Science.gov

Sample records for mixed galaxy mergers

  1. Magnetic fields during galaxy mergers

    NASA Astrophysics Data System (ADS)

    Rodenbeck, Kai; Schleicher, Dominik R. G.

    2016-09-01

    Galaxy mergers are expected to play a central role for the evolution of galaxies and may have a strong effect on their magnetic fields. We present the first grid-based 3D magnetohydrodynamical simulations investigating the evolution of magnetic fields during merger events. For this purpose, we employed a simplified model considering the merger event of magnetized gaseous disks in the absence of stellar feedback and without a stellar or dark matter component. We show that our model naturally leads to the production of two peaks in the evolution of the average magnetic field strength within 5 kpc, within 25 kpc, and on scales in between 5 and 25 kpc. The latter is consistent with the peak in the magnetic field strength previously reported in a merger sequence of observed galaxies. We show that the peak on the galactic scale and in the outer regions is most likely due to geometrical effects, as the core of one galaxy enters the outskirts of the other one. In addition, the magnetic field within the central ~5 kpc is physically enhanced, which reflects the enhancement in density that is due to efficient angular momentum transport. We conclude that high-resolution observations of the central regions will be particularly relevant for probing the evolution of magnetic field structures during merger events.

  2. Orbital dynamics in galaxy mergers

    NASA Astrophysics Data System (ADS)

    Hoffman, Loren

    In the favored vacuum energy + cold dark matter (ACDM) cosmology, galaxies form through a hierarchical merging process. Mergers between comparable-mass sys tems are qualitatively different from the ongoing accretion of small objects by much larger ones, in that they can radically transform the nature of the merging objects, e.g. through violent relaxation of the stars and dark matter, triggered starbursts, and quasar activity. This thesis covers two phenomena unique to major galaxy mergers: the formation of supermassive black hole (SMBH) binary and triple systems, and the transformation of the stellar orbit structure through violent relaxation, triggered gas inflow, and star formation. In a major merger, the SMBHs can spiral in and form a bound binary in less than a Hubble time. If the binary lifetime exceeds the typical time between mergers, then triple black hole (BH) systems may form. We study the statistics of close triple-SMBH encounters in galactic nuclei by computing a series of three-body orbits with physically-motivated initial conditions appropriate for giant elliptical galaxies. Our simulations include a smooth background potential consisting of a stellar bulge plus a dark matter halo, drag forces due to gravitational radiation and dynamical friction on the stars and dark matter, and a simple model of the time evolution of the inner density profile under heating and mass ejection by the SMBHs. We find that the binary pair coalesces as a result of repeated close encounters in ~85% of our runs. In about 40% of the runs the lightest BH is left wandering through the galactic halo or escapes the galaxy altogether. The triple systems typically scour out cores with mass deficits ~1-2 times their total mass. The high coalescence rate and prevalence of very high-eccentricity orbits could provide interesting signals for the future Laser Interferometer Space Antenna (LISA). Our study of remnant orbit structure involved 42 disk-disk mergers at various gas fractions

  3. Mixing in massive stellar mergers

    NASA Astrophysics Data System (ADS)

    Gaburov, E.; Lombardi, J. C.; Portegies Zwart, S.

    2008-01-01

    The early evolution of dense star clusters is possibly dominated by close interactions between stars, and physical collisions between stars may occur quite frequently. Simulating a stellar collision event can be an intensive numerical task, as detailed calculations of this process require hydrodynamic simulations in three dimensions. We present a computationally inexpensive method in which we approximate the merger process, including shock heating, hydrodynamic mixing and mass loss, with a simple algorithm based on conservation laws and a basic qualitative understanding of the hydrodynamics of stellar mergers. The algorithm relies on Archimedes' principle to dictate the distribution of the fluid in the stable equilibrium situation. We calibrate and apply the method to mergers of massive stars, as these are expected to occur in young and dense star clusters. We find that without the effects of microscopic mixing, the temperature and chemical composition profiles in a collision product can become double-valued functions of enclosed mass. Such an unphysical situation is mended by simulating microscopic mixing as a post-collision effect. In this way we find that head-on collisions between stars of the same spectral type result in substantial mixing, while mergers between stars of different spectral type, such as type B and O stars (~10 and ~40Msolar respectively), are subject to relatively little hydrodynamic mixing. Our algorithm has been implemented in an easy-to-use software package, which we have made publicly available for download.1

  4. Cosmic Collisions: Galaxy Mergers and Evolution

    NASA Astrophysics Data System (ADS)

    Trouille, Laura; Willett, Kyle; Masters, Karen; Lintott, Christopher; Whyte, Laura; Lynn, Stuart; Tremonti, Christina A.

    2014-08-01

    Over the years evidence has mounted for a significant mode of galaxy evolution via mergers. This process links gas-rich, spiral galaxies; starbursting galaxies; active galactic nuclei (AGN); post-starburst galaxies; and gas-poor, elliptical galaxies, as objects representing different phases of major galaxy mergers. The post-starburst phase is particularly interesting because nearly every galaxy that evolves from star-forming to quiescent must pass through it. In essence, this phase is a sort of galaxy evolution “bottleneck” that indicates that a galaxy is actively evolving through important physical transitions. In this talk I will present the results from the ‘Galaxy Zoo Quench’ project - using post-starburst galaxies to place observational constraints on the role of mergers and AGN activity in quenching star formation. `Quench’ is the first fully collaborative research project with Zooniverse citizen scientists online; engaging the public in all phases of research, from classification to data analysis and discussion to writing the article and submission to a refereed journal.

  5. Intermediate-age globular clusters in four galaxy merger remnants

    SciTech Connect

    Trancho, Gelys; Miller, Bryan W.; Schweizer, François; Burdett, Daniel P.; Palamara, David

    2014-08-01

    We present the results of combining Hubble Space Telescope optical photometry with ground-based K{sub s} -band photometry from the Gemini imagers NIRI and FLAMINGOS-I to study the globular cluster (GC) populations in four early-type galaxies that are candidate remnants of recent mergers (NGC 1700, NGC 2865, NGC 4382, and NGC 7727). These galaxies were chosen based on their blue colors and fine structure, such as shells and ripples that are indicative of past interactions. We fit the combined VIK{sub s} GC data with simple toy models of mixed cluster populations that contain three subpopulations of different age and metallicity. The fits, done via chi-squared mapping of the parameter space, yield clear evidence for the presence of intermediate-age clusters in each galaxy. We find that the ages of ∼1-2 Gyr for these GC subpopulations are consistent with the previously estimated merger ages for the host galaxies.

  6. Intermediate-age Globular Clusters in Four Galaxy Merger Remnants

    NASA Astrophysics Data System (ADS)

    Trancho, Gelys; Miller, Bryan W.; Schweizer, François; Burdett, Daniel P.; Palamara, David

    2014-08-01

    We present the results of combining Hubble Space Telescope optical photometry with ground-based Ks -band photometry from the Gemini imagers NIRI and FLAMINGOS-I to study the globular cluster (GC) populations in four early-type galaxies that are candidate remnants of recent mergers (NGC 1700, NGC 2865, NGC 4382, and NGC 7727). These galaxies were chosen based on their blue colors and fine structure, such as shells and ripples that are indicative of past interactions. We fit the combined VIKs GC data with simple toy models of mixed cluster populations that contain three subpopulations of different age and metallicity. The fits, done via chi-squared mapping of the parameter space, yield clear evidence for the presence of intermediate-age clusters in each galaxy. We find that the ages of ~1-2 Gyr for these GC subpopulations are consistent with the previously estimated merger ages for the host galaxies.

  7. Ultraluminous Infrared Mergers: Elliptical Galaxies in Formation?

    NASA Astrophysics Data System (ADS)

    Genzel, R.; Tacconi, L. J.; Rigopoulou, D.; Lutz, D.; Tecza, M.

    2001-12-01

    We report high-quality near-IR spectroscopy of 12 ultraluminous infrared galaxy mergers (ULIRGs). Our new VLT and Keck data provide ~0.5" resolution, stellar and gas kinematics of these galaxies, most of which are compact systems in the last merger stages. We confirm that ULIRG mergers are ``ellipticals in formation.'' Random motions dominate their stellar dynamics, but significant rotation is common. Gasdynamics and stellar dynamics are decoupled in most systems. ULIRGs fall on or near the fundamental plane of hot stellar systems, and especially on its less evolution-sensitive, reff-σ projection. The ULIRG velocity dispersion distribution, their location in the fundamental plane, and their distribution of vrotsini/σ closely resemble those of intermediate-mass (~L*), elliptical galaxies with moderate rotation. As a group ULIRGs do not resemble giant ellipticals with large cores and little rotation. Our results are in good agreement with other recent studies indicating that disky ellipticals with compact cores or cusps can form through dissipative mergers of gas-rich disk galaxies while giant ellipticals with large cores have a different formation history. Based on observations at the European Southern Observatory, Chile (ESO 65.N-0266, 65.N-0289), and on observations at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, The University of California, and the National Aeronautics and Space Administration. The Keck Observatory was made possible by the general financial support by the W. M. Keck Foundation.

  8. DYNAMICAL MODELING OF GALAXY MERGERS USING IDENTIKIT

    SciTech Connect

    Privon, G. C.; Evans, A. S.; Barnes, J. E.; Hibbard, J. E.; Yun, M. S.; Mazzarella, J. M.; Armus, L.; Surace, J.

    2013-07-10

    We present dynamical models of four interacting systems: NGC 5257/8, The Mice, the Antennae, and NGC 2623. The parameter space of the encounters are constrained using the Identikit model-matching and visualization tool. Identikit utilizes hybrid N-body and test particle simulations to enable rapid exploration of the parameter space of galaxy mergers. The Identikit-derived matches of these systems are reproduced with self-consistent collisionless simulations which show very similar results. The models generally reproduce the observed morphology and H I kinematics of the tidal tails in these systems with reasonable properties inferred for the progenitor galaxies. The models presented here are the first to appear in the literature for NGC 5257/8 and NGC 2623, and The Mice and the Antennae are compared with previously published models. Based on the assumed mass model and our derived initial conditions, the models indicate that the four systems are currently being viewed 175-260 Myr after first passage and cover a wide range of merger stages. In some instances there are mismatches between the models and the data (e.g., in the length of a tail); these are likely due to our adoption of a single mass model for all galaxies. Despite the use of a single mass model, these results demonstrate the utility of Identikit in constraining the parameter space for galaxy mergers when applied to real data.

  9. GRAVITATIONAL FRAGMENTATION IN GALAXY MERGERS: A STABILITY CRITERION

    SciTech Connect

    Escala, Andres; Becerra, Fernando; Del Valle, Luciano; Castillo, Esteban

    2013-01-20

    We study the gravitational stability of gaseous streams in the complex environment of a galaxy merger, because mergers are known to be places of ongoing massive cluster formation and bursts of star formation. We find an analytic stability parameter for the case of gaseous streams orbiting around the merger remnant. We test our stability criterion using hydrodynamic simulations of galaxy mergers and obtain satisfactory results. We find that our criterion successfully predicts the streams that will be gravitationally unstable to fragmentation into clumps.

  10. MOST SUBMILLIMETER GALAXIES ARE MAJOR MERGERS

    SciTech Connect

    Engel, H.; Tacconi, L. J.; Davies, R. I.; Genzel, R.; Neri, R.; Cox, P.; Smail, I.; Chapman, S. C.; Greve, T. R.; Ivison, R. J.; Blain, A.; Bertoldi, F.; Omont, A.

    2010-11-20

    We analyze subarcsecond resolution interferometric CO line data for 12 submillimeter-luminous (S{sub 850{sub {mu}m}} {>=} 5 mJy) galaxies with redshifts between 1 and 3, presenting new data for 4 of them. Morphologically and kinematically, most of the 12 systems appear to be major mergers. Five of them are well-resolved binary systems, and seven are compact or poorly resolved. Of the four binary systems for which mass measurements for both separate components can be made, all have mass ratios of 1:3 or closer. Furthermore, comparison of the ratio of compact to binary systems with that observed in local ULIRGs indicates that at least a significant fraction of the compact submillimeter-luminous galaxies (SMGs) must also be late-stage mergers. In addition, the dynamical and gas masses we derive are most consistent with the lower end of the range of stellar masses published for these systems, favoring cosmological models in which SMGs result from mergers. These results all point to the same conclusion that most of the bright SMGs with L{sub IR} {approx}> 5 x 10{sup 12} L{sub sun} are likely major mergers.

  11. Brightest Cluster Galaxies and Dry Mergers

    NASA Astrophysics Data System (ADS)

    Deng, Z. G.; Liu, F. S.; Xia, X. Y.; Mao, S.

    2008-01-01

    Photometric properties of the early type Brightest Cluster Galaxies (BCGs) has been investigated for a sample of 85 BCGs with redshifts less than 0.1 selected from the C4 cluster catalogue. The results are compared to those obtained from a sample of elliptical galaxies chosen with similar apparent magnitude and redshift ranges. We find that BCGs have steeper size-luminosity (R~Lα) and Faber-Jackson (L~σβ) relations than the bulk of early type galaxies. The differences in the scaling relations suggest that the dynamical structure and formation route of BCGs may be different from the bulk of early type galaxies, in particular dry (dissipationless) mergers may play a more important role in their formation.

  12. HUBBLE CAPTURES MERGER BETWEEN QUASAR AND GALAXY

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This NASA Hubble Space Telescope image shows evidence fo r a merger between a quasar and a companion galaxy. This surprising result might require theorists to rethink their explanations for the nature of quasars, the most energetic objects in the universe. The bright central object is the quasar itself, located several billion light-years away. The two wisps on the (left) of the bright central object are remnants of a bright galaxy that have been disrupted by the mutual gravitational attraction between the quasar and the companion galaxy. This provides clear evidence for a merger between the two objects. Since their discovery in 1963, quasars (quasi-stellar objects) have been enigmatic because they emit prodigious amounts of energy from a very compact source. The most widely accepted model is that a quasar is powered by a supermassive black hole in the core of a galaxy. These new observations proved a challenge for theorists as no current models predict the complex quasar interactions unveiled by Hubble. The image was taken with the Wide Field Planetary Camera-2. Credit: John Bahcall, Institute for Advanced Study, NASA.

  13. Galaxy mergers and gravitational lens statistics

    NASA Technical Reports Server (NTRS)

    Rix, Hans-Walter; Maoz, Dan; Turner, Edwin L.; Fukugita, Masataka

    1994-01-01

    We investigate the impact of hierarchical galaxy merging on the statistics of gravitational lensing of distant sources. Since no definite theoretical predictions for the merging history of luminous galaxies exist, we adopt a parameterized prescription, which allows us to adjust the expected number of pieces comprising a typical present galaxy at z approximately 0.65. The existence of global parameter relations for elliptical galaxies and constraints on the evolution of the phase space density in dissipationless mergers, allow us to limit the possible evolution of galaxy lens properties under merging. We draw two lessons from implementing this lens evolution into statistical lens calculations: (1) The total optical depth to multiple imaging (e.g., of quasars) is quite insensitive to merging. (2) Merging leads to a smaller mean separation of observed multiple images. Because merging does not reduce drastically the expected lensing frequency, it cannot make lambda-dominated cosmologies compatible with the existing lensing observations. A comparison with the data from the Hubble Space Telescope (HST) Snapshot Survey shows that models with little or no evolution of the lens population are statistically favored over strong merging scenarios. A specific merging scenario proposed to Toomre can be rejected (95% level) by such a comparison. Some versions of the scenario proposed by Broadhurst, Ellis, & Glazebrook are statistically acceptable.

  14. Galaxy Zoo: Mergers - Dynamical models of interacting galaxies

    NASA Astrophysics Data System (ADS)

    Holincheck, Anthony J.; Wallin, John F.; Borne, Kirk; Fortson, Lucy; Lintott, Chris; Smith, Arfon M.; Bamford, Steven; Keel, William C.; Parrish, Michael

    2016-06-01

    The dynamical history of most merging galaxies is not well understood. Correlations between galaxy interaction and star formation have been found in previous studies, but require the context of the physical history of merging systems for full insight into the processes that lead to enhanced star formation. We present the results of simulations that reconstruct the orbit trajectories and disturbed morphologies of pairs of interacting galaxies. With the use of a restricted three-body simulation code and the help of citizen scientists, we sample 105 points in parameter space for each system. We demonstrate a successful recreation of the morphologies of 62 pairs of interacting galaxies through the review of more than 3 million simulations. We examine the level of convergence and uniqueness of the dynamical properties of each system. These simulations represent the largest collection of models of interacting galaxies to date, providing a valuable resource for the investigation of mergers. This paper presents the simulation parameters generated by the project. They are now publicly available in electronic format at http://data.galaxyzoo.org/mergers.html. Though our best-fitting model parameters are not an exact match to previously published models, our method for determining uncertainty measurements will aid future comparisons between models. The dynamical clocks from our models agree with previous results of the time since the onset of star formation from starburst models in interacting systems and suggest that tidally induced star formation is triggered very soon after closest approach.

  15. Recent Galaxy Mergers and Residual Star Formation of Red Sequence Galaxies in Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    Sheen, Yun-Kyeong; Yi, Sukyoung K.; Ree, Chang H.; Jaffé, Yara; Demarco, Ricardo; Treister, Ezequiel

    2016-08-01

    This study explored the Galaxy Evolution Explorer ultraviolet (UV) properties of optical red sequence galaxies in four rich Abell clusters at z≤slant 0.1. In particular, we tried to find a hint of merger-induced recent star formation (RSF) in red sequence galaxies. Using the NUV - r\\prime colors of the galaxies, RSF fractions were derived based on various criteria for post-merger galaxies and normal galaxies. Following k-correction, about 36% of the post-merger galaxies were classified as RSF galaxies with a conservative criterion (NUV - r\\prime ≤slant 5), and that number was doubled (˜72%) when using a generous criterion (NUV - r\\prime ≤slant 5.4). The trend was the same when we restricted the sample to galaxies within 0.5 × R 200. Post-merger galaxies with strong UV emission showed more violent, asymmetric features in the deep optical images. The RSF fractions did not show any trend along the clustocentric distance within R 200. We performed a Dressler–Shectman test to check whether the RSF galaxies had any correlation with the substructures in the galaxy clusters. Within R 200 of each cluster, the RSF galaxies did not appear to be preferentially related to the clusters’ substructures. Our results suggested that only 30% of RSF red sequence galaxies show morphological hints of recent galaxy mergers. This implies that internal processes (e.g., stellar mass loss or hot gas cooling) for the supply of cold gas to early-type galaxies may play a significant role in the residual star formation of early-type galaxies at a recent epoch.

  16. Recent Galaxy Mergers and Residual Star Formation of Red Sequence Galaxies in Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    Sheen, Yun-Kyeong; Yi, Sukyoung K.; Ree, Chang H.; Jaffé, Yara; Demarco, Ricardo; Treister, Ezequiel

    2016-08-01

    This study explored the Galaxy Evolution Explorer ultraviolet (UV) properties of optical red sequence galaxies in four rich Abell clusters at z≤slant 0.1. In particular, we tried to find a hint of merger-induced recent star formation (RSF) in red sequence galaxies. Using the NUV - r\\prime colors of the galaxies, RSF fractions were derived based on various criteria for post-merger galaxies and normal galaxies. Following k-correction, about 36% of the post-merger galaxies were classified as RSF galaxies with a conservative criterion (NUV - r\\prime ≤slant 5), and that number was doubled (˜72%) when using a generous criterion (NUV - r\\prime ≤slant 5.4). The trend was the same when we restricted the sample to galaxies within 0.5 × R 200. Post-merger galaxies with strong UV emission showed more violent, asymmetric features in the deep optical images. The RSF fractions did not show any trend along the clustocentric distance within R 200. We performed a Dressler-Shectman test to check whether the RSF galaxies had any correlation with the substructures in the galaxy clusters. Within R 200 of each cluster, the RSF galaxies did not appear to be preferentially related to the clusters’ substructures. Our results suggested that only 30% of RSF red sequence galaxies show morphological hints of recent galaxy mergers. This implies that internal processes (e.g., stellar mass loss or hot gas cooling) for the supply of cold gas to early-type galaxies may play a significant role in the residual star formation of early-type galaxies at a recent epoch.

  17. Stellar velocity dispersion in dissipative galaxy mergers with star formation

    SciTech Connect

    Stickley, Nathaniel R.; Canalizo, Gabriela

    2014-05-01

    In order to better understand stellar dynamics in merging systems, such as NGC 6240, we examine the evolution of central stellar velocity dispersion (σ{sub *}) in dissipative galaxy mergers using a suite of binary disk merger simulations that include feedback from stellar formation and active galactic nuclei (AGNs). We find that σ{sub *} undergoes the same general stages of evolution that were observed in our previous dissipationless simulations: coherent oscillation, then phase mixing, followed by dynamical equilibrium. We also find that measurements of σ{sub *} that are based only upon the youngest stars in simulations consistently yield lower values than measurements based upon the total stellar population. This finding appears to be consistent with the so-called 'σ{sub *} discrepancy', observed in real galaxies. We note that quasar-level AGN activity is much more likely to occur when σ{sub *} is near its equilibrium value rather than during periods of extreme σ{sub *}. Finally, we provide estimates of the scatter inherent in measuring σ{sub *} in ongoing mergers.

  18. FULLY COMPRESSIVE TIDES IN GALAXY MERGERS

    SciTech Connect

    Renaud, F.; Boily, C. M.; Naab, T.; Theis, Ch.

    2009-11-20

    The disruptive effect of galactic tides is a textbook example of gravitational dynamics. However, depending on the shape of the potential, tides can also become fully compressive. When that is the case, they might trigger or strengthen the formation of galactic substructures (star clusters and tidal dwarf galaxies), instead of destroying them. We perform N-body simulations of interacting galaxies to quantify this effect. We demonstrate that tidal compression occurs repeatedly during a galaxy merger, independently of the specific choice of parameterization. With a model tailored to the Antennae galaxies, we show that the distribution of compressive tides matches the locations and timescales of observed substructures. After extending our study to a broad range of parameters, we conclude that neither the importance of the compressive tides (approx15% of the stellar mass) nor their duration (approx10{sup 7} yr) is strongly affected by changes in the progenitors' configurations and orbits. Moreover, we show that individual clumps of matter can enter compressive regions several times in the course of a simulation. We speculate that this may spawn multiple star formation episodes in some star clusters, through, e.g., enhanced gas retention.

  19. Galaxy Mergers and Dark Matter Halo Mergers in LCDM: Mass, Redshift, and Mass-Ratio Dependence

    SciTech Connect

    Stewart, Kyle R.; Bullock, James S.; Barton, Elizabeth J.; Wechsler, Risa H.; /KIPAC, Menlo Park /SLAC

    2009-08-03

    We employ a high-resolution LCDM N-body simulation to present merger rate predictions for dark matter halos and investigate how common merger-related observables for galaxies - such as close pair counts, starburst counts, and the morphologically disturbed fraction - likely scale with luminosity, stellar mass, merger mass ratio, and redshift from z = 0 to z = 4. We provide a simple 'universal' fitting formula that describes our derived merger rates for dark matter halos a function of dark halo mass, merger mass ratio, and redshift, and go on to predict galaxy merger rates using number density-matching to associate halos with galaxies. For example, we find that the instantaneous merger rate of m/M > 0.3 mass ratio events into typical L {approx}> fL{sub *} galaxies follows the simple relation dN/dt {approx_equal} 0.03(1+f)Gyr{sup -1} (1+z){sup 2.1}. Despite the rapid increase in merger rate with redshift, only a small fraction of > 0.4L{sub *} high-redshift galaxies ({approx} 3% at z = 2) should have experienced a major merger (m/M > 0.3) in the very recent past (t < 100 Myr). This suggests that short-lived, merger-induced bursts of star formation should not contribute significantly to the global star formation rate at early times, in agreement with observational indications. In contrast, a fairly high fraction ({approx} 20%) of those z = 2 galaxies should have experienced a morphologically transformative merger within a virial dynamical time. We compare our results to observational merger rate estimates from both morphological indicators and pair-fraction based determinations between z = 0-2 and show that they are consistent with our predictions. However, we emphasize that great care must be made in these comparisons because the predicted observables depend very sensitively on galaxy luminosity, redshift, overall mass ratio, and uncertain relaxation timescales for merger remnants. We show that the majority of bright galaxies at z = 3 should have undergone a major

  20. The Merger-Free Co-Evolution of Galaxies and Supermassive Black Holes

    NASA Astrophysics Data System (ADS)

    Simmons, Brooke; Smethurst, Rebecca Jane; Lintott, Chris; Galaxy Zoo Team

    2016-06-01

    Calm, "secular" accretion and evolutionary processes, once thought to be relegated to the sidelines of galaxy evolution, are now understood to play a significant role in the buildup of stellar mass in galaxies. Most galaxies are formed and evolve via a mix of secular-driven evolution and more violent processes like strong disk instabilities and galaxy mergers; this makes isolating the effects of secular evolution in galaxies very difficult. Massive pure disk galaxies, lacking the classical or "pseudo" bulge components that arise naturally from mergers and disk instabilities (respectively), are a unique opportunity to study galaxy evolution in the absence of violent processes. Previous studies have disagreed on whether the black hole-galaxy mass correlation is driven by galaxy-galaxy interactions or something more fundamental. Here we present new evidence using a statistically significant sample of AGN hosted in bulgeless disk galaxies at z < 0.2 to constrain black hole-galaxy co-evolution in the absence of mergers.

  1. The nature of the evolution of galaxies by mergers

    NASA Technical Reports Server (NTRS)

    Chatterjee, Tapan K.

    1993-01-01

    The merger theory for the formation of elliptical galaxies is examined by conducting a dynamical study of the expected frequency of merging galaxies on the basis of the collisional theory, using galaxy models without halos. The expected merger rates obtained on the basis of the collisional theory fall about a magnitude below the observational value in the present epoch. In the light of current observational evidence and the results obtained, a marked regularity in the formation of ellipticals is indicated, followed by secular evolution by mergers.

  2. The Effect of Mergers on Galaxy Cluster Mass Estimates

    NASA Astrophysics Data System (ADS)

    Johnson, Ryan E.; Zuhone, John A.; Thorsen, Tessa; Hinds, Andre

    2015-08-01

    At vertices within the filamentary structure that describes the universal matter distribution, clusters of galaxies grow hierarchically through merging with other clusters. As such, the most massive galaxy clusters should have experienced many such mergers in their histories. Though we cannot see them evolve over time, these mergers leave lasting, measurable effects in the cluster galaxies' phase space. By simulating several different galaxy cluster mergers here, we examine how the cluster galaxies kinematics are altered as a result of these mergers. Further, we also examine the effect of our line of sight viewing angle with respect to the merger axis. In projecting the 6-dimensional galaxy phase space onto a 3-dimensional plane, we are able to simulate how these clusters might actually appear to optical redshift surveys. We find that for those optical cluster statistics which are most often used as a proxy for the cluster mass (variants of σv), the uncertainty due to an inprecise or unknown line of sight may alter the derived cluster masses moreso than the kinematic disturbance of the merger itself. Finally, by examining these, and several other clustering statistics, we find that significant events (such as pericentric crossings) are identifiable over a range of merger initial conditions and from many different lines of sight.

  3. Metallicity evolution in mergers of disk galaxies with black holes

    NASA Astrophysics Data System (ADS)

    Rantala, Antti; Johansson, Peter H.

    2016-10-01

    We use the TreeSPH simulation code Gadget-3 including a recently improved smoothed particle hydrodynamics (SPH) module, a detailed metallicity evolution model and sophisticated subresolution feedback models for supernovae and supermassive black holes in order to study the metallicity evolution in disk galaxy mergers. In addition, we examine the simulated morphology, star formation histories, metallicity gradients and kinematic properties of merging galaxies and merger remnants. We will compare our simulation results with observations of the early-type Centaurus A galaxy and the currently colliding Antennae galaxies.

  4. Testing Mergers as a Trigger for Quasars: Host Galaxy Morphologies

    NASA Astrophysics Data System (ADS)

    Hamilton, Timothy S.; Villforth, Carolin

    2016-01-01

    What makes a galaxy become active? It is often thought that galaxy mergers trigger the most luminous active galaxies (AGN)—quasars—but lower-luminosity AGN are started by milder processes. In our prior work, we analyzed a range of lower-luminosity AGN at redshifts of 0.5 < z < 0.7 and found no trend of rising merger incidence with luminosity.To reach the high luminosities thought to require mergers, we have now imaged 20 quasars to expand the range of the sample, using the Hubble's Wide Field Camera 3 in the H-band. We have used the Starfit software to remove the nuclear point sources and show the host galaxies beneath, allowing a comparison of galaxy properties. We now reveal the host morphologies and quantify their disturbances.

  5. The Halo Merger Rate in the Millennium Simulation and Implications for Observed Galaxy Merger Fractions

    NASA Astrophysics Data System (ADS)

    Genel, Shy; Genzel, Reinhard; Bouché, Nicolas; Naab, Thorsten; Sternberg, Amiel

    2009-08-01

    We have developed a new method to extract halo merger rates from the Millennium Simulation. First, by removing superfluous mergers that are artifacts of the standard friends-of-friends (FOF) halo identification algorithm, we find a lower merger rate compared to previous work. The reductions are more significant at lower redshifts and lower halo masses, and especially for minor mergers. Our new approach results in a better agreement with predictions from the extended Press-Schechter model. Second, we find that the FOF halo finder overestimates the halo mass by up to 50% for halos that are about to merge, which leads to an additional ≈20% overestimate of the merger rate. Therefore, we define halo masses by including only particles that are gravitationally bound to their FOF groups. We provide new best-fitting parameters for a global formula to account for these improvements. In addition, we extract the merger rate per progenitor halo, as well as per descendant halo. The merger rate per progenitor halo is the quantity that should be related to observed galaxy merger fractions when they are measured via pair counting. At low-mass/redshift, the merger rate increases moderately with mass and steeply with redshift. At high enough mass/redshift (for the rarest halos with masses a few times the "knee" of the mass function), these trends break down, and the merger rate per progenitor halo decreases with mass and increases only moderately with redshift. Defining the merger rate per progenitor halo also allows us to quantify the rate at which halos are being accreted onto larger halos, in addition to the minor and major merger rates. We provide an analytic formula that converts any given merger rate per descendant halo into a merger rate per progenitor halo. Finally, we perform a direct comparison between observed merger fractions and the fraction of halos in the Millennium Simulation that have undergone a major merger during the recent dynamical friction time, and find a

  6. Age Dating Ultraluminous Infrared Galaxies along the Merger Sequence

    NASA Astrophysics Data System (ADS)

    Murphy, T. W., Jr.; Soifer, B. T.; Matthews, K.; Armus, L.

    2001-09-01

    Imaging spectroscopy using the new Palomar Integral Field Spectrograph is presented for the Paα line in four ultraluminous infrared galaxies. The resulting integral field data cubes reveal line emission possessing a wide range of complex spatial morphologies, often quite different from the appearance of the continuum. The velocity fields are equally diverse in nature, often failing to resemble typical modes of galactic motion. We see a variety of interesting phenomena in the individual mergers including star formation rates of 2-5 Msolar yr-1 in young tidal tails; a postencounter disk that obeys the Tully-Fisher relation; a large-scale emission-line nebula possibly associated with a massive outflow; an apparently single merging system possessing two distinct kinematical axes belying the presence of a second galaxy, mostly obscured by its merging companion; and possible formation of tidal dwarf galaxies. In most cases, we are able to establish the geometry of the merger and thus estimate the time in the merger process at which we are viewing the system. The resulting range in estimated ages, some of which are very young encounters (~5×107 yr), is not predicted by merger models, which produce high rates of star formation either 1-2×108 yr after the first encounter or very late (~109 yr) in the merger process. Even in the very young mergers, despite a sample selection based on extended line emission, the ultraluminous activity appears to be centrally concentrated on the nucleus of one of the progenitor galaxies-namely, the galaxy with a prograde orbital geometry. The inferred extinction to these concentrations is high, usually at least 1 mag at the wavelength of Paα. The presence of a significant population of very young ultraluminous mergers, together with the majority of ultraluminous infrared galaxies existing in the final stages of merger activity, indicates that the ultraluminous galaxy phase is at least bimodal in time. An evolutionary scenario is proposed

  7. THE MERGER-DRIVEN EVOLUTION OF MASSIVE GALAXIES

    SciTech Connect

    Robaina, Aday R.; Van der Wel, Arjen; Skelton, Rosalind E.; Meisenheimer, Klaus; Bell, Eric F.; Somerville, Rachel S.; McIntosh, Daniel H.; Wolf, Christian

    2010-08-10

    We explore the rate and impact of galaxy mergers on the massive galaxy population using the amplitude of the two-point correlation function on small scales for M {sub *} > 5 x 10{sup 10} M {sub sun} galaxies from the COSMOS and COMBO-17 surveys. Using a pair fraction derived from the Sloan Digital Sky Survey as a low-redshift benchmark, the large survey area at intermediate redshifts allows us to determine the evolution of the close-pair fraction with unprecedented accuracy for a mass-selected sample: we find that the fraction of galaxies more massive than 5 x 10{sup 10} M {sub sun} in pairs separated by less than 30 kpc in three-dimensional space evolves as F(z) = (0.0130 {+-} 0.0019) x (1 + z){sup 1.21{+-}0.25} between z = 0 and z = 1.2. Assuming a merger timescale of 0.5 Gyr, the inferred merger rate is such that galaxies with mass in excess of 10{sup 11} M {sub sun} have undergone, on average, 0.5 (0.7) mergers involving progenitor galaxies both more massive than 5 x 10{sup 10} M {sub sun} since z = 0.6 (1.2). We also study the number density evolution of massive red sequence galaxies using published luminosity functions and constraints on the M/L {sub B} evolution from the fundamental plane. Moreover, we demonstrate that the measured merger rate of massive galaxies is sufficient to explain this observed number density evolution in massive red sequence galaxies since z = 1.

  8. Star Clusters in Intermediate-Age Galaxy Merger Remnants

    NASA Astrophysics Data System (ADS)

    Miller, Bryan W.; Trancho, G.; Schweizer, F.

    2011-01-01

    Studies of globular cluster systems play a critical role in our understanding of galaxy formation. Star clusters are useful tracers of major star-formation events in galaxies since they are compact, relatively easy to detect, and have properties well described by simple-stellar-population models. Imaging with the Hubble Space Telescope has revealed that young compact star clusters are formed copiously during galaxy mergers, strengthening theories in which giant elliptical galaxies are formed through mergers of spirals. However, the formation and evolution of globular cluster systems is still not well understood. We should be able to observe how cluster systems evolve from the very young systems with power-law luminosity functions to old systems with log-normal luminosity functions like those observed in old elliptical galaxies. Finding intermediate-age cluster systems would constrain theories of cluster formation and destruction (evaporation, shocking, dynamical friction) as well as show the significance of merger events in the histories of galaxies. We present results of combining HST optical photometry with ground-based K-band photometry from NIRI and Flamingos-I on Gemini to study the star cluster systems of five intermediate-age merger remnants. The galaxies were chosen based on blue colors and fine structure such as shells and ripples that are indicative of past interactions. We find evidence for star clusters with ages consistent with the estimated merger ages. The properties of the star clusters systems and implications for galaxy and star cluster formation will be discussed. Based on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the Particle Physics and Astronomy Research Council (United Kingdom), the National Research Council (Canada

  9. The relative role of galaxy mergers and cosmic flows in feeding black holes

    SciTech Connect

    Bellovary, Jillian; Brooks, Alyson; Volonteri, Marta; Governato, Fabio; Quinn, Thomas; Wadsley, James

    2013-12-20

    Using a set of zoomed-in cosmological simulations of high-redshift progenitors of massive galaxies, we isolate and trace the history of gas that is accreted by central supermassive black holes. We determine the origins of the accreted gas, in terms of whether it entered the galaxy during a merger event or was smoothly accreted. Furthermore, we designate whether the smoothly accreted gas is accreted via a cold flow or is shocked upon entry into the halo. For moderate-mass (10{sup 6}-10{sup 7} M {sub ☉}) black holes at z ∼ 4, there is a preference to accrete cold flow gas as opposed to gas of shocked or merger origin. However, this result is a consequence of the fact that the entire galaxy has a higher fraction of gas from cold flows. In general, each black hole tends to accrete the same fractions of smooth- and merger-accreted gas as is contained in its host galaxy, suggesting that once gas enters a halo it becomes well-mixed, and its origins are erased. We find that the angular momentum of the gas upon halo entry is a more important factor; black holes preferentially accrete gas that had low angular momentum when it entered the galaxy, regardless of whether it was accreted smoothly or through mergers.

  10. Angular momenta, dynamical masses, and mergers of brightest cluster galaxies

    SciTech Connect

    Jimmy; Tran, Kim-Vy; Brough, Sarah; Gebhardt, Karl; Von der Linden, Anja; Couch, Warrick J.; Sharp, Rob

    2013-12-01

    Using the VIMOS integral field unit (IFU) spectrograph on the Very Large Telescope, we have spatially mapped the kinematic properties of 10 nearby brightest cluster galaxies (BCGs) and 4 BCG companion galaxies located within a redshift of z = 0.1. In the hierarchical formation model, these massive galaxies (10{sup 10.5} M {sub ☉} < M {sub dyn} < 10{sup 11.9} M {sub ☉}) are expected to undergo more mergers than lower mass galaxies, and simulations show that dry minor mergers can remove angular momentum. We test whether BCGs have low angular momenta by using the λ {sub Re} parameter developed by the SAURON and ATLAS{sup 3D} teams and combine our kinematics with Sloan Digital Sky Survey photometry to analyze the BCGs' merger status. We find that 30% (3/10) of the BCGs and 100% of the companion galaxies (4/4) are fast rotators as defined by the ATLAS{sup 3D} criteria. Our fastest rotating BCG has a λ {sub Re} = 0.35 ± 0.05. We increase the number of BCGs analyzed from 1 in the combined SAURON and ATLAS{sup 3D} surveys to 11 BCGs total and find that above M {sub dyn} ∼ 11.5 M {sub ☉}, virtually all galaxies, regardless of environment, are slow rotators. To search for signs of recent merging, we analyze the photometry of each system and use the G – M {sub 20} selection criteria to identify mergers. We find that 40% ± 20% of our BCGs are currently undergoing or have recently undergone a merger (within 0.2 Gyr). Surprisingly, we find no correlation between galaxies with high angular momentum and morphological signatures of merging.

  11. Angular Momenta, Dynamical Masses, and Mergers of Brightest Cluster Galaxies

    NASA Astrophysics Data System (ADS)

    Jimmy; Tran, Kim-Vy; Brough, Sarah; Gebhardt, Karl; von der Linden, Anja; Couch, Warrick J.; Sharp, Rob

    2013-12-01

    Using the VIMOS integral field unit (IFU) spectrograph on the Very Large Telescope, we have spatially mapped the kinematic properties of 10 nearby brightest cluster galaxies (BCGs) and 4 BCG companion galaxies located within a redshift of z = 0.1. In the hierarchical formation model, these massive galaxies (1010.5 M ⊙ < M dyn < 1011.9 M ⊙) are expected to undergo more mergers than lower mass galaxies, and simulations show that dry minor mergers can remove angular momentum. We test whether BCGs have low angular momenta by using the λ Re parameter developed by the SAURON and ATLAS3D teams and combine our kinematics with Sloan Digital Sky Survey photometry to analyze the BCGs' merger status. We find that 30% (3/10) of the BCGs and 100% of the companion galaxies (4/4) are fast rotators as defined by the ATLAS3D criteria. Our fastest rotating BCG has a λ Re = 0.35 ± 0.05. We increase the number of BCGs analyzed from 1 in the combined SAURON and ATLAS3D surveys to 11 BCGs total and find that above M dyn ~ 11.5 M ⊙, virtually all galaxies, regardless of environment, are slow rotators. To search for signs of recent merging, we analyze the photometry of each system and use the G - M 20 selection criteria to identify mergers. We find that 40% ± 20% of our BCGs are currently undergoing or have recently undergone a merger (within 0.2 Gyr). Surprisingly, we find no correlation between galaxies with high angular momentum and morphological signatures of merging. Based on Very Large Telescope (VLT) service mode observations (Programs 381.B-0728 and 087.B-0366) gathered at the European Southern Observatory, Chile.

  12. Chandra Observations of Galaxy Zoo Mergers: Frequency of Binary Active Nuclei in Massive Mergers

    NASA Technical Reports Server (NTRS)

    Teng, Stacy H.; Schawinski, Kevin; Urry, C. Megan; Darg, Dan W.; Kaviraj, Sugata; Oh, Kyuseok; Bonning, Erin W.; Cardamone, Carolin N.; Keel, William C.; Lintott, Chris J.; Simmons, Brooke D.; Treister, Ezequiel

    2012-01-01

    We present the results from a Chandra pilot study of 12 massive galaxy mergers selected from Galaxy Zoo. The sample includes major mergers down to a host galaxy mass of 1011 M that already have optical AGN signatures in at least one of the progenitors. We find that the coincidences of optically selected active nuclei with mildly obscured (N(sub H) approx < 1.1 10(exp 22)/sq cm) X-ray nuclei are relatively common (8/12), but the detections are too faint (< 40 counts per nucleus; (sub -10) keV approx < 1.2 10(exp -13) erg/s/sq cm) to reliably separate starburst and nuclear activity as the origin of the X-ray emission. Only one merger is found to have confirmed binary X-ray nuclei, though the X-ray emission from its southern nucleus could be due solely to star formation. Thus, the occurrences of binary AGN in these mergers are rare (0-8%), unless most merger-induced active nuclei are very heavily obscured or Compton thick.

  13. CHANDRA OBSERVATIONS OF GALAXY ZOO MERGERS: FREQUENCY OF BINARY ACTIVE NUCLEI IN MASSIVE MERGERS

    SciTech Connect

    Teng, Stacy H.; Darg, Dan W.; Kaviraj, Sugata; Lintott, Chris J.; Oh, Kyuseok; Cardamone, Carolin N.; Keel, William C.; Simmons, Brooke D.; Treister, Ezequiel

    2012-07-10

    We present the results from a Chandra pilot study of 12 massive galaxy mergers selected from Galaxy Zoo. The sample includes major mergers down to a host galaxy mass of 10{sup 11} M{sub Sun} that already have optical active galactic nucleus (AGN) signatures in at least one of the progenitors. We find that the coincidences of optically selected active nuclei with mildly obscured (N{sub H} {approx}< 1.1 Multiplication-Sign 10{sup 22} cm{sup -2}) X-ray nuclei are relatively common (8/12), but the detections are too faint (<40 counts per nucleus; f{sub 2-10keV} {approx}< 1.2 Multiplication-Sign 10{sup -13} erg s{sup -1} cm{sup -2}) to reliably separate starburst and nuclear activity as the origin of the X-ray emission. Only one merger is found to have confirmed binary X-ray nuclei, though the X-ray emission from its southern nucleus could be due solely to star formation. Thus, the occurrences of binary AGNs in these mergers are rare (0%-8%), unless most merger-induced active nuclei are very heavily obscured or Compton thick.

  14. Chandra Observations of Galaxy Zoo Mergers: Frequency of Binary Active Nuclei in Massive Mergers

    NASA Technical Reports Server (NTRS)

    Teng, Stacy H.; Schwainski, Kevin; Urry, C. Megan; Darg, Dan W.; Kaviraj, Sugata; Oh, Kyuseok; Bonning, Erin W.; Cardamone, Carolin N.; Keel, William C.; Lintott, Chris J.; Simmons, Brooke D.; Treister, Ezequiel

    2012-01-01

    We present the results from a Chandra pilot study of 12 massive mergers selected from Galaxy Zoo. The sample includes major mergers down to a host galaxy mass of 10(sup 11) solar mass that already have optical AGN signatures in at least one of the progenitors. We find that the coincidences of optically selected active nuclei with mildly obscured (N(sub H) less than or approximately 1.1 x 10(exp 22) per square centimeter) X-ray nuclei are relatively common (8/12), but the detections are too faint (less than 40 counts per nucleus; f(sub 2-10 keV) less than or approximately 1.2 x 10(exp -13) ergs per second per square centimeter) to separate starburst and nuclear activity as the origin of the X-ray emission. Only one merger is found to have confirmed binary X-ray nuclei, though the X-ray emission from its southern nucleus could be due solely to star formation. Thus, the occurrences of binary AGN in these mergers are rare (0-8%), unless most merger-induced active nuclei are very heavily obscured or Compton thick.

  15. THE ROLE OF DRY MERGERS FOR THE FORMATION AND EVOLUTION OF BRIGHTEST CLUSTER GALAXIES

    SciTech Connect

    Ruszkowski, M.; Springel, V. E-mail: volker@map-garching.mpg.de

    2009-05-10

    Using a resimulation technique, we perform high-resolution cosmological simulations of dry mergers in a massive (10{sup 15} M {sub sun}) galaxy cluster identified in the Millennium Run. Our initial conditions include well resolved compound galaxy models consisting of dark matter halos and stellar bulges that are used to replace the most massive cluster progenitor halos at redshift z = 3, allowing us to follow the subsequent dry merger processes that build up the cluster galaxies in a self-consistent cosmological setting. By construction, our galaxy models obey the stellar mass-size relation initially. Also, we study both galaxy models with adiabatically contracted and uncompressed halos. We demonstrate that the brightest cluster galaxy (BCG) evolves away from the Kormendy relation as defined by the smaller mass galaxies (i.e., the relation bends). This is accompanied by a significantly faster dark matter mass growth within the half-light radius of the BCG compared to the increase in the stellar mass inside the same radius. As a result of the comparatively large number of mergers the BCG experiences, its total mass-to-light ratio becomes significantly higher than in typical elliptical galaxies. We also show that the mixing processes between dark matter and stars lead to a small but numerically robust tilt in the fundamental plane and that the BCG lies on the tilted plane. Our model is consistent with the observed steepening of the logarithmic mass-to-light gradient as a function of the stellar mass. As we have not included effects from gas dynamics or star formation, these trends are exclusively due to N-body and stellar dynamical effects. Surprisingly, we find only tentative weak distortion in the Faber-Jackson relation that depends on the aperture size, unlike expected based on studies of isolated merger simulations. This may be due to differences in the distribution of galaxy orbits, which is given in our approach directly by the cosmological context while it has

  16. Satellite dwarf galaxies in a hierarchical universe: the prevalence of dwarf-dwarf major mergers

    SciTech Connect

    Deason, Alis; Wetzel, Andrew; Garrison-Kimmel, Shea

    2014-10-20

    Mergers are a common phenomenon in hierarchical structure formation, especially for massive galaxies and clusters, but their importance for dwarf galaxies in the Local Group remains poorly understood. We investigate the frequency of major mergers between dwarf galaxies in the Local Group using the ELVIS suite of cosmological zoom-in dissipationless simulations of Milky Way- and M31-like host halos. We find that ∼10% of satellite dwarf galaxies with M {sub star} > 10{sup 6} M {sub ☉} that are within the host virial radius experienced a major merger of stellar mass ratio closer than 0.1 since z = 1, with a lower fraction for lower mass dwarf galaxies. Recent merger remnants are biased toward larger radial distance and more recent virial infall times, because most recent mergers occurred shortly before crossing within the virial radius of the host halo. Satellite-satellite mergers also occur within the host halo after virial infall, catalyzed by the large fraction of dwarf galaxies that fell in as part of a group. The merger fraction doubles for dwarf galaxies outside of the host virial radius, so the most distant dwarf galaxies in the Local Group are the most likely to have experienced a recent major merger. We discuss the implications of these results on observable dwarf merger remnants, their star formation histories, the gas content of mergers, and massive black holes in dwarf galaxies.

  17. Evidence for Evolution in the Galaxy Merger Rate

    NASA Astrophysics Data System (ADS)

    Franklin, Barbara E.; Windhorst, Rogier A.; Burkey, Jordan M.; Keel, William C.

    1993-12-01

    We use a set of four deep Cycle 1+2 fields with the HST Wide-Field Camera to constrain the rate of galaxy merging between the current epoch and approximately z=0.7. These fields were selected around weak radio sources not in rich or poor clusters so as to not bias these studies. Since most mergers occur between members of bound pairs, the merger rate is given by (half) the rate of disappearance of galaxy pairs. Using an objective criterion for pair membership, we find that more than 34% of galaxies in the magnitude range I=18-22 mag belong to pairs, while careful study of nearby comparison samples shows that only 7% of local galaxies belong to pairs. Hence, about 13% of the galaxy population has disappeared to merging in the cosmic epoch corresponding to this magnitude interval (or 0.1<= z<=0.7). This pair fraction is a lower limit, since correction for pairs in which one member falls below our detection threshold would raise the fraction of pair members with I=18---22 mag to about 50%. (we do not include physical system of higher multiplicity in these values). Hence, the number of galaxy pairs has dropped significantly between z ~ 0.7 and the current epoch. When using the best available I-band field galaxy redshift distributions, the HST pair-fraction grows with redshift as ~ (1+z)(3.0-3.5) , quite consistent with the expected evolution in the merger-rate from the decrease in comoving volume (~ (1+z)(3) ). This result has very significant implications for the interpretation of the ground-based galaxy counts (it explains the disappearance of faint blue galaxies), the cosmological evolution of faint radio sources and quasars (explains why these should indeed evolve as ~ (1+z)(3) ), the statistics of QSO companions, the galaxy content in distant clusters, and the merging history of a ``typical" galaxy. This work was supported by STScI grants GO-2405.*-87A and GO-3545.*-91A (to WCK and RAW) and in part through EPSCoR grant EHR-9108761 (to WCK).

  18. FORMATION OF DWARF SPHEROIDAL GALAXIES VIA MERGERS OF DISKY DWARFS

    SciTech Connect

    Kazantzidis, Stelios; Lokas, Ewa L.; Klimentowski, Jaroslaw; Mayer, Lucio; Knebe, Alexander

    2011-10-10

    We perform collisionless N-body simulations to investigate whether binary mergers between rotationally supported dwarfs can lead to the formation of dwarf spheroidal galaxies (dSphs). Our simulation campaign is based on a hybrid approach combining cosmological simulations and controlled numerical experiments. We select merger events from a Constrained Local Universe simulation of the Local Group (LG) and record the properties of the interacting dwarf-sized halos. This information is subsequently used to seed controlled experiments of binary encounters between dwarf galaxies consisting of exponential stellar disks embedded in cosmologically motivated dark matter halos. These simulations are designed to reproduce eight cosmological merger events, with initial masses of the interacting systems in the range {approx}(5-60) x 10{sup 7} M{sub sun}, occurring quite early in the history of the LG, more than 10 Gyr ago. We compute the properties of the merger remnants as a distant observer would and demonstrate that at least three of the simulated encounters produce systems with kinematic and structural properties akin to those of the classic dSphs in the LG. Tracing the history of the remnants in the cosmological simulation to z = 0, we find that two dSph-like objects remain isolated at distances {approx}> 800 kpc from either the Milky Way or M31. These systems constitute plausible counterparts of the remote dSphs Cetus and Tucana which reside in the LG outskirts, far from the tidal influence of the primary galaxies. We conclude that merging of rotationally supported dwarfs represents a viable mechanism for the formation of dSphs in the LG and similar environments.

  19. The Influence of Cluster Mergers on Galaxy Evolution

    NASA Astrophysics Data System (ADS)

    Rawle, T. D.; Altieri, B.; Bouy, H.; Egami, E.; Pérez-González, P. G.; Richard, J.; Valtchanov, I.; Walth, G.

    2016-06-01

    The rich environment of galaxy clusters is understood to have a profound effect on the evolution of constituent galaxies. However, even clusters of a similar mass and at fixed redshift are not homogeneous, displaying a range in structural complexity. Here we concentrate on the effect of cluster merging, the most massive dynamic process in the Universe. Two spectacular cluster mergers at z~0.3 are explored: the archetypal Bullet cluster (1E0657-558; Rawle et al. 2012), and the HST Frontier Field, Pandora's cluster (Abell 2744; Rawle et al. 2014, 2016). We present detailed analysis of their total star formation, derived from multi-wavelength observations of both dusty and unobscured activity from Herschel, Spitzer, WISE and GALEX. Examination of the morphologies of individual cluster galaxies reveals striking evidence for transformation and enhanced star formation, triggered by the merger-induced shock front. This includes several galaxies identified as having "jellyfish" morphologies caused by the passing shock. We discuss the implications, and preview future work exploring a large sample of clusters covering a range of dynamic states and redshifts.

  20. The Luminosity Dependence of the Galaxy Merger Rate

    NASA Astrophysics Data System (ADS)

    Patton, D. R.; Atfield, J. E.

    2008-09-01

    We measure the number of companions per galaxy (Nc) as a function of r-band absolute magnitude for both the Sloan Digital Sky Survey and the Croton and coworkers semianalytic catalog applied to the Millennium Run simulation. For close pairs with projected separations of 5-20 h-1 kpc, velocity differences less than 500 km s-1, and luminosity ratios between 1:2 and 2:1, we find good agreement between the observations and simulations, with Nc consistently close to 0.02 over the range -22 < Mr < - 18. For larger pair separations, Nc(Mr) instead becomes increasingly steep toward the faint end, implying that luminosity-dependent clustering plays an important role on small scales. Using the simulations to assess and correct for projection effects, we infer that the real-space Nc(Mr) for close pairs peaks at about M* and declines by at least a factor of 2 as Mr becomes fainter. Conversely, by measuring the number density of close companions, we estimate that at least 90% of all major mergers occur between galaxies which are fainter than L*. Finally, measurements of the luminosity density of close companions indicate that L* galaxies likely dominate in terms of the overall importance of major mergers in the evolution of galaxy populations at low redshift.

  1. Merger Histories of Galaxy Halos and Implications for Disk Survival

    SciTech Connect

    Stewart, Kyle R.; Bullock, James S.; Wechsler, Risa H.; Maller, Ariyeh H.; Zentner, Andrew R.

    2008-05-16

    The authors study the merger histories of galaxy dark matter halos using a high resolution {Lambda}CDM N-body simulation. The merger trees follow {approx} 17,000 halos with masses M{sub 0} = (10{sup 11} - 10{sup 13})h{sup -1}M{sub {circle_dot}} at z = 0 and track accretion events involving objects as small as m {approx_equal} 10{sup 10} h{sup -1}M{sub {circle_dot}}. They find that mass assembly is remarkably self-similar in m/M{sub 0}, and dominated by mergers that are {approx}10% of the final halo mass. While very large mergers, m {approx}> 0.4 M{sub 0}, are quite rare, sizeable accretion events, m {approx} 0.1 M{sub 0}, are common. Over the last {approx} 10 Gyr, an overwhelming majority ({approx} 95%) of Milky Way-sized halos with M{sub 0} = 10{sup 12} h{sup -1}M{sub {circle_dot}} have accreted at least one object with greater total mass than the Milky Way disk (m > 5 x 10{sup 10} h{sup -1}M{sub {circle_dot}}), and approximately 70% have accreted an object with more than twice that mass (m > 10{sup 11} h{sup -1}M{sub {circle_dot}}). The results raise serious concerns about the survival of thin-disk dominated galaxies within the current paradigm for galaxy formation in a {Lambda}CDM universe. in order to achieve a {approx} 70% disk-dominated fraction in Milky Way-sized {Lambda}CDM halos, mergers involving m {approx_equal} 2 x 10{sup 11} h{sup -1}M{sub {circle_dot}} objects must not destroy disks. Considering that most thick disks and bulges contain old stellar populations, the situation is even more restrictive: these mergers must not heat disks or drive gas into their centers to create young bulges.

  2. Major-Merger Galaxy Pairs at Z = 0: Dust Properties and Companion Morphology

    NASA Astrophysics Data System (ADS)

    Domingue, Donovan L.; Cao, Chen; Xu, C. Kevin; Jarrett, Thomas H.; Ronca, Joseph; Hill, Emily; Jacques, Allison

    2016-10-01

    We present an analysis of dust properties of a sample of close major-merger galaxy pairs selected by K s magnitude and redshift. The pairs represent the two populations of spiral-spiral (S+S) and mixed morphology spiral-elliptical (S+E). The Code Investigating GALaxy Emission software is used to fit dust models to the Two Micron All Sky Survey, Wide-Field Infrared Survey Explorer, and Herschel flux density measurements, and to derive the parameters describing the polycyclic aromatic hydrocarbons contribution, interstellar radiation field, and photodissociation regions. Model fits verify our previous Spitzer Space Telescope analysis that S+S and S+E pairs do not have the same level of enhancement of star formation and differ in dust composition. The spirals of mixed-morphology galaxy pairs do not exhibit the enhancements in interstellar radiation field and therefore dust temperature for spirals in S+S pairs in contrast to what would be expected according to standard models of gas redistribution due to encounter torques. This suggests the importance of the companion environment/morphology in determining the dust properties of a spiral galaxy in a close major-merger pair.

  3. THE DRIVING MECHANISM OF STARBURSTS IN GALAXY MERGERS

    SciTech Connect

    Teyssier, Romain; Chapon, Damien; Bournaud, Frederic

    2010-09-10

    We present hydrodynamic simulations of a major merger of disk galaxies, and study the interstellar medium (ISM) dynamics and star formation (SF) properties. High spatial and mass resolutions of 12 pc and 4 x 10{sup 4} M {sub sun} allow us to resolve cold and turbulent gas clouds embedded in a warmer diffuse phase. We compare lower-resolution models, where the multiphase ISM is not resolved and is modeled as a relatively homogeneous and stable medium. While merger-driven bursts of SF are generally attributed to large-scale gas inflows toward the nuclear regions, we show that once a realistic ISM is resolved, the dominant process is actually gas fragmentation into massive and dense clouds and rapid SF therein. As a consequence, SF is more efficient by a factor of up to {approx}10 and is also somewhat more extended, while the gas density probability distribution function rapidly evolves toward very high densities. We thus propose that the actual mechanism of starburst triggering in galaxy collisions can only be captured at high spatial resolution and when the cooling of gas is modeled down to less than 10{sup 3} K. Not only does our model reproduce the properties of the Antennae system, but it also explains the 'starburst mode' recently revealed in high-redshift mergers compared to quiescent disks.

  4. Formation of S0 galaxies through mergers. Antitruncated stellar discs resulting from major mergers

    NASA Astrophysics Data System (ADS)

    Borlaff, Alejandro; Eliche-Moral, M. Carmen; Rodríguez-Pérez, Cristina; Querejeta, Miguel; Tapia, Trinidad; Pérez-González, Pablo G.; Zamorano, Jaime; Gallego, Jesús; Beckman, John

    2014-10-01

    Context. Lenticular galaxies (S0s) are more likely to host antitruncated (Type III) stellar discs than galaxies of later Hubble types. Major mergers are popularly considered too violent to make these breaks. Aims: We have investigated whether major mergers can result into S0-like remnants with realistic antitruncated stellar discs or not. Methods: We have analysed 67 relaxed S0 and E/S0 remnants resulting from dissipative N-body simulations of major mergers from the GalMer database. We have simulated realistic R-band surface brightness profiles of the remnants to identify those with antitruncated stellar discs. Their inner and outer discs and the breaks have been quantitatively characterized to compare with real data. Results: Nearly 70% of our S0-like remnants are antitruncated, meaning that major mergers that result in S0s have a high probability of producing Type III stellar discs. Our remnants lie on top of the extrapolations of the observational trends (towards brighter magnitudes and higher break radii) in several photometric diagrams, because of the higher luminosities and sizes of the simulations compared to observational samples. In scale-free photometric diagrams, simulations and observations overlap and the remnants reproduce the observational trends, so the physical mechanism after antitruncations is highly scalable. We have found novel photometric scaling relations between the characteristic parameters of the antitruncations in real S0s, which are also reproduced by our simulations. We show that the trends in all the photometric planes can be derived from three basic scaling relations that real and simulated Type III S0s fulfill: hi ∝ RbrkIII, ho ∝ RbrkIII, and μbrkIII ∝ RbrkIII, where hi and ho are the scalelengths of the inner and outer discs, and μbrkIII and RbrkIII are the surface brightness and radius of the breaks. Bars and antitruncations in real S0s are structurally unrelated phenomena according to the studied photometric planes

  5. Galaxy pairs in deep HST images: Evidence for evolution in the galaxy merger rate

    NASA Technical Reports Server (NTRS)

    Burkey, Jordan M.; Keel, William C.; Windhorst, Rogier A.; Franklin, Barbara E.

    1994-01-01

    We use four deep serendipitous fields observed with the Hubble Space Telescope (HST) Wide-Field Camera to constrain the rate of galaxy merging between the current epoch and z approximately equals 0.7. Since most mergers occur between members of bound pairs, the merger rate is given to a good approximation by (half) the rate of disappearance of galaxies in pairs. An objective criterion for pair membership shows that 34% +/- 9% of our HST galaxies with I = 18-22 belong to pairs, compared to 7% locally. This means that about 13% of the galaxy population has disappeared due to merging in the cosmic epoch corresponding to this magnitude interval (or 0.1 approximately less than z approximately less than 0.7). Our pair fraction is a lower limit: correction for pair members falling below our detection threshold might raise the fraction to approximately 50%. Since we address only two-galaxy merging, these values do not include physical systems of higher multiplicity. Incorporating I-band field-galaxy redshift distributions, the pair fraction grows with redshift as alpha(1 + z)(exp 3.5 +/- 0.5) and the merger rate as (1 + z)(exp 2.5 +/- 0.5). This may have significant implications for the interpretation of galaxy counts (disappearance of faint blue galaxies), the cosmological evolution of faint radio sources and quasars (which evolve approximately as (1 + z)(exp 3), the similarity in the power law is necessary but not sufficient evidence for a causal relation), statistics of QSO companions, the galaxy content in distant clusters, and the merging history of a 'typical' galaxy.

  6. THE ROLE OF MERGER STAGE ON GALAXY RADIO SPECTRA IN LOCAL INFRARED-BRIGHT STARBURST GALAXIES

    SciTech Connect

    Murphy, Eric J.

    2013-11-01

    An investigation of the steep, high-frequency (i.e., ν ∼ 12 GHz) radio spectra among a sample of 31 local infrared-bright starburst galaxies is carried out in light of their Hubble-Space-Telescope-based merger classifications. Radio data covering as many as 10 individual bands allow for spectral indices to be measured over three frequency bins between 0.15 and 32.5 GHz. Sources having the flattest spectral indices measured at ∼2 and 4 GHz, arising from large free-free optical depths among the densest starbursts, appear to be in ongoing through post-stage mergers. The spectral indices measured at higher frequencies (i.e., ∼12 GHz) are steepest for sources associated with ongoing mergers in which their nuclei are distinct, but share a common stellar envelope and/or exhibit tidal tails. These results hold after excluding potential active galactic nuclei based on their low 6.2 μm polycyclic aromatic hydrocarbon equivalent widths. Consequently, the low-, mid-, and high-frequency spectral indices each appear to be sensitive to the exact merger stage. It is additionally shown that ongoing mergers, whose progenitors are still separated and share a common envelope and/or exhibit tidal tails, also exhibit excess radio emission relative to what is expected given the far-infrared/radio correlation, suggesting that there may be a significant amount of radio emission that is not associated with ongoing star formation. The combination of these observations, along with high-resolution radio morphologies, leads to a picture in which the steep high-frequency radio spectral indices and excess radio emission arise from radio continuum bridges and tidal tails that are not associated with star formation, similar to what is observed for so-called 'taffy' galaxies. This scenario may also explain the seemingly low far-infrared/radio ratios measured for many high-z submillimeter galaxies, a number of which are merger-driven starbursts.

  7. A Slow Merger History of Field Galaxies since z ~ 1

    NASA Astrophysics Data System (ADS)

    Bundy, Kevin; Fukugita, Masataka; Ellis, Richard S.; Kodama, Tadayuki; Conselice, Christopher J.

    2004-02-01

    Using deep infrared observations conducted with the CISCO imager on the Subaru Telescope, we investigate the field-corrected pair fraction and the implied merger rate of galaxies in redshift survey fields with Hubble Space Telescope (HST) imaging. In the redshift interval, 0.5galaxies. At z~1, we estimate this to be 2×109+/-0.2 Msolar galaxy-1 Gyr-1. Although uncertainties remain, our results suggest that the growth of galaxies via the accretion of preexisting fragments remains as significant a phenomenon in the redshift range studied as that estimated from ongoing star formation in independent surveys. Based on data acquired at Subaru Telescope, which is operated by the National Astronomical Observatory of Japan.

  8. Highlights of the Merging Cluster Collaboration's Analysis of 26 Radio Relic Galaxy Cluster Mergers

    NASA Astrophysics Data System (ADS)

    Dawson, William; Golovich, Nathan; Wittman, David M.; Bradac, Marusa; Brüggen, Marcus; Bullock, James; Elbert, Oliver; Jee, James; Kaplinghat, Manoj; Kim, Stacy; Mahdavi, Andisheh; Merten, Julian; Ng, Karen; Annika, Peter; Rocha, Miguel E.; Sobral, David; Stroe, Andra; Van Weeren, Reinout J.; Merging Cluster Collaboration

    2016-01-01

    Merging galaxy clusters are now recognized as multifaceted probes providing unique insight into the properties of dark matter, the environmental impact of plasma shocks on galaxy evolution, and the physics of high energy particle acceleration. The Merging Cluster Collaboration has used the diffuse radio emission associated with the synchrotron radiation of relativistic particles accelerated by shocks generated during major cluster mergers (i.e. radio relics) to identify a homogenous sample of 26 galaxy cluster mergers. We have confirmed theoretical expectations that radio relics are predominantly associated with mergers occurring near the plane of the sky and at a relatively common merger phase; making them ideal probes of self-interacting dark matter, and eliminating much of the dominant uncertainty when relating the observed star formation rates to the event of the major cluster merger. We will highlight a number of the discovered common traits of this sample as well as detailed measurements of individual mergers.

  9. When galaxy clusters collide: the impact of merger shocks on cluster gas and galaxy evolution

    NASA Astrophysics Data System (ADS)

    Stroe, A.

    2015-09-01

    Galaxy clusters mainly grow through mergers with other clusters and groups. Major mergers give rise to cluster-wide traveling shocks, which can be detected at radio wavelengths as relics: elongated, diffuse synchrotron emitting areas located at the periphery of merging clusters. The 'Sausage' cluster hosts an extraordinary Mpc-wide relic, which enables us to study to study particle acceleration and the effects of shocks on cluster galaxies. We derive shock properties and the magnetic field structure for the relic. Our results indicate that particles are shock-accelerated, but turbulent re-acceleration or unusually efficient transport of particles in the downstream area are important effects. We demonstrate the feasibility of high-frequency observations of radio relics, by presenting a 16 GHz detection of the 'Sausage' relic. Halpha mapping of the cluster provides the first direct test as to whether the shock drives or prohibits star formation. We find numerous galaxies in! close proximity to the radio relic which are extremely massive, metal-rich, star-forming with evidence for gas mass loss though outflows. We speculate that the complex interaction between the merger, the shock wave and gas is a fundamental driver in the evolution of cluster galaxies from gas rich spirals to gas-poor ellipticals.

  10. On the Formation of Elliptical Galaxies via Mergers in Galaxy Groups

    NASA Astrophysics Data System (ADS)

    Taranu, Dan; Dubinski, John; Yee, Howard K. C.

    2015-08-01

    Giant elliptical galaxies have long been thought to form through gas-rich "major" mergers of two roughly equal-mass spiral galaxies. However, ellipticals are often found at the centers of groups and are likely to have undergone several significant mergers since z=2. We test the hypothesis that ellipticals form through multiple, mainly minor and dry mergers in groups, using hundreds of N-body simulations of mergers in groups of three to twenty-five spirals (Taranu et al. 2013).Realistic mock observations of the central merger remnants show that they have similar surface brightness profiles to local ellipticals. The size-luminosity and velocity dispersion-luminosity relations have modest (~0.1 dex) scatter, with similar slopes; however, most remnants are too large and have too low dispersions for their luminosities. Some remnants show substantial (v/σ > 0.1) rotational support, but most are slow rotators with v/σ << 0.5.Ellipticals also follow a tight "fundamental plane" scaling relation between size R, mean surface brightness μ and velocity dispersion σ: R ∝ σ^a μ^b. This relation has small (<0.06 dex) scatter and significantly different coefficients from the expected scaling (a "tilt"). The remnants lie on a similar fundamental plane, with even smaller scatter (0.02 dex) and a tilt in the correct sense - albeit weaker than observed. This tilt is caused by variable dark matter fractions within the effective radius, such that massive merger remnants have larger central dark matter fractions than their lower-mass counterparts (Taranu et al. 2015).These results suggest that massive ellipticals can originate from multiple, mainly minor and dry mergers of spirals at z<2, producing tight scaling relations in the process. However, significant gas dissipation and/or more compact progenitor spirals may be needed to produce lower-mass, rapidly-rotating ellipticals. I will also show preliminary results from simulations with more realistic progenitor galaxies (including

  11. Achieving convergence in galaxy formation models by augmenting N-body merger trees

    NASA Astrophysics Data System (ADS)

    Benson, Andrew J.; Cannella, Chris; Cole, Shaun

    2016-08-01

    Accurate modeling of galaxy formation in a hierarchical, cold dark matter universe requires the use of sufficiently high-resolution merger trees to obtain convergence in the predicted properties of galaxies. When semi-analytic galaxy formation models are applied to cosmological N-body simulation merger trees, it is often the case that those trees have insufficient resolution to give converged galaxy properties. We demonstrate a method to augment the resolution of N-body merger trees by grafting in branches of Monte Carlo merger trees with higher resolution, but which are consistent with the pre-existing branches in the N-body tree. We show that this approach leads to converged galaxy properties.

  12. Quasar Winds Near the Peak in Galaxy Merger Rate

    NASA Astrophysics Data System (ADS)

    Chartas, George; Brandt, Niel; Saez, Cristian; Giustini, Margherita; Garmire, Gordon

    We present results from recent XMM-Newton, Chandra and Suzaku monitoring observations of the BAL quasar APM 08279+5255. We present constraints on the kinematic and photoion-ization properties of the wind in this z=3.91 quasar and find that it is capable of playing an important role in controlling the evolution of the host galaxy and central black hole close to the peak in galaxy merger rate. We place constraints of the X-ray emission region of APM08279 and find it to be comparable to its ISCO radius. The X-ray emission size of APM08279 is consistent with sizes derived from our analysis of microlensing lightcurves of several gravitationally lensed quasars. A possible trend found between the X-ray photon index and the maximum outflow veloc-ity points towards a plausible mechanism that may explain the acceleration of the wind in APM08279. We also present prospects for future advances in our understanding of the role of quasar winds in galaxy feedback with the International X-ray Observatory.

  13. Late-stage galaxy mergers in cosmos to z ∼ 1

    SciTech Connect

    Lackner, C. N.; Silverman, J. D.; Salvato, M.; Kampczyk, P.; Kartaltepe, J. S.; Sanders, D.; Lee, N.; Capak, P.; Scoville, N.; Civano, F.; Halliday, C.; Ilbert, O.; Le Fèvre, O.; Jahnke, K.; Koekemoer, A. M.; Liu, C. T.; Sheth, K.

    2014-12-01

    The role of major mergers in galaxy and black hole formation is not well-constrained. To help address this, we develop an automated method to identify late-stage galaxy mergers before coalescence of the galactic cores. The resulting sample of mergers is distinct from those obtained using pair-finding and morphological indicators. Our method relies on median-filtering of high-resolution images to distinguish two concentrated galaxy nuclei at small separations. This method does not rely on low surface brightness features to identify mergers, and is therefore reliable to high redshift. Using mock images, we derive statistical contamination and incompleteness corrections for the fraction of late-stage mergers. The mock images show that our method returns an uncontaminated (<10%) sample of mergers with projected separations between 2.2 and 8 kpc out to z∼1. We apply our new method to a magnitude-limited (m{sub FW} {sub 814}<23) sample of 44,164 galaxies from the COSMOS HST/ACS catalog. Using a mass-complete sample with logM{sub ∗}/M{sub ⊙}>10.6 and 0.25mergers. Correcting for incompleteness and contamination, the fractional merger rate increases strongly with redshift as r{sub merge}∝(1+z){sup 3.8±0.9}, in agreement both with earlier studies and with dark matter halo merger rates. Separating the sample into star-forming and quiescent galaxies shows that the merger rate for star-forming galaxies increases strongly with redshift, (1+z){sup 4.5±1.3}, while the merger rate for quiescent galaxies is consistent with no evolution, (1+z){sup 1.1±1.2}. The merger rate also becomes steeper with decreasing stellar mass. Limiting our sample to galaxies with spectroscopic redshifts from zCOSMOS, we find that the star formation rates and X-ray selected active galactic nucleus (AGN) activity in likely late-stage mergers are higher by factors of ∼2 relative to those of a control sample. Combining our sample with more

  14. THE MERGER-TRIGGERED ACTIVE GALACTIC NUCLEUS CONTRIBUTION TO THE ULTRALUMINOUS INFRARED GALAXY POPULATION

    SciTech Connect

    Draper, A. R.; Ballantyne, D. R.

    2012-07-10

    It has long been thought that there is a connection between ultraluminous infrared galaxies (ULIRGs), quasars, and major mergers. Indeed, simulations show that major mergers are capable of triggering massive starbursts and quasars. However, observations by the Herschel Space Observatory suggest that, at least at high redshift, there may not always be a simple causal connection between ULIRGs and mergers. Here, we combine an evolving merger-triggered active galactic nucleus (AGN) luminosity function with a merger-triggered starburst model to calculate the maximum contribution of major mergers to the ULIRG population. We find that major mergers can account for the entire local population of ULIRGs hosting AGNs and {approx}25% of the total local ULIRG luminosity density. By z {approx} 1, major mergers can no longer account for the luminosity density of ULIRGs hosting AGNs and contribute {approx}<12% of the total ULIRG luminosity density. This drop is likely due to high-redshift galaxies being more gas rich and therefore able to achieve high star formation rates through secular evolution. Additionally, we find that major mergers can account for the local population of warm ULIRGs. This suggests that selecting high-redshift warm ULIRGs will allow for the identification of high-redshift merger-triggered ULIRGs. As major mergers are likely to trigger very highly obscured AGNs, a significant fraction of the high-redshift warm ULIRG population may host Compton thick AGNs.

  15. Subcluster mergers and galaxy infall in A2151

    NASA Technical Reports Server (NTRS)

    Bird, Christina M.; Davis, David S.; Beers, Timothy C.

    1995-01-01

    We have obtained a 12.5 ks image of the Hercules Cluster, A2151, with the ROSAT PSPC. Comparison of the optical and X-ray emission coincides with the highest-density peak in the distribution, and is bimodal. The northern subclummp, distinct in position and velocity, has no detectable X-ray gas. The eastern subclump, apparent in the optical contour map, is indistinguishable from the clump in velocity space, but is clearly visible in the X-ray image. X-ray spectra derived from the central peak of emission yield a best-fit temperature of 1.6 keV. The emission coincident with the eastern clump of galaxies is cooler, 0.8 keV, and is outside the 90% confidence intervals of the central peak temperature. We suggest that the eastern and central subclusters have recently undergone a merger event. The lack of X-ray emission to the north suggests that those galaxies do not form a physically distinct structure (i.e., they are not located within a distinct gravitational potential), but rather that they are falling into the cluster core along the filament defined by the Hercules Supercluster.

  16. CONNECTIONS BETWEEN GALAXY MERGERS AND STARBURST: EVIDENCE FROM THE LOCAL UNIVERSE

    SciTech Connect

    Luo, Wentao; Yang, Xiaohu; Zhang, Youcai E-mail: xyang@sjtu.edu.cn

    2014-07-01

    Major mergers and interactions between gas-rich galaxies with comparable masses are thought to be the main triggers of starburst. In this work, we study, for a large stellar mass range, the interaction rate of the starburst galaxies in the local universe. We focus independently on central and satellite star forming galaxies extracted from the Sloan Digital Sky Survey. Here the starburst galaxies are selected in the star formation rate (SFR) stellar mass plane with SFRs five times larger than the median value found for ''star forming'' galaxies of the same stellar mass. Through visual inspection of their images together with close companions determined using spectroscopic redshifts, we find that ∼50% of the ''starburst'' populations show evident merger features, i.e., tidal tails, bridges between galaxies, double cores, and close companions. In contrast, in the control sample we selected from the normal star forming galaxies, only ∼19% of galaxies are associated with evident mergers. The interaction rates may increase by ∼5% for the starburst sample and 2% for the control sample if close companions determined using photometric redshifts are considered. The contrast of the merger rate between the two samples strengthens the hypothesis that mergers and interactions are indeed the main causes of starburst.

  17. Swift Coalescence of Supermassive Black Holes in Cosmological Mergers of Massive Galaxies

    NASA Astrophysics Data System (ADS)

    Khan, Fazeel Mahmood; Fiacconi, Davide; Mayer, Lucio; Berczik, Peter; Just, Andreas

    2016-09-01

    Supermassive black holes (SMBHs) are ubiquitous in galaxies with a sizable mass. It is expected that a pair of SMBHs originally in the nuclei of two merging galaxies would form a binary and eventually coalesce via a burst of gravitational waves. So far, theoretical models and simulations, focusing only on limited phases of the orbital decay of SMBHs under idealized conditions of the galaxy hosts, have been unable to directly predict the SMBH merger timescale from ab-initio galaxy formation theory. The predicted SMBH merger timescales are long, of order Gyrs, which could be problematic for future gravitational wave (GW) searches. Here, we present the first multi-scale ΛCDM cosmological simulation that follows the orbital decay of a pair of SMBHs in a merger of two typical massive galaxies at z∼ 3, all the way to the final coalescence driven by GW emission. The two SMBHs, with masses ∼ {10}8 {M}ȯ , settle quickly in the nucleus of the merger remnant. The remnant is triaxial and extremely dense due to the dissipative nature of the merger and the intrinsic compactness of galaxies at high redshift. Such properties naturally allow a very efficient hardening of the SMBH binary. The SMBH merger occurs in only ∼10 Myr after the galactic cores have merged, which is two orders of magnitude smaller than the Hubble time.

