata, but without sloughing of the epidermis. Uninoculated control leaflets of both species showed no surface alteration but part of their normal bacterial flora had proliferated to form microcolonies on the surface after 22 h incubation. Dry matter loss due to leaching or bacterial digestion when whole leaflets of legumes were suspended in an artificial rumen medium, alone or with rumen bacteria, was significantly higher in the bloat-causing group. Values of leaching and of bacterial digestion were positively correlated. We conclude that reported differences in plant anatomy, and in cell wall chemistry, produce distinct rates or organic nutrient release from legume leaflets, and that these same differences produce an equally distinct susceptibility of leaflets to bacterial invasion, plant cell rupture, and the consequent release of intracellular plant components. The rate of release of organic nutrients from legume leaflets may be important in the etiology of foamy pasture bloat. This technique of in vitro digestion of whole leaflets followed by ruthenium red staining shows some promise of providing a rapid and qualitative test to distinguish, within a species, cultivars that may differ in their bloat-related characteristics.
Harper, Yenal; Salem, Salem A; Alsafwah, Shadwan; Koshy, Santhosh; Garg, Nadish
2018-01-01
Mitral stenosis is a uncommon valvular lesion in the developed countries. Noninvasive evaluation is the first-line modality for assessment of mitral stenosis, however the noninvasive methods may have limitations in certain cases. Invasive hemodynamics can be used as adjunct tool for assessment of mitral stenosis in such difficult cases. Mitral valve using three-dimensional planimetry is a promising technique for assessment of mitral stenosis. © 2018 Wiley Periodicals, Inc.
Role of echocardiography/Doppler in cardiogenic shock: silent mitral regurgitation.
Goldman, A P; Glover, M U; Mick, W; Pupello, D F; Hiro, S P; Lopez-Cuenca, E; Maniscalco, B S
1991-08-01
Two cases of cardiogenic shock and pulmonary edema due to acute, severe, silent mitral regurgitation are discussed. The mechanism for the mitral regurgitation was papillary muscle rupture in the setting of acute myocardial infarction. Echocardiography established the presence, severity, and cause of the mitral regurgitation and the associated hyperdynamic left ventricular function in the setting of cardiogenic shock. Transesophageal echocardiography is excellent for assessing the mitral valve in critically ill patients in whom transthoracic echocardiography may be inadequate or misleading. This allowed for emergency mitral valve replacement without prolonged attempts at medical stabilization.
Kimura, Sumito; Streiff, Cole; Zhu, Meihua; Shimada, Eriko; Datta, Saurabh; Ashraf, Muhammad; Sahn, David J
2014-02-01
The aim of this study was to assess the accuracy, feasibility, and reproducibility of determining stroke volume from a novel 3-dimensional (3D) color Doppler flow quantification method for mitral valve (MV) inflow and left ventricular outflow tract (LVOT) outflow at different stroke volumes when compared with the actual flow rate in a pumped porcine cardiac model. Thirteen freshly harvested pig hearts were studied in a water tank. We inserted a latex balloon into each left ventricle from the MV annulus to the LVOT, which were passively pumped at different stroke volumes (30-80 mL) using a calibrated piston pump at increments of 10 mL. Four-dimensional flow volumes were obtained without electrocardiographic gating. The digital imaging data were analyzed offline using prototype software. Two hemispheric flow-sampling planes for color Doppler velocity measurements were placed at the MV annulus and LVOT. The software computed the flow volumes at the MV annulus and LVOT within the user-defined volume and cardiac cycle. This novel 3D Doppler flow quantification method detected incremental increases in MV inflow and LVOT outflow in close agreement with pumped stroke volumes (MV inflow, r = 0.96; LVOT outflow, r = 0.96; P < .01). Bland-Altman analysis demonstrated overestimation of both (MV inflow, 5.42 mL; LVOT outflow, 4.46 mL) with 95% of points within 95% limits of agreement. Interobserver variability values showed good agreement for all stroke volumes at both the MV annulus and LVOT. This study has shown that the 3D color Doppler flow quantification method we used is able to compute stroke volumes accurately at the MV annulus and LVOT in the same cardiac cycle without electrocardiographic gating. This method may be valuable for assessment of cardiac output in clinical studies.
