Sample records for mixed boundary layer

  1. Comparison of theoretical and experimental boundary-layer development in a Mach 2.5 mixed-compression inlet

    NASA Technical Reports Server (NTRS)

    Hingst, W. R.; Towne, C. E.

    1974-01-01

    An analytical investigation was made of the boundary layer flow in an axisymmetric Mach 2.5 mixed compression inlet, and the results were compared with experimental measurements. The inlet tests were conducted in the Lewis 10- by 10-foot supersonic wind tunnel at a unit Reynolds number of 8.2 million/m. The inlet incorporated porous bleed regions for boundary layer control, and the effect of this bleed was taken into account in the analysis. The experimental boundary layer data were analyzed by using similarity laws from which the skin friction coefficient was obtained. The boundary layer analysis included predictions of laminar and turbulent boundary layer growth, transition, and the effects of the shock boundary layer interactions. In addition, the surface static pressures were compared with those obtained from an inviscid characteristics program. The results of investigation showed that the analytical techniques gave satisfactory predictions of the boundary layer flow except in regions that were badly distorted by the terminal shock.

  2. INDIVIDUAL TURBULENT CELL INTERACTION: BASIS FOR BOUNDARY LAYER ESTABLISHMENT

    EPA Science Inventory

    Boundary layers are important in determining the forces on objects in flowing fluids, mixing characteristics, and other phenomena. For example, benthic boundary layers are frequently active resuspension layers that determine bottom turbidity and transniissivity. Traditionally, bo...

  3. Characteristics of the nocturnal boundary layer inferred from ozone measurements onboard a Zeppelin airship

    NASA Astrophysics Data System (ADS)

    Rohrer, Franz; Li, Xin; Hofzumahaus, Andreas; Ehlers, Christian; Holland, Frank; Klemp, Dieter; Lu, Keding; Mentel, Thomas F.; Kiendler-Scharr, Astrid; Wahner, Andreas

    2014-05-01

    The nocturnal boundary layer (NBL) is a sublayer within the planetary boundary layer (PBL) which evolves above solid land each day in the late afternoon due to radiation cooling of the surface. It is a region of several hundred meters thickness which inhibits vertical mixing. A residual and a surface layer remain above and below the NBL. Inside the surface layer, almost all direct emissions of atmospheric constituents take place during this time. This stratification lasts until the next morning after sunrise. Then, the heating of the surface generates a new convectionally mixed layer which successively eats up the NBL from below. This process lasts until shortly before noon when the NBL disappears completely and the PBL is mixed convectionally. Ozone measurements onboard a Zeppelin airship in The Netherlands, in Italy, and in Finland are used to analyse this behaviour with respect to atmospheric constituents and consequences for the diurnal cycles observed in the surface layer, the nocturnal boundary layer, and the residual layer are discussed.

  4. Observations of the Summertime Boundary Layer over the Ross Ice Shelf, Antarctica Using SUMO UAVs

    NASA Astrophysics Data System (ADS)

    Nigro, M. A.; Cassano, J. J.; Jolly, B.; McDonald, A.

    2014-12-01

    During January 2014 Small Unmanned Meteorological Observer (SUMO) unmanned aerial vehicles (UAVs) were used to observe the boundary layer over the Ross Ice Shelf, Antarctica. A total of 41 SUMO flights were completed during a 9-day period with a maximum of 11 flights during a single day. Flights occurred as frequently as every 1.5 hours so that the time evolution of the boundary layer could be documented. On almost all of the flights the boundary layer was well mixed from the surface to a depth of less than 50 m to over 350 m. The depth of the well-mixed layer was observed to both increase and decrease over the course of an individual day suggesting that processes other than entrainment were altering the boundary layer depth. The well-mixed layer was observed to both warm and cool during the field campaign indicating that advective processes as well as surface fluxes were acting to control the temporal evolution of the boundary layer temperature. Only a small number of weakly stably stratified boundary layers were observed. Strong, shallow inversions, of up to 6 K, were observed above the top of the boundary layer. Observations from a 30 m automatic weather station and two temporary automatic weather stations 10 km south and west of the main field campaign location provide additional data for understanding the boundary layer evolution observed by the SUMO UAVs during this 9-day period. This presentation will discuss the observed evolution of the summertime boundary layer as well as comment on lessons learned operating the SUMO UAVs at a remote Antarctic field camp.

  5. A review of turbulent-boundary-layer heat transfer research at Stanford, 1958-1983

    NASA Technical Reports Server (NTRS)

    Moffat, R. J.; Kays, W. M.

    1984-01-01

    For the past 25 years, there has existed in the Thermosciences Laboratory of the Mechanical Engineering Department of Stanford University a research program, primarily experimental, concerned with heat transfer through turbulent boundary layers. In the early phases of the program, the topics considered were the simple zero-pressure-gradient turbulent boundary layer with constant and with varying surface temperature, and the accelerated boundary layer. Later equilibrium boundary layers were considered along with factors affecting the boundary layer, taking into account transpired flows, flows with axial pressure gradients, transpiration, acceleration, deceleration, roughness, full-coverage film cooling, surface curvature, free convection, and mixed convection. A description is provided of the apparatus and techniques used, giving attention to the smooth plate rig, the rough plate rig, the full-coverage film cooling rig, the curvature rig, the concave wall rig, the mixed convection tunnel, and aspects of data reduction and uncertainty analysis.

  6. Spatiotemporal Variability in Observations of Urban Mixed-Layer Heights from Surface-based Lidar Systems during DISCOVER-AQ 2011

    NASA Astrophysics Data System (ADS)

    Lewis, J. R.; Banks, R. F.; Berkoff, T.; Welton, E. J.; Joseph, E.; Thompson, A. M.; Decola, P.; Hegarty, J. D.

    2015-12-01

    Accurate characterization of the planetary boundary layer height is crucial for numerical weather prediction, estimating pollution emissions and modeling air quality. More so, given the increasing trend in global urban populations, there is a growing need to improve our understanding of the urban boundary layer structure and development. The Deriving Information on Surface conditions from COlumn and VERtically resolved observations relevant to Air Quality (DISCOVER-AQ) 2011 field campaign, which took place in the Baltimore-Washington DC region, offered a unique opportunity to study boundary layer processes in an urban area using a geographically dense collection of surface-based lidar systems (see figure). Lidars use aerosols as tracers for atmospheric boundary layer dynamics with high vertical and temporal resolutions. In this study, we use data from two permanent Micropulse Lidar Network (MPLNET) sites and five field deployed Micropulse lidar (MPL) systems in order to observe spatiotemporal variations in the daytime mixed layer height. We present and compare lidar-derived retrievals of the mixed layer height using two different methods. The first method uses the wavelet covariance transform and a "fuzzy logic" attribution scheme in order to determine the mixed layer height. The second method uses an objective approach utilizing a time-adaptive extended Kalman filter. Independent measurements of the boundary layer height are obtained using profiles from ozonesonde launches at the Beltsville and Edgewood sites for comparison with lidar observations.

  7. Simulation of the planetary boundary layer with the UCLA general circulation model

    NASA Technical Reports Server (NTRS)

    Suarez, M. J.; Arakawa, A.; Randall, D. A.

    1981-01-01

    A planetary boundary layer (PBL) model is presented which employs a mixed layer entrainment formulation to describe the mass exchange between the mixed layer with the upper, laminar atmosphere. A modified coordinate system couples the mixed layer model with large scale and sub-grid scale processes of a general circulation model. The vertical coordinate is configured as a sigma coordinate with the lower boundary, the top of the PBL, and the prescribed pressure level near the tropopause expressed as coordinate surfaces. The entrainment mass flux is parameterized by assuming the dissipation rate of turbulent kinetic energy to be proportional to the positive part of the generation by convection or mechanical production. The results of a simulation of July are presented for the entire globe.

  8. The effects of the laminar/turbulent boundary layer states on the development of a plane mixing layer

    NASA Technical Reports Server (NTRS)

    Foss, J. F.

    1977-01-01

    The effect of the laminar/turbulent boundary layer state on the mean and rms velocities of a developing plane mixing layer was investigated. The use of commonly accepted nondimensional representations of the data confirm (at least) an approximately self-preserving condition. It is suggested that the effects of the laminar/turbulent initial condition persist in the self-preserving region.

  9. The Summertime Arctic Atmosphere: Meteorological Measurements during the Arctic Ocean Experiment 2001.

    NASA Astrophysics Data System (ADS)

    Tjernström, Michael; Leck, Caroline; Persson, P. Ola G.; Jensen, Michael L.; Oncley, Steven P.; Targino, Admir

    2004-09-01

    An atmospheric boundary layer experiment into the high Arctic was carried out on the Swedish ice-breaker Oden during the summer of 2001, with the primary boundary layer observations obtained while the icebreaker drifted with the ice near 89°N during 3 weeks in August. The purposes of the experiment were to gain an understanding of atmospheric boundary layer structure and transient mixing mechanisms, in addition to their relationships to boundary layer clouds and aerosol production. Using a combination of in situ and remote sensing instruments, with temporal and spatial resolutions previously not deployed in the Arctic, continuous measurements of the lower-troposphere structure and boundary layer turbulence were taken concurrently with atmospheric gas and particulate chemistry, and marine biology measurements.The boundary layer was strongly controlled by ice thermodynamics and local turbulent mixing. Near-surface temperatures mostly remained between near the melting points of the sea- and freshwater, and near-surface relative humidity was high. Low clouds prevailed and fog appeared frequently. Visibility outside of fog was surprisingly good even with very low clouds, probably due to a lack of aerosol particles preventing the formation of haze. The boundary layer was shallow but remained well mixed, capped by an occasionally very strong inversion. Specific humidity often increased with height across the capping inversion.In contrast to the boundary layer, the free troposphere often retained its characteristics from well beyond the Arctic. Elevated intrusions of warm, moist air from open seas to the south were frequent. The picture that the Arctic atmosphere is less affected by transport from lower latitudes in summer than the winter may, thus, be an artifact of analyzing only surface measurements. The transport of air from lower latitudes at heights above the boundary layer has a major impact on the Arctic boundary layer, even very close to the North Pole. During a few week-long periods synoptic-scale weather systems appeared, while weaker and shallower mesoscale fronts were frequent. While frontal passages changed the properties of the free troposphere, changes in the boundary layer were more determined by local effects that often led to changes contrary to those aloft. For example, increasing winds associated with a cold front often led to a warming of the near-surface air by mixing and entrainment.

  10. Laboratory simulations of the atmospheric mixed-layer in flow over complex topography

    EPA Science Inventory

    A laboratory study of the influence of complex terrain on the interface between a well-mixed boundary layer and an elevated stratified layer was conducted in the towing-tank facility of the U.S. Environmental Protection Agency. The height of the mixed layer in the daytime boundar...

  11. An experimental investigation of turbulent boundary layers along curved surfaces

    NASA Technical Reports Server (NTRS)

    So, R. M. C.; Mellor, G. L.

    1972-01-01

    A curved wall tunnel was designed, and an equilibrium turbulent boundary layer was set up on the straight section preceding the curved test section. Turbulent boundary layer flows with uniform and adverse pressure distributions along convex and concave walls were investigated. Hot-wire measurements along the convex surface indicated that turbulent mixing between fluid layers was very much reduced. However, the law of the wall held and the skin friction, thus determined, correlated well with other measurements. Hot-wire measurements along the concave test wall revealed a system of longitudinal vortices inside the boundary layer and confirmed that concave curvature enhances mixing. A self-consistent set of turbulent boundary layer equations for flows along curved surfaces was derived together with a modified eddy viscosity. Solution of these equations together with the modified eddy viscosity gave results that correlated well with the present data on flows along the convex surface with arbitrary pressure distribution. However, it could only be used to predict the mean characteristics of the flow along concave walls because of the existence of the system of longitudinal vortices inside the boundary layer.

  12. Control of shock wave-boundary layer interactions by bleed in supersonic mixed compression inlets

    NASA Technical Reports Server (NTRS)

    Fukuda, M. K.; Hingst, W. G.; Reshotko, E.

    1975-01-01

    An experimental investigation was conducted to determine the effect of bleed on a shock wave-boundary layer interaction in an axisymmetric mixed-compression supersonic inlet. The inlet was designed for a free-stream Mach number of 2.50 with 60-percent supersonic internal area contraction. The experiment was conducted in the NASA Lewis Research Center 10-Foot Supersonic Wind Tunnel. The effects of bleed amount and bleed geometry on the boundary layer after a shock wave-boundary layer interaction were studied. The effect of bleed on the transformed form factor is such that the full realizable reduction is obtained by bleeding of a mass flow equal to about one-half of the incident boundary layer mass flow. More bleeding does not yield further reduction. Bleeding upstream or downstream of the shock-induced pressure rise is preferable to bleeding across the shock-induced pressure rise.

  13. The behavior of a compressible turbulent boundary layer in a shock-wave-induced adverse pressure gradient. Ph.D. Thesis - Washington Univ., Seattle, Aug. 1972

    NASA Technical Reports Server (NTRS)

    Rose, W. C.

    1973-01-01

    The results of an experimental investigation of the mean- and fluctuating-flow properties of a compressible turbulent boundary layer in a shock-wave-induced adverse pressure gradient are presented. The turbulent boundary layer developed on the wall of an axially symmetric nozzle and test section whose nominal free-stream Mach number and boundary-layer thickness Reynolds number were 4 and 100,000, respectively. The adverse pressure gradient was induced by an externally generated conical shock wave. Mean and time-averaged fluctuating-flow data, including the complete experimental Reynolds stress tensor and experimental turbulent mass- and heat-transfer rates are presented for the boundary layer and external flow, upstream, within and downstream of the pressure gradient. The mean-flow data include distributions of total temperature throughout the region of interest. The turbulent mixing properties of the flow were determined experimentally with a hot-wire anemometer. The calibration of the wires and the interpretation of the data are discussed. From the results of the investigation, it is concluded that the shock-wave - boundary-layer interaction significantly alters the turbulent mixing characteristics of the boundary layer.

  14. A MULTI-STREAM MODEL FOR VERTICAL MIXING OF A PASSIVE TRACER IN THE CONVECTIVE BOUNDARY LAYER

    EPA Science Inventory

    We study a multi-stream model (MSM) for vertical mixing of a passive tracer in the convective boundary layer, in which the tracer is advected by many vertical streams with different probabilities and diffused by small scale turbulence. We test the MSM algorithm for investigatin...

  15. Observations of the Early Morning Boundary-Layer Transition with Small Remotely-Piloted Aircraft

    NASA Astrophysics Data System (ADS)

    Wildmann, Norman; Rau, Gerrit Anke; Bange, Jens

    2015-12-01

    A remotely-piloted aircraft (RPA), equipped with a high resolution thermodynamic sensor package, was used to investigate physical processes during the morning transition of the atmospheric boundary layer over land. Experiments were conducted at a test site in heterogeneous terrain in south-west Germany on 5 days from June to September 2013 in an evolving shallow convective boundary layer, which then developed into a well-mixed layer later in the day. A combination of vertical profiling and constant-altitude profiling (CAP) at 100 m height above ground level was chosen as the measuring strategy throughout the experiment. The combination of flight strategies allows the application of mixed-layer scaling using the boundary-layer height z_i, convective velocity scale w_* and convective temperature scale θ _*. The hypothesis that mixed-layer theory is valid during the whole transition was not confirmed for all parameters. A good agreement is found for temperature variances, especially in the upper half of the boundary layer, and the normalized heat-flux profile. The results were compared to a previous study with the helicopter-borne turbulence probe Helipod, and it was found that similar data quality can be achieved with the RPA. On all days, the CAP flight level was within the entrainment zone for a short time, and the horizontal variability of temperature and water vapour along the flight path is presented as an example of the inhomogeneity of layer interfaces in the boundary layer. The study serves as a case study of the possibilities and limitations with state-of-the-art RPA technology in micrometeorology.

  16. Stability of mixing layers

    NASA Technical Reports Server (NTRS)

    Tam, Christopher; Krothapalli, A

    1993-01-01

    The research program for the first year of this project (see the original research proposal) consists of developing an explicit marching scheme for solving the parabolized stability equations (PSE). Performing mathematical analysis of the computational algorithm including numerical stability analysis and the determination of the proper boundary conditions needed at the boundary of the computation domain are implicit in the task. Before one can solve the parabolized stability equations for high-speed mixing layers, the mean flow must first be found. In the past, instability analysis of high-speed mixing layer has mostly been performed on mean flow profiles calculated by the boundary layer equations. In carrying out this project, it is believed that the boundary layer equations might not give an accurate enough nonparallel, nonlinear mean flow needed for parabolized stability analysis. A more accurate mean flow can, however, be found by solving the parabolized Navier-Stokes equations. The advantage of the parabolized Navier-Stokes equations is that its accuracy is consistent with the PSE method. Furthermore, the method of solution is similar. Hence, the major part of the effort of the work of this year has been devoted to the development of an explicit numerical marching scheme for the solution of the Parabolized Navier-Stokes equation as applied to the high-seed mixing layer problem.

  17. Amendment to "Analytical Solution for the Convectively-Mixed Atmospheric Boundary Layer": Inclusion of Subsidence

    NASA Astrophysics Data System (ADS)

    Ouwersloot, H. G.; de Arellano, J. Vilà-Guerau

    2013-09-01

    In Ouwersloot and Vilà-Guerau de Arellano (Boundary-Layer Meteorol. doi: 10.1007/s10546-013-9816-z , 2013, this issue), the analytical solutions for the boundary-layer height and scalar evolutions are derived for the convective boundary layer, based on the prognostic equations of mixed-layer slab models without taking subsidence into account. Here, we include and quantify the added effect of subsidence if the subsidence velocity scales linearly with height throughout the atmosphere. This enables analytical analyses for a wider range of observational cases. As a demonstration, the sensitivity of the boundary-layer height and the potential temperature jump to subsidence and the free tropospheric stability is graphically presented. The new relations show the importance of the temporal distribution of the surface buoyancy flux in determining the evolution if there is subsidence.

  18. Boundary layer ozone - An airborne survey above the Amazon Basin

    NASA Technical Reports Server (NTRS)

    Gregory, Gerald L.; Browell, Edward V.; Warren, Linda S.

    1988-01-01

    Ozone data obtained over the forest canopy of the Amazon Basin during July and August 1985 in the course of NASA's Amazon Boundary Layer Experiment 2A are discussed, and ozone profiles obtained during flights from Belem to Tabatinga, Brazil, are analyzed to determine any cross-basin effects. The analyses of ozone data indicate that the mixed layer of the Amazon Basin, for the conditions of undisturbed meteorology and in the absence of biomass burning, is a significant sink for tropospheric ozone. As the coast is approached, marine influences are noted at about 300 km inland, and a transition from a forest-controlled mixed layer to a marine-controlled mixed layer is noted.

  19. Boundary-Layer Characteristics Over a Coastal Megacity

    NASA Astrophysics Data System (ADS)

    Melecio-Vazquez, D.; Ramamurthy, P.; Arend, M.; Moshary, F.; Gonzalez, J.

    2017-12-01

    Boundary-layer characteristics over New York City are analyzed for various local and synoptic conditions over several seasons. An array of vertical profilers, including a Doppler LiDAR, a micro-pulse LiDAR and a microwave radiometer are used to observe the structure and evolution of the boundary-layer. Additionally, an urbanized Weather Research and Forecasting (uWRF) model coupled to a high resolution landcover/land-use database is used to study the spatial variability in boundary layer characteristics. The summer daytime averaged potential temperature profile from the microwave radiometer shows the presence of a thermal internal boundary layer wherein a superadiabatic layer lies underneath a stable layer instead of a mixed-layer. Both the winter daytime and nighttime seasonal averages show that the atmosphere remains unstable near the surface and does not reach stable conditions during the nighttime. The mixing ratio seasonal averages show peaks in humidity near 200-m and 1100-m, above instrument level, which could result from sea breeze and anthropogenic sources. Ceilometer measurements show a high degree of variability in boundary layer height depending on wind direction. Comparison with uWRF results show that the model tends to overestimate convective efficiency for selected summer and winter cases and therefore shows a much deeper thermal boundary layer than the observed profiles. The model estimates a less humid atmosphere than seen in observations.

  20. Large Eddy Simulations of a Bottom Boundary Layer Under a Shallow Geostrophic Front

    NASA Astrophysics Data System (ADS)

    Bateman, S. P.; Simeonov, J.; Calantoni, J.

    2017-12-01

    The unstratified surf zone and the stratified shelf waters are often separated by dynamic fronts that can strongly impact the character of the Ekman bottom boundary layer. Here, we use large eddy simulations to study the turbulent bottom boundary layer associated with a geostrophic current on a stratified shelf of uniform depth. The simulations are initialized with a spatially uniform vertical shear that is in geostrophic balance with a pressure gradient due to a linear horizontal temperature variation. Superposed on the temperature front is a stable vertical temperature gradient. As turbulence develops near the bottom, the turbulence-induced mixing gradually erodes the initial uniform temperature stratification and a well-mixed layer grows in height until the turbulence becomes fully developed. The simulations provide the spatial distribution of the turbulent dissipation and the Reynolds stresses in the fully developed boundary layer. We vary the initial linear stratification and investigate its effect on the height of the bottom boundary layer and the turbulence statistics. The results are compared to previous models and simulations of stratified bottom Ekman layers.

  1. Control of shock-wave boundary-layer interactions by bleed in supersonic mixed compression inlets

    NASA Technical Reports Server (NTRS)

    Fukuda, M. K.; Reshotko, E.; Hingst, W. R.

    1975-01-01

    An experimental investigation has been conducted to determine the effect of bleed region geometry and bleed rate on shock wave-boundary layer interactions in an axisymmetric, mixed-compression inlet at a Mach number of 2.5. The full realizable reduction in transformed form factor is obtained by bleeding off about half the incident boundary layer mass flow. Bleeding upstream or downstream of the shock-induced pressure rise is preferable to bleeding across the shock-induced pressure rise. Slanted holes are more effective than normal holes. Two different bleed hole sizes were tested without detectable difference in performance.

  2. The turblent mixing layer - Geometry of large vortices

    NASA Astrophysics Data System (ADS)

    Browand, F. K.; Troutt, T. R.

    1985-09-01

    Large spanwide vortices in a mixing layer have been studied in numerous investigations. The present study represents an attempt to define the geometry of the large vortices. In the conducted experiments, the flow develops from a laminar boundary layer, or from an intentionally tripped turbulent boundary layer. However, no other forcing is provided. It is pointed out that in both cases the downstream structure becomes indistinguishable. The experimental apparatus and the employed techniques are discussed, taking into account details regarding the wind tunnel, the detection of the structure, and aspects of digitization. Attention is given to the mean growth of the mixing layer, the mean vortex spacing, the spanwise correlation of vortex structure, velocity-field visualizations, the transition criterion, and the permanence of structure.

  3. The Effects of Rotation on Boundary Layers in Turbomachine Rotors

    NASA Technical Reports Server (NTRS)

    Johnston, J. P.

    1974-01-01

    The boundary layers in turbomachine rotors are subject to Coriolis forces which can (1) contribute directly to the development of secondary flows and (2) indirectly influence the behavior of boundary layers by augmentation and/or suppression of turbulence production in the boundary layers on blades. Both these rotation-induced phenomena are particularly important in the development of understanding of flow and loss mechanisms in centrifugal and mixed flow machines. The primary objective of this paper is to review the information available on these effects.

  4. Forced free-shear layer measurements

    NASA Technical Reports Server (NTRS)

    Leboeuf, Richard L.

    1994-01-01

    Detailed three-dimensional three-component phase averaged measurements of the spanwise and streamwise vorticity formation and evolution in acoustically forced plane free-shear flows have been obtained. For the first time, phase-averaged measurements of all three velocity components have been obtained in both a mixing layer and a wake on three-dimensional grids, yielding the spanwise and streamwise vorticity distributions without invoking Taylor's hypothesis. Initially, two-frequency forcing was used to phase-lock the roll-up and first pairing of the spanwise vortical structures in a plane mixing layer. The objective of this study was to measure the near-field vortical structure morphology in a mixing layer with 'natural' laminar initial boundary layers. For the second experiment the second and third subharmonics of the fundamental roll-up frequency were added to the previous two-frequency forcing in order to phase-lock the roll-up and first three pairings of the spanwise rollers in the mixing layer. The objective of this study was to determine the details of spanwise scale changes observed in previous time-averaged measurements and flow visualization of unforced mixing layers. For the final experiment, single-frequency forcing was used to phase-lock the Karman vortex street in a plane wake developing from nominally two-dimensional laminar initial boundary layers. The objective of this study was to compare measurements of the three-dimensional structure in a wake developing from 'natural' initial boundary layers to existing models of wake vortical structure.

  5. Large-Eddy Simulation in Planetary Boundary-Layer Research

    NASA Technical Reports Server (NTRS)

    Wyngaard, J. C.

    1985-01-01

    The structure and dynamics of the convective boundary layer are discussed. The vertical transport of a conservative, passive scalar was simulated. Also studied were the statistics by top-down and bottom-up scalar fields. Substantial differences were found between them due, presumably, to the asymmetry in the convective boundary layer. A generalization of mixed-layer scaling was developed which allows one to include the effects of top-down diffusion.

  6. Nonstationary Deformation of an Elastic Layer with Mixed Boundary Conditions

    NASA Astrophysics Data System (ADS)

    Kubenko, V. D.

    2016-11-01

    The analytic solution to the plane problem for an elastic layer under a nonstationary surface load is found for mixed boundary conditions: normal stress and tangential displacement are specified on one side of the layer (fourth boundary-value problem of elasticity) and tangential stress and normal displacement are specified on the other side of the layer (second boundary-value problem of elasticity). The Laplace and Fourier integral transforms are applied. The inverse Laplace and Fourier transforms are found exactly using tabulated formulas and convolution theorems for various nonstationary loads. Explicit analytical expressions for stresses and displacements are derived. Loads applied to a constant surface area and to a surface area varying in a prescribed manner are considered. Computations demonstrate the dependence of the normal stress on time and spatial coordinates. Features of wave processes are analyzed

  7. Interactive calculation procedures for mixed compression inlets

    NASA Technical Reports Server (NTRS)

    Reshotko, Eli

    1983-01-01

    The proper design of engine nacelle installations for supersonic aircraft depends on a sophisticated understanding of the interactions between the boundary layers and the bounding external flows. The successful operation of mixed external-internal compression inlets depends significantly on the ability to closely control the operation of the internal compression portion of the inlet. This portion of the inlet is one where compression is achieved by multiple reflection of oblique shock waves and weak compression waves in a converging internal flow passage. However weak these shocks and waves may seem gas-dynamically, they are of sufficient strength to separate a laminar boundary layer and generally even strong enough for separation or incipient separation of the turbulent boundary layers. An understanding was developed of the viscous-inviscid interactions and of the shock wave boundary layer interactions and reflections.

  8. The influence of free-stream turbulence on turbulent boundary layers with mild adverse pressure gradients

    NASA Technical Reports Server (NTRS)

    Hoffmann, J. A.; Kassir, S. M.; Larwood, S. M.

    1989-01-01

    The influence of near isotropic free-stream turbulence on the shape factors and skin friction coefficients of turbulent boundary layers is presented for the cases of zero and mild adverse pressure gradients. With free-stream turbulence, improved fluid mixing occurs in boundary layers with adverse pressure gradients relative to the zero pressure gradient condition, with the same free-stream turbulence intensity and length scale. Stronger boundary layers with lower shape factors occur as a result of a lower ratio of the integral scale of turbulence to the boundary layer thickness, and to vortex stretching of the turbulent eddies in the free-stream, both of which act to improve the transmission of momentum from the free-stream to the boundary layers.

  9. Sensitivity of High-Resolution Simulations of Hurricane Bob (1991) to Planetary Boundary Layer Parameterizations

    NASA Technical Reports Server (NTRS)

    Braun, Scott A.; Tao, Wei-Kuo

    1999-01-01

    The MM5 mesoscale model is used to simulate Hurricane Bob (1991) using grids nested to high resolution (4 km). Tests are conducted to determine the sensitivity of the simulation to the available planetary boundary layer parameterizations, including the bulk-aerodynamic, Blackadar, Medium-RanGe Forecast (MRF) model, and Burk-Thompson boundary-layer schemes. Significant sensitivity is seen, with minimum central pressures varying by up to 17 mb. The Burk-Thompson and bulk-aerodynamic boundary-layer schemes produced the strongest storms while the MRF scheme produced the weakest storm. Precipitation structure of the simulated hurricanes also varied substantially with the boundary layer parameterizations. Diagnostics of boundary-layer variables indicated that the intensity of the simulated hurricanes generally increased as the ratio of the surface exchange coefficients for heat and momentum, C(sub h)/C(sub M), although the manner in which the vertical mixing takes place was also important. Findings specific to the boundary-layer schemes include: 1) the MRF scheme produces mixing that is too deep and causes drying of the lower boundary layer in the inner-core region of the hurricane; 2) the bulk-aerodynamic scheme produces mixing that is probably too shallow, but results in a strong hurricane because of a large value of C(sub h)/C(sub M) (approximately 1.3); 3) the MRF and Blackadar schemes are weak partly because of smaller surface moisture fluxes that result in a reduced value of C(sub h)/C(sub M) (approximately 0.7); 4) the Burk-Thompson scheme produces a strong storm with C(sub h)/C(sub M) approximately 1; and 5) the formulation of the wind-speed dependence of the surface roughness parameter, z(sub 0), is important for getting appropriate values of the surface exchange coefficients in hurricanes based upon current estimates of these parameters.

  10. Did Irving Langmuir Observe Langmuir Circulations?

    NASA Astrophysics Data System (ADS)

    D'Asaro, E. A.; Harcourt, R. R.; Shcherbina, A.; Thomson, J. M.; Fox-Kemper, B.

    2012-12-01

    Although surface waves are known to play an important role in mixing the upper ocean, the current generation of upper ocean boundary layer parameterizations does not include the explicit effects of surface waves. Detailed simulations using LES models which include the Craik-Leibovich wave-current interactions, now provide quantitative predictions of the enhancement of boundary layer mixing by waves. Here, using parallel experiments in Lake Washington and at Ocean Station Papa, we show a clear enhancement of vertical kinetic energy across the entire upper ocean boundary layer which can be attributed to surface wave effects. The magnitude of this effect is close to that predicted by LES models, but is not large, less than a factor of 2 on average, and increased by large Stokes drift and shallow mixed layers. Global estimates show the largest wave enhancements occur on the equatorial side of the westerlies in late Spring, due to the combination of large waves, shallow mixed layers and weak winds. In Lakes, however, the waves and the Craik-Leibovich interactions are weak, making it likely that the counter-rotating vortices famously observed by Irving Langmuir in Lake George were not driven by wave-current interactions.

  11. Dual polarization micropulse lidar observations of the diurnal evolution of atmospheric boundary layer over a tropical coastal station

    NASA Astrophysics Data System (ADS)

    Rajeev, K.; Mishra, Manoj K.; Sunilkumar, S. V.; Sijikumar, S.

    2016-05-01

    High-resolution dual polarized micropulse lidar (MPL) observations have been used to investigate the diurnal evolution of atmospheric boundary layer (ABL) during winter (2008-2011) over Thiruvananthapuram (8.5°N, 77°E), a tropical coastal station located at southwest Peninsular India, adjoining the Arabian Sea. The lidar observations are compared with the boundary layer characteristics derived from concurrent balloon-borne radiosonde observations. This study shows that the mixed layer height over this coastal station generally increases from <300 m in the morning to 1500 m by the afternoon. Growth rate of the mixed layer height is rapid ( 350 m/hr) during 09-11 IST and slows down with time to <150 m/hr during 11-14 IST and <90 m/hr during 14-16 IST. Thermal internal boundary layer during the afternoon, caused by sea breeze circulation, extends up to 500 m altitude and is characterized by highly spherical aerosols, while a distinctly non-spherical aerosol layer appear above this altitude, in the return flow arising from the landmass.

  12. Linking Dynamics of the Near-surface Flow to Deeper Boundary Layer Forcing in the Nocturnal Boundary Layer

    DTIC Science & Technology

    2012-06-01

    Kaimal and Finnigan (1994), modified) Figure 2.2 illustrates the evolution from unstable CBL to a nocturnal Stable Bound- ary Layer ( SBL ) in the absence...mixed layer acts as a cap for the SBL . The SBL persists through the night until sunrise when surface heating resumes and a new unstable layer begins...to form at the surface, gradually returning to a CBL. 7 2.2.1 Dynamics of the stable boundary layer Because the SBL is stably stratified, buoyancy

  13. Dryline on 22 May 2002 During IHOP: Convective Scale Measurements at the Profiling Site

    NASA Technical Reports Server (NTRS)

    Demoz, Belay; Flamant, Cyrille; Miller, David; Evans, Keith; Fabry, Federic; DiGirolamo, Paolo; Whiteman, David; Geerts, Bart; Weckwerth, Tammy; Brown, William

    2004-01-01

    A unique set of measurements of wind, water vapor mixing ratio and boundary layer height variability was observed during the first MOP dryline mission of 22 May 2002. Water vapor mixing ratio from the Scanning Raman Lidar (SRL), high-resolution profiles of aerosol backscatter from the HARLIE and wind profiles from the GLOW are combined with the vertical velocity derived from the NCAR/ISS/MAPR and the high-resolution FMCW radar to reveal the convective variability of the cumulus cloud-topped boundary layer. A combined analysis of the in-situ and remote sensing data from aircraft, radiosonde, lidars, and radars reveals moisture variability within boundary layer updraft and downdraft regions as well as characterizes the boundary layer height variability in the dry and moist sides of the dryline. The profiler site measurements will be tied to aircraft data to reveal the relative intensity and location of these updrafts to the dry line. This study provides unprecedented high temporal and spatial resolution measurements of wind, moisture and backscatter within a dryline and the associated convective boundary layer.

  14. End-wall boundary layer measurements in a two-stage fan

    NASA Technical Reports Server (NTRS)

    Ball, C. L.; Reid, L.; Schmidt, J. F.

    1983-01-01

    Detailed flow measurements made in the casing boundary layer of a two-stage transonic fan are summarized. These measurements were taken at a station upstream of the fan, between all blade rows, and downstream of the last row. Conventional boundary layer parameters were calculated from the measured data. A classical two dimensional casing boundary layer was measured at the fan inlet and extended inward to approximately 15 percent of span. A highly three dimensional boundary layer was measured at the exit of each blade row and extended inward to approximately 10 percent of span. The steep radial gradient of axial velocity noted at the exit of the rotors was reduced substantially as the flow passed through the stators. This reduced gradient is attributed to flow mixing. The amount of flow mixing was reflected in the radial redistribution of total temperature as the flow passed through the stators. The blockage factors calculated from the measured data show an increase in blockage across the rotors and a decrease across the stators. For this fan the calculated blockages for the second stage were essentially the same as those for the first stage.

  15. An Experimental Investigation of Forced Mixing of a Turbulent Boundary Layer in an Annular Diffuser. Ph.D. Thesis - Ohio State Univ.; [for boundary layer control

    NASA Technical Reports Server (NTRS)

    Shaw, R. J.

    1979-01-01

    The forced mixing process of a turbulent boundary layer in an axisymmetric annular diffuser using conventional wing-like vortex generators was studied. Flow field measurements were made at four axial locations downstream of the vortex generators. At each axial location, a total of 25 equally spaced profiles were measured behind three consecutive vortex generators which formed two pairs of vortex generators. Hot film anemometry probes measured the boundary layer turbulence structure at the same locations where pressure measurements were made. Both single and cross film probes were used. The diffuser turbulence data was teken only for a nominal inlet Mach number of 0.3. Three vortex generator configurations were tested. The differences between configurations involved changes in size and relative vortex generator positions. All three vortex generator configurations tested provided increases in diffuser performance. Distinct differences in the boundary layer integral properties and skin friction levels were noted between configurations. The axial turbulence intensity and Reynolds stress profiles measured displayed similarities in trends but differences in levels for the three configurations.

  16. Vorticity interaction effects on blunt bodies. [hypersonic viscous shock layers

    NASA Technical Reports Server (NTRS)

    Anderson, E. C.; Wilcox, D. C.

    1977-01-01

    Numerical solutions of the viscous shock layer equations governing laminar and turbulent flows of a perfect gas and radiating and nonradiating mixtures of perfect gases in chemical equilibrium are presented for hypersonic flow over spherically blunted cones and hyperboloids. Turbulent properties are described in terms of the classical mixing length. Results are compared with boundary layer and inviscid flowfield solutions; agreement with inviscid flowfield data is satisfactory. Agreement with boundary layer solutions is good except in regions of strong vorticity interaction; in these flow regions, the viscous shock layer solutions appear to be more satisfactory than the boundary layer solutions. Boundary conditions suitable for hypersonic viscous shock layers are devised for an advanced turbulence theory.

  17. The influence of free-stream turbulence on turbulent boundary layers with mild adverse pressure gradients

    NASA Technical Reports Server (NTRS)

    Hoffmann, Jon A.

    1988-01-01

    The influence of near isotropic free-stream turbulence on the shape factors and skin friction coefficients of turbulent bounday layers is presented for the cases of zero and mild adverse pressure gradients. With free-stream turbulence, improved fluid mixing occurs in boundary layers with adverse pressure gradients relative to the zero pressure gradient condition, with the same free-stream turbulence intensity and length scale. Stronger boundary layers with lower shape factors occur as a result of a lower ratio of the integral scale of turbulence to the boundary layer thickness, and to vortex stretching of the turbulent eddies in the free stream, both of which act to improve the transmission of momentum from the free stream to the boundary layers.

  18. The "Grey Zone" cold air outbreak global model intercomparison: A cross evaluation using large-eddy simulations

    NASA Astrophysics Data System (ADS)

    Tomassini, Lorenzo; Field, Paul R.; Honnert, Rachel; Malardel, Sylvie; McTaggart-Cowan, Ron; Saitou, Kei; Noda, Akira T.; Seifert, Axel

    2017-03-01

    A stratocumulus-to-cumulus transition as observed in a cold air outbreak over the North Atlantic Ocean is compared in global climate and numerical weather prediction models and a large-eddy simulation model as part of the Working Group on Numerical Experimentation "Grey Zone" project. The focus of the project is to investigate to what degree current convection and boundary layer parameterizations behave in a scale-adaptive manner in situations where the model resolution approaches the scale of convection. Global model simulations were performed at a wide range of resolutions, with convective parameterizations turned on and off. The models successfully simulate the transition between the observed boundary layer structures, from a well-mixed stratocumulus to a deeper, partly decoupled cumulus boundary layer. There are indications that surface fluxes are generally underestimated. The amount of both cloud liquid water and cloud ice, and likely precipitation, are under-predicted, suggesting deficiencies in the strength of vertical mixing in shear-dominated boundary layers. But also regulation by precipitation and mixed-phase cloud microphysical processes play an important role in the case. With convection parameterizations switched on, the profiles of atmospheric liquid water and cloud ice are essentially resolution-insensitive. This, however, does not imply that convection parameterizations are scale-aware. Even at the highest resolutions considered here, simulations with convective parameterizations do not converge toward the results of convection-off experiments. Convection and boundary layer parameterizations strongly interact, suggesting the need for a unified treatment of convective and turbulent mixing when addressing scale-adaptivity.

  19. Simulations of arctic mixed-phase clouds in forecasts with CAM3 and AM2 for M-PACE

    DOE PAGES

    Xie, Shaocheng; Boyle, James; Klein, Stephen A.; ...

    2008-02-27

    [1] Simulations of mixed-phase clouds in forecasts with the NCAR Atmosphere Model version 3 (CAM3) and the GFDL Atmospheric Model version 2 (AM2) for the Mixed-Phase Arctic Cloud Experiment (M-PACE) are performed using analysis data from numerical weather prediction centers. CAM3 significantly underestimates the observed boundary layer mixed-phase cloud fraction and cannot realistically simulate the variations of liquid water fraction with temperature and cloud height due to its oversimplified cloud microphysical scheme. In contrast, AM2 reasonably reproduces the observed boundary layer cloud fraction while its clouds contain much less cloud condensate than CAM3 and the observations. The simulation of themore » boundary layer mixed-phase clouds and their microphysical properties is considerably improved in CAM3 when a new physically based cloud microphysical scheme is used (CAM3LIU). The new scheme also leads to an improved simulation of the surface and top of the atmosphere longwave radiative fluxes. Sensitivity tests show that these results are not sensitive to the analysis data used for model initialization. Increasing model horizontal resolution helps capture the subgrid-scale features in Arctic frontal clouds but does not help improve the simulation of the single-layer boundary layer clouds. AM2 simulated cloud fraction and LWP are sensitive to the change in cloud ice number concentrations used in the Wegener-Bergeron-Findeisen process while CAM3LIU only shows moderate sensitivity in its cloud fields to this change. Furthermore, this paper shows that the Wegener-Bergeron-Findeisen process is important for these models to correctly simulate the observed features of mixed-phase clouds.« less

  20. Simulations of Arctic mixed-phase clouds in forecasts with CAM3 and AM2 for M-PACE

    NASA Astrophysics Data System (ADS)

    Xie, Shaocheng; Boyle, James; Klein, Stephen A.; Liu, Xiaohong; Ghan, Steven

    2008-02-01

    Simulations of mixed-phase clouds in forecasts with the NCAR Atmosphere Model version 3 (CAM3) and the GFDL Atmospheric Model version 2 (AM2) for the Mixed-Phase Arctic Cloud Experiment (M-PACE) are performed using analysis data from numerical weather prediction centers. CAM3 significantly underestimates the observed boundary layer mixed-phase cloud fraction and cannot realistically simulate the variations of liquid water fraction with temperature and cloud height due to its oversimplified cloud microphysical scheme. In contrast, AM2 reasonably reproduces the observed boundary layer cloud fraction while its clouds contain much less cloud condensate than CAM3 and the observations. The simulation of the boundary layer mixed-phase clouds and their microphysical properties is considerably improved in CAM3 when a new physically based cloud microphysical scheme is used (CAM3LIU). The new scheme also leads to an improved simulation of the surface and top of the atmosphere longwave radiative fluxes. Sensitivity tests show that these results are not sensitive to the analysis data used for model initialization. Increasing model horizontal resolution helps capture the subgrid-scale features in Arctic frontal clouds but does not help improve the simulation of the single-layer boundary layer clouds. AM2 simulated cloud fraction and LWP are sensitive to the change in cloud ice number concentrations used in the Wegener-Bergeron-Findeisen process while CAM3LIU only shows moderate sensitivity in its cloud fields to this change. This paper shows that the Wegener-Bergeron-Findeisen process is important for these models to correctly simulate the observed features of mixed-phase clouds.

  1. Impact of the Loess Plateau on the atmospheric boundary layer structure and air quality in the North China Plain: a case study.

    PubMed

    Hu, Xiao-Ming; Ma, ZhiQiang; Lin, Weili; Zhang, Hongliang; Hu, Jianlin; Wang, Ying; Xu, Xiaobin; Fuentes, Jose D; Xue, Ming

    2014-11-15

    The North China Plain (NCP), to the east of the Loess Plateau, experiences severe regional air pollution. During the daytime in the summer, the Loess Plateau acts as an elevated heat source. The impacts of such a thermal effect on meteorological phenomena (e.g., waves, precipitation) in this region have been discussed. However, its impacts on the atmospheric boundary layer structure and air quality have not been reported. It is hypothesized that the thermal effect of the Plateau likely modulates the boundary layer structure and ambient concentrations of pollutants over the NCP under certain meteorological conditions. Thus, this study investigates such effect and its impacts using measurements and three-dimensional model simulations. It is found that in the presence of daytime westerly wind in the lower troposphere (~1 km above the NCP), warmer air above the Loess Plateau was transported over the NCP and imposed a thermal inversion above the mixed boundary layer, which acted as a lid and suppressed the mixed layer growth. As a result, pollutants accumulated in the shallow mixed layer and ozone was efficiently produced. The downward branch of the thermally-induced Mountain-Plains Solenoid circulation over the NCP contributed to enhancing the capping inversion and exacerbating air pollution. Previous studies have reported that low mixed layer, a factor for elevated pollution in the NCP, may be caused by aerosol scattering and absorption of solar radiation, frontal inversion, and large scale subsidence. The present study revealed a different mechanism (i.e., westerly warm advection) for the suppression of the mixed layer in summer NCP, which caused severe O3 pollution. This study has important implications for understanding the essential meteorological factors for pollution episodes in this region and forecasting these severe events. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. A theoretical study of mixing downstream of transverse injection into a supersonic boundary layer

    NASA Technical Reports Server (NTRS)

    Baker, A. J.; Zelazny, S. W.

    1972-01-01

    A theoretical and analytical study was made of mixing downstream of transverse hydrogen injection, from single and multiple orifices, into a Mach 4 air boundary layer over a flat plate. Numerical solutions to the governing three-dimensional, elliptic boundary layer equations were obtained using a general purpose computer program. Founded upon a finite element solution algorithm. A prototype three-dimensional turbulent transport model was developed using mixing length theory in the wall region and the mass defect concept in the outer region. Excellent agreement between the computed flow field and experimental data for a jet/freestream dynamic pressure ratio of unity was obtained in the centerplane region of the single-jet configuration. Poorer agreement off centerplane suggests an inadequacy of the extrapolated two-dimensional turbulence model. Considerable improvement in off-centerplane computational agreement occured for a multi-jet configuration, using the same turbulent transport model.

  3. Senstitivity analysis of horizontal heat and vapor transfer coefficients for a cloud-topped marine boundary layer during cold-air outbreaks. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Chang, Y. V.

    1986-01-01

    The effects of external parameters on the surface heat and vapor fluxes into the marine atmospheric boundary layer (MABL) during cold-air outbreaks are investigated using the numerical model of Stage and Businger (1981a). These fluxes are nondimensionalized using the horizontal heat (g1) and vapor (g2) transfer coefficient method first suggested by Chou and Atlas (1982) and further formulated by Stage (1983a). In order to simplify the problem, the boundary layer is assumed to be well mixed and horizontally homogeneous, and to have linear shoreline soundings of equivalent potential temperature and mixing ratio. Modifications of initial surface flux estimates, time step limitation, and termination conditions are made to the MABL model to obtain accurate computations. The dependence of g1 and g2 in the cloud topped boundary layer on the external parameters (wind speed, divergence, sea surface temperature, radiative sky temperature, cloud top radiation cooling, and initial shoreline soundings of temperature, and mixing ratio) is studied by a sensitivity analysis, which shows that the uncertainties of horizontal transfer coefficients caused by changes in the parameters are reasonably small.

  4. Turbulent mixing layers in the interstellar medium of galaxies

    NASA Technical Reports Server (NTRS)

    Slavin, J. D.; Shull, J. M.; Begelman, M. C.

    1993-01-01

    We propose that turbulent mixing layers are common in the interstellar medium (ISM). Injection of kinetic energy into the ISM by supernovae and stellar winds, in combination with density and temperature inhomogeneities, results in shear flows. Such flows will become turbulent due to the high Reynolds number (low viscosity) of the ISM plasma. These turbulent boundary layers will be particularly interesting where the shear flow occurs at boundaries of hot (approximately 10(exp 6) K) and cold or warm (10(exp 2) - 10(exp 4) K) gas. Mixing will occur in such layers producing intermediate-temperature gas at T is approximately equal to 10(exp 5.0) - 10(exp 5.5) that radiates strongly in the optical, ultraviolet, and EUV. We have modeled these layers under the assumptions of rapid mixing down to the atomic level and steady flow. By including the effects of non-equilibrium ionization and self-photoionization of the gas as it cools after mixing, we predict the intensities of numerous optical, infrared, and ultraviolet emission lines, as well as absorption column densities of C 4, N 5, Si 4, and O 6.

  5. Mass and energy transfer across the Earth's magnetopause caused by vortex-induced reconnection: Mass and energy transfer by K-H vortex

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakamura, T. K. M.; Eriksson, S.; Hasegawa, H.

    When the interplanetary magnetic field (IMF) is strongly northward, a boundary layer that contains a considerable amount of plasma of magnetosheath origin is often observed along and earthward of the low-latitude magnetopause. Such a pre-existing boundary layer, with a higher density than observed in the adjacent magnetosphere, reduces the local Alfvén speed and allows the Kelvin-Helmholtz instability (KHI) to grow more strongly. We employ a three-dimensional fully kinetic simulation to model an event observed by the Magnetospheric Multiscale (MMS) mission in which the spacecraft detected substantial KH waves between a pre-existing boundary layer and the magnetosheath during strong northward IMF.more » Initial results of this simulation [Nakamura et al., 2017] have successfully demonstrated ion-scale signatures of magnetic reconnection induced by the non-linearly developed KH vortex, which are quantitatively consistent with MMS observations. Furthermore, we quantify the simulated mass and energy transfer processes driven by this vortex-induced reconnection (VIR) and show that during this particular MMS event (i) mass enters a new mixing layer formed by the VIR more efficiently from the pre-existing boundary layer side than from the magnetosheath side, (ii) mixed plasmas within the new mixing layer convect tailward along the magnetopause at more than half the magnetosheath flow speed, and (iii) energy dissipation in localized VIR dissipation regions results in a strong parallel electron heating within the mixing layer. Finally, the quantitative agreements between the simulation and MMS observations allow new predictions that elucidate how the mass and energy transfer processes occur near the magnetopause during strong northward IMF.« less

  6. Observations of the Morning Development of the Urban Boundary Layer Over London, UK, Taken During the ACTUAL Project

    NASA Astrophysics Data System (ADS)

    Halios, Christos H.; Barlow, Janet F.

    2018-03-01

    The study of the boundary layer can be most difficult when it is in transition and forced by a complex surface, such as an urban area. Here, a novel combination of ground-based remote sensing and in situ instrumentation in central London, UK, is deployed, aiming to capture the full evolution of the urban boundary layer (UBL) from night-time until the fully-developed convective phase. In contrast with the night-time stable boundary layer observed over rural areas, the night-time UBL is weakly convective. Therefore, a new approach for the detection of the morning-transition and rapid-growth phases is introduced, based on the sharp, quasi-linear increase of the mixing height. The urban morning-transition phase varied in duration between 0.5 and 4 h and the growth rate of the mixing layer during the rapid-growth phase had a strong positive relationship with the convective velocity scale, and a weaker, negative relationship with wind speed. Wind shear was found to be higher during the night-time and morning-transition phases than the rapid-growth phase and the shear production of turbulent kinetic energy near the mixing-layer top was around six times larger than surface shear production in summer, and around 1.5 times larger in winter. In summer under low winds, low-level jets dominated the UBL, and shear production was greater than buoyant production during the night-time and the morning-transition phase near the mixing-layer top. Within the rapid-growth phase, buoyant production dominated at the surface, but shear production dominated in the upper half of the UBL. These results imply that regional flows such as low-level jets play an important role alongside surface forcing in determining UBL structure and growth.

  7. Mass and energy transfer across the Earth's magnetopause caused by vortex-induced reconnection: Mass and energy transfer by K-H vortex

    DOE PAGES

    Nakamura, T. K. M.; Eriksson, S.; Hasegawa, H.; ...

    2017-10-23

    When the interplanetary magnetic field (IMF) is strongly northward, a boundary layer that contains a considerable amount of plasma of magnetosheath origin is often observed along and earthward of the low-latitude magnetopause. Such a pre-existing boundary layer, with a higher density than observed in the adjacent magnetosphere, reduces the local Alfvén speed and allows the Kelvin-Helmholtz instability (KHI) to grow more strongly. We employ a three-dimensional fully kinetic simulation to model an event observed by the Magnetospheric Multiscale (MMS) mission in which the spacecraft detected substantial KH waves between a pre-existing boundary layer and the magnetosheath during strong northward IMF.more » Initial results of this simulation [Nakamura et al., 2017] have successfully demonstrated ion-scale signatures of magnetic reconnection induced by the non-linearly developed KH vortex, which are quantitatively consistent with MMS observations. Furthermore, we quantify the simulated mass and energy transfer processes driven by this vortex-induced reconnection (VIR) and show that during this particular MMS event (i) mass enters a new mixing layer formed by the VIR more efficiently from the pre-existing boundary layer side than from the magnetosheath side, (ii) mixed plasmas within the new mixing layer convect tailward along the magnetopause at more than half the magnetosheath flow speed, and (iii) energy dissipation in localized VIR dissipation regions results in a strong parallel electron heating within the mixing layer. Finally, the quantitative agreements between the simulation and MMS observations allow new predictions that elucidate how the mass and energy transfer processes occur near the magnetopause during strong northward IMF.« less

  8. Direct simulation of high-speed mixing layers

    NASA Technical Reports Server (NTRS)

    Mukunda, H. S.; Sekar, B.; Carpenter, M. H.; Drummond, J. Philip; Kumar, Ajay

    1992-01-01

    A computational study of a nonreacting high-speed mixing layer is performed. A higher order algorithm with sufficient grid points is used to resolve all relevant scales. In all cases, a temporal free-stream disturbance is introduced. The resulting flow is time-sampled to generate a statistical cross section of the flow properties. The studies are conducted at two convective Mach numbers, three free-stream turbulence intensities, three Reynolds numbers, and two types of initial profiles-hyperbolic tangent (tanh) and boundary layer. The boundary-layer profile leads to more realistic predictions of the transition processes. The predicted transition Reynolds number of 0.18 x 10(exp 6) compares well with experimental data. Normalized vortex spacings for the boundary-layer case are about 3.5 and compare favorably with the 1.5 to 2.5 found in experimental measurements. The tanh profile produces spacings of about 10. The growth rate of the layer is shown to be moderately affected by the initial disturbance field, but comparison with experimental data shows moderate agreement. For the boundary-layer case, it is shown that noise at the Strouhal number of 0.007 is selectively amplified and shows little Reynolds number dependence.

  9. Laboratory simulations of the atmospheric mixed-layer in flow ...

    EPA Pesticide Factsheets

    A laboratory study of the influence of complex terrain on the interface between a well-mixed boundary layer and an elevated stratified layer was conducted in the towing-tank facility of the U.S. Environmental Protection Agency. The height of the mixed layer in the daytime boundary layer can have a strong influence on the concentration of pollutants within this layer. Deflections of streamlines at the height of the interface are primarily a function of hill Froude number (Fr), the ratio of mixed-layer height (zi) to terrain height (h), and the crosswind dimension of the terrain. The magnitude of the deflections increases as Fr increases and zi / h decreases. For mixing-height streamlines that are initially below the terrain top, the response is linear with Fr; for those initially above the terrain feature the response to Fr is more complex. Once Fr exceeds about 2, the terrain related response of the mixed layer interface decreases somewhat with increasing Fr (toward more neutral flow). Deflections are also shown to increase as the crosswind dimensions of the terrain increases. Comparisons with numerical modeling, limited field data and other laboratory measurements reported in the literature are favorable. Additionally, visual observations of dye streamers suggests that the flow structure exhibited for our elevated inversions passing over three dimensional hills is similar to that reported in the literature for continuously stratified flow over two-dimensional h

  10. Receptivity of the compressible mixing layer

    NASA Astrophysics Data System (ADS)

    Barone, Matthew F.; Lele, Sanjiva K.

    2005-09-01

    Receptivity of compressible mixing layers to general source distributions is examined by a combined theoretical/computational approach. The properties of solutions to the adjoint Navier Stokes equations are exploited to derive expressions for receptivity in terms of the local value of the adjoint solution. The result is a description of receptivity for arbitrary small-amplitude mass, momentum, and heat sources in the vicinity of a mixing-layer flow, including the edge-scattering effects due to the presence of a splitter plate of finite width. The adjoint solutions are examined in detail for a Mach 1.2 mixing-layer flow. The near field of the adjoint solution reveals regions of relatively high receptivity to direct forcing within the mixing layer, with receptivity to nearby acoustic sources depending on the source type and position. Receptivity ‘nodes’ are present at certain locations near the splitter plate edge where the flow is not sensitive to forcing. The presence of the nodes is explained by interpretation of the adjoint solution as the superposition of incident and scattered fields. The adjoint solution within the boundary layer upstream of the splitter-plate trailing edge reveals a mechanism for transfer of energy from boundary-layer stability modes to Kelvin Helmholtz modes. Extension of the adjoint solution to the far field using a Kirchhoff surface gives the receptivity of the mixing layer to incident sound from distant sources.

  11. The evaporatively driven cloud-top mixing layer

    NASA Astrophysics Data System (ADS)

    Mellado, Juan Pedro

    2010-11-01

    Turbulent mixing caused by the local evaporative cooling at the top cloud-boundary of stratocumuli will be discussed. This research is motivated by the lack of a complete understanding of several phenomena in that important region, which translates into an unacceptable variability of order one in current models, including those employed in climate research. The cloud-top mixing layer is a simplified surrogate to investigate, locally, particular aspects of the fluid dynamics at the boundary between the stratocumulus clouds and the upper cloud-free air. In this work, direct numerical simulations have been used to study latent heat effects. The problem is the following: When the cloud mixes with the upper cloud-free layer, relatively warm and dry, evaporation tends to cool the mixture and, if strong enough, the buoyancy reversal instability develops. This instability leads to a turbulent convection layer growing next to the upper boundary of the cloud, which is, in several aspects, similar to free convection below a cold horizontal surface. In particular, results show an approximately self-preserving behavior that is characterized by the molecular buoyancy flux at the inversion base, fact that helps to explain the difficulties found when doing large-eddy simulations of this problem using classical subgrid closures.

  12. Aspects of Turbulent / Non-Turbulent Interfaces

    NASA Technical Reports Server (NTRS)

    Bisset, D. K.; Hunt, J. C. R.; Rogers, M. M.; Koen, Dennis (Technical Monitor)

    1999-01-01

    A distinct boundary between turbulent and non-turbulent regions in a fluid of otherwise constant properties is found in many laboratory and engineering turbulent flows, including jets, mixing layers, boundary layers and wakes. Generally, the flow has mean shear in at least one direction within t he turbulent zone, but the non-turbulent zones have no shear (adjacent laminar shear is a different case, e.g. transition in a boundary layer). There may be purely passive differences between the turbulent and non-turbulent zones, e.g. small variations in temperature or scalar concentration, for which turbulent mixing is an important issue. The boundary has several major characteristics of interest for the present study. Firstly, the boundary advances into the non-turbulent fluid, or in other words, nonturbulent fluid is entrained. Secondly, the change in turbulence properties across the boundary is remarkably abrupt; strong turbulent motions come close to the nonturbulent fluid, promoting entrainment. Thirdly, the boundary is irregular with a continually changing convoluted shape, which produces statistical intermittency. Its shape is contorted at all scales of the turbulent motion.

  13. Validation of an ocean shelf model for the prediction of mixed-layer properties in the Mediterranean Sea west of Sardinia

    NASA Astrophysics Data System (ADS)

    Onken, Reiner

    2017-04-01

    The Regional Ocean Modeling System (ROMS) has been employed to explore the sensitivity of the forecast skill of mixed-layer properties to initial conditions, boundary conditions, and vertical mixing parameterisations. The initial and lateral boundary conditions were provided by the Mediterranean Forecasting System (MFS) or by the MERCATOR global ocean circulation model via one-way nesting; the initial conditions were additionally updated through the assimilation of observations. Nowcasts and forecasts from the weather forecast models COSMO-ME and COSMO-IT, partly melded with observations, served as surface boundary conditions. The vertical mixing was parameterised by the GLS (generic length scale) scheme Umlauf and Burchard (2003) in four different set-ups. All ROMS forecasts were validated against the observations which were taken during the REP14-MED survey to the west of Sardinia. Nesting ROMS in MERCATOR and updating the initial conditions through data assimilation provided the best agreement of the predicted mixed-layer properties with the time series from a moored thermistor chain. Further improvement was obtained by the usage of COSMO-ME atmospheric forcing, which was melded with real observations, and by the application of the k-ω vertical mixing scheme with increased vertical eddy diffusivity. The predicted temporal variability of the mixed-layer temperature was reasonably well correlated with the observed variability, while the modelled variability of the mixed-layer depth exhibited only agreement with the observations near the diurnal frequency peak. For the forecasted horizontal variability, reasonable agreement was found with observations from a ScanFish section, but only for the mesoscale wave number band; the observed sub-mesoscale variability was not reproduced by ROMS.

  14. Turbulence Modeling Validation, Testing, and Development

    NASA Technical Reports Server (NTRS)

    Bardina, J. E.; Huang, P. G.; Coakley, T. J.

    1997-01-01

    The primary objective of this work is to provide accurate numerical solutions for selected flow fields and to compare and evaluate the performance of selected turbulence models with experimental results. Four popular turbulence models have been tested and validated against experimental data often turbulent flows. The models are: (1) the two-equation k-epsilon model of Wilcox, (2) the two-equation k-epsilon model of Launder and Sharma, (3) the two-equation k-omega/k-epsilon SST model of Menter, and (4) the one-equation model of Spalart and Allmaras. The flows investigated are five free shear flows consisting of a mixing layer, a round jet, a plane jet, a plane wake, and a compressible mixing layer; and five boundary layer flows consisting of an incompressible flat plate, a Mach 5 adiabatic flat plate, a separated boundary layer, an axisymmetric shock-wave/boundary layer interaction, and an RAE 2822 transonic airfoil. The experimental data for these flows are well established and have been extensively used in model developments. The results are shown in the following four sections: Part A describes the equations of motion and boundary conditions; Part B describes the model equations, constants, parameters, boundary conditions, and numerical implementation; and Parts C and D describe the experimental data and the performance of the models in the free-shear flows and the boundary layer flows, respectively.

  15. The influence of misrepresenting the nocturnal boundary layer on idealized daytime convection in large-eddy simulation

    NASA Astrophysics Data System (ADS)

    van Stratum, Bart J. H.; Stevens, Bjorn

    2015-06-01

    The influence of poorly resolving mixing processes in the nocturnal boundary layer (NBL) on the development of the convective boundary layer the following day is studied using large-eddy simulation (LES). Guided by measurement data from meteorological sites in Cabauw (Netherlands) and Hamburg (Germany), the typical summertime NBL conditions for Western Europe are characterized, and used to design idealized (absence of moisture and large-scale forcings) numerical experiments of the diel cycle. Using the UCLA-LES code with a traditional Smagorinsky-Lilly subgrid model and a simplified land-surface scheme, a sensitivity study to grid spacing is performed. At horizontal grid spacings ranging from 3.125 m in which we are capable of resolving most turbulence in the cases of interest to grid a spacing of 100 m which is clearly insufficient to resolve the NBL, the ability of LES to represent the NBL and the influence of NBL biases on the subsequent daytime development of the convective boundary layer are examined. Although the low-resolution experiments produce substantial biases in the NBL, the influence on daytime convection is shown to be small, with biases in the afternoon boundary layer depth and temperature of approximately 100 m and 0.5 K, which partially cancel each other in terms of the mixed-layer top relative humidity.

  16. Central Tropical Pacific Variability And ENSO Response To Changing Climate Boundary Conditions: Evidence From Individual Line Island Foraminifera

    NASA Astrophysics Data System (ADS)

    Rustic, G. T.; Polissar, P. J.; Ravelo, A. C.; White, S. M.

    2017-12-01

    The El Niño Southern Oscillation (ENSO) plays a dominant role in Earth's climate variability. Paleoceanographic evidence suggests that ENSO has changed in the past, and these changes have been linked to large-scale climatic shifts. While a close relationship between ENSO evolution and climate boundary conditions has been predicted, testing these predictions remains challenging. These climate boundary conditions, including insolation, the mean surface temperature gradient of the tropical Pacific, global ice volume, and tropical thermocline depth, often co-vary and may work together to suppress or enhance the ocean-atmosphere feedbacks that drive ENSO variability. Furthermore, suitable paleo-archives spanning multiple climate states are sparse. We have aimed to test ENSO response to changing climate boundary conditions by generating new reconstructions of mixed-layer variability from sedimentary archives spanning the last three glacial-interglacial cycles from the Central Tropical Pacific Line Islands, where El Niño is strongly expressed. We analyzed Mg/Ca ratios from individual foraminifera to reconstruct mixed-layer variability at discrete time intervals representing combinations of climatic boundary conditions from the middle Holocene to Marine Isotope Stage (MIS) 8. We observe changes in the mixed-layer temperature variability during MIS 5 and during the previous interglacial (MIS 7) showing significant reductions in ENSO amplitude. Differences in variability during glacial and interglacial intervals are also observed. Additionally, we reconstructed mixed-layer and thermocline conditions using multi-species Mg/Ca and stable isotope measurements to more fully characterize the state of the Central Tropical Pacific during these intervals. These reconstructions provide us with a unique view of Central Tropical Pacific variability and water-column structure at discrete intervals under varying boundary climate conditions with which to assess factors that shape ENSO variability.

  17. The Western North American Cretaceous-Tertiary (K-T) boundary interval and its content of shock-metamorphosed minerals: Implications concerning the K-T boundary impact-extinction theory

    NASA Technical Reports Server (NTRS)

    Izett, G. A.

    1988-01-01

    At 20 sites in the Raton Basin of Colorado and New Mexico, and at several other sites in Wyoming, Montana, and Canada, a pair of claystone units, an Ir abundance anomaly, and a concentration of shock-metamorphosed minerals mark the palynological K-T boundary. The K-T boundary claystone, which is composed of kaolinite and small amounts of illite/smectite mixed-layer clay, is similar in most respects to kaolinite tonstein layers in coal beds. At some, but not all, K-T boundary localities, the boundary claystone contains solid kaolinite and hollow and solid goyazite spherules, 0.05 to 1.2 mm in diameter. The upper unit, the K-T boundary impact layer, consists chiefly of kaolinite and various amounts of illite/smectite mixed-layer clay. The impact layer and boundary claystone are similar chemically, except that the former has slightly more Fe, K, Ba, Cr, Cu, Li, V, and Zn than the latter. The facts that the boundary claystone and impact layer contain anomalous amounts of Ir, comprise a stratigraphic couplet at Western North American sites, and form thin, discrete layers, similar to air-fall units (volcanic or impact), suggest that the claystone units are of impact origin. Significantly, the impact layer contains as much as 2 percent clastic mineral grains, about 30 percent of which contain multiple sets of shock lamellae. Only one such concentration of shocked minerals has been found near the K-T boundary. The type of K-T boundary shock-metamorphosed materials (quartzite and metaquartzite) in the impact layer and the lack of shock lamellae in quartz and feldspar of pumice lapilli and granitic xenoliths in air-fall pumice units of silicic tuffs, such as the Bishop Tuff, eliminate the possibility that the shock-metamorphosed minerals in the K-T impact layer are of volcanic origin. The global size distribution and abundance of shock-metamorphosed mineral grains suggest that the K-T impact occurred in North America.

  18. Boundary Layer Thermodynamics and Cloud Microphysics for a Mixed Stratocumulus and Cumulus Cloud Field Observed during ACE-ENA

    NASA Astrophysics Data System (ADS)

    Jensen, M. P.; Miller, M. A.; Wang, J.

    2017-12-01

    The first Intensive Observation Period of the DOE Aerosol and Cloud Experiments in the Eastern North Atlantic (ACE-ENA) took place from 21 June through 20 July 2017 involving the deployment of the ARM Gulfstream-159 (G-1) aircraft with a suite of in situ cloud and aerosol instrumentation in the vicinity of the ARM Climate Research Facility Eastern North Atlantic (ENA) site on Graciosa Island, Azores. Here we present preliminary analysis of the thermodynamic characteristics of the marine boundary layer and the variability of cloud properties for a mixed cloud field including both stratiform cloud layers and deeper cumulus elements. Analysis combines in situ atmospheric state observations from the G-1 with radiosonde profiles and surface meteorology from the ENA site in order to characterize the thermodynamic structure of the marine boundary layer including the coupling state and stability. Cloud/drizzle droplet size distributions measured in situ are combined with remote sensing observations from a scanning cloud radar, and vertically pointing cloud radar and lidar provide quantification of the macrophysical and microphysical properties of the mixed cloud field.

  19. Computation of turbulent boundary layers on curved surfaces, 1 June 1975 - 31 January 1976

    NASA Technical Reports Server (NTRS)

    Wilcox, D. C.; Chambers, T. L.

    1976-01-01

    An accurate method was developed for predicting effects of streamline curvature and coordinate system rotation on turbulent boundary layers. A new two-equation model of turbulence was developed which serves as the basis of the study. In developing the new model, physical reasoning is combined with singular perturbation methods to develop a rational, physically-based set of equations which are, on the one hand, as accurate as mixing-length theory for equilibrium boundary layers and, on the other hand, suitable for computing effects of curvature and rotation. The equations are solved numerically for several boundary layer flows over plane and curved surfaces. For incompressible boundary layers, results of the computations are generally within 10% of corresponding experimental data. Somewhat larger discrepancies are noted for compressible applications.

  20. Assessment of mixed-layer height estimation from single-wavelength ceilometer profiles

    EPA Science Inventory

    Differing boundary/mixed-layer height measurement methods were assessed in moderately polluted and clean environments, with a focus on the Vaisala CL51 ceilometer. This intercomparison was performed as part of ongoing measurements at the Chemistry And Physics of the Atmospheric B...

  1. NEW DEVELOPMENT IN DISPERSION EXPERIMENTS AND MODELS FOR THE CONVECTIVE BOUNDARY LAYER

    EPA Science Inventory

    We present recent experiments and modeling studies of dispersion in the convective boundary layer (CBL) with focus on highly-buoyant plumes that "loft" near the CBL top and resist downward mixing. Such plumes have been a significant problem in earlier dispersion models; they a...

  2. Approximate analytical solution to diurnal atmospheric boundary-layer growth under well-watered conditions

    USDA-ARS?s Scientific Manuscript database

    The system of governing equations of a simplified slab model of the uniformly-mixed, purely convective, diurnal atmospheric boundary layer (ABL) is shown to allow immediate solutions for the potential temperature and specific humidity as functions of the ABL height and net radiation when expressed i...

  3. SPATIAL VARIATION OF THE EVOLUTION AND STRUCTURE OF THE URBAN BOUNDARY LAYER

    EPA Science Inventory

    The spatial variation of the nocturnal urban boundary layer structure and the time variation of the mixing height, the nocturnal inversion top and strength after sunrise are presented for urban sites located upwind, downwind, and near the center of the heat island and for upwind ...

  4. Nature, theory and modelling of geophysical convective planetary boundary layers

    NASA Astrophysics Data System (ADS)

    Zilitinkevich, Sergej

    2015-04-01

    Geophysical convective planetary boundary layers (CPBLs) are still poorly reproduced in oceanographic, hydrological and meteorological models. Besides the mean flow and usual shear-generated turbulence, CPBLs involve two types of motion disregarded in conventional theories: 'anarchy turbulence' comprised of the buoyancy-driven plumes, merging to form larger plumes instead of breaking down, as postulated in conventional theory (Zilitinkevich, 1973), large-scale organised structures fed by the potential energy of unstable stratification through inverse energy transfer in convective turbulence (and performing non-local transports irrespective of mean gradients of transporting properties). C-PBLs are strongly mixed and go on growing as long as the boundary layer remains unstable. Penetration of the mixed layer into the weakly turbulent, stably stratified free flow causes turbulent transports through the CPBL outer boundary. The proposed theory, taking into account the above listed features of CPBL, is based on the following recent developments: prognostic CPBL-depth equation in combination with diagnostic algorithm for turbulence fluxes at the CPBL inner and outer boundaries (Zilitinkevich, 1991, 2012, 2013; Zilitinkevich et al., 2006, 2012), deterministic model of self-organised convective structures combined with statistical turbulence-closure model of turbulence in the CPBL core (Zilitinkevich, 2013). It is demonstrated that the overall vertical transports are performed mostly by turbulence in the surface layer and entrainment layer (at the CPBL inner and outer boundaries) and mostly by organised structures in the CPBL core (Hellsten and Zilitinkevich, 2013). Principal difference between structural and turbulent mixing plays an important role in a number of practical problems: transport and dispersion of admixtures, microphysics of fogs and clouds, etc. The surface-layer turbulence in atmospheric and marine CPBLs is strongly enhanced by the velocity shears in horizontal branches of organised structures. This mechanism (Zilitinkevich et al., 2006), was overlooked in conventional local theories, such as the Monin-Obukhov similarity theory, and convective heat/mass transfer law: Nu~Ra1/3, where Nu and Ra are the Nusselt number and Raleigh numbers. References Hellsten A., Zilitinkevich S., 2013: Role of convective structures and background turbulence in the dry convective boundary layer. Boundary-Layer Meteorol. 149, 323-353. Zilitinkevich, S.S., 1973: Shear convection. Boundary-Layer Meteorol. 3, 416-423. Zilitinkevich, S.S., 1991: Turbulent Penetrative Convection, Avebury Technical, Aldershot, 180 pp. Zilitinkevich S.S., 2012: The Height of the Atmospheric Planetary Boundary layer: State of the Art and New Development - Chapter 13 in 'National Security and Human Health Implications of Climate Change', edited by H.J.S. Fernando, Z. Klaić, J.L. McKulley, NATO Science for Peace and Security Series - C: Environmental Security (ISBN 978-94-007-2429-7), Springer, 147-161. Zilitinkevich S.S., 2013: Atmospheric Turbulence and Planetary Boundary Layers. Fizmatlit, Moscow, 248 pp. Zilitinkevich, S.S., Hunt, J.C.R., Grachev, A.A., Esau, I.N., Lalas, D.P., Akylas, E., Tombrou, M., Fairall, C.W., Fernando, H.J.S., Baklanov, and A., Joffre, S.M., 2006: The influence of large convective eddies on the surface layer turbulence. Quart. J. Roy. Met. Soc. 132, 1423-1456. Zilitinkevich S.S., Tyuryakov S.A., Troitskaya Yu. I., Mareev E., 2012: Theoretical models of the height of the atmospheric planetary boundary layer and turbulent entrainment at its upper boundary. Izvestija RAN, FAO, 48, No.1, 150-160 Zilitinkevich, S.S., Elperin, T., Kleeorin, N., Rogachevskii, I., Esau, I.N., 2013: A hierarchy of energy- and flux-budget (EFB) turbulence closure models for stably stratified geophysical flows. Boundary-Layer Meteorol. 146, 341-373.

  5. Tradeoffs in Chemical and Thermal Variations in the Post-perovskite Phase Transition: Mixed Phase Regions in the Deep Lower Mantle?

    NASA Astrophysics Data System (ADS)

    Giles, G. F.; Spera, F. J.; Yuen, D. A.

    2005-12-01

    The recent discovery of a phase-transition in Mg-rich perovskite (Pv) to a post-perovskite (pPv) phase at lower mantle depths and its relationship to D", lower mantle heterogeneity and iron content prompted an investigation of the relative importance of lower mantle (LM) compositional and temperature fluctuations in creating topographic undulations on mixed phase regions. Above the transition, Mg-rich Pv makes up ~70 percent by mass of the LM. Using results from experimental phase equilibria, first-principles computations and thermodynamic relations for Fe2+-Mg mixing in silicates, a preliminary thermodynamic model for the perovskite to post-perovskite phase transition in the divariant system MgSiO3-FeSiO3 is developed. Complexities associated with components Fe2O3 and Al2O3 and other phases (Ca-Pv, magnesiowustite) are neglected. The model predicts phase transition pressures are sensitive to the FeSiO3 content of perovskite (~-1.5 GPa per one mole percent FeSiO3). This leads to considerable topography along the top boundary of the mixed phase region. The Clapeyron slope for the Pv to pPv transition at XFeSiO3=0.1 is +11 MPa/K about 20% higher than for pure Mg-Pv. Increasing bulk concentration of iron elevates the mixed (two-phase) layer above the core-mantle boundary (CMB); increasing temperature acts to push the mixed layer deeper into the LM into the D" thermal boundary layer resting upon the (CMB). For various LM geotherms and CMB temperatures, a single mixed layer of thickness ~300 km lies within the bottom 40% of the lower mantle. For low iron contents (XFeSiO3 ~5 mole percent or less), two perched layers are found. This is the divariant analog to the univariant double-crosser. The hotter the mantle, the deeper the mixed phase layer; the more iron-rich the LM, the higher the mixed phase layer. In a hotter Hadean Earth with interior temperatures everywhere 200-500 K warmer pPv is not stable unless the LM bulk composition is Fe-enriched compared to the present upper mantle.

  6. Similarity Solutions on Mixed Convection Heat Transfer from a Horizontal Surface Saturated in a Porous Medium with Internal Heat Generation

    NASA Astrophysics Data System (ADS)

    Ferdows, M.; Liu, D.

    2017-02-01

    The aim of this work is to study the mixed convection boundary layer flow from a horizontal surface embedded in a porous medium with exponential decaying internal heat generation (IHG). Boundary layer equations are reduced to two ordinary differential equations for the dimensionless stream function and temperature with two parameters: ɛ, the mixed convection parameter, and λ, the exponent of x. This problem is numerically solved with a system of parameters using built-in codes in Maple. The influences of these parameters on velocity and temperature profiles, and the Nusselt number, are thoroughly compared and discussed.

  7. Transport of contaminants in the planetary boundary layer

    NASA Technical Reports Server (NTRS)

    Lee, I. Y.; Swan, P. R.

    1978-01-01

    A planetary boundary layer model is described and used to simulate PBL phenomena including cloud formation and pollution transport in the San Francisco Bay Area. The effect of events in the PBL on air pollution is considered, and governing equations for the average momentum, potential temperature, water vapor mixing ratio, and air contaminants are presented. These equations are derived by integrating the basic equations vertically through the mixed layer. Characteristics of the day selected for simulation are reported, and the results suggest that the diurnally cyclic features of the mesoscale motion, including clouds and air pollution, can be simulated in a readily interpretable way with the model.

  8. Similarity theory of the buoyantly interactive planetary boundary layer with entrainment

    NASA Technical Reports Server (NTRS)

    Hoffert, M. I.; Sud, Y. C.

    1976-01-01

    A similarity model is developed for the vertical profiles of turbulent flow variables in an entraining turbulent boundary layer of arbitrary buoyant stability. In the general formulation the vertical profiles, internal rotation of the velocity vector, discontinuities or jumps at a capping inversion and bulk aerodynamic coefficients of the boundary layer are given by solutions to a system of ordinary differential equations in the similarity variable. To close the system, a formulation for buoyantly interactive eddy diffusivity in the boundary layer is introduced which recovers Monin-Obukhov similarity near the surface and incorporates a hypothesis accounting for the observed variation of mixing length throughout the boundary layer. The model is tested in simplified versions which depend only on roughness, surface buoyancy, and Coriolis effects by comparison with planetary-boundary-layer wind- and temperature-profile observations, measurements of flat-plate boundary layers in a thermally stratified wind tunnel and observations of profiles of terms in the turbulent kinetic-energy budget of convective planetary boundary layers. On balance, the simplified model reproduced the trend of these various observations and experiments reasonably well, suggesting that the full similarity formulation be pursued further.

  9. Lidar Characterization of Boundary Layer Transport and Mixing for Estimating Urban-Scale Greenhouse Gas Emissions

    NASA Astrophysics Data System (ADS)

    Hardesty, R. Michael; Brewer, W. Alan; Sandberg, Scott P.; Weickmann, Ann M.; Shepson, Paul B.; Cambaliza, Maria; Heimburger, Alexie; Davis, Kenneth J.; Lauvaux, Thomas; Miles, Natasha L.; Sarmiento, Daniel P.; Deng, A. J.; Gaudet, Brian; Karion, Anna; Sweeney, Colm; Whetstone, James

    2016-06-01

    A compact commercial Doppler lidar has been deployed in Indianapolis for two years to measure wind profiles and mixing layer properties as part of project to improve greenhouse measurements from large area sources. The lidar uses vertical velocity variance and aerosol structure to measure mixing layer depth. Comparisons with aircraft and the NOAA HRDL lidar generally indicate good performance, although sensitivity might be an issue under low aerosol conditions.

  10. Three-dimensional application of the Johnson-King turbulence model for a boundary-layer direct method

    NASA Technical Reports Server (NTRS)

    Kavsaoglu, Mehmet S.; Kaynak, Unver; Van Dalsem, William R.

    1989-01-01

    The Johnson-King turbulence model as extended to three-dimensional flows was evaluated using finite-difference boundary-layer direct method. Calculations were compared against the experimental data of the well-known Berg-Elsenaar incompressible flow over an infinite swept-wing. The Johnson-King model, which includes the nonequilibrium effects in a developing turbulent boundary-layer, was found to significantly improve the predictive quality of a direct boundary-layer method. The improvement was especially visible in the computations with increased three-dimensionality of the mean flow, larger integral parameters, and decreasing eddy-viscosity and shear stress magnitudes in the streamwise direction; all in better agreement with the experiment than simple mixing-length methods.

  11. Turbulent properties of oceanic near-surface stable boundary layers subject to wind, fresh water, and thermal forcing.

    NASA Astrophysics Data System (ADS)

    St. Laurent, Louis; Clayson, Carol Anne

    2015-04-01

    The near-surface oceanic boundary layer is generally regarded as convectively unstable due to the effects of wind, evaporation, and cooling. However, stable conditions also occur often, when rain or low-winds and diurnal warming provide buoyancy to a thin surface layer. These conditions are prevalent in the tropical and subtropical latitude bands, and are underrepresented in model simulations. Here, we evaluate cases of oceanic stable boundary layers and their turbulent processes using a combination of measurements and process modeling. We focus on the temperature, salinity and density changes with depth from the surface to the upper thermocline, subject to the influence of turbulent processes causing mixing. The stabilizing effects of freshwater from rain as contrasted to conditions of high solar radiation and low winds will be shown, with observations providing surprising new insights into upper ocean mixing in these regimes. Previous observations of freshwater lenses have demonstrated a maximum of dissipation near the bottom of the stable layer; our observations provide a first demonstration of a similar maximum near the bottom of the solar heating-induced stable layer and a fresh-water induced barrier layer. Examples are drawn from recent studies in the tropical Atlantic and Indian oceans, where ocean gliders equipped with microstructure sensors were used to measure high resolution hydrographic properties and turbulence levels. The limitations of current mixing models will be demonstrated. Our findings suggest that parameterizations of near-surface mixing rates during stable stratification and low-wind conditions require considerable revision, in the direction of larger diffusivities.

  12. Electrodynamic properties and height of atmospheric convective boundary layer

    NASA Astrophysics Data System (ADS)

    Anisimov, S. V.; Galichenko, S. V.; Mareev, E. A.

    2017-09-01

    We consider the relations between the mixed layer height and atmospheric electric parameters affected by convective mixing. Vertical turbulent transport of radon, its progeny and electrically charged particles is described under Lagrangian stochastic framework, which is the next step to develop a consistent model for the formation of electrical conditions in the atmospheric boundary layer. Using the data from detailed and complex measurements of vertical profiles of the temperature and turbulence statistics as input, we calculated non-stationary vertical profiles of radon and its daughter products concentrations, atmospheric electric conductivity and intensity of electric field in the convective boundary layer from the morning transition through early afternoon quasi-stationary conditions. These profiles demonstrate substantial variability due to the changing turbulent regime in the evolving boundary layer. We obtained quantitative estimates of the atmospheric electric field variability range essentially related to the sunrise and convection development. It is shown that the local change in the electrical conductivity is the only factor that can change the intensity of electric field at the earth's surface more than twice during the transition from night to day. The established relations between electric and turbulent parameters of the boundary layer indicate that the effect of sunrise is more pronounced in the case when development of convection is accompanied by an increase in aerosol concentration and, hence, a decrease in local conductivity.

  13. The roll-up and merging of coherent structures in shallow mixing layers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lam, M. Y., E-mail: celmy@connect.ust.hk; Ghidaoui, M. S.; Kolyshkin, A. A.

