Final Report---Optimization Under Nonconvexity and Uncertainty: Algorithms and Software
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jeff Linderoth
2011-11-06
the goal of this work was to develop new algorithmic techniques for solving large-scale numerical optimization problems, focusing on problems classes that have proven to be among the most challenging for practitioners: those involving uncertainty and those involving nonconvexity. This research advanced the state-of-the-art in solving mixed integer linear programs containing symmetry, mixed integer nonlinear programs, and stochastic optimization problems. The focus of the work done in the continuation was on Mixed Integer Nonlinear Programs (MINLP)s and Mixed Integer Linear Programs (MILP)s, especially those containing a great deal of symmetry.
Solving mixed integer nonlinear programming problems using spiral dynamics optimization algorithm
NASA Astrophysics Data System (ADS)
Kania, Adhe; Sidarto, Kuntjoro Adji
2016-02-01
Many engineering and practical problem can be modeled by mixed integer nonlinear programming. This paper proposes to solve the problem with modified spiral dynamics inspired optimization method of Tamura and Yasuda. Four test cases have been examined, including problem in engineering and sport. This method succeeds in obtaining the optimal result in all test cases.
NASA Astrophysics Data System (ADS)
Shoemaker, Christine; Wan, Ying
2016-04-01
Optimization of nonlinear water resources management issues which have a mixture of fixed (e.g. construction cost for a well) and variable (e.g. cost per gallon of water pumped) costs has been not well addressed because prior algorithms for the resulting nonlinear mixed integer problems have required many groundwater simulations (with different configurations of decision variable), especially when the solution space is multimodal. In particular heuristic methods like genetic algorithms have often been used in the water resources area, but they require so many groundwater simulations that only small systems have been solved. Hence there is a need to have a method that reduces the number of expensive groundwater simulations. A recently published algorithm for nonlinear mixed integer programming using surrogates was shown in this study to greatly reduce the computational effort for obtaining accurate answers to problems involving fixed costs for well construction as well as variable costs for pumping because of a substantial reduction in the number of groundwater simulations required to obtain an accurate answer. Results are presented for a US EPA hazardous waste site. The nonlinear mixed integer surrogate algorithm is general and can be used on other problems arising in hydrology with open source codes in Matlab and python ("pySOT" in Bitbucket).
Comparison of penalty functions on a penalty approach to mixed-integer optimization
NASA Astrophysics Data System (ADS)
Francisco, Rogério B.; Costa, M. Fernanda P.; Rocha, Ana Maria A. C.; Fernandes, Edite M. G. P.
2016-06-01
In this paper, we present a comparative study involving several penalty functions that can be used in a penalty approach for globally solving bound mixed-integer nonlinear programming (bMIMLP) problems. The penalty approach relies on a continuous reformulation of the bMINLP problem by adding a particular penalty term to the objective function. A penalty function based on the `erf' function is proposed. The continuous nonlinear optimization problems are sequentially solved by the population-based firefly algorithm. Preliminary numerical experiments are carried out in order to analyze the quality of the produced solutions, when compared with other penalty functions available in the literature.
NASA Astrophysics Data System (ADS)
Uilhoorn, F. E.
2016-10-01
In this article, the stochastic modelling approach proposed by Box and Jenkins is treated as a mixed-integer nonlinear programming (MINLP) problem solved with a mesh adaptive direct search and a real-coded genetic class of algorithms. The aim is to estimate the real-valued parameters and non-negative integer, correlated structure of stationary autoregressive moving average (ARMA) processes. The maximum likelihood function of the stationary ARMA process is embedded in Akaike's information criterion and the Bayesian information criterion, whereas the estimation procedure is based on Kalman filter recursions. The constraints imposed on the objective function enforce stability and invertibility. The best ARMA model is regarded as the global minimum of the non-convex MINLP problem. The robustness and computational performance of the MINLP solvers are compared with brute-force enumeration. Numerical experiments are done for existing time series and one new data set.
NASA Astrophysics Data System (ADS)
Irmeilyana, Puspita, Fitri Maya; Indrawati
2016-02-01
The pricing for wireless networks is developed by considering linearity factors, elasticity price and price factors. Mixed Integer Nonlinear Programming of wireless pricing model is proposed as the nonlinear programming problem that can be solved optimally using LINGO 13.0. The solutions are expected to give some information about the connections between the acceptance factor and the price. Previous model worked on the model that focuses on bandwidth as the QoS attribute. The models attempt to maximize the total price for a connection based on QoS parameter. The QoS attributes used will be the bandwidth and the end to end delay that affect the traffic. The maximum goal to maximum price is achieved when the provider determine the requirement for the increment or decrement of price change due to QoS change and amount of QoS value.
An Improved Search Approach for Solving Non-Convex Mixed-Integer Non Linear Programming Problems
NASA Astrophysics Data System (ADS)
Sitopu, Joni Wilson; Mawengkang, Herman; Syafitri Lubis, Riri
2018-01-01
The nonlinear mathematical programming problem addressed in this paper has a structure characterized by a subset of variables restricted to assume discrete values, which are linear and separable from the continuous variables. The strategy of releasing nonbasic variables from their bounds, combined with the “active constraint” method, has been developed. This strategy is used to force the appropriate non-integer basic variables to move to their neighbourhood integer points. Successful implementation of these algorithms was achieved on various test problems.
NASA Astrophysics Data System (ADS)
Yin, Sisi; Nishi, Tatsushi
2014-11-01
Quantity discount policy is decision-making for trade-off prices between suppliers and manufacturers while production is changeable due to demand fluctuations in a real market. In this paper, quantity discount models which consider selection of contract suppliers, production quantity and inventory simultaneously are addressed. The supply chain planning problem with quantity discounts under demand uncertainty is formulated as a mixed-integer nonlinear programming problem (MINLP) with integral terms. We apply an outer-approximation method to solve MINLP problems. In order to improve the efficiency of the proposed method, the problem is reformulated as a stochastic model replacing the integral terms by using a normalisation technique. We present numerical examples to demonstrate the efficiency of the proposed method.
A Composite Algorithm for Mixed Integer Constrained Nonlinear Optimization.
1980-01-01
de Silva [141, and Weisman and Wood [76). A particular direct search algorithm, the simplex method, has been cited for having the potential for...spaced discrete points on a line which makes the direction suitable for an efficient integer search technique based on Fibonacci numbers. Two...defined by a subset of variables. The complex algorithm is particularly well suited for this subspace search for two reasons. First, the complex method
A hybrid Jaya algorithm for reliability-redundancy allocation problems
NASA Astrophysics Data System (ADS)
Ghavidel, Sahand; Azizivahed, Ali; Li, Li
2018-04-01
This article proposes an efficient improved hybrid Jaya algorithm based on time-varying acceleration coefficients (TVACs) and the learning phase introduced in teaching-learning-based optimization (TLBO), named the LJaya-TVAC algorithm, for solving various types of nonlinear mixed-integer reliability-redundancy allocation problems (RRAPs) and standard real-parameter test functions. RRAPs include series, series-parallel, complex (bridge) and overspeed protection systems. The search power of the proposed LJaya-TVAC algorithm for finding the optimal solutions is first tested on the standard real-parameter unimodal and multi-modal functions with dimensions of 30-100, and then tested on various types of nonlinear mixed-integer RRAPs. The results are compared with the original Jaya algorithm and the best results reported in the recent literature. The optimal results obtained with the proposed LJaya-TVAC algorithm provide evidence for its better and acceptable optimization performance compared to the original Jaya algorithm and other reported optimal results.
A Polyhedral Outer-approximation, Dynamic-discretization optimization solver, 1.x
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bent, Rusell; Nagarajan, Harsha; Sundar, Kaarthik
2017-09-25
In this software, we implement an adaptive, multivariate partitioning algorithm for solving mixed-integer nonlinear programs (MINLP) to global optimality. The algorithm combines ideas that exploit the structure of convex relaxations to MINLPs and bound tightening procedures
NASA Astrophysics Data System (ADS)
Strohaber, James; Boran, Yakup; Sayrac, Muhammed; Johnson, Lewis; Zhu, Feng; Kolomenskii, Alexandre; Schuessler, Hans
We studied the nonlinear parametric interaction of femtosecond fractionally-charged optical vortices in a Raman-active medium. Propagation of such beams is described using the Kirchhoff-Fresnel integrals by embedding a non-integer 2pi phase step in a Gaussian beam profile. When using fractionally-charged pump or Stokes beams, we observed the production of new topological charge and phase discontinuities in the Raman field. These newly generated fractionally-charged Raman vortex beams were found to follow the same orbital angular momentum algebra derived by for integer vortex beams. This work was funded by the Robert A. Welch Foundation, Grant No. A1546 and the Qatar Foundation under Grants No. NPRP 6-465-1-091.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Graf, Peter; Dykes, Katherine; Scott, George
The layout of turbines in a wind farm is already a challenging nonlinear, nonconvex, nonlinearly constrained continuous global optimization problem. Here we begin to address the next generation of wind farm optimization problems by adding the complexity that there is more than one turbine type to choose from. The optimization becomes a nonlinear constrained mixed integer problem, which is a very difficult class of problems to solve. Furthermore, this document briefly summarizes the algorithm and code we have developed, the code validation steps we have performed, and the initial results for multi-turbine type and placement optimization (TTP_OPT) we have run.
Conjunctive management of multi-reservoir network system and groundwater system
NASA Astrophysics Data System (ADS)
Mani, A.; Tsai, F. T. C.
2015-12-01
This study develops a successive mixed-integer linear fractional programming (successive MILFP) method to conjunctively manage water resources provided by a multi-reservoir network system and a groundwater system. The conjunctive management objectives are to maximize groundwater withdrawals and maximize reservoir storages while satisfying water demands and raising groundwater level to a target level. The decision variables in the management problem are reservoir releases and spills, network flows and groundwater pumping rates. Using the fractional programming approach, the objective function is defined as a ratio of total groundwater withdraws to total reservoir storage deficits from the maximum storages. Maximizing this ratio function tends to maximizing groundwater use and minimizing surface water use. This study introduces a conditional constraint on groundwater head in order to sustain aquifers from overpumping: if current groundwater level is less than a target level, groundwater head at the next time period has to be raised; otherwise, it is allowed to decrease up to a certain extent. This conditional constraint is formulated into a set of mixed binary nonlinear constraints and results in a mixed-integer nonlinear fractional programming (MINLFP) problem. To solve the MINLFP problem, we first use the response matrix approach to linearize groundwater head with respect to pumping rate and reduce the problem to an MILFP problem. Using the Charnes-Cooper transformation, the MILFP is transformed to an equivalent mixed-integer linear programming (MILP). The solution of the MILP is successively updated by updating the response matrix in every iteration. The study uses IBM CPLEX to solve the MILP problem. The methodology is applied to water resources management in northern Louisiana. This conjunctive management approach aims to recover the declining groundwater level of the stressed Sparta aquifer by using surface water from a network of four reservoirs as an alternative source of supply.
Wind Farm Turbine Type and Placement Optimization
NASA Astrophysics Data System (ADS)
Graf, Peter; Dykes, Katherine; Scott, George; Fields, Jason; Lunacek, Monte; Quick, Julian; Rethore, Pierre-Elouan
2016-09-01
The layout of turbines in a wind farm is already a challenging nonlinear, nonconvex, nonlinearly constrained continuous global optimization problem. Here we begin to address the next generation of wind farm optimization problems by adding the complexity that there is more than one turbine type to choose from. The optimization becomes a nonlinear constrained mixed integer problem, which is a very difficult class of problems to solve. This document briefly summarizes the algorithm and code we have developed, the code validation steps we have performed, and the initial results for multi-turbine type and placement optimization (TTP_OPT) we have run.
Wind farm turbine type and placement optimization
Graf, Peter; Dykes, Katherine; Scott, George; ...
2016-10-03
The layout of turbines in a wind farm is already a challenging nonlinear, nonconvex, nonlinearly constrained continuous global optimization problem. Here we begin to address the next generation of wind farm optimization problems by adding the complexity that there is more than one turbine type to choose from. The optimization becomes a nonlinear constrained mixed integer problem, which is a very difficult class of problems to solve. Furthermore, this document briefly summarizes the algorithm and code we have developed, the code validation steps we have performed, and the initial results for multi-turbine type and placement optimization (TTP_OPT) we have run.
NASA Astrophysics Data System (ADS)
Reshetnyak, A. A.
2010-11-01
The spectrum of superstring theory on the AdS 5 × S 5 Ramond-Ramond background in tensionless limit contains integer and half-integer higher-spin fields subject at most to two-rows Young tableaux Y( s 1, s 2). We review the details of a gauge-invariant Lagrangian description of such massive and massless higher-spin fields in anti-de-Sitter spaces with arbitrary dimensions. The procedure is based on the construction of Verma modules, its oscillator realizations and of a BFV-BRST operator for non-linear algebras encoding unitary irreducible representations of AdS group.
Harmonic mixing characteristics of metal-barrier-metal junctions as predicted by electron tunneling
NASA Technical Reports Server (NTRS)
Faris, S. M.; Gustafson, T. K.
1974-01-01
The bias dependence of the nonlinear mixing characteristics of metal-barrier-metal junction currents is deduced assuming an electron tunneling model. The difference-frequency beat voltage at frequency omega sub 1 - (n x omega sub 2), when n is an integer and omega sub 1 and omega sub 2 are the assumed frequencies of two induced currents, is found to have n zeros as the diode bias is varied. Recent experimental observations have demonstrated such characteristics.
Cheng, Guanhui; Huang, Guohe; Dong, Cong; Xu, Ye; Chen, Xiujuan; Chen, Jiapei
2017-03-01
Due to the existence of complexities of heterogeneities, hierarchy, discreteness, and interactions in municipal solid waste management (MSWM) systems such as Beijing, China, a series of socio-economic and eco-environmental problems may emerge or worsen and result in irredeemable damages in the following decades. Meanwhile, existing studies, especially ones focusing on MSWM in Beijing, could hardly reflect these complexities in system simulations and provide reliable decision support for management practices. Thus, a framework of distributed mixed-integer fuzzy hierarchical programming (DMIFHP) is developed in this study for MSWM under these complexities. Beijing is selected as a representative case. The Beijing MSWM system is comprehensively analyzed in many aspects such as socio-economic conditions, natural conditions, spatial heterogeneities, treatment facilities, and system complexities, building a solid foundation for system simulation and optimization. Correspondingly, the MSWM system in Beijing is discretized as 235 grids to reflect spatial heterogeneity. A DMIFHP model which is a nonlinear programming problem is constructed to parameterize the Beijing MSWM system. To enable scientific solving of it, a solution algorithm is proposed based on coupling of fuzzy programming and mixed-integer linear programming. Innovations and advantages of the DMIFHP framework are discussed. The optimal MSWM schemes and mechanism revelations will be discussed in another companion paper due to length limitation.
Automatic design of synthetic gene circuits through mixed integer non-linear programming.
Huynh, Linh; Kececioglu, John; Köppe, Matthias; Tagkopoulos, Ilias
2012-01-01
Automatic design of synthetic gene circuits poses a significant challenge to synthetic biology, primarily due to the complexity of biological systems, and the lack of rigorous optimization methods that can cope with the combinatorial explosion as the number of biological parts increases. Current optimization methods for synthetic gene design rely on heuristic algorithms that are usually not deterministic, deliver sub-optimal solutions, and provide no guaranties on convergence or error bounds. Here, we introduce an optimization framework for the problem of part selection in synthetic gene circuits that is based on mixed integer non-linear programming (MINLP), which is a deterministic method that finds the globally optimal solution and guarantees convergence in finite time. Given a synthetic gene circuit, a library of characterized parts, and user-defined constraints, our method can find the optimal selection of parts that satisfy the constraints and best approximates the objective function given by the user. We evaluated the proposed method in the design of three synthetic circuits (a toggle switch, a transcriptional cascade, and a band detector), with both experimentally constructed and synthetic promoter libraries. Scalability and robustness analysis shows that the proposed framework scales well with the library size and the solution space. The work described here is a step towards a unifying, realistic framework for the automated design of biological circuits.
Extension of the firefly algorithm and preference rules for solving MINLP problems
NASA Astrophysics Data System (ADS)
Costa, M. Fernanda P.; Francisco, Rogério B.; Rocha, Ana Maria A. C.; Fernandes, Edite M. G. P.
2017-07-01
An extension of the firefly algorithm (FA) for solving mixed-integer nonlinear programming (MINLP) problems is presented. Although penalty functions are nowadays frequently used to handle integrality conditions and inequality and equality constraints, this paper proposes the implementation within the FA of a simple rounded-based heuristic and four preference rules to find and converge to MINLP feasible solutions. Preliminary numerical experiments are carried out to validate the proposed methodology.
Ko, Andi Setiady; Chang, Ni-Bin
2008-07-01
Energy supply and use is of fundamental importance to society. Although the interactions between energy and environment were originally local in character, they have now widened to cover regional and global issues, such as acid rain and the greenhouse effect. It is for this reason that there is a need for covering the direct and indirect economic and environmental impacts of energy acquisition, transport, production and use. In this paper, particular attention is directed to ways of resolving conflict between economic and environmental goals by encouraging a power plant to consider co-firing biomass and refuse-derived fuel (RDF) with coal simultaneously. It aims at reducing the emission level of sulfur dioxide (SO(2)) in an uncertain environment, using the power plant in Michigan City, Indiana as an example. To assess the uncertainty by a comparative way both deterministic and grey nonlinear mixed integer programming (MIP) models were developed to minimize the net operating cost with respect to possible fuel combinations. It aims at generating the optimal portfolio of alternative fuels while maintaining the same electricity generation simultaneously. To ease the solution procedure stepwise relaxation algorithm was developed for solving the grey nonlinear MIP model. Breakeven alternative fuel value can be identified in the post-optimization stage for decision-making. Research findings show that the inclusion of RDF does not exhibit comparative advantage in terms of the net cost, albeit relatively lower air pollution impact. Yet it can be sustained by a charge system, subsidy program, or emission credit as the price of coal increases over time.
Automatic Design of Synthetic Gene Circuits through Mixed Integer Non-linear Programming
Huynh, Linh; Kececioglu, John; Köppe, Matthias; Tagkopoulos, Ilias
2012-01-01
Automatic design of synthetic gene circuits poses a significant challenge to synthetic biology, primarily due to the complexity of biological systems, and the lack of rigorous optimization methods that can cope with the combinatorial explosion as the number of biological parts increases. Current optimization methods for synthetic gene design rely on heuristic algorithms that are usually not deterministic, deliver sub-optimal solutions, and provide no guaranties on convergence or error bounds. Here, we introduce an optimization framework for the problem of part selection in synthetic gene circuits that is based on mixed integer non-linear programming (MINLP), which is a deterministic method that finds the globally optimal solution and guarantees convergence in finite time. Given a synthetic gene circuit, a library of characterized parts, and user-defined constraints, our method can find the optimal selection of parts that satisfy the constraints and best approximates the objective function given by the user. We evaluated the proposed method in the design of three synthetic circuits (a toggle switch, a transcriptional cascade, and a band detector), with both experimentally constructed and synthetic promoter libraries. Scalability and robustness analysis shows that the proposed framework scales well with the library size and the solution space. The work described here is a step towards a unifying, realistic framework for the automated design of biological circuits. PMID:22536398
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scioletti, Michael S.; Newman, Alexandra M.; Goodman, Johanna K.
Renewable energy technologies, specifically, solar photovoltaic cells, combined with battery storage and diesel generators, form a hybrid system capable of independently powering remote locations, i.e., those isolated from larger grids. If sized correctly, hybrid systems reduce fuel consumption compared to diesel generator-only alternatives. We present an optimization model for establishing a hybrid power design and dispatch strategy for remote locations, such as a military forward operating base, that models the acquisition of different power technologies as integer variables and their operation using nonlinear expressions. Our cost-minimizing, nonconvex, mixed-integer, nonlinear program contains a detailed battery model. Due to its complexities, wemore » present linearizations, which include exact and convex under-estimation techniques, and a heuristic, which determines an initial feasible solution to serve as a “warm start” for the solver. We determine, in a few hours at most, solutions within 5% of optimality for a candidate set of technologies; these solutions closely resemble those from the nonlinear model. Lastly, our instances contain real data spanning a yearly horizon at hour fidelity and demonstrate that a hybrid system could reduce fuel consumption by as much as 50% compared to a generator-only solution.« less
Scioletti, Michael S.; Newman, Alexandra M.; Goodman, Johanna K.; ...
2017-05-08
Renewable energy technologies, specifically, solar photovoltaic cells, combined with battery storage and diesel generators, form a hybrid system capable of independently powering remote locations, i.e., those isolated from larger grids. If sized correctly, hybrid systems reduce fuel consumption compared to diesel generator-only alternatives. We present an optimization model for establishing a hybrid power design and dispatch strategy for remote locations, such as a military forward operating base, that models the acquisition of different power technologies as integer variables and their operation using nonlinear expressions. Our cost-minimizing, nonconvex, mixed-integer, nonlinear program contains a detailed battery model. Due to its complexities, wemore » present linearizations, which include exact and convex under-estimation techniques, and a heuristic, which determines an initial feasible solution to serve as a “warm start” for the solver. We determine, in a few hours at most, solutions within 5% of optimality for a candidate set of technologies; these solutions closely resemble those from the nonlinear model. Lastly, our instances contain real data spanning a yearly horizon at hour fidelity and demonstrate that a hybrid system could reduce fuel consumption by as much as 50% compared to a generator-only solution.« less
Minimal excitation states for heat transport in driven quantum Hall systems
NASA Astrophysics Data System (ADS)
Vannucci, Luca; Ronetti, Flavio; Rech, Jérôme; Ferraro, Dario; Jonckheere, Thibaut; Martin, Thierry; Sassetti, Maura
2017-06-01
We investigate minimal excitation states for heat transport into a fractional quantum Hall system driven out of equilibrium by means of time-periodic voltage pulses. A quantum point contact allows for tunneling of fractional quasiparticles between opposite edge states, thus acting as a beam splitter in the framework of the electron quantum optics. Excitations are then studied through heat and mixed noise generated by the random partitioning at the barrier. It is shown that levitons, the single-particle excitations of a filled Fermi sea recently observed in experiments, represent the cleanest states for heat transport since excess heat and mixed shot noise both vanish only when Lorentzian voltage pulses carrying integer electric charge are applied to the conductor. This happens in the integer quantum Hall regime and for Laughlin fractional states as well, with no influence of fractional physics on the conditions for clean energy pulses. In addition, we demonstrate the robustness of such excitations to the overlap of Lorentzian wave packets. Even though mixed and heat noise have nonlinear dependence on the voltage bias, and despite the noninteger power-law behavior arising from the fractional quantum Hall physics, an arbitrary superposition of levitons always generates minimal excitation states.
ERIC Educational Resources Information Center
Han, Kyung T.; Rudner, Lawrence M.
2014-01-01
This study uses mixed integer quadratic programming (MIQP) to construct multiple highly equivalent item pools simultaneously, and compares the results from mixed integer programming (MIP). Three different MIP/MIQP models were implemented and evaluated using real CAT item pool data with 23 different content areas and a goal of equal information…
On unified modeling, theory, and method for solving multi-scale global optimization problems
NASA Astrophysics Data System (ADS)
Gao, David Yang
2016-10-01
A unified model is proposed for general optimization problems in multi-scale complex systems. Based on this model and necessary assumptions in physics, the canonical duality theory is presented in a precise way to include traditional duality theories and popular methods as special applications. Two conjectures on NP-hardness are proposed, which should play important roles for correctly understanding and efficiently solving challenging real-world problems. Applications are illustrated for both nonconvex continuous optimization and mixed integer nonlinear programming.
Solution of the Generalized Noah's Ark Problem.
Billionnet, Alain
2013-01-01
The phylogenetic diversity (PD) of a set of species is a measure of the evolutionary distance among the species in the collection, based on a phylogenetic tree. Such a tree is composed of a root, internal nodes, and leaves that correspond to the set of taxa under study. With each edge of the tree is associated a non-negative branch length (evolutionary distance). If a particular survival probability is associated with each taxon, the PD measure becomes the expected PD measure. In the Noah's Ark Problem (NAP) introduced by Weitzman (1998), these survival probabilities can be increased at some cost. The problem is to determine how best to allocate a limited amount of resources to maximize the expected PD of the considered species. It is easy to formulate the NAP as a (difficult) nonlinear 0-1 programming problem. The aim of this article is to show that a general version of the NAP (GNAP) can be solved simply and efficiently with any set of edge weights and any set of survival probabilities by using standard mixed-integer linear programming software. The crucial point to move from a nonlinear program in binary variables to a mixed-integer linear program, is to approximate the logarithmic function by the lower envelope of a set of tangents to the curve. Solving the obtained mixed-integer linear program provides not only a near-optimal solution but also an upper bound on the value of the optimal solution. We also applied this approach to a generalization of the nature reserve problem (GNRP) that consists of selecting a set of regions to be conserved so that the expected PD of the set of species present in these regions is maximized. In this case, the survival probabilities of different taxa are not independent of each other. Computational results are presented to illustrate potentialities of the approach. Near-optimal solutions with hypothetical phylogenetic trees comprising about 4000 taxa are obtained in a few seconds or minutes of computing time for the GNAP, and in about 30 min for the GNRP. In all the cases the average guarantee varies from 0% to 1.20%.
NASA Astrophysics Data System (ADS)
Nuh, M. Z.; Nasir, N. F.
2017-08-01
Biodiesel as a fuel comprised of mono alkyl esters of long chain fatty acids derived from renewable lipid feedstock, such as vegetable oil and animal fat. Biodiesel production is complex process which need systematic design and optimization. However, no case study using the process system engineering (PSE) elements which are superstructure optimization of batch process, it involves complex problems and uses mixed-integer nonlinear programming (MINLP). The PSE offers a solution to complex engineering system by enabling the use of viable tools and techniques to better manage and comprehend the complexity of the system. This study is aimed to apply the PSE tools for the simulation of biodiesel process and optimization and to develop mathematical models for component of the plant for case A, B, C by using published kinetic data. Secondly, to determine economic analysis for biodiesel production, focusing on heterogeneous catalyst. Finally, the objective of this study is to develop the superstructure for biodiesel production by using heterogeneous catalyst. The mathematical models are developed by the superstructure and solving the resulting mixed integer non-linear model and estimation economic analysis by using MATLAB software. The results of the optimization process with the objective function of minimizing the annual production cost by batch process from case C is 23.2587 million USD. Overall, the implementation a study of process system engineering (PSE) has optimized the process of modelling, design and cost estimation. By optimizing the process, it results in solving the complex production and processing of biodiesel by batch.
A mixed integer bi-level DEA model for bank branch performance evaluation by Stackelberg approach
NASA Astrophysics Data System (ADS)
Shafiee, Morteza; Lotfi, Farhad Hosseinzadeh; Saleh, Hilda; Ghaderi, Mehdi
2016-03-01
One of the most complicated decision making problems for managers is the evaluation of bank performance, which involves various criteria. There are many studies about bank efficiency evaluation by network DEA in the literature review. These studies do not focus on multi-level network. Wu (Eur J Oper Res 207:856-864, 2010) proposed a bi-level structure for cost efficiency at the first time. In this model, multi-level programming and cost efficiency were used. He used a nonlinear programming to solve the model. In this paper, we have focused on multi-level structure and proposed a bi-level DEA model. We then used a liner programming to solve our model. In other hand, we significantly improved the way to achieve the optimum solution in comparison with the work by Wu (2010) by converting the NP-hard nonlinear programing into a mixed integer linear programming. This study uses a bi-level programming data envelopment analysis model that embodies internal structure with Stackelberg-game relationships to evaluate the performance of banking chain. The perspective of decentralized decisions is taken in this paper to cope with complex interactions in banking chain. The results derived from bi-level programming DEA can provide valuable insights and detailed information for managers to help them evaluate the performance of the banking chain as a whole using Stackelberg-game relationships. Finally, this model was applied in the Iranian bank to evaluate cost efficiency.
A Comparative Study of Randomized Constraint Solvers for Random-Symbolic Testing
NASA Technical Reports Server (NTRS)
Takaki, Mitsuo; Cavalcanti, Diego; Gheyi, Rohit; Iyoda, Juliano; dAmorim, Marcelo; Prudencio, Ricardo
2009-01-01
The complexity of constraints is a major obstacle for constraint-based software verification. Automatic constraint solvers are fundamentally incomplete: input constraints often build on some undecidable theory or some theory the solver does not support. This paper proposes and evaluates several randomized solvers to address this issue. We compare the effectiveness of a symbolic solver (CVC3), a random solver, three hybrid solvers (i.e., mix of random and symbolic), and two heuristic search solvers. We evaluate the solvers on two benchmarks: one consisting of manually generated constraints and another generated with a concolic execution of 8 subjects. In addition to fully decidable constraints, the benchmarks include constraints with non-linear integer arithmetic, integer modulo and division, bitwise arithmetic, and floating-point arithmetic. As expected symbolic solving (in particular, CVC3) subsumes the other solvers for the concolic execution of subjects that only generate decidable constraints. For the remaining subjects the solvers are complementary.
Mixed Integer Programming and Heuristic Scheduling for Space Communication
NASA Technical Reports Server (NTRS)
Lee, Charles H.; Cheung, Kar-Ming
2013-01-01
Optimal planning and scheduling for a communication network was created where the nodes within the network are communicating at the highest possible rates while meeting the mission requirements and operational constraints. The planning and scheduling problem was formulated in the framework of Mixed Integer Programming (MIP) to introduce a special penalty function to convert the MIP problem into a continuous optimization problem, and to solve the constrained optimization problem using heuristic optimization. The communication network consists of space and ground assets with the link dynamics between any two assets varying with respect to time, distance, and telecom configurations. One asset could be communicating with another at very high data rates at one time, and at other times, communication is impossible, as the asset could be inaccessible from the network due to planetary occultation. Based on the network's geometric dynamics and link capabilities, the start time, end time, and link configuration of each view period are selected to maximize the communication efficiency within the network. Mathematical formulations for the constrained mixed integer optimization problem were derived, and efficient analytical and numerical techniques were developed to find the optimal solution. By setting up the problem using MIP, the search space for the optimization problem is reduced significantly, thereby speeding up the solution process. The ratio of the dimension of the traditional method over the proposed formulation is approximately an order N (single) to 2*N (arraying), where N is the number of receiving antennas of a node. By introducing a special penalty function, the MIP problem with non-differentiable cost function and nonlinear constraints can be converted into a continuous variable problem, whose solution is possible.
Hybridization with a twist: Hidden (hastatic) order in URu2Si2
NASA Astrophysics Data System (ADS)
Flint, Rebecca
The hidden order developing below 17.5K in the heavy fermion material URu2Si2 has eluded identification for over thirty years. A number of recent experiments have shed new light on the nature of this phase. In particular, de Haas-van Alphen measurements indicate nearly perfectly Ising quasiparticles deep in the hidden order phase, and recent nonlinear susceptibility measurements show that this strong Ising anisotropy persists up to and above the hidden order transition itself. Along with other features, this Ising anisotropy implies that the conduction electrons hybridize with a local Ising moment - a 5f2 state of the uranium atom with integer spin. As the hybridization mixes states of integer and half-integer spin, it is itself a spinor and this ``hastatic'' (hasta: [Latin] spear) order parameter therefore breaks both time-reversal and double time-reversal symmetries. A microscopic theory of hastatic order naturally unites a number of disparate experimental results from the large entropy of condensation to the spin rotational symmetry breaking seen in torque magnetometry, and provides a number of experimental predictions. Moreover, this new spinorial order parameter provides a window into a number of new heavy fermion phases.
Li, Peng; Ji, Haoran; Wang, Chengshan; ...
2017-03-22
The increasing penetration of distributed generators (DGs) exacerbates the risk of voltage violations in active distribution networks (ADNs). The conventional voltage regulation devices limited by the physical constraints are difficult to meet the requirement of real-time voltage and VAR control (VVC) with high precision when DGs fluctuate frequently. But, soft open point (SOP), a flexible power electronic device, can be used as the continuous reactive power source to realize the fast voltage regulation. Considering the cooperation of SOP and multiple regulation devices, this paper proposes a coordinated VVC method based on SOP for ADNs. Firstly, a time-series model of coordi-natedmore » VVC is developed to minimize operation costs and eliminate voltage violations of ADNs. Then, by applying the linearization and conic relaxation, the original nonconvex mixed-integer non-linear optimization model is converted into a mixed-integer second-order cone programming (MISOCP) model which can be efficiently solved to meet the requirement of voltage regulation rapidity. Here, we carried out some case studies on the IEEE 33-node system and IEEE 123-node system to illustrate the effectiveness of the proposed method.« less
Analysis of the single-vehicle cyclic inventory routing problem
NASA Astrophysics Data System (ADS)
Aghezzaf, El-Houssaine; Zhong, Yiqing; Raa, Birger; Mateo, Manel
2012-11-01
The single-vehicle cyclic inventory routing problem (SV-CIRP) consists of a repetitive distribution of a product from a single depot to a selected subset of customers. For each customer, selected for replenishments, the supplier collects a corresponding fixed reward. The objective is to determine the subset of customers to replenish, the quantity of the product to be delivered to each and to design the vehicle route so that the resulting profit (difference between the total reward and the total logistical cost) is maximised while preventing stockouts at each of the selected customers. This problem appears often as a sub-problem in many logistical problems. In this article, the SV-CIRP is formulated as a mixed-integer program with a nonlinear objective function. After a thorough analysis of the structure of the problem and its features, an exact algorithm for its solution is proposed. This exact algorithm requires only solutions of linear mixed-integer programs. Values of a savings-based heuristic for this problem are compared to the optimal values obtained for a set of some test problems. In general, the gap may get as large as 25%, which justifies the effort to continue exploring and developing exact and approximation algorithms for the SV-CIRP.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Peng; Ji, Haoran; Wang, Chengshan
The increasing penetration of distributed generators (DGs) exacerbates the risk of voltage violations in active distribution networks (ADNs). The conventional voltage regulation devices limited by the physical constraints are difficult to meet the requirement of real-time voltage and VAR control (VVC) with high precision when DGs fluctuate frequently. But, soft open point (SOP), a flexible power electronic device, can be used as the continuous reactive power source to realize the fast voltage regulation. Considering the cooperation of SOP and multiple regulation devices, this paper proposes a coordinated VVC method based on SOP for ADNs. Firstly, a time-series model of coordi-natedmore » VVC is developed to minimize operation costs and eliminate voltage violations of ADNs. Then, by applying the linearization and conic relaxation, the original nonconvex mixed-integer non-linear optimization model is converted into a mixed-integer second-order cone programming (MISOCP) model which can be efficiently solved to meet the requirement of voltage regulation rapidity. Here, we carried out some case studies on the IEEE 33-node system and IEEE 123-node system to illustrate the effectiveness of the proposed method.« less
NASA Astrophysics Data System (ADS)
Li, Hong; Zhang, Li; Jiao, Yong-Chang
2016-07-01
This paper presents an interactive approach based on a discrete differential evolution algorithm to solve a class of integer bilevel programming problems, in which integer decision variables are controlled by an upper-level decision maker and real-value or continuous decision variables are controlled by a lower-level decision maker. Using the Karush--Kuhn-Tucker optimality conditions in the lower-level programming, the original discrete bilevel formulation can be converted into a discrete single-level nonlinear programming problem with the complementarity constraints, and then the smoothing technique is applied to deal with the complementarity constraints. Finally, a discrete single-level nonlinear programming problem is obtained, and solved by an interactive approach. In each iteration, for each given upper-level discrete variable, a system of nonlinear equations including the lower-level variables and Lagrange multipliers is solved first, and then a discrete nonlinear programming problem only with inequality constraints is handled by using a discrete differential evolution algorithm. Simulation results show the effectiveness of the proposed approach.
Fish Processed Production Planning Using Integer Stochastic Programming Model
NASA Astrophysics Data System (ADS)
Firmansyah, Mawengkang, Herman
2011-06-01
Fish and its processed products are the most affordable source of animal protein in the diet of most people in Indonesia. The goal in production planning is to meet customer demand over a fixed time horizon divided into planning periods by optimizing the trade-off between economic objectives such as production cost and customer satisfaction level. The major decisions are production and inventory levels for each product and the number of workforce in each planning period. In this paper we consider the management of small scale traditional business at North Sumatera Province which performs processing fish into several local seafood products. The inherent uncertainty of data (e.g. demand, fish availability), together with the sequential evolution of data over time leads the production planning problem to a nonlinear mixed-integer stochastic programming model. We use scenario generation based approach and feasible neighborhood search for solving the model. The results which show the amount of each fish processed product and the number of workforce needed in each horizon planning are presented.
Hastatic order in URu2Si2 : Hybridization with a twist
NASA Astrophysics Data System (ADS)
Chandra, Premala; Coleman, Piers; Flint, Rebecca
2015-05-01
The broken symmetry that develops below 17.5 K in the heavy fermion compound URu2Si2 has long eluded identification. Here we argue that the recent observation of Ising quasiparticles in URu2Si2 results from a spinor hybridization order parameter that breaks double time-reversal symmetry by mixing states of integer and half-integer spin. Such "hastatic order" (hasta: [Latin] spear) hybridizes Kramers conduction electrons with Ising, non-Kramers 5 f2 states of the uranium atoms to produce Ising quasiparticles. The development of a spinorial hybridization at 17.5 K accounts for both the large entropy of condensation and the magnetic anomaly observed in torque magnetometry. This paper develops the theory of hastatic order in detail, providing the mathematical development of its key concepts. Hastatic order predicts a tiny transverse moment in the conduction sea, a colossal Ising anisotropy in the nonlinear susceptibility anomaly and a resonant energy-dependent nematicity in the tunneling density of states.
NASA Astrophysics Data System (ADS)
Li, J. C.; Gong, B.; Wang, H. G.
2016-08-01
Optimal development of shale gas fields involves designing a most productive fracturing network for hydraulic stimulation processes and operating wells appropriately throughout the production time. A hydraulic fracturing network design-determining well placement, number of fracturing stages, and fracture lengths-is defined by specifying a set of integer ordered blocks to drill wells and create fractures in a discrete shale gas reservoir model. The well control variables such as bottom hole pressures or production rates for well operations are real valued. Shale gas development problems, therefore, can be mathematically formulated with mixed-integer optimization models. A shale gas reservoir simulator is used to evaluate the production performance for a hydraulic fracturing and well control plan. To find the optimal fracturing design and well operation is challenging because the problem is a mixed integer optimization problem and entails computationally expensive reservoir simulation. A dynamic simplex interpolation-based alternate subspace (DSIAS) search method is applied for mixed integer optimization problems associated with shale gas development projects. The optimization performance is demonstrated with the example case of the development of the Barnett Shale field. The optimization results of DSIAS are compared with those of a pattern search algorithm.
A Bell-Curved Based Algorithm for Mixed Continuous and Discrete Structural Optimization
NASA Technical Reports Server (NTRS)
Kincaid, Rex K.; Weber, Michael; Sobieszczanski-Sobieski, Jaroslaw
2001-01-01
An evolutionary based strategy utilizing two normal distributions to generate children is developed to solve mixed integer nonlinear programming problems. This Bell-Curve Based (BCB) evolutionary algorithm is similar in spirit to (mu + mu) evolutionary strategies and evolutionary programs but with fewer parameters to adjust and no mechanism for self adaptation. First, a new version of BCB to solve purely discrete optimization problems is described and its performance tested against a tabu search code for an actuator placement problem. Next, the performance of a combined version of discrete and continuous BCB is tested on 2-dimensional shape problems and on a minimum weight hub design problem. In the latter case the discrete portion is the choice of the underlying beam shape (I, triangular, circular, rectangular, or U).
Asymptotic stability of a nonlinear Korteweg-de Vries equation with critical lengths
NASA Astrophysics Data System (ADS)
Chu, Jixun; Coron, Jean-Michel; Shang, Peipei
2015-10-01
We study an initial-boundary-value problem of a nonlinear Korteweg-de Vries equation posed on the finite interval (0, 2 kπ) where k is a positive integer. The whole system has Dirichlet boundary condition at the left end-point, and both of Dirichlet and Neumann homogeneous boundary conditions at the right end-point. It is known that the origin is not asymptotically stable for the linearized system around the origin. We prove that the origin is (locally) asymptotically stable for the nonlinear system if the integer k is such that the kernel of the linear Korteweg-de Vries stationary equation is of dimension 1. This is for example the case if k = 1.