  18. Swift Coalescence of Supermassive Black Holes in Cosmological Mergers of Massive Galaxies

    NASA Astrophysics Data System (ADS)

    Khan, Fazeel Mahmood; Fiacconi, Davide; Mayer, Lucio; Berczik, Peter; Just, Andreas

    2016-09-01

    Supermassive black holes (SMBHs) are ubiquitous in galaxies with a sizable mass. It is expected that a pair of SMBHs originally in the nuclei of two merging galaxies would form a binary and eventually coalesce via a burst of gravitational waves. So far, theoretical models and simulations, focusing only on limited phases of the orbital decay of SMBHs under idealized conditions of the galaxy hosts, have been unable to directly predict the SMBH merger timescale from ab-initio galaxy formation theory. The predicted SMBH merger timescales are long, of order Gyrs, which could be problematic for future gravitational wave (GW) searches. Here, we present the first multi-scale ΛCDM cosmological simulation that follows the orbital decay of a pair of SMBHs in a merger of two typical massive galaxies at z˜ 3, all the way to the final coalescence driven by GW emission. The two SMBHs, with masses ˜ {10}8 {M}⊙ , settle quickly in the nucleus of the merger remnant. The remnant is triaxial and extremely dense due to the dissipative nature of the merger and the intrinsic compactness of galaxies at high redshift. Such properties naturally allow a very efficient hardening of the SMBH binary. The SMBH merger occurs in only ˜10 Myr after the galactic cores have merged, which is two orders of magnitude smaller than the Hubble time.

  19. GALAXY MERGERS DRIVE SHOCKS: AN INTEGRAL FIELD STUDY OF GOALS GALAXIES

    SciTech Connect

    Rich, J. A.; Kewley, L. J.; Dopita, M. A.

    2015-12-15

    We present an integral field spectroscopic study of radiative shocks in 27 nearby ultraluminous and luminous infrared galaxies (U/LIRGs) from the Great Observatory All-sky LIRG Survey, a subset of the Revised Bright Galaxy Sample. Our analysis of the resolved spectroscopic data from the Wide Field Spectrograph focuses on determining the detailed properties of the emission-line gas, including a careful treatment of multicomponent emission-line profiles. The resulting information obtained from the spectral fits is used to map the kinematics of the gas, sources of ionizing radiation, and feedback present in each system. The resulting properties are tracked as a function of merger stage. Using emission-line flux ratios and velocity dispersions, we find evidence for widespread, extended shock excitation in many local U/LIRGs. These low-velocity shocks become an increasingly important component of the optical emission lines as a merger progresses. We find that shocks may account for as much as half of the Hα luminosity in the latest-stage mergers in our sample. We discuss some possible implications of our result and consider the presence of active galactic nuclei and their effects on the spectra in our sample.

  20. Cooking a `Sausage': the impact of merger shocks in cluster gas and galaxy evolution

    NASA Astrophysics Data System (ADS)

    Stroe, Andra; Sobral, David; Harwood, Jeremy; Van Weeren, Reinout J.; Rumsey, Clare; Intema, Huib; Röttgering, Huub; Brüggen, Marcus; Saunders, Richard; Hardcastle, Martin; Hoeft, Matthias

    2015-01-01

    Galaxy clusters mainly grow through mergers with other clusters and groups. Major mergers give rise to important astrophysical phenomena such as the segregation of dark and luminous matter and the formation of cluster-wide traveling shocks and also drive galaxy evolution. The observable effects of shock waves can be seen at radio wavelengths as relics: elongated, diffuse synchrotron emitting areas located at the periphery of merging clusters. Despite the great interest in relics, candidates with simple geometry, undisturbed morphology and high surface brightness are scarce. The `Sausage' cluster hosts an extraordinary Mpc-wide relic, which enables us to study to study particle acceleration and the effects of shocks on cluster galaxies. We use a unique combination of facilities (INT, WHT, Keck, Subaru, CFHT, GMRT, WSRT, AMI) to obtain the first cluster-wide, multi-wavelength, multi-method analysis aimed at giving a complete picture of a merging cluster with relics. Using the radio data, we derive shock properties and the magnetic field structure for the relic. Using spectral modeling, we test acceleration and electron energy-loss mechanisms and resolve the discrepancy between the Mach number calculated from the radio and X-rays. Our results indicate that particles are shock-accelerated, but turbulent re-acceleration or unusually efficient transport of particles in the downstream area and line-of-sight mixing are important effects. We demonstrate the feasibility of high-frequency observations of radio relics, by presenting a 16 GHz detection of the `Sausage' relic. The radio analysis is complemented by Hα mapping of the cluster volume, aimed at providing the first direct test as to whether the shock drives or prohibits star formation. We find numerous Hα emitting galaxies in close proximity to the radio relic which are extremely massive, metal-rich, mostly star-forming with evidence for gas mass loss though outflows. We speculate that the complex interaction

  1. Merger signatures in the galaxy cluster A98

    SciTech Connect

    Paterno-Mahler, R.; Blanton, E. L.; Randall, S. W.; Bulbul, E.; Andrade-Santos, F.; Jones, C.; Murray, S.; Johnson, R. E. E-mail: eblanton@bu.edu E-mail: ebulbul@head.cfa.harvard.edu E-mail: cjones@cfa.harvard.edu E-mail: rjohnson@gettysburg.edu

    2014-08-20

    We present results from Chandra and XMM-Newton observations of Abell 98 (A98), a galaxy cluster with three major components: a relatively bright subcluster to the north (A98N), a disturbed subcluster to the south (A98S), and a fainter subcluster to the far south (A98SS). We find evidence for surface brightness and temperature asymmetries in A98N consistent with a shock-heated region to the south, which could be created by an early stage merger between A98N and A98S. Deeper observations are required to confirm this result. We also find that A98S has an asymmetric core temperature structure, likely due to a separate ongoing merger. Evidence for this is also seen in optical data. A98S hosts a wide-angle tail radio source powered by a central active galactic nucleus (AGN). We find evidence for a cavity in the intracluster medium that has been evacuated by one of the radio lobes, suggesting that AGN feedback is operating in this system. Examples of cavities in non-cool core clusters are relatively rare. The three subclusters lie along a line in projection, suggesting the presence of a large-scale filament. We observe emission along the filament between A98N and A98S, and a surface brightness profile shows emission consistent with the overlap of the subcluster extended gas halos. We find the temperature of this region is consistent with the temperature of the gas at similar radii outside this bridge region. Lastly, we examine the cluster dynamics using optical data. We conclude A98N and A98S are likely bound to one another with a 67% probability, while A98S and A98SS are not bound at a high level of significance.

  2. Reliability of Merger Tree Realizations of Dark Halos in the Monte Carlo Modeling of Galaxy Formation

    NASA Astrophysics Data System (ADS)

    Shimizu, Mamoru; Kitayama, Tetsu; Sasaki, Shin; Suto, Yasushi

    2002-10-01

    We examine the reliability of the merger trees generated for the Monte Carlo modeling of galaxy formation. In particular we focus on the cold gas fraction predicted from merger trees with different assumptions on the progenitor distribution function, the timestep, and the mass resolution. We show that the cold gas fraction is sensitive to the accuracy of the merger trees at small-mass scales of progenitors at high redshifts. One can reproduce the Press-Schechter prediction to a reasonable degree by adopting a fairly large number of redshift bins, Nstep ~ 1000, in generating merger trees, which is a factor of ten larger than the canonical value used in previous literature.

  3. Rapid Formation of Supermassive Black Hole Binaries in Galaxy Mergers with Gas

    SciTech Connect

    Mayer, L.; Kazantzidis, S.; Madau, P.; Colpi, M.; Quinn, T.; Wadsley, J.; /McMaster U.

    2008-03-24

    Supermassive black holes (SMBHs) are a ubiquitous component of the nuclei of galaxies. It is normally assumed that, following the merger of two massive galaxies, a SMBH binary will form, shrink due to stellar or gas dynamical processes and ultimately coalesce by emitting a burst of gravitational waves. However, so far it has not been possible to show how two SMBHs bind during a galaxy merger with gas due to the difficulty of modeling a wide range of spatial scales. Here we report hydrodynamical simulations that track the formation of a SMBH binary down to scales of a few light years following the collision between two spiral galaxies. A massive, turbulent nuclear gaseous disk arises as a result of the galaxy merger. The black holes form an eccentric binary in the disk in less than a million years as a result of the gravitational drag from the gas rather than from the stars.

  4. Decoding Mode-mixing in Black-hole Merger Ringdown

    NASA Technical Reports Server (NTRS)

    Kelly, Bernard J.; Baker, John G.

    2013-01-01

    Optimal extraction of information from gravitational-wave observations of binary black-hole coalescences requires detailed knowledge of the waveforms. Current approaches for representing waveform information are based on spin-weighted spherical harmonic decomposition. Higher-order harmonic modes carrying a few percent of the total power output near merger can supply information critical to determining intrinsic and extrinsic parameters of the binary. One obstacle to constructing a full multi-mode template of merger waveforms is the apparently complicated behavior of some of these modes; instead of settling down to a simple quasinormal frequency with decaying amplitude, some |m| = modes show periodic bumps characteristic of mode-mixing. We analyze the strongest of these modes the anomalous (3, 2) harmonic mode measured in a set of binary black-hole merger waveform simulations, and show that to leading order, they are due to a mismatch between the spherical harmonic basis used for extraction in 3D numerical relativity simulations, and the spheroidal harmonics adapted to the perturbation theory of Kerr black holes. Other causes of mode-mixing arising from gauge ambiguities and physical properties of the quasinormal ringdown modes are also considered and found to be small for the waveforms studied here.

  5. Can galaxy growth be sustained through HI-rich minor mergers?

    NASA Astrophysics Data System (ADS)

    Lehnert, M. D.; van Driel, W.; Minchin, R.

    2016-05-01

    Local galaxies with specific star-formation rates (star-formation rate per unit mass; sSFR ~ 0.2-10 Gyr-1) that are as high as distant galaxies (z ≈ 1-3), are very rich in Hi. Those with low stellar masses, M⋆ = 108-9 M⊙, for example, have MHI/M⋆ ≈ 5-30. Using continuity arguments, whereby the specific merger rate is hypothesized to be proportional to the specific star-formation rate, along with Hi gas mass measurements for local galaxies with high sSFR, we estimate that moderate-mass galaxies, M⋆ = 109-10.5 M⊙, can acquire enough gas through minor mergers (stellar mass ratios ~4-100) to sustain their star formation rates at z ~ 2. The relative fraction of the gas accreted through minor mergers declines with increasing stellar mass, and for the most massive galaxies considered, M⋆ = 1010.5-11 M⊙, this accretion rate is insufficient to sustain their star formation. We checked our minor merger hypothesis at z = 0 using the same methodology, but now with relations for local normal galaxies, and find that minor mergers cannot account for their specific growth rates, in agreement with observations of Hi-rich satellites around nearby spirals. We discuss a number of attractive features, such as a natural downsizing effect, in using minor mergers with extended Hi disks to support star formation at high redshift. The answer to the question posed by the title, "Can galaxy growth be sustained through Hi-rich minor mergers?", is "maybe", but only for relatively low-mass galaxies and at high redshift.

  6. Gas-Rich Mergers in LCDM: Disk Survivability and the Baryonic Assembly of Galaxies

    SciTech Connect

    Stewart, Kyle R.; Bullock, James S.; Wechsler, Risa H.; Maller, Ariyeh H.; /New York City Coll. Tech.

    2009-08-03

    We use N-body simulations and observationally-normalized relations between dark matter halo mass, stellar mass, and cold gas mass to derive robust expectations about the baryonic content of major mergers out to redshift z {approx} 2. First, we find that the majority of major mergers (m/M > 0.3) experienced by Milky Way size dark matter halos should have been gas-rich, and that gas-rich mergers are increasingly common at high redshift. Though the frequency of major mergers into galaxy halos in our simulations greatly exceeds the observed late-type galaxy fraction, the frequency of gas-poor major mergers is consistent with the observed fraction of bulge-dominated galaxies across the halo mass range M{sub DM} {approx} 10{sup 11} - 10{sup 13} M{sub {circle_dot}}. These results lend support to the conjecture that mergers with high baryonic gas fractions play an important role in building and/or preserving disk galaxies in the universe. Secondly, we find that there is a transition mass below which a galaxy's past major mergers were primarily gas-rich and above which they were gas poor. The associated stellar mass scale corresponds closely to that marking the observed bimodal division between blue, star-forming, disk-dominated systems and red, bulge-dominated systems with old populations. Finally, we find that the overall fraction of a galaxy's cold baryons deposited directly via major mergers is substantial. Approximately 30% of the cold baryonic material in M{sub star} {approx} 10{sup 10} M{sub {circle_dot}} (M{sub DM} {approx} 10{sup 11.5} M{sub {circle_dot}}) galaxies is accreted as cold gas in major mergers. For more massive galaxies with M{sub star} {approx} 10{sup 11} M{sub {circle_dot}} (M{sub DM} {approx} 10{sup 13} M{sub {circle_dot}} the fraction of baryons amassed in mergers is even higher, {approx} 50%, but most of these accreted baryons are delivered directly in the form of stars. This baryonic mass deposition is almost unavoidable, and provides a limit on

  7. GAS-RICH MERGERS IN LCDM: DISK SURVIVABILITY AND THE BARYONIC ASSEMBLY OF GALAXIES

    SciTech Connect

    Stewart, Kyle R.; Bullock, James S.; Wechsler, Risa H.; Maller, Ariyeh H.

    2009-09-01

    We use N-body simulations and observationally normalized relations between dark matter halo mass, stellar mass, and cold gas mass to derive robust expectations about the baryonic content of major mergers out to redshift z {approx} 2. First, we find that the majority of major mergers (m/M>0.3) experienced by the Milky Way size dark matter halos should have been gas-rich, and that gas-rich mergers are increasingly common at high redshifts. Though the frequency of major mergers into galaxy halos in our simulations greatly exceeds the observed early-type galaxy fraction, the frequency of gas-poor major mergers is consistent with the observed fraction of bulge-dominated galaxies across the halo mass range M{sub DM} {approx} 10{sup 11}-10{sup 13} M{sub sun}. These results lend support to the conjecture that mergers with high-baryonic gas fractions play an important role in building and/or preserving disk galaxies in the universe. Second, we find that there is a transition mass below which a galaxy's past major mergers were primarily gas-rich and above which they were gas-poor. The associated stellar mass scale corresponds closely to that marking the observed bimodal division between blue, star-forming, disk-dominated systems and red, bulge-dominated systems with old populations. Finally, we find that the overall fraction of a galaxy's cold baryons deposited directly via major mergers is significant. Approximately {approx}20%-30% of the cold baryonic material in M{sub star} {approx} 10{sup 10.5} M{sub sun} (M{sub DM} {approx} 10{sup 12} M{sub sun}) galaxies is accreted as cold gas or stars via major mergers since z = 2, with most of this accretion in the form of cold gas. For more massive galaxies with M{sub star} {approx} 10{sup 11} M{sub sun} (M {sub DM} {approx} 10{sup 13} M{sub sun}), the fraction of baryons amassed in mergers since z = 2 is even higher, {approx}40%, but most of these accreted baryons are delivered directly in the form of stars. This baryonic mass

  8. Galaxy Mergers in the A901/902 Supercluster with STAGES

    NASA Astrophysics Data System (ADS)

    Heiderman, A.; Jogee, S.; Marinova, I.; van Kampen, E.; Barden, M.; Peng, C. Y.; Heymans, C.; Gray, M. E.; Bell, E. F.; Bacon, D.; Balogh, M.; Barazza, F. D.; Böhm, A.; Caldwell, J. A. R.; Häußler, B.; Jahnke, K.; Lane, K.; McIntosh, D. H.; Meisenheimer, K.; Sánchez, S. F.; Sommerville, R. S.; Taylor, A.; Wisotzki, L.; Wolf, C.; Zheng, X.

    2009-12-01

    We investigate galaxy mergers in the A901/902 supercluster at z ˜ 0.165, based on HST ACS F606W, COMBO-17, Spitzer 24 μm, XMM-Newton X-ray, and gravitational lensing maps, as part of the STAGES survey. We utilize two methods to identify interacting galaxies in A901/902: visual classification and quantitative CAS parameters. In this article, we summarize our results for the frequency, distribution, color, and star formation rates of mergers, compared to non-interacting galaxies in A901/902. We also compare our results to other studies of clusters and groups, as well as theoretical predictions.

  9. Simulating multiple merger pathways to the central kinematics of early-type galaxies

    NASA Astrophysics Data System (ADS)

    Moody, Christopher E.; Romanowsky, Aaron J.; Cox, Thomas J.; Novak, G. S.; Primack, Joel R.

    2014-10-01

    Two-dimensional integral field surveys such as ATLAS3D are producing rich observational data sets yielding insights into galaxy formation. These new kinematic observations have highlighted the need to understand the evolutionary mechanisms leading to a spectrum of fast rotators and slow rotators in early-type galaxies. We address the formation of slow and fast rotators through a series of controlled, comprehensive hydrodynamical simulations, sampling idealized galaxy merger scenarios constructed from model spiral galaxies. Idealized and controlled simulations of this sort complement the more `realistic' cosmological simulations by isolating and analysing the effects of specific parameters, as we do in this paper. We recreate minor and major binary mergers, binary merger trees with multiple progenitors, and multiple sequential mergers. Within each of these categories of formation history, we correlate progenitor gas fraction, mass ratio, orbital pericentre, orbital ellipticity, and spin with remnant kinematic properties. We create kinematic profiles of these 95 simulations comparable to ATLAS3D data. By constructing remnant profiles of the projected specific angular momentum (λ _R= < R|V|rangle / < R √{V^2+σ ^2}rangle), triaxiality, and measuring the incidences of kinematic twists and kinematically decoupled cores, we distinguish between varying formation scenarios. We find that binary mergers nearly always form fast rotators. Slow rotators can be formed from zero initial angular momentum configurations and gas-poor mergers, but are not as round as the ATLAS3D galaxies. Remnants of binary merger trees are triaxial slow rotators. Sequential mergers form round slow rotators that most resemble the ATLAS3D rotators.

  10. SHINING LIGHT ON MERGING GALAXIES. I. THE ONGOING MERGER OF A QUASAR WITH A 'GREEN VALLEY' GALAXY

    SciTech Connect

    Da Silva, Robert L.; Xavier Prochaska, J.; Rosario, David; Tripp, Todd M.

    2011-07-01

    Serendipitous observations of a pair z = 0.37 interacting galaxies (one hosting a quasar) show a massive gaseous bridge of material connecting the two objects. This bridge is photoionized by the quasar (QSO), revealing gas along the entire projected 38 h{sup -1}{sub 70} kpc sightline connecting the two galaxies. The emission lines that result give an unprecedented opportunity to study the merger process at this redshift. We determine the kinematics, ionization parameter (log U {approx} -2.5 {+-} 0.03), column density (N{sub H,perpendicular} {approx} 10{sup 21} cm{sup -2}), metallicity ([M/H] {approx} - 0.20 {+-} 0.15), and mass ({approx}10{sup 8} M{sub sun}) of the gaseous bridge. We simultaneously constrain properties of the QSO host (M{sub DM} > 8.8 x 10{sup 11} M{sub sun}) and its companion galaxy (M{sub DM} > 2.1 x 10{sup 11} M{sub sun}; M{sub *} {approx} 2 x 10{sup 10} M{sub sun}; stellar burst age = 300-800 Myr; SFR {approx}6 M{sub sun} yr{sup -1}; and metallicity 12 + log (O/H) = 8.64 {+-} 0.2). The general properties of this system match the standard paradigm of a galaxy-galaxy merger caught between first and second passages while one of the galaxies hosts an active quasar. The companion galaxy lies in the so-called green valley, with a stellar population consistent with a recent starburst triggered during the first passage of the merger and has no discernible active galactic nucleus activity. In addition to providing case studies of quasars associated with galaxy mergers, quasar/galaxy pairs with QSO-photoionized tidal bridges such as this one offer unique insights into the galaxy properties while also distinguishing an important and inadequately understood phase of galaxy evolution.

  11. THE CFHTLS-DEEP CATALOG OF INTERACTING GALAXIES. I. MERGER RATE EVOLUTION TO z = 1.2

    SciTech Connect

    Bridge, C. R.; Carlberg, R. G.; Sullivan, M.

    2010-02-01

    We present the rest-frame optical galaxy merger fraction between 0.2 < z < 1.2, as a function of stellar mass and optical luminosity, as observed by the Canada-France-Hawaii Telescope Legacy Deep Survey (CFHTLS-Deep). We developed a new classification scheme to identify major galaxy-galaxy mergers based on the presence of tidal tails and bridges. These morphological features are signposts of recent and ongoing merger activity. Through the visual classification of all galaxies, down to i{sub vega} <= 22.2 (approx27,000 galaxies) over 2 square degrees, we have compiled the CFHTLS-Deep Catalog of Interacting Galaxies, with approx 1600 merging galaxies. We find the merger fraction to be 4.3% +- 0.3% at z approx 0.3 and 19.0% +- 2.5% at z approx 1, implying evolution of the merger fraction going as (1 + z) {sup m}, with m = 2.25 +- 0.24. This result is inconsistent with a mild or non-evolving (m < 1.5) scenario at a approx>4sigma level of confidence. A mild trend, where by massive galaxies with M{sub *}>10{sup 10.7} M{sub sun} are undergoing fewer mergers than less massive systems (M{sub *} approx 10{sup 10} M{sub sun}), consistent with the expectations of galaxy assembly downsizing is observed. Our results also show that interacting galaxies have on average SFRs double that found in non-interacting field galaxies. We conclude that (1) the optical galaxy merger fraction does evolve with redshift, (2) the merger fraction depends mildly on stellar mass, with lower mass galaxies having higher merger fractions at z < 1, and (3) star formation is triggered at all phases of a merger, with larger enhancements at later stages, consistent with N-body simulations.

  12. Studying the Role of Mergers in Black Hole - Galaxy Co-evolution via a Morphological Analysis of Redshift 1 Galaxies

    NASA Astrophysics Data System (ADS)

    Powell, Meredith; Urry, C. Megan

    2016-06-01

    We study the role of mergers in the quenching of star formation in galaxies at the dominant epoch of their evolution, by examining their color-mass distributions for different morphology types. We use HST ACS data from the CANDELS/GOODS North and South fields for galaxies in the redshift range 0.7 < z < 1.3 and use GALFIT to fit them with sersic profiles, enabling us to classify each as bulge-dominated (early type) or disk-dominated (late type). We find that spirals and ellipticals have distinct color-mass distributions, similar to studies at z=0, in that each have quenching modes of differing time scales. The smooth decay to the red sequence for the disky galaxies corresponds to a slow exhaustion of gas, while the lack of elliptical galaxies in the `green valley' indicates a faster quenching time for galaxies that underwent a major merger. We compare the inactive galaxies to the AGN hosts and find that the AGN phase lasts well into the red sequence for both types of host galaxy, spanning the full color space. The results suggest that the AGN trigger mechanism, as well as the significance of AGN feedback, is dependent on the merger history of the host galaxy.

  13. Evidence for Tidal Interactions and Mergers as the Origin of Galaxy Morphology Evolution in Compact Groups

    NASA Astrophysics Data System (ADS)

    Coziol, R.; Plauchu-Frayn, I.

    2007-06-01

    We present the results of a morphological study based on NIR images of 25 galaxies, with different levels of nuclear activity (star formation or AGN), in eight compact groups (CGs) of galaxies. We independently perform two different analyses: a study of the deviations of the isophotal levels from pure ellipses and a study of morphological asymmetries. The results yielded by the two analyses are highly consistent. For the first time, it is possible to show that deviations from pure ellipses are produced by inhomogeneous stellar mass distributions related to galaxy interactions and mergers. We find evidence of mass asymmetries in 74% of the galaxies in our sample. In 59% of these cases, the asymmetries come in pairs and are consistent with tidal effects produced by the proximity of companion galaxies. The symmetric galaxies are generally small in size or mass and inactive, and have an early-type morphology. They may have already lost their gas and least-attached envelope of stars to their more massive companions. In 20% of the galaxies we find evidence for cannibalism: a big galaxy swallowing a smaller companion. In 36% of the early-type galaxies the color gradient is positive (blue nucleus) or flat. Summing up these results, as much as 52% of the galaxies in our sample could show evidence of an ongoing or past merger. Our observations also suggest that galaxies in CGs merge more frequently under ``dry'' conditions (that is, once they have lost most of their gas). The high frequency of interacting and merging galaxies observed in our study is consistent with the bias of our sample toward CGs of type B, which represent the most active phase in the evolution of the groups. In these groups we also find a strong correlation between asymmetries and nuclear activity in early-type galaxies. This correlation allows us to identify tidal interactions and mergers as the cause of galaxy morphology transformation in CGs.

  14. Major galaxy mergers and the growth of supermassive black holes in quasars.

    PubMed

    Treister, Ezequiel; Natarajan, Priyamvada; Sanders, David B; Urry, C Megan; Schawinski, Kevin; Kartaltepe, Jeyhan

    2010-04-30

    Despite observed strong correlations between central supermassive black holes (SMBHs) and star formation in galactic nuclei, uncertainties exist in our understanding of their coupling. We present observations of the ratio of heavily obscured to unobscured quasars as a function of cosmic epoch up to z congruent with 3 and show that a simple physical model describing mergers of massive, gas-rich galaxies matches these observations. In the context of this model, every obscured and unobscured quasar represents two distinct phases that result from a massive galaxy merger event. Much of the mass growth of the SMBH occurs during the heavily obscured phase. These observations provide additional evidence for a causal link between gas-rich galaxy mergers, accretion onto the nuclear SMBH, and coeval star formation.

  15. GALAXY MERGERS AS A SOURCE OF COSMIC RAYS, NEUTRINOS, AND GAMMA RAYS

    SciTech Connect

    Kashiyama, Kazumi; Mészáros, Peter

    2014-07-20

    We investigate the shock acceleration of particles in massive galaxy mergers or collisions, and show that cosmic rays (CRs) can be accelerated up to the second knee energy ∼0.1-1 EeV and possibly beyond, with a hard spectral index of Γ ≈ 2. Such CRs lose their energy via hadronuclear interactions within a dynamical timescale of the merger shock, producing gamma rays and neutrinos as a by-product. If ∼10% of the shock dissipated energy goes into CR acceleration, some local merging galaxies will produce gamma-ray counterparts detectable by the Cherenkov Telescope Array. Also, based on the concordance cosmology, where a good fraction of the massive galaxies experience a major merger in a cosmological timescale, the neutrino counterparts can constitute ∼20%-60% of the isotropic background detected by IceCube.

  16. Evolution of the major merger galaxy pair fraction at z < 1

    SciTech Connect

    Keenan, R. C.; Hsieh, B. C.; Lin, L.; Chou, R. C. Y.; Huang, S.; Lin, J. H.; Chang, K. H.; Foucaud, S.; De Propris, R.

    2014-11-10

    We present a study of the largest available sample of near-infrared selected (i.e., stellar mass selected) dynamically close pairs of galaxies at low redshifts (z < 0.3). We combine this sample with new estimates of the major merger pair fraction for stellar mass selected galaxies at z < 0.8, from the Red Sequence Cluster Survey (RCS1). We construct our low-redshift K-band selected sample using photometry from the UKIRT Infrared Deep Sky Survey and the Two Micron All Sky Survey (2MASS) in the K band (∼2.2 μm). Combined with all available spectroscopy, our K-band selected sample contains ∼250, 000 galaxies and is >90% spectroscopically complete. The depth and large volume of this sample allow us to investigate the low-redshift pair fraction and merger rate of galaxies over a wide range in K-band luminosity. We find the major merger pair fraction to be flat at ∼2% as a function of K-band luminosity for galaxies in the range 10{sup 8}-10{sup 12} L {sub ☉}, in contrast to recent results from studies in the local group that find a substantially higher low-mass pair fraction. This low-redshift major merger pair fraction is ∼40%-50% higher than previous estimates drawn from K-band samples, which were based on 2MASS photometry alone. Combining with the RCS1 sample, we find a much flatter evolution (m = 0.7 ± 0.1) in the relation f {sub pair}∝(1 + z) {sup m} than indicated in many previous studies. These results indicate that a typical L ∼ L* galaxy has undergone ∼0.2-0.8 major mergers since z = 1 (depending on the assumptions of merger timescale and percentage of pairs that actually merge).

  17. Completing the Deep IRAC1,2 Imaging of the (U)LIRG Merger Sequence: the pre-merger galaxies and post-merger remnants

    NASA Astrophysics Data System (ADS)

    Sanders, David; Armus, Lee; Barnes, Josh; Evans, Aaron; Frayer, David; Howell, Justin; Kewley, Lisa; Koda, Jin; Larson, Kirsten; Lord, Steve; Mazzarella, Joseph; Privon, George; Sheth, Kartik; Surace, Jason; U, Vivian

    2013-10-01

    We propose to obtain deep IRAC1,2 observations (~1400 sec) of a large sample (~250 targets) of putative (U)LIRG precursors and remnants, in order to measure the full extent and internal structure of their debris fields. These new data will be combined with our Cycle 7+8 deep IRAC1,2 imaging of ~200 (U)LIRGs, allowing us to compare the properties of the debris fields across all merger stages, and to better assess the current merger paradigm whereby mergers of gas-rich L* spirals produce (U)LIRGs, which then evolve into IR-QSOs and eventually pass through a 'K+A' phase on their way to becoming 'red and dead' Ellipticals. Our ~100 pre-merger targets are gas-rich spirals chosen from the Great Observatories All-Sky LIRGs Survey (GOALS), for which we are obtaining both spacecraft and ground-based data at a wide range of wavelengths (radio thru X-ray). Our ~150 post-merger targets have been chosen from a variety of surveys that are likely to include many (U)LIRG remnants, as well as a sample of nearby ellipticals with measured fine structure indices. These new IRAC observations will allow us to fully characterize the extent and morphology of faint debris at every stage of the merger process, and thereby test the tidal origins of these debris fields. If the tidal hypothesis is confirmed, we will use 'IDENTIKIT' (Barnes & Hibbard, 2009) models of major and minor mergers to interpret the observations and place our precursors, (U)LIRGs, and remnants on an consistent evolutionary time-line. We also plan to combine our new IRAC1,2 data with deep optical (Subaru and VLT) and NIR (HST-NIC and WFC3) data to determine spectral energy distributions, measure stellar masses, and look for warm dust in these extended features. The new Spitzer data will allow us to obtain a clearer picture of tidal debris fields (e.g. putative tidal dwarf galaxies, and other previously disconnected arms, shells, etc.) that are produced over the complete merger history of (U)LIRGs.

  18. An enhanced merger fraction within the galaxy population of the SSA22 protocluster at z = 3.1

    NASA Astrophysics Data System (ADS)

    Hine, N. K.; Geach, J. E.; Alexander, D. M.; Lehmer, B. D.; Chapman, S. C.; Matsuda, Y.

    2016-01-01

    The overdense environments of protoclusters of galaxies in the early Universe (z > 2) are expected to accelerate the evolution of galaxies, with an increased rate of stellar mass assembly and black hole accretion compared to co-eval galaxies in the average density `field'. These galaxies are destined to form the passive population of massive galaxies that dominate the cores of rich clusters today. While signatures of the accelerated growth of galaxies in the SSA22 protocluster (z = 3.1) have been observed, the mechanism driving this remains unclear. Here we show an enhanced rate of galaxy-galaxy mergers could be responsible. We morphologically classify Lyman-break Galaxies (LBGs) in the SSA22 protocluster and compare these to those of galaxies in the field at z = 3.1 as either active mergers or non-merging using Hubble Space Telescope ACS/F814W imaging, probing the rest-frame ultraviolet stellar light. We measure a merger fraction of 48 ± 10 per cent for LBGs in the protocluster compared to 30 ± 6 per cent in the field. Although the excess is marginal, an enhanced rate of mergers in SSA22 hints that galaxy-galaxy mergers are one of the key channels driving accelerated star formation and AGN growth in protocluster environments.

  19. Toward the Distribution of Orbital Parameters of Nearby Major Galaxy Mergers

    NASA Astrophysics Data System (ADS)

    Mortazavi Karvani, Seyed Alireza

    2016-01-01

    In this thesis project our goal is to measure the initial conditions of a sample of ~20 local disk-disk major galaxy mergers. Measuring the orbital parameters is possible by findingthe most similar galaxy merger simulation to the morphology and kinematics of the data.We have developed an automated modeling method based on the Identikit software package,which also estimates the uncertainty of the measured initial conditions. We tested our modeling method using an independent set of GADGET simulations, and we acquired reliable results onprograde merger systems. We observed the Hα kinematics of our sample using SparsePak IFU on the WIYN telescope at KPNO, and DIS on the 3.5m telescope at APO. For the few merger systems in our sample with archival HI data available, we compare the use of HI vs Hα as the kinematic tracer. This work lays the ground-work for the analysis of larger statistical samples of mergers from on-going IFU galaxy survey such as MaNGA.

  20. The remnant of a merger between two dwarf galaxies in Andromeda II.

    PubMed

    Amorisco, N C; Evans, N W; van de Ven, G

    2014-03-20

    Driven by gravity, massive structures like galaxies and clusters of galaxies are believed to grow continuously through hierarchical merging and accretion of smaller systems. Observational evidence of accretion events is provided by the coherent stellar streams crossing the outer haloes of massive galaxies, such as the Milky Way or Andromeda. At similar mass scales, around 10(11) solar masses in stars, further evidence of merging activity is also ample. Mergers of lower-mass galaxies are expected within the hierarchical process of galaxy formation, but have hitherto not been seen for galaxies with less than about 10(9) solar masses in stars. Here we report the kinematic detection of a stellar stream in one of the satellite galaxies of Andromeda, the dwarf spheroidal Andromeda II, which has a mass of only 10(7) solar masses in stars. The properties of the stream show that we are observing the remnant of a merger between two dwarf galaxies. This had a drastic influence on the dynamics of the remnant, which is now rotating around its projected major axis. The stellar stream in Andromeda II illustrates the scale-free character of the formation of galaxies, down to the lowest galactic mass scales.

  1. The remnant of a merger between two dwarf galaxies in Andromeda II.

    PubMed

    Amorisco, N C; Evans, N W; van de Ven, G

    2014-03-20

    Driven by gravity, massive structures like galaxies and clusters of galaxies are believed to grow continuously through hierarchical merging and accretion of smaller systems. Observational evidence of accretion events is provided by the coherent stellar streams crossing the outer haloes of massive galaxies, such as the Milky Way or Andromeda. At similar mass scales, around 10(11) solar masses in stars, further evidence of merging activity is also ample. Mergers of lower-mass galaxies are expected within the hierarchical process of galaxy formation, but have hitherto not been seen for galaxies with less than about 10(9) solar masses in stars. Here we report the kinematic detection of a stellar stream in one of the satellite galaxies of Andromeda, the dwarf spheroidal Andromeda II, which has a mass of only 10(7) solar masses in stars. The properties of the stream show that we are observing the remnant of a merger between two dwarf galaxies. This had a drastic influence on the dynamics of the remnant, which is now rotating around its projected major axis. The stellar stream in Andromeda II illustrates the scale-free character of the formation of galaxies, down to the lowest galactic mass scales. PMID:24572352

  2. Innovations in adaptive optics imaging and spectroscopy: OSIRIS, galaxy surveys, and galaxy mergers

    NASA Astrophysics Data System (ADS)

    Barczys, Matthew Michael

    ), pairs appear to span a much wider range ( dm < 5-6 mag) in the infrared. Since infrared brightness is more indicative of the actual stellar mass in galaxies, the number of major mergers is probably significantly over- estimated by studies relying solely on optical data.

  3. Constraining Self-Interacting Dark Matter: Insights from Equal Mass Mergers of Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    Yeonchi Kim, Stacy; Peter, Annika

    2016-01-01

    While the ΛCDM model has been wildly successful at explaining structure on large scales, it fails to do so on small scales---dark matter halos of scales comparable to that of galaxy clusters and smaller are more cored and less numerous than ΛCDM predicts. One potential solution challenges the canonical assumption that dark matter is collisionless and instead assumes that it is collisional, or self-interacting. The most stringent upper limits on the dark matter self-interaction cross section have come from observations of merging galaxy clusters. Self-interactions cause the merging dark matter halos to evolve differently from the galaxies, which are effectively collisionless. It has been hypothesized that this leads to an spatial offset between the peaks in the dark matter and galaxy distributions. We show that in equal mass mergers offsets do not develop except under a narrow range of merger conditions. Mergers with observable offsets have an infall velocity comparable to the escape velocity from a halo---promoting the explusion of significant mass and the formation of tails---and is head-on. We discuss other observable signatures of self-interactions that may better constrain the dark matter self-interaction cross-section in equal mass cluster mergers.

  4. Gravitational waves and stalled satellites from massive galaxy mergers at z ≤ 1

    SciTech Connect

    McWilliams, Sean T.; Pretorius, Frans; Ostriker, Jeremiah P.

    2014-07-10

    We present a model for merger-driven evolution of the mass function for massive galaxies and their central supermassive black holes at late times. We discuss the current observational evidence in favor of merger-driven massive galaxy evolution during this epoch, and demonstrate that the observed evolution of the mass function can be reproduced by evolving an initial mass function under the assumption of negligible star formation. We calculate the stochastic gravitational wave signal from the resulting black hole binary mergers in the low redshift universe (z ≤ 1) implied by this model, and find that this population has a signal-to-noise ratio 2 × to 5 × larger than previous estimates for pulsar timing arrays, with a (2σ, 3σ) lower limit within this model of h{sub c}(f = 1 yr{sup –1}) = (1.1 × 10{sup –15}, 6.8 × 10{sup –16}). The strength of this signal is sufficient to make it detectable with high probability under conservative assumptions within the next several years. A principle reason that this result is larger than previous estimates is our use of a recent recalibration of the black hole-stellar mass correlation for the brightest cluster galaxies, which increases our estimate by a factor of ∼2 relative to past results. For cases where a galaxy merger fails to lead to a black hole merger, we estimate the probability for a given number of satellite black holes to remain within a massive host galaxy, and interpret the result in light of ULX observations. We find that in rare cases, wandering supermassive black holes may be bright enough to appear as ULXs.

  5. Heavily obscured quasar host galaxies at z ∼ 2 are discs, not major mergers

    NASA Astrophysics Data System (ADS)

    Schawinski, Kevin; Simmons, Brooke D.; Urry, C. Megan; Treister, Ezequiel; Glikman, Eilat

    2012-09-01

    We explore the nature of heavily obscured quasar host galaxies at z˜ 2 using deep Hubble Space Telescope Wide Field Camera 3/infrared imaging of 28 dust-obscured galaxies (DOGs) to investigate the role of major mergers in driving black hole growth. The high levels of obscuration of the quasars selected for this study act as a natural coronagraph, blocking the quasar light and allowing a clear view of the underlying host galaxy. The sample of heavily obscured quasars represents a significant fraction of the cosmic mass accretion on supermassive black holes as the quasars have inferred bolometric luminosities around the break of the quasar luminosity function. We find that only a small fraction (4 per cent, at most 11-25 per cent) of the quasar host galaxies are major mergers. Fits to their surface brightness profiles indicate that 90 per cent of the host galaxies are either disc dominated, or have a significant disc. This disc-like host morphology, and the corresponding weakness of bulges, is evidence against major mergers and suggests that secular processes are the predominant driver of massive black hole growth. Finally, we suggest that the coincidence of mergers and active galactic nucleus activity is luminosity dependent, with only the most luminous quasars being triggered mostly by major mergers. a MUSYC catalogue ID, see Cardamone et al. (2010). Objects with X-ray detections are marked with *. b See images shown in Fig. 1. c The ratio of the host luminosity to the point source luminosity, reported only when GALFIT requires an unresolved object to yield a physical fit. This may be due to an AGN point source (in the case of the X-ray-detected DOGs) or an unresolved bulge or central concentration, i.e. a central bulge. d See Fig. 2.

  6. Star Formation and Dense Gas in Galaxy Mergers from the VIXENS Survey

    NASA Astrophysics Data System (ADS)

    Heiderman, Amanda L.; VIXENS Team

    2016-01-01

    We present our λ= 3 mm IRAM and NRO single dish line survey for a sample of 15 interacting galaxies in the VIRUS-P Investigation of the eXtreme ENvironments of Starbursts (VIXENS) survey. Our sample of merging galaxies range from early to late interaction stages (close pairs to merger remnants, respectively). A variety of molecular lines are detected including dense gas tracers HCN, HCO+, HNC, CS, CN (and others) as well as 12CO and 13CO. We compare the dense gas fractions with 12CO and 13CO as well as star formation efficiencies defined by infrared-to-dense gas tracer luminosity ratio and discuss trends with interaction stage. We also investigate relations between star formation and dense gas content in our merger sample and compare them to non-interacting star forming galaxies and Galactic star forming regions in the Milky Way.

  7. ENVIRONMENTAL DEPENDENCE OF THE GALAXY MERGER RATE IN A {Lambda}CDM UNIVERSE

    SciTech Connect

    Jian, Hung-Yu; Chiueh, Tzihong; Lin Lihwai

    2012-07-20

    We make use of four galaxy catalogs based on four different semi-analytical models (SAMs) implemented in the Millennium Simulation to study the environmental effects and the model dependence of the galaxy merger rate. We begin the analyses by finding that the galaxy merger rate in SAMs has a mild redshift evolution with luminosity-selected samples in the evolution-corrected B-band magnitude range,-21 {<=} M{sup e}{sub B} {<=} -19, consistent with the results of previous works. To study the environmental dependence of the galaxy merger rate, we adopt two estimators, the local overdensity (1 + {delta}{sub n}), defined as the surface density from the nth nearest neighbor (n = 6 is chosen in this study), and the host halo mass M{sub h} . We find that the galaxy merger rate F{sub mg} shows a strong dependence on the local overdensity (1 + {delta}{sub n}) and the dependence is similar at all redshifts. For the overdensity estimator, the merger rate F{sub mg} is found to be about twenty times larger in the densest regions than in underdense ones in two of the four SAMs, while it is roughly four times higher in the other two. In other words, the discrepancies of the merger rate difference between the two extremes can differ by a factor of {approx}5 depending on the SAMs adopted. On the other hand, for the halo mass estimator, F{sub mg} does not monotonically increase with the host halo mass M{sub h} but peaks in the M{sub h} range between 10{sup 12} and 10{sup 13} h{sup -1} M{sub Sun }, which corresponds to group environments. The high merger rate in high local density regions corresponds primarily to the high merger rate in group environments. In addition, we also study the merger probability of 'close pairs' identified using the projected separation and the line-of-sight velocity difference C{sub mg} and the merger timescale T{sub mg}; these are two important quantities for observations to convert the pair fraction N{sub c} into the galaxy merger rate. We discover that T

  8. Gaseous merger signatures in early-type galaxies

    NASA Astrophysics Data System (ADS)

    Morgan, Jodie Rachelle

    Two samples of early type galaxies are examined through very high spatial resolution studies of the surface brightnesses, colors sensitive to small admixtures of youthful stellar populations to probe the recent and possible future star formation histories of these galaxies and the spatial distributions of stellar populations. The two samples of early type galaxies are a test sample which have stellar surface brightness profiles with a central spike in light above a smoothly increasing profile and a control sample of galaxies which do not have the central light spike. This study used the Hubble Space Telescope in the Near-Ultraviolet, the Ultraviolet, and the V bands. The high spatial resolution of [Special characters omitted.] per pixel and the spectral sensitivity (< S/N > [Special characters omitted.] 10) allow us to examine to high accuracy the spatial distribution of light in each band, the total integrated colors of the galaxies and the color changes with radius within each galaxy, and the structure and colors of the detected central components. Bright ( M V of -10.5 to -13.5 mag) and compact (r c of 1-16 pc) central components are detected through fits to the surface brightness profiles. Total galaxy colors, which are unaffected by the central components, as well as the radial distributions of color in the NUV - VU - V plane are consistent with multiple generations and multiple structures of stellar populations in this sample of early type galaxies. Many of the compact central component colors are individually also consistent with multigenerational stellar populations. The detections in this work of multiple spatial and temporal compositions of stellar populations in early-type galaxies, multiple generation compact stellar components coincident with the centers of some early-type galaxies lends support towards the formation of some early-type galaxies through recent (0.5 to 5 Gyr ago) gas-rich processes such as the hierarchical merging of gas-rich disk

  9. Towards a complete history of galaxy assembly: Major merger fractions at 2 ≤ z ≤ 6 in the CANDELS fields

    NASA Astrophysics Data System (ADS)

    Duncan, Kenneth James; Conselice, Chris; Mundy, Carl Joseph; CANDELS Collaboration

    2015-08-01

    In recent years, remarkable progress has been made in studying the growth of the first galaxies through studies of the luminosity functions, star-formation rates and stellar masses. However, there are still very few observational constraints on the merger rates of galaxies during this formative period. Such measurements are vital in understanding the importance of mergers in the early lives of today’s most massive galaxies and what role they played (if any) in the creation of the first quiescent galaxies already seen at z ˜ 4. We present new results on the major merger rates (mass ratios from 1:1 to 1:4) of galaxies at 2 ≤ z ≤ 6 in the CANDELS HST survey. By using PDF analysis of photometric close pairs we are able to compute accurate merger fractions for both mass and number density selected samples over the first few billion years of galaxy formation. We present the evolution of the merger fraction as well as the estimated merger rates, exploring their evolution with respect to semi-analytic models and hydrodynamical simulations. In conjunction with similar analysis being applied to wide-area surveys at z ≤ 3 (Mundy et al. in prep), this work represents the first consistent study of major mergers over the bulk of cosmic history. In addition to the evolution of the merger rate itself, we explore the effect of mergers on star-formation rates at high redshift through comparison of the properties of galaxies in merging systems to similar galaxies in isolated environments.

  10. Radio active galactic nuclei in galaxy clusters: Feedback, merger signatures, and cluster tracers

    NASA Astrophysics Data System (ADS)

    Paterno-Mahler, Rachel Beth

    Galaxy clusters, the largest gravitationally-bound structures in the universe, are composed of 50-1000s of galaxies, hot X-ray emitting gas, and dark matter. They grow in size over time through cluster and group mergers. The merger history of a cluster can be imprinted on the hot gas, known as the intracluster medium (ICM). Merger signatures include shocks, cold fronts, and sloshing of the ICM, which can form spiral structures. Some clusters host double-lobed radio sources driven by active galactic nuclei (AGN). First, I will present a study of the galaxy cluster Abell 2029, which is very relaxed on large scales and has one of the largest continuous sloshing spirals yet observed in the X-ray, extending outward approximately 400 kpc. The sloshing gas interacts with the southern lobe of the radio galaxy, causing it to bend. Energy injection from the AGN is insufficient to offset cooling. The sloshing spiral may be an important additional mechanism in preventing large amounts of gas from cooling to very low temperatures. Next, I will present a study of Abell 98, a triple system currently undergoing a merger. I will discuss the merger history, and show that it is causing a shock. The central subcluster hosts a double-lobed AGN, which is evacuating a cavity in the ICM. Understanding the physical processes that affect the ICM is important for determining the mass of clusters, which in turn affects our calculations of cosmological parameters. To further constrain these parameters, as well as models of galaxy evolution, it is important to use a large sample of galaxy clusters over a range of masses and redshifts. Bent, double-lobed radio sources can potentially act as tracers of galaxy clusters over wide ranges of these parameters. I examine how efficient bent radio sources are at tracing high-redshift (z>0.7) clusters. Out of 646 sources in our high-redshift Clusters Occupied by Bent Radio AGN (COBRA) sample, 282 are candidate new, distant clusters of galaxies based on

  11. A CO-rich merger shaping a powerful and hyperluminous infrared radio galaxy at z = 2: the Dragonfly Galaxy

    NASA Astrophysics Data System (ADS)

    Emonts, B. H. C.; Mao, M. Y.; Stroe, A.; Pentericci, L.; Villar-Martín, M.; Norris, R. P.; Miley, G.; De Breuck, C.; van Moorsel, G. A.; Lehnert, M. D.; Carilli, C. L.; Röttgering, H. J. A.; Seymour, N.; Sadler, E. M.; Ekers, R. D.; Drouart, G.; Feain, I.; Colina, L.; Stevens, J.; Holt, J.

    2015-07-01

    In the low-redshift Universe, the most powerful radio sources are often associated with gas-rich galaxy mergers or interactions. We here present evidence for an advanced, gas-rich (`wet') merger associated with a powerful radio galaxy at a redshift of z ˜ 2. This radio galaxy, MRC 0152-209, is the most infrared-luminous high-redshift radio galaxy known in the Southern hemisphere. Using the Australia Telescope Compact Array, we obtained high-resolution CO(1-0) data of cold molecular gas, which we complement with Hubble Space Telescope (HST)/Wide Field Planetary Camera 2 (WFPC2) imaging and William Herschel Telescope long-slit spectroscopy. We find that, while roughly MH2 ˜ 2 × 1010 M⊙ of molecular gas coincides with the central host galaxy, another MH2 ˜ 3 × 1010 M⊙ is spread across a total extent of ˜60 kpc. Most of this widespread CO(1-0) appears to follow prominent tidal features visible in the rest-frame near-UV HST/WFPC2 imaging. Lyα emission shows an excess over He II, but a deficiency over LIR, which is likely the result of photoionization by enhanced but very obscured star formation that was triggered by the merger. In terms of feedback, the radio source is aligned with widespread CO(1-0) emission, which suggests that there is a physical link between the propagating radio jets and the presence of cold molecular gas on scales of the galaxy's halo. Its optical appearance, combined with the transformational stage at which we witness the evolution of MRC 0152-209, leads us to adopt the name `Dragonfly Galaxy'.

  12. A parsec-resolution simulation of the Antennae galaxies: formation of star clusters during the merger

    NASA Astrophysics Data System (ADS)

    Renaud, Florent; Bournaud, Frédéric; Duc, Pierre-Alain

    2015-01-01

    We present a hydrodynamical simulation of an Antennae-like galaxy merger at parsec resolution, including a multicomponent model for stellar feedback and reaching numerical convergence in the global star formation rate for the first time. We analyse the properties of the dense stellar objects formed during the different stages of the interaction. Each galactic encounter triggers a starburst activity, but the varying physical conditions change the triggering mechanism of each starburst. During the first two pericentre passages, the starburst is spatially extended and forms many star clusters. However, the starburst associated with the third, final passage is more centrally concentrated: stars form almost exclusively in the galactic nucleus and no new star cluster is formed. The maximum mass of stars clusters in this merger is more than 30 times higher than those in a simulation of an isolated Milky Way-like galaxy. Antennae-like mergers are therefore a formation channel of young massive clusters possibly leading to globular clusters. Monitoring the evolution of a few clusters reveals the diversity of formation scenarios including the gathering and merger of gas clumps, the monolithic formation and the hierarchical formation in sub-structures inside a single cloud. Two stellar objects formed in the simulation yield the same properties as ultracompact dwarf galaxies. They share the same formation scenario than the most massive clusters, but have a larger radius either since birth, or get it after a violent interaction with the galactic centre. The diversity of environments across space and time in a galaxy merger can account for the diversity of the stellar objects formed, both in terms of mass and size.

  13. On the fragility of nuclear stellar discs against galaxy mergers: surviving photometric and kinematic signatures of nuclear discs

    NASA Astrophysics Data System (ADS)

    Sarzi, M.; Ledo, H. R.; Dotti, M.

    2015-10-01

    Nuclear stellar discs (NSDs) can help to constrain the assembly history of their host galaxies, as long as we can assume them to be fragile structures that are disrupted during merger events. In this work we investigate the fragility of NSDs by means of N-body simulations reproducing the last phases of a galaxy encounter, when the nuclear regions of the two galaxies merge. For this, we exposed an NSD set in the gravitational potential of the bulge and supermassive black hole of a primary galaxy to the impact of the supermassive black hole from a secondary galaxy. We explored merger events of different mass ratios, from major mergers with a 1:1 mass ratio to intermediate and minor interactions with 1:5 and 1:10 ratios, while considering various impact geometries. We analyse the end results of such mergers from different viewing angles and look for possible photometric and kinematic signatures of the presence of a disc in the remnant surface density and velocity maps, while adopting detection limits from real observations. Our simulations show that indeed NSDs are fragile against major mergers, which leave little trace of NSDs both in images and velocity maps, while signatures of a disc can be found in the majority of the intermediate to minor-merger remnants and in particular when looking at their kinematics. These results show that NSDs could allow us to distinguish between these two modes of galaxy assembly, which may indeed pertain to different kinds of galaxies or galactic environments.

  14. Tidal Disruption Rates in Non-spherical Galactic Nuclei Formed by Galaxy Mergers

    NASA Astrophysics Data System (ADS)

    Lezhnin, Kirill; Vasiliev, Eugene

    2016-11-01

    We explore the rates of tidal disruption events (TDEs) of stars by supermassive black holes (SBHs) in galactic nuclei formed in mergers followed by a formation and coalescence of a binary SBH. Such systems initially have a deficit of stars on low-angular-momentum orbits caused by the slingshot process during the binary SBH stage, which tends to reduce the flux of stars into the SBH compared to the steady-state value. On the other hand, a newly formed galactic nucleus has a non-spherical shape, which enhances the mixing of stars in angular momentum and, thus, the TDE rate. In galaxies with relatively low SBH masses (≲ {10}7 {M}ȯ ), relaxation times are short enough to wash out the anisotropy in initial conditions, and for more massive SBHs the enhancement of flux due to non-sphericity turns out to be more important than its suppression due to initial anisotropy. Therefore, the present-day TDE rates generally exceed conventional steady-state estimates based on a spherical isotropic approximation. We thus conjecture that the lower observationally inferred TDE rates compared to theoretical predictions cannot be attributed to the depletion of low-angular-momentum stars by SBH binaries.

  15. Morphology and Molecular Gas Fractions of Local Luminous Infrared Galaxies as a Function of Infrared Luminosity and Merger Stage

    NASA Astrophysics Data System (ADS)

    Larson, K. L.; Sanders, D. B.; Barnes, J. E.; Ishida, C. M.; Evans, A. S.; U, V.; Mazzarella, J. M.; Kim, D.-C.; Privon, G. C.; Mirabel, I. F.; Flewelling, H. A.

    2016-07-01

    We present a new, detailed analysis of the morphologies and molecular gas fractions (MGFs) for a complete sample of 65 local luminous infrared galaxies from Great Observatories All-Sky Luminous Infrared Galaxies (LIRG) Survey using high resolution I-band images from The Hubble Space Telescope, the University of Hawaii 2.2 m Telescope and the Pan-STARRS1 Survey. Our classification scheme includes single undisturbed galaxies, minor mergers, and major mergers, with the latter divided into five distinct stages from pre-first pericenter passage to final nuclear coalescence. We find that major mergers of molecular gas-rich spirals clearly play a major role for all sources with {L}{IR}\\gt {10}11.5{L}ȯ ; however, below this luminosity threshold, minor mergers and secular processes dominate. Additionally, galaxies do not reach {L}{IR}\\gt {10}12.0{L}ȯ until late in the merger process when both disks are near final coalescence. The mean MGF ({MGF} = {M}{{{H}}2}/({M}* +{M}{{{H}}2})) for non-interacting and early-stage major merger LIRGs is 18 ± 2%, which increases to 33 ± 3%, for intermediate stage major merger LIRGs, consistent with the hypothesis that, during the early-mid stages of major mergers, most of the initial large reservoir of atomic gas (HI) at large galactocentric radii is swept inward where it is converted into molecular gas (H2).

  16. Simulated galaxy interactions as probes of merger spectral energy distributions

    SciTech Connect

    Lanz, Lauranne; Zezas, Andreas; Smith, Howard A.; Ashby, Matthew L. N.; Fazio, Giovanni G.; Hernquist, Lars; Hayward, Christopher C.; Brassington, Nicola

    2014-04-10

    We present the first systematic comparison of ultraviolet-millimeter spectral energy distributions (SEDs) of observed and simulated interacting galaxies. Our sample is drawn from the Spitzer Interacting Galaxy Survey and probes a range of galaxy interaction parameters. We use 31 galaxies in 14 systems which have been observed with Herschel, Spitzer, GALEX, and 2MASS. We create a suite of GADGET-3 hydrodynamic simulations of isolated and interacting galaxies with stellar masses comparable to those in our sample of interacting galaxies. Photometry for the simulated systems is then calculated with the SUNRISE radiative transfer code for comparison with the observed systems. For most of the observed systems, one or more of the simulated SEDs match reasonably well. The best matches recover the infrared luminosity and the star formation rate of the observed systems, and the more massive systems preferentially match SEDs from simulations of more massive galaxies. The most morphologically distorted systems in our sample are best matched to the simulated SEDs that are close to coalescence, while less evolved systems match well with the SEDs over a wide range of interaction stages, suggesting that an SED alone is insufficient for identifying the interaction stage except during the most active phases in strongly interacting systems. This result is supported by our finding that the SEDs calculated for simulated systems vary little over the interaction sequence.

  17. MAJOR MERGERS WITH SMALL GALAXIES: THE DISCOVERY OF A MAGELLANIC-TYPE GALAXY AT z = 0.12

    SciTech Connect

    Koch, Andreas; Frank, Matthias J.; Pasquali, Anna; Rich, R. Michael; Rabitz, Andreas

    2015-12-20

    We report on the serendipitous discovery of a star-forming galaxy at redshift z = 0.116 with morphological features that indicate an ongoing merger. This object exhibits two clearly separated components with significantly different colors, plus a possible tidal stream. Follow-up spectroscopy of the bluer component revealed a low star-forming activity of 0.09 M{sub ⊙} yr{sup −1} and a high metallicity of 12 + log(O/H) = 8.6. Based on comparison with mass–star formation-rate and mass–metallicity relations, and on fitting of spectral energy distributions, we obtain a stellar mass of 3 × 10{sup 9} M{sub ⊙}, which renders this object comparable to the Large Magellanic Cloud. Thus our finding provides a further piece of evidence of a major merger already acting on small, dwarf-galaxy-like scales.

  18. Simulating the toothbrush: evidence for a triple merger of galaxy clusters

    NASA Astrophysics Data System (ADS)

    Brüggen, M.; van Weeren, R. J.; Röttgering, H. J. A.

    2012-09-01

    The newly discovered galaxy cluster 1RXS J0603.3+4214 hosts a 1.9 Mpc long, bright radio relic with a peculiar linear morphology. Using hydrodynamical N-body adaptive mesh refinement simulations of the merger between three initially hydrostatic clusters in an idealized set-up, we are able to reconstruct the morphology of the radio relic. Based on our simulation, we can constrain the merger geometry, predict lensing mass measurements and X-ray observations. Comparing such models to X-ray, redshift and lensing data will validate the geometry of this complex merger which helps in constraining the parameters for shock acceleration of electrons that produces the radio relic.

  19. The Fate of Massive Black Holes in Gas-Rich Galaxy Mergers

    NASA Astrophysics Data System (ADS)

    Escala, A.; Larson, R. B.; Coppi, P. S.; Mardones, D.

    2006-06-01

    Using SPH numerical simulations, we investigate the effects of gas on the inspiral and merger of a massive black hole binary. This study is motivated by the very massive nuclear gas disks observed in the central regions of merging galaxies. Here we present results that expand on the treatment in previous works (Escala et al. 2004, 2005), by studying the evolution of a binary with different black holes masses in a massive gas disk.

  20. Galaxy mergers on a moving mesh: a comparison with smoothed particle hydrodynamics

    NASA Astrophysics Data System (ADS)

    Hayward, Christopher C.; Torrey, Paul; Springel, Volker; Hernquist, Lars; Vogelsberger, Mark

    2014-08-01

    Galaxy mergers have been investigated for decades using smoothed particle hydrodynamics (SPH), but recent work highlighting inaccuracies inherent in the traditional SPH technique calls into question the reliability of previous studies. We explore this issue by comparing a suite of GADGET-3 SPH simulations of idealized (i.e. non-cosmological) isolated discs and galaxy mergers with otherwise identical calculations performed using the moving-mesh code AREPO. When black hole (BH) accretion and active galactic nucleus (AGN) feedback are not included, the star formation histories (SFHs) obtained from the two codes agree well. When BHs are included, the code- and resolution-dependent variations in the SFHs are more significant, but the agreement is still good, and the stellar mass formed over the course of a simulation is robust to variations in the numerical method. During a merger, the gas morphology and phase structure are initially similar prior to the starburst phase. However, once a hot gaseous halo has formed from shock heating and AGN feedback (when included), the agreement is less good. In particular, during the post-starburst phase, the SPH simulations feature more prominent hot gaseous haloes and spurious clumps, whereas with AREPO, gas clumps and filaments are less apparent and the hot halo gas can cool more efficiently. We discuss the origin of these differences and explain why the SPH technique yields trustworthy results for some applications (such as the idealized isolated disc and galaxy merger simulations presented here) but not others (e.g. gas flows on to galaxies in cosmological hydrodynamical simulations).

  1. Can a satellite galaxy merger explain the active past of the Galactic Centre?

    NASA Astrophysics Data System (ADS)

    Lang, M.; Holley-Bockelmann, K.; Bogdanović, T.; Amaro-Seoane, P.; Sesana, A.; Sinha, M.

    2013-04-01

    Observations of the Galactic Centre (GC) have accumulated a multitude of `forensic' evidence indicating that several million years ago the centre of the Milky Way galaxy was teeming with star formation and accretion-powered activity - this paints a rather different picture from the GC as we understand it today. We examine a possibility that this epoch of activity could have been triggered by the infall of a satellite galaxy into the Milky Way which began at the redshift of z = 8 and ended a few million years ago with a merger of the Galactic supermassive black hole with an intermediate-mass black hole brought in by the inspiralling satellite.

  2. Low-Frequency Radio Observations of Galaxy Cluster Merger Shocks

    NASA Astrophysics Data System (ADS)

    van Weeren, Reinout

    2014-10-01

    In a few dozen merging galaxy clusters diffuse extended radio emission has been found, implying the presence of relativistic particles and magnetic fields in the intracluster medium. A major question is how these particles are accelerated up to such extreme energies. In this talk I will present LOFAR and JVLA radio observations of the Toothbrush galaxy cluster. The Toothbrush cluster hosts diffuse 2 Mpc extended radio emission in the form of a radio relic and halo. Our deep LOFAR and JVLA observations allow a radio spectral study to test the shock origin of the relic and underlying particle acceleration mechanisms.

  3. Evidence for Multiple Mergers among Ultraluminous Infrared Galaxies: Remnants of Compact Groups?

    PubMed

    Borne; Bushouse; Lucas; Colina

    2000-02-01

    In a large sample of ultraluminous infrared galaxies (ULIRGs) imaged with the Hubble Space Telescope, we have identified a significant subsample that shows evidence for multiple mergers. The evidence is seen among two classes of ULIRGs: (1) those with multiple remnant nuclei in their core, sometimes accompanied by a complex system of tidal tails, and (2) those that are in fact dense groupings of interacting (soon-to-merge) galaxies. We conservatively estimate that, in the redshift range 0.05galaxies (see Hickson). An evolutionary progression is consistent with the results: from compact groups to pairs to ULIRGs to elliptical galaxies. The last step follows the blowout of gas and dust from the ULIRG. PMID:10622759

  4. Age Dating Merger Events in Early Type Galaxies via the Detection of AGB Light

    NASA Technical Reports Server (NTRS)

    Bothun, G.

    2005-01-01

    A thorough statistical analysis of the J-H vs. H-K color plane of all detected early type galaxies in the 2MASS catalog with velocities less than 5000 km/s has been performed. This all sky survey is not sensitive to one particular galactic environment and therefore a representative range of early type galaxy environments have been sampled. Virtually all N-body simulation so major mergers produces a central starburst due to rapid collection of gas. This central starburst is of sufficient amplitude to change the stellar population in the central regions of the galaxy. Intermediate age populations are given away by the presence of AGB stars which will drive the central colors redder in H-K relative to the J- H baseline. This color anomaly has a lifetime of 2-5 billion years depending on the amplitude of the initial starburst Employing this technique on the entire 2MASS sample (several hundred galaxies) reveals that the AGB signature occurs less than 1% of the time. This is a straightforward indication that virtually all nearby early type galaxies have not had a major merger occur within the last few billion years.

  5. Investigating the Merger Origin of Early-type Galaxies using Ultra-deep Optical Images

    NASA Astrophysics Data System (ADS)

    Duc, P.-A.; Cuillandre, J.-C.; Alatalo, K.; Blitz, L.; Bois, M.; Bournaud, F.; Bureau, M.; Cappellari, M.; Côté, P.; Davies, R. L.; Davis, T. A.; de Zeeuw, P. T.; Emsellem, E.; Ferrarese, L.; Ferriere, E.; Gwyn, S.; Khochfar, S.; Krajnovic, D.; Kuntschner, H.; Lablanche, P.-Y.; MacArthur, L.; McDermid, R. M.; Michel-Dansac, L.; Morganti, R.; Naab, T.; Oosterloo, T.; Sarzi, M.; Scott, N.; Serra, P.; Weijmans, A.; Young, L. M.

    2011-12-01

    The mass assembly of galaxies leaves various imprints on their surroundings, such as shells, streams and tidal tails. The frequency and properties of these fine structures depend on the mechanism driving the mass assembly: e.g. a monolithic collapse, rapid cold-gas accretion followed by violent disk instabilities, minor mergers or major dry/wet mergers. Therefore, by studying the outskirts of galaxies, one can learn about their main formation mechanism. I present here our on-going work to characterize the outskirts of Early-Type Galaxies (ETGs), which are powerful probes at low redshift of the hierarchical mass assembly of galaxies. This work relies on ultra-deep optical images obtained at CFHT with the wide-field of view MegaCam camera of field and cluster ETGs obtained as part of the ATLAS3D and NGVS projects. State of the art numerical simulations are used to interpret the data. The images reveal a wealth of unknown faint structures at levels as faint as 29 mag arcsec-2 in the g-band. Initial results for two galaxies are presented here.

  6. Flash Galaxy Cluster Merger, Simulated using the Flash Code, Mass Ratio 1:1

    ScienceCinema

    None

    2016-07-12

    Since structure in the universe forms in a bottom-up fashion, with smaller structures merging to form larger ones, modeling the merging process in detail is crucial to our understanding of cosmology. At the current epoch, we observe clusters of galaxies undergoing mergers. It is seen that the two major components of galaxy clusters, the hot intracluster gas and the dark matter, behave very differently during the course of a merger. Using the N-body and hydrodynamics capabilities in the FLASH code, we have simulated a suite of representative galaxy cluster mergers, including the dynamics of both the dark matter, which is collisionless, and the gas, which has the properties of a fluid. 3-D visualizations such as these demonstrate clearly the different behavior of these two components over time. Credits: Science: John Zuhone (Harvard-Smithsonian Center for Astrophysics Visualization: Jonathan Gallagher (Flash Center, University of Chicago)

 This research used resources of the Argonne Leadership Computing Facility at Argonne National Laboratory, which is supported by the Office of Science of the U.S. Dept. of Energy (DOE) under contract DE-AC02-06CH11357. This research was supported by the National Nuclear Security Administration's (NNSA) Advanced Simulation and Computing (ASC) Academic Strategic Alliance Program (ASAP).

  7. The VIMOS VLT Deep Survey. Evolution of the major merger rate since z ~ 1 from spectroscopically confirmed galaxy pairs

    NASA Astrophysics Data System (ADS)

    de Ravel, L.; Le Fèvre, O.; Tresse, L.; Bottini, D.; Garilli, B.; Le Brun, V.; Maccagni, D.; Scaramella, R.; Scodeggio, M.; Vettolani, G.; Zanichelli, A.; Adami, C.; Arnouts, S.; Bardelli, S.; Bolzonella, M.; Cappi, A.; Charlot, S.; Ciliegi, P.; Contini, T.; Foucaud, S.; Franzetti, P.; Gavignaud, I.; Guzzo, L.; Ilbert, O.; Iovino, A.; Lamareille, F.; McCracken, H. J.; Marano, B.; Marinoni, C.; Mazure, A.; Meneux, B.; Merighi, R.; Paltani, S.; Pellò, R.; Pollo, A.; Pozzetti, L.; Radovich, M.; Vergani, D.; Zamorani, G.; Zucca, E.; Bondi, M.; Bongiorno, A.; Brinchmann, J.; Cucciati, O.; de La Torre, S.; Gregorini, L.; Memeo, P.; Perez-Montero, E.; Mellier, Y.; Merluzzi, P.; Temporin, S.

    2009-05-01

    Context: The rate at which galaxies grow via successive mergers is a key element in understanding the main phases of galaxy evolution. Aims: We measure the evolution of the fraction of galaxies in pairs and the merging rate since redshift z 1 assuming a (H0 = 70 km s-1 Mpc-1, ΩM = 0.3 and ΩΛ = 0.7) cosmology. Methods: From the VIMOS VLT Deep Survey we use a sample of 6464 galaxies with I_AB ≤ 24 to identify 314 pairs of galaxies, each member with a secure spectroscopic redshift, which are close in both projected separation and in velocity. Results: We estimate that at z 0.9, 10.9 ± 3.2% of galaxies with MB(z) ≤ -18-Qz (Q = 1.11) are in pairs with separations Δ rp ≤ 20 h-1 kpc, Δ v≤ 500 km s-1, and with Δ MB ≤ 1.5, significantly larger than 3.8 ± 1.7% at z 0.5; thus, the pair fraction evolves as (1 + z)m with m = 4.73 ± 2.01. For bright galaxies with MB(z = 0) ≤ -18.77, the pair fraction is higher and its evolution with redshift is flatter with m = 1.50 ± 0.76, a property also observed for galaxies with increasing stellar masses. Early-type pairs (dry mergers) increase their relative fraction from 3% at z 0.9 to 12% at z 0.5. The star formation rate traced by the rest-frame [OII] EW increases by 26 ± 4% for pairs with the smallest separation rp ≤ 20 h-1 kpc. Following published prescriptions to derive merger timescales, we find that the merger rate of MB(z) ≤ -18-Qz galaxies evolves as N_mg = (4.96 ± 2.07)×10-4×(1 + z)2.20 ± 0.77 mergers Mpc-3 Gyr-1. Conclusions: The merger rate of galaxies with MB(z) ≤ -18-Qz has significantly evolved since z 1 and is strongly dependent on the luminosity or stellar mass of galaxies. The major merger rate increases more rapidly with redshift for galaxies with fainter luminosities or stellar mass, while the evolution of the merger rate for bright or massive galaxies is slower, indicating that the slow evolution reported for the brightest galaxies is not universal. The merger rate is also strongly

  8. Shape asymmetry: a morphological indicator for automatic detection of galaxies in the post-coalescence merger stages

    NASA Astrophysics Data System (ADS)

    Pawlik, M. M.; Wild, V.; Walcher, C. J.; Johansson, P. H.; Villforth, C.; Rowlands, K.; Mendez-Abreu, J.; Hewlett, T.

    2016-03-01

    We present a new morphological indicator designed for automated recognition of galaxies with faint asymmetric tidal features suggestive of an ongoing or past merger. We use the new indicator, together with pre-existing diagnostics of galaxy structure to study the role of galaxy mergers in inducing (post-) starburst spectral signatures in local galaxies, and investigate whether (post-) starburst galaxies play a role in the build-up of the `red sequence'. Our morphological and structural analysis of an evolutionary sample of 335 (post-) starburst galaxies in the Sloan Digital Sky Survey DR7 with starburst ages 0 < tSB < 0.6 Gyr, shows that 45 per cent of galaxies with young starbursts (tSB < 0.1 Gyr) show signatures of an ongoing or past merger. This fraction declines with starburst age, and we find a good agreement between automated and visual classifications. The majority of the oldest (post-) starburst galaxies in our sample (tSB ˜ 0.6 Gyr) have structural properties characteristic of early-type discs and are not as highly concentrated as the fully quenched galaxies commonly found on the `red sequence' in the present day Universe. This suggests that, if (post-) starburst galaxies are a transition phase between active star-formation and quiescence, they do not attain the structure of presently quenched galaxies within the first 0.6 Gyr after the starburst.

  9. Major Cluster Mergers and the Location of the Brightest Cluster Galaxy

    NASA Astrophysics Data System (ADS)

    Martel, Hugo; Robichaud, Fidèle; Barai, Paramita

    2014-05-01

    Using a large N-body cosmological simulation combined with a subgrid treatment of galaxy formation, merging, and tidal destruction, we study the formation and evolution of the galaxy and cluster population in a comoving volume (100 Mpc)3 in a ΛCDM universe. At z = 0, our computational volume contains 1788 clusters with mass M cl > 1.1 × 1012 M ⊙, including 18 massive clusters with M cl > 1014 M ⊙. It also contains 1, 088, 797 galaxies with mass M gal >= 2 × 109 M ⊙ and luminosity L > 9.5 × 105 L ⊙. For each cluster, we identified the brightest cluster galaxy (BCG). We then computed two separate statistics: the fraction f BNC of clusters in which the BCG is not the closest galaxy to the center of the cluster in projection, and the ratio Δv/σ, where Δv is the difference in radial velocity between the BCG and the whole cluster and σ is the radial velocity dispersion of the cluster. We found that f BNC increases from 0.05 for low-mass clusters (M cl ~ 1012 M ⊙) to 0.5 for high-mass clusters (M cl > 1014 M ⊙) with very little dependence on cluster redshift. Most of this result turns out to be a projection effect and when we consider three-dimensional distances instead of projected distances, f BNC increases only to 0.2 at high-cluster mass. The values of Δv/σ vary from 0 to 1.8, with median values in the range 0.03-0.15 when considering all clusters, and 0.12-0.31 when considering only massive clusters. These results are consistent with previous observational studies and indicate that the central galaxy paradigm, which states that the BCG should be at rest at the center of the cluster, is usually valid, but exceptions are too common to be ignored. We built merger trees for the 18 most massive clusters in the simulation. Analysis of these trees reveal that 16 of these clusters have experienced 1 or several major or semi-major mergers in the past. These mergers leave each cluster in a non-equilibrium state, but eventually the cluster settles into an

  10. Major cluster mergers and the location of the brightest cluster galaxy

    SciTech Connect

    Martel, Hugo; Robichaud, Fidèle; Barai, Paramita

    2014-05-10

    Using a large N-body cosmological simulation combined with a subgrid treatment of galaxy formation, merging, and tidal destruction, we study the formation and evolution of the galaxy and cluster population in a comoving volume (100 Mpc){sup 3} in a ΛCDM universe. At z = 0, our computational volume contains 1788 clusters with mass M {sub cl} > 1.1 × 10{sup 12} M {sub ☉}, including 18 massive clusters with M {sub cl} > 10{sup 14} M {sub ☉}. It also contains 1, 088, 797 galaxies with mass M {sub gal} ≥ 2 × 10{sup 9} M {sub ☉} and luminosity L > 9.5 × 10{sup 5} L {sub ☉}. For each cluster, we identified the brightest cluster galaxy (BCG). We then computed two separate statistics: the fraction f {sub BNC} of clusters in which the BCG is not the closest galaxy to the center of the cluster in projection, and the ratio Δv/σ, where Δv is the difference in radial velocity between the BCG and the whole cluster and σ is the radial velocity dispersion of the cluster. We found that f {sub BNC} increases from 0.05 for low-mass clusters (M {sub cl} ∼ 10{sup 12} M {sub ☉}) to 0.5 for high-mass clusters (M {sub cl} > 10{sup 14} M {sub ☉}) with very little dependence on cluster redshift. Most of this result turns out to be a projection effect and when we consider three-dimensional distances instead of projected distances, f {sub BNC} increases only to 0.2 at high-cluster mass. The values of Δv/σ vary from 0 to 1.8, with median values in the range 0.03-0.15 when considering all clusters, and 0.12-0.31 when considering only massive clusters. These results are consistent with previous observational studies and indicate that the central galaxy paradigm, which states that the BCG should be at rest at the center of the cluster, is usually valid, but exceptions are too common to be ignored. We built merger trees for the 18 most massive clusters in the simulation. Analysis of these trees reveal that 16 of these clusters have experienced 1 or several major or semi

  11. Very Small Scale Clustering and Merger Rate of Luminous Red Galaxies

    NASA Astrophysics Data System (ADS)

    Masjedi, Morad; Hogg, David W.; Cool, Richard J.; Eisenstein, Daniel J.; Blanton, Michael R.; Zehavi, Idit; Berlind, Andreas A.; Bell, Eric F.; Schneider, Donald P.; Warren, Michael S.; Brinkmann, Jon

    2006-06-01

    We present the small-scale (0.01 Mpcgalaxies from the Sloan Digital Sky Survey (SDSS) Luminous Red Galaxy (LRG) sample (0.16galaxy pairs. We find that the correlation function ξ(r) is surprisingly close to a r-2 power law over more than 4 orders of magnitude in separation r. This result is too steep at small scales to be explained in current versions of the halo model for galaxy clustering. We infer an LRG-LRG merger rate of <~0.6×104 Gyr-1 Gpc-3 for this sample. This result suggests that the LRG-LRG mergers are not the main mode of mass growth for LRGs at z<0.36.

  12. Comparison of black hole growth in galaxy mergers with gasoline and ramses

    NASA Astrophysics Data System (ADS)

    Gabor, Jared M.; Capelo, Pedro R.; Volonteri, Marta; Bournaud, Frédéric; Bellovary, Jillian; Governato, Fabio; Quinn, Thomas

    2016-07-01

    Supermassive black hole dynamics during galaxy mergers is crucial in determining the rate of black hole mergers and cosmic black hole growth. As simulations achieve higher resolution, it becomes important to assess whether the black hole dynamics is influenced by the treatment of the interstellar medium in different simulation codes. We compare simulations of black hole growth in galaxy mergers with two codes: the smoothed particle hydrodynamics code gasoline, and the adaptive mesh refinement code ramses. We seek to identify predictions of these models that are robust despite differences in hydrodynamic methods and implementations of subgrid physics. We find that the general behavior is consistent between codes. Black hole accretion is minimal while the galaxies are well-separated (and even as they fly by within 10 kpc at the first pericenter). At late stages, when the galaxies pass within a few kpc, tidal torques drive nuclear gas inflow that triggers bursts of black hole accretion accompanied by star formation. We also note quantitative discrepancies that are model dependent: our ramses simulations show less star formation and black hole growth, and a smoother gas distribution with larger clumps and filaments than our gasoline simulations. We attribute these differences primarily to the subgrid models for black hole fueling, feedback, and gas thermodynamics. The main conclusion is that differences exist quantitatively between codes, and this should be kept in mind when making comparisons with observations. However, both codes capture the same dynamical behaviors in terms of triggering black hole accretion, star formation, and black hole dynamics, which is reassuring.