Yang, Bo; DeBenedictus, Christina; Watt, Tessa; Farley, Sean; Salita, Alona; Hornsby, Whitney; Wu, Xiaoting; Herbert, Morley; Likosky, Donald; Bolling, Steven F
2016-08-01
To provide initial evidence on the management of mitral stenosis and pulmonary hypertension (PH) based on short-term and long-term outcomes following mitral valve surgery. Consecutive patients with mitral stenosis (n = 317) who had undergone mitral valve surgery between 1992 and 2014 with recorded pulmonary artery pressure (PAP) data were reviewed. PH severity, based on systolic PAP, was categorized as mild (35 to 44 mm Hg), moderate (45 to 59 mm Hg), or severe (>60 mm Hg). Primary outcomes were 30-day mortality and long-term survival. There were no significant between-group differences in age or preoperative comorbidities. Mitral valve surgery included mitral valve replacement (78%) and repair (22%). The severe PH group had more mitral valve replacement (81%; P = .04), severe tricuspid valve regurgitation (31%; P = .003), right heart failure (17%; P = .02), and concomitant tricuspid valve procedures (46%; P < .001). For severe PH, 30-day mortality was 9%, with no significant group differences. Ten- and 12-year survival were significantly worse in the moderate-severe PH group (58% and 51%, respectively) compared with the normal PAP-mild PH group (83% and 79%, respectively) with a hazard ratio of 2.98 (95% confidence interval, 1.55-5.75; P = .001). Ten-year survival after mitral valve surgery for mitral stenosis was inversely associated with preoperative PAP. Mitral valve surgery can be performed with acceptable 30-day mortality for patients with mitral stenosis and moderate to severe PH, but long-term survival is impaired by moderate to severe PH. Patients with mitral stenosis and mild PH (systolic PAP 35-44 mm Hg) should be considered for mitral valve surgery. Copyright © 2016 The American Association for Thoracic Surgery. Published by Elsevier Inc. All rights reserved.
Celik, Ahmet; Gunebakmaz, Ozgur; Baran, Oguzhan; Dogdu, Orhan; Elcik, Deniz; Kobat, Mehmet Ali; Balin, Mehmet; Erdem, Kenan; Aydin, Suleyman; Ozdogru, Ibrahim; Topsakal, Ramazan
2012-01-01
Objective The purpose of this study was to evaluate the tenascin-C levels in severe rheumatic mitral stenosis before and after percutaneous mitral balloon valvuloplasty (PMBV). Subjects and Methods Forty patients with severe mitral stenosis requiring PMBV and 20 age-matched healthy subjects were included in the study. The mitral valve areas, mitral gradients and systolic pulmonary artery pressure (sPAP) were measured by echocardiography. The sPAP values and mitral gradients were also measured by catheterization before and after PMBV. The blood tenascin-C levels were measured before PMBV and 1 month after the procedure. Results The echocardiographic mean mitral gradients had a significant decrease after PMBV (11.7 ± 2.8 vs. 5.6 ± 1.7 mm Hg; p < 0.001) and also those of catheterization (13.9 ± 4.4 vs. 4.0 ± 2.4 mm Hg; p < 0.001). Mitral valve areas increased significantly after PMBV (from 1.1 ± 0.1 to 1.8 ± 0.2 cm2, p < 0.001). Tenascin-C levels decreased significantly in patients after PMBV (from 15.0 ± 3.8 to 10.9 ± 3.1 ng/ml; p < 0.001). Tenascin-C levels were higher in patients with mitral stenosis before PMBV than in healthy subjects (15.0 ± 3.8 and 9.4 ± 2.9 ng/ml; p < 0.001, respectively). There were no significant differences between patients with mitral stenosis after PMBV and healthy subjects (10.9 ± 3.1 and 9.4 ± 2.9 ng/ml; p = 0.09, respectively). There was a significant positive correlation between tenascin-C levels and sPAP (r = 0.508, p < 0.001). In multivariant analysis, tenascin-C predicted mitral stenosis (p = 0.004, OR: 2.31). Conclusions Tenascin-C was an independent predictor for rheumatic mitral stenosis. PMID:22889719
[Parenting Renewal. Leaflets and Lessons for Parents of Children Birth to Four.
ERIC Educational Resources Information Center
Clemson Univ., SC. Cooperative Extension Service.