    2016-09-15

    The current study seeks a fundamental explanation to the development of two-dimensional coherent structures (2DCSs) in shallow mixing layers. A nonlinear numerical model based on the depth-averaged shallow water equations is used to investigate the temporal evolution of shallow mixing layers, where the mapping from temporal to spatial results is made using the velocity at the center of the mixing layers. The flow is periodic in the streamwise direction. Transmissive boundary conditions are used in the cross-stream boundaries to prevent reflections. Numerical results are compared to linear stability analysis, mean-field theory, and secondary stability analysis. Results suggest that the onsetmore » and development of 2DCS in shallow mixing layers are the result of a sequence of instabilities governed by linear theory, mean-field theory, and secondary stability theory. The linear instability of the shearing velocity gradient gives the onset of 2DCS. When the perturbations reach a certain amplitude, the flow field of the perturbations changes from a wavy shape to a vortical (2DCS) structure because of nonlinearity. The development of the vertical 2DCS does not appear to follow weakly nonlinear theory; instead, it follows mean-field theory. After the formation of 2DCS, separate 2DCSs merge to form larger 2DCS. In this way, 2DCSs grow and shallow mixing layers develop and grow in scale. The merging of 2DCS in shallow mixing layers is shown to be caused by the secondary instability of the 2DCS. Eventually 2DCSs are dissipated by bed friction. The sequence of instabilities can cause the upscaling of the turbulent kinetic energy in shallow mixing layers.« less

  14. Progress in hypersonic turbulence modeling

    NASA Technical Reports Server (NTRS)

    Wilcox, David C.

    1991-01-01

    A compressibility modification is developed for k-omega (Wilcox, 1988) and k-epsilon (Jones and Launder, 1972) models, that is similar to those of Sarkar et al. (1989) and Zeman (1990). Results of the perturbation solution for the compressible wall layer demonstrate why the Sarkar and Zeman terms yield inaccurate skin friction for the flat-plate boundary layer. A new compressibility term is developed which permits accurate predictions of the compressible mixing layer, flat-plate boundary layer, and shock separated flows.

  15. Assessment of Mixed-Layer Height Estimation from Single-wavelength Ceilometer Profiles.

    PubMed

    Knepp, Travis N; Szykman, James J; Long, Russell; Duvall, Rachelle M; Krug, Jonathan; Beaver, Melinda; Cavender, Kevin; Kronmiller, Keith; Wheeler, Michael; Delgado, Ruben; Hoff, Raymond; Berkoff, Timothy; Olson, Erik; Clark, Richard; Wolfe, Daniel; Van Gilst, David; Neil, Doreen

    2017-01-01

    Differing boundary/mixed-layer height measurement methods were assessed in moderately-polluted and clean environments, with a focus on the Vaisala CL51 ceilometer. This intercomparison was performed as part of ongoing measurements at the Chemistry And Physics of the Atmospheric Boundary Layer Experiment (CAPABLE) site in Hampton, Virginia and during the 2014 Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality (DISCOVER-AQ) field campaign that took place in and around Denver, Colorado. We analyzed CL51 data that were collected via two different methods (BLView software, which applied correction factors, and simple terminal emulation logging) to determine the impact of data collection methodology. Further, we evaluated the STRucture of the ATmosphere (STRAT) algorithm as an open-source alternative to BLView (note that the current work presents an evaluation of the BLView and STRAT algorithms and does not intend to act as a validation of either). Filtering criteria were defined according to the change in mixed-layer height (MLH) distributions for each instrument and algorithm and were applied throughout the analysis to remove high-frequency fluctuations from the MLH retrievals. Of primary interest was determining how the different data-collection methodologies and algorithms compare to each other and to radiosonde-derived boundary-layer heights when deployed as part of a larger instrument network. We determined that data-collection methodology is not as important as the processing algorithm and that much of the algorithm differences might be driven by impacts of local meteorology and precipitation events that pose algorithm difficulties. The results of this study show that a common processing algorithm is necessary for LIght Detection And Ranging (LIDAR)-based MLH intercomparisons, and ceilometer-network operation and that sonde-derived boundary layer heights are higher (10-15% at mid-day) than LIDAR-derived mixed-layer heights. We show that averaging the retrieved MLH to 1-hour resolution (an appropriate time scale for a priori data model initialization) significantly improved correlation between differing instruments and differing algorithms.

  16. Numerical Study of Boundary-Layer in Aerodynamics

    NASA Technical Reports Server (NTRS)

    Shih, Tom I-P.

    1997-01-01

    The accomplishments made in the following three tasks are described: (1) The first task was to study shock-wave boundary-layer interactions with bleed - this study is relevant to boundary-layer control in external and mixed-compression inlets of supersonic aircraft; (2) The second task was to test RAAKE, a code developed for computing turbulence quantities; and (3) The third task was to compute flow around the Ames ER-2 aircraft that has been retrofitted with containers over its wings and fuselage. The appendices include two reports submitted to AIAA for publication.

  17. Turbulent boundary-layer velocity profiles on a nonadiabatic at Mach number 6.5

    NASA Technical Reports Server (NTRS)

    Keener, E. R.; Hopkins, E. J.

    1972-01-01

    Velocity profiles were obtained from pitot-pressure and total-temperature measurements within a turbulent boundary layer on a large sharp-edged flat plate. Momentum-thickness Reynolds number ranged from 2590 to 8860 and wall-to-adiabatic-wall temperature ratios ranged from 0.3 to 0.5. Measurements were made both with and without boundary layer trips. Five methods are evaluated for correlating the measured velocity profiles with the incompressible law-of-the-wall and the velocity defect law. The mixing-length generalization of Van Driest gives the best correlation.

  18. Surface boundary layer turbulence in the Southern ocean

    NASA Astrophysics Data System (ADS)

    Merrifield, Sophia; St. Laurent, Louis; Owens, Breck; Naveira Garabato, Alberto

    2015-04-01

    Due to the remote location and harsh conditions, few direct measurements of turbulence have been collected in the Southern Ocean. This region experiences some of the strongest wind forcing of the global ocean, leading to large inertial energy input. While mixed layers are known to have a strong seasonality and reach 500m depth, the depth structure of near-surface turbulent dissipation and diffusivity have not been examined using direct measurements. We present data collected during the Diapycnal and Isopycnal Mixing Experiment in the Southern Ocean (DIMES) field program. In a range of wind conditions, the wave affected surface layer (WASL), where surface wave physics are actively forcing turbulence, is contained to the upper 15-20m. The lag-correlation between wind stress and turbulence shows a strong relationship up to 6 hours (˜1/2 inertial period), with the winds leading the oceanic turbulent response, in the depth range between 20-50m. We find the following characterize the data: i) Profiles that have a well-defined hydrographic mixed layer show that dissipation decays in the mixed layer inversely with depth, ii) WASLs are typically 15 meters deep and 30% of mixed layer depth, iii) Subject to strong winds, the value of dissipation as a function of depth is significantly lower than predicted by theory. Many dynamical processes are known to be missing from upper-ocean parameterizations of mixing in global models. These include surface-wave driven processes such as Langmuir turbulence, submesocale frontal processes, and nonlocal representations of mixing. Using velocity, hydrographic, and turbulence measurements, the existence of coherent structures in the boundary layer are investigated.

  19. Analysis of Mixing Layer LES Data with Convective Mach Number 0.9 to 1.3

    NASA Astrophysics Data System (ADS)

    Helm, Clara M.; Martin, M. Pino

    2017-11-01

    The study of compressible mixing layers is essential to gaining a fundamental physical understanding of the global effects of compressibility on the development of turbulence in shear (Smits & Dussauge 2006). Research on compressible mixing layers is particularly difficult mainly because of the sensitivity of the mixing layer to initial conditions. A mixing layer occurs naturally in separated shock turbulent boundary layer interactions (STBLIs). We use our STBLI database to study the properties of mixing layers with convective Mach numbers of 0.9, 1.1, and 1.3. We report on the spreading rate, turbulence stress level, vortex shedding frequency, vortex convection velocity, and differences in the three-dimensional form of the vortices. The results are compared with mixing layer data available in literature and evaluated using the various scaling laws that have been proposed over the years. We discuss to what extent the mixing layer in the STBLI represents the canonical case and what additional insight into the is research area it provides. This work is supported by the Air Force Office of Scientific Research under Grant FA9550-17-1-0104.

  20. Three-Dimensional Mixed Convection Flow of Viscoelastic Fluid with Thermal Radiation and Convective Conditions

    PubMed Central

    Hayat, Tasawar; Ashraf, Muhammad Bilal; Alsulami, Hamed H.; Alhuthali, Muhammad Shahab

    2014-01-01

    The objective of present research is to examine the thermal radiation effect in three-dimensional mixed convection flow of viscoelastic fluid. The boundary layer analysis has been discussed for flow by an exponentially stretching surface with convective conditions. The resulting partial differential equations are reduced into a system of nonlinear ordinary differential equations using appropriate transformations. The series solutions are developed through a modern technique known as the homotopy analysis method. The convergent expressions of velocity components and temperature are derived. The solutions obtained are dependent on seven sundry parameters including the viscoelastic parameter, mixed convection parameter, ratio parameter, temperature exponent, Prandtl number, Biot number and radiation parameter. A systematic study is performed to analyze the impacts of these influential parameters on the velocity and temperature, the skin friction coefficients and the local Nusselt number. It is observed that mixed convection parameter in momentum and thermal boundary layers has opposite role. Thermal boundary layer is found to decrease when ratio parameter, Prandtl number and temperature exponent are increased. Local Nusselt number is increasing function of viscoelastic parameter and Biot number. Radiation parameter on the Nusselt number has opposite effects when compared with viscoelastic parameter. PMID:24608594

  1. Three-dimensional mixed convection flow of viscoelastic fluid with thermal radiation and convective conditions.

    PubMed

    Hayat, Tasawar; Ashraf, Muhammad Bilal; Alsulami, Hamed H; Alhuthali, Muhammad Shahab

    2014-01-01

    The objective of present research is to examine the thermal radiation effect in three-dimensional mixed convection flow of viscoelastic fluid. The boundary layer analysis has been discussed for flow by an exponentially stretching surface with convective conditions. The resulting partial differential equations are reduced into a system of nonlinear ordinary differential equations using appropriate transformations. The series solutions are developed through a modern technique known as the homotopy analysis method. The convergent expressions of velocity components and temperature are derived. The solutions obtained are dependent on seven sundry parameters including the viscoelastic parameter, mixed convection parameter, ratio parameter, temperature exponent, Prandtl number, Biot number and radiation parameter. A systematic study is performed to analyze the impacts of these influential parameters on the velocity and temperature, the skin friction coefficients and the local Nusselt number. It is observed that mixed convection parameter in momentum and thermal boundary layers has opposite role. Thermal boundary layer is found to decrease when ratio parameter, Prandtl number and temperature exponent are increased. Local Nusselt number is increasing function of viscoelastic parameter and Biot number. Radiation parameter on the Nusselt number has opposite effects when compared with viscoelastic parameter.

  2. Development of a nonlocal convective mixing scheme with varying upward mixing rates for use in air quality and chemical transport models.

    PubMed

    Mihailović, Dragutin T; Alapaty, Kiran; Sakradzija, Mirjana

    2008-06-01

    Asymmetrical convective non-local scheme (CON) with varying upward mixing rates is developed for simulation of vertical turbulent mixing in the convective boundary layer in air quality and chemical transport models. The upward mixing rate form the surface layer is parameterized using the sensible heat flux and the friction and convective velocities. Upward mixing rates varying with height are scaled with an amount of turbulent kinetic energy in layer, while the downward mixing rates are derived from mass conservation. This scheme provides a less rapid mass transport out of surface layer into other layers than other asymmetrical convective mixing schemes. In this paper, we studied the performance of a nonlocal convective mixing scheme with varying upward mixing in the atmospheric boundary layer and its impact on the concentration of pollutants calculated with chemical and air-quality models. This scheme was additionally compared versus a local eddy-diffusivity scheme (KSC). Simulated concentrations of NO(2) and the nitrate wet deposition by the CON scheme are closer to the observations when compared to those obtained from using the KSC scheme. Concentrations calculated with the CON scheme are in general higher and closer to the observations than those obtained by the KSC scheme (of the order of 15-20%). Nitrate wet deposition calculated with the CON scheme are in general higher and closer to the observations than those obtained by the KSC scheme. To examine the performance of the scheme, simulated and measured concentrations of a pollutant (NO(2)) and nitrate wet deposition was compared for the year 2002. The comparison was made for the whole domain used in simulations performed by the chemical European Monitoring and Evaluation Programme Unified model (version UNI-ACID, rv2.0) where schemes were incorporated.

  3. Radon Measurements of Atmospheric Mixing (RAMIX) 2006–2014 Final Campaign Summary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fischer, ML; Biraud, SC

    2015-05-01

    Uncertainty in vertical mixing between the surface layer, boundary layer, and free troposphere leads to large uncertainty in “top-down” estimates of regional land-atmosphere carbon exchange (i.e., estimates based on measurements of atmospheric CO2 mixing ratios. Radon-222 (222Rn) is a valuable tracer for measuring atmospheric mixing because it is emitted from the land surface and has a short enough half-life (3.8 days) to allow characterization of mixing processes based on vertical profile measurements.

  4. Radon Measurements of Atmospheric Mixing (RAMIX) 2006–2014 Final Campaign Summary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fischer, ML; Biraud, SC; Hirsch, A

    2015-05-01

    Uncertainty in vertical mixing between the surface layer, boundary layer, and free troposphere leads to large uncertainty in “top-down” estimates of regional land-atmosphere carbon exchange (i.e., estimates based on measurements of atmospheric CO 2 mixing ratios). The radioisotope radon-222 ( 222Rn) is a valuable tracer for measuring atmospheric mixing because it is emitted from the land surface and has a short enough half-life (3.8 days) to allow characterization of mixing processes based on vertical profile measurements.

  5. The effect of heat generation on mixed convection flow in nano fluids over a horizontal circular cylinder

    NASA Astrophysics Data System (ADS)

    Juliyanto, Bagus; Widodo, Basuki; Imron, Chairul

    2018-04-01

    The purpose of this research is to study the effect of heat generation on mixed convection flow on Nano fluids over a horizontal circular cylinder of a heated in two dimension form. A stream of fluids are steady and incompressible, a stream flowing vertically upwards for circular cylinder and the boundary layer at the stagnation point. Three different types of nanoparticles considered are Cu, Al2O3, and TiO2. Mixed convection flow in Nano fluids on the surface of a circular cylinder will cause the boundary layer. The governing boundary layer equations are transformed into a non-dimensional form, and then the non-dimensional forms are transformed into a similar boundary equations by using stream function. Furthermore, an implicit finite-difference scheme known as the Keller-box method is applied to solve numerically the resulting similar boundary layer equations. The result of the research by varying the non-dimensional parameters are mixed convection, Prandtl number, nanoparticle volume fraction, heat generation, and radius of a cylinder are as follows. First, the velocity profile increase and temperature profile decrease when mixed convection parameter increase. Second, the velocity and temperature profiles decrease when Prandtl number parameter increase. Third, the velocity profile with the variation of nanoparticle volume fraction (χ) is increased when the value of χ is 0,1 ≤ χ ≤ 0,15 and the velocity profile decreases when the value of χ is 0,19 ≤ χ ≤ 0,5 while the temperature profile is increasing when the value of χ is 0,1 ≤ χ ≤ 0,5. Fourth, the velocity and temperature profiles increase when heat generation and the radius of the cylinder increase. The last, Cu, Al 2 O 3, and TiO 2 nanoparticles produce the same velocity and temperature profiles, but the three types of nanoparticles are different at the velocity and temperature values.

  6. Cloud-Resolving Model Simulations of Aerosol-Cloud Interactions Triggered by Strong Aerosol Emissions in the Arctic

    NASA Astrophysics Data System (ADS)

    Wang, H.; Kravitz, B.; Rasch, P. J.; Morrison, H.; Solomon, A.

    2014-12-01

    Previous process-oriented modeling studies have highlighted the dependence of effectiveness of cloud brightening by aerosols on cloud regimes in warm marine boundary layer. Cloud microphysical processes in clouds that contain ice, and hence the mechanisms that drive aerosol-cloud interactions, are more complicated than in warm clouds. Interactions between ice particles and liquid drops add additional levels of complexity to aerosol effects. A cloud-resolving model is used to study aerosol-cloud interactions in the Arctic triggered by strong aerosol emissions, through either geoengineering injection or concentrated sources such as shipping and fires. An updated cloud microphysical scheme with prognostic aerosol and cloud particle numbers is employed. Model simulations are performed in pure super-cooled liquid and mixed-phase clouds, separately, with or without an injection of aerosols into either a clean or a more polluted Arctic boundary layer. Vertical mixing and cloud scavenging of particles injected from the surface is still quite efficient in the less turbulent cold environment. Overall, the injection of aerosols into the Arctic boundary layer can delay the collapse of the boundary layer and increase low-cloud albedo. The pure liquid clouds are more susceptible to the increase in aerosol number concentration than the mixed-phase clouds. Rain production processes are more effectively suppressed by aerosol injection, whereas ice precipitation (snow) is affected less; thus the effectiveness of brightening mixed-phase clouds is lower than for liquid-only clouds. Aerosol injection into a clean boundary layer results in a greater cloud albedo increase than injection into a polluted one, consistent with current knowledge about aerosol-cloud interactions. Unlike previous studies investigating warm clouds, the impact of dynamical feedback due to precipitation changes is small. According to these results, which are dependent upon the representation of ice nucleation processes in the employed microphysical scheme, Arctic geoengineering/shipping could have substantial local radiative effects, but is unlikely to be effective as the sole means of counterbalancing warming due to climate change.

  7. Linkages Between Boundary-Layer Structure and the Development of Nocturnal Low-Level Jets in Central Oklahoma

    NASA Astrophysics Data System (ADS)

    Klein, Petra M.; Hu, Xiao-Ming; Shapiro, Alan; Xue, Ming

    2016-03-01

    In the Southern Great Plains, nocturnal low-level jets (LLJs) develop frequently after sunset and play an important role in the transport and dispersion of moisture and atmospheric pollutants. However, our knowledge regarding the LLJ evolution and its feedback on the structure of the nocturnal boundary layer (NBL) is still limited. In the present study, NBL characteristics and their interdependencies with LLJ evolution are investigated using datasets collected across the Oklahoma City metropolitan area during the Joint Urban field experiment in July 2003 and from three-dimensional simulations with the Weather Research and Forecasting (WRF) model. The strength of the LLJs and turbulent mixing in the NBL both increase with the geostrophic forcing. During nights with the strongest LLJs, turbulent mixing persisted after sunset in the NBL and a strong surface temperature inversion did not develop. However, the strongest increase in LLJ speed relative to the mixed-layer wind speed in the daytime convective boundary layer (CBL) occurred when the geostrophic forcing was relatively weak and thermally-induced turbulence in the CBL was strong. Under these conditions, turbulent mixing at night was typically much weaker and a strong surface-based inversion developed. Sensitivity tests with the WRF model confirm that weakening of turbulent mixing during the decay of the CBL in the early evening transition is critical for LLJ formation. The cessation of thermally-induced CBL turbulence during the early evening transition triggers an inertial oscillation, which contributes to the LLJ formation.

  8. Simple turbulence models and their application to boundary layer separation

    NASA Technical Reports Server (NTRS)

    Wadcock, A. J.

    1980-01-01

    Measurements in the boundary layer and wake of a stalled airfoil are presented in two coordinate systems, one aligned with the airfoil chord, the other being conventional boundary layer coordinates. The NACA 4412 airfoil is studied at a single angle of attack corresponding to maximum lift, the Reynolds number based on chord being 1.5 x 10 to the 6th power. Turbulent boundary layer separation occurred at the 85 percent chord position. The two-dimensionality of the flow was documented and the momentum integral equation studied to illustrate the importance of turbulence contributions as separation is approached. The assumptions of simple eddy-viscosity and mixing-length turbulence models are checked directly against experiment. Curvature effects are found to be important as separation is approached.

  9. Airborne observation of mixing across the entrainment zone during PARADE 2011

    NASA Astrophysics Data System (ADS)

    Berkes, Florian; Hoor, Peter; Bozem, Heiko; Kunkel, Daniel; Sprenger, Michael; Henne, Stephan

    2016-05-01

    This study presents the analysis of the structure and air mass characteristics of the lower atmosphere during the field campaign PARADE (PArticles and RAdicals: Diel observations of the impact of urban and biogenic Emissions) on Mount Kleiner Feldberg in southwestern Germany during late summer 2011. We analysed measurements of meteorological variables (temperature, moisture, pressure, wind speed and direction) from radio soundings and of chemical tracers (carbon dioxide, ozone) from aircraft measurements. We focus on the thermodynamic and dynamic properties that control the chemical distribution of atmospheric constituents in the boundary layer. We show that the evolution of tracer profiles of CO2 and O3 indicate mixing across the inversion layer (or entrainment zone). This finding is supported by the analysis of tracer-tracer correlations which are indicative for mixing and the relation of tracer profiles in relation to the evolution of the boundary layer height deduced from radio soundings. The study shows the relevance of entrainment processes for the lower troposphere in general and specifically that the tracer-tracer correlation method can be used to identify mixing and irreversible exchange processes across the inversion layer.

  10. Doppler lidar characterization of the boundary layer for aircraft mass-balance estimates of greenhouse gas emissions

    NASA Astrophysics Data System (ADS)

    Hardesty, R.; Brewer, A.; Banta, R. M.; Senff, C. J.; Sandberg, S. P.; Alvarez, R. J.; Weickmann, A. M.; Sweeney, C.; Karion, A.; Petron, G.; Frost, G. J.; Trainer, M.

    2012-12-01

    Aircraft-based mass balance approaches are often used to estimate greenhouse gas emissions from distributed sources such as urban areas and oil and gas fields. A scanning Doppler lidar, which measures range-resolved wind and aerosol backscatter information, can provide important information on mixing and transport processes in the planetary boundary layer for these studies. As part of the Uintah Basin Winter Ozone Study, we deployed a high resolution Doppler lidar to characterize winds and turbulence, atmospheric mixing, and mixing layer depth in the oil and gas fields near Vernal, Utah. The lidar observations showed evolution of the horizontal wind field, vertical mixing and aerosol structure for each day during the 5-week deployment. This information was used in conjunction with airborne in situ observations of methane and carbon dioxide to compute methane fluxes and estimate basin-wide methane emissions. A similar experiment incorporating a lidar along with a radar wind profiler and instrumented aircraft was subsequently carried out in the vicinity of the Denver-Julesburg Basin in Colorado. Using examples from these two studies we discuss the use of Doppler lidar in conjunction with other sources of wind information and boundary layer structure for mass-balance type studies. Plans for a one-year deployment of a Doppler lidar as part of the Indianapolis Flux experiment to estimate urban-scale greenhouse gas emissions near are also presented.

  11. Observations of the Evolution of Turbulent Dissipation within the Ocean Surface Boundary Layer: an OSMOSIS study

    NASA Astrophysics Data System (ADS)

    Lucas, N. S.; Allen, J.; Belcher, S. E.; Boyd, T.; Brannigan, L.; Inall, M.; Palmer, M.; Polton, J.; Rippeth, T. P.

    2016-02-01

    This study presents a new 9.5 day dataset showing the evolution of the Ocean Surface Boundary Layer (OSBL) and dissipation of turbulence kinetic energy (TKE), carried out as part of OSMOSIS[i], at a location in the North East Atlantic Ocean in September 2012. The TKE dissipation measurements were made using three methods; (i) repeated profiling between 100m and the surface by an Ocean Microstructure glider, (ii) three series of profiles made using a loosely tethered velocity microstructure glider and (iii) a moored pulse-pulse coherent high frequency ADCP. Supporting measurements show the evolution of the water column structure, including surface wave measurements from a TRIAXYS wave buoy. This data shows two distinct regimes; the first, spanning 4 days with relatively low winds, displays a distinct diurnal cycle with the deepening of the active mixing layer during the night which shoaled during the day. The second spanned a significant storm, (with maximum winds speeds reaching 20 m s-1 and significant wave heights reaching 6 m), during which, rather than a deepening of the mixed layer as predicted by classical theory, the primary effect was a broadening of the transition layer, similar to that found by Dohan and Davies (2011). During the storm, significant dissipation was observed throughout the surface mixed layer and into the transition layer, driving fluxes of heat downwards through the base of the surface mixed layer. [i] Ocean Surface Mixing and Submesoscale Interaction Study Dohan, K. & Davis, R.E., 2011. Mixing in the Transition Layer during Two Storm Events. Journal of Physical Oceanography. 41 (1). pp. 42-66.

  12. A computer program for the calculation of the flow field including boundary layer effects for mixed-compression inlets at angle of attack

    NASA Technical Reports Server (NTRS)

    Vadyak, J.; Hoffman, J. D.

    1982-01-01

    A computer program was developed which is capable of calculating the flow field in the supersonic portion of a mixed compression aircraft inlet operating at angle of attack. The supersonic core flow is computed using a second-order three dimensional method-of-characteristics algorithm. The bow shock and the internal shock train are treated discretely using a three dimensional shock fitting procedure. The boundary layer flows are computed using a second-order implicit finite difference method. The shock wave-boundary layer interaction is computed using an integral formulation. The general structure of the computer program is discussed, and a brief description of each subroutine is given. All program input parameters are defined, and a brief discussion on interpretation of the output is provided. A number of sample cases, complete with data listings, are provided.

  13. Opposed-flow flame spread and extinction in mixed-convection boundary layers

    NASA Technical Reports Server (NTRS)

    Altenkirch, R. A.; Wedha-Nayagam, M.

    1989-01-01

    Experimental data for flame spread down thin fuel samples in an opposing, mixed-convection, boundary-layer flow are analyzed to determine the gas-phase velocity that characterizes how the flame reacts as it spreads toward the leading edge of the fuel sample into a thinning boundary layer. In the forced-flow limit where the cube of the Reynolds number divided by the Grashof number, Re exp 3/Gr, is large, L(q)/L(e), where L(q) is a theoretical flame standoff distance at extinction and L(e) is the measured distance from the leading edge of the sample where extinction occurs, is found to be proportional to Re exp n with n = -0.874 and Re based on L(e). The value of n is established by the character of the flow field near the leading edge of the flame. The Re dependence is used, along with a correction for the mixed-convection situation where Re exp 3/Gr is not large, to construct a Damkohler number with which the measured spread rates correlate for all values of Re exp 3/Gr.

  14. Transport and Mixing Induced by Beating Cilia in Human Airways

    PubMed Central

    Chateau, Sylvain; D'Ortona, Umberto; Poncet, Sébastien; Favier, Julien

    2018-01-01

    The fluid transport and mixing induced by beating cilia, present in the bronchial airways, are studied using a coupled lattice Boltzmann—Immersed Boundary solver. This solver allows the simulation of both single and multi-component fluid flows around moving solid boundaries. The cilia are modeled by a set of Lagrangian points, and Immersed Boundary forces are computed onto these points in order to ensure the no-slip velocity conditions between the cilia and the fluids. The cilia are immersed in a two-layer environment: the periciliary layer (PCL) and the mucus above it. The motion of the cilia is prescribed, as well as the phase lag between two cilia in order to obtain a typical collective motion of cilia, known as metachronal waves. The results obtained from a parametric study show that antiplectic metachronal waves are the most efficient regarding the fluid transport. A specific value of phase lag, which generates the larger mucus transport, is identified. The mixing is studied using several populations of tracers initially seeded into the pericilary liquid, in the mucus just above the PCL-mucus interface, and in the mucus far away from the interface. We observe that each zone exhibits different chaotic mixing properties. The larger mixing is obtained in the PCL layer where only a few beating cycles of the cilia are required to obtain a full mixing, while above the interface, the mixing is weaker and takes more time. Almost no mixing is observed within the mucus, and almost all the tracers do not penetrate the PCL layer. Lyapunov exponents are also computed for specific locations to assess how the mixing is performed locally. Two time scales are introduced to allow a comparison between mixing induced by fluid advection and by molecular diffusion. These results are relevant in the context of respiratory flows to investigate the transport of drugs for patients suffering from chronic respiratory diseases. PMID:29559920

  15. Transport and Mixing Induced by Beating Cilia in Human Airways.

    PubMed

    Chateau, Sylvain; D'Ortona, Umberto; Poncet, Sébastien; Favier, Julien

    2018-01-01

    The fluid transport and mixing induced by beating cilia, present in the bronchial airways, are studied using a coupled lattice Boltzmann-Immersed Boundary solver. This solver allows the simulation of both single and multi-component fluid flows around moving solid boundaries. The cilia are modeled by a set of Lagrangian points, and Immersed Boundary forces are computed onto these points in order to ensure the no-slip velocity conditions between the cilia and the fluids. The cilia are immersed in a two-layer environment: the periciliary layer (PCL) and the mucus above it. The motion of the cilia is prescribed, as well as the phase lag between two cilia in order to obtain a typical collective motion of cilia, known as metachronal waves. The results obtained from a parametric study show that antiplectic metachronal waves are the most efficient regarding the fluid transport. A specific value of phase lag, which generates the larger mucus transport, is identified. The mixing is studied using several populations of tracers initially seeded into the pericilary liquid, in the mucus just above the PCL-mucus interface, and in the mucus far away from the interface. We observe that each zone exhibits different chaotic mixing properties. The larger mixing is obtained in the PCL layer where only a few beating cycles of the cilia are required to obtain a full mixing, while above the interface, the mixing is weaker and takes more time. Almost no mixing is observed within the mucus, and almost all the tracers do not penetrate the PCL layer. Lyapunov exponents are also computed for specific locations to assess how the mixing is performed locally. Two time scales are introduced to allow a comparison between mixing induced by fluid advection and by molecular diffusion. These results are relevant in the context of respiratory flows to investigate the transport of drugs for patients suffering from chronic respiratory diseases.

  16. Turbulent convection in geostrophic circulation with wind and buoyancy forcing

    NASA Astrophysics Data System (ADS)

    Sohail, Taimoor; Gayen, Bishakhdatta; Hogg, Andy

    2017-11-01

    We conduct a direct numerical simulation of geostrophic circulation forced by surface wind and buoyancy to model a circumpolar ocean. The imposed buoyancy forcing (represented by Rayleigh number) drives a zonal current and supports small-scale convection in the buoyancy destabilizing region. In addition, we observe eddy activity which transports heat southward, supporting a large amount of heat uptake. Increasing wind stress enhances the meridional buoyancy gradient, triggering more eddy activity inside the boundary layer. Therefore, heat uptake increases with higher wind stress. The majority of dissipation is confined within the surface boundary layer, while mixing is dominant inside the convective plume and the buoyancy destabilizing region of the domain. The relative strength of the mixing and dissipation in the system can be expressed by mixing efficiency. This study finds that mixing is much greater than viscous dissipation, resulting in higher values of mixing efficiency than previously used. Supported by Australian Research Council Grant DP140103706.

  17. A modified two-layer iteration via a boundary point approach to generalized multivalued pseudomonotone mixed variational inequalities.

    PubMed

    Saddeek, Ali Mohamed

    2017-01-01

    Most mathematical models arising in stationary filtration processes as well as in the theory of soft shells can be described by single-valued or generalized multivalued pseudomonotone mixed variational inequalities with proper convex nondifferentiable functionals. Therefore, for finding the minimum norm solution of such inequalities, the current paper attempts to introduce a modified two-layer iteration via a boundary point approach and to prove its strong convergence. The results here improve and extend the corresponding recent results announced by Badriev, Zadvornov and Saddeek (Differ. Equ. 37:934-942, 2001).

  18. The atmospheric boundary layer in the CSIRO global climate model: simulations versus observations

    NASA Astrophysics Data System (ADS)

    Garratt, J. R.; Rotstayn, L. D.; Krummel, P. B.

    2002-07-01

    A 5-year simulation of the atmospheric boundary layer in the CSIRO global climate model (GCM) is compared with detailed boundary-layer observations at six locations, two over the ocean and four over land. Field observations, in the form of surface fluxes and vertical profiles of wind, temperature and humidity, are generally available for each hour over periods of one month or more in a single year. GCM simulations are for specific months corresponding to the field observations, for each of five years. At three of the four land sites (two in Australia, one in south-eastern France), modelled rainfall was close to the observed climatological values, but was significantly in deficit at the fourth (Kansas, USA). Observed rainfall during the field expeditions was close to climatology at all four sites. At the Kansas site, modelled screen temperatures (Tsc), diurnal temperature amplitude and sensible heat flux (H) were significantly higher than observed, with modelled evaporation (E) much lower. At the other three land sites, there is excellent correspondence between the diurnal amplitude and phase and absolute values of each variable (Tsc, H, E). Mean monthly vertical profiles for specific times of the day show strong similarities: over land and ocean in vertical shape and absolute values of variables, and in the mixed-layer and nocturnal-inversion depths (over land) and the height of the elevated inversion or height of the cloud layer (over the sea). Of special interest is the presence climatologically of early morning humidity inversions related to dewfall and of nocturnal low-level jets; such features are found in the GCM simulations. The observed day-to-day variability in vertical structure is captured well in the model for most sites, including, over a whole month, the temperature range at all levels in the boundary layer, and the mix of shallow and deep mixed layers. Weaknesses or unrealistic structure include the following, (a) unrealistic model mixed-layer temperature profiles over land in clear skies, related to use of a simple local first-order turbulence closure, (b) a tendency to overpredict cloud liquid water near the surface.

  19. An experimental study of low Re cavity vortex formation embedded in a laminar boundary layer

    NASA Astrophysics Data System (ADS)

    Gautam, Sashank; Lang, Amy; Wilroy, Jacob

    2016-11-01

    Laminar boundary layer flow across a grooved surface leads to the formation of vortices inside rectangular cavities. The nature and stability of the vortex inside any single cavity is determined by the Re and cavity geometry. According to the hypothesis, under low Re and stable vortex conditions a single cavity vortex leads to a roller-bearing effect which results in a decrease in drag as quantified by velocity profiles measured within the boundary layer. At higher Re once the vortex becomes unstable, drag should increase due to the mixing of low-momentum fluid within the cavity and the outer boundary layer flow. The primary objective of this experiment is to document the phenomenon using DPIV in a tow tank facility. This study focuses on the transition of the cavity flow from a steady to an unsteady state as the Re is increased above a critical value. The change in boundary layer momentum and cavity vortex characteristics are documented as a function of Re and boundary layer thickness. Funding from NSF CBET fluid dynamics Grant 1335848 is gratefully acknowledged.

  20. Tropical Cyclone Induced Air-Sea Interactions Over Oceanic Fronts

    NASA Astrophysics Data System (ADS)

    Shay, L. K.

    2012-12-01

    Recent severe tropical cyclones underscore the inherent importance of warm background ocean fronts and their interactions with the atmospheric boundary layer. Central to the question of heat and moisture fluxes, the amount of heat available to the tropical cyclone is predicated by the initial mixed layer depth and strength of the stratification that essentially set the level of entrainment mixing at the base of the mixed layer. In oceanic regimes where the ocean mixed layers are thin, shear-induced mixing tends to cool the upper ocean to form cold wakes which reduces the air-sea fluxes. This is an example of negative feedback. By contrast, in regimes where the ocean mixed layers are deep (usually along the western part of the gyres), warm water advection by the nearly steady currents reduces the levels of turbulent mixing by shear instabilities. As these strong near-inertial shears are arrested, more heat and moisture transfers are available through the enthalpy fluxes (typically 1 to 1.5 kW m-2) into the hurricane boundary layer. When tropical cyclones move into favorable or neutral atmospheric conditions, tropical cyclones have a tendency to rapidly intensify as observed over the Gulf of Mexico during Isidore and Lili in 2002, Katrina, Rita and Wilma in 2005, Dean and Felix in 2007 in the Caribbean Sea, and Earl in 2010 just north of the Caribbean Islands. To predict these tropical cyclone deepening (as well as weakening) cycles, coupled models must have ocean models with realistic ocean conditions and accurate air-sea and vertical mixing parameterizations. Thus, to constrain these models, having complete 3-D ocean profiles juxtaposed with atmospheric profiler measurements prior, during and subsequent to passage is an absolute necessity framed within regional scale satellite derived fields.

  1. Cloud and boundary layer interactions over the Arctic sea-ice in late summer

    NASA Astrophysics Data System (ADS)

    Shupe, M. D.; Persson, P. O. G.; Brooks, I. M.; Tjernström, M.; Sedlar, J.; Mauritsen, T.; Sjogren, S.; Leck, C.

    2013-05-01

    Observations from the Arctic Summer Cloud Ocean Study (ASCOS), in the central Arctic sea-ice pack in late summer 2008, provide a detailed view of cloud-atmosphere-surface interactions and vertical mixing processes over the sea-ice environment. Measurements from a suite of ground-based remote sensors, near surface meteorological and aerosol instruments, and profiles from radiosondes and a helicopter are combined to characterize a week-long period dominated by low-level, mixed-phase, stratocumulus clouds. Detailed case studies and statistical analyses are used to develop a conceptual model for the cloud and atmosphere structure and their interactions in this environment. Clouds were persistent during the period of study, having qualities that suggest they were sustained through a combination of advective influences and in-cloud processes, with little contribution from the surface. Radiative cooling near cloud top produced buoyancy-driven, turbulent eddies that contributed to cloud formation and created a cloud-driven mixed layer. The depth of this mixed layer was related to the amount of turbulence and condensed cloud water. Coupling of this cloud-driven mixed layer to the surface boundary layer was primarily determined by proximity. For 75% of the period of study, the primary stratocumulus cloud-driven mixed layer was decoupled from the surface and typically at a warmer potential temperature. Since the near-surface temperature was constrained by the ocean-ice mixture, warm temperatures aloft suggest that these air masses had not significantly interacted with the sea-ice surface. Instead, back trajectory analyses suggest that these warm airmasses advected into the central Arctic Basin from lower latitudes. Moisture and aerosol particles likely accompanied these airmasses, providing necessary support for cloud formation. On the occasions when cloud-surface coupling did occur, back trajectories indicated that these air masses advected at low levels, while mixing processes kept the mixed layer in equilibrium with the near-surface environment. Rather than contributing buoyancy forcing for the mixed-layer dynamics, the surface instead simply appeared to respond to the mixed-layer processes aloft. Clouds in these cases often contained slightly higher condensed water amounts, potentially due to additional moisture sources from below.

  2. Cloud and boundary layer interactions over the Arctic sea ice in late summer

    NASA Astrophysics Data System (ADS)

    Shupe, M. D.; Persson, P. O. G.; Brooks, I. M.; Tjernström, M.; Sedlar, J.; Mauritsen, T.; Sjogren, S.; Leck, C.

    2013-09-01

    Observations from the Arctic Summer Cloud Ocean Study (ASCOS), in the central Arctic sea-ice pack in late summer 2008, provide a detailed view of cloud-atmosphere-surface interactions and vertical mixing processes over the sea-ice environment. Measurements from a suite of ground-based remote sensors, near-surface meteorological and aerosol instruments, and profiles from radiosondes and a helicopter are combined to characterize a week-long period dominated by low-level, mixed-phase, stratocumulus clouds. Detailed case studies and statistical analyses are used to develop a conceptual model for the cloud and atmosphere structure and their interactions in this environment. Clouds were persistent during the period of study, having qualities that suggest they were sustained through a combination of advective influences and in-cloud processes, with little contribution from the surface. Radiative cooling near cloud top produced buoyancy-driven, turbulent eddies that contributed to cloud formation and created a cloud-driven mixed layer. The depth of this mixed layer was related to the amount of turbulence and condensed cloud water. Coupling of this cloud-driven mixed layer to the surface boundary layer was primarily determined by proximity. For 75% of the period of study, the primary stratocumulus cloud-driven mixed layer was decoupled from the surface and typically at a warmer potential temperature. Since the near-surface temperature was constrained by the ocean-ice mixture, warm temperatures aloft suggest that these air masses had not significantly interacted with the sea-ice surface. Instead, back-trajectory analyses suggest that these warm air masses advected into the central Arctic Basin from lower latitudes. Moisture and aerosol particles likely accompanied these air masses, providing necessary support for cloud formation. On the occasions when cloud-surface coupling did occur, back trajectories indicated that these air masses advected at low levels, while mixing processes kept the mixed layer in equilibrium with the near-surface environment. Rather than contributing buoyancy forcing for the mixed-layer dynamics, the surface instead simply appeared to respond to the mixed-layer processes aloft. Clouds in these cases often contained slightly higher condensed water amounts, potentially due to additional moisture sources from below.

  3. An Experimental Study of a Separated/Reattached Flow Behind a Backward-Facing Step. Re(sub h) = 37,000

    NASA Technical Reports Server (NTRS)

    Jovic, Srba

    1996-01-01

    An experimental study was carried out to investigate turbulent structure of a two-dimensional incompressible separating/reattaching boundary layer behind a backward-facing step. Hot-wire measurement technique was used to measure three Reynolds stresses and higher-order mean products of velocity fluctuations. The Reynolds number, Re(sub h), based on the step height, h, and the reference velocity, U(sub 0), was 37,000. The upstream oncoming flow was fully developed turbulent boundary layer with the Re(sub theta) = 3600. All turbulent properties, such as Reynolds stresses, increase dramatically downstream of the step within an internally developing mixing layer. Distributions of dimensionless mean velocity, turbulent quantities and antisymmetric distribution of triple velocity products in the separated free shear layer suggest that the shear layer above the recirculating region strongly resembles free-shear mixing layer structure. In the reattachment region close to the wall, turbulent diffusion term balances the rate of dissipation since advection and production terms appear to be negligibly small. Further downstream, production and dissipation begin to dominate other transport processes near the wall indicating the growth of an internal turbulent boundary layer. In the outer region, however, the flow still has a memory of the upstream disturbance even at the last measuring station of 51 step-heights. The data show that the structure of the inner layer recovers at a much faster rate than the outer layer structure. The inner layer structure resembles the near-wall structure of a plane zero pressure-gradient turbulent boundary layer (plane TBL) by 25h to 30h, while the outer layer structure takes presumably over 100h.

  4. Estimation of evaporation from equilibrium diurnal boundary layer humidity

    NASA Astrophysics Data System (ADS)

    Salvucci, G.; Rigden, A. J.; Li, D.; Gentine, P.

    2017-12-01

    Simplified conceptual models of the convective boundary layer as a well mixed profile of potential temperature (theta) and specific humidity (q) impinging on an initially stably stratified linear potential temperature profile have a long history in atmospheric sciences. These one dimensional representations of complex mixing are useful for gaining insights into land-atmosphere interactions and for prediction when state of the art LES approaches are infeasible. As previously shown (e.g. Betts), if one neglects the role of q in bouyancy, the framework yields a unique relation between mixed layer Theta, mixed layer height (h), and cumulative sensible heat flux (SH) throughout the day. Similarly assuming an initially q profile yields a simple relation between q, h, and cumulative latent heat flux (LH). The diurnal dynamics of theta and q are strongly dependent on SH and the initial lapse rates of theta (gamma_thet) and q (gamma q). In the estimation method proposed here, we further constrain these relations with two more assumptions: 1) The specific humidity is the same at the start of the period of boundary layer growth and at the collapse; and 2) Once the mixed layer reaches the LCL, further drying occurs proportionally to the deardorff convective velocity scale (omega) multiplied by q. Assumption (1) is based on the idea that below the cloud layer, there are no sinks of moisture within the mixed layer (neglecting lateral humidity divergence). Thus the net mixing of dry air aloft with evaporation from the surface must balance. Inclusion of the simple model of moisture loss above the LCL into the bulk-CBL model allows definition of an equilibrium humidity (q) condition at which the diurnal cycle of q repeats (i.e. additions of q from surface balance entrainment of dry air from above). Surprisingly, this framework allows estimation of LH from q, theta, and estimated net radiation by solving for the value of Evaporative Fraction (EF) for which the diurnal cycle of q repeats. Three parameters need specification: cloud area fraction, entrainment factor, and morning lapse rate. Surprisingly, a single set of values for these parameters are adequate to estimate EF at over 70 tested Ameriflux sites to within about 20%, though improvements are gained using a single regression model for gamma_thet that has been fitted to radiosonde data.

  5. Meteorological Simulations of Ozone Episode Case Days during the 1996 Paso del Norte Ozone Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, M.J.; Costigan, K.; Muller, C.

    1999-02-01

    Meteorological simulations centered around the border cities of El Paso and Ciudad Juarez have been performed during an ozone episode that occurred on Aug. 13,1996 during the 1996 Paso del Norte Ozone Study field campaign. Simulations were petiormed using the HOTMAC mesoscale meteorological model using a 1,2,4, and 8 km horizontal grid size nested mesh system. Investigation of the vertical structure and evolution of the atmospheric boundary layer for the Aug. 11-13 time period is emphasized in this paper. Comparison of model-produced wind speed profiles to rawirisonde and radar profiler measurements shows reasonable agreement. A persistent upper-level jet was capturedmore » in the model simulations through data assimilation. In the evening hours, the model was not able to produce the strong wind direction shear seen in the radar wind profiles. Based on virtual potential temperature profile comparisons, the model appears to correctly simulate the daytime growth of the convective mixed layer. However, the model underestimates the cooling of the surface layer at night. We found that the upper-level jet significantly impacted the turbulence structure of the boundary layer, leading to relatively high turbulent kinetic energy (tke) values aloft at night. The model indicates that these high tke values aloft enhance the mid-morning growth of the boundary layer. No upper-level turbulence measurements were available to verify this finding, however. Radar profiler-derived mixing heights do indicate relatively rapid morning growth of the mixed layer.« less

  6. The interactive role of subsynoptic scale jet sreak and planetary boundary layer adjustments in organizing an apparently isolated convective complex

    NASA Technical Reports Server (NTRS)

    Kaplan, M. L.; Zack, J. W.; Wong, V. C.; Tuccillo, J. J.; Coats, G. D.

    1982-01-01

    A mesoscale atmospheric simulation system is described that is being developed in order to improve the simulation of subsynoptic and mesoscale adjustments associated with cyclogenesis, severe storm development, and significant atmospheric transport processes. Present emphasis in model development is in the parameterization of physical processes, time-dependent boundary conditions, sophisticated initialization and analysis procedures, nested grid solutions, and applications software development. Basic characteristics of the system as of March 1982 are listed. In a case study, the Grand Island tornado outbreak of 3 June 1980 is considered in substantial detail. Results of simulations with a mesoscale atmospheric simulation system indicate that over the high plains subtle interactions between existing jet streaks and deep well mixed boundary layers can lead to well organized patterns of mesoscale divergence and pressure falls. The amplitude and positioning of these mesoscale features is a function of the subtle nonlinear interaction between the pre-existing jet-streak and deep well mixed boundary layers. Model results for the case study indicate that the model has the potential for forecasting the precursor mesoscale convective environment.

  7. Calculation of three-dimensional compressible laminar and turbulent boundary layers. An implicit finite-difference procedure for solving the three-dimensional compressible laminar, transitional, and turbulent boundary-layer equations

    NASA Technical Reports Server (NTRS)

    Harris, J. E.

    1975-01-01

    An implicit finite-difference procedure is presented for solving the compressible three-dimensional boundary-layer equations. The method is second-order accurate, unconditionally stable (conditional stability for reverse cross flow), and efficient from the viewpoint of computer storage and processing time. The Reynolds stress terms are modeled by (1) a single-layer mixing length model and (2) a two-layer eddy viscosity model. These models, although simple in concept, accurately predicted the equilibrium turbulent flow for the conditions considered. Numerical results are compared with experimental wall and profile data for a cone at an angle of attack larger than the cone semiapex angle. These comparisons clearly indicate that the numerical procedure and turbulence models accurately predict the experimental data with as few as 21 nodal points in the plane normal to the wall boundary.

  8. Influence of Dynamics and Chemistry on the Diurnal Variation of VOCs in the Planetary Boundary Layer above a Mixed Forest Canopy in the Southeastern United States

    NASA Astrophysics Data System (ADS)

    Guenther, A. B.; Su, L.; Patton, E. G.; Vila-Guerau Arellano, J.; Mak, J. E.

    2014-12-01

    The planetary boundary layer (PBL) is a region of inherent interest because reactive VOCs emitted from the forest canopy are mixed with the residual and free tropospheric air masses, oxidized, and/or otherwise removed in this region. The characterization of diurnal variation of VOCs in the PBL is limited due to the lack of appropriate sampling platforms that are able to probe all the regions of interest: from the surface to the entrainment zone. Here we present the application of the Whole Air Sample Profiler (WASP) system during the 2013 Southeast Atmosphere Study (SAS) campaign. A total of 41 research flights (RFs) were carried out during the 2013 SAS campaign between June 1 and June 14 over the Alabama Aquatic Biodiversity Center (AABC) site and the SEARCH site. During each RF, ambient air sampling started from 50-100 m above the canopy top and stopped at ~1200 m above the mean sea level (a.m.s.l). The air samples were subsequently analyzed by using a proton-transfer-reaction time-of-flight mass spectrometry (PTR-TOF-MS). Here we analyze the vertical profiles and averaged diurnal variation of the mixing ratios of several reactive VOC species, including isoprene, the sum of monoterpenes, and first generation oxidation products of isoprene: methyl vinyl ketone and methacrolein (MVK+MACR). A MiXed Layer Chemistry (MXLCH) model, guided by the meteorological and chemical observations during the SAS campaign, is used to study the influence of boundary layer dynamics and new isoprene oxidation mechanism on the diurnal variation of major biogenic VOCs emitted from the forest canopy. The new scheme includes OH recycling through two pathways under low-NOx regime: (1) hydroxyl peroxy radicals (HOC5H8OO•; ISOPO2) unimolecular isomerization, and (2) ISOPO2+HO2. The model is able to reproduce the evolution of the boundary layer dynamics (including potential temperature, and boundary layer height) during the selected simulation dates. Based on the model results, budget analyses are performed to study the roles that the boundary layer dynamics and chemistry play in controlling the evolution of VOCs in the PBL. Chemical tendencies of important species, including organic peroxy radicals (RO2), HO2, and OH are calculated to evaluate the capacity of the new isoprene scheme in explaining the photooxidation processes in the PBL.

  9. Shock induced Richtmyer-Meshkov instability in the presence of a wall boundary layer

    NASA Astrophysics Data System (ADS)

    Jourdan, G.; Billiotte, M.; Houas, L.

    1996-06-01

    An experimental investigation on gaseous mixing zones originated from the Richtmyer-Meshkov instability has been undertaken in a square cross section shock tube. Mass concentration fields, of one of the two mixing constituents, have been determined within the mixing zone when the shock wave passes from the heavy gas to the light one, from one gas to an other of close density, and from the light gas to the heavy one. Results have been obtained before and after the coming back of the reflected shock wave. The diagnostic method is based on the infrared absorption of one of the two constituents of the mixing zone. It is shown that the mixing zone is strongly deformed by the wall boundary layer. The consequence is the presence of strong gradients of concentration in the direction perpendicular to the shock wave propagation. Finally, it is pointed out that the mixing goes more homogeneous when the Atwood number tends to zero.

  10. The Role of Boundary-Layer and Cumulus Convection on Dust Emission, Mixing, and Transport Over Desert Regions

    NASA Astrophysics Data System (ADS)

    Takemi, T.; Yasui, M.

    2005-12-01

    Recent studies on dust emission and transport have been concerning the small-scale atmospheric processes in order to incorporate them as a subgrid-scale effect in large-scale numerical prediction models. In the present study, we investigated the dynamical processes and mechanisms of dust emission, mixing, and transport induced by boundary-layer and cumulus convection under a fair-weather condition over a Chinese desert. We performed a set of sensitivity experiments as well as a control simulation in order to examine the effects of vertical wind shear, upper-level wind speed, and moist convection by using a simplified and idealized modeling framework. The results of the control experiment showed that surface dust emission was at first caused before the noon time by intense convective motion which not only developed in the boundary layer but also penetrated into the free troposphere. In the afternoon hours, boundary-layer dry convection actively mixed and transported dust within the boundary layer. Some of the convective cells penetrated above the boundary layer, which led to the generation of cumulus clouds and hence gradually increased the dust content in the free troposphere. Coupled effects of the dry and moist convection played an important role in inducing surface dust emission and transporting dust vertically. This was clearly demonstrated through the comparison of the results between the control and the sensitivity experiments. The results of the control simulation were compared with lidar measurements. The simulation well captured the observed diurnal features of the upward transport of dust. We also examined the dependence of the simulated results on grid resolution: the grid size was changed from 250 m up to 4 km. It was found that there was a significant difference between the 2-km and 4-km grids. If a cumulus parameterization was added to the 4-km grid run, the column content was comparable to the other cases. This result suggests that subgrid parameterizations are required if the grid size is larger than the order of 1 km in a fair-weather condition.

  11. Observations of the atmospheric boundary layer height over Abu Dhabi, United Arab Emirates: Investigating boundary layer climatology in arid regions

    NASA Astrophysics Data System (ADS)

    Marzooqi, Mohamed Al; Basha, Ghouse; Ouarda, Taha B. M. J.; Armstrong, Peter; Molini, Annalisa

    2014-05-01

    Strong sensible heat fluxes and deep turbulent mixing - together with marked dustiness and a low substrate water content - represent a characteristic signature in the boundary layer over hot deserts, resulting in "thicker" mixing layers and peculiar optical properties. Beside these main features however, desert ABLs present extremely complex local structures that have been scarcely addressed in the literature, and whose understanding is essential in modeling processes such as the transport of dust and pollutants, and turbulent fluxes of momentum, heat and water vapor in hyper-arid regions. In this study, we analyze a continuous record of observations of the atmospheric boundary layer (ABL) height from a single lens LiDAR ceilometer operated at Masdar Institute Field Station (24.4oN, 54.6o E, Abu Dhabi, United Arab Emirates), starting March 2013. We compare different methods for the estimation of the ABL height from Ceilometer data such as, classic variance-, gradient-, log gradient- and second derivation-methods as well as recently developed techniques such as the Bayesian Method and Wavelet covariance transform. Our goal is to select the most suited technique for describing the climatology of the ABL in desert environments. Comparison of our results with radiosonde observations collected at the nearby airport of Abu Dhabi indicate that the WCT and the Bayesian method are the most suitable tools to accurately identify the ABL height in all weather conditions. These two methods are used for the definition of diurnal and seasonal climatologies of the boundary layer conditional to different atmospheric stability classes.

  12. Assessment of Mixed-Layer Height Estimation from Single-wavelength Ceilometer Profiles

    PubMed Central

    Knepp, Travis N.; Szykman, James J.; Long, Russell; Duvall, Rachelle M.; Krug, Jonathan; Beaver, Melinda; Cavender, Kevin; Kronmiller, Keith; Wheeler, Michael; Delgado, Ruben; Hoff, Raymond; Berkoff, Timothy; Olson, Erik; Clark, Richard; Wolfe, Daniel; Van Gilst, David; Neil, Doreen

    2018-01-01

    Differing boundary/mixed-layer height measurement methods were assessed in moderately-polluted and clean environments, with a focus on the Vaisala CL51 ceilometer. This intercomparison was performed as part of ongoing measurements at the Chemistry And Physics of the Atmospheric Boundary Layer Experiment (CAPABLE) site in Hampton, Virginia and during the 2014 Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality (DISCOVER-AQ) field campaign that took place in and around Denver, Colorado. We analyzed CL51 data that were collected via two different methods (BLView software, which applied correction factors, and simple terminal emulation logging) to determine the impact of data collection methodology. Further, we evaluated the STRucture of the ATmosphere (STRAT) algorithm as an open-source alternative to BLView (note that the current work presents an evaluation of the BLView and STRAT algorithms and does not intend to act as a validation of either). Filtering criteria were defined according to the change in mixed-layer height (MLH) distributions for each instrument and algorithm and were applied throughout the analysis to remove high-frequency fluctuations from the MLH retrievals. Of primary interest was determining how the different data-collection methodologies and algorithms compare to each other and to radiosonde-derived boundary-layer heights when deployed as part of a larger instrument network. We determined that data-collection methodology is not as important as the processing algorithm and that much of the algorithm differences might be driven by impacts of local meteorology and precipitation events that pose algorithm difficulties. The results of this study show that a common processing algorithm is necessary for LIght Detection And Ranging (LIDAR)-based MLH intercomparisons, and ceilometer-network operation and that sonde-derived boundary layer heights are higher (10–15% at mid-day) than LIDAR-derived mixed-layer heights. We show that averaging the retrieved MLH to 1-hour resolution (an appropriate time scale for a priori data model initialization) significantly improved correlation between differing instruments and differing algorithms. PMID:29682087

  13. Lidar Measurements of Wind, Moisture and Boundary Layer Evolution in a Dryline During IHOP2002

    NASA Technical Reports Server (NTRS)

    Demoz, Belay; Evans, Keith; DiGirolamo, Paolo; Wang, Zhien; Whiteman, David; Schwemmer, Geary; Gentry, Bruce; Miller, David

    2003-01-01

    Variability in the convective boundary layer moisture, wind and temperature fields and their importance in the forecasting and understanding of storms have been discussed in the literature. These variations have been reported in relation to frontal zones, stationary boundaries and during horizontal convective rolls. While all three vary substantially in the convective boundary layer, moisture poses a particular challenge. Moisture or water vapor concentration (expressed as a mass mixing ratio, g/kg), is conserved in all meteorological processes except condensation and evaporation. The water vapor mixing ratio often remains distinct across an air -mass boundary even when the temperature difference is indistinct. These properties make it an ideal choice in visualizing and understanding many of the atmosphere's dynamic features. However, it also presents a unique measurement challenge because water vapor content can vary by more than three orders of magnitude in the troposphere. Characterization of the 3D-distribution of water vapor is also difficult as water vapor observations can suffer from large sampling errors and substantial variability both in the vertical and horizontal. This study presents groundbased measurements of wind, boundary layer structure and water vapor mixing ratio measurements observed by three co-located lidars. This presentation will focus on the evolution and variability of moisture and wind in the boundary layer during a dry line event that occurred on 22 May 2002. These data sets and analyses are unique in that they combine simultaneous measurements of wind, moisture and CBL structure to study the detailed thermal variability in and around clear air updrafts during a dryline event. It will quantify the variation caused by, in and around buoyant plumes and across a dryline. The data presented here were collected in the panhandle of Oklahoma as part of the International BO Project (IHOP-2002), a field experiment that took place over the Southern Great Plains (SGP) of the United States from 13 May to 30 June 2002. The chief goal of IHOP-2002 is to improve characterization of the four-dimensional (4-D) distribution of water vapor and its application to improving the understanding and prediction of convection

  14. Lidar Measurements of Wind, Moisture, and Boundary Layer Evolution in a Dry Line during 1HOP 2002

    NASA Technical Reports Server (NTRS)

    Demoz, Belay; Evans, Keith; DiGirolamo, Paolo; Wang, Zhe-In; Whiteman, David; Schwemmer, Geary; Gentry, Bruce; Miller, David; Palm, Stephen

    2002-01-01

    Variability in the convective boundary layer moisture, wind and temperature fields and their importance in the forecasting and understanding of storms have been discussed in the literature. These . variations have been reported in relation to frontal zones, stationary boundaries and during horizontal convective rolls. While all three vary substantially in the convective boundary layer, moisture poses a particular challenge. Moisture or water vapor concentration (expressed as a mass mixing ratio, g/kg), is conserved in all meteorological processes except condensation and evaporation. The water vapor mixing ratio often remains distinct across an air-mass boundary even when the temperature difference is indistinct. These properties make it an ideal choice in visualizing and understanding many of the atmosphere's dynamic features. However, it also presents a unique measurement challenge because water vapor content can vary by more than three orders of magnitude in the troposphere. Characterization of the 3D-distribution of water vapor is also difficult as water vapor observations can suffer from large sampling errors and substantial variability both in the vertical and horizontal. This study presents ground-based measurements of wind, boundary layer structure and water vapor mixing ratio measurements observed by three co-located lidars. This presentation will focus on the evolution and variability of moisture and wind in the boundary layer during a dry line event that occurred on 22 May 2002. These data sets and analyses are unique in that they combine simultaneous measurements of wind, moisture and CBL structure to study the detailed thermal variability in and around clear air updrafts during a dryline event. It will quantify the variation caused by, in and around buoyant plumes and across a dryline. The data presented here were collected in the panhandle of Oklahoma as part of the International H2O Project (MOP-2002), a field experiment that took place over the Southern Great Plains (SGP) of the United States from 13 May to 30 June 2002. The chief goal of MOP-2002 is to improve characterization of the four-dimensional (4-D) distribution of water vapor and its application to improving the understanding and prediction of convection

  15. Modeling condensation with a noncondensable gas for mixed convection flow

    NASA Astrophysics Data System (ADS)

    Liao, Yehong

    2007-05-01

    This research theoretically developed a novel mixed convection model for condensation with a noncondensable gas. The model developed herein is comprised of three components: a convection regime map; a mixed convection correlation; and a generalized diffusion layer model. These components were developed in a way to be consistent with the three-level methodology in MELCOR. The overall mixed convection model was implemented into MELCOR and satisfactorily validated with data covering a wide variety of test conditions. In the development of the convection regime map, two analyses with approximations of the local similarity method were performed to solve the multi-component two-phase boundary layer equations. The first analysis studied effects of the bulk velocity on a basic natural convection condensation process and setup conditions to distinguish natural convection from mixed convection. It was found that the superimposed velocity increases condensation heat transfer by sweeping away the noncondensable gas accumulated at the condensation boundary. The second analysis studied effects of the buoyancy force on a basic forced convection condensation process and setup conditions to distinguish forced convection from mixed convection. It was found that the superimposed buoyancy force increases condensation heat transfer by thinning the liquid film thickness and creating a steeper noncondensable gas concentration profile near the condensation interface. In the development of the mixed convection correlation accounting for suction effects, numerical data were obtained from boundary layer analysis for the three convection regimes and used to fit a curve for the Nusselt number of the mixed convection regime as a function of the Nusselt numbers of the natural and forced convection regimes. In the development of the generalized diffusion layer model, the driving potential for mass transfer was expressed as the temperature difference between the bulk and the liquid-gas interface using the Clausius-Clapeyron equation. The model was developed on a mass basis instead of a molar basis to be consistent with general conservation equations. It was found that vapor diffusion is not only driven by a gradient of the molar fraction but also a gradient of the mixture molecular weight at the diffusion layer.

  16. A magnetic boundary layer at the magnetopause

    NASA Astrophysics Data System (ADS)

    Kartalev, M. D.; Simeonov, G.

    A new approach in the boundary layer description of the magnetopause is proposed. The magnetopause is considered as a mixing region of two streams of plasma with different parameters. The assumption is made that wave-particle interactions cause the plasma to be resistive. Thus only the magnetic viscosity is supposed to be essential. Other dissipation effects are neglected. The plasma and magnetic field conditions at the outer boundary of the layer can be obtained from the solution of the nondissipative problem for the magnetosheath. The magnetic field is assumed to be known at the inner boundary. No further conditions are needed in our formulation of the problem. The variation of the flow parameters and the magnetic field can be obtained numerically.

  17. The parameterization of the planetary boundary layer in the UCLA general circulation model - Formulation and results

    NASA Technical Reports Server (NTRS)

    Suarez, M. J.; Arakawa, A.; Randall, D. A.

    1983-01-01

    A planetary boundary layer (PBL) parameterization for general circulation models (GCMs) is presented. It uses a mixed-layer approach in which the PBL is assumed to be capped by discontinuities in the mean vertical profiles. Both clear and cloud-topped boundary layers are parameterized. Particular emphasis is placed on the formulation of the coupling between the PBL and both the free atmosphere and cumulus convection. For this purpose a modified sigma-coordinate is introduced in which the PBL top and the lower boundary are both coordinate surfaces. The use of a bulk PBL formulation with this coordinate is extensively discussed. Results are presented from a July simulation produced by the UCLA GCM. PBL-related variables are shown, to illustrate the various regimes the parameterization is capable of simulating.

  18. Effect of shock interactions on mixing layer between co-flowing supersonic flows in a confined duct

    NASA Astrophysics Data System (ADS)

    Rao, S. M. V.; Asano, S.; Imani, I.; Saito, T.

    2018-03-01

    Experiments are conducted to observe the effect of shock interactions on a mixing layer generated between two supersonic streams of Mach number M _{1} = 1.76 and M _{2} = 1.36 in a confined duct. The development of this mixing layer within the duct is observed using high-speed schlieren and static pressure measurements. Two-dimensional, compressible Reynolds averaged Navier-Stokes equations are solved using the k-ω SST turbulence model in Fluent. Further, adverse pressure gradients are imposed by placing inserts of small (<7% of duct height) but finite (> boundary layer thickness) thickness on the walls of the test section. The unmatched pressures cause the mixing layer to bend and lead to the formation of shock structures that interact with the mixing layer. The mixing layer growth rate is found to increase after the shock interaction (nearly doubles). The strongest shock is observed when a wedge insert is placed in the M _{2} flow. This shock interacts with the mixing layer exciting flow modes that produce sinusoidal flapping structures which enhance the mixing layer growth rate to the maximum (by 1.75 times). Shock fluctuations are characterized, and it is observed that the maximum amplitude occurs when a wedge insert is placed in the M _{2} flow.

  19. A model for the estimation of the surface fluxes of momentum, heat and moisture of the cloud topped marine atmospheric boundary layer from satellite measurable parameters. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Allison, D. E.

    1984-01-01

    A model is developed for the estimation of the surface fluxes of momentum, heat, and moisture of the cloud topped marine atmospheric boundary layer by use of satellite remotely sensed parameters. The parameters chosen for the problem are the integrated liquid water content, q sub li, the integrated water vapor content, q sub vi, the cloud top temperature, and either a measure of the 10 meter neutral wind speed or the friction velocity at the surface. Under the assumption of a horizontally homogeneous, well-mixed boundary layer, the model calculates the equivalent potential temperature and total water profiles of the boundary layer along with the boundary layer height from inputs of q sub li, q sub vi, and cloud top temperature. These values, along with the 10m neutral wind speed or friction velocity and the sea surface temperature are then used to estimate the surface fluxes. The development of a scheme to parameterize the integrated water vapor outside of the boundary layer for the cases of cold air outbreak and California coastal stratus is presented.

  20. Overview of Boundary Layer Clouds Using Satellite and Ground-Based Measurements

    NASA Astrophysics Data System (ADS)

    Xi, B.; Dong, X.; Wu, P.; Qiu, S.

    2017-12-01

    A comprehensive summary of boundary layer clouds properties based on our few recently studies will be presented. The analyses include the global cloud fractions and cloud macro/micro- physical properties based on satellite measurements using both CERES-MODIS and CloudSat/Caliposo data products,; the annual/seasonal/diurnal variations of stratocumulus clouds over different climate regions (mid-latitude land, mid-latitude ocean, and Arctic region) using DOE ARM ground-based measurements over Southern great plain (SGP), Azores (GRW), and North slope of Alaska (NSA) sites; the impact of environmental conditions to the formation and dissipation process of marine boundary layer clouds over Azores site; characterizing Arctice mixed-phase cloud structure and favorable environmental conditions for the formation/maintainess of mixed-phase clouds over NSA site. Though the presentation has widely spread topics, we will focus on the representation of the ground-based measurements over different climate regions; evaluation of satellite retrieved cloud properties using these ground-based measurements, and understanding the uncertainties of both satellite and ground-based retrievals and measurements.

  1. Calculation of the flow field including boundary layer effects for supersonic mixed compression inlets at angles of attack

    NASA Technical Reports Server (NTRS)

    Vadyak, J.; Hoffman, J. D.

    1982-01-01

    The flow field in supersonic mixed compression aircraft inlets at angle of attack is calculated. A zonal modeling technique is employed to obtain the solution which divides the flow field into different computational regions. The computational regions consist of a supersonic core flow, boundary layer flows adjacent to both the forebody/centerbody and cowl contours, and flow in the shock wave boundary layer interaction regions. The zonal modeling analysis is described and some computational results are presented. The governing equations for the supersonic core flow form a hyperbolic system of partial differential equations. The equations for the characteristic surfaces and the compatibility equations applicable along these surfaces are derived. The characteristic surfaces are the stream surfaces, which are surfaces composed of streamlines, and the wave surfaces, which are surfaces tangent to a Mach conoid. The compatibility equations are expressed as directional derivatives along streamlines and bicharacteristics, which are the lines of tangency between a wave surface and a Mach conoid.

  2. Development of a Hybrid RANS/LES Method for Compressible Mixing Layer Simulations

    NASA Technical Reports Server (NTRS)

    Georgiadis, Nicholas J.; Alexander, J. Iwan D.; Reshotko, Eli

    2001-01-01

    A hybrid method has been developed for simulations of compressible turbulent mixing layers. Such mixing layers dominate the flows in exhaust systems of modem day aircraft and also those of hypersonic vehicles currently under development. The hybrid method uses a Reynolds-averaged Navier-Stokes (RANS) procedure to calculate wall bounded regions entering a mixing section, and a Large Eddy Simulation (LES) procedure to calculate the mixing dominated regions. A numerical technique was developed to enable the use of the hybrid RANS/LES method on stretched, non-Cartesian grids. The hybrid RANS/LES method is applied to a benchmark compressible mixing layer experiment. Preliminary two-dimensional calculations are used to investigate the effects of axial grid density and boundary conditions. Actual LES calculations, performed in three spatial directions, indicated an initial vortex shedding followed by rapid transition to turbulence, which is in agreement with experimental observations.

  3. Aerosol-cloud interactions in Arctic mixed-phase stratocumulus

    NASA Astrophysics Data System (ADS)

    Solomon, A.

    2017-12-01

    Reliable climate projections require realistic simulations of Arctic cloud feedbacks. Of particular importance is accurately simulating Arctic mixed-phase stratocumuli (AMPS), which are ubiquitous and play an important role in regional climate due to their impact on the surface energy budget and atmospheric boundary layer structure through cloud-driven turbulence, radiative forcing, and precipitation. AMPS are challenging to model due to uncertainties in ice microphysical processes that determine phase partitioning between ice and radiatively important cloud liquid water. Since temperatures in AMPS are too warm for homogenous ice nucleation, ice must form through heterogeneous nucleation. In this presentation we discuss a relatively unexplored source of ice production-recycling of ice nuclei in regions of ice subsaturation. AMPS frequently have ice-subsaturated air near the cloud-driven mixed-layer base where falling ice crystals can sublimate, leaving behind IN. This study provides an idealized framework to understand feedbacks between dynamics and microphysics that maintain phase-partitioning in AMPS. In addition, the results of this study provide insight into the mechanisms and feedbacks that may maintain cloud ice in AMPS even when entrainment of IN at the mixed-layer boundaries is weak.

  4. Response of mixed-phase boundary layer clouds with rapid and slow ice nucleation processes to cloud-top temperature trend

    NASA Astrophysics Data System (ADS)

    Fridlind, A. M.; Avramov, A.; Ackerman, A. S.; Alpert, P. A.; Knopf, D. A.; DeMott, P. J.; Brooks, S. D.; Glen, A.

    2015-12-01

    It has been argued on the basis of some laboratory data sets, observed mixed-phase cloud systems, and numerical modeling studies that weakly active or slowly consumed ice forming nuclei (IFN) may be important to natural cloud systems. It has also been argued on the basis of field measurements that ice nucleation under mixed-phase conditions appears to occur predominantly via a liquid-phase mechanism, requiring the presence of liquid droplets prior to substantial ice nucleation. Here we analyze the response of quasi-Lagrangian large-eddy simulations of mixed-phase cloud layers to IFN operating via a liquid-phase mode using assumptions that result in either slow or rapid depletion of IFN from the cloudy boundary layer. Using several generalized case studies that do not exhibit riming or drizzle, based loosely on field campaign data, we vary environmental conditions such that the cloud-top temperature trend varies. One objective of this work is to identify differing patterns in ice formation intensity that may be distinguishable from ground-based or satellite platforms.

  5. Lidar observation of marine mixed layer

    NASA Technical Reports Server (NTRS)

    Yamagishi, Susumu; Yamanouchi, Hiroshi; Tsuchiya, Masayuki

    1992-01-01

    Marine mixed layer is known to play an important role in the transportation of pollution exiting ship funnels. The application of a diffusion model is critically dependent upon a reliable estimate of a lid. However, the processes that form lids are not well understood, though considerable progress toward marine boundary layer has been achieved. This report describes observations of the marine mixed layer from the course Ise-wan to Nii-jima with the intention of gaining a better understanding of their structure by a shipboard lidar. These observations were made in the summer of 1991. One interesting feature of the observations was that the multiple layers of aerosols, which is rarely numerically modeled, was encountered. No attempt is yet made to present a systematic analysis of all the data collected. Instead we focus on observations that seem to be directly relevant to the structure of the mixed layer.

  6. Experimental Findings from Aircraft Measurements in the Residual Layer

    NASA Astrophysics Data System (ADS)

    Caputi, D.; Conley, S. A.; Faloona, I. C.; Trousdell, J.

    2016-12-01

    The southern San Joaquin Valley of California is home to some of the highest ozone pollution in the United States. Thus, a complete understanding of boundary layer dynamics in this area during high ozone events is crucial for better ozone forecasting and effective attainment planning. This work will discuss the results from five aircraft deployments, spanning two summers, in which a Mooney aircraft operated by Scientific Aviation Inc. was flown between Fresno and Bakersfield throughout the diurnal cycle, measuring ozone, NOx, and methane. Under a simple budgeting model, changes in any species within the boundary layer can occur from advection, chemical production or loss, surface fluxes or deposition, and entrainment between the boundary layer and free troposphere. The advection of ozone appears to be most appreciable at night with stronger winds in the residual layer, and are on the order of 2 to 4 ppb hr-1. The nighttime chemical loss of ozone due to interaction with NO2 can be estimated by simple numerical modeling of observed quantities and reaction rates, and is found to often roughly compensate for the advection, with typical calculated values of -1 to -3 ppb hr-1. The mixing component is more difficult to directly quantify, but attempts are being made to estimate eddy viscosity by solving for this term in the budget equation. Additionally, small-scale features, such as nocturnal elevated mixed layers, localized BRN (bulk Richardson number) minimums, and low level jets are spotted in systematic ways throughout the flight data, and it is speculated that these may have a role in the transfer of ozone from the residual layer to the surface layer. Ultimately, the preliminary data is promising for the eventual goal of linking together the observed boundary layer evolution with ozone production during air pollution episodes.

  7. International Congress of Fluid Mechanics, 3rd, Cairo, Egypt, Jan. 2-4, 1990, Proceedings. Volumes 1, 2, 3, & 4

    NASA Astrophysics Data System (ADS)

    Nayfeh, A. H.; Mobarak, A.; Rayan, M. Abou

    This conference presents papers in the fields of flow separation, unsteady aerodynamics, fluid machinery, boundary-layer control and stability, grid generation, vorticity dominated flows, and turbomachinery. Also considered are propulsion, waves and sound, rotor aerodynamics, computational fluid dynamics, Euler and Navier-Stokes equations, cavitation, mixing and shear layers, mixing layers and turbulent flows, and fluid machinery and two-phase flows. Also addressed are supersonic and reacting flows, turbulent flows, and thermofluids.

  8. The effect of convective boundary condition on MHD mixed convection boundary layer flow over an exponentially stretching vertical sheet

    NASA Astrophysics Data System (ADS)

    Isa, Siti Suzilliana Putri Mohamed; Arifin, Norihan Md.; Nazar, Roslinda; Bachok, Norfifah; Ali, Fadzilah Md

    2017-12-01

    A theoretical study that describes the magnetohydrodynamic mixed convection boundary layer flow with heat transfer over an exponentially stretching sheet with an exponential temperature distribution has been presented herein. This study is conducted in the presence of convective heat exchange at the surface and its surroundings. The system is controlled by viscous dissipation and internal heat generation effects. The governing nonlinear partial differential equations are converted into ordinary differential equations by a similarity transformation. The converted equations are then solved numerically using the shooting method. The results related to skin friction coefficient, local Nusselt number, velocity and temperature profiles are presented for several sets of values of the parameters. The effects of the governing parameters on the features of the flow and heat transfer are examined in detail in this study.

  9. Airborne measurements of total reactive odd nitrogen (NO(y))

    NASA Technical Reports Server (NTRS)

    Huebler, G.; Fahey, D. W.; Ridley, B. A.; Gregory, G. L.; Fehsenfeld, F. C.

    1992-01-01

    Airborne total reactive odd nitrogen measurements were made during August and September 1986 over the continental United States and off the west coast over the Pacific Ocean during NASA's Global Tropospheric Experiment/Chemical Instrumentation Test and Evaluation 2 program. Measurements were made in the marine and continental boundary layer and the free troposphere up to 6.1 km altitude. NO(y) mixing ratios between 24 pptv and more than 1 ppbv were found, with median values of 101 pptv in the marine boundary layer, 298 pptv in the marine free troposphere, and 288 pptv in the continental free troposphere, respectively. The marine troposphere exhibited layered structure which was also seen in the simultaneously measured ozone mixing ratio and dew point temperature. The averaged vertical NO(y) profile over the ocean does not show a distinct gradient. The NO(y) mixing ratio over the continent decreases with increasing altitude. The latter is consistent with our understanding that the continents are the major source region for these gases.

  10. Assessment of surface turbulent fluxes using geostationary satellite surface skin temperatures and a mixed layer planetary boundary layer scheme

    NASA Technical Reports Server (NTRS)

    Diak, George R.; Stewart, Tod R.

    1989-01-01

    A method is presented for evaluating the fluxes of sensible and latent heating at the land surface, using satellite-measured surface temperature changes in a composite surface layer-mixed layer representation of the planetary boundary layer. The basic prognostic model is tested by comparison with synoptic station information at sites where surface evaporation climatology is well known. The remote sensing version of the model, using satellite-measured surface temperature changes, is then used to quantify the sharp spatial gradient in surface heating/evaporation across the central United States. An error analysis indicates that perhaps five levels of evaporation are recognizable by these methods and that the chief cause of error is the interaction of errors in the measurement of surface temperature change with errors in the assigment of surface roughness character. Finally, two new potential methods for remote sensing of the land-surface energy balance are suggested which will relay on space-borne instrumentation planned for the 1990s.

  11. Airborne LIDAR Measurements of Aerosol and Ozone Above the Alberta Oil Sands Region

    NASA Astrophysics Data System (ADS)

    Aggarwal, M.; Whiteway, J. A.; Seabrook, J.; Gray, L. H.

    2014-12-01

    Lidar measurements of ozone and aerosol were conducted from a Twin Otter aircraft above the oil sands region of northern Alberta. The field campaign was carried out with a total of five flights out of Fort McMurray, Alberta during the period between August 22 and August 26, 2013. Significant amounts of aerosol were observed within the boundary layer, up to a height of 1.6 km, but the ozone concentration remained at or below background levels. On August 24th the lidar observed a separated layer of aerosol above the boundary layer, at a height of 1.8 km, in which the ozone mixing ratio increased to 70 ppbv. Backward trajectory calculations revealed that the air containing this separated aerosol layer had passed over an area of forest fires. Directly below the layer of forest fire smoke, in the pollution from the oil sands industry, the measured ozone mixing ratio was lower than the background levels (≤35 ppbv).

  12. Measurements of atmospheric hydrocarbons and biogenic emission fluxes in the Amazon boundary layer

    NASA Technical Reports Server (NTRS)

    Zimmerman, P. R.; Greenberg, J. P.; Westberg, C. E.

    1988-01-01

    Tropospheric mixing ratios of methane, C2-C10 hydrocarbons, and carbon monoxide were measured over the Amazon tropical forest near Manaus, Amazonas, Brazil, in July and August 1985. The measurements, consisting mostly of altitude profiles of these gases, were all made within the atmospheric boundary layer up to an altitude of 1000 m above ground level. Data characterize the diurnal hydrocarbon composition of the boundary layer. Biogenic emissions of isoprene control hydroxyl radical concentrations over the forest. Biogenic emission fluxes of isoprene and terpenes are estimated to be 25,000 micrograms/sq m per day and 5600 micrograms/sq m per day, respectively. This isoprene emission is equivalent to 2 percent of the net primary productivity of the tropical forest. Atmospheric oxidation of biogenic isoprene and terpenes emissions from the Amazon forest may account for daily increases of 8-13 ppb for carbon monoxide in the planetary boundary layer.

  13. Dynamic Turbulence Modelling in Large-eddy Simulations of the Cloud-topped Atmospheric Boundary Layer

    NASA Technical Reports Server (NTRS)

    Kirkpatrick, M. P.; Mansour, N. N.; Ackerman, A. S.; Stevens, D. E.

    2003-01-01

    The use of large eddy simulation, or LES, to study the atmospheric boundary layer dates back to the early 1970s when Deardor (1972) used a three-dimensional simulation to determine velocity and temperature scales in the convective boundary layer. In 1974 he applied LES to the problem of mixing layer entrainment (Deardor 1974) and in 1980 to the cloud-topped boundary layer (Deardor 1980b). Since that time the LES approach has been applied to atmospheric boundary layer problems by numerous authors. While LES has been shown to be relatively robust for simple cases such as a clear, convective boundary layer (Mason 1989), simulation of the cloud-topped boundary layer has proved more of a challenge. The combination of small length scales and anisotropic turbulence coupled with cloud microphysics and radiation effects places a heavy burden on the turbulence model, especially in the cloud-top region. Consequently, over the past few decades considerable effort has been devoted to developing turbulence models that are better able to parameterize these processes. Much of this work has involved taking parameterizations developed for neutral boundary layers and deriving corrections to account for buoyancy effects associated with the background stratification and local buoyancy sources due to radiative and latent heat transfer within the cloud (see Lilly 1962; Deardor 1980a; Mason 1989; MacVean & Mason 1990, for example). In this paper we hope to contribute to this effort by presenting a number of turbulence models in which the model coefficients are calculated dynamically during the simulation rather than being prescribed a priori.

  14. Impact of different parameterization schemes on simulation of mesoscale convective system over south-east India

    NASA Astrophysics Data System (ADS)

    Madhulatha, A.; Rajeevan, M.

    2018-02-01

    Main objective of the present paper is to examine the role of various parameterization schemes in simulating the evolution of mesoscale convective system (MCS) occurred over south-east India. Using the Weather Research and Forecasting (WRF) model, numerical experiments are conducted by considering various planetary boundary layer, microphysics, and cumulus parameterization schemes. Performances of different schemes are evaluated by examining boundary layer, reflectivity, and precipitation features of MCS using ground-based and satellite observations. Among various physical parameterization schemes, Mellor-Yamada-Janjic (MYJ) boundary layer scheme is able to produce deep boundary layer height by simulating warm temperatures necessary for storm initiation; Thompson (THM) microphysics scheme is capable to simulate the reflectivity by reasonable distribution of different hydrometeors during various stages of system; Betts-Miller-Janjic (BMJ) cumulus scheme is able to capture the precipitation by proper representation of convective instability associated with MCS. Present analysis suggests that MYJ, a local turbulent kinetic energy boundary layer scheme, which accounts strong vertical mixing; THM, a six-class hybrid moment microphysics scheme, which considers number concentration along with mixing ratio of rain hydrometeors; and BMJ, a closure cumulus scheme, which adjusts thermodynamic profiles based on climatological profiles might have contributed for better performance of respective model simulations. Numerical simulation carried out using the above combination of schemes is able to capture storm initiation, propagation, surface variations, thermodynamic structure, and precipitation features reasonably well. This study clearly demonstrates that the simulation of MCS characteristics is highly sensitive to the choice of parameterization schemes.

  15. Characteristics of Mach 10 transitional and turbulent boundary layers

    NASA Technical Reports Server (NTRS)

    Watson, R. D.

    1978-01-01

    Measurements of the mean flow properties of transitional and turbulent boundary layers in helium on 4 deg and 5 deg wedges were made for flows with edge Mach numbers from 9.5 to 11.3, ratios of wall temperature to total temperature of 0.4 to 0.95, and maximum length Reynolds numbers of one hundred million. The data include pitot and total temperature surveys and measurements of heat transfer and surface shear. In addition, with the assumption of local similarity, turbulence quantities such as the mixing length were derived from the mean flow profiles. Low Reynolds number and precursor transition effects were significant factors at these test conditions and were included in finite difference boundary layer predictions.