  13. Offset active galactic nuclei as tracers of galaxy mergers and supermassive black hole growth

    SciTech Connect

    Comerford, Julia M.; Greene, Jenny E.

    2014-07-10

    Offset active galactic nuclei (AGNs) are AGNs that are in ongoing galaxy mergers, which produce kinematic offsets in the AGNs relative to their host galaxies. Offset AGNs are also close relatives of dual AGNs. We conduct a systematic search for offset AGNs in the Sloan Digital Sky Survey by selecting AGN emission lines that exhibit statistically significant line-of-sight velocity offsets relative to systemic. From a parent sample of 18,314 Type 2 AGNs at z < 0.21, we identify 351 offset AGN candidates with velocity offsets of 50 km s{sup –1} < |Δv| < 410 km s{sup –1}. When we account for projection effects in the observed velocities, we estimate that 4%-8% of AGNs are offset AGNs. We designed our selection criteria to bypass velocity offsets produced by rotating gas disks, AGN outflows, and gravitational recoil of supermassive black holes, but follow-up observations are still required to confirm our candidates as offset AGNs. We find that the fraction of AGNs that are offset candidates increases with AGN bolometric luminosity, from 0.7% to 6% over the luminosity range 43 < log (L{sub bol}) [erg s{sup –1}] <46. If these candidates are shown to be bona fide offset AGNs, then this would be direct observational evidence that galaxy mergers preferentially trigger high-luminosity AGNs. Finally, we find that the fraction of AGNs that are offset AGN candidates increases from 1.9% at z = 0.1 to 32% at z = 0.7, in step with the growth in the galaxy merger fraction over the same redshift range.

  14. SUCCESSIVE MERGER OF MULTIPLE MASSIVE BLACK HOLES IN A PRIMORDIAL GALAXY

    SciTech Connect

    Tanikawa, A.; Umemura, M.

    2011-02-20

    Using highly accurate N-body simulations, we explore the evolution of multiple massive black holes (hereafter MBHs) in a primordial galaxy that is composed of stars and MBHs. The evolution is pursed with a fourth-order Hermite scheme, where not only three-body interaction of MBHs but also dynamical friction by stars are incorporated. Initially, 10 MBHs with equal masses of 10{sup 7} M{sub sun} are set in a host galaxy with 10{sup 11} M{sub sun}. It is found that 4-6 MBHs merge successively within 1 Gyr, emitting gravitational wave radiation. The key process for the successive merger of MBHs is the dynamical friction by field stars, which enhances three-body interactions of MBHs when they enter the central regions of the galaxy. The heaviest MBH always composes a close binary at the galactic center, which shrinks owing to the angular momentum transfer by the third MBH and eventually merges. The angular momentum transfer by the third MBH is due to the sling-shot mechanism. We find that the secular Kozai mechanism does not work for a binary to merge if we include the relativistic pericenter shift. The simulations show that a multiple MBH system can produce a heavier MBH at the galactic center purely through N-body process. This merger path can be of great significance for the growth of MBHs in a primordial galaxy. The merger of multiple MBHs may be a potential source of gravitational waves for the Laser Interferometer Space Antenna and pulsar timing.

  15. PREDICTING MERGER-INDUCED GAS MOTIONS IN ΛCDM GALAXY CLUSTERS

    SciTech Connect

    Nagai, Daisuke; Lau, Erwin T.; Avestruz, Camille; Rudd, Douglas H.; Nelson, Kaylea

    2013-11-10

    In the hierarchical structure formation model, clusters of galaxies form through a sequence of mergers and continuous mass accretion, which generate significant random gas motions especially in their outskirts where material is actively accreting. Non-thermal pressure provided by the internal gas motions affects the thermodynamic structure of the X-ray emitting intracluster plasma and introduces biases in the physical interpretation of X-ray and Sunyaev-Zeldovich effect observations. However, we know very little about the nature of gas motions in galaxy clusters. The ASTRO-H X-ray mission, scheduled to launch in 2015, will have a calorimeter capable of measuring gas motions in galaxy clusters at the level of ∼< 100 km s{sup –1}. In this work, we predict the level of merger-induced gas motions expected in the ΛCDM model using hydrodynamical simulations of galaxy cluster formation. We show that the gas velocity dispersion is larger in more massive clusters, but exhibits a large scatter. We show that systems with large gas motions are morphologically disturbed, while early forming, relaxed groups show a smaller level of gas motions. By analyzing mock ASTRO-H observations of simulated clusters, we show that such observations can accurately measure the gas velocity dispersion out to the outskirts of nearby relaxed galaxy clusters. ASTRO-H analysis of merging clusters, on the other hand, requires multi-component spectral fitting and enables unique studies of substructures in galaxy clusters by measuring both the peculiar velocities and the velocity dispersion of gas within individual sub-clusters.

  16. CSS Object Found in Galaxy Merger 1015+364 at 2.3 and 8.5 Hz

    NASA Astrophysics Data System (ADS)

    Porras, Antonio J.; Burke-Spolaor, Sarah; Other people involved

    2016-01-01

    We investigated the ongoing galaxy merger 1015+364 at 2.3 and 8.5 Hz with the Very Long Baseline Array to determine the state of evolution of the merger's resident supermassive black holes. During the merger of two massive galaxies, we expect that the two supermassive black holes will form a binary and eventually coalesce. In our observations we detected a highly compact radio source with an extent of 21.14 parsecs. For each of two detected radio components, we measured their flux density and spectral index. By looking at their spectra, we concluded our radio detection to be a Compact Steep-Spectrum object (CSS), indicating a young radio object less than a few thousand years in age. This result hints at a connection between the recent merger and the ignition of the central radio source.

  17. Testing the modern merger hypothesis via the assembly of massive blue elliptical galaxies in the local Universe

    NASA Astrophysics Data System (ADS)

    Haines, Tim; McIntosh, D. H.; Sánchez, S. F.; Tremonti, C.; Rudnick, G.

    2015-07-01

    The modern merger hypothesis offers a method of forming a new elliptical galaxy through merging two equal-mass, gas-rich disc galaxies fuelling a nuclear starburst followed by efficient quenching and dynamical stabilization. A key prediction of this scenario is a central concentration of young stars during the brief phase of morphological transformation from highly disturbed remnant to new elliptical galaxy. To test this aspect of the merger hypothesis, we use integral field spectroscopy to track the stellar Balmer absorption and 4000-Å break strength indices as a function of galactic radius for 12 massive (M* ≥ 1010 M⊙), nearby (z ≤ 0.03), visually-selected plausible new ellipticals with blue-cloud optical colours and varying degrees of morphological peculiarities. We find that these index values and their radial dependence correlate with specific morphological features such that the most disturbed galaxies have the smallest 4000-Å break strengths and the largest Balmer absorption values. Overall, two-thirds of our sample are inconsistent with the predictions of the modern merger hypothesis. Of these eight, half exhibit signatures consistent with recent minor merger interactions. The other half have star formation histories similar to local, quiescent early-type galaxies. Of the remaining four galaxies, three have the strong morphological disturbances and star-forming optical colours consistent with being remnants of recent, gas-rich major mergers, but exhibit a weak, central burst consistent with forming ˜5 per cent of their stars. The final galaxy possesses spectroscopic signatures of a strong, centrally concentrated starburst and quiescent core optical colours indicative of recent quenching (i.e. a post-starburst signature) as prescribed by the modern merger hypothesis.

  18. The distribution of dark and luminous matter in the unique galaxy cluster merger Abell 2146

    NASA Astrophysics Data System (ADS)

    King, Lindsay J.; Clowe, Douglas I.; Coleman, Joseph E.; Russell, Helen R.; Santana, Rebecca; White, Jacob A.; Canning, Rebecca E. A.; Deering, Nicole J.; Fabian, Andrew C.; Lee, Brandyn E.; Li, Baojiu; McNamara, Brian R.

    2016-06-01

    Abell 2146 (z = 0.232) consists of two galaxy clusters undergoing a major merger. The system was discovered in previous work, where two large shock fronts were detected using the Chandra X-ray Observatory, consistent with a merger close to the plane of the sky, caught soon after first core passage. A weak gravitational lensing analysis of the total gravitating mass in the system, using the distorted shapes of distant galaxies seen with Advanced Camera for Surveys - Wide Field Channel on Hubble Space Telescope, is presented. The highest peak in the reconstruction of the projected mass is centred on the brightest cluster galaxy (BCG) in Abell 2146-A. The mass associated with Abell 2146-B is more extended. Bootstrapped noise mass reconstructions show the mass peak in Abell 2146-A to be consistently centred on the BCG. Previous work showed that BCG-A appears to lag behind an X-ray cool core; although the peak of the mass reconstruction is centred on the BCG, it is also consistent with the X-ray peak given the resolution of the weak lensing mass map. The best-fitting mass model with two components centred on the BCGs yields M200 = 1.1^{+0.3}_{-0.4} × 1015 and 3^{+1}_{-2} × 1014 M⊙ for Abell 2146-A and Abell 2146-B, respectively, assuming a mass concentration parameter of c = 3.5 for each cluster. From the weak lensing analysis, Abell 2146-A is the primary halo component, and the origin of the apparent discrepancy with the X-ray analysis where Abell 2146-B is the primary halo is being assessed using simulations of the merger.

  19. Star formation in galaxy mergers with realistic models of stellar feedback and the interstellar medium

    NASA Astrophysics Data System (ADS)

    Hopkins, Philip F.; Cox, Thomas J.; Hernquist, Lars; Narayanan, Desika; Hayward, Christopher C.; Murray, Norman

    2013-04-01

    We use hydrodynamic simulations with detailed, explicit models for stellar feedback to study galaxy mergers. These high-resolution (˜1 pc) simulations follow the formation and destruction of individual giant molecular clouds (GMC) and star clusters. We find that the final starburst is dominated by in situ star formation, fuelled by gas which flows inwards due to global torques. The resulting high gas density results in rapid star formation. The gas is self-gravitating, and forms massive (≲1010 M⊙) GMC and subsequently super star clusters (with masses up to 108 M⊙). However, in contrast to some recent simulations, the bulk of new stars which eventually form the central bulge are not born in super-clusters which then sink to the centre of the galaxy. This is because feedback efficiently disperses GMC after they turn several per cent of their mass into stars. In other words, most of the mass that reaches the nucleus does so in the form of gas. The Kennicutt-Schmidt law emerges naturally as a consequence of feedback balancing gravitational collapse, independent of the small-scale star formation microphysics. The same mechanisms that drive this relation in isolated galaxies, in particular radiation pressure from infrared photons, extend, with no fine-tuning, over seven decades in star formation rate (SFR) to regulate star formation in the most extreme starburst systems with densities ≳104 M⊙ pc-2. This feedback also drives super-winds with large mass-loss rates; however, a significant fraction of the wind material falls back on to the discs at later times, leading to higher post-starburst SFRs in the presence of stellar feedback. This suggests that strong active galactic nucleus feedback may be required to explain the sharp cut-offs in SFR that are observed in post-merger galaxies. We compare the results to those from simulations with no explicit resolution of GMC or feedback [`effective equation-of-state' (EOS) models]. We find that global galaxy properties

  20. Major Mergers with Small Galaxies: The Discovery of a Magellanic-type Galaxy at z = 0.12

    NASA Astrophysics Data System (ADS)

    Koch, Andreas; Frank, Matthias J.; Pasquali, Anna; Rich, R. Michael; Rabitz, Andreas

    2015-12-01

    We report on the serendipitous discovery of a star-forming galaxy at redshift z = 0.116 with morphological features that indicate an ongoing merger. This object exhibits two clearly separated components with significantly different colors, plus a possible tidal stream. Follow-up spectroscopy of the bluer component revealed a low star-forming activity of 0.09 M⊙ yr-1 and a high metallicity of 12 + log(O/H) = 8.6. Based on comparison with mass-star formation-rate and mass-metallicity relations, and on fitting of spectral energy distributions, we obtain a stellar mass of 3 × 109 M⊙, which renders this object comparable to the Large Magellanic Cloud. Thus our finding provides a further piece of evidence of a major merger already acting on small, dwarf-galaxy-like scales. Based on data obtained at the WIYN facility and the Large Binocular Telescope (LBT). The LBT is an international collaboration among institutions in Germany, the United States, and Italy. LBT Corporation partners are: LBT Beteiligungsgesellschaft, Germany, representing Heidelberg University, the Max-Planck Society, and the Leibniz-Institut für Astrophysik Potsdam. The University of Arizona on behalf of the Arizona university system; Istituto Nazionale di Astrofisica, Italy; The Ohio State University, and The Research Corporation, on behalf of the University of Notre Dame, University of Minnesota and University of Virginia.

  1. 3D spectroscopy of merger Seyfert galaxy Mrk 334: nuclear starburst, superwind and the circumnuclear cavern

    NASA Astrophysics Data System (ADS)

    Smirnova, Aleksandrina; Moiseev, Alexei

    2010-01-01

    We are presenting new results on kinematics and structure of the Mrk 334 Seyfert galaxy. Panoramic (3D) spectroscopy is performed at the 6-m telescope of the Special Astrophysical Observatory of the Russian Academy of Sciences using the integral-field Multi-Pupil Fiber Spectrograph (MPFS) and scanning Fabry-Pérot interferometer. The deep images have revealed that Mrk 334 is observed during the final stage of its merging with a massive companion. A possible mass ratio ranges from 1/5 to 1/3. The merger has triggered mass redistribution in the disc resulting in an intensification of nuclear activity and in a burst of star formation in the inner region of the galaxy. The circumnuclear starburst is so intense that its contribution to the gas ionization exceeds that contribution of the active galactic nuclei (AGN). We interpret the nuclear gas outflow with velocities of ~200kms-1 as a galactic superwind that accompanies the violent star formation. This suggestion is consistent with the asymmetric X-ray brightness distribution in Mrk 334. The trajectory of the fragments of the disrupted satellite in the vicinity of the main galaxy nucleus can be traced. In the galaxy disc, a cavern is found that is filled with a low-density ionized gas. We consider this region to be the place where the remnants of the companion have recently penetrated through the gaseous disc of the main galaxy.

  2. The influence of the merger history of dwarf galaxies in a reionized universe

    NASA Astrophysics Data System (ADS)

    Verbeke, Robbert; Vandenbroucke, Bert; De Rijcke, Sven; Koleva, Mina

    2015-08-01

    In the ΛCDM model, cosmic structure forms in a hierarchical fashion. According to this paradigm, even low-mass dwarf galaxies grow via smooth accretion and mergers. Given the low masses of dwarf galaxies and their even smaller progenitors, the UV background is expected to have a significant influence on their gas content and, consequently, their star formation histories. Generally, cosmological simulations predict that most dwarf systems with circular velocities below ~30 km/s should not be able to form significant amounts of stars or contain gas and be, in effect, "dark" galaxies (Sawala et al. 2013, 2014; Hopkins et al. 2014; Shen et al. 2014). This is in contradiction with the recent discovery of low-mass yet gas-rich dwarf galaxies, such as Leo P (Skillman et al. 2013), Pisces A (Tollerud et al. 2014), and SECCO 1 (Bellazzini et al. 2015). Moreover, Tollerud et al. (2014) point out that most isolated dark-matter halos down to circular velocities of ~15 km/s contain neutral gas, in contradiction with the predictions of current simulations.Based on a suite of simulations of the formation and evolution of dwarf galaxies we show that, by reducing the first peak of star formation by including Pop-III stars in the simulations, the resulting dwarf galaxies have severely suppressed SFRs and can hold on to their gas reservoirs. Moreover, we show that the majority of the zero-metallicity stars are ejected during mergers, resulting in an extended, low-metallicity stellar halo. This results in a marked difference between a galaxy's "total" star-formation history and the one read from the stars in the center of the galaxy at z=0. This mechanism leads to the formation of realistic low-mass, gas-rich dwarfs with a broad range of SFHs and which adhere to the observed scaling relations, such as the baryonic Tully-Fisher relation.In short, the simulations presented here are for the first time able to reproduce the observed properties of low-mass, gas-rich dwarfs such as DDO 210

  3. Turbulent mixing of chemical elements in galaxies

    NASA Astrophysics Data System (ADS)

    Pan, Liubin

    Chemical elements synthesized in stars are released into the interstellar medium (ISM) from discrete and localized events such as supernova (SN) explosions and stellar winds. The efficiency of transport and mixing of the new nucleosynthesis products in the ISM determines the degree of chemical inhomogeneity in the galaxy, which is observable in objects of the same age, such as coeval stars and the ISM today. It also has implications for the transition from metal-poor to normal star formation in high-redshift galaxies. We develop a physical mixing model for chemical homogenization in the turbulent ISM of galaxies using modern theories and methods for passive scalar turbulence. A turbulent velocity field stretches, compresses and folds tracers into structures of smaller and smaller scales that can be homogenized faster by microscopic diffusivity, the only physical process that truly mixes. From a model that incorporates this physical process, an evolution equation for the probability distribution of the tracer concentration is derived. Including the processes of new metal release, infall of low metallicity gas and incorporation of metals into new stars in the equation, we establish a new approach to investigate chemical inhomogeneity in galaxies: a kinetic equation for the metallicity probability distribution function, containing all the 1-point statistical information of the metallicity fluctuations. Motivated by a recent interpretation of ultraviolet properties of high-redshift Lyman Break Galaxies, we apply this approach to study mixing of primordial gas in these galaxies and find that primordial gas can survive for ~ 100 Myr in the presence of continuous metal sources and turbulent mixing if the unlikely efficient mixing in SN shells is excluded. Recent observations show that the Galaxy has been extremely homogeneous during most of its history. In an attempt to understand the homogeneity using our approach, we find that standard chemical evolution models without

  4. THE MYSTERY OF THE σ-BUMP—A NEW SIGNATURE FOR MAJOR MERGERS IN EARLY-TYPE GALAXIES?

    SciTech Connect

    Schauer, Anna Therese Phoebe; Remus, Rhea-Silvia; Burkert, Andreas; Johansson, Peter H.

    2014-03-10

    The stellar velocity dispersion as a function of the galactocentric radius of an early-type galaxy can generally be well approximated by a power law σ∝r {sup β}. However, some observed dispersion profiles show a deviation from this fit at intermediate radii, usually between one and three R {sub eff}, where the velocity dispersion remains constant with radius, showing a bump-like behavior, which we term the {sup σ-}bump. To understand the origin of this σ-bump, we study a set of simulated early-type galaxies formed in major mergers. We find the σ-bump in all of our simulated early-type galaxies, with the size and position of the bump slightly varying from galaxy to galaxy, suggesting that the bump is a characteristic of the major merger formation scenario. The feature can be seen both in the intrinsic and projected stellar velocity dispersions. In contrast to shells that form during the merger event but evolve with time and finally disappear, the σ-bump stays nearly constant with radius and is a permanent feature that is preserved until the end of the simulation. The σ-bump is not seen in the dark matter and gas components and we therefore conclude that it is a purely stellar feature of merger remnants.

  5. The dominant role of mergers in the size evolution of massive early-type galaxies since z ~ 1

    NASA Astrophysics Data System (ADS)

    López-Sanjuan, C.; Le Fèvre, O.; Ilbert, O.; Tasca, L. A. M.; Bridge, C.; Cucciati, O.; Kampczyk, P.; Pozzetti, L.; Xu, C. K.; Carollo, C. M.; Contini, T.; Kneib, J.-P.; Lilly, S. J.; Mainieri, V.; Renzini, A.; Sanders, D.; Scodeggio, M.; Scoville, N. Z.; Taniguchi, Y.; Zamorani, G.; Aussel, H.; Bardelli, S.; Bolzonella, M.; Bongiorno, A.; Capak, P.; Caputi, K.; de la Torre, S.; de Ravel, L.; Franzetti, P.; Garilli, B.; Iovino, A.; Knobel, C.; Kovač, K.; Lamareille, F.; Le Borgne, J.-F.; Le Brun, V.; Le Floc'h, E.; Maier, C.; McCracken, H. J.; Mignoli, M.; Pelló, R.; Peng, Y.; Pérez-Montero, E.; Presotto, V.; Ricciardelli, E.; Salvato, M.; Silverman, J. D.; Tanaka, M.; Tresse, L.; Vergani, D.; Zucca, E.; Barnes, L.; Bordoloi, R.; Cappi, A.; Cimatti, A.; Coppa, G.; Koekemoer, A.; Liu, C. T.; Moresco, M.; Nair, P.; Oesch, P.; Schawinski, K.; Welikala, N.

    2012-12-01

    Aims: The role of galaxy mergers in massive galaxy evolution, and in particular to mass assembly and size growth, remains an open question. In this paper we measure the merger fraction and rate, both minor and major, of massive early-type galaxies (M ⋆ ≥ 1011 M⊙) in the COSMOS field, and study their role in mass and size evolution. Methods: We used the 30-band photometric catalogue in COSMOS, complemented with the spectroscopy of the zCOSMOS survey, to define close pairs with a separation on the sky plane 10 h-1 kpc ≤ rp ≤ 30 h-1 kpc and a relative velocity Δv ≤ 500 km s-1 in redshift space. We measured both major (stellar mass ratio μ ≡ M ⋆ ,2/M ⋆ ,1 ≥ 1/4) and minor (1/10 ≤ μ < 1/4) merger fractions of massive galaxies, and studied their dependence on redshift and on morphology (early types vs. late types). Results: The merger fraction and rate of massive galaxies evolves as a power-law (1 + z)n, with major mergers increasing with redshift, nMM = 1.4, and minor mergers showing little evolution, nmm ~ 0. When split by their morphology, the minor merger fraction for early-type galaxies (ETGs) is higher by a factor of three than that for late-type galaxies (LTGs), and both are nearly constant with redshift. The fraction of major mergers for massive LTGs evolves faster (nMMLT ~ 4 ) than for ETGs (nMMET= 1.8). Conclusions: Our results show that massive ETGs have undergone 0.89 mergers (0.43 major and 0.46 minor) since z ~ 1, leading to a mass growth of ~30%. We find that μ ≥ 1/10 mergers can explain ~55% of the observed size evolution of these galaxies since z ~ 1. Another ~20% is due to the progenitor bias (younger galaxies are more extended) and we estimate that very minor mergers (μ < 1/10) could contribute with an extra ~20%. The remaining ~5% should come from other processes (e.g., adiabatic expansion or observational effects). This picture also reproduces the mass growth and the velocity dispersion evolution of these galaxies. We

  6. The Impact of ISM Turbulence, Clustered Star Formation and Feedback on Galaxy Mass Assembly through Cold Flows and Mergers

    NASA Astrophysics Data System (ADS)

    Powell, Leila C.; Bournaud, Frederic; Chapon, Damien; Devriendt, Julien; Slyz, Adrianne; Teyssier, Romain

    2011-12-01

    Two of the dominant channels for galaxy mass assembly are cold flows (cold gas supplied via the filaments of the cosmic web) and mergers. How these processes combine in a cosmological setting, at both low and high redshift, to produce the whole zoo of galaxies we observe is largely unknown. Indeed there is still much to understand about the detailed physics of each process in isolation. While these formation channels have been studied using hydrodynamical simulations, here we study their impact on gas properties and star formation (SF) with some of the first from simulations that capture the multiphase, cloudy nature of the interstellar medium (ISM), by virtue of their high spatial resolution (and corresponding low temperature threshold). In this regime, we examine the competition between cold flows and a supernovae(SNe)-driven outflow in a very high-redshift galaxy (z ~ 9) and study the evolution of equal-mass galaxy mergers at low and high redshift, focusing on the induced SF. We find that SNe-driven outflows cannot reduce the cold accretion at z ~ 9 and that SF is actually enhanced due to the ensuing metal enrichment. We demonstrate how several recent observational results on galaxy populations (e.g. enhanced HCN/CO ratios in ULIRGs, a separate Kennicutt Schmidt (KS) sequence for starbursts and the population of compact early type galaxies (ETGs) at high redshift) can be explained with mechanisms captured in galaxy merger simulations, provided that the multiphase nature of the ISM is resolved.

  7. Massive black hole and gas dynamics in galaxy nuclei mergers - I. Numerical implementation

    NASA Astrophysics Data System (ADS)

    Lupi, Alessandro; Haardt, Francesco; Dotti, Massimo

    2015-01-01

    Numerical effects are known to plague adaptive mesh refinement (AMR) codes when treating massive particles, e.g. representing massive black holes (MBHs). In an evolving background, they can experience strong, spurious perturbations and then follow unphysical orbits. We study by means of numerical simulations the dynamical evolution of a pair MBHs in the rapidly and violently evolving gaseous and stellar background that follows a galaxy major merger. We confirm that spurious numerical effects alter the MBH orbits in AMR simulations, and show that numerical issues are ultimately due to a drop in the spatial resolution during the simulation, drastically reducing the accuracy in the gravitational force computation. We therefore propose a new refinement criterion suited for massive particles, able to solve in a fast and precise way for their orbits in highly dynamical backgrounds. The new refinement criterion we designed enforces the region around each massive particle to remain at the maximum resolution allowed, independently upon the local gas density. Such maximally resolved regions then follow the MBHs along their orbits, and effectively avoids all spurious effects caused by resolution changes. Our suite of high-resolution, AMR hydrodynamic simulations, including different prescriptions for the sub-grid gas physics, shows that the new refinement implementation has the advantage of not altering the physical evolution of the MBHs, accounting for all the non-trivial physical processes taking place in violent dynamical scenarios, such as the final stages of a galaxy major merger.

  8. Merger traces in the spatial distribution of stellar populations in the Fornax dSph galaxy

    NASA Astrophysics Data System (ADS)

    del Pino, Andrés; Aparicio, Antonio; Hidalgo, Sebastian L.

    2015-12-01

    We present a comprehensive and detailed study of the stellar populations of the Fornax dwarf spheroidal galaxy. We analyse their spatial distributions along the main body of the galaxy, obtaining their surface density maps, together with their radial density profiles. Results are based on the largest and most complete catalogue of stars in Fornax, with more than 3.5 × 105 stars covering the main body of the galaxy up to V ˜ 24. We find a differentiated structure in Fornax depending on the stellar ages. Old stars (≳10 Gyr) follow an elliptical distribution well fitted by King profiles with relatively large core radius (rc = 760 ± 60 pc). On another hand, young populations (≲3 Gyr) concentrate in the central region of the galaxy (rc = 210 ± 10 pc), and are better fitted by Sérsic profiles with 0.8 < n < 1.2, indicating some discy shape. These stars show strong asymmetries and substructures not aligned with the main optical axes of Fornax. This together with the observed differences between metallicity and age distribution maps strongly suggests accretion of material with different angular momentum. These results lead us to propose a scenario in which Fornax has suffered a major merger at z ˜ 1.

  9. Effects of Mergers and Dynamical State on Galaxy Clusters in Cosmological Simulations

    NASA Astrophysics Data System (ADS)

    Nelson, Katherine L.; Nagai, Daisuke

    2015-01-01

    Cosmological constraints from X-ray and microwave observations of galaxy clusters are subjected to systematic uncertainties. Non-thermal pressure support due to internal gas motions in galaxy clusters is one of the major sources of astrophysical uncertainties, which result in large bias and scatter in the hydrostatic mass estimate. In this work, we analyze a sample of massive galaxy clusters from the Omega500 high-resolution hydrodynamic cosmological simulation to examine the effects of dynamical state on non-thermal pressure. We use the Adaptive Refinement Tree (ART) code, an Eulerian grid-based adaptive refinement mesh code, which is well suited for modeling shock heating of gas and generation of bulk and turbulent motions from cosmic accretion. We examine the effects of cluster mergers on the hydrostatic mass bias and the evolution of non-thermal pressure. We find that during a major merger about a third of the total pressure support in the system is in non-thermal pressure from random gas motions, which leads to a ~30% bias in the hydrostatic mass estimate. Even after the clusters relax, we find a residual 10% bias due to the residual non-thermal pressure sustained by continuous gas accretion and minor mergers in cluster outskirts. However, when the non-thermal pressure support is accounted for in the mass estimates of relaxed clusters, we are able to recover the true mass to within a few percent. Moreover, by accounting for the additional pressure contribution from gas accelerations, we find that the bias in the HSE can be reduced by about half for our whole cluster sample. We also characterize the non-thermal pressure fraction profile and study its dependence on redshift, mass, and mass accretion rate. We find a universal, redshift-independent fitting formula for describing the fractional pressure support due to bulk motions. Within the relation, we find that the mass accretion rate has a systematic effect on the amount of non-thermal pressure in clusters

  10. Multi-wavelength Observations of the Dissociative Merger in the Galaxy Cluster CIZA J0107.7+5408

    NASA Astrophysics Data System (ADS)

    Randall, S. W.; Clarke, T. E.; van Weeren, R. J.; Intema, H. T.; Dawson, W. A.; Mroczkowski, T.; Blanton, E. L.; Bulbul, E.; Giacintucci, S.

    2016-06-01

    We present results based on X-ray, optical, and radio observations of the massive galaxy cluster CIZA J0107.7+5408. We find that this system is a post-core-passage, dissociative, binary merger, with the optical galaxy density peaks of each subcluster leading their associated X-ray emission peaks. This separation occurs because the diffuse gas experiences ram pressure forces, while the effectively collisionless galaxies (and presumably their associated dark matter (DM) halos) do not. This system contains double-peaked diffuse radio emission, possibly a double radio relic with the relics lying along the merger axis and also leading the X-ray cores. We find evidence for a temperature peak associated with the SW relic, likely created by the same merger shock that is powering the relic radio emission in this region. Thus, this system is a relatively rare, clean example of a dissociative binary merger, which can in principle be used to place constraints on the self-interaction cross-section of DM. Low-frequency radio observations reveal ultra-steep spectrum diffuse radio emission that is not correlated with the X-ray, optical, or high-frequency radio emission. We suggest that these sources are radio phoenixes, which are preexisting non-thermal particle populations that have been re-energized through adiabatic compression by the same merger shocks that power the radio relics. Finally, we place upper limits on inverse Compton emission from the SW radio relic.

  11. THE ROLE OF NUCLEAR STAR CLUSTERS IN ENHANCING SUPERMASSIVE BLACK HOLE FEEDING RATES DURING GALAXY MERGERS

    SciTech Connect

    Naiman, J. P.; Ramirez-Ruiz, E.; Debuhr, J.; Ma, C.-P.

    2015-04-20

    During galaxy mergers the gas falls to the center, triggers star formation, and feeds the rapid growth of supermassive black holes (SMBHs). SMBHs respond to this fueling by supplying energy back to the ambient gas. Numerical studies suggest that this feedback is necessary to explain why the properties of SMBHs and the formation of bulges are closely related. This intimate link between the SMBH’s mass and the large scale dynamics and luminosity of the host has proven to be a difficult issue to tackle with simulations due to the inability to resolve all the relevant length scales simultaneously. In this paper we simulate SMBH growth at high-resolution with FLASH, accounting for the gravitational focusing effects of nuclear star clusters (NSCs), which appear to be ubiquitous in galactic nuclei. In the simulations, the NSC core is resolved by a minimum cell size of about 0.001 pc or approximately 10{sup −3} of the cluster’s radius. We discuss the conditions required for effective gas funneling to occur, which are mainly dominated by a relationship between NSC velocity dispersion and the local sound speed, and provide a sub-grid prescription for the augmentation of central SMBH accretion rates in the presence of NSCs. For the conditions expected to persist in the centers of merging galaxies, the resultant large central gas densities in NSCs should produce drastically enhanced embedded SMBH accretion rates—up to an order of magnitude increase can be achieved for gas properties resembling those in large-scale galaxy merger simulations. This will naturally result in faster black hole growth rates and higher luminosities than predicted by the commonly used Bondi–Hoyle–Lyttleton accretion formalism.

  12. Evolution of blue E/S0 galaxies from z ~ 1: merger remnants or disk-rebuilding galaxies?

    NASA Astrophysics Data System (ADS)

    Huertas-Company, M.; Aguerri, J. A. L.; Tresse, L.; Bolzonella, M.; Koekemoer, A. M.; Maier, C.

    2010-06-01

    Context. Studying outliers from the bimodal distribution of galaxies in the color-mass space, such as morphological early-type galaxies residing in the blue cloud (blue E/S0s), can help for better understanding the physical mechanisms that lead galaxy migrations in this space. Aims: In this paper we try to bring new clues to studying the evolution of the properties of a significant sample of blue E/S0 galaxies in the COSMOS field. Methods: We define blue E/S0 galaxies as objects having a clear early-type morphology on the HST/ACS images (according to our automated classification scheme galSVM) but with a blue rest-frame color (defined by using the SED best-fit template on the COSMOS primary photometric catalogs). Combining these two measurements with spectroscopic redshifts from the zCOSMOS 10k release, we isolated 210 IAB < 22 blue early-type galaxies with M_*/M_⊙ > 1010 in three redshift bins (0.2 < z < 0.55, 0.55 < z < 0.8, 0.8 < z < 1.4) and studied the evolution of their properties (number density, SFR, morphology, size). Results: The threshold mass (Mt), defined at z = 0 in previous studies as the mass below which the population of blue early-type galaxies starts to be abundant relative to passive E/S0s, evolves from log (M_*/M_⊙) ~ 10.1 ± 0.35 at z ~ 0.3 to log (M_*/M_⊙) ~ 10.9 ± 0.35 at z ~ 1. Interestingly, it follows the evolution of the crossover mass between the early and late type populations (bimodality mass) indicating that the abundance of blue E/S0 is another measure of the downsizing effect in the build-up of the red sequence. There seems to be a turn-over mass in the nature of blue E/S0 galaxies. Above log (M_*/M_⊙) ~ 10.8 blue E/S0 resemble to merger remnants probably migrating to the red sequence on a time scale of ˜3 Gyr. Below this mass, they seem to be closer to normal late-type galaxies, as if they were the result of minor mergers that triggered the central star formation and built a central bulge component or were (re)building a

  13. The merger fraction of active and inactive galaxies in the local Universe through an improved non-parametric classification

    NASA Astrophysics Data System (ADS)

    Cotini, Stefano; Ripamonti, Emanuele; Caccianiga, Alessandro; Colpi, Monica; Della Ceca, Roberto; Mapelli, Michela; Severgnini, Paola; Segreto, Alberto

    2013-05-01

    We investigate the possible link between mergers and the enhanced activity of supermassive black holes (SMBHs) at the centre of galaxies, by comparing the merger fraction of a local sample (0.003 ≤ z < 0.03) of active galaxies - 59 active galactic nuclei host galaxies selected from the All-Sky Swift Burst Alert Telescope (BAT) Survey - with an appropriate control sample (247 sources extracted from the HyperLeda catalogue) that has the same redshift distribution as the BAT sample. We detect the interacting systems in the two samples on the basis of non-parametric structural indexes of concentration (C), asymmetry (A), clumpiness (S), Gini coefficient (G) and second-order momentum of light (M20). In particular, we propose a new morphological criterion, based on a combination of all these indexes, that improves the identification of interacting systems. We also present a new software - PyCASSo (PYTHON CAS software) - for the automatic computation of the structural indexes. After correcting for the completeness and reliability of the method, we find that the fraction of interacting galaxies among the active population (20{^{+ 7}_{- 5}} per cent) exceeds the merger fraction of the control sample (4{^{+ 1.7}_{- 1.2}} per cent). Choosing a mass-matched control sample leads to equivalent results, although with slightly lower statistical significance. Our findings support the scenario in which mergers trigger the nuclear activity of SMBHs.

  14. AKARI observations of dust processing in merger galaxies: NGC2782 and NGC7727

    NASA Astrophysics Data System (ADS)

    Onaka, Takashi; Nakamura, Tomohiko; Sakon, Itsuki; Ohsawa, Ryou; Mori, Tamami; Wu, Ronin; Kaneda, Hidehiro

    2015-08-01

    Dust grains are the major reservoir of heavy elements and play significant roles in the thermal balance and chemistry in the interstellar medium. Where dust grains are formed and how they evolve in the ISM are one of the key issues for the understanding of the material evolution in the Universe. Although theoretical studies have been made, very little is so far known observationally about the lifecycle of dust grains in the ISM and that associated with Galactic scale events. The lifecycle of very small carbonaceous grains that contain polycyclic aromatic hydrocarbons (PAHs) or PAH-like atomic groups are of particular interest because they emit distinct band emission in the near- to mid-infrared region and they are thought to be most vulnerable to environmental conditions. PAHs may be formed in carbon-rich stars, while recent AKARI observations suggest that they may be formed by fragmentation of large carbonaceous grains in shocks in a supernova remnant or a galactic wind (Onaka et al. 2010, A&A, 514, 15; Seok et al. 2012, ApJ, 744, 160).Here we report results of AKARI observations of two mergers. NGC2782 (Arp 215) and NGC7727 (Arp 222). NGC2782 is a merger of 200Myr old. It shows a very long western tail of HI gas by a tidal interaction and the eastern tail that consists mainly of stellar components without an appreciable amount of gas and is thought to be a relic of the colliding low-mass galaxy whose gas component has been stripped off Smith 1994, AJ, 107, 1695. We found significant emission at the 7 μm band of the IRC onboard AKARI, which must come from PAH 6.2 and 7.7 μm bands, in the eastern tail. Based on dust model fitting, we found a low abundance of ~10nm size dust despite of the presence of PAHs, suggesting that PAHs may be formed from fragmentation of ~10nm carbonaceous dust grains. NGC7727 is a 1.2Gyr old merger and shows a SED similar to the NGC2782 tail in the northern tail of the merger event product, suggesting also the formation of PAHs from

  15. Massive black hole seeds born via direct gas collapse in galaxy mergers: their properties, statistics and environment

    NASA Astrophysics Data System (ADS)

    Bonoli, Silvia; Mayer, Lucio; Callegari, Simone

    2014-01-01

    We study the statistics and cosmic evolution of massive black hole seeds formed during major mergers of gas-rich late-type galaxies. Generalizing the results of the hydrosimulations from Mayer et al., we envision a scenario in which a supermassive star can form at the centre of galaxies that just experienced a major merger owing to a multiscale powerful gas inflow, provided that such galaxies live in haloes with masses above 1011 M⊙, are gas rich and disc dominated, and do not already host a massive black hole. We assume that the ultimate collapse of the supermassive star leads to the rapid formation of a black hole of 105 M⊙ following a quasi-star stage. Using a model for galaxy formation applied to the outputs of the Millennium Simulation, we show that the conditions required for this massive black hole formation route to take place in the concordance Λ cold dark matter model are actually common at high redshift and can be realized even at low redshift. Most major mergers above z ˜ 4 in haloes with mass >1011 M⊙ can lead to the formation of a massive seed and, at z ˜ 2, the fraction of favourable mergers decreases to about half. Interestingly, we find that even in the local universe a fraction (˜20 per cent) of major mergers in massive haloes still satisfies the conditions for our massive black hole formation route. Those late events take place in galaxies with a markedly low clustering amplitude, that have lived in isolation for most of their life and that are experiencing a major merger for the first time. We predict that massive black hole seeds from galaxy mergers can dominate the massive end of the mass function at high (z > 4) and intermediate (z ˜ 2) redshifts relative to lighter seeds formed at higher redshift, for example, by the collapse of Pop III stars. Finally, a fraction of these massive seeds could lie, soon after formation, above the MBH-MBulge relation.

  16. Simulating the Galaxy Cluster “El Gordo” and Identifying the Merger Configuration

    NASA Astrophysics Data System (ADS)

    Zhang, Congyao; Yu, Qingjuan; Lu, Youjun

    2015-11-01

    The observational features of the massive galaxy cluster “El Gordo” (ACT-CL J0102–4915), such as the X-ray emission, the Sunyaev–Zel’dovich (SZ) effect, and the surface mass density distribution, indicate that they are caused by an exceptional ongoing high-speed collision of two galaxy clusters, similar to the well-known Bullet Cluster. We perform a series of hydrodynamical simulations to investigate the merging scenario and identify the initial conditions for the collision in ACT-CL J0102–4915. By surveying the parameter space of the various physical quantities that describe the two colliding clusters, including their total mass (M), mass ratio (ξ), gas fractions ({f}{{b}}), initial relative velocity (V), and impact parameter (P), we find an off-axis merger with P∼ 800 {h}70-1 {kpc}, V∼ 2500 {km} {{{s}}}-1, M∼ 3× {10}15 {M}ȯ , and ξ =3.6 that can lead to most of the main observational features of ACT-CL J0102–4915. Those features include the morphology of the X-ray emission with a remarkable wake-like substructure trailing after the secondary cluster, the X-ray luminosity and the temperature distributions, and also the SZ temperature decrement. The initial relative velocity required for the merger is extremely high and rare compared to that inferred from currently available Λ cold dark matter (ΛCDM) cosmological simulations, which raises a potential challenge to the ΛCDM model, in addition to the case of the Bullet Cluster.

  17. The growth of the galaxy cluster Abell 85: mergers, shocks, stripping and seeding of clumping

    NASA Astrophysics Data System (ADS)

    Ichinohe, Y.; Werner, N.; Simionescu, A.; Allen, S. W.; Canning, R. E. A.; Ehlert, S.; Mernier, F.; Takahashi, T.

    2015-04-01

    We present the results of deep Chandra, XMM-Newton and Suzaku observations of the nearby galaxy cluster Abell 85, which is currently undergoing at least two mergers, and in addition shows evidence for gas sloshing which extends out to r ≈ 600 kpc. One of the two infalling subclusters, to the south of the main cluster centre, has a dense, X-ray bright cool core and a tail extending to the south-east. The northern edge of this tail is strikingly smooth and sharp (narrower than the Coulomb mean free path of the ambient gas) over a length of 200 kpc, while towards the south-west the boundary of the tail is blurred and bent, indicating a difference in the plasma transport properties between these two edges. The thermodynamic structure of the tail strongly supports an overall north-westward motion. We propose, that a sloshing-induced tangential, ambient, coherent gas flow is bending the tail eastwards. The brightest galaxy of this subcluster is at the leading edge of the dense core, and is trailed by the tail of stripped gas, suggesting that the cool core of the subcluster has been almost completely destroyed by the time it reached its current radius of r ≈ 500 kpc. The surface-brightness excess, likely associated with gas stripped from the infalling southern subcluster, extends towards the south-east out to at least r500 of the main cluster, indicating that the stripping of infalling subclusters may seed gas inhomogeneities. The second merging subcluster appears to be a diffuse non-cool-core system. Its merger is likely supersonic with a Mach number of ≈1.4.

  18. Dissecting the Assembly Histories of Spheroidal Post-merger and Unusually Blue Elliptical Galaxies from the SDSS

    NASA Astrophysics Data System (ADS)

    McIntosh, Daniel H.; Haines, Tim; Sanchez, Sebastian; Tremonti, Christina A.; Rudnick, Gregory

    2015-01-01

    The modern merger hypothesis predicts the formation of new elliptical galaxies (Es) through the merging of two equal-mass, gas-rich spirals. Under the right conditions, simulations predict that such mergers produce a strong, central burst of star formation (SF) in the remnant. If merger-induced SF is subsequently quenched, this scenario offers an attractive blue-to-red migration channel to explain the buildup of massive quiescent galaxies over cosmic time. To test this prediction, we study 12 high-mass (Mstar>1e10 Msun), nearby (z<0.03) galaxies from the SDSS that are plausible new E candidates with unusually blue optical colors and visually either spheroidal post-merger (SPM) remnants or Es with a range of morphological peculiarities. We use IFU spectroscopy to track the stellar Balmer absorption and 4000A break strength indices as a function of galactic radius out to 1.5-3.0 R50 to distinguish galaxies with a recent central starburst from those with other SF histories. We find that the index values and their radial dependence correlate with specific morphological features. Only one of 4 SPMs has clear evidence for a recent (<1 Gyr) central starburst. The other 3 have strong Balmer absorption at all radii, global SF colors, bluer cores, and low central D4000 values indicative of younger stars, but no clear evidence of a recent burst. These galaxies are consistent with merger simulations that predict progenitor mass ratio, gas fraction and orbital dynamics need to be fine tuned to produce a central burst. The 3 blue Es with indices intermediate between typical star-forming and quiescent galaxies show small D4000 gradients, Balmer absorption that is stronger at R>1 R50, dust-reddened core colors, and inner morphological features (rings, dust). These galaxies are the best candidates for a "frosting" of young stars a top an older population, and their properties are consistent with a recent accretion of a gas-rich satellite. The remaining 5 Es are inconsistent with

  19. Building merger trees from cosmological N-body simulations. Towards improving galaxy formation models using subhaloes

    NASA Astrophysics Data System (ADS)

    Tweed, D.; Devriendt, J.; Blaizot, J.; Colombi, S.; Slyz, A.

    2009-11-01

    Context: In the past decade or so, using numerical N-body simulations to describe the gravitational clustering of dark matter (DM) in an expanding universe has become the tool of choice for tackling the issue of hierarchical galaxy formation. As mass resolution increases with the power of supercomputers, one is able to grasp finer and finer details of this process, resolving more and more of the inner structure of collapsed objects. This begs one to revisit time and again the post-processing tools with which one transforms particles into “invisible” dark matter haloes and from thereon into luminous galaxies. Aims: Although a fair amount of work has been devoted to growing Monte-Carlo merger trees that resemble those built from an N-body simulation, comparatively little effort has been invested in quantifying the caveats one necessarily encounters when one extracts trees directly from such a simulation. To somewhat revert the tide, this paper seeks to provide its reader with a comprehensive study of the problems one faces when following this route. Methods: The first step in building merger histories of dark matter haloes and their subhaloes is to identify these structures in each of the time outputs (snapshots) produced by the simulation. Even though we discuss a particular implementation of such an algorithm (called AdaptaHOP) in this paper, we believe that our results do not depend on the exact details of the implementation but instead extend to most if not all (sub)structure finders. To illustrate this point in the appendix we compare AdaptaHOP's results to the standard friend-of-friend (FOF) algorithm, widely utilised in the astrophysical community. We then highlight different ways of building merger histories from AdaptaHOP haloes and subhaloes, contrasting their various advantages and drawbacks. Results: We find that the best approach to (sub)halo merging histories is through an analysis that goes back and forth between identification and tree building

  20. Tracing kinematic (mis)alignments in CALIFA merging galaxies. Stellar and ionized gas kinematic orientations at every merger stage

    NASA Astrophysics Data System (ADS)

    Barrera-Ballesteros, J. K.; García-Lorenzo, B.; Falcón-Barroso, J.; van de Ven, G.; Lyubenova, M.; Wild, V.; Méndez-Abreu, J.; Sánchez, S. F.; Marquez, I.; Masegosa, J.; Monreal-Ibero, A.; Ziegler, B.; del Olmo, A.; Verdes-Montenegro, L.; García-Benito, R.; Husemann, B.; Mast, D.; Kehrig, C.; Iglesias-Paramo, J.; Marino, R. A.; Aguerri, J. A. L.; Walcher, C. J.; Vílchez, J. M.; Bomans, D. J.; Cortijo-Ferrero, C.; González Delgado, R. M.; Bland-Hawthorn, J.; McIntosh, D. H.; Bekeraitė, S.

    2015-10-01

    We present spatially resolved stellar and/or ionized gas kinematic properties for a sample of 103 interacting galaxies, tracing all merger stages: close companions, pairs with morphological signatures of interaction, and coalesced merger remnants. In order to distinguish kinematic properties caused by a merger event from those driven by internal processes, we compare our galaxies with a control sample of 80 non-interacting galaxies. We measure for both the stellar and the ionized gas components the major (projected) kinematic position angles (PAkin, approaching and receding) directly from the velocity distributions with no assumptions on the internal motions. This method also allow us to derive the deviations of the kinematic PAs from a straight line (δPAkin). We find that around half of the interacting objects show morpho-kinematic PA misalignments that cannot be found in the control sample. In particular, we observe those misalignments in galaxies with morphological signatures of interaction. On the other hand, thelevel of alignment between the approaching and receding sides for both samples is similar, with most of the galaxies displaying small misalignments. Radial deviations of the kinematic PA orientation from a straight line in the stellar component measured by δPAkin are large for both samples. However, for a large fraction of interacting galaxies the ionized gas δPAkin is larger than the typical values derived from isolated galaxies (48%), indicating that this parameter is a good indicator to trace the impact of interaction and mergers in the internal motions of galaxies. By comparing the stellar and ionized gas kinematic PA, we find that 42% (28/66) of the interacting galaxies have misalignments larger than 16°, compared to 10% from the control sample. Our results show the impact of interactions in the motion of stellar and ionized gas as well as the wide the variety of their spatially resolved kinematic distributions. This study also provides a local

  1. Forming Disk Galaxies in Wet Major Mergers. I. Three Fiducial Examples

    NASA Astrophysics Data System (ADS)

    Athanassoula, E.; Rodionov, S. A.; Peschken, N.; Lambert, J. C.

    2016-04-01

    Using three fiducial N-body+SPH simulations, we follow the merging of two disk galaxies that each have a hot gaseous halo component, and examine whether the merger remnant can be a spiral galaxy. The stellar progenitor disks are destroyed by violent relaxation during the merging and most of their stars form a classical bulge, while the remaining stars, as well as stars born during the merging times, form a thick disk and its bar. A new stellar disk forms subsequently and gradually in the remnant from the gas accreted mainly from the halo. It is vertically thin and well extended in its equatorial plane. A bar starts forming before the disk is fully in place, which is contrary to what is assumed in idealized simulations of isolated bar-forming galaxies, and has morphological features such as ansae and boxy/peanut bulges. Stars of different ages populate different parts of the box/peanut. A disky pseudobulge also forms, so that by the end of the simulation all three types of bulges coexist. The oldest stars are found in the classical bulge, followed by those of the thick disk, then by those in the thin disk. The youngest stars are in the spiral arms and the disky pseudobulge. The disk surface density profiles are of type II (exponential with downbending); the circular velocity curves are flat and show that the disks are submaximum in these examples: two clearly so and one near-borderline between maximum and submaximum. On average, only roughly between 10% and 20% of the stellar mass is in the classical bulge of the final models, i.e., much less than in previous simulations.

  2. Galaxy Disks Do Not Need to Survive in the ΛCDM Paradigm: The Galaxy Merger Rate Out to z ~ 1.5 from Morpho-kinematic Data

    NASA Astrophysics Data System (ADS)

    Puech, M.; Hammer, F.; Hopkins, P. F.; Athanassoula, E.; Flores, H.; Rodrigues, M.; Wang, J. L.; Yang, Y. B.

    2012-07-01

    About two-thirds of present-day, large galaxies are spirals such as the Milky Way or Andromeda, but the way their thin rotating disks formed remains uncertain. Observations have revealed that half of their progenitors, six billion years ago, had peculiar morphologies and/or kinematics, which exclude them from the Hubble sequence. Major mergers, i.e., fusions between galaxies of similar mass, are found to be the likeliest driver for such strong peculiarities. However, thin disks are fragile and easily destroyed by such violent collisions, which creates a critical tension between the observed fraction of thin disks and their survival within the ΛCDM paradigm. Here, we show that the observed high occurrence of mergers among their progenitors is only apparent and is resolved when using morpho-kinematic observations that are sensitive to all the phases of the merging process. This provides an original way of narrowing down observational estimates of the galaxy merger rate and leads to a perfect match with predictions by state-of-the-art ΛCDM semi-empirical models with no particular fine-tuning needed. These results imply that half of local thin disks do not survive but are actually rebuilt after a gas-rich major merger occurring in the past nine billion years, i.e., two-thirds of the lifetime of the universe. This emphasizes the need to study how thin disks can form in halos with a more active merger history than previously considered and to investigate what is the origin of the gas reservoir from which local disks would reform.

  3. Evidence for major mergers of galaxies at 2 ≲ z < 4 in the VVDS and VUDS surveys

    NASA Astrophysics Data System (ADS)

    Tasca, L. A. M.; Le Fèvre, O.; López-Sanjuan, C.; Wang, P.-W.; Cassata, P.; Garilli, B.; Ilbert, O.; Le Brun, V.; Lemaux, B. C.; Maccagni, D.; Tresse, L.; Bardelli, S.; Contini, T.; Charlot, S.; Cucciati, O.; Fontana, A.; Giavalisco, M.; Kneib, J.-P.; Salvato, M.; Taniguchi, Y.; Vergani, D.; Zamorani, G.; Zucca, E.

    2014-05-01

    Context. The mass assembly of galaxies can proceed through different physical processes. Here we report on the spectroscopic identification of close physical pairs of galaxies at redshifts 2 ≲ z< 4 and discuss the impact of major mergers in building galaxies at these early cosmological times. Aims: We aim to identify and characterize close physical pairs of galaxies destined to merge and use their properties to infer the contribution of merging processes to the early mass assembly of galaxies. Methods: We searched for galaxy pairs with a transverse separation rp ≤ 25h-1 kpc and a velocity difference Δv ≤ 500 km s-1 using early data from the VIMOS Ultra Deep Survey (VUDS) that comprise a sample of 1111 galaxies with spectroscopic redshifts measurements at redshifts 1.8 ≤ z ≤ 4 in the COSMOS, ECDFS, and VVDS-02h fields, combined with VVDS data. We analysed their spectra and associated visible and near-infrared photometry to assess the main properties of merging galaxies that have an average stellar mass M⋆ = 2.3 × 1010 M⊙ at these redshifts. Results: Using the 12 physical pairs found in our sample we obtain a first robust measurement of the major merger fraction at these redshifts, fMM = 19.4-6+9%. These pairs are expected to merge within 1 Gyr on average each producing a more massive galaxy by the time the cosmic star formation peaks at z ~ 1 - 2. Using the pairs' merging time scales, we derive a merging rate of RMM = 0.17-0.05+0.08 Gyr-1. From the average mass ratio between galaxies in the pairs, the stellar mass of the resulting galaxy after merging will be ~60% higher than the most massive galaxy in the pair before merging. We conclude that major merging of galaxy pairs is on-going at 2 ≲ z< 4 and is significantly contributing to the major mass assembly phase of galaxies at this early epoch. Based on data obtained with the European Southern Observatory Very Large Telescope, Paranal, Chile, under Large Programmes 070.A-9007, 177.A-0837, and 185.A

  4. A 2163: Merger events in the hottest Abell galaxy cluster. I. Dynamical analysis from optical data

    NASA Astrophysics Data System (ADS)

    Maurogordato, S.; Cappi, A.; Ferrari, C.; Benoist, C.; Mars, G.; Soucail, G.; Arnaud, M.; Pratt, G. W.; Bourdin, H.; Sauvageot, J.-L.

    2008-04-01

    Context: A 2163 is among the richest and most distant Abell clusters, presenting outstanding properties in different wavelength domains. X-ray observations have revealed a distorted gas morphology and strong features have been detected in the temperature map, suggesting that merging processes are important in this cluster. However, the merging scenario is not yet well-defined. Aims: We have undertaken a complementary optical analysis, aiming to understand the dynamics of the system, to constrain the merging scenario and to test its effect on the properties of galaxies. Methods: We present a detailed optical analysis of A 2163 based on new multicolor wide-field imaging and medium-to-high resolution spectroscopy of several hundred galaxies. Results: The projected galaxy density distribution shows strong subclustering with two dominant structures: a main central component (A), and a northern component (B), visible both in optical and in X-ray, with two other substructures detected at high significance in the optical. At magnitudes fainter than R=19, the galaxy distribution shows a clear elongation approximately with the east-west axis extending over 4~h70-1 Mpc, while a nearly perpendicular bridge of galaxies along the north-south axis appears to connect (B) to (A). The (A) component shows a bimodal morphology, and the positions of its two density peaks depend on galaxy luminosity: at magnitudes fainter than R = 19, the axis joining the peaks shows a counterclockwise rotation (from NE/SW to E-W) centered on the position of the X-ray maximum. Our final spectroscopic catalog of 512 objects includes 476 new galaxy redshifts. We have identified 361 galaxies as cluster members; among them, 326 have high precision redshift measurements, which allow us to perform a detailed dynamical analysis of unprecedented accuracy. The cluster mean redshift and velocity dispersion are respectively z= 0.2005 ± 0.0003 and 1434 ± 60 km s-1. We spectroscopically confirm that the northern

  5. A MULTIWAVELENGTH STUDY OF A SAMPLE OF 70 {mu}m SELECTED GALAXIES IN THE COSMOS FIELD. II. THE ROLE OF MERGERS IN GALAXY EVOLUTION

    SciTech Connect

    Kartaltepe, Jeyhan S.; Sanders, D. B.; Le Floc'h, E.; Frayer, D. T.; Aussel, H.; Arnouts, S.; Ilbert, O.; Cassata, P.; Le Fevre, O.; Salvato, M.; Scoville, N. Z.; Capak, P.; Surace, J.; Yan, L.; Caputi, K.; Carollo, C. M.; Lilly, S.; Civano, F.; Hasinger, G.; Koekemoer, A. M.

    2010-09-20

    We analyze the morphological properties of a large sample of 1503 70 {mu}m selected galaxies in the COSMOS field spanning the redshift range 0.01 < z < 3.5 with a median redshift of 0.5 and an infrared luminosity range of 10{sup 8} < L{sub IR}(8 - 1000 {mu}m)< 10{sup 14} L{sub sun} with a median luminosity of 10{sup 11.4} L{sub sun}. In general, these galaxies are massive, with a stellar mass range of 10{sup 10}-10{sup 12} M{sub sun}, and luminous, with -25 < M{sub K} < -20. We find a strong correlation between the fraction of major mergers and L{sub IR}, with the fraction at the highest luminosity (L{sub IR} > 10{sup 12} L{sub sun}) being up to {approx}50%. We also find that the fraction of spirals drops dramatically with L{sub IR}. Minor mergers likely play a role in boosting the infrared luminosity for sources with low luminosities (L{sub IR} < 10{sup 11.5} L{sub sun}). The precise fraction of mergers in any given L{sub IR} bin varies by redshift due to sources at z > 1 being difficult to classify and subject to the effects of bandpass shifting; therefore, these numbers can only be considered lower limits. At z < 1, where the morphological classifications are most robust, major mergers clearly dominate the ULIRG population ({approx}50%-80%) and are important for the LIRG population ({approx}25%-40%). At z > 1, the fraction of major mergers is lower, but is at least 30%-40% for ULIRGs. In a comparison of our visual classifications with several automated classification techniques we find general agreement; however, the fraction of identified mergers is underestimated due to automated classification methods being sensitive to only certain timescales of a major merger. Although the general morphological trends agree with what has been observed for local (U)LIRGs, the fraction of major mergers is slightly lower than seen locally. This is in part due to the difficulty of identifying merger signatures at high redshift. The distribution of the U - V color of the

  6. Fast Molecular Outflows in Luminous Galaxy Mergers: Evidence for Quasar Feedback from Herschel

    NASA Technical Reports Server (NTRS)

    Veilleux, S.; Melendez, M.; Sturm, E.; Garcia-Carpio, J.; Fischer, J.; Gonzalez-Alfonso, E.; Contursi, A.; Lutz, D.; Poglitsch, A.; Davies, R.; Genzel, R.; Tacconi, L.; deJong, J. A.; Sternberg, A.; Netzer, H.; Hailey-Dunsheath, S.; Verma, A.; Rupke, D. S. N.; Maiolino, R.; Teng, S. H.; Polisensky, E.

    2013-01-01

    We report the results from a systematic search for molecular (OH 119 micron) outflows with Herschel/PACS in a sample of 43 nearby (z < 0.3) galaxy mergers, mostly ultraluminous infrared galaxies (ULIRGs) and QSOs. We find that the character of the OH feature (strength of the absorption relative to the emission) correlates with that of the 9.7 micron silicate feature, a measure of obscuration in ULIRGs. Unambiguous evidence for molecular outflows, based on the detection of OH absorption profiles with median velocities more blueshifted than-50 km/s, is seen in 26 (70%) of the 37 OH-detected targets, suggesting a wide-angle (approx. 145 deg.) outflow geometry. Conversely, unambiguous evidence for molecular inflows, based on the detection of OH absorption profiles with median velocities more redshifted than +50 km/s is seen in only four objects, suggesting a planar or filamentary geometry for the inflowing gas. Terminal outflow velocities of approx. -1000 km/s are measured in several objects, but median outflow velocities are typically approx.-200 km/s-1. While the outflow velocities show no statistically significant dependence on the star formation rate, they are distinctly more blueshifted among systems with large active galactic nucleus (AGN) fractions and luminosities [log (L(sub AGN)/L(sub solar)) => 11.8 +/- 0.3]. The quasars in these systems play a dominant role in driving the molecular outflows. However, the most AGN dominated systems, where OH is seen purely in emission, show relatively modest OH line widths, despite their large AGN luminosities, perhaps indicating that molecular outflows subside once the quasar has cleared a path through the obscuring material.

  7. FAST MOLECULAR OUTFLOWS IN LUMINOUS GALAXY MERGERS: EVIDENCE FOR QUASAR FEEDBACK FROM HERSCHEL

    SciTech Connect

    Veilleux, S.; Meléndez, M.; Sturm, E.; Gracia-Carpio, J.; Contursi, A.; Lutz, D.; Poglitsch, A.; Davies, R.; Genzel, R.; Tacconi, L.; De Jong, J. A.; Fischer, J.; González-Alfonso, E.; Sternberg, A.; Netzer, H.; Hailey-Dunsheath, S.; Verma, A.; Rupke, D. S. N.; Maiolino, R.; Teng, S. H. E-mail: marcio@astro.umd.edu; and others

    2013-10-10

    We report the results from a systematic search for molecular (OH 119 μm) outflows with Herschel/PACS in a sample of 43 nearby (z < 0.3) galaxy mergers, mostly ultraluminous infrared galaxies (ULIRGs) and QSOs. We find that the character of the OH feature (strength of the absorption relative to the emission) correlates with that of the 9.7 μm silicate feature, a measure of obscuration in ULIRGs. Unambiguous evidence for molecular outflows, based on the detection of OH absorption profiles with median velocities more blueshifted than –50 km s{sup –1}, is seen in 26 (70%) of the 37 OH-detected targets, suggesting a wide-angle (∼145°) outflow geometry. Conversely, unambiguous evidence for molecular inflows, based on the detection of OH absorption profiles with median velocities more redshifted than +50 km s{sup –1}, is seen in only four objects, suggesting a planar or filamentary geometry for the inflowing gas. Terminal outflow velocities of ∼–1000 km s{sup –1} are measured in several objects, but median outflow velocities are typically ∼–200 km s{sup –1}. While the outflow velocities show no statistically significant dependence on the star formation rate, they are distinctly more blueshifted among systems with large active galactic nucleus (AGN) fractions and luminosities [log (L{sub AGN}/L{sub ☉}) ≥ 11.8 ± 0.3]. The quasars in these systems play a dominant role in driving the molecular outflows. However, the most AGN dominated systems, where OH is seen purely in emission, show relatively modest OH line widths, despite their large AGN luminosities, perhaps indicating that molecular outflows subside once the quasar has cleared a path through the obscuring material.

  8. Spectroscopy of the short-hard GRB 130603B. The host galaxy and environment of a compact object merger

    NASA Astrophysics Data System (ADS)

    de Ugarte Postigo, A.; Thöne, C. C.; Rowlinson, A.; García-Benito, R.; Levan, A. J.; Gorosabel, J.; Goldoni, P.; Schulze, S.; Zafar, T.; Wiersema, K.; Sánchez-Ramírez, R.; Melandri, A.; D'Avanzo, P.; Oates, S.; D'Elia, V.; De Pasquale, M.; Krühler, T.; van der Horst, A. J.; Xu, D.; Watson, D.; Piranomonte, S.; Vergani, S. D.; Milvang-Jensen, B.; Kaper, L.; Malesani, D.; Fynbo, J. P. U.; Cano, Z.; Covino, S.; Flores, H.; Greiss, S.; Hammer, F.; Hartoog, O. E.; Hellmich, S.; Heuser, C.; Hjorth, J.; Jakobsson, P.; Mottola, S.; Sparre, M.; Sollerman, J.; Tagliaferri, G.; Tanvir, N. R.; Vestergaard, M.; Wijers, R. A. M. J.

    2014-03-01

    Context. Short duration gamma-ray bursts (SGRBs) are thought to be related to the violent merger of compact objects, such as neutron stars or black holes, which makes them promising sources of gravitational waves. The detection of a "kilonova"-likesignature associated to the Swift-detected GRB 130603B has suggested that this event is the result of a compact object merger. Aims: Our knowledge on SGRB has been, until now, mostly based on the absence of supernova signatures and the analysis of the host galaxies to which they cannot always be securely associated. Further progress has been significantly hampered by the faintness and rapid fading of their optical counterparts (afterglows), which has so far precluded spectroscopy of such events. Afterglow spectroscopy is the key tool to firmly determine the distance at which the burst was produced, crucial to understand its physics, and study its local environment. Methods: Here we present the first spectra of a prototypical SGRB afterglow in which both absorption and emission features are clearly detected. Together with multi-wavelength photometry we study the host and environment of GRB 130603B. Results: From these spectra we determine the redshift of the burst to be z = 0.3565 ± 0.0002, measure rich dynamics both in absorption and emission, and a substantial line of sight extinction of AV = 0.86 ± 0.15 mag. The GRB was located at the edge of a disrupted arm of a moderately star forming galaxy with near-solar metallicity. Unlike for most long GRBs (LGRBs), NHX/AV is consistent with the Galactic ratio, indicating that the explosion site differs from those found in LGRBs. Conclusions: The merger is not associated with the most star-forming region of the galaxy; however, it did occur in a dense region, implying a rapid merger or a low natal kick velocity for the compact object binary. Appendices are available in electronic form at http://www.aanda.org

  9. Purely Dry Mergers do not Explain the Observed Evolution of Massive Early-type Galaxies since z ~ 1

    NASA Astrophysics Data System (ADS)

    Sonnenfeld, Alessandro; Nipoti, Carlo; Treu, Tommaso

    2014-05-01

    Several studies have suggested that the observed size evolution of massive early-type galaxies (ETGs) can be explained as a combination of dry mergers and progenitor bias, at least since z ~ 1. In this paper we carry out a new test of the dry-merger scenario based on recent lensing measurements of the evolution of the mass density profile of ETGs. We construct a theoretical model for the joint evolution of the size and mass density profile slope γ' driven by dry mergers occurring at rates given by cosmological simulations. Such dry-merger model predicts a strong decrease of γ' with cosmic time, inconsistent with the almost constant γ' inferred from observations in the redshift range 0 < z < 1. We then show with a simple toy model that a modest amount of cold gas in the mergers—consistent with the upper limits on recent star formation in ETGs—is sufficient to reconcile the model with measurements of γ'. By fitting for the amount of gas accreted during mergers, we find that models with dissipation are consistent with observations of the evolution in both size and density slope, if ~4% of the total final stellar mass arises from the gas accreted since z ~ 1. Purely dry merger models are ruled out at >99% CL. We thus suggest a scenario where the outer regions of massive ETGs grow by accretion of stars and dark matter, while small amounts of dissipation and nuclear star formation conspire to keep the mass density profile constant and approximately isothermal.

  10. AGN and Starbursts in Dusty Galaxy Mergers: Insights from the Great Observatories All-sky LIRG Survey

    NASA Astrophysics Data System (ADS)

    Mazzarella, Joseph M.

    2014-07-01

    The Great Observatories All-sky LIRG Survey (GOALS) is combining imaging and spectroscopic data from the Herschel, Spitzer, Hubble, GALEX, Chandra, and XMM-Newton space telescopes augmented with extensive ground-based observations in a multiwavelength study of approximately 180 Luminous Infrared Galaxies (LIRGs) and 20 Ultraluminous Infrared Galaxies (ULIRGs) that comprise a statistically complete subset of the 60μm-selected IRAS Revised Bright Galaxy Sample. The objects span the full range of galaxy environments (giant isolated spirals, wide and close pairs, minor and major mergers, merger remnants) and nuclear activity types (Seyfert 1, Seyfert 2, LINER, starburst/HII), with proportions that depend strongly on the total infrared luminosity. I will review the science motivations and present highlights of recent results selected from over 25 peer-reviewed journal articles published recently by the GOALS Team. Statistical investigations include detection of high-ionization Fe K emission indicative of deeply embedded AGN, comparison of UV and far-IR properties, investigations of the fraction of extended emission as a function of wavelength derived from mid-IR spectroscopy, mid-IR spectral diagnostics and spectral energy distributions revealing the relative contributions of AGN and starbursts to powering the bolometric luminosity, and quantitative structure analyses that delineate the evolution of stellar bars and nuclear stellar cusps during the merger process. Multiwavelength dissections of individual systems have unveiled large populations of young star clusters and heavily obscured AGN in early-stage (II Zw 96), intermediate-stage (Mrk 266, Mrk 273), and late-stage (NGC 2623, IC 883) mergers. A recently published study that matches numerical simulations to the observed morphology and gas kinematics in mergers has placed four systems on a timeline spanning 175-260 million years after their first passages, and modeling of additional (U)LIRGs is underway. A very

  11. K+A GALAXIES AS THE AFTERMATH OF GAS-RICH MERGERS: SIMULATING THE EVOLUTION OF GALAXIES AS SEEN BY SPECTROSCOPIC SURVEYS

    SciTech Connect

    Snyder, Gregory F.; Hayward, Christopher C.; Hernquist, Lars; Jonsson, Patrik; Cox, Thomas J.

    2011-11-10

    Models of poststarburst (or 'K+A') galaxies are constructed by combining fully three-dimensional hydrodynamic simulations of galaxy mergers with radiative transfer calculations of dust attenuation. Spectral line catalogs are generated automatically from moderate-resolution optical spectra calculated as a function of merger progress in each of a large suite of simulations. The mass, gas fraction, orbital parameters, and mass ratio of the merging galaxies are varied systematically, showing that the lifetime and properties of the K+A phase are strong functions of the merger scenario. K+A durations are generally {approx}<0.1-0.3 Gyr, significantly shorter than the commonly assumed 1 Gyr, which is obtained only in rare cases, owing to a wide variation in star formation histories resulting from different orbital and progenitor configurations. Combined with empirical merger rates, the model lifetimes predict rapidly rising K+A fractions as a function of redshift that are consistent with results of large spectroscopic surveys, resolving tension between the observed K+A abundance and that predicted when one assumes the K+A duration is the lifetime of A stars ({approx}1 Gyr). These simulated spectra are spatially resolved on scales of about 1 kpc, and indicate that a centrally concentrated starburst causes the Balmer absorption strengths to increase toward the central few kiloparsecs of the remnant. The effects of dust attenuation, viewing angle, and aperture bias on our models are analyzed. In some cases, the K+A features are longer-lived and more pronounced when active galactic nucleus (AGN) feedback removes dust from the center, uncovering the young stars formed during the burst. In this picture, the K+A phase begins during or shortly after the bright starburst/AGN phase in violent mergers, and thus offers a unique opportunity to study the effects of quasar and star formation feedback on the gas reservoir and evolution of the remnant. Analytic fitting formulae are

  12. The Role of Major Gas-rich Mergers on the Evolution of Galaxies from the Blue Cloud to the Red Sequence

    NASA Astrophysics Data System (ADS)

    Guo, Rui; Hao, Cai-Na; Xia, X. Y.; Mao, Shude; Shi, Yong

    2016-07-01

    With the aim of exploring the fast evolutionary path from the blue cloud of star-forming galaxies to the red sequence of quiescent galaxies in the local universe, we select a local advanced merging infrared luminous and ultraluminous galaxy (adv-merger (U)LIRGs) sample and perform careful dust extinction corrections to investigate their positions in the star formation rate-M *, u - r, and NUV - r color-mass diagrams. The sample consists of 89 (U)LIRGs at the late merger stage, obtained from cross-correlating the Infrared Astronomical Satellite Point Source Catalog Redshift Survey and 1 Jy ULIRGs samples with the Sloan Digital Sky Survey DR7 database. Our results show that 74 % +/- 5 % of adv-merger (U)LIRGs are localized above the 1σ line of the local star-forming galaxy main sequence. We also find that all adv-merger (U)LIRGs are more massive than and as blue as the blue cloud galaxies after corrections for Galactic and internal dust extinctions, with 95 % +/- 2 % and 81 % +/- 4 % of them outside the blue cloud on the u - r and NUV - r color-mass diagrams, respectively. These results, combined with the short timescale for exhausting the molecular gas reservoir in adv-merger (U)LIRGs (3× {10}7 to 3× {10}8 years), imply that the adv-merger (U)LIRGs are likely at the starting point of the fast evolutionary track previously proposed by several groups. While the number density of adv-merger (U)LIRGs is only ˜ 0.1 % of the blue cloud star-forming galaxies in the local universe, this evolutionary track may play a more important role at high redshift.

  13. Circumnuclear Star Clusters in the Galaxy Merger NGC 6240, Observed with Keck Adaptive Optics and HST

    SciTech Connect

    Pollack, L K; Max, C E; Schneider, G

    2007-02-12

    We discuss images of the central {approx} 10 kpc (in projection) of the galaxy merger NGC 6240 at H and K{prime} bands, taken with the NIRC2 narrow camera on Keck II using natural guide star adaptive optics. We detect 28 star clusters in the NIRC2 images, of which only 7 can be seen in the similar-spatial-resolution, archival WFPC2 Planetary Camera data at either B or I bands. Combining the NIRC2 narrow camera pointings with wider NICMOS NIC2 images taken with the F110W, F160W, and F222M filters, we identify a total of 32 clusters that are detected in at least one of these 5 infrared ({lambda}{sub c} > 1 {micro}m) bandpasses. By comparing to instantaneous burst, stellar population synthesis models (Bruzual & Charlot 2003), we estimate that most of the clusters are consistent with being {approx} 15 Myr old and have photometric masses ranging from 7 x 10{sup 5} M{sub {circle_dot}} to 4 x 10{sup 7}M{sub {circle_dot}}. The total contribution to the star formation rate (SFR) from these clusters is approximately 10M{sub {circle_dot}} yr{sup -1}, or {approx} 10% of the total SFR in the nuclear region. We use these newly discovered clusters to estimate the extinction toward NGC 6240's double nuclei, and find values of A{sub v} as high as 14 magnitudes along some sightlines, with an average extinction of A{sub v} {approx} 7 mag toward sightlines within {approx} 3-inches of the double nuclei.

  14. Transport and Mixing of r-process Elements in Neutron Star Binary Merger Blast Waves

    NASA Astrophysics Data System (ADS)

    Montes, Gabriela; Ramirez-Ruiz, Enrico; Naiman, Jill; Shen, Sijing; Lee, William H.

    2016-10-01

    The r-process nuclei are robustly synthesized in the material ejected during neutron star binary mergers (NSBMs). If NSBMs are indeed solely responsible for the solar system r-process abundances, a galaxy like our own would be required to host a few NSBMs per million years, with each event ejecting, on average, about 5 × 10‑2 M ⊙ of r-process material. Because the ejecta velocities in the tidal tail are significantly larger than those in ordinary supernovae, NSBMs deposit a comparable amount of energy into the ISM. In contrast to extensive efforts studying spherical models for supernova remnant evolution, calculations quantifying the impact of NSBM ejecta in the ISM have been lacking. To better understand their evolution, we perform a suite of three-dimensional hydrodynamic simulations of isolated NSBM ejecta expanding in environments with conditions adopted from Milky-Way-like galaxy simulations. Although the remnant morphology is highly complex at early times, the subsequent radiative evolution is remarkably similar to that of a standard supernova. This implies that sub-resolution supernova feedback models can be used in galaxy-scale simulations that are unable to resolve the key evolutionary phases of NSBMs. Among other quantities, we examine the radius, mass, and kinetic energy content of the remnant at shell formation. We find that the shell formation epoch is attained when the swept-up mass is about 103(n H/1 cm‑3)‑2/7 M ⊙ at this point, the mass fraction of r-process material is enhanced up to two orders of magnitude in relation to a solar metallicity ISM.

  15. Contribution of Neutron Star Mergers to the r-Process Chemical Evolution in the Hierarchical Galaxy Formation

    NASA Astrophysics Data System (ADS)

    Komiya, Yutaka; Shigeyama, Toshikazu

    2016-10-01

    The main astronomical source of r-process elements has not yet been identified. One plausible site is neutron star mergers (NSMs), but from the perspective of the Galactic chemical evolution, it has been pointed out that NSMs cannot reproduce the observed r-process abundance distribution of metal-poor stars at [{Fe}/{{H}}]\\lt -3. Recently, Tsujimoto & Shigeyama pointed out that NSM ejecta can spread into a much larger volume than ejecta from a supernova. We re-examine the enrichment of r-process elements by NSMs considering this difference in propagation using the chemical evolution model under the hierarchical galaxy formation. The observed r-process enhanced stars around [{Fe}/{{H}}]∼ -3 are reproduced if the star formation efficiency is lower for low-mass galaxies under a realistic delay-time distribution for NSMs. We show that a significant fraction of NSM ejecta escape from its host proto-galaxy to pollute intergalactic matter and other proto-galaxies. The propagation of r-process elements over proto-galaxies changes the abundance distribution at [{Fe}/{{H}}]\\lt -3 and obtains distribution compatible with observations of the Milky Way halo stars. In particular, the pre-enrichment of intergalactic medium explains the observed scarcity of extremely metal-poor stars without Ba and abundance distribution of r-process elements at [{Fe}/{{H}}]≲ -3.5.