Instructional materials on parenting skills for parents of newborn through 4-year-old children are provided, with teaching guides for extension service agents. Organized as a series of nine leaflets followed by nine corresponding lessons, leaflets for parents concern: (1) an overview of the leaflets; (2) readiness: guiding normal development; (3)…
Schober, Karsten E; Hart, Taye M; Stern, Joshua A; Li, Xiaobai; Samii, Valerie F; Zekas, Lisa J; Scansen, Brian A; Bonagura, John D
2011-08-15
To evaluate the effects of treatment on respiratory rate, serum natriuretic peptide concentrations, and Doppler echocardiographic indices of left ventricular filling pressure in dogs with congestive heart failure (CHF) secondary to degenerative mitral valve disease (MVD) and dilated cardiomyopathy (DCM). Prospective cohort study. 63 client-owned dogs. Physical examination, thoracic radiography, analysis of natriuretic peptide concentrations, and Doppler echocardiography were performed twice, at baseline (examination 1) and 5 to 14 days later (examination 2). Home monitoring of respiratory rate was performed by the owners between examinations. In dogs with MVD, resolution of CHF was associated with a decrease in respiratory rate, serum N-terminal probrain natriuretic peptide (NT-proBNP) concentration, and diastolic functional class and an increase of the ratio of peak velocity of early diastolic transmitral flow to peak velocity of early diastolic lateral mitral annulus motion (E:Ea Lat). In dogs with DCM, resolution of CHF was associated with a decrease in respiratory rate and serum NT-proBNP concentration and significant changes in 7 Doppler echocardiographic variables, including a decrease of E:Ea Lat and the ratio of peak velocity of early diastolic transmitral flow to isovolumic relaxation time. Only respiratory rate predicted the presence of CHF at examination 2 with high accuracy. Resolution of CHF was associated with predictable changes in respiratory rate, serum NT-proBNP concentration, and selected Doppler echocardiographic variables in dogs with DCM and MVD. Home monitoring of respiratory rate was simple and was the most useful in the assessment of successful treatment of CHF.
Hemodynamics of physiological blood flow in the aorta with nonlinear anisotropic heart valve
NASA Astrophysics Data System (ADS)
Sotiropoulos, Fotis; Gilmanov, Anvar; Stolarski, Henryk
2016-11-01
The hemodynamic blood flow in cardiovascular system is one of the most important factor, which causing several vascular diseases. We developed a new Curvilinear Immersed Boundary - Finite Element - Fluid Structure Interaction (CURVIB-FE-FSI) method to analyze hemodynamic of pulsatile blood flow in a real aorta with nonlinear anisotropic aortic valve at physiological conditions. Hyperelastic material model, which is more realistic for describing heart valve have been incorporated in the CURVIB-FE-FSI code to simulate interaction of aortic heart valve with pulsatile blood flow. Comparative studies of hemodynamics for linear and nonlinear models of heart valve show drastic differences in blood flow patterns and hence differences of stresses causing impact at leaflets and aortic wall. This work is supported by the Lillehei Heart Institute at the University of Minnesota.
Transcatheter Mitral Valve Replacement for Native and Failed Bioprosthetic Mitral Valves
Sarkar, Kunal; Reardon, Michael J.; Little, Stephen H.; Barker, Colin M.; Kleiman, Neal S.
2017-01-01
Transcatheter mitral valve replacement (TMVR) is a novel approach for treatment of severe mitral regurgitation. A number of TMVR devices are currently undergoing feasibility trials using both transseptal and transapical routes for device delivery. Overall experience worldwide is limited to fewer than 200 cases. At present, the 30-day mortality exceeds 30% and is attributable to both patient- and device-related factors. TMVR has been successfully used to treat patients with degenerative mitral stenosis (DMS) as well as failed mitral bioprosthesis and mitral repair using transcatheter mitral valve-in-valve (TMViV)/valve-in-ring (ViR) repair. These patients are currently treated with devices designed for transcatheter aortic valve replacement. Multicenter registries have been initiated to collect outcomes data on patients currently undergoing TMViV/ViR and TMVR for DMS and have confirmed the feasibility of TMVR in these patients. However, the high periprocedural and 30-day event rates underscore the need for further improvements in device design and multicenter randomized studies to delineate the role of these technologies in patients with mitral valve disease. PMID:29743999
The contents of dental implant patient information leaflets available within the UK.