NASA Astrophysics Data System (ADS)
Kibria, Mirza Golam; Villardi, Gabriel Porto; Ishizu, Kentaro; Kojima, Fumihide; Yano, Hiroyuki
2016-12-01
In this paper, we study inter-operator spectrum sharing and intra-operator resource allocation in shared spectrum access communication systems and propose efficient dynamic solutions to address both inter-operator and intra-operator resource allocation optimization problems. For inter-operator spectrum sharing, we present two competent approaches, namely the subcarrier gain-based sharing and fragmentation-based sharing, which carry out fair and flexible allocation of the available shareable spectrum among the operators subject to certain well-defined sharing rules, traffic demands, and channel propagation characteristics. The subcarrier gain-based spectrum sharing scheme has been found to be more efficient in terms of achieved throughput. However, the fragmentation-based sharing is more attractive in terms of computational complexity. For intra-operator resource allocation, we consider resource allocation problem with users' dissimilar service requirements, where the operator supports users with delay constraint and non-delay constraint service requirements, simultaneously. This optimization problem is a mixed-integer non-linear programming problem and non-convex, which is computationally very expensive, and the complexity grows exponentially with the number of integer variables. We propose less-complex and efficient suboptimal solution based on formulating exact linearization, linear approximation, and convexification techniques for the non-linear and/or non-convex objective functions and constraints. Extensive simulation performance analysis has been carried out that validates the efficiency of the proposed solution.
Ground-state energies of the nonlinear sigma model and the Heisenberg spin chains
NASA Technical Reports Server (NTRS)
Zhang, Shoucheng; Schulz, H. J.; Ziman, Timothy
1989-01-01
A theorem on the O(3) nonlinear sigma model with the topological theta term is proved, which states that the ground-state energy at theta = pi is always higher than the ground-state energy at theta = 0, for the same value of the coupling constant g. Provided that the nonlinear sigma model gives the correct description for the Heisenberg spin chains in the large-s limit, this theorem makes a definite prediction relating the ground-state energies of the half-integer and the integer spin chains. The ground-state energies obtained from the exact Bethe ansatz solution for the spin-1/2 chain and the numerical diagonalization on the spin-1, spin-3/2, and spin-2 chains support this prediction.
Artificial bee colony algorithm for constrained possibilistic portfolio optimization problem
NASA Astrophysics Data System (ADS)
Chen, Wei
2015-07-01
In this paper, we discuss the portfolio optimization problem with real-world constraints under the assumption that the returns of risky assets are fuzzy numbers. A new possibilistic mean-semiabsolute deviation model is proposed, in which transaction costs, cardinality and quantity constraints are considered. Due to such constraints the proposed model becomes a mixed integer nonlinear programming problem and traditional optimization methods fail to find the optimal solution efficiently. Thus, a modified artificial bee colony (MABC) algorithm is developed to solve the corresponding optimization problem. Finally, a numerical example is given to illustrate the effectiveness of the proposed model and the corresponding algorithm.
Optimization Research of Generation Investment Based on Linear Programming Model
NASA Astrophysics Data System (ADS)
Wu, Juan; Ge, Xueqian
Linear programming is an important branch of operational research and it is a mathematical method to assist the people to carry out scientific management. GAMS is an advanced simulation and optimization modeling language and it will combine a large number of complex mathematical programming, such as linear programming LP, nonlinear programming NLP, MIP and other mixed-integer programming with the system simulation. In this paper, based on the linear programming model, the optimized investment decision-making of generation is simulated and analyzed. At last, the optimal installed capacity of power plants and the final total cost are got, which provides the rational decision-making basis for optimized investments.
A mixed integer program to model spatial wildfire behavior and suppression placement decisions
Erin J. Belval; Yu Wei; Michael Bevers
2015-01-01
Wildfire suppression combines multiple objectives and dynamic fire behavior to form a complex problem for decision makers. This paper presents a mixed integer program designed to explore integrating spatial fire behavior and suppression placement decisions into a mathematical programming framework. Fire behavior and suppression placement decisions are modeled using...
Integrated model for pricing, delivery time setting, and scheduling in make-to-order environments
NASA Astrophysics Data System (ADS)
Garmdare, Hamid Sattari; Lotfi, M. M.; Honarvar, Mahboobeh
2018-03-01
Usually, in make-to-order environments which work only in response to the customer's orders, manufacturers for maximizing the profits should offer the best price and delivery time for an order considering the existing capacity and the customer's sensitivity to both the factors. In this paper, an integrated approach for pricing, delivery time setting and scheduling of new arrival orders are proposed based on the existing capacity and accepted orders in system. In the problem, the acquired market demands dependent on the price and delivery time of both the manufacturer and its competitors. A mixed-integer non-linear programming model is presented for the problem. After converting to a pure non-linear model, it is validated through a case study. The efficiency of proposed model is confirmed by comparing it to both the literature and the current practice. Finally, sensitivity analysis for the key parameters is carried out.
GAMBIT: A Parameterless Model-Based Evolutionary Algorithm for Mixed-Integer Problems.
Sadowski, Krzysztof L; Thierens, Dirk; Bosman, Peter A N
2018-01-01
Learning and exploiting problem structure is one of the key challenges in optimization. This is especially important for black-box optimization (BBO) where prior structural knowledge of a problem is not available. Existing model-based Evolutionary Algorithms (EAs) are very efficient at learning structure in both the discrete, and in the continuous domain. In this article, discrete and continuous model-building mechanisms are integrated for the Mixed-Integer (MI) domain, comprising discrete and continuous variables. We revisit a recently introduced model-based evolutionary algorithm for the MI domain, the Genetic Algorithm for Model-Based mixed-Integer opTimization (GAMBIT). We extend GAMBIT with a parameterless scheme that allows for practical use of the algorithm without the need to explicitly specify any parameters. We furthermore contrast GAMBIT with other model-based alternatives. The ultimate goal of processing mixed dependences explicitly in GAMBIT is also addressed by introducing a new mechanism for the explicit exploitation of mixed dependences. We find that processing mixed dependences with this novel mechanism allows for more efficient optimization. We further contrast the parameterless GAMBIT with Mixed-Integer Evolution Strategies (MIES) and other state-of-the-art MI optimization algorithms from the General Algebraic Modeling System (GAMS) commercial algorithm suite on problems with and without constraints, and show that GAMBIT is capable of solving problems where variable dependences prevent many algorithms from successfully optimizing them.
Munguia, Lluis-Miquel; Oxberry, Geoffrey; Rajan, Deepak
2016-05-01
Stochastic mixed-integer programs (SMIPs) deal with optimization under uncertainty at many levels of the decision-making process. When solved as extensive formulation mixed- integer programs, problem instances can exceed available memory on a single workstation. In order to overcome this limitation, we present PIPS-SBB: a distributed-memory parallel stochastic MIP solver that takes advantage of parallelism at multiple levels of the optimization process. We also show promising results on the SIPLIB benchmark by combining methods known for accelerating Branch and Bound (B&B) methods with new ideas that leverage the structure of SMIPs. Finally, we expect the performance of PIPS-SBB to improve furthermore » as more functionality is added in the future.« less
Multi-Target Tracking via Mixed Integer Optimization
2016-05-13
solving these two problems separately, however few algorithms attempt to solve these simultaneously and even fewer utilize optimization. In this paper we...introduce a new mixed integer optimization (MIO) model which solves the data association and trajectory estimation problems simultaneously by minimizing...Kalman filter [5], which updates the trajectory estimates before the algorithm progresses forward to the next scan. This process repeats sequentially
Finite-time stabilisation of a class of switched nonlinear systems with state constraints
NASA Astrophysics Data System (ADS)
Huang, Shipei; Xiang, Zhengrong
2018-06-01
This paper investigates the finite-time stabilisation for a class of switched nonlinear systems with state constraints. Some power orders of the system are allowed to be ratios of positive even integers over odd integers. A Barrier Lyapunov function is introduced to guarantee that the state constraint is not violated at any time. Using the convex combination method and a recursive design approach, a state-dependent switching law and state feedback controllers of individual subsystems are constructed such that the closed-loop system is finite-time stable without violation of the state constraint. Two examples are provided to show the effectiveness of the proposed method.
NASA Astrophysics Data System (ADS)
Roy, Satadru
Traditional approaches to design and optimize a new system, often, use a system-centric objective and do not take into consideration how the operator will use this new system alongside of other existing systems. This "hand-off" between the design of the new system and how the new system operates alongside other systems might lead to a sub-optimal performance with respect to the operator-level objective. In other words, the system that is optimal for its system-level objective might not be best for the system-of-systems level objective of the operator. Among the few available references that describe attempts to address this hand-off, most follow an MDO-motivated subspace decomposition approach of first designing a very good system and then provide this system to the operator who decides the best way to use this new system along with the existing systems. The motivating example in this dissertation presents one such similar problem that includes aircraft design, airline operations and revenue management "subspaces". The research here develops an approach that could simultaneously solve these subspaces posed as a monolithic optimization problem. The monolithic approach makes the problem a Mixed Integer/Discrete Non-Linear Programming (MINLP/MDNLP) problem, which are extremely difficult to solve. The presence of expensive, sophisticated engineering analyses further aggravate the problem. To tackle this challenge problem, the work here presents a new optimization framework that simultaneously solves the subspaces to capture the "synergism" in the problem that the previous decomposition approaches may not have exploited, addresses mixed-integer/discrete type design variables in an efficient manner, and accounts for computationally expensive analysis tools. The framework combines concepts from efficient global optimization, Kriging partial least squares, and gradient-based optimization. This approach then demonstrates its ability to solve an 11 route airline network problem consisting of 94 decision variables including 33 integer and 61 continuous type variables. This application problem is a representation of an interacting group of systems and provides key challenges to the optimization framework to solve the MINLP problem, as reflected by the presence of a moderate number of integer and continuous type design variables and expensive analysis tool. The result indicates simultaneously solving the subspaces could lead to significant improvement in the fleet-level objective of the airline when compared to the previously developed sequential subspace decomposition approach. In developing the approach to solve the MINLP/MDNLP challenge problem, several test problems provided the ability to explore performance of the framework. While solving these test problems, the framework showed that it could solve other MDNLP problems including categorically discrete variables, indicating that the framework could have broader application than the new aircraft design-fleet allocation-revenue management problem.
On Distributed PV Hosting Capacity Estimation, Sensitivity Study, and Improvement
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ding, Fei; Mather, Barry
This paper first studies the estimated distributed PV hosting capacities of seventeen utility distribution feeders using the Monte Carlo simulation based stochastic analysis, and then analyzes the sensitivity of PV hosting capacity to both feeder and photovoltaic system characteristics. Furthermore, an active distribution network management approach is proposed to maximize PV hosting capacity by optimally switching capacitors, adjusting voltage regulator taps, managing controllable branch switches and controlling smart PV inverters. The approach is formulated as a mixed-integer nonlinear optimization problem and a genetic algorithm is developed to obtain the solution. Multiple simulation cases are studied and the effectiveness of themore » proposed approach on increasing PV hosting capacity is demonstrated.« less
Optimal Design and Operation of Permanent Irrigation Systems
NASA Astrophysics Data System (ADS)
Oron, Gideon; Walker, Wynn R.
1981-01-01
Solid-set pressurized irrigation system design and operation are studied with optimization techniques to determine the minimum cost distribution system. The principle of the analysis is to divide the irrigation system into subunits in such a manner that the trade-offs among energy, piping, and equipment costs are selected at the minimum cost point. The optimization procedure involves a nonlinear, mixed integer approach capable of achieving a variety of optimal solutions leading to significant conclusions with regard to the design and operation of the system. Factors investigated include field geometry, the effect of the pressure head, consumptive use rates, a smaller flow rate in the pipe system, and outlet (sprinkler or emitter) discharge.
Nonlinear oscillator with power-form elastic-term: Fourier series expansion of the exact solution
NASA Astrophysics Data System (ADS)
Beléndez, Augusto; Francés, Jorge; Beléndez, Tarsicio; Bleda, Sergio; Pascual, Carolina; Arribas, Enrique
2015-05-01
A family of conservative, truly nonlinear, oscillators with integer or non-integer order nonlinearity is considered. These oscillators have only one odd power-form elastic-term and exact expressions for their period and solution were found in terms of Gamma functions and a cosine-Ateb function, respectively. Only for a few values of the order of nonlinearity, is it possible to obtain the periodic solution in terms of more common functions. However, for this family of conservative truly nonlinear oscillators we show in this paper that it is possible to obtain the Fourier series expansion of the exact solution, even though this exact solution is unknown. The coefficients of the Fourier series expansion of the exact solution are obtained as an integral expression in which a regularized incomplete Beta function appears. These coefficients are a function of the order of nonlinearity only and are computed numerically. One application of this technique is to compare the amplitudes for the different harmonics of the solution obtained using approximate methods with the exact ones computed numerically as shown in this paper. As an example, the approximate amplitudes obtained via a modified Ritz method are compared with the exact ones computed numerically.
Henriques, David; González, Patricia; Doallo, Ramón; Saez-Rodriguez, Julio; Banga, Julio R.
2017-01-01
Background We consider a general class of global optimization problems dealing with nonlinear dynamic models. Although this class is relevant to many areas of science and engineering, here we are interested in applying this framework to the reverse engineering problem in computational systems biology, which yields very large mixed-integer dynamic optimization (MIDO) problems. In particular, we consider the framework of logic-based ordinary differential equations (ODEs). Methods We present saCeSS2, a parallel method for the solution of this class of problems. This method is based on an parallel cooperative scatter search metaheuristic, with new mechanisms of self-adaptation and specific extensions to handle large mixed-integer problems. We have paid special attention to the avoidance of convergence stagnation using adaptive cooperation strategies tailored to this class of problems. Results We illustrate its performance with a set of three very challenging case studies from the domain of dynamic modelling of cell signaling. The simpler case study considers a synthetic signaling pathway and has 84 continuous and 34 binary decision variables. A second case study considers the dynamic modeling of signaling in liver cancer using high-throughput data, and has 135 continuous and 109 binaries decision variables. The third case study is an extremely difficult problem related with breast cancer, involving 690 continuous and 138 binary decision variables. We report computational results obtained in different infrastructures, including a local cluster, a large supercomputer and a public cloud platform. Interestingly, the results show how the cooperation of individual parallel searches modifies the systemic properties of the sequential algorithm, achieving superlinear speedups compared to an individual search (e.g. speedups of 15 with 10 cores), and significantly improving (above a 60%) the performance with respect to a non-cooperative parallel scheme. The scalability of the method is also good (tests were performed using up to 300 cores). Conclusions These results demonstrate that saCeSS2 can be used to successfully reverse engineer large dynamic models of complex biological pathways. Further, these results open up new possibilities for other MIDO-based large-scale applications in the life sciences such as metabolic engineering, synthetic biology, drug scheduling. PMID:28813442
Penas, David R; Henriques, David; González, Patricia; Doallo, Ramón; Saez-Rodriguez, Julio; Banga, Julio R
2017-01-01
We consider a general class of global optimization problems dealing with nonlinear dynamic models. Although this class is relevant to many areas of science and engineering, here we are interested in applying this framework to the reverse engineering problem in computational systems biology, which yields very large mixed-integer dynamic optimization (MIDO) problems. In particular, we consider the framework of logic-based ordinary differential equations (ODEs). We present saCeSS2, a parallel method for the solution of this class of problems. This method is based on an parallel cooperative scatter search metaheuristic, with new mechanisms of self-adaptation and specific extensions to handle large mixed-integer problems. We have paid special attention to the avoidance of convergence stagnation using adaptive cooperation strategies tailored to this class of problems. We illustrate its performance with a set of three very challenging case studies from the domain of dynamic modelling of cell signaling. The simpler case study considers a synthetic signaling pathway and has 84 continuous and 34 binary decision variables. A second case study considers the dynamic modeling of signaling in liver cancer using high-throughput data, and has 135 continuous and 109 binaries decision variables. The third case study is an extremely difficult problem related with breast cancer, involving 690 continuous and 138 binary decision variables. We report computational results obtained in different infrastructures, including a local cluster, a large supercomputer and a public cloud platform. Interestingly, the results show how the cooperation of individual parallel searches modifies the systemic properties of the sequential algorithm, achieving superlinear speedups compared to an individual search (e.g. speedups of 15 with 10 cores), and significantly improving (above a 60%) the performance with respect to a non-cooperative parallel scheme. The scalability of the method is also good (tests were performed using up to 300 cores). These results demonstrate that saCeSS2 can be used to successfully reverse engineer large dynamic models of complex biological pathways. Further, these results open up new possibilities for other MIDO-based large-scale applications in the life sciences such as metabolic engineering, synthetic biology, drug scheduling.
Wu, Hao; Wan, Zhong
2018-02-01
In this paper, a multiobjective mixed-integer piecewise nonlinear programming model (MOMIPNLP) is built to formulate the management problem of urban mining system, where the decision variables are associated with buy-back pricing, choices of sites, transportation planning, and adjustment of production capacity. Different from the existing approaches, the social negative effect, generated from structural optimization of the recycling system, is minimized in our model, as well as the total recycling profit and utility from environmental improvement are jointly maximized. For solving the problem, the MOMIPNLP model is first transformed into an ordinary mixed-integer nonlinear programming model by variable substitution such that the piecewise feature of the model is removed. Then, based on technique of orthogonal design, a hybrid heuristic algorithm is developed to find an approximate Pareto-optimal solution, where genetic algorithm is used to optimize the structure of search neighborhood, and both local branching algorithm and relaxation-induced neighborhood search algorithm are employed to cut the searching branches and reduce the number of variables in each branch. Numerical experiments indicate that this algorithm spends less CPU (central processing unit) time in solving large-scale regional urban mining management problems, especially in comparison with the similar ones available in literature. By case study and sensitivity analysis, a number of practical managerial implications are revealed from the model. Since the metal stocks in society are reliable overground mineral sources, urban mining has been paid great attention as emerging strategic resources in an era of resource shortage. By mathematical modeling and development of efficient algorithms, this paper provides decision makers with useful suggestions on the optimal design of recycling system in urban mining. For example, this paper can answer how to encourage enterprises to join the recycling activities by government's support and subsidies, whether the existing recycling system can meet the developmental requirements or not, and what is a reasonable adjustment of production capacity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adams, Brian M.; Ebeida, Mohamed Salah; Eldred, Michael S.
The Dakota (Design Analysis Kit for Optimization and Terascale Applications) toolkit provides a exible and extensible interface between simulation codes and iterative analysis methods. Dakota contains algorithms for optimization with gradient and nongradient-based methods; uncertainty quanti cation with sampling, reliability, and stochastic expansion methods; parameter estimation with nonlinear least squares methods; and sensitivity/variance analysis with design of experiments and parameter study methods. These capabilities may be used on their own or as components within advanced strategies such as surrogate-based optimization, mixed integer nonlinear programming, or optimization under uncertainty. By employing object-oriented design to implement abstractions of the key components requiredmore » for iterative systems analyses, the Dakota toolkit provides a exible and extensible problem-solving environment for design and performance analysis of computational models on high performance computers. This report serves as a user's manual for the Dakota software and provides capability overviews and procedures for software execution, as well as a variety of example studies.« less
Calibration of a stochastic health evolution model using NHIS data
NASA Astrophysics Data System (ADS)
Gupta, Aparna; Li, Zhisheng
2011-10-01
This paper presents and calibrates an individual's stochastic health evolution model. In this health evolution model, the uncertainty of health incidents is described by a stochastic process with a finite number of possible outcomes. We construct a comprehensive health status index (HSI) to describe an individual's health status, as well as a health risk factor system (RFS) to classify individuals into different risk groups. Based on the maximum likelihood estimation (MLE) method and the method of nonlinear least squares fitting, model calibration is formulated in terms of two mixed-integer nonlinear optimization problems. Using the National Health Interview Survey (NHIS) data, the model is calibrated for specific risk groups. Longitudinal data from the Health and Retirement Study (HRS) is used to validate the calibrated model, which displays good validation properties. The end goal of this paper is to provide a model and methodology, whose output can serve as a crucial component of decision support for strategic planning of health related financing and risk management.
Enhanced index tracking modeling in portfolio optimization with mixed-integer programming z approach
NASA Astrophysics Data System (ADS)
Siew, Lam Weng; Jaaman, Saiful Hafizah Hj.; Ismail, Hamizun bin
2014-09-01
Enhanced index tracking is a popular form of portfolio management in stock market investment. Enhanced index tracking aims to construct an optimal portfolio to generate excess return over the return achieved by the stock market index without purchasing all of the stocks that make up the index. The objective of this paper is to construct an optimal portfolio using mixed-integer programming model which adopts regression approach in order to generate higher portfolio mean return than stock market index return. In this study, the data consists of 24 component stocks in Malaysia market index which is FTSE Bursa Malaysia Kuala Lumpur Composite Index from January 2010 until December 2012. The results of this study show that the optimal portfolio of mixed-integer programming model is able to generate higher mean return than FTSE Bursa Malaysia Kuala Lumpur Composite Index return with only selecting 30% out of the total stock market index components.
NASA Astrophysics Data System (ADS)
Allah Taleizadeh, Ata; Niaki, Seyed Taghi Akhavan; Aryanezhad, Mir-Bahador
2010-10-01
While the usual assumptions in multi-periodic inventory control problems are that the orders are placed at the beginning of each period (periodic review) or depending on the inventory level they can happen at any time (continuous review), in this article, we relax these assumptions and assume that the periods between two replenishments of the products are independent and identically distributed random variables. Furthermore, assuming that the purchasing price are triangular fuzzy variables, the quantities of the orders are of integer-type and that there are space and service level constraints, total discount are considered to purchase products and a combination of back-order and lost-sales are taken into account for the shortages. We show that the model of this problem is a fuzzy mixed-integer nonlinear programming type and in order to solve it, a hybrid meta-heuristic intelligent algorithm is proposed. At the end, a numerical example is given to demonstrate the applicability of the proposed methodology and to compare its performance with one of the existing algorithms in real world inventory control problems.
NASA Astrophysics Data System (ADS)
Sun, Xiaoqiang; Cai, Yingfeng; Wang, Shaohua; Liu, Yanling; Chen, Long
2016-01-01
The control problems associated with vehicle height adjustment of electronically controlled air suspension (ECAS) still pose theoretical challenges for researchers, which manifest themselves in the publications on this subject over the last years. This paper deals with modeling and control of a vehicle height adjustment system for ECAS, which is an example of a hybrid dynamical system due to the coexistence and coupling of continuous variables and discrete events. A mixed logical dynamical (MLD) modeling approach is chosen for capturing enough details of the vehicle height adjustment process. The hybrid dynamic model is constructed on the basis of some assumptions and piecewise linear approximation for components nonlinearities. Then, the on-off statuses of solenoid valves and the piecewise approximation process are described by propositional logic, and the hybrid system is transformed into the set of linear mixed-integer equalities and inequalities, denoted as MLD model, automatically by HYSDEL. Using this model, a hybrid model predictive controller (HMPC) is tuned based on online mixed-integer quadratic optimization (MIQP). Two different scenarios are considered in the simulation, whose results verify the height adjustment effectiveness of the proposed approach. Explicit solutions of the controller are computed to control the vehicle height adjustment system in realtime using an offline multi-parametric programming technology (MPT), thus convert the controller into an equivalent explicit piecewise affine form. Finally, bench experiments for vehicle height lifting, holding and lowering procedures are conducted, which demonstrate that the HMPC can adjust the vehicle height by controlling the on-off statuses of solenoid valves directly. This research proposes a new modeling and control method for vehicle height adjustment of ECAS, which leads to a closed-loop system with favorable dynamical properties.
NASA Astrophysics Data System (ADS)
McPhee, J.; William, Y. W.
2005-12-01
This work presents a methodology for pumping test design based on the reliability requirements of a groundwater model. Reliability requirements take into consideration the application of the model results in groundwater management, expressed in this case as a multiobjective management model. The pumping test design is formulated as a mixed-integer nonlinear programming (MINLP) problem and solved using a combination of genetic algorithm (GA) and gradient-based optimization. Bayesian decision theory provides a formal framework for assessing the influence of parameter uncertainty over the reliability of the proposed pumping test. The proposed methodology is useful for selecting a robust design that will outperform all other candidate designs under most potential 'true' states of the system
A green vehicle routing problem with customer satisfaction criteria
NASA Astrophysics Data System (ADS)
Afshar-Bakeshloo, M.; Mehrabi, A.; Safari, H.; Maleki, M.; Jolai, F.
2016-12-01
This paper develops an MILP model, named Satisfactory-Green Vehicle Routing Problem. It consists of routing a heterogeneous fleet of vehicles in order to serve a set of customers within predefined time windows. In this model in addition to the traditional objective of the VRP, both the pollution and customers' satisfaction have been taken into account. Meanwhile, the introduced model prepares an effective dashboard for decision-makers that determines appropriate routes, the best mixed fleet, speed and idle time of vehicles. Additionally, some new factors evaluate the greening of each decision based on three criteria. This model applies piecewise linear functions (PLFs) to linearize a nonlinear fuzzy interval for incorporating customers' satisfaction into other linear objectives. We have presented a mixed integer linear programming formulation for the S-GVRP. This model enriches managerial insights by providing trade-offs between customers' satisfaction, total costs and emission levels. Finally, we have provided a numerical study for showing the applicability of the model.
Fast scaffolding with small independent mixed integer programs
Salmela, Leena; Mäkinen, Veli; Välimäki, Niko; Ylinen, Johannes; Ukkonen, Esko
2011-01-01
Motivation: Assembling genomes from short read data has become increasingly popular, but the problem remains computationally challenging especially for larger genomes. We study the scaffolding phase of sequence assembly where preassembled contigs are ordered based on mate pair data. Results: We present MIP Scaffolder that divides the scaffolding problem into smaller subproblems and solves these with mixed integer programming. The scaffolding problem can be represented as a graph and the biconnected components of this graph can be solved independently. We present a technique for restricting the size of these subproblems so that they can be solved accurately with mixed integer programming. We compare MIP Scaffolder to two state of the art methods, SOPRA and SSPACE. MIP Scaffolder is fast and produces better or as good scaffolds as its competitors on large genomes. Availability: The source code of MIP Scaffolder is freely available at http://www.cs.helsinki.fi/u/lmsalmel/mip-scaffolder/. Contact: leena.salmela@cs.helsinki.fi PMID:21998153
Puerto Rico water resources planning model program description
Moody, D.W.; Maddock, Thomas; Karlinger, M.R.; Lloyd, J.J.
1973-01-01
Because the use of the Mathematical Programming System -Extended (MPSX) to solve large linear and mixed integer programs requires the preparation of many input data cards, a matrix generator program to produce the MPSX input data from a much more limited set of data may expedite the use of the mixed integer programming optimization technique. The Model Definition and Control Program (MODCQP) is intended to assist a planner in preparing MPSX input data for the Puerto Rico Water Resources Planning Model. The model utilizes a mixed-integer mathematical program to identify a minimum present cost set of water resources projects (diversions, reservoirs, ground-water fields, desalinization plants, water treatment plants, and inter-basin transfers of water) which will meet a set of future water demands and to determine their sequence of construction. While MODCOP was specifically written to generate MPSX input data for the planning model described in this report, the program can be easily modified to reflect changes in the model's mathematical structure.
Mixed Integer Programming and Heuristic Scheduling for Space Communication Networks
NASA Technical Reports Server (NTRS)
Cheung, Kar-Ming; Lee, Charles H.
2012-01-01
We developed framework and the mathematical formulation for optimizing communication network using mixed integer programming. The design yields a system that is much smaller, in search space size, when compared to the earlier approach. Our constrained network optimization takes into account the dynamics of link performance within the network along with mission and operation requirements. A unique penalty function is introduced to transform the mixed integer programming into the more manageable problem of searching in a continuous space. The constrained optimization problem was proposed to solve in two stages: first using the heuristic Particle Swarming Optimization algorithm to get a good initial starting point, and then feeding the result into the Sequential Quadratic Programming algorithm to achieve the final optimal schedule. We demonstrate the above planning and scheduling methodology with a scenario of 20 spacecraft and 3 ground stations of a Deep Space Network site. Our approach and framework have been simple and flexible so that problems with larger number of constraints and network can be easily adapted and solved.
The fate of a gray soliton in a quenched Bose-Einstein condensate
NASA Astrophysics Data System (ADS)
Gamayun, Oleksandr; Bezvershenko, Yulia; Cheianov, Vadim
2015-03-01
We investigate the destiny of a gray soliton in a repulsive one-dimensional Bose-Einstein condensate undergoing a sudden quench of the non-linearity parameter. The outcome of the quench is found to depend dramatically on the ratio η of the final and initial values of the speed of sound. For integer η the soliton splits into exactly 2 η - 1 solitons. For non-integer η the soliton decays into multiple solitons and Bogoliubov modes. The case of integer η is analyzed in detail. The parameters of solitons in the out-state are found explicitly. Our approach exploits the inverse scattering method and can be easily used for the similar quenches in any classical integrable system.
Lossless crossing of a resonance stopband during tune modulation by synchrotron oscillations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, G. M.; Shaftan, T.; Smaluk, V.
Modern high performance circular accelerators require sophisticated corrections of nonlinear lattices. The beam betatron tune footprint may cross many resonances, reducing dynamic aperture and causing particle loss. But, if particles cross a resonance reasonably fast, the beam deterioration may be minimized. This paper describes the experiments with the beam passing through a half-integer resonance stopband via tune modulation by exciting synchrotron oscillations. This is the first time that beam dynamics have been kept under precise control while the beam crosses a half-integer resonance. These results convincingly demonstrate that particles can cross the half-integer resonance without being lost if the passagemore » is reasonably fast and the resonance stopband is sufficiently narrow.« less
Lossless crossing of a resonance stopband during tune modulation by synchrotron oscillations
Wang, G. M.; Shaftan, T.; Smaluk, V.; ...
2017-09-14
Modern high performance circular accelerators require sophisticated corrections of nonlinear lattices. The beam betatron tune footprint may cross many resonances, reducing dynamic aperture and causing particle loss. But, if particles cross a resonance reasonably fast, the beam deterioration may be minimized. This paper describes the experiments with the beam passing through a half-integer resonance stopband via tune modulation by exciting synchrotron oscillations. This is the first time that beam dynamics have been kept under precise control while the beam crosses a half-integer resonance. These results convincingly demonstrate that particles can cross the half-integer resonance without being lost if the passagemore » is reasonably fast and the resonance stopband is sufficiently narrow.« less
Control of wavepacket dynamics in mixed alkali metal clusters by optimally shaped fs pulses
NASA Astrophysics Data System (ADS)
Bartelt, A.; Minemoto, S.; Lupulescu, C.; Vajda, Š.; Wöste, L.
We have performed adaptive feedback optimization of phase-shaped femtosecond laser pulses to control the wavepacket dynamics of small mixed alkali-metal clusters. An optimization algorithm based on Evolutionary Strategies was used to maximize the ion intensities. The optimized pulses for NaK and Na2K converged to pulse trains consisting of numerous peaks. The timing of the elements of the pulse trains corresponds to integer and half integer numbers of the vibrational periods of the molecules, reflecting the wavepacket dynamics in their excited states.
DAKOTA Design Analysis Kit for Optimization and Terascale
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adams, Brian M.; Dalbey, Keith R.; Eldred, Michael S.
2010-02-24
The DAKOTA (Design Analysis Kit for Optimization and Terascale Applications) toolkit provides a flexible and extensible interface between simulation codes (computational models) and iterative analysis methods. By employing object-oriented design to implement abstractions of the key components required for iterative systems analyses, the DAKOTA toolkit provides a flexible and extensible problem-solving environment for design and analysis of computational models on high performance computers.A user provides a set of DAKOTA commands in an input file and launches DAKOTA. DAKOTA invokes instances of the computational models, collects their results, and performs systems analyses. DAKOTA contains algorithms for optimization with gradient and nongradient-basedmore » methods; uncertainty quantification with sampling, reliability, polynomial chaos, stochastic collocation, and epistemic methods; parameter estimation with nonlinear least squares methods; and sensitivity/variance analysis with design of experiments and parameter study methods. These capabilities may be used on their own or as components within advanced strategies such as hybrid optimization, surrogate-based optimization, mixed integer nonlinear programming, or optimization under uncertainty. Services for parallel computing, simulation interfacing, approximation modeling, fault tolerance, restart, and graphics are also included.« less
Flexible and unique representations of two-digit decimals.
Zhang, Li; Chen, Min; Lin, Chongde; Szűcs, Denes
2014-09-01
We examined the representation of two-digit decimals through studying distance and compatibility effects in magnitude comparison tasks in four experiments. Using number pairs with different leftmost digits, we found both the second digit distance effect and compatibility effect with two-digit integers but only the second digit distance effect with two-digit pure decimals. This suggests that both integers and pure decimals are processed in a compositional manner. In contrast, neither the second digit distance effect nor the compatibility effect was observed in two-digit mixed decimals, thereby showing no evidence for compositional processing of two-digit mixed decimals. However, when the relevance of the rightmost digit processing was increased by adding some decimals pairs with the same leftmost digits, both pure and mixed decimals produced the compatibility effect. Overall, results suggest that the processing of decimals is flexible and depends on the relevance of unique digit positions. This processing mode is different from integer analysis in that two-digit mixed decimals demonstrate parallel compositional processing only when the rightmost digit is relevant. Findings suggest that people probably do not represent decimals by simply ignoring the decimal point and converting them to natural numbers. Copyright © 2014 Elsevier B.V. All rights reserved.
Optimal Facility Location Tool for Logistics Battle Command (LBC)
2015-08-01
64 Appendix B. VBA Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 Appendix C. Story...should city planners have located emergency service facilities so that all households (the demand) had equal access to coverage?” The critical...programming language called Visual Basic for Applications ( VBA ). CPLEX is a commercial solver for linear, integer, and mixed integer linear programming problems
Mousavi, Seyed Mohsen; Niaki, S. T. A.; Bahreininejad, Ardeshir; Musa, Siti Nurmaya
2014-01-01
A multi-item multiperiod inventory control model is developed for known-deterministic variable demands under limited available budget. Assuming the order quantity is more than the shortage quantity in each period, the shortage in combination of backorder and lost sale is considered. The orders are placed in batch sizes and the decision variables are assumed integer. Moreover, all unit discounts for a number of products and incremental quantity discount for some other items are considered. While the objectives are to minimize both the total inventory cost and the required storage space, the model is formulated into a fuzzy multicriteria decision making (FMCDM) framework and is shown to be a mixed integer nonlinear programming type. In order to solve the model, a multiobjective particle swarm optimization (MOPSO) approach is applied. A set of compromise solution including optimum and near optimum ones via MOPSO has been derived for some numerical illustration, where the results are compared with those obtained using a weighting approach. To assess the efficiency of the proposed MOPSO, the model is solved using multi-objective genetic algorithm (MOGA) as well. A large number of numerical examples are generated at the end, where graphical and statistical approaches show more efficiency of MOPSO compared with MOGA. PMID:25093195
An Integer Programming Model for Multi-Echelon Supply Chain Decision Problem Considering Inventories
NASA Astrophysics Data System (ADS)
Harahap, Amin; Mawengkang, Herman; Siswadi; Effendi, Syahril
2018-01-01
In this paper we address a problem that is of significance to the industry, namely the optimal decision of a multi-echelon supply chain and the associated inventory systems. By using the guaranteed service approach to model the multi-echelon inventory system, we develop a mixed integer; programming model to simultaneously optimize the transportation, inventory and network structure of a multi-echelon supply chain. To solve the model we develop a direct search approach using a strategy of releasing nonbasic variables from their bounds, combined with the “active constraint” method. This strategy is used to force the appropriate non-integer basic variables to move to their neighbourhood integer points.
Hybrid Optimization Parallel Search PACKage
DOE Office of Scientific and Technical Information (OSTI.GOV)
2009-11-10
HOPSPACK is open source software for solving optimization problems without derivatives. Application problems may have a fully nonlinear objective function, bound constraints, and linear and nonlinear constraints. Problem variables may be continuous, integer-valued, or a mixture of both. The software provides a framework that supports any derivative-free type of solver algorithm. Through the framework, solvers request parallel function evaluation, which may use MPI (multiple machines) or multithreading (multiple processors/cores on one machine). The framework provides a Cache and Pending Cache of saved evaluations that reduces execution time and facilitates restarts. Solvers can dynamically create other algorithms to solve subproblems, amore » useful technique for handling multiple start points and integer-valued variables. HOPSPACK ships with the Generating Set Search (GSS) algorithm, developed at Sandia as part of the APPSPACK open source software project.« less
Modelling with Integer Variables.
1984-01-01
Computational Comparison of * ’Equivalent’ Mixed Integer Formulations," Naval Research Logistics Quarterly 28 (1981), pp. 115- 131 . 39. R. R, Meyer and...jE(i) 3 K ".- .e I " Z A . .,.. x jCI (i) IJ ~s ;:. ... i=I 1 1X. integer A- k . . . . . . . . . . . ... . ... . . . . . . . . . o...be such that Z X.. = 1 andIfxCi’e k jcI (i) 11 13 kx m). *x + E okv . Then by putting Xil and X.=O for j* i, j£I(i) kE (2.3.4) holds. Hence S’ Pi" As
Aerospace Applications of Integer and Combinatorial Optimization
NASA Technical Reports Server (NTRS)
Padula, S. L.; Kincaid, R. K.
1995-01-01
Research supported by NASA Langley Research Center includes many applications of aerospace design optimization and is conducted by teams of applied mathematicians and aerospace engineers. This paper investigates the benefits from this combined expertise in formulating and solving integer and combinatorial optimization problems. Applications range from the design of large space antennas to interior noise control. A typical problem, for example, seeks the optimal locations for vibration-damping devices on an orbiting platform and is expressed as a mixed/integer linear programming problem with more than 1500 design variables.
Aerospace applications on integer and combinatorial optimization
NASA Technical Reports Server (NTRS)
Padula, S. L.; Kincaid, R. K.
1995-01-01
Research supported by NASA Langley Research Center includes many applications of aerospace design optimization and is conducted by teams of applied mathematicians and aerospace engineers. This paper investigates the benefits from this combined expertise in formulating and solving integer and combinatorial optimization problems. Applications range from the design of large space antennas to interior noise control. A typical problem. for example, seeks the optimal locations for vibration-damping devices on an orbiting platform and is expressed as a mixed/integer linear programming problem with more than 1500 design variables.
An integer programming model to optimize resource allocation for wildfire containment.
Geoffrey H. Donovan; Douglas B. Rideout
2003-01-01
Determining the specific mix of fire-fighting resources for a given fire is a necessary condition for identifying the minimum of the Cost Plus Net Value Change (C+NVC) function. Current wildland fire management models may not reliably do so. The problem of identifying the most efficient wildland fire organization is characterized mathematically using integer-...
NASA Astrophysics Data System (ADS)
Rahimi, Zaher; Sumelka, Wojciech; Yang, Xiao-Jun
2017-11-01
The application of fractional calculus in fractional models (FMs) makes them more flexible than integer models inasmuch they can conclude all of integer and non-integer operators. In other words FMs let us use more potential of mathematics to modeling physical phenomena due to the use of both integer and fractional operators to present a better modeling of problems, which makes them more flexible and powerful. In the present work, a new fractional nonlocal model has been proposed, which has a simple form and can be used in different problems due to the simple form of numerical solutions. Then the model has been used to govern equations of the motion of the Timoshenko beam theory (TBT) and Euler-Bernoulli beam theory (EBT). Next, free vibration of the Timoshenko and Euler-Bernoulli simply-supported (S-S) beam has been investigated. The Galerkin weighted residual method has been used to solve the non-linear governing equations.
Pole-zero form fractional model identification in frequency domain
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mansouri, R.; Djamah, T.; Djennoune, S.
2009-03-05
This paper deals with system identification in the frequency domain using non integer order models given in the pole-zero form. The usual identification techniques cannot be used in this case because of the non integer orders of differentiation which makes the problem strongly nonlinear. A general identification method based on Levenberg-Marquardt algorithm is developed and allows to estimate the (2n+2m+1) parameters of the model. Its application to identify the ''skin effect'' of a squirrel cage induction machine modeling is then presented.
NASA Astrophysics Data System (ADS)
Tavakkoli-Moghaddam, Reza; Vazifeh-Noshafagh, Samira; Taleizadeh, Ata Allah; Hajipour, Vahid; Mahmoudi, Amin
2017-01-01
This article presents a new multi-objective model for a facility location problem with congestion and pricing policies. This model considers situations in which immobile service facilities are congested by a stochastic demand following M/M/m/k queues. The presented model belongs to the class of mixed-integer nonlinear programming models and NP-hard problems. To solve such a hard model, a new multi-objective optimization algorithm based on a vibration theory, namely multi-objective vibration damping optimization (MOVDO), is developed. In order to tune the algorithms parameters, the Taguchi approach using a response metric is implemented. The computational results are compared with those of the non-dominated ranking genetic algorithm and non-dominated sorting genetic algorithm. The outputs demonstrate the robustness of the proposed MOVDO in large-sized problems.