  16. Utility of galaxy catalogs for following up gravitational waves from binary neutron star mergers with wide-field telescopes

    SciTech Connect

    Hanna, Chad; Mandel, Ilya; Vousden, Will E-mail: imandel@star.sr.bham.ac.uk

    2014-03-20

    The first detections of gravitational waves from binary neutron star mergers with advanced LIGO and Virgo observatories are anticipated in the next five years. These detections could pave the way for multi-messenger gravitational-wave (GW) and electromagnetic (EM) astronomy if GW triggers are successfully followed up with targeted EM observations. However, GW sky localization is relatively poor, with expected localization areas of ∼10-100 deg{sup 2}; this presents a challenge for following up GW signals from compact binary mergers. Even for wide-field instruments, tens or hundreds of pointings may be required. Prioritizing pointings based on the relative probability of successful imaging is important since it may not be possible to tile the entire gravitational-wave localization region in a timely fashion. Galaxy catalogs were effective at narrowing down regions of the sky to search in initial attempts at joint GW/EM observations. The relatively limited range of initial GW instruments meant that few galaxies were present per pointing and galaxy catalogs were complete within the search volume. The next generation of GW detectors will have a 10-fold increase in range thereby increasing the expected number of galaxies per unit solid angle by a factor of ∼1000. As an additional complication, catalogs will be highly incomplete. Nevertheless, galaxy catalogs can still play an important role in prioritizing pointings for the next era of GW searches. We show how to quantify the advantages of using galaxy catalogs to prioritize wide-field follow-ups as a function of only two parameters: the three-dimensional volume within the field of view of a telescope after accounting for the GW distance measurement uncertainty, and the fraction of the GW sky localization uncertainty region that can be covered with telescope pointings. We find that the use of galaxy catalogs can improve the probability of successful imaging by ∼10% to ∼300% relative to follow-up strategies that

  17. ALMA-SZ Detection of a Galaxy Cluster Merger Shock at Half the Age of the Universe

    NASA Astrophysics Data System (ADS)

    Basu, K.; Sommer, M.; Erler, J.; Eckert, D.; Vazza, F.; Magnelli, B.; Bertoldi, F.; Tozzi, P.

    2016-10-01

    We present ALMA measurements of a merger shock using the thermal Sunyaev-Zel’dovich (SZ) effect signal, at the location of a radio relic in the famous El Gordo galaxy cluster at z≈ 0.9. Multi-wavelength analysis in combination with the archival Chandra data and a high-resolution radio image provides a consistent picture of the thermal and non-thermal signal variation across the shock front and helps to put robust constraints on the shock Mach number as well as the relic magnetic field. We employ a Bayesian analysis technique for modeling the SZ and X-ray data self-consistently, illustrating respective parameter degeneracies. Combined results indicate a shock with Mach number { M }={2.4}-0.6+1.3, which in turn suggests a high value of the magnetic field (of the order of 4-10 μ {{G}}) to account for the observed relic width at 2 GHz. At roughly half the current age of the universe, this is the highest-redshift direct detection of a cluster shock to date, and one of the first instances of an ALMA-SZ observation in a galaxy cluster. It shows the tremendous potential for future ALMA-SZ observations to detect merger shocks and other cluster substructures out to the highest redshifts.

  18. MCG+08-22-082: A Double Core and Boxy Appearance Dwarf Lenticular Galaxy Suspected to be a Merger Remnant

    NASA Astrophysics Data System (ADS)

    Pak, Mina; Paudel, Sanjaya; Lee, Youngdae; Kim, Sang Chul

    2016-06-01

    We present a study on the dwarf lenticular galaxy MCG+08-22-082 (U141), located in the Ursa Major cluster, blue-centered, double-cored, and having a boxy appearance. Using publicly available data from the Sloan Digital Sky Survey (SDSS), we perform an analysis of the structural and stellar population properties of the galaxy and the cores. We find that the light profile of U141 follows an exponential law. U141 has a brightness of {M}r=-16.01 mag, and an effective radius of {R}e=1.7 {{kpc}}. The boxiness parameter {a}4/a is mostly between 0 and ‑0.05 in the inner parts, reaching an extreme of about ‑0.1. Double cores are seen at the center of U141; each of these cores has a stellar mass of ∼106 M⊙ and the separation between them is ∼300 pc. Optical spectroscopy of these cores shows prominent emission in Hα, suggesting ongoing star-forming activities. We interpret these morphological properties and speculate that U141 is a merger remnant of two disk galaxies. Thus, we might have discovered an intermediate stage of merging, providing possible evidence of double cores in the center of the galaxy.

  19. MCG+08-22-082: A Double Core and Boxy Appearance Dwarf Lenticular Galaxy Suspected to be a Merger Remnant

    NASA Astrophysics Data System (ADS)

    Pak, Mina; Paudel, Sanjaya; Lee, Youngdae; Kim, Sang Chul

    2016-06-01

    We present a study on the dwarf lenticular galaxy MCG+08-22-082 (U141), located in the Ursa Major cluster, blue-centered, double-cored, and having a boxy appearance. Using publicly available data from the Sloan Digital Sky Survey (SDSS), we perform an analysis of the structural and stellar population properties of the galaxy and the cores. We find that the light profile of U141 follows an exponential law. U141 has a brightness of {M}r=-16.01 mag, and an effective radius of {R}e=1.7 {{kpc}}. The boxiness parameter {a}4/a is mostly between 0 and -0.05 in the inner parts, reaching an extreme of about -0.1. Double cores are seen at the center of U141; each of these cores has a stellar mass of ˜106 M⊙ and the separation between them is ˜300 pc. Optical spectroscopy of these cores shows prominent emission in Hα, suggesting ongoing star-forming activities. We interpret these morphological properties and speculate that U141 is a merger remnant of two disk galaxies. Thus, we might have discovered an intermediate stage of merging, providing possible evidence of double cores in the center of the galaxy.

  20. Ammonia as a Temperature Tracer in the Ultraluminous Galaxy Merger Arp 220

    NASA Astrophysics Data System (ADS)

    Ott, Jürgen; Henkel, Christian; Braatz, James A.; Weiß, Axel

    2011-12-01

    We present Australia Telescope Compact Array (ATCA) and Robert C. Byrd Green Bank Telescope (GBT) observations of ammonia (NH3) and the 1.2 cm radio continuum toward the ultraluminous infrared galaxy merger Arp 220. We detect the NH3(1,1), (2,2), (3,3), (4,4), (5,5), and (6,6) inversion lines in absorption against the unresolved, (62 ± 9) mJy continuum source at 1.2 cm. The peak apparent optical depths of the ammonia lines range from ~0.05 to 0.18. The absorption lines are well described by single-component Gaussians with central velocities in between the velocities of the eastern and western cores of Arp 220. Therefore, the ammonia likely traces gas that encompasses both cores. The absorption depth of the NH3(1,1) line is significantly shallower than expected based on the depths of the other transitions. The shallow (1,1) profile may be caused by contamination from emission by a hypothetical, cold (lsim 20 K) gas layer with an estimated column density of <~ 2 × 1014 cm-2. This layer would have to be located behind or away from the radio continuum sources to produce the contaminating emission. The widths of the ammonia absorption lines are ~120-430 km s-1, in agreement with those of other molecular tracers. We cannot confirm the extremely large line widths of up to ~1800 km s-1 previously reported for this galaxy. Using all of the ATCA detections except for the shallow (1,1) line, we determine a rotational temperature of (124 ± 19) K, corresponding to a kinetic temperature of T kin = (186 ± 55) K. Ammonia column densities depend on the excitation temperature. For excitation temperatures of 10 K and 50 K, we estimate N(NH3) = (1.7 ± 0.1) × 1016 cm-2 and (8.4 ± 0.5) × 1016 cm-2, respectively. The relation scales linearly for possible higher excitation temperatures. Our observations are consistent with an ortho-to-para-ammonia ratio of unity, implying that the ammonia formation temperature exceeds ~30 K. In the context of a model with a molecular ring that

  1. The Most Luminous Heavily Obscured Quasars Have a High Merger Fraction: Morphological Study of WISE-selected Hot Dust-obscured Galaxies

    NASA Astrophysics Data System (ADS)

    Fan, Lulu; Han, Yunkun; Fang, Guanwen; Gao, Ying; Zhang, Dandan; Jiang, Xiaoming; Wu, Qiaoqian; Yang, Jun; Li, Zhao

    2016-05-01

    Previous studies have shown that Wide-field Infrared Survey Explorer-selected hyperluminous, hot dust-obscured galaxies (Hot DOGs) are powered by highly dust-obscured, possibly Compton-thick active galactic nuclei (AGNs). High obscuration provides us a good chance to study the host morphology of the most luminous AGNs directly. We analyze the host morphology of 18 Hot DOGs at z ˜ 3 using Hubble Space Telescope/WFC3 imaging. We find that Hot DOGs have a high merger fraction (62 ± 14%). By fitting the surface brightness profiles, we find that the distribution of Sérsic indices in our Hot DOG sample peaks around 2, which suggests that most Hot DOGs have transforming morphologies. We also derive the AGN bolometric luminosity (˜1014 L ⊙) of our Hot DOG sample by using IR spectral energy distributions decomposition. The derived merger fraction and AGN bolometric luminosity relation is well consistent with the variability-based model prediction. Both the high merger fraction in an IR-luminous AGN sample and relatively low merger fraction in a UV/optical-selected, unobscured AGN sample can be expected in the merger-driven evolutionary model. Finally, we conclude that Hot DOGs are merger-driven and may represent a transit phase during the evolution of massive galaxies, transforming from the dusty starburst-dominated phase to the unobscured QSO phase.

  2. The Effect of a Chandra-measured Merger-related Gas Component on the Lobes of a Dead Radio Galaxy

    NASA Astrophysics Data System (ADS)

    Worrall, D. M.; Birkinshaw, M.; Kraft, R. P.; Hardcastle, M. J.

    2007-04-01

    We use Chandra data to infer that an X-ray-bright component of gas is in the process of separating the radio lobes of 3C 442A. This is the first radio galaxy with convincing evidence that central gas, overpressured with respect to the lobe plasma and not simply a static atmosphere, is having a major dynamical effect on the radio structure. We speculate that the expansion of the gas also reexcites electrons in the lobes of 3C 442A through compression and adiabatic heating. Two features of 3C 442A contribute to its dynamical state. First, the radio source is no longer being powered by a detected active jet, so that the dynamical state of the radio plasma is at the mercy of the ambient medium. Second, the two early-type galaxies, NGC 7236 and NGC 7237, one of which was the original host of 3C 442A, are undergoing a merger and have already experienced a close encounter, suggesting that the X-ray-bright gas is mostly the heated combined galaxy atmospheres. The lobes have been swept apart for ~108 yr by the pressure-driven expansion of the X-ray-bright inner gas.

  3. Imaging and two-dimensional spectra of the IR-bright galaxy NGC 2146 - A recent low-energy merger?

    NASA Technical Reports Server (NTRS)

    Hutchings, J. B.; Lo, E.; Neff, S. G.; Stanford, S. A.; Unger, S. W.

    1990-01-01

    New data are presented on the IR-luminous galaxy NGC 2146 from several sources: direct imaging in B, R, and H-alpha; IR imaging in the J, H, and K bands; long-slit spectroscopy at optical and IR wavelengths; and scanning etalon observations in H-alpha. The results allow measurement of the interstellar extinction in the dust lane, and estimation of the true luminosity of the galaxy and nuclear regions. The spectra indicate that there is no active nucleus, and measure the changing ratio of forbidden to permitted lines across the galaxy. IR images and colors indicate the existence of a significant population of hot young stars in the central regions of the system. The H-alpha velocity maps show the full radial-velocity pattern, and suggest that the system consists of a disturbed disk and a merging or interacting arm which connects to the inner dust and radio structures. Outer H-alpha and H I structures appear to be the earlier remnants of this spiraling merger.

  4. Galaxy Mergers with Adaptive Mesh Refinement: Star Formation and Hot Gas Outflow

    SciTech Connect

    Kim, Ji-hoon; Wise, John H.; Abel, Tom; /KIPAC, Menlo Park /Stanford U., Phys. Dept.

    2011-06-22

    In hierarchical structure formation, merging of galaxies is frequent and known to dramatically affect their properties. To comprehend these interactions high-resolution simulations are indispensable because of the nonlinear coupling between pc and Mpc scales. To this end, we present the first adaptive mesh refinement (AMR) simulation of two merging, low mass, initially gas-rich galaxies (1.8 x 10{sup 10} M{sub {circle_dot}} each), including star formation and feedback. With galaxies resolved by {approx} 2 x 10{sup 7} total computational elements, we achieve unprecedented resolution of the multiphase interstellar medium, finding a widespread starburst in the merging galaxies via shock-induced star formation. The high dynamic range of AMR also allows us to follow the interplay between the galaxies and their embedding medium depicting how galactic outflows and a hot metal-rich halo form. These results demonstrate that AMR provides a powerful tool in understanding interacting galaxies.

  5. Exploring the Outskirts of the Galaxy Cluster Merger A1750 Along the Putative Large-Scale Filament

    NASA Astrophysics Data System (ADS)

    Bulbul, Esra; Randall, Scott W.; Bayliss, Matthew; Miller, Eric; Andrade-Santos, Felipe; Johnson, Ryan; Bautz, Mark W.; Blanton, Elizabeth L.; Forman, William R.; Jones, Christine; Paterno-Mahler, Rachel; Murray, Stephen S.; Sarazin, Craig L.; Smith, Randall K.; Ezer, Cemile

    2016-04-01

    The entropy profiles in the outskirts of clusters generally fall below the self-similar prediction based on purely gravitational models of hierarchical cluster formation. Weakening accretion shocks and the presence of unresolved cool gas clumps, both of which are expected to correlate with large-scale structure filaments, are among the possible interpretations of observed entropy flattening. A1750 is a triple merger system, with all three subclusters lying roughly along the same line, suggesting the presence of large-scale structure filament. Our recent Suzaku and Chandra X-ray, and MMT optical observations of the early stage galaxy cluster merger A1750 show that entropy profiles at the cluster's virial radius are self-similar and gas mass fractions are consistent with the mean cosmic value both along and perpendicular to the putative large scale filament. These results may suggest that gas clumping is less prevalent in lower temperature and mass clusters. I will also describe the properties of the cool (< 1 keV) gas detected at large cluster radii along the filament direction, which is consistent with the expected properties of the denser, hotter phase of the WHIM.

  6. Big Bangs in Galaxy Clusters: Using X-ray Temperature Maps to Trace Merger Histories in Clusters with Radio Halos/Relics

    NASA Astrophysics Data System (ADS)

    Burns, Jack O.; Datta, Abhirup; Hallman, Eric J.

    2016-06-01

    Galaxy clusters are assembled through large and small mergers which are the most energetic events ("bangs") since the Big Bang. Cluster mergers "stir" the intracluster medium (ICM) creating shocks and turbulence which are illuminated by ~Mpc-sized radio features called relics and halos. These shocks heat the ICM and are detected in x-rays via thermal emission. Disturbed morphologies in x-ray surface brightness and temperatures are direct evidence for cluster mergers. In the radio, relics (in the outskirts of the clusters) and halos (located near the cluster core) are also clear signposts of recent mergers. Our recent ENZO cosmological simulations suggest that around a merger event, radio emission peaks very sharply (and briefly) while the x-ray emission rises and decays slowly. Hence, a sample of galaxy clusters that shows both luminous x-ray emission and radio relics/halos are good candidates for very recent mergers. We are in the early stages of analyzing a unique sample of 48 galaxy clusters with (i) known radio relics and/or halos and (ii) significant archival x-ray observations (>50 ksec) from Chandra and/or XMM. We have developed a new x-ray data analysis pipeline, implemented on parallel processor supercomputers, to create x-ray surface brightness, high fidelity temperature, and pressure maps of these clusters in order to study merging activity. The temperature maps are made using three different map-making techniques: Weighted Voronoi Tessellation, Adaptive Circular Binning, and Contour Binning. In this talk, we will show preliminary results for several clusters, including Abell 2744 and the Bullet cluster. This work is supported by NASA ADAP grant NNX15AE17G.

  7. Hubble Space Telescope Near-infrared Snapshot Survey of 3CR Radio Source Counterparts. II. An Atlas and Inventory of the Host Galaxies, Mergers, and Companions

    NASA Astrophysics Data System (ADS)

    Floyd, David J. E.; Axon, David; Baum, Stefi; Capetti, Alessandro; Chiaberge, Marco; Macchetto, Duccio; Madrid, Juan; Miley, George; O'Dea, Christopher P.; Perlman, Eric; Quillen, Alice; Sparks, William; Tremblay, Grant

    2008-07-01

    We present the second part of an H-band (1.6 μm) "atlas" of z < 0.3 3CR radio galaxies, using the Hubble Space Telescope Near Infrared Camera and Multi-Object Spectrometer (HST NICMOS2). We present new imaging for 21 recently acquired sources and host galaxy modeling for the full sample of 101 (including 11 archival)—an 87% completion rate. Two different modeling techniques are applied, following those adopted by the galaxy morphology and the quasar host galaxy communities. Results are compared and found to be in excellent agreement, although the former breaks down in the case of sources with strong active galactic nuclei (AGNs). Companion sources are tabulated, and the presence of mergers, tidal features, dust disks, and jets are cataloged. The tables form a catalog for those interested in the structural and morphological dust-free host galaxy properties of the 3CR sample, and for comparison with morphological studies of quiescent galaxies and quasar host galaxies. Host galaxy masses are estimated and found to typically lie at around 2 × 1011 M⊙. In general, the population is found to be consistent with the local population of quiescent elliptical galaxies, but with a longer tail to low Sérsic index, mainly consisting of low-redshift (z < 0.1) and low-radio-power (FR I) sources. A few unusually disky FR II host galaxies are picked out for further discussion. Nearby external sources are identified in the majority of our images, many of which we argue are likely to be companion galaxies or merger remnants. The reduced NICMOS data are now publicly available from our Web site. Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc. (AURA), under NASA contract NAS5-26555.

  8. Mergers and Star Formation: The Environment and Stellar Mass Growth of the Progenitors of Ultra-massive Galaxies since z = 2

    NASA Astrophysics Data System (ADS)

    Vulcani, Benedetta; Marchesini, Danilo; De Lucia, Gabriella; Muzzin, Adam; Stefanon, Mauro; Brammer, Gabriel B.; Labbé, Ivo; Le Fèvre, Olivier; Milvang-Jensen, Bo

    2016-01-01

    The growth of galaxies is a key problem in understanding the structure and evolution of the universe. Galaxies grow their stellar mass by a combination of star formation and mergers, with a relative importance that is redshift dependent. Theoretical models predict quantitatively different contributions from the two channels; measuring these from the data is a crucial constraint. Exploiting the UltraVISTA catalog and a unique sample of progenitors of local ultra-massive galaxies selected with an abundance matching approach, we quantify the role of the two mechanisms from z = 2 to 0. We also compare our results to two independent incarnations of semi-analytic models. At all redshifts, progenitors are found in a variety of environments, ranging from being isolated to having 5-10 companions with mass ratio at least 1:10 within a projected radius of 500 kpc. In models, progenitors have a systematically larger number of companions, entailing a larger mass growth for mergers than in observations, at all redshifts. Generally, in both observations and models, the inferred and the expected mass growth roughly agree, within the uncertainties. Overall, our analysis confirms the model predictions, showing how the growth history of massive galaxies is dominated by in situ star formation at z ˜ 2, both star formation and mergers at 1 < z < 2, and by mergers alone at z < 1. Nonetheless, detailed comparisons still point out tensions between the expected mass growth and our results, which might be due to either an incorrect progenitors-descendants selection, uncertainties on star-formation rate and mass estimates, or the adopted assumptions on merger rates.

  9. The three-dimensional geometry and merger history of the massive galaxy cluster MACS J0358.8-2955

    NASA Astrophysics Data System (ADS)

    Hsu, Li-Yen; Ebeling, Harald; Richard, Johan

    2013-02-01

    We present results of a combined X-ray/optical analysis of the dynamics of the massive cluster MACS J0358.8-2955 (z = 0.428) based on observations with the Chandra X-ray Observatory, the Hubble Space Telescope and the Keck-I telescope on Mauna Kea. MACS J0358.8-2955 is found to be one of the most X-ray luminous clusters known at z > 0.3, featuring LX, bol( < r500) = 4.24 × 1045 erg s-1, kT = 9.55+ 0.58- 0.37 keV, M3Dgas( < r500) = (9.18 ± 1.45) × 1013 M⊙ and M3Dtot( < r500) = (1.12 ± 0.18) × 1015 M⊙. The system's high velocity dispersion of 1440+ 130- 110 km s- 1 (890 km s-1 when the correct relativistic equation is used), however, is inflated by infall along the line of sight, as the result of a complex merger of at least three subclusters. One collision proceeds close to head-on, while the second features a significant impact parameter. The temperature variations in the intracluster gas, two tentative cold fronts, the radial velocities measured for cluster galaxies and the small offsets between collisional and non-collisional cluster components all suggest that both merger events are observed close to core passage and along the axes that are greatly inclined with respect to the plane of the sky. A strong-lensing analysis of the system anchored upon three triple-image systems (two of which have spectroscopic redshifts) yields independent constraints on the mass distribution. For a gas fraction of 8.2 per cent, the resulting strong-lensing mass profile is in good agreement with our X-ray estimates, and the details of the mass distribution are fully consistent with our interpretation of the 3D merger history of this complex system. Underlining yet again the power of X-ray selection, our analysis also resolves earlier confusion about the contribution of the partly superimposed foreground cluster A 3192 (z = 0.168). Based on very faint X-ray emission detected by our Chandra observation and 16 concordant redshifts we identify A 3192 as two groups of galaxies

  10. X-ray Observation of an Ongoing Merger at the Galaxy Cluster Abell 3653

    NASA Astrophysics Data System (ADS)

    Caglar, Turgay; Hudaverdi, Murat

    2016-07-01

    We present structural analysis results of A3653 based on XMM-Newton and Chandra archival data. The X-ray emission is elongated SE to NW, which gives an impression of a binary system. The cluster central plasma has an average temperature of 4.6 keV and 0.2 solar abundance values. There is NW cool clump with 3.2 keV temperature. Both XMM-Newton and Chandra observations show temperature fluctuations, which can be interpreted as recent merger. There are cool regions coinciding with the binary like structures with 4.4 keV and 3.2 keV temperature values, respectively. There is a ˜6.5 keV hot region between SE and NW clumps, which is probably shock heated by a recent dynamical activities. Our analysis results suggest A3653 is clearly not a relaxed system and has an ongoing merger along SE to NW direction.

  11. Turbulent mixing layers in the interstellar medium of galaxies

    NASA Technical Reports Server (NTRS)

    Slavin, Jonathan D.; Shull, J. M.; Begelman, Mitchell C.

    1993-01-01

    It is proposed that turbulent mixing layers are common in the ISM of the Milky Way and selected external galaxies, with many layers per kiloparsec along typical lines of sight. All of the diffuse C I 1550-A background emission and a significant fraction of the diffuse H-alpha background at high latitude can be explained by mixing layers cooling at pressure of about 3000/cu cm K. These models also produce the correct ratio of semiforbidden C IV 15500 III 1663-A emission. Only 10 percent of the disk H-alpha is likely to arise from mixing layers. The observed Galactic absorption-line column densities of C IV, N V, Si IV, and O VI are roughly consistent with mixing-layer models with an intermediate temperature of about 10 exp 5.3 K and depleted abundances.

  12. The Merger History, AGN and Dwarf Galaxies of Hickson Compact Group 59

    NASA Technical Reports Server (NTRS)

    Konstantopoulos, I. S.; Gallagher, S. C.; Fedotov, K.; Durrell, P. R.; Tzanavaris, P.; Hill, A. R.; Zabludoff, A. I.; Maier, M. L.; Elmegreen, D. M.; Charlton, J. C.; Johnson, K. E.; Brandt, W. N.; Walker, L. M.; Eracleous, M.; Maybhate, A.; Gronwall, C.; English, J.; Hornschemeier, A. E.; Mulchaey, J. S.

    2011-01-01

    Compact group galaxies often appear unaffected by their unusually dense environment. Closer examination can, however, reveal the subtle, cumulative effects of multiple galaxy interactions. Hickson Compact Group (HCG) 59 is an excellent example of this situation. We present a photometric study of this group in the optical (HST), infrared (Spitzer) and X-ray (Chandra) regimes aimed at characterizing the star formation and nuclear activity in its constituent galaxies and intra-group medium. We associate five dwarf galaxies with the group and update the velocity dispersion, leading to an increase in the dynamical mass of the group of up to a factor of 10 (to 2.8 x 10(exp 13) Stellar Mass), and a subsequent revision of its evolutionary stage. Star formation is proceeding at a level consistent with the morphological types of the four main galaxies, of which two are star-forming and the other two quiescent. Unlike in some other compact groups, star-forming complexes across HCG 59 closely follow mass-radius scaling relations typical of nearby galaxies. In contrast, the ancient globular cluster populations in galaxies HCG 59A and B show intriguing irregularities, and two extragalactic HII regions are found just west of B. We age-date a faint stellar stream in the intra-group medium at approx. 1 Gyr to examine recent interactions. We detect a likely low-luminosity AGN in HCG 59A by its approx. 10(exp 40) erg/s X-ray emission; the active nucleus rather than star formation can account for the UV+IR SED. We discuss the implications of our findings in the context of galaxy evolution in dense environments.

  13. Direct Formation of Supermassive Black Holes in Metal-enriched Gas at the Heart of High-redshift Galaxy Mergers

    NASA Astrophysics Data System (ADS)

    Mayer, Lucio; Fiacconi, Davide; Bonoli, Silvia; Quinn, Thomas; Roškar, Rok; Shen, Sijing; Wadsley, James

    2015-09-01

    We present novel 3D multi-scale smoothed particle hydrodynamics (SPH) simulations of gas-rich galaxy mergers between the most massive galaxies at z ˜ 8-10, designed to scrutinize the direct collapse formation scenario for massive black hole seeds proposed in Mayer et al. The simulations achieve a resolution of 0.1 pc, and include both metallicity-dependent optically thin cooling and a model for thermal balance at high optical depth. We consider different formulations of the SPH hydrodynamical equations, including thermal and metal diffusion. When the two merging galaxy cores collide, gas infall produces a compact, optically thick nuclear disk with densities exceeding 10-10 g cm3. The disk rapidly accretes higher angular momentum gas from its surroundings reaching ˜5 pc and a mass of ≳109 M⊙ in only a few 104 years. Outside ≳2 pc it fragments into massive clumps. Instead, supersonic turbulence prevents fragmentation in the inner parsec region, which remains warm (˜3000-6000 K) and develops strong non-axisymmetric modes that cause prominent radial gas inflows (>104 M⊙ yr-1), forming an ultra-dense massive disky core. Angular momentum transport by non-axisymmetric modes should continue below our spatial resolution limit, quickly turning the disky core into a supermassive protostar which can collapse directly into a massive black hole of mass 108-109 M⊙ via the relativistic radial instability. Such a “cold direct collapse” explains naturally the early emergence of high-z QSOs. Its telltale signature would be a burst of gravitational waves in the frequency range of 10-4-10-1 Hz, possibly detectable by the planned eLISA interferometer.

  14. MUSE Reveals a Recent Merger in the Post-starburst Host Galaxy of the TDE ASASSN-14li

    NASA Astrophysics Data System (ADS)

    Prieto, J. L.; Krühler, T.; Anderson, J. P.; Galbany, L.; Kochanek, C. S.; Aquino, E.; Brown, J. S.; Dong, Subo; Förster, F.; Holoien, T. W.-S.; Kuncarayakti, H.; Maureira, J. C.; Rosales-Ortega, F. F.; Sánchez, S. F.; Shappee, B. J.; Stanek, K. Z.

    2016-10-01

    We present Multi Unit Spectroscopic Explorer (MUSE) integral field spectroscopic observations of the host galaxy (PGC 043234) of one of the closest (z = 0.0206, D ≃ 90 Mpc) and best-studied tidal disruption events (TDEs), ASASSN-14li. The MUSE integral field data reveal asymmetric and filamentary structures that extend up to ≳10 kpc from the post-starburst host galaxy of ASASSN-14li. The structures are traced only through the strong nebular [O iii] λ5007, [N ii] λ6584, and Hα emission lines. The total off-nuclear [O iii] λ5007 luminosity is 4.7 × 1039 erg s‑1, and the ionized H mass is ∼ {10}4(500/{n}{{e}}) {M}ȯ . Based on the Baldwin–Phillips–Terlevich diagram, the nebular emission can be driven by either AGN photoionization or shock excitation, with AGN photoionization favored given the narrow intrinsic line widths. The emission line ratios and spatial distribution strongly resemble ionization nebulae around fading AGNs such as IC 2497 (Hanny's Voorwerp) and ionization “cones” around Seyfert 2 nuclei. The morphology of the emission line filaments strongly suggest that PGC 043234 is a recent merger, which likely triggered a strong starburst and AGN activity leading to the post-starburst spectral signatures and the extended nebular emission line features we see today. We briefly discuss the implications of these observations in the context of the strongly enhanced TDE rates observed in post-starburst galaxies and their connection to enhanced theoretical TDE rates produced by supermassive black hole binaries.

  15. NGC 3801 caught in the act: a post-merger star-forming early-type galaxy with AGN-jet feedback

    NASA Astrophysics Data System (ADS)

    Hota, Ananda; Rey, Soo-Chang; Kang, Yongbeom; Kim, Suk; Matsushita, Satoki; Chung, Jiwon

    2012-05-01

    In the current models of galaxy formation and evolution, AGN feedback is crucial to reproduce galaxy luminosity function, colour-magnitude relation and M•-σ relation. However, whether AGN feedback can indeed expel and heat up significant amount of cool molecular gas and consequently quench star formation is yet to be demonstrated observationally. Only in four cases so far (Cen A, NGC 3801, NGC 6764 and Mrk 6), X-ray observations have found evidences of jet-driven shocks heating the ISM. We chose the least explored galaxy NGC 3801, and present the first ultraviolet imaging and stellar population analysis of this galaxy from GALEX data. We find this merger-remnant early-type galaxy to have an intriguing spiral wisp of young star-forming regions (age ranging from 100 to 500 Myr). Taking clues from dust/PAH, H I and CO emission images, we interpret NGC 3801 to have a kinematically decoupled core or an extremely warped gas disc. From the HST data, we also show evidence of ionized gas outflow similar to that observed in H I and molecular gas (CO) data, which may have caused the decline of star formation leading to the red optical colour of the galaxy. However, from these panchromatic data, we interpret that the expanding shock shells from the young (˜2.4 Myr) radio jets are yet to reach the outer gaseous regions of the galaxy. It seems we observe this galaxy at a rare stage of its evolutionary sequence where post-merger star formation has already declined and new powerful jet feedback is about to affect the gaseous star-forming outer disc within the next 10 Myr, to further transform it into a red-and-dead early-type galaxy.

  16. A coincidence of disturbed morphology and blue UV colour: minor-merger-driven star formation in early-type galaxies at z˜ 0.6

    NASA Astrophysics Data System (ADS)

    Kaviraj, Sugata; Tan, Kok-Meng; Ellis, Richard S.; Silk, Joseph

    2011-03-01

    We exploit multiwavelength photometry of early-type galaxies (ETGs) in the Cosmological Evolution Survey (COSMOS) to demonstrate that the low-level star formation activity in the ETG population at intermediate redshift is likely to be driven by minor mergers. Splitting the ETGs into galaxies that show disturbed morphologies indicative of recent merging and those that appear relaxed, we find that ˜32 per cent of the ETG population appears to be morphologically disturbed. While the relaxed objects are almost entirely contained within the UV red sequence, their morphologically disturbed counterparts dominate the scatter to blue UV colours, regardless of luminosity. Empirically and theoretically determined major-merger rates in the redshift range z < 1 are several times too low to account for the fraction of disturbed ETGs in our sample, suggesting that minor mergers represent the principal mechanism driving the observed star formation activity in our sample. The young stellar components forming in these events have ages between 0.03 and 0.3 Myr and typically contribute ≤ 10 per cent of the stellar mass of the remnant. Together with recent work which demonstrates that the structural evolution of nearby ETGs is consistent with one or more minor mergers, our results indicate that the overall evolution of massive ETGs may be heavily influenced by minor merging at late epochs and highlights the need to systematically study this process in future observational surveys.

  17. Direct formation of supermassive black holes via multi-scale gas inflows in galaxy mergers.

    PubMed

    Mayer, L; Kazantzidis, S; Escala, A; Callegari, S

    2010-08-26

    Observations of distant quasars indicate that supermassive black holes of billions of solar masses already existed less than a billion years after the Big Bang. Models in which the 'seeds' of such black holes form by the collapse of primordial metal-free stars cannot explain the rapid appearance of these supermassive black holes because gas accretion is not sufficiently efficient. Alternatively, these black holes may form by direct collapse of gas within isolated protogalaxies, but current models require idealized conditions, such as metal-free gas, to prevent cooling and star formation from consuming the gas reservoir. Here we report simulations showing that mergers between massive protogalaxies naturally produce the conditions for direct collapse into a supermassive black hole with no need to suppress cooling and star formation. Merger-driven gas inflows give rise to an unstable, massive nuclear gas disk of a few billion solar masses, which funnels more than 10(8) solar masses of gas to a sub-parsec-scale gas cloud in only 100,000 years. The cloud undergoes gravitational collapse, which eventually leads to the formation of a massive black hole. The black hole can subsequently grow to a billion solar masses on timescales of about 10(8) years by accreting gas from the surrounding disk.

  18. A VERY CLOSE BINARY BLACK HOLE IN A GIANT ELLIPTICAL GALAXY 3C 66B AND ITS BLACK HOLE MERGER

    SciTech Connect

    Iguchi, Satoru; Okuda, Takeshi; Sudou, Hiroshi E-mail: okuda@a.phys.nagoya-u.ac.j

    2010-12-01

    Recent observational results provide possible evidence that binary black holes (BBHs) exist in the center of giant galaxies and may merge to form a supermassive black hole in the process of their evolution. We first detected a periodic flux variation on a cycle of 93 {+-} 1 days from the 3 mm monitor observations of a giant elliptical galaxy 3C 66B for which an orbital motion with a period of 1.05 {+-} 0.03 yr had been already observed. The detected signal period being shorter than the orbital period can be explained by taking into consideration the Doppler-shifted modulation due to the orbital motion of a BBH. Assuming that the BBH has a circular orbit and that the jet axis is parallel to the binary angular momentum, our observational results demonstrate the presence of a very close BBH that has a binary orbit with an orbital period of 1.05 {+-} 0.03 yr, an orbital radius of (3.9 {+-} 1.0) x 10{sup -3} pc, an orbital separation of (6.1{sup +1.0} {sub -0.9}) x 10{sup -3} pc, a larger black hole mass of (1.2{sup +0.5} {sub -0.2}) x 10{sup 9} M {sub sun}, and a smaller black hole mass of (7.0{sup +4.7} {sub -6.4}) x 10{sup 8} M {sub sun}. The BBH decay time of (5.1{sup +60.5} {sub -2.5}) x 10{sup 2} yr provides evidence for the occurrence of black hole mergers. This Letter will demonstrate the interesting possibility of black hole collisions to form a supermassive black hole in the process of evolution, one of the most spectacular natural phenomena in the universe.

  19. NGC 1614 - An IR-luminous merger but not (yet?) an active galaxy

    NASA Technical Reports Server (NTRS)

    Neff, S. G.; Hutchings, J. B.; Standord, S. A.; Unger, S. W.

    1990-01-01

    New observations of the merging galaxy NGC 1614 are described. The system has a nuclear region of QSO-like luminosity, but shows no direct evidence for an active nucleus. It is heavily and unevenly reddened across its nucleus, while infrared imaging also shows a 'ridge' of dust. The inner spiral structure of the galaxy has normal rotation for an inclined disk, as indicated by the H-alpha emission. A linear 'tail' to the S and extended arms to the E have more positive velocities, and probably are the remains of an interacting companion and the tidal plume(s) caused by the collision. The only H I seen in emission appears to coincide with bright knots of H-alpha and forbidden O III emission of the base of the tail. The lack of direct evidence for an active nucleus indicates that if NGC 1614 is a precursor to a Seyfert-like system the AGN has not yet turned on.

  20. GALAXY DISKS DO NOT NEED TO SURVIVE IN THE {Lambda}CDM PARADIGM: THE GALAXY MERGER RATE OUT TO z {approx} 1.5 FROM MORPHO-KINEMATIC DATA

    SciTech Connect

    Puech, M.; Hammer, F.; Flores, H.; Rodrigues, M.; Wang, J. L.; Yang, Y. B.; Hopkins, P. F.; Athanassoula, E.

    2012-07-10

    About two-thirds of present-day, large galaxies are spirals such as the Milky Way or Andromeda, but the way their thin rotating disks formed remains uncertain. Observations have revealed that half of their progenitors, six billion years ago, had peculiar morphologies and/or kinematics, which exclude them from the Hubble sequence. Major mergers, i.e., fusions between galaxies of similar mass, are found to be the likeliest driver for such strong peculiarities. However, thin disks are fragile and easily destroyed by such violent collisions, which creates a critical tension between the observed fraction of thin disks and their survival within the {Lambda}CDM paradigm. Here, we show that the observed high occurrence of mergers among their progenitors is only apparent and is resolved when using morpho-kinematic observations that are sensitive to all the phases of the merging process. This provides an original way of narrowing down observational estimates of the galaxy merger rate and leads to a perfect match with predictions by state-of-the-art {Lambda}CDM semi-empirical models with no particular fine-tuning needed. These results imply that half of local thin disks do not survive but are actually rebuilt after a gas-rich major merger occurring in the past nine billion years, i.e., two-thirds of the lifetime of the universe. This emphasizes the need to study how thin disks can form in halos with a more active merger history than previously considered and to investigate what is the origin of the gas reservoir from which local disks would reform.

  1. Detection of a Methanol Megamaser in a Major-Merger Galaxy

    NASA Astrophysics Data System (ADS)

    Chen, Xi; Ellingsen, Simon P.; Baan, Willem A.; Qiao, Hai-Hua; Li, Juan; An, Tao; Breen, Shari L.

    2015-02-01

    We have detected emission from both the {{4}-1}\\to {{3}0} E (36.2 GHz) class I and {{7}-2}\\to {{8}-1} E (37.7 GHz) class II methanol transitions toward the center of the closest ultra-luminous infrared galaxy Arp 220. The emission in both methanol transitions shows narrow spectral features and has luminosities approximately 8 orders of magnitude stronger than those observed from typical class I methanol masers observed in Galactic star formation regions. The emission is also orders of magnitude stronger than the expected intensity of thermal emission from these transitions and based on these findings we suggest that the emission from the two transitions are masers. These observations provide the first detection of a methanol megamaser in the 36.2 and 37.7 GHz transitions and represent only the second detection of a methanol megamaser, following the recent report of an 84 GHz methanol megamaser in NGC 1068. We find that the methanol megamasers are significantly offset from the nuclear region and arise toward regions where there is Hα emission, suggesting that they are associated with starburst activity. The high degree of correlation between the spatial distribution of the 36.2 GHz methanol and X-ray plume emission suggests that the production of strong extragalactic class I methanol masers is related to galactic-outflow-driven shocks and perhaps cosmic rays. In contrast to OH and H2O megamasers which originate close to the nucleus, methanol megamasers provide a new probe of feedback (e.g., outflows) processes on larger scales and of star formation beyond the circumnuclear starburst regions of active galaxies.

  2. DETECTION OF A METHANOL MEGAMASER IN A MAJOR-MERGER GALAXY

    SciTech Connect

    Chen, Xi; Baan, Willem A.; Qiao, Hai-Hua; Li, Juan; An, Tao; Ellingsen, Simon P.; Breen, Shari L.

    2015-02-10

    We have detected emission from both the 4{sub −1}→3{sub 0} E (36.2 GHz) class I and 7{sub −2}→8{sub −1} E (37.7 GHz) class II methanol transitions toward the center of the closest ultra-luminous infrared galaxy Arp 220. The emission in both methanol transitions shows narrow spectral features and has luminosities approximately 8 orders of magnitude stronger than those observed from typical class I methanol masers observed in Galactic star formation regions. The emission is also orders of magnitude stronger than the expected intensity of thermal emission from these transitions and based on these findings we suggest that the emission from the two transitions are masers. These observations provide the first detection of a methanol megamaser in the 36.2 and 37.7 GHz transitions and represent only the second detection of a methanol megamaser, following the recent report of an 84 GHz methanol megamaser in NGC 1068. We find that the methanol megamasers are significantly offset from the nuclear region and arise toward regions where there is Hα emission, suggesting that they are associated with starburst activity. The high degree of correlation between the spatial distribution of the 36.2 GHz methanol and X-ray plume emission suggests that the production of strong extragalactic class I methanol masers is related to galactic-outflow-driven shocks and perhaps cosmic rays. In contrast to OH and H{sub 2}O megamasers which originate close to the nucleus, methanol megamasers provide a new probe of feedback (e.g., outflows) processes on larger scales and of star formation beyond the circumnuclear starburst regions of active galaxies.

  3. SMM J04135+10277: A CANDIDATE EARLY-STAGE ''WET-DRY'' MERGER OF TWO MASSIVE GALAXIES AT z = 2.8

    SciTech Connect

    Riechers, Dominik A.

    2013-03-10

    We report interferometric imaging of CO(J = 3{yields}2) emission toward the z = 2.846 submillimeter-selected galaxy SMM J04135+10277, using the Combined Array for Research in Millimeter-wave Astronomy (CARMA). SMM J04135+10277 was previously thought to be a gas-rich, submillimeter-selected quasar, with the highest molecular gas mass among high-z quasars reported in the literature. Our maps at {approx}6 Multiplication-Sign improved linear resolution relative to earlier observations spatially resolve the emission on {approx}1.''7 scales, corresponding to a (lensing-corrected) source radius of {approx}5.2 kpc. They also reveal that the molecular gas reservoir, and thus, likely the submillimeter emission, is not associated with the host galaxy of the quasar, but with an optically faint gas-rich galaxy at 5.''2, or 41.5 kpc projected distance from the active galactic nucleus (AGN). The obscured gas-rich galaxy has a dynamical mass of M{sub dyn} sin{sup 2} i = 5.6 Multiplication-Sign 10{sup 11} M{sub Sun }, corresponding to a gas mass fraction of {approx_equal}21%. Assuming a typical M{sub BH}/M{sub *} ratio for z {approx}> 2 quasars, the two galaxies in this system have an approximate mass ratio of {approx}1.9. Our findings suggest that this quasar-starburst galaxy pair could represent an early stage of a rare major, gas-rich/gas-poor ({sup w}et-dry{sup )} merger of two massive galaxies at z = 2.8, rather than a single, gas-rich AGN host galaxy. Such systems could play an important role in the early buildup of present-day massive galaxies through a submillimeter-luminous starburst phase, and may remain hidden in larger numbers among rest-frame far-infrared-selected quasar samples at low and high redshift.

  4. Submillimeter Galaxies at z ~ 2: Evidence for Major Mergers and Constraints on Lifetimes, IMF, and CO-H2 Conversion Factor

    NASA Astrophysics Data System (ADS)

    Tacconi, L. J.; Genzel, R.; Smail, I.; Neri, R.; Chapman, S. C.; Ivison, R. J.; Blain, A.; Cox, P.; Omont, A.; Bertoldi, F.; Greve, T.; Förster Schreiber, N. M.; Genel, S.; Lutz, D.; Swinbank, A. M.; Shapley, A. E.; Erb, D. K.; Cimatti, A.; Daddi, E.; Baker, A. J.

    2008-06-01

    We report subarcsecond resolution IRAM PdBI millimeter CO interferometry of four z ~ 2 submillimeter galaxies (SMGs), and sensitive CO(3-2) flux limits toward three z ~ 2 UV/optically selected star-forming galaxies. The new data reveal for the first time spatially resolved CO gas kinematics in the observed SMGs. Two of the SMGs show double or multiple morphologies, with complex, disturbed gas motions. The other two SMGs exhibit CO velocity gradients of ~500 km s-1 across <=0.2'' (1.6 kpc) diameter regions, suggesting that the star-forming gas is in compact, rotating disks. Our data provide compelling evidence that these SMGs represent extreme, short-lived "maximum" star-forming events in highly dissipative mergers of gas-rich galaxies. The resulting high-mass surface and volume densities of SMGs are similar to those of compact quiescent galaxies in the same redshift range and much higher than those in local spheroids. From the ratio of the comoving volume densities of SMGs and quiescent galaxies in the same mass and redshift ranges, and from the comparison of gas exhaustion timescales and stellar ages, we estimate that the SMG phase duration is about 100 Myr. Our analysis of SMGs and optically/UV selected high-redshift star-forming galaxies supports a "universal" Chabrier IMF as being valid over the star-forming history of these galaxies. We find that the 12CO luminosity to total gas mass conversion factors at z ~ 2-3 are probably similar to those assumed at z ~ 0. The implied gas fractions in our sample galaxies range from 20% to 50%. Based on observations obtained at the IRAM Plateau de Bure Interferometer (PdBI). IRAM is funded by the Centre National de la Recherché Scientifique (France), the Max-Planck Gesellschaft (Germany), and the Instituto Geografico Nacional (Spain).

  5. ALMA observations of the Antennae galaxies. I. A new window on a prototypical merger

    SciTech Connect

    Whitmore, Bradley C.; Brogan, Crystal; Evans, Aaron; Hibbard, John; Leroy, Adam; Remijan, Anthony; Sheth, Kartik; Chandar, Rupali; Johnson, Kelsey; Privon, George

    2014-11-10

    We present the highest spatial resolution (≈0.''5) CO (3-2) observations to date of the 'overlap' region in the merging Antennae galaxies (NGC 4038/39), taken with the Atacama Large Millimeter/submillimeter Array. We report on the discovery of a long (3 kpc), thin (aspect ratio 30/1), filament of CO gas that breaks up into roughly 10 individual knots. Each individual knot has a low internal velocity dispersion (≈10 km s{sup –1}); the dispersion of the ensemble of knots in the filament is also low (≈10 km s{sup –1}). At the other extreme, we find that the individual clouds in the supergiant molecular cloud 2 region discussed by Wilson and collaborators have a large range of internal velocity dispersions (10 to 80 km s{sup –1}), and a large dispersion among the ensemble (≈80 km s{sup –1}). Other large-scale features observed in CO emission, and their correspondence with historical counterparts using observations in other wavelengths, are also discussed. We compare the locations of small-scale CO features with a variety of multi-wavelength observations, in particular broad- (BVIJH) and narrow-band data (H{sub α} and Pa{sub β}) taken with the Hubble Space Telescope, and radio (3.6 cm) continuum observations taken with the Karl G. Jansky Very Large Array. This comparison leads to the development of an evolutionary classification system that provides a framework for studying the sequence of star cluster formation and evolution—from diffuse supergiant molecular clouds (SGMCs) to proto, embedded, emerging, young, intermediate/old clusters. The relative timescales have been assessed by determining the fractional population of sources at each evolutionary stage. The main uncertainty in this estimate is the identification of four regions as candidate protoclusters (i.e., strong compact CO emission but no clearly associated radio emission). Using the evolutionary framework, we estimate that the maximum age range of clusters in a single GMC is ≈10 Myr

  6. Gravitational wave luminosity and net momentum flux in head-on mergers of black holes: Radiative patterns and mode mixing

    NASA Astrophysics Data System (ADS)

    Aranha, Rafael Fernandes; Soares, Ivano Damião; Tonini, Eduardo Valentino

    2016-09-01

    We show that gravitational wave radiative patterns from a point test particle falling radially into a Schwarzschild black hole, as derived by Davis, Ruffini, Press and Price [M. Davis et al., Phys. Rev. Lett. 27, 1466 (1971).], are present in the nonlinear regime of head-on mergers of black holes. We use the Bondi-Sachs characteristic formulation and express the gravitational wave luminosity and the net momentum flux in terms of the news functions. We then evaluate the (-2 )-spin-weighted ℓ-multipole decomposition of these quantities via exact expressions valid in the nonlinear regime and defined at future null infinity. Our treatment is made in the realm of Robinson-Trautman dynamics, with characteristic initial data corresponding to the head-on merger of two black holes. We consider mass ratios in the range 0.01 ≤α ≤1 . We obtain the exponential decay with ℓ of the total energy contributed by each multipole ℓ, with an accurate linear correlation in the log-linear plot of the points up to α ≃0.7 . Above this mass ratio the contribution of the odd modes to the energy decreases faster than that of the even modes, leading to the breaking of the linear correlation; for α =1 the energy in all odd modes is zero. The dominant contribution to the total radiated energy comes from the quadrupole mode ℓ=2 corresponding, for instance, to about ≃84 % for small mass ratios up to ≃99.8 % for the limit case α =1 . The total rescaled radiated energy EWtotal/m0α2 decreases linearly with decreasing α , yielding for the point particle limit α →0 the value ≃0.0484 , about 5 times larger than the result of Davis et al. [1]. The mode decomposition of the net momentum flux and of the associated gravitational wave impulses results in an adjacent-even-odd mode-mixing pattern. We obtain that the impulses contributed by each (ℓ,ℓ+1 ) mixed mode also accurately satisfy the exponential decay with ℓ, for the whole mass ratio domain considered, 0.01 ≤α <1

  7. Radio Loud AGNs are Mergers

    NASA Astrophysics Data System (ADS)

    Chiaberge, Marco; Gilli, Roberto; Lotz, Jennifer M.; Norman, Colin

    2015-06-01

    We measure the merger fraction of Type 2 radio-loud and radio-quiet active galactic nuclei (AGNs) at z\\gt 1 using new samples. The objects have Hubble Space Telescope (HST) images taken with Wide Field Camera 3 (WFC3) in the IR channel. These samples are compared to the 3CR sample of radio galaxies at z\\gt 1 and to a sample of non-active galaxies. We also consider lower redshift radio galaxies with HST observations and previous generation instruments (NICMOS and WFPC2). The full sample spans an unprecedented range in both redshift and AGN luminosity. We perform statistical tests to determine whether the different samples are differently associated with mergers. We find that all (92%-14%+8%) radio-loud galaxies at z\\gt 1 are associated with recent or ongoing merger events. Among the radio-loud population there is no evidence for any dependence of the merger fraction on either redshift or AGN power. For the matched radio-quiet samples, only 38%-15+16 are merging systems. The merger fraction for the sample of non-active galaxies at z\\gt 1 is indistinguishable from radio-quiet objects. This is strong evidence that mergers are the triggering mechanism for the radio-loud AGN phenomenon and the launching of relativistic jets from supermassive black holes (SMBHs). We speculate that major black hole (BH)-BH mergers play a major role in spinning up the central SMBHs in these objects.

  8. A DEEP CHANDRA OBSERVATION OF THE X-SHAPED RADIO GALAXY 4C +00.58: A CANDIDATE FOR MERGER-INDUCED REORIENTATION?

    SciTech Connect

    Hodges-Kluck, Edmund J.; Reynolds, Christopher S.; Miller, M. Coleman; Cheung, Chi C.

    2010-07-01

    Although rapid reorientation of a black hole spin axis (lasting less than a few megayears) has been suggested as a mechanism for the formation of wings in X-shaped radio galaxies (XRGs), to date no convincing case of reorientation has been found in any XRG. Alternative wing formation models such as the hydrodynamic backflow models are supported by observed trends indicating that XRGs form preferentially with jets aligned along the major axis of the surrounding medium and wings along the minor axis. In this Letter, we present a deep Chandra observation of 4C +00.58, an odd XRG with its jet oriented along the minor axis. By using the X-ray data in tandem with available radio and optical data, we estimate relevant timescales with which to evaluate wing formation models. The hydrodynamic models have difficulty explaining the long wings, whereas the presence of X-ray cavities (suggesting jet activity along a prior axis) and a potential stellar shell (indicating a recent merger) favor a merger-induced reorientation model.

  9. E/S0 GALAXIES ON THE BLUE COLOR-STELLAR MASS SEQUENCE AT z = 0: FADING MERGERS OR FUTURE SPIRALS?

    SciTech Connect

    Kannappan, Sheila J.; Guie, Jocelly M.; Baker, Andrew J. E-mail: jocelly@mail.utexas.edu

    2009-08-15

    We identify a population of morphologically defined E/S0 galaxies lying on the locus of late-type galaxies in color-stellar mass space - the 'blue sequence' -at the present epoch. Using three samples (from the Nearby Field Galaxy Survey or NFGS, a merged HyperLeda/Sloan Digital Sky Survey/Two Micron All Sky Survey catalog, and the NYU Value-Added Galaxy Catalog), we analyze blue-sequence E/S0s with stellar masses {approx}>10{sup 8} M {sub sun}, arguing that individual objects may be evolving either up toward the red sequence or down into the blue sequence. Blue-sequence E/S0 galaxies become more common with decreasing stellar mass, comprising {approx}<2% of E/S0s near the 'shutdown mass' M{sub s} {approx} 1-2 x 10{sup 11} M {sub sun}, increasing to {approx}>5% near the 'bimodality mass' M{sub b} {approx} 3 x 10{sup 10} M {sub sun}, and sharply rising to {approx}> 20%-30% below the 'threshold mass' M{sub t} {approx} 4-6 x 10{sup 9} M {sub sun}, down to our completeness analysis limit at {approx}10{sup 9} M {sub sun}. The strong emergence of blue-sequence E/S0s below M{sub t} coincides with a previously reported global increase in mean atomic gas fractions below M{sub t} for galaxies of all types on both sequences, suggesting that the availability of cold gas may be basic to blue-sequence E/S0s' existence. Environmental analysis reveals that many sub-M{sub b} blue-sequence E/S0s reside in low-to-intermediate density environments. Thus, the bulk of the population we analyze appears distinct from the generally lower-mass cluster dE population; S0 morphologies with a range of bulge sizes are typical. In mass-radius and mass-{sigma} scaling relations, blue-sequence E/S0s are more similar to red-sequence E/S0s than to late-type galaxies, but they represent a transitional class. While some of them, especially in the high-mass range from M{sub b} to M{sub s} , resemble major-merger remnants that will likely fade onto the red sequence, most blue-sequence E/S0s below M{sub b

  10. THE DIRT ON DRY MERGERS

    SciTech Connect

    Desai, Vandana; Soifer, B. T.; Dey, Arjun; Cohen, Emma; Le Floc'h, Emeric

    2011-04-01

    Using data from the Spitzer Space Telescope, we analyze the mid-infrared (3-70 {mu}m) spectral energy distributions of dry merger candidates in the Booetes field of the NOAO Deep Wide-Field Survey. These candidates were selected by previous authors to be luminous, red, early-type galaxies with morphological evidence of recent tidal interactions. We find that a significant fraction of these candidates exhibit 8 and 24 {mu}m excesses compared to expectations for old stellar populations. We estimate that a quarter of dry merger candidates have mid-infrared-derived star formation rates greater than {approx}1 M{sub sun} yr{sup -1}. This represents a 'frosting' on top of a large old stellar population, and has been seen in previous studies of elliptical galaxies. Further, the dry merger candidates include a higher fraction of star-forming galaxies relative to a control sample without tidal features. We therefore conclude that the star formation in these massive ellipticals is likely triggered by merger activity. Our data suggest that the mergers responsible for the observed tidal features were not completely dry, and may be minor mergers involving a gas-rich dwarf galaxy.

  11. Searching for Dual AGNs in Galaxy Mergers: Understanding Double-Peaked [O III] and Ultra Hard X-rays as Selection Method

    NASA Astrophysics Data System (ADS)

    McGurk, Rosalie C.; Max, Claire E.; Medling, Anne; Shields, Gregory A.

    2015-01-01

    When galaxies merge, gas accretes onto both central supermassive black holes. Thus, one expects to see close pairs of active galactic nuclei (AGNs), or dual AGNs, in a fraction of galaxy mergers. However, finding them remains a challenge. The presence of double-peaked [O III] or of ultra hard X-rays have been proposed as techniques to select dual AGNs efficiently. We studied a sample of double-peaked narrow [O III] emitting AGNs from SDSS DR7. By obtaining new and archival high spatial resolution images taken with the Keck 2 Laser Guide Star Adaptive Optics system and the near-infrared (IR) camera NIRC2, we showed that 30% of double-peaked [O III] emission line SDSS AGNs have two spatial components within a 3' radius. However, spatially resolved spectroscopy or X-ray observations are needed to confirm these galaxy pairs as systems containing two AGNs. We followed up these spatially-double candidate dual AGNs with integral field spectroscopy from Keck OSIRIS and Gemini GMOS and with long-slit spectroscopy from Keck NIRSPEC and Shane Kast Double Spectrograph. We find double-peaked emitters are caused sometimes by dual AGN and sometimes by outflows or narrow line kinematics. We also performed Chandra X-ray ACIS-S observations on 12 double-peaked candidate dual AGNs. Using our observations and 8 archival observations, we compare the distribution of X-ray photons to our spatially double near-IR images, measure X-ray luminosities and hardness ratios, and estimate column densities. By assessing what fraction of double-peaked emission line SDSS AGNs are true dual AGNs, we can better determine whether double-peaked [O III] is an efficient dual AGN indicator and constrain the statistics of dual AGNs. A second technique to find dual AGN is the detection of ultra hard X-rays by the Swift Burst Alert Telescope. We use CARMA observations to measure and map the CO(1-0) present in nearby ultra-hard X-ray Active Galactic Nuclei (AGNs) merging with either a quiescent companion

  12. Radio Loud AGNs are Mergers

    NASA Astrophysics Data System (ADS)

    Chiaberge, Marco; Gilli, Roberto; Lotz, Jennifer M.; Norman, Colin

    2015-06-01

    We measure the merger fraction of Type 2 radio-loud and radio-quiet active galactic nuclei (AGNs) at z\\gt 1 using new samples. The objects have Hubble Space Telescope (HST) images taken with Wide Field Camera 3 (WFC3) in the IR channel. These samples are compared to the 3CR sample of radio galaxies at z\\gt 1 and to a sample of non-active galaxies. We also consider lower redshift radio galaxies with HST observations and previous generation instruments (NICMOS and WFPC2). The full sample spans an unprecedented range in both redshift and AGN luminosity. We perform statistical tests to determine whether the different samples are differently associated with mergers. We find that all (92%-14%+8%) radio-loud galaxies at z\\gt 1 are associated with recent or ongoing merger events. Among the radio-loud population there is no evidence for any dependence of the merger fraction on either redshift or AGN power. For the matched radio-quiet samples, only 38%-15+16 are merging systems. The merger fraction for the sample of non-active galaxies at z\\gt 1 is indistinguishable from radio-quiet objects. This is strong evidence that mergers are the triggering mechanism for the radio-loud AGN phenomenon and the launching of relativistic jets from supermassive black holes (SMBHs). We speculate that major black hole (BH)–BH mergers play a major role in spinning up the central SMBHs in these objects.

  13. Constraining the Major Merger History of Massive Galaxies from z~0 to z~3 using Pairs from CANDELS & SDSS

    NASA Astrophysics Data System (ADS)

    Mantha, Kameswara Bharadwaj; McIntosh, Daniel H.; Brennan, Ryan; Cook, Joshua; Conselice, Christopher; Lotz, Jennifer; Hathi, Nimish P.; CANDELS Collaboration

    2016-01-01

    Major merging may play an important role in the morphological transformation and mass assembly at play in the evolution of massive galaxies. An important way to measure the impact of merging is to study close pairs of nearly equal-mass galaxies. We do this by using data from the Cosmic Assembly Near-Infrared Deep Extragalactic Legacy Survey (CANDELS) and the SDSS to measure the evolution between redshifts 0≤z≤3 of massive (stellar masses Mhost>2E10 Msun) galaxies that are involved in major (1≤Mhost/Mcomp≤4), close (≤50 kpc separation) pairs. Our preliminary results are based on data from two of the legacy fields: UDS and GOODS-S. If we simply define major pairs based on H-Band flux ratios and corrected for line-of-sight contamination, we find that the fraction of massive galaxies in such pairs increases from 2-5% (z~0) to 20-45% (z~3), in agreement with a broad range of previous studies. In contrast, when we consider stellar mass ratios and attempt to account for close redshift proximity using the best available redshifts (either spectroscopic or photometric), the pair fraction and fraction of galaxies in pairs each follow a broken redshift dependence where there is an increase (~(1+z)2 ) from z~0 to z~1, followed by a decreasing (~(1+z)-1.1) redshift dependence to z~3. Thus, our results point towards diminishing importance of major merging at z≥1, consistent with recent findings by Man et al.

  14. Fast and Furious: Shock heated gas as the origin of spatially resolved hard X-ray emission in the central 5 kpc of the galaxy merger NGC 6240

    SciTech Connect

    Wang, Junfeng; Nardini, Emanuele; Fabbiano, Giuseppina; Karovska, Margarita; Elvis, Martin; Risaliti, Guido; Zezas, Andreas; Pellegrini, Silvia; Max, Claire; U, Vivian

    2014-01-20

    We have obtained a deep, subarcsecond resolution X-ray image of the nuclear region of the luminous galaxy merger NGC 6240 with Chandra, which resolves the X-ray emission from the pair of active nuclei and the diffuse hot gas in great detail. We detect extended hard X-ray emission from kT ∼ 6 keV (∼70 MK) hot gas over a spatial scale of 5 kpc, indicating the presence of fast shocks with a velocity of ∼2200 km s{sup –1}. For the first time, we obtain the spatial distribution of this highly ionized gas emitting Fe XXV, which shows a remarkable correspondence to the large-scale morphology of H{sub 2}(1-0) S(1) line emission and Hα filaments. Propagation of fast shocks originating in the starburst-driven wind into the ambient dense gas can account for this morphological correspondence. With an observed L {sub 0.5-8} {sub keV} = 5.3 × 10{sup 41} erg s{sup –1}, the diffuse hard X-ray emission is ∼100 times more luminous than that observed in the classic starburst galaxy M82. Assuming a filling factor of 1% for the 70 MK temperature gas, we estimate its total mass (M {sub hot} = 1.8 × 10{sup 8} M {sub ☉}) and thermal energy (E {sub th} = 6.5 × 10{sup 57} erg). The total iron mass in the highly ionized plasma is M {sub Fe} = 4.6 × 10{sup 5} M {sub ☉}. Both the energetics and the iron mass in the hot gas are consistent with the expected injection from the supernovae explosion during the starburst that is commensurate with its high star formation rate. No evidence for fluorescent Fe I emission is found in the CO filament connecting the two nuclei.

  15. Fast and Furious: Shock Heated Gas as the Origin of Spatially Resolved Hard X-Ray Emission in the Central 5 kpc of the Galaxy Merger NGC 6240

    NASA Astrophysics Data System (ADS)

    Wang, Junfeng; Nardini, Emanuele; Fabbiano, Giuseppina; Karovska, Margarita; Elvis, Martin; Pellegrini, Silvia; Max, Claire; Risaliti, Guido; U, Vivian; Zezas, Andreas

    2014-01-01

    We have obtained a deep, subarcsecond resolution X-ray image of the nuclear region of the luminous galaxy merger NGC 6240 with Chandra, which resolves the X-ray emission from the pair of active nuclei and the diffuse hot gas in great detail. We detect extended hard X-ray emission from kT ~ 6 keV (~70 MK) hot gas over a spatial scale of 5 kpc, indicating the presence of fast shocks with a velocity of ~2200 km s-1. For the first time, we obtain the spatial distribution of this highly ionized gas emitting Fe XXV, which shows a remarkable correspondence to the large-scale morphology of H2(1-0) S(1) line emission and Hα filaments. Propagation of fast shocks originating in the starburst-driven wind into the ambient dense gas can account for this morphological correspondence. With an observed L 0.5-8 keV = 5.3 × 1041 erg s-1, the diffuse hard X-ray emission is ~100 times more luminous than that observed in the classic starburst galaxy M82. Assuming a filling factor of 1% for the 70 MK temperature gas, we estimate its total mass (M hot = 1.8 × 108 M ⊙) and thermal energy (E th = 6.5 × 1057 erg). The total iron mass in the highly ionized plasma is M Fe = 4.6 × 105 M ⊙. Both the energetics and the iron mass in the hot gas are consistent with the expected injection from the supernovae explosion during the starburst that is commensurate with its high star formation rate. No evidence for fluorescent Fe I emission is found in the CO filament connecting the two nuclei.

  16. Sdssj103913.70+533029.7: a super star cluster in the outskirts of a galaxy merger

    SciTech Connect

    Knapp, Gillian R.; Tremonti, Christy A.; Rockosi, Constance M.; Schlegel, David J.; Yanny, Brian; Beers, Timothy C.; Allende Prieto, Carlos; Wilhelm, Ron; Lupton, Robert H.; Gunn, James E.; Niederste-Ostholt, Martin; Schneider, Donald P.; Covey, Kevin; Seth, Anil; Ivezic, Zeljko; Eisenstein, Daniel J.; Helmboldt, Joe; Finkbeiner, Douglas P.; Padmanabhan, Nikhil; Kleinman, Scot J.; Long, Dan; /Princeton U. /Arizona U., Astron. Dept. - Steward Observ. /Lick Observ. /LBL, Berkeley /Fermilab /Michigan State U. /Texas U., McDonald Observ. /Texas Tech. /Penn State U., Astron. Astrophys. /Washington U., Seattle, Astron. Dept. /New Mexico State U. /Princeton U. /Apache Point Observ. /Mt. Suhora Observ., Cracow /Tokyo U., ICRR

    2005-11-01

    We describe the serendipitous discovery in the spectroscopic data of the Sloan Digital Sky Survey of a star-like object, SDSSJ103913.70+533029.7, at a heliocentric radial velocity of +1012 km s{sup -1}. Its proximity in position and velocity to the spiral galaxy NGC 3310 suggests an association with the galaxy. At this distance, SDSSJ103913.70+533029.7 has the luminosity of a super star cluster and a projected distance of 17 kpc from NGC 3310. Its spectroscopic and photometric properties imply a mass of > 10{sup 6} M{sub {circle_dot}} and an age close to that of the tidal shells seen around NGC 3310, suggesting that it formed in the event which formed the shells.

  17. EVOLUTION OF BRIGHTEST CLUSTER GALAXY STRUCTURAL PARAMETERS IN THE LAST {approx}6 Gyr: FEEDBACK PROCESSES VERSUS MERGER EVENTS

    SciTech Connect

    Ascaso, B.; Aguerri, J. A. L.; Varela, J.; Cava, A.; Moles, M.

    2011-01-10

    We present results on the evolution of the structural parameters of two samples of brightest cluster galaxies (BCGs) in the last 6 Gyr. The nearby sample of BCGs consists of 69 galaxies from the WINGS survey spanning a redshift range of 0.04 < z < 0.07. The intermediate-redshift (0.3 < z < 0.6) sample is formed by 20 BCGs extracted from the Hubble Space Telescope archive. Both samples have similar spatial resolution and their host clusters have similar X-ray luminosities. We report an increase in the size of the BCGs from intermediate to local redshift. However, we do not detect any variation in the Sersic shape parameter in both samples. These results prove to be robust since the observed tendencies are model independent. We also obtain significant correlations between some of the BCG parameters and the main properties of the host clusters. More luminous, larger, and centrally located BCGs are located in more massive and dominant galaxy clusters. These facts indicate that the host galaxy cluster has played an important role in the formation of their BCGs. We discuss the possible mechanisms that can explain the observed evolution of the structural parameters of the BCGs. We conclude that the main mechanisms that can explain the increase in size and the non-evolution in the Sersic shape parameter of the BCGs in the last 6 Gyr are feedback processes. This result disagrees with semi-analytical simulation results supporting the idea that merging processes are the main mechanism responsible for the evolution of the BCGs up until the present epoch.

  18. Mapping the infrared and hydrogen-alpha emission in mixed morphology binary galaxies

    NASA Astrophysics Data System (ADS)

    Domingue, Donovan Louis

    2001-09-01

    Mixed pairs give insight into the nature of simple galaxy interactions which contain only a single gas-rich component. These mixed pairs challenge galaxy formation models which view environmental factors as the sole predictor of pair morphology, they offer the best opportunity to view cross-fueling of the early-type galaxy, and they present a useful method to relate dust mass to extinction within paired spirals. The multi- wavelength approach applied here reveals both stellar and interstellar markers of the interaction process. The use of Hα and Infrared Space Observatory (ISO) data reveals: (1)that opacity and infrared emission estimates of spiral dust mass in overlapping pairs agree within a factor of two, (2)the relative IR emission contribution from the S0 galaxies of mixed pairs is often significant, (3)the star formation rate of paired spirals is approximately twice the rate of isolated spirals, and (4)the morphology of infrared emission in pair members is in good agreement with the Hα distribution.

  19. Turbulent mixing layers in the interstellar medium of galaxies

    NASA Technical Reports Server (NTRS)

    Slavin, J. D.; Shull, J. M.; Begelman, M. C.

    1993-01-01

    We propose that turbulent mixing layers are common in the interstellar medium (ISM). Injection of kinetic energy into the ISM by supernovae and stellar winds, in combination with density and temperature inhomogeneities, results in shear flows. Such flows will become turbulent due to the high Reynolds number (low viscosity) of the ISM plasma. These turbulent boundary layers will be particularly interesting where the shear flow occurs at boundaries of hot (approximately 10(exp 6) K) and cold or warm (10(exp 2) - 10(exp 4) K) gas. Mixing will occur in such layers producing intermediate-temperature gas at T is approximately equal to 10(exp 5.0) - 10(exp 5.5) that radiates strongly in the optical, ultraviolet, and EUV. We have modeled these layers under the assumptions of rapid mixing down to the atomic level and steady flow. By including the effects of non-equilibrium ionization and self-photoionization of the gas as it cools after mixing, we predict the intensities of numerous optical, infrared, and ultraviolet emission lines, as well as absorption column densities of C 4, N 5, Si 4, and O 6.

  20. Merger campaign.

    PubMed

    2007-01-01

    Through using the Web, TV, radio, and print advertisements, The Hospital of Central Connecticut announced in October 2006 its new name and the merger of two hospitals: New Britain General Hospital and Bradley Memorial Hospital. A campaign consisting of TV and radio ads was created to promote the merger. The ads are also featured on the hospital's Web site. PMID:17450950

  1. Galaxies

    SciTech Connect

    Not Available

    1981-01-01

    Normal galaxies, radio galaxies, and Seyfert galaxies are considered. The large magellanic cloud and the great galaxy in Andromedia are highlighted. Quasars and BL lacertae objects are also discussed and a review of the spectral observations of all of these galaxies and celestial objects is presented.

  2. Merger Signatures in the Dynamics of Star-forming Gas

    NASA Astrophysics Data System (ADS)

    Hung, Chao-Ling; Hayward, Christopher C.; Smith, Howard A.; Ashby, Matthew L. N.; Lanz, Lauranne; Martínez-Galarza, Juan R.; Sanders, D. B.; Zezas, Andreas

    2016-01-01

    The recent advent of integral field spectrographs and millimeter interferometers has revealed the internal dynamics of many hundreds of star-forming galaxies. Spatially resolved kinematics have been used to determine the dynamical status of star-forming galaxies with ambiguous morphologies, and constrain the importance of galaxy interactions during the assembly of galaxies. However, measuring the importance of interactions or galaxy merger rates requires knowledge of the systematics in kinematic diagnostics and the visible time with merger indicators. We analyze the dynamics of star-forming gas in a set of binary merger hydrodynamic simulations with stellar mass ratios of 1:1 and 1:4. We find that the evolution of kinematic asymmetries traced by star-forming gas mirrors morphological asymmetries derived from mock optical images, in which both merger indicators show the largest deviation from isolated disks during strong interaction phases. Based on a series of simulations with various initial disk orientations, orbital parameters, gas fractions, and mass ratios, we find that the merger signatures are visible for ˜0.2-0.4 Gyr with kinematic merger indicators but can be approximately twice as long for equal-mass mergers of massive gas-rich disk galaxies designed to be analogs of z ˜ 2-3 submillimeter galaxies. Merger signatures are most apparent after the second passage and before the black holes coalescence, but in some cases they persist up to several hundred Myr after coalescence. About 20%-60% of the simulated galaxies are not identified as mergers during the strong interaction phase, implying that galaxies undergoing violent merging process do not necessarily exhibit highly asymmetric kinematics in their star-forming gas. The lack of identifiable merger signatures in this population can lead to an underestimation of merger abundances in star-forming galaxies, and including them in samples of star-forming disks may bias the measurements of disk properties such

  3. A method for determining AGN accretion phase in field galaxies

    NASA Astrophysics Data System (ADS)

    Micic, Miroslav; Martinović, Nemanja; Sinha, Manodeep

    2016-09-01

    Recent observations of active galactic nucleus (AGN) activity in massive galaxies (log M*/ M⊙ > 10.4) show the following: (1) at z < 1, AGN-hosting galaxies do not show enhanced merger signatures compared with normal galaxies, (2) also at z < 1, most AGNs are hosted by quiescent galaxies and (3) at z > 1, the percentage of AGNs in star-forming galaxies increases and becomes comparable to the AGN percentage in quiescent galaxies at z ˜ 2. How can major mergers explain AGN activity in massive quiescent galaxies that have no merger features and no star formation to indicate a recent galaxy merger? By matching merger events in a cosmological N-body simulation to the observed AGN incidence probability in the COSMOS survey, we show that major merger-triggered AGN activity is consistent with the observations. By distinguishing between `peak' AGNs (recently merger-triggered and hosted by star-forming galaxies) and `faded' AGNs (merger-triggered a long time ago and now residing in quiescent galaxies), we show that the AGN occupation fraction in star-forming and quiescent galaxies simply follows the evolution of the galaxy merger rate. Since the galaxy merger rate drops dramatically at z < 1, the only AGNs left to be observed are the ones triggered by old mergers that are now in the declining phase of their nuclear activity, hosted by quiescent galaxies. As we go towards higher redshifts, the galaxy merger rate increases and the percentages of `peak' AGNs and `faded' AGNs become comparable.

  4. Gas Rich Mergers in Disk Formation

    NASA Astrophysics Data System (ADS)

    Brook, C. B.; Veilleux, V.; Kawata, D.; Martel, H.; Gibson, B. K.

    In order to explain disk galaxy formation within the hierarchical structure formation, it seems that gas rich mergers must play an important role. We review here our previous studies which have shown the importance of mergers at high redshift being gas rich, in the formation of both the stellar halo and thick disk components of disk galaxies. Regulation of star formation in the building blocks of our galaxy is required to form a low mass low metallicity stellar halo. This regulation results in high redshift, gas rich mergers during which the thick disk forms. In these proceedings, we categorise stars from our simulated disk galaxy into thin and thick disk components by using the Toomre diagram. Rotation velocity, metallicity and age histograms of the two populations are presented, along with alpha element abundances (oxygen, silicone, magnesium), age-height above the plane, age-radius, metallicity-height, and metalicity-radius gradients.

  5. The diverse evolutionary paths of simulated high-z massive, compact galaxies to z = 0

    NASA Astrophysics Data System (ADS)

    Wellons, Sarah; Torrey, Paul; Ma, Chung-Pei; Rodriguez-Gomez, Vicente; Pillepich, Annalisa; Nelson, Dylan; Genel, Shy; Vogelsberger, Mark; Hernquist, Lars

    2016-02-01

    Massive quiescent galaxies have much smaller physical sizes at high redshift than today. The strong evolution of galaxy size may be caused by progenitor bias, major and minor mergers, adiabatic expansion, and/or renewed star formation, but it is difficult to test these theories observationally. Herein, we select a sample of 35 massive, compact galaxies (M* = 1-3 × 1011 M⊙, M*/R1.5 > 1010.5 M⊙/kpc1.5) at z = 2 in the cosmological hydrodynamical simulation Illustris and trace them forwards to z = 0 to uncover their evolution and identify their descendants. By z = 0, the original factor of 3 difference in stellar mass spreads to a factor of 20. The dark matter halo masses similarly spread from a factor of 5 to 40. The galaxies' evolutionary paths are diverse: about half acquire an ex situ envelope and are the core of a more massive descendant, a third survive undisturbed and gain very little mass, 15 per cent are consumed in a merger with a more massive galaxy, and a small remainder are thoroughly mixed by major mergers. The galaxies grow in size as well as mass, and only ˜10 per cent remain compact by z = 0. The majority of the size growth is driven by the acquisition of ex situ mass. The most massive galaxies at z = 0 are the most likely to have compact progenitors, but this trend possesses significant dispersion which precludes a direct linkage to compact galaxies at z = 2. The compact galaxies' merger rates are influenced by their z = 2 environments, so that isolated or satellite compact galaxies (which are protected from mergers) are the most likely to survive to the present day.

  6. Bars Triggered By Galaxy Flybys

    NASA Astrophysics Data System (ADS)

    Holley-Bockelmann, Kelly; Lang, Meagan; Sinha, Manodeep

    2015-05-01

    Galaxy mergers drive galaxy evolution and are a key mechanism by which galaxies grow and transform. Unlike galaxy mergers where two galaxies combine into one remnant, galaxy flybys occur when two independent galaxy halos interpenetrate but detach at a later time; these one-time events are surprisingly common and can even out-number galaxy mergers at low redshift for massive halos. Although these interactions are transient and occur far outside the galaxy disk, flybys can still drive a rapid and large pertubations within both the intruder and victim halos. We explored how flyby encounters can transform each galaxy using a suite of N-body simulations. We present results from three co-planar flybys between disk galaxies, demonstrating that flybys can both trigger strong bar formation and can spin-up dark matter halos.

  7. WITNESSING THE FORMATION OF A BRIGHTEST CLUSTER GALAXY IN A NEARBY X-RAY CLUSTER

    SciTech Connect

    Rasmussen, Jesper; Mulchaey, John S.; Bai, Lei; Ponman, Trevor J.; Raychaudhury, Somak; Dariush, Ali

    2010-07-10

    The central dominant galaxies in galaxy clusters constitute the most massive and luminous galaxies in the universe. Despite this, the formation of these brightest cluster galaxies (BCGs) and the impact of this on the surrounding cluster environment remain poorly understood. Here we present multiwavelength observations of the nearby poor X-ray cluster MZ 10451, in which both processes can be studied in unprecedented detail. Chandra observations of the intracluster medium (ICM) in the cluster core, which harbors two optically bright early-type galaxies in the process of merging, show that the system has retained a cool core and a central metal excess. This suggests that any merger-induced ICM heating and mixing remain modest at this stage. Tidally stripped stars seen around either galaxy likely represent an emerging intracluster light component, and the central ICM abundance enhancement may have a prominent contribution from in situ enrichment provided by these stars. The smaller of the merging galaxies shows evidence for having retained a hot gas halo, along with tentative evidence for some obscured star formation, suggesting that not all BCG major mergers at low redshift are completely dissipationless. Both galaxies are slightly offset from the peak of the ICM emission, with all three lying on an axis that roughly coincides with the large-scale elongation of the ICM. Our data are consistent with a picture in which central BCGs are built up by mergers close to the cluster core, by galaxies infalling on radial orbits aligned with the cosmological filaments feeding the cluster.