Barber, J; Puryer, J; McNally, L; O'Sullivan, D
2015-02-01
Patient information leaflets are designed to provide easy to follow information summaries and first point of contact information about treatment options. This survey reviewed the content of dental implant patient information leaflets, produced by implant companies and available within the UK in 2011. Dental implant companies in the UK were asked to provide samples of their patient information leaflets. The information within the leaflets was then summarised, including the quantity and the types of images used and whether the source of the information was given. Quantitative data was obtained on the amount of information provided, size of images and number of references. A response rate of 71% was obtained and 23 leaflets were studied. Great variation was found between the leaflets, with the word counts ranging from 88 to 5,434, and 44 different topics were identified. The majority of the images used were decorative, and none of the leaflets gave any reference to the sources of their information. Implant treatment was generally described in a positive way, with an emphasis on describing the treatment and the advantages. Much less information was given about the potential disadvantages and risks of complications or failure, including the relevance of periodontal disease or smoking. Implant patient information leaflets provided by dental implant companies should not be solely relied upon to provide patients with all the information they need to give informed consent to treatment.
Smith, Samuel G; Wolf, Michael S; Obichere, Austin; Raine, Rosalind; Wardle, Jane; von Wagner, Christian
2013-12-01
To design and user-test a 'gist-based' colorectal cancer screening information leaflet, which promotes comprehension of the screening offer. Twenty-eight individuals approaching screening age were recruited from organisations in deprived areas of England. Using a between-subjects design, we tested iterations of a newly-designed gist-based information leaflet. Participants read the leaflet and answered 8 'true' or 'false' comprehension statements. For the leaflet to be considered fit-for-purpose, all statements had to be answered correctly by at least 80% of participants in each round. Alterations were made if this threshold was not met and additional rounds of testing were undertaken. At round 1, answers to 2/8 statements did not meet the threshold. After changes, answers in round 2 did not reach the threshold for 1/8 statements. In round 3, all answers were adequate and the leaflet was deemed fit-for-purpose. Qualitative data offered solutions such as language and layout changes which led to improved comprehension of the leaflet. User-testing substantially improved the design and subsequent comprehensibility of a theory-driven gist-based colorectal cancer screening information leaflet. This leaflet will be evaluated as part of a large national randomised controlled trial designed to reduce socioeconomic inequalities in colorectal cancer screening participation. Copyright © 2013 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.
Pires, Carla; Vigário, Marina; Cavaco, Afonso
2015-01-01
Package leaflets are necessary for safe use of medicines. The aims of the present study were: 1) to assess the compliance between the content of the package leaflets and the specifications of the pharmaceutical regulations; and 2) to identify potential safety issues for patients. Qualitative descriptive study, involving all the package leaflets of branded medicines from the three most consumed therapeutic groups in Portugal, analyzed in the Department of Pharmacoepidemiology, School of Pharmacy, University of Lisbon. A checklist validated through an expert consensus process was used to gather the data. The content of each package leaflet in the sample was classified as compliant or non-compliant with compulsory regulatory issues (i.e. stated dosage and descriptions of adverse reactions) and optional regulatory issues (i.e. adverse reaction frequency, symptoms and procedures in cases of overdose). A total of 651 package leaflets were identified. Overall, the package leaflets were found to be compliant with the compulsory regulatory issues. However, the optional regulatory issues were only addressed in around half of the sample of package leaflets, which made it possible to identify some situations of potentially compromised drug safety. Ideally, the methodologies for package leaflet approval should be reviewed and optimized as a way of ensuring the inclusion of the minimum essential information for safe use of medicines.
Jezyk, Damian; Jerzemowski, Janusz; Grzybiak, Marek
2003-01-01
Leaflets of the tricuspid valve are provided by tendinous cords extending from the papillary muscles. The situation is complicated with the septal muscles, which generally occur in two groups, one as constant musculus coni arteriosi and the second as other variable septal muscles. We tested whether there is a variability in the provision of the tricuspid valve in different taxonomical groups of mammals. The material examined consisted of 299 hearts of mammals (Primates, Ungulata, Carnivora, Lagomorpha, Rodentia, Marsupialia). The musculus coni arteriosi in the majority of mammals provided only the front leaflet, but among Ungulata and Rodentia it provided simultaneously the front and septal leaflet. The other septal muscles provided the front, septal and even back leaflets. The following regularity was observed: in the hearts of Primates provision of the front leaflet and the front part of the septal leaflet predominated, among Ungulata the muscles provided the middle part of the septal leaflet, but among the other mammals the rest of the septal muscles provided, significantly, the back part of the septal leaflet. Such a provision was characteristic for predators, hares, rodents and marsupials. These circumstances may allow the conclusion to be drawn that there is a taxonomical dependence in the provision of the tricuspid valve in the hearts of the mammals under examination.