  16. Lidar Applications in Atmospheric Dynamics: Measurements of Wind, Moisture and Boundary Layer Evolution

    NASA Technical Reports Server (NTRS)

    Demoz, Belay; Whiteman, David; Gentry, Bruce; Schwemmer, Geary; Evans, Keith; DiGirolamo, Paolo; Comer, Joseph

    2005-01-01

    A large array of state-of-the-art ground-based and airborne remote and in-situ sensors were deployed during the International H2O Project (THOP), a field experiment that took place over the Southern Great Plains (SGP) of the United States from 13 May to 30 June 2002. These instruments provided extensive measurements of water vapor mixing ratio in order to better understand the influence of its variability on convection and on the skill of quantitative precipitation prediction (Weckwerth et all, 2004). Among the instrument deployed were ground based lidars from NASA/GSFC that included the Scanning Raman Lidar (SRL), the Goddard Laboratory for Observing Winds (GLOW), and the Holographic Airborne Rotating Lidar Instrument Experiment (HARLIE). A brief description of the three lidars is given below. This study presents ground-based measurements of wind, boundary layer structure and water vapor mixing ratio measurements observed by three co-located lidars during MOP at the MOP ground profiling site in the Oklahoma Panhandle (hereafter referred as Homestead). This presentation will focus on the evolution and variability of moisture and wind in the boundary layer when frontal and/or convergence boundaries (e.g. bores, dry lines, thunderstorm outflows etc) were observed.

  17. Combining tower mixing ratio and community model data to estimate regional-scale net ecosystem carbon exchange by boundary layer inversion over four flux towers in the United States

    Treesearch

    Xueri Dang; Chun-Ta Lai; David Y. Hollinger; Andrew J. Schauer; Jingfeng Xiao; J. William Munger; Clenton Owensby; James R. Ehleringer

    2011-01-01

    We evaluated an idealized boundary layer (BL) model with simple parameterizations using vertical transport information from community model outputs (NCAR/NCEP Reanalysis and ECMWF Interim Analysis) to estimate regional-scale net CO2 fluxes from 2002 to 2007 at three forest and one grassland flux sites in the United States. The BL modeling...

  18. Planetary Boundary Layer from AERI and MPL

    DOE Data Explorer

    Sawyer, Virginia

    2014-02-13

    The distribution and transport of aerosol emitted to the lower troposphere is governed by the height of the planetary boundary layer (PBL), which limits the dilution of pollutants and influences boundary-layer convection. Because radiative heating and cooling of the surface strongly affect the PBL top height, it follows diurnal and seasonal cycles and may vary by hundreds of meters over a 24-hour period. The cap the PBL imposes on low-level aerosol transport makes aerosol concentration an effective proxy for PBL height: the top of the PBL is marked by a rapid transition from polluted, well-mixed boundary-layer air to the cleaner, more stratified free troposphere. Micropulse lidar (MPL) can provide much higher temporal resolution than radiosonde and better vertical resolution than infrared spectrometer (AERI), but PBL heights from all three instruments at the ARM SGP site are compared to one another for validation. If there is agreement among them, the higher-resolution remote sensing-derived PBL heights can accurately fill in the gaps left by the low frequency of radiosonde launches, and thus improve model parameterizations and our understanding of boundary-layer processes.

  19. Large-eddy simulation of a turbulent mixing layer

    NASA Technical Reports Server (NTRS)

    Mansour, N. N.; Ferziger, J. H.; Reynolds, W. C.

    1978-01-01

    The three dimensional, time dependent (incompressible) vorticity equations were used to simulate numerically the decay of isotropic box turbulence and time developing mixing layers. The vorticity equations were spatially filtered to define the large scale turbulence field, and the subgrid scale turbulence was modeled. A general method was developed to show numerical conservation of momentum, vorticity, and energy. The terms that arise from filtering the equations were treated (for both periodic boundary conditions and no stress boundary conditions) in a fast and accurate way by using fast Fourier transforms. Use of vorticity as the principal variable is shown to produce results equivalent to those obtained by use of the primitive variable equations.

  20. The Morning NO x maximum in the forest atmosphere boundary layer

    NASA Astrophysics Data System (ADS)

    Alaghmand, M.; Shepson, P. B.; Starn, T. K.; Jobson, B. T.; Wallace, H. W.; Carroll, M. A.; Bertman, S. B.; Lamb, B.; Edburg, S. L.; Zhou, X.; Apel, E.; Riemer, D.; Stevens, P.; Keutsch, F.

    2011-10-01

    During the 1998, 2000, 2001, 2008, and 2009 summer intensives of the Program for Research on Oxidants: PHotochemistry, Emissions and Transport (PROPHET), ambient measurement of nitrogen oxides (NO + NO2 = NOx) were conducted. NO and NOx mole fractions displayed a diurnal pattern with NOx frequently highest in early morning. This pattern has often been observed in other rural areas. In this paper, we discuss the potential sources and contributing factors of the frequently observed morning pulse of NOx. Of the possible potential contributing factors to the observed morning pulse of NO and NOx, we find that surface-layer transport and slow upward mixing from soil emissions, related to the thermodynamic stability in the nocturnal boundary layer (NBL) before its morning breakup are the largest contributors. The morning NOx peak can significantly impact boundary layer chemistry, e.g. through production of HONO on surfaces, and by increasing the importance of NO3 chemistry in the morning boundary layer.

  1. Energy and water vapor transport across a simplified cloud-clear air interface

    NASA Astrophysics Data System (ADS)

    Gallana, L.; Di Savino, S.; De Santi, F.; Iovieno, M.; Tordella, D.

    2014-11-01

    We consider a simplified physics of the could interface where condensation, evaporation and radiation are neglected and momentum, thermal energy and water vapor transport is represented in terms of the Boussinesq model coupled to a passive scalar transport equation for the vapor. The interface is modeled as a layer separating two isotropic turbulent regions with different kinetic energy and vapor concentration. In particular, we focus on the small scale part of the inertial range of the atmospheric boundary layer as well as on the dissipative range of scales which are important to the micro-physics of warm clouds. We have numerically investigated stably stratified interfaces by locally perturbing at an initial instant the standard temperature lapse rate at the cloud interface and then observing the temporal evolution of the system. When the buoyancy term becomes of the same order of the inertial one, we observe a spatial redistribution of the kinetic energy which produce a concomitant pit of kinetic energy within the mixing layer. In this situation, the mixing layer contains two interfacial regions with opposite kinetic energy gradient, which in turn produces two intermittent sublayers in the velocity fluctuations field. This changes the structure of the field with respect to the corresponding non-stratified shearless mixing: the communication between the two turbulent region is weak, and the growth of the mixing layer stops. These results are discussed with respect to Large Eddy Simulations data for the Planetary Boundary Layers.

  2. Studying the Afternoon Transition of the Planetary Boundary Layer

    NASA Astrophysics Data System (ADS)

    Lothon, Marie; Lenschow, Donald H.

    2010-07-01

    The planetary boundary layer is the part of the atmosphere that interacts directly with the Earth's surface on a time scale of a few hours or less. In daytime, solar heating of the surface can generate buoyant turbulent eddies that efficiently mix the air through a depth of more than a kilometer. This convective boundary layer (CBL) is a conduit for trace gases such as water vapor and carbon dioxide that are emitted or absorbed by the surface (and surface vegetation) to be transported into or out of the layer nearest the surface. The CBL has been extensively observed and relatively successfully modeled. But the early morning transition—when the CBL emerges from the nocturnal boundary layer—and the late afternoon transition—when the CBL decays to an intermittently turbulent “residual layer” overlying a shallower, stably stratified boundary layer—are difficult to observe and model due to turbulence intermittency and anisotropy, horizontal heterogeneity, and rapid time changes. Even the definition of the boundary layer during these transitional periods is fuzzy; there is no consensus on what criteria to use and no simple scaling laws, as there are for the CBL, that apply during these transitions.

  3. Contraction design for small low-speed wind tunnels

    NASA Technical Reports Server (NTRS)

    Bell, James H.; Mehta, Rabindra D.

    1988-01-01

    An iterative design procedure was developed for two- or three-dimensional contractions installed on small, low-speed wind tunnels. The procedure consists of first computing the potential flow field and hence the pressure distributions along the walls of a contraction of given size and shape using a three-dimensional numerical panel method. The pressure or velocity distributions are then fed into two-dimensional boundary layer codes to predict the behavior of the boundary layers along the walls. For small, low-speed contractions it is shown that the assumption of a laminar boundary layer originating from stagnation conditions at the contraction entry and remaining laminar throughout passage through the successful designs if justified. This hypothesis was confirmed by comparing the predicted boundary layer data at the contraction exit with measured data in existing wind tunnels. The measured boundary layer momentum thicknesses at the exit of four existing contractions, two of which were 3-D, were found to lie within 10 percent of the predicted values, with the predicted values generally lower. From the contraction wall shapes investigated, the one based on a fifth-order polynomial was selected for installation on a newly designed mixing layer wind tunnel.

  4. A Lagrangian stochastic model to demonstrate multi-scale interactions between convection and land surface heterogeneity in the atmospheric boundary layer

    NASA Astrophysics Data System (ADS)

    Parsakhoo, Zahra; Shao, Yaping

    2017-04-01

    Near-surface turbulent mixing has considerable effect on surface fluxes, cloud formation and convection in the atmospheric boundary layer (ABL). Its quantifications is however a modeling and computational challenge since the small eddies are not fully resolved in Eulerian models directly. We have developed a Lagrangian stochastic model to demonstrate multi-scale interactions between convection and land surface heterogeneity in the atmospheric boundary layer based on the Ito Stochastic Differential Equation (SDE) for air parcels (particles). Due to the complexity of the mixing in the ABL, we find that linear Ito SDE cannot represent convections properly. Three strategies have been tested to solve the problem: 1) to make the deterministic term in the Ito equation non-linear; 2) to change the random term in the Ito equation fractional, and 3) to modify the Ito equation by including Levy flights. We focus on the third strategy and interpret mixing as interaction between at least two stochastic processes with different Lagrangian time scales. The model is in progress to include the collisions among the particles with different characteristic and to apply the 3D model for real cases. One application of the model is emphasized: some land surface patterns are generated and then coupled with the Large Eddy Simulation (LES).

  5. Dependence of air masses type on PBL vertical structure retrieved at the Mace Head station during EUCAARI campaign.

    NASA Astrophysics Data System (ADS)

    Milroy, Conor; Martucci, Giovanni; O'Dowd, Colin

    2010-05-01

    During the EUCAARI Intensive Observing Period held at the Mace Head GAW station from mid-May to mid-June, 2008, the PBL depth has been continuously measured by two ceilometers (Vaisala CL31 and Jenoptik CHM15K) and a microwave radiometer (RPG-HATPRO). The Lidar-Ceilometer, through the gradients in aerosol backscatter profiles, and the microwave profiler, through gradients in the specific humidity profiles, were used to remotely-sense the boundary layer structure. An automatic, newly developed Temporal Height-Tracking (THT) algorithm (Martucci et al., 2010) have been applied to both type of instruments data to retrieve the 2-layered structure of the local marine boundary layer. The two layers are defined as a lower, well mixed layer, i.e. the surface mixed layer, and the layer occupying the region below the free Troposphere inversion, i.e. the decoupled residual or convective layer. A categorization of the incoming air masses has been performed based on their origins and been used to asses the correlation with the PBL depths. The study confirmed the dependence of PBL vertical structure on different air masses and different type of advected aerosol.

  6. Volatile organic compounds and isoprene oxidation products at a temperate deciduous forest site

    NASA Astrophysics Data System (ADS)

    Helmig, Detlev; Greenberg, Jim; Guenther, Alex; Zimmerman, Pat; Geron, Chris

    1998-09-01

    Biogenic volatile organic compounds (BVOCs) and their role in atmospheric oxidant formation were investigated at a forest site near Oak Ridge, Tennessee, as part of the Nashville Southern Oxidants Study (SOS) in July 1995. Of 98 VOCs detected, a major fraction were anthropogenic VOCs such as chlorofluorocarbons (CFCs), alkanes, alkenes and aromatic compounds. Isoprene was the dominant BVOC during daytime. Primary products from BVOC oxidation were methylvinylketone, methacrolein and 3-methylfuran. Other compounds studied include the BVOCs α-pinene, camphene, β-pinene, p-cymene, limonene and cis-3-hexenyl acetate and a series of light alkanes, aromatic hydrocarbons and seven of the CFCs. The correlation of meteorological parameters, with the mixing ratios of these different compounds, reveals information on atmospheric oxidation processes and transport. Long-lived VOCs show very steady mixing ratio time series. Regionally and anthropogenically emitted VOCs display distinct diurnal cycles with a strong mixing ratio decrease in the morning from the breakup of the nocturnal boundary layer. Nighttime mixing ratio increases of CFCs and anthropogenic VOCs are suspected to derive from emissions within the Knoxville urban area into the shallow nocturnal boundary layer. In contrast, the time series of BVOCs and their oxidation products are determined by a combination of emission control, atmospheric oxidation and deposition, and boundary layer dynamics. Mixing ratio time series data for monoterpenes and cis-3-hexenyl acetate suggest a temporarily emission rate increase during and after heavy rain events. The isoprene oxidation products demonstrate differences in the oxidation pathways during night and day and in their dry and wet deposition rates.

  7. Thermo-fluid-dynamics of turbulent boundary layer over a moving continuous flat sheet in a parallel free stream

    NASA Astrophysics Data System (ADS)

    Afzal, Bushra; Noor Afzal Team; Bushra Afzal Team

    2014-11-01

    The momentum and thermal turbulent boundary layers over a continuous moving sheet subjected to a free stream have been analyzed in two layers (inner wall and outer wake) theory at large Reynolds number. The present work is based on open Reynolds equations of momentum and heat transfer without any closure model say, like eddy viscosity or mixing length etc. The matching of inner and outer layers has been carried out by Izakson-Millikan-Kolmogorov hypothesis. The matching for velocity and temperature profiles yields the logarithmic laws and power laws in overlap region of inner and outer layers, along with friction factor and heat transfer laws. The uniformly valid solution for velocity, Reynolds shear stress, temperature and thermal Reynolds heat flux have been proposed by introducing the outer wake functions due to momentum and thermal boundary layers. The comparison with experimental data for velocity profile, temperature profile, skin friction and heat transfer are presented. In outer non-linear layers, the lowest order momentum and thermal boundary layer equations have also been analyses by using eddy viscosity closure model, and results are compared with experimental data. Retired Professor, Embassy Hotel, Rasal Ganj, Aligarh 202001 India.

  8. Nocturnal Boundary Layer Measurements during the Amazonian Aerosol Characterization Experiment (amaze)

    NASA Astrophysics Data System (ADS)

    Tota, J.; Santos, R.; Fisch, G.; Querino, C.; Silva Dias, M.; Artaxo, P.; Guenther, A.; Martin, S.; Manzi, A.

    2008-12-01

    To characterize the Nocturnal Boundary Layer (NBL) hourly profiles of wind, pressure, temperature, humidity and 5 sizes particles concentration, were made by using tethered balloon at INPA tropical Amazon rainforest Reserve (Cuieiras) 100 km northwest from Manaus city. The measurements were made during the wet season March/2008. The NBL height was 100 to 150m, with a very well mixed layer close to surface associate with temperature inversion. The wind profiles shows a very clear low level in two nights, about 500 to 900 m, and, in general, all nights show an stable and cooler air layer close the surface uncoupled with outer residual boundary layer above. At the site a very clear drainage flow from north quadrant down slope eastward quadrant during very the stable cases. This findings is correlates with particles profiles where was commonly trapped by stable layer presenting high concentrations, for all 5 sizes measured, close to the surface at vegetation level and just above it. All nights presents high humidity with fog formation in three cases, associates with temperature below the 23°C. The wind speed were very low about 0.5 to calm, in generally associate with drainage flow down hill. The NBL dynamics is a discussion issue associate to the aerosol nocturnal mixing in complex terrain with tall vegetation, the currently AMAZE site case.

  9. Nocturnal Boundary Layer Measurements during the Amazonian Aerosol Characterization Experiment (AMAZE)

    NASA Astrophysics Data System (ADS)

    Tota, J.; Fisch, G.; Santos, R.; Silva Dias, M.

    2009-05-01

    To characterize the Nocturnal Boundary Layer (NBL) hourly profiles of wind, pressure, temperature, humidity and 5 sizes particles concentration, were made by using tethered balloon at INPA tropical Amazon rainforest Reserve (Cuieiras) 100 km northwest from Manaus city. The measurements were made during the wet season March/2008. The NBL height was 100 to 150m, with a very well mixed layer close to surface associate with temperature inversion. The wind profiles shows a very clear low level in two nights, about 500 to 900 m, and, in general, all nights show an stable and cooler air layer close the surface uncoupled with outer residual boundary layer above. At the site a very clear drainage flow from north quadrant down slope eastward quadrant during very the stable cases. This findings is correlates with particles profiles where was commonly trapped by stable layer presenting high concentrations, for all 5 sizes measured, close to the surface at vegetation level and just above it. All nights presents high humidity with fog formation in three cases, associates with temperature below the 23C. The wind speed were very low about 0.5 to calm, in generally associate with drainage flow down hill. The NBL dynamics is a discussion issue associate to the aerosol nocturnal mixing in complex terrain with tall vegetation, the currently AMAZE site case.

  10. Quantifying the Stable Boundary Layer Structure and Evolution during T-REX 2006

    DTIC Science & Technology

    2014-09-30

    integrating surface observations, data from in-situ measurements, and a nested numerical model with two related topics was conducted in this project. the WRF ...as well as quantify differences at a fine scale model output using the different turbulent mixing/diffusion options in the WRF -ARW model; and (2... WRF model planetary boundary layer schemes were also conducted to study a downslope windstorm and rotors in Las Vegas valley. Two events (March 20

  11. Sulfate and MSA Aerosol Dynamics in the Marine Boundary Layer

    DTIC Science & Technology

    1997-09-30

    Kilauea Volcano as they move out over the Pacific Ocean, to understand what happens to marine and continental aerosols when they mix. This dataset will...SULFATE AND MSA AEROSOL DYNAMICS IN THE MARINE BOUNDARY LAYER P.I. - Barry J. Huebert Department of Oceanography University of Hawaii 1000 Pope Rd...6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) University of Hawaii

  12. Mixing in Shear Coaxial Jets (Briefing Charts)

    DTIC Science & Technology

    2013-08-01

    relevant boundary layers 9. Thermodynamic states (2 phase, 1 phase) 10. Transverse Acoustic mode from chamber/siren, f=f(c, geometry St=fDij/Uij 11...stability theory for inviscid instability of a hyperbolic tangent velocity profile for free boundary layers • U(y)=0.5[1 + tanh(y)] • Chigier and Beer , 1964...acoustics Natural OJ excited IJ excited From Chigier NA. and Beer JM, The Flow Region Near the Nozzle in Double Concentric Jets, J of

  13. Evidence for renoxification in the tropical marine boundary layer

    NASA Astrophysics Data System (ADS)

    Reed, Chris; Evans, Mathew J.; Crilley, Leigh R.; Bloss, William J.; Sherwen, Tomás; Read, Katie A.; Lee, James D.; Carpenter, Lucy J.

    2017-03-01

    We present 2 years of NOx observations from the Cape Verde Atmospheric Observatory located in the tropical Atlantic boundary layer. We find that NOx mixing ratios peak around solar noon (at 20-30 pptV depending on season), which is counter to box model simulations that show a midday minimum due to OH conversion of NO2 to HNO3. Production of NOx via decomposition of organic nitrogen species and the photolysis of HNO3 appear insufficient to provide the observed noontime maximum. A rapid photolysis of nitrate aerosol to produce HONO and NO2, however, is able to simulate the observed diurnal cycle. This would make it the dominant source of NOx at this remote marine boundary layer site, overturning the previous paradigm according to which the transport of organic nitrogen species, such as PAN, is the dominant source. We show that observed mixing ratios (November-December 2015) of HONO at Cape Verde (˜ 3.5 pptV peak at solar noon) are consistent with this route for NOx production. Reactions between the nitrate radical and halogen hydroxides which have been postulated in the literature appear to improve the box model simulation of NOx. This rapid conversion of aerosol phase nitrate to NOx changes our perspective of the NOx cycling chemistry in the tropical marine boundary layer, suggesting a more chemically complex environment than previously thought.

  14. Comparison of WRF local and nonlocal boundary layer Physics in Greater Kuala Lumpur, Malaysia

    NASA Astrophysics Data System (ADS)

    Ooi, M. C. G.; Chan, A.; Kumarenthiran, S.; Morris, K. I.; Oozeer, M. Y.; Islam, M. A.; Salleh, S. A.

    2018-02-01

    The urban boundary layer (UBL) is the internal advection layer of atmosphere above urban region which determines the exchanges of momentum, water and other atmospheric constituents between the urban land surface and the free troposphere. This paper tested the performance of three planetary boundary layer (PBL) physics schemes of Weather Research and Forecast (WRF) software to ensure the appropriate representation of vertical structure of UBL in Greater Kuala Lumpur (GKL). Comparison was conducted on the performance of respective PBL schemes to generate vertical and near-surface weather profile and rainfall. Mellor-Yamada- Janjíc (MYJ) local PBL scheme coupled with Eta MM5 surface layer scheme was found to predict the near-surface temperature and wind profile and mixing height better than the nonlocal schemes during the intermonsoonal period with least influences of the synoptic background weather.

  15. Experimental investigation of the limits of ethanol combustion in the boundary layer behind an obstacle

    NASA Astrophysics Data System (ADS)

    Boyarshinov, B. F.

    2018-01-01

    Experimental data on the flow structure and mass transfer near the boundaries of the region existence of the laminar and turbulent boundary layers with combustion are considered. These data include the results of in-vestigation on reacting flow stability at mixed convection, mass transfer during ethanol evaporation "on the floor" and "on the ceiling", when the flame surface curves to form the large-scale cellular structures. It is shown with the help of the PIV equipment that when Rayleigh-Taylor instability manifests, the mushroom-like structures are formed, where the motion from the flame front to the wall and back alternates. The cellular flame exists in a narrow range of velocities from 0.55 to 0.65 m/s, and mass transfer is three times higher than its level in the standard laminar boundary layer.

  16. Wind-Tunnel Simulation of Weakly and Moderately Stable Atmospheric Boundary Layers

    NASA Astrophysics Data System (ADS)

    Hancock, Philip E.; Hayden, Paul

    2018-07-01

    The simulation of horizontally homogeneous boundary layers that have characteristics of weakly and moderately stable atmospheric flow is investigated, where the well-established wind engineering practice of using `flow generators' to provide a deep boundary layer is employed. Primary attention is given to the flow above the surface layer, in the absence of an overlying inversion, as assessed from first- and second-order moments of velocity and temperature. A uniform inlet temperature profile ahead of a deep layer, allowing initially neutral flow, results in the upper part of the boundary layer remaining neutral. A non-uniform inlet temperature profile is required but needs careful specification if odd characteristics are to be avoided, attributed to long-lasting effects inherent of stability, and to a reduced level of turbulent mixing. The first part of the wind-tunnel floor must not be cooled if turbulence quantities are to vary smoothly with height. Closely horizontally homogeneous flow is demonstrated, where profiles are comparable or closely comparable with atmospheric data in terms of local similarity and functions of normalized height. The ratio of boundary-layer height to surface Obukhov length, and the surface heat flux, are functions of the bulk Richardson number, independent of horizontal homogeneity. Surface heat flux rises to a maximum and then decreases.

  17. Wind-Tunnel Simulation of Weakly and Moderately Stable Atmospheric Boundary Layers

    NASA Astrophysics Data System (ADS)

    Hancock, Philip E.; Hayden, Paul

    2018-02-01

    The simulation of horizontally homogeneous boundary layers that have characteristics of weakly and moderately stable atmospheric flow is investigated, where the well-established wind engineering practice of using `flow generators' to provide a deep boundary layer is employed. Primary attention is given to the flow above the surface layer, in the absence of an overlying inversion, as assessed from first- and second-order moments of velocity and temperature. A uniform inlet temperature profile ahead of a deep layer, allowing initially neutral flow, results in the upper part of the boundary layer remaining neutral. A non-uniform inlet temperature profile is required but needs careful specification if odd characteristics are to be avoided, attributed to long-lasting effects inherent of stability, and to a reduced level of turbulent mixing. The first part of the wind-tunnel floor must not be cooled if turbulence quantities are to vary smoothly with height. Closely horizontally homogeneous flow is demonstrated, where profiles are comparable or closely comparable with atmospheric data in terms of local similarity and functions of normalized height. The ratio of boundary-layer height to surface Obukhov length, and the surface heat flux, are functions of the bulk Richardson number, independent of horizontal homogeneity. Surface heat flux rises to a maximum and then decreases.

  18. Interaction between a normal shock wave and a turbulent boundary layer at high transonic speeds. II - Wall shear stress

    NASA Technical Reports Server (NTRS)

    Liou, M. S.; Adamson, T. C., Jr.

    1980-01-01

    Asymptotic methods are used to calculate the shear stress at the wall for the interaction between a normal shock wave and a turbulent boundary layer on a flat plate. A mixing length model is used for the eddy viscosity. The shock wave is taken to be strong enough that the sonic line is deep in the boundary layer and the upstream influence is thus very small. It is shown that unlike the result found for laminar flow an asymptotic criterion for separation is not found; however, conditions for incipient separation are computed numerically using the derived solution for the shear stress at the wall. Results are compared with available experimental measurements.

  19. An equilibrium model for the coupled ocean-atmosphere boundary layer in the tropics

    NASA Technical Reports Server (NTRS)

    Sui, C.-H.; Lau, K.-M.; Betts, Alan K.

    1991-01-01

    An atmospheric convective boundary layer (CBL) model is coupled to an ocean mixed-layer (OML) model in order to study the equilibrium state of the coupled system in the tropics, particularly in the Pacific region. The equilibrium state of the coupled system is solved as a function of sea-surface temperature (SST) for a given surface wind and as a function of surface wind for a given SST. It is noted that in both cases, the depth of the CBL and OML increases and the upwelling below the OML decreases, corresponding to either increasing SST or increasing surface wind. The coupled ocean-atmosphere model is solved iteratively as a function of surface wind for a fixed upwelling and a fixed OML depth, and it is observed that SST falls with increasing wind in both cases. Realistic gradients of mixed-layer depth and upwelling are observed in experiments with surface wind and SST prescribed as a function of longitude.

  20. Mixing Heights and Three-Dimensional Ozone Structure Observed by Airborne Lidar During the 2006 Texas Air Quality Study

    NASA Astrophysics Data System (ADS)

    Hardesty, R. M.; Senff, C. J.; Alvarez, R. J.; Banta, R. M.; Sandberg, S. P.; Weickmann, A. M.; Darby, L. S.

    2007-12-01

    A new all solid state ozone lidar was deployed on a NOAA Twin Otter to study boundary layer ozone and aerosol, mostly around Houston, during the 2006 Texas Air Quality Study. The new instrument transmits high pulse-rate, low pulse-energy light at 3 wavelengths in the ultraviolet to obtain ozone profiles with 500 m horizontal resolution and 90 m vertical resolution. During the Texas field study, 20 research flights resulted in nearly 70 hours of ozone measurements during the period from August 1 to September 15. Science objectives included characterization of background ozone levels over rural areas near Houston and Dallas and variability and structure of the boundary layer over different surface types, including urban, wooded, and agricultural land surface areas as well as over Galveston Bay and the Gulf of Mexico. A histogram of all boundary layer ozone concentration measurements showed a bimodal distribution with modes at 45 ppb and 70 ppb. The lower mode correlated with southerly flow, when relatively clean air was transported onshore into the Houston area. Segmenting the observations during southerly flow by region, including the Gulf of Mexico, land within about 55 km from the coast, and further inland indicated that background levels increased by about 10 ppb as air was transported onshore. During the latter part of the experiment, as more pollution was imported into the Houston region, background levels rose to nearly 80 ppb in regions N of Houston. Two flights aimed at observing import of ozone into Texas from the east showed that ozone concentrations increased and boundary layer depths deepened upwind of Houston between September 4 and September 8. Background levels rose by more than 10 ppb over this period. In addition to ozone measurements, we also estimated boundary layer height based on maximum gradient in observed backscatter. The technique worked well when the layer topped by the strongest gradient extends down to the surface. Investigation of the correlation between ozone levels and mixing layer heights both within and external to the Houston urban plume showed a variety of relationships, depending on, e.g., wind direction and occurrence of a bay/gulf breeze. On a day-to-day basis, higher ozone levels were weakly correlated with deeper mixing levels - this was likely due to advection of the urban heat island downwind with the high-ozone urban plume.

  1. Analysis of the interaction of a weak normal shock wave with a turbulent boundary layer

    NASA Technical Reports Server (NTRS)

    Melnik, R. E.; Grossman, B.

    1974-01-01

    The method of matched asymptotic expansions is used to analyze the interaction of a normal shock wave with an unseparated turbulent boundary layer on a flat surface at transonic speeds. The theory leads to a three-layer description of the interaction in the double limit of Reynolds number approaching infinity and Mach number approaching unity. The interaction involves an outer, inviscid rotational layer, a constant shear-stress wall layer, and a blending region between them. The pressure distribution is obtained from a numerical solution of the outer-layer equations by a mixed-flow relaxation procedure. An analytic solution for the skin friction is determined from the inner-layer equations. The significance of the mathematical model is discussed with reference to existing experimental data.

  2. Preliminary mixed-layer model results for FIRE marine stratocumulus IFO conditions

    NASA Technical Reports Server (NTRS)

    Barlow, R.; Nicholls, S.

    1990-01-01

    Some preliminary results from the Turton and Nicholls mixed layer model using typical FIRE boundary conditions are presented. The model includes entrainment and drizzle parametrizations as well as interactive long and shortwave radiation schemes. A constraint on the integrated turbulent kinetic energy balance ensures that the model remains energetically consistent at all times. The preliminary runs were used to identify the potentially important terms in the heat and moisture budgets of the cloud layer, and to assess the anticipated diurnal variability. These are compared with typical observations from the C130. Sensitivity studies also revealed the remarkable stability of these cloud sheets: a number of negative feedback mechanisms appear to operate to maintain the cloud over an extended time period. These are also discussed. The degree to which such a modelling approach can be used to explain observed features, the specification of boundary conditions and problems of interpretation in non-horizontally uniform conditions is also raised.

  3. Ozone Laminae and Their Entrainment Into a Valley Boundary Layer, as Observed From a Mountaintop Monitoring Station, Ozonesondes, and Aircraft Over California's San Joaquin Valley

    NASA Astrophysics Data System (ADS)

    Faloona, I. C.; Conley, S. A.; Caputi, D.; Trousdell, J.; Chiao, S.; Eiserloh, A. J., Jr.; Clark, J.; Iraci, L. T.; Yates, E. L.; Marrero, J. E.; Ryoo, J. M.; McNamara, M. E.

    2016-12-01

    The San Joaquin Valley of California is wide ( 75 km) and long ( 400 km), and is situated under strong atmospheric subsidence due, in part, to the proximity of the midlatitude anticyclone of the Pacific High. The capping effect of this subsidence is especially prominent during the warm season when ground level ozone is a serious air quality concern across the region. While relatively clean marine boundary layer air is primarily funneled into the valley below the strong subsidence inversion at significant gaps in the upwind Coast Range mountains, airflow aloft also spills over these barriers and mixes into the valley from above. Because this transmountain flow occurs under the influence of synoptic subsidence it tends to present discrete, laminar sheets of differing air composition above the valley boundary layer. Meanwhile, although the boundary layers tend to remain shallow due to the prevailing subsidence, orographic and anabatic venting of valley boundary layer air around the basin whips up a complex admixture of regional air masses into a "buffer layer" just above the boundary layer (zi) and below the lower free troposphere. We present scalar data of widely varying lifetimes including ozone, methane, NOx, and thermodynamic observations from upwind and within the San Joaquin Valley to better explain this layering and its subsequent erosion into the valley boundary layer via entrainment. Data collected at a mountaintop monitoring station on Chews Ridge in the Coast Range, by coastal ozonesondes, and aircraft are analyzed to document the dynamic layering processes around the complex terrain surrounding the valley. Particular emphasis will be made on observational methods whereby distal ozone can be distinguished from the regional ozone to better understand the influence of exogenous sources on air quality in the valley.

  4. Analytical and experimental evaluation of a 3-D hypersonic fixed-geometry, swept, mixed compression inlet

    NASA Technical Reports Server (NTRS)

    Agnone, Anthony M.

    1987-01-01

    The performance of a fixed-geometry, swept, mixed compression hypersonic inlet is presented. The experimental evaluation was conducted for a Mach number of 6.0 and for several angles of attack. The measured surface pressures and pitot pressure surveys at the inlet throat are compared to computations using a three-dimensional Euler code and an integral boundary layer theory. Unique features of the intake design, including the boundary layer control, insure a high inlet performance. The experimental data show the inlet has a high mass averaged total pressure recovery, a high mass capture and nearly uniform flow diffusion. The swept inlet exhibits excellent starting characteristics, and high flow stability at angle of attack.

  5. Comparison of in situ microstructure measurements to different turbulence closure schemes in a 3-D numerical ocean circulation model

    NASA Astrophysics Data System (ADS)

    Costa, Andrea; Doglioli, Andrea M.; Marsaleix, Patrick; Petrenko, Anne A.

    2017-12-01

    In situ measurements of kinetic energy dissipation rate ε and estimates of eddy viscosity KZ from the Gulf of Lion (NW Mediterranean Sea) are used to assess the ability of k - ɛ and k - ℓ closure schemes to predict microscale turbulence in a 3-D numerical ocean circulation model. Two different surface boundary conditions are considered in order to investigate their influence on each closure schemes' performance. The effect of two types of stability functions and optical schemes on the k - ɛ scheme is also explored. Overall, the 3-D model predictions are much closer to the in situ data in the surface mixed layer as opposed to below it. Above the mixed layer depth, we identify one model's configuration that outperforms all the other ones. Such a configuration employs a k - ɛ scheme with Canuto A stability functions, surface boundary conditions parameterizing wave breaking and an appropriate photosynthetically available radiation attenuation length. Below the mixed layer depth, reliability is limited by the model's resolution and the specification of a hard threshold on the minimum turbulent kinetic energy.

  6. Vertical velocity variance in the mixed layer from radar wind profilers

    USGS Publications Warehouse

    Eng, K.; Coulter, R.L.; Brutsaert, W.

    2003-01-01

    Vertical velocity variance data were derived from remotely sensed mixed layer turbulence measurements at the Atmospheric Boundary Layer Experiments (ABLE) facility in Butler County, Kansas. These measurements and associated data were provided by a collection of instruments that included two 915 MHz wind profilers, two radio acoustic sounding systems, and two eddy correlation devices. The data from these devices were available through the Atmospheric Boundary Layer Experiment (ABLE) database operated by Argonne National Laboratory. A signal processing procedure outlined by Angevine et al. was adapted and further built upon to derive vertical velocity variance, w_pm???2, from 915 MHz wind profiler measurements in the mixed layer. The proposed procedure consisted of the application of a height-dependent signal-to-noise ratio (SNR) filter, removal of outliers plus and minus two standard deviations about the mean on the spectral width squared, and removal of the effects of beam broadening and vertical shearing of horizontal winds. The scatter associated with w_pm???2 was mainly affected by the choice of SNR filter cutoff values. Several different sets of cutoff values were considered, and the optimal one was selected which reduced the overall scatter on w_pm???2 and yet retained a sufficient number of data points to average. A similarity relationship of w_pm???2 versus height was established for the mixed layer on the basis of the available data. A strong link between the SNR and growth/decay phases of turbulence was identified. Thus, the mid to late afternoon hours, when strong surface heating occurred, were observed to produce the highest quality signals.

  7. Contraction design for small low-speed wind tunnels

    NASA Technical Reports Server (NTRS)

    Bell, James H.; Mehta, Rabindra D.

    1988-01-01

    An iterative design procedure was developed for 2- or 3-dimensional contractions installed on small, low speed wind tunnels. The procedure consists of first computing the potential flow field and hence the pressure distributions along the walls of a contraction of given size and shape using a 3-dimensional numerical panel method. The pressure or velocity distributions are then fed into 2-dimensional boundary layer codes to predict the behavior of the boundary layers along the walls. For small, low speed contractions, it is shown that the assumption of a laminar boundary layer originating from stagnation conditions at the contraction entry and remaining laminar throughout passage through the successful designs is justified. This hypothesis was confirmed by comparing the predicted boundary layer data at the contraction exit with measured data in existing wind tunnels. The measured boundary layer momentum thicknesses at the exit of four existing contractions, two of which were 3-D, were found to lie within 10 percent of the predicted values, with the predicted values generally lower. From the contraction wall shapes investigated, the one based on a 5th order polynomial was selected for newly designed mixing wind tunnel installation.

  8. DESIGN OF TWO-DIMENSIONAL SUPERSONIC TURBINE ROTOR BLADES WITH BOUNDARY-LAYER CORRECTION

    NASA Technical Reports Server (NTRS)

    Goldman, L. J.

    1994-01-01

    A computer program has been developed for the design of supersonic rotor blades where losses are accounted for by correcting the ideal blade geometry for boundary layer displacement thickness. The ideal blade passage is designed by the method of characteristics and is based on establishing vortex flow within the passage. Boundary-layer parameters (displacement and momentum thicknesses) are calculated for the ideal passage, and the final blade geometry is obtained by adding the displacement thicknesses to the ideal nozzle coordinates. The boundary-layer parameters are also used to calculate the aftermixing conditions downstream of the rotor blades assuming the flow mixes to a uniform state. The computer program input consists essentially of the rotor inlet and outlet Mach numbers, upper- and lower-surface Mach numbers, inlet flow angle, specific heat ratio, and total flow conditions. The program gas properties are set up for air. Additional gases require changes to be made to the program. The computer output consists of the corrected rotor blade coordinates, the principal boundary-layer parameters, and the aftermixing conditions. This program is written in FORTRAN IV for batch execution and has been implemented on an IBM 7094. This program was developed in 1971.

  9. Temperature boundary layer profiles in turbulent Rayleigh-Benard convection

    NASA Astrophysics Data System (ADS)

    Ching, Emily S. C.; Emran, Mohammad S.; Horn, Susanne; Shishkina, Olga

    2017-11-01

    Classical boundary-layer theory for steady flows cannot adequately describe the boundary layer profiles in turbulent Rayleigh-Benard convection. We have developed a thermal boundary layer equation which takes into account fluctuations in terms of an eddy thermal diffusivity. Based on Prandtl's mixing length ideas, we relate the eddy thermal diffusivity to the stream function. With this proposed relation, we can solve the thermal boundary layer equation and obtain a closed-form expression for the dimensionless mean temperature profile in terms of two independent parameters: θ(ξ) =1/b∫0b ξ [ 1 +3a3/b3(η - arctan(η)) ] - c dη , where ξ is the similarity variable and the parameters a, b, and c are related by the condition θ(∞) = 1 . With a proper choice of the parameters, our predictions of the temperature profile are in excellent agreement with the results of our direct numerical simulations for a wide range of Prandtl numbers (Pr), from Pr=0.01 to Pr=2547.9. OS, ME and SH acknowledge the financial support by the Deutsche Forschungsgemeinschaft (DFG) under Grants Sh405/4-2 (Heisenberg fellowship), Sh405/3-2 and Ho 5890/1-1, respectively.

  10. Boundary Layer Flow Control by an Array of Ramp-Shaped Vortex Generators

    NASA Technical Reports Server (NTRS)

    Zaman, K. B. M. Q.; Hirt, S. M.; Bencic, T. J.

    2012-01-01

    Flow field survey results for the effect of ramp-shaped vortex generators (VG) on a turbulent boundary layer are presented. The experiments are carried out in a low-speed wind tunnel and the data are acquired primarily by hot-wire anemometry. Distributions of mean velocity and turbulent stresses as well as streamwise vorticity, on cross-sectional planes at various downstream locations, are obtained. These detailed flow field properties, including the boundary layer characteristics, are documented with the primary objective of aiding possible computational investigations. The results show that VG orientation with apex upstream, that produces a downwash directly behind it, yields a stronger pair of streamwise vortices. This is in contrast to the case with apex downstream that produces a pair of vortices of opposite sense. Thus, an array of VG s with the former orientation, usually considered for film-cooling application, may also be superior for mixing enhancement and boundary layer separation control. (See CASI ID 20120009374 for Supplemental CD-ROM.)

  11. Boundary Layer Flow Control by an Array of Ramp-Shaped Vortex Generators

    NASA Technical Reports Server (NTRS)

    Zaman, K. B. M. Q.; Hirt, S. M.; Bencic, T. J.

    2012-01-01

    Flow field survey results for the effect of ramp-shaped vortex generators (VG) on a turbulent boundary layer are presented. The experiments are carried out in a low-speed wind tunnel and the data are acquired primarily by hot-wire anemometry. Distributions of mean velocity and turbulent stresses as well as streamwise vorticity, on cross-sectional planes at various downstream locations, are obtained. These detailed flow field properties, including the boundary layer characteristics, are documented with the primary objective of aiding possible computational investigations. The results show that VG orientation with apex upstream, that produces a downwash directly behind it, yields a stronger pair of streamwise vortices. This is in contrast to the case with apex downstream that produces a pair of vortices of opposite sense. Thus, an array of VG s with the former orientation, usually considered for film-cooling application, may also be superior for mixing enhancement and boundary layer separation control. The data files can be found on a supplemental CD.

  12. Evaluating Models Of The Neutral, Barotropic Planetary Boundary Layer Using Integral Measures: Part Ii. Modelling Observed Conditions

    NASA Astrophysics Data System (ADS)

    Hess, G. D.; Garratt, J. R.

    The steady-state, horizontally homogeneous, neutral, barotropiccase forms the foundation of our theoretical understanding of the planetary boundary layer (PBL).While simple analytical models and first-order closure models simulate atmospheric observationsof this case well, more sophisticated models, in general, do not. In this paperwe examine how well three higher-order closure models, E - - l, E - l, and LRR - l,which have been especially modified for PBL applications, perform in predicting the behaviour of thecross-isobaric angle 0, the geostrophic drag coefficient Cg, and the integral of the dissipationrate over the boundary layer, as a function of the surface Rossby number Ro. For comparison we alsoexamine the performance of three first-order closure mixing-length models, two proposed byA. K. Blackadar and one by H. H. Lettau, and the performance of the standard model forsecond-order closure and a modification of it designed to reduce the overprediction of turbulence inthe upper part of the boundary layer.

  13. State space approach to mixed boundary value problems.

    NASA Technical Reports Server (NTRS)

    Chen, C. F.; Chen, M. M.

    1973-01-01

    A state-space procedure for the formulation and solution of mixed boundary value problems is established. This procedure is a natural extension of the method used in initial value problems; however, certain special theorems and rules must be developed. The scope of the applications of the approach includes beam, arch, and axisymmetric shell problems in structural analysis, boundary layer problems in fluid mechanics, and eigenvalue problems for deformable bodies. Many classical methods in these fields developed by Holzer, Prohl, Myklestad, Thomson, Love-Meissner, and others can be either simplified or unified under new light shed by the state-variable approach. A beam problem is included as an illustration.

  14. Compressibility Considerations for kappa-omega Turbulence Models in Hypersonic Boundary Layer Applications

    NASA Technical Reports Server (NTRS)

    Rumsey, C. L.

    2009-01-01

    The ability of kappa-omega models to predict compressible turbulent skin friction in hypersonic boundary layers is investigated. Although uncorrected two-equation models can agree well with correlations for hot-wall cases, they tend to perform progressively worse - particularly for cold walls - as the Mach number is increased in the hypersonic regime. Simple algebraic models such as Baldwin-Lomax perform better compared to experiments and correlations in these circumstances. Many of the compressibility corrections described in the literature are summarized here. These include corrections that have only a small influence for kappa-omega models, or that apply only in specific circumstances. The most widely-used general corrections were designed for use with jet or mixing-layer free shear flows. A less well-known dilatation-dissipation correction intended for boundary layer flows is also tested, and is shown to agree reasonably well with the Baldwin-Lomax model at cold-wall conditions. It exhibits a less dramatic influence than the free shear type of correction. There is clearly a need for improved understanding and better overall physical modeling for turbulence models applied to hypersonic boundary layer flows.

  15. On the relationship between tectonic plates and thermal mantle plume morphology

    NASA Technical Reports Server (NTRS)

    Lenardic, A.; Kaula, W. M.

    1993-01-01

    Models incorporating plate-like behavior, i.e., near uniform surface velocity and deformation concentrated at plate boundaries, into a convective system, heated by a mix of internal and basal heating and allowing for temperature dependent viscosity, were constructed and compared to similar models not possessing plate-like behavior. The simplified numerical models are used to explore how plate-like behavior in a convective system can effect the lower boundary layer from which thermal plumes form. A principal conclusion is that plate-like behavior can significantly increase the temperature drop across the lower thermal boundary layer. This temperature drop affects the morphology of plumes by determining the viscosity drop across the boundary layer. Model results suggest that plumes on planets possessing plate-like behavior, e.g., the Earth, may differ in morphologic type from plumes on planets not possessing plate-like behavior, e.g., Venus and Mars.

  16. Tethered balloon-based black carbon profiles within the lower troposphere of Shanghai in the 2013 East China smog

    NASA Astrophysics Data System (ADS)

    Li, Juan; Fu, Qingyan; Huo, Juntao; Wang, Dongfang; Yang, Wen; Bian, Qinggen; Duan, Yusen; Zhang, Yihua; Pan, Jun; Lin, Yanfen; Huang, Kan; Bai, Zhipeng; Wang, Sheng-Hsiang; Fu, Joshua S.; Louie, Peter K. K.

    2015-12-01

    A Tethered balloon-based field campaign was launched for the vertical observation of air pollutants within the lower troposphere of 1000 m for the first time over a Chinese megacity, Shanghai in December of 2013. A custom-designed instrumentation platform for tethered balloon observation and ground-based observation synchronously operated for the measurement of same meteorological parameters and typical air pollutants. One episodic event (December 13) was selected with specific focus on particulate black carbon, a short-lived climate forcer with strong warming effect. Diurnal variation of the mixing layer height showed very shallow boundary of less than 300 m in early morning and night due to nocturnal inversion while extended boundary of more than 1000 m from noon to afternoon. Wind profiles showed relatively stagnant synoptic condition in the morning, frequent shifts between upward and downward motion at noon and in the afternoon, and dominant downward motion with sea breeze in the evening. Characteristics of black carbon vertical profiles during four different periods of a day were analyzed and compared. In the morning, surface BC concentration averaged as high as 20 μg/m3 due to intense traffic emissions from the morning rush hours and unfavorable meteorological conditions. A strong gradient of BC concentrations with altitude was observed from the ground to the top of boundary layer at around 250-370 m. BC gradients turned much smaller above the boundary layer. BC profiles measured during noon and afternoon were the least dependent on heights. The largely extended boundary layer with strong vertical convection was responsible for a well mixing of BC particles in the whole measured column. BC profiles were similar between the early-evening and late-evening phases. The lower troposphere was divided into two stratified air layers with contrasted BC vertical distributions. Profiles at night showed strong gradients from the relatively high surface concentrations to low concentrations near the top of the boundary layer around 200 m. Above the boundary layer, BC increased with altitudes and reached a maximum at the top of 1000 m. Prevailing sea breeze within the boundary layer was mainly responsible for the quick cleanup of BC in the lower altitudes. In contrast, continental outflow via regional transport was the major cause of the enhanced BC aloft. This study provides a first insight of the black carbon vertical profiles over Eastern China, which will have significant implications for narrowing the gaps between the source emissions and observations as well as improving estimations of BC radiative forcing and regional climate.

  17. Contrasting sea-ice and open-water boundary layers during melt and freeze-up seasons: Some result from the Arctic Clouds in Summer Experiment.

    NASA Astrophysics Data System (ADS)

    Tjernström, Michael; Sotiropoulou, Georgia; Sedlar, Joseph; Achtert, Peggy; Brooks, Barbara; Brooks, Ian; Persson, Ola; Prytherch, John; Salsbury, Dominic; Shupe, Matthew; Johnston, Paul; Wolfe, Dan

    2016-04-01

    With more open water present in the Arctic summer, an understanding of atmospheric processes over open-water and sea-ice surfaces as summer turns into autumn and ice starts forming becomes increasingly important. The Arctic Clouds in Summer Experiment (ACSE) was conducted in a mix of open water and sea ice in the eastern Arctic along the Siberian shelf during late summer and early autumn 2014, providing detailed observations of the seasonal transition, from melt to freeze. Measurements were taken over both ice-free and ice-covered surfaces, offering an insight to the role of the surface state in shaping the lower troposphere and the boundary-layer conditions as summer turned into autumn. During summer, strong surface inversions persisted over sea ice, while well-mixed boundary layers capped by elevated inversions were frequent over open-water. The former were often associated with advection of warm air from adjacent open-water or land surfaces, whereas the latter were due to a positive buoyancy flux from the warm ocean surface. Fog and stratus clouds often persisted over the ice, whereas low-level liquid-water clouds developed over open water. These differences largely disappeared in autumn, when mixed-phase clouds capped by elevated inversions dominated in both ice-free and ice-covered conditions. Low-level-jets occurred ~20-25% of the time in both seasons. The observations indicate that these jets were typically initiated at air-mass boundaries or along the ice edge in autumn, while in summer they appeared to be inertial oscillations initiated by partial frictional decoupling as warm air was advected in over the sea ice. The start of the autumn season was related to an abrupt change in atmospheric conditions, rather than to the gradual change in solar radiation. The autumn onset appeared as a rapid cooling of the whole atmosphere and the freeze up followed as the warm surface lost heat to the atmosphere. While the surface type had a pronounced impact on boundary-layer structure in summer, the surface was often warmer than the atmosphere in autumn, regardless of surface type. Hence the autumn boundary-layer structure was more dependent on synoptic scale meteorology.

  18. Numerical simulations of the stratified oceanic bottom boundary layer

    NASA Astrophysics Data System (ADS)

    Taylor, John R.

    Numerical simulations are used to consider several problems relevant to the turbulent oceanic bottom boundary layer. In the first study, stratified open channel flow is considered with thermal boundary conditions chosen to approximate a shallow sea. Specifically, a constant heat flux is applied at the free surface and the lower wall is assumed to be adiabatic. When the surface heat flux is strong, turbulent upwellings of low speed fluid from near the lower wall are inhibited by the stable stratification. Subsequent studies consider a stratified bottom Ekman layer over a non-sloping lower wall. The influence of the free surface is removed by using an open boundary condition at the top of the computational domain. Particular attention is paid to the influence of the outer layer stratification on the boundary layer structure. When the density field is initialized with a linear profile, a turbulent mixed layer forms near the wall, which is separated from the outer layer by a strongly stable pycnocline. It is found that the bottom stress is not strongly affected by the outer layer stratification. However, stratification reduces turbulent transport to the outer layer and strongly limits the boundary layer height. The mean shear at the top of the boundary layer is enhanced when the outer layer is stratified, and this shear is strong enough to cause intermittent instabilities above the pycnocline. Turbulence-generated internal gravity waves are observed in the outer layer with a relatively narrow frequency range. An explanation for frequency content of these waves is proposed, starting with an observed broad-banded turbulent spectrum and invoking linear viscous decay to explain the preferential damping of low and high frequency waves. During the course of this work, an open-source computational fluid dynamics code has been developed with a number of advanced features including scalar advection, subgrid-scale models for large-eddy simulation, and distributed memory parallelism.

  19. Marine boundary layer structure as observed by A-train satellites

    DOE PAGES

    Luo, Tao; Wang, Zhien; Zhang, Damao; ...

    2016-05-13

    The marine boundary layer (MBL) structure is important to the marine low cloud processes, and the exchange of heat, momentum, and moisture between oceans and the low atmosphere. This study examines the MBL structure over the eastern Pacific region and further explores the controlling factors of MBL structure over the global oceans with a new 4-year satellite-based data set. The MBL top (boundary layer height, BLH) and the mixing layer height (MLH) were identified using the MBL aerosol lidar backscattering from the CALIPSO (Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations). Results showed that the MBL is generally decoupled with MLH ∕ BLHmore » ratio ranging from  ∼  0.5 to  ∼  0.8 over the eastern Pacific Ocean region. The MBL decoupling magnitude is mainly controlled by estimated inversion strength (EIS), which in turn controls the cloud top entrainment process. The systematic differences between drizzling and non-drizzling stratocumulus tops also show dependence on EIS. This may be related to the meso-scale circulations or gravity wave in the MBL. Further analysis indicates that the MBL shows a similar decoupled structure for clear-sky and cumulus-cloud-topped conditions, but is better mixed under stratiform cloud breakup and overcast conditions.« less

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Fan; Ovchinnikov, Mikhail; Shaw, Raymond A.

    Lagrangian ice particle tracking is applied in both a 3-D time dependent velocity field produced by a Large Eddy Simulation cloud model and in a 2-D idealized field. It is found that more than 10% of ice particles have lifetimes longer than 1.5 hours, much longer than the large eddy turnover time or the time for a crystal to fall through the depth of a non-turbulent cloud. An analysis of trajectories in a 2-D idealized field shows that there are two types of long lifetime ice particles: quasi-steady and recycled growth. For quasi-steady growth, ice particles are suspended in themore » updraft velocity region for a long time. For recycled growth, ice particles are trapped in the large-eddy structures, and whether ice particles grow or evaporate depends on the ice relative humidity profile within the boundary layer. Some ice particles can grow after each cycle in the trapping region, until they are too large to be trapped, and thus have long lifetimes. The relative contribution of the recycled ice particles to the cloud mean ice water content depends on both the dynamic and thermodynamic properties of the mixing layer. In particular, the total ice water content of a mixed phase cloud in a decoupled boundary layer can be much larger than that in a fully coupled boundary layer.« less

  1. Measurements of thermal updraft intensity over complex terrain using American white pelicans and a simple boundary-layer forecast model

    USGS Publications Warehouse

    Shannon, H.D.; Young, G.S.; Yates, M.; Fuller, Mark R.; Seegar, W.

    2003-01-01

    An examination of boundary-layer meteorological and avian aerodynamic theories suggests that soaring birds can be used to measure the magnitude of vertical air motions within the boundary layer. These theories are applied to obtain mixed-layer normalized thermal updraft intensity over both flat and complex terrain from the climb rates of soaring American white pelicans and from diagnostic boundary-layer model-produced estimates of the boundary-layer depth zi and the convective velocity scale w*. Comparison of the flatland data with the profiles of normalized updraft velocity obtained from previous studies reveals that the pelican-derived measurements of thermal updraft intensity are in close agreement with those obtained using traditional research aircraft and large eddy simulation (LES) in the height range of 0.2 to 0.8 zi. Given the success of this method, the profiles of thermal vertical velocity over the flatland and the nearby mountains are compared. This comparison shows that these profiles are statistically indistinguishable over this height range, indicating that the profile for thermal updraft intensity varies little over this sample of complex terrain. These observations support the findings of a recent LES study that explored the turbulent structure of the boundary layer using a range of terrain specifications. For terrain similar in scale to that encountered in this study, results of the LES suggest that the terrain caused less than an 11% variation in the standard deviation of vertical velocity.

  2. The use of Argo for validation and tuning of mixed layer models

    NASA Astrophysics Data System (ADS)

    Acreman, D. M.; Jeffery, C. D.

    We present results from validation and tuning of 1-D ocean mixed layer models using data from Argo floats and data from Ocean Weather Station Papa (145°W, 50°N). Model tests at Ocean Weather Station Papa showed that a bulk model could perform well provided it was tuned correctly. The Large et al. [Large, W.G., McWilliams, J.C., Doney, S.C., 1994. Oceanic vertical mixing: a review and a model with a nonlocal boundary layer parameterisation. Rev. Geophys. 32 (Novermber), 363-403] K-profile parameterisation (KPP) model also gave a good representation of mixed layer depth provided the vertical resolution was sufficiently high. Model tests using data from a single Argo float indicated a tendency for the KPP model to deepen insufficiently over an annual cycle, whereas the tuned bulk model and general ocean turbulence model (GOTM) gave a better representation of mixed layer depth. The bulk model was then tuned using data from a sample of Argo floats and a set of optimum parameters was found; these optimum parameters were consistent with the tuning at OWS Papa.

  3. The stabilizing effect of compressibility in turbulent shear flow

    NASA Technical Reports Server (NTRS)

    Sarkar, S.

    1994-01-01

    Direct numerical simulation of turbulent homogeneous shear flow is performed in order to clarify compressibility effects on the turbulence growth in the flow. The two Mach numbers relevant to homogeneous shear flow are the turbulent Mach number M(t) and the gradient Mach number M(g). Two series of simulations are performed where the initial values of M(g) and M(t) are increased separately. The growth rate of turbulent kinetic energy is observed to decrease in both series of simulations. This 'stabilizing' effect of compressibility on the turbulent energy growth rate is observed to be substantially larger in the DNS series where the initial value of M(g) is changed. A systematic companion of the different DNS cues shows that the compressibility effect of reduced turbulent energy growth rate is primarily due to the reduced level of turbulence production and not due to explicit dilatational effects. The reduced turbulence production is not a mean density effect since the mean density remains constant in compressible homogeneous shear flow. The stabilizing effect of compressibility on the turbulence growth is observed to increase with the gradient Mach number M(g) in the homogeneous shear flow DNS. Estimates of M(g) for the mixing and the boundary layer are obtained. These estimates show that the parameter M(g) becomes much larger in the high-speed mixing layer relative to the high-speed boundary layer even though the mean flow Mach numbers are the same in the two flows. Therefore, the inhibition of turbulent energy production and consequent 'stabilizing' effect of compressibility on the turbulence (over and above that due to the mean density variation) is expected to be larger in the mixing layer relative to the boundary layer in agreement with experimental observations.

  4. Radial Mixing in Turbomachines.

    DTIC Science & Technology

    1988-02-01

    boundary layers. In a different approach (see 2.7), the flow is considered as a superposition of (1) a main inviscid primary flow, and (ii) viscous boundary...considered as the ’ primary flow’. The secondary flow due to an eventual non-free vortex behaviour is next computed from passage averaged vorticity and...continuity equations. The obtained velocities are superposed on the primary flow and therefore affect the subsequent steps. The end-wall boundary

  5. Boundary-layer computational model for predicting the flow and heat transfer in sudden expansions

    NASA Technical Reports Server (NTRS)

    Lewis, J. P.; Pletcher, R. H.

    1986-01-01

    Fully developed turbulent and laminar flows through symmetric planar and axisymmetric expansions with heat transfer were modeled using a finite-difference discretization of the boundary-layer equations. By using the boundary-layer equations to model separated flow in place of the Navier-Stokes equations, computational effort was reduced permitting turbulence modelling studies to be economically carried out. For laminar flow, the reattachment length was well predicted for Reynolds numbers as low as 20 and the details of the trapped eddy were well predicted for Reynolds numbers above 200. For turbulent flows, the Boussinesq assumption was used to express the Reynolds stresses in terms of a turbulent viscosity. Near-wall algebraic turbulence models based on Prandtl's-mixing-length model and the maximum Reynolds shear stress were compared.

  6. Dilatation-dissipation corrections for advanced turbulence models

    NASA Technical Reports Server (NTRS)

    Wilcox, David C.

    1992-01-01

    This paper analyzes dilatation-dissipation based compressibility corrections for advanced turbulence models. Numerical computations verify that the dilatation-dissipation corrections devised by Sarkar and Zeman greatly improve both the k-omega and k-epsilon model predicted effect of Mach number on spreading rate. However, computations with the k-gamma model also show that the Sarkar/Zeman terms cause an undesired reduction in skin friction for the compressible flat-plate boundary layer. A perturbation solution for the compressible wall layer shows that the Sarkar and Zeman terms reduce the effective von Karman constant in the law of the wall. This is the source of the inaccurate k-gamma model skin-friction predictions for the flat-plate boundary layer. The perturbation solution also shows that the k-epsilon model has an inherent flaw for compressible boundary layers that is not compensated for by the dilatation-dissipation corrections. A compressibility modification for k-gamma and k-epsilon models is proposed that is similar to those of Sarkar and Zeman. The new compressibility term permits accurate predictions for the compressible mixing layer, flat-plate boundary layer, and a shock separated flow with the same values for all closure coefficients.

  7. Origin of non-spherical particles in the boundary layer over Beijing, China: based on balloon-borne observations.

    PubMed

    Chen, Bin; Yamada, Maromu; Iwasaka, Yasunobu; Zhang, Daizhou; Wang, Hong; Wang, Zhenzhu; Lei, Hengchi; Shi, Guangyu

    2015-10-01

    Vertical structures of aerosols from the ground to about 1,000 m altitude in Beijing were measured with a balloon-borne optical particle counter. The results showed that, in hazy days, there were inversions at approximately 500-600 m, below which the particulate matters were well mixed vertically, while the concentration of particles decreased sharply above the mixing layer. Electron microscopic observation of the particles collected with the balloon-borne impactor indicates that the composition of particles is different according to weather conditions in the boundary mixing layer of Beijing city and suggests that dust particles are always dominant in coarse-mode particles. Interestingly, sea-salt particles are frequently identified, suggesting the importance of marine air inflow to the Beijing area even in summer. The Ca-rich spherical particles are also frequently identified, suggesting chemical modification of dust particle by NOx or emission of CaO and others from local emission. Additionally, those types of particles showed higher concentration above the mixing layer under the relatively calm weather condition of summer, suggesting the importance of local-scale convection found in summer which rapidly transported anthropogenic particles above the mixing layer. Lidar extinction profiles qualitatively have good consistency with the balloon-borne measurements. Attenuation effects of laser pulse intensity are frequently observed due to high concentration of particulate matter in the Beijing atmosphere, and therefore quantitative agreement of lidar return and aerosol concentration can be hardly observed during dusty condition. Comparing the depolarization ratio obtained from the lidar measurements with the balloon-borne measurements, the contribution of the dry sea-salt particles, in addition to the dust particles, is suggested as an important factor causing depolarization ratio in the Beijing atmosphere.

  8. Aspects of turbulent-shear-layer dynamics and mixing

    NASA Astrophysics Data System (ADS)

    Slessor, Michael David

    Experiments have been conducted in the GALCIT Supersonic Shear Layer Facility to investigate some aspects of high-Reynolds-number, turbulent, shear-layer flows in both incompressible- and compressible-flow regimes. Experiments designed to address several issues were performed; effects of inflow boundary conditions, freestream conditions (supersonic/subsonic flow), and compressibility, on both large-scale dynamics and small-scale mixing, are described. Chemically-reacting and non-reacting flows were investigated, the former relying on the (Hsb2 + NO)/Fsb2 chemical system, in the fast-kinetic regime, to infer the structure and amount of molecular-scale mixing through use of "flip" experiments. A variety of experimental techniques, including a color-schlieren visualization system developed as part of this work, were used to study the flows. Both inflow conditions and compressibility are found to have significant effects on the flow. In particular, inflow conditions are "remembered" for long distances downstream, a sensitivity similar to that observed in low-dimensionality, non-linear (chaotic) systems. The global flowfields (freestreams coupled by the shear layer) of transonic flows exhibit a sensitivity to imposed boundary conditions, a.e., local area ratios. A previously-proposed mode-selection rule for turbulent-structure convection speeds, based on the presence of a lab-frame subsonic freestream, was experimentally demonstrated to be incorrect. Compressibility, when decoupled from ail other parameters, e.g., Reynolds number, velocity and density ratios, etc., reduces large-scale entrainment and turbulent growth, but slightly enhances small-scale mixing, with an associated change in the structure of the molecularly-mixed fluid. This reduction in shear-layer growth rate is examined and a new parameter that interprets compressibility as an energy-exchange mechanism is proposed. The parameter reconciles and collapses experimentally-observed growth rates.

  9. A Physical Mechanism for the Asymmetry in Top-Down and Bottom-Up Diffusion.

    NASA Astrophysics Data System (ADS)

    Wyngaard, J. C.

    1987-04-01

    Recent large-eddy simulations of the vertical diffusion of a passive, conservative scalar through the convective boundary layer (CBL) show strikingly different eddy diffusivity profiles in the `top-down' and `bottom-up' cases. These results indicate that for a given turbulent velocity field and associated scalar flux, the mean change in scalar mixing ratio across the CBL is several times larger if the flux originates at the top of the boundary layer (i.e., in top-down diffusion) rather than at the bottom. The large-eddy simulation (LES) data show that this asymmetry is due to a breakdown of the eddy-diffusion concept.A simple updraft-downdraft model of the CBL reveals a physical mechanism that could cause this unexpected behavior. The large, positive skewness of the convectively driven vertical velocity gives an appreciably higher probability of downdrafts than updrafts; this excess probability of downdrafts, interacting with the time changes of the mean mixing ratio caused by the nonstationarity of the bottom-up and top-down diffusion processes, decreases the equilibrium value of mean mixing-ratio jump across the mixed layer in the bottom-up case and increases it in the top-down case. The resulting diffusion asymmetry agrees qualitatively with that found through LES.

  10. A unified view of convective transports by stratocumulus clouds, shallow cumulus clouds, and deep convection

    NASA Technical Reports Server (NTRS)

    Randall, David A.

    1990-01-01

    A bulk planetary boundary layer (PBL) model was developed with a simple internal vertical structure and a simple second-order closure, designed for use as a PBL parameterization in a large-scale model. The model allows the mean fields to vary with height within the PBL, and so must address the vertical profiles of the turbulent fluxes, going beyond the usual mixed-layer assumption that the fluxes of conservative variables are linear with height. This is accomplished using the same convective mass flux approach that has also been used in cumulus parameterizations. The purpose is to show that such a mass flux model can include, in a single framework, the compensating subsidence concept, downgradient mixing, and well-mixed layers.

  11. Evaluation of the heat balance constituents of the upper mixed layer in the North Atlantic

    NASA Astrophysics Data System (ADS)

    Polonsky, A. B.; Sukhonos, P. A.

    2016-11-01

    Different physical mechanisms which cause interannual and interdecadal temperature anomalies in the upper mixed layer (UML) of the North Atlantic are investigated using the data of ORA-S3 reanalysis for the period of 1959-2011. It is shown that the annual mean heat budget in UML is mainly caused by the balance between advective heat transfer and horizontal turbulent mixing (estimated as a residual term in the equation of thermal balance). The local UML temperature change and contribution from the heat fluxes on the lower boundary of the UML to the heat budget of the upper layer are insignificant for the time scale under consideration. The contribution of the heat fluxes on the upper UML boundary to the low-frequency variability of the upper layer temperature in the whole North Atlantic area is substantially less than 30%. Areas like the northwestern part of the Northern Subtropical Anticyclonic Gyre (NSAG), where their contribution exceeds 30-60%, are exceptions. The typical time scales of advective heat transfer variability are revealed. In the NSAG area, an interannual variability associated with the North Atlantic Oscillation dominates, while in the North Atlantic subpolar gyre, an interdecadal variability of advective transfers with periods of more than 30 years prevails.

  12. Does deep ocean mixing drive upwelling or downwelling of abyssal waters?

    NASA Astrophysics Data System (ADS)

    Ferrari, R. M.; McDougall, T. J.; Mashayek, A.; Nikurashin, M.; Campin, J. M.

    2016-02-01

    It is generally understood that small-scale mixing, such as is caused by breaking internal waves, drives upwelling of the densest ocean waters that sink to the ocean bottom at high latitudes. However the observational evidence that the turbulent fluxes generated by small-scale mixing in the stratified ocean interior are more vigorous close to the ocean bottom than above implies that small-scale mixing converts light waters into denser ones, thus driving a net sinking of abyssal water. Using a combination of numerical models and observations, it will be shown that abyssal waters return to the surface along weakly stratified boundary layers, where the small-scale mixing of density decays to zero. The net ocean meridional overturning circulation is thus the small residual of a large sinking of waters, driven by small-scale mixing in the stratified interior, and a comparably large upwelling, driven by the reduced small-scale mixing along the ocean boundaries.

  13. A viscous flow study of shock-boundary layer interaction, radial transport, and wake development in a transonic compressor

    NASA Technical Reports Server (NTRS)

    Hah, Chunill; Reid, Lonnie

    1991-01-01

    A numerical study based on the 3D Reynolds-averaged Navier-Stokes equation has been conducted to investigate the detailed flow physics inside a transonic compressor. 3D shock structure, shock-boundary layer interaction, flow separation, radial mixing, and wake development are all investigated at design and off-design conditions. Experimental data based on laser anemometer measurements are used to assess the overall quality of the numerical solution. An additional experimental study to investigate end-wall flow with a hot-film was conducted, and these results are compared with the numerical results. Detailed comparison with experimental data indicates that the overall features of the 3D shock structure, the shock-boundary layer interaction, and the wake development are all calculated very well in the numerical solution. The numerical results are further analyzed to examine the radial mixing phenomena in the transonic compressor. A thin sheet of particles is injected in the numerical solution upstream of the compressor. The movement of particles is traced with a 3D plotting package. This numerical survey of tracer concentration reveals the fundamental mechanisms of radial transport in this transonic compressor.

  14. Chemical differentiation of a convecting planetary interior: Consequences for a one-plate planet such as Venus

    NASA Technical Reports Server (NTRS)

    Parmentier, E. M.; Hess, P. C.

    1992-01-01

    Chemically depleted mantle forming a buoyant, refractory layer at the top of the mantle can have important implications for the evolution of the interior and surface. On Venus, the large apparent depths of compensation for surface topographic features might be explained if surface topography were supported by variations in the thickness of a 100-200 km thick chemically buoyant mantle layer or by partial melting in the mantle at the base of such a layer. Long volcanic flows seen on the surface may be explained by deep melting that generates low-viscosity MgO-rich magmas. The presence of a shallow refractory mantle layer may also explain the lack of volcanism associated with rifting. As the depleted layer thickens and cools, it becomes denser than the convecting interior and the portion of it that is hot enough to flow can mix with the convecting mantle. Time dependence of the thickness of a depleted layer may create episodic resurfacing events as needed to explain the observed distribution of impact craters on the venusian surface. We consider a planetary structure consisting of a crust, depleted mantle layer, and a thermally and chemically well-mixed convecting mantle. The thermal evolution of the convecting spherical planetary interior is calculated using energy conservation: the time rate of change of thermal energy in the interior is equated to the difference in the rate of radioactive heat production and the rate of heat transfer across the thermal boundary layer. Heat transfer across the thermal boundary layer is parameterized using a standard Nusselt number-Rayleigh number relationship. The radioactive heat production decreases with time corresponding to decay times for the U, Th, and K. The planetary interior cools by the advection of hot mantle at temperature T interior into the thermal boundary layer where it cools conductively. The crust and depleted mantle layers do not convect in our model so that a linear conductive equilibrium temperature distribution is assumed. The rate of melt production is calculated as the product of the volume flux of mantle into the thermal boundary layer and the degree of melting that this mantle undergoes. The volume flux of mantle into the thermal boundary layer is simply the heat flux divided by amount of heat lost in cooling mantle to the average temperature in the thermal boundary layer. The degree of melting is calculated as the temperature difference above the solidus, divided by the latent heat of melting. A maximum degree of melting is prescribed corresponding to the maximum amount of basaltic melt that the mantle can initially generate. As the crust thickens, the pressure at the base of the crust becomes high enough and the temperature remains low enough for basalt to transform to dense eclogite.

  15. Stochastic Convection Parameterizations: The Eddy-Diffusivity/Mass-Flux (EDMF) Approach (Invited)

    NASA Astrophysics Data System (ADS)

    Teixeira, J.

    2013-12-01

    In this presentation it is argued that moist convection parameterizations need to be stochastic in order to be realistic - even in deterministic atmospheric prediction systems. A new unified convection and boundary layer parameterization (EDMF) that optimally combines the Eddy-Diffusivity (ED) approach for smaller-scale boundary layer mixing with the Mass-Flux (MF) approach for larger-scale plumes is discussed. It is argued that for realistic simulations stochastic methods have to be employed in this new unified EDMF. Positive results from the implementation of the EDMF approach in atmospheric models are presented.

  16. Large-Eddy-Simulation of a flow over a submerged rigid canopy

    NASA Astrophysics Data System (ADS)

    Monti, Alessandro; Omidyeganeh, Mohammad; Pinelli, Alfredo

    2017-11-01

    We have performed a wall-resolved Large-Eddy-Simulation of flow over a shallow submerged rigid canopy (H / h = 4 ; H and h are the open channel and the canopy heights respectively) in a transitional/dense regime (Nepf ARFM 44, 2011), at low Reynolds number (Reb =Ubulk H / ν = 6000). An immersed boundary method (Favier et al. JCP 261, 2013) has been adopted to represent filamentous rigid elements of the canopy. The presence of the permeable and porous canopy induces a typical inflection point in the mean velocity profile, depicting two separated and developed layers, outer boundary layer and in-canopy uniform flow. The aim of the work is to explore and unravel the mechanisms of the interaction between the fluid flow and the rigid canopy by identifying the physical parameters that govern the mixing mechanisms within the different flow layers and by exploring the impact of the sweep/ejection events at the canopy edge. The results show that the flow is characterised by large scale stream- and span-wise vortices and regions of different dynamics that affect also the filamentous layer, hence the mixing mechanisms.

  17. Effect of initial conditions on constant pressure mixing between two turbulent streams

    NASA Astrophysics Data System (ADS)

    Kangovi, S.

    1983-02-01

    It is pointed out that a study of the process of mixing between two dissimilar streams has varied applications in different fields. The applications include the design of an after burner in a high by-pass ratio aircraft engine and the disposal of effluents in a stream. The mixing process determines important quantities related to the energy transfer from main stream to the secondary stream, the temperature and velocity profiles, and the local kinematic and dissipative structure within the mixing region, and the growth of the mixing layer. Hill and Page (1968) have proposed the employment of an 'assumed epsilon' method in which the eddy viscosity model of Goertler (1942) is modified to account for the initial boundary layer. The present investigation is concerned with the application of the assumed epsilon technique to the study of the effect of initial conditions on the development of the turbulent mixing layer between two compressible, nonisoenergetic streams at constant pressure.

  18. Structure and Optical Properties of the Atmospheric Boundary Layer over Dusty Hot Deserts

    NASA Astrophysics Data System (ADS)

    Chalermthai, B.; Al Marzooqi, M.; Basha, G.; Ouarda, T.; Armstrong, P.; Molini, A.

    2014-12-01

    Strong sensible heat fluxes and deep turbulent mixing - together with marked dustiness and a low substrate water content - represent a characteristic signature of the atmospheric boundary layer (ABL) over hot deserts, resulting in "thicker" mixing layers and peculiar optical properties. Beside these main common features however, desert boundary layers present extremely complex local structures that have been scarcely addressed in the literature, and whose understanding is essential in modeling processes such as transport and deposition of dust and pollutants, local wind fields, turbulent fluxes and their impacts on the sustainable development, human health and solar energy harvesting in these regions. In this study, we explore the potential of the joint usage of Lidar Ceilometer backscattering profiles and sun-photometer optical depth retrievals to quantitatively determine the vertical aerosol profile over dusty hot desert regions. Toward this goal, we analyze a continuous record of observations of the atmospheric boundary layer height from a single lens LiDAR ceilometer operated at Masdar Institute Field Station (24.4425N 54.6163E, Abu Dhabi, United Arab Emirates), starting March 2013, and the concurrent measurements of aerosol optical depth derived independently from the Masdar Institute AERONET sun-photometer. The main features of the desert ABL are obtained from the ceilometer range corrected backscattering profiles through bi-dimensional clustering technique we developed as a modification of the recently proposed single-profile clustering method, and therefore "directly" and "indirectly" calibrated to obtain a full diurnal cycle climatology of the aerosol optical depth and aerosol profiles. The challenges and the advantages of applying a similar methodology to the monitoring of aerosols and dust over hyper-arid regions are also discussed, together with the issues related to the sensitivity of commercial ceilometers to changes in the solar background.

  19. Injection in the lower stratosphere of biomass fire emissions followed by long-range transport: a MOZAIC case study

    NASA Astrophysics Data System (ADS)

    Cammas, J.-P.; Brioude, J.; Chaboureau, J.-P.; Duron, J.; Mari, C.; Mascart, P.; Nédélec, P.; Smit, H.; Pätz, H.-W.; Volz-Thomas, A.; Stohl, A.; Fromm, M.

    2008-12-01

    This paper analyses a stratospheric injection by deep convection of biomass fire emissions over North America (Alaska, Yukon and Northwest Territories) on 24 June 2004 and its long-range transport over the eastern coast of the United States and the eastern Atlantic. The case study is done using MOZAIC observations of ozone, carbon monoxide, nitrogen oxides (NOx+PAN) and water vapour during the crossing of the southernmost tip of an upper level trough over the Eastern Atlantic on 30 June 03:00 UTC and 10:00 UTC and in a vertical profile over Washington DC on 30 June 17:00 UTC, and by lidar observations of aerosol backscattering at Madison (University of Wisconsin) on 28 June. Attribution of the plumes to the boreal fires is achieved by backward simulations with a Lagrangian particle dispersion model (FLEXPART). A simulation with the Meso-NH model for the source region shows that a boundary layer tracer, mimicking the boreal forest fire smoke, is lofted into the lowermost stratosphere (2-5 pvu layer) during the diurnal convective cycle. The isentropic levels (above 335 K) correspond to those of the downstream MOZAIC observations. The parameterized convective detrainment flux is intense enough to fill the volume of a model mesh (20 km horizontal, 500 m vertical) above the tropopause with pure boundary layer air in a time period compatible with the convective diurnal cycle, i.e. about 5 h. The maximum instantaneous detrainment fluxes deposited about 15-20% of the initial boundary layer tracer concentration at 335 K, which according to the 275-ppbv carbon monoxide maximum mixing ratio observed by MOZAIC over eastern Atlantic, would be associated with a 1.4-1.8 ppmv carbon monoxide mixing ratio in the boundary layer over the source region.

  20. Carbonyl compounds in the lower marine troposphere over the Caribbean Sea and Bahamas

    NASA Astrophysics Data System (ADS)

    Zhou, Xianliang; Mopper, Kenneth

    1993-02-01

    A highly sensitive carbonyl trapping technique based on special 2,4-dinitrophenylhydrazine reagent purification and cartridge preparation procedures was used on a cruise to the Orinoco estuary and the Caribbean Sea in order to determine the nature, concentration, and diurnal variation of low molecular weight carbonyl compounds in the lower marine boundary layer. The results suggest that the main source of formaldehyde and acetaldehyde in the lower marine boundary layer in the studied region is photooxidation of locally derived organic matter such as nonmethane hydrocarbons and long-chained lipids. Samples that were influenced by local land masses showed significantly higher concentrations of all carbonyl compounds. The main loss pathway appears to be dilution in the atmosphere as a result of vertical convective mixing, probably followed by photolysis in the upper marine boundary layer and free troposphere.

  1. Deleterious localized stress fields: the effects of boundaries and stiffness tailoring in anisotropic laminated plates

    PubMed Central

    Weaver, P. M.

    2016-01-01

    The safe design of primary load-bearing structures requires accurate prediction of stresses, especially in the vicinity of geometric discontinuities where deleterious three-dimensional stress fields can be induced. Even for thin-walled structures significant through-thickness stresses arise at edges and boundaries, and this is especially precarious for laminates of advanced fibre-reinforced composites because through-thickness stresses are the predominant drivers in delamination failure. Here, we use a higher-order equivalent single-layer model derived from the Hellinger–Reissner mixed variational principle to examine boundary layer effects in laminated plates comprising constant-stiffness and variable-stiffness laminae and deforming statically in cylindrical bending. The results show that zigzag deformations, which arise due to layerwise differences in the transverse shear moduli, drive boundary layers towards clamped edges and are therefore critically important in quantifying localized stress gradients. The relative significance of the boundary layer scales with the degree of layerwise anisotropy and the thickness to characteristic length ratio. Finally, we demonstrate that the phenomenon of alternating positive and negative transverse shearing deformation through the thickness of composite laminates, previously only observed at clamped boundaries, can also occur at other locations as a result of smoothly varying the material properties over the in-plane dimensions of the laminate. PMID:27843401

  2. Experimental Study of a Three-Dimensional Shear-Driven Turbulent Boundary Layer with Streamwise Adverse Pressure Gradient

    NASA Technical Reports Server (NTRS)

    Driver, David M.; Johnston, James P.

    1990-01-01

    The effects of a strong adverse pressure gradient on a three-dimensional turbulent boundary layer are studied in an axisymmetric spinning cylinder geometry. Velocity measurements made with a three-component laser Doppler velocimeter include all three mean flow components, all six Reynolds stress components, and all ten triple-product correlations. Reynolds stress diminishes as the flow becomes three-dimensional. Lower levels of shear stress were seen to persist under adverse pressure gradient conditions. This low level of stress was seen to roughly correlate with the magnitude of cross-flow (relative to free stream flow) for this experiment as well as most of the other experiments in the literature. Variations in pressure gradient do not appear to alter this correlation. For this reason, it is hypothesized that a three-dimensional boundary layer is more prone to separate than a two-dimensional boundary layer, although it could not be directly shown here. None of the computations performed with either a Prandtl mixing length, k-epsilon, or a Launder-Reece-Rodi full Reynolds-stress model were able to predict the reduction in Reynolds stress.

  3. Transpiration and film cooling boundary layer computer program. Volume 1: Numerical solutions of the turbulent boundary layer equations with equilibrium chemistry

    NASA Technical Reports Server (NTRS)

    Levine, J. N.

    1971-01-01

    A finite difference turbulent boundary layer computer program has been developed. The program is primarily oriented towards the calculation of boundary layer performance losses in rocket engines; however, the solution is general, and has much broader applicability. The effects of transpiration and film cooling as well as the effect of equilibrium chemical reactions (currently restricted to the H2-O2 system) can be calculated. The turbulent transport terms are evaluated using the phenomenological mixing length - eddy viscosity concept. The equations of motion are solved using the Crank-Nicolson implicit finite difference technique. The analysis and computer program have been checked out by solving a series of both laminar and turbulent test cases and comparing the results to data or other solutions. These comparisons have shown that the program is capable of producing very satisfactory results for a wide range of flows. Further refinements to the analysis and program, especially as applied to film cooling solutions, would be aided by the acquisition of a firm data base.

  4. Wave like signatures in aerosol optical depth and associated radiative impacts over the central Himalayan region

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shukla, K. K.; Phanikumar, D. V.; Kumar, K.  Niranjan

    2015-10-01

    In this study, we present a case study on 16 October 2011 to show the first observational evidence of the influence of short period gravity waves in aerosol transport during daytime over the central Himalayan region. The Doppler lidar data has been utilized to address the daytime boundary layer evolution and related aerosol dynamics over the site. Mixing layer height is estimated by wavelet covariance transform method and found to be ~ 0.7 km, AGL. Aerosol optical depth observations during daytime revealed an asymmetry showing clear enhancement during afternoon hours as compared to forenoon. Interestingly, Fourier and wavelet analysis ofmore » vertical velocity and attenuated backscatter showed similar 50-90 min short period gravity wave signatures during afternoon hours. Moreover, our observations showed that gravity waves are dominant within the boundary layer implying that the daytime boundary layer dynamics is playing a vital role in transporting the aerosols from surface to the top of the boundary layer. Similar modulations are also evident in surface parameters like temperature, relative humidity and wind speed indicating these waves are associated with the dynamical aspects over Himalayan region. Finally, time evolution of range-23 height indicator snapshots during daytime showed strong upward velocities especially during afternoon hours implying that convective processes through short period gravity waves plays a significant role in transporting aerosols from the nearby valley region to boundary layer top over the site. These observations also establish the importance of wave induced daytime convective boundary layer dynamics in the lower Himalayan region.« less

  5. Observations of marine decoupled boundary layer during the ICOS campaign at the GAW Mace Head station, Ireland.

    NASA Astrophysics Data System (ADS)

    Milroy, Conor; Martucci, Giovanni; O'Dowd, Colin

    2010-05-01

    The planetary boundary layer (PBL) top height detections have been retrieved by two ceilometers (Vaisala CL31 and Jenoptik CHM15K) and a microwave radiometer (RPG-HATPRO) based at the Mace Head Research station, Ireland, from the 8th to the 28th of June 2009 during the ICOS Mace Head campaign. Characteristic of this region, with warm waters, the marine boundary layer is typically 2-layered with a surface mixed layer (SML) and a decoupled residual or convective layer (DRCL), above which is the free troposphere (Kunz et al. 2002). The PBL data have been analyzed using a newly developed Temporal Height-Tracking (THT) algorithm (Martucci et al., 2010) for automatic detection of the independent SML and DRCL tops. Daily and weekly averages of the PBL data have been performed to smooth out the short term variability and assess the dependence of the PBL depth on different air masses advected over the Mace Head station. Moreover, a qualitative comparison between the ceilometer and radiometer PBL top detected values has been done to assess their consistency.