  8. Galaxy and Mass Assembly (GAMA): merging galaxies and their properties

    NASA Astrophysics Data System (ADS)

    De Propris, Roberto; Baldry, Ivan K.; Bland-Hawthorn, Joss; Brough, Sarah; Driver, Simon P.; Hopkins, Andrew M.; Kelvin, Lee; Loveday, Jon; Phillipps, Steve; Robotham, Aaron S. G.

    2014-11-01

    We derive the close pair fractions and volume merger rates for galaxies in the Galaxy and Mass Assembly (GAMA) survey with -23 < Mr < -17 (ΩM = 0.27, ΩΛ = 0.73, H0 = 100 km s-1 Mpc-1) at 0.01 < z < 0.22 (look-back time of <2 Gyr). The merger fraction is approximately 1.5 per cent Gyr-1 at all luminosities (assuming 50 per cent of pairs merge) and the volume merger rate is ≈3.5 × 10-4 Mpc-3 Gyr-1. We examine how the merger rate varies by luminosity and morphology. Dry mergers (between red/spheroidal galaxies) are found to be uncommon and to decrease with decreasing luminosity. Fainter mergers are wet, between blue/discy galaxies. Damp mergers (one of each type) follow the average of dry and wet mergers. In the brighter luminosity bin (-23 < Mr < -20), the merger rate evolution is flat, irrespective of colour or morphology, out to z ˜ 0.2. The makeup of the merging population does not appear to change over this redshift range. Galaxy growth by major mergers appears comparatively unimportant and dry mergers are unlikely to be significant in the buildup of the red sequence over the past 2 Gyr. We compare the colour, morphology, environmental density and degree of activity (BPT class, Baldwin, Phillips & Terlevich) of galaxies in pairs to those of more isolated objects in the same volume. Galaxies in close pairs tend to be both redder and slightly more spheroid dominated than the comparison sample. We suggest that this may be due to `harassment' in multiple previous passes prior to the current close interaction. Galaxy pairs do not appear to prefer significantly denser environments. There is no evidence of an enhancement in the AGN fraction in pairs, compared to other galaxies in the same volume.

  9. SHOCKING TAILS IN THE MAJOR MERGER ABELL 2744

    SciTech Connect

    Owers, Matt S.; Couch, Warrick J.; Nulsen, Paul E. J.; Randall, Scott W.

    2012-05-01

    We identify four rare 'jellyfish' galaxies in Hubble Space Telescope imagery of the major merger cluster Abell 2744. These galaxies harbor trails of star-forming knots and filaments which have formed in situ in gas tails stripped from the parent galaxies, indicating they are in the process of being transformed by the environment. Further evidence for rapid transformation in these galaxies comes from their optical spectra, which reveal starburst, poststarburst, and active galactic nucleus features. Most intriguingly, three of the jellyfish galaxies lie near intracluster medium features associated with a merging 'Bullet-like' subcluster and its shock front detected in Chandra X-ray images. We suggest that the high-pressure merger environment may be responsible for the star formation in the gaseous tails. This provides observational evidence for the rapid transformation of galaxies during the violent core passage phase of a major cluster merger.

  10. Shocking Tails in the Major Merger Abell 2744

    NASA Astrophysics Data System (ADS)

    Owers, Matt S.; Couch, Warrick J.; Nulsen, Paul E. J.; Randall, Scott W.

    2012-05-01

    We identify four rare "jellyfish" galaxies in Hubble Space Telescope imagery of the major merger cluster Abell 2744. These galaxies harbor trails of star-forming knots and filaments which have formed in situ in gas tails stripped from the parent galaxies, indicating they are in the process of being transformed by the environment. Further evidence for rapid transformation in these galaxies comes from their optical spectra, which reveal starburst, poststarburst, and active galactic nucleus features. Most intriguingly, three of the jellyfish galaxies lie near intracluster medium features associated with a merging "Bullet-like" subcluster and its shock front detected in Chandra X-ray images. We suggest that the high-pressure merger environment may be responsible for the star formation in the gaseous tails. This provides observational evidence for the rapid transformation of galaxies during the violent core passage phase of a major cluster merger.

  11. Chemo-dynamical evolution model: Enrichment of r-process elements in the Local Group dwarf galaxies

    NASA Astrophysics Data System (ADS)

    Hirai, Yutaka; Ishimaru, Yuhri; Saitoh, Takayuki R.; Fujii, Michiko S.; Hidaka, Jun; Kajino, Toshitaka

    2016-08-01

    Neutron star mergers are one of the candidate astrophysical site(s) of r-process. Several chemical evolution studies however pointed out that the observed abundance of r-process is difficult to reproduce by neutron star mergers. In this study, we aim to clarify the enrichment of r-process elements in the Local Group dwarf galaxies. We carry out numerical simulations of galactic chemo-dynamical evolution using an N-body/smoothed particle hydrodynamics code, ASURA. We construct a chemo-dynamical evolution model for dwarf galaxies assuming that neutron star mergers are the major source of r-process elements. Our models reproduce the observed dispersion in [Eu/Fe] as a function of [Fe/H] with neutron star mergers with a merger time of 100 Myr. We find that star formation efficiency and metal mixing processes during the first <~ 300 Myr of galaxy evolution are important to reproduce the observations. This study supports that neutron star mergers are a major site of r-process.

  12. HI Absorption in Merger Remnants

    NASA Technical Reports Server (NTRS)

    Teng, Stacy H.; Veileux, Sylvain; Baker, Andrew J.

    2012-01-01

    It has been proposed that ultraluminous infrared galaxies (ULIRGs) pass through a luminous starburst phase, followed by a dust-enshrouded AGN phase, and finally evolve into optically bright "naked" quasars once they shed their gas/dust reservoirs through powerful wind events. We present the results of our recent 21- cm HI survey of 21 merger remnants with the Green Bank Telescope. These remnants were selected from the QUEST (Quasar/ULIRG Evolution Study) sample of ULIRGs and PG quasars; our targets are all bolometrically dominated by AGN and sample all phases of the proposed ULIRG -> IR-excess quasar -> optical quasar sequence. We explore whether there is an evolutionary connection between ULIRGs and quasars by looking for the occurrence of HI absorption tracing neutral gas outflows; our results will allow us to identify where along the sequence the majority of a merger's gas reservoir is expelled.

  13. Galactic Dynamics and Evolution: Mergers and Infall

    NASA Astrophysics Data System (ADS)

    Weil, Melinda Loving

    1995-01-01

    Collisions and mergers are cited as culprits in the production of a large range of morphological phenomena observed in galaxies. Galactic interactions may generate faint structures, such as arcs and rings, or create an entirely different type of galaxy, depending on the types of galaxies involved and their orbital geometry. I develop detailed merger and infall models which are compared with observations in order to elucidate the dynamical processes which govern galactic formation and evolution. In a first project, the effect of including gas is studied in encounters between low-mass companions and elliptical galaxies which produce sharp-edged features called "shells." Ellipticals accrete gas, which may be important in constraining their evolution. Numerical simulations of tidal disruption of dwarf galaxies containing both gas and stars were performed. The stellar and gaseous components rapidly segregate to produce very different structures. Gaseous remnants are dense, concentrated structures that form when gas flows into the center of the galaxy. Star formation is expected in the nucleus, localized and distinctly separate from the stellar remnant. In a second project, the formation of a peculiar ring galaxy is modeled. The Cartwheel galaxy, in addition to an outer and inner ring, has several spokes which connect the two. In an attempt to reproduce the spokes, a fully self-consistent model is constructed in which a companion collides head-on with a primary consisting of a live halo and a disk containing both stars and gas. Stars and gas react to passage of the companion through the disk by producing a morphology similar to that of the Cartwheel. The region between the inner and outer rings contains several spokes with a clumpy, interrupted structure. Finally, models of both pairs and small groups of bulge-disk-halo galaxies are merged to form remnants that evince properties similar to elliptical galaxies. I analyze the spatial and kinematic characteristics of

  14. Diverse structural evolution at z > 1 in cosmologically simulated galaxies

    NASA Astrophysics Data System (ADS)

    Snyder, Gregory F.; Lotz, Jennifer; Moody, Christopher; Peth, Michael; Freeman, Peter; Ceverino, Daniel; Primack, Joel; Dekel, Avishai

    2015-08-01

    From mock Hubble Space Telescope images, we quantify non-parametric statistics of galaxy morphology, thereby predicting the emergence of relationships among stellar mass, star formation, and observed rest-frame optical structure at 1 < z < 3. We measure automated diagnostics of galaxy morphology in cosmological simulations of the formation of 22 central galaxies with 9.3 < log10M*/M⊙ < 10.7. These high-spatial-resolution zoom-in calculations enable accurate modelling of the rest-frame UV and optical morphology. Even with small numbers of galaxies, we find that structural evolution is neither universal nor monotonic: galaxy interactions can trigger either bulge or disc formation, and optically bulge-dominated galaxies at this mass may not remain so forever. Simulated galaxies with M* > 1010M⊙ contain relatively more disc-dominated light profiles than those with lower mass, reflecting significant disc brightening in some haloes at 1 < z < 2. By this epoch, simulated galaxies with specific star formation rates below 10- 9.7 yr- 1 are more likely than normal star-formers to have a broader mix of structural types, especially at M* > 1010 M⊙. We analyse a cosmological major merger at z ˜ 1.5 and find that the newly proposed Multimode-Intensity-Deviation (MID) morphology diagnostics trace later merger stages while Gini-M20 trace earlier ones. MID is sensitive also to clumpy star-forming discs. The observability time of typical MID-enhanced events in our simulation sample is <100 Myr. A larger sample of cosmological assembly histories may be required to calibrate such diagnostics in the face of their sensitivity to viewing angle, segmentation algorithm, and various phenomena such as clumpy star formation and minor mergers.

  15. A statistical study of merging galaxies: Theory and observations

    NASA Technical Reports Server (NTRS)

    Chatterjee, Tapan K.

    1990-01-01

    A study of the expected frequency of merging galaxies is conducted, using the impulsive approximation. Results indicate that if we consider mergers involving galaxy pairs without halos in a single crossing time or orbital period, the expected frequency of mergers is two orders of magnitude below the observed value for the present epoch. If we consider mergers involving several orbital periods or crossing times, the expected frequency goes up by an order of magnitude. Preliminary calculation indicate that if we consider galaxy mergers between pairs with massive halos, the merger is very much hastened.

  16. Forming Binary Black Holes in Galactic Mergers

    NASA Astrophysics Data System (ADS)

    Quinn, Thomas R.; Roskar, R.; Mayer, L.; Kazantzidis, S.

    2010-01-01

    As galaxies merge in the standard hierarchical scenario of galaxy formation, their central Black Holes also can merge and grow. The violent dynamics of the galaxy merger will deliver a significant amount of gas and stars to the central regions of the galaxy further growing the central Black Hole and fueling an Active Galactic Nucleus. We perform state-of-art numerical simulations of this merging process using N-body simulations and gas dynamics. These simulations resolved the dynamics in the central kiloparsec of the merging galaxies, and enable us to follow the sinking of the Black Holes to the center via dynamical friction up to the formation of binary Black Holes. Critical to this process is the state of the surrounding gas which we follow with an equation of state that includes star formation and supernova feedback. This work is supported by a grant from NASA.

  17. Color and magnitude dependence of galaxy clustering

    NASA Astrophysics Data System (ADS)

    Müller, Volker

    2016-10-01

    A quantitative study of the clustering properties of galaxies in the cosmic web as a function of absolute magnitude and colour is presented using the SDSS Data Release 7 galaxy redshift survey. We compare our results with mock galaxy samples obtained with four different semi-analytical models of galaxy formation imposed on the merger trees of the Millenium simulation.

  18. Gas stripping and mixing in galaxy clusters: a numerical comparison study

    NASA Astrophysics Data System (ADS)

    Heß, Steffen; Springel, Volker

    2012-11-01

    The ambient hot intrahalo gas in clusters of galaxies is constantly fed and stirred by infalling galaxies, a process that can be studied in detail with cosmological hydrodynamical simulations. However, different numerical methods yield discrepant predictions for crucial hydrodynamical processes, leading for example to different entropy profiles in clusters of galaxies. In particular, the widely used Lagrangian smoothed particle hydrodynamics (SPH) scheme is suspected to strongly damp fluid instabilities and turbulence, which are both crucial to establish the thermodynamic structure of clusters. In this study, we test to which extent our recently developed Voronoi particle hydrodynamics (VPH) scheme yields different results for the stripping of gas out of infalling galaxies and for the bulk gas properties of cluster. We consider both the evolution of isolated galaxy models that are exposed to a stream of intracluster medium or are dropped into cluster models, as well as non-radiative cosmological simulations of cluster formation. We also compare our particle-based method with results obtained with a fundamentally different discretization approach as implemented in the moving-mesh code AREPO. We find that VPH leads to noticeably faster stripping of gas out of galaxies than SPH, in better agreement with the mesh-code than with SPH. We show that despite the fact that VPH in its present form is not as accurate as the moving mesh code in our investigated cases, its improved accuracy of gradient estimates makes VPH an attractive alternative to SPH.

  19. Binary pairs of supermassive black holes - Formation in merging galaxies

    NASA Astrophysics Data System (ADS)

    Valtaoja, L.; Valtonen, M. J.; Byrd, G. G.

    1989-08-01

    A process in which supermassive binary blackholes are formed in nuclei of supergiant galaxies due to galaxy mergers is examined. There is growing evidence that mergers of galaxies are common and that supermassive black holes in center of galaxies are also common. Consequently, it is expected that binary black holes should arise in connection with galaxy mergers. The merger process in a galaxy modeled after M87 is considered. The capture probability of a companion is derived as a function of its mass. Assuming a correlation between the galaxy mass and the blackholes mass, the expected mass ratio in binary black holes is calculated. The binary black holes formed in this process are long lived, surviving longer than the Hubble time unless they are perturbed by black holes from successive mergers. The properties of these binaries agree with Gaskell's (1988) observational work on quasars and its interpretation in terms of binary black holes.

  20. Fantastic Four Galaxies with Planet (Artist Concept)

    NASA Technical Reports Server (NTRS)

    2007-01-01

    This artist's concept shows what the night sky might look like from a hypothetical planet around a star tossed out of an ongoing four-way collision between big galaxies (yellow blobs). NASA's Spitzer Space Telescope spotted this 'quadruple merger' of galaxies within a larger cluster of galaxies located nearly 5 billion light-years away.

    Though the galaxies appear intact, gravitational disturbances have caused them to stretch and twist, flinging billions of stars into space -- nearly three times as many stars as are in our Milky Way galaxy. The tossed stars are visible in the large plume emanating from the central, largest galaxy. If any of these stars have planets, their night skies would be filled with the monstrous merger, along with other galaxies in the cluster (smaller, bluish blobs).

    This cosmic smash-up is the largest known merger between galaxies of a similar size. While three of the galaxies are about the size of our Milky Way galaxy, the fourth (center of image) is three times as big. All four of the galaxies, as well as most other galaxies in the huge cluster, are blob-shaped ellipticals instead of spirals like the Milky Way.

    Ultimately, in about one hundred million years or so, the four galaxies E will unite into one. About half of the stars kicked out during the merger will fall back and join the new galaxy, making it one of the biggest galaxies in the universe.

  1. Major mergers going Notts: challenges for modern halo finders

    NASA Astrophysics Data System (ADS)

    Behroozi, Peter; Knebe, Alexander; Pearce, Frazer R.; Elahi, Pascal; Han, Jiaxin; Lux, Hanni; Mao, Yao-Yuan; Muldrew, Stuart I.; Potter, Doug; Srisawat, Chaichalit

    2015-12-01

    Merging haloes with similar masses (i.e. major mergers) pose significant challenges for halo finders. We compare five halo-finding algorithms' (AHF, HBT, ROCKSTAR, SUBFIND, and VELOCIRAPTOR) recovery of halo properties for both isolated and cosmological major mergers. We find that halo positions and velocities are often robust, but mass biases exist for every technique. The algorithms also show strong disagreement in the prevalence and duration of major mergers, especially at high redshifts (z > 1). This raises significant uncertainties for theoretical models that require major mergers for, e.g. galaxy morphology changes, size changes, or black hole growth, as well as for finding Bullet Cluster analogues. All finders not using temporal information also show host halo and subhalo relationship swaps over successive timesteps, requiring careful merger tree construction to avoid problematic mass accretion histories. We suggest that future algorithms should combine phase-space and temporal information to avoid the issues presented.

  2. Structure of merger remnants. II - Progenitors with rotating bulges

    NASA Technical Reports Server (NTRS)

    Hernquist, Lars

    1993-01-01

    Mergers of identical galaxies consisting of self-gravitating disks, bulges, and halos are examined in the context of the suggestion that such events may form elliptical galaxies. Unlike earlier studies, the simulations reported here include effects arising from intrinsic spin of bulges. It is found that the disks and bulges are able to redistribute their angular momentum so that the luminous remnants rotate slowly near their centers. In addition, if the bulges are sufficiently concentrated, the core radii of the remnants are significantly reduced relative to those of end-states formed in mergers between pure stellar disks to the extent that the remnants share structural properties with observed elliptical galaxies. Nevertheless, it does appear that stellar-dynamical mergers between spiral progenitors will represent a viable mechanism for the production of massive elliptical galaxies only if sufficient mass resides already in dense, spheroidal components. These results suggest that any ellipticals formed in this manner having featureless light profiles were victims of a 'disk-bulge conspiracy' analogous to the disk-halo conspiracy thought to give rise to smooth rotation curves in spiral galaxies. Possible observational signatures of mergers are discussed, along with implications of the findings for our understanding of galaxy formation and evolution.

  3. The Properties of IRAS Detected Mergers in the Local Universe

    NASA Astrophysics Data System (ADS)

    Carpineti, Alfredo; Kaviraj, S.; Clements, D. L.; Darg, D.; Hyde, A. K.; Lintott, C.

    2012-01-01

    Galaxy merging is a fundamental aspect of the standard hierarchical galaxy formation paradigm. We have used a large, homogeneous set of nearby mergers, selected through direct visual inspection of the entire SDSS using the GalaxyZoo project, to perform the first blind far-infrared (FIR) study of the local merger population. 3300+ mergers were cross-matched with the Imperial IRAS-FSC Redshift Catalogue, resulting in 606 FIR detections. The IRAS- detected mergers are typically more massive, with smaller separations, weaker tidal forces and bluer colours than their undetected counterparts. The IRAS-detected mergers are mostly (98%) spiral-spiral systems, with a median FIR luminosity of 1011 LSun and a median star-formation rate of around 15 MSun per year. They reside in low density environments but we find no dependence between group richness and their infrared properties. Their SFR seems to depend on the total mass of the system with little dependence on the mass ratio. Optical emission line ratios indicate that the AGN fraction increases with increasing FIR luminosity with a dramatic increase in the members that are ULIRGs . Comparing the typical separations of mergers that are LIRGs and those that are ULIRGs we estimate the timescale for this transition and find a value of (50 ± 16) Myr .

  4. Radio properties of fossil galaxy groups

    NASA Astrophysics Data System (ADS)

    Miraghaei, H.; Khosroshahi, H. G.

    2016-09-01

    We study 1.4 GHz radio properties of a sample of fossil galaxy groups using GMRT radio observations and the FIRST survey catalog. Fossil galaxy groups, having no recent major mergers in their dominant galaxies and also group scale mergers, give us the opportunity to investigate the effect of galaxy merger on AGN activity. In this work, we compare the radio properties of a rich sample of fossil groups with a sample of normal galaxy groups and clusters and show that the brightest group galaxies in fossil groups are under luminous at 1.4 GHz, relative to the general population of the brightest group galaxies, indicating that the dynamically relaxed nature of fossil groups has influenced the AGN activity in their dominant galaxy.

  5. Monitoring Young Evolving Mergers

    NASA Astrophysics Data System (ADS)

    McCollum, Bruce; Bruhweiler, Frederick; Laine, Seppo; Rottler, Lee

    2014-12-01

    Recently there has arisen the first opportunity to study a stellar merger in progress and to follow the evolution of the merger remnant. The 2008 outburst of V1309 Sco was recognized in 2011 to have resulted from a merger. We have been monitoring the evolution of its unusual IR SED in J, H, and K and in the IRAC channels, as well as at other wavelengths. We request additional IRAC data because the merger remnant has not yet 'settled down' into a final state. We shall also obtain IRAC photometry of what are currently the two other objects most widely suspected of being recent mergers, in order to compare their post-merger evolution with that of V1309 Sco. It is important to monitor these objects so that their SEDs and physical evolution can be understood and accurately modeled.

  6. Star formation in mergers with cosmologically motivated initial conditions

    NASA Astrophysics Data System (ADS)

    Karman, Wouter; Macciò, Andrea V.; Kannan, Rahul; Moster, Benjamin P.; Somerville, Rachel S.

    2015-09-01

    We use semi-analytic models and cosmological merger trees to provide the initial conditions for multimerger numerical hydrodynamic simulations, and exploit these simulations to explore the effect of galaxy interaction and merging on star formation (SF). We compute numerical realizations of 12 merger trees from z = 1.5 to 0. We include the effects of the large hot gaseous halo around all galaxies, following recent observations and predictions of galaxy formation models. We find that including the hot gaseous halo has a number of important effects. First, as expected, the star formation rate on long time-scales is increased due to cooling of the hot halo and refuelling of the cold gas reservoir. Secondly, we find that interactions do not always increase the SF in the long term. This is partially due to the orbiting galaxies transferring gravitational energy to the hot gaseous haloes and raising their temperature. Finally, we find that the relative size of the starburst, when including the hot halo, is much smaller than previous studies showed. Our simulations also show that the order and timing of interactions are important for the evolution of a galaxy. When multiple galaxies interact at the same time, the SF enhancement is less than when galaxies interact in series. All these effects show the importance of including hot gas and cosmologically motivated merger trees in galaxy evolution models.

  7. The redistribution of matter in the cores of galaxy clusters

    NASA Astrophysics Data System (ADS)

    Laporte, Chervin F. P.; White, Simon D. M.

    2015-08-01

    We present cosmological N-body resimulations of the assembly of the Brightest Cluster Galaxies (BCGs) in rich clusters. At z = 2, we populate dark matter subhaloes with self-gravitating stellar systems whose abundance and structure match observed high-redshift galaxies. By z = 0, mergers have built much larger galaxies at cluster centre. Their dark matter density profiles are shallower than in corresponding dark-matter-only simulations, but their total mass density profiles (stars + dark matter) are quite similar. Differences are found only at radii where the effects of central black holes may be significant. Dark matter density slopes shallower than γ = 1.0 occur for r/r200 < 0.015, close to the half-light radii of the BCGs. Our experiments support earlier suggestions that NFW-like profiles are an attractor for the hierarchical growth of structure in collisionless systems - total mass density profiles asymptote to the solution found in dark-matter-only simulations over the radial range where mergers produce significant mixing between stars and dark matter. Simulated dark matter fractions are substantially higher in BCGs than in field ellipticals, reaching 80 per cent within the half-light radius. We also estimate that supermassive black hole mergers should create BCG cores as large as rc ˜ 3 kpc. The good agreement of all these properties with recent observational studies of BCG structure suggests that dissipational processes have not played a dominant role in the assembly of the observed systems.

  8. Tidal Tales of Minor Mergers: Star Formation in the Tidal Tails of Minor Mergers

    NASA Astrophysics Data System (ADS)

    Knierman, Karen A.

    This work examines star formation in the debris associated with collisions of dwarf and spiral galaxies. While the spectacular displays of major mergers are famous (e.g., NGC 4038/9, "The Antennae''), equal mass galaxy mergers are relatively rare compared to minor mergers (mass ratio <0.3) Minor mergers are less energetic than major mergers, but more common in the observable universe and, thus, likely played a pivotal role in the formation of most large galaxies. Centers of mergers host vigorous star formation from high gas density and turbulence and are surveyed over cosmological distances. However, the tidal debris resulting from these mergers have not been well studied. Such regions have large reservoirs of gaseous material that can be used as fuel for subsequent star formation but also have lower gas density. Tracers of star formation at the local and global scale have been examined for three tidal tails in two minor merger systems. These tracers include young star cluster populations, H-alpha, and [CII] emission. The rate of apparent star formation derived from these tracers is compared to the gas available to estimate the star formation efficiency (SFE). The Western tail of NGC 2782 formed isolated star clusters while massive star cluster complexes are found in the UGC 10214 ("The Tadpole'') and Eastern tail of NGC 2782. Due to the lack of both observable CO and [CII] emission, the observed star formation in the Western tail of NGC 2782 may have a low carbon abundance and represent only the first round of local star formation. While the Western tail has a normal SFE, the Eastern tail in the same galaxy has an low observed SFE. In contrast, the Tadpole tidal tail has a high observed star formation rate and a corresponding high SFE. The low SFE observed in the Eastern tail of NGC 2782 may be due to its origin as a splash region where localized gas heating is important. However, the other tails may be tidally formed regions where gravitational compression likely

  9. Characterizing Black Hole Mergers

    NASA Technical Reports Server (NTRS)

    Baker, John; Boggs, William Darian; Kelly, Bernard

    2010-01-01

    Binary black hole mergers are a promising source of gravitational waves for interferometric gravitational wave detectors. Recent advances in numerical relativity have revealed the predictions of General Relativity for the strong burst of radiation generated in the final moments of binary coalescence. We explore features in the merger radiation which characterize the final moments of merger and ringdown. Interpreting the waveforms in terms of an rotating implicit radiation source allows a unified phenomenological description of the system from inspiral through ringdown. Common features in the waveforms allow quantitative description of the merger signal which may provide insights for observations large-mass black hole binaries.

  10. The role of neutron star mergers in the chemical evolution of the Galactic halo

    NASA Astrophysics Data System (ADS)

    Cescutti, G.; Romano, D.; Matteucci, F.; Chiappini, C.; Hirschi, R.

    2015-05-01

    Context. The dominant astrophysical production site of the r-process elements has not yet been unambiguously identified. The suggested main r-process sites are core-collapse supernovae and merging neutron stars. Aims: We explore the problem of the production site of Eu. We also use the information present in the observed spread in the Eu abundances in the early Galaxy, and not only its average trend. Moreover, we extend our investigations to other heavy elements (Ba, Sr, Rb, Zr) to provide additional constraints on our results. Methods: We adopt a stochastic chemical evolution model that takes inhomogeneous mixing into account. The adopted yields of Eu from merging neutron stars and from core-collapse supernovae are those that are able to explain the average [Eu/Fe]-[Fe/H] trend observed for solar neighbourhood stars, the solar abundance of Eu, and the present-day abundance gradient of Eu along the Galactic disc in the framework of a well-tested homogeneous model for the chemical evolution of the Milky Way. Rb, Sr, Zr, and Ba are produced by both the s- and r-processes. The r-process yields were obtained by scaling the Eu yields described above according to the abundance ratios observed in r-process rich stars. The s-process contribution by spinstars is the same as in our previous papers. Results: Neutron star binaries that merge in less than 10 Myr or neutron star mergers combined with a source of r-process generated by massive stars can explain the spread of [Eu/Fe] in the Galactic halo. The combination of r-process production by neutron star mergers and s-process production by spinstars is able to reproduce the available observational data for Sr, Zr, and Ba. We also show the first predictions for Rb in the Galactic halo. Conclusions: We confirm previous results that either neutron star mergers on a very short timescale or both neutron star mergers and at least a fraction of Type II supernovae have contributed to the synthesis of Eu in the Galaxy. The r

  11. Stellar Populations of Shell Galaxies

    NASA Astrophysics Data System (ADS)

    Carlsten, Scott; Zenteno, Alfredo

    2016-01-01

    We present a study of the inner (out to ˜1 effective radius) stellar populations in a sample of 9 shell galaxies. We derive stellar population parameters from long slit spectra by both analyzing the Lick indices of the galaxies and by fitting high resolution SSP model spectra to the full galaxy spectra. The results from the two methods agree reasonably well. We find the presence of young stellar populations in several of the galaxies, implying recent star formation and allowing us to speculate on the age of the shells. Analyzing the metallicity gradients in our sample, we find an average metallicity gradient of -0.16±0.10 dex/decade in radius. Finally, we compare this with galaxy evolution models to try to constrain the merging history of shell galaxies. We argue that our galaxies likely have undergone major mergers in their past but it is unclear whether the shells formed from these events or from separate minor mergers.

  12. WITNESSING GAS MIXING IN THE METAL DISTRIBUTION OF THE HICKSON COMPACT GROUP HCG 31

    SciTech Connect

    Torres-Flores, S.; Alfaro-Cuello, M.; De Oliveira, C. Mendes; Amram, P.; Carrasco, E. R.

    2015-01-01

    We present for the first time direct evidence that in a merger of disk galaxies, the pre-existing central metallicities will mix as a result of gas being transported in the merger interface region along the line that joins the two coalescing nuclei. This is shown using detailed two-dimensional kinematics as well as metallicity measurements for the nearby ongoing merger in the center of the compact group HCG 31. We focus on the emission line gas, which is extensive in the system. The two coalescing cores display similar oxygen abundances. While in between the two nuclei, the metallicity changes smoothly from one nucleus to the other indicating a mix of metals in this region, which is confirmed by the high-resolution Hα kinematics (R = 45,900). This nearby system is especially important because it involves the merging of two fairly low-mass and clumpy galaxies (LMC-like galaxies), making it an important system for comparison with high-redshift galaxies.

  13. The Effect of Dry Mergers on the Color-Magnitude Relation

    NASA Astrophysics Data System (ADS)

    Skelton, R. E.; Bell, E. F.; Sommerville, R. S.

    2009-12-01

    We investigate the effect of gas-poor (so-called “dry”) mergers on the color-magnitude relation (CMR) of early-type galaxies through a simple toy model and compare with low-z observations from the Sloan Digital Sky Survey (SDSS). The observed red sequence shows a tilt towards bluer colors and a decrease in scatter at the bright end. These characteristics are predicted by our model, based on merger trees from a semi-analytic model of galaxy formation. We assume galaxies move onto a “creation red sequence” when they undergo major gas-rich mergers. Subsequent dry mergers move galaxies along the relation by increasing their mass, but also make them slightly bluer. This occurs because bright galaxies are most likely to merge with one of the more numerous fainter and consequently bluer galaxies that lie further down the relation. Bright galaxies undergo a higher fraction of dry mergers than faint galaxies, which causes a change in the slope of the CMR. A more realistic model that includes scatter in the initial relation shows that dry merging causes a tightening of the CMR towards the bright end. The small scatter in the observed CMR thus cannot be used to argue against significant mass growth from dry merging.

  14. Molecular Gas in Local Mergers: Understanding Mergers using High Density Gas Tracers

    NASA Astrophysics Data System (ADS)

    Manohar, Swarnima; Scoville, N.; Sheth, K.

    2013-01-01

    NGC 6240 and Arp 220 can be considered the founding members of a very active class of objects called Ultraluminous Infrared Galaxies or ULIRGs. They are in different stages of mergers and hence are excellent case studies to enhance our knowledge about the merging process. We have imaged the dense star-forming regions of these galaxies at sub-arcsec resolution with ALMA and CARMA. Multi-band imaging will allow multilevel excitation analysis of HCN, HCO+ and CS transitions which will be used to constrain the properties of the gas as a function of position and velocity (across line profiles). We aim to do an extensive multilevel excitation analysis of the merger as a function of radius which will enable in depth understanding of the gas dynamics and gas properties such as temperature and density. This will in turn probe the homogeneity of the gas in the merging system and hence the regions that facilitate high star formation rates. This tandem use of CARMA with ALMA to map these systems at different merger stages will help assemble a more integrated picture of the merger process. We will probe the distribution and dynamics of star forming gas and star formation activity in the dense disk structures to enable new theoretical understanding of the physics, dynamics, star formation activity and associated feedback in the most active and rapidly evolving galactic nuclei. Here we present preliminary observations of Arp 220 and NGC 6240 from ALMA and CARMA.

  15. The influence of gas on the structure of merger remnants

    NASA Astrophysics Data System (ADS)

    Naab, Thorsten; Jesseit, Roland; Burkert, Andreas

    2006-10-01

    We present a large set of merger simulations of early-type disc galaxies with mass ratios of 1:1 and 3:1 and 10 per cent of the total disc mass in gas. The internal orbital structure and the kinematic and photometric properties of the remnants are analysed in detail and compared to pure stellar mergers. In contrast to the collisionless case, equal-mass mergers with gas do not result in very boxy remnants which is caused by the suppression of box orbits and the change of the projected shape of minor-axis tube orbits in the more axisymmetric remnants. The isophotal shape of 3:1 remnants and the global kinematic properties of 1:1 and 3:1 remnants are only weakly affected by the presence of gas. 1:1 remnants are slowly rotating, whereas 3:1 remnants are fast rotating and discy. The shape of the stellar line-of-sight velocity distributions (LOSVDs) is strongly influenced by gas. Within the effective radius, the LOSVDs of collisionless remnants have broad leading wings while their gaseous counterparts show steep leading wings, more consistent with observations of elliptical galaxies. We show that this change is also caused by the suppressed populating of box orbits and it is amplified by the formation of extended gas discs in the merger remnants which might eventually turn into stars. If elliptical galaxies have formed from mergers, our results indicate that massive, slowly rotating boxy elliptical galaxies cannot have formed from dissipative mergers of discs. Pure stellar (dry) mergers are the more likely candidates. On the other hand, lower mass, fast rotating and discy ellipticals can have formed from dissipative (wet) mergers of early-type discs. So far, only unequal-mass disc mergers with gas can successfully explain their observed substructure. This is consistent with the revised morphological classification scheme of increasing importance of gas dissipation when moving from boxy to discy ellipticals and then to spiral galaxies, proposed by Kormendy & Bender.

  16. Multiple Core Galaxies

    NASA Technical Reports Server (NTRS)

    Miller, R.H.; Morrison, David (Technical Monitor)

    1994-01-01

    Nuclei of galaxies often show complicated density structures and perplexing kinematic signatures. In the past we have reported numerical experiments indicating a natural tendency for galaxies to show nuclei offset with respect to nearby isophotes and for the nucleus to have a radial velocity different from the galaxy's systemic velocity. Other experiments show normal mode oscillations in galaxies with large amplitudes. These oscillations do not damp appreciably over a Hubble time. The common thread running through all these is that galaxies often show evidence of ringing, bouncing, or sloshing around in unexpected ways, even though they have not been disturbed by any external event. Recent observational evidence shows yet another phenomenon indicating the dynamical complexity of central regions of galaxies: multiple cores (M31, Markarian 315 and 463 for example). These systems can hardly be static. We noted long-lived multiple core systems in galaxies in numerical experiments some years ago, and we have more recently followed up with a series of experiments on multiple core galaxies, starting with two cores. The relevant parameters are the energy in the orbiting clumps, their relative.masses, the (local) strength of the potential well representing the parent galaxy, and the number of cores. We have studied the dependence of the merger rates and the nature of the final merger product on these parameters. Individual cores survive much longer in stronger background potentials. Cores can survive for a substantial fraction of a Hubble time if they travel on reasonable orbits.

  17. Stochastic evolution of rotations of early type galaxies

    NASA Astrophysics Data System (ADS)

    Choi, Hoseung; Yi, Sukyoung

    2016-01-01

    Recent Integral-Field Spectrograph surveys (SAURON, ATLAS 3D, and SAMI project, for example) have revealed that early type galaxies have wide range of rotational properties even though they share similar photometric properties. High resolution numerical studies have shown that galaxy-galaxy interactions have significant effect on the rotation of early type galaxies, however, with limited number of sample galaxies.We present kinematic analysis of thousands of galaxies in 20 clusters from a set of cosmological hydrodynamic zoom-in simulations. Although galaxy mergers play an important role, the direction of change in the amount of rotation depends on many merger parameters such as mass ratio, orbital parameters, and relative direction of galaxy rotations. Furthermore, all their merger parameters themselves are results of non-linear galaxy formation and evolution processes. By compiling numerous galaxy merger events, we discuss statistical properties of the evolution of early type galaxy rotation. We present the impacts of various interactions: major and minor mergers, multiple mergers, and flybys.

  18. BPASS predictions for binary black hole mergers

    NASA Astrophysics Data System (ADS)

    Eldridge, J. J.; Stanway, E. R.

    2016-11-01

    Using the Binary Population and Spectral Synthesis code, BPASS, we have calculated the rates, time-scales and mass distributions for binary black hole (BH) mergers as a function of metallicity. We consider these in the context of the recently reported first Laser Interferometer Gravitational-Wave Observatory (LIGO) event detection. We find that the event has a very low probability of arising from a stellar population with initial metallicity mass fraction above Z = 0.010 (Z ≳ 0.5 Z⊙). Binary BH merger events with the reported masses are most likely in populations below 0.008 (Z ≲ 0.4 Z⊙). Events of this kind can occur at all stellar population ages from 3 Myr up to the age of the Universe, but constitute only 0.1-0.4 per cent of binary BH mergers between metallicities of Z = 0.001 and 0.008. However at metallicity Z = 10-4, 26 per cent of binary BH mergers would be expected to have the reported masses. At this metallicity, the progenitor merger times can be close to ≈10 Gyr and rotationally mixed stars evolving through quasi-homogeneous evolution, due to mass transfer in a binary, dominate the rate. The masses inferred for the BHs in the binary progenitor of GW 150914 are amongst the most massive expected at anything but the lowest metallicities in our models. We discuss the implications of our analysis for the electromagnetic follow-up of future LIGO event detections.

  19. CO observations of southern mergers

    NASA Technical Reports Server (NTRS)

    Casoli, F.; Dupraz, C.; Combes, F.

    1990-01-01

    There are good reasons to believe that the formation of some elliptical galaxies result from the merging of two disk galaxies, as Toomre and Toomre first suggested (1972, Ap. J. 178, 623). Such a process strongly enhances the star-formation activity of the system, thus consuming its molecular gas. This might account for the low cold-gas content of elliptical galaxies compared to that of spirals. Researchers present here CO(1-0) and CO(2-1) observations of a sequence of three objects, NGC 1614, NGC 3256, and NGC 7252, that present characteristic features of merger remnants: single body and extended tidal tails. NGC 3256 and 7252 even exhibit the r(exp 1/4) radial light distribution that is the signature of elliptical galaxies, which indicates that their stellar bodies are in late stages of relaxation. Both NGC 1614 and NGC 3256 undergo extended bursts of star formation revealed by their large far-infrared luminosities, and by the presence in the near-infrared spectrum of the 3.28 microns feature (Morwood: 1986, A. A. 166, 4) attributed to polycyclic aromatic hydrocarbons. On the other hand, NGC 7252 has a milder activity of star formation, as suggested by a lower infrared luminosity, and thus seems to have gone past the starburst phase. The CO data were collected with the Swedish-ESO 15 m Submillimeter Telescope (SEST) (beamsize = 43 seconds at 115 GHz, 23 seconds at 230 GHz). For NGC 7252, researchers have only observed the central position in CO-12(1-0). The spectrum is displayed together with an HI spectrum obtained with the Nancay radiotelescope. Researchers mapped NGC 1614 and NGC 3256 in CO-12(1-0) and CO-12(2-1), and also observed the nucleus of NGC 3256 in CO-13(1-0). The various CO spectra obtained towards the nuclei of both galaxies are presented. Characteristics of the galaxies are gathered, with luminosities and masses in solar units and temperatures in Kelvins.

  20. What determines the bulge to disk ratio of galaxies

    NASA Technical Reports Server (NTRS)

    Roos, Nico

    1990-01-01

    Galaxies having the same luminosity may have very different bulge to disk ratios, while the mean bulge to disk ratio slowly increases with total luminosity (Schecter and Dressler, 1987, Sandage et al., 1985). Such a behavior is expected if ellipticals and the spheroidal components of disk galaxies are produced by secondary accretion of galaxies by larger galaxies. This is illustrated using a simple toy model of the evolution of the mass function of galaxies due to galaxy mergers.

  1. Merging galaxies and black hole ejections

    NASA Technical Reports Server (NTRS)

    Valtonen, M. J.

    1990-01-01

    In mergers of galaxies their central black holes are accumulated together. Researchers show that few black hole systems arise which decay through black hole collisions and black hole ejections. The ejection statistics are calculated and compared with two observed systems where ejections have been previously suggested: double radio sources and high redshift quasars near low redshift galaxies. In both cases certain aspects of the associations are explained by the merger hypothesis.

  2. Galaxy And Mass Assembly (GAMA): Galaxy colour gradients versus colour, structure, and luminosity

    NASA Astrophysics Data System (ADS)

    Kennedy, Rebecca; Bamford, Steven P.; Häußler, Boris; Brough, Sarah; Holwerda, Benne; Hopkins, Andrew M.; Vika, Marina; Vulcani, Benedetta

    2016-09-01

    Using single-component fits to SDSS/UKIDSS images of galaxies in the G09 region of the GAMA survey we study radial colour gradients across the galaxy population. We use the multi-wavelength information provided by MegaMorph analysis of galaxy light profiles to calculate intrinsic colour gradients, and divide into six subsamples split by overall Sérsic index (n) and galaxy colour. We find a bimodality in the colour gradients of high- and low-n galaxies in all wavebands which varies with overall galaxy luminosity. Global trends in colour gradients therefore result from combining the contrasting behaviour of a number of different galaxy populations. The ubiquity of strong negative colour gradients supports the picture of inside-out growth through gas accretion for blue, low-n galaxies, and through dry minor mergers for red, high-n galaxies. An exception is the blue high-n population which has properties indicative of dissipative major mergers.

  3. REPRODUCING THE OBSERVED ABUNDANCES IN RCB AND HdC STARS WITH POST-DOUBLE-DEGENERATE MERGER MODELS-CONSTRAINTS ON MERGER AND POST-MERGER SIMULATIONS AND PHYSICS PROCESSES

    SciTech Connect

    Menon, Athira; Herwig, Falk; Denissenkov, Pavel A.; Clayton, Geoffrey C.; Staff, Jan; Pignatari, Marco; Paxton, Bill

    2013-07-20

    The R Coronae Borealis (RCB) stars are hydrogen-deficient, variable stars that are most likely the result of He-CO WD mergers. They display extremely low oxygen isotopic ratios, {sup 16}O/{sup 18}O {approx_equal} 1-10, {sup 12}C/{sup 13}C {>=} 100, and enhancements up to 2.6 dex in F and in s-process elements from Zn to La, compared to solar. These abundances provide stringent constraints on the physical processes during and after the double-degenerate merger. As shown previously, O-isotopic ratios observed in RCB stars cannot result from the dynamic double-degenerate merger phase, and we now investigate the role of the long-term one-dimensional spherical post-merger evolution and nucleosynthesis based on realistic hydrodynamic merger progenitor models. We adopt a model for extra envelope mixing to represent processes driven by rotation originating in the dynamical merger. Comprehensive nucleosynthesis post-processing simulations for these stellar evolution models reproduce, for the first time, the full range of the observed abundances for almost all the elements measured in RCB stars: {sup 16}O/{sup 18}O ratios between 9 and 15, C-isotopic ratios above 100, and {approx}1.4-2.35 dex F enhancements, along with enrichments in s-process elements. The nucleosynthesis processes in our models constrain the length and temperature in the dynamic merger shell-of-fire feature as well as the envelope mixing in the post-merger phase. s-process elements originate either in the shell-of-fire merger feature or during the post-merger evolution, but the contribution from the asymptotic giant branch progenitors is negligible. The post-merger envelope mixing must eventually cease {approx}10{sup 6} yr after the dynamic merger phase before the star enters the RCB phase.

  4. Chemo-dynamical evolution of the Local Group dwarf galaxies: The origin of r-process elements

    NASA Astrophysics Data System (ADS)

    Hirai, Y.; Ishimaru, Y.; Saitoh, T. R.; Fujii, M. S.; Hidaka, J.; Kajino, T.

    2016-06-01

    The r-process elements such as Au, Eu, and U are observed in the extremely metal-poor stars in the Milky Way halo and the Local Group dwarf galaxies. However, the origin of r-process elements has not yet been identified. The abundance of r-process elements of stars in the Local Group galaxies provides clues to clarify early evolutionary history of galaxies. It is important to understand the chemical evolution of the Local Group dwarf galaxies which would be building blocks of the Milky Way. In this study, we perform a series of N-body/smoothed particle hydrodynamic simulations of dwarf galaxies. We show that neutron star mergers can reproduce the observation of r-process elements. We find that the effects of gas mixing processes including metals in the star-forming region of a typical scale of giant molecular clouds ¥sim 10-100 pc play significant roles in the early chemical enrichment of dwarf galaxies. We also find that the star formation rate of ˜ 10^{-3} M_{⊙}yr^{-1} in early epoch (<1 Gyr) of galactic halo evolution is necessary for these results. Our results suggest that neutron star mergers are a major site of r-process.

  5. Do elliptical galaxies have thick disks?

    NASA Technical Reports Server (NTRS)

    Thomson, R. C.; Wright, A. E.

    1990-01-01

    The authors discuss new evidence which supports the existence of thick disks in elliptical/SO galaxies. Numerical simulations of weak interactions with thick disk systems produce shell structures very similar in appearance to those observed in many shell galaxies. The authors think this model presents a more plausible explanation for the formation of shell structures in elliptical/SO galaxies than does the merger model and, if correct, supports the existence of thick disks in elliptical/SO galaxies.

  6. The rate of neutron star binary mergers in the universe - Minimal predictions for gravity wave detectors

    NASA Technical Reports Server (NTRS)

    Phinney, E. S.

    1991-01-01

    Of the many sources which gravitational wave observatories might see, merging neutron star binaries are the most predictable. Their waveforms at the observable frequencies are easy to calculate. And three systems which will merge in less than a Hubble time have already been observed as binary pulsars: two in the disk of the Galaxy, and one in a globular cluster. From the lifetimes and positions of these, a lower limit to the merger rate in the Galaxy and globular cluster system are inferred with confidence. Taking the merger rate in other galaxies to scale with the star formation rate, the merger rate expected in the local universe is computed. An ultraconservative lower limit to the rate gives three per year within 1 Gpc. The best estimate, still conservative in that it considers only systems like those already observed, gives three per year within 200 Mpc. An upper limit of three mergers per year within 23/h Mpc is set by the rate of Type Ib supernovae. The rates of black hole binary mergers and black hole-neutron star binary mergers are model-dependent, but could be comparable to the given rate of neutron-star binary mergers.

  7. Understanding FE Mergers. Research Report

    ERIC Educational Resources Information Center

    Calvert, Natasha

    2009-01-01

    This report presents research findings and discussion to help develop an understanding of what gives rise to mergers and, when they do happen, what makes them work. The research has focused on merger activity between further education (FE) colleges since incorporation in 1993. Mergers are highly contextual, and part of ensuring success is…

  8. JSPAM: Interacting galaxies modeller

    NASA Astrophysics Data System (ADS)

    Wallin, John F.; Holincheck, Anthony; Harvey, Allen

    2015-11-01

    JSPAM models galaxy collisions using a restricted n-body approach to speed up computation. Instead of using a softened point-mass potential, the software supports a modified version of the three component potential created by Hernquist (1994, ApJS 86, 389). Although spherically symmetric gravitationally potentials and a Gaussian model for the bulge are used to increase computational efficiency, the potential mimics that of a fully consistent n-body model of a galaxy. Dynamical friction has been implemented in the code to improve the accuracy of close approaches between galaxies. Simulations using this code using thousands of particles over the typical interaction times of a galaxy interaction take a few seconds on modern desktop workstations, making it ideal for rapidly prototyping the dynamics of colliding galaxies. Extensive testing of the code has shown that it produces nearly identical tidal features to those from hierarchical tree codes such as Gadget but using a fraction of the computational resources. This code was used in the Galaxy Zoo: Mergers project and is very well suited for automated fitting of galaxy mergers with automated pattern fitting approaches such as genetic algorithms. Java and Fortran versions of the code are available.

  9. Spectroscopic Observations of Merging Galaxies

    NASA Astrophysics Data System (ADS)

    Donzelli, C. J.; Pastoriza, M. G.

    2000-07-01

    In this paper we describe the spectroscopic and infrared properties of a sample of 25 merging galaxy pairs, selected from the catalog of Arp & Madore, and we compare them with those observed in a similar sample of interacting galaxies (Donzelli & Pastoriza). It is noted that mergers as well as interacting systems comprise a wide range of spectral types, going from those corresponding to well-evolved stellar populations (older than 200 Myr) to those that show clear signatures of H II regions with stellar populations younger than 8 Myr. However, merger galaxies show on average more excited spectra than interacting pairs, which could be attributed to lower gas metallicity. From the emission lines we also found that merging systems show on average higher (about a factor of 2) star formation rates than interacting galaxies. Classical diagnostic diagrams show that only three of 50 of the galaxies (6%) present some form of nuclear activity: two Seyfert galaxies and one LINER. However, through a detailed analysis of the pure emission-line spectra, we conclude that this fraction may raise up to 23% of the mergers if we consider that some galaxies host a low-luminosity active nucleus surrounded by strong star-forming regions. This latter assumption is also supported by the infrared colors of the galaxies. Regarding to the total infrared luminosities, the merging galaxies show on average an IR luminosity, log(Lir)=10.7, lower than that of interacting systems, log(Lir)=10.9. We find that only three mergers of the sample (12%) can be classified as luminous infrared galaxies, while this fraction increases to 24% in the interacting sample. Based on observations made at CASLEO. Complejo Astronómico El Leoncito is operated under agreement between the Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina and the National Universities of La Plata, Córdoba and San Juan.

  10. Sussing merger trees: stability and convergence

    NASA Astrophysics Data System (ADS)

    Wang, Yang; Pearce, Frazer R.; Knebe, Alexander; Schneider, Aurel; Srisawat, Chaichalit; Tweed, Dylan; Jung, Intae; Han, Jiaxin; Helly, John; Onions, Julian; Elahi, Pascal J.; Thomas, Peter A.; Behroozi, Peter; Yi, Sukyoung K.; Rodriguez-Gomez, Vicente; Mao, Yao-Yuan; Jing, Yipeng; Lin, Weipeng

    2016-06-01

    Merger trees are routinely used to follow the growth and merging history of dark matter haloes and subhaloes in simulations of cosmic structure formation. Srisawat et al. compared a wide range of merger-tree-building codes. Here we test the influence of output strategies and mass resolution on tree-building. We find that, somewhat surprisingly, building the tree from more snapshots does not generally produce more complete trees; instead, it tends to shorten them. Significant improvements are seen for patching schemes that attempt to bridge over occasional dropouts in the underlying halo catalogues or schemes that combine the halo-finding and tree-building steps seamlessly. The adopted output strategy does not affect the average number of branches (bushiness) of the resultant merger trees. However, mass resolution has an influence on both main branch length and the bushiness. As the resolution increases, a halo with the same mass can be traced back further in time and will encounter more small progenitors during its evolutionary history. Given these results, we recommend that, for simulations intended as precursors for galaxy formation models where of the order of 100 or more snapshots are analysed, the tree-building routine should be integrated with the halo finder, or at the very least be able to patch over multiple adjacent snapshots.

  11. Giant branch mixing and the ultimate fate of primordial deuterium in the Galaxy

    NASA Technical Reports Server (NTRS)

    Hogan, Craig J.

    1995-01-01

    The observed cosmic abundances of light elements are most consistent with each other, and with the predictions of big bang nucleosynthesis, if, contrary to the usual assumption, galactic chemical evolution reduces (D = He-3)/H with time. Chemical evolution models which accomplish this require that low-mass stars destroy He-3 in the envelope gas that they return to the interstellar medium. A simple argument based on the rates of limiting nuclear reactions shows that the same giant branch mixing process which appears to be needed to explain the observed C-12/C-13 and C/N ratios in 1-2 solar mass stars would indeed also probably destroy He-3 by a large factor in the bulk of the envelope material. The conclusion is that Galactic He-3/H estimates should not be trusted for setting an upper limit on primordial (D = He-3)/H. This removes the strongest lower bound on the cosmic baryon density from big bang nucleosynthesis and the only argument for abundant baryonic dark matter.

  12. Mergers, Annexations, Dissolutions

    ERIC Educational Resources Information Center

    Russo, Alexander

    2006-01-01

    Consolidations come in all shapes and sizes, including mergers, annexations and dissolutions. They do not all take place under state mandate, however. A handful of districts consolidate every year in some states like Illinois that have large numbers of small districts, many of them dual districts that serve K-8 or 9-12 in the same geographic area.…

  13. Merger and acquisition medicine.

    PubMed

    Powell, G S

    1997-01-01

    This discussion of the ramifications of corporate mergers and acquisitions for employees recognizes that employee adaptation to the change can be a long and complex process. The author describes a role the occupational physician can take in helping to minimize the potential adverse health impact of major organizational change.

  14. Colliding and merging galaxies.

    PubMed

    Schweizer, F

    1986-01-17

    Aided by advances in computer technology and observations from space, astronomers have begun to unravel the mysteries of galaxy formation and evolution. Galaxies evolve by interacting with their environment and especially with each other. During brief but often fierce galactic encounters, gravitational forces generate strong tides that survive as telltale signatures for billions of years. Because these so-called collisions dissipate orbital energy, galaxies on bound orbits may eventually merge. Collisions and mergers are responsible for a great variety of phenomena, including the triggering of widespread star formation in galaxies and the fueling of nuclear activity in quasars. Evidence is accumulating that not all galaxies formed shortly after the Big Bang. A sizable fraction of them may have formed later, and many are still experiencing significant dynamical evolution. PMID:17769643

  15. Isolated Galaxies versus Interacting Pairs with MaNGA

    NASA Astrophysics Data System (ADS)

    Fernández, María; Yuan, Fangting; Shen, Shiyin; Yin, Jun; Chang, Ruixiang; Feng, Shuai

    2015-10-01

    We present preliminary results of the spectral analysis on the radial distributions of the star formation history in both, a galaxy merger and a spiral isolated galaxy observed with MaNGA. We find that the central part of the isolated galaxy is composed by older stellar population ($\\sim$2 Gyr) than in the outskirts ($\\sim$7 Gyr). Also, the time-scale is gradually larger from 1 Gyr in the inner part to 3 Gyr in the outer regions of the galaxy. In the case of the merger, the stellar population in the central region is older than in the tails, presenting a longer time-scale in comparison to central part in the isolated galaxy. Our results are in agreement with a scenario where spiral galaxies are built from inside-out. In the case of the merger, we find evidence that interactions enhance star formation in the central part of the galaxy.

  16. Are starbursts really mergers at high redshift? A kinematic investigation

    NASA Astrophysics Data System (ADS)

    Dickinson, Mark; Kartaltepe, Jeyhan; Weiner, Ben; Kassin, Susan; Bournaud, Frederic; Eisenhardt, Peter; Inami, Hanae; Pforr, Janine

    2013-08-01

    Star-forming galaxies obey a remarkable ``main sequence'' correlation between their star formation rates (SFR) and stellar masses (M^ast), whose normalization (the specific star formation rate or SSFR) evolves with redshift. A minority population of starbursts with much higher SSFR are found at all redshifts, and may represent an important stage in the transformation and evolution of galaxies, fueling AGN activity and building bulges and spheroids. Locally, starbursting ultraluminous infrared galaxies are clearly the product of galaxy mergers, but this is much less clear at z > 1, where ULIRGs are hundreds of times more common than today, but where HST observations reveal only loose correlations between irregular/disturbed morphology and starburst activity. We propose to use MOSFIRE spectroscopy to measure kinematics for >80 Herschel far-IR-selected galaxies at z 1.5, distributed over the SFR-M^ast plane. We will look for kinematic differences (larger σ_V or σ/V_rot at fixed M^ast; increased line asymmetry, and a new kinematic irregularity index optimized from numerical simulations) between main sequence and starburst galaxies that would indicate a prevalence of merger activity at higher SSFR.

  17. The Merger Dynamics of Abell 2061

    NASA Astrophysics Data System (ADS)

    Bailey, Avery; Sarazin, Craig L.; Clarke, Tracy E.; Chatzikos, Marios; Hogge, Taylor; Wik, Daniel R.; Rudnick, Lawrence; Farnsworth, Damon; Van Weeren, Reinout J.; Brown, Shea

    2016-04-01

    Abell 2061, a galaxy cluster at a redshift of z=.0784 in the Corona Borealis Supercluster, displays features in both the X-ray and radio indicative of merger activity. Observations by the GBT and the Westerbork Northern Sky Survey (WENSS) have indicated the presence of an extended, central radio halo/relic coincident with the cluster's main X-ray emission and a bright radio relic to the SW of the center of the cluster. Previous observations by ROSAT, Beppo-SAX, and Chandra show an elongated structure (referred to as the ‘Plume’), emitting in the soft X-ray and stretching to the NE of the cluster’s center. The Beppo-SAX and Chandra observations also suggest the presence of a hard X-ray shock slightly NE of the cluster’s center. Here we present the details of an August 2013 XMM-Newton observation of A2061 which has greater field of view and longer exposure (48.6 ks) than the previous Chandra observation. We present images displaying the cluster’s soft and hard X-ray emission and also a temperature map of the cluster. This temperature map highlights the presence of a previously unseen cool region of the cluster which we hypothesize to be the cool core of one of the subclusters involved in this merger. We also discuss the structural similarity of this cluster with a simulated high mass-ratio offset cluster merger taken from the Simulation Library of Astrophysical cluster Mergers (SLAM). This simulation would suggest that the Plume is gas from the cool core of a subcluster which is now falling back into the center of the cluster after initial core passage.

  18. A merger shock in A2034

    SciTech Connect

    Owers, Matt S.; Couch, Warrick J.; Hopkins, Andrew M.; Nulsen, Paul E. J.; Ma, Cheng-Jiun; David, Laurence P.; Forman, William R.; Jones, Christine; Van Weeren, Reinout J.

    2014-01-10

    We present a 250 ks Chandra observation of the cluster merger A2034 with the aim of understanding the nature of a sharp edge previously characterized as a cold front. The new data reveal that the edge is coherent over a larger opening angle and is significantly more bow-shock-shaped than previously thought. Within ∼27° about the axis of symmetry of the edge, the density, temperature, and pressure drop abruptly by factors of 1.83{sub −0.08}{sup +0.09}, 1.85{sub −0.41}{sup +0.41}, and 3.4{sub −0.7}{sup +0.8}, respectively. This is inconsistent with the pressure equilibrium expected of a cold front and we conclude that the edge is a shock front. We measure a Mach number M=1.59{sub −0.07}{sup +0.06} and corresponding shock velocity v {sub shock} ≅ 2057 km s{sup –1}. Using spectra collected at the MMT with the Hectospec multi-object spectrograph, we identify 328 spectroscopically confirmed cluster members. Significantly, we find a local peak in the projected galaxy density associated with a bright cluster galaxy that is located just ahead of the nose of the shock. The data are consistent with a merger viewed within ∼23° of the plane of the sky. The merging subclusters are now moving apart along a north-south axis approximately 0.3 Gyr after a small impact parameter core passage. The gas core of the secondary subcluster, which was driving the shock, appears to have been disrupted by the merger. Without a driving 'piston,' we speculate that the shock is dying. Finally, we propose that the diffuse radio emission near the shock is due to the revival of pre-existing radio plasma that has been overrun by the shock.

  19. Astrophysics of Super-Massive Black Hole Mergers

    NASA Technical Reports Server (NTRS)

    Schnittman, Jeremy D.

    2013-01-01

    We present here an overview of recent work in the subject of astrophysical manifestations of super-massive black hole (SMBH) mergers. This is a field that has been traditionally driven by theoretical work, but in recent years has also generated a great deal of interest and excitement in the observational astronomy community. In particular, the electromagnetic (EM) counterparts to SMBH mergers provide the means to detect and characterize these highly energetic events at cosmological distances, even in the absence of a space-based gravitational-wave observatory. In addition to providing a mechanism for observing SMBH mergers, EM counterparts also give important information about the environments in which these remarkable events take place, thus teaching us about the mechanisms through which galaxies form and evolve symbiotically with their central black holes.

  20. The "Valencian-GALAXY-zoo"

    NASA Astrophysics Data System (ADS)

    Navarro-González, J.; Ricciardelli, E.; Quilis, V.; Vazdekis, A.

    2013-05-01

    We present a sample of the most massive galaxies (M^{*}>10^{11}{M}_{⊙}) found at z=0 in a fully cosmological simulation performed with MASCLET (Mesh Adaptative Scheme for CosmologicaL structurE evoluTion). te{quilis04} The Upper (lower) pannel shows the merger (quiet) galaxies depending on elipticity (ɛ) and velocity vs velocity-dispersion (v/σ). We use the ssp MILES models to make our galaxies bright and study some observables of our fully cosmological synthetic galaxies.

  1. Kinematics of luminous blue compact galaxies

    NASA Astrophysics Data System (ADS)

    Östlin, Göran; Amram, Philippe; Boulesteix, Jaques; Bergvall, Nils; Masegosa, Josefa; Márquez, Isabel

    We present results from a Fabry-Perot study of the Hα velocity fields and morphologies of a sample of luminous blue compact galaxies. We estimate masses from photometry and kinematics and show that many of these BCGs are not rotationally supported. Mergers or strong interactions appear to be the triggering mechanism of the extreme starbursts seen in these galaxies.

  2. Mergers of multimetallic globular clusters: the role of dynamics

    NASA Astrophysics Data System (ADS)

    Amaro-Seoane, Pau; Konstantinidis, Symeon; Brem, Patrick; Catelan, Márcio

    2013-10-01

    Hubble Space Telescope observations of globular clusters (GCs) in the Antennae galaxy show clusters of clusters, or regions in the galaxy that span hundreds of parsec, where many of the GCs are doomed to collide, and eventually merge. Several such objects appear likely to present a significant range in ages, hence possibly metallicities, and their merger could plausibly lead to multimetallic GCs. Here we explore this process with direct-summation N-body simulations with graphics processing unit hardware. Our results reveal that colliding GCs with different metallicities and ages can produce a GC with multiplicity and occupation fractions not unlike those observed in multimetallic clusters. In our simulations, the merged clusters have a phase with a larger amount of flattening than average, as a consequence of rapid rotation - thus suggesting that relatively recent mergers may play a role in producing highly flattened, multimetallic clusters. We additionally explore the role of the King parameter of the cluster in the occupation fractions with a set of 160 direct-summation simulations and find that for equal size clusters the King parameter of the progenitor clusters determines the occupation fractions in the merger product, while in unequal size mergers the size of the clusters dominates the distribution of stars in the new GC. In particular, we find that the observed distribution of populations in ω Cen can be described to some extent with our dynamical models.

  3. Dynamical evolution of primordial dark matter haloes through mergers

    NASA Astrophysics Data System (ADS)

    Ogiya, Go; Nagai, Daisuke; Ishiyama, Tomoaki

    2016-09-01

    Primordial dark matter (DM) haloes are the smallest gravitationally bound DM structures from which the first stars, black holes and galaxies form and grow in the early universe. However, their structures are sensitive to the free streaming scale of DM, which in turn depends on the nature of DM particles. In this work, we test the hypothesis that the slope of the central cusps in primordial DM haloes near the free streaming scale depends on the nature of merging process. By combining and analysing data from a cosmological simulation with the cutoff in the small-scale matter power spectrum as well as a suite of controlled, high-resolution simulations of binary mergers, we find that (1) the primordial DM haloes form preferentially through major mergers in radial orbits; (2) their central DM density profile is more susceptible to a merging process compared to that of galaxy- and cluster-sized DM haloes; (3) consecutive major mergers drive the central density slope to approach the universal form characterized by the Navarro-Frenk-White profile, which is shown to be robust to the impacts of mergers and serves an attractor solution for the density structure of DM haloes. Our work highlights the importance of dynamical processes on the structure formation during the Dark Ages.

  4. Dark Matter Equilibria in Galaxies and Galaxy Systems

    NASA Astrophysics Data System (ADS)

    Lapi, A.; Cavaliere, A.

    2009-02-01

    In the dark matter (DM) halos embedding galaxies and galaxy systems the "entropy" K ≡ σ2/ρ2/3 (a quantity that combines the radial velocity dispersion σ with the density ρ) is found from intensive N-body simulations to follow a power-law run K vprop r α throughout the halos' bulk, with α around 1.25. Taking up from phenomenology just that α≈ const. applies, we cut through the rich analytic contents of the Jeans equation describing the self-gravitating equilibria of the DM; we specifically focus on computing and discussing a set of novel physical solutions that we name α-profiles, marked by the entropy slope α itself, and by the maximal gravitational pull κcrit(α) required for a viable equilibrium to hold. We then use an advanced semianalytic description for the cosmological buildup of halos to constrain the values of α to within the narrow range 1.25-1.29 from galaxies to galaxy systems; these correspond to halos' current masses in the range 1011-1015 M sun. Our range of α applies since the transition time that—both in our semianalytic description and in state-of-the-art numerical simulations—separates two development stages: an early violent collapse that comprises a few major mergers and enforces dynamical mixing, followed by smoother mass addition through slow accretion. In our range of α we provide a close fit for the relation κcrit(α), and discuss a related physical interpretation in terms of incomplete randomization of the infall kinetic energy through dynamical mixing. We also give an accurate analytic representation of the α-profiles with parameters derived from the Jeans equation; this provides straightforward precision fits to recent detailed data from gravitational lensing in and around massive galaxy clusters, and thus replaces the empirical Navarro-Frenk-White formula relieving the related problems of high concentration and old age. We finally stress how our findings and predictions as to α and κcrit contribute to

  5. The environmental history of group and cluster galaxies in a Λ cold dark matter universe

    NASA Astrophysics Data System (ADS)

    De Lucia, Gabriella; Weinmann, Simone; Poggianti, Bianca M.; Aragón-Salamanca, Alfonso; Zaritsky, Dennis

    2012-06-01

    We use publicly available galaxy merger trees, obtained applying semi-analytic techniques to a large high-resolution cosmological simulation, to study the environmental history of group and cluster galaxies. Our results highlight the existence of an intrinsic history bias which makes the nature versus nurture (as well as the mass versus environment) debate inherently ill posed. In particular, we show that (i) surviving massive satellites were accreted later than their less massive counterparts, from more massive haloes and (ii) the mixing of galaxy populations is incomplete during halo assembly, which creates a correlation between the time a galaxy becomes satellite and its present distance from the parent halo centre. The weakest trends are found for the most massive satellites, as a result of efficient dynamical friction and late formation times of massive haloes. A large fraction of the most massive group/cluster members are accreted on to the main progenitor of the final halo as central galaxies, while about half of the galaxies with low and intermediate stellar masses are accreted as satellites. Large fractions of group and cluster galaxies (in particular those of low stellar mass) have therefore been ‘pre-processed’ as satellites of groups with mass ˜1013 M⊙. To quantify the relevance of hierarchical structure growth on the observed environmental trends, we have considered observational estimates of the passive galaxy fractions and their variation as a function of halo mass and clustercentric distance. Comparisons with our theoretical predictions require relatively long times (˜5-7 Gyr) for the suppression of star formation in group and cluster satellites. It is unclear how such a gentle mode of strangulation can be achieved by simply relaxing the assumption of instantaneous stripping of the hot gas reservoir associated with accreting galaxies, or if the difficulties encountered by recent galaxy formation models in reproducing the observed trends

  6. Prevalence of galaxy-galaxy interactions in AGN hosts

    NASA Astrophysics Data System (ADS)

    Lim, Jeremy; Kuo, Cheng-Yu; Tang, Ya-Wen; Greene, Jenny; Ho, Paul T. P.

    2004-11-01

    Studies in optical starlight have failed to reach a consensus on the importance of either galaxy interactions, bars, or nuclear spirals in triggering luminous active galactic nuclei (AGNs). Here, we present the first systematic imaging study of Seyfert (disk) galaxies in the 21-cm line of neutral atomic hydrogen (HI) gas. HI is the most sensitive and enduring tracer of galaxy interactions, and can reveal tidal features not otherwise visible in optical starlight. Our sample comprises all twenty-eight galaxies in the Véron-Cetty & Véron (1998) catalog with nuclear magnitudes -19 ≥ MB > -23 (including Seyfert, LINER, and HII galaxies) at 0.015 ≤ z ≤ 0.017 in the northern hemisphere, and a matched control sample of twenty-seven inactive galaxies at z≈0.008. We have detected nearly all the galaxies observed, and find a much higher incidence of tidal interactions -- usually not seen in optical starlight -- among the Seyfert galaxies by comparison with the matched control sample. Those Seyferts with uncertain or no clear tidal features show disturbed HI morphologies and/or kinematics, as well as HI companion galaxies, more frequently than the control sample. Our study suggests that the undisturbed optical appearence of active galaxies may be deceptive, and imply that galaxy-galaxy interactions trigger a significant fraction luminous AGNs at low redshifts. The majority of the Seyfert galaxies in our sample appear to be at a relatively early stage of an encounter rather than late in a merger.

  7. When Worlds Collide: Chandra Observes Titanic Merger

    NASA Astrophysics Data System (ADS)

    2002-04-01

    NASA's Chandra X-ray Observatory has provided the best X-ray image yet of two Milky Way-like galaxies in the midst of a head-on collision. Since all galaxies - including our own - may have undergone mergers, this provides insight into how the universe came to look as it does today. Astronomers believe the mega-merger in the galaxy known as Arp 220 triggered the formation of huge numbers of new stars, sent shock waves rumbling through intergalactic space, and could possibly lead to the formation of a supermassive black hole in the center of the new conglomerate galaxy. The Chandra data also suggest that merger of these two galaxies began only 10 million years ago, a short time in astronomical terms. "The Chandra observations show that things really get messed up when two galaxies run into each other at full speed," said David Clements of the Imperial College, London, one of the team members involved in the study. "The event affects everything from the formation of massive black holes to the dispersal of heavy elements into the universe." Arp 220 is considered to be a prototype for understanding what conditions were like in the early universe, when massive galaxies and supermassive black holes were presumably formed by numerous galaxy collisions. At a relatively nearby distance of about 250 million light years, Arp 220 is the closest example of an "ultra-luminous" galaxy, one that gives off a trillion times as much radiation as our Sun. The Chandra image shows a bright central region at the waist of a glowing, hour-glass-shaped cloud of multimillion-degree gas. Rushing out of the galaxy at hundreds of thousands of miles per hour, the super-heated as forms a "superwind," thought to be due to explosive activity generated by the formation of hundreds of millions of new stars. Farther out, spanning a distance of 75,000 light years, are giant lobes of hot gas that could be galactic remnants flung into intergalactic space by the early impact of the collision. Whether the

  8. NTT images of ultraluminous infrared galaxies

    NASA Technical Reports Server (NTRS)

    Melnick, J.; Mirabel, I. F.

    1990-01-01

    New Technology Telescope (NTT) images of 16 southern ultraluminous infrared (LIR greater than 10 to the 12th solar luminosities) galaxies in the Local Universe (z less than 0.13) are presented. All these galaxies are strongly interacting systems showing double nuclei, wisps, and tails that are characteristic of advanced mergers. The most spectacular instance of these cosmic accidents is the 'superantenna', a system with long slender tails that extend over 500 kpc. It is concluded that ultraluminous infrared galaxies are mergers of giant spiral galaxies, and that the distinguishing features of tidal interactions in this type of galaxies become blurred at higher redshifts. The CCD images suggest the existence of a critical separation between the colliding galaxies of about 10 kpc at which the merging systems become ultraluminous in the infrared.

  9. Hydrogen in hot subdwarfs formed by double helium white dwarf mergers

    NASA Astrophysics Data System (ADS)

    Hall, Philip D.; Jeffery, C. Simon

    2016-09-01

    Isolated hot subdwarfs might be formed by the merging of two helium-core white dwarfs. Before merging, helium-core white dwarfs have hydrogen-rich envelopes and some of this hydrogen may survive the merger. We calculate the mass of hydrogen that is present at the start of such mergers and, with the assumption that hydrogen is mixed throughout the disrupted white dwarf in the merger process, estimate how much can survive. We find a hydrogen mass of up to about 2 × 10-3 M⊙ in merger remnants. We make model merger remnants that include the hydrogen mass appropriate to their total mass and compare their atmospheric parameters with a sample of apparently isolated hot subdwarfs, hydrogen-rich sdBs. The majority of these stars can be explained as the remnants of double helium white dwarf mergers.

  10. The evolution of early-type galaxies in clusters from z˜ 0.8 to z ˜ 0: the ellipticity distribution and the morphological mix

    NASA Astrophysics Data System (ADS)

    Vulcani, Benedetta; Poggianti, Bianca M.; Dressler, Alan; Fasano, Giovanni; Valentinuzzi, Tiziano; Couch, Warrick; Moretti, Alessia; Simard, Luc; Desai, Vandana; Bettoni, Daniela; D'Onofrio, Mauro; Cava, Antonio; Varela, Jesús

    2011-05-01

    We present the ellipticity distribution and its evolution for early-type galaxies in clusters from z˜ 0.8 to the current epoch, based on the WIde-field Nearby Galaxy-cluster Survey (0.04 ≤z≤ 0.07) and the ESO Distant Cluster Survey (0.4 ≤z≤ 0.8). We first investigate a mass-limited sample and we find that above a fixed mass limit (M*≥ 1010.2 M⊙), the ellipticity (ɛ) distribution of early-type galaxies notably evolves with redshift. In the local Universe, there are proportionally more galaxies with higher ellipticity, hence flatter, than in distant clusters. This evolution is due partly to the change in the mass distribution and mainly to the change in the morphological mix with z among the early types, the fraction of ellipticals goes from ˜70 per cent at high z to ˜40 per cent at low z). Analysing separately the ellipticity distribution of the different morphological types, we find no evolution both for ellipticals and for S0s. However, for ellipticals a change with redshift in the median value of the distributions is detected. This is due to a larger population of very round (ɛ < 0.05) elliptical galaxies at low z. In order to compare our finding to previous studies, we also assemble a magnitude-‘delimited’ sample that consists of early-type galaxies on the red sequence with -19.3 > MB+ 1.208z > -21. Analysing this sample, we do not recover exactly the same results as the mass-limited sample. This indicates that the selection criteria are crucial to characterize the galactic properties: the choice of the magnitude-‘delimited’ sample implies the loss of many less-massive galaxies and so it biases the final conclusions. Moreover, although we are adopting the same selection criteria, our results in the magnitude-‘delimited’ sample are also not in agreement with those of Holden et al. This is due to the fact that our and their low-zsamples have a different magnitude distribution because the Holden et al. sample suffers from incompleteness

  11. Are starbursts really mergers at high redshift? A kinematic investigation

    NASA Astrophysics Data System (ADS)

    Dickinson, Mark; Kartaltepe, Jeyhan; Weiner, Ben; Kassin, Susan; Bournaud, Frederic; Eisenhardt, Peter; Inami, Hanae; Pforr, Janine

    2014-02-01

    Star-forming galaxies obey a remarkable ``main sequence'' correlation between their star formation rates (SFR) and stellar masses (M^ast), whose normalization (the specific star formation rate, SSFR) evolves with redshift. A minority of starbursts, with much higher SSFR, are found at all redshifts, and may be an important evolutionary stage, fueling AGN activity and building bulges and spheroids. Locally, starbursting ultraluminous infrared galaxies are the product of galaxy mergers, but this is not so clear at z > 1, where ULIRGs are hundreds of times more common, but where HST images reveal only loose correlations between irregular/disturbed morphology and starburst activity. We propose to use MOSFIRE spectroscopy to measure kinematics for 80 Herschel far-IR-selected galaxies at z 1.5, distributed over the SFR-M^ast plane. We will look for kinematic differences (larger σ_V or σ/V_rot at fixed M^ast; increased line asymmetry, and a new kinematic irregularity index optimized from numerical simulations) between main sequence and starburst galaxies that would indicate a prevalence of merger activity at higher SSFR. This program was allocated 1 night in 2013B, but was scheduled so that it will be impossible to observe our fields in 3 position angles as required. We request additional time in 2014A to complete the observations as planned.

  12. ALMA Observations of the IR-Bright Merger VV114

    NASA Astrophysics Data System (ADS)

    Saito, T.; Iono, D.; Yun, M.; Ueda, J.; Espada, D.; Hagiwara, Y.; Imanishi, M.; Motohara, K.; Nakanishi, K.; Sugai, H.; Tateuchi, K.; Kawabe, R.

    2013-10-01

    The importance of galaxy mergers in the context of galaxy formation and evolution have been clearly demonstrated in various numerical simulations. The violent merger event not only results in large scale morphological transformation and mass accumulation, but it also triggers gas compression, turbulence, and gas inflow to the galactic center region. We present high resolution 12CO(1-0), 13CO(1-0), HCN(4-3), HCO+(4-3), CN(13/2-01/2), CN(11/2-01/2), CS(2-1), CH3OH(2-1), and CS(7-6) maps of an IR-bright late stage merger VV114 obtained during cycle 0 of ALMA. An unresolved strong HCN(4-3) source is detected at the nucleus of VV114E and has a high velocity dispersion (≃ 300 km s-1), and these features are also shown in HCO+(4-3). These evidences suggest that this source has an obscured AGN. We also find a clumpy filament with resolved dense gas across the galaxy disks. This filament has clumpy star-forming regions at each regions. Each region of this filament clearly shows the physical and chemical differences in our molecular line results.