Intrinsic Curvature-Mediated Transbilayer Coupling in Asymmetric Lipid Vesicles
Eicher, Barbara; Marquardt, Drew; Heberle, Frederick A.; ...
2018-01-09
We measured the effect of intrinsic lipid curvature, J 0, on structural properties of asymmetric vesicles made of palmitoyl-oleoyl-phosphatidylethanolamine (POPE; J 0 < 0) and palmitoyl-oleoyl-phosphatidylcholine (POPC; J 0 ~ 0). Electron microscopy and dynamic light scattering were used to determine vesicle size and morphology, and x-ray and neutron scattering, combined with calorimetric experiments and solution NMR, yielded insights into leaflet-specific lipid packing and melting processes. Below the lipid melting temperature we observed strong interleaflet coupling in asymmetric vesicles with POPE inner bilayer leaflets and outer leaflets enriched in POPC. This lipid arrangement manifested itself by lipids melting cooperatively inmore » both leaflets, and a rearrangement of lipid packing in both monolayers. On the other hand, no coupling was observed in vesicles with POPC inner bilayer leaflets and outer leaflets enriched in POPE. In this case, the leaflets melted independently and did not affect each other’s acyl chain packing. Furthermore, we found no evidence for transbilayer structural coupling above the melting temperature of either sample preparation. Our results are consistent with the energetically preferred location of POPE residing in the inner leaflet, where it also resides in natural membranes, most likely causing the coupling of both leaflets. The loss of this coupling in the fluid bilayers is most likely the result of entropic contributions.« less
Hirsh, Di; Clerehan, Rosemary; Staples, Margaret; Osborne, Richard H; Buchbinder, Rachelle
2009-11-01
To obtain patient feedback about the structure and quality of medication information leaflets and validate the usefulness of the Evaluative Linguistic Framework (ELF) for improving written communication with patients. Triangulated feedback about a set of rheumatoid arthritis (RA) medication leaflets, some developed with knowledge of the ELF, was obtained from 27 people with RA from interviews, focus group discussion and self-administered questionnaires. The principal elements of the framework were investigated: overall generic structure and functions of each stage, interpersonal relationship between writer and reader, technicality of language and density of information. Participant assessments of the leaflets aligned with the framework in terms of what constituted a good leaflet. While the main purpose of the leaflets was identified as being information provision, participants also wanted clear instructions, benefits to be highlighted and side effects to be comprehensively listed. For comprehensiveness and user-friendliness, leaflets developed with guidance of the ELF were consistently preferred. According to people with RA, leaflets generated from a linguistic framework are clearer and more effective in communicating information about medications. The ELF is a user-friendly, structured analytic system that can assist with the development of effective high quality patient information materials.
Optimal Elastomeric Scaffold Leaflet Shape for Pulmonary Heart Valve Leaflet Replacement
Fan, Rong; Bayoumi, Ahmed S.; Chen, Peter; Hobson, Christopher M.; Wagner, William R.; Mayer, John E.; Sacks, Michael S.
2012-01-01
Surgical replacement of the pulmonary valve (PV) is a common treatment option for congenital pulmonary valve defects. Engineered tissue approaches to develop novel PV replacements are intrinsically complex, and will require methodical approaches for their development. Single leaflet replacement utilizing an ovine model is an attractive approach in that candidate materials can be evaluated under valve level stresses in blood contact without the confounding effects of a particular valve design. In the present study an approach for optimal leaflet shape design based on finite element (FE) simulation of a mechanically anisotropic, elastomeric scaffold for PV replacement is presented. The scaffold was modeled as an orthotropic hyperelastic material using a generalized Fung-type constitutive model. The optimal shape of the fully loaded PV replacement leaflet was systematically determined by minimizing the difference between the deformed shape obtained from FE simulation and an ex-vivo microCT scan of a native ovine PV leaflet. Effects of material anisotropy, dimensional changes of PV root, and fiber orientation on the resulting leaflet deformation were investigated. In-situ validation demonstrated that the approach could guide the design of the leaflet shape for PV replacement surgery. PMID:23294966
Meningioma of the superior leaflet of the velum interpositum: A case report
Champagne, Pierre-Olivier; Bojanowski, Michel W.