Managing time-substitutable electricity usage using dynamic controls
Ghosh, Soumyadip; Hosking, Jonathan R.; Natarajan, Ramesh; Subramaniam, Shivaram; Zhang, Xiaoxuan
2017-02-07
A predictive-control approach allows an electricity provider to monitor and proactively manage peak and off-peak residential intra-day electricity usage in an emerging smart energy grid using time-dependent dynamic pricing incentives. The daily load is modeled as time-shifted, but cost-differentiated and substitutable, copies of the continuously-consumed electricity resource, and a consumer-choice prediction model is constructed to forecast the corresponding intra-day shares of total daily load according to this model. This is embedded within an optimization framework for managing the daily electricity usage. A series of transformations are employed, including the reformulation-linearization technique (RLT) to obtain a Mixed-Integer Programming (MIP) model representation of the resulting nonlinear optimization problem. In addition, various regulatory and pricing constraints are incorporated in conjunction with the specified profit and capacity utilization objectives.
Managing time-substitutable electricity usage using dynamic controls
Ghosh, Soumyadip; Hosking, Jonathan R.; Natarajan, Ramesh; Subramaniam, Shivaram; Zhang, Xiaoxuan
2017-02-21
A predictive-control approach allows an electricity provider to monitor and proactively manage peak and off-peak residential intra-day electricity usage in an emerging smart energy grid using time-dependent dynamic pricing incentives. The daily load is modeled as time-shifted, but cost-differentiated and substitutable, copies of the continuously-consumed electricity resource, and a consumer-choice prediction model is constructed to forecast the corresponding intra-day shares of total daily load according to this model. This is embedded within an optimization framework for managing the daily electricity usage. A series of transformations are employed, including the reformulation-linearization technique (RLT) to obtain a Mixed-Integer Programming (MIP) model representation of the resulting nonlinear optimization problem. In addition, various regulatory and pricing constraints are incorporated in conjunction with the specified profit and capacity utilization objectives.
Barnett, Jason; Watson, Jean -Paul; Woodruff, David L.
2016-11-27
Progressive hedging, though an effective heuristic for solving stochastic mixed integer programs (SMIPs), is not guaranteed to converge in this case. Here, we describe BBPH, a branch and bound algorithm that uses PH at each node in the search tree such that, given sufficient time, it will always converge to a globally optimal solution. Additionally, to providing a theoretically convergent “wrapper” for PH applied to SMIPs, computational results demonstrate that for some difficult problem instances branch and bound can find improved solutions after exploring only a few nodes.
El-Qulity, Said Ali; Mohamed, Ali Wagdy
2016-01-01
This paper proposes a nonlinear integer goal programming model (NIGPM) for solving the general problem of admission capacity planning in a country as a whole. The work aims to satisfy most of the required key objectives of a country related to the enrollment problem for higher education. The system general outlines are developed along with the solution methodology for application to the time horizon in a given plan. The up-to-date data for Saudi Arabia is used as a case study and a novel evolutionary algorithm based on modified differential evolution (DE) algorithm is used to solve the complexity of the NIGPM generated for different goal priorities. The experimental results presented in this paper show their effectiveness in solving the admission capacity for higher education in terms of final solution quality and robustness. PMID:26819583
El-Qulity, Said Ali; Mohamed, Ali Wagdy
2016-01-01
This paper proposes a nonlinear integer goal programming model (NIGPM) for solving the general problem of admission capacity planning in a country as a whole. The work aims to satisfy most of the required key objectives of a country related to the enrollment problem for higher education. The system general outlines are developed along with the solution methodology for application to the time horizon in a given plan. The up-to-date data for Saudi Arabia is used as a case study and a novel evolutionary algorithm based on modified differential evolution (DE) algorithm is used to solve the complexity of the NIGPM generated for different goal priorities. The experimental results presented in this paper show their effectiveness in solving the admission capacity for higher education in terms of final solution quality and robustness.
Stochastic Semidefinite Programming: Applications and Algorithms
2012-03-03
doi: 2011/09/07 13:38:21 13 TOTAL: 1 Number of Papers published in non peer-reviewed journals: Baha M. Alzalg and K. A. Ariyawansa, Stochastic...symmetric programming over integers. International Conference on Scientific Computing, Las Vegas, Nevada, July 18--21, 2011. Baha M. Alzalg. On recent...Proceeding publications (other than abstracts): PaperReceived Baha M. Alzalg, K. A. Ariyawansa. Stochastic mixed integer second-order cone programming
NASA Astrophysics Data System (ADS)
Tian, Wenli; Cao, Chengxuan
2017-03-01
A generalized interval fuzzy mixed integer programming model is proposed for the multimodal freight transportation problem under uncertainty, in which the optimal mode of transport and the optimal amount of each type of freight transported through each path need to be decided. For practical purposes, three mathematical methods, i.e. the interval ranking method, fuzzy linear programming method and linear weighted summation method, are applied to obtain equivalents of constraints and parameters, and then a fuzzy expected value model is presented. A heuristic algorithm based on a greedy criterion and the linear relaxation algorithm are designed to solve the model.
Obtaining lower bounds from the progressive hedging algorithm for stochastic mixed-integer programs
Gade, Dinakar; Hackebeil, Gabriel; Ryan, Sarah M.; ...
2016-04-02
We present a method for computing lower bounds in the progressive hedging algorithm (PHA) for two-stage and multi-stage stochastic mixed-integer programs. Computing lower bounds in the PHA allows one to assess the quality of the solutions generated by the algorithm contemporaneously. The lower bounds can be computed in any iteration of the algorithm by using dual prices that are calculated during execution of the standard PHA. In conclusion, we report computational results on stochastic unit commitment and stochastic server location problem instances, and explore the relationship between key PHA parameters and the quality of the resulting lower bounds.
NASA Astrophysics Data System (ADS)
Biyanto, T. R.; Matradji; Syamsi, M. N.; Fibrianto, H. Y.; Afdanny, N.; Rahman, A. H.; Gunawan, K. S.; Pratama, J. A. D.; Malwindasari, A.; Abdillah, A. I.; Bethiana, T. N.; Putra, Y. A.
2017-11-01
The development of green building has been growing in both design and quality. The development of green building was limited by the issue of expensive investment. Actually, green building can reduce the energy usage inside the building especially in utilization of cooling system. External load plays major role in reducing the usage of cooling system. External load is affected by type of wall sheathing, glass and roof. The proper selection of wall, type of glass and roof material are very important to reduce external load. Hence, the optimization of energy efficiency and conservation in green building design is required. Since this optimization consist of integer and non-linear equations, this problem falls into Mixed-Integer-Non-Linear-Programming (MINLP) that required global optimization technique such as stochastic optimization algorithms. In this paper the optimized variables i.e. type of glass and roof were chosen using Duelist, Killer-Whale and Rain-Water Algorithms to obtain the optimum energy and considering the minimal investment. The optimization results exhibited the single glass Planibel-G with the 3.2 mm thickness and glass wool insulation provided maximum ROI of 36.8486%, EUI reduction of 54 kWh/m2·year, CO2 emission reduction of 486.8971 tons/year and reduce investment of 4,078,905,465 IDR.
Lee, Chang Jun
2015-01-01
In the fields of researches associated with plant layout optimization, the main goal is to minimize the costs of pipelines and pumping between connecting equipment under various constraints. However, what is the lacking of considerations in previous researches is to transform various heuristics or safety regulations into mathematical equations. For example, proper safety distances between equipments have to be complied for preventing dangerous accidents on a complex plant. Moreover, most researches have handled single-floor plant. However, many multi-floor plants have been constructed for the last decade. Therefore, the proper algorithm handling various regulations and multi-floor plant should be developed. In this study, the Mixed Integer Non-Linear Programming (MINLP) problem including safety distances, maintenance spaces, etc. is suggested based on mathematical equations. The objective function is a summation of pipeline and pumping costs. Also, various safety and maintenance issues are transformed into inequality or equality constraints. However, it is really hard to solve this problem due to complex nonlinear constraints. Thus, it is impossible to use conventional MINLP solvers using derivatives of equations. In this study, the Particle Swarm Optimization (PSO) technique is employed. The ethylene oxide plant is illustrated to verify the efficacy of this study.
Synthesizing optimal waste blends
DOE Office of Scientific and Technical Information (OSTI.GOV)
Narayan, V.; Diwekar, W.M.; Hoza, M.
Vitrification of tank wastes to form glass is a technique that will be used for the disposal of high-level waste at Hanford. Process and storage economics show that minimizing the total number of glass logs produced is the key to keeping cost as low as possible. The amount of glass produced can be reduced by blending of the wastes. The optimal way to combine the tanks to minimize the vole of glass can be determined from a discrete blend calculation. However, this problem results in a combinatorial explosion as the number of tanks increases. Moreover, the property constraints make thismore » problem highly nonconvex where many algorithms get trapped in local minima. In this paper the authors examine the use of different combinatorial optimization approaches to solve this problem. A two-stage approach using a combination of simulated annealing and nonlinear programming (NLP) is developed. The results of different methods such as the heuristics approach based on human knowledge and judgment, the mixed integer nonlinear programming (MINLP) approach with GAMS, and branch and bound with lower bound derived from the structure of the given blending problem are compared with this coupled simulated annealing and NLP approach.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Xiangqi; Zhang, Yingchen
This paper presents an optimal voltage control methodology with coordination among different voltage-regulating resources, including controllable loads, distributed energy resources such as energy storage and photovoltaics (PV), and utility voltage-regulating devices such as voltage regulators and capacitors. The proposed methodology could effectively tackle the overvoltage and voltage regulation device distortion problems brought by high penetrations of PV to improve grid operation reliability. A voltage-load sensitivity matrix and voltage-regulator sensitivity matrix are used to deploy the resources along the feeder to achieve the control objectives. Mixed-integer nonlinear programming is used to solve the formulated optimization control problem. The methodology has beenmore » tested on the IEEE 123-feeder test system, and the results demonstrate that the proposed approach could actively tackle the voltage problem brought about by high penetrations of PV and improve the reliability of distribution system operation.« less
Integrated optimization of planetary rover layout and exploration routes
NASA Astrophysics Data System (ADS)
Lee, Dongoo; Ahn, Jaemyung
2018-01-01
This article introduces an optimization framework for the integrated design of a planetary surface rover and its exploration route that is applicable to the initial phase of a planetary exploration campaign composed of multiple surface missions. The scientific capability and the mobility of a rover are modelled as functions of the science weight fraction, a key parameter characterizing the rover. The proposed problem is formulated as a mixed-integer nonlinear program that maximizes the sum of profits obtained through a planetary surface exploration mission by simultaneously determining the science weight fraction of the rover, the sites to visit and their visiting sequences under resource consumption constraints imposed on each route and collectively on a mission. A solution procedure for the proposed problem composed of two loops (the outer loop and the inner loop) is developed. The results of test cases demonstrating the effectiveness of the proposed framework are presented.
MIDACO on MINLP space applications
NASA Astrophysics Data System (ADS)
Schlueter, Martin; Erb, Sven O.; Gerdts, Matthias; Kemble, Stephen; Rückmann, Jan-J.
2013-04-01
A numerical study on two challenging mixed-integer non-linear programming (MINLP) space applications and their optimization with MIDACO, a recently developed general purpose optimization software, is presented. These applications are the optimal control of the ascent of a multiple-stage space launch vehicle and the space mission trajectory design from Earth to Jupiter using multiple gravity assists. Additionally, an NLP aerospace application, the optimal control of an F8 aircraft manoeuvre, is discussed and solved. In order to enhance the optimization performance of MIDACO a hybridization technique, coupling MIDACO with an SQP algorithm, is presented for two of these three applications. The numerical results show, that the applications can be solved to their best known solution (or even new best solution) in a reasonable time by the considered approach. Since using the concept of MINLP is still a novelty in the field of (aero)space engineering, the demonstrated capabilities are seen as very promising.
Munir, Asif; Shahzad, Azeem; Khan, Masood
2014-01-01
The major focus of this article is to analyze the forced convective heat transfer in a steady boundary layer flow of Sisko fluid over a nonlinear stretching sheet. Two cases are studied, namely (i) the sheet with variable temperature (PST case) and (ii) the sheet with variable heat flux (PHF case). The heat transfer aspects are investigated for both integer and non-integer values of the power-law index. The governing partial differential equations are reduced to a system of nonlinear ordinary differential equations using appropriate similarity variables and solved numerically. The numerical results are obtained by the shooting method using adaptive Runge Kutta method with Broyden's method in the domain[Formula: see text]. The numerical results for the temperature field are found to be strongly dependent upon the power-law index, stretching parameter, wall temperature parameter, material parameter of the Sisko fluid and Prandtl number. In addition, the local Nusselt number versus wall temperature parameter is also graphed and tabulated for different values of pertaining parameters. Further, numerical results are validated by comparison with exact solutions as well as previously published results in the literature.
NASA Technical Reports Server (NTRS)
Ferencz, Donald C.; Viterna, Larry A.
1991-01-01
ALPS is a computer program which can be used to solve general linear program (optimization) problems. ALPS was designed for those who have minimal linear programming (LP) knowledge and features a menu-driven scheme to guide the user through the process of creating and solving LP formulations. Once created, the problems can be edited and stored in standard DOS ASCII files to provide portability to various word processors or even other linear programming packages. Unlike many math-oriented LP solvers, ALPS contains an LP parser that reads through the LP formulation and reports several types of errors to the user. ALPS provides a large amount of solution data which is often useful in problem solving. In addition to pure linear programs, ALPS can solve for integer, mixed integer, and binary type problems. Pure linear programs are solved with the revised simplex method. Integer or mixed integer programs are solved initially with the revised simplex, and the completed using the branch-and-bound technique. Binary programs are solved with the method of implicit enumeration. This manual describes how to use ALPS to create, edit, and solve linear programming problems. Instructions for installing ALPS on a PC compatible computer are included in the appendices along with a general introduction to linear programming. A programmers guide is also included for assistance in modifying and maintaining the program.
Stacking-sequence optimization for buckling of laminated plates by integer programming
NASA Technical Reports Server (NTRS)
Haftka, Raphael T.; Walsh, Joanne L.
1991-01-01
Integer-programming formulations for the design of symmetric and balanced laminated plates under biaxial compression are presented. Both maximization of buckling load for a given total thickness and the minimization of total thickness subject to a buckling constraint are formulated. The design variables that define the stacking sequence of the laminate are zero-one integers. It is shown that the formulation results in a linear optimization problem that can be solved on readily available software. This is in contrast to the continuous case, where the design variables are the thicknesses of layers with specified ply orientations, and the optimization problem is nonlinear. Constraints on the stacking sequence such as a limit on the number of contiguous plies of the same orientation and limits on in-plane stiffnesses are easily accommodated. Examples are presented for graphite-epoxy plates under uniaxial and biaxial compression using a commercial software package based on the branch-and-bound algorithm.
Inverse halftoning via robust nonlinear filtering
NASA Astrophysics Data System (ADS)
Shen, Mei-Yin; Kuo, C.-C. Jay
1999-10-01
A new blind inverse halftoning algorithm based on a nonlinear filtering technique of low computational complexity and low memory requirement is proposed in this research. It is called blind since we do not require the knowledge of the halftone kernel. The proposed scheme performs nonlinear filtering in conjunction with edge enhancement to improve the quality of an inverse halftoned image. Distinct features of the proposed approach include: efficiently smoothing halftone patterns in large homogeneous areas, additional edge enhancement capability to recover the edge quality and an excellent PSNR performance with only local integer operations and a small memory buffer.
Stability Analysis of Distributed Order Fractional Chen System
Aminikhah, H.; Refahi Sheikhani, A.; Rezazadeh, H.
2013-01-01
We first investigate sufficient and necessary conditions of stability of nonlinear distributed order fractional system and then we generalize the integer-order Chen system into the distributed order fractional domain. Based on the asymptotic stability theory of nonlinear distributed order fractional systems, the stability of distributed order fractional Chen system is discussed. In addition, we have found that chaos exists in the double fractional order Chen system. Numerical solutions are used to verify the analytical results. PMID:24489508
Mixed Integer Linear Programming model for Crude Palm Oil Supply Chain Planning
NASA Astrophysics Data System (ADS)
Sembiring, Pasukat; Mawengkang, Herman; Sadyadharma, Hendaru; Bu'ulolo, F.; Fajriana
2018-01-01
The production process of crude palm oil (CPO) can be defined as the milling process of raw materials, called fresh fruit bunch (FFB) into end products palm oil. The process usually through a series of steps producing and consuming intermediate products. The CPO milling industry considered in this paper does not have oil palm plantation, therefore the FFB are supplied by several public oil palm plantations. Due to the limited availability of FFB, then it is necessary to choose from which plantations would be appropriate. This paper proposes a mixed integer linear programming model the supply chain integrated problem, which include waste processing. The mathematical programming model is solved using neighborhood search approach.
Alternative mathematical programming formulations for FSS synthesis
NASA Technical Reports Server (NTRS)
Reilly, C. H.; Mount-Campbell, C. A.; Gonsalvez, D. J. A.; Levis, C. A.
1986-01-01
A variety of mathematical programming models and two solution strategies are suggested for the problem of allocating orbital positions to (synthesizing) satellites in the Fixed Satellite Service. Mixed integer programming and almost linear programming formulations are presented in detail for each of two objectives: (1) positioning satellites as closely as possible to specified desired locations, and (2) minimizing the total length of the geostationary arc allocated to the satellites whose positions are to be determined. Computational results for mixed integer and almost linear programming models, with the objective of positioning satellites as closely as possible to their desired locations, are reported for three six-administration test problems and a thirteen-administration test problem.
A Mixed Integer Linear Programming Approach to Electrical Stimulation Optimization Problems.
Abouelseoud, Gehan; Abouelseoud, Yasmine; Shoukry, Amin; Ismail, Nour; Mekky, Jaidaa
2018-02-01
Electrical stimulation optimization is a challenging problem. Even when a single region is targeted for excitation, the problem remains a constrained multi-objective optimization problem. The constrained nature of the problem results from safety concerns while its multi-objectives originate from the requirement that non-targeted regions should remain unaffected. In this paper, we propose a mixed integer linear programming formulation that can successfully address the challenges facing this problem. Moreover, the proposed framework can conclusively check the feasibility of the stimulation goals. This helps researchers to avoid wasting time trying to achieve goals that are impossible under a chosen stimulation setup. The superiority of the proposed framework over alternative methods is demonstrated through simulation examples.
Random crystal field effects on the integer and half-integer mixed-spin system
NASA Astrophysics Data System (ADS)
Yigit, Ali; Albayrak, Erhan
2018-05-01
In this work, we have focused on the random crystal field effects on the phase diagrams of the mixed spin-1 and spin-5/2 Ising system obtained by utilizing the exact recursion relations (ERR) on the Bethe lattice (BL). The distribution function P(Di) = pδ [Di - D(1 + α) ] +(1 - p) δ [Di - D(1 - α) ] is used to randomize the crystal field.The phase diagrams are found to exhibit second- and first-order phase transitions depending on the values of α, D and p. It is also observed that the model displays tricritical point, isolated point, critical end point and three compensation temperatures for suitable values of the system parameters.
Menu-Driven Solver Of Linear-Programming Problems
NASA Technical Reports Server (NTRS)
Viterna, L. A.; Ferencz, D.
1992-01-01
Program assists inexperienced user in formulating linear-programming problems. A Linear Program Solver (ALPS) computer program is full-featured LP analysis program. Solves plain linear-programming problems as well as more-complicated mixed-integer and pure-integer programs. Also contains efficient technique for solution of purely binary linear-programming problems. Written entirely in IBM's APL2/PC software, Version 1.01. Packed program contains licensed material, property of IBM (copyright 1988, all rights reserved).
Mixed-Integer Conic Linear Programming: Challenges and Perspectives
2013-10-01
The novel DCCs for MISOCO may be used in branch- and-cut algorithms when solving MISOCO problems. The experimental software CICLO was developed to...perform limited, but rigorous computational experiments. The CICLO solver utilizes continuous SOCO solvers, MOSEK, CPLES or SeDuMi, builds on the open...submitted Fall 2013. Software: 1. CICLO : Integer conic linear optimization package. Authors: J.C. Góez, T.K. Ralphs, Y. Fu, and T. Terlaky
Lyapunov functions for a class of nonlinear systems using Caputo derivative
NASA Astrophysics Data System (ADS)
Fernandez-Anaya, G.; Nava-Antonio, G.; Jamous-Galante, J.; Muñoz-Vega, R.; Hernández-Martínez, E. G.
2017-02-01
This paper presents an extension of recent results that allow proving the stability of Caputo nonlinear and time-varying systems, by means of the fractional order Lyapunov direct method, using quadratic Lyapunov functions. This article introduces a new way of building polynomial Lyapunov functions of any positive integer order as a way of determining the stability of a greater variety of systems when the order of the derivative is 0 < α < 1. Some examples are given to validate these results.
Advances in fractal germanium micro/nanoclusters induced by gold: microstructures and properties.
Chen, Zhiwen; Shek, Chan-Hung; Wu, C M Lawrence; Lai, Joseph K L
2014-02-01
Germanium materials are a class of unique semiconductor materials with widespread technological applications because of their valuable semiconducting, electrical, optical, and thermoelectric power properties in the fields of macro/mesoscopic materials and micro/nanodevices. In this review, we describe the efforts toward understanding the microstructures and various properties of the fractal germanium micro/nanoclusters induced by gold prepared by high vacuum thermal evaporation techniques, highlighting contributions from our laboratory. First, we present the integer and non-integer dimensional germanium micro/nanoclusters such as nanoparticles, nanorings, and nanofractals induced by gold and annealing. In particular, the nonlinear electrical behavior of a gold/germanium bilayer film with the interesting nanofractal is discussed in detail. In addition, the third-order optical nonlinearities of the fractal germanium nanocrystals embedded in gold matrix will be summarized by using the sensitive and reliable Z-scan techniques aimed to determine the nonlinear absorption coefficient and nonlinear refractive index. Finally, we emphasize the thermoelectric power properties of the gold/germanium bilayer films. The thermoelectric power measurement is considered to be a more effective method than the conductivity for investigating superlocalization in a percolating system. This research may provide a novel insight to modulate their competent performance and promote rational design of micro/nanodevices. Once mastered, germanium thin films with a variety of fascinating micro/nanoclusters will offer vast and unforeseen opportunities in the semiconductor industry as well as in other fields of science and technology.
Fate of a gray soliton in a quenched Bose-Einstein condensate
NASA Astrophysics Data System (ADS)
Gamayun, O.; Bezvershenko, Yu. V.; Cheianov, V.
2015-03-01
We investigate the destiny of a gray soliton in a repulsive one-dimensional Bose-Einstein condensate undergoing a sudden quench of the nonlinearity parameter. The outcome of the quench is found to depend dramatically on the ratio η of the final and initial values of the speed of sound. For integer η the soliton splits into exactly 2 η -1 solitons. For noninteger η the soliton decays into multiple solitons and Bogoliubov modes. The case of integer η is analyzed in detail. The parameters of solitons in the out state are found explicitly. Our approach exploits the inverse scattering method and can be easily used for similar quenches in any classical integrable system.
Complex motion of a vehicle through a series of signals controlled by power-law phase
NASA Astrophysics Data System (ADS)
Nagatani, Takashi
2017-07-01
We study the dynamic motion of a vehicle moving through the series of traffic signals controlled by the position-dependent phase of power law. All signals are controlled by both cycle time and position-dependent phase. The dynamic model of the vehicular motion is described in terms of the nonlinear map. The vehicular motion varies in a complex manner by varying cycle time for various values of the power of the position-dependent phase. The vehicle displays the periodic motion with a long cycle for the integer power of the phase, while the vehicular motion exhibits the very complex behavior for the non-integer power of the phase.
Integration of progressive hedging and dual decomposition in stochastic integer programs
Watson, Jean -Paul; Guo, Ge; Hackebeil, Gabriel; ...
2015-04-07
We present a method for integrating the Progressive Hedging (PH) algorithm and the Dual Decomposition (DD) algorithm of Carøe and Schultz for stochastic mixed-integer programs. Based on the correspondence between lower bounds obtained with PH and DD, a method to transform weights from PH to Lagrange multipliers in DD is found. Fast progress in early iterations of PH speeds up convergence of DD to an exact solution. As a result, we report computational results on server location and unit commitment instances.
Aerospace applications of integer and combinatorial optimization
NASA Technical Reports Server (NTRS)
Padula, S. L.; Kincaid, R. K.
1995-01-01
Research supported by NASA Langley Research Center includes many applications of aerospace design optimization and is conducted by teams of applied mathematicians and aerospace engineers. This paper investigates the benefits from this combined expertise in solving combinatorial optimization problems. Applications range from the design of large space antennas to interior noise control. A typical problem, for example, seeks the optimal locations for vibration-damping devices on a large space structure and is expressed as a mixed/integer linear programming problem with more than 1500 design variables.
Pattern Formation and Complexity Emergence
NASA Astrophysics Data System (ADS)
Berezin, Alexander A.
2001-03-01
Success of nonlinear modelling of pattern formation and self-organization encourages speculations on informational and number theoretical foundations of complexity emergence. Pythagorean "unreasonable effectiveness of integers" in natural processes is perhaps extrapolatable even to universal emergence "out-of-nothing" (Leibniz, Wheeler). Because rational numbers (R = M/N) are everywhere dense on real axis, any digital string (hence any "book" from "Library of Babel" of J.L.Borges) is "recorded" infinitely many times in arbitrary many rationals. Furthermore, within any arbitrary small interval there are infinitely many Rs for which (either or both) integers (Ms and Ns) "carry" any given string of any given length. Because any iterational process (such as generation of fractal features of Mandelbrot Set) is arbitrary closely approximatable with rational numbers, the infinite pattern of integers expresses itself in generation of complexity of the world, as well as in emergence of the world itself. This "tunnelling" from Platonic World ("Platonia" of J.Barbour) to a real (physical) world is modern recast of Leibniz's motto ("for deriving all from nothing there suffices a single principle").
A Hybrid Tabu Search Heuristic for a Bilevel Competitive Facility Location Model
NASA Astrophysics Data System (ADS)
Küçükaydın, Hande; Aras, Necati; Altınel, I. Kuban
We consider a problem in which a firm or franchise enters a market by locating new facilities where there are existing facilities belonging to a competitor. The firm aims at finding the location and attractiveness of each facility to be opened so as to maximize its profit. The competitor, on the other hand, can react by adjusting the attractiveness of its existing facilities, opening new facilities and/or closing existing ones with the objective of maximizing its own profit. The demand is assumed to be aggregated at certain points in the plane and the facilities of the firm can be located at prespecified candidate sites. We employ Huff's gravity-based rule in modeling the behavior of the customers where the fraction of customers at a demand point that visit a certain facility is proportional to the facility attractiveness and inversely proportional to the distance between the facility site and demand point. We formulate a bilevel mixed-integer nonlinear programming model where the firm entering the market is the leader and the competitor is the follower. In order to find a feasible solution of this model, we develop a hybrid tabu search heuristic which makes use of two exact methods as subroutines: a gradient ascent method and a branch-and-bound algorithm with nonlinear programming relaxation.
The Efficiency of Split Panel Designs in an Analysis of Variance Model
Wang, Wei-Guo; Liu, Hai-Jun
2016-01-01
We consider split panel design efficiency in analysis of variance models, that is, the determination of the cross-sections series optimal proportion in all samples, to minimize parametric best linear unbiased estimators of linear combination variances. An orthogonal matrix is constructed to obtain manageable expression of variances. On this basis, we derive a theorem for analyzing split panel design efficiency irrespective of interest and budget parameters. Additionally, relative estimator efficiency based on the split panel to an estimator based on a pure panel or a pure cross-section is present. The analysis shows that the gains from split panel can be quite substantial. We further consider the efficiency of split panel design, given a budget, and transform it to a constrained nonlinear integer programming. Specifically, an efficient algorithm is designed to solve the constrained nonlinear integer programming. Moreover, we combine one at time designs and factorial designs to illustrate the algorithm’s efficiency with an empirical example concerning monthly consumer expenditure on food in 1985, in the Netherlands, and the efficient ranges of the algorithm parameters are given to ensure a good solution. PMID:27163447
Adaptive Resampling Particle Filters for GPS Carrier-Phase Navigation and Collision Avoidance System
NASA Astrophysics Data System (ADS)
Hwang, Soon Sik
This dissertation addresses three problems: 1) adaptive resampling technique (ART) for Particle Filters, 2) precise relative positioning using Global Positioning System (GPS) Carrier-Phase (CP) measurements applied to nonlinear integer resolution problem for GPS CP navigation using Particle Filters, and 3) collision detection system based on GPS CP broadcasts. First, Monte Carlo filters, called Particle Filters (PF), are widely used where the system is non-linear and non-Gaussian. In real-time applications, their estimation accuracies and efficiencies are significantly affected by the number of particles and the scheduling of relocating weights and samples, the so-called resampling step. In this dissertation, the appropriate number of particles is estimated adaptively such that the error of the sample mean and variance stay in bounds. These bounds are given by the confidence interval of a normal probability distribution for a multi-variate state. Two required number of samples maintaining the mean and variance error within the bounds are derived. The time of resampling is determined when the required sample number for the variance error crosses the required sample number for the mean error. Second, the PF using GPS CP measurements with adaptive resampling is applied to precise relative navigation between two GPS antennas. In order to make use of CP measurements for navigation, the unknown number of cycles between GPS antennas, the so called integer ambiguity, should be resolved. The PF is applied to this integer ambiguity resolution problem where the relative navigation states estimation involves nonlinear observations and nonlinear dynamics equation. Using the PF, the probability density function of the states is estimated by sampling from the position and velocity space and the integer ambiguities are resolved without using the usual hypothesis tests to search for the integer ambiguity. The ART manages the number of position samples and the frequency of the resampling step for real-time kinematics GPS navigation. The experimental results demonstrate the performance of the ART and the insensitivity of the proposed approach to GPS CP cycle-slips. Third, the GPS has great potential for the development of new collision avoidance systems and is being considered for the next generation Traffic alert and Collision Avoidance System (TCAS). The current TCAS equipment, is capable of broadcasting GPS code information to nearby airplanes, and also, the collision avoidance system using the navigation information based on GPS code has been studied by researchers. In this dissertation, the aircraft collision detection system using GPS CP information is addressed. The PF with position samples is employed for the CP based relative position estimation problem and the same algorithm can be used to determine the vehicle attitude if multiple GPS antennas are used. For a reliable and enhanced collision avoidance system, three dimensional trajectories are projected using the estimates of the relative position, velocity, and the attitude. It is shown that the performance of GPS CP based collision detecting algorithm meets the accuracy requirements for a precise approach of flight for auto landing with significantly less unnecessary collision false alarms and no miss alarms.
Fractional Order and Dynamic Simulation of a System Involving an Elastic Wide Plate
NASA Astrophysics Data System (ADS)
David, S. A.; Balthazar, J. M.; Julio, B. H. S.; Oliveira, C.
2011-09-01
Numerous researchers have studied about nonlinear dynamics in several areas of science and engineering. However, in most cases, these concepts have been explored mainly from the standpoint of analytical and computational methods involving integer order calculus (IOC). In this paper we have examined the dynamic behavior of an elastic wide plate induced by two electromagnets of a point of view of the fractional order calculus (FOC). The primary focus of this study is on to help gain a better understanding of nonlinear dynamic in fractional order systems.
NASA Astrophysics Data System (ADS)
Sakakibara, Kazutoshi; Tian, Yajie; Nishikawa, Ikuko
We discuss the planning of transportation by trucks over a multi-day period. Each truck collects loads from suppliers and delivers them to assembly plants or a truck terminal. By exploiting the truck terminal as a temporal storage, we aim to increase the load ratio of each truck and to minimize the lead time for transportation. In this paper, we show a mixed integer programming model which represents each product explicitly, and discuss the decomposition of the problem into a problem of delivery and storage, and a problem of vehicle routing. Based on this model, we propose a relax-and-fix type heuristic in which decision variables are fixed one by one by mathematical programming techniques such as branch-and-bound methods.
Modeling Road Vulnerability to Snow Using Mixed Integer Optimization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rodriguez, Tony K; Omitaomu, Olufemi A; Ostrowski, James A
As the number and severity of snowfall events continue to grow, the need to intelligently direct road maintenance during these snowfall events will also grow. In several locations, local governments lack the resources to completely treat all roadways during snow events. Furthermore, some governments utilize only traffic data to determine which roads should be treated. As a result, many schools, businesses, and government offices must be unnecessarily closed, which directly impacts the social, educational, and economic well-being of citizens and institutions. In this work, we propose a mixed integer programming formulation to optimally allocate resources to manage snowfall on roadsmore » using meteorological, geographical, and environmental parameters. Additionally, we evaluate the impacts of an increase in budget for winter road maintenance on snow control resources.« less
Advances in mixed-integer programming methods for chemical production scheduling.
Velez, Sara; Maravelias, Christos T
2014-01-01
The goal of this paper is to critically review advances in the area of chemical production scheduling over the past three decades and then present two recently proposed solution methods that have led to dramatic computational enhancements. First, we present a general framework and problem classification and discuss modeling and solution methods with an emphasis on mixed-integer programming (MIP) techniques. Second, we present two solution methods: (a) a constraint propagation algorithm that allows us to compute parameters that are then used to tighten MIP scheduling models and (b) a reformulation that introduces new variables, thus leading to effective branching. We also present computational results and an example illustrating how these methods are implemented, as well as the resulting enhancements. We close with a discussion of open research challenges and future research directions.
Implementation of software-based sensor linearization algorithms on low-cost microcontrollers.
Erdem, Hamit
2010-10-01
Nonlinear sensors and microcontrollers are used in many embedded system designs. As the input-output characteristic of most sensors is nonlinear in nature, obtaining data from a nonlinear sensor by using an integer microcontroller has always been a design challenge. This paper discusses the implementation of six software-based sensor linearization algorithms for low-cost microcontrollers. The comparative study of the linearization algorithms is performed by using a nonlinear optical distance-measuring sensor. The performance of the algorithms is examined with respect to memory space usage, linearization accuracy and algorithm execution time. The implementation and comparison results can be used for selection of a linearization algorithm based on the sensor transfer function, expected linearization accuracy and microcontroller capacity. Copyright © 2010 ISA. Published by Elsevier Ltd. All rights reserved.
Optimal design of zero-water discharge rinsing systems.
Thöming, Jorg
2002-03-01
This paper is about zero liquid discharge in processes that use water for rinsing. Emphasis was given to those systems that contaminate process water with valuable process liquor and compounds. The approach involved the synthesis of optimal rinsing and recycling networks (RRN) that had a priori excluded water discharge. The total annualized costs of the RRN were minimized by the use of a mixed-integer nonlinear program (MINLP). This MINLP was based on a hyperstructure of the RRN and contained eight counterflow rinsing stages and three regenerator units: electrodialysis, reverse osmosis, and ion exchange columns. A "large-scale nickel plating process" case study showed that by means of zero-water discharge and optimized rinsing the total waste could be reduced by 90.4% at a revenue of $448,000/yr. Furthermore, with the optimized RRN, the rinsing performance can be improved significantly at a low-cost increase. In all the cases, the amount of valuable compounds reclaimed was above 99%.
Mathematical programming formulations for satellite synthesis
NASA Technical Reports Server (NTRS)
Bhasin, Puneet; Reilly, Charles H.
1987-01-01
The problem of satellite synthesis can be described as optimally allotting locations and sometimes frequencies and polarizations, to communication satellites so that interference from unwanted satellite signals does not exceed a specified threshold. In this report, mathematical programming models and optimization methods are used to solve satellite synthesis problems. A nonlinear programming formulation which is solved using Zoutendijk's method and a gradient search method is described. Nine mixed integer programming models are considered. Results of computer runs with these nine models and five geographically compatible scenarios are presented and evaluated. A heuristic solution procedure is also used to solve two of the models studied. Heuristic solutions to three large synthesis problems are presented. The results of our analysis show that the heuristic performs very well, both in terms of solution quality and solution time, on the two models to which it was applied. It is concluded that the heuristic procedure is the best of the methods considered for solving satellite synthesis problems.
Optimizing Constrained Single Period Problem under Random Fuzzy Demand
NASA Astrophysics Data System (ADS)
Taleizadeh, Ata Allah; Shavandi, Hassan; Riazi, Afshin
2008-09-01
In this paper, we consider the multi-product multi-constraint newsboy problem with random fuzzy demands and total discount. The demand of the products is often stochastic in the real word but the estimation of the parameters of distribution function may be done by fuzzy manner. So an appropriate option to modeling the demand of products is using the random fuzzy variable. The objective function of proposed model is to maximize the expected profit of newsboy. We consider the constraints such as warehouse space and restriction on quantity order for products, and restriction on budget. We also consider the batch size for products order. Finally we introduce a random fuzzy multi-product multi-constraint newsboy problem (RFM-PM-CNP) and it is changed to a multi-objective mixed integer nonlinear programming model. Furthermore, a hybrid intelligent algorithm based on genetic algorithm, Pareto and TOPSIS is presented for the developed model. Finally an illustrative example is presented to show the performance of the developed model and algorithm.
Optimal satisfaction degree in energy harvesting cognitive radio networks
NASA Astrophysics Data System (ADS)
Li, Zan; Liu, Bo-Yang; Si, Jiang-Bo; Zhou, Fu-Hui
2015-12-01
A cognitive radio (CR) network with energy harvesting (EH) is considered to improve both spectrum efficiency and energy efficiency. A hidden Markov model (HMM) is used to characterize the imperfect spectrum sensing process. In order to maximize the whole satisfaction degree (WSD) of the cognitive radio network, a tradeoff between the average throughput of the secondary user (SU) and the interference to the primary user (PU) is analyzed. We formulate the satisfaction degree optimization problem as a mixed integer nonlinear programming (MINLP) problem. The satisfaction degree optimization problem is solved by using differential evolution (DE) algorithm. The proposed optimization problem allows the network to adaptively achieve the optimal solution based on its required quality of service (Qos). Numerical results are given to verify our analysis. Project supported by the National Natural Science Foundation of China (Grant No. 61301179), the Doctorial Programs Foundation of the Ministry of Education of China (Grant No. 20110203110011), and the 111 Project (Grant No. B08038).
Wang, S; Huang, G H
2013-03-15
Flood disasters have been extremely severe in recent decades, and they account for about one third of all natural catastrophes throughout the world. In this study, a two-stage mixed-integer fuzzy programming with interval-valued membership functions (TMFP-IMF) approach is developed for flood-diversion planning under uncertainty. TMFP-IMF integrates the fuzzy flexible programming, two-stage stochastic programming, and integer programming within a general framework. A concept of interval-valued fuzzy membership function is introduced to address complexities of system uncertainties. TMFP-IMF can not only deal with uncertainties expressed as fuzzy sets and probability distributions, but also incorporate pre-regulated water-diversion policies directly into its optimization process. TMFP-IMF is applied to a hypothetical case study of flood-diversion planning for demonstrating its applicability. Results indicate that reasonable solutions can be generated for binary and continuous variables. A variety of flood-diversion and capacity-expansion schemes can be obtained under four scenarios, which enable decision makers (DMs) to identify the most desired one based on their perceptions and attitudes towards the objective-function value and constraints. Copyright © 2013 Elsevier Ltd. All rights reserved.
Special class of nonlinear damping models in flexible space structures
NASA Technical Reports Server (NTRS)
Hu, Anren; Singh, Ramendra P.; Taylor, Lawrence W.
1991-01-01
A special class of nonlinear damping models is investigated in which the damping force is proportional to the product of positive integer or the fractional power of the absolute values of displacement and velocity. For a one-degree-of-freedom system, the classical Krylov-Bogoliubov 'averaging' method is used, whereas for a distributed system, both an ad hoc perturbation technique and the finite difference method are employed to study the effects of nonlinear damping. The results are compared with linear viscous damping models. The amplitude decrement of free vibration for a single mode system with nonlinear models depends not only on the damping ratio but also on the initial amplitude, the time to measure the response, the frequency of the system, and the powers of displacement and velocity. For the distributed system, the action of nonlinear damping is found to reduce the energy of the system and to pass energy to lower modes.