  13. THE SPACE DENSITY EVOLUTION OF WET AND DRY MERGERS IN THE CANADA-FRANCE-HAWAII TELESCOPE LEGACY SURVEY

    SciTech Connect

    Chou, Richard C. Y.; Abraham, Roberto G.; Bridge, Carrie R. E-mail: abraham@astro.utoronto.ca

    2011-03-15

    We analyze 1298 merging galaxies with redshifts up to z = 0.7 from the Canada-France-Hawaii Telescope Legacy Survey, taken from the catalog presented in the work of Bridge et al. By analyzing the internal colors of these systems, we show that the so-called wet and dry mergers evolve in different senses, and quantify the space densities of these systems. The local space density of wet mergers is essentially identical to the local space density of dry mergers. The evolution in the total merger rate is modest out to z {approx} 0.7, although the wet and dry populations have different evolutionary trends. At higher redshifts, dry mergers make a smaller contribution to the total merging galaxy population, but this is offset by a roughly equivalent increase in the contribution from wet mergers. By comparing the mass density function of early-type galaxies to the corresponding mass density function for merging systems, we show that not all the major mergers with the highest masses (M{sub stellar}>10{sup 11} M{sub sun}) will end up with the most massive early-type galaxies, unless the merging timescale is dramatically longer than that usually assumed. On the other hand, the usually assumed merging timescale of {approx}0.5-1 Gyr is quite consistent with the data if we suppose that only less massive early-type galaxies form via mergers. Since low-intermediate-mass ellipticals are 10-100 times more common than their most massive counterparts, the hierarchical explanation for the origin of early-type galaxies may be correct for the vast majority of early types, even if incorrect for the most massive ones.

  14. Tidal Tales of Minor Mergers: Star Formation in Minor Merger Tidal Tails

    NASA Astrophysics Data System (ADS)

    Knierman, Karen; Scowen, P.; Groppi, C.; Veach, T.; Knezek, P. M.; Mullan, B.; Konstanopoulos, I. S.; Charlton, J. C.; Jansen, R.; Wehner, E.

    2014-07-01

    While major mergers and their tidal debris are well studied, they are less common than minor mergers and likely played a role in forming most large galaxies, including the Milky Way. Tidal debris regions have large amounts of neutral gas but a lower gas density and may have higher turbulence.Star formation tracers such as young star cluster populations and Halpha, CO, and CII emission were studied to determine the different factors that may influence star formation in tidal debris. These tracers were compared to the reservoirs of gas available for star formation to estimate the star formation efficiency (SFE). The SFR of tidal debris can reach up to 50% of the total star formation in the system. The SFE of tidal tails in minor mergers can range over orders of magnitude on both local and global scales. From the tidal debris environments in this study, this variance appears to stem from the formation conditions of the debris. A large survey with TMT as well as the continuing programs of ALMA and the EVLA can provide a larger sample of environments to study the threshold for star formation and can inform star formation models, particularly at low densities.

  15. Attribution of halo merger mass ratio and star formation rate density

    NASA Astrophysics Data System (ADS)

    Kim, Sungeun; Jo, Jeong-woon; Hwang, Jihe; Youn, Soyoung; Park, Boha

    2016-06-01

    We have used codes for implementing the merger tree algorithm by Cole et al. (2007) and Parkinson et al. (2008) and derived the halo merger mass ratio of protocluster of galaxies across the cosmic time. The authors compare the observed and simulated star formation rates reported by the various groups and derive the star formation rate densities at different red-shifts. This study implies that an investigation of different mass variables should be incorporated into the analysis in order to accurately estimate cumulative star formation rates of galaxies and star formation rate densities as a function of red-shifts.

  16. Ripples in disk galaxies

    NASA Astrophysics Data System (ADS)

    Schweizer, Francois; Seitzer, Patrick

    1988-05-01

    The authors present evidence that ripples ("shells") occur not only in ellipticals, as hitherto believed, but also in disk galaxies of Hubble types S0, S0/Sa, and Sa, and probably even in the Sbc galaxy NGC 3310. This evidence includes the discovery of ripples in the northern disk galaxies NGC 3032, 3619, 4382, 5548 (a Seyfert), and 5739, and in the "diskless S0" NGC 7600. It is argued that these ripples cannot usually have resulted form transient spiral waves or other forced vibrations in the existing disks, but instead consist of extraneous sheet-like matter. The frequent presence of major disk-shaped companions suggests that ripple material may be acquired not only through wholesale mergers, but also through mass transfer from neighbor galaxies.

  17. Hospital mergers and market overlap.

    PubMed Central

    Brooks, G R; Jones, V G

    1997-01-01

    OBJECTIVE: To address two questions: What are the characteristics of hospitals that affect the likelihood of their being involved in a merger? What characteristics of particular pairs of hospitals affect the likelihood of the pair engaging in a merger? DATA SOURCES/STUDY SETTING: Hospitals in the 12 county region surrounding the San Francisco Bay during the period 1983 to 1992 were the focus of the study. Data were drawn from secondary sources, including the Lexis/Nexis database, the American Hospital Association, and the Office of Statewide Health Planning and Development of the State of California. STUDY DESIGN: Seventeen hospital mergers during the study period were identified. A random sample of pairs of hospitals that did not merge was drawn to establish a statistically efficient control set. Models constructed from hypotheses regarding hospital and market characteristics believed to be related to merger likelihood were tested using logistic regression analysis. DATA COLLECTION: See Data Sources/Study Setting. PRINCIPAL FINDINGS: The analysis shows that the likelihood of a merger between a particular pair of hospitals is positively related to the degree of market overlap that exists between them. Furthermore, market overlap and performance difference interact in their effect on merger likelihood. In an analysis of individual hospitals, conditions of rivalry, hospital market share, and hospital size were not found to influence the likelihood that a hospital will engage in a merger. CONCLUSIONS: Mergers between hospitals are not driven directly by considerations of market power or efficiency as much as by the existence of specific merger opportunities in the hospitals' local markets. Market overlap is a condition that enables a merger to occur, but other factors, such as the relative performance levels of the hospitals in question and their ownership and teaching status, also play a role in influencing the likelihood that a merger will in fact take place. PMID

  18. OUR MILKY WAY AS A PURE-DISK GALAXY-A CHALLENGE FOR GALAXY FORMATION

    SciTech Connect

    Shen Juntai; Rich, R. Michael; Howard, Christian D.; Kormendy, John; De Propris, Roberto; Kunder, Andrea

    2010-09-01

    Bulges are commonly believed to form in the dynamical violence of galaxy collisions and mergers. Here, we model the stellar kinematics of the Bulge Radial Velocity Assay (BRAVA) and find no sign that the Milky Way contains a classical bulge formed by scrambling pre-existing disks of stars in major mergers. Rather, the bulge appears to be a bar seen somewhat end-on, as hinted from its asymmetric boxy shape. We construct a simple but realistic N-body model of the Galaxy that self-consistently develops a bar. The bar immediately buckles and thickens in the vertical direction. As seen from the Sun, the result resembles the boxy bulge of our Galaxy. The model fits the BRAVA stellar kinematic data covering the whole bulge strikingly well with no need for a merger-made classical bulge. The bar in our best-fit model has a half-length of {approx}4 kpc and extends 20{sup 0} from the Sun-Galactic center line. We use the new kinematic constraints to show that any classical bulge contribution cannot be larger than {approx}8% of the disk mass. Thus, the Galactic bulge is a part of the disk and not a separate component made in a prior merger. Giant, pure-disk galaxies like our own present a major challenge to the standard picture in which galaxy formation is dominated by hierarchical clustering and galaxy mergers.

  19. The Insignificance of Major Mergers in Driving Star Formation at z approximately equal to 2

    NASA Technical Reports Server (NTRS)

    Kaviraj, S.; Cohen, S.; Windhorst, R. A.; Silk, J.; O'Connell, R. W.; Dopita, M. A.; Dekel, A.; Hathi, N. P.; Straughn, A.; Rutkowski, M.

    2012-01-01

    We study the significance of major mergers in driving star formation in the early Universe, by quantifying the contribution of this process to the total star formation budget in 80 massive (M(*) > 10(exp 10) Solar M) galaxies at z approx = 2. Employing visually-classified morphologies from rest-frame V-band HST imaging, we find that 55(exp +/-14)% of the star formation budget is hosted by non-interacting late-types, with 27(exp +/-18% in major mergers and 18(exp +/- 6)% in spheroids. Given that a system undergoing a major merger continues to experience star formation driven by other processes at this epoch (e.g. cold accretion, minor mergers), approx 27% is a likely upper limit for the major-merger contribution to star formation activity at this epoch. The ratio of the average specific star formation rate in major mergers to that in the non-interacting late-types is approx 2.2:1, suggesting that the typical enhancement of star formation due to major merging is modest and that just under half the star formation in systems experiencing major mergers is unrelated to the merger itself. Taking this into account, we estimate that the actual major-merger contribution to the star formation budget may be as low as approx 15%. While our study does not preclude a major-merger-dominated. era in the very early Universe, if the major-merger contribution to star formation does not evolve significantly into larger look-back times, then this process has a relatively insignificant role in driving stellar mass assembly over cosmic time.

  20. Evolution of bulgeless low surface brightness galaxies

    NASA Astrophysics Data System (ADS)

    Shao, X.; Hammer, F.; Yang, Y. B.; Liang, Y. C.

    Based on the Sloan Digital Sky Survey DR 7, we investigate the environment, morphology, and stellar population of bulgeless low surface-brightness (LSB) galaxies in a volume-limited sample with redshift ranging from 0.024 to 0.04 and M r <= -18.8. We find that, for bulgeless galaxies, the surface brightness does not depend on the environment. Irregular LSB galaxies have more young stars and are more metal-poor than regular LSB galaxies. These results suggest that the evolution of LSB galaxies may be driven by their dynamics, including mergers rather than by their large-scale environment.

  1. Zooming in on major mergers: dense, starbursting gas in cosmological simulations

    NASA Astrophysics Data System (ADS)

    Sparre, Martin; Springel, Volker

    2016-11-01

    We introduce the `Illustris zoom simulation project', which allows the study of selected galaxies forming in the Λcold dark matter (ΛCDM) cosmology with a 40 times better mass resolution than in the parent large-scale hydrodynamical Illustris simulation. We here focus on the starburst properties of the gas in four cosmological simulations of major mergers. The galaxies in our high-resolution zoom runs exhibit a bursty mode of star formation with gas consumption time-scales 10 times shorter than for the normal star formation mode. The strong bursts are only present in the simulations with the highest resolution, hinting that a too low resolution is the reason why the original Illustris simulation showed a dearth of starburst galaxies. Very pronounced bursts of star formation occur in two out of four major mergers we study. The high star formation rates, the short gas consumption time-scales and the morphology of these systems strongly resemble observed nuclear starbursts. This is the first time that a sample of major mergers is studied through self-consistent cosmological hydrodynamical simulations instead of using isolated galaxy models setup on a collision course. We also study the orbits of the colliding galaxies and find that the starbursting gas preferentially appears in head-on mergers with very high collision velocities. Encounters with large impact parameters do typically not lead to the formation of starbursting gas.

  2. Gravitational Wave Driven Mergers and Coalescence Time of Supermassive Black Holes

    NASA Astrophysics Data System (ADS)

    Khan, Fazeel Mahmood; Berczik, Peter; Just, Andreas

    2016-07-01

    The evolution of Supermassive Black Holes (SMBHs) initially embedded in the centers of merging galaxies is studied from the onset of galaxy mergers till coalescence. We performed direct N-body simulations using the highly efficient and massively parallel phi-GPU code capable to run on GPU supported high performance computer clusters. Post-Newtonian terms up to order 3.5 are used to drive the SMBH binary evolution in the relativistic regime. We find that SMBH binaries coalesce well within one billion year when our models are scaled to dense cuspy galaxies at low redshift. Here higher central densities provide larger supply of stars to efficiently extract energy from the SMBH binary orbit and shrink it to the phase where gravitational wave (GW) emission becomes dominant leading to the coalescence of the SMBHs. On the other hand, mergers of models that are representative of giant elliptical galaxies having central cores result in less efficient extraction of binary's orbit energy due to the lower stellar densities in the center. However, high value of eccentricities witnessed for SMBH binaries in such galaxy mergers ensure that the GW emission dominated phase sets in at larger values of the semi-major axis. This helps to compensate for the less efficient energy extraction during the phase dominated by stellar encounters resulting in mergers of SMBHs in about one billion years after the formation of binary.

  3. Welfare standards in hospital mergers.

    PubMed

    Katona, Katalin; Canoy, Marcel

    2013-08-01

    There is a broad literature on the consequences of applying different welfare standards in merger control. Total welfare is usually defined as the sum of consumer and provider surplus, i.e., potential external effects are not considered. The general result is then that consumer welfare is a more restrictive standard than total welfare, which is advantageous in certain situations. This relationship between the two standards is not necessarily true when the merger has significant external effects. We model mergers on hospital markets and allow for not-profit-maximizing behavior of providers and mandatory health insurance. Mandatory health insurance detaches the financial and consumption side of health care markets, and the concept consumer in merger control becomes non-evident. Patients not visiting the merging hospitals still are affected by price changes through their insurance premiums. External financial effects emerge on not directly affected consumers. We show that applying a restricted interpretation of consumer (neglecting externality) in health care merger control can reverse the relation between the two standards; consumer welfare standard can be weaker than total welfare. Consequently, applying the wrong standard can lead to both clearing socially undesirable and to blocking socially desirable mergers. The possible negative consequences of applying a simple consumer welfare standard in merger control can be even stronger when hospitals maximize quality and put less weight on financial considerations. We also investigate the implications of these results for the practice of merger control.

  4. Dusty Feedback from Massive Black Holes in Two Elliptical Galaxies

    NASA Technical Reports Server (NTRS)

    Temi, P.; Brighenti, F.; Mathews, W. G.; Amblard, A.; Riguccini, L.

    2013-01-01

    Far-infrared dust emission from elliptical galaxies informs us about galaxy mergers, feedback energy outbursts from supermassive black holes and the age of galactic stars. We report on the role of AGN feedback observationally by looking for its signatures in elliptical galaxies at recent epochs in the nearby universe. We present Herschel observations of two elliptical galaxies with strong and spatially extended FIR emission from colder grains 5-10 kpc distant from the galaxy cores. Extended excess cold dust emission is interpreted as evidence of recent feedback-generated AGN energy outbursts in these galaxies, visible only in the FIR, from buoyant gaseous outflows from the galaxy cores.

  5. The Formation of Massive Stars by Collisional Mergers: Theoretical Constraints and Observational Predictions

    NASA Astrophysics Data System (ADS)

    Zinnecker, Hans; Bally, John

    2004-08-01

    While accretional growth can lead to the formation of massive stars in isolation or in loose OB associations, collisional growth and mergers can only occur in high-density cluster environments. We will discuss the conditions in a very dense young star cluster under which the merger scenario of massive star formation may work, and whether these conditions are likely to occur somewhere in the our Galaxy (Orion BN/KL, NGC 3603, W3-IRS5), the Local Group (30 Dor, NGC 604), or other galaxies (NGC 5253, Henize 2-10, The Antennae clusters). We explore the observational consequences of the merger scenario. Protostellar mergers may produce high luminosity infrared flares. Mergers may be surrounded by thick tori of expanding debris, impulsive wide-angle outflows, shock-induced maser and radio continuum emission. The collision products are expected to have fast stellar rotation and a large multiplicity fraction. Massive stars growing by a series of mergers may produce eruptive bursts of wide-angle outflow activity with random orientations; the walls of the resulting outflow cavities may be observable as filaments of dense gas and dust pointing away from the massive star. The extremely rare merger of two stars close to the upper mass limit of the IMF may be a possible pathway to hypernova-generated gamma-ray bursters. We also speculate that the outflow "fingers" from the OMC1 core in the Orion molecular cloud were produced by a merger less than a thousand years ago (Bally and Zinnecker 2004, AJ submitted). Mergers may not occur in every dense young cluster, but certainly in some of them, especially those where dynamical mass segregation of massive stars has taken place (Freitag and Benz 2004, astro-ph 0403621).

  6. Witnessing Gas Mixing in the Metal Distribution of the Hickson Compact Group HCG 31

    NASA Astrophysics Data System (ADS)

    Torres-Flores, S.; Mendes de Oliveira, C.; Amram, P.; Alfaro-Cuello, M.; Carrasco, E. R.; de Mello, D. F.

    2015-01-01

    We present for the first time direct evidence that in a merger of disk galaxies, the pre-existing central metallicities will mix as a result of gas being transported in the merger interface region along the line that joins the two coalescing nuclei. This is shown using detailed two-dimensional kinematics as well as metallicity measurements for the nearby ongoing merger in the center of the compact group HCG 31. We focus on the emission line gas, which is extensive in the system. The two coalescing cores display similar oxygen abundances. While in between the two nuclei, the metallicity changes smoothly from one nucleus to the other indicating a mix of metals in this region, which is confirmed by the high-resolution Hα kinematics (R = 45,900). This nearby system is especially important because it involves the merging of two fairly low-mass and clumpy galaxies (LMC-like galaxies), making it an important system for comparison with high-redshift galaxies. Based on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the Science and Technology Facilities Council (United Kingdom), the National Research Council (Canada), CONICYT (Chile), the Australian Research Council (Australia), Ministério da Ciência e Tecnologia (Brazil) and Ministerio de Ciencia, Tecnología e Innovación Productiva (Argentina) - Observing run: GS-2012B-Q-60.

  7. The role of galaxy interaction in the SFR-M {sub *} relation: characterizing morphological properties of Herschel-selected galaxies at 0.2 < z < 1.5

    SciTech Connect

    Hung, Chao-Ling; Sanders, D. B.; Casey, C. M.; Lee, N.; Barnes, J. E.; Koss, M.; Larson, K. L.; Lockhart, K.; Man, A. W. S.; Mann, A. W.; Capak, P.; Kartaltepe, J. S.; Le Floc'h, E.; Riguccini, L.; Scoville, N.; Symeonidis, M.

    2013-12-01

    Galaxy interactions/mergers have been shown to dominate the population of IR-luminous galaxies (L {sub IR} ≳ 10{sup 11.6} L {sub ☉}) in the local universe (z ≲ 0.25). Recent studies based on the relation between galaxies' star formation rates and stellar mass (the SFR-M {sub *} relation or the {sup g}alaxy main sequence{sup )} have suggested that galaxy interaction/mergers may only become significant when galaxies fall well above the galaxy main sequence. Since the typical SFR at a given M {sub *} increases with redshift, the existence of the galaxy main sequence implies that massive, IR-luminous galaxies at high z may not necessarily be driven by galaxy interactions. We examine the role of galaxy interactions in the SFR-M {sub *} relation by carrying out a morphological analysis of 2084 Herschel-selected galaxies at 0.2 < z < 1.5 in the COSMOS field. Using a detailed visual classification scheme, we show that the fraction of 'disk galaxies' decreases and the fraction of 'irregular' galaxies increases systematically with increasing L {sub IR} out to z ≲ 1.5 and z ≲ 1.0, respectively. At L {sub IR} >10{sup 11.5} L {sub ☉}, ≳ 50% of the objects show evident features of strongly interacting/merger systems, where this percentage is similar to the studies of local IR-luminous galaxies. The fraction of interacting/merger systems also systematically increases with the deviation from the SFR-M {sub *} relation, supporting the view that galaxies falling above the main sequence are more dominated by mergers than the main-sequence galaxies. Meanwhile, we find that ≳ 18% of massive IR-luminous 'main-sequence galaxies' are classified as interacting systems, where this population may not evolve through the evolutionary track predicted by a simple gas exhaustion model.

  8. Electromagnetic Counterparts to Black Hole Mergers

    NASA Technical Reports Server (NTRS)

    Schnittman, Jeremy D.

    2011-01-01

    During the final moments of a binary black hole (BH) merger, the gravitational wave (GW) luminosity of the system is greater than the combined electromagnetic (EM) output of the entire observable universe. However, the extremely weak coupling between GWs and ordinary matter makes these waves very difficult to detect directly. Fortunately, the inspirating BH system will interact strongly-on a purely Newtonian level-with any surrounding material in the host galaxy, and this matter can in turn produce unique EM signals detectable at Earth. By identifying EM counterparts to GW sources, we will be able to study the host environments of the merging BHs, in turn greatly expanding the scientific yield of a mission like LISA. Here we present a comprehensive review of the recent literature on the subject of EM counterparts, as well as a discussion of the theoretical and observational advances required to fully realize the scientific potential of the field.

  9. The merger fraction of radio-loud and radio quiet AGN: clues on the AGN triggering mechanism

    NASA Astrophysics Data System (ADS)

    Chiaberge, Marco

    2016-08-01

    Radio-loud AGNs are important objects. They are associated with the most massive black holes and thus with the most massive galaxies, and they are often located in clusters of galaxies. Studying radio galaxies at z>1 not only allows us to get insights on the mechanisms responsible for launching their powerful relativistic jets, but also to better understand important aspects of the formation and evolution of massive galaxies and clusters. I will focus on results obtained from our successful HST snapshot survey of 3CR radio-loud AGN at z>1. Statistical analysis of different samples of carefully selected radio-quiet AGN, radio-loud AGN and non-active galaxies shows strong evidence that galaxy mergers (and possibly black hole mergers) are intimately tied to the triggering mechanism for radio-loud AGN activity. The same may not hold for the radio-quiet AGN class.

  10. A Physical Approach to the Identification of High-z Mergers: Morphological Classification in the Stellar Mass Domain.

    NASA Astrophysics Data System (ADS)

    Cibinel, A.; Le Floc'h, E.; Perret, V.; Bournaud, F.; Daddi, E.; Pannella, M.; Elbaz, D.; Amram, P.; Duc, P.-A.

    2015-06-01

    At z ≳ 1, the distinction between merging and “normal” star-forming galaxies based on single band morphology is often hampered by the presence of large clumps which result in a disturbed, merger-like appearance even in rotationally supported disks. In this paper we discuss how a classification based on canonical, non-parametric structural indices measured on resolved stellar mass maps, rather than on single-band images, reduces the misclassification of clumpy but not merging galaxies. We calibrate the mass-based selection of mergers using the MIRAGE hydrodynamical numerical simulations of isolated and merging galaxies which span a stellar mass range of 109.8-1010.6 M⊙ and merger ratios between 1:1-1:6.3. These simulations are processed to reproduce the typical depth and spatial resolution of observed Hubble Ultra Deep Field (HUDF) data. We test our approach on a sample of real z≃ 2 galaxies with kinematic classification into disks or mergers and on ˜100 galaxies in the HUDF field with photometric/spectroscopic redshift between 1.5 ≤ z ≤ 3 and M > 109.4 M⊙. We find that a combination of the asymmetry AMASS and M20, MASS indices measured on the stellar mass maps can efficiently identify real (major) mergers with ≲20% contamination from clumpy disks in the merger sample. This mass-based classification cannot be reproduced in star-forming galaxies by H-band measurements alone, which instead result in a contamination from clumpy galaxies which can be as high as 50%. Moreover, we find that the mass-based classification always results in a lower contamination from clumpy galaxies than an H-band classification, regardless of the depth of the imaging used (e.g., CANDELS versus HUDF).

  11. CCD imagery of the S0 galaxies NGC 3990 and NGC 3998

    SciTech Connect

    Welch, G.A.; Welch, D.M.K.; Dupuy, D.L. Virginia Military Institute, Lexington )

    1991-01-01

    The structure and colors of NGC 3990 and NGC 3998 are investigated using BR CCD imagery. Fits of bulge-disk models of the galaxies indicate that both disks are somewhat brighter and more compact than typical S0 galaxies in the Virgo and Fornax clusters. Although the two galaxies are separated by only about 3.5 arcmin, none of the obvious signs of gravitational interaction are seen. The colors of both galaxies are normal; the disk of NGC 3998 is somewhat bluer than its bulge. The search has failed to reveal the interstellar dust predicted from the neutral hydrogen observations of NGC 3998. The dust that is seen appears to be mixed with ionized gas which occupies the center of this galaxy and may be the same material seen at longer wavelengths by the IRAS experiment. Its low abundance relative to the neutral gas is consistent with the idea that the ISM was contributed by a gas-rich dwarf galaxy in a destructive merger. 31 refs.

  12. Spin flips - II. Evolution of dark matter halo spin orientation, and its correlation with major mergers

    NASA Astrophysics Data System (ADS)

    Bett, Philip E.; Frenk, Carlos S.

    2016-09-01

    We expand our previous study on the relationship between changes in the orientation of the angular momentum vector of dark matter haloes (`spin flips') and changes in their mass, to cover the full range of halo masses in a simulation cube of length 100 h-1 Mpc. Since strong disturbances to a halo (such as might be indicated by a large change in the spin direction) are likely also to disturb the galaxy evolving within, spin flips could be a mechanism for galaxy morphological transformation without involving major mergers. We find that 35 per cent of haloes have, at some point in their lifetimes, had a spin flip of at least 45° that does not coincide with a major merger. Over 75 per cent of large spin flips coincide with non-major mergers; only a quarter coincide with major mergers. We find a similar picture for changes to the inner halo spin orientation, although here there is an increased likelihood of a flip occurring. Changes in halo angular momentum orientation, and other such measures of halo perturbation, are therefore very important quantities to consider, in addition to halo mergers, when modelling the formation and evolution of galaxies and confronting such models with observations.

  13. Ellipticities of Elliptical Galaxies in Different Environments

    NASA Astrophysics Data System (ADS)

    Chen, Cheng-Yu; Hwang, Chorng-Yuan; Ko, Chung-Ming

    2016-10-01

    We studied the ellipticity distributions of elliptical galaxies in different environments. From the ninth data release of the Sloan Digital Sky Survey, we selected galaxies with absolute {r}\\prime -band magnitudes between ‑21 and ‑22. We used the volume number densities of galaxies as the criterion for selecting the environments of the galaxies. Our samples were divided into three groups with different volume number densities. The ellipticity distributions of the elliptical galaxies differed considerably in these three groups of different density regions. We deprojected the observed 2D ellipticity distributions into intrinsic 3D shape distributions, and the result showed that the shapes of the elliptical galaxies were relatively spherically symmetric in the high density region (HDR) and that relatively more flat galaxies were present in the low density region (LDR). This suggests that the ellipticals in the HDRs and LDRs have different origins or that different mechanisms might be involved. The elliptical galaxies in the LDR are likely to have evolved from mergers in relatively anisotropic structures, such as filaments and webs, and might contain information on the anisotropic spatial distribution of their parent mergers. By contrast, elliptical galaxies in the HDR might be formed in more isotropic structures, such as galaxy clusters, or they might encounter more torqueing effects compared with galaxies in LDRs, thereby becoming rounder.

  14. Chemodynamical analysis of bulge stars for simulated disc galaxies

    NASA Astrophysics Data System (ADS)

    Rahimi, A.; Kawata, D.; Brook, Chris B.; Gibson, Brad K.

    2010-01-01

    We analyse the kinematics and chemistry of the bulge stars of two simulated disc galaxies using our chemodynamical galaxy evolution code GCD+. First, we compare stars that are born inside the galaxy with those that are born outside the galaxy and are accreted into the centre of the galaxy. Stars that originate outside the bulge are accreted into it early in its formation within 3 Gyr so that these stars have high [α/Fe] as well as a high total energy reflecting their accretion to the centre of the galaxy. Therefore, higher total energy is a good indicator for finding accreted stars. The bulges of the simulated galaxies formed through multiple mergers separated by about a Gyr. Since [α/Fe] is sensitive to the first few Gyr of star formation history, stars that formed during mergers at different epochs show different [α/Fe]. We show that the [Mg/Fe] against star formation time relation can be very useful to identify a multiple merger bulge formation scenario, provided there is sufficiently good age information available. Our simulations also show that stars formed during one of the merger events retain a systematically prograde rotation at the final time. This demonstrates that the orbit of the ancient merger that helped to form the bulge could still remain in the kinematics of bulge stars.

  15. Justice Department Airline Merger Policy

    NASA Technical Reports Server (NTRS)

    Farmer, D. A.

    1972-01-01

    Justice Department airline merger policy is developed within the context of the Federal Aviation Act, in which there is an unusually explicit reliance on competition as a means of fulfilling statutory goals. The economics of the airline industry appear to indicate that low concentration and vigorous competition are particularly viable and desirable. Several factors, including existing regulatory policy, create incentives for airlines to merge whether or not an individual merger promotes or conflicts with the public interest. Specific benefits to the public should be identified and shown to clearly outweight the detriments, including adverse competitive impact, in order for airline mergers to be approved.

  16. Compact Binary Mergers as Multimessenger Sources of Gravitational Waves

    NASA Astrophysics Data System (ADS)

    Shapiro, Stuart

    2015-04-01

    On the centennial anniversary of Einstein's theory of general relativity, we are on the verge of directly detecting one of its most remarkable predictions - gravitational waves (GWs). The inspiral and merger of compact binaries - binaries with black hole, neutron star or white dwarf companions - are among the most promising sources of GWs. Many of these sources are likely to generate observable electromagnetic (EM) and/or neutrino counterparts to the GWs, constituting a major advance in multimessenger astronomy. By way of illustration, we describe recent magnetohydrodynamic simulations in general relativity (GRMHD) that show how black hole-neutron star mergers can launch jets, lending support to the idea that such mergers could be the engines that power short-hard gamma-ray bursts. We also discuss other recent GRMHD simulations that show how an inspiraling, supermassive binary black hole in a galaxy core stirs and accretes magnetized plasma that orbits the holes in a circumbinary disk. This process can generate ``precursor'' and ``aftermath'' EM radiation with respect to the peak GW emission at merger. Computer-generated movies highlighting some of these simulations will be shown. We gratefully acknowledge support from NSF Grant PHY-1300903 and NASA Grant NNX13AH44G at the University of Illinois at Urbana-Champaign.

  17. UNVEILING THE MASK ON THE ULIRG-TO-QSO TRANSITION OBJECT [H89]1821+643 AT z = 0.3: A GAS-POOR/GAS-RICH GALAXY MERGER AND THE IMPLICATIONS FOR CO-BASED DYNAMICAL MASS ESTIMATES

    SciTech Connect

    Aravena, M.; Wagg, J.; Papadopoulos, P. P.; Feain, I. J.

    2011-08-20

    We report the detection of the {sup 12}CO J = 1-0 emission line in [H89]1821+643, one of the most optically luminous quasi-stellar objects (QSOs) in the local universe, and a template ULIRG-to-QSO transition object, located in a rich, cool-core cluster at z = 0.297. The CO emission is likely to be extended, highly asymmetric with respect to the center of the host elliptical where the QSO resides, and correspond with a molecular gas mass of {approx}8.0 x 10{sup 9} M{sub sun}. The dynamical mass enclosed by the CO emission-line region could amount to {approx}1.7 x 10{sup 12} M{sub sun} (80% of the total mass of the elliptical host). The bulk of the CO emission is located at {approx}9 kpc southeast from the nuclei position, close to a faint optical structure, suggesting that the CO emission could either represent a gas-rich companion galaxy merging with the elliptical host or a tail-like structure reminiscent of a previous interaction. We argue that the first scenario is more likely given the large masses implied by the CO source, which would imply a highly asymmetric elliptical host. The close alignment between the CO emission's major axis and the radio plume suggests a possible role in the excitation of the ambient gas reservoir by the latter. The stacking technique was used to search for CO emission and 3-mm continuum emission from galaxies in the surrounding cluster. However, no detection was found toward individual galaxies or the stacked ensemble of galaxies, with a 3{sigma} limit of <1.1 x 10{sup 9} M{sub sun} for the molecular gas.

  18. The influence of mergers and ram-pressure stripping on black hole-bulge correlations

    NASA Astrophysics Data System (ADS)

    Ginat, Yonadav Barry; Meiron, Yohai; Soker, Noam

    2016-10-01

    We analyse the scatter in the correlation between supermassive black hole (SMBH) mass and bulge stellar mass of the host galaxy, and infer that it cannot be accounted for by mergers alone. The merger-only scenario, where small galaxies merge to establish a proportionality relation between the SMBH and bulge masses, leads to a scatter around the linear proportionality line that increases with the square root of the SMBH (or bulge) mass. By examining a sample of 103 galaxies, we find that the intrinsic scatter increases more rapidly than expected from the merger-only scenario. The correlation between SMBH masses and their host galaxy properties is therefore more likely to be determined by a negative feedback mechanism that is driven by an active galactic nucleus. We find, a hint, that some galaxies with missing stellar mass reside close to the centre of clusters and speculate that ram-pressure stripping of gas off the young galaxy as it moves near the cluster centre, might explain the missing stellar mass at later times.

  19. STRUCTURES OF LOCAL GALAXIES COMPARED TO HIGH-REDSHIFT STAR-FORMING GALAXIES

    SciTech Connect

    Petty, Sara M.; De Mello, DuIlia F.; Gallagher, John S.; Gardner, Jonathan P.; Lotz, Jennifer M.; Matt Mountain, C.; Smith, Linda J.

    2009-08-15

    The rest-frame far-ultraviolet morphologies of eight nearby interacting and starburst galaxies (Arp 269, M 82, Mrk 8, NGC 520, NGC 1068, NGC 3079, NGC 3310, and NGC 7673) are compared with 54 galaxies at z {approx} 1.5 and 46 galaxies at z {approx} 4 observed in the Great Observatories Origins Deep Survey (GOODS) taken with the Advanced Camera for Surveys onboard the Hubble Space Telescope. The nearby sample is artificially redshifted to z {approx} 1.5 and 4 by applying luminosity and size scaling. We compare the simulated galaxy morphologies to real z {approx} 1.5 and 4 UV-bright galaxy morphologies. We calculate the Gini coefficient (G), the second-order moment of the brightest 20% of the galaxy's flux (M {sub 20}), and the Sersic index (n). We explore the use of nonparametric methods with two-dimensional profile fitting and find the combination of M {sub 20} with n an efficient method to classify galaxies as having merger, exponential disk, or bulge-like morphologies. When classified according to G and M {sub 20} 20/30% of real/simulated galaxies at z {approx} 1.5 and 37/12% at z {approx} 4 have bulge-like morphologies. The rest have merger-like or intermediate distributions. Alternatively, when classified according to the Sersic index, 70% of the z {approx} 1.5 and z {approx} 4 real galaxies are exponential disks or bulge-like with n>0.8, and {approx} 30% of the real galaxies are classified as mergers. The artificially redshifted galaxies have n values with {approx} 35% bulge or exponential at z {approx} 1.5 and 4. Therefore, {approx} 20%-30% of Lyman-break galaxies have structures similar to local starburst mergers, and may be driven by similar processes. We assume merger-like or clumpy star-forming galaxies in the GOODS field have morphological structure with values n < 0.8 and M {sub 20}> - 1.7. We conclude that Mrk 8, NGC 3079, and NGC 7673 have structures similar to those of merger-like and clumpy star-forming galaxies observed at z {approx} 1.5 and 4.

  20. Galaxy Zoo: Evidence for rapid, recent quenching within a population of AGN host galaxies

    NASA Astrophysics Data System (ADS)

    Smethurst, R. J.; Lintott, C. J.; Simmons, B. D.; Schawinski, K.; Bamford, S. P.; Cardamone, C. N.; Kruk, S. J.; Masters, K. L.; Urry, C. M.; Willett, K. W.; Wong, O. I.

    2016-09-01

    We present a population study of the star formation history of 1244 Type 2 AGN host galaxies, compared to 6107 inactive galaxies. A Bayesian method is used to determine individual galaxy star formation histories, which are then collated to visualise the distribution for quenching and quenched galaxies within each population. We find evidence for some of the Type 2 AGN host galaxies having undergone a rapid drop in their star formation rate within the last 2 Gyr. AGN feedback is therefore important at least for this population of galaxies. This result is not seen for the quenching and quenched inactive galaxies whose star formation histories are dominated by the effects of downsizing at earlier epochs, a secondary effect for the AGN host galaxies. We show that histories of rapid quenching cannot account fully for the quenching of all the star formation in a galaxy's lifetime across the population of quenched AGN host galaxies, and that histories of slower quenching, attributed to secular (non-violent) evolution, are also key in their evolution. This is in agreement with recent results showing both merger-driven and non-merger processes are contributing to the co-evolution of galaxies and supermassive black holes. The availability of gas in the reservoirs of a galaxy, and its ability to be replenished, appear to be the key drivers behind this co-evolution.

  1. Tidal Tales: Comparison of Star Formation in Tidal Tails of Minor Mergers

    NASA Astrophysics Data System (ADS)

    Knierman, Karen A.; Scowen, Paul A.; Groppi, Christopher E.

    2016-01-01

    While major mergers and their tidal debris are well studied, they are less common than minor mergers (mass ratios <0.3) and likely played a role in forming most large galaxies, including the Milky Way. Tidal debris regions have large reservoirs of neutral gas but a lower gas density and may have higher turbulence. Star formation tracers such as young star cluster populations, star cluster complexes, and H-alpha, CO, molecular hydrogen, and CII emission were studied to determine the different factors that may influence star formation in tidal debris. These tracers were compared to the reservoirs of gas available for star formation to estimate the star formation efficiency (SFE). In our pilot study using two of the sample of 15 minor mergers, we find that the star formation rate (SFR) of minor merger tidal debris can reach up to 50% of the total star formation in the system which is comparable to prior simulations of star formation in major mergers. The SFE of tidal tails in minor mergers can range over orders of magnitude on both local and global scales. From the tidal debris environments in this study, this variance appears to stem from the formation conditions of the debris. Further work on the 13 additional minor mergers in this sample will shed more light on the factors influencing star formation in low density environments.

  2. Star formation in the massive cluster merger Abell 2744

    NASA Astrophysics Data System (ADS)

    Rawle, T. D.; Altieri, B.; Egami, E.; Pérez-González, P. G.; Richard, J.; Santos, J. S.; Valtchanov, I.; Walth, G.; Bouy, H.; Haines, C. P.; Okabe, N.

    2014-07-01

    We present a comprehensive study of star-forming (SF) galaxies in the Hubble Space Telescope (HST) Frontier Field recent cluster merger A2744 (z = 0.308). Wide-field, ultraviolet-infrared (UV-IR) imaging enables a direct constraint of the total star formation rate (SFR) for 53 cluster galaxies, with SFRUV+IR = 343 ± 10 M⊙ yr-1. Within the central 4 arcmin (1.1 Mpc) radius, the integrated SFR is complete, yielding a total SFRUV+IR = 201 ± 9 M⊙ yr-1. Focusing on obscured star formation, this core region exhibits a total SFRIR = 138 ± 8 M⊙ yr-1, a mass-normalized SFRIR of ΣSFR = 11.2 ± 0.7 M⊙ yr-1 per 1014 M⊙ and a fraction of IR-detected SF galaxies f_SF = 0.080^{+0.010}_{-0.037}. Overall, the cluster population at z ˜ 0.3 exhibits significant intrinsic scatter in IR properties (total SFRIR, Tdust distribution) apparently unrelated to the dynamical state: A2744 is noticeably different to the merging Bullet cluster, but similar to several relaxed clusters. However, in A2744 we identify a trail of SF sources including jellyfish galaxies with substantial unobscured SF due to extreme stripping (SFRUV/SFRIR up to 3.3). The orientation of the trail, and of material stripped from constituent galaxies, indicates that the passing shock front of the cluster merger was the trigger. Constraints on star formation from both IR and UV are crucial for understanding galaxy evolution within the densest environments.

  3. THE ROTATION RATES OF MASSIVE STARS: THE ROLE OF BINARY INTERACTION THROUGH TIDES, MASS TRANSFER, AND MERGERS

    SciTech Connect

    De Mink, S. E.; Langer, N.; Izzard, R. G.; Sana, H.; De Koter, A.

    2013-02-20

    Rotation is thought to be a major factor in the evolution of massive stars-especially at low metallicity-with consequences for their chemical yields, ionizing flux, and final fate. Deriving the birth spin distribution is of high priority given its importance as a constraint on theories of massive star formation and as input for models of stellar populations in the local universe and at high redshift. Recently, it has become clear that the majority of massive stars interact with a binary companion before they die. We investigate how this affects the distribution of rotation rates, through stellar winds, expansion, tides, mass transfer, and mergers. For this purpose, we simulate a massive binary-star population typical for our Galaxy assuming continuous star formation. We find that, because of binary interaction, 20{sup +5} {sub -10}% of all massive main-sequence stars have projected rotational velocities in excess of 200 km s{sup -1}. We evaluate the effect of uncertain input distributions and physical processes and conclude that the main uncertainties are the mass transfer efficiency and the possible effect of magnetic braking, especially if magnetic fields are generated or amplified during mass accretion and stellar mergers. The fraction of rapid rotators we derive is similar to that observed. If indeed mass transfer and mergers are the main cause for rapid rotation in massive stars, little room remains for rapidly rotating stars that are born single. This implies that spin-down during star formation is even more efficient than previously thought. In addition, this raises questions about the interpretation of the surface abundances of rapidly rotating stars as evidence for rotational mixing. Furthermore, our results allow for the possibility that all early-type Be stars result from binary interactions and suggest that evidence for rotation in explosions, such as long gamma-ray bursts, points to a binary origin.

  4. The effects of host galaxy properties on merging compact binaries detectable by LIGO

    NASA Astrophysics Data System (ADS)

    O'shaughnessy, R.; Bellovary, J. M.; Brooks, A.; Shen, S.; Governato, F.; Christensen, C. R.

    2016-10-01

    Cosmological simulations of galaxy formation can produce present-day galaxies with a large range of assembly and star formation histories. A detailed study of the metallicity evolution and star formation history of such simulations can assist in predicting LIGO-detectable compact object binary mergers. Recent simulations of compact binary evolution suggest the compact object merger rate depends sensitively on the progenitor's metallicity. Rare low-metallicity star formation during galaxy assembly can produce more detected compact binaries than typical star formation. Using detailed simulations of galaxy and chemical evolution, we determine how sensitively the compact binary populations of galaxies with similar present-day appearance depend on the details of their assembly. We also demonstrate by concrete example the extent to which dwarf galaxies overabundantly produce compact binary mergers, particularly binary black holes, relative to more massive galaxies. We discuss the implications for transient multimessenger astronomy with compact binary sources.

  5. Mergers. Turn of the screw.

    PubMed

    Gillett, S

    2000-04-01

    Managing the process of a merger with staff support and job counselling reduces stress. But the experience is not pain-free. The expectation that senior staff would be found other jobs in the NHS proved unrealistic. From a total staff of 6,000 there were 38 redundancies, of which 13 were voluntary. Early retirement and redundancy costs were higher than expected. Staff still show signs of distress a year after the merger took place.

  6. The Red and Featureless Outer Disks of Nearby Spiral Galaxies

    NASA Astrophysics Data System (ADS)

    Watkins, Aaron E.; Mihos, J. Christopher; Harding, Paul

    2016-07-01

    We present results from deep, wide-field surface photometry of three nearby (D = 4-7 Mpc) spiral galaxies: M94 (NGC 4736), M64 (NGC 4826), and M106 (NGC 4258). Our imaging reaches a limiting surface brightness of {μ }B ˜ 28-30 mag arcsec-2 and probes colors down to {μ }B ˜ 27.5 mag arcsec-2. We compare our broadband optical data to available ultraviolet and high column density H i data to better constrain the star-forming history and stellar populations of the outermost parts of each galaxy’s disk. Each galaxy has a well-defined radius beyond which little star formation occurs and the disk light appears both azimuthally smooth and red in color, suggestive of old, well-mixed stellar populations. Given the lack of ongoing star formation or blue stellar populations in these galaxies’ outer disks, the most likely mechanisms for their formation are dynamical processes such as disk heating or radial migration, rather than inside-out growth of the disks. This is also implied by the similarity in outer disk properties despite each galaxy showing distinct levels of environmental influence, from a purely isolated galaxy (M94) to one experiencing weak tidal perturbations from its satellite galaxies (M106) to a galaxy recovering from a recent merger (M64), suggesting that a variety of evolutionary histories can yield similar outer disk structure. While this suggests a common secular mechanism for outer disk formation, the large extent of these smooth, red stellar populations—which reach several disk scale lengths beyond the galaxies’ spiral structure—may challenge models of radial migration given the lack of any nonaxisymmetric forcing at such large radii.

  7. Cluster mergers and the origin of the ARCADE-2 excess

    NASA Astrophysics Data System (ADS)

    Fang, Ke; Linden, Tim

    2016-10-01

    Radio observations at multiple frequencies have detected a significant isotropic emission component between 22 MHz and 10 GHz, commonly termed the ARCADE-2 Excess. The origin of this radio emission is unknown, as the intensity, spectrum and isotropy of the signal are difficult to model with either traditional astrophysical mechanisms or novel physics such as dark matter annihilation. We posit a new model capable of explaining the key components of the excess radio emission. Specifically, we show that the re-acceleration of non-thermal electrons via turbulence in merging galaxy clusters are capable of explaining the intensity, spectrum, and isotropy of the ARCADE-2 data. We examine the parameter spaces of cluster re-acceleration, magnetic field, and merger rate, finding that the radio excess can be reproduced assuming reasonable assumptions for each. Finally, we point out that future observations will definitively confirm or rule-out the contribution of cluster mergers to the isotropic radio background.

  8. Understanding the Puzzling X-Ray Spectrum of the SO Galaxy NGC 4382; NGC 43819: Spectral Analysis of the Prototypical Early Merger and ASCA Observations of a Dynamically Young Elliptical: NGC 4125

    NASA Technical Reports Server (NTRS)

    Fabbiano, Giuseppina

    2001-01-01

    We have analyzed the ASCA observations of NGC 4382, NGC 4038/9, NGC 4125 and produced papers for publication. NGC 4382 is one of the E and SO galaxies detected with the lowest X-ray to optical luminosity ratio. These galaxies have a peculiar X-ray (0.1-3 keV) spectrum, with a significant excess of counts in the lowest spectral channels (less than 1 keV) relative to the spectral count distributions of X-ray brihter E and SO galaxies. Analyzing the ROSAT PSPC observation of NGC 4382 it was unclear whether this soft excess was due to a real very soft component in a multi-component spectrum, or reflected an extremely low metal abundance in an isothermal hot gas. Our ASCA observations show that the low-abundance single-temperature model does not fit well to the X-ray spectrum, in agreement with our previous suggestions. A better explanation is a composite spectrum with a very soft component (0.3 keV) in addition to a harder (5 keV) component from X-ray binaries. In this model, the abundance cannot be constrained. More complex spectral models are also possible. The ASCA observations of The Antennae - (NGC4038/9) show that at least two spectral components are required to describe the emission-thermal emission from a plasma at 0.8 keV, and a component at higher energies. The hot gas contributes about half of the flux in the 0.5 to 6 keV band. If the column density to the higher energy component is greater than 2 x 10 (exp 21) per square centimeter, then the fitted abundance in the hot gas component is less than 0.2 solar. This low abundance is not expected for the hot interstellar medium in NGC4038/9 in which supernovae and star formation (expected to enrich and heat the gas) are ongoing. We do not detect any spatial variations in the spectrum. We relate these findings to data obtained by other satellites (Einstein, ROSAT) for this interacting galaxy pair. NGC4125's ASCA data was analyzed jointly with its Beppo-SAX observation. A hard component (kT /sim 4-10 keV) is

  9. Infrared images of merging galaxies

    NASA Technical Reports Server (NTRS)

    Wright, G. S.; James, P. A.; Joseph, R. D.; Mclean, I. S.; Doyon, R.

    1990-01-01

    Infrared imaging of interacting galaxies is especially interesting because their optical appearance is often so chaotic due to extinction by dust and emission from star formation regions, that it is impossible to locate the nuclei or determine the true stellar distribution. However, at near-infrared wavelengths extinction is considerably reduced, and most of the flux from galaxies originates from red giant stars that comprise the dominant stellar component by mass. Thus near infrared images offer the opportunity to study directly components of galactic structure which are otherwise inaccessible. Such images may ultimately provide the framework in which to understand the activity taking place in many of the mergers with high Infrared Astronomy Satellite (IRAS) luminosities. Infrared images have been useful in identifying double structures in the nuclei of interacting galaxies which have not even been hinted at by optical observations. A striking example of this is given by the K images of Arp 220. Graham et al. (1990) have used high resolution imaging to show that it has a double nucleus coincident with the radio sources in the middle of the dust lane. The results suggest that caution should be applied in the identification of optical bright spots as multiple nuclei in the absence of other evidence. They also illustrate the advantages of using infrared imaging to study the underlying structure in merging galaxies. The authors have begun a program to take near infrared images of galaxies which are believed to be mergers of disk galaxies because they have tidal tails and filaments. In many of these the merger is thought to have induced exceptionally luminous infrared emission (cf. Joseph and Wright 1985, Sanders et al. 1988). Although the optical images of the galaxies show spectacular dust lanes and filaments, the K images all have a very smooth distribution of light with an apparently single nucleus.

  10. Do the Most Massive Black Holes at z = 2 Grow via Major Mergers?

    NASA Astrophysics Data System (ADS)

    Mechtley, M.; Jahnke, K.; Windhorst, R. A.; Andrae, R.; Cisternas, M.; Cohen, S. H.; Hewlett, T.; Koekemoer, A. M.; Schramm, M.; Schulze, A.; Silverman, J. D.; Villforth, C.; van der Wel, A.; Wisotzki, L.

    2016-10-01

    The most frequently proposed model for the origin of quasars holds that the high accretion rates seen in luminous active galactic nuclei (AGN) are primarily triggered during major mergers between gas-rich galaxies. While plausible for decades, this model has only begun to be tested with statistical rigor in the past few years. Here, we report on a Hubble Space Telescope study to test this hypothesis for z = 2 quasars with high supermassive black hole masses ({M}{BH}={10}9{--}{10}10 {M}ȯ ), which dominate cosmic black hole growth at this redshift. We compare Wide Field Camera 3 F160W (rest-frame V-band) imaging of 19 point source-subtracted quasar hosts to a matched sample of 84 inactive galaxies, testing whether the quasar hosts have greater evidence for strong gravitational interactions. Using an expert ranking procedure, we find that the quasar hosts are uniformly distributed within the merger sequence of inactive galaxies, with no preference for quasars in high-distortion hosts. Using a merger/non-merger cutoff approach, we recover distortion fractions of {f}{{m},{qso}}=0.39+/- 0.11 for quasar hosts and {f}{{m},{gal}}=0.30+/- 0.05 for inactive galaxies (distribution modes, 68% confidence intervals), with both measurements subjected to the same observational conditions and limitations. The slight enhancement in distorted fraction for quasar hosts over inactive galaxies is not significant, with a probability that the quasar fraction is higher P({f}{{m},{qso}}\\gt {f}{{m},{gal}})=0.78 (0.78σ ), in line with results for lower mass and lower z AGN. We find no evidence that major mergers are the primary triggering mechanism for the massive quasars that dominate accretion at the peak of cosmic quasar activity.

  11. Merging Galaxies Create a Binary Quasar

    NASA Astrophysics Data System (ADS)

    2010-02-01

    Astronomers have found the first clear evidence of a binary quasar within a pair of actively merging galaxies. Quasars are the extremely bright centers of galaxies surrounding super-massive black holes, and binary quasars are pairs of quasars bound together by gravity. Binary quasars, like other quasars, are thought to be the product of galaxy mergers. Until now, however, binary quasars have not been seen in galaxies that are unambiguously in the act of merging. But images of a new binary quasar from the Carnegie Institution's Magellan telescope in Chile show two distinct galaxies with "tails" produced by tidal forces from their mutual gravitational attraction. "This is really the first case in which you see two separate galaxies, both with quasars, that are clearly interacting," says Carnegie astronomer John Mulchaey who made observations crucial to understanding the galaxy merger. Most, if not all, large galaxies, such as our galaxy the Milky Way, host super-massive black holes at their centers. Because galaxies regularly interact and merge, astronomers have assumed that binary super-massive black holes have been common in the Universe, especially during its early history. Black holes can only be detected as quasars when they are actively accreting matter, a process that releases vast amounts of energy. A leading theory is that galaxy mergers trigger accretion, creating quasars in both galaxies. Because most such mergers would have happened in the distant past, binary quasars and their associated galaxies are very far away and therefore difficult for most telescopes to resolve. The binary quasar, labeled SDSS J1254+0846, was initially detected by the Sloan Digital Sky Survey, a large scale astronomical survey of galaxies and over 120,000 quasars. Further observations by Paul Green of the Harvard-Smithsonian Center for Astrophysics and colleagues* using NASA's Chandra's X-ray Observatory and telescopes at Kitt Peak National Observatory in Arizona and Palomar

  12. The role of galaxy merging in the life of massive galaxies

    NASA Astrophysics Data System (ADS)

    Man, Allison W. S.; Zirm, Andrew; Toft, Sune

    2015-08-01

    In the local Universe, the most massive galaxies of above 10^11 solar masses are typically situated at the centres of galaxy clusters or groups, and have elliptical light profiles. They have uniformly old stellar populations with the majority of stars formed when the Universe was only 2-3 Gyrs old. Merging has been invoked as an important driver for their evolution, possibly responsible for morphological transformations, size growth, ignition of active galactic nuclei as well as both triggering and quenching of star formation. Accurate measurements of the merging history of massive galaxies is thus instrumental to understand their evolution. While several measurements of the merging fraction of massive galaxies up to z~3 exist to date, they lead to discrepant conclusions of whether the fraction is increasing or diminishing.My recent work resolves these discrepancies through the accurate measurement of the galaxy merger fraction up to z=3 in the COSMOS field. Combining the large area, near-infrared survey of UltraVISTA with the smaller area, but deeper and higher resolution HST/CANDELS dataset, yields the largest, most complete photometrically identified sample of mergers at z>1. The discrepancy of previous studies is found to be due to a selection effect. Selecting galaxy pairs by stellar mass ratio leads to a diminishing merger fraction at z~2, while selecting by flux ratio leads to an increasing trend. Flux-ratio selection is biased towards low M/L satellites, while stellar mass ratio selected mergers are likely biased against gas-rich satellites at z>2. I argue that the total baryon mass ratio is the least biased probe of the "true" merger rate of galaxies, and discuss future plans for examining the role of galaxy merging in the global star formation history, as well as its relation to star formation quenching.

  13. Morphological evolution of galaxies

    NASA Astrophysics Data System (ADS)

    Gardner, Jonathan P.; Heap, Sara R.; Malumuth, Eliot M.; Hill, Robert S.; Smith, Eric P.

    1997-05-01

    Recent studies of the Hubble Deep Field (Abraham et al. 1996) [1] and Medium Deep Survey (Driver, Windhorst & Griffiths 1995) [6] find that the frequency of irregular/peculiar/merger systems rises with increasing redshift. However, this finding must be carefully interpreted in light of UV images of low-redshift galaxies obtained by the Ultraviolet Imaging Telescope (Stecher et al. 1992) [9]. These UV images imply that K-correction effects may be at least partially responsible for the apparent increase in Irr galaxies with redshift. To assess the degree to which there is an overabundance of Irregular galaxies (relative to the present epoch), we must understand the degree to which the K-correction biases morphological studies. We demonstrate the importance of the morphological K-correction to the classification schemes used in the HDF. We find that high-redshift spiral galaxies are misclassified as Irr galaxies, while Elliptical/S0 galaxies, should not be affected substantially. We have been granted 40 orbits in Cycle 7 with STIS to place these conclusions on a statistical basis.

  14. The Origin of the Brightest Cluster Galaxies

    NASA Astrophysics Data System (ADS)

    Dubinski, John

    1998-07-01

    Most clusters and groups of galaxies contain a giant elliptical galaxy in their centers that far outshines and outweighs normal ellipticals. The origin of these brightest cluster galaxies is intimately related to the collapse and formation of the cluster. Using an N-body simulation of a cluster of galaxies in a hierarchical cosmological model, we show that galaxy merging naturally produces a massive central galaxy with surface brightness and velocity dispersion profiles similar to those of observed BCGs. To enhance the resolution of the simulation, 100 dark halos at z = 2 are replaced with self-consistent disk + bulge + halo galaxy models following a Tully-Fisher relation using 100,000 particles for the 20 largest galaxies and 10,000 particles for the remaining ones. This technique allows us to analyze the stellar and dark-matter components independently. The central galaxy forms through the merger of several massive galaxies along a filament early in the cluster's history. Galactic cannibalism of smaller galaxies through dynamical friction over a Hubble time only accounts for a small fraction of the accreted mass. The galaxy is a flattened, triaxial object whose long axis aligns with the primordial filament and the long axis of the cluster galaxy distribution, agreeing with observed trends for galaxy cluster alignment.

  15. Are the Youngsters Home? A Search for Young Clusters in the Merger Remnant NGC 2655

    NASA Astrophysics Data System (ADS)

    Rochais, Thomas Bernard; Rothberg, Barry; Kuhn, Olga

    2016-01-01

    We are studying star clusters in NGC 2655, a shell elliptical galaxy that is likely a post-merger remnant and may yet still be forming new stars. Our project consists of two parts. The first goal is to put together a pipeline for taking raw images and transforming them into a final calibrated set of data. The algorithms we have developed will be useful for all astronomers who use the Large Binocular Cameras (LBCs) at the Large Binocular Telescope (LBT) located on Mount Graham in Arizona. The LBCs are two widefield f/1.45 cameras each mounted at prime focus for each mirror of the LBT. The LBCs each have a 23' x 25' field of view (FOV) and optimized for 0.3-0.6 microns on the left mirror and 0.5-1.0 microns on the right mirror.The second goal is to effectively take a population census of young star clusters (YSCs) and Globular Clusters (GCs) in a galaxy undergoing a transformation from two spiral galaxies into an elliptical galaxy. NGC 2655 may be a future version of our Milky Way after it collides and merges with the Andromeda Galaxy. Stars are born in groups and clusters. When mergers occur between spiral galaxies, vast reservoirs of gas are turned into stars and these stars all form together in large clusters with masses ranging from 10^{4}-10^{7} M_{⊙}. As seen in major mergers like the Antennae and NGC 3256, thousands of such star clusters are formed during and after a galaxy merger. However, NGC 2655 is clearly an elliptical galaxy with strong indications of having undergone a recent major merger. Thus, it represents a transition object, allowing us to study both the GC and possibly YSC populations. Although similar studies have been undertaken for a handful of other similar transition objects (i.e. NGC 1316), they have all been done using imagers with rather small FOVs (˜ 2-6'). The large FOV of the LBCs allow us to capture not only the entire galaxy, but a large region surrounding the galaxy, making it possible to obtain a better census of GCs and YSCs

  16. V1309 Scorpii: merger of a contact binary

    NASA Astrophysics Data System (ADS)

    Tylenda, R.; Hajduk, M.; Kamiński, T.; Udalski, A.; Soszyński, I.; Szymański, M. K.; Kubiak, M.; Pietrzyński, G.; Poleski, R.; Wyrzykowski, Ł.; Ulaczyk, K.

    2011-04-01

    Context. Stellar mergers are expected to take place in numerous circumstences in the evolution of stellar systems. In particular, they are considered as a plausible origin of stellar eruptions of the V838 Mon type. V1309 Sco is the most recent eruption of this type in our Galaxy. The object was discovered in September 2008. Aims: Our aim is to investigate the nature of V1309 Sco. Methods: V1309 Sco has been photometrically observed in course of the OGLE project since August 2001. We analyse these observations in different ways. In particular, periodogram analyses were done to investigate the nature of the observed short-term variability of the progenitor. Results: We find that the progenitor of V1309 Sco was a contact binary with an orbital period of ~1.4 day. This period was decreasing with time. The light curve of the binary was also evolving, indicating that the system evolved towards its merger. The violent phase of the merger, marked by the systematic brightenning of the object, began in March 2008, i.e. half a year before the outburst discovery. We also investigate the observations of V1309 Sco during the outburst and the decline and show that they can be fully accounted for within the merger hypothesis. Conclusions: For the first time in the literature we show from direct observations that contact binaries indeed end up by merging into a single object, as was suggested in numerous theoretical studies of these systems. Our study also shows that stellar mergers indeed result in eruptions of the V838 Mon type. Based on observations obtained with the 1.3-m Warsaw telescope at the Las Campanas Observatory of the Carnegie Institution of Washington. The photometric data analysed in the present paper are available from the OGLE Internet archive: ftp://ogle.astrouw.edu.pl/ogle/ogle3/V1309_SCO

  17. LOCALIZED STARBURSTS IN DWARF GALAXIES PRODUCED BY THE IMPACT OF LOW-METALLICITY COSMIC GAS CLOUDS

    SciTech Connect

    Sánchez Almeida, J.; Muñoz-Tuñón, C.; Filho, M. E.; Elmegreen, B. G.; Elmegreen, D. M.; Pérez-Montero, E.; Vílchez, J. M.; Amorín, R.; Ascasibar, Y.; Papaderos, P.

    2015-09-10

    Models of galaxy formation predict that gas accretion from the cosmic web is a primary driver of star formation over cosmic history. Except in very dense environments where galaxy mergers are also important, model galaxies feed from cold streams of gas from the web that penetrate their dark matter halos. Although these predictions are unambiguous, the observational support has been indirect so far. Here, we report spectroscopic evidence for this process in extremely metal-poor galaxies (XMPs) of the local universe, taking the form of localized starbursts associated with gas having low metallicity. Detailed abundance analyses based on Gran Telescopio Canarias optical spectra of 10 XMPs show that the galaxy hosts have metallicities around 60% solar, on average, while the large star-forming regions that dominate their integrated light have low metallicities of some 6% solar. Because gas mixes azimuthally in a rotation timescale (a few hundred Myr), the observed metallicity inhomogeneities are only possible if the metal-poor gas fell onto the disk recently. We analyze several possibilities for the origin of the metal-poor gas, favoring the metal-poor gas infall predicted by numerical models. If this interpretation is correct, XMPs trace the cosmic web gas in their surroundings, making them probes to examine its properties.

  18. Localized Starbursts in Dwarf Galaxies Produced by the Impact of Low-metallicity Cosmic Gas Clouds

    NASA Astrophysics Data System (ADS)

    Sánchez Almeida, J.; Elmegreen, B. G.; Muñoz-Tuñón, C.; Elmegreen, D. M.; Pérez-Montero, E.; Amorín, R.; Filho, M. E.; Ascasibar, Y.; Papaderos, P.; Vílchez, J. M.

    2015-09-01

    Models of galaxy formation predict that gas accretion from the cosmic web is a primary driver of star formation over cosmic history. Except in very dense environments where galaxy mergers are also important, model galaxies feed from cold streams of gas from the web that penetrate their dark matter halos. Although these predictions are unambiguous, the observational support has been indirect so far. Here, we report spectroscopic evidence for this process in extremely metal-poor galaxies (XMPs) of the local universe, taking the form of localized starbursts associated with gas having low metallicity. Detailed abundance analyses based on Gran Telescopio Canarias optical spectra of 10 XMPs show that the galaxy hosts have metallicities around 60% solar, on average, while the large star-forming regions that dominate their integrated light have low metallicities of some 6% solar. Because gas mixes azimuthally in a rotation timescale (a few hundred Myr), the observed metallicity inhomogeneities are only possible if the metal-poor gas fell onto the disk recently. We analyze several possibilities for the origin of the metal-poor gas, favoring the metal-poor gas infall predicted by numerical models. If this interpretation is correct, XMPs trace the cosmic web gas in their surroundings, making them probes to examine its properties.

  19. Study of Interacting/Merging IRAS Galaxies

    NASA Astrophysics Data System (ADS)

    Mickaelian, A. M.

    2003-07-01

    A new sample of 1178 faint IRAS galaxies (Byurakan-IRAS Galaxy sample, BIG) has been constructed by means of optical identifications of IRAS point sources from PSC in the region +61° <δ<+90° at high galactic latitudes with a surface of 1487 deg^{2}. Compact galaxies, interacting pairs and groups, mergers, radio, and X-ray sources are among the identified objects. Spectral observations in Byurakan (Armenia), SAO (Russia) and OHP (France) revealed new AGNs and high-luminosity infrared galaxies. 50 optical counterparts are interacting/merging pairs and multiple systems. 15 of them have been observed at SAO 6m telescope with Multi-Pupil Fibre Spectrograph (MPFS) to study their velocity fields and dynamics to reveal physical mergers. These objects are of special interest due to star-formation, nuclear activity and interaction phenomena occuring there, giving possibility to study connections between these phenomena and their interrelationship.

  20. ORBITAL STRUCTURE OF MERGER REMNANTS. I. EFFECT OF GAS FRACTION IN PURE DISK MERGERS

    SciTech Connect

    Hoffman, Loren; Cox, Thomas J.; Dutta, Suvendra; Hernquist, Lars

    2010-11-01

    Since the violent relaxation in hierarchical merging is incomplete, elliptical galaxies retain a wealth of information about their formation pathways in their present-day orbital structure. Recent advances in integral field spectroscopy, multi-slit infrared spectroscopy, and triaxial dynamical modeling techniques have greatly improved our ability to harvest this information. A variety of observational and theoretical evidence indicates that gas-rich major mergers play an important role in the formation of elliptical galaxies. We simulate 1:1 disk mergers at seven different initial gas fractions (f{sub gas}) ranging from 0% to 40%, using a version of the TreeSPH code Gadget-2 that includes radiative heating and cooling, star formation, and feedback from supernovae and active galactic nuclei. We classify the stellar orbits in each remnant and construct radial profiles of the orbital content, intrinsic shape, and orientation. The dissipationless remnants are typically prolate-triaxial, dominated by box orbits within r{sub c} {approx} 1.5 R{sub e} , and by tube orbits in their outer parts. As f{sub gas} increases, the box orbits within r{sub c} are increasingly replaced by a population of short-axis tubes (z-tubes) with near zero net rotation, and the remnants become progressively more oblate and round. The long-axis tube (x-tube) orbits are highly streaming and relatively insensitive to f{sub gas}, implying that their angular momentum is retained from the dynamically cold initial conditions. Outside r{sub c} , the orbital structure is essentially unchanged by the gas. For f{sub gas} {approx}> 15%, gas that retains its angular momentum during the merger re-forms a disk that appears in the remnants as a highly streaming z-tube population superimposed on the hot z-tube distribution formed by the old stars. In the 15%-20% gas remnants, this population appears as a kinematically distinct core (KDC) within a system that is slowly rotating or dominated by minor-axis rotation

  1. The Role of Primordial Kicks on Black Hole Merger Rates

    NASA Astrophysics Data System (ADS)

    Micic, M.; Sigurdsson, S.; Abel, T.

    2005-12-01

    Primordial stars are likely to be very massive, form in isolation, and will likely leave black holes as remnants in the centers of their host dark matter halos. Such early black holes, could be the seed black holes for the many supermassive black holes found in galaxies in the local universe. If they exist, their mergers with nearby supermassive black holes may be a prime signal for long wavelength gravitational wave detectors. We simulate formation of black holes in the center of high redshift dark matter halos and explore implications of initial natal kick velocities conjectured by some formation models. The central concentration of early black holes in present day galaxies is reduced if they are born even with moderate kicks of tens of km/s. The modest kicks allow the black holes to leave their parent halo, which consequently leads to dynamical friction being less effective on the lower mass black holes as compared to those still embedded in their parent halos. Therefore, merger rates may be reduced by more than an order of magnitude. Using analytical and illustrative cosmological N body simulations we quantify the role of natal kicks of black holes formed from massive metal free stars on their merger rates with supermassive black holes in present day galaxies. Our results also apply to black holes ejected by the gravitational slingshot mechanism. We acknowledge the support of the Center for Gravitational Wave Physics funded by the NSF under cooperative agreement PHY 01-14375, NSF grants PHY 98-00973 and PHY 02-44788, the Zaccheus Daniel Fellowship, and the Eberly College of Science.

  2. Galaxy Alignments: Theory, Modelling & Simulations

    NASA Astrophysics Data System (ADS)

    Kiessling, Alina; Cacciato, Marcello; Joachimi, Benjamin; Kirk, Donnacha; Kitching, Thomas D.; Leonard, Adrienne; Mandelbaum, Rachel; Schäfer, Björn Malte; Sifón, Cristóbal; Brown, Michael L.; Rassat, Anais

    2015-11-01

    The shapes of galaxies are not randomly oriented on the sky. During the galaxy formation and evolution process, environment has a strong influence, as tidal gravitational fields in the large-scale structure tend to align nearby galaxies. Additionally, events such as galaxy mergers affect the relative alignments of both the shapes and angular momenta of galaxies throughout their history. These "intrinsic galaxy alignments" are known to exist, but are still poorly understood. This review will offer a pedagogical introduction to the current theories that describe intrinsic galaxy alignments, including the apparent difference in intrinsic alignment between early- and late-type galaxies and the latest efforts to model them analytically. It will then describe the ongoing efforts to simulate intrinsic alignments using both N-body and hydrodynamic simulations. Due to the relative youth of this field, there is still much to be done to understand intrinsic galaxy alignments and this review summarises the current state of the field, providing a solid basis for future work.

  3. The SLUGGS survey: the assembly histories of individual early-type galaxies

    NASA Astrophysics Data System (ADS)

    Forbes, Duncan A.; Romanowsky, Aaron J.; Pastorello, Nicola; Foster, Caroline; Brodie, Jean P.; Strader, Jay; Usher, Christopher; Pota, Vincenzo

    2016-04-01

    Early-type (E and S0) galaxies may have assembled via a variety of different evolutionary pathways. Here, we investigate these pathways by comparing the stellar kinematic properties of 24 early-type galaxies from the SAGES Legacy Unifying Globulars and GalaxieS (SLUGGS) survey with the hydrodynamical simulations of Naab et al. In particular, we use the kinematics of starlight up to 4 effective radii (Re) as diagnostics of galaxy inner and outer regions, and assign each galaxy to one of six Naab et al. assembly classes. The majority of our galaxies (14/24) have kinematic characteristics that indicate an assembly history dominated by gradual gas dissipation and accretion of many gas-rich minor mergers. Three galaxies, all S0s, indicate that they have experienced gas-rich major mergers in their more recent past. One additional elliptical galaxy is tentatively associated with a gas-rich merger which results in a remnant galaxy with low angular momentum. Pathways dominated by gas-poor (major or minor) mergers dominate the mass growth of six galaxies. Most SLUGGS galaxies appear to have grown in mass (and size) via the accretion of stars and gas from minor mergers, with late major mergers playing a much smaller role. We find that the fraction of accreted stars correlates with the stellar mean age and metallicity gradient, but not with the slope of the total mass density profile. We briefly mention future observational and modelling approaches that will enhance our ability to accurately reconstruct the assembly histories of individual present-day galaxies.

  4. Trade Union Mergers: A Survey of the Literature.

    ERIC Educational Resources Information Center

    Michelson, Grant

    2000-01-01

    Examines trade union mergers highlighting merger forms, merger motivation, role played by union officers, and merger waves. Discusses the consequences of mergers on members and union performance and concludes that union merger activity has had little impact. (Contains 74 references.) (JOW)

  5. Secular Evolution in Disk Galaxies

    NASA Astrophysics Data System (ADS)

    Kormendy, John

    2013-10-01

    Self-gravitating systems evolve toward the most tightly bound configuration that is reachable via the evolution processes that are available to them. They do this by spreading -- the inner parts shrink while the outer parts expand -- provided that some physical process efficiently transports energy or angular momentum outward. The reason is that self-gravitating systems have negative specific heats. As a result, the evolution of stars, star clusters, protostellar and protoplanetary disks, black hole accretion disks and galaxy disks are fundamentally similar. How evolution proceeds then depends on the evolution processes that are available to each kind of self-gravitating system. These processes and their consequences for galaxy disks are the subjects of my lectures and of this Canary Islands Winter School. I begin with a review of the formation, growth and death of bars. Then I review the slow (`secular') rearrangement of energy, angular momentum, and mass that results from interactions between stars or gas clouds and collective phenomena such as bars, oval disks, spiral structure and triaxial dark haloes. The `existence-proof' phase of this work is largely over: we have a good heuristic understanding of how nonaxisymmetric structures rearrange disk gas into outer rings, inner rings and stuff dumped onto the centre. The results of simulations correspond closely to the morphology of barred and oval galaxies. Gas that is transported to small radii reaches high densities. Observations confirm that many barred and oval galaxies have dense central concentrations of gas and star formation. The result is to grow, on timescales of a few Gyr, dense central components that are frequently mistaken for classical (elliptical-galaxy-like) bulges but that were grown slowly out of the disk (not made rapidly by major mergers). The resulting picture of secular galaxy evolution accounts for the richness observed in galaxy structure. We can distinguish between classical and pseudo

  6. HUBBLE REVEALS 'BACKWARDS' SPIRAL GALAXY

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Astronomers have found a spiral galaxy that may be spinning to the beat of a different cosmic drummer. To the surprise of astronomers, the galaxy, called NGC 4622, appears to be rotating in the opposite direction to what they expected. Pictures by NASA's Hubble Space Telescope helped astronomers determine that the galaxy may be spinning clockwise by showing which side of the galaxy is closer to Earth. A Hubble telescope photo of the oddball galaxy is this month's Hubble Heritage offering. The image shows NGC 4622 and its outer pair of winding arms full of new stars [shown in blue]. Astronomers are puzzled by the clockwise rotation because of the direction the outer spiral arms are pointing. Most spiral galaxies have arms of gas and stars that trail behind as they turn. But this galaxy has two 'leading' outer arms that point toward the direction of the galaxy's clockwise rotation. To add to the conundrum, NGC 4622 also has a 'trailing' inner arm that is wrapped around the galaxy in the opposite direction it is rotating. Based on galaxy simulations, a team of astronomers had expected that the galaxy was turning counterclockwise. NGC 4622 is a rare example of a spiral galaxy with arms pointing in opposite directions. What caused this galaxy to behave differently from most galaxies? Astronomers suspect that NGC 4622 interacted with another galaxy. Its two outer arms are lopsided, meaning that something disturbed it. The new Hubble image suggests that NGC 4622 consumed a small companion galaxy. The galaxy's core provides new evidence for a merger between NGC 4622 and a smaller galaxy. This information could be the key to understanding the unusual leading arms. Galaxies, which consist of stars, gas, and dust, rotate very slowly. Our Sun, one of many stars in our Milky Way Galaxy, completes a circuit around the Milky Way every 250 million years. NGC 4622 resides 111 million light-years away in the constellation Centaurus. The pictures were taken in May 2001 with Hubble

  7. University Mergers in Finland: Mediating Global Competition

    ERIC Educational Resources Information Center

    Välimaa, Jussi; Aittola, Helena; Ursin, Jani

    2014-01-01

    University mergers have become a common strategy for increasing global competitiveness. In this chapter, the authors analyze the implementation of mergers in Finnish universities from the perspective of social justice as conceived within Finland and other Nordic countries.

  8. The ALHAMBRA survey: accurate merger fractions derived by PDF analysis of photometrically close pairs

    NASA Astrophysics Data System (ADS)

    López-Sanjuan, C.; Cenarro, A. J.; Varela, J.; Viironen, K.; Molino, A.; Benítez, N.; Arnalte-Mur, P.; Ascaso, B.; Díaz-García, L. A.; Fernández-Soto, A.; Jiménez-Teja, Y.; Márquez, I.; Masegosa, J.; Moles, M.; Pović, M.; Aguerri, J. A. L.; Alfaro, E.; Aparicio-Villegas, T.; Broadhurst, T.; Cabrera-Caño, J.; Castander, F. J.; Cepa, J.; Cerviño, M.; Cristóbal-Hornillos, D.; Del Olmo, A.; González Delgado, R. M.; Husillos, C.; Infante, L.; Martínez, V. J.; Perea, J.; Prada, F.; Quintana, J. M.

    2015-04-01

    Aims: Our goal is to develop and test a novel methodology to compute accurate close-pair fractions with photometric redshifts. Methods: We improved the currently used methodologies to estimate the merger fraction fm from photometric redshifts by (i) using the full probability distribution functions (PDFs) of the sources in redshift space; (ii) including the variation in the luminosity of the sources with z in both the sample selection and the luminosity ratio constrain; and (iii) splitting individual PDFs into red and blue spectral templates to reliably work with colour selections. We tested the performance of our new methodology with the PDFs provided by the ALHAMBRA photometric survey. Results: The merger fractions and rates from the ALHAMBRA survey agree excellently well with those from spectroscopic work for both the general population and red and blue galaxies. With the merger rate of bright (MB ≤ -20-1.1z) galaxies evolving as (1 + z)n, the power-law index n is higher for blue galaxies (n = 2.7 ± 0.5) than for red galaxies (n = 1.3 ± 0.4), confirming previous results. Integrating the merger rate over cosmic time, we find that the average number of mergers per galaxy since z = 1 is Nmred = 0.57 ± 0.05 for red galaxies and Nmblue = 0.26 ± 0.02 for blue galaxies. Conclusions: Our new methodology statistically exploits all the available information provided by photometric redshift codes and yields accurate measurements of the merger fraction by close pairs from using photometric redshifts alone. Current and future photometric surveys will benefit from this new methodology. Based on observations collected at the German-Spanish Astronomical Center, Calar Alto, jointly operated by the Max-Planck-Institut für Astronomie (MPIA) at Heidelberg and the Instituto de Astrofísica de Andalucía (CSIC).The catalogues, probabilities, and figures of the ALHAMBRA close pairs detected in Sect. 5.1 are available at http://https://cloud.iaa.csic.es/alhambra/catalogues/ClosePairs

  9. Merger influence on the thermal SZ effect: Model, simulation and observation

    NASA Astrophysics Data System (ADS)

    Koch, P.

    XMM-Newton and Chandra reveal detailed structures and dynamical processes in clusters of galaxies. We propose an analytical model to calculate the influence of an ongoing merger on the thermal SZ effect. According to observations we distinguish between subsonic and transonic mergers. For both cases we estimate the new pressure distribution around the merging subcluster due to its movement. Depending on the geometrical shape of the subcluster, its extension and infall velocity, and also depending on the angle between the merger axis and the line of sight, the expected SZ distortion in the merger region is of the order of 3-15 percent higher than for a relaxed cluster. In addition to this new pressure distribution we also calculate the change in the thermal spectral SZ function, resulting from the bow shock accelerated electrons in a transonic or supersonic merger. The merger shock compression factor determines the power law tail of the new non-thermal electron population and it is directly related to a shift in the crossover frequency. This shift is typically a few percent towards higher frequencies. We compare our result with the expected relativistic corrections for the thermal SZ effect and we point out the different features. Our new pressure distribution is testet against simulations and expected forthcoming observations with our AMiBA instrument.