2015-01-01
Background: Meningiomas of the velum interpositum in the roof of the third ventricle are rare. Knowing from which leaflet the meningioma originates and thus its relationships with the internal cerebral and Galen veins, may help in choosing the surgical approach. Case Description: We report the case of a 40-year-old male with a meningioma arising from the superior leaflet of the velum interpositum. The tumor was resected successfully using the infratentorial-supracerebellar approach. Reviewing the literature, of the 22 reported cases of velum interpositum meningiomas, sufficient information regarding the precise location of the origin of the tumor was provided in 14 cases, all of which were from the inferior leaflet. Conclusion: We report the first case of velum interpositum meningioma arising from the superior leaflet and give a potential explanation as to why meningiomas of the velum interpositum occur more commonly on the inferior leaflet. Distinguishing from which of the two leaflets the tumor originates may influence the surgical strategy. PMID:25949856
Vaquerizo, Beatriz; Theriault-Lauzier, Pascal; Piazza, Nicolo
2015-12-01
Mitral regurgitation is the most prevalent valvular heart disease worldwide. Despite the widespread availability of curative surgical intervention, a considerable proportion of patients with severe mitral regurgitation are not referred for treatment, largely due to the presence of left ventricular dysfunction, advanced age, and comorbid illnesses. Transcatheter mitral valve replacement is a promising therapeutic alternative to traditional surgical valve replacement. The complex anatomical and pathophysiological nature of the mitral valvular complex, however, presents significant challenges to the successful design and implementation of novel transcatheter mitral replacement devices. Patient-specific 3-dimensional computer-based models enable accurate assessment of the mitral valve anatomy and preprocedural simulations for transcatheter therapies. Such information may help refine the design features of novel transcatheter mitral devices and enhance procedural planning. Herein, we describe a novel medical image-based processing tool that facilitates accurate, noninvasive assessment of the mitral valvular complex, by creating precise three-dimensional heart models. The 3-dimensional computer reconstructions are then converted to a physical model using 3-dimensional printing technology, thereby enabling patient-specific assessment of the interaction between device and patient. It may provide new opportunities for a better understanding of the mitral anatomy-pathophysiology-device interaction, which is of critical importance for the advancement of transcatheter mitral valve replacement. Copyright © 2015 Sociedad Española de Cardiología. Published by Elsevier España, S.L.U. All rights reserved.
The geometrical effect of different annuloplasty rings on mitral valve annulus.
Al-Maisary, Sameer; Graser, Bastian; Engelhardt, Sandy; Wolf, Ivo; Karck, Matthias; DE Simone, Raffaele
2017-06-01
Different types of mitral annuloplasty rings are commercially available. The aim of this study was to investigate the effect of implantation of six types of annuloplasty rings on the geometry and dynamics of the mitral valve. Three-dimensional echocardiography images of 42 patients were acquired to visualize the mitral valve annulus. Virtual representations of six commercially available annuloplasty rings were matched to anatomical mitral annuli of each patient according to anterolateral-posteromedial diameter. The virtual displacement of each annuloplasty ring after the implantation was measured and compared with the other rings. Patients with severe mitral regurgitation had significantly dilated annuli according to anterolateral-posteromedial diameter, anterior-posterior diameter and to annulus circumference. Anterior and posterior heights of the mitral annuli and non-planarity angle showed no significant differences among different patients with different degree of mitral regurgitation. The ratio of anterior-posterior to anterolateral-posteromedial diameter was almost identical in all groups with identical annular shapes. The implantation of the Carpentier-Edwards Classic Annuloplasty Ring™ led to maximal displacement of mitral annulus, followed by the IM-Ring™, without a statistical significance. In contrary, the implantation of a MyxoETlogix Ring™ was associated with minimal displacement of mitral annulus throughout the groups, but without statistical significance. The implantation of different ring types in patients with different annuli shapes and dimensions did not lead to any significant change in the configuration of mitral annuli after the virtual implantation of the tested annuloplasty rings.
Sachithanandan, Anand; Nanjaiah, Prakash; Wright, Christine J; Rooney, Stephen J
2008-01-01
Homozygous sickle cell disease (SCD) presents a multitude of challenges in patients undergoing cardiac surgery with cardiopulmonary bypass. Special consideration must be made in such patients and routine practice modified to prevent hypoxia, hypothermia, acidaemia and low-flow states which may potentially trigger a fatal sickling crisis perioperatively. We discuss several perioperative management strategies including a preoperative exchange transfusion, high flow normothermic bypass and warm blood cardioplegia that was utilized in a woman with homozygous SCD who underwent a successful double valve procedure.