Vortex and half-vortex dynamics in a nonlinear spinor quantum fluid
Dominici, Lorenzo; Dagvadorj, Galbadrakh; Fellows, Jonathan M.; Ballarini, Dario; De Giorgi, Milena; Marchetti, Francesca M.; Piccirillo, Bruno; Marrucci, Lorenzo; Bramati, Alberto; Gigli, Giuseppe; Szymańska, Marzena H.; Sanvitto, Daniele
2015-01-01
Vortices are archetypal objects that recur in the universe across the scale of complexity, from subatomic particles to galaxies and black holes. Their appearance is connected with spontaneous symmetry breaking and phase transitions. In Bose-Einstein condensates and superfluids, vortices are both point-like and quantized quasiparticles. We use a two-dimensional (2D) fluid of polaritons, bosonic particles constituted by hybrid photonic and electronic oscillations, to study quantum vortex dynamics. Polaritons benefit from easiness of wave function phase detection, a spinor nature sustaining half-integer vorticity, strong nonlinearity, and tuning of the background disorder. We can directly generate by resonant pulsed excitations a polariton condensate carrying either a full or half-integer vortex as initial condition and follow their coherent evolution using ultrafast imaging on the picosecond scale. The observations highlight a rich phenomenology, such as the spiraling of the half-vortex and the joint path of the twin charges of a full vortex, until the moment of their splitting. Furthermore, we observe the ordered branching into newly generated secondary couples, associated with the breaking of radial and azimuthal symmetries. This allows us to devise the interplay of nonlinearity and sample disorder in shaping the fluid and driving the vortex dynamics. In addition, our observations suggest that phase singularities may be seen as fundamental particles whose quantized events span from pair creation and recombination to 2D+t topological vortex strings. PMID:26665174
Vortex and half-vortex dynamics in a nonlinear spinor quantum fluid.
Dominici, Lorenzo; Dagvadorj, Galbadrakh; Fellows, Jonathan M; Ballarini, Dario; De Giorgi, Milena; Marchetti, Francesca M; Piccirillo, Bruno; Marrucci, Lorenzo; Bramati, Alberto; Gigli, Giuseppe; Szymańska, Marzena H; Sanvitto, Daniele
2015-12-01
Vortices are archetypal objects that recur in the universe across the scale of complexity, from subatomic particles to galaxies and black holes. Their appearance is connected with spontaneous symmetry breaking and phase transitions. In Bose-Einstein condensates and superfluids, vortices are both point-like and quantized quasiparticles. We use a two-dimensional (2D) fluid of polaritons, bosonic particles constituted by hybrid photonic and electronic oscillations, to study quantum vortex dynamics. Polaritons benefit from easiness of wave function phase detection, a spinor nature sustaining half-integer vorticity, strong nonlinearity, and tuning of the background disorder. We can directly generate by resonant pulsed excitations a polariton condensate carrying either a full or half-integer vortex as initial condition and follow their coherent evolution using ultrafast imaging on the picosecond scale. The observations highlight a rich phenomenology, such as the spiraling of the half-vortex and the joint path of the twin charges of a full vortex, until the moment of their splitting. Furthermore, we observe the ordered branching into newly generated secondary couples, associated with the breaking of radial and azimuthal symmetries. This allows us to devise the interplay of nonlinearity and sample disorder in shaping the fluid and driving the vortex dynamics. In addition, our observations suggest that phase singularities may be seen as fundamental particles whose quantized events span from pair creation and recombination to 2D+t topological vortex strings.
Effects of low sampling rate in the digital data-transition tracking loop
NASA Technical Reports Server (NTRS)
Mileant, A.; Million, S.; Hinedi, S.
1994-01-01
This article describes the performance of the all-digital data-transition tracking loop (DTTL) with coherent and noncoherent sampling using nonlinear theory. The effects of few samples per symbol and of noncommensurate sampling and symbol rates are addressed and analyzed. Their impact on the probability density and variance of the phase error are quantified through computer simulations. It is shown that the performance of the all-digital DTTL approaches its analog counterpart when the sampling and symbol rates are noncommensurate (i.e., the number of samples per symbol is an irrational number). The loop signal-to-noise ratio (SNR) (inverse of phase error variance) degrades when the number of samples per symbol is an odd integer but degrades even further for even integers.
Topology versus Anderson localization: Nonperturbative solutions in one dimension
NASA Astrophysics Data System (ADS)
Altland, Alexander; Bagrets, Dmitry; Kamenev, Alex
2015-02-01
We present an analytic theory of quantum criticality in quasi-one-dimensional topological Anderson insulators. We describe these systems in terms of two parameters (g ,χ ) representing localization and topological properties, respectively. Certain critical values of χ (half-integer for Z classes, or zero for Z2 classes) define phase boundaries between distinct topological sectors. Upon increasing system size, the two parameters exhibit flow similar to the celebrated two-parameter flow of the integer quantum Hall insulator. However, unlike the quantum Hall system, an exact analytical description of the entire phase diagram can be given in terms of the transfer-matrix solution of corresponding supersymmetric nonlinear sigma models. In Z2 classes we uncover a hidden supersymmetry, present at the quantum critical point.
A Mixed-Integer Linear Programming Problem which is Efficiently Solvable.
1987-10-01
INTEGER LINEAR PROGRAMMING PROBLEM WHICH IS EFFICIENTLY SOLVABLE 12. PERSONAL AUTHOR(S) Leiserson, Charles, and Saxe, James B. 13a. TYPE OF REPORT j13b TIME...ger prongramn rg versions or the problem is not ac’hievable in genieral for sparse inistancves of’ P rolem(r Mi. Th le remrai nder or thris paper is...rClazes c:oIh edge (i,I*) by comlpli urg +- rnirr(z 3, ,x + a,j). A sirnI) le analysis (11 vto Nei [131 indicates why whe Iellinan-Ford algorithm works
Diophantine Equations as a Context for Technology-Enhanced Training in Conjecturing and Proving
ERIC Educational Resources Information Center
Abramovich, Sergei; Sugden, Stephen J.
2008-01-01
Solving indeterminate algebraic equations in integers is a classic topic in the mathematics curricula across grades. At the undergraduate level, the study of solutions of non-linear equations of this kind can be motivated by the use of technology. This article shows how the unity of geometric contextualization and spreadsheet-based amplification…
Two Related Parametric Integrals
ERIC Educational Resources Information Center
Dana-Picard, T.
2007-01-01
Two related sequences of definite integrals are considered. By mixing hand-work, computer algebra system assistance and websurfing, fine connections can be studied between integrals and a couple of interesting sequences of integers. (Contains 4 tables.)
Li, Zukui; Ding, Ran; Floudas, Christodoulos A.
2011-01-01
Robust counterpart optimization techniques for linear optimization and mixed integer linear optimization problems are studied in this paper. Different uncertainty sets, including those studied in literature (i.e., interval set; combined interval and ellipsoidal set; combined interval and polyhedral set) and new ones (i.e., adjustable box; pure ellipsoidal; pure polyhedral; combined interval, ellipsoidal, and polyhedral set) are studied in this work and their geometric relationship is discussed. For uncertainty in the left hand side, right hand side, and objective function of the optimization problems, robust counterpart optimization formulations induced by those different uncertainty sets are derived. Numerical studies are performed to compare the solutions of the robust counterpart optimization models and applications in refinery production planning and batch process scheduling problem are presented. PMID:21935263
Guo, P; Huang, G H
2009-01-01
In this study, an inexact fuzzy chance-constrained two-stage mixed-integer linear programming (IFCTIP) approach is proposed for supporting long-term planning of waste-management systems under multiple uncertainties in the City of Regina, Canada. The method improves upon the existing inexact two-stage programming and mixed-integer linear programming techniques by incorporating uncertainties expressed as multiple uncertainties of intervals and dual probability distributions within a general optimization framework. The developed method can provide an effective linkage between the predefined environmental policies and the associated economic implications. Four special characteristics of the proposed method make it unique compared with other optimization techniques that deal with uncertainties. Firstly, it provides a linkage to predefined policies that have to be respected when a modeling effort is undertaken; secondly, it is useful for tackling uncertainties presented as intervals, probabilities, fuzzy sets and their incorporation; thirdly, it facilitates dynamic analysis for decisions of facility-expansion planning and waste-flow allocation within a multi-facility, multi-period, multi-level, and multi-option context; fourthly, the penalties are exercised with recourse against any infeasibility, which permits in-depth analyses of various policy scenarios that are associated with different levels of economic consequences when the promised solid waste-generation rates are violated. In a companion paper, the developed method is applied to a real case for the long-term planning of waste management in the City of Regina, Canada.
Egea, Jose A; Henriques, David; Cokelaer, Thomas; Villaverde, Alejandro F; MacNamara, Aidan; Danciu, Diana-Patricia; Banga, Julio R; Saez-Rodriguez, Julio
2014-05-10
Optimization is the key to solving many problems in computational biology. Global optimization methods, which provide a robust methodology, and metaheuristics in particular have proven to be the most efficient methods for many applications. Despite their utility, there is a limited availability of metaheuristic tools. We present MEIGO, an R and Matlab optimization toolbox (also available in Python via a wrapper of the R version), that implements metaheuristics capable of solving diverse problems arising in systems biology and bioinformatics. The toolbox includes the enhanced scatter search method (eSS) for continuous nonlinear programming (cNLP) and mixed-integer programming (MINLP) problems, and variable neighborhood search (VNS) for Integer Programming (IP) problems. Additionally, the R version includes BayesFit for parameter estimation by Bayesian inference. The eSS and VNS methods can be run on a single-thread or in parallel using a cooperative strategy. The code is supplied under GPLv3 and is available at http://www.iim.csic.es/~gingproc/meigo.html. Documentation and examples are included. The R package has been submitted to BioConductor. We evaluate MEIGO against optimization benchmarks, and illustrate its applicability to a series of case studies in bioinformatics and systems biology where it outperforms other state-of-the-art methods. MEIGO provides a free, open-source platform for optimization that can be applied to multiple domains of systems biology and bioinformatics. It includes efficient state of the art metaheuristics, and its open and modular structure allows the addition of further methods.
2014-01-01
Background Optimization is the key to solving many problems in computational biology. Global optimization methods, which provide a robust methodology, and metaheuristics in particular have proven to be the most efficient methods for many applications. Despite their utility, there is a limited availability of metaheuristic tools. Results We present MEIGO, an R and Matlab optimization toolbox (also available in Python via a wrapper of the R version), that implements metaheuristics capable of solving diverse problems arising in systems biology and bioinformatics. The toolbox includes the enhanced scatter search method (eSS) for continuous nonlinear programming (cNLP) and mixed-integer programming (MINLP) problems, and variable neighborhood search (VNS) for Integer Programming (IP) problems. Additionally, the R version includes BayesFit for parameter estimation by Bayesian inference. The eSS and VNS methods can be run on a single-thread or in parallel using a cooperative strategy. The code is supplied under GPLv3 and is available at http://www.iim.csic.es/~gingproc/meigo.html. Documentation and examples are included. The R package has been submitted to BioConductor. We evaluate MEIGO against optimization benchmarks, and illustrate its applicability to a series of case studies in bioinformatics and systems biology where it outperforms other state-of-the-art methods. Conclusions MEIGO provides a free, open-source platform for optimization that can be applied to multiple domains of systems biology and bioinformatics. It includes efficient state of the art metaheuristics, and its open and modular structure allows the addition of further methods. PMID:24885957
Study of travelling wave solutions for some special-type nonlinear evolution equations
NASA Astrophysics Data System (ADS)
Song, Junquan; Hu, Lan; Shen, Shoufeng; Ma, Wen-Xiu
2018-07-01
The tanh-function expansion method has been improved and used to construct travelling wave solutions of the form U={\\sum }j=0n{a}j{\\tanh }jξ for some special-type nonlinear evolution equations, which have a variety of physical applications. The positive integer n can be determined by balancing the highest order linear term with the nonlinear term in the evolution equations. We improve the tanh-function expansion method with n = 0 by introducing a new transform U=-W\\prime (ξ )/{W}2. A nonlinear wave equation with source terms, and mKdV-type equations, are considered in order to show the effectiveness of the improved scheme. We also propose the tanh-function expansion method of implicit function form, and apply it to a Harry Dym-type equation as an example.
The impact of case mix on timely access to appointments in a primary care group practice.
Ozen, Asli; Balasubramanian, Hari
2013-06-01
At the heart of the practice of primary care is the concept of a physician panel. A panel refers to the set of patients for whose long term, holistic care the physician is responsible. A physician's appointment burden is determined by the size and composition of the panel. Size refers to the number of patients in the panel while composition refers to the case-mix, or the type of patients (older versus younger, healthy versus chronic patients), in the panel. In this paper, we quantify the impact of the size and case-mix on the ability of a multi-provider practice to provide adequate access to its empanelled patients. We use overflow frequency, or the probability that the demand exceeds the capacity, as a measure of access. We formulate problem of minimizing the maximum overflow for a multi-physician practice as a non-linear integer programming problem and establish structural insights that enable us to create simple yet near optimal heuristic strategies to change panels. This optimization framework helps a practice: (1) quantify the imbalances across physicians due to the variation in case mix and panel size, and the resulting effect on access; and (2) determine how panels can be altered in the least disruptive way to improve access. We illustrate our methodology using four test practices created using patient level data from the primary care practice at Mayo Clinic, Rochester, Minnesota. An important advantage of our approach is that it can be implemented in an Excel Spreadsheet and used for aggregate level planning and panel management decisions.
Concurrent airline fleet allocation and aircraft design with profit modeling for multiple airlines
NASA Astrophysics Data System (ADS)
Govindaraju, Parithi
A "System of Systems" (SoS) approach is particularly beneficial in analyzing complex large scale systems comprised of numerous independent systems -- each capable of independent operations in their own right -- that when brought in conjunction offer capabilities and performance beyond the constituents of the individual systems. The variable resource allocation problem is a type of SoS problem, which includes the allocation of "yet-to-be-designed" systems in addition to existing resources and systems. The methodology presented here expands upon earlier work that demonstrated a decomposition approach that sought to simultaneously design a new aircraft and allocate this new aircraft along with existing aircraft in an effort to meet passenger demand at minimum fleet level operating cost for a single airline. The result of this describes important characteristics of the new aircraft. The ticket price model developed and implemented here enables analysis of the system using profit maximization studies instead of cost minimization. A multiobjective problem formulation has been implemented to determine characteristics of a new aircraft that maximizes the profit of multiple airlines to recognize the fact that aircraft manufacturers sell their aircraft to multiple customers and seldom design aircraft customized to a single airline's operations. The route network characteristics of two simple airlines serve as the example problem for the initial studies. The resulting problem formulation is a mixed-integer nonlinear programming problem, which is typically difficult to solve. A sequential decomposition strategy is applied as a solution methodology by segregating the allocation (integer programming) and aircraft design (non-linear programming) subspaces. After solving a simple problem considering two airlines, the decomposition approach is then applied to two larger airline route networks representing actual airline operations in the year 2005. The decomposition strategy serves as a promising technique for future detailed analyses. Results from the profit maximization studies favor a smaller aircraft in terms of passenger capacity due to its higher yield generation capability on shorter routes while results from the cost minimization studies favor a larger aircraft due to its lower direct operating cost per seat mile.
Yu, Xuefei; Lin, Liangzhuo; Shen, Jie; Chen, Zhi; Jian, Jun; Li, Bin; Xin, Sherman Xuegang
2018-01-01
The mean amplitude of glycemic excursions (MAGE) is an essential index for glycemic variability assessment, which is treated as a key reference for blood glucose controlling at clinic. However, the traditional "ruler and pencil" manual method for the calculation of MAGE is time-consuming and prone to error due to the huge data size, making the development of robust computer-aided program an urgent requirement. Although several software products are available instead of manual calculation, poor agreement among them is reported. Therefore, more studies are required in this field. In this paper, we developed a mathematical algorithm based on integer nonlinear programming. Following the proposed mathematical method, an open-code computer program named MAGECAA v1.0 was developed and validated. The results of the statistical analysis indicated that the developed program was robust compared to the manual method. The agreement among the developed program and currently available popular software is satisfied, indicating that the worry about the disagreement among different software products is not necessary. The open-code programmable algorithm is an extra resource for those peers who are interested in the related study on methodology in the future.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adams, Brian M.; Ebeida, Mohamed Salah; Eldred, Michael S
The Dakota (Design Analysis Kit for Optimization and Terascale Applications) toolkit provides a exible and extensible interface between simulation codes and iterative analysis methods. Dakota contains algorithms for optimization with gradient and nongradient-based methods; uncertainty quanti cation with sampling, reliability, and stochastic expansion methods; parameter estimation with nonlinear least squares methods; and sensitivity/variance analysis with design of experiments and parameter study methods. These capabilities may be used on their own or as components within advanced strategies such as surrogate-based optimization, mixed integer nonlinear programming, or optimization under uncertainty. By employing object-oriented design to implement abstractions of the key components requiredmore » for iterative systems analyses, the Dakota toolkit provides a exible and extensible problem-solving environment for design and performance analysis of computational models on high performance computers. This report serves as a theoretical manual for selected algorithms implemented within the Dakota software. It is not intended as a comprehensive theoretical treatment, since a number of existing texts cover general optimization theory, statistical analysis, and other introductory topics. Rather, this manual is intended to summarize a set of Dakota-related research publications in the areas of surrogate-based optimization, uncertainty quanti cation, and optimization under uncertainty that provide the foundation for many of Dakota's iterative analysis capabilities.« less
A multiobjective optimization framework for multicontaminant industrial water network design.
Boix, Marianne; Montastruc, Ludovic; Pibouleau, Luc; Azzaro-Pantel, Catherine; Domenech, Serge
2011-07-01
The optimal design of multicontaminant industrial water networks according to several objectives is carried out in this paper. The general formulation of the water allocation problem (WAP) is given as a set of nonlinear equations with binary variables representing the presence of interconnections in the network. For optimization purposes, three antagonist objectives are considered: F(1), the freshwater flow-rate at the network entrance, F(2), the water flow-rate at inlet of regeneration units, and F(3), the number of interconnections in the network. The multiobjective problem is solved via a lexicographic strategy, where a mixed-integer nonlinear programming (MINLP) procedure is used at each step. The approach is illustrated by a numerical example taken from the literature involving five processes, one regeneration unit and three contaminants. The set of potential network solutions is provided in the form of a Pareto front. Finally, the strategy for choosing the best network solution among those given by Pareto fronts is presented. This Multiple Criteria Decision Making (MCDM) problem is tackled by means of two approaches: a classical TOPSIS analysis is first implemented and then an innovative strategy based on the global equivalent cost (GEC) in freshwater that turns out to be more efficient for choosing a good network according to a practical point of view. Copyright © 2011 Elsevier Ltd. All rights reserved.
GLOBAL SOLUTIONS TO FOLDED CONCAVE PENALIZED NONCONVEX LEARNING
Liu, Hongcheng; Yao, Tao; Li, Runze
2015-01-01
This paper is concerned with solving nonconvex learning problems with folded concave penalty. Despite that their global solutions entail desirable statistical properties, there lack optimization techniques that guarantee global optimality in a general setting. In this paper, we show that a class of nonconvex learning problems are equivalent to general quadratic programs. This equivalence facilitates us in developing mixed integer linear programming reformulations, which admit finite algorithms that find a provably global optimal solution. We refer to this reformulation-based technique as the mixed integer programming-based global optimization (MIPGO). To our knowledge, this is the first global optimization scheme with a theoretical guarantee for folded concave penalized nonconvex learning with the SCAD penalty (Fan and Li, 2001) and the MCP penalty (Zhang, 2010). Numerical results indicate a significant outperformance of MIPGO over the state-of-the-art solution scheme, local linear approximation, and other alternative solution techniques in literature in terms of solution quality. PMID:27141126
Rational-q Triggered Transport Changes With Varying Toroidal Rotation in DIII-D
NASA Astrophysics Data System (ADS)
Austin, M. E.; Burrell, K. H.; Waltz, R. E.; van Zeeland, M. A.; McKee, G. R.; Shafer, M. W.; Rhodes, T. L.
2007-11-01
Comparison of rational-q triggered ITBs in discharges with varying toroidal torque injection was carried out. Experiments were conducted in negative central shear discharges with different mixes of co/counter neutral beam injection (NBI) that altered the equilibrium ExB shear in conditions where transient improvements in transport occur near integer qmin values. The transport changes were seen in high and low rotation cases; however, the latter discharges did not transition to improved core confinement. Observations support the model that sufficient background ExB shear is required for barrier formation and zonal flow effects at integer qmin act as trigger in this case. The lack of TAE modes in the balanced injection cases indicates they are not linked to the transient confinement improvement. Fluctuation data obtained in co and balanced NBI show similar reductions in turbulence near integer qmin as well as poloidal velocity excursions that may be further evidence of zonal flow.
Optimal traffic resource allocation and management.
DOT National Transportation Integrated Search
2010-05-01
"In this paper, we address the problem of determining the patrol routes of state troopers for maximum coverage of : highway spots with high frequencies of crashes (hot spots). We develop a mixed integer linear programming model : for this problem und...
Non-Born-Oppenheimer Spectroscopy of Cyclic Triatomics
2011-10-11
n nmnm mn m nm nm nm nm ss n IV E 2/ if,2/1 2/ if, ])2/1()/[( )2/1()/( 2 1 12 22 222 22 2/,,4 23 )3( Here ZPE ...integer values of m . The perturbation theory expression gives us seven parameters for a non-linear fitting problem: ZPE , 0I , 1I , 2I , 3V , 6V and
Solving Fuzzy Fractional Differential Equations Using Zadeh's Extension Principle
Ahmad, M. Z.; Hasan, M. K.; Abbasbandy, S.
2013-01-01
We study a fuzzy fractional differential equation (FFDE) and present its solution using Zadeh's extension principle. The proposed study extends the case of fuzzy differential equations of integer order. We also propose a numerical method to approximate the solution of FFDEs. To solve nonlinear problems, the proposed numerical method is then incorporated into an unconstrained optimisation technique. Several numerical examples are provided. PMID:24082853
A hybrid solution approach for a multi-objective closed-loop logistics network under uncertainty
NASA Astrophysics Data System (ADS)
Mehrbod, Mehrdad; Tu, Nan; Miao, Lixin
2015-06-01
The design of closed-loop logistics (forward and reverse logistics) has attracted growing attention with the stringent pressures of customer expectations, environmental concerns and economic factors. This paper considers a multi-product, multi-period and multi-objective closed-loop logistics network model with regard to facility expansion as a facility location-allocation problem, which more closely approximates real-world conditions. A multi-objective mixed integer nonlinear programming formulation is linearized by defining new variables and adding new constraints to the model. By considering the aforementioned model under uncertainty, this paper develops a hybrid solution approach by combining an interactive fuzzy goal programming approach and robust counterpart optimization based on three well-known robust counterpart optimization formulations. Finally, this paper compares the results of the three formulations using different test scenarios and parameter-sensitive analysis in terms of the quality of the final solution, CPU time, the level of conservatism, the degree of closeness to the ideal solution, the degree of balance involved in developing a compromise solution, and satisfaction degree.
Bula, Gustavo Alfredo; Prodhon, Caroline; Gonzalez, Fabio Augusto; Afsar, H Murat; Velasco, Nubia
2017-02-15
This work focuses on the Heterogeneous Fleet Vehicle Routing problem (HFVRP) in the context of hazardous materials (HazMat) transportation. The objective is to determine a set of routes that minimizes the total expected routing risk. This is a nonlinear function, and it depends on the vehicle load and the population exposed when an incident occurs. Thus, a piecewise linear approximation is used to estimate it. For solving the problem, a variant of the Variable Neighborhood Search (VNS) algorithm is employed. To improve its performance, a post-optimization procedure is implemented via a Set Partitioning (SP) problem. The SP is solved on a pool of routes obtained from executions of the local search procedure embedded on the VNS. The algorithm is tested on two sets of HFVRP instances based on literature with up to 100 nodes, these instances are modified to include vehicle and arc risk parameters. The results are competitive in terms of computational efficiency and quality attested by a comparison with Mixed Integer Linear Programming (MILP) previously proposed. Copyright © 2016 Elsevier B.V. All rights reserved.
Aquifer development planning to supply a seaside resort: a case study in Goa, India
NASA Astrophysics Data System (ADS)
Lobo Ferreira, J. P. Cárcomo; da Conceição Cunha, Maria; Chachadi, A. G.; Nagel, Kai; Diamantino, Catarina; Oliveira, Manuel Mendes
2007-09-01
Using the hydrogeological and socio-economic data derived from a European Commission research project on the measurement, monitoring and sustainability of the coastal environment, two optimization models have been applied to satisfy the future water resources needs of the coastal zone of Bardez in Goa, India. The number of tourists visiting Goa since the 1970s has risen considerably, and roughly a third of them go to Bardez taluka, prompting growth in the tourist-related infrastructure in the region. The optimization models are non-linear mixed integer models that have been solved using GAMS/DICOPT++ commercial software. Optimization models were used, firstly, to indicate the most suitable zones for building seaside resorts and wells to supply the tourist industry with an adequate amount of water, and secondly, to indicate the best location for wells to adequately supply pre-existing hotels. The models presented will help to define the optimal locations for the wells and the hydraulic infrastructures needed to satisfy demand at minimum cost, taking into account environmental constraints such as the risk of saline intrusion.
Design of supply chain in fuzzy environment
NASA Astrophysics Data System (ADS)
Rao, Kandukuri Narayana; Subbaiah, Kambagowni Venkata; Singh, Ganja Veera Pratap
2013-05-01
Nowadays, customer expectations are increasing and organizations are prone to operate in an uncertain environment. Under this uncertain environment, the ultimate success of the firm depends on its ability to integrate business processes among supply chain partners. Supply chain management emphasizes cross-functional links to improve the competitive strategy of organizations. Now, companies are moving from decoupled decision processes towards more integrated design and control of their components to achieve the strategic fit. In this paper, a new approach is developed to design a multi-echelon, multi-facility, and multi-product supply chain in fuzzy environment. In fuzzy environment, mixed integer programming problem is formulated through fuzzy goal programming in strategic level with supply chain cost and volume flexibility as fuzzy goals. These fuzzy goals are aggregated using minimum operator. In tactical level, continuous review policy for controlling raw material inventories in supplier echelon and controlling finished product inventories in plant as well as distribution center echelon is considered as fuzzy goals. A non-linear programming model is formulated through fuzzy goal programming using minimum operator in the tactical level. The proposed approach is illustrated with a numerical example.
Analysis of grinding of superalloys and ceramics for off-line process optimization
NASA Astrophysics Data System (ADS)
Sathyanarayanan, G.
The present study has compared the performances of resinoid, vitrified, and electroplated CBN wheels in creep feed grinding of M42 and D2 tool steels. Responses such as a specific energy, normal and tangential forces, and surface roughness were used as measures of performance. It was found that creep feed grinding with resinoid, vitrified, and electroplated CBN wheels has its own advantages, but no single wheel could provide good finish, lower specific energy, and high material removal rates simultaneously. To optimize the CBN grinding with different bonded wheels, a Multiple Criteria Decision Making (MCDM) methodology was used. Creep feed grinding of superalloys, Ti-6Al-4V and Inconel 718, has been modeled by utilizing neural networks to optimize the grinding process. A parallel effort was directed at creep feed grinding of alumina ceramics with diamond wheels to investigate the influence of process variables on responses based on experimental results and statistical analysis. The conflicting influence of variables was observed. This led to the formulation of ceramic grinding process as a multi-objective nonlinear mixed integer problem.
Optimal Operation System of the Integrated District Heating System with Multiple Regional Branches
NASA Astrophysics Data System (ADS)
Kim, Ui Sik; Park, Tae Chang; Kim, Lae-Hyun; Yeo, Yeong Koo
This paper presents an optimal production and distribution management for structural and operational optimization of the integrated district heating system (DHS) with multiple regional branches. A DHS consists of energy suppliers and consumers, district heating pipelines network and heat storage facilities in the covered region. In the optimal management system, production of heat and electric power, regional heat demand, electric power bidding and sales, transport and storage of heat at each regional DHS are taken into account. The optimal management system is formulated as a mixed integer linear programming (MILP) where the objectives is to minimize the overall cost of the integrated DHS while satisfying the operation constraints of heat units and networks as well as fulfilling heating demands from consumers. Piecewise linear formulation of the production cost function and stairwise formulation of the start-up cost function are used to compute nonlinear cost function approximately. Evaluation of the total overall cost is based on weekly operations at each district heat branches. Numerical simulations show the increase of energy efficiency due to the introduction of the present optimal management system.
NASA Astrophysics Data System (ADS)
Huseyin Turan, Hasan; Kasap, Nihat; Savran, Huseyin
2014-03-01
Nowadays, every firm uses telecommunication networks in different amounts and ways in order to complete their daily operations. In this article, we investigate an optimisation problem that a firm faces when acquiring network capacity from a market in which there exist several network providers offering different pricing and quality of service (QoS) schemes. The QoS level guaranteed by network providers and the minimum quality level of service, which is needed for accomplishing the operations are denoted as fuzzy numbers in order to handle the non-deterministic nature of the telecommunication network environment. Interestingly, the mathematical formulation of the aforementioned problem leads to the special case of a well-known two-dimensional bin packing problem, which is famous for its computational complexity. We propose two different heuristic solution procedures that have the capability of solving the resulting nonlinear mixed integer programming model with fuzzy constraints. In conclusion, the efficiency of each algorithm is tested in several test instances to demonstrate the applicability of the methodology.
Materiel Acquisition Management of U.S. Army Attack Helicopters
1989-06-02
used to evaluate the existing helicopter program periodically in order to determine utility in reference to all evaluation criteria. Defintion of... mixed integer linear programming model, the Phoenix model has demonstrated the potential to assist in the analysis of strategic and operational issues in...Fleet Max i of Aircraft per Fleet Programmed Buys .. -- Technology Unit Production mix Retirement Start-up ROTIE Flying Hour Aviation Overheadl I Aviation
Center for Parallel Optimization
1993-09-30
BOLLING AFB DC 20332-0001 _ii _ 11. SUPPLEMENTARY NOTES 12a. DISTRIBUTION/ AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE APPROVED FOR PUBLIC RELEASE...Machines Corporation, March 16-19, 1993 , A Branch- and-Bound Method for Mixed Integer Programming on the CM-.5 "* Dr. Roberto Musmanno, University of
Autonomous and driven dynamics of spin torque nano-oscillators
NASA Astrophysics Data System (ADS)
Urazhdin, Sergei
2012-02-01
Understanding the dynamical properties of autonomous spin torque nano-oscillators (STNO) and their response to external perturbations is important for their applications as nanoscale microwave sources. We used spectroscopic measurements to study the dynamical characteristics of nanopillar- and point contact-based STNOs incorporating a microstrip in close proximity to the active magnetic layer. By applying microwave current at frequency fext to the microstrip, we were able to generate large microwave fields of more than 30 Oe rms at the location of STNO. We demonstrate that for a wide range of fext, STNO exhibits multiple synchronization regimes with integer and non-integer rational ratios between fext and the oscillation frequency f. We show that the synchronization ranges are determined by the symmetry of the oscillation orbit and the orientation of the driving field relative to the symmetry axis of the orbit. We observe synchronization hysteresis, i.e. a dependence of the synchronization limits on the dynamical history caused by the nonlinearity of STNO. We also show that the oscillation can be parametrically excited in the subcritical regime of STNO by a microwave field at twice the frequency of the oscillation. By measuring the threshold and the frequency range of parametric excitation, we determine damping, spin-polarization efficiency, and coupling to the microwave signal. In addition, by measuring the frequency range of parametric synchronization in the auto-oscillation regime, we determine the dynamic nonlinearity of the nanomagnet. Thus, analysis of the driven oscillations provides complete information about the dynamical characteristics of STNO. Finally, we discuss several unusual dynamical behaviors of STNO caused by their strong nonlinearity.
Footstep Planning on Uneven Terrain with Mixed-Integer Convex Optimization
2014-08-01
ORGANIZATION NAME(S) AND ADDRESS(ES) Massachusetts Institute of Technology,Computer Science and Artificial Intellegence Laboratory,Cambridge,MA,02139...the MIT Energy Initiative, MIT CSAIL, and the DARPA Robotics Challenge. 1Robin Deits is with the Computer Science and Artificial Intelligence Laboratory
NASA Astrophysics Data System (ADS)
Zarindast, Atousa; Seyed Hosseini, Seyed Mohamad; Pishvaee, Mir Saman
2017-06-01
Robust supplier selection problem, in a scenario-based approach has been proposed, when the demand and exchange rates are subject to uncertainties. First, a deterministic multi-objective mixed integer linear programming is developed; then, the robust counterpart of the proposed mixed integer linear programming is presented using the recent extension in robust optimization theory. We discuss decision variables, respectively, by a two-stage stochastic planning model, a robust stochastic optimization planning model which integrates worst case scenario in modeling approach and finally by equivalent deterministic planning model. The experimental study is carried out to compare the performances of the three models. Robust model resulted in remarkable cost saving and it illustrated that to cope with such uncertainties, we should consider them in advance in our planning. In our case study different supplier were selected due to this uncertainties and since supplier selection is a strategic decision, it is crucial to consider these uncertainties in planning approach.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Waddell, Lucas; Muldoon, Frank; Henry, Stephen Michael
In order to effectively plan the management and modernization of their large and diverse fleets of vehicles, Program Executive Office Ground Combat Systems (PEO GCS) and Program Executive Office Combat Support and Combat Service Support (PEO CS&CSS) commis- sioned the development of a large-scale portfolio planning optimization tool. This software, the Capability Portfolio Analysis Tool (CPAT), creates a detailed schedule that optimally prioritizes the modernization or replacement of vehicles within the fleet - respecting numerous business rules associated with fleet structure, budgets, industrial base, research and testing, etc., while maximizing overall fleet performance through time. This paper contains a thor-more » ough documentation of the terminology, parameters, variables, and constraints that comprise the fleet management mixed integer linear programming (MILP) mathematical formulation. This paper, which is an update to the original CPAT formulation document published in 2015 (SAND2015-3487), covers the formulation of important new CPAT features.« less
Zimmermann, Katrin; Jordan, Anna; Gay, Frédéric; Watanabe, Kenji; Taniguchi, Takashi; Han, Zheng; Bouchiat, Vincent; Sellier, Hermann; Sacépé, Benjamin
2017-04-13
Charge carriers in the quantum Hall regime propagate via one-dimensional conducting channels that form along the edges of a two-dimensional electron gas. Controlling their transmission through a gate-tunable constriction, also called quantum point contact, is fundamental for many coherent transport experiments. However, in graphene, tailoring a constriction with electrostatic gates remains challenging due to the formation of p-n junctions below gate electrodes along which electron and hole edge channels co-propagate and mix, short circuiting the constriction. Here we show that this electron-hole mixing is drastically reduced in high-mobility graphene van der Waals heterostructures thanks to the full degeneracy lifting of the Landau levels, enabling quantum point contact operation with full channel pinch-off. We demonstrate gate-tunable selective transmission of integer and fractional quantum Hall edge channels through the quantum point contact. This gate control of edge channels opens the door to quantum Hall interferometry and electron quantum optics experiments in the integer and fractional quantum Hall regimes of graphene.
The Ablowitz–Ladik system on a finite set of integers
NASA Astrophysics Data System (ADS)
Xia, Baoqiang
2018-07-01
We show how to solve initial-boundary value problems for integrable nonlinear differential–difference equations on a finite set of integers. The method we employ is the discrete analogue of the unified transform (Fokas method). The implementation of this method to the Ablowitz–Ladik system yields the solution in terms of the unique solution of a matrix Riemann–Hilbert problem, which has a jump matrix with explicit -dependence involving certain functions referred to as spectral functions. Some of these functions are defined in terms of the initial value, while the remaining spectral functions are defined in terms of two sets of boundary values. These spectral functions are not independent but satisfy an algebraic relation called global relation. We analyze the global relation to characterize the unknown boundary values in terms of the given initial and boundary values. We also discuss the linearizable boundary conditions.
Chan, Roger W.
2018-01-01
Viscoelastic shear properties of human vocal fold tissues were previously quantified by the shear moduli (G′ and G″). Yet these small-strain linear measures were unable to describe any nonlinear tissue behavior. This study attempted to characterize the nonlinear viscoelastic response of the vocal fold lamina propria under large-amplitude oscillatory shear (LAOS) with a stress decomposition approach. Human vocal fold cover and vocal ligament specimens from eight subjects were subjected to LAOS rheometric testing with a simple-shear rheometer. The empirical total stress response was decomposed into elastic and viscous stress components, based on odd-integer harmonic decomposition approach with Fourier transform. Nonlinear viscoelastic measures derived from the decomposition were plotted in Pipkin space and as rheological fingerprints to observe the onset of nonlinearity and the type of nonlinear behavior. Results showed that both the vocal fold cover and the vocal ligament experienced intercycle strain softening, intracycle strain stiffening, as well as shear thinning both intercycle and intracycle. The vocal ligament appeared to demonstrate an earlier onset of nonlinearity at phonatory frequencies, and higher sensitivity to changes in frequency and strain. In summary, the stress decomposition approach provided much better insights into the nonlinear viscoelastic behavior of the vocal fold lamina propria than the traditional linear measures. PMID:29780189
Chan, Roger W
2018-05-01
Viscoelastic shear properties of human vocal fold tissues were previously quantified by the shear moduli ( G' and G″ ). Yet these small-strain linear measures were unable to describe any nonlinear tissue behavior. This study attempted to characterize the nonlinear viscoelastic response of the vocal fold lamina propria under large-amplitude oscillatory shear (LAOS) with a stress decomposition approach. Human vocal fold cover and vocal ligament specimens from eight subjects were subjected to LAOS rheometric testing with a simple-shear rheometer. The empirical total stress response was decomposed into elastic and viscous stress components, based on odd-integer harmonic decomposition approach with Fourier transform. Nonlinear viscoelastic measures derived from the decomposition were plotted in Pipkin space and as rheological fingerprints to observe the onset of nonlinearity and the type of nonlinear behavior. Results showed that both the vocal fold cover and the vocal ligament experienced intercycle strain softening, intracycle strain stiffening, as well as shear thinning both intercycle and intracycle. The vocal ligament appeared to demonstrate an earlier onset of nonlinearity at phonatory frequencies, and higher sensitivity to changes in frequency and strain. In summary, the stress decomposition approach provided much better insights into the nonlinear viscoelastic behavior of the vocal fold lamina propria than the traditional linear measures.
Mardanov, M J; Mahmudov, N I; Sharifov, Y A
2014-01-01
We study a boundary value problem for the system of nonlinear impulsive fractional differential equations of order α (0 < α ≤ 1) involving the two-point and integral boundary conditions. Some new results on existence and uniqueness of a solution are established by using fixed point theorems. Some illustrative examples are also presented. We extend previous results even in the integer case α = 1.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Guangye; Chacon, Luis; Barnes, Daniel C
2012-01-01
Recently, a fully implicit, energy- and charge-conserving particle-in-cell method has been developed for multi-scale, full-f kinetic simulations [G. Chen, et al., J. Comput. Phys. 230, 18 (2011)]. The method employs a Jacobian-free Newton-Krylov (JFNK) solver and is capable of using very large timesteps without loss of numerical stability or accuracy. A fundamental feature of the method is the segregation of particle orbit integrations from the field solver, while remaining fully self-consistent. This provides great flexibility, and dramatically improves the solver efficiency by reducing the degrees of freedom of the associated nonlinear system. However, it requires a particle push per nonlinearmore » residual evaluation, which makes the particle push the most time-consuming operation in the algorithm. This paper describes a very efficient mixed-precision, hybrid CPU-GPU implementation of the implicit PIC algorithm. The JFNK solver is kept on the CPU (in double precision), while the inherent data parallelism of the particle mover is exploited by implementing it in single-precision on a graphics processing unit (GPU) using CUDA. Performance-oriented optimizations, with the aid of an analytical performance model, the roofline model, are employed. Despite being highly dynamic, the adaptive, charge-conserving particle mover algorithm achieves up to 300 400 GOp/s (including single-precision floating-point, integer, and logic operations) on a Nvidia GeForce GTX580, corresponding to 20 25% absolute GPU efficiency (against the peak theoretical performance) and 50-70% intrinsic efficiency (against the algorithm s maximum operational throughput, which neglects all latencies). This is about 200-300 times faster than an equivalent serial CPU implementation. When the single-precision GPU particle mover is combined with a double-precision CPU JFNK field solver, overall performance gains 100 vs. the double-precision CPU-only serial version are obtained, with no apparent loss of robustness or accuracy when applied to a challenging long-time scale ion acoustic wave simulation.« less
Mixing of ultrasonic Lamb waves in thin plates with quadratic nonlinearity.