  6. Model for compressible turbulence in hypersonic wall boundary and high-speed mixing layers

    NASA Astrophysics Data System (ADS)

    Bowersox, Rodney D. W.; Schetz, Joseph A.

    1994-07-01

    The most common approach to Navier-Stokes predictions of turbulent flows is based on either the classical Reynolds-or Favre-averaged Navier-Stokes equations or some combination. The main goal of the current work was to numerically assess the effects of the compressible turbulence terms that were experimentaly found to be important. The compressible apparent mass mixing length extension (CAMMLE) model, which was based on measured experimental data, was found to produce accurate predictions of the measured compressible turbulence data for both the wall bounded and free mixing layer. Hence, that model was incorporated into a finite volume Navier-Stokes code.

  7. Comparison between the land surface response of the ECMWF model and the FIFE-1987 data

    NASA Technical Reports Server (NTRS)

    Betts, Alan K.; Ball, John H.; Beljaars, Anton C. M.

    1993-01-01

    An averaged time series for the surface data for the 15 x 15 km FIFE site was prepared for the summer of 1987. Comparisons with 48-hr forecasts from the ECMWF model for extended periods in July, August, and October 1987 identified model errors in the incoming SW radiation in clear skies, the ground heat flux, the formulation of surface evaporation, the soil-moisture model, and the entrainment at boundary-layer top. The model clear-sky SW flux is too high at the surface by 5-10 percent. The ground heat flux is too large by a factor of 2 to 3 because of the large thermal capacity of the first soil layer (which is 7 cm thick), and a time truncation error. The surface evaporation was near zero in October 1987, rather than of order 70 W/sq m at noon. The surface evaporation falls too rapidly after rainfall, with a time-scale of a few days rather than the 7-10 d (or more) of the observations. On time-scales of more than a few days the specified 'climate layer' soil moisture, rather than the storage of precipitation, has a large control on the evapotranspiration. The boundary-layer-top entrainment is too low. This results in a moist bias in the boundary-layer mixing ratio of order 2 g/Kg in forecasts from an experimental analysis with nearly realistic surface fluxes; this because there is insufficient downward mixing of dry air.

  8. Inner Plasma Structure of the Low-Latitude Reconnection Layer

    NASA Technical Reports Server (NTRS)

    Zhang, Q.-H.; Dunlop, M. W.; Lockwood, M.; Lavraud, B.; Bogdanova, Y. V.; Hasegawa, H.; Yang, H. -G.; Liu, R. -Y.; Hu, H. -Q.; Zhang, B. -C.; hide

    2012-01-01

    We report a clear transition through a reconnection layer at the low-latitude magnetopause which shows a complete traversal across all reconnected field lines during northwestward interplanetary magnetic field (IMF) conditions. The associated plasma populations confirm details of the electron and ion mixing and the time history and acceleration through the current layer. This case has low magnetic shear with a strong guide field and the reconnection layer contains a single density depletion layer on the magnetosheath side which we suggest results from nearly field-aligned magnetosheath flows. Within the reconnection boundary layer, there are two plasma boundaries, close to the inferred separatrices on the magnetosphere and magnetosheath sides (Ssp and Ssh) and two boundaries associated with the Alfvén waves (or Rotational Discontinuities, RDsp and RDsh). The data are consistent with these being launched from the reconnection site and the plasma distributions are well ordered and suggestive of the time elapsed since reconnection of the field lines observed. In each sub-layer between the boundaries the plasma distribution is different and is centered around the current sheet, responsible for magnetosheath acceleration. We show evidence for a velocity dispersion effect in the electron anisotropy that is consistent with the time elapsed since reconnection. In addition, new evidence is presented for the occurrence of partial reflection of magnetosheath electrons at the magnetopause current layer.

  9. Better estimates of Entrainment Mixing, Subsidence, and Photochemical Ozone Production using Aircraft and WRF data during the California Baseline Ozone Transport Study (CABOTS)

    NASA Astrophysics Data System (ADS)

    Trousdell, J.; Faloona, I. C.

    2017-12-01

    In situ flight data collected in the San Joaquin Valley of California during the summer of 2016 is used to measure boundary layer entrainment rates, ozone photochemical production, regional methane and NOx emissions. The San Joaquin Valley is plagued with air quality issues including a high frequency of ozone exceedances in the summer and an aerosol issue in the winter exacerbated by a complex mesoscale environment with a different mountain range on three sides creating an effective cul-de-sac which limits outflow and ventilation. In addition, higher elevation air brought over top of the valley can influence the valley air by entrainment at the top of the turbulent daytime atmospheric boundary layer. The flights were conducted during the California Baseline Ozone Transport Study (CABOTS). Flights are valley wide between the cities of Fresno and Visalia with a thorough probing of the atmospheric boundary layer (ABL) including vertical profiling to diagnose the ABL height and its growth rate. Entrainment velocities, which are the parameterized mixing of free tropospheric air into the boundary layer, are determined by a detailed budget equation of the inversion height. A novel scalar budgeting technique is then applied to expose residual terms of individual equations that amount to ozone photochemical production and emission rates, including; NOx and methane. The budget equations are closed out by our predicted entrainment velocities, time rate of change and horizontal advection all determined via flight data. The results of our NOx budget suggests that the California Air Resources Board emission estimates for soil NOx is grossly underestimated. A strong relationship between entrainment rates and vertical wind shear has been observed, suggesting a significant contribution to entrainment driven by vertical shear compared to the surface buoyancy flux which drives the turbulent vertical motions in the boundary layer.

  10. Acoustically excited heated jets. 2: In search of a better understanding

    NASA Technical Reports Server (NTRS)

    Lepicovsky, J.; Ahuja, K. K.; Brown, W. H.; Salikuddin, M.; Morris, P. J.

    1988-01-01

    The second part of a three-part report on the effects of acoustic excitation on jet mixing includes the results of an experimental investigation directed at resolving the question of poor excitability of some of the heated jets. The theoretical predictions discussed in Part 1 are examined to find explanations for the observed discrepancies between the measured and the predicted results. Additional testing was performed by studying the self excitation of the shock containing hot jets and also by exciting the jet by sound radiated through source tubes located externally around the periphery of the jet. The effects of nozzle-exit boundary layer conditions on jet excitability was also investigated. It is concluded that high-speed, heated jet mixing rates and consequently also the jet excitability strongly depends on nozzle exit boundary layer conditions.

  11. Entrainment and Optical Properties of an Elevated Canadian Forest Fire Plume Transported into the Planetary Boundary Layer near Washington, D.C.

    NASA Technical Reports Server (NTRS)

    Colarco, P. R.; Schoeberl, M. R.; Doddridge, B. G.; Marufu, L. T.; Torres, O.; Welton, E. J.

    2003-01-01

    Smoke and pollutants from Canadian forest fires were transported over the northeastern United States in July 2002. Lidar observations at the NASA Goddard Space Flight Center show the smoke from these fires arriving in an elevated plume that was subsequently mixed to the surface. Trajectory and three-dimensional model calculations confirm the origin of the smoke and show that it mixed to the surface after it was intercepted by the turbulent planetary boundary layer. Modeled smoke optical properties agreed well with aircraft and remote sensing observations provided coagulation of smoke particles was accounted for in the model. Our results have important implications for the long-range transport of pollutants and their subsequent entrainment to the surface, as well as the evolving optical properties of smoke from boreal forest fires.

  12. Chemical composition of the atmospheric aerosol in the troposphere over the Hudson Bay lowlands and Quebec-Labrador regions of Canada

    NASA Technical Reports Server (NTRS)

    Gorzelska, K.; Talbot, R. W.; Klemm, K.; Lefer, B.; Klemm, O.; Gregory, G. L.; Anderson, B.; Barrie, L. A.

    1994-01-01

    Atmospheric aerosols were collected in the boundary layer and free troposphere over continental and coastal subarctic regions of Canada during the July - August 1990 joint U.S.-Canadian Arctic Boundary Layer Expedition (ABLE) 3B/Northern Wetlands Study (NOWES). The samples were analyzed for the following water soluble species: sulfate, nitrate, ammonium, potassium, sodium, chloride, oxalate, methylsulfonate, and total amine nitrogen. Ammonium and sulfate were the major water soluble components of these aerosols. The nearly neutral (overall) chemical composition of summertime aerosol particles contrasts their strongly acidic wintertime composition. Aerosol samples were separated into several air mass categories and characterized in terms of chemical composition, associated mixing ratios of gaseous compounds, and meteorological parameters. The fundamental category represented particles associated with 'background' air masses. The summertime atmospheric aerosols in background air over the North American subarctic and Arctic regions were characterized by relatively small and spatially uniform mixing ratios of the measured species. These aerosol particles were aged to the extent that they had lost their primary source signature. The chemical profile of the background air aerosols was frequently modified by additions from biomass fire plumes, aged tropical marine air, and intrusions of upper tropospheric/lower stratospheric air. Aerosols in boundary layer background air over the boreal forest region of Quebec-Labrador had significantly larger mixing ratios of ammonium and sulfate relative to the Hudson Bay region. This may reflect infiltration of anthropogenic pollution or be due to natural emissions from this region.

  13. The lagRST Model: A Turbulence Model for Non-Equilibrium Flows

    NASA Technical Reports Server (NTRS)

    Lillard, Randolph P.; Oliver, A. Brandon; Olsen, Michael E.; Blaisdell, Gregory A.; Lyrintzis, Anastasios S.

    2011-01-01

    This study presents a new class of turbulence model designed for wall bounded, high Reynolds number flows with separation. The model addresses deficiencies seen in the modeling of nonequilibrium turbulent flows. These flows generally have variable adverse pressure gradients which cause the turbulent quantities to react at a finite rate to changes in the mean flow quantities. This "lag" in the response of the turbulent quantities can t be modeled by most standard turbulence models, which are designed to model equilibrium turbulent boundary layers. The model presented uses a standard 2-equation model as the baseline for turbulent equilibrium calculations, but adds transport equations to account directly for non-equilibrium effects in the Reynolds Stress Tensor (RST) that are seen in large pressure gradients involving shock waves and separation. Comparisons are made to several standard turbulence modeling validation cases, including an incompressible boundary layer (both neutral and adverse pressure gradients), an incompressible mixing layer and a transonic bump flow. In addition, a hypersonic Shock Wave Turbulent Boundary Layer Interaction with separation is assessed along with a transonic capsule flow. Results show a substantial improvement over the baseline models for transonic separated flows. The results are mixed for the SWTBLI flows assessed. Separation predictions are not as good as the baseline models, but the over prediction of the peak heat flux downstream of the reattachment shock that plagues many models is reduced.

  14. Three-dimensional boundary layer calculation by a characteristic method

    NASA Technical Reports Server (NTRS)

    Houdeville, R.

    1992-01-01

    A numerical method for solving the three-dimensional boundary layer equations for bodies of arbitrary shape is presented. In laminar flows, the application domain extends from incompressible to hypersonic flows with the assumption of chemical equilibrium. For turbulent boundary layers, the application domain is limited by the validity of the mixing length model used. In order to respect the hyperbolic nature of the equations reduced to first order partial derivative terms, the momentum equations are discretized along the local streamlines using of the osculator tangent plane at each node of the body fitted coordinate system. With this original approach, it is possible to overcome the use of the generalized coordinates, and therefore, it is not necessary to impose an extra hypothesis about the regularity of the mesh in which the boundary conditions are given. By doing so, it is possible to limit, and sometimes to suppress, the pre-treatment of the data coming from an inviscid calculation. Although the proposed scheme is only semi-implicit, the method remains numerically very efficient.

  15. Photochemistry of biogenic emissions over the Amazon forest

    NASA Technical Reports Server (NTRS)

    Jacob, Daniel J.; Wofsy, Steven C.

    1988-01-01

    The boundary layer chemistry over the Amazon forest during the dry season is simulated with a photochemical model. Results are in good agreement with measurements of isoprene, NO, ozone, and organic acids. Photochemical reactions of biogenic isoprene and NOx can supply most of the ozone observed in the boundary layer. Production of ozone is very sensitive to the availability of NOx, but is insensitive to the isoprene source strength. High concentrations of total odd nitrogen (NOy) are predicted for the planetary boundary layer, about 1 ppb in the mixed layer and 0.75 ppb in the convective cloud layer. Most of the odd nitrogen is present as PAN-type species, which are removed by dry deposition to the forest. The observed daytime variations of isoprene are explained by a strong dependence of the isoprene emission flux on sun angle. Nighttime losses of isoprene exceed rates of reaction with NO3 and O3 and appear to reflect dry-deposition processes. The 24-hour averaged isoprene emission flux is calculated to be 38 mg/sq m per day. Photooxidation of isoprene could account for a large fraction of the CO enrichment observed in the boundary layer under unpolluted conditions and could constitute an important atmospheric source of formic acid, methacrylic acid, and pyruvic acid.

  16. Mechanisms Controlling the Interannual Variation of Mixed Layer Temperature Averaged over the Nino-3 Region

    NASA Technical Reports Server (NTRS)

    Kim, Seung-Bum; Lee, Tong; Fukumori, Ichiro

    2007-01-01

    The present study examines processes governing the interannual variation of MLT in the eastern equatorial Pacific.Processes controlling the interannual variation of mixed layer temperature (MLT) averaged over the Nino-3 domain (5 deg N-5 deg S, 150 deg-90 deg W) are studied using an ocean data assimilation product that covers the period of 1993-2003. The overall balance is such that surface heat flux opposes the MLT change but horizontal advection and subsurface processes assist the change. Advective tendencies are estimated here as the temperature fluxes through the domain's boundaries, with the boundary temperature referenced to the domain-averaged temperature to remove the dependence on temperature scale. This allows the authors to characterize external advective processes that warm or cool the water within the domain as a whole. The zonal advective tendency is caused primarily by large-scale advection of warm-pool water through the western boundary of the domain. The meridional advective tendency is contributed to mostly by Ekman current advecting large-scale temperature anomalies through the southern boundary of the domain. Unlike many previous studies, the subsurface processes that consist of vertical mixing and entrainment are explicitly evaluated. In particular, a rigorous method to estimate entrainment allows an exact budget closure. The vertical mixing across the mixed layer (ML) base has a contribution in phase with the MLT change. The entrainment tendency due to the temporal change in ML depth is negligible compared to other subsurface processes. The entrainment tendency by vertical advection across the ML base is dominated by large-scale changes in upwelling and the temperature of upwelling water. Tropical instability waves (TIWs) result in smaller-scale vertical advection that warms the domain during La Nina cooling events. However, such a warming tendency is overwhelmed by the cooling tendency associated with the large-scale upwelling by a factor of 2. In summary, all the balance terms are important in the MLT budget except the entrainment due to lateral induction and temporal variation in ML depth. All three advective tendencies are primarily caused by large-scale and low-frequency processes, and they assist the Nino-3 MLT change.

  17. Predictions and Verification of an Isotope Marine Boundary Layer Model

    NASA Astrophysics Data System (ADS)

    Feng, X.; Posmentier, E. S.; Sonder, L. J.; Fan, N.

    2017-12-01

    A one-dimensional (1D), steady state isotope marine boundary layer (IMBL) model is constructed. The model includes meteorologically important features absent in Craig and Gordon type models, namely height-dependent diffusion/mixing and convergence of subsiding external air. Kinetic isotopic fractionation results from this height-dependent diffusion which starts as pure molecular diffusion at the air-water interface and increases linearly with height due to turbulent mixing. The convergence permits dry, isotopically depleted air subsiding adjacent to the model column to mix into ambient air. In δD-δ18O space, the model results fill a quadrilateral, of which three sides represent 1) vapor in equilibrium with various sea surface temperatures (SSTs) (high d18O boundary of quadrilateral); 2) mixture of vapor in equilibrium with seawater and vapor in the subsiding air (lower boundary depleted in both D and 18O); and 3) vapor that has experienced the maximum possible kinetic fractionation (high δD upper boundary). The results can be plotted in d-excess vs. δ18O space, indicating that these processes all cause variations in d-excess of MBL vapor. In particular, due to relatively high d-excess in the descending air, mixing of this air into the MBL causes an increase in d-excess, even without kinetic isotope fractionation. The model is tested by comparison with seven datasets of marine vapor isotopic ratios, with excellent correspondence; >95% of observational data fall within the quadrilateral area predicted by the model. The distribution of observations also highlights the significant influence of vapor from the nearby converging descending air on isotopic variations in the MBL. At least three factors may explain the <5% of observations that fall slightly outside of the predicted region in both δD-δ18O and d-excess - δ18O space: 1) variations in seawater isotopic ratios, 2) variations in isotopic composition of subsiding air, and 3) influence of sea spray. The model can be used for understanding the effects of boundary layer processes and meteorological conditions on isotopic composition of vapor within, and vapor fluxes through the MBL, and how changes in moisture source regions affect the isotopic composition of precipitation. The model can be applied to modern as well as paleo- climate conditions.

  18. Influence of the characteristics of atmospheric boundary layer on the vertical distribution of air pollutant in China's Yangtze River Delta

    NASA Astrophysics Data System (ADS)

    Wang, Chenggang; Cao, Le

    2016-04-01

    Air pollution occurring in the atmospheric boundary layer is a kind of weather phenomenon which decreases the visibility of the atmosphere and results in poor air quality. Recently, the occurrence of the heavy air pollution events has become more frequent all over Asia, especially in Mid-Eastern China. In December 2015, the most severe air pollution in recorded history of China occurred in the regions of Yangtze River Delta and Beijing-Tianjin-Hebei. More than 10 days of severe air pollution (Air Quality Index, AQI>200) appeared in many large cities of China such as Beijing, Tianjin, Shijiazhuang and Baoding. Thus, the research and the management of the air pollution has attracted most attentions in China. In order to investigate the formation, development and dissipation of the air pollutions in China, a field campaign has been conducted between January 1, 2015 and January 28, 2015 in Yangtze River Delta of China, aiming at a intensive observation of the vertical structure of the air pollutants in the atmospheric boundary layer during the time period with heavy pollution. In this study, the observation data obtained in the field campaign mentioned above is analyzed. The characteristics of the atmospheric boundary layer and the vertical distribution of air pollutants in the city Dongshan located in the center of Lake Taihu are shown and discussed in great detail. It is indicated that the stability of the boundary layer is the strongest during the nighttime and the early morning of Dongshan. Meanwhile, the major air pollutants, PM2.5 and PM10 in the boundary layer, reach their maximum values, 177.1μg m-3 and 285μg m-3 respectively. The convective boundary layer height in the observations ranges from approximately 700m to 1100m. It is found that the major air pollutants tend to be confined in a relatively shallow boundary layer, which represents that the boundary layer height is the dominant factor for controlling the vertical distribution of the air pollutants. In the observations, several strong temperature inversion layers are also found in the surface layer and the middle part of the boundary layer, which lead to the suppression of the vertical mixing of the air pollutants. The jet stream occurring in the boundary layer also contributes to the prevention of the vertical dissipation of the air pollutants. It is also observed that the temporal and spatial evolution of the air pollutants and the hygroscopic growth of the aerosols in the boundary layer are heavily dependent on the humidity of the air.

  19. Aspects of turbulent-shear-layer dynamics and mixing

    NASA Astrophysics Data System (ADS)

    Slessor, Michael David

    Experiments have been conducted in the GALCIT Supersonic Shear Layer Facility to investigate some aspects of high-Reynolds-number, turbulent, shearlayer flows in both incompressible- and compressible-flow regimes. Experiments designed to address several issues were performed; effects of inflow boundary conditions, freestream conditions (supersonic/subsonic flow), and compressibility, on both large-scale dynamics and small-scale mixing, are described. Chemically-reacting and non-reacting flows were investigated, the former relying on the (H2 + NO/F2) chemical system, in the fast-kinetic regime, to infer the structure and amount of molecular-scale mixing through use of "flip" experiments. A variety of experimental techniques, including a color-schlieren visualization system developed as part of this work, were used to study the flows. Both inflow conditions and compressibility are found to have significant effects on the flow. In particular, inflow conditions are "remembered" for long distances downstream, a sensitivity similar to that observed in low-dimensionality, non-linear (chaotic) systems. The global flowfields (freestreams coupled by the shear layer) of transonic flows exhibit a sensitivity to imposed boundary conditions, i. e., local area ratios. A previously-proposed mode-selection rule for turbulent-structure convection speeds, based on the presence of a lab-frame subsonic freestream, was experimentally demonstrated to be incorrect. Compressibility, when decoupled from all other parameters, e.g., Reynolds number, velocity and density ratios, etc., reduces laxge-scale entrainment and turbulent growth, but slightly enhances smallscale mixing, with an associated change in the structure of the molecularly-mixed fluid. This reduction in shear-layer growth rate is examined and a new parameter that interprets compressibility as an energy-exchange mechanism is proposed. The parameter reconciles and collapses experimentally-observed growth rates.

  20. Thermodynamic and radiative structure of stratocumulus-topped boundary layers*

    DOE PAGES

    Ghate, Virendra P.; Miller, Mark A.; Albrecht, Bruce A.; ...

    2015-01-05

    Stratocumulus Topped Boundary Layers (STBL) observed in three different regions with distinctive environments are described in the context of their thermodynamic and radiative properties. Here, the primary data set consisted of 131 soundings from the South East Pacific (SEP), 90 soundings from the island of Graciosa (GRW) in the North Atlantic and 83 soundings from the US Southern Great Plains (SGP). A new technique that preserves the depths of the sub-layers within a STBL is proposed for averaging the profiles of thermodynamic and radiative variables. The STBL was deepest over SEP and had the strongest radiative cooling rates near cloudmore » top among the three locations. Although the radiative cooling rates were comparable over GRW and SGP, the STBL was deeper over GRW compared to that over SGP. On average the STBL inversion was strongest over SEP (11.7 k and -5.43 g kg -1) and weakest over the SGP (6.89 k and -0.41 g kg -1). Significantly larger liquid water path, integrated water vapor, and variability in these two properties was found over GRW and evidence presented suggests that conditions at cloud top may play a lesser role in determining the resident cloud structure over GRW than over SEP. A modal analysis revealed ~26% of the STBL to be well-mixed, ~20% of STBL to be stable and ~30% STBL having a stable layer in-between a surface mixed layer and the cloud layer. Over all the three locations, the STBL was shallowest in well-mixed mode and deepest in the stable mode.« less

  1. Quantifying Ozone Production throughout the Boundary Layer from High Frequency Tethered Profile Measurements during a High Ozone Episode in the Uinta Basin, Utah

    NASA Astrophysics Data System (ADS)

    Sterling, C. W.; Johnson, B.; Schnell, R. C.; Oltmans, S. J.; Cullis, P.; Hall, E. G.; Jordan, A. F.; Windell, J.; McClure-Begley, A.; Helmig, D.; Petron, G.

    2015-12-01

    During the Uinta Basin Winter Ozone Study (UBWOS) in Jan - Feb 2013, 735 tethered ozonesonde profiles were obtained at 3 sites including during high wintertime photochemical ozone production events that regularly exceeded 125 ppb. High resolution profiles of ozone and temperature with altitude, measured during daylight hours, showed the development of approximately week long high ozone episodes building from background levels of ~40 ppb to >150 ppb. The topography of the basin combined with a strong temperature inversion trapped oil and gas production effluents in the basin and the snow covered surface amplified the sun's radiation driving the photochemical ozone production at rates up to 13 ppb/hour in a cold layer capped at 1600-1700 meters above sea level. Beginning in mid-morning, ozone mixing ratios throughout the cold layer increased until late afternoon. Ozone mixing ratios were generally constant with height indicating that ozone production was nearly uniform throughout the depth of the cold pool. Although there was strong diurnal variation, ozone mixing ratios increased during the day more than decreased during the night, resulting in elevated levels the next morning; an indication that nighttime loss processes did not compensate for daytime production. Even though the 3 tethersonde sites were at elevations differing by as much as 140 m, the top of the high ozone layer was nearly uniform in altitude at the 3 locations. Mobile van surface ozone measurements across the basin confirmed this capped structure of the ozone layer; the vehicle drove out of high ozone mixing ratios at an elevation of ~1900 meters above sea level, above which free tropospheric ozone mixing ratios of ~50 ppb were measured. Exhaust plumes from a coal-fired power plant in the eastern portion of the basin were intercepted by the tethersondes. The structure of the profiles clearly showed that effluents in the plumes were not mixed downward and thus did not contribute precursor nitrogen oxides to the observed ozone production in the boundary layer.

  2. Response of the Land-Atmosphere System Over North-Central Oklahoma During the 2017 Eclipse

    NASA Astrophysics Data System (ADS)

    Turner, D. D.; Wulfmeyer, V.; Behrendt, A.; Bonin, T. A.; Choukulkar, A.; Newsom, R. K.; Brewer, W. A.; Cook, D. R.

    2018-02-01

    On 21 August 2017, a solar eclipse occurred over the continental United States resulting in a rapid reduction and subsequent increase of solar radiation over a large region of the country. The eclipse's effect on the land-atmosphere system is documented in unprecedented detail using a unique array of sensors deployed at three sites in north-central Oklahoma. The observations showed that turbulent fluxes of heat and momentum at the surface responded quickly to the change in solar radiation. The decrease in the sensible heat flux resulted in a decrease in the air temperature below 200 m, and a large decrease in turbulent motions throughout the boundary layer. Furthermore, the turbulent mixing in the boundary layer lagged behind the change in the surface fluxes, and this lag depended on the height above the surface. The turbulent motions increased and the convective boundary layer was reestablished as the sensible heat flux recovered.

  3. Boundary layer concentrations and landscape scale emissions of volatile organic compounds in early spring

    NASA Astrophysics Data System (ADS)

    Haapanala, S.; Rinne, J.; Hakola, H.; Hellén, H.; Laakso, L.; Lihavainen, H.; Janson, R.; Kulmala, M.

    2006-10-01

    Boundary layer concenrations of several volatile organic compounds (VOC) were measured during two campaigns in springs of 2003 and 2006. Measurements were conducted over boreal forests near SMEAR II measurement station in Hyytiälä, Southern Finland. In 2003 the measuremens were performed using light aircraft and in 2006 using hot air ballon. Isoprene concentrarions were low, usually below detection limit. This is explained by low biogenic production due to cold weather. Monoterpenes were observed frequently. Average total monoterpene concentration in the boundary layer was 33 pptv. Many anthropogenic compounds e.g. benzene, xylene and toluene, were observed in high amounts. Ecosystem scale surface emissions were estimated using simple mixed box budget methodology. Total monoterpene fluxes varied up to 80 μg m-2 h-1, α-pinene contributing typically more than two thirds of that. Highest fluxes of anthropogenic compounds were those of p/m xylene.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turner, D. D.; Wulfmeyer, V.; Behrendt, A.

    On 21 August 2017, a solar eclipse occurred over the continental United States resulting in a rapid reduction and subsequent increase of solar radiation over a large region of the country. The eclipse’s effect on the land-atmosphere system is documented in unprecedented detail using a unique array of sensors deployed at three sites in north-central Oklahoma. The observations showed that turbulent fluxes of heat and momentum at the surface responded quickly to the change in solar radiation. The decrease in the sensible heat flux resulted in a decrease in the air temperature below 200 m, and a large decrease inmore » turbulent motions throughout the boundary layer. Furthermore, the turbulent mixing in the boundary layer lagged behind the change in the surface fluxes, and this lag depended on the height above the surface. The turbulent motions increased and the convective boundary layer was reestablished as the sensible heat flux recovered.« less

  5. Influence of Idealized Heterogeneity on Wet and Dry Planetary Boundary Layers Coupled to the Land Surface. 2; Phase-Averages

    NASA Technical Reports Server (NTRS)

    Houser, Paul (Technical Monitor); Patton, Edward G.; Sullivan, Peter P.; Moeng, Chin-Hoh

    2003-01-01

    We examine the influence of surface heterogeneity on boundary layers using a large-eddy simulation coupled to a land-surface model. Heterogeneity, imposed in strips varying from 2-30 km (1 less than lambda/z(sub i) less than 18), is found to dramatically alter the structure of the free convective boundary layer by inducing significant organized circulations. A conditional sampling technique, based on the scale of the surface heterogeneity (phase averaging), is used to identify and quantify the organized surface fluxes and motions in the atmospheric boundary layer. The impact of the organized motions on turbulent transport depends critically on the scale of the heterogeneity lambda, the boundary layer height zi and the initial moisture state of the boundary layer. Dynamical and scalar fields respond differently as the scale of the heterogeneity varies. Surface heterogeneity of scale 4 less than lamba/z(sub i) less than 9 induces the strongest organized flow fields (up, wp) while heterogeneity with smaller or larger lambda/z(sub i) induces little organized motion. However, the organized components of the scalar fields (virtual potential temperature and mixing ratio) grow continuously in magnitude and horizontal scale, as lambda/z(sub i) increases. For some cases, the organized motions can contribute nearly 100% of the total vertical moisture flux. Patch-induced fluxes are shown to dramatically impact point measurements that assume the time-average vertical velocity to be zero. The magnitude and sign of this impact depends on the location of the measurement within the region of heterogeneity.

  6. An Algorithm for the Vertical Structure of Aerosol Extinction in the Lowest Kilometer of the Atmosphere: Rev. 1

    DTIC Science & Technology

    2017-11-01

    inversion layer, or the well-mixed boundary layer. In such cases a low cloud ceiling is not present. In all instances the atmospheric extinction profiles...height, radiation fog depth, or the inversion layer height. The visibility regions and several representative vertical profiles of extinction are...the coefficient B can be found by B = ln(D/A) . (2) The coefficient B is sometimes a function of the cloud ceiling height, the inversion layer height

  7. Exact solution of two collinear cracks normal to the boundaries of a 1D layered hexagonal piezoelectric quasicrystal

    NASA Astrophysics Data System (ADS)

    Zhou, Y.-B.; Li, X.-F.

    2018-07-01

    The electroelastic problem related to two collinear cracks of equal length and normal to the boundaries of a one-dimensional hexagonal piezoelectric quasicrystal layer is analysed. By using the finite Fourier transform, a mixed boundary value problem is solved when antiplane mechanical loading and inplane electric loading are applied. The problem is reduce to triple series equations, which are then transformed to a singular integral equation. For uniform remote loading, an exact solution is obtained in closed form, and explicit expressions for the electroelastic field are determined. The intensity factors of the electroelastic field and the energy release rate at the inner and outer crack tips are given and presented graphically.

  8. Inlets, ducts, and nozzles

    NASA Technical Reports Server (NTRS)

    Abbott, John M.; Anderson, Bernhard H.; Rice, Edward J.

    1990-01-01

    The internal fluid mechanics research program in inlets, ducts, and nozzles consists of a balanced effort between the development of computational tools (both parabolized Navier-Stokes and full Navier-Stokes) and the conduct of experimental research. The experiments are designed to better understand the fluid flow physics, to develop new or improved flow models, and to provide benchmark quality data sets for validation of the computational methods. The inlet, duct, and nozzle research program is described according to three major classifications of flow phenomena: (1) highly 3-D flow fields; (2) shock-boundary-layer interactions; and (3) shear layer control. Specific examples of current and future elements of the research program are described for each of these phenomenon. In particular, the highly 3-D flow field phenomenon is highlighted by describing the computational and experimental research program in transition ducts having a round-to-rectangular area variation. In the case of shock-boundary-layer interactions, the specific details of research for normal shock-boundary-layer interactions are described. For shear layer control, research in vortex generators and the use of aerodynamic excitation for enhancement of the jet mixing process are described.

  9. Large Eddy Simulations of Continental Boundary Layer Clouds Observed during the RACORO Field Campaign

    NASA Astrophysics Data System (ADS)

    Endo, S.; Fridlind, A. M.; Lin, W.; Vogelmann, A. M.; Toto, T.; Liu, Y.

    2013-12-01

    Three cases of boundary layer clouds are analyzed in the FAst-physics System TEstbed and Research (FASTER) project, based on continental boundary-layer-cloud observations during the RACORO Campaign [Routine Atmospheric Radiation Measurement (ARM) Aerial Facility (AAF) Clouds with Low Optical Water Depths (CLOWD) Optical Radiative Observations] at the ARM Climate Research Facility's Southern Great Plains (SGP) site. The three 60-hour case study periods are selected to capture the temporal evolution of cumulus, stratiform, and drizzling boundary-layer cloud systems under a range of conditions, intentionally including those that are relatively more mixed or transitional in nature versus being of a purely canonical type. Multi-modal and temporally varying aerosol number size distribution profiles are derived from aircraft observations. Large eddy simulations (LESs) are performed for the three case study periods using the GISS Distributed Hydrodynamic Aerosol and Radiative Modeling Application (DHARMA) model and the WRF-FASTER model, which is the Weather Research and Forecasting (WRF) model implemented with forcing ingestion and other functions to constitute a flexible LES. The two LES models commonly capture the significant transitions of cloud-topped boundary layers in the three periods: diurnal evolution of cumulus layers repeating over multiple days, nighttime evolution/daytime diminution of thick stratus, and daytime breakup of stratus and stratocumulus clouds. Simulated transitions of thermodynamic structures of the cloud-topped boundary layers are examined by balloon-borne soundings and ground-based remote sensors. Aircraft observations are then used to statistically evaluate the predicted cloud droplet number size distributions under varying aerosol and cloud conditions. An ensemble approach is used to refine the model configuration for the combined use of observations with parallel LES and single-column model simulations. See Lin et al. poster for single-column model investigation.

  10. Impact of Bay-Breeze Circulations on Surface Air Quality and Boundary Layer Export

    NASA Technical Reports Server (NTRS)

    Loughner, Christopher P.; Tzortziou, Maria; Follette-Cook, Melanie; Pickering, Kenneth E.; Goldberg, Daniel; Satam, Chinmay; Weinheimer, Andrew; Crawford, James H.; Knapp, David J.; Montzka, Denise D.; hide

    2014-01-01

    Meteorological and air-quality model simulations are analyzed alongside observations to investigate the role of the Chesapeake Bay breeze on surface air quality, pollutant transport, and boundary layer venting. A case study was conducted to understand why a particular day was the only one during an 11-day ship-based field campaign on which surface ozone was not elevated in concentration over the Chesapeake Bay relative to the closest upwind site and why high ozone concentrations were observed aloft by in situ aircraft observations. Results show that southerly winds during the overnight and early-morning hours prevented the advection of air pollutants from the Washington, D.C., and Baltimore, Maryland, metropolitan areas over the surface waters of the bay. A strong and prolonged bay breeze developed during the late morning and early afternoon along the western coastline of the bay. The strength and duration of the bay breeze allowed pollutants to converge, resulting in high concentrations locally near the bay-breeze front within the Baltimore metropolitan area, where they were then lofted to the top of the planetary boundary layer (PBL). Near the top of the PBL, these pollutants were horizontally advected to a region with lower PBL heights, resulting in pollution transport out of the boundary layer and into the free troposphere. This elevated layer of air pollution aloft was transported downwind into New England by early the following morning where it likely mixed down to the surface, affecting air quality as the boundary layer grew.

  11. Developing a framework for integrating turbulence measurements and modeling of ecosystem-atmosphere interactions

    NASA Astrophysics Data System (ADS)

    Markfort, C. D.

    2017-12-01

    Aquatic ecosystems are integrators of nutrient and carbon from their watersheds. The effects of climate change in many cases will enhance the rate of these inputs and change the thermodynamics within aquatic environments. It is unclear the extent these changes will have on water quality and carbon assimilation, but the drivers of these processes will be determined by the complex interactions at the land-water and air-water interfaces. For example, flow over and beneath wind-driven surface waves generate turbulence that plays an important role in aquatic ecology and biogeochemistry, exchange of gases such as oxygen and carbon dioxide, and it is important for the transfer of energy and controlling evaporation. Energy transferred from the atmosphere promotes the generation and maintenance of waves. A fraction of the energy is transferred to the surface mixed layer through the generation of turbulence. Energy is also transferred back to the atmosphere by waves. There is a need to quantify the details of the coupled boundary layers of the air-water system to better understand how turbulence plays a role in the interactions. We have developed capabilities to conduct field and laboratory experiments using eddy covariance on tall-towers and rafts, UAS platforms integrated with remote sensing, and detailed wind-wave measurements with time-resolved PIV in a new boundary layer wind-wave tunnel. We will show measurements of the detailed structure of the air and water boundary layers under varying wind and wave conditions in the newly developed IIHR Boundary-Layer Wind-Wave Tunnel. The facility combines a 30-m long recirculating water channel with an open-return boundary layer wind tunnel. A thick turbulent boundary layer is developed in the 1 m high air channel, over the water surface, allowing for the study of boundary layer turbulence interacting with a wind-driven wave field. Results will help interpret remote sensing, energy budget measurements, and turbulence transport models for sheltered lakes influenced by terrain and tall trees.

  12. Typhoon Impacts

    DTIC Science & Technology

    2014-09-30

    and Rmax is the radius of maximum winds . Figure 1 compares two properties of the cold wake, its location and its strength , from 6 storms. The...dimensional response of the underlying ocean including strong surface currents, upwelling of the thermocline, intense mixing across the thermocline, the...mixing determining the rate and character of wake dissipation. The wake is also expected to modify the atmospheric boundary layer and the biology

  13. Interface dissolution control of the 14C profile in marine sediment

    USGS Publications Warehouse

    Keir, R.S.; Michel, R.L.

    1993-01-01

    The process of carbonate dissolution at the sediment-water interface has two possible endmember boundary conditions. Either the carbonate particles dissolve mostly before they are incorporated into the sediment by bioturbation (interface dissolution), or the vertical mixing is rapid relative to their extermination rate (homogeneous dissolution). In this study, a detailed radiocarbon profile was determined in deep equatorial Pacific sediment that receives a high rate of carbonate supply. In addition, a box model of sediment mixing was used to simulate radiocarbon, carbonate content and excess thorium profiles that result from either boundary process following a dissolution increase. Results from homogeneous dissolution imply a strong, very recent erosional event, while interface dissolution suggests that moderately increased dissolution began about 10,000 years ago. In order to achieve the observed mixed layer radiocarbon age, increased homogeneous dissolution would concentrate a greater amount of clay and 230Th than is observed, while for interface dissolution the predicted concentrations are too small. These results together with small discontinuities beneath the mixed layer in 230Th profiles suggest a two-stage increase in interface dissolution in the deep Pacific, the first occurring near the beginning of the Holocene and the second more recently, roughly 5000 years ago. ?? 1993.

  14. Radial mixing in turbomachines

    NASA Astrophysics Data System (ADS)

    Segaert, P.; Hirsch, Ch.; Deruyck, J.

    1991-03-01

    A method for computing the effects of radial mixing in a turbomachinery blade row has been developed. The method fits in the framework of a quasi-3D flow computation and hence is applied in a corrective fashion to through flow distributions. The method takes into account both secondary flows and turbulent diffusion as possible sources of mixing. Secondary flow velocities determine the magnitude of the convection terms in the energy redistribution equation while a turbulent diffusion coefficient determines the magnitude of the diffusion terms. Secondary flows are computed by solving a Poisson equation for a secondary streamfunction on a transversal S3-plane, whereby the right-hand side axial vorticity is composed of different contributions, each associated to a particular flow region: inviscid core flow, end-wall boundary layers, profile boundary layers and wakes. The turbulent mixing coefficient is estimated by a semi-empirical correlation. Secondary flow theory is applied to the VUB cascade testcase and comparisons are made between the computational results and the extensive experimental data available for this testcase. This comparison shows that the secondary flow computations yield reliable predictions of the secondary flow pattern, both qualitatively and quantitatively, taking into account the limitations of the model. However, the computations show that use of a uniform mixing coefficient has to be replaced by a more sophisticated approach.

  15. Regeneratively cooled coal combustor/gasifier with integral dry ash removal

    DOEpatents

    Beaufrere, A.H.

    1982-04-30

    A coal combustor/gasifier is disclosed which produces a low or medium combustion gas fired furnances or boilers. Two concentric shells define a combustion air flows to provide regenerative cooling of the inner shell for dry ash operation. A fuel flow and a combustion air flow having opposed swirls are mixed and burned in a mixing-combustion portion of the combustion volume and the ash laden combustion products flow with a residual swirl into an ash separation region. The ash is cooled below the fusion temperature and is moved to the wall by centrifugal force where it is entrained in the cool wall boundary layer. The boundary layer is stabilized against ash re-entrainment as it is moved to an ash removal annulus by a flow of air from the plenum through slots in the inner shell, and by suction on an ash removal skimmer slot.

  16. Day and night profiles of tropospheric nitrous oxide

    NASA Technical Reports Server (NTRS)

    Cofer, Wesley R., III; Connors, Vickie S.; Levine, Joel S.; Edahl, Robert A., Jr.

    1986-01-01

    Daytime and nighttime vertical profiles of the tropospheric trace gas N2O were determined from grab sample collections off the Atlantic and Gulf coasts of Florida. The grab samples were collected during the week of October 7-13, 1984, from a Lear jet during descent spirals over an altitude range of 12.5-0.3 km in approximately 1.2-km intervals. During this period there were two distinct airflow regimes sampled: (1) the surface boundary layer (less than 2 km), in which the wind direction was typically easterly; and (2) the regime above the boundary layer, which was predominantly characterized by westerly flow. N2O mixing ratios, normalized to dry air, were determined from 148 daytime and nighttime samplings. N2O was found to be uniformly mixed at all altitudes at 301.9 + or - 2.4 parts per billion by volume.

  17. Comment on: "Corrections to the Mathematical Formulation of a Backwards Lagrangian Particle Dispersion Model" by Gibson and Sailor (2012: Boundary-Layer Meteorology 145, 399-406)

    NASA Astrophysics Data System (ADS)

    Stöckl, Stefan; Rotach, Mathias W.; Kljun, Natascha

    2018-01-01

    We discuss the results of Gibson and Sailor (Boundary-Layer Meteorol 145:399-406, 2012) who suggest several corrections to the mathematical formulation of the Lagrangian particle dispersion model of Rotach et al. (Q J R Meteorol Soc 122:367-389, 1996). While most of the suggested corrections had already been implemented in the 1990s, one suggested correction raises a valid point, but results in a violation of the well-mixed criterion. Here we improve their idea and test the impact on model results using a well-mixed test and a comparison with wind-tunnel experimental data. The new approach results in similar dispersion patterns as the original approach, while the approach suggested by Gibson and Sailor leads to erroneously reduced concentrations near the ground in convective and especially forced convective conditions.

  18. Mixed convection boundary layer flow over a moving vertical flat plate in an external fluid flow with viscous dissipation effect.

    PubMed

    Bachok, Norfifah; Ishak, Anuar; Pop, Ioan

    2013-01-01

    The steady boundary layer flow of a viscous and incompressible fluid over a moving vertical flat plate in an external moving fluid with viscous dissipation is theoretically investigated. Using appropriate similarity variables, the governing system of partial differential equations is transformed into a system of ordinary (similarity) differential equations, which is then solved numerically using a Maple software. Results for the skin friction or shear stress coefficient, local Nusselt number, velocity and temperature profiles are presented for different values of the governing parameters. It is found that the set of the similarity equations has unique solutions, dual solutions or no solutions, depending on the values of the mixed convection parameter, the velocity ratio parameter and the Eckert number. The Eckert number significantly affects the surface shear stress as well as the heat transfer rate at the surface.

  19. Dispersion and Mixing in Quasi-two-dimensional Rotating Flows

    NASA Astrophysics Data System (ADS)

    Wells, M. G.; Clercx, H. J. H.; van Heijst, G. J. F.

    A new rotating-tank experiment has been set up to investigate several aspects of dispersion in forced quasi-two-dimensional turbulence. By superimposing a harmonically varying perturbation on the mean rotation rate the mean flow continually interacts with the no-slip boundaries and forms boundary layers with high-amplitude vorticity twice during the forcing period. By choosing the proper amplitude and frequency of the perturbation it is possible to continuously inject small-scale vorticity in the interior of the flow, either in the form of filamentary structures (detached boundary layers) or as small vortices (after the roll-up of detached boundary layers). We present measurements of the passive scalar spectrum which show good agreement with the k -1 spectrum predicted by Batchelor (J. Fluid Mech. 5:113, 1959). Using particle image velocimetry we are able to reconstruct the Lagrangian trajectories of particles. The relative dispersion rates of particle pairs show an initial exponential separation followed by the classical Richardson dispersion, R 2 ∝ t3.0± 0.1. The variance of the absolute particle displacement grows as σ ∝ t1.4, similar to the observations in the previous experiments by Solomon et al. (Phys. Rev. Lett. 71:3975, 1993) and Hansen et al. (Phys. Rev. E 58:7261, 1998). Finally, and indicating future directions of research, we present results of a simple chemical reaction in forced quasi-2D turbulence and show how the bulk reaction rate is controlled by the mixing and filamentation processes.

  20. Observations of Strong Surface Radar Ducts over the Persian Gulf.

    NASA Astrophysics Data System (ADS)

    Brooks, Ian M.; Goroch, Andreas K.; Rogers, David P.

    1999-09-01

    Ducting of microwave radiation is a common phenomenon over the oceans. The height and strength of the duct are controlling factors for radar propagation and must be determined accurately to assess propagation ranges. A surface evaporation duct commonly forms due to the large gradient in specific humidity just above the sea surface; a deeper surface-based or elevated duct frequently is associated with the sudden change in temperature and humidity across the boundary layer inversion.In April 1996 the U.K. Meteorological Office C-130 Hercules research aircraft took part in the U.S. Navy Ship Antisubmarine Warfare Readiness/Effectiveness Measuring exercise (SHAREM-115) in the Persian Gulf by providing meteorological support and making measurements for the study of electromagnetic and electro-optical propagation. The boundary layer structure over the Gulf is influenced strongly by the surrounding desert landmass. Warm dry air flows from the desert over the cooler waters of the Gulf. Heat loss to the surface results in the formation of a stable internal boundary layer. The layer evolves continuously along wind, eventually forming a new marine atmospheric boundary layer. The stable stratification suppresses vertical mixing, trapping moisture within the layer and leading to an increase in refractive index and the formation of a strong boundary layer duct. A surface evaporation duct coexists with the boundary layer duct.In this paper the authors present aircraft- and ship-based observations of both the surface evaporation and boundary layer ducts. A series of sawtooth aircraft profiles map the boundary layer structure and provide spatially distributed estimates of the duct depth. The boundary layer duct is found to have considerable spatial variability in both depth and strength, and to evolve along wind over distances significant to naval operations (100 km). The depth of the evaporation duct is derived from a bulk parameterization based on Monin-Obukhov similarity theory using near-surface data taken by the C-130 during low-level (30 m) flight legs and by ship-based instrumentation. Good agreement is found between the two datasets. The estimated evaporation ducts are found to be generally uniform in depth; however, localized regions of greatly increased depth are observed on one day, and a marked change in boundary layer structure resulting in merging of the surface evaporation duct with the deeper boundary layer duct was observed on another. Both of these cases occurred within exceptionally shallow boundary layers (100 m), where the mean evaporation duct depths were estimated to be between 12 and 17 m. On the remaining three days the boundary layer depth was between 200 and 300 m, and evaporation duct depths were estimated to be between 20 and 35 m, varying by just a few meters over ranges of up to 200 km.The one-way radar propagation factor is modeled for a case with a pronounced change in duct depth. The case is modeled first with a series of measured profiles to define as accurately as possible the refractivity structure of the boundary layer, then with a single profile collocated with the radar antenna and assuming homogeneity. The results reveal large errors in the propagation factor when derived from a single profile.

  1. The IMADA-AVER Boundary Layer Experiment in the Mexico City Area.

    NASA Astrophysics Data System (ADS)

    Doran, J. C.; Bian, X.; de Wekker, S. F. J.; Edgerton, S.; Fast, J. D.; Hubbe, J. M.; Shaw, W. J.; Whiteman, C. D.; Abbott, S.; King, C.; Leach, J.; Mulhearn, M.; Russell, C.; Templeman, B.; Wolfe, D.; Archuleta, J.; Elliott, S.; Fernandez, A.; Langley, D.; Lee, J. T.; Porch, W.; Tellier, L.; Chow, J.; Watson, J. G.; Coulter, R. L.; Martin, T. J.; Shannon, J. D.; White, R.; Martinez, D.; Martinez, J. L.; Mora, V.; Sosa, G.; Mercado, G.; Pena, J. L.; Salas, R.; Petty, R.

    1998-11-01

    A boundary layer field experiment in the Mexico City basin during the period 24 February-22 March 1997 is described. A total of six sites were instrumented. At four of the sites, 915-MHz radar wind profilers were deployed and radiosondes were released five times per day. Two of these sites also had sodars collocated with the profilers. Radiosondes were released twice per day at a fifth site to the south of the basin, and rawinsondes were flown from another location to the northeast of the city three times per day. Mixed layers grew to depths of 2500-3500 m, with a rapid period of growth beginning shortly before noon and lasting for several hours. Significant differences between the mixed-layer temperatures in the basin and outside the basin were observed. Three thermally and topographically driven flow patterns were observed that are consistent with previously hypothesized topographical and thermal forcing mechanisms. Despite these features, the circulation patterns in the basin important for the transport and diffusion of air pollutants show less day-to-day regularity than had been anticipated on the basis of Mexico City's tropical location, high altitude and strong insolation, and topographical setting.

  2. The Provenance of Sulfur that Becomes Non-Seasalt Sulfate (NSS)

    NASA Astrophysics Data System (ADS)

    Huebert, B. J.; Simpson, R. M.; Howell, S. G.

    2012-12-01

    As a part of the Pacific Atmospheric Sulfur Experiment (PASE), we measured sulfur gases and aerosol chemistry (vs size) from the NCAR C-130 near Christmas Island. Monthly (project) average concentrations in the Marine Boundary Layer (MBL, the lowest mixed layer) and Buffer Layer (BuL, a more stable layer atop the MBL, with clouds) are used to evaluate the formation, loss, and exchange rates for DMS, SO2, and NSS in each layer. We evaluate entrainment, divergence, vertical mixing, chemical formation and loss for each to make a self-consistent budget of oxidized sulfur in the remote marine atmosphere. We find that long-range transport of sulfur from continental sources can be larger than the sulfur source from biogenic dimethyl sulfide, DMS. DMS does not appear to control either the number of NSS particles or NSS mass.

  3. Stability and natural vibration analysis of laminated plates by using a mixed element based on a refined plate theory

    NASA Technical Reports Server (NTRS)

    Putcha, N. S.; Reddy, J. N.

    1986-01-01

    A mixed shear flexible finite element, with relaxed continuity, is developed for the geometrically linear and nonlinear analysis of layered anisotropic plates. The element formulation is based on a refined higher order theory which satisfies the zero transverse shear stress boundary conditions on the top and bottom faces of the plate and requires no shear correction coefficients. The mixed finite element developed herein consists of eleven degrees of freedom per node which include three displacements, two rotations and six moment resultants. The element is evaluated for its accuracy in the analysis of the stability and vibration of anisotropic rectangular plates with different lamination schemes and boundary conditions. The mixed finite element described here for the higher order theory gives very accurate results for buckling loads and natural frequencies.

  4. Identification of atmospheric boundary layer thickness using doppler radar datas and WRF - ARW model in Merauke

    NASA Astrophysics Data System (ADS)

    Putri, R. J. A.; Setyawan, T.

    2017-01-01

    In the synoptic scale, one of the important meteorological parameter is the atmospheric boundary layer. Aside from being a supporter of the parameters in weather and climate models, knowing the thickness of the layer of the atmosphere can help identify aerosols and the strength of the vertical mixing of pollutants in it. The vertical wind profile data from C-band Doppler radar Mopah-Merauke which is operated by BMKG through Mopah-Merauke Meteorological Station can be used to identify the peak of Atmospheric Boundaryu Layer (ABL). ABL peak marked by increasing wind shear over the layer blending. Samples in January 2015 as a representative in the wet and in July 2015 as the representation of a dry month, shows that ABL heights using WRF models show that in July (sunny weather) ABL height values higher than in January (cloudy)

  5. g-Jitter Mixed Convective Slip Flow of Nanofluid past a Permeable Stretching Sheet Embedded in a Darcian Porous Media with Variable Viscosity

    PubMed Central

    Uddin, Mohammed J.; Khan, Waqar A.; Amin, Norsarahaida S.

    2014-01-01

    The unsteady two-dimensional laminar g-Jitter mixed convective boundary layer flow of Cu-water and Al2O3-water nanofluids past a permeable stretching sheet in a Darcian porous is studied by using an implicit finite difference numerical method with quasi-linearization technique. It is assumed that the plate is subjected to velocity and thermal slip boundary conditions. We have considered temperature dependent viscosity. The governing boundary layer equations are converted into non-similar equations using suitable transformations, before being solved numerically. The transport equations have been shown to be controlled by a number of parameters including viscosity parameter, Darcy number, nanoparticle volume fraction, Prandtl number, velocity slip, thermal slip, suction/injection and mixed convection parameters. The dimensionless velocity and temperature profiles as well as friction factor and heat transfer rates are presented graphically and discussed. It is found that the velocity reduces with velocity slip parameter for both nanofluids for fluid with both constant and variable properties. It is further found that the skin friction decreases with both Darcy number and momentum slip parameter while it increases with viscosity variation parameter. The surface temperature increases as the dimensionless time increases for both nanofluids. Nusselt numbers increase with mixed convection parameter and Darcy numbers and decreases with the momentum slip. Excellent agreement is found between the numerical results of the present paper with published results. PMID:24927277

  6. The influence of south foehn on the ozone mixing ratios at the high alpine site Arosa

    NASA Astrophysics Data System (ADS)

    Campana, Mike; Li, Yingshi; Staehelin, Johannes; Prevot, Andre S. H.; Bonasoni, Paolo; Loetscher, Hanspeter; Peter, Thomas

    Within 2 years of trace gas measurements performed at Arosa (Switzerland, 2030 m above sea level), enhanced ozone mixing ratios were observed during south foehn events during summer and spring (5-10 ppb above the median value). The enhancements can be traced back to ozone produced in the strongly industrialized Po basin as confirmed by various analyses. Backward trajectories clearly show advection from this region during foehn. NO y versus O 3 correlation and comparison of O 3 mixing ratios between Arosa and Mt. Cimone (Italy, 2165 m asl) suggest that ozone is the result of recent photochemical production (+5.6 ppb on average), either directly formed during the transport or via mixing of air processed in the Po basin boundary layer. The absence of a correlation between air parcel residence times over Europe and ozone mixing ratios at Arosa during foehn events is in contrast to a previous analysis, which suggested such correlation without reference to the origin of the air. In the case of south foehn, the continental scale influence of pollutants emission on ozone at Arosa appears to be far less important than the direct influence of the Po basin emissions. In contrast, winter time displays a different situation, with mean ozone reductions of about 4 ppb for air parcels passing the Po basin, probably caused by mixing with ozone-poor air from the Po basin boundary layer.

  7. Planetary Boundary Layer Dynamics over Reno, Nevada in Summer

    NASA Astrophysics Data System (ADS)

    Liming, A.; Sumlin, B.; Loria Salazar, S. M.; Holmes, H.; Arnott, W. P.

    2014-12-01

    Quantifying the height of the planetary boundary layer (PBL) is important to understand the transport behavior, mixing, and surface concentrations of air pollutants. In Reno, NV, located in complex, mountainous terrain with high desert climate, the daytime boundary layer can rise to an estimated 3km or more on a summer day due to surface heating and convection. The nocturnal boundary layer, conversely, tends to be much lower and highly stable due to radiative cooling from the surface at night and downslope flow of cool air from nearby mountains. With limited availability of radiosonde data, current estimates of the PBL height at any given time or location are potentially over or underestimated. To better quantify the height and characterize the PBL physics, we developed portable, lightweight sensors that measure CO2 concentrations, temperature, pressure, and humidity every 5 seconds. Four of these sensors are used on a tethered balloon system to monitor CO2 concentrations from the surface up to 300m. We will combine this data with Radio Acoustic Sounding System (RASS) data that measures vertical profiles of wind speed, temperature, and humidity from 40m to 400m. This experiment will characterize the diurnal evolution of CO2 concentrations at multiple heights in the PBL, provide insight into PBL physics during stability transition periods at sunrise and sunset, and estimate the nighttime PBL depth during August in Reno. Further, we expect to gain a better understanding of the impact of mixing volume changes (i.e., PBL height) on air quality and pollution concentrations in Reno. The custom portable sensor design will also be presented. It is expected that these instruments can be used for indoor or outdoor air quality studies, where lightness, small size, and battery operation can be of benefit.

  8. A new scaling law for temperature variance profile in the mixing zone of turbulent Rayleigh-Bénard convection

    NASA Astrophysics Data System (ADS)

    Wang, Yin; Xu, Wei; He, Xiao-Zhou; Yik, Hiu-Fai; Wang, Xiao-Ping; Schumacher, Jorg; Tong, Penger

    2017-11-01

    We report a combined experimental and numerical study of the scaling properties of the temperature variance profile η(z) along the central z axis of turbulent Rayleigh-Bénard convection in a thin disk cell and an upright cylinder of aspect ratio unity. In the mixing zone outside the thermal boundary layer region, the measured η(z) is found to scale with the cell height H in both cells and obey a power law, η(z) (z/H)ɛ, with the obtained values of ɛ being very close to -1. Based on the experimental and numerical findings, we derive a new equation for η(z) in the mixing zone, which has a power-law solution in good agreement with the experimental and numerical results. Our work thus provides a common framework for understanding the effect of boundary layer fluctuations on the scaling properties of the temperature variance profile in turbulent Rayleigh-Bénard convection. This work was supported in part by Hong Kong Research Grants Council.

  9. Process-model Simulations of Cloud Albedo Enhancement by Aerosols in the Arctic

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kravitz, Benjamin S.; Wang, Hailong; Rasch, Philip J.

    2014-11-17

    A cloud-resolving model is used to simulate the effectiveness of Arctic marine cloud brightening via injection of cloud condensation nuclei (CCN). An updated cloud microphysical scheme is employed, with prognostic CCN and cloud particle numbers in both liquid and mixed-phase marine low clouds. Injection of CCN into the marine boundary layer can delay the collapse of the boundary layer and increase low-cloud albedo. Because nearly all of the albedo effects are in the liquid phase due to the removal of ice water by snowfall when ice processes are involved, albedo increases are stronger for pure liquid clouds than mixed-phase clouds.more » Liquid precipitation can be suppressed by CCN injection, whereas ice precipitation (snow) is affected less; thus the effectiveness of brightening mixed-phase clouds is lower than for liquid-only clouds. CCN injection into a clean regime results in a greater albedo increase than injection into a polluted regime, consistent with current knowledge about aerosol-cloud interactions. Unlike previous studies investigating warm clouds, dynamical changes in circulation due to precipitation changes are small.« less

  10. Abyssal Upwelling and Downwelling and the role of boundary layers

    NASA Astrophysics Data System (ADS)

    McDougall, T. J.; Ferrari, R. M.

    2016-02-01

    The bottom-intensified mixing activity arising from the interaction of internal tides with bottom topography implies that the dianeutral advection in the ocean interior is downwards, rather than upwards as is required by continuity. The upwelling of Bottom Water through density surfaces in the deep ocean is however possible because of the sloping nature of the sea floor. A budget study of the abyss (deeper than 2000m) will be described that shows that while the upwelling of Bottom Water might be 25 Sv, this is achieved by very strong upwelling in the bottom turbulent boundary layer (of thickness 50m) of 100 Sv and strong downwelling in the ocean interior of 75 Sv. This downwelling occurs within 10 degrees of longitude of the continental boundaries. This near-boundary confined strong upwelling and downwelling clearly has implications for the Stommel-Arons circulation.

  11. A three-dimensional ocean mesoscale simulation using data from the SEMAPHORE experiment: Mixed layer heat budget

    NASA Astrophysics Data System (ADS)

    Caniaux, Guy; Planton, Serge

    1998-10-01

    A primitive equation model is used to simulate the mesoscale circulation associated with a portion of the Azores Front investigated during the intensive observation period (IOP) of the Structure des Echanges Mer-Atmosphere, Proprietes des Heterogeneites Oceaniques: Recherche Experimentale (SEMAPHORE) experiment in fall 1993. The model is a mesoscale version of the ocean general circulation model (OGCM) developed at the Laboratoire d'Océanographie Dynamique et de Climatologie (LODYC) in Paris and includes open lateral boundaries, a 1.5-level-order turbulence closure scheme, and fine mesh resolution (0.11° for latitude and 0.09° for longitude). The atmospheric forcing is provided by satellite data for the solar and infrared fluxes and by analyzed (or reanalyzed for the wind) atmospheric data from the European Centre for Medium-Range Weather Forecasts (ECMWF) forecast model. The extended data set collected during the IOP of SEMAPHORE enables a detailed initialization of the model, a coupling with the rest of the basin through time dependent open boundaries, and a model/data comparison for validation. The analysis of model outputs indicates that most features are in good agreement with independent available observations. The surface front evolution is subject to an intense deformation different from that of the deep front system, which evolves only weakly. An estimate of the upper layer heat budget is performed during the 22 days of the integration of the model. Each term of this budget is analyzed according to various atmospheric events that occurred during the experiment, such as the passage of a strong storm. This facilitates extended estimates of mixed layer or relevant surface processes beyond those which are obtainable directly from observations. Surface fluxes represent 54% of the heat loss in the mixed layer and 70% in the top 100-m layer, while vertical transport at the mixed layer bottom accounts for 31% and three-dimensional processes account for 14%.

  12. Boundary layer evolution over the central Himalayas from radio wind profiler and model simulations

    NASA Astrophysics Data System (ADS)

    Singh, Narendra; Solanki, Raman; Ojha, Narendra; Janssen, Ruud H. H.; Pozzer, Andrea; Dhaka, Surendra K.

    2016-08-01

    We investigate the time evolution of the Local Boundary Layer (LBL) for the first time over a mountain ridge at Nainital (79.5° E, 29.4° N, 1958 m a.m.s.l.) in the central Himalayan region, using a radar wind profiler (RWP) during November 2011 to March 2012, as a part of the Ganges Valley Aerosol Experiment (GVAX). We restrict our analysis to clear-sunny days, resulting in a total of 78 days of observations. The standard criterion of the peak in the signal-to-noise ratio (S / N) profile was found to be inadequate in the characterization of mixed layer (ML) top at this site. Therefore, we implemented a criterion of S / N > 6 dB for the characterization of the ML and the resulting estimations are shown to be in agreement with radiosonde measurements over this site. The daytime average (05:00-10:00 UTC) observed boundary layer height ranges from 440 ± 197 m in November (late autumn) to 766 ± 317 m above ground level (a.g.l.) in March (early spring). The observations revealed a pronounced impact of mountain topography on the LBL dynamics during March, when strong winds (> 5.6 m s-1) lead to LBL heights of 650 m during nighttime. The measurements are further utilized to evaluate simulations from the Weather Research and Forecasting (WRF) model. WRF simulations captured the day-to-day variations up to an extent (r2 = 0.5), as well as the mean diurnal variations (within 1σ variability). The mean biases in the daytime average LBL height vary from -7 % (January) to +30 % (February) between model and observations, except during March (+76 %). Sensitivity simulations using a mixed layer model (MXL/MESSy) indicated that the springtime overestimation of LBL would lead to a minor uncertainty in simulated surface ozone concentrations. However, it would lead to a significant overestimation of the dilution of black carbon aerosols at this site. Our work fills a gap in observations of local boundary layer over this complex terrain in the Himalayas, and highlights the need for year-long simultaneous measurements of boundary layer dynamics and air quality to better understand the role of lower tropospheric dynamics in pollution transport.

  13. Tropospheric ozone and aerosols measured by airborne lidar during the 1988 Arctic boundary layer experiment

    NASA Technical Reports Server (NTRS)

    Browell, Edward V.; Butler, Carolyn F.; Kooi, Susan A.

    1991-01-01

    Ozone (O3) and aerosol distributions were measured from an aircraft using a differential absorption lidar (DIAL) system as part of the 1988 NASA Global Tropospheric Experiment - Arctic Boundary Layer Experiment (ABLE-3A) to study the sources and sinks of gases and aerosols over the tundra regions of Alaska during the summer. The tropospheric O3 budget over the Arctic was found to be strongly influenced by stratospheric intrusions. Regions of low aerosol scattering and enhanced O3 mixing ratios were usually correlated with descending air from the upper troposphere or lower stratosphere. Several cases of continental polar air masses were examined during the experiment. The aerosol scattering associated with these air masses was very low, and the atmospheric distribution of aerosols was quite homogeneous for those air masses that had been transported over the ice for greater than or = 3 days. The transition in O3 and aerosol distributions from tundra to marine conditions was examined several times. The aerosol data clearly show an abrupt change in aerosol scattering properties within the mixed layer from lower values over the tundra to generally higher values over the water. The distinct differences in the heights of the mixed layers in the two regions was also readily apparent. Several cases of enhanced O3 were observed during ABLE-3 in conjunction with enhanced aerosol scattering in layers in the free atmosphere. Examples are presented of the large scale variations of O3 and aerosols observed with the airborne lidar system from near the surface to above the tropopause over the Arctic during ABLE-3.

  14. Oscillating-Crucible Technique for Silicon Growth

    NASA Technical Reports Server (NTRS)

    Daud, T.; Dumas, K. A.; Kim, K. M.; Schwuttke, G. H.; Smetana, P.

    1984-01-01

    Technique yields better mixing of impurities and superior qualiity crystals. Accellerated motion stirs melt which reduces temperature gradients and decreases boundary layer for diffusion of impurities near growing surface. Results better mixing of impurities into melt, decrease in tendency for dendritic growth or cellular growth and crystals with low dislocation density. Applied with success to solution growth and Czochralski growth, resulting in large crystals of superior quality.

  15. The Impact of the Afternoon Planetary Boundary-Layer Height on the Diurnal Cycle of CO and CO2 Mixing Ratios at a Low-Altitude Mountaintop

    NASA Astrophysics Data System (ADS)

    Lee, Temple R.; De Wekker, Stephan F. J.; Pal, Sandip

    2018-02-01

    Mountaintop trace-gas mixing ratios are often assumed to represent free atmospheric values, but are affected by valley planetary boundary-layer (PBL) air at certain times. We hypothesize that the afternoon valley-PBL height relative to the ridgetop is important in the diurnal cycle of mountaintop trace-gas mixing ratios. To investigate this, we use, (1) 4-years (1 January 2009-31 December 2012) of CO and CO2 mixing-ratio measurements and supporting meteorological observations from Pinnacles (38.61°N , 78.35°W , 1017 m a.s.l.), which is a monitoring site in the Appalachian Mountains, (2) regional O3 mixing-ratio measurements, and (3) PBL heights determined from a nearby sounding station. Results reveal that the amplitudes of the diurnal cycles of CO and CO2 mixing ratios vary as a function of the daytime maximum valley-PBL height relative to the ridgetop. The mean diurnal cycle for the subset of days when the afternoon valley-PBL height is at least 400 m below the ridgetop shows a daytime CO mixing-ratio increase, implying the transport of PBL air from the valley to the mountaintop. During the daytime, on days when the PBL heights exceed the mountaintop, PBL dilution and entrainment cause CO mixing ratios to decrease. This decrease in CO mixing ratio, especially on days when PBL heights are at least 400 m above the ridgetop, suggests that measurements from these days can be used as with afternoon measurements from flat terrain in applications requiring regionally-representative measurements.

  16. Surface atmosphere exchange in dry and a wet regime over the Ganges valley: a comprehensive investigation with direct observations and numerical simulations

    NASA Astrophysics Data System (ADS)

    Sathyanadh, Anusha; Prabhakaran, Thara; Karipot, Anandakumar

    2017-04-01

    Land atmosphere interactions in the Ganges Valley basin is a topic of significant importance as it is most vulnerable region due to extreme weather, air pollution, etc. The complete energy balance observations over this region was conducted as part of the CAIPEEX-IGOC (Cloud Aerosol Interaction and Precipitation Enhancement Experiment - Integrated Ground based Observational Campaign) experiment for an entire year. These observations give first insight into the partitioning of energy in this vulnerable environment during the dry and wet regimes, which are typically part of the intraseasonal oscillations during the Indian monsoon season. These transitions wet-dry and dry-wet are poorly represented in GCMs and is the motivation for the detailed investigation here. Observations conducted with micrometeorological tower instrumented with eddy covariance sensors, radiation balance, soil heat flux measurements, microwave radiometer, sodar, radiosonde data are used in the present study. A set of numerical investigations of different Planetary Boundary Layer (PBL) schemes is also carried out to investigate features of the diurnal cycle during the wet and dry regimes. General behaviour of both local and nonlocal PBL schemes found from the investigation is to accomplish enhanced mixing, leading to a deeper PBL in the valley. However, observations give clear evidence of residual boundary layer characterised by a weak stratification, playing a key role in the exchange of PBL air mass with that of free atmosphere. Impact of changes in parameterization and controlling factors on the PBL height are investigated. Case studies for a dry phase during the incidence of a heat wave and a wet phase during a land depression are presented. Observed diurnal features of the surface meteorological parameters including the surface energy budget components were well captured by local and nonlocal PBL schemes during both the cases. Vertical profiles of temperature, mixing ratio and winds from microwave radiometer, radiosonde sounding and SODAR measurements compared well with the model vertical profiles. All the schemes are able to capture the development of a drying phase, its persistence and revival after the drying, similar to observation. The characteristic features of the drying such as decrease in mixing ratio, PBL warming, enhanced PBL growth, variations in wind speed, etc were reproduced by the model simulations. Results indicate that model is simulating a drier and deeper surface and mixed layer, compared to the observations, which is assisted by enhanced mixing through deep updrafts rooted from the surface layer and downdrafts associated with the subsiding air reaching down to the surface. Two issues are identified with model as a) relating to enhanced mixing also assisted by the subsiding air at top of the boundary layer and b) the energy partitioning at the surface with significantly excess energy partitioned in to sensible heat flux, thus warming the model surface layer. A few aircraft observations are used to investigate entrainment issue and results from these analysis and inferences will be presented. The surface layer eddy covariance measurements of sensible and latent heat fluxes and surface layer relationships are used to tune the surface layer exchanges.

  17. Mixed and mixing layer depths in the ocean surface boundary layer under conditions of diurnal stratification

    NASA Astrophysics Data System (ADS)

    Sutherland, G.; Reverdin, G.; Marié, L.; Ward, B.

    2014-12-01

    A comparison between mixed (MLD) and mixing (XLD) layer depths is presented from the SubTRopical Atlantic Surface Salinity Experiment (STRASSE) cruise in the subtropical Atlantic. This study consists of 400 microstructure profiles during fairly calm and moderate conditions (2 < U10 < 10 m s-1) and strong solar heating O(1000 W m-2). The XLD is determined from a decrease in the turbulent dissipation rate to an assumed background level. Two different thresholds for the background dissipation level are tested, 10-8 and 10-9 m2 s-3, and these are compared with the MLD as calculated using a density threshold. The larger background threshold agrees with the MLD during restratification but only extends to half the MLD during nighttime convection, while the lesser threshold agrees well during convection but is deeper by a factor of 2 during restratification. Observations suggest the use of a larger density threshold to determine the MLD in a buoyancy driven regime.

  18. Buoyant production and consumption of turbulence kinetic energy in cloud-topped mixed layers

    NASA Technical Reports Server (NTRS)

    Randall, D. A.

    1984-01-01

    It is pointed out that studies of the entraining planetary boundary layer (PBL) have generally emphasized the role of buoyancy fluxes in driving entrainment. The buoyancy flux is proportional to the rate of conversion of the potential energy of the mean flow into the kinetic energy of the turbulence. It is not unusual for conversion to proceed in both directions simultaneously. This occurs, for instance, in both clear and cloudy convective mixed layers which are capped by inversions. A partitioning of the net conversion into positive parts, generating turbulence kinetic energy (TKE), and negative parts (TKE-consuming), would make it possible to include the positive part in the gross production rate, and closure would be achieved. Three different approaches to partitioning have been proposed. The present investigation is concerned with a comparison of the three partitioning theories. Particular attention is given to the cloud-topped mixed layer because in this case the differences between two partitioning approaches are most apparent.

  19. The dependence of entrainment and drizzle in marine stratiform clouds on biomass burning aerosols derived from stable isotope and thermodynamic profiles

    NASA Astrophysics Data System (ADS)

    Henze, D.; Noone, D.

    2017-12-01

    A third of the world's biomass burning aerosol (BBA) particles are generated in southern Africa, and these particles are swept into the midlevel troposphere over the southeast Atlantic Ocean. The presence of these aerosols over the marine environment of the south east Atlantic offers a unique natural laboratory for studying aerosol effects on climate, and specifically a modification to the hydrologic cycle and microphysical characteristics of clouds. Different rates of condensation with high aerosol numbers change the precipitation rates in drizzling stratiform clouds, while the mixing of aerosols into the cloud layer is synonymous with entrainment from above cloud top near the top of the subtropical inversion. To better understanding the magnitude of the aerosol influence on southeast Atlantic boundary layer clouds we analyze the cloud-top entrainment and drizzle as a function of aerosol loading to determine the impact of BBA. Entrainment was determined from mixing line analysis based on profile measurements of moist static energy, total water, and the two most common heavy isotopes of water - HDO and H218O. Data was collected on the P-3 Orion aircraft during the NASA 2017 ORACLES campaign. Using these measurements, a box model was constructed using the combined conservation laws associated with all four of these quantities to estimate the entrainment and rainout of cloud liquid. The population of profiles sampled by the aircraft over the course of the 30 day mission spans varying concentrations of BBA. Initial plots of the water isotope mixing lines show where and to what degree the BBA air mass has mixed into the boundary layer air mass from above. This is demonstrated by the fact that the mixing end-members are the same for the different areas sampled, but the rate at which the various mixing lines are traversed as a function of altitude varies. Further, the mixing lines as a function of height traverse back and forth between end members multiple times over one profile. This suggests that air masses are mixing by `layering' into each other, and helps us to better represent entrainment in our box model. Meanwhile, isotope ratios measured below vs above the cloud layer show that the air above the clouds is depleted of heavy water isotopes in comparison to below - the degree of depletion could correspond to drizzle amount.

  20. Boundary Layer Depth In Coastal Regions

    NASA Astrophysics Data System (ADS)

    Porson, A.; Schayes, G.

    The results of earlier studies performed about sea breezes simulations have shown that this is a relevant feature of the Planetary Boundary Layer that still requires effort to be diagnosed properly by atmospheric models. Based on the observations made during the ESCOMPTE campaign, over the Mediterranean Sea, different CBL and SBL height estimation processes have been tested with a meso-scale model, TVM. The aim was to compare the critical points of the BL height determination computed using turbulent kinetic energy profile with some other standard evaluations. Moreover, these results have been analysed with different mixing length formulation. The sensitivity of formulation is also analysed with a simple coastal configuration.

  1. An analytical model for highly seperated flow on airfoils at low speeds

    NASA Technical Reports Server (NTRS)

    Zunnalt, G. W.; Naik, S. N.

    1977-01-01

    A computer program was developed to solve the low speed flow around airfoils with highly separated flow. A new flow model included all of the major physical features in the separated region. Flow visualization tests also were made which gave substantiation to the validity of the model. The computation involves the matching of the potential flow, boundary layer and flows in the separated regions. Head's entrainment theory was used for boundary layer calculations and Korst's jet mixing analysis was used in the separated regions. A free stagnation point aft of the airfoil and a standing vortex in the separated region were modelled and computed.

  2. Stress intensity factors of composite orthotropic plates containing periodic buffer strips

    NASA Technical Reports Server (NTRS)

    Delale, F.; Erdogan, F.

    1978-01-01

    The fracture problem of laminated plates which consist of bonded orthotropic layers is studied. The fields equations for an elastic orthotropic body are transformed to give the displacement and stress expressions for each layer or strip. The unknown functions in these expressions are found by satisfying the remaining boundary and continuity conditions. A system of singular integral equations is obtained from the mixed boundary conditions. The singular behavior around the crack tip and at the bimaterial interface is studied. The stress intensity factors are computed for various material combinations and various crack geometries. The results are discussed and are compared with those for isotropic materials.

  3. Sudden stretching of a four layered composite plate

    NASA Technical Reports Server (NTRS)

    Sih, G. C.; Chen, E. P.

    1980-01-01

    An approximate theory of laminated plates is developed by assuming that the extensioral and thickness mode of vibration are coupled. The mixed boundary value crack problem of a four layered composite plate is solved. Dynamic stress intensity factors for a crack subjected to suddenly applied stress are found to vary as a function of time and depend on the material properties of the laminate. Stress intensification in the region near the crack front can be reduced by having the shear modulus of the inner layers to be larger than that of the outer layers.

  4. Injection in the lower stratosphere of biomass fire emissions followed by long-range transport: a MOZAIC case study

    NASA Astrophysics Data System (ADS)

    Cammas, J.-P.; Brioude, J.; Chaboureau, J.-P.; Duron, J.; Mari, C.; Mascart, P.; Nédélec, P.; Smit, H.; Pätz, H.-W.; Volz-Thomas, A.; Stohl, A.; Fromm, M.

    2009-08-01

    This paper analyses a stratospheric injection by deep convection of biomass fire emissions over North America (Alaska, Yukon and Northwest Territories) on 24 June 2004 and its long-range transport over the eastern coast of the United States and the eastern Atlantic. The case study is based on airborne MOZAIC observations of ozone, carbon monoxide, nitrogen oxides and water vapour during the crossing of the southernmost tip of an upper level trough over the Eastern Atlantic on 30 June and on a vertical profile over Washington DC on 30 June, and on lidar observations of aerosol backscattering at Madison (University of Wisconsin) on 28 June. Attribution of the observed CO plumes to the boreal fires is achieved by backward simulations with a Lagrangian particle dispersion model (FLEXPART). A simulation with the Meso-NH model for the source region shows that a boundary layer tracer, mimicking the boreal forest fire smoke, is lofted into the lowermost stratosphere (2-5 pvu layer) during the diurnal convective cycle at isentropic levels (above 335 K) corresponding to those of the downstream MOZAIC observations. It is shown that the order of magnitude of the time needed by the parameterized convective detrainment flux to fill the volume of a model mesh (20 km horizontal, 500 m vertical) above the tropopause with pure boundary layer air would be about 7.5 h, i.e. a time period compatible with the convective diurnal cycle. Over the area of interest, the maximum instantaneous detrainment fluxes deposited about 15 to 20% of the initial boundary layer tracer concentration at 335 K. According to the 275-ppbv carbon monoxide maximum mixing ratio observed by MOZAIC over Eastern Atlantic, such detrainment fluxes would be associated with a 1.4-1.8 ppmv carbon monoxide mixing ratio in the boundary layer over the source region.

  5. Estimating Mixing Heights Using Microwave Temperature Profiler

    NASA Technical Reports Server (NTRS)

    Nielson-Gammon, John; Powell, Christina; Mahoney, Michael; Angevine, Wayne

    2008-01-01

    A paper describes the Microwave Temperature Profiler (MTP) for making measurements of the planetary boundary layer thermal structure data necessary for air quality forecasting as the Mixing Layer (ML) height determines the volume in which daytime pollution is primarily concentrated. This is the first time that an airborne temperature profiler has been used to measure the mixing layer height. Normally, this is done using a radar wind profiler, which is both noisy and large. The MTP was deployed during the Texas 2000 Air Quality Study (TexAQS-2000). An objective technique was developed and tested for estimating the ML height from the MTP vertical temperature profiles. In order to calibrate the technique and evaluate the usefulness of this approach, estimates from a variety of measurements during the TexAQS-2000 were compared. Estimates of ML height were used from radiosondes, radar wind profilers, an aerosol backscatter lidar, and in-situ aircraft measurements in addition to those from the MTP.

  6. Free Thermal Convection Inside a Stably Stratified FLUID:A Study by Means of Three Dimensional Particle Tracking Velocimetry

    NASA Astrophysics Data System (ADS)

    Cenedese, A.; Dore, V.; Moroni, M.

    2009-05-01

    Free thermal convection refers to the motion of vertical turbulent plumes or domes, which can occur when, an initially in-rest stratified fluid, is submitted to buoyancy forces, caused by a permanent perturbation associated to a heat transfer mechanism. When a fluid, in equilibrium, is stably stratified the external forcing can produce an unstable configuration ensuing the increasing in amplitude of internal waves, and, if it has strength enough, it can definitely erode the stratification, involving an increasing thickness of fluid volume. The entrainment phenomenon justifies the penetrative feature of convection and causes the growth of a convective boundary layer of well mixed fluid (Convective Mixing Layer) against the adjacent stable stratified layer. The non-steady phenomenon of penetrative convection in a stably stratified fluid has been reproduced in laboratory employing a tank filled with water and subjected to heating from below. The goal in the experiment is predicting the convective boundary layer growth as a function of initial and boundary conditions and describing the fate of a tracer dissolved in the fluid phase. The motivations of the research are mostly related to its connections to environmental topics. In nature the dynamics of penetrative convection influences the transport and mixing features of stratified fluids, playing a fundamental role in characterizing and forecasting the distribution of chemical species, with implication for water or air quality in the upper oceans and lakes or in the lower troposphere. When studying turbulent convective phenomenon, dispersion is mostly due to transport by large organized structures while molecular diffusion can be neglected. The knowledge of the horizontal and vertical extension of the structures dominating the flow field appears to be mandatory. In order to better understanding and likely describing the evolution of turbulent structures inside the convective layer, a fully three dimensional experimental technique is required. The equipment employed is suitable for simultaneously providing temperatures inside the domain through thermocouples and Lagrangian particle trajectories obtained by using a 3D-PTV technique. The combined use of a vertical array of thermocouples and 3D-PTV allows, simultaneously, profiling temperature and the 3D velocity components. A properly calibrated stereoscopic system of three monochrome 25 fps CCD cameras has been employed. The combination of image and object space based information is applied to establish the spatio-temporal correspondences between particle position of consecutive time steps, resulting in the reconstruction of 3D trajectories. The vertical dimension of convective structures is associated to the mixing layer height, detected both employing temperature data and statistics of the velocity field. On the other hand, the spatial correlation of the velocity field, providing the plume horizontal dimension, allows the horizontal extension of the mixing region to be determined. This information coupled to the knowledge of the mixing layer height allows the spatial extension of the convective region to be fully described.

  7. Select strengths and biases of models in representing the Arctic winter boundary layer over sea ice: the Larcform 1 single column model intercomparison

    NASA Astrophysics Data System (ADS)

    Pithan, Felix; Ackerman, Andrew; Angevine, Wayne M.; Hartung, Kerstin; Ickes, Luisa; Kelley, Maxwell; Medeiros, Brian; Sandu, Irina; Steeneveld, Gert-Jan; Sterk, H. A. M.; Svensson, Gunilla; Vaillancourt, Paul A.; Zadra, Ayrton

    2016-09-01

    Weather and climate models struggle to represent lower tropospheric temperature and moisture profiles and surface fluxes in Arctic winter, partly because they lack or misrepresent physical processes that are specific to high latitudes. Observations have revealed two preferred states of the Arctic winter boundary layer. In the cloudy state, cloud liquid water limits surface radiative cooling, and temperature inversions are weak and elevated. In the radiatively clear state, strong surface radiative cooling leads to the build-up of surface-based temperature inversions. Many large-scale models lack the cloudy state, and some substantially underestimate inversion strength in the clear state. Here, the transformation from a moist to a cold dry air mass is modeled using an idealized Lagrangian perspective. The trajectory includes both boundary layer states, and the single-column experiment is the first Lagrangian Arctic air formation experiment (Larcform 1) organized within GEWEX GASS (Global atmospheric system studies). The intercomparison reproduces the typical biases of large-scale models: some models lack the cloudy state of the boundary layer due to the representation of mixed-phase microphysics or to the interaction between micro- and macrophysics. In some models, high emissivities of ice clouds or the lack of an insulating snow layer prevent the build-up of surface-based inversions in the radiatively clear state. Models substantially disagree on the amount of cloud liquid water in the cloudy state and on turbulent heat fluxes under clear skies. Observations of air mass transformations including both boundary layer states would allow for a tighter constraint of model behavior.