Hidalgo, Francisco; Mesa, Dolores; Ruiz, Martín; Delgado, Mónica; Rodríguez, Sara; Pardo, Laura; Pan, Manuel; López, Amador; Romero, Miguel A; Suárez de Lezo, José
2016-11-01
The percutaneous mitral valve repair procedure (MitraClip) appears to reduce mitral annulus diameter in patients with functional mitral regurgitation, but the relationship between this and regurgitation severity has not been demonstrated. The aim of this study was to determine the effect of mitral annulus remodeling on the reduction of mitral regurgitation in patients with functional etiology. The study included all patients with functional mitral regurgitation treated with MitraClip at our hospital until January 2015. Echocardiogram (iE33 model, Philips) was performed in all patients immediately after device positioning. Changes in the mitral annulus correlated with mitral regurgitation severity, as assessed using the effective regurgitant orifice area. The study included 23 patients (age, 65±14 years; 74% men; left ventricular ejection fraction, 31%±13%; systolic pulmonary artery pressure, 47±10 mmHg). After the procedure, the regurgitant orifice area decreased by 0.30 cm 2 ±0.04 cm 2 (P<.0005), from a baseline of 0.49 cm 2 ±0.09 cm 2 . Anteroposterior diameter decreased by 3.14 mm±1.01 mm (P<.0005) from a baseline of 28.27 mm±4.9 mm, with no changes in the intercommissural diameter (0.50 mm±0.91 mm vs 40.68 mm±4.7 mm; P=.26). A significant association was seen between anteroposterior diameter reduction and regurgitant orifice area reduction (r=.49; P=.020). In patients with functional mitral regurgitation, the MitraClip device produces an immediate reduction in the anteroposterior diameter. This remodeling may be related to the reduction in mitral regurgitation. Copyright © 2016 Sociedad Española de Cardiología. Published by Elsevier España, S.L.U. All rights reserved.
2010-01-01
Background This study was undertaken to compare mitral valve repair and replacement as treatments for ischemic mitral regurgitation (IMR) with left ventricular dysfunction (LVD). Specifically, we sought to determine whether the choice of mitral valve procedure affected survival, and discover which patients were predicted to benefit from mitral valve repair and which from replacement. Methods A total of 218 consecutive patients underwent either mitral valve repair (MVP, n = 112) or mitral valve replacement (MVR, n = 106). We retrospectively reviewed the clinical material, operation methods, echocardiography check during operation and follow-up. Patients details and follow-up outcomes were compared using multivariate and Kaplan-Meier analyses. Results No statistical difference was found between the two groups in term of intraoperative data. Early mortality was 3.2% (MVP 2.7% and MVR 3.8%). At discharge, Left ventricular end-systolic and end-diastolic diameter and left ventricular ejection fraction (LVEF) were improved more in the MVP group than MVR group (P < 0.05), however, in follow-up no statistically significant difference was observed between the MVR and MVP group (P > 0.05). Follow-up mitral regurgitation grade was significantly improved in the MVR group compared with the MVP group (P < 0.05). The Kaplan-Meier survival estimates at 1, 3, and 5 years were simlar between MVP and MVR group. Logistic regression revealed poor survival was associated with old age(#75), preoperative renal insufficiency and low left ventricular ejection fraction (< 30%). Conclusion Mitral valve repair is the procedure of choice in the majority of patients having surgery for severe ischemic mitral regurgitation with left ventricular dysfunction. Early results of MVP treatment seem to be satisfactory, but several lines of data indicate that mitral valve repair provided less long-term benefit than mitral valve replacement in the LVD patients. PMID:21059216
Mitral Valve Clip for Treatment of Mitral Regurgitation: An Evidence-Based Analysis
Ansari, Mohammed T.; Ahmadzai, Nadera; Coyle, Kathryn; Coyle, Doug; Moher, David
2015-01-01
Background Many of the 500,000 North American patients with chronic mitral regurgitation may be poor candidates for mitral valve surgery. Objective The objective of this study was to investigate the comparative effectiveness, harms, and cost-effectiveness of percutaneous mitral valve repair using mitral valve clips in candidates at prohibitive risk for surgery. Data Sources We searched articles in MEDLINE, Embase, and the Cochrane Library published from 1994 to February 2014 for evidence of effectiveness and harms; for economic literature we also searched NHS EED and Tufts CEA registry. Grey literature was also searched. Review Methods Primary studies were sought from existing systematic reviews that had employed reliable search and screening methods. Newer studies were sought by searching the period subsequent to the last search date of the review. Two reviewers screened records and assessed study