Li, Feilong; Zhao, Youxuan; Cao, Peng; Hu, Ning
2018-07-01
This paper investigates the propagation of Lamb waves in thin plates with quadratic nonlinearity by one-way mixing method using numerical simulations. It is shown that an A 0 -mode wave can be generated by a pair of S 0 and A 0 mode waves only when mixing condition is satisfied, and mixing wave signals are capable of locating the damage zone. Additionally, it is manifested that the acoustic nonlinear parameter increases linearly with quadratic nonlinearity but monotonously with the size of mixing zone. Furthermore, because of frequency deviation, the waveform of the mixing wave changes significantly from a regular diamond shape to toneburst trains. Copyright © 2018 Elsevier B.V. All rights reserved.
Khater method for nonlinear Sharma Tasso-Olever (STO) equation of fractional order
NASA Astrophysics Data System (ADS)
Bibi, Sadaf; Mohyud-Din, Syed Tauseef; Khan, Umar; Ahmed, Naveed
In this work, we have implemented a direct method, known as Khater method to establish exact solutions of nonlinear partial differential equations of fractional order. Number of solutions provided by this method is greater than other traditional methods. Exact solutions of nonlinear fractional order Sharma Tasso-Olever (STO) equation are expressed in terms of kink, travelling wave, periodic and solitary wave solutions. Modified Riemann-Liouville derivative and Fractional complex transform have been used for compatibility with fractional order sense. Solutions have been graphically simulated for understanding the physical aspects and importance of the method. A comparative discussion between our established results and the results obtained by existing ones is also presented. Our results clearly reveal that the proposed method is an effective, powerful and straightforward technique to work out new solutions of various types of differential equations of non-integer order in the fields of applied sciences and engineering.
DOT National Transportation Integrated Search
2012-06-01
The mobility allowance shuttle transit (MAST) system is a hybrid transit system in which vehicles are : allowed to deviate from a fixed route to serve flexible demand. A mixed integer programming (MIP) : formulation for the static scheduling problem ...
Space tug economic analysis study. Volume 2: Tug concepts analysis. Part 2: Economic analysis
NASA Technical Reports Server (NTRS)
1972-01-01
An economic analysis of space tug operations is presented. The subjects discussed are: (1) cost uncertainties, (2) scenario analysis, (3) economic sensitivities, (4) mixed integer programming formulation of the space tug problem, and (5) critical parameters in the evaluation of a public expenditure.
DOT National Transportation Integrated Search
2016-06-01
The purpose of this project is to study the optimal scheduling of work zones so that they have minimum negative impact (e.g., travel delay, gas consumption, accidents, etc.) on transport service vehicle flows. In this project, a mixed integer linear ...
Operations research applications in nuclear energy
NASA Astrophysics Data System (ADS)
Johnson, Benjamin Lloyd
This dissertation consists of three papers; the first is published in Annals of Operations Research, the second is nearing submission to INFORMS Journal on Computing, and the third is the predecessor of a paper nearing submission to Progress in Nuclear Energy. We apply operations research techniques to nuclear waste disposal and nuclear safeguards. Although these fields are different, they allow us to showcase some benefits of using operations research techniques to enhance nuclear energy applications. The first paper, "Optimizing High-Level Nuclear Waste Disposal within a Deep Geologic Repository," presents a mixed-integer programming model that determines where to place high-level nuclear waste packages in a deep geologic repository to minimize heat load concentration. We develop a heuristic that increases the size of solvable model instances. The second paper, "Optimally Configuring a Measurement System to Detect Diversions from a Nuclear Fuel Cycle," introduces a simulation-optimization algorithm and an integer-programming model to find the best, or near-best, resource-limited nuclear fuel cycle measurement system with a high degree of confidence. Given location-dependent measurement method precisions, we (i) optimize the configuration of n methods at n locations of a hypothetical nuclear fuel cycle facility, (ii) find the most important location at which to improve method precision, and (iii) determine the effect of measurement frequency on near-optimal configurations and objective values. Our results correspond to existing outcomes but we obtain them at least an order of magnitude faster. The third paper, "Optimizing Nuclear Material Control and Accountability Measurement Systems," extends the integer program from the second paper to locate measurement methods in a larger, hypothetical nuclear fuel cycle scenario given fixed purchase and utilization budgets. This paper also presents two mixed-integer quadratic programming models to increase the precision of existing methods given a fixed improvement budget and to reduce the measurement uncertainty in the system while limiting improvement costs. We quickly obtain similar or better solutions compared to several intuitive analyses that take much longer to perform.
Giant nonlinear response at a plasmonic nanofocus drives efficient four-wave mixing
NASA Astrophysics Data System (ADS)
Nielsen, Michael P.; Shi, Xingyuan; Dichtl, Paul; Maier, Stefan A.; Oulton, Rupert F.
2017-12-01
Efficient optical frequency mixing typically must accumulate over large interaction lengths because nonlinear responses in natural materials are inherently weak. This limits the efficiency of mixing processes owing to the requirement of phase matching. Here, we report efficient four-wave mixing (FWM) over micrometer-scale interaction lengths at telecommunications wavelengths on silicon. We used an integrated plasmonic gap waveguide that strongly confines light within a nonlinear organic polymer. The gap waveguide intensifies light by nanofocusing it to a mode cross-section of a few tens of nanometers, thus generating a nonlinear response so strong that efficient FWM accumulates over wavelength-scale distances. This technique opens up nonlinear optics to a regime of relaxed phase matching, with the possibility of compact, broadband, and efficient frequency mixing integrated with silicon photonics.
Energy and Transmissibility in Nonlinear Viscous Base Isolators
NASA Astrophysics Data System (ADS)
Markou, Athanasios A.; Manolis, George D.
2016-09-01
High damping rubber bearings (HDRB) are the most commonly used base isolators in buildings and are often combined with other systems, such as sliding bearings. Their mechanical behaviour is highly nonlinear and dependent on a number of factors. At first, a physical process is suggested here to explain the empirical formula introduced by J.M. Kelly in 1991, where the dissipated energy of a HDRB under cyclic testing, at constant frequency, is proportional to the amplitude of the shear strain, raised to a power of approximately 1.50. This physical process is best described by non-Newtonian fluid behaviour, originally developed by F.H. Norton in 1929 to describe creep in steel at high-temperatures. The constitutive model used includes a viscous term, that depends on the absolute value of the velocity, raised to a non-integer power. The identification of a three parameter Kelvin model, the simplest possible system with nonlinear viscosity, is also suggested here. Furthermore, a more advanced model with variable damping coefficient is implemented to better model in this complex mechanical process. Next, the assumption of strain-rate dependence in their rubber layers under cyclic loading is examined in order to best interpret experimental results on the transmission of motion between the upper and lower surfaces of HDRB. More specifically, the stress-relaxation phenomenon observed with time in HRDB can be reproduced numerically, only if the constitutive model includes a viscous term, that depends on the absolute value of the velocity raised to a non-integer power, i. e., the Norton fluid previously mentioned. Thus, it becomes possible to compute the displacement transmissibility function between the top and bottom surfaces of HDRB base isolator systems and to draw engineering-type conclusions, relevant to their design under time-harmonic loads.
Exploring 4D quantum Hall physics with a 2D topological charge pump
NASA Astrophysics Data System (ADS)
Lohse, Michael; Schweizer, Christian; Price, Hannah M.; Zilberberg, Oded; Bloch, Immanuel
2018-01-01
The discovery of topological states of matter has greatly improved our understanding of phase transitions in physical systems. Instead of being described by local order parameters, topological phases are described by global topological invariants and are therefore robust against perturbations. A prominent example is the two-dimensional (2D) integer quantum Hall effect: it is characterized by the first Chern number, which manifests in the quantized Hall response that is induced by an external electric field. Generalizing the quantum Hall effect to four-dimensional (4D) systems leads to the appearance of an additional quantized Hall response, but one that is nonlinear and described by a 4D topological invariant—the second Chern number. Here we report the observation of a bulk response with intrinsic 4D topology and demonstrate its quantization by measuring the associated second Chern number. By implementing a 2D topological charge pump using ultracold bosonic atoms in an angled optical superlattice, we realize a dynamical version of the 4D integer quantum Hall effect. Using a small cloud of atoms as a local probe, we fully characterize the nonlinear response of the system via in situ imaging and site-resolved band mapping. Our findings pave the way to experimentally probing higher-dimensional quantum Hall systems, in which additional strongly correlated topological phases, exotic collective excitations and boundary phenomena such as isolated Weyl fermions are predicted.
Exploring 4D quantum Hall physics with a 2D topological charge pump.
Lohse, Michael; Schweizer, Christian; Price, Hannah M; Zilberberg, Oded; Bloch, Immanuel
2018-01-03
The discovery of topological states of matter has greatly improved our understanding of phase transitions in physical systems. Instead of being described by local order parameters, topological phases are described by global topological invariants and are therefore robust against perturbations. A prominent example is the two-dimensional (2D) integer quantum Hall effect: it is characterized by the first Chern number, which manifests in the quantized Hall response that is induced by an external electric field. Generalizing the quantum Hall effect to four-dimensional (4D) systems leads to the appearance of an additional quantized Hall response, but one that is nonlinear and described by a 4D topological invariant-the second Chern number. Here we report the observation of a bulk response with intrinsic 4D topology and demonstrate its quantization by measuring the associated second Chern number. By implementing a 2D topological charge pump using ultracold bosonic atoms in an angled optical superlattice, we realize a dynamical version of the 4D integer quantum Hall effect. Using a small cloud of atoms as a local probe, we fully characterize the nonlinear response of the system via in situ imaging and site-resolved band mapping. Our findings pave the way to experimentally probing higher-dimensional quantum Hall systems, in which additional strongly correlated topological phases, exotic collective excitations and boundary phenomena such as isolated Weyl fermions are predicted.
Cost-aware request routing in multi-geography cloud data centres using software-defined networking
NASA Astrophysics Data System (ADS)
Yuan, Haitao; Bi, Jing; Li, Bo Hu; Tan, Wei
2017-03-01
Current geographically distributed cloud data centres (CDCs) require gigantic energy and bandwidth costs to provide multiple cloud applications to users around the world. Previous studies only focus on energy cost minimisation in distributed CDCs. However, a CDC provider needs to deliver gigantic data between users and distributed CDCs through internet service providers (ISPs). Geographical diversity of bandwidth and energy costs brings a highly challenging problem of how to minimise the total cost of a CDC provider. With the recently emerging software-defined networking, we study the total cost minimisation problem for a CDC provider by exploiting geographical diversity of energy and bandwidth costs. We formulate the total cost minimisation problem as a mixed integer non-linear programming (MINLP). Then, we develop heuristic algorithms to solve the problem and to provide a cost-aware request routing for joint optimisation of the selection of ISPs and the number of servers in distributed CDCs. Besides, to tackle the dynamic workload in distributed CDCs, this article proposes a regression-based workload prediction method to obtain future incoming workload. Finally, this work evaluates the cost-aware request routing by trace-driven simulation and compares it with the existing approaches to demonstrate its effectiveness.
Optimal synthesis and design of the number of cycles in the leaching process for surimi production.
Reinheimer, M Agustina; Scenna, Nicolás J; Mussati, Sergio F
2016-12-01
Water consumption required during the leaching stage in the surimi manufacturing process strongly depends on the design and the number and size of stages connected in series for the soluble protein extraction target, and it is considered as the main contributor to the operating costs. Therefore, the optimal synthesis and design of the leaching stage is essential to minimize the total annual cost. In this study, a mathematical optimization model for the optimal design of the leaching operation is presented. Precisely, a detailed Mixed Integer Nonlinear Programming (MINLP) model including operating and geometric constraints was developed based on our previous optimization model (NLP model). Aspects about quality, water consumption and main operating parameters were considered. The minimization of total annual costs, which considered a trade-off between investment and operating costs, led to an optimal solution with lesser number of stages (2 instead of 3 stages) and higher volumes of the leaching tanks comparing with previous results. An analysis was performed in order to investigate how the optimal solution was influenced by the variations of the unitary cost of fresh water, waste treatment and capital investment.
NASA Astrophysics Data System (ADS)
Rabieh, Masood; Soukhakian, Mohammad Ali; Mosleh Shirazi, Ali Naghi
2016-06-01
Selecting the best suppliers is crucial for a company's success. Since competition is a determining factor nowadays, reducing cost and increasing quality of products are two key criteria for appropriate supplier selection. In the study, first the inventories of agglomeration plant of Isfahan Steel Company were categorized through VED and ABC methods. Then the models to supply two important kinds of raw materials (inventories) were developed, considering the following items: (1) the optimal consumption composite of the materials, (2) the total cost of logistics, (3) each supplier's terms and conditions, (4) the buyer's limitations and (5) the consumption behavior of the buyers. Among diverse developed and tested models—using the company's actual data within three pervious years—the two new innovative models of mixed-integer non-linear programming type were found to be most suitable. The results of solving two models by lingo software (based on company's data in this particular case) were equaled. Comparing the results of the new models to the actual performance of the company revealed 10.9 and 7.1 % reduction in total procurement costs of the company in two consecutive years.
Liu, Jianfeng; Laird, Carl Damon
2017-09-22
Optimal design of a gas detection systems is challenging because of the numerous sources of uncertainty, including weather and environmental conditions, leak location and characteristics, and process conditions. Rigorous CFD simulations of dispersion scenarios combined with stochastic programming techniques have been successfully applied to the problem of optimal gas detector placement; however, rigorous treatment of sensor failure and nonuniform unavailability has received less attention. To improve reliability of the design, this paper proposes a problem formulation that explicitly considers nonuniform unavailabilities and all backup detection levels. The resulting sensor placement problem is a large-scale mixed-integer nonlinear programming (MINLP) problem thatmore » requires a tailored solution approach for efficient solution. We have developed a multitree method which depends on iteratively solving a sequence of upper-bounding master problems and lower-bounding subproblems. The tailored global solution strategy is tested on a real data problem and the encouraging numerical results indicate that our solution framework is promising in solving sensor placement problems. This study was selected for the special issue in JLPPI from the 2016 International Symposium of the MKO Process Safety Center.« less
NASA Astrophysics Data System (ADS)
Bagherinejad, Jafar; Niknam, Azar
2018-03-01
In this paper, a leader-follower competitive facility location problem considering the reactions of the competitors is studied. A model for locating new facilities and determining levels of quality for the facilities of the leader firm is proposed. Moreover, changes in the location and quality of existing facilities in a competitive market where a competitor offers the same goods or services are taken into account. The competitor could react by opening new facilities, closing existing ones, and adjusting the quality levels of its existing facilities. The market share, captured by each facility, depends on its distance to customer and its quality that is calculated based on the probabilistic Huff's model. Each firm aims to maximize its profit subject to constraints on quality levels and budget of setting up new facilities. This problem is formulated as a bi-level mixed integer non-linear model. The model is solved using a combination of Tabu Search with an exact method. The performance of the proposed algorithm is compared with an upper bound that is achieved by applying Karush-Kuhn-Tucker conditions. Computational results show that our algorithm finds near the upper bound solutions in a reasonable time.
NASA Astrophysics Data System (ADS)
Kwak, Minjung; Kim, Harrison
2015-01-01
Remanufacturing is emerging as a promising solution for achieving green, profitable businesses. This article considers a manufacturer that produces new products and also remanufactured versions of the new products that become available at the end of their life cycle. For such a manufacturer, design decisions at the initial design stage determine both the current profit from manufacturing and future profit from remanufacturing. To maximize the total profit, design decisions must carefully consider both ends of product life cycle, i.e. manufacturing and end-of-life stages. This article proposes a decision-support model for the life-cycle design using mixed-integer nonlinear programming. With an aim to maximize the total life-cycle profit, the proposed model searches for an (at least locally) optimal product design (i.e. design specifications and the selling price) for the new and remanufactured products. It optimizes both the initial design and design upgrades at the end-of-life stage and also provides corresponding production strategies, including production quantities and take-back rate. The model is extended to a multi-objective model that maximizes both economic profit and environmental-impact saving. To illustrate, the developed model is demonstrated with an example of a desktop computer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Jianfeng; Laird, Carl Damon
Optimal design of a gas detection systems is challenging because of the numerous sources of uncertainty, including weather and environmental conditions, leak location and characteristics, and process conditions. Rigorous CFD simulations of dispersion scenarios combined with stochastic programming techniques have been successfully applied to the problem of optimal gas detector placement; however, rigorous treatment of sensor failure and nonuniform unavailability has received less attention. To improve reliability of the design, this paper proposes a problem formulation that explicitly considers nonuniform unavailabilities and all backup detection levels. The resulting sensor placement problem is a large-scale mixed-integer nonlinear programming (MINLP) problem thatmore » requires a tailored solution approach for efficient solution. We have developed a multitree method which depends on iteratively solving a sequence of upper-bounding master problems and lower-bounding subproblems. The tailored global solution strategy is tested on a real data problem and the encouraging numerical results indicate that our solution framework is promising in solving sensor placement problems. This study was selected for the special issue in JLPPI from the 2016 International Symposium of the MKO Process Safety Center.« less
Integer programming for improving radiotherapy treatment efficiency.
Lv, Ming; Li, Yi; Kou, Bo; Zhou, Zhili
2017-01-01
Patients received by radiotherapy departments are diverse and may be diagnosed with different cancers. Therefore, they need different radiotherapy treatment plans and thus have different needs for medical resources. This research aims to explore the best method of scheduling the admission of patients receiving radiotherapy so as to reduce patient loss and maximize the usage efficiency of service resources. A mix integer programming (MIP) model integrated with special features of radiotherapy is constructed. The data used here is based on the historical data collected and we propose an exact method to solve the MIP model. Compared with the traditional First Come First Served (FCFS) method, the new method has boosted patient admission as well as the usage of linear accelerators (LINAC) and beds. The integer programming model can be used to describe the complex problem of scheduling radio-receiving patients, to identify the bottleneck resources that hinder patient admission, and to obtain the optimal LINAC-bed radio under the current data conditions. Different management strategies can be implemented by adjusting the settings of the MIP model. The computational results can serve as a reference for the policy-makers in decision making.
Automated Simultaneous Assembly of Multistage Testlets for a High-Stakes Licensing Examination
ERIC Educational Resources Information Center
Breithaupt, Krista; Hare, Donovan R.
2007-01-01
Many challenges exist for high-stakes testing programs offering continuous computerized administration. The automated assembly of test questions to exactly meet content and other requirements, provide uniformity, and control item exposure can be modeled and solved by mixed-integer programming (MIP) methods. A case study of the computerized…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mueller, Juliane
MISO is an optimization framework for solving computationally expensive mixed-integer, black-box, global optimization problems. MISO uses surrogate models to approximate the computationally expensive objective function. Hence, derivative information, which is generally unavailable for black-box simulation objective functions, is not needed. MISO allows the user to choose the initial experimental design strategy, the type of surrogate model, and the sampling strategy.
Automated Test-Form Generation
ERIC Educational Resources Information Center
van der Linden, Wim J.; Diao, Qi
2011-01-01
In automated test assembly (ATA), the methodology of mixed-integer programming is used to select test items from an item bank to meet the specifications for a desired test form and optimize its measurement accuracy. The same methodology can be used to automate the formatting of the set of selected items into the actual test form. Three different…
A strategic assessment of biofuels development in the Western States
Kenneth E. Skog; Robert Rummer; Bryan Jenkins; Nathan Parker; Peter Tittman; Quinn Hart; Richard Nelson; Ed Gray; Anneliese Schmidt; Marcia Patton-Mallory; Gordon Gayle
2009-01-01
The Western Governors' Association assessment of biofuels potential in western states estimated the location and capacity of biofuels plants that could potentially be built for selected gasoline prices in 2015 using a mixed integer programming model. The model included information on forest biomass supply curves by county (developed using Forest Service FIA data...
Graf, Peter A.; Billups, Stephen
2017-07-24
Computational materials design has suffered from a lack of algorithms formulated in terms of experimentally accessible variables. Here we formulate the problem of (ternary) alloy optimization at the level of choice of atoms and their composition that is normal for synthesists. Mathematically, this is a mixed integer problem where a candidate solution consists of a choice of three elements, and how much of each of them to use. This space has the natural structure of a set of equilateral triangles. We solve this problem by introducing a novel version of the DIRECT algorithm that (1) operates on equilateral triangles insteadmore » of rectangles and (2) works across multiple triangles. We demonstrate on a test case that the algorithm is both robust and efficient. Lastly, we offer an explanation of the efficacy of DIRECT -- specifically, its balance of global and local search -- by showing that 'potentially optimal rectangles' of the original algorithm are akin to the Pareto front of the 'multi-component optimization' of global and local search.« less
Microgrid Optimal Scheduling With Chance-Constrained Islanding Capability
Liu, Guodong; Starke, Michael R.; Xiao, B.; ...
2017-01-13
To facilitate the integration of variable renewable generation and improve the resilience of electricity sup-ply in a microgrid, this paper proposes an optimal scheduling strategy for microgrid operation considering constraints of islanding capability. A new concept, probability of successful islanding (PSI), indicating the probability that a microgrid maintains enough spinning reserve (both up and down) to meet local demand and accommodate local renewable generation after instantaneously islanding from the main grid, is developed. The PSI is formulated as mixed-integer linear program using multi-interval approximation taking into account the probability distributions of forecast errors of wind, PV and load. With themore » goal of minimizing the total operating cost while preserving user specified PSI, a chance-constrained optimization problem is formulated for the optimal scheduling of mirogrids and solved by mixed integer linear programming (MILP). Numerical simulations on a microgrid consisting of a wind turbine, a PV panel, a fuel cell, a micro-turbine, a diesel generator and a battery demonstrate the effectiveness of the proposed scheduling strategy. Lastly, we verify the relationship between PSI and various factors.« less
A hybrid inventory management system respondingto regular demand and surge demand
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mohammad S. Roni; Mingzhou Jin; Sandra D. Eksioglu
2014-06-01
This paper proposes a hybrid policy for a stochastic inventory system facing regular demand and surge demand. The combination of two different demand patterns can be observed in many areas, such as healthcare inventory and humanitarian supply chain management. The surge demand has a lower arrival rate but higher demand volume per arrival. The solution approach proposed in this paper incorporates the level crossing method and mixed integer programming technique to optimize the hybrid inventory policy with both regular orders and emergency orders. The level crossing method is applied to obtain the equilibrium distributions of inventory levels under a givenmore » policy. The model is further transformed into a mixed integer program to identify an optimal hybrid policy. A sensitivity analysis is conducted to investigate the impact of parameters on the optimal inventory policy and minimum cost. Numerical results clearly show the benefit of using the proposed hybrid inventory model. The model and solution approach could help healthcare providers or humanitarian logistics providers in managing their emergency supplies in responding to surge demands.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Graf, Peter A.; Billups, Stephen
Computational materials design has suffered from a lack of algorithms formulated in terms of experimentally accessible variables. Here we formulate the problem of (ternary) alloy optimization at the level of choice of atoms and their composition that is normal for synthesists. Mathematically, this is a mixed integer problem where a candidate solution consists of a choice of three elements, and how much of each of them to use. This space has the natural structure of a set of equilateral triangles. We solve this problem by introducing a novel version of the DIRECT algorithm that (1) operates on equilateral triangles insteadmore » of rectangles and (2) works across multiple triangles. We demonstrate on a test case that the algorithm is both robust and efficient. Lastly, we offer an explanation of the efficacy of DIRECT -- specifically, its balance of global and local search -- by showing that 'potentially optimal rectangles' of the original algorithm are akin to the Pareto front of the 'multi-component optimization' of global and local search.« less
Nonlinear resonances and antiresonances of a forced sonic vacuum
Pozharskiy, D.; Zhang, Y.; Williams, M. O.; ...
2015-12-23
We consider a harmonically driven acoustic medium in the form of a (finite length) highly nonlinear granular crystal with an amplitude- and frequency-dependent boundary drive. Despite the absence of a linear spectrum in the system, we identify resonant periodic propagation whereby the crystal responds at integer multiples of the drive period and observe that this can lead to local maxima of transmitted force at its fixed boundary. In addition, we identify and discuss minima of the transmitted force (“antiresonances”) between these resonances. Representative one-parameter complex bifurcation diagrams involve period doublings and Neimark-Sacker bifurcations as well as multiple isolas (e.g., ofmore » period-3, -4, or -5 solutions entrained by the forcing). We combine them in a more detailed, two-parameter bifurcation diagram describing the stability of such responses to both frequency and amplitude variations of the drive. This picture supports a notion of a (purely) “nonlinear spectrum” in a system which allows no sound wave propagation (due to zero sound speed: the so-called sonic vacuum). As a result, we rationalize this behavior in terms of purely nonlinear building blocks: apparent traveling and standing nonlinear waves.« less
Sun, Wei; Huang, Guo H; Lv, Ying; Li, Gongchen
2012-06-01
To tackle nonlinear economies-of-scale (EOS) effects in interval-parameter constraints for a representative waste management problem, an inexact piecewise-linearization-based fuzzy flexible programming (IPFP) model is developed. In IPFP, interval parameters for waste amounts and transportation/operation costs can be quantified; aspiration levels for net system costs, as well as tolerance intervals for both capacities of waste treatment facilities and waste generation rates can be reflected; and the nonlinear EOS effects transformed from objective function to constraints can be approximated. An interactive algorithm is proposed for solving the IPFP model, which in nature is an interval-parameter mixed-integer quadratically constrained programming model. To demonstrate the IPFP's advantages, two alternative models are developed to compare their performances. One is a conventional linear-regression-based inexact fuzzy programming model (IPFP2) and the other is an IPFP model with all right-hand-sides of fussy constraints being the corresponding interval numbers (IPFP3). The comparison results between IPFP and IPFP2 indicate that the optimized waste amounts would have the similar patterns in both models. However, when dealing with EOS effects in constraints, the IPFP2 may underestimate the net system costs while the IPFP can estimate the costs more accurately. The comparison results between IPFP and IPFP3 indicate that their solutions would be significantly different. The decreased system uncertainties in IPFP's solutions demonstrate its effectiveness for providing more satisfactory interval solutions than IPFP3. Following its first application to waste management, the IPFP can be potentially applied to other environmental problems under multiple complexities. Copyright © 2012 Elsevier Ltd. All rights reserved.
Swinging atwood machine. Far- and near-resonance region
NASA Astrophysics Data System (ADS)
Roy Chowdhury, A.; Debnath, M.
1988-11-01
The swinging Atwood machine, a prototype nonlinear dynamical system, is analyzed following an idea of Bogoliubov and Mitropolsky. A series solution is found for the radial and angular displacement as functions of time. The analysis is repeated in the resonance case, when the frequency of the driving force maintains a fixed ratio to that of the free motion. The condition of resonance requires the mass ratio μ to be equal to 2 j 2-1, where j is an integer not equal to one.
Supervised nonlinear spectral unmixing using a postnonlinear mixing model for hyperspectral imagery.
Altmann, Yoann; Halimi, Abderrahim; Dobigeon, Nicolas; Tourneret, Jean-Yves
2012-06-01
This paper presents a nonlinear mixing model for hyperspectral image unmixing. The proposed model assumes that the pixel reflectances are nonlinear functions of pure spectral components contaminated by an additive white Gaussian noise. These nonlinear functions are approximated using polynomial functions leading to a polynomial postnonlinear mixing model. A Bayesian algorithm and optimization methods are proposed to estimate the parameters involved in the model. The performance of the unmixing strategies is evaluated by simulations conducted on synthetic and real data.
Optimizing Multi-Product Multi-Constraint Inventory Control Systems with Stochastic Replenishments
NASA Astrophysics Data System (ADS)
Allah Taleizadeh, Ata; Aryanezhad, Mir-Bahador; Niaki, Seyed Taghi Akhavan
Multi-periodic inventory control problems are mainly studied employing two assumptions. The first is the continuous review, where depending on the inventory level orders can happen at any time and the other is the periodic review, where orders can only happen at the beginning of each period. In this study, we relax these assumptions and assume that the periodic replenishments are stochastic in nature. Furthermore, we assume that the periods between two replenishments are independent and identically random variables. For the problem at hand, the decision variables are of integer-type and there are two kinds of space and service level constraints for each product. We develop a model of the problem in which a combination of back-order and lost-sales are considered for the shortages. Then, we show that the model is of an integer-nonlinear-programming type and in order to solve it, a search algorithm can be utilized. We employ a simulated annealing approach and provide a numerical example to demonstrate the applicability of the proposed methodology.
JPLEX: Java Simplex Implementation with Branch-and-Bound Search for Automated Test Assembly
ERIC Educational Resources Information Center
Park, Ryoungsun; Kim, Jiseon; Dodd, Barbara G.; Chung, Hyewon
2011-01-01
JPLEX, short for Java simPLEX, is an automated test assembly (ATA) program. It is a mixed integer linear programming (MILP) solver written in Java. It reads in a configuration file, solves the minimization problem, and produces an output file for postprocessing. It implements the simplex algorithm to create a fully relaxed solution and…
Marco A. Contreras; Woodam Chung; Greg Jones
2008-01-01
Forest transportation planning problems (FTPP) have evolved from considering only the financial aspects of timber management to more holistic problems that also consider the environmental impacts of roads. These additional requirements have introduced side constraints, making FTPP larger and more complex. Mixed-integer programming (MIP) has been used to solve FTPP, but...
Integrating Test-Form Formatting into Automated Test Assembly
ERIC Educational Resources Information Center
Diao, Qi; van der Linden, Wim J.
2013-01-01
Automated test assembly uses the methodology of mixed integer programming to select an optimal set of items from an item bank. Automated test-form generation uses the same methodology to optimally order the items and format the test form. From an optimization point of view, production of fully formatted test forms directly from the item pool using…
Radar Resource Management in a Dense Target Environment
2014-03-01
problem faced by networked MFRs . While relaxing our assumptions concerning information gain presents numerous challenges worth exploring, future research...linear programming MFR multifunction phased array radar MILP mixed integer linear programming NATO North Atlantic Treaty Organization PDF probability...1: INTRODUCTION Multifunction phased array radars ( MFRs ) are capable of performing various tasks in rapid succession. The performance of target search
A Unified Approach to Optimization
2014-10-02
employee scheduling, ad placement, latin squares, disjunctions of linear systems, temporal modeling with interval variables, and traveling salesman problems ...integrating technologies. A key to integrated modeling is to formulate a problem with high-levelmetaconstraints, which are inspired by the “global... problem substructure to the solver. This contrasts with the atomistic modeling style of mixed integer programming (MIP) and satisfiability (SAT) solvers
A nonlinear bi-level programming approach for product portfolio management.
Ma, Shuang
2016-01-01
Product portfolio management (PPM) is a critical decision-making for companies across various industries in today's competitive environment. Traditional studies on PPM problem have been motivated toward engineering feasibilities and marketing which relatively pay less attention to other competitors' actions and the competitive relations, especially in mathematical optimization domain. The key challenge lies in that how to construct a mathematical optimization model to describe this Stackelberg game-based leader-follower PPM problem and the competitive relations between them. The primary work of this paper is the representation of a decision framework and the optimization model to leverage the PPM problem of leader and follower. A nonlinear, integer bi-level programming model is developed based on the decision framework. Furthermore, a bi-level nested genetic algorithm is put forward to solve this nonlinear bi-level programming model for leader-follower PPM problem. A case study of notebook computer product portfolio optimization is reported. Results and analyses reveal that the leader-follower bi-level optimization model is robust and can empower product portfolio optimization.
Directional nonlinear guided wave mixing: Case study of counter-propagating shear horizontal waves
NASA Astrophysics Data System (ADS)
Hasanian, Mostafa; Lissenden, Cliff J.
2018-04-01
While much nonlinear ultrasonics research has been conducted on higher harmonic generation, wave mixing provides the potential for sensitive measurements of incipient damage unencumbered by instrumentation nonlinearity. Studies of nonlinear ultrasonic wave mixing, both collinear and noncollinear, for bulk waves have shown the robust capability of wave mixing for early damage detection. One merit of bulk wave mixing lies in their non-dispersive nature, but guided waves enable inspection of otherwise inaccessible material and a variety of mixing options. Co-directional guided wave mixing was studied previously, but arbitrary direction guided wave mixing has not been addressed until recently. Wave vector analysis is applied to study variable mixing angles to find wave mode triplets (two primary waves and a secondary wave) resulting in the phase matching condition. As a case study, counter-propagating Shear Horizontal (SH) guided wave mixing is analyzed. SH wave interactions generate a secondary Lamb wave mode that is readily receivable. Reception of the secondary Lamb wave mode is compared for an angle beam transducer, an air coupled transducer, and a laser Doppler vibrometer (LDV). Results from the angle beam and air coupled transducers are quite consistent, while the LDV measurement is plagued by variability issues.
Inverse four-wave-mixing and self-parametric amplification effect in optical fibre
Turitsyn, Sergei K.; Bednyakova, Anastasia E.; Fedoruk, Mikhail P.; Papernyi, Serguei B.; Clements, Wallace R.L.
2015-01-01
An important group of nonlinear processes in optical fibre involves the mixing of four waves due to the intensity dependence of the refractive index. It is customary to distinguish between nonlinear effects that require external/pumping waves (cross-phase modulation and parametric processes such as four-wave mixing) and self-action of the propagating optical field (self-phase modulation and modulation instability). Here, we present a new nonlinear self-action effect, self-parametric amplification (SPA), which manifests itself as optical spectrum narrowing in normal dispersion fibre, leading to very stable propagation with a distinctive spectral distribution. The narrowing results from an inverse four-wave mixing, resembling an effective parametric amplification of the central part of the spectrum by energy transfer from the spectral tails. SPA and the observed stable nonlinear spectral propagation with random temporal waveform can find applications in optical communications and high power fibre lasers with nonlinear intra-cavity dynamics. PMID:26345290
NASA Astrophysics Data System (ADS)
Zozulya, A. A.
1988-12-01
A theoretical model is constructed for four-wave mixing in a photorefractive crystal where a transmission grating is formed by the drift-diffusion nonlinearity mechanism in the absence of an external electrostatic field and the response of the medium is nonlinear in respect of the modulation parameter. A comparison is made with a model in which the response of the medium is linear in respect of the modulation parameter. Theoretical models of four-wave and two-wave mixing are also compared with experiments.
A Simulation of Alternatives for Wholesale Inventory Replenishment
2016-03-01
algorithmic details. The last method is a mixed-integer, linear optimization model. Comparative Inventory Simulation, a discrete event simulation model, is...simulation; event graphs; reorder point; fill-rate; backorder; discrete event simulation; wholesale inventory optimization model 15. NUMBER OF PAGES...model. Comparative Inventory Simulation, a discrete event simulation model, is designed to find fill rates achieved for each National Item
Automated Test Assembly Using lp_Solve Version 5.5 in R
ERIC Educational Resources Information Center
Diao, Qi; van der Linden, Wim J.
2011-01-01
This article reviews the use of the software program lp_solve version 5.5 for solving mixed-integer automated test assembly (ATA) problems. The program is freely available under Lesser General Public License 2 (LGPL2). It can be called from the statistical language R using the lpSolveAPI interface. Three empirical problems are presented to…
Learning oncogenetic networks by reducing to mixed integer linear programming.
Shahrabi Farahani, Hossein; Lagergren, Jens
2013-01-01
Cancer can be a result of accumulation of different types of genetic mutations such as copy number aberrations. The data from tumors are cross-sectional and do not contain the temporal order of the genetic events. Finding the order in which the genetic events have occurred and progression pathways are of vital importance in understanding the disease. In order to model cancer progression, we propose Progression Networks, a special case of Bayesian networks, that are tailored to model disease progression. Progression networks have similarities with Conjunctive Bayesian Networks (CBNs) [1],a variation of Bayesian networks also proposed for modeling disease progression. We also describe a learning algorithm for learning Bayesian networks in general and progression networks in particular. We reduce the hard problem of learning the Bayesian and progression networks to Mixed Integer Linear Programming (MILP). MILP is a Non-deterministic Polynomial-time complete (NP-complete) problem for which very good heuristics exists. We tested our algorithm on synthetic and real cytogenetic data from renal cell carcinoma. We also compared our learned progression networks with the networks proposed in earlier publications. The software is available on the website https://bitbucket.org/farahani/diprog.
Chen, Pei-Hua
2017-05-01
This rejoinder responds to the commentary by van der Linden and Li entiled "Comment on Three-Element Item Selection Procedures for Multiple Forms Assembly: An Item Matching Approach" on the article "Three-Element Item Selection Procedures for Multiple Forms Assembly: An Item Matching Approach" by Chen. Van der Linden and Li made a strong statement calling for the cessation of test assembly heuristics development, and instead encouraged embracing mixed integer programming (MIP). This article points out the nondeterministic polynomial (NP)-hard nature of MIP problems and how solutions found using heuristics could be useful in an MIP context. Although van der Linden and Li provided several practical examples of test assembly supporting their view, the examples ignore the cases in which a slight change of constraints or item pool data might mean it would not be possible to obtain solutions as quickly as before. The article illustrates the use of heuristic solutions to improve both the performance of MIP solvers and the quality of solutions. Additional responses to the commentary by van der Linden and Li are included.
MIP models for connected facility location: A theoretical and computational study☆
Gollowitzer, Stefan; Ljubić, Ivana
2011-01-01
This article comprises the first theoretical and computational study on mixed integer programming (MIP) models for the connected facility location problem (ConFL). ConFL combines facility location and Steiner trees: given a set of customers, a set of potential facility locations and some inter-connection nodes, ConFL searches for the minimum-cost way of assigning each customer to exactly one open facility, and connecting the open facilities via a Steiner tree. The costs needed for building the Steiner tree, facility opening costs and the assignment costs need to be minimized. We model ConFL using seven compact and three mixed integer programming formulations of exponential size. We also show how to transform ConFL into the Steiner arborescence problem. A full hierarchy between the models is provided. For two exponential size models we develop a branch-and-cut algorithm. An extensive computational study is based on two benchmark sets of randomly generated instances with up to 1300 nodes and 115,000 edges. We empirically compare the presented models with respect to the quality of obtained bounds and the corresponding running time. We report optimal values for all but 16 instances for which the obtained gaps are below 0.6%. PMID:25009366
He, Li; Huang, G H; Lu, Hongwei
2011-10-15
Recent studies indicated that municipal solid waste (MSW) is a major contributor to global warming due to extensive emissions of greenhouse gases (GHGs). However, most of them focused on investigating impacts of MSW on GHG emission amounts. This study presents two mixed integer bilevel decision-making models for integrated municipal solid waste management and GHG emissions control: MGU-MCL and MCU-MGL. The MGU-MCL model represents a top-down decision process, with the environmental sectors at the national level dominating the upper-level objective and the waste management sectors at the municipal level providing the lower-level objective. The MCU-MGL model implies a bottom-up decision process where municipality plays a leading role. Results from the models indicate that: the top-down decisions would reduce metric tonne carbon emissions (MTCEs) by about 59% yet increase about 8% of the total management cost; the bottom-up decisions would reduce MTCE emissions by about 13% but increase the total management cost very slightly; on-site monitoring and downscaled laboratory experiments are still required for reducing uncertainty in GHG emission rate from the landfill facility. Copyright © 2011 Elsevier B.V. All rights reserved.
Poos, Alexandra M; Maicher, André; Dieckmann, Anna K; Oswald, Marcus; Eils, Roland; Kupiec, Martin; Luke, Brian; König, Rainer
2016-06-02
Understanding telomere length maintenance mechanisms is central in cancer biology as their dysregulation is one of the hallmarks for immortalization of cancer cells. Important for this well-balanced control is the transcriptional regulation of the telomerase genes. We integrated Mixed Integer Linear Programming models into a comparative machine learning based approach to identify regulatory interactions that best explain the discrepancy of telomerase transcript levels in yeast mutants with deleted regulators showing aberrant telomere length, when compared to mutants with normal telomere length. We uncover novel regulators of telomerase expression, several of which affect histone levels or modifications. In particular, our results point to the transcription factors Sum1, Hst1 and Srb2 as being important for the regulation of EST1 transcription, and we validated the effect of Sum1 experimentally. We compiled our machine learning method leading to a user friendly package for R which can straightforwardly be applied to similar problems integrating gene regulator binding information and expression profiles of samples of e.g. different phenotypes, diseases or treatments. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.
Optimising the selection of food items for FFQs using Mixed Integer Linear Programming.