  10. The Evolution of Advanced Merger (U)LIRGs on the Color-Stellar Mass Diagram

    NASA Astrophysics Data System (ADS)

    Guo, Rui; Hao, Cai-Na; Xia, Xiao-Yang

    2016-08-01

    Based on a sample of 79 local advanced merger (adv-merger) (U)LIRGs, we search for evidence of quenching processes by investigating the distributions of star formation history indicators (EW(Hα), EW(HΔA) and Dn(4000)) on the NUV-r color-mass and SFR-M * diagrams. The distributions of EW(Hα) and Dn(4000) on the NUV-r color-mass diagram show clear trends that at a given stellar mass, galaxies with redder NUV-r colors have smaller EW(Hα) and larger D n (4000). The reddest adv-merger (U)LIRGs close to the green valley mostly have D n (4000)> 1.4. In addition, in the SFR-M * diagram, as the SFR decreases, the EW(Hα) decreases and the D n (4000) increases, implying that the adv-merger (U)LIRGs on the star formation main sequence have more evolved stellar populations than those above the main sequence. These results indicate that a fraction of the adv-merger (U)LIRGs have already exhibited signs of fading from the starburst phase and that the NUV-r reddest adv-merger (U)LIRGs are likely at the initial stage of post-starbursts with an age of ∼ 1 Gyr, which is consistent with the gas exhaustion time-scales. Therefore, our results offer additional support for the fast evolutionary track from the blue cloud to the red sequence.

  11. Star Formation Rate and Gas Relations in the Arp 299 Merger from the VIXENS Survey

    NASA Astrophysics Data System (ADS)

    Heiderman, Amanda L.; Evans, N. J.; Gebhardt, K.; Blanc, G. A.; Davis, T.; Papovich, C. J.; van den Bosch, R.; Iono, D.; Yun, M.; VIXENS Team

    2014-01-01

    We investigate the relationship between star formation and gas content in late interaction phase merger Arp 299 from the VIRUS-P Investigation of the eXtreme ENvironments of Starbursts (VIXENS) integral field unit survey. By comparing H-alpha, Pa-alpha and 24um data to CO(1-0), CO(2-1), HCN(1-0), HCO+(1-0), and HI maps, we explore the relation between the star formation rate and gas surface densities on spatially resolved ~kpc scales. We find discrepancies from known extragalactic spatially resolved relations in nearby spiral galaxies and disk-averaged relations in high-z mergers.

  12. The NGC 4013 tale: a pseudo-bulged, late-type spiral shaped by a major merger

    NASA Astrophysics Data System (ADS)

    Wang, Jianling; Hammer, Francois; Puech, Mathieu; Yang, Yanbin; Flores, Hector

    2015-10-01

    Many spiral galaxy haloes show stellar streams with various morphologies when observed with deep images. The origin of these tidal features is discussed, either coming from a satellite infall or caused by residuals of an ancient, gas-rich major merger. By modelling the formation of the peculiar features observed in the NGC 4013 halo, we investigate their origin. By using GADGET-2 with implemented gas cooling, star formation, and feedback, we have modelled the overall NGC 4013 galaxy and its associated halo features. A gas-rich major merger occurring 2.7-4.6 Gyr ago succeeds in reproducing the NGC 4013 galaxy properties, including all the faint stellar features, strong gas warp, boxy-shaped halo and vertical 3.6 μm luminosity distribution. High gas fractions in the progenitors are sufficient to reproduce the observed thin and thick discs, with a small bulge fraction, as observed. A major merger is able to reproduce the overall NGC 4013 system, including the warp strength, the red colour and the high stellar mass density of the loop, while a minor merger model cannot. Because the gas-rich model suffices to create a pseudo-bulge with a small fraction of the light, NGC 4013 is perhaps the archetype of a late-type galaxy formed by a relatively recent merger. Then late type, pseudo-bulge spirals are not mandatorily made through secular evolution, and the NGC 4013 properties also illustrate that strong warps in isolated galaxies may well occur at a late phase of a gas-rich major merger.

  13. ACTIVE GALACTIC NUCLEI AND THE TRUNCATION OF STAR FORMATION IN K+A GALAXIES

    SciTech Connect

    Brown, Michael J. I.; Palamara, David; Moustakas, John; Caldwell, Nelson; Cool, Richard J.; Zaritsky, Dennis; Dey, Arjun; Jannuzi, Buell T.; Hickox, Ryan C.; Murray, Stephen S.

    2009-09-20

    We have searched for active galactic nuclei (AGNs) in K+A galaxies, using multiwavelength imaging and spectroscopy in the Booetes field of the NOAO Deep Wide-Field Survey. The K+A galaxies, which have had their star formation rapidly truncated, are selected via their strong Balmer absorption lines and weak Halpha emission. Our sample consists of 24 K+A galaxies selected from 6594 0.10 < z < 0.35 galaxies brighter than I = 20 with optical spectroscopy from the AGN and Galaxy Evolution Survey. Two thirds of the K+A galaxies are likely ongoing galaxy mergers, with nearby companion galaxies or tidal tails. Galaxy mergers may be responsible for the truncation of star formation, or we are observing the aftermath of merger triggered starbursts. As expected, the optical colors of K+A galaxies largely fall between blue galaxies with ongoing star formation and red passive galaxies. However, only 1% of the galaxies with colors between the red and blue populations are K+A galaxies, and we conclude that the truncation of star formation in K+A galaxies must have been unusually abrupt ({approx}<100 Myr). We examined the AGN content of K+A galaxies with both optical emission-line ratios (BPT diagrams) and Chandra X-ray imaging. At least half of all K+A galaxies display the optical emission-line ratios of AGNs, and a third of M{sub R} < -22 K+A galaxies host AGNs with X-ray luminosities of {approx}10{sup 42} erg s{sup -1}. The faintest K+A galaxies do not show clear evidence for hosting AGNs, having emission-line ratios consistent with photoionization by massive stars and few X-ray detections. We speculate that two mechanisms may be responsible for the truncation of star formation in K+A galaxies, with AGN feedback only playing a role in M{sub R} {approx}< -20.5 galaxies.

  14. IC5063: A merger with a hidden luminous active nucleus

    NASA Technical Reports Server (NTRS)

    Colina, L.; Sparks, W. B.; Macchetto, F. D.

    1990-01-01

    IC5063 is a nearby galaxy classified as an SO and containing a system of dust lanes parallel to its major optical axis (Danziger, Goss and Wellington, 1981; Bergeron, Durret and Boksenberg, 1983). Extended emission line regions with high excitation properties have been detected over distances of up to 19 kpc from the nucleus. This galaxy has been classified as Seyfert 2 on the basis of its emission line spectrum. These characteristics make IC5063 one of the best candidates for a merger remnant and an excellent candidate for a hidden luminous active nucleus. Based on new broad and narrow band images and long-slit spectroscopy obtained at the ESO 3.6 m telescope, the authors present some preliminary results supporting this hypothesis.

  15. The delay time distribution of massive double compact star mergers

    NASA Astrophysics Data System (ADS)

    Mennekens, N.; Vanbeveren, D.

    2016-05-01

    To investigate the temporal evolution of binary populations, in general, and double compact-star binaries and mergers, in particular, within a galactic evolution context, a very straightforward method is obviously to implement a detailed binary evolutionary model in a galactic chemical evolution code. To our knowledge, the Brussels galactic chemical evolution code is the only one that fully and consistently accounts for the important effects of interacting binaries on the predictions of chemical evolution. With a galactic code that does not explicitly include binaries, the temporal evolution of the population of double compact star binaries and mergers can be estimated with reasonable accuracy if the delay time distribution (DTD) for these mergers is available. The DTD for supernovae type Ia has been studied extensively in the past decade. In the present paper we present the DTD for merging double neutron-star binaries and mixed systems consisting of a neutron star and a black hole. The latter mergers are very promising sites for producing r-process elements, and the DTDs can be used to study the galactic evolution of these elements with a code that does not explicitly account for binaries.

  16. Mergers and the outside-in formation of dwarf spheroidals

    NASA Astrophysics Data System (ADS)

    Benítez-Llambay, A.; Navarro, J. F.; Abadi, M. G.; Gottlöber, S.; Yepes, G.; Hoffman, Y.; Steinmetz, M.

    2016-02-01

    We use a cosmological simulation of the formation of the Local Group to explore the origin of age and metallicity gradients in dwarf spheroidal galaxies. We find that a number of simulated dwarfs form `outside-in', with an old, metal-poor population that surrounds a younger, more concentrated metal-rich component, reminiscent of dwarf spheroidals like Sculptor or Sextans. We focus on a few examples where stars form in two populations distinct in age in order to elucidate the origin of these gradients. The spatial distributions of the two components reflect their diverse origin; the old stellar component is assembled through mergers, but the young population forms largely in situ. The older component results from a first episode of star formation that begins early but is quickly shut off by the combined effects of stellar feedback and reionization. The younger component forms when a late accretion event adds gas and reignites star formation. The effect of mergers is to disperse the old stellar population, increasing their radius and decreasing their central density relative to the young population. We argue that dwarf-dwarf mergers offer a plausible scenario for the formation of systems with multiple distinct populations and, more generally, for the origin of age and metallicity gradients in dwarf spheroidals.

  17. Radio Galaxies.

    ERIC Educational Resources Information Center

    Downes, Ann

    1986-01-01

    Provides background information on radio galaxies. Topic areas addressed include: what produces the radio emission; radio telescopes; locating radio galaxies; how distances to radio galaxies are found; physics of radio galaxies; computer simulations of radio galaxies; and the evolution of radio galaxies with cosmic time. (JN)

  18. The dynamical fingerprint of core scouring in massive elliptical galaxies

    SciTech Connect

    Thomas, J.; Saglia, R. P.; Bender, R.; Erwin, P.; Fabricius, M.

    2014-02-10

    The most massive elliptical galaxies have low-density centers or cores that differ dramatically from the high-density centers of less massive ellipticals and bulges of disk galaxies. These cores have been interpreted as the result of mergers of supermassive black hole binaries, which depopulate galaxy centers by gravitationally slingshotting central stars toward large radii. Such binaries naturally form in mergers of luminous galaxies. Here, we analyze the population of central stellar orbits in 11 massive elliptical galaxies that we observed with the integral field spectrograph SINFONI at the European Southern Observatory Very Large Telescope. Our dynamical analysis is orbit-based and includes the effects of a central black hole, the mass distribution of the stars, and a dark matter halo. We show that the use of integral field kinematics and the inclusion of dark matter is important to conclude on the distribution of stellar orbits in galaxy centers. Six of our galaxies are core galaxies. In these six galaxies, but not in the galaxies without cores, we detect a coherent lack of stars on radial orbits in the core region and a uniform excess of radial orbits outside of it: when scaled by the core radius r{sub b} , the radial profiles of the classical anisotropy parameter β(r) are nearly identical in core galaxies. Moreover, they quantitatively match the predictions of black hole binary simulations, providing the first convincing dynamical evidence for core scouring in the most massive elliptical galaxies.

  19. Crerar/Chicago Library Merger.

    ERIC Educational Resources Information Center

    Cairns, Paul M.

    1986-01-01

    Describes steps in survey project that supplied information for contemplated merger of two libraries by estimating number of volumes and titles and duplication between John Crerar Library collections and University of Chicago Library science collections. Survey's findings for volume duplication are analyzed by subject groupings and by books and…

  20. Reconstructing galaxy histories from globular clusters

    NASA Astrophysics Data System (ADS)

    West, Michael J.; Côté, Patrick; Marzke, Ronald O.; Jordán, Andrés

    2004-01-01

    Nearly a century after the true nature of galaxies as distant `island universes' was established, their origin and evolution remain great unsolved problems of modern astrophysics. One of the most promising ways to investigate galaxy formation is to study the ubiquitous globular star clusters that surround most galaxies. Globular clusters are compact groups of up to a few million stars. They generally formed early in the history of the Universe, but have survived the interactions and mergers that alter substantially their parent galaxies. Recent advances in our understanding of the globular cluster systems of the Milky Way and other galaxies point to a complex picture of galaxy genesis driven by cannibalism, collisions, bursts of star formation and other tumultuous events.

  1. Reconstructing galaxy histories from globular clusters.

    PubMed

    West, Michael J; Côté, Patrick; Marzke, Ronald O; Jordán, Andrés

    2004-01-01

    Nearly a century after the true nature of galaxies as distant 'island universes' was established, their origin and evolution remain great unsolved problems of modern astrophysics. One of the most promising ways to investigate galaxy formation is to study the ubiquitous globular star clusters that surround most galaxies. Globular clusters are compact groups of up to a few million stars. They generally formed early in the history of the Universe, but have survived the interactions and mergers that alter substantially their parent galaxies. Recent advances in our understanding of the globular cluster systems of the Milky Way and other galaxies point to a complex picture of galaxy genesis driven by cannibalism, collisions, bursts of star formation and other tumultuous events. PMID:14702077

  2. Reconstructing galaxy histories from globular clusters.

    PubMed

    West, Michael J; Côté, Patrick; Marzke, Ronald O; Jordán, Andrés

    2004-01-01

    Nearly a century after the true nature of galaxies as distant 'island universes' was established, their origin and evolution remain great unsolved problems of modern astrophysics. One of the most promising ways to investigate galaxy formation is to study the ubiquitous globular star clusters that surround most galaxies. Globular clusters are compact groups of up to a few million stars. They generally formed early in the history of the Universe, but have survived the interactions and mergers that alter substantially their parent galaxies. Recent advances in our understanding of the globular cluster systems of the Milky Way and other galaxies point to a complex picture of galaxy genesis driven by cannibalism, collisions, bursts of star formation and other tumultuous events.

  3. Observational evidence for the evolution of nuclear metallicity and star formation rate with the merger stage

    NASA Astrophysics Data System (ADS)

    Guo, Rui; Hao, Cai-Na; Xia, Xiao-Yang; Wei, Peng; Guo, Xin

    2016-07-01

    We investigate the evolution of nuclear gas-phase oxygen abundance and star formation rate (SFR) of local far-infrared selected star-forming galaxies along the merger sequence, as traced by their optical morphologies. The sample was drawn from a cross-correlation analysis of the IRAS Point Source Catalog Redshift Survey and 1 Jy ultraluminous infrared galaxy sample with the Sloan Digital Sky Survey Data Release 7 database. The investigation is done by comparing our sample to a control sample matched in the normalized redshift distribution in two diagnostics, which are the nuclear gas-phase metallicity vs. stellar mass and the nuclear SFR vs. stellar mass diagrams. Galaxies with different morphological types show different mass-metallicity relations (MZRs). Compared to the MZR defined by the control sample, isolated spirals have comparable metallicities with the control sample at a given stellar mass. Spirals in pairs and interacting galaxies with projected separations of r p > 20 kpc show a mild metallicity dilution of 0.02–0.03 dex. Interacting galaxies with r p < 20 kpc, pre-mergers and advanced mergers are underabundant by ∼ 0.06, ∼ 0.05 and ∼ 0.04 dex, respectively. This shows an evolutionary trend that the metallicity is increasingly depressed as the merging proceeds and it is diluted most dramatically when two galaxies are closely interacting. Afterwards, the interstellar medium (ISM) is enriched when the galaxies coalesce. This is the first time that such ISM enrichment at the final coalescence stage has been observed, which demonstrates the importance of supernova explosions in affecting the nuclear metallicity. Moreover, the central SFR enhancement relative to the control sample evolves simultaneously with the nuclear gas-phase oxygen abundance. Our results support the predictions from numerical simulations.

  4. Observational evidence for the evolution of nuclear metallicity and star formation rate with the merger stage

    NASA Astrophysics Data System (ADS)

    Guo, Rui; Hao, Cai-Na; Xia, Xiao-Yang; Wei, Peng; Guo, Xin

    2016-07-01

    We investigate the evolution of nuclear gas-phase oxygen abundance and star formation rate (SFR) of local far-infrared selected star-forming galaxies along the merger sequence, as traced by their optical morphologies. The sample was drawn from a cross-correlation analysis of the IRAS Point Source Catalog Redshift Survey and 1 Jy ultraluminous infrared galaxy sample with the Sloan Digital Sky Survey Data Release 7 database. The investigation is done by comparing our sample to a control sample matched in the normalized redshift distribution in two diagnostics, which are the nuclear gas-phase metallicity vs. stellar mass and the nuclear SFR vs. stellar mass diagrams. Galaxies with different morphological types show different mass-metallicity relations (MZRs). Compared to the MZR defined by the control sample, isolated spirals have comparable metallicities with the control sample at a given stellar mass. Spirals in pairs and interacting galaxies with projected separations of r p > 20 kpc show a mild metallicity dilution of 0.02–0.03 dex. Interacting galaxies with r p < 20 kpc, pre-mergers and advanced mergers are underabundant by ˜ 0.06, ˜ 0.05 and ˜ 0.04 dex, respectively. This shows an evolutionary trend that the metallicity is increasingly depressed as the merging proceeds and it is diluted most dramatically when two galaxies are closely interacting. Afterwards, the interstellar medium (ISM) is enriched when the galaxies coalesce. This is the first time that such ISM enrichment at the final coalescence stage has been observed, which demonstrates the importance of supernova explosions in affecting the nuclear metallicity. Moreover, the central SFR enhancement relative to the control sample evolves simultaneously with the nuclear gas-phase oxygen abundance. Our results support the predictions from numerical simulations.

  5. The Horizon-AGN simulation: morphological diversity of galaxies promoted by AGN feedback

    NASA Astrophysics Data System (ADS)

    Dubois, Yohan; Peirani, Sébastien; Pichon, Christophe; Devriendt, Julien; Gavazzi, Raphaël; Welker, Charlotte; Volonteri, Marta

    2016-09-01

    The interplay between cosmic gas accretion onto galaxies and galaxy mergers drives the observed morphological diversity of galaxies. By comparing the state-of-the-art hydrodynamical cosmological simulations Horizon-AGN and Horizon-noAGN, we unambiguously identify the critical role of Active Galactic Nuclei (AGN) in setting up the correct galaxy morphology for the massive end of the population. With AGN feedback, typical kinematic and morpho-metric properties of galaxy populations as well as the galaxy-halo mass relation are in much better agreement with observations. Only AGN feedback allows massive galaxies at the center of groups and clusters to become ellipticals, while without AGN feedback those galaxies reform discs. It is the merger-enhanced AGN activity that is able to freeze the morphological type of the post-merger remnant by durably quenching its quiescent star formation. Hence morphology is shown not to be purely driven by mass but also by the nature of cosmic accretion: at constant galaxy mass, ellipticals are galaxies that are mainly assembled through mergers, while discs are preferentially built from the in situ star formation fed by smooth cosmic gas infall.

  6. The Horizon-AGN Simulation: Morphological Diversity of Galaxies ,Promoted by AGN Feedback

    NASA Astrophysics Data System (ADS)

    Dubois, Yohan; Peirani, Sébastien; Pichon, Christophe; Devriendt, Julien; Gavazzi, Raphaël; Welker, Charlotte; Volonteri, Marta

    2016-09-01

    The interplay between cosmic gas accretion onto galaxies and galaxy mergers drives the observed morphological diversity of galaxies. By comparing the state-of-the-art hydrodynamical cosmological simulations HORIZON-AGN and HORIZON-NOAGN, we unambiguously identify the critical role of Active Galactic Nuclei (AGN) in setting up the correct galaxy morphology for the massive end of the population. With AGN feedback, typical kinematic and morpho-metric properties of galaxy populations as well as the galaxy-halo mass relation are in much better agreement with observations. Only AGN feedback allows massive galaxies at the center of groups and clusters to become ellipticals, while without AGN feedback those galaxies reform discs. It is the merger-enhanced AGN activity that is able to freeze the morphological type of the post-merger remnant by durably quenching its quiescent star formation. Hence morphology is shown not to be purely driven by mass but also by the nature of cosmic accretion: at constant galaxy mass, ellipticals are galaxies that are mainly assembled through mergers, while discs are preferentially built from the in situ star formation fed by smooth cosmic gas infall.

  7. Binary Black Hole Mergers from Planet-like Migrations.

    PubMed

    Gould; Rix

    2000-03-20

    If supermassive black holes (BHs) are generically present in galaxy centers, and if galaxies are built up through hierarchical merging, BH binaries are at least temporary features of most galactic bulges. Observations suggest, however, that binary BHs are rare, pointing toward a binary lifetime far shorter than the Hubble time. We show that, almost regardless of the detailed mechanism, all stellar dynamical processes are too slow in reducing the orbital separation once orbital velocities in the binary exceed the virial velocity of the system. We propose that a massive gas disk surrounding a BH binary can effect its merger rapidly, in a scenario analogous to the orbital decay of super-Jovian planets due to a proto-planetary disk. As in the case of planets, gas accretion onto the secondary (here a supermassive BH) is integrally connected with its inward migration. Such accretion would give rise to quasar activity. BH binary mergers could therefore be responsible for many or most quasars. PMID:10702125

  8. EVOLUTION OF SHOCKS AND TURBULENCE IN MAJOR CLUSTER MERGERS

    SciTech Connect

    Paul, S.; Mannheim, K.; Iapichino, L.; Miniati, F.; Bagchi, J.

    2011-01-01

    We performed a set of cosmological simulations of major mergers in galaxy clusters, in order to study the evolution of merger shocks and the subsequent injection of turbulence in the post-shock region and in the intra-cluster medium (ICM). The computations have been performed with the grid-based, adaptive mesh refinement hydrodynamical code Enzo, using a refinement criterion especially designed for refining turbulent flows in the vicinity of shocks. When a major merger event occurs, a substantial amount of turbulence energy is injected in the ICM of the newly formed cluster. Our simulations show that the shock launched after a major merger develops an ellipsoidal shape and gets broken by the interaction with the filamentary cosmic web around the merging cluster. The size of the post-shock region along the direction of shock propagation is of the order of 300 kpc h{sup -1}, and the turbulent velocity dispersion in this region is larger than 100 km s{sup -1}. We performed a scaling analysis of the turbulence energy within our cluster sample. The best fit for the scaling of the turbulence energy with the cluster mass is consistent with M{sup 5/3}, which is also the scaling law for the thermal energy in the self-similar cluster model. This clearly indicates the close relation between virialization and injection of turbulence in the cluster evolution. As for the turbulence in the cluster core, we found that within 2 Gyr after the major merger (the timescale for the shock propagation in the ICM), the ratio of the turbulent to total pressure is larger than 10%, and after about 4 Gyr it is still larger than 5%, a typical value for nearly relaxed clusters. Turbulence at the cluster center is thus sustained for several gigayears, which is substantially longer than typically assumed in the turbulent re-acceleration models, invoked to explain the statistics of observed radio halos. Striking similarities in the morphology and other physical parameters between our simulations

  9. Massive relic galaxies prefer dense environments

    NASA Astrophysics Data System (ADS)

    Peralta de Arriba, Luis; Quilis, Vicent; Trujillo, Ignacio; Cebrián, María; Balcells, Marc

    2016-09-01

    We study the preferred environments of z ˜ 0 massive relic galaxies (M⋆ ≳ 1010 M⊙ galaxies with little or no growth from star formation or mergers since z ˜ 2). Significantly, we carry out our analysis on both a large cosmological simulation and an observed galaxy catalogue. Working on the Millennium I-WMAP7 simulation we show that the fraction of today massive objects which have grown less than 10 per cent in mass since z ˜ 2 is ˜0.04 per cent for the whole massive galaxy population with M⋆ > 1010 M⊙. This fraction rises to ˜0.18 per cent in galaxy clusters, confirming that clusters help massive galaxies remain unaltered. Simulations also show that massive relic galaxies tend to be closer to cluster centres than other massive galaxies. Using the New York University Value-Added Galaxy Catalogue, and defining relics as M⋆ ≳ 1010 M⊙ early-type galaxies with colours compatible with single-stellar population ages older than 10 Gyr, and which occupy the bottom 5-percentile in the stellar mass-size distribution, we find 1.11 ± 0.05 per cent of relics among massive galaxies. This fraction rises to 2.4 ± 0.4 per cent in high-density environments. Our findings point in the same direction as the works by Poggianti et al. and Stringer et al. Our results may reflect the fact that the cores of the clusters are created very early on, hence the centres host the first cluster members. Near the centres, high-velocity dispersions and harassment help cluster core members avoid the growth of an accreted stellar envelope via mergers, while a hot intracluster medium prevents cold gas from reaching the galaxies, inhibiting star formation.

  10. TURBULENT CAULDRON OF STARBIRTH IN NEARBY ACTIVE GALAXY

    NASA Technical Reports Server (NTRS)

    2002-01-01

    NASA's Hubble Space Telescope offers a stunning unprecedented close-up view of a turbulent firestorm of starbirth along a nearly edge-on dust disk girdling Centaurus A, the nearest active galaxy to Earth. A ground-based telescopic view (upper left insert) shows that the dust lane girdles the entire elliptical galaxy. This lane has long been considered the dust remnant of a smaller spiral galaxy that merged with the large elliptical galaxy. The spiral galaxy deposited its gas and dust into the elliptical galaxy, and the shock of the collision compressed interstellar gas, precipitating a flurry of star formation. Resembling looming storm clouds, dark filaments of dust mixed with cold hydrogen gas are silhouetted against the incandescent yellow-orange glow from hot gas and stars behind it. Brilliant clusters of young blue stars lie along the edge of the dark dust rift. Outside the rift the sky is filled with the soft hazy glow of the galaxy's much older resident population of red giant and red dwarf stars. The dusty disk is tilted nearly edge-on, its inclination estimated to be only 10 or 20 degrees from our line-of-sight. The dust lane has not yet had enough time since the recent merger to settle down into a flat disk. At this oblique angle, bends and warps in the dust lane cause us to see a rippled 'washboard' structure. The picture is a mosaic of two Hubble Space Telescope images taken with the Wide Field Planetary Camera 2, on Aug. 1, 1997 and Jan. 10, 1998. The approximately natural color is assembled from images taken in blue, green and red light. Details as small as seven light-years across can be resolved. The blue color is due to the light from extremely hot, newborn stars. The reddish-yellow color is due in part to hot gas, in part to older stars in the elliptical galaxy and in part to scattering of blue light by dust -- the same effect that produces brilliant orange sunsets on Earth. Centaurus A (NGC 5128) Fast Facts: Right Ascension: 13: 25.5 (hours

  11. The 'toothbrush-cluster': probing particle acceleration by merger induced shock waves

    NASA Astrophysics Data System (ADS)

    van Weeren, Reinout

    2012-09-01

    We have discovered a spectacular merging galaxy cluster hosting a 2-Mpc elongated radio source, suggesting particle acceleration at merger shocks. The large straight extent is however very difficult to explain with current merger scenarios and a very high Mach number of 4.5 is required to explain the radio spectral index. We therefore argue that this cluster is a key object to test current models of shock acceleration and cluster formation. The proposed Chandra+EVLA observations will address the following: (i) is there a compelling need for a more sophisticated particle acceleration mechanism than standard diffusive shock acceleration? And (ii) are we witnessing a very special configuration consisting of multiple merger events that collectively conspire to yield such a linear shock?

  12. Milky Way archaeology and the dynamical signatures of mergers

    NASA Astrophysics Data System (ADS)

    Gomez, Facundo Ariel

    2010-09-01

    Under the current cosmological paradigm galaxies like our own Milky Way are formed bottom-up, through mergers and accretion of smaller objects that come together due to their gravitational attraction. If this paradigm is correct a vast amount of fossil remnants from the disruption of the accreted galaxies should be present in the different components of the Milky Way, such as its halo or thick disc. The quantification and the characterisation of these debris therefore provide crucial tests of this paradigm which, moreover, would allow us to establish the assembly history of our Galaxy. In this thesis numerical and analytical methods have been used to characterise the dynamical signatures as well as the time evolution of debris associated with accretion events. Simulations at different levels of sophistication have been performed to study the impact of different physical mechanisms on the final distribution of debris in Galactic phase-space (Chapter 4 & 5). New methods and techniques have been developed to identify fossil signatures of accreted galaxies (Chapter 3), as well as to characterize how much of this history may be recovered with the advent of the European Space Agency astrometric satellite Gaia (Chapter 4). The problem of the very rapid initial divergence of nearby orbits observed in N-body simulations of fully integrable potentials has also been revisited in this work (Chapter 2).

  13. Constructing massive blue elliptical galaxies in the local universe

    NASA Astrophysics Data System (ADS)

    Haines, Tim

    Over cosmic time, galaxy mass assembly has transitioned from low-mass, star-forming disk galaxies to massive, quiescent elliptical galaxies. The merger hypothesis for the formation of new elliptical galaxies provides one physical explanation to the observed buildup of this population, a key prediction of which is a brief phase of morphological transformation from highly-disturbed remnant to blue elliptical. We study 12 plausible new ellipticals with varying degrees of morphological peculiarities visually selected from a larger parent sample of nearby (0.01 ≤ z ≤ 0.04), massive (M* ≥ 10 10 M⊙ ), concentrated (Petrosian R90/R50 ≥ 2.6), and optically blue galaxies from the SDSS DR4 catalog. Using integral field spectroscopy, we construct two-dimensional spectra of the stellar populations and azimuthally bin them into concentric annuli to determine the relative ages of the stellar populations as a function of radius. Using this data and conclusions from simulations, we seek to distinguish post-mergers from galaxies undergoing other modes of mass assembly. We find that 1/3 of our sample is consistent with having undergone a recent, gas-rich major merger. Another 1/3 of our sample is consistent with having undergone a 'frosting' of recent star formation. The final 1/3 of our sample is either inconsistent with or inconclusive of having undergone a recent, gas-rich major merger.

  14. Understanding the Toothbrush Merging Galaxy Cluster to Constrain Dark Matter

    NASA Astrophysics Data System (ADS)

    Dawson, William; Brüggen, M.; Van Weeren, R. J.; Wittman, D. M.

    2014-01-01

    Merging galaxy clusters have proven to be one of the most important probes of dark matter self-interaction properties. If their full dark matter constraining power is to be realized though, we must accurately quantify the properties of these dissociative mergers. Some properties such as mass and relative line of sight velocity can be directly measured and sufficiently constrained, but there remains considerable uncertainty on indirect properties of the mergers. Indirect properties such as the angle of the merger axis with the plane of the sky and collision velocity are crucial to translating the gravitational lensing measurements of the mass, X-ray measurements of the cluster gas and optical measurements of the galaxies into constraints on the dark matter properties. By utilizing multi-wavelength measurements (X-ray to radio), of the Toothbrush radio relic dissociative merger (1RXS J0603+4212) we show that we can improve the constraints on the indirect parameters of the merger by up to an order of magnitude vs. traditional approaches. By utilizing multi-wavelength measurements (X-ray to radio), of the Toothbrush radio relic dissociative merger we show that we can improve the constraints on the indirect parameters of the merger by up to an order of magnitude vs. traditional approaches.

  15. Enrichment of r-process Elements in Dwarf Spheroidal Galaxies in Chemo-dynamical Evolution Model

    NASA Astrophysics Data System (ADS)

    Hirai, Yutaka; Ishimaru, Yuhri; Saitoh, Takayuki R.; Fujii, Michiko S.; Hidaka, Jun; Kajino, Toshitaka

    2015-11-01

    The rapid neutron-capture process (r-process) is a major process for the synthesis of elements heavier than iron-peak elements, but the astrophysical site(s) of the r-process has not yet been identified. Neutron star mergers (NSMs) are suggested to be a major r-process site according to nucleosynthesis studies. Previous chemical evolution studies, however, required unlikely short merger times of NSMs to reproduce the observed large star-to-star scatters in the abundance ratios of r-process elements to iron: the [Eu/Fe] of extremely metal-poor stars in the Milky Way (MW) halo. This problem can be solved by considering chemical evolution in dwarf spheroidal galaxies (dSphs), which would be building blocks of the MW and have lower star formation efficiencies than the MW halo. We demonstrate the enrichment of r-process elements in dSphs by NSMs using an N-body/smoothed particle hydrodynamics code. Our high-resolution model reproduces the observed [Eu/Fe] due to NSMs with a merger time of 100 Myr when the effect of metal mixing is taken into account. This is because metallicity is not correlated with time ˜300 Myr from the start of the simulation due to the low star formation efficiency in dSphs. We also confirm that this model is consistent with observed properties of dSphs such as radial profiles and metallicity distribution. The merger time and the Galactic rate of NSMs are suggested to be ≲300 Myr and ˜10-4 year-1, respectively, which are consistent with the values suggested by population synthesis and nucleosynthesis studies. This study supports the argument that NSMs are the major astrophysical site of the r-process.

  16. ENRICHMENT OF r-PROCESS ELEMENTS IN DWARF SPHEROIDAL GALAXIES IN CHEMO-DYNAMICAL EVOLUTION MODEL

    SciTech Connect

    Hirai, Yutaka; Kajino, Toshitaka; Ishimaru, Yuhri; Saitoh, Takayuki R.; Fujii, Michiko S.; Hidaka, Jun

    2015-11-20

    The rapid neutron-capture process (r-process) is a major process for the synthesis of elements heavier than iron-peak elements, but the astrophysical site(s) of the r-process has not yet been identified. Neutron star mergers (NSMs) are suggested to be a major r-process site according to nucleosynthesis studies. Previous chemical evolution studies, however, required unlikely short merger times of NSMs to reproduce the observed large star-to-star scatters in the abundance ratios of r-process elements to iron: the [Eu/Fe] of extremely metal-poor stars in the Milky Way (MW) halo. This problem can be solved by considering chemical evolution in dwarf spheroidal galaxies (dSphs), which would be building blocks of the MW and have lower star formation efficiencies than the MW halo. We demonstrate the enrichment of r-process elements in dSphs by NSMs using an N-body/smoothed particle hydrodynamics code. Our high-resolution model reproduces the observed [Eu/Fe] due to NSMs with a merger time of 100 Myr when the effect of metal mixing is taken into account. This is because metallicity is not correlated with time ∼300 Myr from the start of the simulation due to the low star formation efficiency in dSphs. We also confirm that this model is consistent with observed properties of dSphs such as radial profiles and metallicity distribution. The merger time and the Galactic rate of NSMs are suggested to be ≲300 Myr and ∼10{sup −4} year{sup −1}, respectively, which are consistent with the values suggested by population synthesis and nucleosynthesis studies. This study supports the argument that NSMs are the major astrophysical site of the r-process.

  17. THE EVOLUTION OF CENTRAL GROUP GALAXIES IN HYDRODYNAMICAL SIMULATIONS

    SciTech Connect

    Feldmann, R.; Carollo, C. M.; Mayer, L.; Lake, G.; Renzini, A.; Quinn, T.; Stinson, G. S.; Yepes, G.

    2010-01-20

    We trace the evolution of central galaxies in three approx10{sup 13} M{sub sun} galaxy groups simulated at high resolution in cosmological hydrodynamical simulations. In all three cases, the evolution in the group potential leads, at z = 0, to central galaxies that are massive, gas-poor early-type systems supported by stellar velocity dispersion and which resemble either elliptical or S0 galaxies. Their z approx 2-2.5 main progenitors are massive (M{sub *} approx (3-10) x 10{sup 10} M{sub sun}), star-forming (20-60 M{sub sun} yr{sup -1}) galaxies which host substantial reservoirs of cold gas (approx5 x 10{sup 9} M{sub sun}) in extended gas disks. Our simulations thus show that star-forming galaxies observed at z approx 2 are likely the main progenitors of central galaxies in galaxy groups at z = 0. At z approx 2 the stellar component of all galaxies is compact, with a half-mass radius <1 kpc. The central stellar density stays approximatively constant from such early epochs down to z = 0. Instead, the galaxies grow inside out, by acquiring a stellar envelope outside the innermost approx2 kpc. Consequently the density within the effective radius decreases by up to 2 orders of magnitude. Both major and minor mergers contribute to most (70{sup +20}{sub -15}%) of the mass accreted outside the effective radius and thus drive an episodical evolution of the half-mass radii, particularly below z = 1. In situ star formation and secular evolution processes contribute to 14{sup +18}{sub -9}% and 16{sup +6}{sub -11}%, respectively. Overall, the simulated galaxies grow by a factor approx4-5 in mass and size since redshift z approx 2. The short cooling time in the center of groups can foster a 'hot accretion' mode. In one of the three simulated groups this leads to a dramatic rejuvenation of the central group galaxy at z < 1, affecting its morphology, kinematics, and colors. This episode is eventually terminated by a group-group merger. Mergers also appear to be responsible for

  18. The Evolution of Central Group Galaxies in Hydrodynamical Simulations

    NASA Astrophysics Data System (ADS)

    Feldmann, R.; Carollo, C. M.; Mayer, L.; Renzini, A.; Lake, G.; Quinn, T.; Stinson, G. S.; Yepes, G.

    2010-01-01

    We trace the evolution of central galaxies in three ~1013 M sun galaxy groups simulated at high resolution in cosmological hydrodynamical simulations. In all three cases, the evolution in the group potential leads, at z = 0, to central galaxies that are massive, gas-poor early-type systems supported by stellar velocity dispersion and which resemble either elliptical or S0 galaxies. Their z ~ 2-2.5 main progenitors are massive (M * ~ (3-10) × 1010 M sun), star-forming (20-60 M sun yr-1) galaxies which host substantial reservoirs of cold gas (~5 × 109 M sun) in extended gas disks. Our simulations thus show that star-forming galaxies observed at z ~ 2 are likely the main progenitors of central galaxies in galaxy groups at z = 0. At z ~ 2 the stellar component of all galaxies is compact, with a half-mass radius <1 kpc. The central stellar density stays approximatively constant from such early epochs down to z = 0. Instead, the galaxies grow inside out, by acquiring a stellar envelope outside the innermost ~2 kpc. Consequently the density within the effective radius decreases by up to 2 orders of magnitude. Both major and minor mergers contribute to most (70+20 -15%) of the mass accreted outside the effective radius and thus drive an episodical evolution of the half-mass radii, particularly below z = 1. In situ star formation and secular evolution processes contribute to 14+18 -9% and 16+6 -11%, respectively. Overall, the simulated galaxies grow by a factor ~4-5 in mass and size since redshift z ~ 2. The short cooling time in the center of groups can foster a "hot accretion" mode. In one of the three simulated groups this leads to a dramatic rejuvenation of the central group galaxy at z < 1, affecting its morphology, kinematics, and colors. This episode is eventually terminated by a group-group merger. Mergers also appear to be responsible for the suppression of cooling flows in the other two groups. Passive stellar evolution and minor galaxy mergers gradually restore

  19. The Spatial Extent and Distribution of Star Formation in 3D-HST Mergers at z is approximately 1.5

    NASA Technical Reports Server (NTRS)

    Schmidt, Kasper B.; Rix, Hans-Walter; da Cunha, Elisabete; Brammer, Gabriel B.; Cox, Thomas J.; Van Dokkum, Pieter; Foerster Schreiber, Natascha M.; Franx, Marijn; Fumagalli, Mattia; Jonsson, Patrik; Lundgren, Britt; Maseda, Michael V.; Momcheva, Ivelina; Nelson, Erica J.; Skelton, Rosalind E.; van der Wel, Arjen; Whitaker, Katherine E.

    2013-01-01

    We present an analysis of the spatial distribution of star formation in a sample of 60 visually identified galaxy merger candidates at z greater than 1. Our sample, drawn from the 3D-HST survey, is flux-limited and was selected to have high star formation rates based on fits of their broad-band, low spatial resolution spectral energy distributions. It includes plausible pre-merger (close pairs) and post-merger (single objects with tidal features) systems,with total stellar masses and star formation rates derived from multi-wavelength photometry. Here we use near-infrared slitless spectra from 3D-HST which produce H or [OIII] emission line maps as proxies for star-formation maps. This provides a first comprehensive high-resolution, empirical picture of where star formation occurred in galaxy mergers at the epoch of peak cosmic star formation rate. We find that detectable star formation can occur in one or both galaxy centres, or in tidal tails. The most common case (58%) is that star formation is largely concentrated in a single, compact region, coincident with the centre of (one of) the merger components. No correlations between star formation morphology and redshift, total stellar mass, or star formation rate are found. A restricted set of hydrodynamical merger simulationsbetween similarly massive and gas-rich objects implies that star formation should be detectable in both merger components, when the gas fractions of the individual components are the same. This suggests that z is approximately 1.5 mergers typically occur between galaxies whose gas fractions, masses, andor star formation rates are distinctly different from one another.

  20. The hierarchical evolution of Brightest Cluster Galaxies: red galaxies in a young universe

    NASA Astrophysics Data System (ADS)

    Tonini, Chiara

    2013-07-01

    We investigate the evolution of Brightest Cluster Galaxies (BCGs) from redshift z ~ 1.6 to z = 0. We upgrade the hierarchical semi-analytic model of Croton et al. (2006) with a new spectro-photometric model that produces realistic galaxy spectra, making use of the Maraston (2005) stellar populations and a new recipe for the dust extinction. We compare the model predictions of the K-band luminosity evolution and the J-K, V-I and I-K colour evolution with a series of datasets, including Collins et al. (Nature, 2009) who argued that semi-analytic models based on the Millennium simulation cannot reproduce the red colours and high luminosity of BCGs at z > 1. We show instead that the model is well in range of the observed luminosity and correctly reproduces the colour evolution of BCGs in the whole redshift range up to z ~ 1.6. We argue that the success of the semi-analytic model is in large part due to the implementation of a more sophisticated spectro-photometric model. An analysis of the model BCGs shows an increase in mass by a factor 2-3 since z ~ 1, and star formation activity down to low redshifts. While the consensus regarding BCGs is that they are passively evolving, we argue that this conclusion is affected by the degeneracy between star formation history and stellar population models used in SED-fitting, and by the inefficacy of toy-models of passive evolution to capture the complexity of real galaxies, especially those with rich merger histories like BCGs. Following this argument, we also show that in the semi-analytic model, the BCGs show a realistic mix of stellar populations, and that these stellar populations are mostly old. In addition, the age-redshift relation of the model BCGs follows that of the Universe, meaning that given their merger history and star formation history, the ageing of BCGs is always dominated by the ageing of their stellar populations. In a ΛCDM Universe, we define such evolution as `passive in the hierarchical sense'.

  1. Probing the tides in interacting galaxy pairs

    NASA Technical Reports Server (NTRS)

    Borne, Kirk D.

    1990-01-01

    Detailed spectroscopic and imaging observations of colliding elliptical galaxies revealed unmistakable diagnostic signatures of the tidal interactions. It is possible to compare both the distorted luminosity distributions and the disturbed internal rotation profiles with numerical simulations in order to model the strength of the tidal gravitational field acting within a given pair of galaxies. Using the best-fit numerical model, one can then measure directly the mass of a specific interacting binary system. This technique applies to individual pairs and therefore complements the classical methods of measuring the masses of galaxy pairs in well-defined statistical samples. The 'personalized' modeling of galaxy pairs also permits the derivation of each binary's orbit, spatial orientation, and interaction timescale. Similarly, one can probe the tides in less-detailed observations of disturbed galaxies in order to estimate some of the physical parameters for larger samples of interacting galaxy pairs. These parameters are useful inputs to the more universal problems of (1) the galaxy merger rate, (2) the strength and duration of the driving forces behind tidally stimulated phenomena (e.g., starbursts and maybe quasi steller objects), and (3) the identification of long-lived signatures of interaction/merger events.

  2. Molecular Gas in Starburts ARP 220 & NGC 6240: Understanding Mergers using High Density Gas Tracers

    NASA Astrophysics Data System (ADS)

    Manohar, Swarnima; Scoville, Nicholas; Sheth, Kartik

    2015-01-01

    NGC 6240 and Arp 220 can be considered the founding members of a very active class of objects called Ultraluminous Infrared Galaxies or ULIRGs. They are in different stages of mergers and hence are excellent case studies to enhance our knowledge about the merging process. We have imaged the dense star-forming regions of these galaxies at sub-arcsec resolution with ALMA and CARMA. Multi-band imaging allows multilevel excitation analysis of HCN, HCO+ and CS transitions which will constrain the properties of the gas as a function of position and velocity (across line profiles). We are doing an extensive multilevel excitation analysis of the merger as a function of radius which enables in depth understanding of the gas dynamics and gas properties such as temperature and density. This in turn probes the homogeneity of the gas in the merging system and hence the regions that facilitate high star formation rates. This tandem use of CARMA with ALMA to map these systems at different merger stages will assemble a more integrated picture of the merger process. We are probing the distribution and dynamics of star forming gas and star formation activity in the dense disk structures to enable new theoretical understanding of the physics, dynamics, star formation activity and associated feedback in the most active and rapidly evolving galactic nuclei. Here we present our observations of Arp 220 and NGC 6240 from ALMA and CARMA.

  3. Molecular Gas in Starburts: Understanding Mergers using High Density Gas Tracers

    NASA Astrophysics Data System (ADS)

    Manohar, Swarnima; Scoville, N.; Walter, F.; Sheth, K.

    2014-01-01

    NGC 6240 and Arp 220 can be considered the founding members of a very active class of objects called Ultraluminous Infrared Galaxies or ULIRGs. They are in different stages of mergers and hence are excellent case studies to enhance our knowledge about the merging process. We have imaged the dense star-forming regions of these galaxies at sub-arcsec resolution with ALMA and CARMA. Multi-band imaging allows multilevel excitation analysis of HCN, HCO+ and CS transitions which will constrain the properties of the gas as a function of position and velocity (across line profiles). We are doing an extensive multilevel excitation analysis of the merger as a function of radius which enables in depth understanding of the gas dynamics and gas properties such as temperature and density. This in turn probes the homogeneity of the gas in the merging system and hence the regions that facilitate high star formation rates. This tandem use of CARMA with ALMA to map these systems at different merger stages will assemble a more integrated picture of the merger process. We are probing the distribution and dynamics of star forming gas and star formation activity in the dense disk structures to enable new theoretical understanding of the physics, dynamics, star formation activity and associated feedback in the most active and rapidly evolving galactic nuclei. Here we present preliminary observations of Arp 220 and NGC 6240 from ALMA and CARMA.

  4. Searching for Massive Major Mergers in Dense Environments at Late Cosmic Time

    NASA Astrophysics Data System (ADS)

    Her, Xiachang; McIntosh, Daniel H.; Haines, Tim

    2015-01-01

    Major gas-poor (dry) merging between two comparably massive spheroidal galaxies are postulated to be the central mechanism responsible for the assembly of the most massive (Mstar>1e11 Msun) elliptical galaxies. Numerical simulations predict that these mergers may occur at late cosmic times and typically in dense environments. Previous work based on a complete sample of high-mass (>5e10 Msun) galaxies with z<0.12 selected from the Yang et al. (2007) SDSS Galaxy Group Catalog and analyzed for residual asymmetric features in SDSS r-band images provided a lower limit to the frequency of massive pairs with interaction signatures residing in groups and clusters with halo masses >2.5e13 Msun. The tidal signatures of such interactions may often be too faint to be clearly detected at the sensitivity of SDSS imaging data. To improve constraints and test the identification of dry merging, we obtained V-band images 1.5 mag deeper than SDSS for a random selection of one-quarter of the pairs with no SDSS tidal signatures, plus a subset of six previously identified interactions. This sample contains 27 pairs, each shares the same group halo, and has small projected separations and spectroscopic redshift differences. Using GALFIT image residuals, we visually identify interactions signatures with surface brightnesses down to ~26.5 mag/arcsec^2 at S/N ≥ 5. We confirm 80% of previous interaction identifications based on shallower SDSS imaging, and identify four new systems with mutual tidal signatures that were previously classified non-interacting. Applying these new deeper detection statistics based on very small numbers indicates that the frequency and, thus, the rate of massive major mergers in dense environments is 50% to 3 times larger than previously estimated with the SDSS. As such, 2-5% of high-mass galaxies in large groups are involved in the major merger assembly of massive galaxies.

  5. Minimizing antitrust exposure in a virtual merger.

    PubMed

    Brock, T H

    1999-09-01

    As an alternative to complete mergers or joint ventures, hospitals recently have begun to explore virtual mergers, in which the parties are able to retain some managerial and financial independence while coordinating their mutual operations to financial advantage. Because virtual mergers are a recent phenomenon and can be structured in various ways, the antitrust risks associated with such transactions are unclear. A state antitrust challenge brought against an East Coast virtual merger and informal guidance by Federal antitrust attorneys suggest that the antitrust agencies will be inclined to challenge a virtual merger if the parties to the transaction retain too much independent decision-making authority. Hospitals that are considering a virtual merger therefore would do well to structure the transaction to combine governance and administration, financial assets, operations, and medical staffs as much as possible, while still allowing each party to the transaction to retain the independent decision-making authority each feels is necessary. PMID:11066705

  6. An X-ray temperature map of Abell 754: A major merger

    NASA Technical Reports Server (NTRS)

    Henry, J. Patrick; Briel, Ulrich G.

    1995-01-01

    We present the first two-dimensional X-ray temperature map of the rich cluster of galaxies Abell 754. We also present an X-ray surface brightness map with improved spatial resolution and sensitivity compared with previous maps. Both the temperature map and the surface brightness map show that A754 is in the throes of a violent merger; it is probably far from hydrostatic equilibrium.

  7. CAUGHT IN THE ACT: THE ASSEMBLY OF MASSIVE CLUSTER GALAXIES AT z = 1.62

    SciTech Connect

    Lotz, Jennifer M.; Ferguson, Henry C.; Grogin, Norman; Koekemoer, Anton M.; Papovich, Casey; Tran, Kim-Vy; Faber, S. M.; Guo Yicheng; Lee, Kyoung-Soo; McIntosh, Daniel; Momcheva, Ivelina; Rudnick, Gregory; Saintonge, Amelie; Van der Wel, Arjen; Willmer, Christopher

    2013-08-20

    We present the recent merger history of massive galaxies in a spectroscopically confirmed proto-cluster at z = 1.62. Using Hubble Space Telescope WFC3 near-infrared imaging from the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey, we select cluster and z {approx} 1.6 field galaxies with M{sub star} {>=} 3 Multiplication-Sign 10{sup 10} M{sub Sun }, to determine the frequency of double nuclei or close companions within projected separations less than 20 kpc co-moving. We find that four out of five spectroscopically confirmed massive proto-cluster galaxies have double nuclei, and 57 {sup +13}{sub -14}% of all M{sub star} {>=} 3 Multiplication-Sign 10{sup 10} M{sub Sun} cluster candidates are observed in either close pair systems or have double nuclei. In contrast, only 11% {+-} 3% of the field galaxies are observed in close pair/double nuclei systems. After correcting for the contribution from random projections, the implied merger rate per massive galaxy in the proto-cluster is {approx}3-10 times higher than the merger rate of massive field galaxies at z {approx} 1.6. Close pairs in the cluster have minor merger stellar mass ratios (M{sub primary}: M{sub satellite} {>=} 4), while the field pairs consist of both major and minor mergers. At least half of the cluster mergers are gas-poor, as indicated by their red colors and low 24 {mu}m fluxes. Two of the double-nucleated cluster members have X-ray detected active galactic nuclei with L{sub x} > 10{sup 43} erg s{sup -1}, and are strong candidates for dual or offset super-massive black holes. We conclude that the massive z = 1.62 proto-cluster galaxies are undergoing accelerated assembly via minor mergers, and discuss the implications for galaxy evolution in proto-cluster environments.

  8. Cold Fronts in Clusters of Galaxies: Observations and Modeling

    NASA Technical Reports Server (NTRS)

    Markevitch, Maxim

    2012-01-01

    Mergers of galaxy clusters -- some of the most energetic events in the Universe -- produce disturbances in hot intracluster medium, such as shocks and cold fronts, that can be used as tools to study the physics of galaxy clusters. Cold fronts may constrain viscosity and the structure and strength of the cluster magnetic fields. Combined with radio data, these observations also shed light on the production of ultrarelativistic particles that are known to coexist with the cluster thermal plasma. This talk will summarize the current X-ray observations of cluster mergers, as well as some recent radio data and high resolution hydrodynamic simulations.

  9. A CANDELS WFC3 Grism Study of Emission-Line Galaxies at Z approximates 2: A mix of Nuclear Activity and Low-Metallicity Star Formation

    NASA Technical Reports Server (NTRS)

    Trump, Jonathan R.; Weiner, Benjamin J.; Scarlata, Claudia; Kocevski, Dale D.; Bell, Eric F.; McGrath, Elizabeth J.; Koo, David C.; Faber, S. M.; Laird, Elise S.; Mozena, Mark; Rangel, Cyprian; Yan, Renbin; Yesuf, Hassen; Atek, Hakim; Dickinson, Mark; Donley, Jennifer L.; Dunlop, James S.; Ferguson, Henry C.; Finkelstein, Steven L.; Grogin, Norman A.; Hathi, Nimish P.; Juneau, Stephanie; Kartaltepe, Jeyhan S.; Koekemoer, Anton M.; Nandra, Kirpal

    2011-01-01

    We present Hubble Space Telescope Wide Field Camera 3 slitless grism spectroscopy of 28 emission-line galaxies at z approximates 2, in the GOODS-S region of the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS). The high sensitivity of these grism observations, with > 5-sigma detections of emission lines to f > 2.5 X 10(exp -18( erg/s/ square cm, means that the galaxies in the sample are typically approximately 7 times less massive (median M(star). = 10(exp 9.5)M(solar)) than previously studied z approximates 2 emission-line galaxies. Despite their lower mass, the galaxies have [O-III]/H-Beta ratios which are very similar to previously studied z approximates 2 galaxies and much higher than the typical emission-line ratios of local galaxies. The WFC3 grism allows for unique studies of spatial gradients in emission lines, and we stack the two-dimensional spectra of the galaxies for this purpose. In the stacked data the [O-III] emission line is more spatially concentrated than the H-Beta emission line with 98.1% confidence. We additionally stack the X-ray data (all sources are individually undetected), and find that the average L(sub [O-III])/L(sub 0.5.10keV) ratio is intermediate between typical z approximates 0 obscured active galaxies and star-forming galaxies. Together the compactness of the stacked [O-III] spatial profile and the stacked X-ray data suggest that at least some of these low-mass, low-metallicity galaxies harbor weak active galactic nuclei.

  10. A CANDELS WFC3 GRISM STUDY OF EMISSION-LINE GALAXIES AT z {approx} 2: A MIX OF NUCLEAR ACTIVITY AND LOW-METALLICITY STAR FORMATION

    SciTech Connect

    Trump, Jonathan R.; Kocevski, Dale D.; McGrath, Elizabeth J.; Koo, David C.; Faber, S. M.; Mozena, Mark; Yesuf, Hassen; Scarlata, Claudia; Bell, Eric F.; Laird, Elise S.; Rangel, Cyprian; Yan Renbin; Atek, Hakim; Dickinson, Mark; Donley, Jennifer L.; Ferguson, Henry C.; Grogin, Norman A.; Dunlop, James S.; Finkelstein, Steven L.; and others

    2011-12-20

    We present Hubble Space Telescope Wide Field Camera 3 (WFC3) slitless grism spectroscopy of 28 emission-line galaxies at z {approx} 2, in the GOODS-S region of the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey. The high sensitivity of these grism observations, with >1{sigma} detections of emission lines to f > 2.5 Multiplication-Sign 10{sup -18} erg s{sup -1} cm{sup -2}, means that the galaxies in the sample are typically {approx}7 times less massive (median M{sub *} = 10{sup 9.5} M{sub Sun }) than previously studied z {approx} 2 emission-line galaxies. Despite their lower mass, the galaxies have [O III]/H{beta} ratios which are very similar to previously studied z {approx} 2 galaxies and much higher than the typical emission-line ratios of local galaxies. The WFC3 grism allows for unique studies of spatial gradients in emission lines, and we stack the two-dimensional spectra of the galaxies for this purpose. In the stacked data the [O III] emission line is more spatially concentrated than the H{beta} emission line with 98.1% confidence. We additionally stack the X-ray data (all sources are individually undetected), and find that the average L{sub [OIII]}/L{sub 0.5-10keV} ratio is intermediate between typical z {approx} 0 obscured active galaxies and star-forming galaxies. Together the compactness of the stacked [O III] spatial profile and the stacked X-ray data suggest that at least some of these low-mass, low-metallicity galaxies harbor weak active galactic nuclei.

  11. CANDELS: CONSTRAINING THE AGN-MERGER CONNECTION WITH HOST MORPHOLOGIES AT z {approx} 2

    SciTech Connect

    Kocevski, Dale D.; Faber, S. M.; Mozena, Mark; Trump, Jonathan R.; Koo, David C.; Nandra, Kirpal; Brusa, Marcella; Wuyts, Stijn; Rangel, Cyprian; Laird, Elise S.; Bell, Eric F.; Alexander, David M.; Bournaud, Frederic; Conselice, Christopher J.; Dekel, Avishai; and others

    2012-01-10

    Using Hubble Space Telescope/WFC3 imaging taken as part of the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey, we examine the role that major galaxy mergers play in triggering active galactic nucleus (AGN) activity at z {approx} 2. Our sample consists of 72 moderate-luminosity (L{sub X} {approx} 10{sup 42-44} erg s{sup -1}) AGNs at 1.5 < z < 2.5 that are selected using the 4 Ms Chandra observations in the Chandra Deep Field South, the deepest X-ray observations to date. Employing visual classifications, we have analyzed the rest-frame optical morphologies of the AGN host galaxies and compared them to a mass-matched control sample of 216 non-active galaxies at the same redshift. We find that most of the AGNs reside in disk galaxies (51.4{sup +5.8}{sub -5.9}%), while a smaller percentage are found in spheroids (27.8{sup +5.8}{sub -4.6}%). Roughly 16.7{sup +5.3}{sub -3.5}% of the AGN hosts have highly disturbed morphologies and appear to be involved in a major merger or interaction, while most of the hosts (55.6{sup +5.6}{sub -5.9}%) appear relatively relaxed and undisturbed. These fractions are statistically consistent with the fraction of control galaxies that show similar morphological disturbances. These results suggest that the hosts of moderate-luminosity AGNs are no more likely to be involved in an ongoing merger or interaction relative to non-active galaxies of similar mass at z {approx} 2. The high disk fraction observed among the AGN hosts also appears to be at odds with predictions that merger-driven accretion should be the dominant AGN fueling mode at z {approx} 2, even at moderate X-ray luminosities. Although we cannot rule out that minor mergers are responsible for triggering these systems, the presence of a large population of relatively undisturbed disk-like hosts suggests that the stochastic accretion of gas plays a greater role in fueling AGN activity at z {approx} 2 than previously thought.

  12. The Future of Merger: What Do We Want Mergers to Do--Efficiency or Diversity?

    ERIC Educational Resources Information Center

    Lang, Daniel W.

    2003-01-01

    Mergers have been a frequent phenomenon in higher education in the last quarter century. The conventional wisdom is that mergers are undertaken mainly for economic reasons, either to expand markets or to reduce costs. About four out of five college or university mergers survive. In the for-profit sector the comparable rate is closer to two out of…

  13. Radio Galaxy Zoo: host galaxies and radio morphologies derived from visual inspection

    NASA Astrophysics Data System (ADS)

    Banfield, J. K.; Wong, O. I.; Willett, K. W.; Norris, R. P.; Rudnick, L.; Shabala, S. S.; Simmons, B. D.; Snyder, C.; Garon, A.; Seymour, N.; Middelberg, E.; Andernach, H.; Lintott, C. J.; Jacob, K.; Kapińska, A. D.; Mao, M. Y.; Masters, K. L.; Jarvis, M. J.; Schawinski, K.; Paget, E.; Simpson, R.; Klöckner, H.-R.; Bamford, S.; Burchell, T.; Chow, K. E.; Cotter, G.; Fortson, L.; Heywood, I.; Jones, T. W.; Kaviraj, S.; López-Sánchez, Á. R.; Maksym, W. P.; Polsterer, K.; Borden, K.; Hollow, R. P.; Whyte, L.

    2015-11-01

    We present results from the first 12 months of operation of Radio Galaxy Zoo, which upon completion will enable visual inspection of over 170 000 radio sources to determine the host galaxy of the radio emission and the radio morphology. Radio Galaxy Zoo uses 1.4 GHz radio images from both the Faint Images of the Radio Sky at Twenty Centimeters (FIRST) and the Australia Telescope Large Area Survey (ATLAS) in combination with mid-infrared images at 3.4 μm from the Wide-field Infrared Survey Explorer (WISE) and at 3.6 μm from the Spitzer Space Telescope. We present the early analysis of the WISE mid-infrared colours of the host galaxies. For images in which there is >75 per cent consensus among the Radio Galaxy Zoo cross-identifications, the project participants are as effective as the science experts at identifying the host galaxies. The majority of the identified host galaxies reside in the mid-infrared colour space dominated by elliptical galaxies, quasi-stellar objects and luminous infrared radio galaxies. We also find a distinct population of Radio Galaxy Zoo host galaxies residing in a redder mid-infrared colour space consisting of star-forming galaxies and/or dust-enhanced non-star-forming galaxies consistent with a scenario of merger-driven active galactic nuclei (AGN) formation. The completion of the full Radio Galaxy Zoo project will measure the relative populations of these hosts as a function of radio morphology and power while providing an avenue for the identification of rare and extreme radio structures. Currently, we are investigating candidates for radio galaxies with extreme morphologies, such as giant radio galaxies, late-type host galaxies with extended radio emission and hybrid morphology radio sources.

  14. Radio Detection of Neutron Star Binary Mergers

    NASA Astrophysics Data System (ADS)

    Bear, Brandon; Cardena, Brett; Dispoto, Dana; Papadopoulos, Joanna; Kavic, Michael; Simonetti, John

    2011-10-01

    Neutron star binary systems lose energy through gravitational radiation, and eventually merge. The gravitational radiation from the merger can be detected by the Laser Interferometer Gravitational-Wave Observatory (LIGO). It is expected that a transient radio pulse will also be produced during the merger event. Detection of such radio transients would allow for LIGO to search for signals within constrained time periods. We calculate the LWA-1 detection rate of transient events from neutron star binary mergers. We calculate the detection rate of transient events from neutron star binary mergers for the Long Wavelength Array and the Eight-meter-wavelength Transient Array.

  15. Massive Quiescent Disk Galaxies in the CANDELS survey

    NASA Astrophysics Data System (ADS)

    Kesseli, Aurora; McGrath, E. J.; CANDELS Collaboration

    2014-01-01

    Using data from the GOODS-S field of the CANDELS survey, we find evidence for an increasing fraction of disk-dominated galaxies at high-redshift ( 2) among the quiescent, or non-star-forming galaxy population, in agreement with a growing body of evidence from recent results in the literature. We selected all galaxies with mass M>1010 Msun within the redshift range 0.5 ≤ z ≤ 2.5, and imposed a two-color selection criteria using rest-frame U, V, and J-band flux to separate quiescent from star-forming galaxies. From this sample, we performed a qualitative visual classification and a quantitative classification using the galaxy-fitting program Galfit. Of the original 140 quiescent galaxies, 23 have a disk component that contributes 50% or more of the total integrated galaxy light, and most of these are at high-redshift. At a redshift of z ~ 2 a significant fraction of all quiescent galaxies showed strong disk components with 30% being disk-dominated. We also find that massive disk galaxies seem to live in less densely populated environments while massive ellipticals live in environments with more neighbors, which leads us to believe that there are two mechanisms for the creation of massive quiescent galaxies. For the disks, the lower density environment and the disk nature of these galaxies lead us to favor cold streams over the major merger model of galaxy formation. The ellipticals, which live in higher density environments, could be assembled through major mergers of already aged stellar populations (e.g., dry mergers). This research is supported by the Clare Boothe Luce Foundation.

  16. Distinguishing disks from mergers: Tracing the kinematic asymmetries in local (U)LIRGs using kinemetry-based criteria

    NASA Astrophysics Data System (ADS)

    Bellocchi, Enrica; Arribas, Santiago; Colina, Luis

    2016-06-01

    Context. The kinematic characterization of different galaxy populations is a key observational input for distinguishing between different galaxy evolutionary scenarios because it helps to determine the number ratio of rotating disks to mergers at different cosmic epochs. Local (ultra) luminous infrared galaxies ((U)LIRGs) cover similar range of star formation rates (SFR) as normal high redshift (high-z), star-forming galaxies (SFGs). Therefore, their study offer a unique opportunity to study at high linear resolution and signal-to-noise (S/N) extreme star forming events and compare these events with those observed at high-z. Aims: Our goal is to analyze in detail the kinematics of the ionized gas as traced by the Hα emission of a large sample of 38 local (z < 0.1) (U)LIRG systems (50 individual galaxies). In this study, we apply kinematic criteria, which are able to characterize the evolutionary status of these systems, allowing us to derive the disk and merger ratio in such local systems. Methods: We obtained Very Large Telescope (VLT) VIMOS optical integral field spectroscopy (IFS) data of a sample of 38 (U)LIRGs. These systems are morphologically classified in four groups according to their dynamical phases: isolated disk, paired disk, ongoing merger, and post-coalescence merger. The first two are referred as "disk", while the second two are referred to as "merger". The "unweighted" and "weighted" kinemetry-based methods are used to kinematically classify our galaxies in disk and merger. The total kinematic asymmetry value Ktot has been used to quantify the global kinematic asymmetry degree of the observed and simulated systems. Results: From the kinemetry-based analysis we are able classify our local (U)LIRGs in three distinct kinematic groups according to their total kinematic asymmetry values (Ktot) as derived when using the weighted (unweighted) method: (1) 25 out of 50 galaxies are kinematically classified as disk with a Ktot ≤ 0.16 (0.14); (2) 9 out of

  17. Superdense Massive Galaxies in the Nearby Universe

    NASA Astrophysics Data System (ADS)

    Trujillo, Ignacio; Cenarro, A. Javier; de Lorenzo-Cáceres, Adriana; Vazdekis, Alexandre; de la Rosa, Ignacio G.; Cava, Antonio

    2009-02-01

    Superdense massive galaxies (re ~ 1 kpc; M ~ 1011 M sun) were common in the early universe (z gsim 1.5). Within some hierarchical merging scenarios, a non-negligible fraction (1%-10%) of these galaxies is expected to survive since that epoch, retaining their compactness and presenting old stellar populations in the present universe. Using the NYU Value-Added Galaxy Catalog from the Sloan Digital Sky Survey Data Release 6, we find only a tiny fraction of galaxies (~0.03%) with re lsim 1.5 kpc and M sstarf gsim 8 × 1010 M sun in the local universe (z < 0.2). Surprisingly, they are relatively young (~2 Gyr) and metal-rich ([Z/H] ~0.2). The consequences of these findings within the current two competing size evolution scenarios for the most massive galaxies ("dry" mergers vs. "puffing up" due to quasar activity) are discussed.

  18. LEDA 074886: A Remarkable Rectangular-looking Galaxy

    NASA Astrophysics Data System (ADS)

    Graham, Alister W.; Spitler, Lee R.; Forbes, Duncan A.; Lisker, Thorsten; Moore, Ben; Janz, Joachim

    2012-05-01

    We report the discovery of an interesting and rare rectangular-shaped galaxy. At a distance of 21 Mpc, the dwarf galaxy LEDA 074886 has an absolute R-band magnitude of -17.3 mag. Adding to this galaxy's intrigue is the presence of an embedded, edge-on stellar disk (of extent 2 R e, disk = 12'' = 1.2 kpc) for which Forbes et al. reported v rot/σ ≈ 1.4. We speculate that this galaxy may be the remnant of two (nearly edge-on) merged disk galaxies in which the initial gas was driven inward and subsequently formed the inner disk, while the stars at larger radii effectively experienced a dissipationless merger event resulting in this "emerald cut galaxy" having very boxy isophotes with a 4/a = -0.05 to -0.08 from 3 to 5 kpc. This galaxy suggests that knowledge from simulations of both "wet" and "dry" galaxy mergers may need to be combined to properly understand the various paths that galaxy evolution can take, with a particular relevance to blue elliptical galaxies.

  19. NGC 3934: a shell galaxy in a compact galaxy environment

    NASA Astrophysics Data System (ADS)

    Bettoni, D.; Galletta, G.; Rampazzo, R.; Marino, A.; Mazzei, P.; Buson, L. M.

    2011-10-01

    Context. Mergers/accretions are considered the main drivers of the evolution of galaxies in groups. We investigate the NGC 3933 poor galaxy association that contains NGC 3934, which is classified as a polar-ring galaxy. Aims: The multi-band photometric analysis of NGC 3934 allows us to investigate the nature of this galaxy and to re-define the NGC 3933 group members with the aim to characterize the group's dynamical properties and its evolutionary phase. Methods: We imaged the group in the far (FUV, λeff = 1539 Å) and near (NUV, λeff = 2316 Å) ultraviolet (UV) bands of the Galaxy Evolution Explorer (GALEX). From the deep optical imaging we determined the fine structure of NGC 3934. We measured the recession velocity of PGC 213894 which shows that it belongs to the NGC 3933 group. We derived the spectral energy distribution (SED) from FUV to far-IR emission of the two brightest members of the group. We compared a grid of smooth particle hydrodynamical (SPH) chemo-photometric simulations with the SED and the integrated properties of NGC 3934 and NGC 3933 to devise their possible formation/evolutionary scenarios. Results: The NGC 3933 group has six bright members: a core composed of five galaxies, which have Hickson's compact group characteristics, and a more distant member, PGC 37112. The group velocity dispersion is relatively low (157 ± 44 km s-1). The projected mass, from the NUV photometry, is ~7 × 1012 M⊙ with a crossing time of 0.04 Hubble times, suggesting that at least in the center the group is virialized. We do not find evidence that NGC 3934 is a polar-ring galaxy, as suggested by the literature, but find that it is a disk galaxy with a prominent dust-lane structure and a wide type-II shell structure. Conclusions: NGC 3934 is a quite rare example of a shell galaxy in a likely dense galaxy region. The comparison between physically motivated SPH simulations with multi-band integrated photometry suggests that NGC 3934 is the product of a major merger.

  20. Secular Evolution in Disk Galaxies

    NASA Astrophysics Data System (ADS)

    Kormendy, John

    2013-10-01

    Self-gravitating systems evolve toward the most tightly bound configuration that is reachable via the evolution processes that are available to them. They do this by spreading -- the inner parts shrink while the outer parts expand -- provided that some physical process efficiently transports energy or angular momentum outward. The reason is that self-gravitating systems have negative specific heats. As a result, the evolution of stars, star clusters, protostellar and protoplanetary disks, black hole accretion disks and galaxy disks are fundamentally similar. How evolution proceeds then depends on the evolution processes that are available to each kind of self-gravitating system. These processes and their consequences for galaxy disks are the subjects of my lectures and of this Canary Islands Winter School. I begin with a review of the formation, growth and death of bars. Then I review the slow (`secular') rearrangement of energy, angular momentum, and mass that results from interactions between stars or gas clouds and collective phenomena such as bars, oval disks, spiral structure and triaxial dark haloes. The `existence-proof' phase of this work is largely over: we have a good heuristic understanding of how nonaxisymmetric structures rearrange disk gas into outer rings, inner rings and stuff dumped onto the centre. The results of simulations correspond closely to the morphology of barred and oval galaxies. Gas that is transported to small radii reaches high densities. Observations confirm that many barred and oval galaxies have dense central concentrations of gas and star formation. The result is to grow, on timescales of a few Gyr, dense central components that are frequently mistaken for classical (elliptical-galaxy-like) bulges but that were grown slowly out of the disk (not made rapidly by major mergers). The resulting picture of secular galaxy evolution accounts for the richness observed in galaxy structure. We can distinguish between classical and pseudo

  1. Bar Formation from Galaxy Flybys

    NASA Astrophysics Data System (ADS)

    Holley-Bockelmann, Kelly; Lang, Meagan; Sinha, Manodeep

    2016-05-01

    Both simulations and observations reveal that flybys—fast, one-time interactions between two galaxy halos—are surprisingly common, comparable to galaxy mergers. Since these are rapid, transient events with the closest approach well outside the galaxy disk, it is unclear if flybys can transform the galaxy in a lasting way. We conduct collisionless N-body simulations of three coplanar flyby interactions between pure-disk galaxies to take a first look at the effects flybys have on disk structure, with particular focus on stellar bar formation. We find that some flybys are capable of inciting a bar; bars form in both galaxies during our 1:1 interaction and in the secondary during our 10:1 interaction. The bars formed have ellipticities >0.5, sizes on the order of the scale length of the disk, and persist to the end of our simulations, ~5 Gyr after pericenter. The ability of flybys to incite bar formation implies that many processes associated with secular bar evolution may be more closely tied with flyby interactions than previously thought.

  2. BAR FORMATION FROM GALAXY FLYBYS

    SciTech Connect

    Lang, Meagan; Holley-Bockelmann, Kelly; Sinha, Manodeep E-mail: k.holley@vanderbilt.edu

    2014-08-01

    Recently, both simulations and observations have revealed that flybys—fast, one-time interactions between two galaxy halos—are surprisingly common, nearing/comparable to galaxy mergers. Since these are rapid, transient events with the closest approach well outside the galaxy disk, it is unclear if flybys can transform the galaxy in a lasting way. We conduct collisionless N-body simulations of three coplanar flyby interactions between pure-disk galaxies to take a first look at the effects flybys have on disk structure, with particular focus on stellar bar formation. We find that some flybys are capable of inciting a bar with bars forming in both galaxies during our 1:1 interaction and in the secondary during our 10:1 interaction. The bars formed have ellipticities ≳ 0.5, sizes on the order of the host disk's scale length, and persist to the end of our simulations, ∼5 Gyr after pericenter. The ability of flybys to incite bar formation implies that many processes associated with secular bar evolution may be more closely tied with interactions than previously thought.

  3. MASSIVE BLACK HOLES IN CENTRAL CLUSTER GALAXIES

    SciTech Connect

    Volonteri, Marta; Ciotti, Luca

    2013-05-01

    We explore how the co-evolution of massive black holes (MBHs) and galaxies is affected by environmental effects, addressing in particular MBHs hosted in the central cluster galaxies (we will refer to these galaxies in general as ''CCGs''). Recently, the sample of MBHs in CCGs with dynamically measured masses has increased, and it has been suggested that these MBH masses (M{sub BH}) deviate from the expected correlations with velocity dispersion ({sigma}) and mass of the bulge (M{sub bulge}) of the host galaxy: MBHs in CCGs appear to be ''overmassive''. This discrepancy is more pronounced when considering the M{sub BH}-{sigma} relation than the M{sub BH}-M{sub bulge} one. We show that this behavior stems from a combination of two natural factors: (1) CCGs experience more mergers involving spheroidal galaxies and their MBHs and (2) such mergers are preferentially gas poor. We use a combination of analytical and semi-analytical models to investigate the MBH-galaxy co-evolution in different environments and find that the combination of these two factors is in accordance with the trends observed in current data sets.

  4. Tidal Disruption Events Prefer Unusual Host Galaxies

    NASA Astrophysics Data System (ADS)

    Arcavi, Iair; French, K. Decker; Zabludoff, Ann I.

    2016-06-01

    A star passing close to a supermassive black hole (SMBH) can be torn apart in a Tidal Disruption Events (TDE). TDEs that are accompanied by observable flares are now being discovered in transient surveys and are revealing the presence and the properties of otherwise-quiescent SMBHs. Recently, it was discovered that TDEs show a strong preference for rare post-starburst galaxies, (i.e. galaxies that have undergone intense star formation but are no longer forming stars today). We quantify this preference and find that TDEs are approximately 30-200 times more likely to occur in post-starburst hosts (compared to the general SDSS galaxy population), with the enhancement factor depending on the star formation history of the galaxy. This surprising host-galaxy preference connects the until-now disparate TDE subclasses of UV/optical-dominated TDEs and X-ray-dominated TDEs, and serves as the basis for TDE-targeted transient surveys. Post-starburst galaxies may be post-mergers, with binary SMBH systems that are still spiraling in. Such systems could enhance the TDE rate, but it is not yet clear if models can quantitatively reproduce the observed enhancement. Alternative explanations for enhanced TDE rate in post-starbursts include non-spherical post-merger central potentials and enhanced rates of giant stars.

  5. The Assembly of Galaxy Clusters

    SciTech Connect

    Berrier, Joel C.; Stewart, Kyle R.; Bullock, James S.; Purcell, Chris W.; Barton, Elizabeth J.; Wechsler, Risa H.

    2008-05-16

    We study the formation of fifty-three galaxy cluster-size dark matter halos (M = 10{sup 14.0-14.76} M{sub {circle_dot}}) formed within a pair of cosmological {Lambda}CDM N-body simulations, and track the accretion histories of cluster subhalos with masses large enough to host {approx} 0.1L{sub *} galaxies. By associating subhalos with cluster galaxies, we find the majority of galaxies in clusters experience no 'pre-processing' in the group environment prior to their accretion into the cluster. On average, {approx} 70% of cluster galaxies fall into the cluster potential directly from the field, with no luminous companions in their host halos at the time of accretion; and less than {approx} 12% are accreted as members of groups with five or more galaxies. Moreover, we find that cluster galaxies are significantly less likely to have experienced a merger in the recent past ({approx}< 6 Gyr) than a field halo of the same mass. These results suggest that local, cluster processes like ram-pressure stripping, galaxy harassment, or strangulation play the dominant role in explaining the difference between cluster and field populations at a fixed stellar mass; and that pre-evolution or past merging in the group environment is of secondary importance for setting cluster galaxy properties for most clusters. The accretion times for z = 0 cluster members are quite extended, with {approx} 20% incorporated into the cluster halo more than 7 Gyr ago and {approx} 20% within the last 2 Gyr. By comparing the observed morphological fractions in cluster and field populations, we estimate an approximate time-scale for late-type to early-type transformation within the cluster environment to be {approx} 6 Gyr.

  6. THE COOL INTERSTELLAR MEDIUM IN ELLIPTICAL GALAXIES. II. GAS CONTENT IN THE VOLUME-LIMITED SAMPLE AND RESULTS FROM THE COMBINED ELLIPTICAL AND LENTICULAR SURVEYS

    SciTech Connect

    Welch, Gary A.; Sage, Leslie J.; Young, Lisa M. E-mail: lsage@astro.umd.ed

    2010-12-10

    We report new observations of atomic and molecular gas in a volume-limited sample of elliptical galaxies. Combining the elliptical sample with an earlier and similar lenticular one, we show that cool gas detection rates are very similar among low-luminosity E and S0 galaxies but are much higher among luminous S0s. Using the combined sample we revisit the correlation between cool gas mass and blue luminosity which emerged from our lenticular survey, finding strong support for previous claims that the molecular gas in ellipticals and lenticulars has different origins. Unexpectedly, however, and contrary to earlier claims, the same is not true for atomic gas. We speculate that both the active galactic nucleus feedback and merger paradigms might offer explanations for differences in detection rates, and might also point toward an understanding of why the two gas phases could follow different evolutionary paths in Es and S0s. Finally, we present a new and puzzling discovery concerning the global mix of atomic and molecular gas in early-type galaxies. Atomic gas comprises a greater fraction of the cool interstellar medium in more gas-rich galaxies, a trend which can be plausibly explained. The puzzle is that galaxies tend to cluster around molecular-to-atomic gas mass ratios near either 0.05 or 0.5.