  8. Analysis for predicting adiabatic wall temperatures with single hole coolant injection into a low speed crossflow

    NASA Astrophysics Data System (ADS)

    Wang, C. R.; Papell, S. S.; Graham, R. W.

    Assuming the local adiabatic wall temperature equals the local total temperature in a low speed coolant mixing layer, integral conservation equations with and without the boundary layer effects are formulated for the mixing layer downstream of a single coolant injection hole oriented at a 30 degree angle to the crossflow. These equations are solved numerically to determine the center line local adiabatic wall temperature and the effective coolant coverage area. Comparison of the numerical results with an existing film cooling experiment indicates that the present analysis permits a simplified but reasonably accurate prediction of the centerline effectiveness and coolant coverage area downstream of a single hole crossflow streamwise injection at 30 degree inclination angle.

  9. Analysis for predicting adiabatic wall temperatures with single hole coolant injection into a low speed crossflow

    NASA Technical Reports Server (NTRS)

    Wang, C. R.; Papell, S. S.; Graham, R. W.

    1981-01-01

    Assuming the local adiabatic wall temperature equals the local total temperature in a low speed coolant mixing layer, integral conservation equations with and without the boundary layer effects are formulated for the mixing layer downstream of a single coolant injection hole oriented at a 30 degree angle to the crossflow. These equations are solved numerically to determine the center line local adiabatic wall temperature and the effective coolant coverage area. Comparison of the numerical results with an existing film cooling experiment indicates that the present analysis permits a simplified but reasonably accurate prediction of the centerline effectiveness and coolant coverage area downstream of a single hole crossflow streamwise injection at 30 degree inclination angle.

  10. Analysis for predicting adiabatic wall temperatures with single hole coolant injection into a low speed crossflow

    NASA Astrophysics Data System (ADS)

    Wang, C. R.; Papell, S. S.; Graham, R. W.

    1981-03-01

    Assuming the local adiabatic wall temperature equals the local total temperature in a low speed coolant mixing layer, integral conservation equations with and without the boundary layer effects are formulated for the mixing layer downstream of a single coolant injection hole oriented at a 30 degree angle to the crossflow. These equations are solved numerically to determine the center-line local adiabatic wall temperature and the effective coolant coverage area. Comparison of the numerical results with an existing film cooling experiment indicates that the present analysis permits a simplified but reasonably accurate prediction of the centerline effectiveness and coolant coverage area downstream of a single hole crossflow streamwise injection at 30-deg inclination angle.

  11. Analysis for predicting adiabatic wall temperatures with single hole coolant injection into a low speed crossflow

    NASA Technical Reports Server (NTRS)

    Wang, C. R.; Papell, S. S.; Graham, R. W.

    1981-01-01

    Assuming the local adiabatic wall temperature equals the local total temperature in a low speed coolant mixing layer, integral conservation equations with and without the boundary layer effects are formulated for the mixing layer downstream of a single coolant injection hole oriented at a 30 degree angle to the crossflow. These equations are solved numerically to determine the center-line local adiabatic wall temperature and the effective coolant coverage area. Comparison of the numerical results with an existing film cooling experiment indicates that the present analysis permits a simplified but reasonably accurate prediction of the centerline effectiveness and coolant coverage area downstream of a single hole crossflow streamwise injection at 30-deg inclination angle.

  12. Numerical experiments with a wind- and buoyancy-driven two-and-a-half-layer upper ocean model

    NASA Astrophysics Data System (ADS)

    Cherniawsky, J. Y.; Yuen, C. W.; Lin, C. A.; Mysak, L. A.

    1990-09-01

    We describe numerical experiments with a limited domain (15°-67°N, 65° west to east) coarse-resolution two-and-a-half-layer upper ocean model. The model consists of two active variable density layers: a Niiler and Kraus (1977) type mixed layer and a pycnocline layer, which overlays a semipassive deep ocean. The mixed layer is forced with a cosine wind stress and Haney type heat and precipitation-evaporation fluxes, which were derived from zonally averaged climatological (Levitus, 1982) surface temperatures and salinities for the North Atlantic. The second layer is forced from below with (1) Newtonian cooling to climatological temperatures and salinities at the lower boundary, (2) convective adjustment, which occurs whenever the density of the second layer is unstable with respect to climatology, and (3) mass entrainment in areas of strong upwelling, when the deep ocean ventilates through the bottom surface. The sensitivity of this model to changes in its internal (mixed layer) and external (e.g., a Newtonian coupling coefficient) parameters is investigated and compared to the results from a control experiment. We find that the model is not overly sensitive to changes in most of the parameters that were tested, albeit these results may depend to some extent on the choice of the control experiment.

  13. Validation of Simplified Urban-Canopy Aerodynamic Parametrizations Using a Numerical Simulation of an Actual Downtown Area

    NASA Astrophysics Data System (ADS)

    Ramirez, N.; Afshari, Afshin; Norford, L.

    2018-07-01

    A steady-state Reynolds-averaged Navier-Stoke computational fluid dynamics (CFD) investigation of boundary-layer flow over a major portion of downtown Abu Dhabi is conducted. The results are used to derive the shear stress and characterize the logarithmic region for eight sub-domains, where the sub-domains overlap and are overlaid in the streamwise direction. They are characterized by a high frontal area index initially, which decreases significantly beyond the fifth sub-domain. The plan area index is relatively stable throughout the domain. For each sub-domain, the estimated local roughness length and displacement height derived from CFD results are compared to prevalent empirical formulations. We further validate and tune a mixing-length model proposed by Coceal and Belcher (Q J R Meteorol Soc 130:1349-1372, 2004). Finally, the in-canopy wind-speed attenuation is analysed as a function of fetch. It is shown that, while there is some room for improvement in Macdonald's empirical formulations (Boundary-Layer Meteorol 97:25-45, 2000), Coceal and Belcher's mixing model in combination with the resolution method of Di Sabatino et al. (Boundary-Layer Meteorol 127:131-151, 2008) can provide a robust estimation of the average wind speed in the logarithmic region. Within the roughness sublayer, a properly parametrized Cionco exponential model is shown to be quite accurate.

  14. Experimental data and model for the turbulent boundary layer on a convex, curved surface

    NASA Technical Reports Server (NTRS)

    Gillis, J. C.; Johnson, J. P.; Moffat, R. J.; Kays, W. M.

    1981-01-01

    Experiments were performed to determine how boundary layer turbulence is affected by strong convex curvature. The data gathered on the behavior of the Reynolds stress suggested the formulation of a simple turbulence model. Data were taken on two separate facilities. Both rigs had flow from a flat surface, over a convex surface with 90 deg of turning and then onto a flat recovery surface. The geometry was adjusted so that, for both rigs, the pressure gradient along the test surface was zero. Two experiments were performed at delta/R approximately 0.10, and one at weaker curvature with delta/R approximately 0.05. Results show that after a sudden introduction of curvature the shear stress in the outer part of the boundary layer is sharply diminished and is even slightly negative near the edge. The wall shear also drops off quickly downstream. When the surface suddenly becomes flat again, the wall shear and shear stress profiles recover very slowly towards flat wall conditions. A simple turbulence model, which was based on the theory that the Prandtl mixing length in the outer layer should scale on the velocity gradient layer, was shown to account for the slow recovery.

  15. Simulation of Sweep-Jet Flow Control, Single Jet and Full Vertical Tail

    NASA Technical Reports Server (NTRS)

    Childs, Robert E.; Stremel, Paul M.; Garcia, Joseph A.; Heineck, James T.; Kushner, Laura K.; Storms, Bruce L.

    2016-01-01

    This work is a simulation technology demonstrator, of sweep jet flow control used to suppress boundary layer separation and increase the maximum achievable load coefficients. A sweep jet is a discrete Coanda jet that oscillates in the plane parallel to an aerodynamic surface. It injects mass and momentum in the approximate streamwise direction. It also generates turbulent eddies at the oscillation frequency, which are typically large relative to the scales of boundary layer turbulence, and which augment mixing across the boundary layer to attack flow separation. Simulations of a fluidic oscillator, the sweep jet emerging from a nozzle downstream of the oscillator, and an array of sweep jets which suppresses boundary layer separation are performed. Simulation results are compared to data from a dedicated validation experiment of a single oscillator and its sweep jet, and from a wind tunnel test of a full-scale Boeing 757 vertical tail augmented with an array of sweep jets. A critical step in the work is the development of realistic time-dependent sweep jet inflow boundary conditions, derived from the results of the single-oscillator simulations, which create the sweep jets in the full-tail simulations. Simulations were performed using the computational fluid dynamics (CFD) solver Overow, with high-order spatial discretization and a range of turbulence modeling. Good results were obtained for all flows simulated, when suitable turbulence modeling was used.

  16. Evaluation of WRF PBL parameterization schemes against direct observations during a dry event over the Ganges valley

    NASA Astrophysics Data System (ADS)

    Sathyanadh, Anusha; Prabha, Thara V.; Balaji, B.; Resmi, E. A.; Karipot, Anandakumar

    2017-09-01

    Accurate representations of the planetary boundary layer (PBL) are important in all weather forecast systems, especially in simulations of turbulence, wind and air quality in the lower atmosphere. In the present study, detailed observations from the Cloud Aerosol Interaction and Precipitation Enhancement Experiment - Integrated Ground based Observational Campaign (CAIPEEX-IGOC) 2014 comprising of the complete surface energy budget and detailed boundary layer observations are used to validate Advanced Research Weather Research and Forecasting (WRF) model simulations over a diverse terrain over the Ganges valley region, Uttar Pradesh, India. A drying event in June 2014 associated with a heat wave is selected for validation.Six local and nonlocal PBL schemes from WRF at 1 km resolution are compared with hourly observations during the diurnal cycle. Near-surface observations of weather parameters, radiation components and eddy covariance fluxes from micrometeorological tower, and profiles of variables from microwave radiometer, and radiosonde observations are used for model evaluations. Models produce a warmer, drier surface layer with higher wind speed, sensible heat flux and temperature than observations. Layered boundary layer dynamics, including the residual layer structure as illustrated in the observations over the Ganges valley are missed in the model, which lead to deeper mixed layers and excessive drying.Although it is difficult to identify any single scheme as the best, the qualitative and quantitative analyses for the entire study period and overall reproducibility of the observations indicate that the MYNN2 simulations describe lower errors and more realistic simulation of spatio-temporal variations in the boundary layer height.

  17. The Martian atmospheric planetary boundary layer stability, fluxes, spectra, and similarity

    NASA Technical Reports Server (NTRS)

    Tillman, James E.

    1994-01-01

    This is the first analysis of the high frequency data from the Viking lander and spectra of wind, in the Martian atmospheric surface layer, along with the diurnal variation of the height of the mixed surface layer, are calculated for the first time for Mars. Heat and momentum fluxes, stability, and z(sub O) are estimated for early spring, from a surface temperature model and from Viking Lander 2 temperatures and winds at 44 deg N, using Monin-Obukhov similarity theory. The afternoon maximum height of the mixed layer for these seasons and conditions is estimated to lie between 3.6 and 9.2 km. Estimations of this height is of primary importance to all models of the boundary layer and Martian General Circulation Models (GCM's). Model spectra for two measuring heights and three surface roughnesses are calculated using the depth of the mixed layer, and the surface layer parameters and flow distortion by the lander is also taken into account. These experiments indicate that z(sub O), probably lies between 1.0 and 3.0 cm, and most likely is closer to 1.0 cm. The spectra are adjusted to simulate aliasing and high frequency rolloff, the latter caused both by the sensor response and the large Kolmogorov length on Mars. Since the spectral models depend on the surface parameters, including the estimated surface temperature, their agreement with the calculated spectra indicates that the surface layer estimates are self consistent. This agreement is especially noteworthy in that the inertial subrange is virtually absent in the Martian atmosphere at this height, due to the large Kolmogorov length scale. These analyses extend the range of applicability of terrestrial results and demonstrate that it is possible to estimate the effects of severe aliasing of wind measurements, to produce a models which agree well with the measured spectra. The results show that similarity theory developed for Earth applies to Mars, and that the spectral models are universal.

  18. Aircraft Boundary-layer Measurements in the Gulf of Tehuantepec

    NASA Astrophysics Data System (ADS)

    Friehe, Carl; Melville, W. K.

    2005-11-01

    Airborne flux, meteorological, and wave measurements were made from the NSF/NCAR EC130Q aircraft in the Gulf of Tehuantepec under strong boundary-layer gap winds up to 25 m/sec at 33 m height. Statistics of flux estimates were obtained from multiple 33-m tracks flown under reasonably stationary and homogeneous conditions. Flux divergence was obtained from stack patterns flown at various distances from shore. Tracks flown at 33 m between the stacks provided the pressure gradient and advection terms in the momentum balance. Near shore, flux divergence was important and approximately balanced by the pressure gradient and advective terms; off-shore (400 km), divergence was small and again approximately in balance with the other two terms. Data from dropsondes and the Scanning Aerosol Backscatter LIDAR (SABL) revealed that the internal boundary layer initially thins off-shore as the gap wind field spreads horizontally, and then thickens due to turbulent mixing and possible hydraulic effects. Supported by NSF Division of Ocean Sciences.

  19. Numerical study of large-eddy breakup and its effect on the drag characteristics of boundary layers

    NASA Technical Reports Server (NTRS)

    Kinney, R. B.; Taslim, M. E.; Hung, S. C.

    1985-01-01

    The break-up of a field of eddies by a flat-plate obstacle embedded in a boundary layer is studied using numerical solutions to the two-dimensional Navier-Stokes equations. The flow is taken to be incompressible and unsteady. The flow field is initiated from rest. A train of eddies of predetermined size and strength are swept into the computational domain upstream of the plate. The undisturbed velocity profile is given by the Blasius solution. The disturbance vorticity generated at the plate and wall, plus that introduced with the eddies, mix with the background vorticity and is transported throughout the entire flow. All quantities are scaled by the plate length, the unidsturbed free-stream velocity, and the fluid kinematic viscosity. The Reynolds number is 1000, the Blasius boundary layer thickness is 2.0, and the plate is positioned a distance of 1.0 above the wall. The computational domain is four units high and sixteen units long.

  20. Magnetic Field Generation, Particle Energization and Radiation at Relativistic Shear Boundary Layers

    NASA Astrophysics Data System (ADS)

    Liang, Edison; Fu, Wen; Spisak, Jake; Boettcher, Markus

    2015-11-01

    Recent large scale Particle-in-Cell (PIC) simulations have demonstrated that in unmagnetized relativistic shear flows, strong transverse d.c. magnetic fields are generated and sustained by ion-dominated currents on the opposite sides of the shear interface. Instead of dissipating the shear flow free energy via turbulence formation and mixing as it is usually found in MHD simulations, the kinetic results show that the relativistic boundary layer stabilizes itself via the formation of a robust vacuum gap supported by a strong magnetic field, which effectively separates the opposing shear flows, as in a maglev train. Our new PIC simulations have extended the runs to many tens of light crossing times of the simulation box. Both the vacuum gap and supporting magnetic field remain intact. The electrons are energized to reach energy equipartition with the ions, with 10% of the total energy in electromagnetic fields. The dominant radiation mechanism is similar to that of a wiggler, due to oscillating electron orbits around the boundary layer.

  1. Response of the Land-Atmosphere System Over North-Central Oklahoma During the 2017 Eclipse

    DOE PAGES

    Turner, D. D.; Wulfmeyer, V.; Behrendt, A.; ...

    2018-02-05

    On 21 August 2017, a solar eclipse occurred over the continental United States resulting in a rapid reduction and subsequent increase of solar radiation over a large region of the country. The eclipse’s effect on the land-atmosphere system is documented in unprecedented detail using a unique array of sensors deployed at three sites in north-central Oklahoma. The observations showed that turbulent fluxes of heat and momentum at the surface responded quickly to the change in solar radiation. The decrease in the sensible heat flux resulted in a decrease in the air temperature below 200 m, and a large decrease inmore » turbulent motions throughout the boundary layer. Furthermore, the turbulent mixing in the boundary layer lagged behind the change in the surface fluxes, and this lag depended on the height above the surface. The turbulent motions increased and the convective boundary layer was reestablished as the sensible heat flux recovered.« less

  2. Response of the Land-Atmosphere System Over North-Central Oklahoma During the 2017 Eclipse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turner, D. D.; Wulfmeyer, V.; Behrendt, A.

    On 21 August 2017, a solar eclipse occurred over the continental United States resulting in a rapid reduction and subsequent increase of solar radiation over a large region of the country. The eclipse’s effect on the land-atmosphere system is documented in unprecedented detail using a unique array of sensors deployed at three sites in north-central Oklahoma. The observations showed that turbulent fluxes of heat and momentum at the surface responded quickly to the change in solar radiation. The decrease in the sensible heat flux resulted in a decrease in the air temperature below 200 m, and a large decrease inmore » turbulent motions throughout the boundary layer. Furthermore, the turbulent mixing in the boundary layer lagged behind the change in the surface fluxes, and this lag depended on the height above the surface. The turbulent motions increased and the convective boundary layer was reestablished as the sensible heat flux recovered.« less

  3. Black carbon solar absorption suppresses turbulence in the atmospheric boundary layer.

    PubMed

    Wilcox, Eric M; Thomas, Rick M; Praveen, Puppala S; Pistone, Kristina; Bender, Frida A-M; Ramanathan, Veerabhadran

    2016-10-18

    The introduction of cloud condensation nuclei and radiative heating by sunlight-absorbing aerosols can modify the thickness and coverage of low clouds, yielding significant radiative forcing of climate. The magnitude and sign of changes in cloud coverage and depth in response to changing aerosols are impacted by turbulent dynamics of the cloudy atmosphere, but integrated measurements of aerosol solar absorption and turbulent fluxes have not been reported thus far. Here we report such integrated measurements made from unmanned aerial vehicles (UAVs) during the CARDEX (Cloud Aerosol Radiative Forcing and Dynamics Experiment) investigation conducted over the northern Indian Ocean. The UAV and surface data reveal a reduction in turbulent kinetic energy in the surface mixed layer at the base of the atmosphere concurrent with an increase in absorbing black carbon aerosols. Polluted conditions coincide with a warmer and shallower surface mixed layer because of aerosol radiative heating and reduced turbulence. The polluted surface mixed layer was also observed to be more humid with higher relative humidity. Greater humidity enhances cloud development, as evidenced by polluted clouds that penetrate higher above the top of the surface mixed layer. Reduced entrainment of dry air into the surface layer from above the inversion capping the surface mixed layer, due to weaker turbulence, may contribute to higher relative humidity in the surface layer during polluted conditions. Measurements of turbulence are important for studies of aerosol effects on clouds. Moreover, reduced turbulence can exacerbate both the human health impacts of high concentrations of fine particles and conditions favorable for low-visibility fog events.

  4. Black carbon solar absorption suppresses turbulence in the atmospheric boundary layer

    PubMed Central

    Wilcox, Eric M.; Thomas, Rick M.; Praveen, Puppala S.; Pistone, Kristina; Bender, Frida A.-M.; Ramanathan, Veerabhadran

    2016-01-01

    The introduction of cloud condensation nuclei and radiative heating by sunlight-absorbing aerosols can modify the thickness and coverage of low clouds, yielding significant radiative forcing of climate. The magnitude and sign of changes in cloud coverage and depth in response to changing aerosols are impacted by turbulent dynamics of the cloudy atmosphere, but integrated measurements of aerosol solar absorption and turbulent fluxes have not been reported thus far. Here we report such integrated measurements made from unmanned aerial vehicles (UAVs) during the CARDEX (Cloud Aerosol Radiative Forcing and Dynamics Experiment) investigation conducted over the northern Indian Ocean. The UAV and surface data reveal a reduction in turbulent kinetic energy in the surface mixed layer at the base of the atmosphere concurrent with an increase in absorbing black carbon aerosols. Polluted conditions coincide with a warmer and shallower surface mixed layer because of aerosol radiative heating and reduced turbulence. The polluted surface mixed layer was also observed to be more humid with higher relative humidity. Greater humidity enhances cloud development, as evidenced by polluted clouds that penetrate higher above the top of the surface mixed layer. Reduced entrainment of dry air into the surface layer from above the inversion capping the surface mixed layer, due to weaker turbulence, may contribute to higher relative humidity in the surface layer during polluted conditions. Measurements of turbulence are important for studies of aerosol effects on clouds. Moreover, reduced turbulence can exacerbate both the human health impacts of high concentrations of fine particles and conditions favorable for low-visibility fog events. PMID:27702889

  5. THE 2006 CMAQ RELEASE AND PLANS FOR 2007

    EPA Science Inventory

    The 2006 release of the Community Multiscale Air Quality (CMAQ) model (Version 4.6) includes upgrades to several model components as well as new modules for gas-phase chemistry and boundary layer mixing. Capabilities for simulation of hazardous air pollutants have been expanded ...

  6. CHARACTERIZING THE DISPERSIVE STATE OF CONVECTIVE BOUNDARY LAYERS FOR APPLIED DISPERSION MODELING

    EPA Science Inventory

    Estimates from semiempirical models that characterize surface heat flux, mixing depth, and profiles of temperature, wind, and turbulence are compared with observations from atmospheric field Studies conducted in Colorado, Illinois, Indiana, and Minnesota. In addition, for wind an...

  7. Two-wavelength Lidar inversion algorithm for determining planetary boundary layer height

    NASA Astrophysics Data System (ADS)

    Liu, Boming; Ma, Yingying; Gong, Wei; Jian, Yang; Ming, Zhang

    2018-02-01

    This study proposes a two-wavelength Lidar inversion algorithm to determine the boundary layer height (BLH) based on the particles clustering. Color ratio and depolarization ratio are used to analyze the particle distribution, based on which the proposed algorithm can overcome the effects of complex aerosol layers to calculate the BLH. The algorithm is used to determine the top of the boundary layer under different mixing state. Experimental results demonstrate that the proposed algorithm can determine the top of the boundary layer even in a complex case. Moreover, it can better deal with the weak convection conditions. Finally, experimental data from June 2015 to December 2015 were used to verify the reliability of the proposed algorithm. The correlation between the results of the proposed algorithm and the manual method is R2 = 0.89 with a RMSE of 131 m and mean bias of 49 m; the correlation between the results of the ideal profile fitting method and the manual method is R2 = 0.64 with a RMSE of 270 m and a mean bias of 165 m; and the correlation between the results of the wavelet covariance transform method and manual method is R2 = 0.76, with a RMSE of 196 m and mean bias of 23 m. These findings indicate that the proposed algorithm has better reliability and stability than traditional algorithms.

  8. A study of tornadic thunderstorm interactions with thermal boundaries

    NASA Technical Reports Server (NTRS)

    Maddox, R. A.; Hoxit, L. R.; Chappell, C. F.

    1980-01-01

    A study of tornadic thunderstorm interactions with thermal boundaries using a model of subcloud wind profiles is presented. Within a hot, moist, and conditionally unstable air mass, warm thermal advection and surface friction cause the winds to veer and increase with height, while within a cool, moist air mass cool thermal advection and friction combine to produce a wind profile that has maximum speeds near the surface and veers little with height. The spatial distribution of different wind profiles and moisture contents within the boundary layer may act together to maximize mesoscale moisture contents, convergence, and cyclonic vorticity within a narrow mixing zone along the thermal boundary.

  9. Evolution of a Western Arctic Ice Ocean Boundary Layer and Mixed Layer Across a Developing Thermodynamically Forced Marginal Ice Zone

    DTIC Science & Technology

    2016-09-01

    Submitted in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY IN PHYSICAL OCEANOGRAPHY from the NAVAL POSTGRADUATE...SCHOOL September 2016 Approved by: Timothy P. Stanton William J. Shaw Research Professor of Research Associate Professor Oceanography of... Oceanography Dissertation Committee Chair Timour Radko Andrew Roberts Associate Professor of Research Assistant Professor Oceanography of Oceanography

  10. Ocean Mixed Layer Response to Gap Wind Scenarios

    DTIC Science & Technology

    2006-12-01

    Kostas Rados for helpful discussions and MATLAB codes. • LT. Robin Corey Cherrett USN for advice and discussions. Professor Qing Wang, thank you...and the flow can extent for hundreds of miles (Clarke 1988, Cherrett 2006). The magnitude of these winds usually depends on the pressure gradient...was studied by Cherrett (2006) with the emphases on the atmospheric boundary layer and surface characteristics of the gap outflow region. Since our

  11. Retrieval of average CO2 fluxes by combining in situ CO2 measurements and backscatter lidar information

    NASA Astrophysics Data System (ADS)

    Gibert, Fabien; Schmidt, Martina; Cuesta, Juan; Ciais, Philippe; Ramonet, Michel; Xueref, IrèNe; Larmanou, Eric; Flamant, Pierre Henri

    2007-05-01

    The present paper deals with a boundary layer budgeting method which makes use of observations from various in situ and remote sensing instruments to infer regional average net ecosystem exchange (NEE) of CO2. Measurements of CO2 within and above the atmospheric boundary layer (ABL) by in situ sensors, in conjunction with a precise knowledge of the change in ABL height by lidar and radiosoundings, enable to infer diurnal and seasonal NEE variations. Near-ground in situ CO measurements are used to discriminate natural and anthropogenic contributions of CO2 diurnal variations in the ABL. The method yields mean NEE that amounts to 5 μmol m-2 s-1 during the night and -20 μmol m-2 s-1 in the middle of the day between May and July. A good agreement is found with the expected NEE accounting for a mixed wheat field and forest area during winter season, representative of the mesoscale ecosystems in the Paris area according to the trajectory of an air column crossing the landscape. Daytime NEE is seen to follow the vegetation growth and the change in the ratio diffuse/direct radiation. The CO2 vertical mixing flux during the rise of the atmospheric boundary layer is also estimated and seems to be the main cause of the large decrease of CO2 mixing ratio in the morning. The outcomes on CO2 flux estimate are compared to eddy-covariance measurements on a barley field. The importance of various sources of error and uncertainty on the retrieval is discussed. These errors are estimated to be less than 15%; the main error resulted from anthropogenic emissions.

  12. Internal Gravity Waves: Generation and Breaking Mechanisms by Laboratory Experiments

    NASA Astrophysics Data System (ADS)

    la Forgia, Giovanni; Adduce, Claudia; Falcini, Federico

    2016-04-01

    Internal gravity waves (IGWs), occurring within estuaries and the coastal oceans, are manifest as large amplitude undulations of the pycnocline. IGWs propagating horizontally in a two layer stratified fluid are studied. The breaking of an IGW of depression shoaling upon a uniformly sloping boundary is investigated experimentally. Breaking dynamics beneath the shoaling waves causes both mixing and wave-induced near-bottom vortices suspending and redistributing the bed material. Laboratory experiments are conducted in a Perspex tank through the standard lock-release method, following the technique described in Sutherland et al. (2013). Each experiment is analysed and the instantaneous pycnocline position is measured, in order to obtain both geometric and kinematic features of the IGW: amplitude, wavelength and celerity. IGWs main features depend on the geometrical parameters that define the initial experimental setting: the density difference between the layers, the total depth, the layers depth ratio, the aspect ratio, and the displacement between the pycnoclines. Relations between IGWs geometric and kinematic features and the initial setting parameters are analysed. The approach of the IGWs toward a uniform slope is investigated in the present experiments. Depending on wave and slope characteristics, different breaking and mixing processes are observed. Sediments are sprinkled on the slope to visualize boundary layer separation in order to analyze the suspension e redistribution mechanisms due to the wave breaking.

  13. Arctic boundary layer properties and its influence on cloud occurrence frequency, phase and structure in autumn season

    NASA Astrophysics Data System (ADS)

    Qiu, S.; Dong, X.; Xi, B.

    2017-12-01

    In this study, autumnal boundary layer characteristics and cloud properties have been investigated using data collected at the Atmospheric Radiation Measurement North Slope of Alaska (ARM NSA) site from January 2002 to December 2008. We found that both cloud and planetary boundary layer (PBL) properties can be well distinguished by surface wind directions. When the ARM NSA site is dominated by a northerly wind during the period September- November, the PBL is at near saturation for all three months; while the maximum RH layer varies from low and thin in September, to higher and thicker in October, and then it becomes close to surface again in November. Both the ceilometer and the MPL derived cloud base heights coincide well with the RH maximum layer in the PBL for all three autumnal months. The frequencies of occurrence of mixed phase clouds in September and October are around 60-80% under a northerly wind, which are about 1.5 times higher than those during a southerly wind. Under northerly wind, the PDFs of PBL temperature and specific humidity are narrow and unimodal, with a peak probability around 0.4-0.5. Under a southerly wind, on the other hand, the PBL is both warmer and wetter than northerly wind profiles, which result in lower RH values (10-15% lower) in September and October; and the PDFs of PBL temperature and specific humidity are more evenly distributed with larger distribution range and lower PDF peak values (<0.3). In September, colder and dryer PBL is more favorable for mixed phase cloud formation, cloud occurrence frequency decreases from 90% to 60% as PBL temperature and specific humidity increase. In October, the frequency of occurrence of mixed phase clouds also decreases from 90% to 50-60% as PBL temperature increases. While in November, it increases first and then decreases with increasing PBL temperature and specific humidity. The frequency of occurrence of mixed phase clouds is linearly correlated to PBL RH values: for all three months, it increases from 20-90% as PBL RH value increases from 50-100%, with R2 values of 0.85-0.95. Liquid-only cloud occurrence frequency has little relationship with PBL RH values, while it increases from 1% to 20% as PBL specific humidity increases from 0-5 g/kg, with R2 values of 0.6-0.85.

  14. Single-particle characterization of the High Arctic summertime aerosol

    NASA Astrophysics Data System (ADS)

    Sierau, B.; Chang, R. Y.-W.; Leck, C.; Paatero, J.; Lohmann, U.

    2014-01-01

    Single-particle mass spectrometric measurements were carried out in the High Arctic north of 80° during summer 2008. The campaign took place onboard the icebreaker Oden and was part of the Arctic Summer Cloud Ocean Study (ASCOS). The instrument deployed was an Aerosol Time-of-Flight Mass Spectrometer (ATOFMS) that provides information on the chemical composition of individual particles and their mixing state in real-time. Aerosols were sampled in the marine boundary layer at stations in the open ocean, in the marginal ice zone, and in the pack ice region. The largest fraction of particles detected for subsequent analysis in the size range of the ATOFMS between approximately 200 nm to 3000 nm in diameter showed mass spectrometric patterns indicating an internal mixing state and a biomass burning and/or biofuel source. The majority of these particles were connected to an air mass layer of elevated particle concentration mixed into the surface mixed layer from the upper part of the marine boundary layer. The second largest fraction was represented by sea salt particles. The chemical analysis of the over-ice sea salt aerosol revealed tracer compounds that reflect chemical aging of the particles during their long-range advection from the marginal ice zone, or open waters south thereof prior to detection at the ship. From our findings we conclude that long-range transport of particles is one source of aerosols in the High Arctic. To assess the importance of long-range particle sources for aerosol-cloud interactions over the inner Arctic in comparison to local and regional biogenic primary aerosol sources, the chemical composition of the detected particles was analyzed for indicators of marine biological origin. Only a~minor fraction showed chemical signatures of potentially ocean-derived primary particles of that kind. However, a chemical bias in the ATOFMS's detection capabilities observed during ASCOS might suggest a presence of a particle type of unknown composition and source. In general, the study suffered from low counting statistics due to the overall small number of particles found in this pristine environment, the small sizes of the prevailing aerosol below the detection limit of the ATOFMS and its low hit rate. To our knowledge, this study reports on the first in-situ single-particle mass spectrometric measurements in the marine boundary layer of the High-Arctic pack-ice region.

  15. Single-particle characterization of the high-Arctic summertime aerosol

    NASA Astrophysics Data System (ADS)

    Sierau, B.; Chang, R. Y.-W.; Leck, C.; Paatero, J.; Lohmann, U.

    2014-07-01

    Single-particle mass-spectrometric measurements were carried out in the high Arctic north of 80° during summer 2008. The campaign took place onboard the icebreaker Oden and was part of the Arctic Summer Cloud Ocean Study (ASCOS). The instrument deployed was an aerosol time-of-flight mass spectrometer (ATOFMS) that provides information on the chemical composition of individual particles and their mixing state in real time. Aerosols were sampled in the marine boundary layer at stations in the open ocean, in the marginal ice zone, and in the pack ice region. The largest fraction of particles detected for subsequent analysis in the size range of the ATOFMS between approximately 200 and 3000 nm in diameter showed mass-spectrometric patterns, indicating an internal mixing state and a biomass burning and/or biofuel source. The majority of these particles were connected to an air mass layer of elevated particle concentration mixed into the surface mixed layer from the upper part of the marine boundary layer. The second largest fraction was represented by sea salt particles. The chemical analysis of the over-ice sea salt aerosol revealed tracer compounds that reflect chemical aging of the particles during their long-range advection from the marginal ice zone, or open waters south thereof prior to detection at the ship. From our findings we conclude that long-range transport of particles is one source of aerosols in the high Arctic. To assess the importance of long-range particle sources for aerosol-cloud interactions over the inner Arctic in comparison to local and regional biogenic primary aerosol sources, the chemical composition of the detected particles was analyzed for indicators of marine biological origin. Only a minor fraction showed chemical signatures of potentially ocean-derived primary particles of that kind. However, a chemical bias in the ATOFMS's detection capabilities observed during ASCOS might suggest the presence of a particle type of unknown composition and source. In general, the study suffered from low counting statistics due to the overall small number of particles found in this pristine environment, the small sizes of the prevailing aerosol below the detection limit of the ATOFMS, and its low hit rate. To our knowledge, this study reports on the first in situ single-particle mass-spectrometric measurements in the marine boundary layer of the high-Arctic pack ice region.

  16. Response of the Atmospheric Boundary Layer and Soil Layer to a High Altitude, Dense Aerosol Cover.

    NASA Astrophysics Data System (ADS)

    Garratt, J. R.; Pittock, A. B.; Walsh, K.

    1990-01-01

    The response of the atmospheric boundary layer to the appearance of a high-altitude smoke layer has been investigated in a mesoscale numerical model of the atmosphere. Emphasis is placed on the changes in mean boundary-layer structure and near-surface temperatures when smoke of absorption optical depth (AOD) in the, range 0 to 1 is introduced. Calculations have been made at 30°S, for different soil thermal properties and degrees of surface wetness, over a time period of several days during which major smoke-induced cooling occurs. The presence of smoke reduces the daytime mixed-layer depth and, for large enough values of AOD, results in a daytime surface inversion with large cooling confined to heights of less than a few hundred meters. Smoke-induced reductions in daytime soil and air temperatures of several degrees are typical, dependent critically upon soil wetness and smoke AOD. Locations near the coast experience reduced cooling whenever there is a significant onshore flow related to a sea breeze (this would also be the case with a large-scale onshore flow). The sea breeze itself disappears for large enough smoke AOD and, over sloping coastal terrain, a smoke-induced, offshore drainage flow may exist throughout the diurnal cycle.

  17. Vertical structure of atmospheric boundary layer over Ranchi during the summer monsoon season

    NASA Astrophysics Data System (ADS)

    Chandra, Sagarika; Srivastava, Nishi; Kumar, Manoj

    2018-04-01

    Thermodynamic structure and variability in the atmospheric boundary layer have been investigated with the help of balloon-borne GPS radiosonde over a monsoon trough station Ranchi (Lat. 23°45'N, Long. 85°43'E, India) during the summer monsoon season (June-September) for a period of 2011-2013. Virtual potential temperature gradient method is used for the determination of mixed layer height (MLH). The MLH has been found to vary in the range of 1000-1300 m during the onset, 600-900 m during the active and 1400-1750 m during the break phase of monsoon over this region. Inter-annual variations noticed in MLH could be associated with inter-annual variability in convection and rainfall prevailing over the region. Along with the MLH, the cloud layer heights are also derived from the thermodynamic profiles for the onset, active and break phases of monsoon. Cloud layer height varied a lot during different phases of the monsoon. For the determination of boundary-layer convection, thermodynamic parameter difference (δθ = θ es- θ e) between saturated equivalent potential temperature (θ es ) and equivalent potential temperature (θ e) is used. It is a good indicator of convection and indicates the intense and suppressed convection during different phases of monsoon.

  18. An analytical model of capped turbulent oscillatory bottom boundary layers

    NASA Astrophysics Data System (ADS)

    Shimizu, Kenji

    2010-03-01

    An analytical model of capped turbulent oscillatory bottom boundary layers (BBLs) is proposed using eddy viscosity of a quadratic form. The common definition of friction velocity based on maximum bottom shear stress is found unsatisfactory for BBLs under rotating flows, and a possible extension based on turbulent kinetic energy balance is proposed. The model solutions show that the flow may slip at the top of the boundary layer due to capping by the water surface or stratification, reducing the bottom shear stress, and that the Earth's rotation induces current and bottom shear stress components perpendicular to the interior flow with a phase lag (or lead). Comparisons with field and numerical experiments indicate that the model predicts the essential characteristics of the velocity profiles, although the agreement is rather qualitative due to assumptions of quadratic eddy viscosity with time-independent friction velocity and a well-mixed boundary layer. On the other hand, the predicted linear friction coefficients, phase lead, and veering angle at the bottom agreed with available data with an error of 3%-10%, 5°-10°, and 5°-10°, respectively. As an application of the model, the friction coefficients are used to calculate e-folding decay distances of progressive internal waves with a semidiurnal frequency.

  19. Development of Prototype Micro-Lidar using Narrow Linewidth Semiconductor Lasers for Mars Boundary Layer Wind and Dust Opacity Profiles

    NASA Technical Reports Server (NTRS)

    Menzies, Robert T.; Cardell, Greg; Chiao, Meng; Esproles, Carlos; Forouhar, Siamak; Hemmati, Hamid; Tratt, David

    1999-01-01

    We have developed a compact Doppler lidar concept which utilizes recent developments in semiconductor diode laser technology in order to be considered suitable for wind and dust opacity profiling in the Mars lower atmosphere from a surface location. The current understanding of the Mars global climate and meteorology is very limited, with only sparse, near-surface data available from the Viking and Mars Pathfinder landers, supplemented by long-range remote sensing of the Martian atmosphere. The in situ measurements from a lander-based Doppler lidar would provide a unique dataset particularly for the boundary layer. The coupling of the radiative properties of the lower atmosphere with the dynamics involves the radiative absorption and scattering effects of the wind-driven dust. Variability in solar irradiance, on diurnal and seasonal time scales, drives vertical mixing and PBL (planetary boundary layer) thickness. The lidar data will also contribute to an understanding of the impact of wind-driven dust on lander and rover operations and lifetime through an improvement in our understanding of Mars climatology. In this paper we discuss the Mars lidar concept, and the development of a laboratory prototype for performance studies, using, local boundary layer and topographic target measurements.

  20. Dry intrusions: Lagrangian climatology and impact on the boundary layer

    NASA Astrophysics Data System (ADS)

    Raveh-Rubin, Shira; Wernli, Heini

    2017-04-01

    Dry air intrusions (DIs) are large-scale descending airstreams. A DI is typically referred to as a coherent airstream in the cold sector of an extratropical cyclone. Emerging evidence suggests that DIs are linked to severe surface wind gusts. However, there is yet no strict Lagrangian definition of DIs, and so their climatological frequency, dynamical characteristics as well as their seasonal and spatial distributions are unknown. Furthermore, the dynamical interaction between DIs and the planetary boundary layer is not fully understood. Here, we suggest a Lagrangian definition for DI air parcels, namely a minimum pressure increase along a trajectory of 400 hPa in 48 hours. Based on this criterion, the open questions are addressed by: (i) a novel global Lagrangian climatology for the ECMWF ERA-Interim reanalysis dataset for the years 1979-2014; (ii) a case study illustrating the interaction between DIs and the boundary layer. We find that DIs occur predominantly in winter. DIs coherently descend from the upper troposphere (their stratospheric origin is small), to the mid- and low levels, where they mix with their environment and diverge. Different physical characteristics typify DIs in the different regions and seasons. Finally, we demonstrate the different mechanisms by which DIs can destabilize the boundary layer and facilitate the formation of strong surface winds.

  1. Self-similarity of a Rayleigh–Taylor mixing layer at low Atwood number with a multimode initial perturbation

    DOE PAGES

    Morgan, B. E.; Olson, B. J.; White, J. E.; ...

    2017-06-29

    High-fidelity large eddy simulation (LES) of a low-Atwood number (A = 0.05) Rayleigh-Taylor mixing layer is performed using the tenth-order compact difference code Miranda. An initial multimode perturbation spectrum is specified in Fourier space as a function of mesh resolution such that a database of results is obtained in which each successive level of increased grid resolution corresponds approximately to one additional doubling of the mixing layer width, or generation. The database is then analyzed to determine approximate requirements for self-similarity, and a new metric is proposed to quantify how far a given simulation is from the limit of self-similarity.more » It is determined that mixing layer growth reaches a high degree of self-similarity after approximately 4.5 generations. Statistical convergence errors and boundary effects at late time, however, make it impossible to draw similar conclusions regarding the self-similar growth of more sensitive turbulence parameters. Finally, self-similar turbulence profiles from the LES database are compared with one-dimensional simulations using the k-L-a and BHR-2 Reynolds-averaged Navier-Stokes (RANS) models. The k-L-a model, which is calibrated to reproduce a quadratic turbulence kinetic energy profile for a self-similar mixing layer, is found to be in better agreement with the LES than BHR-2 results.« less

  2. Investigation of wintertime cold-air pools and aerosol layers in the Salt Lake Valley using a lidar ceilometer

    NASA Astrophysics Data System (ADS)

    Young, Joseph Swyler

    This thesis investigates the utility of lidar ceilometers, a type of aerosol lidar, in improving the understanding of meteorology and air quality in persistent wintertime stable boundary layers, or cold-air pools, that form in urbanized valley and basin topography. This thesis reviews the scientific literature to survey the present knowledge of persistent cold-air pools, the operating principles of lidar ceilometers, and their demonstrated utility in meteorological investigations. Lidar ceilometer data from the Persistent Cold-Air Pool Study (PCAPS) are then used with meteorological and air quality data from other in situ and remote sensing equipment to investigate cold-air pools that formed in Utah's Salt Lake Valley during the winter of 2010-2011. The lidar ceilometer is shown to accurately measure aerosol layer depth and aerosol loading, when compared to visual observations. A linear relationship is found between low-level lidar backscatter and surface particulate measurements. Convective boundary layer lidar analysis techniques applied to cold-air pool ceilometer profiles can detect useful layer characteristics. Fine-scale waves are observed and analyzed within the aerosol layer, with emphasis on Kelvin-Helmholz waves. Ceilometer aerosol backscatter profiles are analyzed to quantify and describe mixing processes in persistent cold-air pools. Overlays of other remote and in-situ observations are combined with ceilometer particle backscatter to describe specific events during PCAPS. This analysis describes the relationship between the aerosol layer and the valley inversion as well as interactions with large-scale meteorology. The ceilometer observations of hydrometers are used to quantify cloudiness and precipitation during the project, observing that 50% of hours when a PCAP was present had clouds or precipitation below 5 km above ground level (AGL). Then, combining an objective technique for determining hourly aerosol layer depths and correcting this subjectively during periods with low clouds or precipitation, a time series of aerosol depths was obtained. The mean depth of the surface-based aerosol layer during PCAP events was 1861 m MSL with a standard deviation of 135 m. The aerosol layer depth, given the approximate 1300 m altitude of the valley floor, is thus about 550 m, about 46% of the basin depth. The aerosol layer is present during much of the winter and is removed only during strong or prolonged precipitation periods or when surface winds are strong. Nocturnal fogs that formed near the end of high-stability PCAP episodes had a limited effect on aerosol layer depth. Aerosol layer depth was relatively invariant during the winter and during the persistent cold-air pools, while PM10 concentrations at the valley floor varied with bulk atmospheric stability associated primarily with passage of large-scale high- and low-pressure weather systems. PM10 concentrations also increased with cold-air pool duration. Mean aerosol loading in the surface-based aerosol layer, as determined from ceilometer backscatter coefficients, showed weaker variations than those of surface PM10 concentrations, suggesting that ineffective vertical mixing and aerosol layering are present in the cold-air pools. This is supported by higher time-resolution backscatter data, and it distinguishes the persistent cold-air pools from well-mixed convective boundary layers where ground-based air pollution concentrations are closely related to time-dependent convective boundary layer/aerosol depths. These results are discussed along with recommendations for future explorations of the ceilometer and cold-air pool topics.

  3. Aspects of Supercritical Turbulence: Direct Numerical Simulation of O2/H2 and C7H16/N2 Temporal Mixing Layers

    NASA Technical Reports Server (NTRS)

    Bellan, J.; Okongo, N. A.; Harstad, K. G.; Hutt, John (Technical Monitor)

    2002-01-01

    Results from Direct Numerical Simulations of temporal, supercritical mixing layers for two species systems are analyzed to elucidate species-specific turbulence aspects. The two species systems, O2/H2 and C7HG16/N2, have different thermodynamic characteristics; thus, although the simulations are performed at similar reduced pressure (ratio of the pressure to the critical pressure), the former system is dose to mixture ideality and has a relatively high solubility with respect to the latter, which exhibits strong departures from mixture ideality Due to the specified, smaller initial density stratification, the C7H16/N2 layers display higher growth and increased global molecular mixing as well as larger turbulence levels. However, smaller density gradients at the transitional state for the O2/H2 system indicate that on a local basis, the layer exhibits an enhanced mixing, this being attributed to the increased solubility and to mixture ideality. These thermodynamic features are shown to affect the irreversible entropy production (i.e. the dissipation), which is larger for the O2/H2 layer and is primarily concentrated in high density-gradient magnitude regions that are distortions of the initial density stratification boundary. In contrast, the regions of largest dissipation in the C7H16/N2 layer are located in high density-gradient magnitude regions resulting from the mixing of the two fluids.

  4. The Vertical Dust Profile Over Gale Crater, Mars

    NASA Astrophysics Data System (ADS)

    Guzewich, Scott D.; Newman, C. E.; Smith, M. D.; Moores, J. E.; Smith, C. L.; Moore, C.; Richardson, M. I.; Kass, D.; Kleinböhl, A.; Mischna, M.; Martín-Torres, F. J.; Zorzano-Mier, M.-P.; Battalio, M.

    2017-12-01

    We create a vertically coarse, but complete, profile of dust mixing ratio from the surface to the upper atmosphere over Gale Crater, Mars, using the frequent joint atmospheric observations of the orbiting Mars Climate Sounder (MCS) and the Mars Science Laboratory Curiosity rover. Using these data and an estimate of planetary boundary layer (PBL) depth from the MarsWRF general circulation model, we divide the vertical column into three regions. The first region is the Gale Crater PBL, the second is the MCS-sampled region, and the third is between these first two. We solve for a well-mixed dust mixing ratio within this third (middle) layer of atmosphere to complete the profile. We identify a unique seasonal cycle of dust within each atmospheric layer. Within the Gale PBL, dust mixing ratio maximizes near southern hemisphere summer solstice (Ls = 270°) and minimizes near winter solstice (Ls = 90-100°) with a smooth sinusoidal transition between them. However, the layer above Gale Crater and below the MCS-sampled region more closely follows the global opacity cycle and has a maximum in opacity near Ls = 240° and exhibits a local minimum (associated with the "solsticial pause" in dust storm activity) near Ls = 270°. With knowledge of the complete vertical dust profile, we can also assess the frequency of high-altitude dust layers over Gale. We determine that 36% of MCS profiles near Gale Crater contain an "absolute" high-altitude dust layer wherein the dust mixing ratio is the maximum in the entire vertical column.

  5. Rapid Changes in Water Properties on a Shallow Reef in the Chesapeake Bay due to a Wind Driven Internal Seiche

    NASA Astrophysics Data System (ADS)

    Kilbourne, B.

    2016-12-01

    The Chesapeake Bay Interpretive Buoy System has collected oceanographic and meteorological observations in Chesapeake Bay from 2007 to the present. The relatively long and well resolved time series of wind, current, and salinity data provided by this array creates an opportunity to better understand the many finescale circulation pathways in Chesapeake Bay. The mean vertical structure of Chesapeake Bay is approximated by a three layer system: a well-mixed surface boundary layer from 1 to 8 m depth, a stratified transition layer from 8 to 15 m depth, and a well-mixed bottom boundary layer from 15 m to the bottom (typically < 30 m). The conditions in the surface and bottom boundary layers can be strikingly different with the bottom layer being saltier, lower in pH, and lower in dissolved oxygen than the surface layer. The Gooses Reef station of this array is located on `Gooses Reef', a shallow bar just 10 m in depth, dividing the Choptank River basin from the main channel of the Chesapeake Bay. This shallow bar provides habitat for oysters, a keystone species in the Chesapeake Bay, and is both commercially and ecologically critical to the region. These shallow habitats are threatened when anoxic (< 0.5 mg l-1 O2) conditions exist in the upper 10 m of the water column. The Gooses Reef station is unique in the array due to the addition of a bottom mounted sensor package; data from August 2012 show rapid changes in the salinity (11 to 17 PSU), dissolved oxygen (6 to 0.05 mg l-1) , and pH (8.3 to 7.7) at the bottom. Investigations of wind and current data before these rapid changes show along channel wind stress oscillations near the M2 tidal frequency. Current profiles from the buoy ADCP show low-frequency along-channel baroclinic oscillations. Observed currents appear to be an internal seiche, forced by resonance between the along-channel wind and diurnal tide. At the Gooses Reef bar, this internal seiche forced the bottom boundary layer up and over the bar, causing the sudden shift in water properties. These observations highlight the strong physical controls on local water conditions in the Chesapeake Bay and similar estuaries.

  6. Numerical study of vorticity-enhanced heat transfer

    NASA Astrophysics Data System (ADS)

    Wang, Xiaolin; Alben, Silas

    2013-11-01

    Vortices produced by vibrated reeds and flapping foils can improve heat transfer efficiency in electronic hardware. Vortices enhance forced convection by boundary layer separation and thermal mixing in the bulk flow. In this work, we modeled and simulated the fluid flow and temperature in a 2-D channel flow with vortices injected at the upstream boundary. We classified four types of vortex streets depending on the Reynolds number and vortices' strengths and spacings, and studied the different vortex dynamics in each situation. We then used Lagrangian coherent structures (LCS) to study the effect of the vortices on mixing and determined how the Nusselt number and Coefficients of performance vary with flow parameters and Peclet numbers.

  7. Stable Stratification Effects on Flow and Pollutant Dispersion in Boundary Layers Entering a Generic Urban Environment

    NASA Astrophysics Data System (ADS)

    Tomas, J. M.; Pourquie, M. J. B. M.; Jonker, H. J. J.

    2016-05-01

    Large-eddy simulations (LES) are used to investigate the effect of stable stratification on rural-to-urban roughness transitions. Smooth-wall turbulent boundary layers are subjected to a generic urban roughness consisting of cubes in an in-line arrangement. Two line sources of pollutant are added to investigate the effect on pollutant dispersion. Firstly, the LES method is validated with data from wind-tunnel experiments on fully-developed flow over cubical roughness. Good agreement is found for the vertical profiles of the mean streamwise velocity component and mean Reynolds stress. Subsequently, roughness transition simulations are done for both neutral and stable conditions. Results are compared with fully-developed simulations with conventional double-periodic boundary conditions. In stable conditions, at the end of the domain the streamwise velocity component has not yet reached the fully-developed state even though the surface forces are nearly constant. Moreover, the internal boundary layer is shallower than in the neutral case. Furthermore, an investigation of the turbulence kinetic energy budget shows that the buoyancy destruction term is reduced in the internal boundary layer, above which it is equal to the undisturbed (smooth wall) value. In addition, in stable conditions pollutants emitted above the urban canopy enter the canopy farther downstream due to decreased vertical mixing. Pollutants emitted below the top of the urban canopy are 85 % higher in concentration in stable conditions mostly due to decreased advection. If this is taken into account concentrations remain 17 % greater in stable conditions due to less rapid internal boundary-layer growth. Finally, it is concluded that in the first seven streets the vertical advective pollutant flux is significant, in contrast to the fully-developed case.

  8. Acoustic loads prediction on jet aircraft

    NASA Technical Reports Server (NTRS)

    Reddy, N. N.

    1992-01-01

    A nearfield aircraft noise prediction computer program is presented for the F-22 aircraft. The dominant sources of noise are jet turbulent mixing noise, jet broadband shock noise, and fluctuating pressure under the turbulent boundary layer. All results from this investigation are presented in viewgraph format.

  9. Acoustic loads prediction on jet aircraft

    NASA Astrophysics Data System (ADS)

    Reddy, N. N.

    1992-07-01

    A nearfield aircraft noise prediction computer program is presented for the F-22 aircraft. The dominant sources of noise are jet turbulent mixing noise, jet broadband shock noise, and fluctuating pressure under the turbulent boundary layer. All results from this investigation are presented in viewgraph format.

  10. EXPERIMENTS ON BUOYANT PLUME DISPERSION IN A LABORATORY CONVENTION TANK

    EPA Science Inventory

    Buoyant plume dispersion in the convective boundary layer (CBL) is investigated experimentally in a laboratory convection tank. The focus is on highly-buoyant plumes that loft near the CBL capping inversion and resist downward mixing. Highly- buoyant plumes are those with dimen...

  11. Regeneratively cooled coal combustor/gasifier with integral dry ash removal

    DOEpatents

    Beaufrere, Albert H.

    1983-10-04

    A coal combustor/gasifier is disclosed which produces a low or medium combustion gas for further combustion in modified oil or gas fired furnaces or boilers. Two concentric shells define a combustion volume within the inner shell and a plenum between them through which combustion air flows to provide regenerative cooling of the inner shell for dry ash operation. A fuel flow and a combustion air flow having opposed swirls are mixed and burned in a mixing-combustion portion of the combustion volume and the ash laden combustion products flow with a residual swirl into an ash separation region. The ash is cooled below the fusion temperature and is moved to the wall by centrifugal force where it is entrained in the cool wall boundary layer. The boundary layer is stabilized against ash re-entrainment as it is moved to an ash removal annulus by a flow of air from the plenum through slots in the inner shell, and by suction on an ash removal skimmer slot.

  12. On the dominant impact of vertical moisture gradient on mesoscale cloud cellular organization of stratocumulus

    NASA Astrophysics Data System (ADS)

    Zhou, X.; Ackerman, A. S.; Fridlind, A. M.; Kollias, P.

    2016-12-01

    Large-eddy simulations are performed to study the mechanisms of stratocumulus organization. Precipitation tends to increase horizontal cloud scales, but is not required for cloud mesoscale organization. A study of the terms in the prognostic equation for total water mixing ratio variance shows the critical impact of vertical moisture gradient on cloud scale. For precipitating clouds, the organization originates from the negative moisture gradient in the boundary layer resulting from evaporation of precipitation. This hypothesis is supported by simulations in which thermodynamics profiles are nudged to their initial well-mixed state, which reduces cloud scales. Cold pools effect are surprisingly found to respond to rather than determine the cloud mesoscale variability. For non-precipitating clouds, organization results from turbulent transport of moisture variance originating primarily from cloud top, where dry air is entrained into the boundary layer through convection driven by cloud top longwave (LW) cooling. Both LW cooling and a moisture gradient above cloud top are essential for the growth of mesoscale fluctuations.

  13. Flow visualization of discrete hole film cooling for gas turbine applications

    NASA Technical Reports Server (NTRS)

    Colladay, R. S.; Russell, L. M.

    1975-01-01

    Film injection from discrete holes in a three row staggered array with 5-diameter spacing is studied for three different hole angles: (1) normal, (2) slanted 30 deg to the surface in the direction of the mainstream, and (3) slanted 30 deg to the surface and 45 deg laterally to the mainstream. The boundary layer thickness-to-hole diameter ratio and Reynolds number are typical of gas turbine film cooling applications. Two different injection locations are studied to evaluate the effect of boundary layer thickness on film penetration and mixing. Detailed streaklines showing the turbulent motion of the injected air are obtained by photographing very small neutrally buoyant helium filled 'soap' bubbles which follow the flow field. Unlike smoke, which diffuses rapidly in the high turbulent mixing region associated with discrete hole blowing, the bubble streaklines passing downstream injection locations are clearly identifiable and can be traced back to their origin. Visualization of surface temperature patterns obtained from infrared photographs of a similar film cooled surface are also included.

  14. MHD Effect on Unsteady Mixed Convection Boundary Layer Flow past a Circular Cylinder with Constant Wall Temperature

    NASA Astrophysics Data System (ADS)

    Ismail, M. A.; Mohamad, N. F.; Ilias, M. R.; Shafie, S.

    2017-09-01

    Magnetohydrodynamic (MHD) effect is a study on motion of electrical-conducting fluid under magnetic fields. This effect has great intention due to its applications such as design of heat exchanger and nuclear reactor. In the problem in fluid motion, flow of separation can reduced the effectiveness of the system as well as can increased the energy lost. This study will present the results on reducing the flow separation by considering magnetic effect. In this study, unsteady mixed convection boundary layer flow past a circular cylinder is given attention. Focus of study is on the separation times that affected by the magnetic fields. The mathematical models in the form of partial differential equations are transformed into nonlinear coupled ordinary differential equations and solved numerically using an implicit finite-difference scheme known as Keller-box method. The effect of magnetic parameter on velocity and temperature profiles as well as skin friction and Nusselt number are studied.

  15. A Basin-Wide Examination of the Arctic Ocean's Double-Diffusive Staircase

    NASA Astrophysics Data System (ADS)

    Shibley, N.; Timmermans, M. L.; Carpenter, J. R.; Toole, J. M.

    2016-02-01

    The Arctic Ocean thermohaline stratification frequently exhibits a staircase structure above the Atlantic Water Layer consisting of multiple mixed layers of order 1-m in height separated by sharp interfaces. This double-diffusive staircase structure is characterized across the entire Arctic Ocean through a detailed analysis of Ice-Tethered Profiler measurements acquired between 2004 and 2013. Staircase properties (mixed layer thicknesses and temperature-salinity jumps across interfaces) are examined in relation to a bulk vertical density ratio for 50-m spanning the staircase stratification. It is shown that the Lomonosov Ridge serves as an approximate boundary between regions of low density ratio (on the Eurasian side) and higher density ratio (on the Canadian side). We find that the diffusive staircase in the Eurasian Basin is characterized by fewer, thinner mixed layers than that in the Canadian Basin, although the margins of all basins are characterized by relatively thin staircase mixed layers. Using a double-diffusive 4/3 flux law parameterization, the distribution of vertical heat fluxes through the staircase is estimated across the Arctic; it is found that heat fluxes in the Eurasian Basin [O(1) W/m^2] are generally an order of magnitude larger than those in the Canadian Basin [O(0.1) W/m^2].

  16. Understanding the dimensional and mechanical properties of coastal Langmuir Circulations

    NASA Astrophysics Data System (ADS)

    Shrestha, Kalyan; Kuehl, Joseph; Anderson, William

    2017-11-01

    Non-linear interaction of surface waves and wind-driven shear instability in the upper ocean mixed layer form counter-rotating vortical structures called Langmuir Circulations. This oceanic microscale turbulence is one of the key contributors of mixing and vertical transport in the upper ocean mixed layer. Langmuir turbulence in the open (deep) ocean has already been the topic of a large research effort. However, coastal Langmuir cells are distinctly different from Langmuir cells in open-ocean regions, where additional bottom-boundary layer shear alters the kinematic properties of Langmuir cells. For this study, we have conducted a wide-ranging numerical study (solving the grid-filtered Craik-Leibovich equations) of coastal Langmuir turbulence, assessing which parameters affect Langmuir cells and defining the parametric hierarchy. The Stokes profile (aggregate velocity due to orbital wave motion) is functionally dependent on Stokes drift velocity and wavenumber of the surface waves. We explain that these parameters, which correspond to the environmental forcing variables, control the horizontal and vertical length scales of Langmuir cell respectively. This result is important in understanding the transport and dispersion of materials in the upper mixed layer of coastal ocean. We argue that wind stress is a parameter governing the strength of Langmuir cells.

  17. Flow visualization of discrete hole film cooling for gas turbine applications

    NASA Technical Reports Server (NTRS)

    Colladay, R. S.; Russell, L. M.

    1975-01-01

    Film injection from discrete holes in a three row staggered array with 5-diameter spacing is studied. The boundary layer thickness-to-hole diameter ratio and Reynolds number are typical of gas turbine film cooling applications. Two different injection locations are studied to evaluate the effect of boundary layer thickness on film penetration and mixing. Detailed streaklines showing the turbulent motion of the injected air are obtained by photographing neutrally buoyant helium filled soap bubbles which follow the flow field. The bubble streaklines passing downstream injection locations are clearly identifiable and can be traced back to their origin. Visualization of surface temperature patterns obtained from infrared photographs of a similar film cooled surface are also included.

  18. Practical application of computer programs for supersonic combustion

    NASA Technical Reports Server (NTRS)

    Groves, F. R., Jr.

    1972-01-01

    Experimental data were interpreted using two supersonic combustion computer programs. The P1 program is based on a conventional boundary layer treatment of the mixing of concentric gas streams and complete combustion chemistry. The H1 program is based on a modified boundary layer approach which accounts for radial pressure gradients in the flow and also incorporates a finite rate chemistry calculation. The objective of the investigation was to compare the experimental data with theoretical predictions of the two programs with special emphasis on the prediction of radial pressure gradients by the H1 program. A test of the H1 program was also desired through comparison with the experimental data and with the P1 program.

  19. Minimal color-flavor-locked-nuclear interface

    NASA Astrophysics Data System (ADS)

    Alford, Mark; Rajagopal, Krishna; Reddy, Sanjay; Wilczek, Frank

    2001-10-01

    At nuclear matter density, electrically neutral strongly interacting matter in weak equilibrium is made of neutrons, protons, and electrons. At sufficiently high density, such matter is made of up, down, and strange quarks in the color-flavor-locked (CFL) phase, with no electrons. As a function of increasing density (or, perhaps, increasing depth in a compact star) other phases may intervene between these two phases, which are guaranteed to be present. The simplest possibility, however, is a single first order phase transition between CFL and nuclear matter. Such a transition, in space, could take place either through a mixed phase region or at a single sharp interface with electron-free CFL and electron-rich nuclear matter in stable contact. Here we construct a model for such an interface. It is characterized by a region of separated charge, similar to an inversion layer at a metal-insulator boundary. On the CFL side, the charged boundary layer is dominated by a condensate of negative kaons. We then consider the energetics of the mixed phase alternative. We find that the mixed phase will occur only if the nuclear-CFL surface tension is significantly smaller than dimensional analysis would indicate.

  20. Characterising the effect of a variety of surface roughness on boundary layer wind and dynamics within the scanning Doppler lidar network in Finland

    NASA Astrophysics Data System (ADS)

    Hirsikko, Anne; O'Connor, Ewan J.; Wood, Curtis R.; Vakkari, Ville

    2013-04-01

    Aerosol particle and trace gas atmospheric content is controlled by natural and anthropological emissions. However, further dispersion in the atmosphere is driven by wind and dynamic mixing. Atmospheric surface and boundary layer dynamics have direct and indirect effects on weather, air quality and processes affecting climate (e.g. gas exchange between ecosystem and atmosphere). In addition to the amount of solar energy and prevailing meteorological condition, the surface topography has a strong influence on the close to surface wind field and turbulence, particularly in urban areas (e.g. Barlow and Coceal, 2009). In order to characterise the effect of forest, urban and coastal surfaces on boundary layer wind and mixing, we have utilised the Finnish Doppler lidar network (Hirsikko et al., 2013). The network consists of five 1.5 μm Doppler lidars (HALO Photonics, Pearson et al., 2009), of which four are capable of full hemispheric scanning and are located at Helsinki (60.12°N, 25.58°E, 45 m asl.), Utö island (59.47°N, 21.23°E, 8 m asl.), SMEAR II at Hyytiälä (61.50°N, 24.17°E, 181 m asl.) and Kuopio (62.44°N, 27.32°E, 190 m asl.). The fifth lidar at Sodankylä (67.37°N, 26.63°E, 171 m asl.) is a new model designed for the Arctic environment with no external moving parts, but still retains limited scan capability. Investigation of boundary layer wind and mixing condition can now be extended beyond vertical profiles of horizontal wind, and dissipation rate of turbulent kinetic energy (O'Connor et al., 2010) throughout the boundary layer. We have applied custom designed scanning routines for 3D-observation of the wind fields and simultaneous aerosol particle distribution continuously for over one year at Helsinki and Utö, and began similar scanning routines at Kuopio and Hyytiälä in spring 2013. In this long term project, our aims are to 1) characterise the effect of the land-sea interface and the urban environment on the wind and its turbulent nature near the surface (< 200 m above the ground) observed at our four measurement sites, 2) characterise aerosol particle spatial and temporal distribution, and 3) deploy obtained results in air quality monitoring purpose and weather models. Here, we focus on wind field characterisation. The effect of sea, land and certain buildings were clear and evident in our wind data. The results compare favourably with in-situ point observations available indicating the applicability of the 3D-measurement routines and subsequent data analysis. Acknowledgements This research was supported by funding from the European Union Seventh Framework Programme (FP7/2007-2013) under grant 262254, and by the Maj and Tor Nessling foundation (Dispersion of air pollution in the boundary layer - new approach with scanning Doppler lidars). References Barlow J. and Coceal, O.: A review of urban roughness sublayer turbulence, Met Office Tech. Rep., Exeter, p. 68, 2009. Hirsikko, A., et al.: Observing aerosol particles, clouds and boundary layer wind: a new remote sensing network in Finland, in preparation for Atmos. Meas. Tech., 2013. O'Connor, E.J., Illingworth, A.J., Brooks, I.M., Westbrook, C.D., Hogan, R.J., Davies, F. and Brooks, B.J.: A Method for Estimating the Turbulent Kinetic Energy Dissipation Rate from a Vertically Pointing Doppler Lidar, and Independent Evaluation from Balloon-Borne In Situ Measurements, J. Atmos. Ocean. Technol., 27, 1652-1664, 2010. Pearson, G., Davies, F., and Collier, C.: An Analysis of the Performance of the UFAM Pulsed Doppler Lidar for Observing the Boundary Layer, J. Atmos. Ocean. Tech., 26, 240-250, 2009.

  1. Select strengths and biases of models in representing the Arctic winter boundary layer over sea ice: the Larcform 1 single column model intercomparison

    DOE PAGES

    Pithan, Felix; Ackerman, Andrew; Angevine, Wayne M.; ...

    2016-08-27

    We struggle to represent lower tropospheric temperature and moisture profiles and surface fluxes in Artic winter using weather and climate models, partly because they lack or misrepresent physical processes that are specific to high latitudes. Observations have revealed two preferred states of the Arctic winter boundary layer. In the cloudy state, cloud liquid water limits surface radiative cooling, and temperature inversions are weak and elevated. In the radiatively clear state, strong surface radiative cooling leads to the build-up of surface-based temperature inversions. Many large-scale models lack the cloudy state, and some substantially underestimate inversion strength in the clear state. Themore » transformation from a moist to a cold dry air mass is modeled using an idealized Lagrangian perspective. The trajectory includes both boundary layer states, and the single-column experiment is the first Lagrangian Arctic air formation experiment (Larcform 1) organized within GEWEX GASS (Global atmospheric system studies). The intercomparison reproduces the typical biases of large-scale models: some models lack the cloudy state of the boundary layer due to the representation of mixed-phase microphysics or to the interaction between micro- and macrophysics. In some models, high emissivities of ice clouds or the lack of an insulating snow layer prevent the build-up of surface-based inversions in the radiatively clear state. Models substantially disagree on the amount of cloud liquid water in the cloudy state and on turbulent heat fluxes under clear skies. Finally, observations of air mass transformations including both boundary layer states would allow for a tighter constraint of model behavior.« less

  2. Mixed convective/dynamic roll vortices and their effects on initial wind and temperature profiles

    NASA Technical Reports Server (NTRS)

    Haack, Tracy; Shirer, Hampton N.

    1991-01-01

    The onset and development of both dynamically and convectively forced boundary layer rolls are studied with linear and nonlinear analyses of a truncated spectral model of shallow Boussinesq flow. Emphasis is given here on the energetics of the dominant roll modes, on the magnitudes of the roll-induced modifications of the initial basic state wind and temperature profiles, and on the sensitivity of the linear stability results to the use of modified profiles as basic states. It is demonstrated that the roll circulations can produce substantial changes to the cross-roll component of the initial wind profile and that significant changes in orientation angle estimates can result from use of a roll-modified profile in the stability analysis. These results demonstrate that roll contributions must be removed from observed background wind profiles before using them to investigate the mechanisms underlying actual secondary flows in the boundary layer. The model is developed quite generally to accept arbitrary basic state wind profiles as dynamic forcing. An Ekman profile is chosen here merely to provide a means for easy comparison with other theoretical boundary layer studies; the ultimate application of the model is to study observed boundary layer profiles. Results of the analytic stability analysis are validated by comparing them with results from a larger linear model. For an appropriate Ekman depth, a complete set of transition curves is given in forcing parameter space for roll modes driven both thermally and dynamically. Preferred orientation angles, horizontal wavelengths and propagation frequencies, as well as energetics and wind profile modifications, are all shown to agree rather well with results from studies on Ekman layers as well as with studies on near-neutral and convective atmospheric boundary layers.

  3. Select strengths and biases of models in representing the Arctic winter boundary layer over sea ice: the Larcform 1 single column model intercomparison

    PubMed Central

    Pithan, Felix; Ackerman, Andrew; Angevine, Wayne M.; Hartung, Kerstin; Ickes, Luisa; Kelley, Maxwell; Medeiros, Brian; Sandu, Irina; Steeneveld, Gert-Jan; Sterk, HAM; Svensson, Gunilla; Vaillancourt, Paul A.; Zadra, Ayrton

    2017-01-01

    Weather and climate models struggle to represent lower tropospheric temperature and moisture profiles and surface fluxes in Arctic winter, partly because they lack or misrepresent physical processes that are specific to high latitudes. Observations have revealed two preferred states of the Arctic winter boundary layer. In the cloudy state, cloud liquid water limits surface radiative cooling, and temperature inversions are weak and elevated. In the radiatively clear state, strong surface radiative cooling leads to the build-up of surface-based temperature inversions. Many large-scale models lack the cloudy state, and some substantially underestimate inversion strength in the clear state. Here, the transformation from a moist to a cold dry air mass is modelled using an idealized Lagrangian perspective. The trajectory includes both boundary layer states, and the single-column experiment is the first Lagrangian Arctic air formation experiment (Larcform 1) organized within GEWEX GASS (Global atmospheric system studies). The intercomparison reproduces the typical biases of large-scale models: Some models lack the cloudy state of the boundary layer due to the representation of mixed-phase micro-physics or to the interaction between micro-and macrophysics. In some models, high emissivities of ice clouds or the lack of an insulating snow layer prevent the build-up of surface-based inversions in the radiatively clear state. Models substantially disagree on the amount of cloud liquid water in the cloudy state and on turbulent heat fluxes under clear skies. Observations of air mass transformations including both boundary layer states would allow for a tighter constraint of model behaviour. PMID:28966718

  4. Select strengths and biases of models in representing the Arctic winter boundary layer over sea ice: the Larcform 1 single column model intercomparison.

    PubMed

    Pithan, Felix; Ackerman, Andrew; Angevine, Wayne M; Hartung, Kerstin; Ickes, Luisa; Kelley, Maxwell; Medeiros, Brian; Sandu, Irina; Steeneveld, Gert-Jan; Sterk, Ham; Svensson, Gunilla; Vaillancourt, Paul A; Zadra, Ayrton

    2016-09-01

    Weather and climate models struggle to represent lower tropospheric temperature and moisture profiles and surface fluxes in Arctic winter, partly because they lack or misrepresent physical processes that are specific to high latitudes. Observations have revealed two preferred states of the Arctic winter boundary layer. In the cloudy state, cloud liquid water limits surface radiative cooling, and temperature inversions are weak and elevated. In the radiatively clear state, strong surface radiative cooling leads to the build-up of surface-based temperature inversions. Many large-scale models lack the cloudy state, and some substantially underestimate inversion strength in the clear state. Here, the transformation from a moist to a cold dry air mass is modelled using an idealized Lagrangian perspective. The trajectory includes both boundary layer states, and the single-column experiment is the first L agrangian Arc tic air form ation experiment (Larcform 1) organized within GEWEX GASS (Global atmospheric system studies). The intercomparison reproduces the typical biases of large-scale models: Some models lack the cloudy state of the boundary layer due to the representation of mixed-phase micro-physics or to the interaction between micro-and macrophysics. In some models, high emissivities of ice clouds or the lack of an insulating snow layer prevent the build-up of surface-based inversions in the radiatively clear state. Models substantially disagree on the amount of cloud liquid water in the cloudy state and on turbulent heat fluxes under clear skies. Observations of air mass transformations including both boundary layer states would allow for a tighter constraint of model behaviour.

  5. Dust in brown dwarfs. III. Formation and structure of quasi-static cloud layers

    NASA Astrophysics Data System (ADS)

    Woitke, P.; Helling, Ch.

    2004-01-01

    In this paper, first solutions of the dust moment equations developed in (Woitke & Helling \\cite{wh2003a}) for the description of dust formation and precipitation in brown dwarf and giant gas planet atmospheres are presented. We consider the special case of a static brown dwarf atmosphere, where dust particles continuously nucleate from the gas phase, grow by the accretion of molecules, settle gravitationally and re-evaporate thermally. Mixing by convective overshoot is assumed to replenish the atmosphere with condensable elements, which is necessary to counterbalance the loss of condensable elements by dust formation and gravitational settling (no dust without mixing). Applying a kinetic description of the relevant microphysical and chemical processes for TiO2-grains, the model makes predictions about the large-scale stratification of dust in the atmosphere, the depletion of molecules from the gas phase, the supersaturation of the gas in the atmosphere as well as the mean size and the mass fraction of dust grains as function of depth. Our results suggest that the presence of relevant amounts of dust is restricted to a layer, where the upper boundary (cloud deck) is related to the requirement of a minimum mixing activity (mixing time-scale τmix ≈ 10 6 s) and the lower boundary (cloud base) is determined by the thermodynamical stability of the grains. The nucleation occurs around the cloud deck where the gas is cool, strongly depleted, but nevertheless highly supersaturated (S ≫ 1). These particles settle gravitationally and populate the warmer layers below, where the in situ formation (nucleation) is ineffective or even not possible. During their descent, the particles grow and reach mean radii of ≈30 \\mum ... 400 \\mum at the cloud base, but the majority of the particles in the cloud layer remains much smaller. Finally, the dust grains sink into layers which are sufficiently hot to cause their thermal evaporation. Hence, an effective transport mechanism for condensable elements exists in brown dwarfs, which depletes the gas above and enriches the gas below the cloud base of a considered solid/liquid material. The dust-to-gas mass fraction in the cloud layer results to be approximately given by the mass fraction of condensable elements in the gas being mixed up. Only for artificially reduced mixing we find a self-regulation mechanism that approximately installs phase equilibrium (S ≈ 1) in a limited region around the cloud base.

  6. Fluid flow induced by periodic temperature oscillation over a flat plate: Comparisons with the classical Stokes problems

    NASA Astrophysics Data System (ADS)

    Pal, Debashis; Chakraborty, Suman

    2015-05-01

    We delineate the dynamics of temporally and spatially periodic flow over a flat plate originating out of periodic thermoviscous expansion of the fluid, as a consequence of a thermal wave applied on the plate wall. We identify two appropriate length scales, namely, the wavelength of the temperature wave and the thermal penetration depth, so as to bring out the complex thermo-physical interaction between the fluid and the solid boundaries. Our results reveal that the entire thermal fluctuation and the subsequent thermoviscous actuation remain confined within a "thermo-viscous boundary layer." Based on the length scales and the analytical solution for the temperature field, we demarcate three different layers, namely, the wall layer (which is further sub-divided into various sub-layers, based on the temperature field), the intermediate layer, and the outer layer. We show that the interactions between the pressure oscillation and temperature-dependent viscosity yield a unidirectional time-averaged (mean) flow within the wall layer opposite to the direction of motion of the thermal wave. We also obtain appropriate scalings for the time-averaged velocity, which we further substantiate by full scale numerical simulations. Our analysis may constitute a new design basis for simultaneous control of the net throughput and mixing over a solid boundary, by the judicious employment of a traveling temperature wave.

  7. Roughness Effects on Wind-Turbine Wake Dynamics in a Boundary-Layer Wind Tunnel

    NASA Astrophysics Data System (ADS)

    Barlas, E.; Buckingham, S.; van Beeck, J.

    2016-01-01

    Increasing demand in wind energy has resulted in increasingly clustered wind farms, and raised the interest in wake research dramatically in the last couple of years. To this end, the present work employs an experimental approach with scaled three-bladed wind-turbine models in a large boundary-layer wind-tunnel. Time-resolved measurements are carried out with a three-component hot-wire anemometer in the mid-vertical plane of the wake up to a downstream distance of eleven turbine diameters. The major issue addressed is the wake dynamics i.e. the flow and turbulence characteristics as well as spectral content under two different neutral boundary-layer inflow conditions. The wind tunnel is arranged with and without roughened surfaces in order to mimic moderately rough and smooth conditions. The inflow characterization is carried out by using all three velocity components, while the rest of the study is focused on the streamwise component's evolution. The results show an earlier wake recovery, i.e. the velocity deficit due to the turbine is less persistent for the rough case due to higher incoming turbulence levels. This paves the way for enhanced mixing from higher momentum regions of the boundary layer towards the centre of the wake. The investigation on the turbulent shear stresses is in line with this observation as well. Moreover, common as well as distinguishing features of the turbulent-scales evolution are detected for rough and smooth inflow boundary-layer conditions. Wake meandering disappears for rough inflow conditions but persists for smooth case with a Strouhal number similar to that of a solid disk wake.

  8. Polar boundary layer bromine explosion and ozone depletion events in the chemistry-climate model EMAC v2.52: implementation and evaluation of AirSnow algorithm

    NASA Astrophysics Data System (ADS)

    Falk, Stefanie; Sinnhuber, Björn-Martin

    2018-03-01

    Ozone depletion events (ODEs) in the polar boundary layer have been observed frequently during springtime. They are related to events of boundary layer enhancement of bromine. Consequently, increased amounts of boundary layer volume mixing ratio (VMR) and vertical column densities (VCDs) of BrO have been observed by in situ observation, ground-based as well as airborne remote sensing, and from satellites. These so-called bromine explosion (BE) events have been discussed serving as a source of tropospheric BrO at high latitudes, which has been underestimated in global models so far. We have implemented a treatment of bromine release and recycling on sea-ice- and snow-covered surfaces in the global chemistry-climate model EMAC (ECHAM/MESSy Atmospheric Chemistry) based on the scheme of Toyota et al. (2011). In this scheme, dry deposition fluxes of HBr, HOBr, and BrNO3 over ice- and snow-covered surfaces are recycled into Br2 fluxes. In addition, dry deposition of O3, dependent on temperature and sunlight, triggers a Br2 release from surfaces associated with first-year sea ice. Many aspects of observed bromine enhancements and associated episodes of near-complete depletion of boundary layer ozone, both in the Arctic and in the Antarctic, are reproduced by this relatively simple approach. We present first results from our global model studies extending over a full annual cycle, including comparisons with Global Ozone Monitoring Experiment (GOME) satellite BrO VCDs and surface ozone observations.

  9. A kinematic eddy viscosity model including the influence of density variations and preturbulence

    NASA Technical Reports Server (NTRS)

    Cohen, L. S.

    1973-01-01

    A model for the kinematic eddy viscosity was developed which accounts for the turbulence produced as a result of jet interactions between adjacent streams as well as the turbulence initially present in the streams. In order to describe the turbulence contribution from jet interaction, the eddy viscosity suggested by Prandtl was adopted, and a modification was introduced to account for the effect of density variation through the mixing layer. The form of the modification was ascertained from a study of the compressible turbulent boundary layer on a flat plate. A kinematic eddy viscosity relation which corresponds to the initial turbulence contribution was derived by employing arguments used by Prandtl in his mixing length hypothesis. The resulting expression for self-preserving flow is similar to that which describes the mixing of a submerged jet. Application of the model has led to analytical predictions which are in good agreement with available turbulent mixing experimental data.

  10. Individual Aerosol Particles from Biomass Burning in Southern Africa. 1; Compositions and Size Distributions of Carbonaceous Particles

    NASA Technical Reports Server (NTRS)

    Posfai, Mihaly; Simonics, Renata; Li, Jia; Hobbs, Peter V.; Buseck, Peter R.

    2003-01-01

    Individual aerosol particles in smoke plumes from biomass fires and in regional hazes in southern Africa were studied using analytical transmission electron microscopy (TEM), which allowed detailed characterization of carbonaceous particle types in smoke and determination of changes in particle properties and concentrations during smoke aging. Based on composition, morphology, and microstructure, three distinct types of carbonaceous particles were present in the smoke: organic particles with inorganic (K-salt) inclusions, tar ball particles, and soot. The relative number concentrations of organic particles were largest in young smoke, whereas tar balls were dominant in a slightly aged (1 hour) smoke from a smoldering fire. Flaming fires emitted relatively more soot particles than smoldering fires, but soot was a minor constituent of all studied plumes. Further aging caused the accumulation of sulfate on organic and soot particles, as indicated by the large number of internally mixed organic/sulfate and soot/sulfate particles in the regional haze. Externally mixed ammonium sulfate particles dominated in the boundary layer hazes, whereas organic/sulfate particles were the most abundant type in the upper hazes. Apparently, elevated haze layers were more strongly affected by biomass smoke than those within the boundary layer. Based on size distributions and the observed patterns of internal mixing, we hypothesize that organic and soot particles are the cloud-nucleating constituents of biomass smoke aerosols. Sea-salt particles dominated in the samples taken in stratus clouds over the Atlantic Ocean, off the coast of Namibia, whereas a distinct haze layer above the clouds consisted of aged biomass smoke particles.

  11. G-Jitter Induced Magnetohydrodynamics Flow of Nanofluid with Constant Convective Thermal and Solutal Boundary Conditions

    PubMed Central

    Uddin, Mohammed J.; Khan, Waqar A.; Ismail, Ahmad Izani Md.

    2015-01-01

    Taking into account the effect of constant convective thermal and mass boundary conditions, we present numerical solution of the 2-D laminar g-jitter mixed convective boundary layer flow of water-based nanofluids. The governing transport equations are converted into non-similar equations using suitable transformations, before being solved numerically by an implicit finite difference method with quasi-linearization technique. The skin friction decreases with time, buoyancy ratio, and thermophoresis parameters while it increases with frequency, mixed convection and Brownian motion parameters. Heat transfer rate decreases with time, Brownian motion, thermophoresis and diffusion-convection parameters while it increases with the Reynolds number, frequency, mixed convection, buoyancy ratio and conduction-convection parameters. Mass transfer rate decreases with time, frequency, thermophoresis, conduction-convection parameters while it increases with mixed convection, buoyancy ratio, diffusion-convection and Brownian motion parameters. To the best of our knowledge, this is the first paper on this topic and hence the results are new. We believe that the results will be useful in designing and operating thermal fluids systems for space materials processing. Special cases of the results have been compared with published results and an excellent agreement is found. PMID:25933066

  12. Turning Ocean Mixing Upside Down

    NASA Astrophysics Data System (ADS)

    Ferrari, Raffaele; Mashayek, Ali; Campin, Jean-Michael; McDougall, Trevor; Nikurashin, Maxim

    2015-11-01

    It is generally understood that small-scale mixing, such as is caused by breaking internal waves, drives upwelling of the densest ocean waters that sink to the ocean bottom at high latitudes. However the observational evidence that small-scale mixing is more vigorous close to the ocean bottom than above implies that small-scale mixing converts light waters into denser ones, thus driving a net sinking of abyssal water. It is shown that abyssal waters return to the surface along weakly stratified boundary layers, where the small-scale mixing of density decays to zero. The net ocean meridional overturning circulation is thus the small residual of a large sinking of waters, driven by small-scale mixing in the stratified interior, and an equally large upwelling, driven by the reduced small-scale mixing along the ocean boundaries. Thus whether abyssal waters upwell or sink in the net cannot be inferred simply from the vertical profile of mixing intensity, but depends also on the ocean hypsometry, i.e. the shape of the bottom topography. The implications of this result for our understanding of the abyssal ocean circulation will be presented with a combination of numerical models and observations.