Gerdessen, Johanna C; Souverein, Olga W; van 't Veer, Pieter; de Vries, Jeanne Hm
2015-01-01
To support the selection of food items for FFQs in such a way that the amount of information on all relevant nutrients is maximised while the food list is as short as possible. Selection of the most informative food items to be included in FFQs was modelled as a Mixed Integer Linear Programming (MILP) model. The methodology was demonstrated for an FFQ with interest in energy, total protein, total fat, saturated fat, monounsaturated fat, polyunsaturated fat, total carbohydrates, mono- and disaccharides, dietary fibre and potassium. The food lists generated by the MILP model have good performance in terms of length, coverage and R 2 (explained variance) of all nutrients. MILP-generated food lists were 32-40 % shorter than a benchmark food list, whereas their quality in terms of R 2 was similar to that of the benchmark. The results suggest that the MILP model makes the selection process faster, more standardised and transparent, and is especially helpful in coping with multiple nutrients. The complexity of the method does not increase with increasing number of nutrients. The generated food lists appear either shorter or provide more information than a food list generated without the MILP model.
A Two-Stage Stochastic Mixed-Integer Programming Approach to the Smart House Scheduling Problem
NASA Astrophysics Data System (ADS)
Ozoe, Shunsuke; Tanaka, Yoichi; Fukushima, Masao
A “Smart House” is a highly energy-optimized house equipped with photovoltaic systems (PV systems), electric battery systems, fuel cell cogeneration systems (FC systems), electric vehicles (EVs) and so on. Smart houses are attracting much attention recently thanks to their enhanced ability to save energy by making full use of renewable energy and by achieving power grid stability despite an increased power draw for installed PV systems. Yet running a smart house's power system, with its multiple power sources and power storages, is no simple task. In this paper, we consider the problem of power scheduling for a smart house with a PV system, an FC system and an EV. We formulate the problem as a mixed integer programming problem, and then extend it to a stochastic programming problem involving recourse costs to cope with uncertain electricity demand, heat demand and PV power generation. Using our method, we seek to achieve the optimal power schedule running at the minimum expected operation cost. We present some results of numerical experiments with data on real-life demands and PV power generation to show the effectiveness of our method.
The nonlinear evolution of modes on unstable stratified shear layers
NASA Technical Reports Server (NTRS)
Blackaby, Nicholas; Dando, Andrew; Hall, Philip
1993-01-01
The nonlinear development of disturbances in stratified shear flows (having a local Richardson number of value less than one quarter) is considered. Such modes are initially fast growing but, like related studies, we assume that the viscous, non-parallel spreading of the shear layer results in them evolving in a linear fashion until they reach a position where their amplitudes are large enough and their growth rates have diminished sufficiently so that amplitude equations can be derived using weakly nonlinear and non-equilibrium critical-layer theories. Four different basic integro-differential amplitude equations are possible, including one due to a novel mechanism; the relevant choice of amplitude equation, at a particular instance, being dependent on the relative sizes of the disturbance amplitude, the growth rate of the disturbance, its wavenumber, and the viscosity of the fluid. This richness of choice of possible nonlinearities arises mathematically from the indicial Frobenius roots of the governing linear inviscid equation (the Taylor-Goldstein equation) not, in general, differing by an integer. The initial nonlinear evolution of a mode will be governed by an integro-differential amplitude equations with a cubic nonlinearity but the resulting significant increase in the size of the disturbance's amplitude leads on to the next stage of the evolution process where the evolution of the mode is governed by an integro-differential amplitude equations with a quintic nonlinearity. Continued growth of the disturbance amplitude is expected during this stage, resulting in the effects of nonlinearity spreading to outside the critical level, by which time the flow has become fully nonlinear.
Hybrid-optimization algorithm for the management of a conjunctive-use project and well field design
Chiu, Yung-Chia; Nishikawa, Tracy; Martin, Peter
2012-01-01
Hi-Desert Water District (HDWD), the primary water-management agency in the Warren Groundwater Basin, California, plans to construct a waste water treatment plant to reduce future septic-tank effluent from reaching the groundwater system. The treated waste water will be reclaimed by recharging the groundwater basin via recharge ponds as part of a larger conjunctive-use strategy. HDWD wishes to identify the least-cost conjunctiveuse strategies for managing imported surface water, reclaimed water, and local groundwater. As formulated, the mixed-integer nonlinear programming (MINLP) groundwater-management problem seeks to minimize water delivery costs subject to constraints including potential locations of the new pumping wells, California State regulations, groundwater-level constraints, water-supply demand, available imported water, and pump/recharge capacities. In this study, a hybrid-optimization algorithm, which couples a genetic algorithm and successive-linear programming, is developed to solve the MINLP problem. The algorithm was tested by comparing results to the enumerative solution for a simplified version of the HDWD groundwater-management problem. The results indicate that the hybrid-optimization algorithm can identify the global optimum. The hybrid-optimization algorithm is then applied to solve a complex groundwater-management problem. Sensitivity analyses were also performed to assess the impact of varying the new recharge pond orientation, varying the mixing ratio of reclaimed water and pumped water, and varying the amount of imported water available. The developed conjunctive management model can provide HDWD water managers with information that will improve their ability to manage their surface water, reclaimed water, and groundwater resources.
Time-reversed wave mixing in nonlinear optics
Zheng, Yuanlin; Ren, Huaijin; Wan, Wenjie; Chen, Xianfeng
2013-01-01
Time-reversal symmetry is important to optics. Optical processes can run in a forward or backward direction through time when such symmetry is preserved. In linear optics, a time-reversed process of laser emission can enable total absorption of coherent light fields inside an optical cavity of loss by time-reversing the original gain medium. Nonlinearity, however, can often destroy such symmetry in nonlinear optics, making it difficult to study time-reversal symmetry with nonlinear optical wave mixings. Here we demonstrate time-reversed wave mixings for optical second harmonic generation (SHG) and optical parametric amplification (OPA) by exploring this well-known but underappreciated symmetry in nonlinear optics. This allows us to observe the annihilation of coherent beams. Our study offers new avenues for flexible control in nonlinear optics and has potential applications in efficient wavelength conversion, all-optical computing. PMID:24247906
Optimal reconfiguration strategy for a degradable multimodule computing system
NASA Technical Reports Server (NTRS)
Lee, Yann-Hang; Shin, Kang G.
1987-01-01
The present quantitative approach to the problem of reconfiguring a degradable multimode system assigns some modules to computation and arranges others for reliability. By using expected total reward as the optimal criterion, there emerges an active reconfiguration strategy based not only on the occurrence of failure but the progression of the given mission. This reconfiguration strategy requires specification of the times at which the system should undergo reconfiguration, and the configurations to which the system should change. The optimal reconfiguration problem is converted to integer nonlinear knapsack and fractional programming problems.
Sigalov, G; Gendelman, O V; AL-Shudeifat, M A; Manevitch, L I; Vakakis, A F; Bergman, L A
2012-03-01
We show that nonlinear inertial coupling between a linear oscillator and an eccentric rotator can lead to very interesting interchanges between regular and chaotic dynamical behavior. Indeed, we show that this model demonstrates rather unusual behavior from the viewpoint of nonlinear dynamics. Specifically, at a discrete set of values of the total energy, the Hamiltonian system exhibits non-conventional nonlinear normal modes, whose shape is determined by phase locking of rotatory and oscillatory motions of the rotator at integer ratios of characteristic frequencies. Considering the weakly damped system, resonance capture of the dynamics into the vicinity of these modes brings about regular motion of the system. For energy levels far from these discrete values, the motion of the system is chaotic. Thus, the succession of resonance captures and escapes by a discrete set of the normal modes causes a sequence of transitions between regular and chaotic behavior, provided that the damping is sufficiently small. We begin from the Hamiltonian system and present a series of Poincaré sections manifesting the complex structure of the phase space of the considered system with inertial nonlinear coupling. Then an approximate analytical description is presented for the non-conventional nonlinear normal modes. We confirm the analytical results by numerical simulation and demonstrate the alternate transitions between regular and chaotic dynamics mentioned above. The origin of the chaotic behavior is also discussed.
Entanglement spectrum degeneracy and the Cardy formula in 1+1 dimensional conformal field theories
NASA Astrophysics Data System (ADS)
Alba, Vincenzo; Calabrese, Pasquale; Tonni, Erik
2018-01-01
We investigate the effect of a global degeneracy in the distribution of the entanglement spectrum in conformal field theories in one spatial dimension. We relate the recently found universal expression for the entanglement Hamiltonian to the distribution of the entanglement spectrum. The main tool to establish this connection is the Cardy formula. It turns out that the Affleck-Ludwig non-integer degeneracy, appearing because of the boundary conditions induced at the entangling surface, can be directly read from the entanglement spectrum distribution. We also clarify the effect of the non-integer degeneracy on the spectrum of the partial transpose, which is the central object for quantifying the entanglement in mixed states. We show that the exact knowledge of the entanglement spectrum in some integrable spin-chains provides strong analytical evidences corroborating our results.
Birkhoff Normal Form for Some Nonlinear PDEs
NASA Astrophysics Data System (ADS)
Bambusi, Dario
We consider the problem of extending to PDEs Birkhoff normal form theorem on Hamiltonian systems close to nonresonant elliptic equilibria. As a model problem we take the nonlinear wave equation
APPLICATION OF NEURAL NETWORK ALGORITHMS FOR BPM LINEARIZATION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Musson, John C.; Seaton, Chad; Spata, Mike F.
2012-11-01
Stripline BPM sensors contain inherent non-linearities, as a result of field distortions from the pickup elements. Many methods have been devised to facilitate corrections, often employing polynomial fitting. The cost of computation makes real-time correction difficult, particulalry when integer math is utilized. The application of neural-network technology, particularly the multi-layer perceptron algorithm, is proposed as an efficient alternative for electrode linearization. A process of supervised learning is initially used to determine the weighting coefficients, which are subsequently applied to the incoming electrode data. A non-linear layer, known as an activation layer, is responsible for the removal of saturation effects. Implementationmore » of a perceptron in an FPGA-based software-defined radio (SDR) is presented, along with performance comparisons. In addition, efficient calculation of the sigmoidal activation function via the CORDIC algorithm is presented.« less
Symmetry classification of time-fractional diffusion equation
NASA Astrophysics Data System (ADS)
Naeem, I.; Khan, M. D.
2017-01-01
In this article, a new approach is proposed to construct the symmetry groups for a class of fractional differential equations which are expressed in the modified Riemann-Liouville fractional derivative. We perform a complete group classification of a nonlinear fractional diffusion equation which arises in fractals, acoustics, control theory, signal processing and many other applications. Introducing the suitable transformations, the fractional derivatives are converted to integer order derivatives and in consequence the nonlinear fractional diffusion equation transforms to a partial differential equation (PDE). Then the Lie symmetries are computed for resulting PDE and using inverse transformations, we derive the symmetries for fractional diffusion equation. All cases are discussed in detail and results for symmetry properties are compared for different values of α. This study provides a new way of computing symmetries for a class of fractional differential equations.
NASA Astrophysics Data System (ADS)
Osherovich, V. A.; Fainberg, J.
2018-01-01
We consider simultaneous oscillations of electrons moving both along the axis of symmetry and also in the direction perpendicular to the axis. We derive a system of three nonlinear ordinary differential equations which describe self-similar oscillations of cold electrons in a constant proton density background (np = n0 = constant). These three equations represent an exact class of solutions. For weak nonlinear conditions, the frequency spectra of electric field oscillations exhibit split frequency behavior at the Langmuir frequency ωp0 and its harmonics, as well as presence of difference frequencies at low spectral values. For strong nonlinear conditions, the spectra contain peaks at frequencies with values ωp0(n +m √{2 }) , where n and m are integer numbers (positive and negative). We predict that both spectral types (weak and strong) should be observed in plasmas where axial symmetry may exist. To illustrate possible applications of our theory, we present a spectrum of electric field oscillations observed in situ in the solar wind by the WAVES experiment on the Wind spacecraft during the passage of a type III solar radio burst.
A wavelet-based ECG delineation algorithm for 32-bit integer online processing
2011-01-01
Background Since the first well-known electrocardiogram (ECG) delineator based on Wavelet Transform (WT) presented by Li et al. in 1995, a significant research effort has been devoted to the exploitation of this promising method. Its ability to reliably delineate the major waveform components (mono- or bi-phasic P wave, QRS, and mono- or bi-phasic T wave) would make it a suitable candidate for efficient online processing of ambulatory ECG signals. Unfortunately, previous implementations of this method adopt non-linear operators such as root mean square (RMS) or floating point algebra, which are computationally demanding. Methods This paper presents a 32-bit integer, linear algebra advanced approach to online QRS detection and P-QRS-T waves delineation of a single lead ECG signal, based on WT. Results The QRS detector performance was validated on the MIT-BIH Arrhythmia Database (sensitivity Se = 99.77%, positive predictive value P+ = 99.86%, on 109010 annotated beats) and on the European ST-T Database (Se = 99.81%, P+ = 99.56%, on 788050 annotated beats). The ECG delineator was validated on the QT Database, showing a mean error between manual and automatic annotation below 1.5 samples for all fiducial points: P-onset, P-peak, P-offset, QRS-onset, QRS-offset, T-peak, T-offset, and a mean standard deviation comparable to other established methods. Conclusions The proposed algorithm exhibits reliable QRS detection as well as accurate ECG delineation, in spite of a simple structure built on integer linear algebra. PMID:21457580
A wavelet-based ECG delineation algorithm for 32-bit integer online processing.
Di Marco, Luigi Y; Chiari, Lorenzo
2011-04-03
Since the first well-known electrocardiogram (ECG) delineator based on Wavelet Transform (WT) presented by Li et al. in 1995, a significant research effort has been devoted to the exploitation of this promising method. Its ability to reliably delineate the major waveform components (mono- or bi-phasic P wave, QRS, and mono- or bi-phasic T wave) would make it a suitable candidate for efficient online processing of ambulatory ECG signals. Unfortunately, previous implementations of this method adopt non-linear operators such as root mean square (RMS) or floating point algebra, which are computationally demanding. This paper presents a 32-bit integer, linear algebra advanced approach to online QRS detection and P-QRS-T waves delineation of a single lead ECG signal, based on WT. The QRS detector performance was validated on the MIT-BIH Arrhythmia Database (sensitivity Se = 99.77%, positive predictive value P+ = 99.86%, on 109010 annotated beats) and on the European ST-T Database (Se = 99.81%, P+ = 99.56%, on 788050 annotated beats). The ECG delineator was validated on the QT Database, showing a mean error between manual and automatic annotation below 1.5 samples for all fiducial points: P-onset, P-peak, P-offset, QRS-onset, QRS-offset, T-peak, T-offset, and a mean standard deviation comparable to other established methods. The proposed algorithm exhibits reliable QRS detection as well as accurate ECG delineation, in spite of a simple structure built on integer linear algebra.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Powell, Kody M.; Kim, Jong Suk; Cole, Wesley J.
2016-10-01
District energy systems can produce low-cost utilities for large energy networks, but can also be a resource for the electric grid by their ability to ramp production or to store thermal energy by responding to real-time market signals. In this work, dynamic optimization exploits the flexibility of thermal energy storage by determining optimal times to store and extract excess energy. This concept is applied to a polygeneration distributed energy system with combined heat and power, district heating, district cooling, and chilled water thermal energy storage. The system is a university campus responsible for meeting the energy needs of tens ofmore » thousands of people. The objective for the dynamic optimization problem is to minimize cost over a 24-h period while meeting multiple loads in real time. The paper presents a novel algorithm to solve this dynamic optimization problem with energy storage by decomposing the problem into multiple static mixed-integer nonlinear programming (MINLP) problems. Another innovative feature of this work is the study of a large, complex energy network which includes the interrelations of a wide variety of energy technologies. Results indicate that a cost savings of 16.5% is realized when the system can participate in the wholesale electricity market.« less
Fuzzy multiobjective models for optimal operation of a hydropower system
NASA Astrophysics Data System (ADS)
Teegavarapu, Ramesh S. V.; Ferreira, André R.; Simonovic, Slobodan P.
2013-06-01
Optimal operation models for a hydropower system using new fuzzy multiobjective mathematical programming models are developed and evaluated in this study. The models use (i) mixed integer nonlinear programming (MINLP) with binary variables and (ii) integrate a new turbine unit commitment formulation along with water quality constraints used for evaluation of reservoir downstream impairment. Reardon method used in solution of genetic algorithm optimization problems forms the basis for development of a new fuzzy multiobjective hydropower system optimization model with creation of Reardon type fuzzy membership functions. The models are applied to a real-life hydropower reservoir system in Brazil. Genetic Algorithms (GAs) are used to (i) solve the optimization formulations to avoid computational intractability and combinatorial problems associated with binary variables in unit commitment, (ii) efficiently address Reardon method formulations, and (iii) deal with local optimal solutions obtained from the use of traditional gradient-based solvers. Decision maker's preferences are incorporated within fuzzy mathematical programming formulations to obtain compromise operating rules for a multiobjective reservoir operation problem dominated by conflicting goals of energy production, water quality and conservation releases. Results provide insight into compromise operation rules obtained using the new Reardon fuzzy multiobjective optimization framework and confirm its applicability to a variety of multiobjective water resources problems.
NASA Astrophysics Data System (ADS)
Tavakkoli-Moghaddam, Reza; Forouzanfar, Fateme; Ebrahimnejad, Sadoullah
2013-07-01
This paper considers a single-sourcing network design problem for a three-level supply chain. For the first time, a novel mathematical model is presented considering risk-pooling, the inventory existence at distribution centers (DCs) under demand uncertainty, the existence of several alternatives to transport the product between facilities, and routing of vehicles from distribution centers to customer in a stochastic supply chain system, simultaneously. This problem is formulated as a bi-objective stochastic mixed-integer nonlinear programming model. The aim of this model is to determine the number of located distribution centers, their locations, and capacity levels, and allocating customers to distribution centers and distribution centers to suppliers. It also determines the inventory control decisions on the amount of ordered products and the amount of safety stocks at each opened DC, selecting a type of vehicle for transportation. Moreover, it determines routing decisions, such as determination of vehicles' routes starting from an opened distribution center to serve its allocated customers and returning to that distribution center. All are done in a way that the total system cost and the total transportation time are minimized. The Lingo software is used to solve the presented model. The computational results are illustrated in this paper.
Cost Optimization Model for Business Applications in Virtualized Grid Environments
NASA Astrophysics Data System (ADS)
Strebel, Jörg
The advent of Grid computing gives enterprises an ever increasing choice of computing options, yet research has so far hardly addressed the problem of mixing the different computing options in a cost-minimal fashion. The following paper presents a comprehensive cost model and a mixed integer optimization model which can be used to minimize the IT expenditures of an enterprise and help in decision-making when to outsource certain business software applications. A sample scenario is analyzed and promising cost savings are demonstrated. Possible applications of the model to future research questions are outlined.
Optimal sensor placement for leak location in water distribution networks using genetic algorithms.
Casillas, Myrna V; Puig, Vicenç; Garza-Castañón, Luis E; Rosich, Albert
2013-11-04
This paper proposes a new sensor placement approach for leak location in water distribution networks (WDNs). The sensor placement problem is formulated as an integer optimization problem. The optimization criterion consists in minimizing the number of non-isolable leaks according to the isolability criteria introduced. Because of the large size and non-linear integer nature of the resulting optimization problem, genetic algorithms (GAs) are used as the solution approach. The obtained results are compared with a semi-exhaustive search method with higher computational effort, proving that GA allows one to find near-optimal solutions with less computational load. Moreover, three ways of increasing the robustness of the GA-based sensor placement method have been proposed using a time horizon analysis, a distance-based scoring and considering different leaks sizes. A great advantage of the proposed methodology is that it does not depend on the isolation method chosen by the user, as long as it is based on leak sensitivity analysis. Experiments in two networks allow us to evaluate the performance of the proposed approach.
Optimal Sensor Placement for Leak Location in Water Distribution Networks Using Genetic Algorithms
Casillas, Myrna V.; Puig, Vicenç; Garza-Castañón, Luis E.; Rosich, Albert
2013-01-01
This paper proposes a new sensor placement approach for leak location in water distribution networks (WDNs). The sensor placement problem is formulated as an integer optimization problem. The optimization criterion consists in minimizing the number of non-isolable leaks according to the isolability criteria introduced. Because of the large size and non-linear integer nature of the resulting optimization problem, genetic algorithms (GAs) are used as the solution approach. The obtained results are compared with a semi-exhaustive search method with higher computational effort, proving that GA allows one to find near-optimal solutions with less computational load. Moreover, three ways of increasing the robustness of the GA-based sensor placement method have been proposed using a time horizon analysis, a distance-based scoring and considering different leaks sizes. A great advantage of the proposed methodology is that it does not depend on the isolation method chosen by the user, as long as it is based on leak sensitivity analysis. Experiments in two networks allow us to evaluate the performance of the proposed approach. PMID:24193099
Nonlinear oscillations and waves in multi-species cold plasmas
NASA Astrophysics Data System (ADS)
Verma, Prabal Singh
2016-12-01
The spatio-temporal evolution of nonlinear oscillations in multi-species plasma is revisited to provide more insight into the physics of phase mixing by constructing two sets of nonlinear solutions up to the second order. The first solution exhibits perfect oscillations in the linear regime and phase mixing appears only nonlinearly in the second order as a response to the ponderomotive forces. This response can be both direct and indirect. The indirect contribution of the ponderomotive forces appears through self-consistently generated low frequency fields. Furthermore, the direct and indirect contributions of the ponderomotive forces on the phase mixing process is explored and it is found that the indirect contribution is negligible in an electron-ion plasma and it disappears in the case of electron-positron plasma, yet represents an equal contribution in the electron-positron-ion plasma. However, the second solution does not exhibit any phase mixing due to the absence of ponderomotive forces but results in an undistorted nonlinear traveling wave. These investigations have relevance for laboratory/astrophysical multi-species plasma.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song, Hyun-Seob; Goldberg, Noam; Mahajan, Ashutosh
Elementary (flux) modes (EMs) have served as a valuable tool for investigating structural and functional properties of metabolic networks. Identification of the full set of EMs in genome-scale networks remains challenging due to combinatorial explosion of EMs in complex networks. It is often, however, that only a small subset of relevant EMs needs to be known, for which optimization-based sequential computation is a useful alternative. Most of the currently available methods along this line are based on the iterative use of mixed integer linear programming (MILP), the effectiveness of which significantly deteriorates as the number of iterations builds up. Tomore » alleviate the computational burden associated with the MILP implementation, we here present a novel optimization algorithm termed alternate integer linear programming (AILP). Results: Our algorithm was designed to iteratively solve a pair of integer programming (IP) and linear programming (LP) to compute EMs in a sequential manner. In each step, the IP identifies a minimal subset of reactions, the deletion of which disables all previously identified EMs. Thus, a subsequent LP solution subject to this reaction deletion constraint becomes a distinct EM. In cases where no feasible LP solution is available, IP-derived reaction deletion sets represent minimal cut sets (MCSs). Despite the additional computation of MCSs, AILP achieved significant time reduction in computing EMs by orders of magnitude. The proposed AILP algorithm not only offers a computational advantage in the EM analysis of genome-scale networks, but also improves the understanding of the linkage between EMs and MCSs.« less
Magnitude comparison with different types of rational numbers.
DeWolf, Melissa; Grounds, Margaret A; Bassok, Miriam; Holyoak, Keith J
2014-02-01
An important issue in understanding mathematical cognition involves the similarities and differences between the magnitude representations associated with various types of rational numbers. For single-digit integers, evidence indicates that magnitudes are represented as analog values on a mental number line, such that magnitude comparisons are made more quickly and accurately as the numerical distance between numbers increases (the distance effect). Evidence concerning a distance effect for compositional numbers (e.g., multidigit whole numbers, fractions and decimals) is mixed. We compared the patterns of response times and errors for college students in magnitude comparison tasks across closely matched sets of rational numbers (e.g., 22/37, 0.595, 595). In Experiment 1, a distance effect was found for both fractions and decimals, but response times were dramatically slower for fractions than for decimals. Experiments 2 and 3 compared performance across fractions, decimals, and 3-digit integers. Response patterns for decimals and integers were extremely similar but, as in Experiment 1, magnitude comparisons based on fractions were dramatically slower, even when the decimals varied in precision (i.e., number of place digits) and could not be compared in the same way as multidigit integers (Experiment 3). Our findings indicate that comparisons of all three types of numbers exhibit a distance effect, but that processing often involves strategic focus on components of numbers. Fractions impose an especially high processing burden due to their bipartite (a/b) structure. In contrast to the other number types, the magnitude values associated with fractions appear to be less precise, and more dependent on explicit calculation. PsycINFO Database Record (c) 2014 APA, all rights reserved.
HIPPO Unit Commitment Version 1
DOE Office of Scientific and Technical Information (OSTI.GOV)
2017-01-17
Developed for the Midcontinent Independent System Operator, Inc. (MISO), HIPPO-Unit Commitment Version 1 is for solving security constrained unit commitment problem. The model was developed to solve MISO's cases. This version of codes includes I/O module to read in MISO's csv files, modules to create a state-based mixed integer programming formulation for solving MIP, and modules to test basic procedures to solve MIP via HPC.
ERIC Educational Resources Information Center
Chen, Pei-Hua; Chang, Hua-Hua; Wu, Haiyan
2012-01-01
Two sampling-and-classification-based procedures were developed for automated test assembly: the Cell Only and the Cell and Cube methods. A simulation study based on a 540-item bank was conducted to compare the performance of the procedures with the performance of a mixed-integer programming (MIP) method for assembling multiple parallel test…
Optimum use of air tankers in initial attack: selection, basing, and transfer rules
Francis E. Greulich; William G. O' Regan
1982-01-01
Fire managers face two interrelated problems in deciding the most efficient use of air tankers: where best to base them, and how best to reallocate them each day in anticipation of fire occurrence. A computerized model based on a mixed integer linear program can help in assigning air tankers throughout the fire season. The model was tested using information from...
NASA Astrophysics Data System (ADS)
Gürcan, Eser Kemal
2017-04-01
The most commonly used methods for analyzing time-dependent data are multivariate analysis of variance (MANOVA) and nonlinear regression models. The aim of this study was to compare some MANOVA techniques and nonlinear mixed modeling approach for investigation of growth differentiation in female and male Japanese quail. Weekly individual body weight data of 352 male and 335 female quail from hatch to 8 weeks of age were used to perform analyses. It is possible to say that when all the analyses are evaluated, the nonlinear mixed modeling is superior to the other techniques because it also reveals the individual variation. In addition, the profile analysis also provides important information.
NASA Astrophysics Data System (ADS)
Karimi Movahed, Kamran; Zhang, Zhi-Hai
2015-09-01
Demand and lead time uncertainties have significant effects on supply chain behaviour. In this paper, we present a single-product three-level multi-period supply chain with uncertain demands and lead times by using robust techniques to study the managerial insights of the supply chain inventory system under uncertainty. We formulate this problem as a robust mixed-integer linear program with minimised expected cost and total cost variation to determine the optimal (s, S) values of the inventory parameters. Several numerical studies are performed to investigate the supply chain behaviour. Useful guidelines for the design of a robust supply chain are also provided. Results show that the order variance and the expected cost in a supply chain significantly increase when the manufacturer's review period is an integer ratio of the distributor's and the retailer's review periods.
Charge-transfer crystallites as molecular electrical dopants
Méndez, Henry; Heimel, Georg; Winkler, Stefanie; Frisch, Johannes; Opitz, Andreas; Sauer, Katrein; Wegner, Berthold; Oehzelt, Martin; Röthel, Christian; Duhm, Steffen; Többens, Daniel; Koch, Norbert; Salzmann, Ingo
2015-01-01
Ground-state integer charge transfer is commonly regarded as the basic mechanism of molecular electrical doping in both, conjugated polymers and oligomers. Here, we demonstrate that fundamentally different processes can occur in the two types of organic semiconductors instead. Using complementary experimental techniques supported by theory, we contrast a polythiophene, where molecular p-doping leads to integer charge transfer reportedly localized to one quaterthiophene backbone segment, to the quaterthiophene oligomer itself. Despite a comparable relative increase in conductivity, we observe only partial charge transfer for the latter. In contrast to the parent polymer, pronounced intermolecular frontier-orbital hybridization of oligomer and dopant in 1:1 mixed-stack co-crystallites leads to the emergence of empty electronic states within the energy gap of the surrounding quaterthiophene matrix. It is their Fermi–Dirac occupation that yields mobile charge carriers and, therefore, the co-crystallites—rather than individual acceptor molecules—should be regarded as the dopants in such systems. PMID:26440403
Numerical study of the medium thickness in the Z-scan technique
NASA Astrophysics Data System (ADS)
Severiano Carrillo, I.; Méndez Otero, M. M.; Arroyo Carrasco, M. L.; Iturbe Castillo, M. D.
2011-09-01
The optical characterization of nonlinear media through the Z-scan technique considers initially a thin medium (with a thickness much less than the beam depth of focus). It has been observed that increasing the thickness of the medium the transmittance increases, this means that n2 increases, for this reason we will present a numerical model to determinate the minimum thin and the maximum thick medium limit. A thin medium is considered as a thin lens with focal length F1 and a thick medium can be regarded as a set of such thin lenses set with focal lengths F2, these lenses are contained in a medium whit a refraction index different than air. This analysis is made through Matlab using the theory of Gaussian beams, ABCD matrices and the q parameter, elementary theory in the development of this work, where the main feature of this model is that the nonlinearity type of the medium is considered as an integer constant in its focal length3. We present the graphs obtained from Z-scan for thick medium with both thermal and Kerr nonlinearities.
Mashayekhi, S; Razzaghi, M; Tripak, O
2014-01-01
A new numerical method for solving the nonlinear mixed Volterra-Fredholm integral equations is presented. This method is based upon hybrid functions approximation. The properties of hybrid functions consisting of block-pulse functions and Bernoulli polynomials are presented. The operational matrices of integration and product are given. These matrices are then utilized to reduce the nonlinear mixed Volterra-Fredholm integral equations to the solution of algebraic equations. Illustrative examples are included to demonstrate the validity and applicability of the technique.
Mashayekhi, S.; Razzaghi, M.; Tripak, O.
2014-01-01
A new numerical method for solving the nonlinear mixed Volterra-Fredholm integral equations is presented. This method is based upon hybrid functions approximation. The properties of hybrid functions consisting of block-pulse functions and Bernoulli polynomials are presented. The operational matrices of integration and product are given. These matrices are then utilized to reduce the nonlinear mixed Volterra-Fredholm integral equations to the solution of algebraic equations. Illustrative examples are included to demonstrate the validity and applicability of the technique. PMID:24523638
NASA Astrophysics Data System (ADS)
Dutta Roy, S.
2010-12-01
The refractive index, optical nonlinearity, lowest energy band gap, and other related parameters of some mixed defect ternary chalcopyrites are calculated using Levine's bond charge model and its modification developed by Samanta et al. for multinary and mixed compounds. The dependence of the band gap energy on the average quantum number, molecular weight, and anion displacement parameter is shown for the first time, which will be very useful for designing various optoelectronic and nonlinear laser devices.
Determining on-fault earthquake magnitude distributions from integer programming
NASA Astrophysics Data System (ADS)
Geist, Eric L.; Parsons, Tom
2018-02-01
Earthquake magnitude distributions among faults within a fault system are determined from regional seismicity and fault slip rates using binary integer programming. A synthetic earthquake catalog (i.e., list of randomly sampled magnitudes) that spans millennia is first formed, assuming that regional seismicity follows a Gutenberg-Richter relation. Each earthquake in the synthetic catalog can occur on any fault and at any location. The objective is to minimize misfits in the target slip rate for each fault, where slip for each earthquake is scaled from its magnitude. The decision vector consists of binary variables indicating which locations are optimal among all possibilities. Uncertainty estimates in fault slip rates provide explicit upper and lower bounding constraints to the problem. An implicit constraint is that an earthquake can only be located on a fault if it is long enough to contain that earthquake. A general mixed-integer programming solver, consisting of a number of different algorithms, is used to determine the optimal decision vector. A case study is presented for the State of California, where a 4 kyr synthetic earthquake catalog is created and faults with slip ≥3 mm/yr are considered, resulting in >106 variables. The optimal magnitude distributions for each of the faults in the system span a rich diversity of shapes, ranging from characteristic to power-law distributions.
Kurtosis Approach for Nonlinear Blind Source Separation
NASA Technical Reports Server (NTRS)
Duong, Vu A.; Stubbemd, Allen R.
2005-01-01
In this paper, we introduce a new algorithm for blind source signal separation for post-nonlinear mixtures. The mixtures are assumed to be linearly mixed from unknown sources first and then distorted by memoryless nonlinear functions. The nonlinear functions are assumed to be smooth and can be approximated by polynomials. Both the coefficients of the unknown mixing matrix and the coefficients of the approximated polynomials are estimated by the gradient descent method conditional on the higher order statistical requirements. The results of simulation experiments presented in this paper demonstrate the validity and usefulness of our approach for nonlinear blind source signal separation.
Internal resonance of an elastic body levitated above high-Tc superconducting bulks
NASA Astrophysics Data System (ADS)
Kokuzawa, T.; Toshihiko, S.; Yoshizawa, M.
2010-06-01
In high-Tc superconducting magnetic levitation systems, levitated bodies can keep stable levitation with no contact and no control and thus their damping is very small. Thanks to these features, their applications to various apparatus are expected. However, on account of their small damping, the nonlinearity of electromagnetic levitation force can give notable effects upon motion of the levitated bodies. Therefore this nonlinearity must be taken into account to accurately analyze the dynamical behavior of the levitated bodies. Structures of such a levitated body can show elastic deformation if the large electromagnetic force acts on it. Therefore, we need to deal with the model as an elastic body. As mentioned above, nonlinear characteristics easily appear in this elastic vibration on account of the small damping. Especially when the ratio of the natural frequencies of the eigenmodes is integer, internal resonance can occur. This nonlinear resonance is derived from nonlinear interactions among the eigenmodes of the elastic levitated body. This kind of internal resonance of an elastic body appearing in high-Tc superconducting levitation systems has not been studied so far. This research especially deals with internal resonance of a beam supported at both its ends by electromagnetic forces acting on permanent magnets. The governing equation with the nonlinear boundary conditions for the dynamics of a levitated beam has been derived. Numerical results show internal resonance of the 1st mode and the 3rd mode. Experimental results are qualitatively in good agreement with numerical ones.
Comparisons of linear and nonlinear pyramid schemes for signal and image processing
NASA Astrophysics Data System (ADS)
Morales, Aldo W.; Ko, Sung-Jea
1997-04-01
Linear filters banks are being used extensively in image and video applications. New research results in wavelet applications for compression and de-noising are constantly appearing in the technical literature. On the other hand, non-linear filter banks are also being used regularly in image pyramid algorithms. There are some inherent advantages in using non-linear filters instead of linear filters when non-Gaussian processes are present in images. However, a consistent way of comparing performance criteria between these two schemes has not been fully developed yet. In this paper a recently discovered tool, sample selection probabilities, is used to compare the behavior of linear and non-linear filters. In the conversion from weights of order statistics (OS) filters to coefficients of the impulse response is obtained through these probabilities. However, the reverse problem: the conversion from coefficients of the impulse response to the weights of OS filters is not yet fully understood. One of the reasons for this difficulty is the highly non-linear nature of the partitions and generating function used. In the present paper the problem is posed as an optimization of integer linear programming subject to constraints directly obtained from the coefficients of the impulse response. Although the technique to be presented in not completely refined, it certainly appears to be promising. Some results will be shown.
FPGA Implementation of Optimal 3D-Integer DCT Structure for Video Compression
2015-01-01
A novel optimal structure for implementing 3D-integer discrete cosine transform (DCT) is presented by analyzing various integer approximation methods. The integer set with reduced mean squared error (MSE) and high coding efficiency are considered for implementation in FPGA. The proposed method proves that the least resources are utilized for the integer set that has shorter bit values. Optimal 3D-integer DCT structure is determined by analyzing the MSE, power dissipation, coding efficiency, and hardware complexity of different integer sets. The experimental results reveal that direct method of computing the 3D-integer DCT using the integer set [10, 9, 6, 2, 3, 1, 1] performs better when compared to other integer sets in terms of resource utilization and power dissipation. PMID:26601120
Stochastic Dynamic Mixed-Integer Programming (SD-MIP)
2015-05-05
stochastic linear programming ( SLP ) problems. By using a combination of ideas from cutting plane theory of deterministic MIP (especially disjunctive...developed to date. b) As part of this project, we have also developed tools for very large scale Stochastic Linear Programming ( SLP ). There are...several reasons for this. First, SLP models continue to challenge many of the fastest computers to date, and many applications within the DoD (e.g
Dynamic Distributed Cooperative Control of Multiple Heterogeneous Resources
2012-10-01
of the UAVs to maximize the total sensor footprint over the region of interest. The algorithm utilized to solve this problem was based on sampling a...and moving obstacles. Obstacle positions were assumed known a priori. Kingston and Beard [22] presented an algorithm to keep moving UAVs equally spaced...Planning Algorithms , Cambridge University Press, 2006. 11. Ma, C. S. and Miller, R. H., “Mixed integer linear programming trajectory generation for
Mixed-Integer Nonconvex Quadratic Optimization Relaxations and Performance Analysis
2016-10-11
Analysis of Interior Point Algorithms for Non-Lipschitz and Nonconvex Minimization,” (W. Bian, X. Chen, and Ye), Math Programming, 149 (2015) 301-327...Chen, Ge, Wang, Ye), Math Programming, 143 (1-2) (2014) 371-383. This paper resolved an important open question in cardinality constrained...Statistical Performance, and Algorithmic Theory for Local Solutions,” (H. Liu, T. Yao, R. Li, Y. Ye) manuscript, 2nd revision in Math Programming
Effect of Loss on Multiplexed Single-Photon Sources (Open Access Publisher’s Version)
2015-04-28
lossy components on near- and long-term experimental goals, we simulate themultiplexed sources when used formany- photon state generation under various...efficient integer factorization and digital quantum simulation [7, 8], which relies critically on the development of a high-performance, on-demand photon ...SPDC) or spontaneous four-wave mixing: parametric processes which use a pump laser in a nonlinearmaterial to spontaneously generate photon pairs
An Advanced Tabu Search Approach to Solving the Mixed Payload Airlift Load Planning Problem
2009-03-01
cargo, and the problem therefore becomes trivial. 3. Shoring: Some cargo requires shoring which is small planks of plywood stacked on top of each...Integer Programming Method In 1989, Kevin Ng examined the bin-packing MPALP for Canada’s C-130 aircraft (Ng 1992). His goal was to move a set of... leadership & ethics [ ] warfighting [ ] international security [ ] doctrine [X] other (specify): Military Airlift
Optimized Waterspace Management and Scheduling Using Mixed-Integer Linear Programming
2016-01-01
Complete [30]. Proposition 4.1 satisfies the first criterion. For the second criterion, we will use the Traveling Salesman Problem (TSP), which has been...A branch and cut algorithm for the symmetric generalized traveling salesman problem , Operations Research 45 (1997) 378–394. [33] J. Silberholz, B...Golden, The generalized traveling salesman problem : A new genetic algorithm ap- proach, Extended Horizons: Advances in Computing, Optimization, and
Selection of Sustainable Processes using Sustainability ...
Chemical products can be obtained by process pathways involving varying amounts and types of resources, utilities, and byproduct formation. When such competing process options such as six processes for making methanol as are considered in this study, it is necessary to identify the most sustainable option. Sustainability of a chemical process is generally evaluated with indicators that require process and chemical property data. These indicators individually reflect the impacts of the process on areas of sustainability, such as the environment or society. In order to choose among several alternative processes an overall comparative analysis is essential. Generally net profit will show the most economic process. A mixed integer optimization problem can also be solved to identify the most economic among competing processes. This method uses economic optimization and leaves aside the environmental and societal impacts. To make a decision on the most sustainable process, the method presented here rationally aggregates the sustainability indicators into a single index called sustainability footprint (De). Process flow and economic data were used to compute the indicator values. Results from sustainability footprint (De) are compared with those from solving a mixed integer optimization problem. In order to identify the rank order of importance of the indicators, a multivariate analysis is performed using partial least square variable importance in projection (PLS-VIP)
Topological charge algebra of optical vortices in nonlinear interactions.
Zhdanova, Alexandra A; Shutova, Mariia; Bahari, Aysan; Zhi, Miaochan; Sokolov, Alexei V
2015-12-28
We investigate the transfer of orbital angular momentum among multiple beams involved in a coherent Raman interaction. We use a liquid crystal light modulator to shape pump and Stokes beams into optical vortices with various integer values of topological charge, and cross them in a Raman-active crystal to produce multiple Stokes and anti-Stokes sidebands. We measure the resultant vortex charges using a tilted-lens technique. We verify that in every case the generated beams' topological charges obey a simple relationship, resulting from angular momentum conservation for created and annihilated photons, or equivalently, from phase-matching considerations for multiple interacting beams.