  7. Double White Dwarf Merger Rates

    NASA Astrophysics Data System (ADS)

    Toonen, Silvia; Nelemans, Gijs; Portegies Zwart, Simon

    2013-01-01

    Type Ia supernovae (SNe Ia) are very successfully used as standard candles on cosmological distance scales, but so far the nature of the progenitor(s) is unclear. A possible scenario for SNe Ia are merging carbon/oxygen white dwarfs with a combined mass exceeding the Chandrasekhar mass. We determine the theoretical rates and delay time distribution of these mergers for two different common envelope prescriptions and metallicities. The shape of the delay time distributions is rather insensitive to the assumptions. The normalization is a factor ~3-13 too low compared to observations.

  8. Managing in a merger and acquisition era.

    PubMed

    Holdren, R C

    1990-01-01

    Medical group administrators are quickly learning what big business has known for years-mergers and acquisitions represent a new and powerful option. If this option is to be employed successfully, however, group management has to understand the terms and be prepared well before merger or acquisition talk begins.

  9. Music from the heavens - Gravitational waves from supermassive black hole mergers in the EAGLE simulations

    NASA Astrophysics Data System (ADS)

    Salcido, Jaime; Bower, Richard G.; Theuns, Tom; McAlpine, Stuart; Schaller, Matthieu; Crain, Robert A.; Schaye, Joop; Regan, John

    2016-08-01

    We estimate the expected event rate of gravitational wave signals from mergers of supermassive black holes that could be resolved by a space-based interferometer, such as the Evolved Laser Interferometer Space Antenna (eLISA), utilising the reference cosmological hydrodynamical simulation from the EAGLE suite. These simulations assume a ΛCDM cosmogony with state-of-the-art subgrid models for radiative cooling, star formation, stellar mass loss, and feedback from stars and accreting black holes. They have been shown to reproduce the observed galaxy population with unprecedented fidelity. We combine the merger rates of supermassive black holes in EAGLE with the latest phenomenological waveform models to calculate the gravitational waves signals from the intrinsic parameters of the merging black holes. The EAGLE models predict ˜2 detections per year by a gravitational wave detector such as eLISA. We find that these signals are largely dominated by mergers between seed mass black holes merging at redshifts between z ˜ 2 and z ˜ 1. In order to investigate the dependence on the assumed black hole seed mass, we introduce an additional model with a black hole seed mass an order of magnitude smaller than in our reference model. We also consider a variation of the reference model where a prescription for the expected delays in the black hole merger timescale has been included after their host galaxies merge. We find that the merger rate is similar in all models, but that the initial black hole seed mass could be distinguished through their detected gravitational waveforms. Hence, the characteristic gravitational wave signals detected by eLISA will provide profound insight into the origin of supermassive black holes and the initial mass distribution of black hole seeds.

  10. Music from the heavens - gravitational waves from supermassive black hole mergers in the EAGLE simulations

    NASA Astrophysics Data System (ADS)

    Salcido, Jaime; Bower, Richard G.; Theuns, Tom; McAlpine, Stuart; Schaller, Matthieu; Crain, Robert A.; Schaye, Joop; Regan, John

    2016-08-01

    We estimate the expected event rate of gravitational wave signals from mergers of supermassive black holes that could be resolved by a space-based interferometer, such as the Evolved Laser Interferometer Space Antenna (eLISA), utilizing the reference cosmological hydrodynamical simulation from the EAGLE suite. These simulations assume a Lambda cold dark matter cosmogony with state-of-the-art subgrid models for radiative cooling, star formation, stellar mass loss, and feedback from stars and accreting black holes. They have been shown to reproduce the observed galaxy population with unprecedented fidelity. We combine the merger rates of supermassive black holes in EAGLE with the latest phenomenological waveform models to calculate the gravitational waves signals from the intrinsic parameters of the merging black holes. The EAGLE models predict ˜2 detections per year by a gravitational wave detector such as eLISA. We find that these signals are largely dominated by mergers between seed mass black holes merging at redshifts between z ˜ 2 and z ˜ 1. In order to investigate the dependence on the assumed black hole seed mass, we introduce an additional model with a black hole seed mass an order of magnitude smaller than in our reference model. We also consider a variation of the reference model where a prescription for the expected delays in the black hole merger time-scale has been included after their host galaxies merge. We find that the merger rate is similar in all models, but that the initial black hole seed mass could be distinguished through their detected gravitational waveforms. Hence, the characteristic gravitational wave signals detected by eLISA will provide profound insight into the origin of supermassive black holes and the initial mass distribution of black hole seeds.

  11. The role of interactions in triggering bars, spiral arms and AGN in disk galaxies

    NASA Astrophysics Data System (ADS)

    Nair, Preethi; Ellison, Sara L.; Patton, David R.

    2016-01-01

    The role of secular structures like bars, rings and spiral arms in triggering star formation and AGN activity in disk galaxies are not well understood. In addition, the mechanisms which create and destroy these structures are not well characterized. Mergers are considered to be one of the main mechanisms which can trigger bars in massive disk galaxies. Using a sample of ~8000 close pair galaxies at 0.02 < z < 0.06 from the Sloan Digital Sky Survey, I will present results illustrating the role of mergers in triggering bars, rings, spiral arms and AGN as a function of close pair separation and merger ratios as well as their dependence on morphology and other physical properties of the galaxies. Time permitting, I will show how resolved IFU observations from SDSS MaNGA will help to place stronger constraints on the role of these structures in triggering star formation and AGN.

  12. Galaxy simulations: Kinematics and mock observations

    NASA Astrophysics Data System (ADS)

    Moody, Christopher E.

    2013-08-01

    There are six topics to my thesis, which are: (1) slow rotator production in varied simulation schemes and kinematically decoupled cores and twists in those simulations, (2) the change in number of clumps in radiation pressure and no-radiation pressure simulations, (3) Sunrise experiments and failures including UVJ color-color dust experiments and UVbeta slopes, (4) the Sunrise image pipeline and algorithms. Cosmological simulations of have typically produced too many stars at early times. We find that the additional radiation pressure (RP) feedback suppresses star formation globally by a factor of ~ 3. Despite this reduction, the simulation still overproduces stars by a factor of ~ 2 with respect to the predictions provided by abundance matching methods. In simulations with RP the number of clumps falls dramatically. However, only clumps with masses Mclump/Mdisk ≤ 8% are impacted by the inclusion of RP, and clump counts above this range are comparable. Above this mass, the difference between and RP and no-RP contrast ratios diminishes. If we restrict our selection to galaxies hosting at least a single clump above this mass range then clump numbers, contrast ratios, survival fractions and total clump masses show little discrepancy between RP and no-RP simulations. By creating mock Hubble Space Telescope observations we find that the number of clumps is slightly reduced in simulations with RP. We demonstrate that clumps found in any single gas, stellar, or mock observation image are not necessarily clumps found in another map, and that there are few clumps common to multiple maps. New kinematic observations from ATLAS3D have highlighted the need to understand the evolutionary mechanism leading to a spectrum of fast-rotator and slow-rotators in early-type galaxies. We address the formation of slow and fast rotators through a series of controlled, comprehensive hydrodynamic simulations sampling idealized galaxy merger formation scenarios constructed from model

  13. Comparing ligo merger rate observations with theory: distribution of star-forming conditions

    SciTech Connect

    Belczynski, Kryzysztof; Kopparapu, R; O' Shaughnessy, R

    2008-01-01

    -forming conditions depends on the binary evolution model and on the amount of relevant variation in star-forming conditions. For example, if after further comparison with electromagnetic and gravitational wave observations future population synthesis models suggest all BH-BH binary mergers occur promptly and therefore are associated with well-studied present-day star formation, the associated composition-related systematic uncertainty could be lower than the pessimistic value quoted above. Further, as gravitational wave detectors will make available many properties of each merger -- binary component masses, spins, and even short GRB associations and host galaxies could be available -- many detections can still be exploited to create high-precision constraints on binary compact object formation models.

  14. Gas fueling to the central 10pc in merging galaxies.

    NASA Astrophysics Data System (ADS)

    Bekki, K.; Noguchi, M.

    1994-10-01

    Merging galaxies sometimes show quasar-like activity, which suggests that the interstellar gas is efficiently transferred to the vicinity of their nucleus (where a massive black hole is considered to exist.). In order to elucidate gas fueling mechanism in galaxy mergers, we have numerically investigated the dynamical evolution of gas in the late phase of mergers. It is found that in some cases (e.g., a retrograde merger involving two compact galaxy cores), the dynamical heating by two sinking cores and subsequent dissipative cloud-cloud collisions drive a large fraction of disk gas (~10^8^Msun_) into the central 10pc. It is also found that most of models have shown a qualitatively similar behavior that gas infall to the central 10pc becomes prominent only after the coalescence of two cores. This tendency of nuclear activity remains unchanged even if we include gas consumption by star formation in our models. Our numerical study predicts that the radiation emitted from the nuclear region of completed mergers showing a single nucleus originates from accretion power induced activity around a massive black hole whereas star formation is prime energy source of the radiation from less advanced mergers showing two distinct nuclei.

  15. Galaxies in extreme environments: Isolated galaxies versus compact groups

    NASA Astrophysics Data System (ADS)

    Durbala, Adriana

    2009-06-01

    . In spite of long standing theoretical predictions of a major merger of the galaxy members into a giant one, we find evidence that compact groups are in fact long-lived and form by sequential acquisition of galaxies, coalescing via slow dissolution.

  16. Observing the Origins of Galaxy Structure in the Illustris Simulation

    NASA Astrophysics Data System (ADS)

    Snyder, Greg

    2014-10-01

    Many processes affect the appearance of galaxies, and it has recently become possible to predict how these processes set internal galaxy structure in significant populations. Such calculations are poised to clarify the physics of star formation quenching, the cosmological formation of bulges and disks, and the observability of galaxy mergers. To advance these goals, we propose to build and analyze a very large set of mock HST images based on the Illustris Project. This accurate continuous-volume hydrodynamical simulation formed thousands of structurally diverse Milky Way-mass galaxies in {106.5 Mpc}^3 with detail comparable to the resolution of HST at many cosmic times. We will mock-observe 41,000 model galaxies at 0 < z < 5 in broadband filters used by ACS, WFC3, and JWST/NIRCAM, and measure automated morphology diagnostics from each image. This will constitute a timely and effective tool to advance two key goals of observational cosmology with HST: linking the building blocks of galaxies across cosmic time, and understanding the implications of galaxy morphology and structure. It will allow us to study the emergence of the Hubble Sequence, estimate merger rates and consequences, and interpret star formation patterns in distant galaxies. Therefore this model dataset is ideally suited to enhance results from HST Treasury and Archival Legacy surveys, the Ultra Deep Fields, and Frontier Fields. To increase the science return, we will publicly release our model images and morphology catalogs, providing a tool that can directly link physical mechanisms to high redshift galaxy data.

  17. Binary Active Galactic Nuclei in Stripe 82: Constraints on Synchronized Black Hole Accretion in Major Mergers

    NASA Astrophysics Data System (ADS)

    Fu, Hai; Wrobel, J. M.; Myers, A. D.; Djorgovski, S. G.; Yan, Lin

    2015-12-01

    Representing simultaneous black hole accretion during a merger, binary active galactic nuclei (AGNs) could provide valuable observational constraints to models of galaxy mergers and AGN triggering. High-resolution radio interferometer imaging offers a promising method for identifying a large and uniform sample of binary AGNs because it probes a generic feature of nuclear activity and is free from dust obscuration. Our previous search yielded 52 strong candidates of kiloparsec-scale binaries over the 92 deg2 of the Sloan Digital Sky Survey Stripe 82 area with 2″-resolution Very Large Array (VLA) images. Here we present 0.″3-resolution VLA 6 GHz observations for six candidates that have complete optical spectroscopy. The new data confirm the binary nature of four candidates and identify the other two as line of sight projections of radio structures from single AGNs. The four binary AGNs at z ˜ 0.1 reside in major mergers with projected separations of 4.2-12 kpc. Optical spectral modeling shows that their hosts have stellar masses between 10.3\\lt {{log}}({M}\\star /{M}⊙ )\\lt 11.5 and velocity dispersions between 120\\lt {σ }\\star \\lt 320 km s-1. The radio emission is compact (≲0.″4) and shows a steep spectrum (-1.8\\lt α \\lt -0.5) at 6 GHz. The host galaxy properties and the Eddington-scaled accretion rates broadly correlate with the excitation state, similar to the general radio-AGN population at low redshifts. Our estimated binary AGN fraction indicates that simultaneous accretion occurs ≥slant {23}-8+15% of the time when a kiloparsec-scale galaxy pair is detectable as a radio-AGN. The high duty cycle of the binary phase strongly suggests that major mergers can trigger and synchronize black hole accretion.

  18. GALAXY GROWTH BY MERGING IN THE NEARBY UNIVERSE

    SciTech Connect

    Jiang Tao; Hogg, David W.; Blanton, Michael R.

    2012-11-10

    We measure the mass growth rate by merging for a wide range of galaxy types. We present the small-scale (0.014 h {sup -1} {sub 70} Mpc < r < 11 h {sub 70} {sup -1} Mpc) projected cross-correlation functions w(r {sub p}) of galaxy subsamples from the spectroscopic sample of the NYU Value-Added Galaxy Catalog (5 Multiplication-Sign 10{sup 5} galaxies of redshifts 0.03 < z < 0.15) with galaxy subsamples from the Sloan Digital Sky Survey imaging (4 Multiplication-Sign 10{sup 7} galaxies). We use smooth fits to de-project the two-dimensional functions w(r {sub p}) to obtain smooth three-dimensional real-space cross-correlation functions {xi}(r) for each of several spectroscopic subsamples with each of several imaging subsamples. Because close pairs are expected to merge, the three-space functions and dynamical evolution time estimates provide galaxy accretion rates. We find that the accretion onto massive blue galaxies and onto red galaxies is dominated by red companions, and that onto small-mass blue galaxies, red and blue galaxies make comparable contributions. We integrate over all types of companions and find that at fixed stellar mass, the total fractional accretion rates onto red galaxies ({approx}3 h {sub 70} percent per Gyr) are greater than that onto blue galaxies ({approx}1 h {sub 70} percent per Gyr). These rates are almost certainly overestimates because we have assumed that all close pairs merge as quickly as the merger time that we used. One conclusion of this work is that if the total growth of red galaxies from z = 1 to z = 0 is mainly due to merging, the merger rates must have been higher in the past.

  19. Internal kinematics of modelled interacting disc galaxies

    NASA Astrophysics Data System (ADS)

    Kronberger, T.; Kapferer, W.; Schindler, S.; Böhm, A.; Kutdemir, E.; Ziegler, B. L.

    2006-10-01

    We present an investigation of galaxy-galaxy interactions and their effects on the velocity fields of disc galaxies in combined N-body/hydrodynamic simulations, which include cooling, star formation with feedback, and galactic winds. Rotation curves (RCs) of the gas are extracted from these simulations in a way that follows the procedure applied to observations of distant, small, and faint galaxies as closely as possible. We show that galaxy-galaxy mergers and fly-bys disturb the velocity fields significantly and hence the RCs of the interacting galaxies, leading to asymmetries and distortions in the RCs. Typical features of disturbed kinematics are significantly rising or falling profiles in the direction of the companion galaxy and pronounced bumps in the RCs. In addition, tidal tails can leave strong imprints on the rotation curve. All these features are observable for intermediate redshift galaxies, on which we focus our investigations. We use a quantitative measure for the asymmetry of rotation curves to show that the appearance of these distortions strongly depends on the viewing angle. We also find in this way that the velocity fields settle back into relatively undisturbed equilibrium states after unequal mass mergers and fly-bys. About 1 Gyr after the first encounter, the RCs show no severe distortions anymore. These results are consistent with previous theoretical and observational studies. As an illustration of our results, we compare our simulated velocity fields and direct images with rotation curves from VLT/FORS spectroscopy and ACS images of a cluster at z=0.53 and find remarkable similarities.

  20. Stirring Up the Pot: Can Cooling Flows in Galaxy Clusters be Quenched by Gas Sloshing?

    NASA Astrophysics Data System (ADS)

    ZuHone, J. A.; Markevitch, M.; Johnson, R. E.

    2010-07-01

    X-ray observations of clusters of galaxies reveal the presence of edges in surface brightness and temperature, known as "cold fronts." In relaxed clusters with cool cores, these commonly observed edges have been interpreted as evidence for the "sloshing" of the core gas in the cluster's gravitational potential. Such sloshing may provide a source of heat to the cluster core by mixing hot gas from the cluster outskirts with the cool-core gas. Using high-resolution N-body/Eulerian hydrodynamic simulations, we model gas sloshing in galaxy clusters initiated by mergers with subclusters. The simulations include merger scenarios with gas-filled and gasless subclusters. The effect of changing the viscosity of the intracluster medium is also explored, but heat conduction is assumed to be negligible. We find that sloshing can facilitate heat inflow to the cluster core, provided that there is a strong enough disturbance. Additionally, sloshing redistributes the gas in the cluster core, causing the gas to expand and decreasing the efficiency of radiative cooling. In adiabatic simulations, we find that sloshing can raise the entropy floor of the cluster core by nearly an order of magnitude in the strongest cases. If the ICM is viscous, the mixing of gases with different entropies is decreased and consequently the heat flux to the core is diminished. In simulations where radiative cooling is included, we find that although eventually a cooling flow develops, sloshing can prevent the significant buildup of cool gas in the core for times on the order of a Gyr for small disturbances and a few Gyr for large ones. If repeated encounters with merging subclusters sustain the sloshing of the central core gas, as is observed, this process can provide a relatively steady source of heat to the core, which can help prevent a significant cooling flow.

  1. STIRRING UP THE POT: CAN COOLING FLOWS IN GALAXY CLUSTERS BE QUENCHED BY GAS SLOSHING?

    SciTech Connect

    ZuHone, J. A.; Markevitch, M.; Johnson, R. E.

    2010-07-10

    X-ray observations of clusters of galaxies reveal the presence of edges in surface brightness and temperature, known as 'cold fronts'. In relaxed clusters with cool cores, these commonly observed edges have been interpreted as evidence for the 'sloshing' of the core gas in the cluster's gravitational potential. Such sloshing may provide a source of heat to the cluster core by mixing hot gas from the cluster outskirts with the cool-core gas. Using high-resolution N-body/Eulerian hydrodynamic simulations, we model gas sloshing in galaxy clusters initiated by mergers with subclusters. The simulations include merger scenarios with gas-filled and gasless subclusters. The effect of changing the viscosity of the intracluster medium is also explored, but heat conduction is assumed to be negligible. We find that sloshing can facilitate heat inflow to the cluster core, provided that there is a strong enough disturbance. Additionally, sloshing redistributes the gas in the cluster core, causing the gas to expand and decreasing the efficiency of radiative cooling. In adiabatic simulations, we find that sloshing can raise the entropy floor of the cluster core by nearly an order of magnitude in the strongest cases. If the ICM is viscous, the mixing of gases with different entropies is decreased and consequently the heat flux to the core is diminished. In simulations where radiative cooling is included, we find that although eventually a cooling flow develops, sloshing can prevent the significant buildup of cool gas in the core for times on the order of a Gyr for small disturbances and a few Gyr for large ones. If repeated encounters with merging subclusters sustain the sloshing of the central core gas, as is observed, this process can provide a relatively steady source of heat to the core, which can help prevent a significant cooling flow.

  2. Sub-mm galaxies as progenitors of compact quiescent galaxies

    NASA Astrophysics Data System (ADS)

    Toft, Sune

    2015-08-01

    Three billion years after the big bang (at redshift z=2), half of the most massive galaxies were already old, quiescent systems with little to no residual star formation and extremely compact with stellar mass densities at least an order of magnitude larger than in low redshift ellipticals, their descendants. Little is known about how they formed, but their evolved, dense stellar populations suggest formation within intense, compact starbursts 1-2 Gyr earlier (at 3 < z < 6). Simulations show that gas-rich major mergers can give rise to such starbursts which produce dense remnants. Sub-millimetre selected galaxies (SMGs) are prime examples of intense, gas-rich, starbursts. With a new, mass-complete spectroscopic sample of compact quiescent galaxies at z=2 and a statistically well-understood sample of SMGs, we show that z = 3 -6 SMGs are consistent with being the progenitors of z = 2 quiescent galaxies, matching their formation redshifts and their distributions of sizes, stellar masses and internal velocities. Assuming an evolutionary connection, their space densities also match if the mean duty cycle of SMG starbursts is 42 (+40/-29) Myr (consistent with independent estimates), indicating that the bulk of stars in these massive galaxies were formed in a major, early surge of star-formation. These results suggests a coherent picture of the formation history of the most massive galaxies in the universe, from their initial burst of violent star-formation through their appearance as high stellardensity galaxy cores and to their ultimate fate as giant ellipticals.If time permits i will show novel, spatially resolved spectroscopic observations of the inner regions (rgalaxies at z>2, allowing for strong new constraints on their formation and evolutionary path

  3. The dynamics of the merger in the Frontier Field cluster Abell 2744.

    NASA Astrophysics Data System (ADS)

    Owers, Matt S.

    2015-08-01

    In this talk I will present results from a combined analysis of deep Chandra X-ray observations and a comprehensive redshift survey of the frontier field cluster A2744. From the redshift information, 343 cluster members are selected which are projected within 3 Mpc of the cluster center. Combining positions and velocities, two major substructures are identified, corresponding to the remnants of two major subclusters. The data are consistent with a post-core-passage, major merger taking place along an axis that is tilted well out of the plane of the sky, together with an interloping minor merger. Supporting this interpretation, the X-ray data reveal enriched, low entropy gas from the core of the approaching, major subcluster, lying ~2 north of the cluster center, and a shock front to the southeast of the previously known bright, compact core associated with the receding subcluster. The X-ray morphology of the compact core is consistent with a Bullet-like cluster viewed from within ~45 degrees of the merger axis. An X-ray peak ~3 arcminutes northwest of the cluster center, with an associated cold front to the northeast and a trail of low entropy gas to the south, is interpreted as the remnant of an interloping minor merger taking place roughly in the plane of the sky. The new data taken for the Frontier Fields has allowed precise measurements of the peaks in the projected mass distribution. I will discuss these new results in the context of our redshift and X-ray information and our inferred merger scenario. I will also present preliminary results on the impact of the merger on the galaxy populations bsed on our spectroscopy.

  4. The violent white dwarf merger scenario for the progenitors of Type Ia supernovae

    NASA Astrophysics Data System (ADS)

    Liu, D.-D.; Wang, B.; Podsiadlowski, Ph.; Han, Z.

    2016-10-01

    Recent observations suggest that some Type Ia supernovae (SNe Ia) originate from the merging of two carbon-oxygen white dwarfs (CO WDs). Meanwhile, recent hydrodynamical simulations have indicated that the accretion-induced collapse may be avoided under certain conditions when double WDs merge violently. However, the properties of SNe Ia from this violent merger scenario are highly dependent on a particular mass-accretion stage, the so-called WD + He subgiant channel, during which the primary WD is able to increase its mass by accreting He-rich material from an He subgiant before the systems evolves into a double WD system. In this paper, we aim to study this particular evolutionary stage systematically and give the properties of violent WD mergers. By employing the Eggleton stellar evolution code, we followed a large number of binary calculations and obtained the regions in parameter space for producing violent mergers based on the WD + He subgiant channel. According to these simulations, we found that the primary WDs can increase their mass by ˜ 0.10-0.45 M⊙ during the mass-accretion stage. We then conducted a series of binary population synthesis calculations and found that the Galactic SN Ia birthrate from this channel is about 0.01-0.4 × 10-3 yr-1. This suggests that the violent WD mergers from this channel may only contribute to ˜0.3-10 per cent of all SNe Ia in our Galaxy. The delay times of violent WD mergers from this channel are ≥ 1.7 Gyr, contributing to the SNe Ia in old populations. We also found that the WD + He subgiant channel is the dominant way for producing violent WD mergers that may be able to eventually explode as SNe Ia.

  5. Stormy weather in galaxy clusters

    PubMed

    Burns

    1998-04-17

    Recent x-ray, optical, and radio observations coupled with particle and gas dynamics numerical simulations reveal an unexpectedly complex environment within clusters of galaxies, driven by ongoing accretion of matter from large-scale supercluster filaments. Mergers between clusters and continuous infall of dark matter and baryons from the cluster periphery produce long-lived "stormy weather" within the gaseous cluster atmosphere-shocks, turbulence, and winds of more than 1000 kilometers per second. This weather may be responsible for shaping a rich variety of extended radio sources, which in turn act as "barometers" and "anemometers" of cluster weather.

  6. Stormy weather in galaxy clusters

    PubMed

    Burns

    1998-04-17

    Recent x-ray, optical, and radio observations coupled with particle and gas dynamics numerical simulations reveal an unexpectedly complex environment within clusters of galaxies, driven by ongoing accretion of matter from large-scale supercluster filaments. Mergers between clusters and continuous infall of dark matter and baryons from the cluster periphery produce long-lived "stormy weather" within the gaseous cluster atmosphere-shocks, turbulence, and winds of more than 1000 kilometers per second. This weather may be responsible for shaping a rich variety of extended radio sources, which in turn act as "barometers" and "anemometers" of cluster weather. PMID:9545210

  7. A Stellar Stream Surrounds the Whale Galaxy

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2015-10-01

    The -cold dark matter cosmological model predicts that galaxies are assembled through the disruption and absorption of small satellite dwarf galaxies by their larger hosts. A recent study argues that NGC 4631, otherwise known as the Whale galaxy, shows evidence of such a recent merger in the form of an enormous stellar stream extending from it.Stream SignaturesAccording to the -CDM model, stellar tidal streams should be a ubiquitous feature among galaxies. When satellite dwarf galaxies are torn apart, they spread out into such streams before ultimately feeding the host galaxy. Unfortunately, these streams are very faint, so were only recently starting to detect these features.Stellar tidal streams have been discovered around the Milky Way and Andromeda, providing evidence of these galaxies growth via recent (within the last 8 Gyr) mergers. But discovering stellar streams around other Milky Way-like galaxies would help us to determine if the model of hierarchical galaxy assembly applies generally.To this end, the Stellar Tidal Stream Survey, led by PI David Martnez-Delgado (Center for Astronomy of Heidelberg University), is carrying out the first systematic survey of stellar tidal streams. In a recent study, Martnez-Delgado and collaborators present their detection of a giant (85 kpc long!) stellar tidal stream extending into the halo of NGC 4631, the Whale galaxy.Modeling a SatelliteThe top image is a snapshot from an N-body simulation of a single dwarf satellite, 3.5 Gyr after it started interacting with the Whale galaxy. The satellite has been torn apart and spread into a stream that reproduces observations, which are shown in the lower image (scale is not the same). [Martnez-Delgado et al. 2015]The Whale galaxy is a nearby edge-on spiral galaxy interacting with a second spiral, NGC 4656. But the authors dont believe that the Whale galaxys giant tidal stellar stream is caused by its interactions with NGC 4656. Instead, based on their observations, they believe

  8. 12 CFR 611.1122 - Requirements for mergers or consolidations.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 12 Banks and Banking 6 2010-01-01 2010-01-01 false Requirements for mergers or consolidations. 611... Mergers, Consolidations, and Charter Amendments of Associations § 611.1122 Requirements for mergers or consolidations. This section shall apply to any request for approval of a proposed merger or consolidation...

  9. Improved microphysics in neutron star merger simulations

    NASA Astrophysics Data System (ADS)

    Foucart, Francois

    2014-09-01

    Neutron star mergers are expected to be among the main sources of gravitational waves detectable by the Advance LIGO/VIRGO/KAGRA detector network. In many cases, these mergers are also likely to power bright electromagnetic transients, including short gamma-ray bursts and ``kilonovae,'' the optical/infrared emission due to the radioactive decay of neutron rich elements in material unbound by the merger. These EM counterparts can provide important information on the environment in which the merger takes place and the nature of the binary, and their detection could shed a light on the origin of short gamma-ray bursts and of r-process elements. Numerical simulations of neutron star mergers using general relativistic codes are required to understand the merger dynamics, the impact of the equation of state of the neutron star on the gravitational wave signal, and the potential of a given binary to power electromagnetic counterparts to that signal. Until recently, however, general relativistic codes used very simple models for the neutron star - often a simple gamma-law equation of state without any additional microphysics. Although sufficient to model the gravitational wave signal before merger, this cannot be used to follow the post-merger evolution of the system, or even some aspects of the disruption of the neutron star. To do so, nuclear-theory based equations of state with temperature and composition dependence have to be used, and the effects of neutrinos and magnetic fields should be taken into account. In this talk, I will discuss current efforts to include more advanced microphysics in general relativistic simulations, what we can do so far, and what the remaining computational challenges are. I will also show how existing numerical simulations have helped us constrain the outcome of neutron star mergers, and what remains to be done in order to extract as much information as possible from upcoming gravitational wave and electromagnetic observations. Neutron

  10. The EAGLE simulations of galaxy formation: Public release of halo and galaxy catalogues

    NASA Astrophysics Data System (ADS)

    McAlpine, S.; Helly, J. C.; Schaller, M.; Trayford, J. W.; Qu, Y.; Furlong, M.; Bower, R. G.; Crain, R. A.; Schaye, J.; Theuns, T.; Dalla Vecchia, C.; Frenk, C. S.; McCarthy, I. G.; Jenkins, A.; Rosas-Guevara, Y.; White, S. D. M.; Baes, M.; Camps, P.; Lemson, G.

    2016-04-01

    We present the public data release of halo and galaxy catalogues extracted from the EAGLE suite of cosmological hydrodynamical simulations of galaxy formation. These simulations were performed with an enhanced version of the GADGET code that includes a modified hydrodynamics solver, time-step limiter and subgrid treatments of baryonic physics, such as stellar mass loss, element-by-element radiative cooling, star formation and feedback from star formation and black hole accretion. The simulation suite includes runs performed in volumes ranging from 25 to 100 comoving megaparsecs per side, with numerical resolution chosen to marginally resolve the Jeans mass of the gas at the star formation threshold. The free parameters of the subgrid models for feedback are calibrated to the redshift z = 0 galaxy stellar mass function, galaxy sizes and black hole mass-stellar mass relation. The simulations have been shown to match a wide range of observations for present-day and higher-redshift galaxies. The raw particle data have been used to link galaxies across redshifts by creating merger trees. The indexing of the tree produces a simple way to connect a galaxy at one redshift to its progenitors at higher redshift and to identify its descendants at lower redshift. In this paper we present a relational database which we are making available for general use. A large number of properties of haloes and galaxies and their merger trees are stored in the database, including stellar masses, star formation rates, metallicities, photometric measurements and mock gri images. Complex queries can be created to explore the evolution of more than 105 galaxies, examples of which are provided in the Appendix. The relatively good and broad agreement of the simulations with a wide range of observational datasets makes the database an ideal resource for the analysis of model galaxies through time, and for connecting and interpreting observational datasets.

  11. Cost effects of hospital mergers in Portugal.

    PubMed

    Azevedo, Helda; Mateus, Céu

    2014-12-01

    The Portuguese hospital sector has been restructured by wide-ranging hospital mergers, following a conviction among policy makers that bigger hospitals lead to lower average costs. Since the effects of mergers have not been systematically evaluated, the purpose of this article is to contribute to this area of knowledge by assessing potential economies of scale to explore and compare these results with realized cost savings after mergers. Considering the period 2003-2009, we estimate the translog cost function to examine economies of scale in the years preceding restructuring. Additionally, we use the difference-in-differences approach to evaluate hospital centres (HC) that occurred between 2004 and 2007, comparing the years after and before mergers. Our findings suggest that economies of scale are present in the pre-merger configuration with an optimum hospital size of around 230 beds. However, the mergers between two or more hospitals led to statistically significant post-merger cost increases, of about 8 %. This result indicates that some HC become too large to explore economies of scale and suggests the difficulty of achieving efficiencies through combining operations and service specialization.

  12. Cost effects of hospital mergers in Portugal.

    PubMed

    Azevedo, Helda; Mateus, Céu

    2014-12-01

    The Portuguese hospital sector has been restructured by wide-ranging hospital mergers, following a conviction among policy makers that bigger hospitals lead to lower average costs. Since the effects of mergers have not been systematically evaluated, the purpose of this article is to contribute to this area of knowledge by assessing potential economies of scale to explore and compare these results with realized cost savings after mergers. Considering the period 2003-2009, we estimate the translog cost function to examine economies of scale in the years preceding restructuring. Additionally, we use the difference-in-differences approach to evaluate hospital centres (HC) that occurred between 2004 and 2007, comparing the years after and before mergers. Our findings suggest that economies of scale are present in the pre-merger configuration with an optimum hospital size of around 230 beds. However, the mergers between two or more hospitals led to statistically significant post-merger cost increases, of about 8 %. This result indicates that some HC become too large to explore economies of scale and suggests the difficulty of achieving efficiencies through combining operations and service specialization. PMID:24379130

  13. ON THE TRANSITION FROM NUCLEAR-CLUSTER- TO BLACK-HOLE-DOMINATED GALAXY CORES

    SciTech Connect

    Bekki, Kenji; Graham, Alister W.

    2010-05-10

    Giant elliptical galaxies, believed to be built from the merger of lesser galaxies, are known to house a massive black hole (MBH) at their center rather than a compact star cluster. If low- and intermediate-mass galaxies do indeed partake in the hierarchical merger scenario, then one needs to explain why their dense nuclear star clusters are not preserved in merger events. A valuable clue may be the recent revelation that nuclear star clusters and MBHs frequently co-exist in intermediate-mass bulges and elliptical galaxies. In an effort to understand the physical mechanism responsible for the disappearance of nuclear star clusters, we have numerically investigated the evolution of merging star clusters with seed BHs. Using BHs that are 1%-5% of their host nuclear cluster mass, we reveal how their binary coalescence during a merger dynamically heats the newly wed star cluster, expanding it, significantly lowering its central stellar density, and thus making it susceptible to tidal destruction during galaxy merging. Moreover, this mechanism provides a pathway to explain the observed reduction in the nucleus-to-galaxy stellar mass ratio as one proceeds from dwarf to giant elliptical galaxies.

  14. Disk dwarf galaxy as the progenitor of the Andromeda giant stream

    NASA Astrophysics Data System (ADS)

    Kirihara, Takanobu; Miki, Yohei; Mori, Masao; Kawaguchi, Toshihiro

    2016-08-01

    We present a study of the morphology of a progenitor galaxy that has been disrupted and formed a giant southern stellar stream in the halo of Andromeda galaxy(M31). N-body simulations of a minor merger of M31 with a dwarf galaxy suggest that the progenitor's rotation plays an important role in the formation of an asymmetric surface brightness distribution of the stream.

  15. How do galaxies build up their spin in the cosmic web?

    NASA Astrophysics Data System (ADS)

    Welker, Charlotte; Dubois, Yohan; Pichon, Christophe; Devriendt, Julien; Peirani, Sebastien

    2016-10-01

    Using the Horizon-AGN simulation we find a mass dependent spin orientation trend for galaxies: the spin of low-mass, rotation-dominated, blue, star-forming galaxies are preferentially aligned with their closest filament, whereas high-mass, velocity dispersion- supported, red quiescent galaxies tend to possess a spin perpendicular to these filaments. We explore the physical mechanisms driving galactic spin swings and quantify how much mergers and smooth accretion re-orient them relative to their host filaments.

  16. A physical model for z ~ 2 dust-obscured galaxies

    NASA Astrophysics Data System (ADS)

    Narayanan, Desika; Dey, Arjun; Hayward, Christopher C.; Cox, Thomas J.; Bussmann, R. Shane; Brodwin, Mark; Jonsson, Patrik; Hopkins, Philip F.; Groves, Brent; Younger, Joshua D.; Hernquist, Lars

    2010-09-01

    We present a physical model for the origin of z ~ 2 dust-obscured galaxies (DOGs), a class of high-redshift ultraluminous infrared galaxies (ULIRGs) selected at 24μm which are particularly optically faint (F24μm/FR > 1000). By combining N-body/smoothed particle hydrodynamic simulations of high-redshift galaxy evolution with 3D polychromatic dust radiative transfer models, we find that luminous DOGs (with F24 >~ 0.3mJy at z ~ 2) are well modelled as extreme gas-rich mergers in massive (~5 × 1012-1013Msolar) haloes, with elevated star formation rates (SFR; ~500-1000Msolaryr-1) and/or significant active galactic nuclei (AGN) growth , whereas less luminous DOGs are more diverse in nature. At final coalescence, merger-driven DOGs transition from being starburst dominated to AGN dominated, evolving from a `bump' to a power-law (PL) shaped mid-IR (Infrared Array Camera, IRAC) spectral energy distribution (SED). After the DOG phase, the galaxy settles back to exhibiting a `bump' SED with bluer colours and lower SFRs. While canonically PL galaxies are associated with being AGN dominated, we find that the PL mid-IR SED can owe both to direct AGN contribution and to a heavily dust obscured stellar bump at times that the galaxy is starburst dominated. Thus, PL galaxies can be either starburst or AGN dominated. Less luminous DOGs can be well-represented either by mergers or by massive (Mbaryon ~ 5 × 1011Msolar) secularly evolving gas-rich disc galaxies (with SFR >~ 50Msolaryr-1). By utilizing similar models as those employed in the submillimetre galaxy (SMG) formation study of Narayanan et al., we investigate the connection between DOGs and SMGs. We find that the most heavily star-forming merger-driven DOGs can be selected as submillimetre galaxies, while both merger-driven and secularly evolving DOGs typically satisfy the BzK selection criteria. The model SEDs from the simulated galaxies match observed data reasonably well, though Mrk 231 and Arp 220 templates provide

  17. The impact of mechanical AGN feedback on the formation of massive early-type galaxies

    NASA Astrophysics Data System (ADS)

    Choi, Ena; Ostriker, Jeremiah P.; Naab, Thorsten; Oser, Ludwig; Moster, Benjamin P.

    2015-06-01

    We employ cosmological hydrodynamical simulations to investigate the effects of AGN feedback on the formation of massive galaxies with present-day stellar masses of M_stel= 8.8 × 10^{10}-6.0 × 10^{11} M_{⊙}. Using smoothed particle hydrodynamics simulations with a pressure-entropy formulation that allows an improved treatment of contact discontinuities and fluid mixing, we run three sets of simulations of 20 haloes with different AGN feedback models: (1) no feedback, (2) thermal feedback, and (3) mechanical and radiation feedback. We assume that seed black holes are present at early cosmic epochs at the centre of emerging dark matter haloes and trace their mass growth via gas accretion and mergers with other black holes. Both feedback models successfully recover the observed MBH-σ relation and black hole-to-stellar mass ratio for simulated central early-type galaxies. The baryonic conversion efficiencies are reduced by a factor of 2 compared to models without any AGN feedback at all halo masses. However, massive galaxies simulated with thermal AGN feedback show a factor of ˜10-100 higher X-ray luminosities than observed. The mechanical/radiation feedback model reproduces the observed correlation between X-ray luminosities and velocity dispersion, e.g. for galaxies with σ = 200 km s- 1, the X-ray luminosity is reduced from 1042 erg s- 1 to 1040 erg s- 1. It also efficiently suppresses late-time star formation, reducing the specific star formation rate from 10-10.5 yr- 1 to 10-14 yr- 1 on average and resulting in quiescent galaxies since z = 2, whereas the thermal feedback model shows higher late-time in situ star formation rates than observed.

  18. Revealing the nature of star forming blue early-type galaxies at low redshift

    NASA Astrophysics Data System (ADS)

    George, Koshy; Zingade, Kshama

    2015-11-01

    Context. Star forming early-type galaxies with blue optical colours at low redshift can be used to test our current understanding of galaxy formation and evolution. Aims: We want to reveal the fuel and triggering mechanism for star formation in these otherwise passively evolving red and dead stellar systems. Methods: We undertook an optical and ultraviolet study of 55 star forming blue early-type galaxies, searching for signatures of recent interactions that could be driving the molecular gas into the galaxy and potentially triggering the star formation. Results: We report here our results on star forming blue early-type galaxies with tidal trails and in close proximity to neighbouring galaxies that are evidence of ongoing or recent interactions between galaxies. There are 12 galaxies with close companions with similar redshifts, among which two galaxies are having ongoing interactions that potentially trigger the star formation. Two galaxies show a jet feature that could be due to the complete tidal disruption of the companion galaxy. The interacting galaxies have high star formation rates and very blue optical colours. Galaxies with no companion could have undergone a minor merger in the recent past. Conclusions: The recent or ongoing interaction with a gas-rich neighbouring galaxy could be responsible for bringing cold gas to an otherwise passively evolving early-type galaxy. The sudden gas supply could trigger the star formation, eventually creating a blue early-type galaxy. The galaxies with ongoing tidal interaction are blue and star forming, thereby implying that blue early-type galaxies can exist even when the companion is on flyby so does not end up in a merger. Based on data compiled from Galaxy Zoo project, and the volunteers contribution are acknowledged at http://www.galaxyzoo.org/Volunteers.aspx

  19. Traces de l'interaction entre galaxies

    NASA Astrophysics Data System (ADS)

    Duc, Pierre-Alain

    2016-08-01

    Within a galaxy, collisions between stars are exceptional; collisions between galaxies are themselves much more frequent. They are even supposed to play a major role in the formation of structures according to the standard hierarchical cosmological model. Gravitational interactions, tidal forces and following mergers shape the morphology of galaxies, and leave vestiges which can survive for a few Gyr. They consist of stellar shells, streams, tails and plumes which emit a diffuse and extended optical light. Several deep imaging projects use telescopes of all sizes to try to detect this light. We detail here what the census of collisional debris can tel us about the past history of galaxies and about the models and simulations supposedly accounting for it.

  20. Galaxies: Interactions and Induced Star Formation

    NASA Astrophysics Data System (ADS)

    Kennicutt, R. C., Jr.; Schweizer, F.; Barnes, J. E.; Friedli, D.; Martinet, L.; Pfenniger, D.

    This volume contains the written version of the lectures given at the 26th course of the renowned Saas-Fee series. The book represents a comprehensive and up-to-date review of the field of galaxy interactions. Nowadays, galaxies are no longer seen as immutable objects: they evolve, interact, merge, blaze, and reshape. Dynamical forces can induce powerful stellar activity able to transform the matter composition and morphology of galaxies. With the aim at better understanding and explaining these remarkable and fascinating phenomena, three outstanding lecturers covered the following topics: ``Induced Star Formation" by Robert C. Kennicutt, ``Observational Evidence for Interactions and Mergers" by François Schweizer, and ``Dynamics of Galaxy Interactions" by Joshua E. Barnes. Though the book is intended for graduate students and young post-docs in astrophysics, it contains more advanced and original material, as well as historical perspectives which certainly will be of great interest also for experts and astronomy teachers.

  1. Galaxy cosmological mass function

    NASA Astrophysics Data System (ADS)

    Lopes, Amanda R.; Iribarrem, Alvaro; Ribeiro, Marcelo B.; Stoeger, William R.

    2014-12-01

    Aims: This paper studies the galaxy cosmological mass function (GCMF) in a semi-empirical relativistic approach that uses observational data provided by recent galaxy redshift surveys. Methods: Starting from a previously presented relation between the mass-to-light ratio, the selection function obtained from the luminosity function (LF) data and the luminosity density, the average luminosity L, and the average galactic mass ℳg were computed in terms of the redshift. ℳg was also alternatively estimated by means of a method that uses the galaxy stellar mass function (GSMF). Comparison of these two forms of deriving the average galactic mass allowed us to infer a possible bias introduced by the selection criteria of the survey. We used the FORS Deep Field galaxy survey sample of 5558 galaxies in the redshift range 0.5 galaxy mergers or as a strong evolution in the star formation history of these galaxies.

  2. The Impossibly Early Galaxy Problem

    NASA Astrophysics Data System (ADS)

    Steinhardt, Charles. L.; Capak, Peter; Masters, Dan; Speagle, Josh S.

    2016-06-01

    The current hierarchical merging paradigm and ΛCDM predict that the z˜ 4-8 universe should be a time in which the most massive galaxies are transitioning from their initial halo assembly to the later baryonic evolution seen in star-forming galaxies and quasars. However, no evidence of this transition has been found in many high-redshift galaxy surveys including CFHTLS, Cosmic Assembly Near-infrared Deep Extragalactic Survey (CANDELS), and Spitzer Large Area Survey with Hyper-Suprime-Cam (SPLASH), which were the first studies to probe the high-mass end at these redshifts. Indeed, if halo mass to stellar mass ratios estimated at lower-redshift continue to z˜ 6-8, CANDELS and SPLASH report several orders of magnitude more M˜ {10}12-13{M}⊙ halos than is possible to have been formed by those redshifts, implying that these massive galaxies formed impossibly early. We consider various systematics in the stellar synthesis models used to estimate physical parameters and possible galaxy formation scenarios in an effort to reconcile observation with theory. Although known uncertainties can greatly reduce the disparity between recent observations and cold dark matter merger simulations, there remains considerable tension with current theory even if taking the most conservative view of the observations.

  3. Polarization Imaging of Radio Galaxies

    NASA Astrophysics Data System (ADS)

    Antonucci, Robert

    1991-07-01

    Spectropolarimetry of the narrow line radio galaxy 3C234 was used to show in 1982 that there is a hidden broad line region occulted by an opaque torus oriented perpendicular to the radio structure axis. Given the luminosity of the reflected light, it follows that 3C234 would be called a quasar if its orientation with respect to the line of sight were different. Since then similar results were found for five Seyfert 2's. If many NLRG's are occulted quasars in the sky plane, several statistical anomalies in the beam model for superluminal motion are understandable. However, further optical spectropolarimetry has been disappointing in this regard, at least partially because of severe dilution of reflected light by starlight, sometimes polarized, from the host galaxies. We can solve this problem by observing in the UV. Furthermore, recent observations of two NLRGs have revealed OFF- NUCLEAR dust clouds reflecting and strongly "bluening" nuclear light in two NLRG's. Such dust clouds, abundant in the merger debris surrounding many luminous radio galaxies, should show up spectacularly in UV polarization images, providing information on the beam pattern and time history of nuclear emission. We request FOC polarization images of a sample of radio galaxies. We will also get for free and with high efficiency total flux images, suitable for studying the nuclei and the anomalous young stellar populations seen in merging radio galaxies from the ground.

  4. Polarization Imaging of Radio Galaxies

    NASA Astrophysics Data System (ADS)

    Antonucci, Robert

    1996-07-01

    Spectropolarimetry of the narrow line radio galaxy 3C234 was used to show in 1982 that there is a hidden broad line region occulted by an opaque torus oriented perpendicular to the radio structure axis. Given the luminosity of the reflected light, it follows that 3C234 would be called a quasar if its orientation with respect to the line of sight were different. Since then similar results were found for five Seyfert 2's. If many NLRG's are occulted quasars in the sky plane, several statistical anomalies in the beam model for superluminal motion are understandable. However, further optical spectropolarimetry has been disappointing in this regard, at least partially because of severe dilution of reflected light by starlight, sometimes polarized, from the host galaxies. We can solve this problem by observing in the UV. Furthermore, recent observations of two NLRGs have revealed OFF- NUCLEAR dust clouds reflecting and strongly "bluening" nuclear light in two NLRG's. Such dust clouds, abundant in the merger debris surrounding many luminous radio galaxies, should show up spectacularly in UV polarization images, providing information on the beam pattern and time history of nuclear emission. We request FOC polarization images of a sample of radio galaxies. We will also get for free and with high efficiency total flux images, suitable for studying the nuclei and the anomalous young stellar populations seen in merging radio galaxies from the ground.

  5. The Impossibly Early Galaxy Problem

    NASA Astrophysics Data System (ADS)

    Steinhardt, Charles L.; Capak, Peter L.; Masters, Daniel; Speagle, Josh S.

    2016-01-01

    The current hierarchical merging paradigm and ΛCDM predict that the z ~ 4-8 universe should be a time in which the most massive galaxies are transitioning from their initial halo assembly to the later baryonic evolution seen in star-forming galaxies and quasars. However, no evidence of this transition has been found in many high redshift galaxy surveys including CFHTLS, CANDELS and SPLASH, the first studies to probe the high-mass end at these redshifts. Indeed, if halo mass to stellar mass ratios estimated at lower-redshift continue to z ~ 6-8, CANDELS and SPLASH report several orders of magnitude more M ~ 10^12-13 M⊙ halos than are possible to have formed by those redshifts, implying these massive galaxies formed impossibly early. We consider various systematics in the stellar synthesis models used to estimate physical parameters and possible galaxy formation scenarios in an effort to reconcile observation with theory. Although known uncertainties can greatly reduce the disparity between recent observations and cold dark matter merger simulations, even taking the most conservative view of the observations, there remains considerable tension with current theory.

  6. Star formation and substructure in galaxy clusters

    SciTech Connect

    Cohen, Seth A.; Hickox, Ryan C.; Wegner, Gary A.; Einasto, Maret; Vennik, Jaan

    2014-03-10

    We investigate the relationship between star formation (SF) and substructure in a sample of 107 nearby galaxy clusters using data from the Sloan Digital Sky Survey. Several past studies of individual galaxy clusters have suggested that cluster mergers enhance cluster SF, while others find no such relationship. The SF fraction in multi-component clusters (0.228 ± 0.007) is higher than that in single-component clusters (0.175 ± 0.016) for galaxies with M{sub r}{sup 0.1}<−20.5. In both single- and multi-component clusters, the fraction of star-forming galaxies increases with clustercentric distance and decreases with local galaxy number density, and multi-component clusters show a higher SF fraction than single-component clusters at almost all clustercentric distances and local densities. Comparing the SF fraction in individual clusters to several statistical measures of substructure, we find weak, but in most cases significant at greater than 2σ, correlations between substructure and SF fraction. These results could indicate that cluster mergers may cause weak but significant SF enhancement in clusters, or unrelaxed clusters exhibit slightly stronger SF due to their less evolved states relative to relaxed clusters.

  7. The Evolution of Brightest Cluster Galaxies in a Hierarchical Universe

    NASA Astrophysics Data System (ADS)

    Tonini, Chiara; Bernyk, Maksym; Croton, Darren; Maraston, Claudia; Thomas, Daniel

    2012-11-01

    We investigate the evolution of brightest cluster galaxies (BCGs) from redshift z ~ 1.6 to z = 0. We upgrade the hierarchical semi-analytic model of Croton et al. with a new spectro-photometric model that produces realistic galaxy spectra, making use of the Maraston stellar populations and a new recipe for the dust extinction. We compare the model predictions of the K-band luminosity evolution and the J - K, V - I, and I - K color evolution with a series of data sets, including those of Collins et al. who argued that semi-analytic models based on the Millennium simulation cannot reproduce the red colors and high luminosity of BCGs at z > 1. We show instead that the model is well in range of the observed luminosity and correctly reproduces the color evolution of BCGs in the whole redshift range up to z ~ 1.6. We argue that the success of the semi-analytic model is in large part due to the implementation of a more sophisticated spectro-photometric model. An analysis of the model BCGs shows an increase in mass by a factor of 2-3 since z ~ 1, and star formation activity down to low redshifts. While the consensus regarding BCGs is that they are passively evolving, we argue that this conclusion is affected by the degeneracy between star formation history and stellar population models used in spectral energy distribution fitting, and by the inefficacy of toy models of passive evolution to capture the complexity of real galaxies, especially those with rich merger histories like BCGs. Following this argument, we also show that in the semi-analytic model the BCGs show a realistic mix of stellar populations, and that these stellar populations are mostly old. In addition, the age-redshift relation of the model BCGs follows that of the universe, meaning that given their merger history and star formation history, the ageing of BCGs is always dominated by the ageing of their stellar populations. In a ΛCDM universe, we define such evolution as "passive in the hierarchical sense."

  8. THE EVOLUTION OF BRIGHTEST CLUSTER GALAXIES IN A HIERARCHICAL UNIVERSE

    SciTech Connect

    Tonini, Chiara; Bernyk, Maksym; Croton, Darren; Maraston, Claudia; Thomas, Daniel

    2012-11-01

    We investigate the evolution of brightest cluster galaxies (BCGs) from redshift z {approx} 1.6 to z = 0. We upgrade the hierarchical semi-analytic model of Croton et al. with a new spectro-photometric model that produces realistic galaxy spectra, making use of the Maraston stellar populations and a new recipe for the dust extinction. We compare the model predictions of the K-band luminosity evolution and the J - K, V - I, and I - K color evolution with a series of data sets, including those of Collins et al. who argued that semi-analytic models based on the Millennium simulation cannot reproduce the red colors and high luminosity of BCGs at z > 1. We show instead that the model is well in range of the observed luminosity and correctly reproduces the color evolution of BCGs in the whole redshift range up to z {approx} 1.6. We argue that the success of the semi-analytic model is in large part due to the implementation of a more sophisticated spectro-photometric model. An analysis of the model BCGs shows an increase in mass by a factor of 2-3 since z {approx} 1, and star formation activity down to low redshifts. While the consensus regarding BCGs is that they are passively evolving, we argue that this conclusion is affected by the degeneracy between star formation history and stellar population models used in spectral energy distribution fitting, and by the inefficacy of toy models of passive evolution to capture the complexity of real galaxies, especially those with rich merger histories like BCGs. Following this argument, we also show that in the semi-analytic model the BCGs show a realistic mix of stellar populations, and that these stellar populations are mostly old. In addition, the age-redshift relation of the model BCGs follows that of the universe, meaning that given their merger history and star formation history, the ageing of BCGs is always dominated by the ageing of their stellar populations. In a {Lambda}CDM universe, we define such evolution as 'passive

  9. The genetics of a pharma merger.

    PubMed

    Sanseau, Philippe; Chabot-Fletcher, Marie; Browne, Michael J

    2009-04-01

    The 1990s and early years of this century have seen a series of large-scale mergers and acquisitions in the Pharmaceutical and Biotech arena. These activities each required integration at multiple levels. One of the most important activities is the integration of the R&D pipelines of the participants. We outline the combined portfolio and bioinformatic strategy that was used, and detail the lessons learned for the longer term, from the GlaxoWellcome-SmithKline-Beecham merger in 2000. To date, this has been the largest merger of two equally sized Pharma R&D organisations.

  10. Mergers of equals: understanding the dynamics.

    PubMed

    Rovner, J

    1997-06-01

    The current wave of mergers in the healthcare field is marked by demands from staff that their organizations not lose autonomy--and one way leaders are getting agreements signed is to assert that each merging group will be treated as equal in power. But such mergers, says consultant Stephen L. Ummel, can lead to "inertia, indecisiveness and confusion". Leaders of three healthcare systems--Partners in Boston, BJC in St. Louis and Lifespan in Rhode Island--cite four major lessons that others planning mergers should take to heart.

  11. Galaxy Zoo: spiral galaxy morphologies and their relation to the star-forming main sequence

    NASA Astrophysics Data System (ADS)

    Willett, Kyle; Schawinski, Kevin; Masters, Karen; Melvin, Tom; Skibba, Ramin A.; Nichol, Robert; Cheung, Edmond; Lintott, Chris; Simmons, Brooke D.; Kaviraj, Sugata; Keel, William C.; Fortson, Lucy; Galaxy Zoo volunteers

    2015-01-01

    We examine the relationship between stellar mass and star formation rate in disk galaxies at z<0.085, measuring different populations of spirals as classified by their kiloparsec-scale structure. The morphologies of disk galaxies are obtained from the Galaxy Zoo 2 project, which includes the number of spiral arms, the arm pitch angle, and the presence of strong galactic bars. We show that both the slope and dispersion of the star-forming main sequence (SFMS) is constant no matter what the morphology of the spiral disk. We also show that mergers (both major and minor), which represent the strongest conditions for increases in star formation at a constant mass, only boost the SFR above the main relation by 0.3 dex; this is a significant reduction over the increase seen in merging systems at higher redshifts (z > 1). Of the galaxies that do lie significantly above the SFMS in the local Universe, more than 50% are mergers, with a large contribution from the compact green pea galaxies. We interpret our results as evidence that the number and pitch angle of spiral arms, which are imperfect reflections of the galaxy's current gravitational potential, are either fully independent of the various quenching mechanisms for star formation or are completely overwhelmed by the combination of outflows and feedback.

  12. Astrophysical Implications of the Binary Black-hole Merger GW150914

    NASA Astrophysics Data System (ADS)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allocca, A.; Altin, P. A.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Babak, S.; Bacon, P.; Bader, M. K. M.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Bazzan, M.; Behnke, B.; Bejger, M.; Belczynski, C.; Bell, A. S.; Bell, C. J.; Berger, B. K.; Bergman, J.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Birney, R.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Bodiya, T. P.; Boer, M.; Bogaert, G.; Bogan, C.; Bohe, A.; Bojtos, P.; Bond, C.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T.; Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C.; Cerboni Baiardi, L.; Cerretani, G.; Cesarini, E.; Chakraborty, R.; Chalermsongsak, T.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Chen, H. Y.; Chen, Y.; Cheng, C.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, S.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Collette, C. G.; Cominsky, L.; Constancio, M., Jr.; Conte, A.; Conti, L.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J.-P.; Countryman, S. T.; Couvares, P.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Cripe, J.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Darman, N. S.; Dattilo, V.; Dave, I.; Daveloza, H. P.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; DeBra, D.; Debreczeni, G.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dereli, H.; Dergachev, V.; DeRosa, R.; DeRosa, R. T.; DeSalvo, R.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Virgilio, A.; Dojcinoski, G.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Engels, W.; Essick, R. C.; Etzel, T.; Evans, M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fournier, J.-D.; Franco, S.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fricke, T. T.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H. A. G.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gatto, A.; Gaur, G.; Gehrels, N.; Gemme, G.; Gendre, B.; Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glaefke, A.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gordon, N. A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Hall, B. R.; Hall, E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C.-J.; Haughian, K.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Hofman, D.; Hollitt, S. E.; Holt, K.; Holz, D. E.; Hopkins, P.; Hosken, D. J.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huang, S.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Idrisy, A.; Indik, N.; Ingram, D. R.; Inta, R.; Isa, H. N.; Isac, J.-M.; Isi, M.; Islas, G.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jang, H.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; K, Haris; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Karki, S.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kawazoe, F.; Kéfélian, F.; Kehl, M. S.; Keitel, D.; Kelley, D. B.; Kells, W.; Kennedy, R.; Key, J. S.; Khalaidovski, A.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, C.; Kim, J.; Kim, K.; Kim, Nam-Gyu; Kim, Namjun; Kim, Y.-M.; King, E. J.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Kleybolte, L.; Klimenko, S.; Koehlenbeck, S. M.; Kokeyama, K.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kringel, V.; Krishnan, B.; Królak, A.; Krueger, C.; Kuehn, G.; Kumar, P.; Kuo, L.; Kutynia, A.; Lackey, B. D.; Landry, M.; Lange, J.; Lantz, B.; Lasky, P. D.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, K.; Lenon, A.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Levine, B. M.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Lockerbie, N. A.; Logue, J.; Lombardi, A. L.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lück, H.; Lundgren, A. P.; Luo, J.; Lynch, R.; Ma, Y.; MacDonald, T.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña-Sandoval, F.; Magee, R. M.; Mageswaran, M.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandel, I.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martin, R. M.; Martynov, D. V.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Melatos, A.; Mendell, G.; Mendoza-Gandara, D.; Mercer, R. A.; Merilh, E.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, C. L.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Murphy, D. J.; Murray, P. G.; Mytidis, A.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Necula, V.; Nedkova, K.; Nelemans, G.; Neri, M.; Neunzert, A.; Newton, G.; Nguyen, T. T.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; O'Shaughnessy, R.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Patrick, Z.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perreca, A.; Phelps, M.; Piccinni, O.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poggiani, R.; Popolizio, P.; Post, A.; Powell, J.; Prasad, J.; Predoi, V.; Premachandra, S. S.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prix, R.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Qin, J.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Read, J.; Reed, C. M.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Reyes, S. D.; Ricci, F.; Riles, K.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, J. D.; Romano, R.; Romanov, G.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sanchez, E. J.; Sandberg, V.; Sandeen, B.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Schilling, R.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, S. M.; Sellers, D.; Sentenac, D.; Sequino, V.; Sergeev, A.; Serna, G.; Setyawati, Y.; Sevigny, A.; Shaddock, D. A.; Shah, S.; Shahriar, M. S.; Shaltev, M.; Shao, Z.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sigg, D.; Silva, A. D.; Simakov, D.; Singer, A.; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, J. R.; Smith, N. D.; Smith, R. J. E.; Son, E. J.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stevenson, S. P.; Stone, R.; Strain, K. A.; Straniero, N.; Stratta, G.; Strauss, N. A.; Strigin, S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tápai, M.; Tarabrin, S. P.; Taracchini, A.; Taylor, R.; Theeg, T.; Thirugnanasambandam, M. P.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Tomlinson, C.; Tonelli, M.; Torres, C. V.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trifirò, D.; Tringali, M. C.; Trozzo, L.; Tse, M.; Turconi, M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; van den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Vass, S.; Vasúth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Verkindt, D.; Vetrano, F.; Viceré, A.; Vinciguerra, S.; Vine, D. J.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, M.; Wang, X.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Welborn, T.; Wen, L.; Weßels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; White, D. J.; Whiting, B. F.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Worden, J.; Wright, J. L.; Wu, G.; Yablon, J.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yap, M. J.; Yu, H.; Yvert, M.; Zadrożny, A.; Zangrando, L.; Zanolin, M.; Zendri, J.-P.; Zevin, M.; Zhang, F.; Zhang, L.; Zhang, M.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, X. J.; Zucker, M. E.; Zuraw, S. E.; and; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration

    2016-02-01

    The discovery of the gravitational-wave (GW) source GW150914 with the Advanced LIGO detectors provides the first observational evidence for the existence of binary black hole (BH) systems that inspiral and merge within the age of the universe. Such BH mergers have been predicted in two main types of formation models, involving isolated binaries in galactic fields or dynamical interactions in young and old dense stellar environments. The measured masses robustly demonstrate that relatively “heavy” BHs (≳ 25 {M}⊙ ) can form in nature. This discovery implies relatively weak massive-star winds and thus the formation of GW150914 in an environment with a metallicity lower than about 1/2 of the solar value. The rate of binary-BH (BBH) mergers inferred from the observation of GW150914 is consistent with the higher end of rate predictions (≳ 1 Gpc-3 yr-1) from both types of formation models. The low measured redshift (z≃ 0.1) of GW150914 and the low inferred metallicity of the stellar progenitor imply either BBH formation in a low-mass galaxy in the local universe and a prompt merger, or formation at high redshift with a time delay between formation and merger of several Gyr. This discovery motivates further studies of binary-BH formation astrophysics. It also has implications for future detections and studies by Advanced LIGO and Advanced Virgo, and GW detectors in space.

  13. Astrophysical Implications of the Binary Black-hole Merger GW150914

    NASA Astrophysics Data System (ADS)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allocca, A.; Altin, P. A.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Babak, S.; Bacon, P.; Bader, M. K. M.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Bazzan, M.; Behnke, B.; Bejger, M.; Belczynski, C.; Bell, A. S.; Bell, C. J.; Berger, B. K.; Bergman, J.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Birney, R.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Bodiya, T. P.; Boer, M.; Bogaert, G.; Bogan, C.; Bohe, A.; Bojtos, P.; Bond, C.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T.; Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C.; Cerboni Baiardi, L.; Cerretani, G.; Cesarini, E.; Chakraborty, R.; Chalermsongsak, T.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Chen, H. Y.; Chen, Y.; Cheng, C.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, S.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Collette, C. G.; Cominsky, L.; Constancio, M., Jr.; Conte, A.; Conti, L.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J.-P.; Countryman, S. T.; Couvares, P.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Cripe, J.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D’Antonio, S.; Danzmann, K.; Darman, N. S.; Dattilo, V.; Dave, I.; Daveloza, H. P.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; DeBra, D.; Debreczeni, G.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dereli, H.; Dergachev, V.; DeRosa, R.; DeRosa, R. T.; DeSalvo, R.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Virgilio, A.; Dojcinoski, G.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Engels, W.; Essick, R. C.; Etzel, T.; Evans, M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fournier, J.-D.; Franco, S.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fricke, T. T.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H. A. G.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gatto, A.; Gaur, G.; Gehrels, N.; Gemme, G.; Gendre, B.; Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glaefke, A.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gordon, N. A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Hall, B. R.; Hall, E. D.

    2016-02-01

    The discovery of the gravitational-wave (GW) source GW150914 with the Advanced LIGO detectors provides the first observational evidence for the existence of binary black hole (BH) systems that inspiral and merge within the age of the universe. Such BH mergers have been predicted in two main types of formation models, involving isolated binaries in galactic fields or dynamical interactions in young and old dense stellar environments. The measured masses robustly demonstrate that relatively “heavy” BHs (≳ 25 {M}ȯ ) can form in nature. This discovery implies relatively weak massive-star winds and thus the formation of GW150914 in an environment with a metallicity lower than about 1/2 of the solar value. The rate of binary-BH (BBH) mergers inferred from the observation of GW150914 is consistent with the higher end of rate predictions (≳ 1 Gpc‑3 yr‑1) from both types of formation models. The low measured redshift (z≃ 0.1) of GW150914 and the low inferred metallicity of the stellar progenitor imply either BBH formation in a low-mass galaxy in the local universe and a prompt merger, or formation at high redshift with a time delay between formation and merger of several Gyr. This discovery motivates further studies of binary-BH formation astrophysics. It also has implications for future detections and studies by Advanced LIGO and Advanced Virgo, and GW detectors in space.

  14. Which processes shape stellar population gradients of massive galaxies at large radii?

    NASA Astrophysics Data System (ADS)

    Hirschmann, Michaela

    2016-08-01

    We investigate the differential impact of physical mechanisms, mergers (stellar accretion) and internal energetic phenomena, on the evolution of stellar population gradients in massive, present-day galaxies employing a set of high-resolution, cosmological zoom simulations. We demonstrate that negative metallicity and color gradients at large radii (>2Reff) originate from the accretion of metal-poor stellar systems. At larger radii, galaxies become typically more dominated by stars accreted from satellite galaxies in major and minor mergers. However, only strong galactic winds can sufficiently reduce the metallicity content of the accreted stars to realistically steepen the outer metallicity and colour gradients in agreement with present-day observations. In contrast, the gradients of the models without winds are inconsistent with observations (too flat). In the wind model, colour and metallicity gradients are significantly steeper for systems which have accreted stars in minor mergers, while galaxies with major mergers have relatively flat gradients, confirming previous results. This analysis greatly highlights the importance of both energetic processes and merger events for stellar population properties of massive galaxies at large radii. Our results are expected to significantly contribute to the interpretation of current and up-coming IFU surveys (like MaNGA and Califa), which in turn can help to better constrain still uncertain models for energetic processes in simulations.

  15. Binary black hole mergers: astrophysics and implications for space-based gravitational-wave detectors

    NASA Astrophysics Data System (ADS)

    Lang, Ryan

    2012-03-01

    Massive black holes (MBHs) can be found at the centers of nearly all galaxies. When galaxies merge, the black holes form a binary, which eventually coalesces due to the emission of gravitational waves. The final merger is a complicated process which can only be understood by numerically integrating Einstein's equations of general relativity. For many years, this was an impossible task; however, breakthroughs in 2005 and 2006 led to the first evolutions of binary black hole spacetimes through the merger process. Far from being esoteric results interesting only to hardcore relativists, these simulations have turned out to be very important for astrophysics. For example, if the gravitational waves are emitted asymmetrically, conservation of momentum implies that the resulting black hole will experience a recoil or ``kick.'' Numerical studies have shown that in some configurations, the kick can reach values as large as ˜5000 km/s. The simulations also allow the final spins of the black holes to be calculated. In the future, astrophysical information about coalescing MBH binaries will be obtained by directly measuring the gravitational waves with space-based detectors. In this case, the inclusion of accurate merger and ringdown waveforms into the signal model allows for significant improvement in measuring system parameters like mass, spin, and luminosity distance.

  16. Disk minor merger as the progenitor of the Andromeda giant stream

    NASA Astrophysics Data System (ADS)

    Kirihara, Takanobu

    2015-08-01

    Recent works have performed N -body simulations of a galaxy collision to reproduce observed shape and kinematics of a giant stellar stream (GSS) and shell-like structures in the halo of Andromeda galaxy (M31). So far, the study of the detailed comparison between the results of merger simulations and the observational data, M31's potential, orbit of the progenitor, and mass of the progenitor have been well understood. However, the morphology of the progenitor satellite galaxy has not yet examined in detail.Our simple analysis of the stellar count maps of red giant branch stars in the halo of M31 reveals an asymmetric internal structure of the giant stellar stream that can not be reproduced by a merger of a spherical symmetric progenitor. To reproduce such characteristic structure and to investigate the morphology of the disrupted progenitor, we perform N -body simulations and systematic parameter surveys varying the thickness of the disk progenitor and initial inclination of its disk. Our result suggests that a rotating component of the progenitor is required to reproduce an asymmetric internal structure of the GSS. Using the parameter that reproduces the observed structures in detail, we discuss the evolution and relaxation of the dark matter component that initially associated with the progenitor.In addition, we focus on the GSS as a probe of the density profile of the dark matter halo of M31 because the GSS is a huge structure (over 120 kpc) and its spatial and velocity structure have been observed in detail. We perform N -body simulation runs of the galaxy merger varying the power-law index of the outer-density profile and the total mass of the CDM halo of M31. The result suggests that a power-law index that is steeper than the CDM prediction.

  17. Supermassive Black Hole Growth and Merger Rates from Cosmological N-body Simulations

    SciTech Connect

    Micic, Miroslav; Holley-Bockelmann, Kelly; Sigurdsson, Steinn; Abel, Tom; /SLAC

    2007-10-29

    Understanding how seed black holes grow into intermediate and supermassive black holes (IMBHs and SMBHs, respectively) has important implications for the duty-cycle of active galactic nuclei (AGN), galaxy evolution, and gravitational wave astronomy. Most studies of the cosmological growth and merger history of black holes have used semianalytic models and have concentrated on SMBH growth in luminous galaxies. Using high resolution cosmological N-body simulations, we track the assembly of black holes over a large range of final masses - from seed black holes to SMBHs - over widely varying dynamical histories. We used the dynamics of dark matter halos to track the evolution of seed black holes in three different gas accretion scenarios. We have found that growth of a Sagittarius A* - size SMBH reaches its maximum mass M{sub SMBH}={approx}10{sup 6}M{sub {circle_dot}} at z{approx}6 through early gaseous accretion episodes, after which it stays at near constant mass. At the same redshift, the duty-cycle of the host AGN ends, hence redshift z=6 marks the transition from an AGN to a starburst galaxy which eventually becomes the Milky Way. By tracking black hole growth as a function of time and mass, we estimate that the IMBH merger rate reaches a maximum of R{sub max}=55 yr{sup -1} at z=11. From IMBH merger rates we calculate N{sub ULX}=7 per Milky Way type galaxy per redshift in redshift range 2 {approx}< z {approx}< 6.

  18. INTERACTING GALAXIES IN THE A901/902 SUPERCLUSTER WITH STAGES

    SciTech Connect

    Heiderman, Amanda; Jogee, Shardha; Marinova, Irina; Van Kampen, Eelco; Barden, Marco; Boehm, Asmus; Heymans, Catherine; Gray, Meghan E.; Haeussler, Boris; Lane, Kyle; Bell, Eric F.; Jahnke, Knud; Meisenheimer, Klaus; Bacon, David; Balogh, Michael; Barazza, Fabio D.; Caldwell, John A. R.; McIntosh, Daniel H.; Sanchez, Sebastian F.

    2009-11-10

    We present a study of galaxy mergers and the influence of environment in the Abell 901/902 supercluster at zapprox 0.165, based on 893 bright (R{sub Vega}<= 24) intermediate-mass (M{sub *} >= 10{sup 9} M{sub sun}) galaxies. We use HST ACS F606W data from the Space Telescope A901/902 Galaxy Evolution Survey, COMBO-17, Spitzer 24 mum, and XMM-Newton X-ray data. Our analysis utilizes both a physically driven visual classification system and quantitative CAS parameters to identify systems which show evidence of a recent or ongoing merger of mass ratio >1/10 (i.e., major and minor mergers). Our results are (1) after visual classification and minimizing the contamination from false projection pairs, we find that the merger fraction f{sub merge} is 0.023 +- 0.007. The estimated fractions of likely major mergers, likely minor mergers, and ambiguous cases are 0.01 +- 0.004, 0.006 +- 0.003, and 0.007 +- 0.003, respectively. (2) All the mergers lie outside the cluster core of radius R< 0.25 Mpc: the lack of mergers in the core is likely due to the large galaxy velocity dispersion in the core. The mergers, instead, populate the region (0.25 Mpc mergers is similar to those seen at typical group overdensities in N-body simulations of accreting groups in the A901/902 clusters. This suggests the ongoing growth of the clusters via accretion of group and field galaxies. (3) We compare our observed merger fraction with those reported in other clusters and groups out to zapprox 0.4. Existing data points on the merger fraction for L <= L* galaxies in clusters allow for a wide spectrum of scenarios, ranging from no evolution to evolution by a factor of approx5 over zapprox 0.17-0.4. (4) In A901/902, the fraction of interacting galaxies, which lie on the blue cloud is 80% +- 18% (16/20) versus 34% +- 7% or (294/866) for non-interacting galaxies, implying that interacting galaxies are

  19. Can this merger be saved?

    PubMed

    Cliffe, S

    1999-01-01

    In this fictional case study, a merger that looked like a marriage made in heaven to those at corporate headquarters is feeling like an infernal union to those on the ground. The merger is between Synergon Capital, a U.S. financial-services behemoth, and Beauchamp, Becker & Company, a venerable British financial-services company with strong profits and an extraordinarily loyal client base of wealthy individuals. Beauchamp also boasts a strong group of senior managers led by Julian Mansfield, a highly cultured and beloved patriarch who personifies all that's good about the company. Synergon isn't accustomed to acquiring such companies. It usually encircles a poorly managed turnaround candidate and then, once the deal is done, drops a neutron bomb on it, leaving file cabinets and contracts but no people. Before acquiring Beauchamp, Synergon's macho men offered loud assurances that they would leave the tradition-bound company alone-provided, of course, that Beauchamp met the ambitious target numbers and showed sufficient enthusiasm for cross-selling Synergon's products to its wealthy clients. In charge of making the acquisition work is Nick Cunningham, one of Synergon's more thoughtful executives. Nick, who was against the deal from the start, is the face and voice of Synergon for Julian Mansfield. And Mansfield, in his restrained way, is angry at the constant flow of bureaucratic forms, at the rude demands for instant information, at the peremptory changes. He's even dropping broad hints at retirement. Nick has already been warned: if Mansfield goes, you go. Six commentators advise Nick on how to save his job by bringing peace and prosperity to the feuding couple.

  20. Can this merger be saved?

    PubMed

    Cliffe, S

    1999-01-01

    In this fictional case study, a merger that looked like a marriage made in heaven to those at corporate headquarters is feeling like an infernal union to those on the ground. The merger is between Synergon Capital, a U.S. financial-services behemoth, and Beauchamp, Becker & Company, a venerable British financial-services company with strong profits and an extraordinarily loyal client base of wealthy individuals. Beauchamp also boasts a strong group of senior managers led by Julian Mansfield, a highly cultured and beloved patriarch who personifies all that's good about the company. Synergon isn't accustomed to acquiring such companies. It usually encircles a poorly managed turnaround candidate and then, once the deal is done, drops a neutron bomb on it, leaving file cabinets and contracts but no people. Before acquiring Beauchamp, Synergon's macho men offered loud assurances that they would leave the tradition-bound company alone-provided, of course, that Beauchamp met the ambitious target numbers and showed sufficient enthusiasm for cross-selling Synergon's products to its wealthy clients. In charge of making the acquisition work is Nick Cunningham, one of Synergon's more thoughtful executives. Nick, who was against the deal from the start, is the face and voice of Synergon for Julian Mansfield. And Mansfield, in his restrained way, is angry at the constant flow of bureaucratic forms, at the rude demands for instant information, at the peremptory changes. He's even dropping broad hints at retirement. Nick has already been warned: if Mansfield goes, you go. Six commentators advise Nick on how to save his job by bringing peace and prosperity to the feuding couple. PMID:10345391

  1. Disrupted Stars in Unusual Galaxies

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-03-01

    galaxies on average, yet includes the hosts of 75% of the TDEs.This means that quiescent galaxies with strong past star formation are overrepresented in the TDE host galaxy sample by a factor of ~190 times. Quiescent galaxies with at least moderately strong past star formation are overrepresented among TDE hosts by a factor of ~33.Why the Preference?So why might these galaxies so frequently host TDEs? The authors propose an idea: many of these galaxies may have experienced recent galaxygalaxy mergers. Such a mergercould trigger a burst of star formation, perturb stellar orbits, and then eventually settle into a quiescent state with stars that are more likely to be centrally concentrated and with orbits that might lead them to pass close to the central black hole(s).Future observations of more TDEs will certainly help to further evaluate this trend. But the current data certainly implies that TDEs are discriminating in their choice of host, providing interesting clues about the mechanisms driving their rates.CitationK. Decker French et al 2016 ApJ 818 L21. doi:10.3847/2041-8205/818/1/L21

  2. Environment, morphology, and stellar populations of bulgeless low surface-brightness galaxies

    NASA Astrophysics Data System (ADS)

    Shao, X.; Disseau, K.; Yang, Y. B.; Hammer, F.; Puech, M.; Rodrigues, M.; Liang, Y. C.; Deng, L. C.

    2015-07-01

    Based on the Sloan Digital Sky Survey DR 7, we investigate the environment, morphology, and stellar population of bulgeless low surface-brightness (LSB) galaxies in a volume-limited sample with redshift ranging from 0.024 to 0.0