  13. Thermal Mechanisms for High Amplitude Aerodynamic Flow Control (YIP 2012)

    DTIC Science & Technology

    2016-04-15

    memorandum, master’s thesis, progress, quarterly, research , special, group study, etc. 3. DATES COVERED. Indicate the time during which the work...boundary layer ahead of the plasma. Since the ns-DBD flow control mechanism is primarily thermal, or least symmetric if associated with a quasi ...conditions with minimal experimental effort. The validity of probing a single location on the low speed side of the mixing layer to test for control

  14. A Hybrid Numerical Method for Turbulent Mixing Layers. Degree awarded by Case Western Reserve Univ.

    NASA Technical Reports Server (NTRS)

    Georgiadis, Nicholas J.

    2001-01-01

    A hybrid method has been developed for simulations of compressible turbulent mixing layers. Such mixing layers dominate the flows in exhaust systems of modern day aircraft and also those of hypersonic vehicles currently under development. The method configurations in which a dominant structural feature provides an unsteady mechanism to drive the turbulent development in the mixing layer. The hybrid method uses a Reynolds-averaged Navier-Stokes (RANS) procedure to calculate wall bounded regions entering a mixing section, and a Large Eddy Simulation (LES) procedure to calculate the mixing dominated regions. A numerical technique was developed to enable the use of the hybrid RANS-LES method on stretched, non-Cartesian grids. Closure for the RANS equations was obtained using the Cebeci-Smith algebraic turbulence model in conjunction with the wall-function approach of Ota and Goldberg. The wall-function approach enabled a continuous computational grid from the RANS regions to the LES region. The LES equations were closed using the Smagorinsky subgrid scale model. The hybrid RANS-LES method is applied to a benchmark compressible mixing layer experiment. Preliminary two dimensional calculations are used to investigate the effects of axial grid density and boundary conditions. Vortex shedding from the base region of a splitter plate separating the upstream flows was observed to eventually transition to turbulence. The location of the transition, however, was much further downstream than indicated by experiments. Actual LES calculations, performed in three spatial directions, also indicated vortex shedding, but the transition to turbulence was found to occur much closer to the beginning of the mixing section. which is in agreement with experimental observations. These calculations demonstrated that LES simulations must be performed in three dimensions. Comparisons of time-averaged axial velocities and turbulence intensities indicated reasonable agreement with experimental data.

  15. Coupling between lower-tropospheric convective mixing and low-level clouds: Physical mechanisms and dependence on convection scheme.

    PubMed

    Vial, Jessica; Bony, Sandrine; Dufresne, Jean-Louis; Roehrig, Romain

    2016-12-01

    Several studies have pointed out the dependence of low-cloud feedbacks on the strength of the lower-tropospheric convective mixing. By analyzing a series of single-column model experiments run by a climate model using two different convective parametrizations, this study elucidates the physical mechanisms through which marine boundary-layer clouds depend on this mixing in the present-day climate and under surface warming. An increased lower-tropospheric convective mixing leads to a reduction of low-cloud fraction. However, the rate of decrease strongly depends on how the surface latent heat flux couples to the convective mixing and to boundary-layer cloud radiative effects: (i) on the one hand, the latent heat flux is enhanced by the lower-tropospheric drying induced by the convective mixing, which damps the reduction of the low-cloud fraction, (ii) on the other hand, the latent heat flux is reduced as the lower troposphere stabilizes under the effect of reduced low-cloud radiative cooling, which enhances the reduction of the low-cloud fraction. The relative importance of these two different processes depends on the closure of the convective parameterization. The convective scheme that favors the coupling between latent heat flux and low-cloud radiative cooling exhibits a stronger sensitivity of low-clouds to convective mixing in the present-day climate, and a stronger low-cloud feedback in response to surface warming. In this model, the low-cloud feedback is stronger when the present-day convective mixing is weaker and when present-day clouds are shallower and more radiatively active. The implications of these insights for constraining the strength of low-cloud feedbacks observationally is discussed.

  16. Large-eddy simulation of a spatially-evolving turbulent mixing layer

    NASA Astrophysics Data System (ADS)

    Capuano, Francesco; Catalano, Pietro; Mastellone, Andrea

    2015-11-01

    Large-eddy simulations of a spatially-evolving turbulent mixing layer have been performed. The flow conditions correspond to those of a documented experimental campaign (Delville, Appl. Sci. Res. 1994). The flow evolves downstream of a splitter plate separating two fully turbulent boundary layers, with Reθ = 2900 on the high-speed side and Reθ = 1200 on the low-speed side. The computational domain starts at the trailing edge of the splitter plate, where experimental mean velocity profiles are prescribed; white-noise perturbations are superimposed to mimic turbulent fluctuations. The fully compressible Navier-Stokes equations are solved by means of a finite-volume method implemented into the in-house code SPARK-LES. The results are mainly checked in terms of the streamwise evolution of the vorticity thickness and averaged velocity profiles. The combined effects of inflow perturbations, numerical accuracy and subgrid-scale model are discussed. It is found that excessive levels of dissipation may damp inlet fluctuations and delay the virtual origin of the turbulent mixing layer. On the other hand, non-dissipative, high-resolution computations provide results that are in much better agreement with experimental data.

  17. Can the physical properties associated with uncertainties in the NASA MODIS AOD retrievals in the western U.S. be determined?

    NASA Astrophysics Data System (ADS)

    Loria Salazar, S. M.; Holmes, H.; Panorska, A. K.; Arnott, W. P.; Barnard, J.

    2016-12-01

    Previous investigations have used satellite remote sensing to estimate surface air pollution concentrations. While most of these studies rely on models developed for the dark-vegetated eastern U.S., they are being used in the semi-arid western U.S without modifications. These models are not robust in the western U.S. due to: 1. Irregular topography that leads to complicated boundary layer physics, 2. Pollutant mixtures, 3. Heterogeneous vertical profile of aerosol concentrations, and 4. High surface reflectance. Here, results from Nevada and California demonstrate poor AOD correlation between AERONET MODIS retrievals. Smoke from wildfires strengthened the aerosol signal, but the MODIS versus AERONET AOD correlation did not improve significantly during fire events [r2 0.17 (non-fire), r2 0.2 (fire)]. Furthermore, aerosol from fires increased the normalized mean bias (NMB) of MODIS retrievals of AOD[NMB 82% (non-fire), NMB 146% (fire)]. Additional results of this investigation found that aerosol plumes confined with the boundary layer improves MODIS AOD retrievals. However, when this condition is not met (i.e., 70% of the time downwind of mountains regions) MODIS AOD has a poor correlation and high bias with respect to AERONET AOD. Fire injection height, complicated boundary layer mixing, and entrainment disperse smoke plumes into the free atmosphere. Therefore, smoke plumes exacerbate the complex aerosol transport typical in the western U.S. and the non-linear relationship between surface pollutant concentrations and conditions aloft. This work uses stochastic methods, including regression to investigate the influence of each of these physical behaviors on the MODIS, AERONET AOD discrepancy using surrogates for each physical phenomenon, e.g., surface albedo for surface reflectance, boundary layer height and elevation for complex mixing, aerosol optical height for vertical aerosol concentrations, and fire radiative power for smoke plume injection height.

  18. Abundance of fluorescent biological aerosol particles at temperatures conducive to the formation of mixed-phase and cirrus clouds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Twohy, Cynthia H.; McMeeking, Gavin R.; DeMott, Paul J.

    Some types of biological particles are known to nucleate ice at warmer temperatures than mineral dust, with the potential to influence cloud microphysical properties and climate. However, the prevalence of these particle types above the atmospheric boundary layer is not well known. Many types of biological particles fluoresce when exposed to ultraviolet light, and the Wideband Integrated Bioaerosol Sensor takes advantage of this characteristic to perform real-time measurements of fluorescent biological aerosol particles (FBAPs). This instrument was flown on the National Center for Atmospheric Research Gulfstream V aircraft to measure concentrations of fluorescent biological particles from different potential sources andmore » at various altitudes over the US western plains in early autumn. Clear-air number concentrations of FBAPs between 0.8 and 12 µm diameter usually decreased with height and generally were about 10–100 L -1 in the continental boundary layer but always much lower at temperatures colder than 255 K in the free troposphere. At intermediate temperatures where biological ice-nucleating particles may influence mixed-phase cloud formation (255 K ≤ T ≤ 270 K), concentrations of fluorescent particles were the most variable and were occasionally near boundary-layer concentrations. Predicted vertical distributions of ice-nucleating particle concentrations based on FBAP measurements in this temperature regime sometimes reached typical concentrations of primary ice in clouds but were often much lower. If convection was assumed to lift boundary-layer FBAPs without losses to the free troposphere, better agreement between predicted ice-nucleating particle concentrations and typical ice crystal concentrations was achieved. Ice-nucleating particle concentrations were also measured during one flight and showed a decrease with height, and concentrations were consistent with a relationship to FBAPs established previously at the forested surface site below. The vertical distributions of FBAPs measured on five flights were also compared with those for bacteria, fungal spores, and pollen predicted from the EMAC global chemistry–climate model for the same geographic region.« less

  19. Abundance of fluorescent biological aerosol particles at temperatures conducive to the formation of mixed-phase and cirrus clouds

    NASA Astrophysics Data System (ADS)

    Twohy, Cynthia H.; McMeeking, Gavin R.; DeMott, Paul J.; McCluskey, Christina S.; Hill, Thomas C. J.; Burrows, Susannah M.; Kulkarni, Gourihar R.; Tanarhte, Meryem; Kafle, Durga N.; Toohey, Darin W.

    2016-07-01

    Some types of biological particles are known to nucleate ice at warmer temperatures than mineral dust, with the potential to influence cloud microphysical properties and climate. However, the prevalence of these particle types above the atmospheric boundary layer is not well known. Many types of biological particles fluoresce when exposed to ultraviolet light, and the Wideband Integrated Bioaerosol Sensor takes advantage of this characteristic to perform real-time measurements of fluorescent biological aerosol particles (FBAPs). This instrument was flown on the National Center for Atmospheric Research Gulfstream V aircraft to measure concentrations of fluorescent biological particles from different potential sources and at various altitudes over the US western plains in early autumn. Clear-air number concentrations of FBAPs between 0.8 and 12 µm diameter usually decreased with height and generally were about 10-100 L-1 in the continental boundary layer but always much lower at temperatures colder than 255 K in the free troposphere. At intermediate temperatures where biological ice-nucleating particles may influence mixed-phase cloud formation (255 K ≤ T ≤ 270 K), concentrations of fluorescent particles were the most variable and were occasionally near boundary-layer concentrations. Predicted vertical distributions of ice-nucleating particle concentrations based on FBAP measurements in this temperature regime sometimes reached typical concentrations of primary ice in clouds but were often much lower. If convection was assumed to lift boundary-layer FBAPs without losses to the free troposphere, better agreement between predicted ice-nucleating particle concentrations and typical ice crystal concentrations was achieved. Ice-nucleating particle concentrations were also measured during one flight and showed a decrease with height, and concentrations were consistent with a relationship to FBAPs established previously at the forested surface site below. The vertical distributions of FBAPs measured on five flights were also compared with those for bacteria, fungal spores, and pollen predicted from the EMAC global chemistry-climate model for the same geographic region.

  20. Numerical simulation of adverse-pressure-gradient boundary layer with or without roughness

    NASA Astrophysics Data System (ADS)

    Mottaghian, Pouya; Yuan, Junlin; Piomelli, Ugo

    2014-11-01

    Large-eddy and direct numerical simulations are carried out on flat-plate boundary layer over smooth and rough surfaces, with adverse pressure gradient.The deceleration is achieved by imposing a wall-normal freestream velocity profile, and is strong enough to cause separation at the wall. The Reynolds number based on momentum thickness and freestream velocity at inlet is 600. Numerical sandgrain roughness is applied based on an immersed boundary method, yielding a flow that is transitionally rough. The turbulence intensity increases before separation, and reaches a higher value for the rough case, indicating stronger mixing. Roughness also causes higher momentum deficit near the wall, leading to earlier separation. This is consistent with previous observation made on rough-wall flow separation over a ramp. In both cases, the turbulent kinetic energy peaks inside the shear layer above the detachment region, with higher values in the rough case; it then decreases approaching the reattachment region. Near the wall inside the separation bubble, the near-zero turbulent intensity indicates that the turbulent structures are lifted up in the separation region. Compared with the smooth case, the shear layer is farther from the wall and the reattachment length is longer on the rough wall.

  1. Enhancing charge transfer kinetics by nanoscale catalytic cermet interlayer.

    PubMed

    An, Jihwan; Kim, Young-Beom; Gür, Turgut M; Prinz, Fritz B

    2012-12-01

    Enhancing the density of catalytic sites is crucial for improving the performance of energy conversion devices. This work demonstrates the kinetic role of 2 nm thin YSZ/Pt cermet layers on enhancing the oxygen reduction kinetics for low temperature solid oxide fuel cells. Cermet layers were deposited between the porous Pt cathode and the dense YSZ electrolyte wafer using atomic layer deposition (ALD). Not only the catalytic role of the cermet layer itself but the mixing effect in the cermet was explored. For cells with unmixed and fully mixed cermet interlayers, the maximum power density was enhanced by a factor of 1.5 and 1.8 at 400 °C, and by 2.3 and 2.7 at 450 °C, respectively, when compared to control cells with no cermet interlayer. The observed enhancement in cell performance is believed to be due to the increased triple phase boundary (TPB) density in the cermet interlayer. We also believe that the sustained kinetics for the fully mixed cermet layer sample stems from better thermal stability of Pt islands separated by the ALD YSZ matrix, which helped to maintain the high-density TPBs even at elevated temperature.

  2. Experimental study of a free turbulent shear flow at Mach 19 with electron-beam and conventional probes. [flow measurement

    NASA Technical Reports Server (NTRS)

    Harvey, W. P.; Hunter, W. D., Jr.

    1975-01-01

    An experimental study of the initial development region of a hypersonic turbulent free mixing layer was made. Data were obtained at three stations downstream of a M = 19 nozzle over a Reynolds range of 1.3 million to 3.3 million per meter and at a total temperature of about 1670 K. In general, good agreement was obtained between electron-beam and conventional probe measurements of local mean flow parameters. Measurements of fluctuating density indicated that peak root-mean-square (rms) levels are higher in the turbulent free mixing layer than in boundary layers for Mach numbers less than 9. The intensity of rms density fluctuations in the free stream is similar in magnitude to pressure fluctuations in high Mach number flows. Spectrum analyses of the measured fluctuating density through the shear layer indicate significant fluctuation energy at the lower frequencies (0.2 to 5 kHZ) which correspond to large-scale disturbances in the high-velocity region of the shear layer.

  3. Marine boundary layer cloud regimes and POC formation in an LES coupled to a bulk aerosol scheme

    NASA Astrophysics Data System (ADS)

    Berner, A. H.; Bretherton, C. S.; Wood, R.; Muhlbauer, A.

    2013-07-01

    A large-eddy simulation (LES) coupled to a new bulk aerosol scheme is used to study long-lived regimes of aerosol-boundary layer cloud-precipitation interaction and the development of pockets of open cells (POCs) in subtropical stratocumulus cloud layers. The aerosol scheme prognoses mass and number concentration of a single log-normal accumulation mode with surface and entrainment sources, evolving subject to processing of activated aerosol and scavenging of dry aerosol by cloud and rain. The LES with the aerosol scheme is applied to a range of steadily-forced simulations idealized from a well-observed POC case. The long-term system evolution is explored with extended two-dimensional simulations of up to 20 days, mostly with diurnally-averaged insolation. One three-dimensional two-day simulation confirms the initial development of the corresponding two-dimensional case. With weak mean subsidence, an initially aerosol-rich mixed layer deepens, the capping stratocumulus cloud slowly thickens and increasingly depletes aerosol via precipitation accretion, then the boundary layer transitions within a few hours into an open-cell regime with scattered precipitating cumuli, in which entrainment is much weaker. The inversion slowly collapses for several days until the cumulus clouds are too shallow to efficiently precipitate. Inversion cloud then reforms and radiatively drives renewed entrainment, allowing the boundary layer to deepen and become more aerosol-rich, until the stratocumulus layer thickens enough to undergo another cycle of open-cell formation. If mean subsidence is stronger, the stratocumulus never thickens enough to initiate drizzle and settles into a steady state. With lower initial aerosol concentrations, this system quickly transitions into open cells, collapses, and redevelops into a different steady state with a shallow, optically thin cloud layer. In these steady states, interstitial scavenging by cloud droplets is the main sink of aerosol number. The system is described in a reduced two-dimensional phase plane with inversion height and boundary-layer average aerosol concentrations as the state variables. Simulations with a full diurnal cycle show similar evolutions, except that open-cell formation is phase-locked into the early morning hours. The same steadily-forced modeling framework is applied to the development and evolution of a POC and the surrounding overcast boundary layer. An initial aerosol perturbation applied to a portion of the model domain leads that portion to transition into open-cell convection, forming a POC. Reduced entrainment in the POC induces a negative feedback between areal fraction covered by the POC and boundary layer depth changes. This stabilizes the system by controlling liquid water path and precipitation sinks of aerosol number in the overcast region, while also preventing boundary-layer collapse within the POC, allowing the POC and overcast to coexist indefinitely in a quasi-steady equilibrium.

  4. Ion irradiation of the native oxide/silicon surface increases the thermal boundary conductance across aluminum/silicon interfaces

    NASA Astrophysics Data System (ADS)

    Gorham, Caroline S.; Hattar, Khalid; Cheaito, Ramez; Duda, John C.; Gaskins, John T.; Beechem, Thomas E.; Ihlefeld, Jon F.; Biedermann, Laura B.; Piekos, Edward S.; Medlin, Douglas L.; Hopkins, Patrick E.

    2014-07-01

    The thermal boundary conductance across solid-solid interfaces can be affected by the physical properties of the solid boundary. Atomic composition, disorder, and bonding between materials can result in large deviations in the phonon scattering mechanisms contributing to thermal boundary conductance. Theoretical and computational studies have suggested that the mixing of atoms around an interface can lead to an increase in thermal boundary conductance by creating a region with an average vibrational spectra of the two materials forming the interface. In this paper, we experimentally demonstrate that ion irradiation and subsequent modification of atoms at solid surfaces can increase the thermal boundary conductance across solid interfaces due to a change in the acoustic impedance of the surface. We measure the thermal boundary conductance between thin aluminum films and silicon substrates with native silicon dioxide layers that have been subjected to proton irradiation and post-irradiation surface cleaning procedures. The thermal boundary conductance across the Al/native oxide/Si interfacial region increases with an increase in proton dose. Supported with statistical simulations, we hypothesize that ion beam mixing of the native oxide and silicon substrate within ˜2.2nm of the silicon surface results in the observed increase in thermal boundary conductance. This ion mixing leads to the spatial gradation of the silicon native oxide into the silicon substrate, which alters the acoustic impedance and vibrational characteristics at the interface of the aluminum film and native oxide/silicon substrate. We confirm this assertion with picosecond acoustic analyses. Our results demonstrate that under specific conditions, a "more disordered and defected" interfacial region can have a lower resistance than a more "perfect" interface.

  5. Entrainment Zone Characteristics and Entrainment Rates in Cloud-Topped Boundary Layers from DYCOMS-II

    DTIC Science & Technology

    2012-03-01

    water and ozone across the EIL. The scalar variables from this flight (not shown) suggest significant horizontal variation in the free- troposphere ...near the cloud top where mixing occurs between dry free- troposphere air and moist turbulent air. Although the concept of the entrainment zone is...mixing occurs between dry free- troposphere air and moist turbulent air. Although the concept of the entrainment zone is clear, defining the top and

  6. Relations between overturning length scales at the Spanish planetary boundary layer

    NASA Astrophysics Data System (ADS)

    López, Pilar; Cano, José L.

    2016-04-01

    We analyze the behavior of the maximum Thorpe displacement (dT)max and the Thorpe scale LTat the atmospheric boundary layer (ABL), extending previous research with new data and improving our studies related to the novel use of the Thorpe method applied to ABL. The maximum Thorpe displacements vary between -900 m and 950 m for the different field campaigns. The maximum Thorpe displacement is always greater under convective conditions than under stable ones, independently of its sign. The Thorpe scale LT ranges between 0.2 m and 680 m for the different data sets which cover different stratified mixing conditions (turbulence shear-driven and convective regions). The Thorpe scale does not exceed several tens of meters under stable and neutral stratification conditions related to instantaneous density gradients. In contrast, under convective conditions, Thorpe scales are relatively large, they exceed hundreds of meters which may be related to convective bursts. We analyze the relation between (dT)max and the Thorpe scale LT and we deduce that they verify a power law. We also deduce that there is a difference in exponents of the power laws for convective conditions and shear-driven conditions. These different power laws could identify overturns created under different mechanisms. References Cuxart, J., Yagüe, C., Morales, G., Terradellas, E., Orbe, J., Calvo, J., Fernández, A., Soler, M., Infante, C., Buenestado, P., Espinalt, Joergensen, H., Rees, J., Vilà, J., Redondo, J., Cantalapiedra, I. and Conangla, L.: Stable atmospheric boundary-layer experiment in Spain (Sables 98). A report, Boundary-Layer Meteorology, 96, 337-370, 2000. Dillon, T. M.: Vertical Overturns: A Comparison of Thorpe and Ozmidov Length Scales, J. Geophys. Res., 87(C12), 9601-9613, 1982. Itsweire, E. C.: Measurements of vertical overturns in stably stratified turbulent flow, Phys. Fluids, 27(4), 764-766, 1984. Kitade, Y., Matsuyama, M. and Yoshida, J.: Distribution of overturn induced by internal tides and Thorpe scale in Uchiura Bay, Journal of Oceanography, 59, 845-850, 2003. López P., Cano J. L., Cano D. and Tijera M.: Thorpe method applied to planetary boundary layer data, Il Nuovo Cimento, 31C(5-6), 881-892, 2008. DOI: 10.1393/ncc/i2009-10338-3. Lorke A. and Wüest A.: Probability density of displacement and overturning length scales under diverse stratification, J. Geophys. Res., 107 (C12), 3214-3225, 2002. Piera, J., Roget, E. and Catalan, J.: Turbulent patch identification in microstructure profiles: a method based on wavelet denoising and Thorpe displacement analysis, J. Atmospheric and Oceanic Technology, 19, 1390-1402, 2002. Piera, J.: Signal processing of microstructure profiles: integrating turbulent spatial scales in aquatic ecological modelling, Ph. D. Thesis, Gerona University, Spain, 2004. Smyth, W. D. and Moum, J. N.: Length scales of turbulence in stably stratified mixing layers, Phys. Fluids., 12, 1327-1342, 2000. Thorpe, S.A.: Turbulence and Mixing in a Scottish Loch, Philos. Trans. R. Soc. London (Ser. A), 286(1334), 125-18, 1977.

  7. Hydrodynamics of Bacterial Cooperation

    NASA Astrophysics Data System (ADS)

    Petroff, A.; Libchaber, A.

    2012-12-01

    Over the course of the last several decades, the study of microbial communities has identified countless examples of cooperation between microorganisms. Generally—as in the case of quorum sensing—cooperation is coordinated by a chemical signal that diffuses through the community. Less well understood is a second class of cooperation that is mediated through physical interactions between individuals. To better understand how the bacteria use hydrodynamics to manipulate their environment and coordinate their actions, we study the sulfur-oxidizing bacterium Thiovulum majus. These bacteria live in the diffusive boundary layer just above the muddy bottoms of ponds. As buried organic material decays, sulfide diffuses out of the mud. Oxygen from the pond diffuses into the boundary layer from above. These bacteria form communities—called veils— which are able to transport nutrients through the boundary layer faster than diffusion, thereby increasing their metabolic rate. In these communities, bacteria attach to surfaces and swim in place. As millions of bacteria beat their flagella, the community induces a macroscopic fluid flow, which mix the boundary layer. Here we present experimental observations and mathematical models that elucidate the hydrodynamics linking the behavior of an individual bacterium to the collective dynamics of the community. We begin by characterizing the flow of water around an individual bacterium swimming in place. We then discuss the flow of water and nutrients around a small number of individuals. Finally, we present observations and models detailing the macroscopic dynamics of a Thiovulum veil.

  8. Turbulent entrainment in a strongly stratified barrier layer

    NASA Astrophysics Data System (ADS)

    Pham, H. T.; Sarkar, S.

    2017-06-01

    Large-eddy simulation (LES) is used to investigate how turbulence in the wind-driven ocean mixed layer erodes the stratification of barrier layers. The model consists of a stratified Ekman layer that is driven by a surface wind. Simulations at a wide range of N0/f are performed to quantify the effect of turbulence and stratification on the entrainment rate. Here, N0 is the buoyancy frequency in the barrier layer and f is the Coriolis parameter. The evolution of the mixed layer follows two stages: a rapid initial deepening and a late-time growth at a considerably slower rate. During the first stage, the mixed layer thickens to the depth that is proportional to u∗/fN0 where u∗ is the frictional velocity. During the second stage, the turbulence in the mixed layer continues to deepen further into the barrier layer, and the turbulent length scale is shown to scale with u∗/N0, independent of f. The late-time entrainment rate E follows the law of E=0.035Ri∗-1/2 where Ri∗ is the Richardson number. The exponent of -1/2 is identical but the coefficient of 0.035 is much smaller relative to the value of 2-3/2 for the nonrotating boundary layer. Simulations using the KPP model (version applicable to this simple case without additional effects of Langmuir turbulence or surface buoyancy flux) also yield the entrainment scaling of E∝Ri∗-1/2; however, the proportionality coefficient varies with the stratification. The structure of the Ekman current is examined to illustrate the strong effect of stratification in the limit of large N0/f.

  9. Boundary layer concentrations and landscape scale emissions of volatile organic compounds in early spring

    NASA Astrophysics Data System (ADS)

    Haapanala, S.; Rinne, J.; Hakola, H.; Hellén, H.; Laakso, L.; Lihavainen, H.; Janson, R.; O'Dowd, C.; Kulmala, M.

    2007-04-01

    Boundary layer concentrations of several volatile organic compounds (VOC) were measured during two campaigns in springs of 2003 and 2006. The measurements were conducted over boreal landscapes near SMEAR II measurement station in Hyytiälä, Southern Finland. In 2003 the measuremens were performed using a light aircraft and in 2006 using a hot air balloon. Isoprene concentrations were low, usually below detection limit. This can be explained by low biogenic production due to cold weather, phenological stage of the isoprene emitting plants, and snow cover. Monoterpenes were observed frequently. The average total monoterpene concentration in the boundary layer was 33 pptv. Many anthropogenic compounds such as benzene, xylene and toluene, were observed in high amounts. Ecosystem scale surface emissions were estimated using a simple mixed box budget methodology. Total monoterpene emissions varied up to 80 μg m-2 h-1, α-pinene contributing typically more than two thirds of that. These emissions were somewhat higher that those calculated using emission algorithm. The highest emissions of anthropogenic compounds were those of p/m xylene.

  10. Vertical axis wind turbine wake in boundary layer flow in a wind tunnel

    NASA Astrophysics Data System (ADS)

    Rolin, Vincent; Porté-Agel, Fernando

    2016-04-01

    A vertical axis wind turbine is placed in a boundary layer flow in a wind tunnel, and its wake is investigated. Measurements are performed using an x-wire to measure two components of velocity and turbulence statistics in the wake of the wind turbine. The study is performed at various heights and crosswind positions in order to investigate the full volume of the wake for a range of tip speed ratios. The velocity deficit and levels of turbulence in the wake are related to the performance of the turbine. The asymmetric incoming boundary layer flow causes the rate of recovery in the wake to change as a function of height. Higher shear between the wake and unperturbed flow occurs at the top edge of the wake, inducing stronger turbulence and mixing in this region. The difference in flow relative to the blades causes the velocity deficit and turbulence level to change as a function of crosswind position behind the rotor. The relative difference diminishes with increasing tip speed ratio. Therefore, the wake becomes more homogeneous as tip speed ratio increases.

  11. Airborne observations of new particle formation events in the boundary layer using a Zeppelin

    NASA Astrophysics Data System (ADS)

    Lampilahti, Janne; Manninen, Hanna E.; Nieminen, Tuomo; Mirme, Sander; Pullinen, Iida; Yli-Juuti, Taina; Schobesberger, Siegfried; Kangasluoma, Juha; Kontkanen, Jenni; Lehtipalo, Katrianne; Ehn, Mikael; Mentel, Thomas F.; Petäjä, Tuukka; Kulmala, Markku

    2014-05-01

    Atmospheric new particle formation (NPF) is a frequent and ubiquitous process in the atmosphere and a major source of newly formed aerosol particles [1]. However, it is still unclear how the aerosol particle distribution evolves in space and time during an NPF. We investigated where in the planetary boundary layer does NPF begin and how does the aerosol number size distribution develop in space and time during it. We measured in Hyytiälä, southern Finland using ground based and airborne measurements. The measurements were part of the PEGASOS project. NPF was studied on six scientific flights during spring 2013 using a Zeppelin NT class airship. Ground based measurements were simultaneously conducted at SMEAR II station located in Hyytiälä. The flight profiles over Hyytiälä were flown between sunrise and noon during the growth of the boundary layer. The profiles over Hyytiälä covered vertically a distance of 100-1000 meters reaching the mixed layer, stable (nocturnal) boundary layer and the residual layer. Horizontally the profiles covered approximately a circular area of four kilometers in diameter. The measurements include particle number size distribution by Neutral cluster and Air Ion Spectrometer (NAIS), Differential Mobility Particle Sizer (DMPS) and Particle Size Magnifier (PSM) [2], meteorological parameters and position (latitude, longitude and altitude) of the Zeppelin. Beginning of NPF was determined from an increase in 1.7-3 nm ion concentration. Height of the mixed layer was estimated from relative humidity measured on-board the Zeppelin. Particle growth rate during NPF was calculated. Spatial inhomogeneities in particle number size distribution during NPF were located and the birthplace of the particles was estimated using the growth rate and trajectories. We observed a regional NPF event that began simultaneously and evolved uniformly inside the mixed layer. In the horizontal direction we observed a long and narrow high concentration plume of growing particles that moved over the measurement site. The particles of the regional event as well as the particles of the plume were uniformly distributed in the vertical direction and showed a similar growth rate of approximately 2 nm/h. The plume caused sharp discontinuities in the number size distribution of the growing particle mode. These kinds of discontinuities are seen quite often on SMEAR II data during NPF events and it is likely that they are caused by inhomogeneous NPF in the horizontal direction (possibly narrow long plumes). This work is supported by European Commission under the Framework Programme 7 (FP7-ENV-2010-265148) and by the Academy of Finland Centre of Excellence program (project no. 1118615). The Zeppelin is accompanied by an international team of scientists and technicians. They are all warmly acknowledged. References [1] Kulmala, M., et al., (2013), Direct Observations of Atmospheric Aerosol Nucleation, Science, 339, 943-946 [2] Kulmala, M., et al., (2012), Measurement of the nucleation of atmospheric aerosol particles, Nature Protocols, 7, 1651-1667

  12. Study of Near-Surface Models in Large-Eddy Simulations of a Neutrally Stratified Atmospheric Boundary Layer

    NASA Technical Reports Server (NTRS)

    Senocak, I.; Ackerman, A. S.; Kirkpatrick, M. P.; Stevens, D. E.; Mansour, N. N.

    2004-01-01

    Large-eddy simulation (LES) is a widely used technique in armospheric modeling research. In LES, large, unsteady, three dimensional structures are resolved and small structures that are not resolved on the computational grid are modeled. A filtering operation is applied to distinguish between resolved and unresolved scales. We present two near-surface models that have found use in atmospheric modeling. We also suggest a simpler eddy viscosity model that adopts Prandtl's mixing length model (Prandtl 1925) in the vicinity of the surface and blends with the dynamic Smagotinsky model (Germano et al, 1991) away from the surface. We evaluate the performance of these surface models by simulating a neutraly stratified atmospheric boundary layer.

  13. Interface shapes during vertical Bridgman growth of (Pb, Sn)Te crystals

    NASA Technical Reports Server (NTRS)

    Huang, YU; Debnam, William J.; Fripp, Archibald L.

    1990-01-01

    Melt-solid interfaces obtained during vertical Bridgman growth of (Pb, Sn)Te crystals were investigated with a quenching technique. The shapes of these interfaces, revealed by etching longitudinally cut sections, were correlated with the composition variations determined by EMPA. These experiments demonstrated that the interface shape can be changed from concave to convex by moving its location from the edge of the cold zone into the hot zone. The metallography and microsegregation near the melt-solid interface were analyzed in detail. A sharp change in composition above the interface indicated the existence of a diffusion boundary layer 40-90 microns thick. This small diffusion boundary layer is consistent with strong convective mixing in the (Pb, Sn)Te melt.

  14. Mechanisms Responsible for the Observed Thermodynamic Structure in a Convective Boundary Layer Over the Hudson Valley of New York State

    NASA Astrophysics Data System (ADS)

    Freedman, Jeffrey M.; Fitzjarrald, David R.

    2017-02-01

    We examine cases of a regional elevated mixed layer (EML) observed during the Hudson Valley Ambient Meteorology Study (HVAMS) conducted in New York State, USA in 2003. Previously observed EMLs referred to topographic domains on scales of 105 -106 km2 . Here, we present observational evidence of the mechanisms responsible for the development and maintenance of regional EMLs overlying a valley-based convective boundary layer (CBL) on much smaller spatial scales (<5000 km2) . Using observations from aircraft-based, balloon-based, and surface-based platforms deployed during the HVAMS, we show that cross-valley horizontal advection, along-valley channelling, and fog-induced cold-air pooling are responsible for the formation and maintenance of the EML and valley-CBL coupling over New York State's Hudson Valley. The upper layer stability of the overlying EML constrains growth of the valley CBL, and this has important implications for air dispersion, aviation interests, and fog forecasting.

  15. Dynamics of the transition zone in coastal zone color scanner-sensed ocean color in the North Pacific during oceanographic spring

    NASA Technical Reports Server (NTRS)

    Glover, David M.; Wroblewski, J. S.; Mcclain, Charles R.

    1994-01-01

    A transition zone in phytoplankton concentration running across the North Pacific basin at 30 deg to 40 deg north latitude corresponds to a basin-wide front in surface chlorophyll observed in a composite of coastal zone color scanner (CZCS) images for May, June, and July 1979-1986. This transition zone with low chlorophyll to the south and higher chlorophyll to the north can be simulated by a simple model of the concentration of phytoplankton, zooplankton, and dissolved nutrient (nitrate) in the surface mixed layer of the ocean applied to the North Pacific basin for the climatological conditions during oceanographic springtime (May, June, and July). The model is initialized with a 1 deg x 1 deg gridded estimate of wintertime (February, March, and April) mixed layer nitrate concentrations calculated from an extensive nutrient database and a similarly gridded mixed layer depth data set. Comparison of model predictions with CZCS data provides a means of evaluating the dynamics of the transition zone. We conclude that in the North Pacific, away from major boundary currents and coastal upwelling zones, wintertime vertical mixing determines the total nutrient available to the plankton ecosystem in the spring. The transition zone seen in basin-scale CZCS images is a reflection of the geographic variation in the wintertime mixed layer depth and the nitracline, leading to a latitudinal gradient in phytoplankton chlorophyll.

  16. Chemical transport models: the combined non-local diffusion and mixing schemes, and calculation of in-canopy resistance for dry deposition fluxes.

    PubMed

    Mihailovic, Dragutin T; Alapaty, Kiran; Podrascanin, Zorica

    2009-03-01

    Improving the parameterization of processes in the atmospheric boundary layer (ABL) and surface layer, in air quality and chemical transport models. To do so, an asymmetrical, convective, non-local scheme, with varying upward mixing rates is combined with the non-local, turbulent, kinetic energy scheme for vertical diffusion (COM). For designing it, a function depending on the dimensionless height to the power four in the ABL is suggested, which is empirically derived. Also, we suggested a new method for calculating the in-canopy resistance for dry deposition over a vegetated surface. The upward mixing rate forming the surface layer is parameterized using the sensible heat flux and the friction and convective velocities. Upward mixing rates varying with height are scaled with an amount of turbulent kinetic energy in layer, while the downward mixing rates are derived from mass conservation. The vertical eddy diffusivity is parameterized using the mean turbulent velocity scale that is obtained by the vertical integration within the ABL. In-canopy resistance is calculated by integration of inverse turbulent transfer coefficient inside the canopy from the effective ground roughness length to the canopy source height and, further, from its the canopy height. This combination of schemes provides a less rapid mass transport out of surface layer into other layers, during convective and non-convective periods, than other local and non-local schemes parameterizing mixing processes in the ABL. The suggested method for calculating the in-canopy resistance for calculating the dry deposition over a vegetated surface differs remarkably from the commonly used one, particularly over forest vegetation. In this paper, we studied the performance of a non-local, turbulent, kinetic energy scheme for vertical diffusion combined with a non-local, convective mixing scheme with varying upward mixing in the atmospheric boundary layer (COM) and its impact on the concentration of pollutants calculated with chemical and air-quality models. In addition, this scheme was also compared with a commonly used, local, eddy-diffusivity scheme. Simulated concentrations of NO2 by the COM scheme and new parameterization of the in-canopy resistance are closer to the observations when compared to those obtained from using the local eddy-diffusivity scheme. Concentrations calculated with the COM scheme and new parameterization of in-canopy resistance, are in general higher and closer to the observations than those obtained by the local, eddy-diffusivity scheme (on the order of 15-22%). To examine the performance of the scheme, simulated and measured concentrations of a pollutant (NO2) were compared for the years 1999 and 2002. The comparison was made for the entire domain used in simulations performed by the chemical European Monitoring and Evaluation Program Unified model (version UNI-ACID, rv2.0) where schemes were incorporated.

  17. A high-resolution model of the planetary boundary layer - Sensitivity tests and comparisons with SESAME-79 data

    NASA Technical Reports Server (NTRS)

    Zhang, D.; Anthes, R. A.

    1982-01-01

    A one-dimensional, planetary boundary layer (PBL) model is presented and verified using April 10, 1979 SESAME data. The model contains two modules to account for two different regimes of turbulent mixing. Separate parameterizations are made for stable and unstable conditions, with a predictive slab model for surface temperature. Atmospheric variables in the surface layer are calculated with a prognostic model, with moisture included in the coupled surface/PBL modeling. Sensitivity tests are performed for factors such as moisture availability, albedo, surface roughness, and thermal capacity, and a 24 hr simulation is summarized for day and night conditions. The comparison with the SESAME data comprises three hour intervals, using a time-dependent geostrophic wind. Close correlations were found with daytime conditions, but not in nighttime thermal structure, while the turbulence was faithfully predicted. Both geostrophic flow and surface characteristics were shown to have significant effects on the model predictions

  18. The Amazon Boundary Layer Experiment (ABLE 2A) - Dry season 1985

    NASA Technical Reports Server (NTRS)

    Harriss, R. C.; Browell, E. V.; Hoell, J. M., Jr.; Bendura, R. J.; Beck, S. M.; Wofsy, S. C.; Mcneal, R. J.; Navarro, R. L.; Riley, J. T.; Snell, R. L.

    1988-01-01

    The Amazon Boundary Layer Experiment (ABLE 2A) used data from aircraft, ground-based, and satellite platforms to characterize the chemistry and dynamics of the lower atmosphere over the Amazon Basin during the early-to-middle dry season, July and August 1985. This paper reports the conceptual framework and experimental approach used in ABLE 2A and serves as an introduction to the detailed papers which follow in this issue. The results of ABLE 2A demonstrate that isoprene, methane, carbon dioxide, nitric oxide, dimethylsulfide, and organic aerosol emissions from soils and vegetation play a major role in determining the chemical composition of the atmospheric mixed layer over undisturbed forest and wetland environments. As the dry season progresses, emissions from both local and distant biomass burning become an important source of carbon monoxide, nitric oxide and ozone in the atmosphere over the central Amazon Basin.

  19. Dynamics of internal waves on the Southeast Florida shelf: Implications for cross-shelf exchange and turbulent mixing on a barrier reef system

    NASA Astrophysics Data System (ADS)

    Davis, Kristen Alexis

    The dynamics of internal waves shoaling on the Southeast Florida shelf and the resulting stratified turbulence in the shelf bottom boundary layer are investigated using observational studies completed during the summers of 2003-2005. This work is driven by a desire to understand the effects of internal wave-driven flow and the shoreward transport of cool, nutrient-rich water masses on cross-shelf exchange, vertical mixing, and mass transfer to benthic reef organisms. Shelf sea internal wave fields are typically highly variable and dominated by wind and tidal forces. However, this is not necessarily true for outer shelf regions or very narrow shelves where remote physical processes originating over the slope or deep ocean may exert a strong influence on the internal wave climate. During the summers of 2003 and 2004 observational studies were conducted to examine the effects of a western boundary current (the Florida Current), tides, and wind on the mean currents and internal wave field on the outer Southeast Florida shelf. We present evidence that suggests that the Florida Current plays as large a role in the determination of the high frequency internal wave field as tidal forces. These observations and analyses show that it is necessary to include the forcing from the Florida Current meanders and instabilities in order to predict accurately the episodic nature of the internal wave field on the Southeast Florida shelf. Deep ocean and continental shelf processes intersect at the shelf edge and influence the exchange of water masses and their associated characteristics including heat, nutrients, sediment, and larvae across the shelf. Thus, the dynamics of cross-shelf circulation have important consequences for organisms living on the shelf. In the second phase of this work, we investigate physical mechanisms controlling the exchange of water masses during the summer season across the Southeast Florida shelf. A time series of cross-shelf transport from May to August 2003 suggests that, during the summer months, instabilities in the Florida Current and nonlinear internal waves are the primary mechanisms driving cross-shelf transport on the outer shelf Surface tide, wind, and wave-driven transport were found to be small in comparison. Additionally, this data set highlights the importance of baroclinic processes to cross-shelf transport in this region. In the last phase of my research, I sought to investigate how boundary layer dynamics over a rough coral bed were modified by shoaling internal waves and to understand the implications for mixing and mass transfer to the bed. Results are presented from an observational study of the turbulent bottom boundary layer on the outer Southeast Florida shelf in July and August 2005. Turbulence in the reef bottom boundary layer is highly variable in time and is modified by near bed flow, shear, and stratification driven by shoaling internal waves. We examined turbulence in the bottom boundary layer during a typical internal wave event and found that in addition to the episodic onshore transport of cool, subthermocline water masses, with elevated nutrient concentrations, bottom-intensified currents from shoaling internal waves can increase turbulent dissipation and mixing in the reef bottom boundary layer. Additionally, we show that estimates of flux Richardson number, calculated directly from measurements of dissipation and buoyancy flux, support the dependence of R f on turbulent intensity, epsilon/nuN 2, a relationship that has only been previously shown in laboratory and numerical work. While the importance of surface gravity waves in generating turbulent mixing and controlling mass transfer on coral reefs has been well documented in the literature, this work represents the first time the appropriate field data have been collected for a detailed dynamic analysis of the physical effects and biological implications of internal waves on reef ecosystems. Results from these studies suggest that for reef communities exposed to continental shelf and slope processes, internal waves may play an important role in cross-shelf transport and mass transfer to benthic organisms and may be essential to modeling key biological processes, the connectivity of coral populations, or designing and managing marine reserves and fisheries.

  20. The Vertical Dust Profile over Gale Crater

    NASA Astrophysics Data System (ADS)

    Guzewich, S.; Newman, C. E.; Smith, M. D.; Moores, J.; Smith, C. L.; Moore, C.; Richardson, M. I.; Kass, D. M.; Kleinboehl, A.; Martin-Torres, F. J.; Zorzano, M. P.; Battalio, J. M.

    2017-12-01

    Regular joint observations of the atmosphere over Gale Crater from the orbiting Mars Reconnaissance Orbiter/Mars Climate Sounder (MCS) and Mars Science Laboratory (MSL) Curiosity rover allow us to create a coarse, but complete, vertical profile of dust mixing ratio from the surface to the upper atmosphere. We split the atmospheric column into three regions: the planetary boundary layer (PBL) within Gale Crater that is directly sampled by MSL (typically extending from the surface to 2-6 km in height), the region of atmosphere sampled by MCS profiles (typically 25-80 km above the surface), and the region of atmosphere between these two layers. Using atmospheric optical depth measurements from the Rover Environmental Monitoring System (REMS) ultraviolet photodiodes (in conjunction with MSL Mast Camera solar imaging), line-of-sight opacity measurements with the MSL Navigation Cameras (NavCam), and an estimate of the PBL depth from the MarsWRF general circulation model, we can directly calculate the dust mixing ratio within the Gale Crater PBL and then solve for the dust mixing ratio in the middle layer above Gale Crater but below the atmosphere sampled by MCS. Each atmospheric layer has a unique seasonal cycle of dust opacity, with Gale Crater's PBL reaching a maximum in dust mixing ratio near Ls = 270° and a minimum near Ls = 90°. The layer above Gale Crater, however, has a seasonal cycle that closely follows the global opacity cycle and reaches a maximum near Ls = 240° and exhibits a local minimum (associated with the "solsticial pauses") near Ls = 270°. Knowing the complete vertical profile also allows us to determine the frequency of high-altitude dust layers above Gale, and whether such layers truly exhibit the maximum dust mixing ratio within the entire vertical column. We find that 20% of MCS profiles contain an "absolute" high-altitude dust layer, i.e., one in which the dust mixing ratio within the high-altitude dust layer is the maximum dust mixing ratio in the vertical column of atmosphere over Gale Crater.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morgan, B. E.; Olson, B. J.; White, J. E.

    High-fidelity large eddy simulation (LES) of a low-Atwood number (A = 0.05) Rayleigh-Taylor mixing layer is performed using the tenth-order compact difference code Miranda. An initial multimode perturbation spectrum is specified in Fourier space as a function of mesh resolution such that a database of results is obtained in which each successive level of increased grid resolution corresponds approximately to one additional doubling of the mixing layer width, or generation. The database is then analyzed to determine approximate requirements for self-similarity, and a new metric is proposed to quantify how far a given simulation is from the limit of self-similarity.more » It is determined that mixing layer growth reaches a high degree of self-similarity after approximately 4.5 generations. Statistical convergence errors and boundary effects at late time, however, make it impossible to draw similar conclusions regarding the self-similar growth of more sensitive turbulence parameters. Finally, self-similar turbulence profiles from the LES database are compared with one-dimensional simulations using the k-L-a and BHR-2 Reynolds-averaged Navier-Stokes (RANS) models. The k-L-a model, which is calibrated to reproduce a quadratic turbulence kinetic energy profile for a self-similar mixing layer, is found to be in better agreement with the LES than BHR-2 results.« less

  2. Diurnal and seasonal variation of mercury species at coastal-suburban, urban, and rural sites in the southeastern United States

    NASA Astrophysics Data System (ADS)

    Nair, Udaysankar S.; Wu, Yuling; Walters, Justin; Jansen, John; Edgerton, Eric S.

    2012-02-01

    Observations for the 2005-2008 time period from three Southeastern Aerosol Research and Characterization (SEARCH) air quality monitoring sites are examined for diurnal and seasonal variation in concentrations of gaseous elemental mercury (GEM), gaseous oxidized mercury (GOM), and particle bound mercury (HgP < 2.5 μm). The sites are located at 1) a suburban-coastal location near Pensacola, Florida (OLF), 2) an urban location in Birmingham, Alabama (BHM), and 3) a rural location west-northwest of Atlanta, Georgia (YRK). Average concentrations of GEM at both OLF and YRK are 1.35 ng m -3, whereas at BHM it is 2.12 ng m -3. All sites show increase in GEM concentration during the morning hours (0.023 and 0.011 ng m -3hr -1 at OLF and YRK between 6 and 10 AM, 0.038 ng m -3hr -1 at BHM between 5 and 10 AM) due to downward mixing of higher concentrations from the residual layer, after which OLF and YRK show negligible variation compared to decrease in concentration at BHM (2.3-1.9 ng m -3 from 10 AM to 6 PM). All sites show seasonal variation of GEM with enhanced concentrations found in winter and spring. Average GOM concentrations are 4.26, 8.55, and 78.2 pg m -3 at OLF, YRK, and BHM, respectively. Seasonally, GOM values are enhanced during fall and spring. All sites undergo a sinusoidal daytime variation of GOM that peaks in the afternoon, while BHM additionally exhibits an early morning enhancement likely caused by vertical mixing. The average HgP concentrations at OLF, YRK, and BHM are 2.49, 4.43, and 39.5 pg m -3, respectively. At OLF, vertical mixing causes an early morning increase in HgP concentration followed by an afternoon decline during all seasons. A daytime increase in HgP is found at YRK for all seasons, while at BHM, nocturnal accumulation followed by a daytime decline is also found for most seasons except winter. In winter, concentrations increase due to vertical mixing in the morning and then decline as the boundary layer grows. Boundary layer processes appear to play an important role in the seasonal and diurnal variation of Hg species and further investigation utilizing a boundary layer process model is warranted.

  3. Depth and Extent of Gas-Ablator Mix in Symcap Implosions at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Pino, Jesse; Ma, T.; MacLaren, S. A.; Salmonson, J. D.; Ho, D.; Khan, S. F.; Masse, L.; Ralph, J. E.; Czajka, C.; Casey, D.; Sacks, R.; Smalyuk, V. A.; Tipton, R. E.; Kyrala, G. A.

    2017-10-01

    A longstanding question in ICF physics has been the extent to which capsule ablator material mixes into the burning fusion fuel and degrades performance. Several recent campaigns at the National Ignition Facility have examined this question through the use of separated reactants. A layer of CD plastic is placed on the inner surface of the CH shell and the shell is filled with a gas mixture of H and T. This allows for simultaneous neutron signals that inform different aspects of the physics; we get core TT neutron yield, atomic mix from the DT neutrons, and information about shell heating from the DD neutron signal. By systematically recessing the CD layer away from the gas boundary we gain an inference of the depth of the mixing layer. This presentation will cover three campaigns to look at mixing depth: An ignition-like design (``Low-foot'') at two convergence ratios, as well as a robust, nearly one-dimensional, low convergence, symmetric platform designed to minimize ablation front feed-through (HED 2-shock). We show that the 2-shock capsule has less ablator-gas mix, and compare the experimental results to mix-model simulations. This work was performed under the auspices of the U.S. Department of Energy by LLNL under Contract DE-AC52-07NA27344, LLNS, LLC.

  4. Quantifying the relationship between PM2.5 concentration, visibility and planetary boundary layer height for long-lasting haze and fog-haze mixed events in Beijing

    NASA Astrophysics Data System (ADS)

    Luan, Tian; Guo, Xueliang; Guo, Lijun; Zhang, Tianhang

    2018-01-01

    Air quality and visibility are strongly influenced by aerosol loading, which is driven by meteorological conditions. The quantification of their relationships is critical to understanding the physical and chemical processes and forecasting of the polluted events. We investigated and quantified the relationship between PM2.5 (particulate matter with aerodynamic diameter is 2.5 µm and less) mass concentration, visibility and planetary boundary layer (PBL) height in this study based on the data obtained from four long-lasting haze events and seven fog-haze mixed events from January 2014 to March 2015 in Beijing. The statistical results show that there was a negative exponential function between the visibility and the PM2.5 mass concentration for both haze and fog-haze mixed events (with the same R2 of 0.80). However, the fog-haze events caused a more obvious decrease of visibility than that for haze events due to the formation of fog droplets that could induce higher light extinction. The PM2.5 concentration had an inversely linear correlation with PBL height for haze events and a negative exponential correlation for fog-haze mixed events, indicating that the PM2.5 concentration is more sensitive to PBL height in fog-haze mixed events. The visibility had positively linear correlation with the PBL height with an R2 of 0.35 in haze events and positive exponential correlation with an R2 of 0.56 in fog-haze mixed events. We also investigated the physical mechanism responsible for these relationships between visibility, PM2.5 concentration and PBL height through typical haze and fog-haze mixed event and found that a double inversion layer formed in both typical events and played critical roles in maintaining and enhancing the long-lasting polluted events. The variations of the double inversion layers were closely associated with the processes of long-wave radiation cooling in the nighttime and short-wave solar radiation reduction in the daytime. The upper-level stable inversion layer was formed by the persistent warm and humid southwestern airflow, while the low-level inversion layer was initially produced by the surface long-wave radiation cooling in the nighttime and maintained by the reduction of surface solar radiation in the daytime. The obvious descending process of the upper-level inversion layer induced by the radiation process could be responsible for the enhancement of the low-level inversion layer and the lowering PBL height, as well as high aerosol loading for these polluted events. The reduction of surface solar radiation in the daytime could be around 35 % for the haze event and 94 % for the fog-haze mixed event. Therefore, the formation and subsequent descending processes of the upper-level inversion layer should be an important factor in maintaining and strengthening the long-lasting severe polluted events, which has not been revealed in previous publications. The interactions and feedbacks between PM2.5 concentration and PBL height linked by radiation process caused a more significant and long-lasting deterioration of air quality and visibility in fog-haze mixed events. The interactions and feedbacks of all processes were particularly strong when the PM2.5 mass concentration was larger than 150-200 µg m-3.

  5. LIF measurements of scalar mixing in turbulent shear layers

    NASA Technical Reports Server (NTRS)

    Karasso, Paris S.; Mungal, M. G.

    1993-01-01

    The structure of shear layer flows at high Reynolds numbers remains a very interesting problem. Straight mixing layers have been studied and yielded information on the probability density function (pdf) of a passive scalar across the layer. Konrad and Koochesfahani & Dimotakis measured the pdf of the mixture fraction for mixing layers of moderate Reynolds numbers, each about 25,000 (Re based on velocity difference and visual thickness). Their measurements showed a 'non-marching' pdf (central hump which is invariant from edge to edge across the layer), a result which is linked to the visualizations of the spanwise Kelvin-Helmholtz (K-H) instability mode, which is the primary instability for plane shear layer flows. A secondary instability mode, the Taylor-Gortler (T-G) instability, which is associated with streamwise vortical structures, has also been observed in shear layers. Image reconstruction by Jimenez et al. and volume renderings by Karasso & Mungal at low Re numbers have demonstrated that the K-H and the T-G instability modes occur simultaneously in a non-mutually destructive way, evidence that supports the quasi two-dimensional aspect of these flows and the non-marching character of the pdf at low Reynolds numbers. At higher Re numbers though, the interaction of these two instability modes is still unclear and may affect the mixing process. In this study, we perform measurements of the concentration pdf of plane mixing layers for different operating conditions. At a speed ratio of r = U(sub 1)/U(sub 2) = 4:1, we examine three Reynolds number cases: Re = 14,000, Re = 31,000, and Re = 62,000. Some other Re number cases' results, not presented in detail, are invoked to explain the behavior of the pdf of the concentration field. A case of r = 2.6:1 at Re = 20,000 is also considered. The planar laser-induced fluorescence technique is used to yield quantitative measurements. The different Re are obtained by changing the velocity magnitudes of the two streams. The question of resolution of these measurements is addressed. In order to investigate the effects of the initial conditions on the development and the structure of the mixing layer, the boundary layer on the high-speed side of the splitter plate is tripped. The average concentration and the average mixed fluid concentration are also calculated to further understand the changes in the shear layer for the different cases examined.

  6. Impacts of different characterizations of large-scale background on simulated regional-scale ozone over the continental United States

    NASA Astrophysics Data System (ADS)

    Hogrefe, Christian; Liu, Peng; Pouliot, George; Mathur, Rohit; Roselle, Shawn; Flemming, Johannes; Lin, Meiyun; Park, Rokjin J.

    2018-03-01

    This study analyzes simulated regional-scale ozone burdens both near the surface and aloft, estimates process contributions to these burdens, and calculates the sensitivity of the simulated regional-scale ozone burden to several key model inputs with a particular emphasis on boundary conditions derived from hemispheric or global-scale models. The Community Multiscale Air Quality (CMAQ) model simulations supporting this analysis were performed over the continental US for the year 2010 within the context of the Air Quality Model Evaluation International Initiative (AQMEII) and Task Force on Hemispheric Transport of Air Pollution (TF-HTAP) activities. CMAQ process analysis (PA) results highlight the dominant role of horizontal and vertical advection on the ozone burden in the mid-to-upper troposphere and lower stratosphere. Vertical mixing, including mixing by convective clouds, couples fluctuations in free-tropospheric ozone to ozone in lower layers. Hypothetical bounding scenarios were performed to quantify the effects of emissions, boundary conditions, and ozone dry deposition on the simulated ozone burden. Analysis of these simulations confirms that the characterization of ozone outside the regional-scale modeling domain can have a profound impact on simulated regional-scale ozone. This was further investigated by using data from four hemispheric or global modeling systems (Chemistry - Integrated Forecasting Model (C-IFS), CMAQ extended for hemispheric applications (H-CMAQ), the Goddard Earth Observing System model coupled to chemistry (GEOS-Chem), and AM3) to derive alternate boundary conditions for the regional-scale CMAQ simulations. The regional-scale CMAQ simulations using these four different boundary conditions showed that the largest ozone abundance in the upper layers was simulated when using boundary conditions from GEOS-Chem, followed by the simulations using C-IFS, AM3, and H-CMAQ boundary conditions, consistent with the analysis of the ozone fields from the global models along the CMAQ boundaries. Using boundary conditions from AM3 yielded higher springtime ozone columns burdens in the middle and lower troposphere compared to boundary conditions from the other models. For surface ozone, the differences between the AM3-driven CMAQ simulations and the CMAQ simulations driven by other large-scale models are especially pronounced during spring and winter where they can reach more than 10 ppb for seasonal mean ozone mixing ratios and as much as 15 ppb for domain-averaged daily maximum 8 h average ozone on individual days. In contrast, the differences between the C-IFS-, GEOS-Chem-, and H-CMAQ-driven regional-scale CMAQ simulations are typically smaller. Comparing simulated surface ozone mixing ratios to observations and computing seasonal and regional model performance statistics revealed that boundary conditions can have a substantial impact on model performance. Further analysis showed that boundary conditions can affect model performance across the entire range of the observed distribution, although the impacts tend to be lower during summer and for the very highest observed percentiles. The results are discussed in the context of future model development and analysis opportunities.

  7. Identification of free tropospheric air masses at the new Mt. Bachelor, Oregon observatory

    NASA Astrophysics Data System (ADS)

    Swarzendruber, P.; Weiss-Penzias, P.; Dennison, J.; Prestbo, E.; Jaffe, D.

    2004-12-01

    In February 2004, we established a new atmospheric observatory on the summit of Mt. Bachelor, Oregon in order to better understand the long range transport of chemicals and anthropogenic pollutants to North America. Previous work on the inflow to the Pacific Northwest (Weiss-Penzias 2004, 2003, Jaffe 2003) has been able to identify Asian influence on a costal site, but aircraft observations (Price et al. 2003, Kotchenruther et al 2001) and modeling work (Jaegle et al. 2003) have shown that transport events are much more frequent in the free troposphere. The detection of these pollution plumes in the planetary boundary layer is greatly complicated by the turbulent meteorology and complex chemistry of the boundary layer. The Mt. Bachelor Observatory (MBO) ( 2.7 km a.s.l.) was established to allow for continuous sampling at a site that likely experiences free tropospheric air a majority of the time. In order to help understand the influence of the boundary layer on the spring 2004 MBO observations, we have conducted a meteorological analysis for this period using several measured and modeled parameters. Our initial analysis of virtual soundings generated by the mesoscale NWP model, MM5 (University of Washington, Seattle), and of measured water vapor content, indicate that during the spring campaign (Mar-May), on at least 50% of the days, the daytime mixed layer height did not reach MBO before beginning to collapse at sunset into a shallow night time boundary layer. Thus, for the spring of 2004, we conclude that MBO experienced free-tropospheric air for more than 50% of the time; however, this is likely a lower limit. An objective analysis of water vapor and wind measurements with the goal of further improving the diagnosis of boundary layer influence will be presented along with their application to several long-range transport episodes at MBO. Additional measurements to be made at the site will hopefully allow us to make a more accurate assessment of the boundary layer height and its influence on the MBO observations. (See presentation by Weiss-Penzias et al., for a discussion of the chemical observations during this same time period.)

  8. Process-model simulations of cloud albedo enhancement by aerosols in the Arctic.

    PubMed

    Kravitz, Ben; Wang, Hailong; Rasch, Philip J; Morrison, Hugh; Solomon, Amy B

    2014-12-28

    A cloud-resolving model is used to simulate the effectiveness of Arctic marine cloud brightening via injection of cloud condensation nuclei (CCN), either through geoengineering or other increased sources of Arctic aerosols. An updated cloud microphysical scheme is employed, with prognostic CCN and cloud particle numbers in both liquid and mixed-phase marine low clouds. Injection of CCN into the marine boundary layer can delay the collapse of the boundary layer and increase low-cloud albedo. Albedo increases are stronger for pure liquid clouds than mixed-phase clouds. Liquid precipitation can be suppressed by CCN injection, whereas ice precipitation (snow) is affected less; thus, the effectiveness of brightening mixed-phase clouds is lower than for liquid-only clouds. CCN injection into a clean regime results in a greater albedo increase than injection into a polluted regime, consistent with current knowledge about aerosol-cloud interactions. Unlike previous studies investigating warm clouds, dynamical changes in circulation owing to precipitation changes are small. According to these results, which are dependent upon the representation of ice nucleation processes in the employed microphysical scheme, Arctic geoengineering is unlikely to be effective as the sole means of altering the global radiation budget but could have substantial local radiative effects. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  9. Process-model simulations of cloud albedo enhancement by aerosols in the Arctic

    PubMed Central

    Kravitz, Ben; Wang, Hailong; Rasch, Philip J.; Morrison, Hugh; Solomon, Amy B.

    2014-01-01

    A cloud-resolving model is used to simulate the effectiveness of Arctic marine cloud brightening via injection of cloud condensation nuclei (CCN), either through geoengineering or other increased sources of Arctic aerosols. An updated cloud microphysical scheme is employed, with prognostic CCN and cloud particle numbers in both liquid and mixed-phase marine low clouds. Injection of CCN into the marine boundary layer can delay the collapse of the boundary layer and increase low-cloud albedo. Albedo increases are stronger for pure liquid clouds than mixed-phase clouds. Liquid precipitation can be suppressed by CCN injection, whereas ice precipitation (snow) is affected less; thus, the effectiveness of brightening mixed-phase clouds is lower than for liquid-only clouds. CCN injection into a clean regime results in a greater albedo increase than injection into a polluted regime, consistent with current knowledge about aerosol–cloud interactions. Unlike previous studies investigating warm clouds, dynamical changes in circulation owing to precipitation changes are small. According to these results, which are dependent upon the representation of ice nucleation processes in the employed microphysical scheme, Arctic geoengineering is unlikely to be effective as the sole means of altering the global radiation budget but could have substantial local radiative effects. PMID:25404677

  10. ROLE OF CANOPY-SCALE PHOTOCHEMISTRY IN MODIFYING BIOGENIC-ATMOSPHERE EXCHANGE OF REACTIVE TERPENE SPECIES: RESULTS FROM THE CELTIC FIELD STUDY

    EPA Science Inventory

    A one-dimensional canopy model was used to quantify the impact of photochemistry in modifying biosphere-atmosphere exchange of trace gases. Canopy escape efficiencies, defined as the fraction of emission that escapes into the well-mixed boundary layer, were calculated for reactiv...

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeMott, Paul J; Hill, Thomas CJ

    Measurements were sought to evaluate a hypotheses that sea-spray-sourced ice-nucleating particles (INPs) are of biological origin and represent a distinctly different INP population in comparison to long-range-transported desert or urban and regional land-sourced INP, and that the layering of marine within other aerosol layers feeding orographic storms over the mountains of California and the Western United States thereby leads to common and quantifiable scenarios that influence precipitation over the region. Aerosol collections on the National Oceanic and Atmospheric Administration (NOAA) research vessel (RV) Ronald H. Brown, for subsequent processing of INP immersion freezing activation temperature spectra and composition analyses, addedmore » a valuable measurement component to the ARM Cloud Aerosol Precipitation Experiment (ACAPEX) and related CalWater2 (NOAA) studies for use in parameterizing and modeling the impacts of marine boundary layer and other aerosols on climate and radiation via aerosol indirect effects on mixed-phase clouds. Twenty-five nominally 24-hour collections were made and have been processed for immersion freezing INP number concentrations versus temperature in the mixed-phase cloud temperature regime from -10 to -27°C. The similarity of INP number concentrations compared to typical marine boundary layer values attributed to sea-spray aerosols was noted. Nevertheless, variability of INP concentrations of up to 50 times was noted at individual temperatures over the course of the study. A particular analysis possible with this data set is to examine INP budgets over oceans inside versus outside of atmospheric river conditions. These INP measurements supplemented multiple airborne INP measurements on the ARM Aerial Facility (AAF), and others on the ground during ACAPEX and CalWater2, to provide extensive spatial and temporal analyses of INP immersion freezing spectra during winter storm periods. Future analyses will use thermal sensitivity to examine INP compositions as organic versus inorganic in these marine boundary layer samples. Data set integration is occurring under funding from an Atmospheric System Research (ASR) proposal.« less

  12. Vertical and meridional distributions of the atmospheric CO2 mixing ratio between northern midlatitudes and southern subtropics

    NASA Astrophysics Data System (ADS)

    Machida, T.; Kita, K.; Kondo, Y.; Blake, D.; Kawakami, S.; Inoue, G.; Ogawa, T.

    2003-02-01

    The atmospheric CO2 mixing ratio was measured using a continuous measurement system onboard a Gulfstream-II aircraft between the northern midlatitudes and the southern subtropics during the Biomass Burning and Lightning Experiment Phase A (BIBLE A) campaign in September-October 1998. The vertical distribution of CO2 over tropical regions was almost constant from the surface to an altitude of 13 km. CO2 enhancements from biomass burning and oceanic release were observed in the tropical boundary layer. Measurements in the upper troposphere indicate interhemispheric exchange was effectively suppressed between 2°N-7°N. Interhemispheric transport of air in the upper troposphere was suppressed effectively in this region. The CO2 mixing ratios in the Northern and Southern Hemispheres were almost constant, with an average value of about 365 parts per million (ppm) and 366 ppm, respectively. The correlation between the CO2 and NOy mixing ratios observed north of 7°N was apparently different from that obtained south of 2°N. This fact strongly supports the result that the north-south boundary in the upper troposphere during BIBLE A was located around 2°N-7°N as the boundary is not necessary a permanent feature.

  13. Vertical and meridional distributions of the atmospheric CO2 mixing ratio between northern midlatitudes and southern subtropics

    NASA Astrophysics Data System (ADS)

    Machida, T.; Kita, K.; Kondo, Y.; Blake, D.; Kawakami, S.; Inoue, G.; Ogawa, T.

    2002-02-01

    The atmospheric CO2 mixing ratio was measured using a continuous measurement system onboard a Gulfstream-II aircraft between the northern midlatitudes and the southern subtropics during the Biomass Burning and Lightning Experiment Phase A (BIBLE A) campaign in September-October 1998. The vertical distribution of CO2 over tropical regions was almost constant from the surface to an altitude of 13 km. CO2 enhancements from biomass burning and oceanic release were observed in the tropical boundary layer. Measurements in the upper troposphere indicate interhemispheric exchange was effectively suppressed between 2°N-7°N. Interhemispheric transport of air in the upper troposphere was suppressed effectively in this region. The CO2 mixing ratios in the Northern and Southern Hemispheres were almost constant, with an average value of about 365 parts per million (ppm) and 366 ppm, respectively. The correlation between the CO2 and NOy mixing ratios observed north of 7°N was apparently different from that obtained south of 2°N. This fact strongly supports the result that the north-south boundary in the upper troposphere during BIBLE A was located around 2°N-7°N as the boundary is not necessary a permanent feature.

  14. Response and Sensitivity of the Nocturnal Boundary Layer Over Land to Added Longwave Radiative Forcing

    NASA Astrophysics Data System (ADS)

    McNider, R. T.; Steeneveld, G.; Holtslag, B.; Pielke, R. A.; Mackaro, S.; Nair, U. S.; Biazar, A. P.; Christy, J. R.; Walters, J.

    2012-12-01

    . One of the most significant signals in the thermometer-observed temperature record since 1900 is the decrease in the diurnal temperature range (DTR) over land. CMIP3 climate models only captured about 20% of this trend difference. An update of observed trends through 2010 indicates that CMIP5 models still only capture about 28%. Because climate models have not captured this asymmetry, many investigators have looked to forcing or processes that models have not included to explain the lack of fidelity of models. Our paper takes an alternative view of the role nonlinear dynamics of the stable nocturnal boundary layer (SNBL) may provide as a general explanation of the asymmetry. This was first postulated in a nonlinear analysis of a simple two layer model that found slight changes in incoming longwave radiation might result in large changes in the near surface temperature as the boundary is destabilized slightly due to the added downward radiation. This produced a mixing of warmer temperatures from aloft to the surface as the turbulent mixing was enhanced. In the present study we examine whether this behavior is retained in a more complete multi-layer column model with a state of the art radiation scheme for the stable boundary layer. The response of a nocturnal boundary layer to an added increment of downward radiation from CO2 and water vapor (4.8 W m -2 ) was compared to the solution without this forcing. These experiments showed that indeed the SNBL grew slightly and was less stable due to the added longwave radiation. The model showed that the shelter temperature warmed substantially due to this destabilization. Moreover, the budget calculations showed that only about 20% of the warming was due to the added longwave energy. Most of the warming at shelter height was due to the redistribution. Budget calculations in the paper also showed that the ultimate fate of the added input of longwave energy was highly sensitive to boundary layer parameters and turbulent parameterizations. The model showed that at light winds (weak turbulence) the atmosphere was not able to lift this energy off the surface and into the atmosphere. Thus, more radiation was emitted from the surface. If soil conductivity or heat capacity were large then more of the energy would heat the ground. Parameterizations of the type used in large scale models added much more sensible heat to the atmosphere. Based on these model analyses, it is likely that part of the observed long-term increase in minimum temperature is reflecting a redistribution of heat by changes in turbulence and not by an accumulation of heat in the SNBL. Because of the sensitivity of the shelter temperature to parameters and to uncertain turbulence parameterization in the SNBL, there should be caution about the use of minimum temperatures as a global warming metric in either observations or models.

  15. CGILS Phase 2 LES intercomparison of response of subtropical marine low cloud regimes to CO 2 quadrupling and a CMIP3 composite forcing change: Large eddy simulation of cloud feedbacks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blossey, Peter N.; Bretherton, Christopher S.; Cheng, Anning

    We extended Phase 1 of the CGILS large-eddy simulation (LES) intercomparison in order to understand if subtropical marine boundary-layer clouds respond to idealized climate perturbations consistently in six LES models. Here the responses to quadrupled carbon dioxide (“fast adjustment”) and to a composite climate perturbation representative of CMIP3 multimodel mean 2×CO 2 near-equilibrium conditions are analyzed. As in Phase 1, the LES is run to equilibrium using specified steady summertime forcings representative of three locations in the Northeast Pacific Ocean in shallow well-mixed stratocumulus, decoupled stratocumulus, and shallow cumulus cloud regimes. Our results are generally consistent with a single-LES studymore » of Bretherton et al. (2013) on which this intercomparison was based. Both quadrupled CO 2 and the composite climate perturbation result in less cloud and a shallower boundary layer for all models in well-mixed stratocumulus and for all but a single LES in decoupled stratocumulus and shallow cumulus, corroborating similar findings from global climate models (GCMs). For both perturbations, the amount of cloud reduction varies across the models, but there is less intermodel scatter than in GCMs. Furthermore, the cloud radiative effect changes are much larger in the stratocumulus-capped regimes than in the shallow cumulus regime, for which precipitation buffering may damp the cloud response. In the decoupled stratocumulus and cumulus regimes, both the CO 2 increase and CMIP3 perturbations reduce boundary-layer decoupling, due to the shallowing of inversion height.« less

  16. CGILS Phase 2 LES intercomparison of response of subtropical marine low cloud regimes to CO 2 quadrupling and a CMIP3 composite forcing change: Large eddy simulation of cloud feedbacks

    DOE PAGES

    Blossey, Peter N.; Bretherton, Christopher S.; Cheng, Anning; ...

    2016-10-27

    We extended Phase 1 of the CGILS large-eddy simulation (LES) intercomparison in order to understand if subtropical marine boundary-layer clouds respond to idealized climate perturbations consistently in six LES models. Here the responses to quadrupled carbon dioxide (“fast adjustment”) and to a composite climate perturbation representative of CMIP3 multimodel mean 2×CO 2 near-equilibrium conditions are analyzed. As in Phase 1, the LES is run to equilibrium using specified steady summertime forcings representative of three locations in the Northeast Pacific Ocean in shallow well-mixed stratocumulus, decoupled stratocumulus, and shallow cumulus cloud regimes. Our results are generally consistent with a single-LES studymore » of Bretherton et al. (2013) on which this intercomparison was based. Both quadrupled CO 2 and the composite climate perturbation result in less cloud and a shallower boundary layer for all models in well-mixed stratocumulus and for all but a single LES in decoupled stratocumulus and shallow cumulus, corroborating similar findings from global climate models (GCMs). For both perturbations, the amount of cloud reduction varies across the models, but there is less intermodel scatter than in GCMs. Furthermore, the cloud radiative effect changes are much larger in the stratocumulus-capped regimes than in the shallow cumulus regime, for which precipitation buffering may damp the cloud response. In the decoupled stratocumulus and cumulus regimes, both the CO 2 increase and CMIP3 perturbations reduce boundary-layer decoupling, due to the shallowing of inversion height.« less

  17. A one-dimensional sectional aerosol model integrated with mesoscale meteorological data to study marine boundary layer aerosol dynamics

    NASA Astrophysics Data System (ADS)

    Caffrey, Peter F.; Hoppel, William A.; Shi, Jainn J.

    2006-12-01

    The dynamics of aerosols in the marine boundary layer are simulated with a one-dimensional, multicomponent, sectional aerosol model using vertical profiles of turbulence, relative humidity, temperature, vertical velocity, cloud cover, and precipitation provided by 3-D mesoscale meteorological model output. The Naval Research Laboratory's (NRL) sectional aerosol model MARBLES (Fitzgerald et al., 1998a) was adapted to use hourly meteorological input taken from NRL's Coupled Ocean-Atmosphere Prediction System (COAMPS). COAMPS-generated turbulent mixing coefficients and large-scale vertical velocities determine vertical exchange within the marine boundary layer and exchange with the free troposphere. Air mass back trajectories were used to define the air column history along which the meteorology was retrieved for use with the aerosol model. Details on the integration of these models are described here, as well as a description of improvements made to the aerosol model, including transport by large-scale vertical motions (such as subsidence and lifting), a revised sea-salt aerosol source function, and separate tracking of sulfate mass from each of the five sources (free tropospheric, nucleated, condensed from gas phase oxidation products, cloud-processed, and produced from heterogeneous oxidation of S(IV) on sea-salt aerosol). Results from modeling air masses arriving at Oahu, Hawaii, are presented, and the relative contribution of free-tropospheric sulfate particles versus sea-salt aerosol from the surface to CCN concentrations is discussed. Limitations and benefits of the method are presented, as are sensitivity analyses of the effect of large-scale vertical motions versus turbulent mixing.

  18. Aircraft measurements to characterize polluted winter boundary layers: Overview of twin otter flights during the Utah Winter Fine Particulate Matter Study

    NASA Astrophysics Data System (ADS)

    Brown, S. S.; Baasandorj, M.; Franchin, A.; Middlebrook, A. M.; Goldberger, L.; Thornton, J. A.; Dube, W. P.; McDuffie, E. E.; Womack, C.; Fibiger, D. L.; Moravek, A.; Clark, J. C.; Murphy, J. G.; Mitchell, R.

    2017-12-01

    Winter air pollution is a significant public health concern. In many regions of the U.S., Europe and Asia, wintertime particulate matter concentrations exceed national and / or international air quality standards. Winter air pollution also represents a scientific challenge because these events occur during stagnation events in shallow, vertically stratified boundary layers whose composition is difficult to probe from surface level measurements. Chemical processes responsible for the conversion of primary emissions to secondary pollutants such as ammonium nitrate aerosol vary with height above ground level. Sources of oxidants are poorly understood and may result from both local chemical production and mixing between shallow inversion layers and background air. During the Utah Winter Fine Particulate Study (UWFPS) in January - February 2017, the NOAA twin otter executed 23 research flights with a payload designed to characterize the formation of ammonium nitrate aerosol in three mountain valleys of northern Utah (Salt Lake, Cache, and Utah). These valleys are subject to periodic episodes of winter aerosol pollution well in excess of U.S. national ambient air quality standards. This presentation will describe the measurement strategy of the twin otter flights to address the specific features of aerosol pollution within winter boundary layer of this region. This strategy is relevant to understanding the broader issue of winter air pollution in other regions and potentially to the design of future studies. The presentation will summarize findings from UWFPS related to boundary layer structure, emissions and chemical processes responsible for ammonium nitrate aerosol in this region.

  19. Impact of atmospheric boundary layer depth variability and wind reversal on the diurnal variability of aerosol concentration at a valley site.

    PubMed

    Pal, S; Lee, T R; Phelps, S; De Wekker, S F J

    2014-10-15

    The development of the atmospheric boundary layer (ABL) plays a key role in affecting the variability of atmospheric constituents such as aerosols, greenhouse gases, water vapor, and ozone. In general, the concentration of any tracers within the ABL varies due to the changes in the mixing volume (i.e. ABL depth). In this study, we investigate the impact on the near-surface aerosol concentration in a valley site of 1) the boundary layer dilution due to vertical mixing and 2) changes in the wind patterns. We use a data set obtained during a 10-day field campaign in which a number of remote sensing and in-situ instruments were deployed, including a ground-based aerosol lidar system for monitoring of the ABL top height (zi), a particle counter to determine the number concentration of aerosol particles at eight different size ranges, and tower-based standard meteorological instruments. Results show a clearly visible decreasing trend of the mean daytime zi from 2900 m AGL (above ground level) to 2200 m AGL during a three-day period which resulted in increased near-surface pollutant concentrations. An inverse relationship exists between the zi and the fine fraction (0.3-0.7 μm) accumulation mode particles (AMP) on some days due to the dilution effect in a well-mixed ABL. These days are characterized by the absence of daytime upvalley winds and the presence of northwesterly synoptic-driven winds. In contrast, on the days with an onset of an upvalley wind circulation after the morning transition, the wind-driven local transport mechanism outweighs the ABL-dilution effect in determining the variability of AMP concentration. The interplay between the ABL depth evolution and the onset of the upvalley wind during the morning transition period significantly governs the air quality in a valley and could be an important component in the studies of mountain meteorology and air quality. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. A FIRE-ACE/SHEBA Case Study of Mixed-Phase Arctic Boundary Layer Clouds: Entrainment Rate Limitations on Rapid Primary Ice Nucleation Processes

    NASA Technical Reports Server (NTRS)

    Fridlin, Ann; vanDiedenhoven, Bastiaan; Ackerman, Andrew S.; Avramov, Alexander; Mrowiec, Agnieszka; Morrison, Hugh; Zuidema, Paquita; Shupe, Matthew D.

    2012-01-01

    Observations of long-lived mixed-phase Arctic boundary layer clouds on 7 May 1998 during the First International Satellite Cloud Climatology Project (ISCCP) Regional Experiment (FIRE)Arctic Cloud Experiment (ACE)Surface Heat Budget of the Arctic Ocean (SHEBA) campaign provide a unique opportunity to test understanding of cloud ice formation. Under the microphysically simple conditions observed (apparently negligible ice aggregation, sublimation, and multiplication), the only expected source of new ice crystals is activation of heterogeneous ice nuclei (IN) and the only sink is sedimentation. Large-eddy simulations with size-resolved microphysics are initialized with IN number concentration N(sub IN) measured above cloud top, but details of IN activation behavior are unknown. If activated rapidly (in deposition, condensation, or immersion modes), as commonly assumed, IN are depleted from the well-mixed boundary layer within minutes. Quasi-equilibrium ice number concentration N(sub i) is then limited to a small fraction of overlying N(sub IN) that is determined by the cloud-top entrainment rate w(sub e) divided by the number-weighted ice fall speed at the surface v(sub f). Because w(sub c)< 1 cm/s and v(sub f)> 10 cm/s, N(sub i)/N(sub IN)<< 1. Such conditions may be common for this cloud type, which has implications for modeling IN diagnostically, interpreting measurements, and quantifying sensitivity to increasing N(sub IN) (when w(sub e)/v(sub f)< 1, entrainment rate limitations serve to buffer cloud system response). To reproduce observed ice crystal size distributions and cloud radar reflectivities with rapidly consumed IN in this case, the measured above-cloud N(sub IN) must be multiplied by approximately 30. However, results are sensitive to assumed ice crystal properties not constrained by measurements. In addition, simulations do not reproduce the pronounced mesoscale heterogeneity in radar reflectivity that is observed.

  1. Application of Intel Many Integrated Core (MIC) architecture to the Yonsei University planetary boundary layer scheme in Weather Research and Forecasting model

    NASA Astrophysics Data System (ADS)

    Huang, Melin; Huang, Bormin; Huang, Allen H.

    2014-10-01

    The Weather Research and Forecasting (WRF) model provided operational services worldwide in many areas and has linked to our daily activity, in particular during severe weather events. The scheme of Yonsei University (YSU) is one of planetary boundary layer (PBL) models in WRF. The PBL is responsible for vertical sub-grid-scale fluxes due to eddy transports in the whole atmospheric column, determines the flux profiles within the well-mixed boundary layer and the stable layer, and thus provide atmospheric tendencies of temperature, moisture (including clouds), and horizontal momentum in the entire atmospheric column. The YSU scheme is very suitable for massively parallel computation as there are no interactions among horizontal grid points. To accelerate the computation process of the YSU scheme, we employ Intel Many Integrated Core (MIC) Architecture as it is a multiprocessor computer structure with merits of efficient parallelization and vectorization essentials. Our results show that the MIC-based optimization improved the performance of the first version of multi-threaded code on Xeon Phi 5110P by a factor of 2.4x. Furthermore, the same CPU-based optimizations improved the performance on Intel Xeon E5-2603 by a factor of 1.6x as compared to the first version of multi-threaded code.

  2. On the potential influence of ice nuclei on surface-forced marine stratocumulus cloud dynamics

    NASA Astrophysics Data System (ADS)

    Harrington, Jerry Y.; Olsson, Peter Q.