Existence of entire solutions of some non-linear differential-difference equations.
Chen, Minfeng; Gao, Zongsheng; Du, Yunfei
2017-01-01
In this paper, we investigate the admissible entire solutions of finite order of the differential-difference equations [Formula: see text] and [Formula: see text], where [Formula: see text], [Formula: see text] are two non-zero polynomials, [Formula: see text] is a polynomial and [Formula: see text]. In addition, we investigate the non-existence of entire solutions of finite order of the differential-difference equation [Formula: see text], where [Formula: see text], [Formula: see text] are two non-constant polynomials, [Formula: see text], m , n are positive integers and satisfy [Formula: see text] except for [Formula: see text], [Formula: see text].
Vazquez-Leal, Hector; Benhammouda, Brahim; Filobello-Nino, Uriel Antonio; Sarmiento-Reyes, Arturo; Jimenez-Fernandez, Victor Manuel; Marin-Hernandez, Antonio; Herrera-May, Agustin Leobardo; Diaz-Sanchez, Alejandro; Huerta-Chua, Jesus
2014-01-01
In this article, we propose the application of a modified Taylor series method (MTSM) for the approximation of nonlinear problems described on finite intervals. The issue of Taylor series method with mixed boundary conditions is circumvented using shooting constants and extra derivatives of the problem. In order to show the benefits of this proposal, three different kinds of problems are solved: three-point boundary valued problem (BVP) of third-order with a hyperbolic sine nonlinearity, two-point BVP for a second-order nonlinear differential equation with an exponential nonlinearity, and a two-point BVP for a third-order nonlinear differential equation with a radical nonlinearity. The result shows that the MTSM method is capable to generate easily computable and highly accurate approximations for nonlinear equations. 34L30.
Automatic computation of the travelling wave solutions to nonlinear PDEs
NASA Astrophysics Data System (ADS)
Liang, Songxin; Jeffrey, David J.
2008-05-01
Various extensions of the tanh-function method and their implementations for finding explicit travelling wave solutions to nonlinear partial differential equations (PDEs) have been reported in the literature. However, some solutions are often missed by these packages. In this paper, a new algorithm and its implementation called TWS for solving single nonlinear PDEs are presented. TWS is implemented in MAPLE 10. It turns out that, for PDEs whose balancing numbers are not positive integers, TWS works much better than existing packages. Furthermore, TWS obtains more solutions than existing packages for most cases. Program summaryProgram title:TWS Catalogue identifier:AEAM_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEAM_v1_0.html Program obtainable from:CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions:Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.:1250 No. of bytes in distributed program, including test data, etc.:78 101 Distribution format:tar.gz Programming language:Maple 10 Computer:A laptop with 1.6 GHz Pentium CPU Operating system:Windows XP Professional RAM:760 Mbytes Classification:5 Nature of problem:Finding the travelling wave solutions to single nonlinear PDEs. Solution method:Based on tanh-function method. Restrictions:The current version of this package can only deal with single autonomous PDEs or ODEs, not systems of PDEs or ODEs. However, the PDEs can have any finite number of independent space variables in addition to time t. Unusual features:For PDEs whose balancing numbers are not positive integers, TWS works much better than existing packages. Furthermore, TWS obtains more solutions than existing packages for most cases. Additional comments:It is easy to use. Running time:Less than 20 seconds for most cases, between 20 to 100 seconds for some cases, over 100 seconds for few cases. References: [1] E.S. Cheb-Terrab, K. von Bulow, Comput. Phys. Comm. 90 (1995) 102. [2] S.A. Elwakil, S.K. El-Labany, M.A. Zahran, R. Sabry, Phys. Lett. A 299 (2002) 179. [3] E. Fan, Phys. Lett. 277 (2000) 212. [4] W. Malfliet, Amer. J. Phys. 60 (1992) 650. [5] W. Malfliet, W. Hereman, Phys. Scripta 54 (1996) 563. [6] E.J. Parkes, B.R. Duffy, Comput. Phys. Comm. 98 (1996) 288.
Segundo, J P; Sugihara, G; Dixon, P; Stiber, M; Bersier, L F
1998-12-01
This communication describes the new information that may be obtained by applying nonlinear analytical techniques to neurobiological time-series. Specifically, we consider the sequence of interspike intervals Ti (the "timing") of trains recorded from synaptically inhibited crayfish pacemaker neurons. As reported earlier, different postsynaptic spike train forms (sets of timings with shared properties) are generated by varying the average rate and/or pattern (implying interval dispersions and sequences) of presynaptic spike trains. When the presynaptic train is Poisson (independent exponentially distributed intervals), the form is "Poisson-driven" (unperturbed and lengthened intervals succeed each other irregularly). When presynaptic trains are pacemaker (intervals practically equal), forms are either "p:q locked" (intervals repeat periodically), "intermittent" (mostly almost locked but disrupted irregularly), "phase walk throughs" (intermittencies with briefer regular portions), or "messy" (difficult to predict or describe succinctly). Messy trains are either "erratic" (some intervals natural and others lengthened irregularly) or "stammerings" (intervals are integral multiples of presynaptic intervals). The individual spike train forms were analysed using attractor reconstruction methods based on the lagged coordinates provided by successive intervals from the time-series Ti. Numerous models were evaluated in terms of their predictive performance by a trial-and-error procedure: the most successful model was taken as best reflecting the true nature of the system's attractor. Each form was characterized in terms of its dimensionality, nonlinearity and predictability. (1) The dimensionality of the underlying dynamical attractor was estimated by the minimum number of variables (coordinates Ti) required to model acceptably the system's dynamics, i.e. by the system's degrees of freedom. Each model tested was based on a different number of Ti; the smallest number whose predictions were judged successful provided the best integer approximation of the attractor's true dimension (not necessarily an integer). Dimensionalities from three to five provided acceptable fits. (2) The degree of nonlinearity was estimated by: (i) comparing the correlations between experimental results and data from linear and nonlinear models, and (ii) tuning model nonlinearity via a distance-weighting function and identifying the either local or global neighborhood size. Lockings were compatible with linear models and stammerings were marginal; nonlinear models were best for Poisson-driven, intermittent and erratic forms. (3) Finally, prediction accuracy was plotted against increasingly long sequences of intervals forecast: the accuracies for Poisson-driven, locked and stammering forms were invariant, revealing irregularities due to uncorrelated noise, but those of intermittent and messy erratic forms decayed rapidly, indicating an underlying deterministic process. The excellent reconstructions possible for messy erratic and for some intermittent forms are especially significant because of their relatively low dimensionality (around 4), high degree of nonlinearity and prediction decay with time. This is characteristic of chaotic systems, and provides evidence that nonlinear couplings between relatively few variables are the major source of the apparent complexity seen in these cases. This demonstration of different dimensions, degrees of nonlinearity and predictabilities provides rigorous support for the categorization of different synaptically driven discharge forms proposed earlier on the basis of more heuristic criteria. This has significant implications. (1) It demonstrates that heterogeneous postsynaptic forms can indeed be induced by manipulating a few presynaptic variables. (2) Each presynaptic timing induces a form with characteristic dimensionality, thus breaking up the preparation into subsystems such that the physical variables in each operate as one
Periodic solutions for one dimensional wave equation with bounded nonlinearity
NASA Astrophysics Data System (ADS)
Ji, Shuguan
2018-05-01
This paper is concerned with the periodic solutions for the one dimensional nonlinear wave equation with either constant or variable coefficients. The constant coefficient model corresponds to the classical wave equation, while the variable coefficient model arises from the forced vibrations of a nonhomogeneous string and the propagation of seismic waves in nonisotropic media. For finding the periodic solutions of variable coefficient wave equation, it is usually required that the coefficient u (x) satisfies ess infηu (x) > 0 with ηu (x) = 1/2 u″/u - 1/4 (u‧/u)2, which actually excludes the classical constant coefficient model. For the case ηu (x) = 0, it is indicated to remain an open problem by Barbu and Pavel (1997) [6]. In this work, for the periods having the form T = 2p-1/q (p , q are positive integers) and some types of boundary value conditions, we find some fundamental properties for the wave operator with either constant or variable coefficients. Based on these properties, we obtain the existence of periodic solutions when the nonlinearity is monotone and bounded. Such nonlinearity may cross multiple eigenvalues of the corresponding wave operator. In particular, we do not require the condition ess infηu (x) > 0.
Kurtosis Approach Nonlinear Blind Source Separation
NASA Technical Reports Server (NTRS)
Duong, Vu A.; Stubbemd, Allen R.
2005-01-01
In this paper, we introduce a new algorithm for blind source signal separation for post-nonlinear mixtures. The mixtures are assumed to be linearly mixed from unknown sources first and then distorted by memoryless nonlinear functions. The nonlinear functions are assumed to be smooth and can be approximated by polynomials. Both the coefficients of the unknown mixing matrix and the coefficients of the approximated polynomials are estimated by the gradient descent method conditional on the higher order statistical requirements. The results of simulation experiments presented in this paper demonstrate the validity and usefulness of our approach for nonlinear blind source signal separation Keywords: Independent Component Analysis, Kurtosis, Higher order statistics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun Wei; Huang, Guo H., E-mail: huang@iseis.org; Institute for Energy, Environment and Sustainable Communities, University of Regina, Regina, Saskatchewan, S4S 0A2
2012-06-15
Highlights: Black-Right-Pointing-Pointer Inexact piecewise-linearization-based fuzzy flexible programming is proposed. Black-Right-Pointing-Pointer It's the first application to waste management under multiple complexities. Black-Right-Pointing-Pointer It tackles nonlinear economies-of-scale effects in interval-parameter constraints. Black-Right-Pointing-Pointer It estimates costs more accurately than the linear-regression-based model. Black-Right-Pointing-Pointer Uncertainties are decreased and more satisfactory interval solutions are obtained. - Abstract: To tackle nonlinear economies-of-scale (EOS) effects in interval-parameter constraints for a representative waste management problem, an inexact piecewise-linearization-based fuzzy flexible programming (IPFP) model is developed. In IPFP, interval parameters for waste amounts and transportation/operation costs can be quantified; aspiration levels for net system costs, as well as tolerancemore » intervals for both capacities of waste treatment facilities and waste generation rates can be reflected; and the nonlinear EOS effects transformed from objective function to constraints can be approximated. An interactive algorithm is proposed for solving the IPFP model, which in nature is an interval-parameter mixed-integer quadratically constrained programming model. To demonstrate the IPFP's advantages, two alternative models are developed to compare their performances. One is a conventional linear-regression-based inexact fuzzy programming model (IPFP2) and the other is an IPFP model with all right-hand-sides of fussy constraints being the corresponding interval numbers (IPFP3). The comparison results between IPFP and IPFP2 indicate that the optimized waste amounts would have the similar patterns in both models. However, when dealing with EOS effects in constraints, the IPFP2 may underestimate the net system costs while the IPFP can estimate the costs more accurately. The comparison results between IPFP and IPFP3 indicate that their solutions would be significantly different. The decreased system uncertainties in IPFP's solutions demonstrate its effectiveness for providing more satisfactory interval solutions than IPFP3. Following its first application to waste management, the IPFP can be potentially applied to other environmental problems under multiple complexities.« less
Operational Planning for Multiple Heterogeneous Unmanned Aerial Vehicles in Three Dimensions
2009-06-01
human input in the planning process. Two solution methods are presented: (1) a mixed-integer program, and (2) an algorithm that utilizes a metaheuristic ...and (2) an algorithm that utilizes a metaheuristic to generate composite variables for a linear program, called the Composite Operations Planning...that represent a path and an associated type of UAV. The reformulation is incorporated into an algorithm that uses a metaheuristic to generate the
2015-07-06
NUMBER 5b. GRANT NUMBER AFOSR FA9550-12-1-0154 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Shabbir Ahmed and Santanu S. Dey 5d. PROJECT NUMBER 5e. TASK...standard mixed-integer programming (MIP) formulations of selective optimization problems. While such formulations can be attacked by commercial...F33615-86-C-5169. 5b. GRANT NUMBER. Enter all grant numbers as they appear in the report, e.g. AFOSR-82-1234. 5c. PROGRAM ELEMENT NUMBER. Enter
Synchronic interval Gaussian mixed-integer programming for air quality management.
Cheng, Guanhui; Huang, Guohe Gordon; Dong, Cong
2015-12-15
To reveal the synchronism of interval uncertainties, the tradeoff between system optimality and security, the discreteness of facility-expansion options, the uncertainty of pollutant dispersion processes, and the seasonality of wind features in air quality management (AQM) systems, a synchronic interval Gaussian mixed-integer programming (SIGMIP) approach is proposed in this study. A robust interval Gaussian dispersion model is developed for approaching the pollutant dispersion process under interval uncertainties and seasonal variations. The reflection of synchronic effects of interval uncertainties in the programming objective is enabled through introducing interval functions. The proposition of constraint violation degrees helps quantify the tradeoff between system optimality and constraint violation under interval uncertainties. The overall optimality of system profits of an SIGMIP model is achieved based on the definition of an integrally optimal solution. Integer variables in the SIGMIP model are resolved by the existing cutting-plane method. Combining these efforts leads to an effective algorithm for the SIGMIP model. An application to an AQM problem in a region in Shandong Province, China, reveals that the proposed SIGMIP model can facilitate identifying the desired scheme for AQM. The enhancement of the robustness of optimization exercises may be helpful for increasing the reliability of suggested schemes for AQM under these complexities. The interrelated tradeoffs among control measures, emission sources, flow processes, receptors, influencing factors, and economic and environmental goals are effectively balanced. Interests of many stakeholders are reasonably coordinated. The harmony between economic development and air quality control is enabled. Results also indicate that the constraint violation degree is effective at reflecting the compromise relationship between constraint-violation risks and system optimality under interval uncertainties. This can help decision makers mitigate potential risks, e.g. insufficiency of pollutant treatment capabilities, exceedance of air quality standards, deficiency of pollution control fund, or imbalance of economic or environmental stress, in the process of guiding AQM. Copyright © 2015 Elsevier B.V. All rights reserved.
A statistical mechanical approach to restricted integer partition functions
NASA Astrophysics Data System (ADS)
Zhou, Chi-Chun; Dai, Wu-Sheng
2018-05-01
The main aim of this paper is twofold: (1) suggesting a statistical mechanical approach to the calculation of the generating function of restricted integer partition functions which count the number of partitions—a way of writing an integer as a sum of other integers under certain restrictions. In this approach, the generating function of restricted integer partition functions is constructed from the canonical partition functions of various quantum gases. (2) Introducing a new type of restricted integer partition functions corresponding to general statistics which is a generalization of Gentile statistics in statistical mechanics; many kinds of restricted integer partition functions are special cases of this restricted integer partition function. Moreover, with statistical mechanics as a bridge, we reveal a mathematical fact: the generating function of restricted integer partition function is just the symmetric function which is a class of functions being invariant under the action of permutation groups. Using this approach, we provide some expressions of restricted integer partition functions as examples.
Fu, Haijin; Wang, Yue; Tan, Jiubin; Fan, Zhigang
2018-01-01
Even after the Heydemann correction, residual nonlinear errors, ranging from hundreds of picometers to several nanometers, are still found in heterodyne laser interferometers. This is a crucial factor impeding the realization of picometer level metrology, but its source and mechanism have barely been investigated. To study this problem, a novel nonlinear model based on optical mixing and coupling with ghost reflection is proposed and then verified by experiments. After intense investigation of this new model’s influence, results indicate that new additional high-order and negative-order nonlinear harmonics, arising from ghost reflection and its coupling with optical mixing, have only a negligible contribution to the overall nonlinear error. In real applications, any effect on the Lissajous trajectory might be invisible due to the small ghost reflectance. However, even a tiny ghost reflection can significantly worsen the effectiveness of the Heydemann correction, or even make this correction completely ineffective, i.e., compensation makes the error larger rather than smaller. Moreover, the residual nonlinear error after correction is dominated only by ghost reflectance. PMID:29498685
NASA Technical Reports Server (NTRS)
Graf, Wiley E.
1991-01-01
A mixed formulation is chosen to overcome deficiencies of the standard displacement-based shell model. Element development is traced from the incremental variational principle on through to the final set of equilibrium equations. Particular attention is paid to developing specific guidelines for selecting the optimal set of strain parameters. A discussion of constraint index concepts and their predictive capability related to locking is included. Performance characteristics of the elements are assessed in a wide variety of linear and nonlinear plate/shell problems. Despite limiting the study to geometric nonlinear analysis, a substantial amount of additional insight concerning the finite element modeling of thin plate/shell structures is provided. For example, in nonlinear analysis, given the same mesh and load step size, mixed elements converge in fewer iterations than equivalent displacement-based models. It is also demonstrated that, in mixed formulations, lower order elements are preferred. Additionally, meshes used to obtain accurate linear solutions do not necessarily converge to the correct nonlinear solution. Finally, a new form of locking was identified associated with employing elements designed for biaxial bending in uniaxial bending applications.
Canonical quantization of constrained systems and coadjoint orbits of Diff(S sup 1 )
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scherer, W.M.
It is shown that Dirac's treatment of constrained Hamiltonian systems and Schwinger's action principle quantization lead to identical commutations relations. An explicit relation between the Lagrange multipliers in the action principle approach and the additional terms in the Dirac bracket is derived. The equivalence of the two methods is demonstrated in the case of the non-linear sigma model. Dirac's method is extended to superspace and this extension is applied to the chiral superfield. The Dirac brackets of the massive interacting chiral superfluid are derived and shown to give the correct commutation relations for the component fields. The Hamiltonian of themore » theory is given and the Hamiltonian equations of motion are computed. They agree with the component field results. An infinite sequence of differential operators which are covariant under the coadjoint action of Diff(S{sup 1}) and analogues to Hill's operator is constructed. They map conformal fields of negative integer and half-integer weight to their dual space. Some properties of these operators are derived and possible applications are discussed. The Korteweg-de Vries equation is formulated as a coadjoint orbit of Diff(S{sup 1}).« less
Sharma, Richa; Gaur, Prerna; Mittal, A P
2015-09-01
The robotic manipulators are multi-input multi-output (MIMO), coupled and highly nonlinear systems. The presence of external disturbances and time-varying parameters adversely affects the performance of these systems. Therefore, the controller designed for these systems should effectively deal with such complexities, and it is an intriguing task for control engineers. This paper presents two-degree of freedom fractional order proportional-integral-derivative (2-DOF FOPID) controller scheme for a two-link planar rigid robotic manipulator with payload for trajectory tracking task. The tuning of all controller parameters is done using cuckoo search algorithm (CSA). The performance of proposed 2-DOF FOPID controllers is compared with those of their integer order designs, i.e., 2-DOF PID controllers, and with the traditional PID controllers. In order to show effectiveness of proposed scheme, the robustness testing is carried out for model uncertainties, payload variations with time, external disturbance and random noise. Numerical simulation results indicate that the 2-DOF FOPID controllers are superior to their integer order counterparts and the traditional PID controllers. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.
Optimization methods for decision making in disease prevention and epidemic control.
Deng, Yan; Shen, Siqian; Vorobeychik, Yevgeniy
2013-11-01
This paper investigates problems of disease prevention and epidemic control (DPEC), in which we optimize two sets of decisions: (i) vaccinating individuals and (ii) closing locations, given respective budgets with the goal of minimizing the expected number of infected individuals after intervention. The spread of diseases is inherently stochastic due to the uncertainty about disease transmission and human interaction. We use a bipartite graph to represent individuals' propensities of visiting a set of location, and formulate two integer nonlinear programming models to optimize choices of individuals to vaccinate and locations to close. Our first model assumes that if a location is closed, its visitors stay in a safe location and will not visit other locations. Our second model incorporates compensatory behavior by assuming multiple behavioral groups, always visiting the most preferred locations that remain open. The paper develops algorithms based on a greedy strategy, dynamic programming, and integer programming, and compares the computational efficacy and solution quality. We test problem instances derived from daily behavior patterns of 100 randomly chosen individuals (corresponding to 195 locations) in Portland, Oregon, and provide policy insights regarding the use of the two DPEC models. Copyright © 2013 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Pigeon, J. J.; Tochitsky, S. Ya.; Welch, E. C.; Joshi, C.
2018-04-01
We present measurements of the third-order optical nonlinearity of Kr, Xe, N2, O2, and air at a wavelength near 10 µm by using four-wave mixing of ˜15 -GW /c m2 , 200-ps (full width at half maximum) C O2 laser pulses. Measurements in molecular gases resulted in an asymmetric four-wave mixing spectrum indicating that the nonlinear response is strongly affected by the delayed, rotational contribution to the effective nonlinear refractive index. Within the uncertainty of our measurements, we have found that the long-wavelength nonlinear refractive indices of these gases are consistent with measurements performed in the near IR.
Ebrahimi, Ahmad; Kia, Reza; Komijan, Alireza Rashidi
2016-01-01
In this article, a novel integrated mixed-integer nonlinear programming model is presented for designing a cellular manufacturing system (CMS) considering machine layout and part scheduling problems simultaneously as interrelated decisions. The integrated CMS model is formulated to incorporate several design features including part due date, material handling time, operation sequence, processing time, an intra-cell layout of unequal-area facilities, and part scheduling. The objective function is to minimize makespan, tardiness penalties, and material handling costs of inter-cell and intra-cell movements. Two numerical examples are solved by the Lingo software to illustrate the results obtained by the incorporated features. In order to assess the effects and importance of integration of machine layout and part scheduling in designing a CMS, two approaches, sequentially and concurrent are investigated and the improvement resulted from a concurrent approach is revealed. Also, due to the NP-hardness of the integrated model, an efficient genetic algorithm is designed. As a consequence, computational results of this study indicate that the best solutions found by GA are better than the solutions found by B&B in much less time for both sequential and concurrent approaches. Moreover, the comparisons between the objective function values (OFVs) obtained by sequential and concurrent approaches demonstrate that the OFV improvement is averagely around 17 % by GA and 14 % by B&B.
Self-Coexistence among IEEE 802.22 Networks: Distributed Allocation of Power and Channel
Sakin, Sayef Azad; Alamri, Atif; Tran, Nguyen H.
2017-01-01
Ensuring self-coexistence among IEEE 802.22 networks is a challenging problem owing to opportunistic access of incumbent-free radio resources by users in co-located networks. In this study, we propose a fully-distributed non-cooperative approach to ensure self-coexistence in downlink channels of IEEE 802.22 networks. We formulate the self-coexistence problem as a mixed-integer non-linear optimization problem for maximizing the network data rate, which is an NP-hard one. This work explores a sub-optimal solution by dividing the optimization problem into downlink channel allocation and power assignment sub-problems. Considering fairness, quality of service and minimum interference for customer-premises-equipment, we also develop a greedy algorithm for channel allocation and a non-cooperative game-theoretic framework for near-optimal power allocation. The base stations of networks are treated as players in a game, where they try to increase spectrum utilization by controlling power and reaching a Nash equilibrium point. We further develop a utility function for the game to increase the data rate by minimizing the transmission power and, subsequently, the interference from neighboring networks. A theoretical proof of the uniqueness and existence of the Nash equilibrium has been presented. Performance improvements in terms of data-rate with a degree of fairness compared to a cooperative branch-and-bound-based algorithm and a non-cooperative greedy approach have been shown through simulation studies. PMID:29215591
NASA Astrophysics Data System (ADS)
Zhao, Zhao; Zhang, Jin; Li, Hai-yang; Zhou, Jian-yong
2017-01-01
The optimization of an LEO cooperative multi-spacecraft refueling mission considering the J2 perturbation and target's surplus propellant constraint is studied in the paper. First, a mission scenario is introduced. One service spacecraft and several target spacecraft run on an LEO near-circular orbit, the service spacecraft rendezvouses with some service positions one by one, and target spacecraft transfer to corresponding service positions respectively. Each target spacecraft returns to its original position after obtaining required propellant and the service spacecraft returns to its original position after refueling all target spacecraft. Next, an optimization model of this mission is built. The service sequence, orbital transfer time, and service position are used as deign variables, whereas the propellant cost is used as the design objective. The J2 perturbation, time constraint and the target spacecraft's surplus propellant capability constraint are taken into account. Then, a hybrid two-level optimization approach is presented to solve the formulated mixed integer nonlinear programming (MINLP) problem. A hybrid-encoding genetic algorithm is adopted to seek the near optimal solution in the up-level optimization, while a linear relative dynamic equation considering the J2 perturbation is used to obtain the impulses of orbital transfer in the low-level optimization. Finally, the effectiveness of the proposed model and method is validated by numerical examples.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhan, Yiduo; Zheng, Qipeng P.; Wang, Jianhui
Power generation expansion planning needs to deal with future uncertainties carefully, given that the invested generation assets will be in operation for a long time. Many stochastic programming models have been proposed to tackle this challenge. However, most previous works assume predetermined future uncertainties (i.e., fixed random outcomes with given probabilities). In several recent studies of generation assets' planning (e.g., thermal versus renewable), new findings show that the investment decisions could affect the future uncertainties as well. To this end, this paper proposes a multistage decision-dependent stochastic optimization model for long-term large-scale generation expansion planning, where large amounts of windmore » power are involved. In the decision-dependent model, the future uncertainties are not only affecting but also affected by the current decisions. In particular, the probability distribution function is determined by not only input parameters but also decision variables. To deal with the nonlinear constraints in our model, a quasi-exact solution approach is then introduced to reformulate the multistage stochastic investment model to a mixed-integer linear programming model. The wind penetration, investment decisions, and the optimality of the decision-dependent model are evaluated in a series of multistage case studies. The results show that the proposed decision-dependent model provides effective optimization solutions for long-term generation expansion planning.« less
Self-Coexistence among IEEE 802.22 Networks: Distributed Allocation of Power and Channel.
Sakin, Sayef Azad; Razzaque, Md Abdur; Hassan, Mohammad Mehedi; Alamri, Atif; Tran, Nguyen H; Fortino, Giancarlo
2017-12-07
Ensuring self-coexistence among IEEE 802.22 networks is a challenging problem owing to opportunistic access of incumbent-free radio resources by users in co-located networks. In this study, we propose a fully-distributed non-cooperative approach to ensure self-coexistence in downlink channels of IEEE 802.22 networks. We formulate the self-coexistence problem as a mixed-integer non-linear optimization problem for maximizing the network data rate, which is an NP-hard one. This work explores a sub-optimal solution by dividing the optimization problem into downlink channel allocation and power assignment sub-problems. Considering fairness, quality of service and minimum interference for customer-premises-equipment, we also develop a greedy algorithm for channel allocation and a non-cooperative game-theoretic framework for near-optimal power allocation. The base stations of networks are treated as players in a game, where they try to increase spectrum utilization by controlling power and reaching a Nash equilibrium point. We further develop a utility function for the game to increase the data rate by minimizing the transmission power and, subsequently, the interference from neighboring networks. A theoretical proof of the uniqueness and existence of the Nash equilibrium has been presented. Performance improvements in terms of data-rate with a degree of fairness compared to a cooperative branch-and-bound-based algorithm and a non-cooperative greedy approach have been shown through simulation studies.
High Penetration of Electrical Vehicles in Microgrids: Threats and Opportunities
NASA Astrophysics Data System (ADS)
Khederzadeh, Mojtaba; Khalili, Mohammad
2014-10-01
Given that the microgrid concept is the building block of future electric distribution systems and electrical vehicles (EVs) are the future of transportation market, in this paper, the impact of EVs on the performance of microgrids is investigated. Demand-side participation is used to cope with increasing demand for EV charging. The problem of coordination of EV charging and discharging (with vehicle-to-grid (V2G) functionality) and demand response is formulated as a market-clearing mechanism that accepts bids from the demand and supply sides and takes into account the constraints put forward by different parts. Therefore, a day-ahead market with detailed bids and offers within the microgrid is designed whose objective is to maximize the social welfare which is the difference between the value that consumers attach to the electrical energy they buy plus the benefit of the EV owners participating in the V2G functionality and the cost of producing/purchasing this energy. As the optimization problem is a mixed integer nonlinear programming one, it is decomposed into one master problem for energy scheduling and one subproblem for power flow computation. The two problems are solved iteratively by interfacing MATLAB with GAMS. Simulation results on a sample microgrid with different residential, commercial and industrial consumers with associated demand-side biddings and different penetration level of EVs support the proposed formulation of the problem and the applied methods.
NASA Astrophysics Data System (ADS)
Yamada, Takashi
2017-12-01
This study computationally examines (1) how the behaviors of subjects are represented, (2) whether the classification of subjects is related to the scale of the game, and (3) what kind of behavioral models are successful in small-sized lowest unique integer games (LUIGs). In a LUIG, N (>= 3) players submit a positive integer up to M(> 1) and the player choosing the smallest number not chosen by anyone else wins. For this purpose, the author considers four LUIGs with N = {3, 4} and M = {3, 4} and uses the behavioral data obtained in the laboratory experiment by Yamada and Hanaki (Physica A 463, pp. 88–102, 2016). For computational experiments, the author calibrates the parameters of typical learning models for each subject and then pursues round robin competitions. The main findings are in the following: First, the subjects who played not differently from the mixed-strategy Nash equilibrium (MSE) prediction tended to made use of not only their choices but also the game outcomes. Meanwhile those who deviated from the MSE prediction took care of only their choices as the complexity of the game increased. Second, the heterogeneity of player strategies depends on both the number of players (N) and the upper limit (M). Third, when groups consist of different agents like in the earlier laboratory experiment, sticking behavior is quite effective to win.
Determining on-fault earthquake magnitude distributions from integer programming
Geist, Eric L.; Parsons, Thomas E.
2018-01-01
Earthquake magnitude distributions among faults within a fault system are determined from regional seismicity and fault slip rates using binary integer programming. A synthetic earthquake catalog (i.e., list of randomly sampled magnitudes) that spans millennia is first formed, assuming that regional seismicity follows a Gutenberg-Richter relation. Each earthquake in the synthetic catalog can occur on any fault and at any location. The objective is to minimize misfits in the target slip rate for each fault, where slip for each earthquake is scaled from its magnitude. The decision vector consists of binary variables indicating which locations are optimal among all possibilities. Uncertainty estimates in fault slip rates provide explicit upper and lower bounding constraints to the problem. An implicit constraint is that an earthquake can only be located on a fault if it is long enough to contain that earthquake. A general mixed-integer programming solver, consisting of a number of different algorithms, is used to determine the optimal decision vector. A case study is presented for the State of California, where a 4 kyr synthetic earthquake catalog is created and faults with slip ≥3 mm/yr are considered, resulting in >106 variables. The optimal magnitude distributions for each of the faults in the system span a rich diversity of shapes, ranging from characteristic to power-law distributions.
Microwave phase conjugation using artificial nonlinear microwave surfaces
NASA Astrophysics Data System (ADS)
Chang, Yian
1997-09-01
A new technique is developed and demonstrated to simulate nonlinear materials in the microwave and millimeter wave regime. Such materials are required to extend nonlinear optical techniques into longer wavelength areas. Using an array of antenna coupled mixers as an artificial nonlinear surface, we have demonstrated two-dimensional free space microwave phase conjugation at 10 GHz. The basic concept is to replace the weak nonlinearity of electron distribution in a crystal with the strong nonlinear V-I response of a P-N junction. This demnstration uses a three-wave mixing method with the effective nonlinear susceptibility χ(2) provided by an artificial nonlinear surface. The pump signal at 2ω (20 GHz) can be injected to the mixing elements electrically or optically. Electrical injection was first used to prove the concept of artificial nonlinear surfaces. However, due to the loss and size of microwave components, electrical injection is not practical for an array of artificial nonlinear surfaces, as would be needed in a three-dimensional free space phase conjugation setup. Therefore optical injection was implemented to carry the 2ω microwave pump signal in phase to all mixing elements. In both cases, two-dimensional free space phase conjugation was observed by directly measuring the electric field amplitude and phase distribution. The electric field wavefronts exhibited retro-directivity and auto- correction characteristics of phase conjugation. This demonstration surface also shows a power gain of 10 dB, which is desired for potential communication applications.
Rajeswaran, Jeevanantham; Blackstone, Eugene H
2017-02-01
In medical sciences, we often encounter longitudinal temporal relationships that are non-linear in nature. The influence of risk factors may also change across longitudinal follow-up. A system of multiphase non-linear mixed effects model is presented to model temporal patterns of longitudinal continuous measurements, with temporal decomposition to identify the phases and risk factors within each phase. Application of this model is illustrated using spirometry data after lung transplantation using readily available statistical software. This application illustrates the usefulness of our flexible model when dealing with complex non-linear patterns and time-varying coefficients.
Imboden, Matthias; Williams, Oliver A; Mohanty, Pritiraj
2013-09-11
We report the observation of nonlinear dissipation in diamond nanomechanical resonators measured by an ultrasensitive heterodyne down-mixing piezoresistive detection technique. The combination of a hybrid structure as well as symmetry breaking clamps enables sensitive piezoresistive detection of multiple orthogonal modes in a diamond resonator over a wide frequency and temperature range. Using this detection method, we observe the transition from purely linear dissipation at room temperature to strongly nonlinear dissipation at cryogenic temperatures. At high drive powers and below liquid nitrogen temperatures, the resonant structure dynamics follows the Pol-Duffing equation of motion. Instead of using the broadening of the full width at half-maximum, we propose a nonlinear dissipation backbone curve as a method to characterize the strength of nonlinear dissipation in devices with a nonlinear spring constant.
NASA Technical Reports Server (NTRS)
Noor, A. K.; Peters, J. M.
1981-01-01
Simple mixed models are developed for use in the geometrically nonlinear analysis of deep arches. A total Lagrangian description of the arch deformation is used, the analytical formulation being based on a form of the nonlinear deep arch theory with the effects of transverse shear deformation included. The fundamental unknowns comprise the six internal forces and generalized displacements of the arch, and the element characteristic arrays are obtained by using Hellinger-Reissner mixed variational principle. The polynomial interpolation functions employed in approximating the forces are one degree lower than those used in approximating the displacements, and the forces are discontinuous at the interelement boundaries. Attention is given to the equivalence between the mixed models developed herein and displacement models based on reduced integration of both the transverse shear and extensional energy terms. The advantages of mixed models over equivalent displacement models are summarized. Numerical results are presented to demonstrate the high accuracy and effectiveness of the mixed models developed and to permit a comparison of their performance with that of other mixed models reported in the literature.
Nonlinear Stability and Structure of Compressible Reacting Mixing Layers
NASA Technical Reports Server (NTRS)
Day, M. J.; Mansour, N. N.; Reynolds, W. C.
2000-01-01
The parabolized stability equations (PSE) are used to investigate issues of nonlinear flow development and mixing in compressible reacting shear layers. Particular interest is placed on investigating the change in flow structure that occurs when compressibility and heat release are added to the flow. These conditions allow the 'outer' instability modes- one associated with each of the fast and slow streams-to dominate over the 'central', Kelvin-Helmholtz mode that unaccompanied in incompressible nonreacting mixing layers. Analysis of scalar probability density functions in flows with dominant outer modes demonstrates the ineffective, one-sided nature of mixing that accompany these flow structures. Colayer conditions, where two modes have equal growth rate and the mixing layer is formed by two sets of vortices, offer some opportunity for mixing enhancement. Their extent, however, is found to be limited in the mixing layer's parameter space. Extensive validation of the PSE technique also provides a unique perspective on central- mode vortex pairing, further supporting the view that pairing is primarily governed perspective sheds insight on how linear stability theory is able to provide such an accurate prediction of experimentally-observed, fully nonlinear flow phenomenon.
Analysis of Modeling Assumptions used in Production Cost Models for Renewable Integration Studies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stoll, Brady; Brinkman, Gregory; Townsend, Aaron
2016-01-01
Renewable energy integration studies have been published for many different regions exploring the question of how higher penetration of renewable energy will impact the electric grid. These studies each make assumptions about the systems they are analyzing; however the effect of many of these assumptions has not been yet been examined and published. In this paper we analyze the impact of modeling assumptions in renewable integration studies, including the optimization method used (linear or mixed-integer programming) and the temporal resolution of the dispatch stage (hourly or sub-hourly). We analyze each of these assumptions on a large and a small systemmore » and determine the impact of each assumption on key metrics including the total production cost, curtailment of renewables, CO2 emissions, and generator starts and ramps. Additionally, we identified the impact on these metrics if a four-hour ahead commitment step is included before the dispatch step and the impact of retiring generators to reduce the degree to which the system is overbuilt. We find that the largest effect of these assumptions is at the unit level on starts and ramps, particularly for the temporal resolution, and saw a smaller impact at the aggregate level on system costs and emissions. For each fossil fuel generator type we measured the average capacity started, average run-time per start, and average number of ramps. Linear programming results saw up to a 20% difference in number of starts and average run time of traditional generators, and up to a 4% difference in the number of ramps, when compared to mixed-integer programming. Utilizing hourly dispatch instead of sub-hourly dispatch saw no difference in coal or gas CC units for either start metric, while gas CT units had a 5% increase in the number of starts and 2% increase in the average on-time per start. The number of ramps decreased up to 44%. The smallest effect seen was on the CO2 emissions and total production cost, with a 0.8% and 0.9% reduction respectively when using linear programming compared to mixed-integer programming and 0.07% and 0.6% reduction, respectively, in the hourly dispatch compared to sub-hourly dispatch.« less
Optical mixing of microwave signals in a nonlinear semiconductor laser amplifier modulator.
Capmany, José; Sales, Salvador; Pastor, Daniel; Ortega, Beatriz
2002-02-11
In this paper we propose and evaluate the optical mixing of RF signals by means of exploiting the nonlinearity of a SLA modulator. The results show the potential for devices with low conversion losses (and even gain) and polarization insensitivity and reduced insertion losses.
ERIC Educational Resources Information Center
Firozzaman, Firoz; Firoz, Fahim
2017-01-01
Understanding the solution of a problem may require the reader to have background knowledge on the subject. For instance, finding an integer which, when divided by a nonzero integer leaves a remainder; but when divided by another nonzero integer may leave a different remainder. To find a smallest positive integer or a set of integers following the…
Point-Wise Phase Matching for Nonlinear Frequency Generation in Dielectric Resonators
NASA Technical Reports Server (NTRS)
Yu, Nan (Inventor); Strekalov, Dmitry V. (Inventor); Lin, Guoping (Inventor)
2016-01-01
An optical resonator fabricated from a uniaxial birefringent crystal, such as beta barium borate. The crystal is cut with the optical axis not perpendicular to a face of the cut crystal. In some cases the optical axis lies in the plane of the cut crystal face. An incident (input) electromagnetic signal (which can range from the infrared through the visible to the ultraviolet) is applied to the resonator. An output signal is recovered which has a frequency that is an integer multiple of the frequency of the input signal. In some cases a prism is used to evanescently couple the input and the output signals to the resonator.
NASA Astrophysics Data System (ADS)
Sojahrood, Amin Jafari; Kolios, Michael C.
2012-07-01
Through numerical simulation of the Hoff model we show that when ultrasound contrast agents (UCAs) are excited at frequencies which are close to integer (m>2) multiples of their natural resonance frequency, the bifurcation structure of the UCA oscillations as a function of pressure may be characterized by 3 general distinct regions. The UCA behavior starts with initial period one oscillations which undergoes a saddle node bifurcation to m coexisting attractors for an acoustic pressure above a threshold, P. Further increasing the pressure above a second threshold P, is followed by a sudden transition to period 1 oscillations.
Optimization techniques applied to spectrum management for communications satellites
NASA Astrophysics Data System (ADS)
Ottey, H. R.; Sullivan, T. M.; Zusman, F. S.
This paper describes user requirements, algorithms and software design features for the application of optimization techniques to the management of the geostationary orbit/spectrum resource. Relevant problems include parameter sensitivity analyses, frequency and orbit position assignment coordination, and orbit position allotment planning. It is shown how integer and nonlinear programming as well as heuristic search techniques can be used to solve these problems. Formalized mathematical objective functions that define the problems are presented. Constraint functions that impart the necessary solution bounds are described. A versatile program structure is outlined, which would allow problems to be solved in stages while varying the problem space, solution resolution, objective function and constraints.
Nonlinear Diophantine equation 11 x +13 y = z 2
NASA Astrophysics Data System (ADS)
Sugandha, A.; Tripena, A.; Prabowo, A.; Sukono, F.