validity. We used the Cochrane risk of bias tool for randomized, generic assessment for non-randomized studies, and the Phillips checklist for economic studies. Results Ten studies including 1 randomized trial were included. The majority of the direct comparative evidence compared the mitral valve clip repair with surgery in patients not particularly at prohibitive surgical risk. Irrespective of degenerative or functional chronic mitral regurgitation etiology, evidence of effectiveness and harms is inconclusive and of very low quality. Very-low-quality evidence indicates that percutaneous mitral valve clip repair may provide a survival advantage, at least during the first 1 to 2 years, particularly in medically managed chronic functional mitral regurgitation. Because of limitations in the design of studies, the cost-effectiveness of mitral valve clips in patients at prohibitive risk for surgery also could not be established. Limitations Because of serious concerns of risk of bias, indirectness, and imprecision, evidence is of very low quality. Conclusions No meaningful conclusions can be drawn about the comparative effectiveness, harms, and cost-effectiveness of mitral valve clips in the population with chronic mitral regurgitation who are at prohibitive risk for surgery. PMID:26379810
Sardari Nia, Peyman; Heuts, Samuel; Daemen, Jean; Luyten, Peter; Vainer, Jindrich; Hoorntje, Jan; Cheriex, Emile; Maessen, Jos
2017-02-01
Mitral valve repair performed by an experienced surgeon is superior to mitral valve replacement for degenerative mitral valve disease; however, many surgeons are still deterred from adapting this procedure because of a steep learning curve. Simulation-based training and planning could improve the surgical performance and reduce the learning curve. The aim of this study was to develop a patient-specific simulation for mitral valve repair and provide a proof of concept of personalized medicine in a patient prospectively planned for mitral valve surgery. A 65-year old male with severe symptomatic mitral valve regurgitation was referred to our mitral valve heart team. On the basis of three-dimensional (3D) transoesophageal echocardiography and computed tomography, 3D reconstructions of the patient's anatomy were constructed. By navigating through these reconstructions, the repair options and surgical access were chosen (minimally invasive repair). Using rapid prototyping and negative mould fabrication, we developed a process to cast a patient-specific mitral valve silicone replica for preoperative repair in a high-fidelity simulator. Mitral valve and negative mould were printed in systole to capture the pathology when the valve closes. A patient-specific mitral valve silicone replica was casted and mounted in the simulator. All repair techniques could be performed in the simulator to choose the best repair strategy. As the valve was printed in systole, no special testing other than adjusting the coaptation area was required. Subsequently, the patient was operated, mitral valve pathology was validated and repair was successfully done as in the simulation. The patient-specific simulation and planning could be applied for surgical training, starting the (minimally invasive) mitral valve repair programme, planning of complex cases and the evaluation of new interventional techniques. The personalized medicine could be a possible pathway towards enhancing reproducibility, patient's safety and effectiveness of a complex surgical procedure. © The Author 2016. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.
Mitral annulus size links ventricular dilatation to functional mitral regurgitation.
Popović, Zoran B; Martin, Maureen; Fukamachi, Kiyotaka; Inoue, Masahiro; Kwan, Jun; Doi, Kazuyoshi; Qin, Jian Xin; Shiota, Takahiro; Garcia, Mario J; McCarthy, Patrick M; Thomas, James D
2005-09-01
We compared the impact of annulus size and valve deformation (tethering) on mitral regurgitation in the animal dilated cardiomyopathy model, and assessed if acute left ventricular volume changes affect mitral annulus dimensions. We performed 3-dimensional echocardiography in 30 open-chest dogs with pacing-induced cardiomyopathy. Mitral annulus area was calculated from its two orthogonal diameters, whereas valve tethering was quantified by valve tenting area measurement. Mitral valve regurgitant volume showed the highest correlation with annulus area (r = 0.64, P < .001), left atrial volume (r = 0.40, P < .01), and left ventricular end-diastolic volume (r = 0.37, P < .01). Regurgitant volume showed poorer correlation with valve tethering in both septolateral and intercommissural planes (r = 0.35 and r = 0.31, P < .05 for both). Annulus dimensions correlated with acute changes of left ventricular end-diastolic volume (r = 0.68, P = .002). Mitral annulus dilation is the strongest predictor of functional mitral regurgitation in this animal dilated cardiomyopathy model.