    2001-11-01

    The mixed phase cloudy boundary layer that occurs during off-ice flow in the marine Arctic was simulated in an environment with a strong surface heat flux (nearly 800 W m-2). A two-dimensional, eddy-resolving model coupled to a detailed cloud microphysical model was used to study both liquid phase and mixed phase stratocumulus clouds and boundary layer (BL) dynamics in this environment. Since ice precipitation may be important to BL dynamics, and ice nuclei (IN) concentrations modulate ice precipitation rates, the role of IN in cloud and BL development was explored. The results of several simulations illustrate how mixed phase microphysical processes affect the evolution of the cloudy BL in this environment. In agreement with past studies, BLs with mixed phase clouds had weaker convection, shallower BL depths, and smaller cloud fractions than BLs with clouds restricted to the liquid phase only. It is shown that the weaker BL convection is due to strong ice precipitation. Ice precipitation reduces convective strength directly by stabilizing downdrafts and more indirectly by sensibly heating the BL and inhibiting vertical mixing of momentum thereby reducing surface heat fluxes by as much as 80 W m-2. This feedback between precipitation and surface fluxes was found to have a significant impact on cloud/BL morphology, producing oscillations in convective strength and cloud fraction that did not occur if surface fluxes were fixed at constant values. Increases in IN concentrations in mixed phase clouds caused a more rapid Bergeron-Findeisen process leading to larger precipitation fluxes, reduced convection and lower cloud fraction. When IN were removed from the BL through precipitation, fewer crystals were nucleated at later simulation times leading to progressively weaker precipitation rates, greater cloud fraction, and stronger convective BL eddies.

  3. Seasonal cycle of the mixed-layer heat and freshwater budget in the eastern tropical Atlantic

    NASA Astrophysics Data System (ADS)

    Rath, Willi; Dengler, Marcus; Lüdke, Jan; Schmidtko, Sunke; Schlundt, Michael; Brandt, Peter; Partners, Preface

    2016-04-01

    A new seasonal mixed-layer heat flux climatology is used to explore the mechanisms driving seasonal variability of sea surface temperature and salinity in the eastern tropical Atlantic (ETA) with a focus on the eastern boundary upwelling regions. Until recently, large areas at the continental margins of the ETA were not well covered by publically available hydrographic data hampering a detailed understanding of the involved processes. In a collaborative effort between African and European partners within the EU-funded PREFACE program, a new seasonal climatology for different components of the heat and freshwater budget was compiled for the ETA using all publically available hydrographic data sets and a large trove of previously not-publically available hydrographic measurements from the territorial waters of western African countries, either from national programs or from the FAO supported EAF-Nansen program. The publically available data includes hydrographic data from global data repositories including most recent ARGO floats and glider measurements. This data set was complemented by velocity data from surface drifter and ARGO floats to allow determining horizontal heat and freshwater advection. Monthly means of air-sea heat fluxes were derived from the TropFlux climatology while precipitation rates were derived from monthly mean fields of the Global Precipitation Climatology Project. Finally, microstructure data from individual measurement campaigns allow estimating diapycnal heat and salt fluxes for certain regions during specific months. A detailed analysis of the seasonal cycle of mixed-layer heat and freshwater balance in previously poorly covered regions in the eastern tropical Atlantic upwelling is presented. In both eastern boundary upwelling region, off Senegal/Mauritania and off Angola/Namibia, average net surface heat fluxes warm the mixed layer at a rate between 50 and 80 W/m2 with maxima in the respective summer seasons. Horizontal advection contributed to cooling of the mixed layer but a residual cooling term remains in both upwelling regions. A surprising result is that this residual is largest in the Angolan upwelling region, where upwelling-favourable winds are generally weaker than off Namibia and in the north-eastern upwelling region. The contributions of windstress-derived vertical advection and diapycnal heat and freshwater fluxes are discussed. In addition, the TropFlux climatology is evaluated against radiative and turbulent ocean-atmosphere heat and freshwater fluxes derived from ship-board observations.

  4. Regional aerosol chemistry of the Amazon Basin during the dry season

    NASA Technical Reports Server (NTRS)

    Talbot, R. W.; Harriss, R. C.; Andreae, M. O.; Andreae, T. W.

    1988-01-01

    The distribution and chemical composition of the atmospheric aerosol over the Amazon Basin forest were determined during the 1985 July-August dry season, using data on the aerosol chemical constituent concentration collected during the NASA Global Tropospheric Experiment Amazon Boundary Layer Experiment 2A mission. The results of the analyses suggest that there is a remarkable compositional and spatial homogeneity of the atmospheric aerosol on an extensive regional scale. Particulate organic carbon is the dominant component of the atmospheric aerosol, exhibiting an average concentration of about 740 nmol/cu m in the mixed layer and about 220 nmol/cu m in free tropospheric air. Oxalate and SO4(2-) exhibited the greatest enrichment in the mixed layer, while Cl(-) showed essentially no enrichment. The aerosol in the Amazonian atmosphere is essentially acid-base neutral, primarily as a result of incorporation of NH(+), which is presumably derived from NH3 released by the forest ecosystem.

  5. A Numerical Study of Tropical Sea-Air Interactions Using a Cloud Resolving Model Coupled with an Ocean Mixed-Layer Model

    NASA Technical Reports Server (NTRS)

    Shie, Chung-Lin; Tao, Wei-Kuo; Johnson, Dan; Simpson, Joanne; Li, Xiaofan; Sui, Chung-Hsiung; Einaudi, Franco (Technical Monitor)

    2001-01-01

    Coupling a cloud resolving model (CRM) with an ocean mixed layer (OML) model can provide a powerful tool for better understanding impacts of atmospheric precipitation on sea surface temperature (SST) and salinity. The objective of this study is twofold. First, by using the three dimensional (3-D) CRM-simulated (the Goddard Cumulus Ensemble model, GCE) diabatic source terms, radiation (longwave and shortwave), surface fluxes (sensible and latent heat, and wind stress), and precipitation as input for the OML model, the respective impact of individual component on upper ocean heat and salt budgets are investigated. Secondly, a two-way air-sea interaction between tropical atmospheric climates (involving atmospheric radiative-convective processes) and upper ocean boundary layer is also examined using a coupled two dimensional (2-D) GCE and OML model. Results presented here, however, only involve the first aspect. Complete results will be presented at the conference.

  6. An integral turbulent kinetic energy analysis of free shear flows

    NASA Technical Reports Server (NTRS)

    Peters, C. E.; Phares, W. J.

    1973-01-01

    Mixing of coaxial streams is analyzed by application of integral techniques. An integrated turbulent kinetic energy (TKE) equation is solved simultaneously with the integral equations for the mean flow. Normalized TKE profile shapes are obtained from incompressible jet and shear layer experiments and are assumed to be applicable to all free turbulent flows. The shear stress at the midpoint of the mixing zone is assumed to be directly proportional to the local TKE, and dissipation is treated with a generalization of the model developed for isotropic turbulence. Although the analysis was developed for ducted flows, constant-pressure flows were approximated with the duct much larger than the jet. The axisymmetric flows under consideration were predicted with reasonable accuracy. Fairly good results were also obtained for the fully developed two-dimensional shear layers, which were computed as thin layers at the boundary of a large circular jet.

  7. Mixing-height measurement by lidar, particle counter, and rawinsonde in the Williamette Valley, Oregon

    NASA Technical Reports Server (NTRS)

    Mccormick, M. P.; Melfi, S. H.; Olsson, L. E.; Tuft, W. L.; Elliott, W. P.; Egami, R.

    1972-01-01

    The feasibility of using laser radar (lidar) to measure the spatial distribution of aerosols and water vapor in the earth's mixing or boundary layer is shown. From these data the important parameter of actual mixing height was determined, that is, the maximum height to which particulate pollutants actually mix. Data are shown for simultaneous lidar, rawinsonde, and aircraft-mounted condensation nuclei counter and temperature measurements. The synoptic meteorology is also presented. The Williamette Valley, Oregon, was chosen for the measurements because of its unique combination of meteorology, terrain, and pollutant source, along with an ongoing Oregon State University study of the natural ventilation of this valley.

  8. Observations From the Coupled Boundary Layer Air-Sea Transfer Experiment in Hurricanes

    NASA Astrophysics Data System (ADS)

    Black, P. G.

    2006-12-01

    The CBLAST field program conducted from 2002-2004 has shown that the wind speed range for which turbulent momentum and moisture exchange coefficients have been derived based upon direct flux measurements has been extended by 30 and 60 percent, respectively, from airborne observations in Hurricanes Fabian and Isabel in 2003. The drag coefficient (CD) values derived from CBLAST momentum flux measurements show CD becoming invariant with wind speed near a 23 ms-1 threshold rather than a hurricane-force threshold near 33 ms-1. Values above 23 ms-1 are lower than previous open ocean measurements. The Dalton number estimates (CE) derived from CBLAST moisture flux measurements are shown to be invariant with wind speed to 30 ms-1, in approximate agreement with previous measurements at lower winds. These observations imply a CE/CD ratio of approximately 0.7, suggesting that additional energy sources are necessary for hurricanes to achieve their maximum potential intensity. Two such additional mechanisms for augmented moisture flux in the boundary layer might be 1) augmented wave breaking by short-crested, fetch limited waves suggested by whitecap aerial coverage measurements, and 2) sea spray at high winds suggested by laboratory spray source function measurements. Linear coherent features in the hurricane boundary layer are a third mechanism, observed during CBLAST 2002 aircraft measurements, to have wavelengths of 0.9 to 1.2 km. Linear features of the same wavelength range were observed in nearly-concurrent RADARSAT Synthetic Aperture Radar (SAR) imagery. Arrays of drifting buoys and subsurface floats were successfully deployed ahead of Hurricanes Fabian (2003) and Frances (2004): 16 (6) and 38 (14) drifters (floats). Two types of surface drifters and three types of floats provided observations of surface and subsurface oceanic currents, temperature, salinity, gas exchange, bubble concentrations and surface wave spectra to a depth of 200 m on a continuous basis before, during and after storm passage. Float observations indicated deepening of the mixed layer from 40 to 120 m in approximately 8 hr with a corresponding decrease in SST in the right-rear quadrant of 3.2 ºC in 11 hr, roughly one-half inertial period. Strong inertial currents with a peak amplitude of 1.5 ms-1 were observed. Vertical structure showed the critical Richardson number was reached sporadically during the mixed-layer deepening event, suggesting shear-induced mixing as a prominent mechanism during storm passage.

  9. Laminar superlayer at the turbulence boundary.

    PubMed

    Holzner, M; Lüthi, B

    2011-04-01

    In this Letter we present results from particle tracking velocimetry and direct numerical simulation that are congruent with the existence of a laminar superlayer, as proposed in the pioneering work of Corrsin and Kistler (NACA, Technical Report No. 1244, 1955). We find that the local superlayer velocity is dominated by a viscous component and its magnitude is comparable to the characteristic velocity of the smallest scales of motion. This slow viscous process involves a large surface area so that the global rate of turbulence spreading is set by the largest scales of motion. These findings are important for a better understanding of mixing of mass and momentum in a variety of flows where thin layers of shear exist. Examples are boundary layers, clouds, planetary atmospheres, and oceans. © 2011 American Physical Society

  10. The interactive role of subsynoptic scale jet streak and planetary boundary layer processes in organizing an isolated convective complex

    NASA Technical Reports Server (NTRS)

    Kaplan, M. L.; Zack, J. W.; Wong, V. C.; Coats, G. D.

    1984-01-01

    Surface analyses and numerical simulation sensitivity studies are compared in order to determine the role played by deep, well-mixed, and well-heated boundary layers in perturbing a weak jet streak in proximity to the development of an isolated but intense convective complex associated with the Grand Island, Nebraska tornado outbreak of June 3-4, 1980. A brief description of the case is first presented, emphasizing three-hourly surface analyses, radar, and satellite data. The results of numerical experiments comparing differences in the runs with and without diurnal surface sensible heating are discussed and related to observations. The dynamical processes responsible for these simulation differences are discussed, and the significance of these differences are considered in terms of their effect on the preconvective environment.

  11. Atmospheric Boundary Layer temperature and humidity from new-generation Raman lidar

    NASA Astrophysics Data System (ADS)

    Froidevaux, Martin; Higgins, Chad; Simeonov, Valentin; Pardyjak, Eric R.; Parlange, Marc B.

    2010-05-01

    Mixing ratio and temperature data, obtained with EPFL Raman lidar during the TABLE-08 experiment are presented. The processing methods will be discussed along with fundamental physics. An independent calibration is performed at different distances along the laser beam, demonstrating that the multi-telescopes design of the lidar system is reliable for field application. The maximum achievable distance as a function of time and/or space averaging will also be discussed. During the TABLE-08 experiment, different type of lidar measurements have been obtained including: horizontal and vertical time series, as well as boundary layer "cuts", during day and night. The high resolution data, 1s in time and 1.25 m in space, are used to understand the response of the atmosphere to variations in surface variability.

  12. Observational Constraints on Ephemeral Wind Gusts that MobilizeSoil Dust Aerosols

    NASA Astrophysics Data System (ADS)

    Miller, R. L.; Leung, M. F.

    2017-12-01

    Dust aerosol models resolve the planetary scale winds that disperse particles throughout the globe, but the winds raising dust are often organized on smaller scales that are below the resolution of the model. These winds, including ephemeral wind gusts associated with boundary layer mixing, are typically parameterized. For example, gusts by dry convective eddies are related to the sensible heat flux. What remains is to constrain the magnitude of the wind gusts using boundary layer measurements, so that dust emission has the correct sensitivity to these gusts, relative to the resolved wind. Here, we use a year of ARM measurements with high temporal resolution from Niamey, Niger in the Sahel to evaluate our parameterization. This evaluation is important for dust aerosol models that use 'nudging' to reproduce observed transport patterns.

  13. Numerical simulation of boundary layers. Part 2: Ribbon-induced transition in Blasius flow

    NASA Technical Reports Server (NTRS)

    Spalart, P.; Yang, K. S.

    1986-01-01

    The early three-dimensional stages of transition in Blasius boundary layers are studied by numerical solution of the Navier-Stokes equations. A finite-amplitude two-dimensional wave and random low-amplitude three-dimensional disturbances are introduced. Rapid amplification of the three-dimensional components is observed and leads to transition. For intermediate amplitudes of the two-dimensional wave the breakdown is of subharmonic type, and the dominant spanwise wave number increases with the amplitude. For high amplitudes the energy of the fundamental mode is comparable to the energy of the subharmonic mode, but never dominates it; the breakdown is of mixed type. Visualizations, energy histories, and spectra are presented. The sensitivity of the results to various physical and numerical parameters is studied. Agreement with experimental and theoretical results is discussed.

  14. Streakline flow visualization of discrete hole film cooling with holes inclined 30 deg to surface

    NASA Technical Reports Server (NTRS)

    Colladay, R. S.; Russell, L. M.; Lane, J. M.

    1976-01-01

    Film injection from three rows of discrete holes angled 30 deg to the surface in line with mainstream flow and spaced 5 diameters apart in a staggered array was visualized by using helium bubbles as tracer particles. Both the main stream and the film injectant were ambient air. Detailed streaklines showing the turbulent motion of the film mixing with the main stream were obtained by photographing small, neutrally buoyant helium-filled soap bubbles which followed the flow field. The ratio of boundary layer thickness to hole diameter and the Reynolds number were typical of gas turbine film cooling applications. The results showed the behavior of the film and its interaction with the main stream for a range of blowing rates and two initial boundary layer thicknesses.

  15. Mixed Element Type Unstructured Grid Generation for Viscous Flow Applications

    NASA Technical Reports Server (NTRS)

    Marcum, David L.; Gaither, J. Adam

    2000-01-01

    A procedure is presented for efficient generation of high-quality unstructured grids suitable for CFD simulation of high Reynolds number viscous flow fields. Layers of anisotropic elements are generated by advancing along prescribed normals from solid boundaries. The points are generated such that either pentahedral or tetrahedral elements with an implied connectivity can be be directly recovered. As points are generated they are temporarily attached to a volume triangulation of the boundary points. This triangulation allows efficient local search algorithms to be used when checking merging layers, The existing advancing-front/local-reconnection procedure is used to generate isotropic elements outside of the anisotropic region. Results are presented for a variety of applications. The results demonstrate that high-quality anisotropic unstructured grids can be efficiently and consistently generated for complex configurations.

  16. Testing Extensions of Our Quantitative Daily of San Joaquin Wintertime Aerosols Using MAIAC and Meteorology Without Transport/Transformation Assumptions

    NASA Technical Reports Server (NTRS)

    Chatfield, Robert B.; Sorek Hamer, Meytar; Esswein, Robert F.

    2017-01-01

    The Western US and many regions globally present daunting difficulties in understanding and mapping PM2.5 episodes. We evaluate extensions of a method independent of source-description and transport/transformation. These regions suffer frequent few-day episodes due to shallow mixing; low satellite AOT and bright surfaces complicate the description. Nevertheless, we expect residual errors in our maps of less than 8 ug/m^3 in episodes reaching 60-100 ug/m^3; maps which detail pollution from Interstate 5. Our current success is due to use of physically meaningful functions of MODIS-MAIAC-derived AOD, afternoon mixed-layer height, and relative humidity for a basin in which the latter are correlated. A mixed-effects model then describes a daily AOT-to-PM2.5 relationship. (Note: in other published mixed-effects models, AOT contributes minimally. We seek to extend on these to develop useful estimation methods for similar situations. We evaluate existing but more spotty information on size distribution (AERONET, MISR, MAIA, CALIPSO, other remote sensing). We also describe the usefulness of an equivalent mixing depth for water vapor vs meteorological boundary layer height. Each has virtues and limitations. Finally, we begin to evaluate methods for removing the complications due to detached but polluted layers (which don't mix to the surface) using geographical, meteorological, and remotely sensed data.

  17. A high resolution WRF model for wind energy forecasting

    NASA Astrophysics Data System (ADS)

    Vincent, Claire Louise; Liu, Yubao

    2010-05-01

    The increasing penetration of wind energy into national electricity markets has increased the demand for accurate surface layer wind forecasts. There has recently been a focus on forecasting the wind at wind farm sites using both statistical models and numerical weather prediction (NWP) models. Recent advances in computing capacity and non-hydrostatic NWP models means that it is possible to nest mesoscale models down to Large Eddy Simulation (LES) scales over the spatial area of a typical wind farm. For example, the WRF model (Skamarock 2008) has been run at a resolution of 123 m over a wind farm site in complex terrain in Colorado (Liu et al. 2009). Although these modelling attempts indicate a great hope for applying such models for detailed wind forecasts over wind farms, one of the obvious challenges of running the model at this resolution is that while some boundary layer structures are expected to be modelled explicitly, boundary layer eddies into the inertial sub-range can only be partly captured. Therefore, the amount and nature of sub-grid-scale mixing that is required is uncertain. Analysis of Liu et al. (2009) modelling results in comparison to wind farm observations indicates that unrealistic wind speed fluctuations with a period of around 1 hour occasionally occurred during the two day modelling period. The problem was addressed by re-running the same modelling system with a) a modified diffusion constant and b) two-way nesting between the high resolution model and its parent domain. The model, which was run with horizontal grid spacing of 370 m, had dimensions of 505 grid points in the east-west direction and 490 points in the north-south direction. It received boundary conditions from a mesoscale model of resolution 1111 m. Both models had 37 levels in the vertical. The mesoscale model was run with a non-local-mixing planetary boundary layer scheme, while the 370 m model was run with no planetary boundary layer scheme. It was found that increasing the diffusion constant caused damping of the unrealistic fluctuations, but did not completely solve the problem. Using two-way nesting also mitigated the unrealistic fluctuations significantly. It can be concluded that for real case LES modelling of wind farm circulations, care should be taken to ensure the consistency between the mesoscale weather forcing and LES models to avoid exciting spurious noise along the forcing boundary. The development of algorithms that adequately model the sub-grid-scale mixing that cannot be resolved by LES models is an important area for further research. References Liu, Y. Y._W. Liu, W. Y.Y. Cheng, W. Wu, T. T. Warner and K. Parks, 2009: Simulating intra-farm wind variations with the WRF-RTFDDA-LES modeling system. 10th WRF Users' Workshop, Boulder, C, USA. June 23 - 26, 2009. Skamarock, W., J. Dudhia, D.O. Gill, D.M. Barker, M.G.Duda, X-Y. Huang, W. Wang and J.G. Powers, A Description of the Advanced Research WRF version 3, NCAR Technical Note TN-475+STR, NCAR, Boulder, Colorado, 2008.

  18. Model analysis of urbanization impacts on boundary layer meteorology under hot weather conditions: a case study of Nanjing, China

    NASA Astrophysics Data System (ADS)

    Chen, Lei; Zhang, Meigen; Wang, Yongwei

    2016-08-01

    The Weather Research and Forecasting (WRF) model, configured with a single-layer urban canopy model, was employed to investigate the influence of urbanization on boundary layer meteorological parameters during a long-lasting heat wave. This study was conducted over Nanjing city, East China, from 26 July to 4 August 2010. The impacts of urban expansion and anthropogenic heat (AH) release were simulated to quantify their effects on 2-m temperature, 2-m water vapor mixing ratio, and 10-m wind speed and heat stress index. Urban sprawl increased the daily 2-m temperature in urbanized areas by around 1.6 °C and decreased the urban diurnal temperature range (DTR) by 1.24 °C. The contribution of AH release to the atmospheric warming was nearly 22 %, but AH had little influence on the DTR. The urban regional mean surface wind speed decreased by about 0.4 m s-1, and this decrease was successfully simulated from the surface to 300 m. The influence of urbanization on 2-m water vapor mixing ratio was significant over highly urbanized areas with a decrease of 1.1-1.8 g kg-1. With increased urbanization ratio, the duration of the inversion layer was about 4 h shorter, and the lower atmospheric layer was less stable. Urban heat island (UHI) intensity was significantly enhanced when synthesizing both urban sprawl and AH release and the daily mean UHI intensity increased by 0.74 °C. Urbanization increased the time under extreme heat stress (about 40 %) and worsened the living environment in urban areas.

  19. The influence of extratropical cloud phase and amount feedbacks on climate sensitivity

    NASA Astrophysics Data System (ADS)

    Frey, William R.; Kay, Jennifer E.

    2018-04-01

    Global coupled climate models have large long-standing cloud and radiation biases, calling into question their ability to simulate climate and climate change. This study assesses the impact of reducing shortwave radiation biases on climate sensitivity within the Community Earth System Model (CESM). The model is modified by increasing supercooled cloud liquid to better match absorbed shortwave radiation observations over the Southern Ocean while tuning to reduce a compensating tropical shortwave bias. With a thermodynamic mixed-layer ocean, equilibrium warming in response to doubled CO2 increases from 4.1 K in the control to 5.6 K in the modified model. This 1.5 K increase in equilibrium climate sensitivity is caused by changes in two extratropical shortwave cloud feedbacks. First, reduced conversion of cloud ice to liquid at high southern latitudes decreases the magnitude of a negative cloud phase feedback. Second, warming is amplified in the mid-latitudes by a larger positive shortwave cloud feedback. The positive cloud feedback, usually associated with the subtropics, arises when sea surface warming increases the moisture gradient between the boundary layer and free troposphere. The increased moisture gradient enhances the effectiveness of mixing to dry the boundary layer, which decreases cloud amount and optical depth. When a full-depth ocean with dynamics and thermodynamics is included, ocean heat uptake preferentially cools the mid-latitude Southern Ocean, partially inhibiting the positive cloud feedback and slowing warming. Overall, the results highlight strong connections between Southern Ocean mixed-phase cloud partitioning, cloud feedbacks, and ocean heat uptake in a climate forced by greenhouse gas changes.

  20. Arctic springtime observations of volatile organic compounds during the OASIS-2009 campaign

    NASA Astrophysics Data System (ADS)

    Hornbrook, Rebecca S.; Hills, Alan J.; Riemer, Daniel D.; Abdelhamid, Aroob; Flocke, Frank M.; Hall, Samuel R.; Huey, L. Gregory; Knapp, David J.; Liao, Jin; Mauldin, Roy L.; Montzka, Denise D.; Orlando, John J.; Shepson, Paul B.; Sive, Barkley; Staebler, Ralf M.; Tanner, David. J.; Thompson, Chelsea R.; Turnipseed, Andrew; Ullmann, Kirk; Weinheimer, Andrew J.; Apel, Eric C.

    2016-08-01

    Gas-phase volatile organic compounds (VOCs) were measured at three vertical levels between 0.6 m and 5.4 m in the Arctic boundary layer in Barrow, Alaska, for the Ocean-Atmosphere-Sea Ice-Snowpack (OASIS)-2009 field campaign during March-April 2009. C4-C8 nonmethane hydrocarbons (NMHCs) and oxygenated VOCs (OVOCs), including alcohols, aldehydes, and ketones, were quantified multiple times per hour, day and night, during the campaign using in situ fast gas chromatography-mass spectrometry. Three canister samples were also collected daily and subsequently analyzed for C2-C5 NMHCs. The NMHCs and aldehydes demonstrated an overall decrease in mixing ratios during the experiment, whereas acetone and 2-butanone showed increases. Calculations of time-integrated concentrations of Br atoms, ∫[Br]dt, yielded values as high as (1.34 ± 0.27) × 1014 cm-3 s during the longest observed ozone depletion event (ODE) of the campaign and were correlated with the steady state Br calculated at the site during this time. Both chlorine and bromine chemistry contributed to the large perturbations on the production and losses of VOCs. Notably, acetaldehyde, propanal, and butanal mixing ratios dropped below the detection limit of the instrument (3 parts per trillion by volume (pptv) for acetaldehyde and propanal, 2 pptv for butanal) during several ODEs due to Br chemistry. Chemical flux calculations of OVOC production and loss are consistent with localized high Cl-atom concentrations either regionally or within a very shallow surface layer, while the deeper Arctic boundary layer provides a continuous source of precursor alkanes to maintain the OVOC mixing ratios.

  1. Biogenic nonmethane hydrocarbon emissions estimated from tethered balloon observations

    NASA Technical Reports Server (NTRS)

    Davis, K. J.; Lenschow, D. H.; Zimmerman, P. R.

    1994-01-01

    A new technique for estimating surface fluxes of trace gases, the mixed-layer gradient technique, is used to calculate isoprene and terpene emissions from forests. The technique is applied to tethered balloon measurements made over the Amazon forest and a pine-oak forest in Alabama at altitudes up to 300 m. The observations were made during the dry season Amazon Boundary Layer Experiment (ABLE 2A) and the Rural Oxidants in the Southern Environment 1990 experiment (ROSE I). Results from large eddy simulations of scalar transport in the clear convective boundary layer are used to infer fluxes from the balloon profiles. Profiles from the Amazon give a mean daytime emission of 3630 +/- 1400 micrograms isoprene sq m/h, where the uncertainty represents the standard deviation of the mean of eight flux estimates. Twenty profiles from Alabama give emissions of 4470 +/- 3300 micrograms isoprene sq m/h, 1740 +/- 1060 micrograms alpha-pinene sq m/h, and 790 +/- 560 micrograms beta-pinene sq m/h, respectively. These results are in agreement with emissions derived from chemical budgets. The emissions may be overestimated because of uncertainty about how to incorporate the effects of the canopy on the mixed-layer gradients. The large variability in these emission estimates is probably due to the relatively short sampling times of the balloon profiles, though spatially heterogeneous emissions may also play a role. Fluxes derived using this technique are representative of an upwind footprint of several kilometers and are independent of hydrocarbon oxidation rate and mean advection.

  2. SUPERSONIC SHEAR INSTABILITIES IN ASTROPHYSICAL BOUNDARY LAYERS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belyaev, Mikhail A.; Rafikov, Roman R., E-mail: rrr@astro.princeton.edu

    Disk accretion onto weakly magnetized astrophysical objects often proceeds via a boundary layer (BL) that forms near the object's surface, in which the rotation speed of the accreted gas changes rapidly. Here, we study the initial stages of formation for such a BL around a white dwarf or a young star by examining the hydrodynamical shear instabilities that may initiate mixing and momentum transport between the two fluids of different densities moving supersonically with respect to each other. We find that an initially laminar BL is unstable to two different kinds of instabilities. One is an instability of a supersonicmore » vortex sheet (implying a discontinuous initial profile of the angular speed of the gas) in the presence of gravity, which we find to have a growth rate of order (but less than) the orbital frequency. The other is a sonic instability of a finite width, supersonic shear layer, which is similar to the Papaloizou-Pringle instability. It has a growth rate proportional to the shear inside the transition layer, which is of order the orbital frequency times the ratio of stellar radius to the BL thickness. For a BL that is thin compared to the radius of the star, the shear rate is much larger than the orbital frequency. Thus, we conclude that sonic instabilities play a dominant role in the initial stages of nonmagnetic BL formation and give rise to very fast mixing between disk gas and stellar fluid in the supersonic regime.« less

  3. Comparison of the key mechanisms leading to rollovers in Liquefied Natural Gas using Computational Fluid Dynamics

    NASA Astrophysics Data System (ADS)

    Hubert, Antoine; Dadonau, Maksim; Dembele, Siaka; Denissenko, Petr; Wen, Jennifer

    2017-11-01

    Growing demand for the LNG fosters growth of the number of production sites with varying composition and density. Combining different sources of LNG may result in a stably stratified system, in which heat and mass transfer between the layers is limited. Heating of the LNG due to wall thermal conductivity leads to formation of convection cells confined within the layers. While the upper layer can release the extra energy via preferential methane boil-off, the bottom layer cannot and hence becomes superheated. Gradual density equilibration reduces stratification and may eventually lead to a sudden mixing event called ``rollover'', accompanied by violent evaporation of the superheated LNG. Three phenomena are potentially responsible for density equilibration. The first is the growing difference in thermal expansion of the layers due to the reduced ability of the bottom layer to reject heat. The second is the penetration of the heated near-wall boundary layer into the upper layer. The third is the ``entrainment mixing'' occurring at the contact surface between the two layers. The present study uses CFD to compare these mechanisms. Boussinesq approximation and an extended version of the k- ɛ model is used. The code is validated by comparison with a large-scale LNG rollover experiment.

  4. Front propagation in a vortex lattice: dependence on boundary conditions and vortex depth.

    PubMed

    Beauvier, E; Bodea, S; Pocheau, A

    2016-11-04

    We experimentally address the propagation of reaction-diffusion fronts in vortex lattices by combining, in a Hele-Shaw cell and at low Reynolds number, forced electroconvective flows and an autocatalytic reaction in solution. We consider both vortex chains and vortex arrays, the former referring to mixed free/rigid boundary conditions for vortices and the latter to free boundary conditions. Varying the depth of the fluid layer, we observe no variation of the mean front velocities for vortex arrays and a noticeable variation for vortex chains. This questions the two-dimensional character of front propagation in low Reynolds number vortex lattices, as well as the mechanisms of this dependence.

  5. Application of a quasi-3D inviscid flow and boundary layer analysis to the hub-shroud contouring of a radial turbine

    NASA Technical Reports Server (NTRS)

    Civinskas, K.; Povinelli, L. A.

    1984-01-01

    Application of a quasi-3D approach to the aerodynamic analysis of several radial turbine configurations is described. The objective was to improve the rotor aerodynamic characteristics by hub-shroud contouring. The approach relies on available 2D inviscid methods coupled with boundary layer analysis to calculate profile, mixing, and endwall losses. Windage, tip clearance, incidence, and secondary flow losses are estimated from correlations. To eliminate separation along the hub and blade suction surfaces of a baseline rotor, the analysis was also applied to three alternate hub-shroud geometries. Emphasis was on elimination of an inducer velocity overshoot as well as increasing hub velocities. While separation was never eliminated, the extent of the separated area was progressively reduced. Results are presented in terms of mid-channel and blade surface velocities; kinetic energy loss coefficients; and efficiency. The calculation demonstrates a first step for a systematic approach to radial turbine design that can be used to identify and control aerodynamic characteristics that ultimately determine heat transfer and component life. Experimentation will be required to assess the extent to which flow and boundary layer behavior were predicted correctly.

  6. Application of a quasi-3D inviscid flow and boundary layer analysis to the hub-shroud contouring of a radial turbine

    NASA Technical Reports Server (NTRS)

    Civinskas, K. C.; Povinelli, L. A.

    1984-01-01

    Application of a quasi-3D approach to the aerodynamic analysis of several radial turbine configurations is described. The objective was to improve the rotor aerodynamic characteristics by hub-shroud contouring. The approach relies on available 2D inviscid methods coupled with boundary layer analysis to calculate profile, mixing, and endwall losses. Windage, tip clearance, incidence, and secondary flow losses are estimated from correlations. To eliminate separation along the hub and blade suction surfaces of a baseline rotor, the analysis was also applied to three alternate hub-shroud geometries. Emphasis was on elimination an inducer velocity overshoot as well as increasing hub velocities. While separation was never eliminated, the extent of the separated area was progressively reduced. Results are presented in terms of mid-channel and blade surface velocities; kinetic energy loss coefficients; and efficiency. The calculation demonstrates a first step for a systematic approach to radial turbine design that can be used to identify and control aerodynamic characteristics that ultimately determine heat transfer and component life. Experimentation will be required to assess the extent to which flow and boundary layer behavior were predicted correctly.

  7. Advanced laser diagnostics for diamond deposition research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kruger, C.H.; Owano, T.G.; Wahl, E.H.

    Chemical Vapor Deposition (CVD) using thermal plasmas is attractive for diamond synthesis applications due to the inherently high reactant densities and throughput, but the associated high gas-phase collision rates in the boundary layer above the substrate produce steep thermal and species gradients which can drive the complex plasma chemistry away from optimal conditions. To understand and control these environments, accurate measurements of temperature and species concentrations within the reacting boundary layer are needed. This is challenging in atmospheric pressure reactors due to the highly luminous environment, steep thermal and species gradients, and small spatial scales. The applicability of degenerate four-wavemore » mixing (DFWM) as a spectroscopic probe of atmospheric pressure reacting plasmas has been investigated. This powerful, nonlinear technique has been applied to the measurement of temperature and radical species concentrations in the boundary layer of a diamond growth substrate immersed in a flowing atmospheric pressure plasma. In-situ measurements of CH and C{sub 2} radicals have been performed to determine spatially resolved profiles of vibrational temperature, rotational temperature, and species concentration. Results of these measurements are compared with the predictions of a detailed numerical simulation.« less

  8. RACORO continental boundary layer cloud investigations. Part I: Case study development and ensemble large-scale forcings

    DOE PAGES

    Vogelmann, Andrew M.; Fridlind, Ann M.; Toto, Tami; ...

    2015-06-19

    Observation-based modeling case studies of continental boundary layer clouds have been developed to study cloudy boundary layers, aerosol influences upon them, and their representation in cloud- and global-scale models. Three 60-hour case study periods span the temporal evolution of cumulus, stratiform, and drizzling boundary layer cloud systems, representing mixed and transitional states rather than idealized or canonical cases. Based on in-situ measurements from the RACORO field campaign and remote-sensing observations, the cases are designed with a modular configuration to simplify use in large-eddy simulations (LES) and single-column models. Aircraft measurements of aerosol number size distribution are fit to lognormal functionsmore » for concise representation in models. Values of the aerosol hygroscopicity parameter, κ, are derived from observations to be ~0.10, which are lower than the 0.3 typical over continents and suggestive of a large aerosol organic fraction. Ensemble large-scale forcing datasets are derived from the ARM variational analysis, ECMWF forecasts, and a multi-scale data assimilation system. The forcings are assessed through comparison of measured bulk atmospheric and cloud properties to those computed in 'trial' large-eddy simulations, where more efficient run times are enabled through modest reductions in grid resolution and domain size compared to the full-sized LES grid. Simulations capture many of the general features observed, but the state-of-the-art forcings were limited at representing details of cloud onset, and tight gradients and high-resolution transients of importance. Methods for improving the initial conditions and forcings are discussed. The cases developed are available to the general modeling community for studying continental boundary clouds.« less

  9. RACORO Continental Boundary Layer Cloud Investigations: 1. Case Study Development and Ensemble Large-Scale Forcings

    NASA Technical Reports Server (NTRS)

    Vogelmann, Andrew M.; Fridlind, Ann M.; Toto, Tami; Endo, Satoshi; Lin, Wuyin; Wang, Jian; Feng, Sha; Zhang, Yunyan; Turner, David D.; Liu, Yangang; hide

    2015-01-01

    Observation-based modeling case studies of continental boundary layer clouds have been developed to study cloudy boundary layers, aerosol influences upon them, and their representation in cloud- and global-scale models. Three 60 h case study periods span the temporal evolution of cumulus, stratiform, and drizzling boundary layer cloud systems, representing mixed and transitional states rather than idealized or canonical cases. Based on in situ measurements from the Routine AAF (Atmospheric Radiation Measurement (ARM) Aerial Facility) CLOWD (Clouds with Low Optical Water Depth) Optical Radiative Observations (RACORO) field campaign and remote sensing observations, the cases are designed with a modular configuration to simplify use in large-eddy simulations (LES) and single-column models. Aircraft measurements of aerosol number size distribution are fit to lognormal functions for concise representation in models. Values of the aerosol hygroscopicity parameter, kappa, are derived from observations to be approximately 0.10, which are lower than the 0.3 typical over continents and suggestive of a large aerosol organic fraction. Ensemble large-scale forcing data sets are derived from the ARM variational analysis, European Centre for Medium-Range Weather Forecasts, and a multiscale data assimilation system. The forcings are assessed through comparison of measured bulk atmospheric and cloud properties to those computed in "trial" large-eddy simulations, where more efficient run times are enabled through modest reductions in grid resolution and domain size compared to the full-sized LES grid. Simulations capture many of the general features observed, but the state-of-the-art forcings were limited at representing details of cloud onset, and tight gradients and high-resolution transients of importance. Methods for improving the initial conditions and forcings are discussed. The cases developed are available to the general modeling community for studying continental boundary clouds.

  10. RACORO continental boundary layer cloud investigations: 1. Case study development and ensemble large-scale forcings

    NASA Astrophysics Data System (ADS)

    Vogelmann, Andrew M.; Fridlind, Ann M.; Toto, Tami; Endo, Satoshi; Lin, Wuyin; Wang, Jian; Feng, Sha; Zhang, Yunyan; Turner, David D.; Liu, Yangang; Li, Zhijin; Xie, Shaocheng; Ackerman, Andrew S.; Zhang, Minghua; Khairoutdinov, Marat

    2015-06-01

    Observation-based modeling case studies of continental boundary layer clouds have been developed to study cloudy boundary layers, aerosol influences upon them, and their representation in cloud- and global-scale models. Three 60 h case study periods span the temporal evolution of cumulus, stratiform, and drizzling boundary layer cloud systems, representing mixed and transitional states rather than idealized or canonical cases. Based on in situ measurements from the Routine AAF (Atmospheric Radiation Measurement (ARM) Aerial Facility) CLOWD (Clouds with Low Optical Water Depth) Optical Radiative Observations (RACORO) field campaign and remote sensing observations, the cases are designed with a modular configuration to simplify use in large-eddy simulations (LES) and single-column models. Aircraft measurements of aerosol number size distribution are fit to lognormal functions for concise representation in models. Values of the aerosol hygroscopicity parameter, κ, are derived from observations to be 0.10, which are lower than the 0.3 typical over continents and suggestive of a large aerosol organic fraction. Ensemble large-scale forcing data sets are derived from the ARM variational analysis, European Centre for Medium-Range Weather Forecasts, and a multiscale data assimilation system. The forcings are assessed through comparison of measured bulk atmospheric and cloud properties to those computed in "trial" large-eddy simulations, where more efficient run times are enabled through modest reductions in grid resolution and domain size compared to the full-sized LES grid. Simulations capture many of the general features observed, but the state-of-the-art forcings were limited at representing details of cloud onset, and tight gradients and high-resolution transients of importance. Methods for improving the initial conditions and forcings are discussed. The cases developed are available to the general modeling community for studying continental boundary clouds.

  11. A solar escalator on Mars: Self-lifting of dust layers by radiative heating

    NASA Astrophysics Data System (ADS)

    Daerden, F.; Whiteway, J. A.; Neary, L.; Komguem, L.; Lemmon, M. T.; Heavens, N. G.; Cantor, B. A.; Hébrard, E.; Smith, M. D.

    2015-09-01

    Dust layers detected in the atmosphere of Mars by the light detection and ranging (LIDAR) instrument on the Phoenix Mars mission are explained using an atmospheric general circulation model. The layers were traced back to observed dust storm activity near the edge of the north polar ice cap where simulated surface winds exceeded the threshold for dust lifting by saltation. Heating of the atmospheric dust by solar radiation caused buoyant instability and mixing across the top of the planetary boundary layer (PBL). Differential advection by wind shear created detached dust layers above the PBL that ascended due to radiative heating and arrived at the Phoenix site at heights corresponding to the LIDAR observations. The self-lifting of the dust layers is similar to the "solar escalator" mechanism for aerosol layers in the Earth's stratosphere.

  12. The seasonal cycle of the mixing layer height and its impact on black carbon concentrations in the Kathmandu Valley (Nepal)

    NASA Astrophysics Data System (ADS)

    Mues, Andrea; Rupakheti, Maheswar; Hoor, Peter; Bozem, Heiko; Münkel, Christoph; Lauer, Axel; Butler, Tim

    2016-04-01

    The properties and the vertical structure of the mixing layer as part of the planetary boundary layer are of key importance for local air quality. They have a substantial impact on the vertical dispersion of pollutants in the lower atmosphere and thus on their concentrations near the surface. In this study, ceilometer measurements taken within the framework of the SusKat project (Sustainable Atmosphere for the Kathmandu Valley) are used to investigate the mixing layer height in the Kathmandu Valley, Nepal. The applied method is based on the assumption that the aerosol concentration is nearly constant in the vertical and distinctly higher within the mixing layer than in the air above. Thus, the height with the steepest gradient within the ceilometer backscatter profile marks the top of the mixing layer. Ceilometer and black carbon (BC) measurements conducted from March 2013 through February 2014 provide a unique and important dataset for the analysis of the meteorological and air quality conditions in the Kathmandu Valley. In this study the mean diurnal cycle of the mixing layer height in the Kathmandu Valley for each season (pre-monsoon, monsoon, post-monsoon and winter season) and its dependency on the meteorological situation is investigated. In addition, the impact of the mixing layer height on the BC concentration is analyzed and compared to the relevance of other important processes such as emissions, horizontal advection and deposition. In all seasons the diurnal cycle is typically characterized by low mixing heights during the night, gradually increasing after sun rise reaching to maximum values in the afternoon before decreasing again. Seasonal differences can be seen particularly in the height of the mixing layer, e.g. from on average 153/1200 m (pre-monsoon) to 241/755 m (monsoon season) during the night/day, and the duration of enhanced mixing layer heights during daytime (around 12 hours (pre-monsoon season) to 8 hours (winter)). During the monsoon season, the observed diurnal cycle typically shows the lowest amplitude and the lowest mixing height during the day and the highest in the night and morning hours of all seasons. These characteristics can mainly be explained with frequently present clouds and the associated lack of incoming solar radiation and outgoing longwave radiation. In general there is a clear anti-correlation of the BC concentration and the mixing layer height although this relation is less pronounced in the monsoon season. The shape and magnitude of the BC diurnal cycle differs between the seasons (e.g., daily maximum concentration from around 6 to 50 μg/m3 depending on the season). This is partly due to the different meteorological conditions including the mixing layer height but also caused by the different (seasonal and diurnal) time profiles of the main emission sources. From late December to April, for instance, brick kilns are major emitters of black carbon. The brick kilns emit continuously throughout the day whereas in the other months sources with more pronounced diurnal cycles, such as traffic and cooking activities, are dominating the total emissions.

  13. Control of a shock wave-boundary layer interaction using localized arc filament plasma actuators

    NASA Astrophysics Data System (ADS)

    Webb, Nathan Joseph

    Supersonic flight is currently possible, but expensive. Inexpensive supersonic travel will require increased efficiency of high-speed air entrainment, an integral part of air-breathing propulsion systems. Although mixed compression inlet geometry can significantly improve entrainment efficiency, numerous Shock Wave-Boundary Layer Interactions (SWBLIs) are generated in this configuration. The boundary layer must therefore develop through multiple regions of adverse pressure gradient, causing it to thicken, and, in severe cases, separate. The associated increase in unsteadiness can have adverse effects on downstream engine hardware. The most severe consequence of these interactions is the increased aerodynamic blockage generated by the thickened boundary layer. If the increase is sufficient, it can choke the flow, causing inlet unstart, and resulting in a loss of thrust and high transient forces on the engine, airframe, and aircraft occupants. The potentially severe consequences associated with SWBLIs require flow control to ensure proper operation. Traditionally, boundary layer bleed has been used to control the interaction. Although this method is effective, it has inherent efficiency penalties. Localized Arc Filament Plasma Actuators (LAFPAs) are designed to generate perturbations for flow control. Natural flow instabilities act to amplify certain perturbations, allowing the LAFPAs to control the flow with minimal power input. LAFPAs also have the flexibility to maintain control over a variety of operating conditions. This work seeks to examine the effectiveness of LAFPAs as a separation control method for an oblique, impinging SWBLI. The low frequency unsteadiness in the reflected shock was thought to be the natural manifestation of a Kelvin-Helmholtz instability in the shear layer above the separation region. The LAFPAs were therefore placed upstream of the interaction to allow their perturbations to convect to the receptivity region (near the shear layer origin/separation line). Streamwise PIV measurements did not show that the boundary layer or separation region were energized by the actuation. The primary effect of the LAFPAs was the displacement of the reflected shock upstream. Jaunet et al. (2012) observed a similar shift in the reflected shock when they heated the wall beneath the boundary layer. A significantly greater power deposition was used in that work, and significantly larger shock displacements were observed. Although the LAFPAs output significantly less power (albeit in an unsteady, highly localized fashion), a parametric sweep strongly pointed to heating as the primary control mechanism. Further investigation and analysis showed that the near-wall heating of the flow by the plasma was the primary control mechanism of the LAFPAs, despite the small power input. The reflected shock was displaced by an increase in the separation region size, which was caused by the degradation of the upstream boundary layer. The LAFPAs degrade the upstream boundary layer through a variety of heating associated mechanisms: 1) Decreasing the density increases the mass flow deficit, 2) The altered skin-friction coefficient acts to retard the flow and make the velocity profile less full, and 3) The heating moves the sonic line further from the wall. Other mechanisms may also play a role.

  14. Three-dimensional turbulent boundary layers; Proceedings of the Symposium, Berlin, West Germany, March 29-April 1, 1982

    NASA Astrophysics Data System (ADS)

    Fernholz, H. H.; Krause, E.

    Papers are presented on recent research concerning three-dimensional turbulent boundary layers. Topics examined include experimental techniques in three-dimensional turbulent boundary layers, turbulence measurements in ship-model flow, measurements of Reynolds-stress profiles in the stern region of a ship model, the effects of crossflow on the vortex-layer-type three-dimensional flow separation, and wind tunnel investigations of some three-dimensional separated turbulent boundary layers. Also examined are three-dimensional boundary layers in turbomachines, the boundary layers on bodies of revolution spinning in axial flows, the effect on a developed turbulent boundary layer of a sudden local wall motion, three-dimensional turbulent boundary layer along a concave wall, the numerical computation of three-dimensional boundary layers, a numerical study of corner flows, three-dimensional boundary calculations in design aerodynamics, and turbulent boundary-layer calculations in design aerodynamics. For individual items see A83-47012 to A83-47036

  15. Evaluation of Full Reynolds Stress Turbulence Models in FUN3D

    NASA Technical Reports Server (NTRS)

    Dudek, Julianne C.; Carlson, Jan-Renee

    2017-01-01

    Full seven-equation Reynolds stress turbulence models are a relatively new and promising tool for todays aerospace technology challenges. This paper uses two stress-omega full Reynolds stress models to evaluate challenging flows including shock-wave boundary layer interactions, separation and mixing layers. The Wilcox and the SSGLRR full second-moment Reynolds stress models are evaluated for four problems: a transonic two-dimensional diffuser, a supersonic axisymmetric compression corner, a compressible planar shear layer, and a subsonic axisymmetric jet. Simulation results are compared with experimental data and results using the more commonly used Spalart-Allmaras (SA) one-equation and the Menter Shear Stress Transport (SST) two-equation models.

  16. Intercomparison of cloud model simulations of Arctic mixed-phase boundary layer clouds observed during SHEBA/FIRE-ACE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morrison, H.; Zuidema, Paquita; Ackerman, Andrew

    2011-06-16

    An intercomparison of six cloud-resolving and large-eddy simulation models is presented. This case study is based on observations of a persistent mixed-phase boundary layer cloud gathered on 7 May, 1998 from the Surface Heat Budget of Arctic Ocean (SHEBA) and First ISCCP Regional Experiment - Arctic Cloud Experiment (FIRE-ACE). Ice nucleation is constrained in the simulations in a way that holds the ice crystal concentration approximately fixed, with two sets of sensitivity runs in addition to the baseline simulations utilizing different specified ice nucleus (IN) concentrations. All of the baseline and sensitivity simulations group into two distinct quasi-steady states associatedmore » with either persistent mixed-phase clouds or all-ice clouds after the first few hours of integration, implying the existence of multiple equilibria. These two states are associated with distinctly different microphysical, thermodynamic, and radiative characteristics. Most but not all of the models produce a persistent mixed-phase cloud qualitatively similar to observations using the baseline IN/crystal concentration, while small increases in the IN/crystal concentration generally lead to rapid glaciation and conversion to the all-ice state. Budget analysis indicates that larger ice deposition rates associated with increased IN/crystal concentrations have a limited direct impact on dissipation of liquid in these simulations. However, the impact of increased ice deposition is greatly enhanced by several interaction pathways that lead to an increased surface precipitation flux, weaker cloud top radiative cooling and cloud dynamics, and reduced vertical mixing, promoting rapid glaciation of the mixed-phase cloud for deposition rates in the cloud layer greater than about 1-2x10-5 g kg-1 s-1. These results indicate the critical importance of precipitation-radiative-dynamical interactions in simulating cloud phase, which have been neglected in previous fixed-dynamical parcel studies of the cloud phase parameter space. Large sensitivity to the IN/crystal concentration also suggests the need for improved understanding of ice nucleation and its parameterization in models.« less

  17. Sedimentary record of sub-glacial outburst floods at Laurentian Fan

    NASA Astrophysics Data System (ADS)

    Leng, Wei; von Dobeneck, Tilo

    2016-04-01

    Large-scale glacial meltwater discharge could be widely recognized off the eastern Canadian continental margin. At Laurentian Fan, sub-glacial outburst floods eroded Permian-Carboniferous redbeds at Gulf of St. Lawrence and then delivered the reddish sediments by Laurentian Channel. Sedimentary record from four gravity cores (GeoB18514-2, 18515-1, 18516-2 and 18517-1) at the SW slope of the Grand Banks of Newfoundland revealed the major depositional processes since Heinrich event 2 (ca. 22 ka). In the cores, the upper thick Holocene olive-grey silty mud units overly IRD-rich Heinrich 1 layer, five reddish units are distinguished in the lower part. Reddish units get proportionally thinner along the SW slope at higher and more distal positions; instead, separating olive-grey layers get thicker with height and distance. Reddish and olive grey units have sharp boundaries and no signs of erosion. Mean grain size changes abruptly from coarse in grey layers to fine in reddish layers, terrigenous elements (as Al, K, Ti, Fe) and clays (Al/Si) are highly elevated in reddish layers and low in Heinrich layers, which are instead enriched in detrital continental carbonates. Both Heinrich layers and reddish layers have enhanced magnetic susceptibility, but Heinrich layer have higher ferromagnetic (SIRM) content (mafic rocks), while reddish layers have more hematite (HIRM). These five reddish layers differ from event to event, which seems to reflect different mixing ratios of event-related and background sedimentation. This mixing will allow estimating event-specific sedimentation rates. Using mixing ratio combined with 14C dating data could contribute to estimate the sedimentation rate and duration of outburst floods, which could help to build ice sheet retreat history and find the connection with paleoclimate changes.

  18. Experimental investigations of on-demand vortex generators

    NASA Astrophysics Data System (ADS)

    Saddoughi, Seyed G.

    1994-12-01

    Conventional vortex generators as found on many civil aircrafts are mainly for off-design conditions - e.g. suppression of separation or loss of aileron power when the Mach number accidentally rises above the design (cruise) value. In normal conditions they perform no useful function and exert a significant drag penalty. Recently there have been advances in new designs for passive vortex generators and boundary layer control. While traditionally the generators heights were of the order of the boundary layer thickness (delta), recent advances have been made where generators of the order of delta/4 have been shown to be effective. The advancement of MIcro-Electro-Mechanical (MEM) devices has prompted several efforts in exploring the possibility of using such devices in turbulence control. These new devices offer the possibility of boundary layer manipulation through the production of vortices, momentum jets, or other features in the flow. However, the energy output of each device is low in general, but they can be used in large numbers. Therefore, the possibility of moving from passive vortex generators to active (on-demand) devices becomes of interest. Replacement of fixed rectangular or delta-wing generators by devices that could be activated when needed would produce substantial economies. Our proposed application is not strictly 'active' control: the vortex generators would simply be switched on, all together, when needed (e.g. when the aircraft Mach number exceeded a certain limit). To this extent our scheme is simpler; however, to promote mixing and suppress separation we desire to deposit longitudinal vortices into the outer layer of the boundary layer as in conventional vortex generators. This requires a larger device although an alternative might be an array of smaller devices, for example, a longitudinal row with phase differences in the modulation signals so that the periodic vortices join up. The vortex pair with common flow up has the advantage that it will naturally drift away from the surface, but the disadvantage is that the net vorticity is zero so that the pair is eventually obliterated by turbulent mixing, rather than simply being diffused as in the case of a single vortex. It should be possible to devise alternative shapes of cavity wall so that the jet emerges obliquely and produces net longitudinal vorticity.

  19. Experimental investigations of on-demand vortex generators

    NASA Technical Reports Server (NTRS)

    Saddoughi, Seyed G.

    1994-01-01

    Conventional vortex generators as found on many civil aircrafts are mainly for off-design conditions - e.g. suppression of separation or loss of aileron power when the Mach number accidentally rises above the design (cruise) value. In normal conditions they perform no useful function and exert a significant drag penalty. Recently there have been advances in new designs for passive vortex generators and boundary layer control. While traditionally the generators heights were of the order of the boundary layer thickness (delta), recent advances have been made where generators of the order of delta/4 have been shown to be effective. The advancement of MIcro-Electro-Mechanical (MEM) devices has prompted several efforts in exploring the possibility of using such devices in turbulence control. These new devices offer the possibility of boundary layer manipulation through the production of vortices, momentum jets, or other features in the flow. However, the energy output of each device is low in general, but they can be used in large numbers. Therefore, the possibility of moving from passive vortex generators to active (on-demand) devices becomes of interest. Replacement of fixed rectangular or delta-wing generators by devices that could be activated when needed would produce substantial economies. Our proposed application is not strictly 'active' control: the vortex generators would simply be switched on, all together, when needed (e.g. when the aircraft Mach number exceeded a certain limit). To this extent our scheme is simpler; however, to promote mixing and suppress separation we desire to deposit longitudinal vortices into the outer layer of the boundary layer as in conventional vortex generators. This requires a larger device although an alternative might be an array of smaller devices, for example, a longitudinal row with phase differences in the modulation signals so that the periodic vortices join up. The vortex pair with common flow up has the advantage that it will naturally drift away from the surface, but the disadvantage is that the net vorticity is zero so that the pair is eventually obliterated by turbulent mixing, rather than simply being diffused as in the case of a single vortex. It should be possible to devise alternative shapes of cavity wall so that the jet emerges obliquely and produces net longitudinal vorticity.

  20. A second-order bulk boundary-layer model

    NASA Technical Reports Server (NTRS)

    Randall, David A.; Shao, Qingqiu; Moeng, Chin-Hoh

    1992-01-01

    Bulk mass-flux models represent the large eddies that are primarily responsible for the turbulent fluxes in the planetary boundary layer as convective circulations, with an associated convective mass flux. In order for such models to be useful, it is necessary to determine the fractional area covered by rising motion in the convective circulations. This fraction can be used as an estimate of the cloud amount, under certain conditions. 'Matching' conditions have been developed that relate the convective mass flux to the ventilation and entrainment mass fluxes. These are based on conservation equations for the scalar means and variances in the entrainment and ventilation layers. Methods are presented to determine both the fractional area covered by rising motion and the convective mass flux. The requirement of variance balance is used to relax the 'well-mixed' assumption. The vertical structures of the mean state and the turbulent fluxes are determined analytically. Several aspects of this simple model's formulation are evaluated using results from large-eddy simulations.

  1. Airborne Lidar Measurements of Pollution above the Oil Sands Region in Northern Alberta

    NASA Astrophysics Data System (ADS)

    Aggarwal, Monika; Whiteway, James; Seabrook, Jeffrey; Gray, Lawrence; Strawbridge, Kevin B.

    2016-06-01

    Lidar measurements of ozone and aerosol were conducted from a Twin Otter aircraft above the oil sands region of northern Alberta. For the majority of the flights, significant amounts of aerosol were observed within the boundary layer, up to an altitude of 2.0 km above sea level (ASL), while the ozone concentration remained at background levels (30-45 ppb) downwind of the industry. On August 24th the lidar measured a separated layer of aerosol above the boundary layer, at a height of 2.0 km ASL, in which the ozone mixing ratio increased to 70 ppb. Backward trajectory calculations revealed that the air containing this separated aerosol layer had passed over an area of forest fires. Directly below the layer of forest fire smoke, pollution from the oil sands industry was observed. Measurements of the backscatter linear depolarization ratio were obtained with a ground based lidar operated by Environment Canada within the oil sands region. The depolarization measurements aided in discriminating between the separate sources of pollution from industry and forest fires. The depolarization ratio was 5-6% in forest fire smoke and 7-10% in the industrial pollution.

  2. Reprint of: A numerical investigation of fine sediment resuspension in the wave boundary layer-Uncertainties in particle inertia and hindered settling

    NASA Astrophysics Data System (ADS)

    Cheng, Zhen; Yu, Xiao; Hsu, Tian-Jian; Balachandar, S.

    2016-05-01

    The wave bottom boundary layer is a major conduit delivering fine terrestrial sediments to continental margins. Hence, studying fine sediment resuspensions in the wave boundary layer is crucial to the understanding of various components of the earth system, such as carbon cycles. By assuming the settling velocity to be a constant in each simulation, previous turbulence-resolving numerical simulations reveal the existence of three transport modes in the wave boundary layer associated with sediment availabilities. As the sediment availability and hence the sediment-induced stable stratification increases, a sequence of transport modes, namely, (I) well-mixed transport, (II) formulation of lutocline resembling a two-layer system, and (III) completely laminarized transport are observed. In general, the settling velocity is a flow variable due to hindered settling and particle inertia effects. Present numerical simulations including the particle inertia suggest that for a typical wave condition in continental shelves, the effect of particle inertia is negligible. Through additional numerical experiments, we also confirm that the particle inertia tends (up to the Stokes number St = 0.2) to attenuate flow turbulence. On the other hand, for flocs with lower gelling concentrations, the hindered settling can play a key role in sustaining a large amount of suspended sediments and results in the laminarized transport (III). For the simulation with a very significant hindered settling effect due to a low gelling concentration, results also indicate the occurrence of gelling ignition, a state in which the erosion rate is always higher than the deposition rate. A sufficient condition for the occurrence of gelling ignition is hypothesized for a range of wave intensities as a function of sediment/floc properties and erodibility parameters.

  3. Observations of the Nocturnal Boundary Layer and Morning Transitional Periods in Houston, Texas during the TexAQS II Campaign

    NASA Astrophysics Data System (ADS)

    Day, B. M.; Clements, C. B.; Rappenglueck, B.

    2007-12-01

    High-temporal resolution tethersonde profiles taken during the TexAQS II field campaign in Houston were used to study the overnight development and progression of the nocturnal boundary layer (NBL) and the evolution of the convective boundary layer after sunrise. The measurements were made at the University of Houston campus, located approximately 4 km southeast of the downtown Houston central business district, and consisted of vertical profiles of potential temperature, water vapor mixing ratio, wind speed, wind direction, and ozone concentration. Profile heights averaged 250 m AGL with a few reaching 400 m AGL. Profiles were taken at approximately 30 min intervals throughout 4 nights during Intensive Observational Periods (IOPs), including both the evening and morning transitional periods. Tethersonde experiments also were performed during several additional morning break-up periods during the campaign. Preliminary results from the overnight experiments of Sept 7-8 and Sept 14-15, 2006 showed different NBL evolutions. Sept 7-8 exhibited a stronger and deeper inversion compared with Sept 14-15 when the inversion was weak with a fairly constant height throughout the night. The Sept 7-8 profiles showed elevated bluff-like structures in the virtual potential temperature profiles between 0300-0400 CDT, indicating neutral stability within the 40-90 m AGL level. And, just before sunrise a neutral layer with constant potential temperature developed between the surface and 75 m AGL reflecting horizontal cold air advection. Further analyses will be presented for other vertical profiles taken during the campaign, including the additional overnight profiles as well as the profiles taken during the morning transition to the convective boundary layer.

  4. Evaluation of the Atmospheric Boundary-Layer Electrical Variability

    NASA Astrophysics Data System (ADS)

    Anisimov, Sergey V.; Galichenko, Sergey V.; Aphinogenov, Konstantin V.; Prokhorchuk, Aleksandr A.

    2017-12-01

    Due to the chaotic motion of charged particles carried by turbulent eddies, electrical quantities in the atmospheric boundary layer (ABL) have short-term variability superimposed on long-term variability caused by sources from regional to global scales. In this study the influence of radon exhalation rate, aerosol distribution and turbulent transport efficiency on the variability of fair-weather atmospheric electricity is investigated via Lagrangian stochastic modelling. For the mid-latitude lower atmosphere undisturbed by precipitation, electrified clouds, or thunderstorms, the model is capable of reproducing the diurnal variation in atmospheric electrical parameters detected by ground-based measurements. Based on the analysis of field observations and numerical simulation it is found that the development of the convective boundary layer, accompanied by an increase in turbulent kinetic energy, forms the vertical distribution of radon and its decaying short-lived daughters to be approximately coincident with the barometric law for several eddy turnover times. In the daytime ABL the vertical distribution of atmospheric electrical conductivity tends to be uniform except within the surface layer, due to convective mixing of radon and its radioactive decay products. At the same time, a decrease in the conductivity near the ground is usually observed. This effect leads to an enhanced ground-level atmospheric electric field compared to that normally observed in the nocturnal stably-stratified boundary layer. The simulation showed that the variability of atmospheric electric field in the ABL associated with internal origins is significant in comparison to the variability related to changes in global parameters. It is suggested that vertical profiles of electrical quantities can serve as informative parameters on ABL turbulent dynamics and can even more broadly characterize the state of the environment.

  5. Influence of an urban canopy model and PBL schemes on vertical mixing for air quality modeling over Greater Paris

    NASA Astrophysics Data System (ADS)

    Kim, Youngseob; Sartelet, Karine; Raut, Jean-Christophe; Chazette, Patrick

    2015-04-01

    Impacts of meteorological modeling in the planetary boundary layer (PBL) and urban canopy model (UCM) on the vertical mixing of pollutants are studied. Concentrations of gaseous chemical species, including ozone (O3) and nitrogen dioxide (NO2), and particulate matter over Paris and the near suburbs are simulated using the 3-dimensional chemistry-transport model Polair3D of the Polyphemus platform. Simulated concentrations of O3, NO2 and PM10/PM2.5 (particulate matter of aerodynamic diameter lower than 10 μm/2.5 μm, respectively) are first evaluated using ground measurements. Higher surface concentrations are obtained for PM10, PM2.5 and NO2 with the MYNN PBL scheme than the YSU PBL scheme because of lower PBL heights in the MYNN scheme. Differences between simulations using different PBL schemes are lower than differences between simulations with and without the UCM and the Corine land-use over urban areas. Regarding the root mean square error, the simulations using the UCM and the Corine land-use tend to perform better than the simulations without it. At urban stations, the PM10 and PM2.5 concentrations are over-estimated and the over-estimation is reduced using the UCM and the Corine land-use. The ability of the model to reproduce vertical mixing is evaluated using NO2 measurement data at the upper air observation station of the Eiffel Tower, and measurement data at a ground station near the Eiffel Tower. Although NO2 is under-estimated in all simulations, vertical mixing is greatly improved when using the UCM and the Corine land-use. Comparisons of the modeled PM10 vertical distributions to distributions deduced from surface and mobile lidar measurements are performed. The use of the UCM and the Corine land-use is crucial to accurately model PM10 concentrations during nighttime in the center of Paris. In the nocturnal stable boundary layer, PM10 is relatively well modeled, although it is over-estimated on 24 May and under-estimated on 25 May. However, PM10 is under-estimated on both days in the residual layer, and over-estimated on both days over the residual layer. The under-estimations in the residual layer are partly due to difficulties to estimate the PBL height, to an over-estimation of vertical mixing during nighttime at high altitudes and to uncertainties in PM10 emissions. The PBL schemes and the UCM influence the PM vertical distributions not only because they influence vertical mixing (PBL height and eddy-diffusion coefficient), but also horizontal wind fields and humidity. However, for the UCM, it is the influence on vertical mixing that impacts the most the PM10 vertical distribution below 1.5 km.

  6. Investigation of feasibility of wind turbulence measurement by a pulsed coherent doppler lidar in the atmospheric boundary layer

    NASA Astrophysics Data System (ADS)

    Smalikho, Igor; Banakh, Viktor

    2018-04-01

    Feasibilities of determination of the wind turbulence parameters from data measured by the Stream Line coherent Doppler lidar under different atmospheric conditions have been studied experimentally. It has been found that the spatial structure of the turbulence is described well by the von Karman model in the layer of intensive mixing. From the lidar measurements at night under stable conditions the estimation of the outer scale of turbulence with the use of the von Karman model is not possible.

  7. Factors Controlling the Distribution of Atmospheric Mercury in the East Asian Free Troposphere

    NASA Astrophysics Data System (ADS)

    Sheu, G.; Lee, C.; Lin, N.; Wang, J.; Ouyang, C.

    2008-12-01

    Taiwan is located to the downwind side of both East and Southeast Asia, which are the major anthropogenic mercury (Hg) source region worldwide. Also, it has been suggested that mountain-top monitoring sites, which are frequently in the free troposphere, are essential to the understanding of the global Hg transport. Accordingly, continuous measurements of atmospheric Hg have been conducting at Lulin Atmospheric Background Station (LABS, 2862 m a.s.l.) in Taiwan since April 13, 2006 to study the trans-boundary transport and transformation of Hg in the free troposphere. Three types of atmospheric Hg, including gaseous elemental Hg (GEM), reactive gaseous Hg (RGM), and particulate Hg (PHg), are measured using the Tekran 2537A/1130/1135 speciation system. Diurnal variations in the concentrations of GEM, RGM, ozone, and water vapor (WV) mixing ratio indicated the influence of boundary layer air in daytime and the subsidence of free tropospheric air masses from higher altitudes at night. Seasonal variation in GEM concentrations was evident with elevated concentrations usually observed between fall and spring when air masses were more or less under the influence of Asian continent. Low summer GEM values were associated with marine air masses. Spikes of RGM were frequently detected between midnight and early morning with concurrent decreases in GEM and WV mixing ratio and increases in ozone concentrations, suggesting the oxidation of GEM and formation of RGM in free troposphere. Concentrations of PHg were usually low; however, elevated concentrations were detected in spring when the Southeast Asian biomass burning plumes affected the LABS. Analysis of the collected data indicate that at LABS the distribution of atmospheric Hg is dynamically controlled by background atmosphere, exchange and mixing of free troposphere/boundary layer air, chemical transformation, and long-range transport from East and Southeast Asia.

  8. LIDAR measurements of Arctic boundary layer ozone depletion events over the frozen Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Seabrook, J. A.; Whiteway, J.; Staebler, R. M.; Bottenheim, J. W.; Komguem, L.; Gray, L. H.; Barber, D.; Asplin, M.

    2011-09-01

    A differential absorption light detection and ranging instrument (Differential Absorption LIDAR or DIAL) was installed on-board the Canadian Coast Guard Ship Amundsen and operated during the winter and spring of 2008. During this period the vessel was stationed in the Amundsen Gulf (71°N, 121-124°W), approximately 10-40 km off the south coast of Banks Island. The LIDAR was operated to obtain a continuous record of the vertical profile of ozone concentration in the lower atmosphere over the sea ice during the polar sunrise. The observations included several ozone depletion events (ODE's) within the atmospheric boundary layer. The strongest ODEs consisted of air with ozone mixing ratio less than 10 ppbv up to heights varying from 200 m to 600 m, and the increase to the background mixing ratio of about 35-40 ppbv occurred within about 200 m in the overlying air. All of the observed ODEs were connected to the ice surface. Back trajectory calculations indicated that the ODEs only occurred in air that had spent an extended period of time below a height of 500 m above the sea ice. Also, all the ODEs occurred in air with temperature below -25°C. Air not depleted in ozone was found to be associated with warmer air originating from above the surface layer.

  9. Acoustic sounding in the planetary boundary layer

    NASA Technical Reports Server (NTRS)

    Kelly, E. H.

    1974-01-01

    Three case studies are presented involving data from an acoustic radar. The first two cases examine data collected during the passage of a mesoscale cold-air intrusion, probably thunderstorm outflow, and a synoptic-scale cold front. In these studies the radar data are compared to conventional meteorological data obtained from the WKY tower facility for the purpose of radar data interpretation. It is shown that the acoustic radar echoes reveal the boundary between warm and cold air and other areas of turbulent mixing, regions of strong vertical temperature gradients, and areas of weak or no wind shear. The third case study examines the relationship between the nocturnal radiation inversion and the low-level wind maximum or jet in the light of conclusions presented by Blackadar (1957). The low-level jet is seen forming well above the top of the inversion. Sudden rapid growth of the inversion occurs which brings the top of the inversion to a height equal that of the jet. Coincident with the rapid growth of the inversion is a sudden decrease in the intensity of the acoustic radar echoes in the inversion layer. It is suggested that the decrease in echo intensity reveals a decrease in turbulent mixing in the inversion layer as predicted by Blackadar. It is concluded that the acoustic radar can be a valuable tool for study in the lower atmosphere.

  10. Convective boundary layer heights over mountainous terrain - A review of concepts -

    NASA Astrophysics Data System (ADS)

    De Wekker, Stephan; Kossmann, Meinolf

    2015-12-01

    Mountainous terrain exerts an important influence on the Earth's atmosphere and affects atmospheric transport and mixing at a wide range of temporal and spatial scales. The vertical scale of this transport and mixing is determined by the height of the atmospheric boundary layer, which is therefore an important parameter in air pollution studies, weather forecasting, climate modeling, and many other applications. It is recognized that the spatio-temporal structure of the daytime convective boundary layer (CBL) height is strongly modified and more complex in hilly and mountainous terrain compared to flat terrain. While the CBL over flat terrain is mostly dominated by turbulent convection, advection from multi-scale thermally driven flows plays an important role for the CBL evolution over mountainous terrain. However, detailed observations of the CBL structure and understanding of the underlying processes are still limited. Characteristics of CBL heights in mountainous terrain are reviewed for dry, convective conditions. CBLs in valleys and basins, where hazardous accumulation of pollutants is of particular concern, are relatively well-understood compared to CBLs over slopes, ridges, or mountain peaks. Interests in the initiation of shallow and deep convection, and of budgets and long-range transport of air pollutants and trace gases, have triggered some recent studies on terrain induced exchange processes between the CBL and the overlying atmosphere. These studies have helped to gain more insight into CBL structure over complex mountainous terrain, but also show that the universal definition of CBL height over mountains remains an unresolved issue. The review summarizes the progress that has been made in documenting and understanding spatio-temporal behavior of CBL heights in mountainous terrain and concludes with a discussion of open research questions and opportunities for future research.

  11. Combined and isolated effects of pCO2 and soil water content on carbon isotope discrimination during C3 photosynthesis

    NASA Astrophysics Data System (ADS)

    Salmon, O. E.; Welp, L.; Shepson, P. B.; Stirm, B. H.

    2016-12-01

    Water vapor is responsible for over half of the natural atmospheric greenhouse effect. As global temperatures increase due to fossil fuel combustion, atmospheric water vapor concentrations are also expected to increase in positive feedback. Additionally, studies have shown that urban areas can influence humidity levels, and the frequency and intensity of precipitation events. It is thus important to understand anthropogenic modification of the hydrological cycle, particularly around urban areas, where over half of the world's population resides. Airborne measurements of water vapor isotopologues containing 2H and 18O were conducted to better understand processes influencing atmospheric moisture levels around urban areas. Airborne measurements were conducted around the Indianapolis and Washington, D.C.-Baltimore areas during afternoon hours in February and March 2016, using a Los Gatos Research Water Vapor Isotope Analyzer installed in Purdue University's experimental aircraft, the Airborne Laboratory for Atmospheric Research. The measurements of 2H and 18O allow for the calculation of deuterium excess (= δ2H - 8*δ18O), which provides information about non-equilibrium processes, such as kinetic effects, air parcel mixing, and transpiration. There are few studies that have reported observations of deuterium excess above the surface level ( 100 m). During the measurement campaign, vertical profiles were frequently conducted from 300 m above the ground to an altitude of approximately 1.5 km, effectively characterizing water vapor isotope profiles spanning the boundary layer and lower free troposphere. Measurements probed the transition from planetary boundary layer air to free troposphere air to provide high resolution deuterium excess information across this interface. Processes such as Rayleigh distillation, atmospheric mixing, and surface fluxes potentially impacting water vapor deuterium excess through the boundary layer and free troposphere with be discussed.

  12. Near-bottom energy cascade from subinertial flows to ocean mixing in the northeastern South China Sea

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Liu, Z.; Zhao, Y.; Wang, W.; Li, J.; Xu, J.

    2013-12-01

    The motions with different scales in the bottom boundary layer are potentially important in controlling the water mass transportation. Many physical processes are involved in transferring energy from mesoscale to small-scale motions. Recent studies suggest that subinertial flows should be taken into account in the parameterization of deep-ocean mixing besides topography and tidal forcing. Here, we present the current velocity data obtained from 2 moored downward-looking ADCPs (Acoustic Doppler Current Profiler) and 1 RCM (Recording Current Meter) moored near the bottom boundary layer at a water depth of about 2000 m in the northeastern South China Sea from 2012 to 2013. Specifically, they include an ADCP 1200 kHz deployed at 30 m, an ADCP 300 kHz deployed at 110 m, and a RCM deployed at 40 m above the seafloor. Subinertial flows were calculated from the moored current velocity data by low-pass filtering with a cutoff frequency of 0.3 cycles per day (the local inertial period is about 35 hours). The horizontal subinertial flows were quite strong with average values of 2-5 cm/s. The strong downward vertical velocity with average values of 1-2 cm/s was observed during times of weak subinertial flows. The vertical propagation during both the times of weak and strong subinertial flows can also be shown by vector spectra of horizontal near-inertial current velocity. Turbulent kinetic energy production rate estimated indirectly with the variances of ADCP velocities will be compared with the subinertial kinetic energy to detect the processes of energy cascade from mesoscale motions to small-scale oscillations. The results presented in this study can provide an observational evidence for such energy cascade near the bottom boundary layer in the deep South China Sea.

  13. Airborne Observations of Water Vapor Deuterium Excess in the Mid-Latitude Lower Troposphere

    NASA Astrophysics Data System (ADS)

    Salmon, O. E.; Welp, L.; Shepson, P. B.; Stirm, B. H.

    2017-12-01

    Water vapor is responsible for over half of the natural atmospheric greenhouse effect. As global temperatures increase due to fossil fuel combustion, atmospheric water vapor concentrations are also expected to increase in positive feedback. Additionally, studies have shown that urban areas can influence humidity levels, and the frequency and intensity of precipitation events. It is thus important to understand anthropogenic modification of the hydrological cycle, particularly around urban areas, where over half of the world's population resides. Airborne measurements of water vapor isotopologues containing 2H and 18O were conducted to better understand processes influencing atmospheric moisture levels around urban areas. Airborne measurements were conducted around the Indianapolis and Washington, D.C.-Baltimore areas during afternoon hours in February and March 2016, using a Los Gatos Research Water Vapor Isotope Analyzer installed in Purdue University's experimental aircraft, the Airborne Laboratory for Atmospheric Research. The measurements of 2H and 18O allow for the calculation of deuterium excess (= δ2H - 8*δ18O), which provides information about non-equilibrium processes, such as kinetic effects, air parcel mixing, and transpiration. There are few studies that have reported observations of deuterium excess above the surface level ( 100 m). During the measurement campaign, vertical profiles were frequently conducted from 300 m above the ground to an altitude of approximately 1.5 km, effectively characterizing water vapor isotope profiles spanning the boundary layer and lower free troposphere. Measurements probed the transition from planetary boundary layer air to free troposphere air to provide high resolution deuterium excess information across this interface. Processes such as Rayleigh distillation, atmospheric mixing, and surface fluxes potentially impacting water vapor deuterium excess through the boundary layer and free troposphere with be discussed.

  14. Addressing Common Cloud-Radiation Errors from 4-hour to 4-week Model Prediction

    NASA Astrophysics Data System (ADS)

    Benjamin, S.; Sun, S.; Grell, G. A.; Green, B.; Olson, J.; Kenyon, J.; James, E.; Smirnova, T. G.; Brown, J. M.

    2017-12-01

    Cloud-radiation representation in models for subgrid-scale clouds is a known gap from subseasonal-to-seasonal models down to storm-scale models applied for forecast duration of only a few hours. NOAA/ESRL has been applying common physical parameterizations for scale-aware deep/shallow convection and boundary-layer mixing over this wide range of time and spatial scales, with some progress to be reported in this presentation. The Grell-Freitas scheme (2014, Atmos. Chem. Phys.) and MYNN boundary-layer EDMF scheme (Olson / Benjamin et al. 2016 Mon. Wea. Rev.) have been applied and tested extensively for the NOAA hourly updated 3-km High-Resolution Rapid Refresh (HRRR) and 13-km Rapid Refresh (RAP) model/assimilation systems over the United States and North America, with targeting toward improvement to boundary-layer evolution and cloud-radiation representation in all seasons. This representation is critical for both warm-season severe convective storm forecasting and for winter-storm prediction of snow and mixed precipitation. At the same time the Grell-Freitas scheme has been applied also as an option for subseasonal forecasting toward improved US week 3-4 prediction with the FIM-HYCOM coupled model (Green et al 2017, MWR). Cloud/radiation evaluation using CERES satellite-based estimates have been applied to both 12-h RAP (13km) and also during Weeks 1-4 from 32-day FIM-HYCOM (60km) forecasts. Initial results reveal that improved cloud representation is needed for both resolutions and now is guiding further refinement for cloud representation including with the Grell-Freitas scheme and with the updated MYNN-EDMF scheme (both now also in global testing as well as with the 3km HRRR and 13km RAP models).

  15. Wildfire smoke transport and impact on air quality observed by a mullti-wavelength elastic-raman lidar and ceilometer in New York city

    NASA Astrophysics Data System (ADS)

    Wu, Yonghua; Peña, Wilson; Gross, Barry.; Moshary, Fred

    2018-04-01

    The intense wildfires from the western Canada in May 2016 injected large amount of smoke into the atmosphere. This paper presents integrated observation of the event by a lidar, ceilometer, and satellite together with models and an assessment of smoke plume impacts on local air quality in New York City (NYC) area. A dense aloft plume on May 20 and a boundary layer plume on May 25 are analyzed. The smoke mixing into planetary-boundary-layer (PBL) and strong diurnal variation of PBL-top are shown. For the 2ndcase, the ground PM2.5 measurements show a significant increase in both the urban and upwind non-urban areas of NYC. The smoke sources and transport paths are further verified by the satellite observations and HYSPLIT model data.

  16. Entrainment and Optical Properties of an Elevated Forest Fire Plume Transported into the Planetary Boundary Layer near Washington, D.C.

    NASA Technical Reports Server (NTRS)

    Colarco, P. R.; Schoeberl, M. R.; Marufu, L. T.; Torres, O.; Welton, E. J.; Doddridge, B. G.

    2003-01-01

    Smoke and pollutants from Canadian forest fires were transported over the northeastern United States in July 2002. Lidar observations at the NASA Goddard Space Flight Center show the smoke from these fires arriving in an elevated plume that was subsequently transported to the surface. Trajectory and three-dimensional model calculations confirm the origin of the smoke and show that it mixed to the surface after it was intercepted by the turbulent planetary boundary layer. Modeled smoke optical properties agreed well with aircraft and remote sensing observations provided coagulation of smoke particles was accounted for in the model. Our results have important implications for the long-range transport of pollutants and their subsequent entrainment to the surface, as well as the evolving optical properties of smoke from boreal forest fires.

  17. Mixed convection-radiation interaction in boundary-layer flow over horizontal surfaces

    NASA Astrophysics Data System (ADS)

    Ibrahim, F. S.; Hady, F. M.

    1990-06-01

    The effect of buoyancy forces and thermal radiation on the steady laminar plane flow over an isothermal horizontal flat plate is investigated within the framework of first-order boundary-layer theory, taking into account the hydrostatic pressure variation normal to the plate. The fluid considered is a gray, absorbing-emitting but nonscattering medium, and the Rosseland approximation is used to describe the radiative heat flux in the energy equation. Both a hot surface facing upward and a cold surface facing downward are considered in the analysis. Numerical results for the local Nusselt number, the local wall shear stress, the local surface heat flux, as well as the velocity and temperature distributions are presented for gases with a Prandtl number of 0.7 for various values of the radiation-conduction parameter, the buoyancy parameter, and the temperature ratio parameter.

  18. International Conference on Numerical Methods in Fluid Dynamics, 7th, Stanford University, Stanford and Moffett Field, CA, June 23-27, 1980, Proceedings

    NASA Technical Reports Server (NTRS)

    Reynolds, W. C. (Editor); Maccormack, R. W.

    1981-01-01

    Topics discussed include polygon transformations in fluid mechanics, computation of three-dimensional horseshoe vortex flow using the Navier-Stokes equations, an improved surface velocity method for transonic finite-volume solutions, transonic flow calculations with higher order finite elements, the numerical calculation of transonic axial turbomachinery flows, and the simultaneous solutions of inviscid flow and boundary layer at transonic speeds. Also considered are analytical solutions for the reflection of unsteady shock waves and relevant numerical tests, reformulation of the method of characteristics for multidimensional flows, direct numerical simulations of turbulent shear flows, the stability and separation of freely interacting boundary layers, computational models of convective motions at fluid interfaces, viscous transonic flow over airfoils, and mixed spectral/finite difference approximations for slightly viscous flows.

  19. High Energy Benthic Boundary Layer Experiment (HEBBLE): Preliminary program plan and conceptual design

    NASA Technical Reports Server (NTRS)

    Frewing, K.

    1980-01-01

    Deep sea processes of flow-sediment interaction, particularly the role of high energy ocean bottom current events in forming the seafloor topography, transporting material, and mixing the bottom of the water column are examined. A series of observations at and near the sea bottom, in water depths of 4 to 5 km, in areas of the western North Atlantic where high energy current events occur, include site surveys and physical reconnaissance to identify suitable areas and positions, and one or more six month experiments to investigate temporal and spatial variations of high energy events within the boundary layer and their interaction with the seabed. Descriptions of proposed HEBBLE activities are included, with emphasis on technology transfer to the oceanographic community through design, fabrication, testing, and operation of an instrumented ocean bottom lander.

  20. Separated and Recovering Turbulent Boundary Layer Flow Behind a Backward Facing Step For Different Reynolds Numbers

    NASA Technical Reports Server (NTRS)

    Jovic, Srba; Kutler, Paul F. (Technical Monitor)

    1994-01-01

    Experimental results for a two-dimensional separated turbulent boundary layer behind a backward facing step for five different Reynolds numbers are reported. Results are presented in the form of tables, graphs and a floppy disk for an easy access of the data. Reynolds number based on the step height was varied by changing the reference velocity upstream of the step, U(sub o), and the step height, h. Hot-wire measurement techniques were used to measure three Reynolds stresses and four triple-velocity correlations. In addition, surface pressure and skin friction coefficients were measured. All hot-wire measurements were acquired in a measuring domain which excluded recirculating flow region due to the directional insensitivity of hot-wires. The downstream extent of the domain from the step was 51 h for the largest and I 14h for the smallest step height. This significant downstream length permitted extensive study of the flow recovery. Prediction of perturbed flows and their recovery is particularly attractive for popular turbulence models since variations of turbulence length and time scales and flow interactions in different regions are generally inadequately predicted. The data indicate that the flow in the free shear layer region behaves like the plane mixing layer up to about 2/3 of the mean reattachment length when the flow interaction with the wall commences the flow recovery to that of an ordinary turbulent boundary layer structure. These changes of the flow do not occur abruptly with the change of boundary conditions. A reattachment region represents a transitional region where the flow undergoes the most dramatic adjustments to the new boundary conditions. Large eddies, created in the upstream free-shear layer region, are being torn, recirculated, reentrained back into the main stream interacting with the incoming flow structure. It is foreseeable that it is quite difficult to describe the physics of this region in a rational and quantitative manner other than statistical. Downstream of the reattachment point the flow recovers at different rates near the wall, in the newly developing internal boundary layer, and in the outer part of the flow. It appears that Reynolds stresses do not fully recover up to the longest recovery length of 114 h.

  1. Canopy-wake dynamics: the failure of the constant flux layer

    NASA Astrophysics Data System (ADS)

    Stefan, H. G.; Markfort, C. D.; Porte-Agel, F.

    2013-12-01

    The atmospheric boundary layer adjustment at the abrupt transition from a canopy (forest) to a flat surface (land or water) was investigated in a wind tunnel experiment. Detailed measurements examining the effect of canopy turbulence on flow separation, reduced surface shear stress and wake recovery are compared to data for the classical case of a solid backward-facing step. Results provide new insights into the data interpretation for flux estimation by eddy-covariance and flux gradient methods and for the assessment of surface boundary conditions in turbulence models of the atmospheric boundary layer in complex landscapes and over water bodies affected by canopy wakes. The wind tunnel results indicate that the wake of a forest canopy strongly affects surface momentum flux within a distance of 35 - 100 times the step or canopy height, and mean turbulence quantities require distances of at least 100 times the canopy height to adjust to the new surface. The near-surface mixing length in the wake exhibits characteristic length scales of canopy flows at the canopy edge, of the flow separation in the near wake and adjusts to surface layer scaling in the far wake. Components of the momentum budget are examined individually to determine the impact of the wake. The results demonstrate why a constant flux layer does not form until far downwind in the wake. An empirical model for surface shear stress distribution from a forest to a clearing or lake is proposed.

  2. Turbulence in Supercritical O2/H2 and C7H16/N2 Mixing Layers

    NASA Technical Reports Server (NTRS)

    Bellan, Josette; Harstad, Kenneth; Okong'o, Nora

    2003-01-01

    This report presents a study of numerical simulations of mixing layers developing between opposing flows of paired fluids under supercritical conditions, the purpose of the study being to elucidate chemical-species-specific aspects of turbulence. The simulations were performed for two different fluid pairs O2/H2 and C7H16/N2 at similar reduced initial pressures (reduced pressure is defined as pressure divided by critical pressure). Thermodynamically, O2/H2 behaves more nearly like an ideal mixture and has greater solubility, relative to C7H16/N2, which departs strongly from ideality. Because of a specified smaller initial density stratification, the C7H16/N2 layers exhibited greater levels of growth, global molecular mixing, and turbulence. However, smaller density gradients at the transitional state for the O2/H2 system were interpreted as indicating that locally, this system exhibits enhanced mixing as a consequence of its greater solubility and closer approach to ideality. These thermodynamic features were shown to affect entropy dissipation, which was found to be larger for O2/H2 and concentrated in high-density-gradient-magnitude regions that are distortions of the initial density-stratification boundary. In C7H16/N2, the regions of largest dissipation were found to lie in high-density-gradient-magnitude regions that result from mixing of the two fluids.

  3. Analysis of Ozone And CO2 Profiles Measured At A Diary Facility

    NASA Astrophysics Data System (ADS)

    Ogunjemiyo, S. O.; Hasson, A. S.; Ashkan, S.; Steele, J.; Shelton, T.

    2015-12-01

    Ozone and carbon dioxide are both greenhouse gasses in the planetary boundary layer. Ozone is a harmful secondary pollutant in the troposphere produced mostly during the day when there is a photochemical reaction in which primary pollutant precursors such as nitrous oxide (NOx) or volatile organic compounds (VOC's) mix with sunlight. As with most pollutants in the lower troposphere, both ozone and carbon dioxide vary in spatial and temporal scale depending on sources of pollution, environmental conditions and the boundary layer dynamics. Among the several factors that influence ozone variation, the seasonal changes in meteorological parameters and availability of ozone precursors are crucial because they control ozone formation and decay. Understanding how the difference in emission sources affect vertical transport of ozone and carbon dioxide is considered crucial to the improvement of their regional inventory sources. The purpose of this study is to characterize vertical transport of ozone and carbon at a diary facility. The study was conducted in the summer of 2011 and 2012 at a commercial dairy facility in Central California and involved profile measurements of ozone and CO2 using electrochemical ozonesondes, meteorological sondes and CO2 probe tethered to a 9 cubic meters helium balloon. On each day of the data collection, multiple balloon launches were made over a period representing different stages of the boundary layer development. The results show ozone and CO2 profiles display different characteristics. Regardless of the time of the day, the CO2 concentration decreases with height with a sharp gradient near the surface that is strengthened by a stable atmospheric condition, a feature suggesting the surface as the source. On the other hand, ozone profiles show greater link to the evolution of the lower boundary layer. Ozone profiles display unique features indicating ozone destruction near the surface. This unusual near the surface, observed even in the afternoon when the boundary layer is fully developed, greatly contrast ozone profiles are typical of urban environment

  4. Connecting meteorology to surface transport in aeolian landscapes: Peering into the boundary layer with Doppler lidar

    NASA Astrophysics Data System (ADS)

    Gunn, A.; Jerolmack, D. J.; Edmonds, D. A.; Ewing, R. C.; Wanker, M.; David, S. R.

    2017-12-01

    Aolian sand dunes grow to 100s or 1000s of meters in wavelength by sand saltation, which also produces dust plumes that feed cloud formation and may spread around the world. The relations among sediment transport, landscape dynamics and wind are typically observed at the limiting ends of the relevant range: highly resolved and localized ground observations of turbulence and relevant fluxes; or regional and synoptic-scale meteorology and satellite imagery. Between the geostrophic winds aloft and shearing stress on the Earth's surface is the boundary layer, whose stability and structure determines how momentum is transferred and ultimately entrains sediment. Although the literature on atmospheric boundary layer flows is mature, this understanding is rarely applied to aeolian landscape dynamics. Moreover, there are few vertically and time-resolved datasets of atmospheric boundary layer flows in desert sand seas, where buoyancy effects are most pronounced. Here we employ a ground-based upward-looking doppler lidar to examine atmospheric boundary layer flow at the upwind margin of the White Sands (New Mexico) dune field, providing continuous 3D wind velocity data from the surface to 300-m aloft over 70 days of the characteristically windy spring season. Data show highly resolved daily cyles of convective instabilty due to daytime heating and stable stratification due to nightime cooling which act to enhance or depress, respectively, the surface wind stresses for a given free-stream velocity. Our data implicate convective instability in driving strong saltation and dust emission, because enhanced mixing flattens the vertical velocity profile (raising surface wind speed) while upward advection helps to deliver dust to the high atmosphere. We also find evidence for Ekman spiralling, with a magnitude that depends on atmospheric stability. This spiralling gives rise to a deflection in the direction between geostrophic and surface winds, that is significant for the orientation of dunes.

  5. Large-Eddy Simulations of Tropical Convective Systems, the Boundary Layer, and Upper Ocean Coupling

    DTIC Science & Technology

    2014-09-30

    warmer profile through greater latent heat release. Resulting temperature profiles all follow essentially moist adiabats in the upper troposphere ...default RRTM ozone concentration profile). Greater convective mixing deepens the tropopause for cases with stronger moisture flux convergence. Case...with tropospheric temperatures about 4 degrees cooler than the original temperature profile. This case represents conditions during the suppressed

  6. Observational and Numerical Studies of the Boundary Layer, Cloud, and Aerosol Variability in the Southeast Pacific Coastal Marine Stratocumulus

    DTIC Science & Technology

    2012-05-01

    Malinowski , J.-L., Brenguier and F. Burnet, 2005: Holes and entrainment in stratocumulus, J. Atmos. Sci., 62, 443-459. Ghate, V. P., B. A...Tennessee. Haman, K. E., S. P. Malinowski , M. J. Kurowski, H. Gerber, and J.-L. Brenguier, 2007: Small scale mixing processes at the top of a marine

  7. Numerical simulation of the rapid intensification of Hurricane Katrina (2005): Sensitivity to boundary layer parameterization schemes

    NASA Astrophysics Data System (ADS)

    Liu, Jianjun; Zhang, Feimin; Pu, Zhaoxia

    2017-04-01

    Accurate forecasting of the intensity changes of hurricanes is an important yet challenging problem in numerical weather prediction. The rapid intensification of Hurricane Katrina (2005) before its landfall in the southern US is studied with the Advanced Research version of the WRF (Weather Research and Forecasting) model. The sensitivity of numerical simulations to two popular planetary boundary layer (PBL) schemes, the Mellor-Yamada-Janjic (MYJ) and the Yonsei University (YSU) schemes, is investigated. It is found that, compared with the YSU simulation, the simulation with the MYJ scheme produces better track and intensity evolution, better vortex structure, and more accurate landfall time and location. Large discrepancies (e.g., over 10 hPa in simulated minimum sea level pressure) are found between the two simulations during the rapid intensification period. Further diagnosis indicates that stronger surface fluxes and vertical mixing in the PBL from the simulation with the MYJ scheme lead to enhanced air-sea interaction, which helps generate more realistic simulations of the rapid intensification process. Overall, the results from this study suggest that improved representation of surface fluxes and vertical mixing in the PBL is essential for accurate prediction of hurricane intensity changes.

  8. The impact of boundary layer turbulence on snow growth and precipitation: Idealized Large Eddy Simulations

    NASA Astrophysics Data System (ADS)

    Chu, Xia; Xue, Lulin; Geerts, Bart; Kosović, Branko

    2018-05-01

    Ice particles and supercooled droplets often co-exist in planetary boundary-layer (PBL) clouds. The question examined in this numerical study is how large turbulent PBL eddies affect snow growth and surface precipitation from mixed-phase PBL clouds. In order to simplify this question, this study assumes an idealized BL with well-developed turbulence but no surface heat fluxes or radiative heat exchanges. Large Eddy Simulations with and without resolved PBL turbulence are compared. This comparison demonstrates that the impact on snow growth in mixed-phase clouds is controlled by two opposing mechanisms, a microphysical and a dynamical one. The cloud microphysical impact of large turbulent eddies is based on the difference in saturation vapor pressure over water and over ice. The net outcome of alternating turbulent up- and downdrafts is snow growth by diffusion and/or accretion (riming). On the other hand, turbulence-induced entrainment and detrainment may suppress snow growth. In the case presented herein, the net effect of these microphysical and dynamical processes is positive, but in general the net effect depends on ambient conditions, in particular the profiles of temperature, humidity, and wind.

  9. Chaos in a spatially-developing plane mixing layer

    NASA Technical Reports Server (NTRS)

    Broze, J. G.; Hussain, Fazle; Buell, J. C.

    1988-01-01

    A spatially-developing plane mixing layer was analyzed for chaotic behavior. A direct numerical simulation of the Navier-Stokes equations in a 2-D domain infinite in y and having inflow-outflow boundary conditions in x was used for data. Spectra, correlation dimension and the largest Lyapunov exponent were computed as functions of downstream distance x. When forced at a single (fundamental) frequency with maximum amplitude, the flow is periodic at the inflow but becomes aperiodic with increasing x. The aperiodic behavior is caused by the presence of a noisy subharmonic caused by the feedback between the necessarily nonphysical inflow and outflow boundary conditions. In order to overshadow this noise the flow was also studied with the same fundamental forcing and added random forcing of amplitude upsilon prime sub R/delta U = 0.01 at the inlet. Results were qualitatively the same in both cases: for small x, spectral peaks were sharp and dimension was nearly 1, but as x increased a narrowband spectral peak grew, spectra decayed exponentially at high frequencies and dimension increased to greater than 3. Based on these results, the flow appears to exhibit deterministic chaos. However, at no location was the largest Lyapunov exponent found to be significantly greater than zero.

  10. The 3D Navier-Stokes analysis of a Mach 2.68 bifurcated rectangular mixed-compression inlet

    NASA Technical Reports Server (NTRS)

    Mizukami, M.; Saunders, J. D.

    1995-01-01

    The supersonic diffuser of a Mach 2.68 bifurcated, rectangular, mixed-compression inlet was analyzed using a three-dimensional (3D) Navier-Stokes flow solver. A two-equation turbulence model, and a porous bleed model based on unchoked bleed hole discharge coefficients were used. Comparisons were made with experimental data, inviscid theory, and two-dimensional Navier-Stokes analyses. The main objective was to gain insight into the inlet fluid dynamics. Examination of the computational results along with the experimental data suggest that the cowl shock-sidewall boundary layer interaction near the leading edge caused a substantial separation in the wind tunnel inlet model. As a result, the inlet performance may have been compromised by increased spillage and higher bleed mass flow requirements. The internal flow contained substantial waves that were not in the original inviscid design. 3D effects were fairly minor for this inlet at on-design conditions. Navier-Stokes analysis appears to be an useful tool for gaining insight into the inlet fluid dynamics. It provides a higher fidelity simulation of the flowfield than the original inviscid design, by taking into account boundary layers, porous bleed, and their interactions with shock waves.

  11. Explaining a Consistent Morning NOx Maximum in the Clean Air Forest Boundary Layer

    NASA Astrophysics Data System (ADS)

    Shepson, P. B.; Alaghmand, M.; Bertman, S. B.; Carroll, M.; Edburg, S. L.; Jobson, B. T.; Keutsch, F. N.; Lamb, B. K.; Starn, T.; Stevens, P. S.; Wallace, W.; Zhou, X.

    2010-12-01

    Measurements of nitrogen oxides (NOx) at continental surface sites have frequently revealed the presence of an early morning maximum in the NOx concentration. While this observation has most often been interpreted as the result of downward mixing associated with breakup of the nocturnal inversion, the morning NOx peak often occurs earlier than the NBL breakup. Given the importance of NOx to boundary layer photochemistry near forested environments, it is essential that this phenomenon be well understood. Here we examine a variety of measurements, including NOx measurements at various heights, during the 1998, 2001, 2008, and 2009 (CABINEX) summer intensives of the Program for Research on Oxidants: PHotochemistry, Emissions and Transport (PROPHET), at the University of Michigan Biological Station in Northern Michigan. We will discuss the results, in terms of the extent to which the observations support/refute each of the potential drivers of the morning NOx peak: 1) downward mixing, 2) photochemistry on the various surfaces present, 3) soil emissions, and 4) local and long range transport of anthropogenic NOx, and we will report on our conclusions as to the predominant/likely explanation(s) for this phenomenon.

  12. Scaling of water vapor in the meso-gamma (2-20km) and lower meso-beta (20-50km) scales from tall tower time series

    NASA Astrophysics Data System (ADS)

    Pressel, K. G.; Collins, W.; Desai, A. R.

    2011-12-01

    Deficiencies in the parameterization of boundary layer clouds in global climate models (GCMs) remains one of the greatest sources of uncertainty in climate change predictions. Many GCM cloud parameterizations, which seek to include some representation of subgrid-scale cloud variability, do so by making assumptions regarding the subgrid-scale spatial probability density function (PDF) of total water content. Properly specifying the form and parameters of the total water PDF is an essential step in the formulation of PDF based cloud parameterizations. In the cloud free boundary layer, the PDF of total water mixing ratio is equivalent to the PDF of water vapor mixing ratio. Understanding the PDF of water vapor mixing ratio in the cloud free atmosphere is a necessary step towards understanding the PDF of water vapor in the cloudy atmosphere. A primary challenge in empirically constraining the PDF of water vapor mixing ratio is a distinct lack of a spatially distributed observational dataset at or near cloud scale. However, at meso-beta (20-50km) and larger scales, there is a wealth of information on the spatial distribution of water vapor contained in the physically retrieved water vapor profiles from the Atmospheric Infrared Sounder onboard NASA`s Aqua satellite. The scaling (scale-invariance) of the observed water vapor field has been suggested as means of using observations at satellite observed (meso-beta) scales to derive information about cloud scale PDFs. However, doing so requires the derivation of a robust climatology of water vapor scaling from in-situ observations across the meso- gamma (2-20km) and meso-beta scales. In this work, we present the results of the scaling of high frequency (10Hz) time series of water vapor mixing ratio as observed from the 447m WLEF tower located near Park Falls, Wisconsin. Observations from a tall tower offer an ideal set of observations with which to investigate scaling at meso-gamma and meso-beta scales requiring only the assumption of Taylor`s Hypothesis to convert observed time scales to spatial scales. Furthermore, the WLEF tower holds an instrument suite offering a diverse set of variables at the 396m, 122m, and 30m levels with which to characterize the state of the boundary layer. Three methods are used to compute scaling exponents for the observed time series; poor man`s variance spectra, first order structure functions, and detrended fluctuation analysis. In each case scaling exponents are computed by linear regression. The results for each method are compared and used to build a climatology of scaling exponents. In particular, the results for June 2007 are presented, and it is shown that the scaling of water vapor time series at the 396m level is characterized by two regimes that are determined by the state of the boundary layer. Finally, the results are compared to, and shown to be roughly consistent with, scaling exponents computed from AIRS observations.

  13. Boundary-Layer Transition on a Slender Cone in Hypervelocity Flow with Real Gas Effects

    NASA Astrophysics Data System (ADS)

    Jewell, Joseph Stephen

    The laminar to turbulent transition process in boundary layer flows in thermochemical nonequilibrium at high enthalpy is measured and characterized. Experiments are performed in the T5 Hypervelocity Reflected Shock Tunnel at Caltech, using a 1 m length 5-degree half angle axisymmetric cone instrumented with 80 fast-response annular thermocouples, complemented by boundary layer stability computations using the STABL software suite. A new mixing tank is added to the shock tube fill apparatus for premixed freestream gas experiments, and a new cleaning procedure results in more consistent transition measurements. Transition location is nondimensionalized using a scaling with the boundary layer thickness, which is correlated with the acoustic properties of the boundary layer, and compared with parabolized stability equation (PSE) analysis. In these nondimensionalized terms, transition delay with increasing CO2 concentration is observed: tests in 100% and 50% CO2, by mass, transition up to 25% and 15% later, respectively, than air experiments. These results are consistent with previous work indicating that CO2 molecules at elevated temperatures absorb acoustic instabilities in the MHz range, which is the expected frequency of the Mack second-mode instability at these conditions, and also consistent with predictions from PSE analysis. A strong unit Reynolds number effect is observed, which is believed to arise from tunnel noise. NTr for air from 5.4 to 13.2 is computed, substantially higher than previously reported for noisy facilities. Time- and spatially-resolved heat transfer traces are used to track the propagation of turbulent spots, and convection rates at 90%, 76%, and 63% of the boundary layer edge velocity, respectively, are observed for the leading edge, centroid, and trailing edge of the spots. A model constructed with these spot propagation parameters is used to infer spot generation rates from measured transition onset to completion distance. Finally, a novel method to control transition location with boundary layer gas injection is investigated. An appropriate porous-metal injector section for the cone is designed and fabricated, and the efficacy of injected CO2 for delaying transition is gauged at various mass flow rates, and compared with both no injection and chemically inert argon injection cases. While CO2 injection seems to delay transition, and argon injection seems to promote it, the experimental results are inconclusive and matching computations do not predict a reduction in N factor from any CO2 injection condition computed.

  14. Instabilities of mixed convection flows adjacent to inclined plates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abu-Mulaweh, H.I.; Armaly, B.F.; Chen, T.S.

    1987-11-01

    The measurements by Sparrow and Husar and by Lloyd and Sparrow established that the onset of instability (transition from laminar to turbulent) in free convection boundary layer flow above an inclined heated plate is predominated by the wave mode of instability for inclination angles less than 14 deg, as measured from the vertical, and by the vortex mode of instability for angles greater than 17 deg. The transition Grashof number deceased as the angle of inclination increased. The predictions of Chen and Tzuoo for this flow provide trends that are similar to measured values, but the predicted critical Grashof numbersmore » deviate significantly (three orders of magnitude smaller) from measured values. The instability of mixed convection boundary layer flow adjacent to inclined heated plates have also been treated numerically by Chen and Mucoglu for wave instability and by Chen et al. for vortex instability. Comparisons with measurements of instability in mixed convection flow adjacent to inclined plates were not available in the literature. It is anticipated, however, that these predictions will underestimate the actual onset of instability, as in the free convection case. The lack of measurements in this flow domain for this geometry has motivated the present study. The onset of instability in mixed convection flow adjacent to an isothermally heated inclined plate was determined in this study through flow visualization. The buoyancy-assisting and buoyancy-opposing flow cases were examined for the flow both above and below the heated plate. The critical Grashof-Reynolds number relationships for the onset of instability in this flow domain are reported in this paper.« less

  15. Quantifying wintertime boundary layer ozone production from frequent profile measurements in the Uinta Basin, UT, oil and gas region

    NASA Astrophysics Data System (ADS)

    Schnell, Russell C.; Johnson, Bryan J.; Oltmans, Samuel J.; Cullis, Patrick; Sterling, Chance; Hall, Emrys; Jordan, Allen; Helmig, Detlev; Petron, Gabrielle; Ahmadov, Ravan; Wendell, James; Albee, Robert; Boylan, Patrick; Thompson, Chelsea R.; Evans, Jason; Hueber, Jacques; Curtis, Abigale J.; Park, Jeong-Hoo

    2016-09-01

    As part of the Uinta Basin Winter Ozone Study, January-February 2013, we conducted 937 tethered balloon-borne ozone vertical and temperature profiles from three sites in the Uinta Basin, Utah (UB). Emissions from oil and gas operations combined with snow cover were favorable for producing high ozone-mixing ratios in the surface layer during stagnant and cold-pool episodes. The highly resolved profiles documented the development of approximately week-long ozone production episodes building from regional backgrounds of 40 ppbv to >165 ppbv within a shallow cold pool up to 200 m in depth. Beginning in midmorning, ozone-mixing ratios increased uniformly through the cold pool layer at rates of 5-12 ppbv/h. During ozone events, there was a strong diurnal cycle with each succeeding day accumulating 4-8 ppbv greater than the previous day. The top of the elevated ozone production layer was nearly uniform in altitude across the UB independent of topography. Above the ozone production layer, mixing ratios decreased with height to 400 m above ground level where they approached regional background levels. Rapid clean-out of ozone-rich air occurred within a day when frontal systems brought in fresh air. Solar heating and basin topography led to a diurnal flow pattern in which daytime upslope winds distributed ozone precursors and ozone in the Basin. NOx-rich plumes from a coal-fired power plant in the eastern sector of the Basin did not appear to mix down into the cold pool during this field study.

  16. An Assessment of ECMWF Analyses and Model Forecasts over the North Slope of Alaska Using Observations from the ARM Mixed-Phase Arctic Cloud Experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Shaocheng; Klein, Stephen A.; Yio, J. John

    2006-03-11

    European Centre for Medium-Range Weather Forecasts (ECMWF) analysis and model forecast data are evaluated using observations collected during the Atmospheric Radiation Measurement (ARM) October 2004 Mixed-Phase Arctic Cloud Experiment (M-PACE) at its North Slope of Alaska (NSA) site. It is shown that the ECMWF analysis reasonably represents the dynamic and thermodynamic structures of the large-scale systems that affected the NSA during M-PACE. The model-analyzed near-surface horizontal winds, temperature, and relative humidity also agree well with the M-PACE surface measurements. Given the well-represented large-scale fields, the model shows overall good skill in predicting various cloud types observed during M-PACE; however, themore » physical properties of single-layer boundary layer clouds are in substantial error. At these times, the model substantially underestimates the liquid water path in these clouds, with the concomitant result that the model largely underpredicts the downwelling longwave radiation at the surface and overpredicts the outgoing longwave radiation at the top of the atmosphere. The model also overestimates the net surface shortwave radiation, mainly because of the underestimation of the surface albedo. The problem in the surface albedo is primarily associated with errors in the surface snow prediction. Principally because of the underestimation of the surface downwelling longwave radiation at the times of single-layer boundary layer clouds, the model shows a much larger energy loss (-20.9 W m-2) than the observation (-9.6 W m-2) at the surface during the M-PACE period.« less

  17. A model of air-sea gas exchange incorporating the physics of the turbulent boundary layer and the properties of the sea surface

    NASA Astrophysics Data System (ADS)

    Soloviev, Alexander; Schluessel, Peter

    The model presented contains interfacial, bubble-mediated, ocean mixed layer, and remote sensing components. The interfacial (direct) gas transfer dominates under conditions of low and—for quite soluble gases like CO2—moderate wind speeds. Due to the similarity between the gas and heat transfer, the temperature difference, ΔT, across the thermal molecular boundary layer (cool skin of the ocean) and the interfacial gas transfer coefficient, Kint are presumably interrelated. A coupled parameterization for ΔT and Kint has been derived in the context of a surface renewal model [Soloviev and Schluessel, 1994]. In addition to the Schmidt, Sc, and Prandtl, Pr, numbers, the important parameters are the surface Richardson number, Rƒ0, and the Keulegan number, Ke. The more readily available cool skin data are used to determine the coefficients that enter into both parameterizations. At high wind speeds, the Ke-number dependence is further verified with the formula for transformation of the surface wind stress to form drag and white capping, which follows from the renewal model. A further extension of the renewal model includes effects of solar radiation and rainfall. The bubble-mediated component incorporates the Merlivat et al. [1993] parameterization with the empirical coefficients estimated by Asher and Wanninkhof [1998]. The oceanic mixed layer component accounts for stratification effects on the air-sea gas exchange. Based on the example of GasEx-98, we demonstrate how the results of parameterization and modeling of the air-sea gas exchange can be extended to the global scale, using remote sensing techniques.

  18. Discussion of boundary-layer characteristics near the casing of an axial-flow compressor

    NASA Technical Reports Server (NTRS)

    Mager, Artur; Mahoney, John J; Budinger, Ray E

    1951-01-01

    Boundary-layer velocity profiles on the casing of an axial-flow compressor behind the guide vanes and rotor were measured and resolved into two components: along the streamline of the flow and perpendicular to it. Boundary-layer thickness and the deflection of the boundary layer at the wall were the generalizing parameters. By use of these results and the momentum-integral equations, the characteristics of boundary on the walls of axial-flow compressor are qualitatively discussed. Important parameters concerning secondary flow in the boundary layer appear to be turning of the flow and the product of boundary-layer thickness and streamline curvature outside the boundary layer. Two types of separation are shown to be possible in three dimensional boundary layer.

  19. The potential for free and mixed convection in sedimentary basins

    USGS Publications Warehouse

    Raffensperger, Jeff P.; Vlassopoulos, D.

    1999-01-01

    Free thermal convection and mixed convection are considered as potential mechanisms for mass and heat transport in sedimentary basins. Mixed convection occurs when horizontal flows (forced convection) are superimposed on thermally driven flows. In cross section, mixed convection is characterized by convection cells that migrate laterally in the direction of forced convective flow. Two-dimensional finite-element simulations of variable-density groundwater flow and heat transport in a horizontal porous layer were performed to determine critical mean Rayleigh numbers for the onset of free convection, using both isothermal and semi-conductive boundaries. Additional simulations imposed a varying lateral fluid flux on the free-convection pattern. Results from these experiments indicate that forced convection becomes dominant, completely eliminating buoyancy-driven circulation, when the total forced-convection fluid flux exceeds the total flux possible due to free convection. Calculations of the thermal rock alteration index (RAI=q????T) delineate the patterns of potential diagenesis produced by fluid movement through temperature gradients. Free convection produces a distinct pattern of alternating positive and negative RAIs, whereas mixed convection produces a simpler layering of positive and negative values and in general less diagenetic alteration. ?? Springer-Verlag.

  20. Water-vapour variability within a convective boundary-layer assessed by large-eddy simulations and IHOP_2002 observations

    NASA Astrophysics Data System (ADS)

    Couvreux, F.; Guichard, F.; Redelsperger, J. L.; Kiemle, C.; Masson, V.; Lafore, J. P.; Flamant, C.

    2005-10-01

    This study presents a comprehensive analysis of the variability of water vapour in a growing convective boundary-layer (CBL) over land, highlighting the complex links between advection, convective activity and moisture heterogeneity in the boundary layer. A Large-eddy Simulation (LES) is designed, based on observations, and validated, using an independent data-set collected during the International H2O Project (IHOP 2002) fieldexperiment. Ample information about the moisture distribution in space and time, as well as other important CBL parameters are acquired by mesonet stations, balloon soundings, instruments on-board two aircraft and the DLR airborne water-vapour differential-absorption lidar. Because it can deliver two-dimensional cross-sections at high spatial resolution (140 m horizontal, 200 m vertical), the airborne lidar offers valuable insights of small-scale moisture-variability throughout the CBL. The LES is able to reproduce the development of the CBL in the morning and early afternoon, as assessed by comparisons of simulated mean profiles of key meteorological variables with sounding data. Simulated profiles of the variance of water-vapour mixing-ratio were found to be in good agreement with the lidar-derived counterparts. Finally, probability-density functions of potential temperature, vertical velocity and water-vapour mixing-ratio calculated from the LES show great consistency with those derived from aircraft in situ measurements in the middle of the CBL. Downdraughts entrained from above the CBL are governing the scale of moisture variability. Characteristic length-scales are found to be larger for water-vapour mixing-ratio than for temperature.The observed water-vapour variability exhibits contributions from different scales. The influence of the mesoscale (larger than LES domain size, i.e. 10 km) on the smaller-scale variability is assessed using LES and observations. The small-scale variability of water vapour is found to be important and to be driven by the dynamics of the CBL. Both lidar observations and LES evidence that dry downdraughts entrained from above the CBL are governing the scale of moisture variability. Characteristic length-scales are found to be larger for water-vapour mixing-ratio than for temperature and vertical velocity. In particular, intrusions of drier free-troposphere air from above the growing CBL impose a marked negative skewness on the water-vapour distribution within it, both as observed and in the simulation.

  1. A linear shock cell model for jets of arbitrary exit geometry

    NASA Technical Reports Server (NTRS)

    Morris, P. J.; Bhat, T. R. S.; Chen, G.

    1989-01-01

    The shock cell structures of single supersonic non-ideally expanded jets with arbitrary exit geometry are studied. Both vortex sheets and realistic mean profiles are considered for the jet shear layer. The boundary element method is used to predict the shock spacing and screech tones in a vortex sheet model of a single jet. This formulation enables the calculations to be performed only on the vortex sheet. This permits the efficient and convenient study of complicated jet geometries. Results are given for circular, elliptic and rectangular jets and the results are compared with analysis and experiment. The agreement between the predictions and measurements is very good but depends on the assumptions made to predict the geometry of the fully expanded jet. A finite diffference technique is used to examine the effect of finite mixing layer thickness for a single jet. The finite thickness of the mixing layer is found to decrease the shock spacing by approximately 20 percent over the length of the jet potential core.

  2. Linear models for sound from supersonic reacting mixing layers

    NASA Astrophysics Data System (ADS)

    Chary, P. Shivakanth; Samanta, Arnab

    2016-12-01

    We perform a linearized reduced-order modeling of the aeroacoustic sound sources in supersonic reacting mixing layers to explore their sensitivities to some of the flow parameters in radiating sound. Specifically, we investigate the role of outer modes as the effective flow compressibility is raised, when some of these are expected to dominate over the traditional Kelvin-Helmholtz (K-H) -type central mode. Although the outer modes are known to be of lesser importance in the near-field mixing, how these radiate to the far-field is uncertain, on which we focus. On keeping the flow compressibility fixed, the outer modes are realized via biasing the respective mean densities of the fast (oxidizer) or slow (fuel) side. Here the mean flows are laminar solutions of two-dimensional compressible boundary layers with an imposed composite (turbulent) spreading rate, which we show to significantly alter the growth of instability waves by saturating them earlier, similar to in nonlinear calculations, achieved here via solving the linear parabolized stability equations. As the flow parameters are varied, instability of the slow modes is shown to be more sensitive to heat release, potentially exceeding equivalent central modes, as these modes yield relatively compact sound sources with lesser spreading of the mixing layer, when compared to the corresponding fast modes. In contrast, the radiated sound seems to be relatively unaffected when the mixture equivalence ratio is varied, except for a lean mixture which is shown to yield a pronounced effect on the slow mode radiation by reducing its modal growth.

  3. The Effect of Barotropic and Baroclinic Tides on Coastal Stratification and Mixing

    NASA Astrophysics Data System (ADS)

    Suanda, S. H.; Feddersen, F.; Kumar, N.

    2017-12-01

    The effects of barotropic and baroclinic tides on subtidal stratification and vertical mixing are examined with high-resolution, three-dimensional numerical simulations of the Central Californian coastal upwelling region. A base simulation with realistic atmospheric and regional-scale boundary forcing but no tides (NT) is compared to two simulations with the addition of predominantly barotropic local tides (LT) and with combined barotropic and remotely generated, baroclinic tides (WT) with ≈ 100 W m-1 onshore baroclinic energy flux. During a 10 day period of coastal upwelling when the domain volume-averaged temperature is similar in all three simulations, LT has little difference in subtidal temperature and stratification compared to NT. In contrast, the addition of remote baroclinic tides (WT) reduces the subtidal continental shelf stratification up to 50% relative to NT. Idealized simulations to isolate barotropic and baroclinic effects demonstrate that within a parameter space of typical U.S. West Coast continental shelf slopes, barotropic tidal currents, incident energy flux, and subtidal stratification, the dissipating baroclinic tide destroys stratification an order of magnitude faster than barotropic tides. In WT, the modeled vertical temperature diffusivity at the top (base) of the bottom (surface) boundary layer is increased up to 20 times relative to NT. Therefore, the width of the inner-shelf (region of surface and bottom boundary layer overlap) is increased approximately 4 times relative to NT. The change in stratification due to dissipating baroclinic tides is comparable to the magnitude of the observed seasonal cycle of stratification.

  4. Time-accurate simulations of a shear layer forced at a single frequency

    NASA Technical Reports Server (NTRS)

    Claus, R. W.; Huang, P. G.; Macinnes, J. M.

    1988-01-01

    Calculations are presented for the forced shear layer studied experimentally by Oster and Wygnanski, and Weisbrot. Two different computational approaches are examined: Direct Numerical Simulation (DNS) and Large Eddy Simulation (LES). The DNS approach solves the full three dimensional Navier-Stokes equations for a temporally evolving mixing layer, while the LES approach solves the two dimensional Navier-Stokes equations with a subgrid scale turbulence model. While the comparison between these calculations and experimental data was hampered by a lack of information on the inflow boundary conditions, the calculations are shown to qualitatively agree with several aspects of the experiment. The sensitivity of these calculations to factors such as mesh refinement and Reynolds number is illustrated.

  5. A Mesoscale Model-Based Climatography of Nocturnal Boundary-Layer Characteristics over the Complex Terrain of North-Western Utah.

    PubMed

    Serafin, Stefano; De Wekker, Stephan F J; Knievel, Jason C

    Nocturnal boundary-layer phenomena in regions of complex topography are extremely diverse and respond to a multiplicity of forcing factors, acting primarily at the mesoscale and microscale. The interaction between different physical processes, e.g., drainage promoted by near-surface cooling and ambient flow over topography in a statically stable environment, may give rise to special flow patterns, uncommon over flat terrain. Here we present a climatography of boundary-layer flows, based on a 2-year archive of simulations from a high-resolution operational mesoscale weather modelling system, 4DWX. The geographical context is Dugway Proving Ground, in north-western Utah, USA, target area of the field campaigns of the MATERHORN (Mountain Terrain Atmospheric Modeling and Observations Program) project. The comparison between model fields and available observations in 2012-2014 shows that the 4DWX model system provides a realistic representation of wind speed and direction in the area, at least in an average sense. Regions displaying strong spatial gradients in the field variables, thought to be responsible for enhanced nocturnal mixing, are typically located in transition areas from mountain sidewalls to adjacent plains. A key dynamical process in this respect is the separation of dynamically accelerated downslope flows from the surface.

  6. Modeling uptake of hydrophobic organic contaminants into polyethylene passive samplers.

    PubMed

    Thompson, Jay M; Hsieh, Ching-Hong; Luthy, Richard G

    2015-02-17

    Single-phase passive samplers are gaining acceptance as a method to measure hydrophobic organic contaminant (HOC) concentration in water. Although the relationship between the HOC concentration in water and passive sampler is linear at equilibrium, mass transfer models are needed for nonequilibrium conditions. We report measurements of organochlorine pesticide diffusion and partition coefficients with respect to polyethylene (PE), and present a Fickian approach to modeling HOC uptake by PE in aqueous systems. The model is an analytic solution to Fick's second law applied through an aqueous diffusive boundary layer and a polyethylene layer. Comparisons of the model with existing methods indicate agreement at appropriate boundary conditions. Laboratory release experiments on the organochlorine pesticides DDT, DDE, DDD, and chlordane in well-mixed slurries support the model's applicability to aqueous systems. In general, the advantage of the model is its application in the cases of well-agitated systems, low values of polyethylene-water partioning coefficients, thick polyethylene relative to the boundary layer thickness, and/or short exposure times. Another significant advantage is the ability to estimate, or at least bound, the needed exposure time to reach a desired CPE without empirical model inputs. A further finding of this work is that polyethylene diffusivity does not vary by transport direction through the sampler thickness.

  7. Control of a Normal Shock Boundary Layer Interaction with Ramped Vanes of Various Sizes

    NASA Astrophysics Data System (ADS)

    Lee, Sang; Loth, Eric

    2017-11-01

    A novel vortex generator design positioned upstream of a normal shock and a subsequent diffuser was investigated using large eddy simulations. In particular, ``ramped-vane'' flow control devices with three difference heights relative to the incoming boundary layer thickness (0.34 δ 0.52 δ and 0.75 δ were placed in a supersonic boundary layer with a freestream Mach number of 1.3 and a Reynolds number of 2,400 based on momentum thickness. These devices are similar to subsonic vanes but are designed to be more mechanically robust while having low wave drag. The devices generated strong streamwise vortices that entrained high momentum fluid to the near-wall region and increased turbulent mixing. The devices also decreased shock-induced flow separation, which resulted in a higher downstream skin friction in the diffuser. In general, the largest ramped-vane (0.75 δ) produced the largest reductions in flow separation, shape factor and overall unsteadiness. However, the medium-sized ramped vane (0.52 δ) was able to also reduce both the separation area and the diffuser displacement thickness. The smallest device (0.34 δ) had a weak impact of the flow in the diffuser, though a 10% reduction in the shape factor was achieved.

  8. Modeling the purging of dense fluid from a street canyon driven by an interfacial mixing flow and skimming flow

    NASA Astrophysics Data System (ADS)

    Baratian-Ghorghi, Z.; Kaye, N. B.

    2013-07-01

    An experimental study is presented to investigate the mechanism of flushing a trapped dense contaminant from a canyon by turbulent boundary layer flow. The results of a series of steady-state experiments are used to parameterize the flushing mechanisms. The steady-state experimental results for a canyon with aspect ratio one indicate that dense fluid is removed from the canyon by two different processes, skimming of dense fluid from the top of the dense layer; and by an interfacial mixing flow that mixes fresh fluid down into the dense lower layer (entrainment) while mixing dense fluid into the flow above the canyon (detrainment). A model is developed for the time varying buoyancy profile within the canyon as a function of the Richardson number which parameterizes both the interfacial mixing and skimming processes observed. The continuous release steady-state experiments allowed for the direct measurement of the skimming and interfacial mixing flow rates for any layer depth and Richardson number. Both the skimming rate and the interfacial mixing rate were found to be power-law functions of the Richardson number of the layer. The model results were compared to the results of previously published finite release experiments [Z. Baratian-Ghorghi and N. B. Kaye, Atmos. Environ. 60, 392-402 (2012)], 10.1016/j.atmosenv.2012.06.077. A high degree of consistency was found between the finite release data and the continuous release data. This agreement acts as an excellent check on the measurement techniques used, as the finite release data was based on curve fitting through buoyancy versus time data, while the continuous release data was calculated directly by measuring the rate of addition of volume and buoyancy once a steady-state was established. Finally, a system of ordinary differential equations is presented to model the removal of dense fluid from the canyon based on empirical correlations of the skimming and interfacial mixing taken form the steady-state experiments. The ODE model predicts well the time taken for a finite volume of dense fluid to be flushed from a canyon.

  9. Aerothermal and Propulsion Ground Testing That Can Be Conducted to Increase Chances for Successful Hypervelocity Flight Experiments

    DTIC Science & Technology

    2005-10-01

    interaction • Turbulence/ flow chemistry plus combustion interaction • Transpiration Cooling and ablation – Ram/Scramjet Technology – Ignition, mixing...turbulence models for separated regions of shock wave/turbulent boundary layer interaction – Modeling turbulence/ flow chemistry /combustion...Minutes FLOW DURATION Flow velocity Reynolds number Mach number Velocity Temperature Vehicle length NoneLengthVelocity Flow Chemistry Total temperature

  10. Coastal Microstructure: From Active Overturn to Fossil Turbulence

    NASA Astrophysics Data System (ADS)

    Tau Leung, Pak

    2011-11-01

    The Remote Anthropogenic Sensing Program was a five year effort (2001- 2005) to examine subsurface phenomena related to a sewage outfall off the coast of Oahu, Hawaii. This research has implications for basic ocean hydrodynamics, particularly for a greatly improved understanding of the evolution of turbulent patches. It was the first time a microstructure measurement was used to study such a buoyancy-driven turbulence generated by a sea-floor diffuser. In 2004, two stations were selected to represent the near field and ambient conditions. They have nearly identical bathymetrical and hydrographical features and provide an ideal environment for a control experiment. Repeated vertical microstructure measurements were performed at both stations for 20 days. A time series of physical parameters was collected and used for statistical analysis. After comparing the data from both stations, it can be concluded that the turbulent mixing generated by the diffuser contributes to the elevated dissipation rate observed in the pycnocline and bottom boundary layer. To further understand the mixing processes in both regions, data were plotted on a Hydrodynamic Phase Diagram. The overturning stages of the turbulent patches are identified by Hydrodynamic Phase Diagram. This technique provides detailed information on the evolution of the turbulent patches from active overturns to fossilized scalar microstructures in the water column. Results from this study offer new evidence to support the fossil turbulence theory. This study concluded that: 1. Field Data collected near a sea-floor outfall diffuser show that turbulent patches evolve from active (overturning) to fossil (buoyancy-inhibited) stages, consistent with the process of turbulent patch evolution proposed by fossil turbulence theory. 2. The data show that active (overturning) and fossil (buoyancy-inhibited) patches have smaller length scales than the active+fossil (intermediate) stage of patch evolution, consistent with fossil turbulence theory and with laboratory studies. 3. Compared to a far-field reference, elevated dissipation rates near the diffuser were found in the seasonal pycnocline as well as in the bottom boundary layer. 4. More than 90% of the turbulent patches observed in the water column were non- overturning (active+fossil and fossil). Such patches can provide significant mixing in the interior of the ocean, far from surface and bottom boundary layers.

  11. Comparison of Methods for Determining Boundary Layer Edge Conditions for Transition Correlations

    NASA Technical Reports Server (NTRS)

    Liechty, Derek S.; Berry, Scott A.; Hollis, Brian R.; Horvath, Thomas J.

    2003-01-01

    Data previously obtained for the X-33 in the NASA Langley Research Center 20-Inch Mach 6 Air Tunnel have been reanalyzed to compare methods for determining boundary layer edge conditions for use in transition correlations. The experimental results were previously obtained utilizing the phosphor thermography technique to monitor the status of the boundary layer downstream of discrete roughness elements via global heat transfer images of the X-33 windward surface. A boundary layer transition correlation was previously developed for this data set using boundary layer edge conditions calculated using an inviscid/integral boundary layer approach. An algorithm was written in the present study to extract boundary layer edge quantities from higher fidelity viscous computational fluid dynamic solutions to develop transition correlations that account for viscous effects on vehicles of arbitrary complexity. The boundary layer transition correlation developed for the X-33 from the viscous solutions are compared to the previous boundary layer transition correlations. It is shown that the boundary layer edge conditions calculated using an inviscid/integral boundary layer approach are significantly different than those extracted from viscous computational fluid dynamic solutions. The present results demonstrate the differences obtained in correlating transition data using different computational methods.

  12. Atmospheric measurements of peroxyacetyl nitrate and other organic nitrates at high latitudes - Possible sources and sinks

    NASA Technical Reports Server (NTRS)

    Singh, H. B.; O'Hara, D.; Herlth, D.; Bradshaw, J. D.; Sandholm, S. T.; Gregory, G. L.; Sachse, G. W.; Blake, D. R.; Crutzen, P. J.; Kanakidou, M. A.

    1992-01-01

    Measurements of PAN and other reactive nitrogen species during the NASA Arctic Boundary Layer Expedition (ABLE 3A) are described, their north-south and east-west gradients in the free troposphere are characterized, and the sources and sinks of PAN and NO(y) are assessed. Large concentrations of PAN and NO(y) are present in the Arctic/sub-Arctic troposphere of the Northern Hemisphere during the summer. Mixing ratios of PAN and a variety of other molecules are more abundant in the free troposphere compared to the boundary layer. Coincident PAN and O3 atmospheric structures suggest that phenomena that define PAN also define the corresponding O3 behavior. Model calculations, correlations between NO(y) and anthropogenic tracers, and the compositions of NO(y) itself suggest that the Arctic/sub-Arctic reactive nitrogen measured during ABLE 3A is predominantly of anthropogenic origin with a minor component from the stratosphere.

  13. Numerical techniques for the solution of the compressible Navier-Stokes equations and implementation of turbulence models. [separated turbulent boundary layer flow problems

    NASA Technical Reports Server (NTRS)

    Baldwin, B. S.; Maccormack, R. W.; Deiwert, G. S.

    1975-01-01

    The time-splitting explicit numerical method of MacCormack is applied to separated turbulent boundary layer flow problems. Modifications of this basic method are developed to counter difficulties associated with complicated geometry and severe numerical resolution requirements of turbulence model equations. The accuracy of solutions is investigated by comparison with exact solutions for several simple cases. Procedures are developed for modifying the basic method to improve the accuracy. Numerical solutions of high-Reynolds-number separated flows over an airfoil and shock-separated flows over a flat plate are obtained. A simple mixing length model of turbulence is used for the transonic flow past an airfoil. A nonorthogonal mesh of arbitrary configuration facilitates the description of the flow field. For the simpler geometry associated with the flat plate, a rectangular mesh is used, and solutions are obtained based on a two-equation differential model of turbulence.

  14. Air-Sea Interaction in the Gulf of Tehuantepec

    NASA Astrophysics Data System (ADS)

    Khelif, D.; Friehe, C. A.; Melville, W. K.

    2007-05-01

    Measurements of meteorological fields and turbulence were made during gap wind events in the Gulf of Tehuantepec using the NSF C-130 aircraft. The flight patterns started at the shore and progressed to approximately 300km offshore with low-level (30m) tracks, stacks and soundings. Parameterizations of the wind stress, sensible and latent heat fluxes were obtained from approximately 700 5 km low-level tracks. Structure of the marine boundary layer as it evolved off-shore was obtained with stack patterns, aircraft soundings and deployment of dropsondes. The air-sea fluxes approximately follow previous parameterizations with some evidence of the drag coefficient leveling out at about 20 meters/sec with the latent heat flux slightly increasing. The boundary layer starts at shore as a gap wind low-level jet, thins as the jet expands out over the gulf, exhibits a hydraulic jump, and then increases due to turbulent mixing.

  15. Evaluating WRF Simulations of Urban Boundary Layer Processes during DISCOVER-AQ

    NASA Astrophysics Data System (ADS)

    Hegarty, J. D.; Henderson, J.; Lewis, J. R.; McGrath-Spangler, E. L.; Scarino, A. J.; Ferrare, R. A.; DeCola, P.; Welton, E. J.

    2015-12-01

    The accurate representation of processes in the planetary boundary layer (PBL) in meteorological models is of prime importance to air quality and greenhouse gas simulations as it governs the depth to which surface emissions are vertically mixed and influences the efficiency by which they are transported downwind. In this work we evaluate high resolution (~1 km) WRF simulations of PBL processes in the Washington DC - Baltimore and Houston urban areas during the respective DISCOVER-AQ 2011 and 2013 field campaigns using MPLNET micro-pulse lidar (MPL), mini-MPL, airborne high spectral resolution lidar (HSRL), Doppler wind profiler and CALIPSO satellite measurements along with complimentary surface and aircraft measurements. We will discuss how well WRF simulates the spatiotemporal variability of the PBL height in the urban areas and the development of fine-scale meteorological features such as bay and sea breezes that influence the air quality of the urban areas studied.

  16. Lidar observations of the planetary boundary layer

    NASA Technical Reports Server (NTRS)

    Melfi, S. H.; Spinhirne, J. D.; Palm, S. P.

    1985-01-01

    The application of an airborne downward-looking lidar to the study of organized cellular convection in the planetary boundary layer (PBL) over the ocean is described. The lidar consisted of a frequency doubled Nd-YAG 530 mm-wavelength laser whose axis was aligned colinearly with the optical axis of an all-reflecting 40 mm-diameter Newtonian telescope. The airborne lidar provided a unique observation of both microscale and mesoscale variations of the PBL top. The lidar data, presented as constant backscatter isopleth soundings, provide a visual indication of the presence of vertically organized convection cells. Comparisons of the lidar-derived PBL structure with both a conceptual model of the PBL and laboratory simulations of Deardorf et al. (1980) of a developing convective PBL showed that the observations are consistent with a model of mixing in the PBL, which involves a field of organized updrafts separated by downdrafts.

  17. Summertime measurements of selected nonmethane hydrocarbons in the Arctic and Subarctic during the 1988 Arctic Boundary Layer Expedition (ABLE 3A)

    NASA Technical Reports Server (NTRS)

    Blake, Donald R.; Hurst, Dale F.; Smith, Tyrrel W., Jr.; Whipple, Wayne J.; Chen, Tai-Yih; Blake, Nicola J.; Rowland, F. S.

    1992-01-01

    The concentration distributions of several nonmethane hydrocarbons (NMHIC) in the Arctic and Subarctic regions of Alaska are discussed using data obtained during July and August of 1988 as part of the Arctic Boundary Layer Expedition (ABLE 3A). Plume enhancement of some or all of the measured NMHIC were observed on more than half of the 33 missions flown during the project. The usual summer vertical profile of reactive hydrocarbons at these high latitudes has elevated concentrations at high altitudes, with mixing ratio variations largely controlled by hydroxyl radical reactions. Wildfires were established as a significant source of various NMHIC. Biomass burning emission ratios relative to ethane were established for ethyne (0.38 +/- 0.04) and propane (0.08 +/- 0.03). Activities associated with oil drilling are a probable source of enhanced levels of alkanes observed as much as 300 km northeast of Prudhoe Bay.

  18. Applying a simple three-dimensional eddy correlation system for latent and sensible heat flux to contrasting forest canopies

    NASA Astrophysics Data System (ADS)

    Bernhofer, Ch.

    1992-06-01

    A simple eddy correlation system is presented that allows on-line calculation of latent and sensible heat fluxes. The system is composed of a three dimensional propeller anemometer, a thermocouple and a capacitance relative humidity sensor. Results from two contrasting sites demonstrate the capability of the system to measure turbulent fluxes under varying conditions. A dry mixed (dominantly coniferous) forest in hilly terrain in Austria is compared to a well irrigated, heavily transpiring, deciduous pecan orchard in the Southwest of the US. The US site shows insufficient closure of the energy balance that is attributed to non-turbulent fluxes under advective conditions in a stable boundary layer (Blanford et al., 1991) while the Austrian site exhibits almost perfect closure with the use of the very same instruments when the boundary layer is convective and advection is negligible.

  19. Ensemble-based simultaneous state and parameter estimation for treatment of mesoscale model error: A real-data study

    NASA Astrophysics Data System (ADS)

    Hu, Xiao-Ming; Zhang, Fuqing; Nielsen-Gammon, John W.

    2010-04-01

    This study explores the treatment of model error and uncertainties through simultaneous state and parameter estimation (SSPE) with an ensemble Kalman filter (EnKF) in the simulation of a 2006 air pollution event over the greater Houston area during the Second Texas Air Quality Study (TexAQS-II). Two parameters in the atmospheric boundary layer parameterization associated with large model sensitivities are combined with standard prognostic variables in an augmented state vector to be continuously updated through assimilation of wind profiler observations. It is found that forecasts of the atmosphere with EnKF/SSPE are markedly improved over experiments with no state and/or parameter estimation. More specifically, the EnKF/SSPE is shown to help alleviate a near-surface cold bias and to alter the momentum mixing in the boundary layer to produce more realistic wind profiles.

  20. Reduction of intergranular exchange coupling and grain size for high Ku CoPt-based granular media: Metal-oxide buffer layer and multiple oxide boundary materials

    NASA Astrophysics Data System (ADS)

    Tham, Kim Kong; Kushibiki, Ryosuke; Kamada, Tomonari; Hinata, Shintaro; Saito, Shin

    2018-05-01

    Investigation of magnetic properties and microstructure of granular media with various multiple oxides as the grain boundary material is reported. Saturation magnetization (Ms), uniaxial magnetocrystalline anisotropy (Ku), and magnetic grain diameter (GD) of the granular media show linear correlation with volume weighted average for melting point (Tm) of each oxides (Tmave). Ku of magnetic grains (Kugrain) shows a trade-off relation with GD that it is a big challenge to satisfy both high Kugrain and small GD by only controlling Tmave. To obtain a granular medium with appropriate Kugrain, GD, and low degree of intergranular exchange coupling, the combination of Tmave control of grain boundary material by mixing oxides and employment of a buffer layer are required. Here the degree of intergranular exchange coupling is estimated from the slope of M-H loop at around coercivity (α). By applying this technique, a typical granular medium with Kugrain of 1.0×107 erg/cm3, GD of 5.1 nm, and α of 1.2 is realized.

  1. Impurity distribution and microstructure of Ga-doped ZnO films grown by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Kvit, A. V.; Yankovich, A. B.; Avrutin, V.; Liu, H.; Izyumskaya, N.; Özgür, Ü.; Morkoç, H.; Voyles, P. M.

    2012-12-01

    We report microstructural characterization of heavily Ga-doped ZnO (GZO) thin films on GaN and sapphire by aberration-corrected scanning transmission electron microscopy. Growth under oxygen-rich and metal-rich growth conditions leads to changes in the GZO polarity and different extended defects. For GZO layers on sapphire, the primary extended defects are voids, inversion domain boundaries, and low-angle grain boundaries. Ga doping of ZnO grown under metal-rich conditions causes a switch from pure oxygen polarity to mixed oxygen and zinc polarity in small domains. Electron energy loss spectroscopy and energy dispersive spectroscopy spectrum imaging show that Ga is homogeneous, but other residual impurities tend to accumulate at the GZO surface and at extended defects. GZO grown on GaN on c-plane sapphire has Zn polarity and no voids. There are misfit dislocations at the interfaces between GZO and an undoped ZnO buffer layer and at the buffer/GaN interface. Low-angle grain boundaries are the only threading microstructural defects. The potential effects of different extended defects and impurity distributions on free carrier scattering are discussed.

  2. Separation behavior of boundary layers on three-dimensional wings

    NASA Technical Reports Server (NTRS)

    Stock, H. W.

    1981-01-01

    An inverse boundary layer procedure for calculating separated, turbulent boundary layers at infinitely long, crabbing wing was developed. The procedure was developed for calculating three dimensional, incompressible turbulent boundary layers was expanded to adiabatic, compressible flows. Example calculations with transsonic wings were made including viscose effects. In this case an approximated calculation method described for areas of separated, turbulent boundary layers, permitting calculation of this displacement thickness. The laminar boundary layer development was calculated with inclined ellipsoids.

  3. Epitaxial thin films

    DOEpatents

    Hunt, Andrew Tye; Deshpande, Girish; Lin, Wen-Yi; Jan, Tzyy-Jiuan

    2006-04-25

    Epitatial thin films for use as buffer layers for high temperature superconductors, electrolytes in solid oxide fuel cells (SOFC), gas separation membranes or dielectric material in electronic devices, are disclosed. By using CCVD, CACVD or any other suitable deposition process, epitaxial films having pore-free, ideal grain boundaries, and dense structure can be formed. Several different types of materials are disclosed for use as buffer layers in high temperature superconductors. In addition, the use of epitaxial thin films for electrolytes and electrode formation in SOFCs results in densification for pore-free and ideal gain boundary/interface microstructure. Gas separation membranes for the production of oxygen and hydrogen are also disclosed. These semipermeable membranes are formed by high-quality, dense, gas-tight, pinhole free sub-micro scale layers of mixed-conducting oxides on porous ceramic substrates. Epitaxial thin films as dielectric material in capacitors are also taught herein. Capacitors are utilized according to their capacitance values which are dependent on their physical structure and dielectric permittivity. The epitaxial thin films of the current invention form low-loss dielectric layers with extremely high permittivity. This high permittivity allows for the formation of capacitors that can have their capacitance adjusted by applying a DC bias between their electrodes.

  4. Summary of experimentally determined facts concerning the behavior of the boundary layer and performance of boundary layer measurements. [considering sailing flight

    NASA Technical Reports Server (NTRS)

    Vanness, W.

    1978-01-01

    A summary report of boundary layer studies is presented. Preliminary results of experimental measurements show that: (1) A very thin layer (approximately 0.4 mm) of the boundary layer seems to be accelerated; (2) the static pressure of the outer flow does not remain exactly constant through the boundary layer; and (3) an oncoming boundary layer which is already turbulent at the suction point can again become laminar behind this point without being completely sucked off.

  5. Variability of Wind Speeds and Power over Europe

    NASA Astrophysics Data System (ADS)

    Tambke, J.; von Bremen, L.; de Decker, J.; Schmidt, M.; Steinfeld, G.; Wolff, J.-O.

    2010-09-01

    This study comprises two parts: First, we describe the vertical wind speed and turbulence profiles that result from our improved PBL scheme and compare it to observations and 1-dimensional approaches (Monin-Obukhov etc.). Second, we analyse the spatio-temporal correlations in our meso-scale simulations for the years 2004 to 2007 over entire Europe, with special focus on the Irish, North and Baltic Sea. 1.) Vertical Wind Speed Profiles The vertical wind profile above the sea has to be modelled with high accuracy for tip heights up to 160m in order to achieve precise wind resource assessments, to calculate loads and wakes of wind turbines as well as for reliable short-term wind power forecasts. We present an assessment of different models for wind profiles in unstable, neutral and stable thermal stratification. The meso-scale models comprise MM5, WRF and COSMO-EU (LME). Both COSMO-EU from the German Weather Service DWD and WRF use a turbulence closure of 2.5th order - and lead to similar results. Especially the limiting effect of low boundary layer heights on the wind shear in very stable stratification is well captured. In our new WRF-formulation for the mixing length in the Mellor-Yamada-Janjic (MYJ) parameterisation of the Planetary Boundary Layer (PBL-scheme), the master length scale itself depends on the Monin-Obukhov-Length as a parameter for the heat flux effects on the turbulent mixing. This new PBL-scheme shows a better performance for all weather conditions than the original MYJ-scheme. Apart from the low-boundary-layer-effect in very stable situations (which are seldom), standard Monin-Obukhov formulations in combination with the Charnock relation for the sea surface roughness show good agreement with the FINO1-data (German Bight). Interesting results were achieved with two more detailed micro-scale approaches: - the parameterization proposed by Pena, Gryning and Hasager [BLM 2008] that depends on the boundary layer height - our ICWP-model, were the flux of momentum through the air-sea interface is described by a common wave boundary layer with enhanced Charnock dynamics. 2.) Wind Field Variability Time series of wind speed and power from 400 potential offshore locations and 16,000 onshore sites in the 2020 and 2030 scenarios are part of the design basis of the EU-project www.OffshoreGrid.eu. This project investigates the grid integration of all planned offshore farms in Northern Europe and will serve as the basis for the "Blueprint for Offshore Grids" by the European Commission. The synchronous wind time series were calculated with the WRF-model. The simulation comprises four years and was validated with a number of wind measurements. We present detailed statistics of local, clustered and regional power production. The analysis quantifies spatial and temporal correlations, extreme events and ramps. Important results are the smoothing effects in a pan-European offshore grid. Key words: Offshore Wind Resource Assessment; Marine Meteorology; Wind Speed Profile; Marine Atmospheric Boundary Layer; Wind Variability, Spatio-temporal Correlation; Electricity Grid Integration

  6. Orbiter Entry Aeroheating Working Group Viscous CFD Boundary Layer Transition Trailblazer Solutions

    NASA Technical Reports Server (NTRS)

    Wood, William A.; Erickson, David W.; Greene, Francis A.

    2007-01-01

    Boundary layer transition correlations for the Shuttle Orbiter have been previously developed utilizing a two-layer boundary layer prediction technique. The particular two-layer technique that was used is limited to Mach numbers less than 20. To allow assessments at Mach numbers greater than 20, it is proposed to use viscous CFD to the predict boundary layer properties. This report addresses if the existing Orbiter entry aeroheating viscous CFD solutions, which were originally intended to be used for heat transfer rate predictions, adequately resolve boundary layer edge properties and if the existing two-layer results could be leveraged to reduce the number of needed CFD solutions. The boundary layer edge parameters from viscous CFD solutions are extracted along the wind side centerline of the Space Shuttle Orbiter at reentry conditions, and are compared with results from the two-layer boundary layer prediction technique. The differences between the viscous CFD and two-layer prediction techniques vary between Mach 6 and 18 flight conditions and Mach 6 wind tunnel conditions, and there is not a straightforward scaling between the viscous CFD and two-layer values. Therefore: it is not possible to leverage the existing two-layer Orbiter flight boundary layer data set as a substitute for a viscous CFD data set; but viscous CFD solutions at the current grid resolution are sufficient to produce a boundary layer data set suitable for applying edge-based boundary layer transition correlations.

  7. Origin and Constraints on Ilmenite-rich Partial Melt in the Lunar Lower Mantle

    NASA Astrophysics Data System (ADS)

    Mallik, A.; Fuqua, H.; Bremner, P. M.; Panovska, S.; Diamond, M. R.; Lock, S. J.; Nishikawa, Y.; Jiménez-Pérez, H.; Shahar, A.; Panero, W. R.; Lognonne, P. H.; Faul, U.

    2015-12-01

    Existence of a partially molten layer at the lunar core-mantle boundary has been proposed to explain the lack of observed far-side deep moonquakes, the observation of reflected seismic phases from deep moonquakes, and the dissipation of tidal energy within the lunar interior [1,2]. However, subsequent models explored the possibility that dissipation due to elevated temperatures alone can explain the observed dissipation factor (Q) and tidal love numbers [3]. Using thermo-chemical and dynamic modeling (including models of the early lunar mantle convection), we explore the hypothesis that an ilmenite-rich layer forms below crustal anorthosite during lunar magma ocean crystallization and may sink to the base of the mantle to create a partial melt layer at the lunar core-mantle boundary. Self-consistent physical parameters (including gravity, pressure, density, VP and Vs) are forward calculated for a well-mixed mantle with uniform bulk composition versus a mantle with preserved mineralogical stratigraphy from lunar magma ocean crystallization. These parameters are compared against observed mass, moment of inertia, real and imaginary parts of the Love numbers, and seismic travel times to further limit the acceptable models for the Moon. We have performed a multi-step grid search with over twenty thousand forward calculations varying thicknesses of chemically/mineralogically distinct layers within the Moon to evaluate if a partially molten layer at the base of the lunar mantle is well-constrained by the observed data. Furthermore, dynamic mantle modeling was employed on the best-fit model versions to determine the survivability of a partially molten layer at the core-mantle boundary. This work was originally initiated at the CIDER 2014 program. [1] Weber et al. (2011). Science 331(6015), 309-12. [2] Khan et al. (2014). JGR 119. [3] Nimmo et al. (2012). JGR 117, 1-11.

  8. Transport and outflow to the North Atlantic in the lower marine troposphere during ICARTT 2004

    NASA Astrophysics Data System (ADS)

    Davis, S. R.; Talbot, R.; Mao, H.

    2012-01-01

    An analysis of pollution plumes emitted from sources in the Northeastern US was based on observations from the International Consortium for Atmospheric Research on Transport and Transformation (ICARTT) 2004 field campaign. Particular attention was given to the relation of these plumes to coastal transport patterns in lower tropospheric layers throughout the Gulf of Maine (GOM) and their contribution to large-scale pollution outflow from the North American continent. Using measurements obtained during a series of flights of the NOAA WP-3D and the NASA DC-8, a unique quasi-lagrangian case study was conducted for a freshly emitted plume emanating from the New York City source region in late July 2004. The initial development of this plume stemmed from the accumulation of boundary layer pollutants within a coastal residual layer where weak synoptic forcing triggered its advection by mean southwesterly flow. As the plume tracked into the GOM, analysis showed that the plume layer vertical structure evolved into an internal boundary layer form, with signatures of steep vertical gradients in temperature, moisture and wind speed often resulting in periodic turbulence. This structure remained well-defined during the plume study, allowing for the detachment of the plume layer from the surface and thus minimal deposition and plume-sea surface exchange. In contrast, lateral mixing with other low-level plumes was significant during its transit and facilitated in part by persistent shear driven turbulence which further contributed to the high spatial variability in trace gas mixing ratios. The impact of the plume inland was assessed using observations from the AIRMAP air quality network. This impact was noticeably detected as a contribution to poor surface ozone conditions and significant elevations of other major pollutants to levels equaling the highest observed that summer. Further contributions to larger-scale outflow across the North Atlantic was also observed and analyzed.

  9. Characteristics of the turbulence in the stable boundary layer over complex terrain of the Loess Plateau, China

    NASA Astrophysics Data System (ADS)

    Liang, J.; Zhang, L.; Yuan, G.

    2017-12-01

    Accurate determination of surface turbulent fluxes in a stable boundary layer is of great practical importance in weather prediction and climate simulations, as well as applications related to air pollution. To gain an insight into the characteristics of turbulence in a stable boundary layer over the complex terrain of the Loess Plateau, we analyzed the data from the Semi-Arid Climate and Environment Observatory of Lanzhou University (SACOL). We proposed a method to identify and efficiently isolate nonstationary motions from turbulence series, and examined the characteristics of nonstationary motions (nonstationary motions refer to gusty events on a greater scale than local shear-generated turbulence). The occurrence frequency of nonstationary motions was found to depend on the mean flow, being more frequent in weak wind conditions and vanishing when the wind speed, U, was greater than 3.0 m s-1. When U exceeded the threshold value of 1.0 m s-1 for the gradient Richardson number Ri ≤ 0.3 and 1.5 m s-1 for Ri > 0.3, local shear-generated turbulence depended systematically on U with an average rate of 0.05 U. However, for the weak wind condition, neither the mean wind speed nor the stability was an important factor for local turbulence. Under the weak wind stable condition, affected by topography-induced nonstationary motions, the local turbulence was anisotropic with a strong horizontal fluctuation and a weak vertical fluctuation, resulting in weakened heat mixing in the vertical direction and stronger un-closure of energy. These findings accessed the validity of similarity theory in the stable boundary layer over complex terrain, and revealed one reason for the stronger un-closure of energy in the night.

  10. Diffusion model validation and interpretation of stable isotopes in river and lake ice

    USGS Publications Warehouse

    Ferrick, M.G.; Calkins, D.J.; Perron, N.M.; Cragin, J.H.; Kendall, C.

    2002-01-01

    The stable isotope stratigraphy of river- and lake-ice archives winter hydroclimatic conditions, and can potentially be used to identify changing water sources or to provide important insights into ice formation processes and growth rates. However, accurate interpretations rely on known isotopic fractionation during ice growth. A one-dimensional diffusion model of the liquid boundary layer adjacent to an advancing solid interface, originally developed to simulate solute rejection by growing crystals, has been used without verification to describe non-equilibrium fractionation during congelation ice growth. Results are not in agreement, suggesting the presence of important uncertainties. In this paper we seek validation of the diffusion model for this application using large-scale laboratory experiments with controlled freezing rates and frequent sampling. We obtained consistent, almost constant, isotopic boundary layer thicknesses over a representative range of ice growth rates on both quiescent and well-mixed water. With the 18O boundary layer thickness from the laboratory, the model successfully quantified reduced river-ice growth rates relative to those of a nearby lake. These results were more representative and easier to obtain than those of a conventional thermal ice-growth model. This diffusion model validation and boundary layer thickness determination provide a powerful tool for interpreting the stable isotope stratigraphy of floating ice. The laboratory experiment also replicated successive fractionation events in response to a freeze-thaw-refreeze cycle, providing a mechanism for apparent ice fractionation that exceeds equilibrium. Analysis of the composition of snow ice and frazil ice in river and lake cores indicated surprising similarities between these ice forms. Published in 2002 by John Wiley & Sons, Ltd.

  11. Calculation methods for compressible turbulent boundary layers, 1976

    NASA Technical Reports Server (NTRS)

    Bushnell, D. M.; Cary, A. M., Jr.; Harris, J. E.

    1977-01-01

    Equations and closure methods for compressible turbulent boundary layers are discussed. Flow phenomena peculiar to calculation of these boundary layers were considered, along with calculations of three dimensional compressible turbulent boundary layers. Procedures for ascertaining nonsimilar two and three dimensional compressible turbulent boundary layers were appended, including finite difference, finite element, and mass-weighted residual methods.

  12. Observation and modelling of fog at Cold Lake, Alberta, Canada

    NASA Astrophysics Data System (ADS)

    Wu, Di; Boudala, Faisal; Weng, Wensong; Taylor, Peter A.; Gultepe, Ismail; Isaac, George A.

    2017-04-01

    Climatological data indicate that the Cold Lake, Alberta airport location (CYOD, 54.4°N, 110.3°W) is often affected by various low cloud and fog conditions. In order to better understand these conditions, Environment and Climate Change Canada (ECCC), in cooperation with the Canadian Department of National Defense (DND), installed a number of specialized instruments. The ground based instruments include a Vaisala PWD22 present weather sensor, a multi-channel microwave profiling radiometer (MWR) and a Jenoptik CHM15k ceilometer. The focus here will be on understanding the micro-physical and dynamical conditions within the boundary layer, on the surface and aloft that lead to the occurrence of fog using a high resolution 1-D boundary-layer model, ground based measurements, Geostationary Operational Environmental Satellite (GOES) data and predictions from the Canadian 2.5 km resolution NWP model (HRDPS - High Resolution Deterministic Prediction System ). Details of the 1-D model will be presented. The condensation of water vapour into droplets and the formation of fog in the Earth's atmospheric boundary layer can involve a complex balance between vertical turbulent mixing of heat and water vapour, cloud micro-physical processes and radiative transfers of heat. It is a phenomenon which has been studied for many years in a variety of contexts. On land, surface cooling via long wave radiation at night is often the trigger and a number of 1-D (one dimensional, height and time dependent) radiative fog models have been developed. Our turbulence closure includes the turbulent kinetic energy equation but we prefer to specify a height, roughness Rossby number and local stability dependent, "master" length scale instead of somewhat empirical dissipation or similar equations. Results show that low cloud and fog can develop, depending on initial profiles of wind, temperature and mixing ratio, land surface interactions and solar radiation. Preliminary analysis of Cold Lake observational data indicates that the surface-based in situ measurements agree well with aviation weather observation METAR reports and are comparable with model simulations. Both the HRDPS model and microwave radiometry data indicate low level fog and cloud formation but the depths and intensities differ considerably depending on environmental conditions. Causes for this are under investigation with the high resolution 1-D boundary-layer model.

  13. Comparison of Four Mixed Layer Mesoscale Parameterizations and the Equation for an Arbitrary Tracer

    NASA Technical Reports Server (NTRS)

    Canuto, V. M.; Dubovikov, M. S.

    2011-01-01

    In this paper we discuss two issues, the inter-comparison of four mixed layer mesoscale parameterizations and the search for the eddy induced velocity for an arbitrary tracer. It must be stressed that our analysis is limited to mixed layer mesoscales since we do not treat sub-mesoscales and small turbulent mixing. As for the first item, since three of the four parameterizations are expressed in terms of a stream function and a residual flux of the RMT formalism (residual mean theory), while the fourth is expressed in terms of vertical and horizontal fluxes, we needed a formalism to connect the two formulations. The standard RMT representation developed for the deep ocean cannot be extended to the mixed layer since its stream function does not vanish at the ocean's surface. We develop a new RMT representation that satisfies the surface boundary condition. As for the general form of the eddy induced velocity for an arbitrary tracer, thus far, it has been assumed that there is only the one that originates from the curl of the stream function. This is because it was assumed that the tracer residual flux is purely diffusive. On the other hand, we show that in the case of an arbitrary tracer, the residual flux has also a skew component that gives rise to an additional bolus velocity. Therefore, instead of only one bolus velocity, there are now two, one coming from the curl of the stream function and other from the skew part of the residual flux. In the buoyancy case, only one bolus velocity contributes to the mean buoyancy equation since the residual flux is indeed only diffusive.

  14. Are winds in cities always slower than in the countryside? Modelling the Urban Wind Island Effect

    NASA Astrophysics Data System (ADS)

    Droste, Arjan; Steeneveld, Gert-Jan

    2017-04-01

    Though the Urban Heat Island has been extensively studied, relatively little has been documented about differences in wind between the city as a whole and the countryside. Urban winds are difficult to capture in both observations and modelling, due to the complex urban canyon and neighbourhood geometry. This study uses a straightforward mixed-layer model (Tennekes & Driedonks, 1981) to investigate the contrast between the diurnal cycle of wind in the urban and the rural environment. The model contains one urban and one rural column, to identify differences in wind patterns between city and countryside under equal geostrophic forcing. The model has been evaluated against rural observations from the 213 m. Cabauw tower (the Netherlands), and the urban observations from the BUBBLE campaign (Basel, Rotach et al., 2005). The influence of the urban fabric on the wind is investigated by varying the surface underneath the column model using the 10 urban Local Climate Zones, thereby altering building height, fraction of impervious surface, and initial boundary-layer depth. First results show that for high initial urban boundary-layer depths compared to the rural boundary-layer depth, the urban column can be much windier than its rural counterpart: i.e. the urban Wind Island Effect. The effect appears to be most prominent in the morning and the late afternoon (up to 1 m/s), for Local Climate Zones with lower buildings (3 or 7). BUBBLE observations confirm the timing of the Wind Island Effect, though with weaker magnitude.

  15. Interpreting Lidar Measurements to Better Estimate Surface PM2.S in Study Regions of DISCOVER-AQ

    NASA Technical Reports Server (NTRS)

    Chu, D. A.; Ferrare, Richard; Welton, Judd; Hostetler, Chris; Hair, John; Szykman, James; Al-Saadi, Jay; Tsai, Tzuchin

    2011-01-01

    The use of satellite AOD data to estimate surface PM2.5 has been broadly studied in various regions. Some showed good results while some showed relatively poor with the simple relationship between AOD and PM2.5. The key factor is the aerosol vertical distribution. Lidar extinction profiles provide insights into the aerosol mixing not only in the boundary layer but also quantifying residual aerosol abundance above boundary layer with e-folding scale height. The normalizing AOD by hazy layer height is proven better in correlating with PM2.5. In other words, extinction measurements near the surface can be a proxy for surface PM2.5. In this study, we will use NASA airborne HSRL (High Spectral Resolution Lidar) during SJV2007 (San Joaquin Valley, February 2007) and surface MPLNet (Micropulse Lidar Network) at GSFC between 2007 and 2010 to characterize the relationship for the DISCOVER-AQ (Deriving Information on Surface Conditions from COlumn and VERtically Resolved Observations Relevant to Air Quality) field experiments; the first over Baltimore-Washington was conducted in July 2011.

  16. Mass transport at rotating disk electrodes: effects of synthetic particles and nerve endings.

    PubMed

    Chiu, Veronica M; Lukus, Peter A; Doyle, Jamie L; Schenk, James O

    2011-11-01

    An unstirred layer (USL) exists at the interface of solids with solutions. Thus, the particles in brain tissue preparations possess a USL as well as at the surface of a rotating disk electrode (RDE) used to measure chemical fluxes. Time constraints for observing biological kinetics based on estimated thicknesses of USLs at the membrane surface in real samples of nerve endings were estimated. Liposomes, silica, and Sephadex were used separately to model the tissue preparation particles. Within a solution stirred by the RDE, both diffusion and hydrodynamic boundary layers are formed. It was observed that the number and size of particles decreased the following: the apparent diffusion coefficient excluding Sephadex, boundary layer thicknesses excluding silica, sensitivity excluding diluted liposomes (in agreement with results from other laboratories), limiting current potentially due to an increase in the path distance, and mixing time. They have no effect on the detection limit (6 ± 2 nM). The RDE kinetically resolves transmembrane transport with a timing of approximately 30 ms. Copyright © 2011 Elsevier Inc. All rights reserved.

  17. Viscous-inviscid calculations of jet entrainment effects on the subsonic flow over nozzle afterbodies

    NASA Technical Reports Server (NTRS)

    Wilmoth, R. G.

    1980-01-01

    A viscous-inviscid interaction model was developed to account for jet entrainment effects in the prediction of the subsonic flow over nozzle afterbodies. The model is based on the concept of a weakly interacting shear layer in which the local streamline deflections due to entrainment are accounted for by a displacement-thickness type of correction to the inviscid plume boundary. The entire flow field is solved in an iterative manner to account for the effects on the inviscid external flow of the turbulent boundary layer, turbulent mixing and chemical reactions in the shear layer, and the inviscid jet exhaust flow. The components of the computational model are described, and numerical results are presented to illustrate the interactive effects of entrainment on the overall flow structure. The validity of the model is assessed by comparisons with data obtained form flow-field measurements on cold-air jet exhausts. Numerical results and experimental data are also given to show the entrainment effects on nozzle boattail drag under various jet exhaust and free-stream flow conditions.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coulter, R.L.; Klazura, J.; Lesht, B.M.

    The Argonne Boundary Layer Experiments (ABLE) facility, located in south central Kansas, east of Wichita, is devoted primarily to investigations of and within the planetary boundary layer (PBL), including the dynamics of the mixed layer during both day and night; effects of varying land use and landform; the interactive role of precipitation, runoff, and soil moisture; storm development; and energy budgets on scales of 10 to 100 km. With an expected lifetime of 10--15 years, the facility is well situated to observe the effects of gradual urbanization on PBL dynamics and structure as the Wichita urban area expands to themore » east and several small municipalities located within the study area expand. Combining the continuous measurements of ABLE with (1) ancillary continuous measurements of, for example, the Atmospheric Radiation Measurement (ARM) program and the Global Energy Water Cycle Experiment (GEWEX) programs and with (2) shorter, more intensive studies within ABLE, such as the Cooperative Atmosphere Surface Exchange Studies (CASES) Program, allows hypothesized features of urbanization, including heat island effects, precipitation enhancement, and modification of the surface energy budget partitioning, to be studied.« less

  19. Atmospheric conditions and transport patterns associated with high and low summer ozone levels in the lower troposphere and the boundary layer over the eastern Mediterranean

    NASA Astrophysics Data System (ADS)

    Kalabokas, Pavlos; Cammas, Jean-Pierre; Thouret, Valerie; Volz-Thomas, Andreas; Boulanger, Damien; Repapis, Christos

    2016-04-01

    Vertical summertime ozone profiles measured in the period 1994-2008 in the framework of the MOZAIC project over the Eastern Mediterranean basin (especially over the Cairo and Tel-Aviv airports) were analysed, focusing at first in the lower troposphere (1.5-5 km). The vertical profiles collected during extreme days with very high or very low tropospheric ozone mixing ratios have been examined together with the average profiles of relative humidity, carbon monoxide, temperature gradient, wind speed and the corresponding composite maps of geopotential heights at 850 hPa. As a next step, average profiles corresponding, respectively, to the highest and the lowest ozone mixing ratios for the 0-1.5km layer over Cairo in summer are examined along with their corresponding composite maps of geopotential height (and anomalies), vertical velocity (and anomalies), specific humidity anomalies, precipitable water anomalies, air temperature anomalies and wind speed at 850 hPa as well as the corresponding backward trajectories. Based on the above analysis, it turns out that the lower-tropospheric ozone variability over the eastern Mediterranean area is controlled mainly by the synoptic meteorological conditions, combined with local topographical and meteorological features. In particular, the highest ozone concentrations in the lower troposphere and subsequently in the boundary layer are associated with large-scale subsidence of ozone-rich air masses from the upper troposphere under anticyclonic conditions while the lowest ozone concentrations are associated with low pressure conditions inducing uplifting of boundary-layer air, poor in ozone and rich in relative humidity, to the lower troposphere. Also, during the 7% highest ozone days at the 0-1.5km layer over Cairo, very high ozone concentrations of about 80 ppb on average are observed from the surface up to 4-5 km altitude. During the highest ozone days over both airports for the 1.5-5km layer and over Cairo over the 0-1.5km layer, there are extended regions of strong subsidence in the eastern Mediterranean but also in eastern and northern Europe and over these regions the atmosphere is dryer than average. The results of this study will be used within the framework of the MACC project. References Kalabokas, P. D., Cammas, J.-P., Thouret, V., Volz-Thomas, A., Boulanger, D. and Repapis C.C. 2013. Examination of the atmospheric conditions associated with high and low summer ozone levels in the lower troposphere over the eastern Mediterranean. Atmos. Chem. Phys. 13, 10339-10352. DOI: http://dx.doi.org/10.5194/acp-13-10339-2013 Kalabokas P. D., Thouret V., Cammas J.-P., Volz-thomas A., Boulanger D., Repapis C.C., 2015. The geographical distribution of meteorological parameters associated with high and low summer ozone levels in the lower troposphere and the boundary layer over the eastern Mediterranean (Cairo case), Tellus B, 67, 27853, http://dx.doi.org/10.3402/tellusb.v67.27853.

  20. Pathfinder: applying graph theory to consistent tracking of daytime mixed layer height with backscatter lidar

    NASA Astrophysics Data System (ADS)

    de Bruine, Marco; Apituley, Arnoud; Donovan, David Patrick; Klein Baltink, Hendrik; Jorrit de Haij, Marijn

    2017-05-01

    The height of the atmospheric boundary layer or mixing layer is an important parameter for understanding the dynamics of the atmosphere and the dispersion of trace gases and air pollution. The height of the mixing layer (MLH) can be retrieved, among other methods, from lidar or ceilometer backscatter data. These instruments use the vertical backscatter lidar signal to infer MLHL, which is feasible because the main sources of aerosols are situated at the surface and vertical gradients are expected to go from the aerosol loaded mixing layer close to the ground to the cleaner free atmosphere above. Various lidar/ceilometer algorithms are currently applied, but accounting for MLH temporal development is not always well taken care of. As a result, MLHL retrievals may jump between different atmospheric layers, rather than reliably track true MLH development over time. This hampers the usefulness of MLHL time series, e.g. for process studies, model validation/verification and climatology. Here, we introduce a new method pathfinder, which applies graph theory to simultaneously evaluate time frames that are consistent with scales of MLH dynamics, leading to coherent tracking of MLH. Starting from a grid of gradients in the backscatter profiles, MLH development is followed using Dijkstra's shortest path algorithm (Dijkstra, 1959). Locations of strong gradients are connected under the condition that subsequent points on the path are limited to a restricted vertical range. The search is further guided by rules based on the presence of clouds and residual layers. After being applied to backscatter lidar data from Cabauw, excellent agreement is found with wind profiler retrievals for a 12-day period in 2008 (R2 = 0.90) and visual judgment of lidar data during a full year in 2010 (R2 = 0.96). These values compare favourably to other MLHL methods applied to the same lidar data set and corroborate more consistent MLH tracking by pathfinder.

Top