2018-03-01
This research aims to obtaining the solutions (if any) from the Non Linear Diophantine equation of 11 x + 13 y = z 2. There are 3 possibilities to obtain the solutions (if any) from the Non Linear Diophantine equation, namely single, multiple, and no solution. This research is conducted in two stages: (1) by utilizing simulation to obtain the solutions (if any) from the Non Linear Diophantine equation of 11 x + 13 y = z 2 and (2) by utilizing congruency theory with its characteristics proven that the Non Linear Diophantine equation has no solution for non negative whole numbers (integers) of x, y, z.
The Neighborhood Covering Heuristic (NCH) Approach for the General Mixed Integer Programming Problem
2004-02-02
5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Creative Action LLC 680 N. Portage Path Akron, OH 44303; The...University of Akron Department of Theoretical and Applied Mathematics Akron OH 44325-4002 8. PERFORMING ORGANIZATION REPORT NUMBER SF309 9...algorithm is naturally adaptable to a parallel architechture . In particular, under NCH, one could parcel out pieces of the problem to many processors
2017-02-08
Georgia Tech Research Corporation 505 Tenth Street NW Atlanta, GA 30332 -0420 ABSTRACT Final Report: MURI: Neuro-Inspired Adaptive Perception and...Conquer Strategy for Optimal Trajectory Planning via Mixed-Integer Programming, IEEE Transactions on Robotics, (12 2015): 0. doi: 10.1109/TRO...Learning Day, Microsoft Corporation , Cambridge, MA, May 18, 2015. (c) Presentations 09/06/2015 09/08/2015 125 131 Ali Borji, Dicky N. Sihite, Laurent Itti
Stochastic search in structural optimization - Genetic algorithms and simulated annealing
NASA Technical Reports Server (NTRS)
Hajela, Prabhat
1993-01-01
An account is given of illustrative applications of genetic algorithms and simulated annealing methods in structural optimization. The advantages of such stochastic search methods over traditional mathematical programming strategies are emphasized; it is noted that these methods offer a significantly higher probability of locating the global optimum in a multimodal design space. Both genetic-search and simulated annealing can be effectively used in problems with a mix of continuous, discrete, and integer design variables.
Design of Training Systems (DOTS) Project: Test and Evaluation of Phase II Models
1976-04-01
when the process being modeled is very much dependent upon human resoarces, precise requirement formulas are usually V unavailable. In this...mixed integer formulation options. The SGRR, in a sense, is an automiation of what is cu~rrently beinig donec men~tall y by instructors and trai ninrg nv...test and evaluation (T&E); information concerning CNETS LCDR R. J. Biersner Human Factors Analysis, N-214 AV 922-1392 CNTECHTRA CDR J. D. Davis
A mathematical model for municipal solid waste management - A case study in Hong Kong.
Lee, C K M; Yeung, C L; Xiong, Z R; Chung, S H
2016-12-01
With the booming economy and increasing population, the accumulation of waste has become an increasingly arduous issue and has aroused the attention from all sectors of society. Hong Kong which has a relative high daily per capita domestic waste generation rate in Asia has not yet established a comprehensive waste management system. This paper conducts a review of waste management approaches and models. Researchers highlight that mathematical models provide useful information for decision-makers to select appropriate choices and save cost. It is suggested to consider municipal solid waste management in a holistic view and improve the utilization of waste management infrastructures. A mathematical model which adopts integer linear programming and mixed integer programming has been developed for Hong Kong municipal solid waste management. A sensitivity analysis was carried out to simulate different scenarios which provide decision-makers important information for establishing Hong Kong waste management system. Copyright © 2016 Elsevier Ltd. All rights reserved.
A new mathematical modeling for pure parsimony haplotyping problem.
Feizabadi, R; Bagherian, M; Vaziri, H R; Salahi, M
2016-11-01
Pure parsimony haplotyping (PPH) problem is important in bioinformatics because rational haplotyping inference plays important roles in analysis of genetic data, mapping complex genetic diseases such as Alzheimer's disease, heart disorders and etc. Haplotypes and genotypes are m-length sequences. Although several integer programing models have already been presented for PPH problem, its NP-hardness characteristic resulted in ineffectiveness of those models facing the real instances especially instances with many heterozygous sites. In this paper, we assign a corresponding number to each haplotype and genotype and based on those numbers, we set a mixed integer programing model. Using numbers, instead of sequences, would lead to less complexity of the new model in comparison with previous models in a way that there are neither constraints nor variables corresponding to heterozygous nucleotide sites in it. Experimental results approve the efficiency of the new model in producing better solution in comparison to two state-of-the art haplotyping approaches. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Budi Darmayasa, Jero; Wahyudin; Mulyana, Tatang; Subali Noto, Muchamad
2018-04-01
Ethnomathematicsis considered as a new study in mathematic education. As a study, numerous regions in this world starts to explore through ethnomathematics, including Indonesia. As the intersection between mathematics and mathematical modelling and culture, ethnomathematics exists in various society’s cultural elements, including in the Balinese Hindus’ festivities. To find the mathematical concept used in determining the festivity days, the researcher(s) conducted ethnographic research in Bali Mula society in Kintamani District, Bali. Participation observation, in-depth interview, and literature and documentation were used in collecting the data. As the result, the researcher(s) revealed that the mathematical concept used is integer operations, least common multiple, mixed fraction, and number sequences. Since it contains mathematical concept used in junior high, thus ethnomathematics of “4-hindu’s festivities” may be used as context in mathematics learning. By using ethnomathematics as the context, the researcher(s) expect that it will help teachers in motivation their students to learn mathematics.
Probing the statistics of transport in the Hénon Map
NASA Astrophysics Data System (ADS)
Alus, O.; Fishman, S.; Meiss, J. D.
2016-09-01
The phase space of an area-preserving map typically contains infinitely many elliptic islands embedded in a chaotic sea. Orbits near the boundary of a chaotic region have been observed to stick for long times, strongly influencing their transport properties. The boundary is composed of invariant "boundary circles." We briefly report recent results of the distribution of rotation numbers of boundary circles for the Hénon quadratic map and show that the probability of occurrence of small integer entries of their continued fraction expansions is larger than would be expected for a number chosen at random. However, large integer entries occur with probabilities distributed proportionally to the random case. The probability distributions of ratios of fluxes through island chains is reported as well. These island chains are neighbours in the sense of the Meiss-Ott Markov-tree model. Two distinct universality families are found. The distributions of the ratio between the flux and orbital period are also presented. All of these results have implications for models of transport in mixed phase space.
Henriques, David; Rocha, Miguel; Saez-Rodriguez, Julio; Banga, Julio R.
2015-01-01
Motivation: Systems biology models can be used to test new hypotheses formulated on the basis of previous knowledge or new experimental data, contradictory with a previously existing model. New hypotheses often come in the shape of a set of possible regulatory mechanisms. This search is usually not limited to finding a single regulation link, but rather a combination of links subject to great uncertainty or no information about the kinetic parameters. Results: In this work, we combine a logic-based formalism, to describe all the possible regulatory structures for a given dynamic model of a pathway, with mixed-integer dynamic optimization (MIDO). This framework aims to simultaneously identify the regulatory structure (represented by binary parameters) and the real-valued parameters that are consistent with the available experimental data, resulting in a logic-based differential equation model. The alternative to this would be to perform real-valued parameter estimation for each possible model structure, which is not tractable for models of the size presented in this work. The performance of the method presented here is illustrated with several case studies: a synthetic pathway problem of signaling regulation, a two-component signal transduction pathway in bacterial homeostasis, and a signaling network in liver cancer cells. Supplementary information: Supplementary data are available at Bioinformatics online. Contact: julio@iim.csic.es or saezrodriguez@ebi.ac.uk PMID:26002881
Lin, Fu; Leyffer, Sven; Munson, Todd
2016-04-12
We study a two-stage mixed-integer linear program (MILP) with more than 1 million binary variables in the second stage. We develop a two-level approach by constructing a semi-coarse model that coarsens with respect to variables and a coarse model that coarsens with respect to both variables and constraints. We coarsen binary variables by selecting a small number of prespecified on/off profiles. We aggregate constraints by partitioning them into groups and taking convex combination over each group. With an appropriate choice of coarsened profiles, the semi-coarse model is guaranteed to find a feasible solution of the original problem and hence providesmore » an upper bound on the optimal solution. We show that solving a sequence of coarse models converges to the same upper bound with proven finite steps. This is achieved by adding violated constraints to coarse models until all constraints in the semi-coarse model are satisfied. We demonstrate the effectiveness of our approach in cogeneration for buildings. Here, the coarsened models allow us to obtain good approximate solutions at a fraction of the time required by solving the original problem. Extensive numerical experiments show that the two-level approach scales to large problems that are beyond the capacity of state-of-the-art commercial MILP solvers.« less
A Mixed Integer Linear Program for Solving a Multiple Route Taxi Scheduling Problem
NASA Technical Reports Server (NTRS)
Montoya, Justin Vincent; Wood, Zachary Paul; Rathinam, Sivakumar; Malik, Waqar Ahmad
2010-01-01
Aircraft movements on taxiways at busy airports often create bottlenecks. This paper introduces a mixed integer linear program to solve a Multiple Route Aircraft Taxi Scheduling Problem. The outputs of the model are in the form of optimal taxi schedules, which include routing decisions for taxiing aircraft. The model extends an existing single route formulation to include routing decisions. An efficient comparison framework compares the multi-route formulation and the single route formulation. The multi-route model is exercised for east side airport surface traffic at Dallas/Fort Worth International Airport to determine if any arrival taxi time savings can be achieved by allowing arrivals to have two taxi routes: a route that crosses an active departure runway and a perimeter route that avoids the crossing. Results indicate that the multi-route formulation yields reduced arrival taxi times over the single route formulation only when a perimeter taxiway is used. In conditions where the departure aircraft are given an optimal and fixed takeoff sequence, accumulative arrival taxi time savings in the multi-route formulation can be as high as 3.6 hours more than the single route formulation. If the departure sequence is not optimal, the multi-route formulation results in less taxi time savings made over the single route formulation, but the average arrival taxi time is significantly decreased.
Henriques, David; Rocha, Miguel; Saez-Rodriguez, Julio; Banga, Julio R
2015-09-15
Systems biology models can be used to test new hypotheses formulated on the basis of previous knowledge or new experimental data, contradictory with a previously existing model. New hypotheses often come in the shape of a set of possible regulatory mechanisms. This search is usually not limited to finding a single regulation link, but rather a combination of links subject to great uncertainty or no information about the kinetic parameters. In this work, we combine a logic-based formalism, to describe all the possible regulatory structures for a given dynamic model of a pathway, with mixed-integer dynamic optimization (MIDO). This framework aims to simultaneously identify the regulatory structure (represented by binary parameters) and the real-valued parameters that are consistent with the available experimental data, resulting in a logic-based differential equation model. The alternative to this would be to perform real-valued parameter estimation for each possible model structure, which is not tractable for models of the size presented in this work. The performance of the method presented here is illustrated with several case studies: a synthetic pathway problem of signaling regulation, a two-component signal transduction pathway in bacterial homeostasis, and a signaling network in liver cancer cells. Supplementary data are available at Bioinformatics online. julio@iim.csic.es or saezrodriguez@ebi.ac.uk. © The Author 2015. Published by Oxford University Press.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Fu; Leyffer, Sven; Munson, Todd
We study a two-stage mixed-integer linear program (MILP) with more than 1 million binary variables in the second stage. We develop a two-level approach by constructing a semi-coarse model that coarsens with respect to variables and a coarse model that coarsens with respect to both variables and constraints. We coarsen binary variables by selecting a small number of prespecified on/off profiles. We aggregate constraints by partitioning them into groups and taking convex combination over each group. With an appropriate choice of coarsened profiles, the semi-coarse model is guaranteed to find a feasible solution of the original problem and hence providesmore » an upper bound on the optimal solution. We show that solving a sequence of coarse models converges to the same upper bound with proven finite steps. This is achieved by adding violated constraints to coarse models until all constraints in the semi-coarse model are satisfied. We demonstrate the effectiveness of our approach in cogeneration for buildings. Here, the coarsened models allow us to obtain good approximate solutions at a fraction of the time required by solving the original problem. Extensive numerical experiments show that the two-level approach scales to large problems that are beyond the capacity of state-of-the-art commercial MILP solvers.« less
Magnetoplasmonic RF mixing and nonlinear frequency generation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Firby, C. J., E-mail: firby@ualberta.ca; Elezzabi, A. Y.
2016-07-04
We present the design of a magnetoplasmonic Mach-Zehnder interferometer (MZI) modulator facilitating radio-frequency (RF) mixing and nonlinear frequency generation. This is achieved by forming the MZI arms from long-range dielectric-loaded plasmonic waveguides containing bismuth-substituted yttrium iron garnet (Bi:YIG). The magnetization of the Bi:YIG can be driven in the nonlinear regime by RF magnetic fields produced around adjacent transmission lines. Correspondingly, the nonlinear temporal dynamics of the transverse magnetization component are mapped onto the nonreciprocal phase shift in the MZI arms, and onto the output optical intensity signal. We show that this tunable mechanism can generate harmonics, frequency splitting, and frequencymore » down-conversion with a single RF excitation, as well as RF mixing when driven by two RF signals. This magnetoplasmonic component can reduce the number of electrical sources required to generate distinct optical modulation frequencies and is anticipated to satisfy important applications in integrated optics.« less
A Multiphase Non-Linear Mixed Effects Model: An Application to Spirometry after Lung Transplantation
Rajeswaran, Jeevanantham; Blackstone, Eugene H.
2014-01-01
In medical sciences, we often encounter longitudinal temporal relationships that are non-linear in nature. The influence of risk factors may also change across longitudinal follow-up. A system of multiphase non-linear mixed effects model is presented to model temporal patterns of longitudinal continuous measurements, with temporal decomposition to identify the phases and risk factors within each phase. Application of this model is illustrated using spirometry data after lung transplantation using readily available statistical software. This application illustrates the usefulness of our flexible model when dealing with complex non-linear patterns and time varying coefficients. PMID:24919830
Nonlinear hyperspectral unmixing based on sparse non-negative matrix factorization
NASA Astrophysics Data System (ADS)
Li, Jing; Li, Xiaorun; Zhao, Liaoying
2016-01-01
Hyperspectral unmixing aims at extracting pure material spectra, accompanied by their corresponding proportions, from a mixed pixel. Owing to modeling more accurate distribution of real material, nonlinear mixing models (non-LMM) are usually considered to hold better performance than LMMs in complicated scenarios. In the past years, numerous nonlinear models have been successfully applied to hyperspectral unmixing. However, most non-LMMs only think of sum-to-one constraint or positivity constraint while the widespread sparsity among real materials mixing is the very factor that cannot be ignored. That is, for non-LMMs, a pixel is usually composed of a few spectral signatures of different materials from all the pure pixel set. Thus, in this paper, a smooth sparsity constraint is incorporated into the state-of-the-art Fan nonlinear model to exploit the sparsity feature in nonlinear model and use it to enhance the unmixing performance. This sparsity-constrained Fan model is solved with the non-negative matrix factorization. The algorithm was implemented on synthetic and real hyperspectral data and presented its advantage over those competing algorithms in the experiments.
NASA Astrophysics Data System (ADS)
Gunes, Ersin Fatih
Turkey is located between Europe, which has increasing demand for natural gas and the geographies of Middle East, Asia and Russia, which have rich and strong natural gas supply. Because of the geographical location, Turkey has strategic importance according to energy sources. To supply this demand, a pipeline network configuration with the optimal and efficient lengths, pressures, diameters and number of compressor stations is extremely needed. Because, Turkey has a currently working and constructed network topology, obtaining an optimal configuration of the pipelines, including an optimal number of compressor stations with optimal locations, is the focus of this study. Identifying a network design with lowest costs is important because of the high maintenance and set-up costs. The quantity of compressor stations, the pipeline segments' lengths, the diameter sizes and pressures at compressor stations, are considered to be decision variables in this study. Two existing optimization models were selected and applied to the case study of Turkey. Because of the fixed cost of investment, both models are formulated as mixed integer nonlinear programs, which require branch and bound combined with the nonlinear programming solution methods. The differences between these two models are related to some factors that can affect the network system of natural gas such as wall thickness, material balance compressor isentropic head and amount of gas to be delivered. The results obtained by these two techniques are compared with each other and with the current system. Major differences between results are costs, pressures and flow rates. These solution techniques are able to find a solution with minimum cost for each model both of which are less than the current cost of the system while satisfying all the constraints on diameter, length, flow rate and pressure. These results give the big picture of an ideal configuration for the future state network for the country of Turkey.
Engineering calculations for solving the orbital allotment problem
NASA Technical Reports Server (NTRS)
Reilly, C.; Walton, E. K.; Mount-Campbell, C.; Caldecott, R.; Aebker, E.; Mata, F.
1988-01-01
Four approaches for calculating downlink interferences for shaped-beam antennas are described. An investigation of alternative mixed-integer programming models for satellite synthesis is summarized. Plans for coordinating the various programs developed under this grant are outlined. Two procedures for ordering satellites to initialize the k-permutation algorithm are proposed. Results are presented for the k-permutation algorithms. Feasible solutions are found for 5 of the 6 problems considered. Finally, it is demonstrated that the k-permutation algorithm can be used to solve arc allotment problems.
2015-03-01
vulnerable people will have access to this airdropped consumable aid (since nobody 1 is necessarily coordinating the distribution on the ground... VBA ) platforms (see Appendix B). In particular, we used GAMS v.23.9.3 with IBM ILOG CPLEX 12.4.0.1 to solve the stochastic, mixed-integer weighted...goal programming model, and we used Excel/ VBA to create an auto- matic, user-friendly interface with the decision maker for model input and analysis of
Minimum Distance Estimation of Mixture Proportions.
1986-12-01
35 iii Page Bibliography . . . . . . . . . . . . . . . . . . . . 40 iv List of Tables Table Page I. Simulation Results for Mixtures of Two Exponen- 33...extended this research to the mixed Weibull, Falls(14) and Rider( 35 ) using the method of moments and Kao(26) using a graphical method, for example. In...samp(750),true(3),temp,min(3),mse,a,b,c real sammom(3),meanl,mean2,estip,x,y,z,msemom,tempt( 3 ) real xl,yl,zl integer nr,n,m,d,ier complex zsm ,zlg
Mixed Integer PDE Constrained Optimization for the Control of a Wildfire Hazard
2017-01-01
are nodes suitable for extinguishing the fire. We introduce a discretization of the time horizon [0, T] by the set of time T := {0, At,..., ntZ\\t = T...of the constraints and objective with a discrete counterpart. The PDE is replaced by a linear system obtained from a convergent finite difference...method [5] and the integral is replaced by a quadrature formula. The domain is discretized by replacing 17 with an equidistant grid of length Ax
Solving a Class of Stochastic Mixed-Integer Programs With Branch and Price
2006-01-01
a two-dimensional knapsack problem, but for a given m, the objective value gi does not depend on the variance index v. This will be used in a final...optimization. Journal of Multicriteria Decision Analysis 11, 139–150 (2002) 29. Ford, L.R., Fulkerson, D.R.: A suggested computation for the maximal...for solution by a branch-and-price algorithm (B&P). We then survey a number of examples, and use a stochastic facility-location problem (SFLP) for a
Path finding methods accounting for stoichiometry in metabolic networks
2011-01-01
Graph-based methods have been widely used for the analysis of biological networks. Their application to metabolic networks has been much discussed, in particular noting that an important weakness in such methods is that reaction stoichiometry is neglected. In this study, we show that reaction stoichiometry can be incorporated into path-finding approaches via mixed-integer linear programming. This major advance at the modeling level results in improved prediction of topological and functional properties in metabolic networks. PMID:21619601
ERIC Educational Resources Information Center
Thompson, Patrick W.; Dreyfus, Tommy
1988-01-01
Investigates whether elementary school students can construct operations of thought for integers and integer addition crucial for understanding elementary algebra. Two sixth graders were taught using a computer. Results included both students being able to construct mental operations for negating arbitrary integers and determining sign and…
A Second-Order Conditionally Linear Mixed Effects Model with Observed and Latent Variable Covariates
ERIC Educational Resources Information Center
Harring, Jeffrey R.; Kohli, Nidhi; Silverman, Rebecca D.; Speece, Deborah L.
2012-01-01
A conditionally linear mixed effects model is an appropriate framework for investigating nonlinear change in a continuous latent variable that is repeatedly measured over time. The efficacy of the model is that it allows parameters that enter the specified nonlinear time-response function to be stochastic, whereas those parameters that enter in a…
Photon nonlinear mixing in subcarrier multiplexed quantum key distribution systems.
Capmany, José
2009-04-13
We provide, for the first time to our knowledge, an analysis of the influence of nonlinear photon mixing on the end to end quantum bit error rate (QBER) performance of subcarrier multiplexed quantum key distribution systems. The results show that negligible impact is to be expected for modulation indexes in the range of 2%.
NASA Astrophysics Data System (ADS)
Li, Zixiang; Janardhanan, Mukund Nilakantan; Tang, Qiuhua; Nielsen, Peter
2018-05-01
This article presents the first method to simultaneously balance and sequence robotic mixed-model assembly lines (RMALB/S), which involves three sub-problems: task assignment, model sequencing and robot allocation. A new mixed-integer programming model is developed to minimize makespan and, using CPLEX solver, small-size problems are solved for optimality. Two metaheuristics, the restarted simulated annealing algorithm and co-evolutionary algorithm, are developed and improved to address this NP-hard problem. The restarted simulated annealing method replaces the current temperature with a new temperature to restart the search process. The co-evolutionary method uses a restart mechanism to generate a new population by modifying several vectors simultaneously. The proposed algorithms are tested on a set of benchmark problems and compared with five other high-performing metaheuristics. The proposed algorithms outperform their original editions and the benchmarked methods. The proposed algorithms are able to solve the balancing and sequencing problem of a robotic mixed-model assembly line effectively and efficiently.
NASA Astrophysics Data System (ADS)
Azmi, N. I. L. Mohd; Ahmad, R.; Zainuddin, Z. M.
2017-09-01
This research explores the Mixed-Model Two-Sided Assembly Line (MMTSAL). There are two interrelated problems in MMTSAL which are line balancing and model sequencing. In previous studies, many researchers considered these problems separately and only few studied them simultaneously for one-sided line. However in this study, these two problems are solved simultaneously to obtain more efficient solution. The Mixed Integer Linear Programming (MILP) model with objectives of minimizing total utility work and idle time is generated by considering variable launching interval and assignment restriction constraint. The problem is analysed using small-size test cases to validate the integrated model. Throughout this paper, numerical experiment was conducted by using General Algebraic Modelling System (GAMS) with the solver CPLEX. Experimental results indicate that integrating the problems of model sequencing and line balancing help to minimise the proposed objectives function.
NASA Astrophysics Data System (ADS)
Kharibegashvili, S. S.; Jokhadze, O. M.
2014-04-01
A mixed problem for a one-dimensional semilinear wave equation with nonlinear boundary conditions is considered. Conditions of this type occur, for example, in the description of the longitudinal oscillations of a spring fastened elastically at one end, but not in accordance with Hooke's linear law. Uniqueness and existence questions are investigated for global and blowup solutions to this problem, in particular how they depend on the nature of the nonlinearities involved in the equation and the boundary conditions. Bibliography: 14 titles.
Electronic-structure theory of plutonium chalcogenides
NASA Astrophysics Data System (ADS)
Shick, Alexander; Havela, Ladislav; Gouder, Thomas; Rebizant, Jean
2009-03-01
The correlated band theory methods, the around-mean-field LDA + U and dynamical LDA + HIA (Hubbard-I), are applied to investigate the electronic structure of Pu chalcogenides. The LDA + U calculations for PuX (X = S, Se, Te) provide non-magnetic ground state in agreement with the experimental data. Non-integer filling of 5 f-manifold (from approx. 5.6 in PuS to 5.7 PuTe). indicates a mixed valence ground state which combines f5 and f6 multiplets. Making use of the dynamical LDA+HIA method the photoelectron spectra are calculated in good agreement with experimental data. The three-peak feature near EF attributed to 5 f-manifold is well reproduced by LDA + HIA, and follows from mixed valence character of the ground state.
System and Method for Multi-Wavelength Optical Signal Detection
NASA Technical Reports Server (NTRS)
McGlone, Thomas D. (Inventor)
2017-01-01
The system and method for multi-wavelength optical signal detection enables the detection of optical signal levels significantly below those processed at the discrete circuit level by the use of mixed-signal processing methods implemented with integrated circuit technologies. The present invention is configured to detect and process small signals, which enables the reduction of the optical power required to stimulate detection networks, and lowers the required laser power to make specific measurements. The present invention provides an adaptation of active pixel networks combined with mixed-signal processing methods to provide an integer representation of the received signal as an output. The present invention also provides multi-wavelength laser detection circuits for use in various systems, such as a differential absorption light detection and ranging system.
Song, Hyun-Seob; Goldberg, Noam; Mahajan, Ashutosh; Ramkrishna, Doraiswami
2017-08-01
Elementary (flux) modes (EMs) have served as a valuable tool for investigating structural and functional properties of metabolic networks. Identification of the full set of EMs in genome-scale networks remains challenging due to combinatorial explosion of EMs in complex networks. It is often, however, that only a small subset of relevant EMs needs to be known, for which optimization-based sequential computation is a useful alternative. Most of the currently available methods along this line are based on the iterative use of mixed integer linear programming (MILP), the effectiveness of which significantly deteriorates as the number of iterations builds up. To alleviate the computational burden associated with the MILP implementation, we here present a novel optimization algorithm termed alternate integer linear programming (AILP). Our algorithm was designed to iteratively solve a pair of integer programming (IP) and linear programming (LP) to compute EMs in a sequential manner. In each step, the IP identifies a minimal subset of reactions, the deletion of which disables all previously identified EMs. Thus, a subsequent LP solution subject to this reaction deletion constraint becomes a distinct EM. In cases where no feasible LP solution is available, IP-derived reaction deletion sets represent minimal cut sets (MCSs). Despite the additional computation of MCSs, AILP achieved significant time reduction in computing EMs by orders of magnitude. The proposed AILP algorithm not only offers a computational advantage in the EM analysis of genome-scale networks, but also improves the understanding of the linkage between EMs and MCSs. The software is implemented in Matlab, and is provided as supplementary information . hyunseob.song@pnnl.gov. Supplementary data are available at Bioinformatics online. Published by Oxford University Press 2017. This work is written by US Government employees and are in the public domain in the US.
Phase mixing versus nonlinear advection in drift-kinetic plasma turbulence
NASA Astrophysics Data System (ADS)
Schekochihin, A. A.; Parker, J. T.; Highcock, E. G.; Dellar, P. J.; Dorland, W.; Hammett, G. W.
2016-04-01
> A scaling theory of long-wavelength electrostatic turbulence in a magnetised, weakly collisional plasma (e.g. drift-wave turbulence driven by ion temperature gradients) is proposed, with account taken both of the nonlinear advection of the perturbed particle distribution by fluctuating flows and of its phase mixing, which is caused by the streaming of the particles along the mean magnetic field and, in a linear problem, would lead to Landau damping. It is found that it is possible to construct a consistent theory in which very little free energy leaks into high velocity moments of the distribution function, rendering the turbulent cascade in the energetically relevant part of the wavenumber space essentially fluid-like. The velocity-space spectra of free energy expressed in terms of Hermite-moment orders are steep power laws and so the free-energy content of the phase space does not diverge at infinitesimal collisionality (while it does for a linear problem); collisional heating due to long-wavelength perturbations vanishes in this limit (also in contrast with the linear problem, in which it occurs at the finite rate equal to the Landau damping rate). The ability of the free energy to stay in the low velocity moments of the distribution function is facilitated by the `anti-phase-mixing' effect, whose presence in the nonlinear system is due to the stochastic version of the plasma echo (the advecting velocity couples the phase-mixing and anti-phase-mixing perturbations). The partitioning of the wavenumber space between the (energetically dominant) region where this is the case and the region where linear phase mixing wins its competition with nonlinear advection is governed by the `critical balance' between linear and nonlinear time scales (which for high Hermite moments splits into two thresholds, one demarcating the wavenumber region where phase mixing predominates, the other where plasma echo does).
Non-integer viscoelastic constitutive law to model soft biological tissues to in-vivo indentation.
Demirci, Nagehan; Tönük, Ergin
2014-01-01
During the last decades, derivatives and integrals of non-integer orders are being more commonly used for the description of constitutive behavior of various viscoelastic materials including soft biological tissues. Compared to integer order constitutive relations, non-integer order viscoelastic material models of soft biological tissues are capable of capturing a wider range of viscoelastic behavior obtained from experiments. Although integer order models may yield comparably accurate results, non-integer order material models have less number of parameters to be identified in addition to description of an intermediate material that can monotonically and continuously be adjusted in between an ideal elastic solid and an ideal viscous fluid. In this work, starting with some preliminaries on non-integer (fractional) calculus, the "spring-pot", (intermediate mechanical element between a solid and a fluid), non-integer order three element (Zener) solid model, finally a user-defined large strain non-integer order viscoelastic constitutive model was constructed to be used in finite element simulations. Using the constitutive equation developed, by utilizing inverse finite element method and in vivo indentation experiments, soft tissue material identification was performed. The results indicate that material coefficients obtained from relaxation experiments, when optimized with creep experimental data could simulate relaxation, creep and cyclic loading and unloading experiments accurately. Non-integer calculus viscoelastic constitutive models, having physical interpretation and modeling experimental data accurately is a good alternative to classical phenomenological viscoelastic constitutive equations.
Fast Integer Ambiguity Resolution for GPS Attitude Determination
NASA Technical Reports Server (NTRS)
Lightsey, E. Glenn; Crassidis, John L.; Markley, F. Landis
1999-01-01
In this paper, a new algorithm for GPS (Global Positioning System) integer ambiguity resolution is shown. The algorithm first incorporates an instantaneous (static) integer search to significantly reduce the search space using a geometric inequality. Then a batch-type loss function is used to check the remaining integers in order to determine the optimal integer. This batch function represents the GPS sightline vectors in the body frame as the sum of two vectors, one depending on the phase measurements and the other on the unknown integers. The new algorithm has several advantages: it does not require an a-priori estimate of the vehicle's attitude; it provides an inherent integrity check using a covariance-type expression; and it can resolve the integers even when coplanar baselines exist. The performance of the new algorithm is tested on a dynamic hardware simulator.
Charge of a quasiparticle in a superconductor
Ronen, Yuval; Cohen, Yonatan; Kang, Jung-Hyun; Haim, Arbel; Rieder, Maria-Theresa; Heiblum, Moty; Mahalu, Diana; Shtrikman, Hadas
2016-01-01
Nonlinear charge transport in superconductor–insulator–superconductor (SIS) Josephson junctions has a unique signature in the shuttled charge quantum between the two superconductors. In the zero-bias limit Cooper pairs, each with twice the electron charge, carry the Josephson current. An applied bias VSD leads to multiple Andreev reflections (MAR), which in the limit of weak tunneling probability should lead to integer multiples of the electron charge ne traversing the junction, with n integer larger than 2Δ/eVSD and Δ the superconducting order parameter. Exceptionally, just above the gap eVSD ≥ 2Δ, with Andreev reflections suppressed, one would expect the current to be carried by partitioned quasiparticles, each with energy-dependent charge, being a superposition of an electron and a hole. Using shot-noise measurements in an SIS junction induced in an InAs nanowire (with noise proportional to the partitioned charge), we first observed quantization of the partitioned charge q = e*/e=n, with n = 1–4, thus reaffirming the validity of our charge interpretation. Concentrating next on the bias region eVSD∼2Δ, we found a reproducible and clear dip in the extracted charge to q ∼0.6, which, after excluding other possibilities, we attribute to the partitioned quasiparticle charge. Such dip is supported by numerical simulations of our SIS structure. PMID:26831071
Charge of a quasiparticle in a superconductor.
Ronen, Yuval; Cohen, Yonatan; Kang, Jung-Hyun; Haim, Arbel; Rieder, Maria-Theresa; Heiblum, Moty; Mahalu, Diana; Shtrikman, Hadas
2016-02-16
Nonlinear charge transport in superconductor-insulator-superconductor (SIS) Josephson junctions has a unique signature in the shuttled charge quantum between the two superconductors. In the zero-bias limit Cooper pairs, each with twice the electron charge, carry the Josephson current. An applied bias VSD leads to multiple Andreev reflections (MAR), which in the limit of weak tunneling probability should lead to integer multiples of the electron charge ne traversing the junction, with n integer larger than 2Δ/eVSD and Δ the superconducting order parameter. Exceptionally, just above the gap eVSD ≥ 2Δ, with Andreev reflections suppressed, one would expect the current to be carried by partitioned quasiparticles, each with energy-dependent charge, being a superposition of an electron and a hole. Using shot-noise measurements in an SIS junction induced in an InAs nanowire (with noise proportional to the partitioned charge), we first observed quantization of the partitioned charge q = e*/e = n, with n = 1-4, thus reaffirming the validity of our charge interpretation. Concentrating next on the bias region eVSD ~ 2Δ, we found a reproducible and clear dip in the extracted charge to q ~ 0.6, which, after excluding other possibilities, we attribute to the partitioned quasiparticle charge. Such dip is supported by numerical simulations of our SIS structure.
Chakra B. Budhathoki; Thomas B. Lynch; James M. Guldin
2010-01-01
Nonlinear mixed-modeling methods were used to estimate parameters in an individual-tree basal area growth model for shortleaf pine (Pinus echinata Mill.). Shortleaf pine individual-tree growth data were available from over 200 permanently established 0.2-acre fixed-radius plots located in naturally-occurring even-aged shortleaf pine forests on the...
Observation of electromagnetically induced Talbot effect in an atomic system
NASA Astrophysics Data System (ADS)
Zhang, Zhaoyang; Liu, Xing; Zhang, Dan; Sheng, Jiteng; Zhang, Yiqi; Zhang, Yanpeng; Xiao, Min
2018-01-01
The electromagnetically induced Talbot effect (EITE) resulting from the repeated self-reconstruction of a spatially intensity-modulated probe field is experimentally demonstrated in a three-level atomic configuration. The probe beam is launched into an optically induced lattice (established by the interference of two coupling fields) inside a rubidium vapor cell and is diffracted by the electromagnetically induced grating that was formed. The diffraction pattern repeats itself at the planes of integer multiple Talbot lengths. In addition, a fractional EITE is also investigated. The experimental observations agree well with the theoretical predictions. This investigation may potentially pave the way for studying the nonlinear and quantum dynamical features that have been predicted for established periodic optical systems.
Seismic Retrofit for Electric Power Systems
Romero, Natalia; Nozick, Linda K.; Dobson, Ian; ...
2015-05-01
Our paper develops a two-stage stochastic program and solution procedure to optimize the selection of seismic retrofit strategies to increase the resilience of electric power systems against earthquake hazards. The model explicitly considers the range of earthquake events that are possible and, for each, an approximation of the distribution of damage experienced. Furthermore, this is important because electric power systems are spatially distributed and so their performance is driven by the distribution of component damage. We also test this solution procedure against the nonlinear integer solver in LINGO 13 and apply the formulation and solution strategy to the Eastern Interconnection,more » where seismic hazard stems from the New Madrid seismic zone.« less
Elliptic net and its cryptographic application
NASA Astrophysics Data System (ADS)
Muslim, Norliana; Said, Mohamad Rushdan Md
2017-11-01
Elliptic net is a generalization of elliptic divisibility sequence and in cryptography field, most cryptographic pairings that are based on elliptic curve such as Tate pairing can be improved by applying elliptic nets algorithm. The elliptic net is constructed by using n dimensional array of values in rational number satisfying nonlinear recurrence relations that arise from elliptic divisibility sequences. The two main properties hold in the recurrence relations are for all positive integers m>n, hm +nhm -n=hm +1hm -1hn2-hn +1hn -1hm2 and hn divides hm whenever n divides m. In this research, we discuss elliptic divisibility sequence associated with elliptic nets based on cryptographic perspective and its possible research direction.
NASA Astrophysics Data System (ADS)
Akram, Ghazala; Batool, Fiza
2017-10-01
The (G'/G)-expansion method is utilized for a reliable treatment of space-time fractional biological population model. The method has been applied in the sense of the Jumarie's modified Riemann-Liouville derivative. Three classes of exact traveling wave solutions, hyperbolic, trigonometric and rational solutions of the associated equation are characterized with some free parameters. A generalized fractional complex transform is applied to convert the fractional equations to ordinary differential equations which subsequently resulted in number of exact solutions. It should be mentioned that the (G'/G)-expansion method is very effective and convenient for solving nonlinear partial differential equations of fractional order whose balancing number is a negative integer.
Model for the design of distributed data bases
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ram, S.
This research focuses on developing a model to solve the File Allocation Problem (FAP). The model integrates two major design issues, namely Concurrently Control and Data Distribution. The central node locking mechanism is incorporated in developing a nonlinear integer programming model. Two solution algorithms are proposed, one of which was implemented in FORTRAN.V. The allocation of data bases and programs are examined using this heuristic. Several decision rules were also formulated based on the results of the heuristic. A second more comprehensive heuristic was proposed, based on the knapsack problem. The development and implementation of this algorithm has been leftmore » as a topic for future research.« less
Joint image encryption and compression scheme based on IWT and SPIHT
NASA Astrophysics Data System (ADS)
Zhang, Miao; Tong, Xiaojun
2017-03-01
A joint lossless image encryption and compression scheme based on integer wavelet transform (IWT) and set partitioning in hierarchical trees (SPIHT) is proposed to achieve lossless image encryption and compression simultaneously. Making use of the properties of IWT and SPIHT, encryption and compression are combined. Moreover, the proposed secure set partitioning in hierarchical trees (SSPIHT) via the addition of encryption in the SPIHT coding process has no effect on compression performance. A hyper-chaotic system, nonlinear inverse operation, Secure Hash Algorithm-256(SHA-256), and plaintext-based keystream are all used to enhance the security. The test results indicate that the proposed methods have high security and good lossless compression performance.
Superposition of elliptic functions as solutions for a large number of nonlinear equations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khare, Avinash; Saxena, Avadh
2014-03-15
For a large number of nonlinear equations, both discrete and continuum, we demonstrate a kind of linear superposition. We show that whenever a nonlinear equation admits solutions in terms of both Jacobi elliptic functions cn(x, m) and dn(x, m) with modulus m, then it also admits solutions in terms of their sum as well as difference. We have checked this in the case of several nonlinear equations such as the nonlinear Schrödinger equation, MKdV, a mixed KdV-MKdV system, a mixed quadratic-cubic nonlinear Schrödinger equation, the Ablowitz-Ladik equation, the saturable nonlinear Schrödinger equation, λϕ{sup 4}, the discrete MKdV as well asmore » for several coupled field equations. Further, for a large number of nonlinear equations, we show that whenever a nonlinear equation admits a periodic solution in terms of dn{sup 2}(x, m), it also admits solutions in terms of dn {sup 2}(x,m)±√(m) cn (x,m) dn (x,m), even though cn(x, m)dn(x, m) is not a solution of these nonlinear equations. Finally, we also obtain superposed solutions of various forms for several coupled nonlinear equations.« less
Learning Integer Addition: Is Later Better?
ERIC Educational Resources Information Center
Aqazade, Mahtob; Bofferding, Laura; Farmer, Sherri
2017-01-01
We investigate thirty-three second and fifth-grade students' solution strategies on integer addition problems before and after analyzing contrasting cases with integer addition and participating in a lesson on integers. The students took a pretest, participated in two small group sessions and a short lesson, and took a posttest. Even though the…
ERIC Educational Resources Information Center
Siegel, Jonathan W.; Siegel, P. B.
2011-01-01
Integers are sometimes used in physics problems to simplify the mathematics so the arithmetic does not distract students from the physics concepts. This is particularly important in exams where students should not have to spend a lot of time using their calculators. Common uses of integers in physics problems include integer solutions to…
Integers Made Easy: Just Walk It Off
ERIC Educational Resources Information Center
Nurnberger-Haag, Julie
2007-01-01
This article describes a multisensory method for teaching students how to multiply and divide as well as add and subtract integers. The author uses sidewalk chalk and the underlying concept of integers to physically and mentally engage students in understanding the concepts of integers, making connections, and developing computational fluency.…
Triple tailored nonlinear dispersion of dressed four- and six-wave mixing
NASA Astrophysics Data System (ADS)
Sun, Yanyong; Wang, Zhiguo; Zhang, Zhaoyang; Gu, Bingling; Wang, Kun; Yang, Gaoguo; Zhang, Yanpeng
2018-06-01
We investigate the spectral signals and spatial images of a probe transmission signal, four-wave mixing (FWM), and six-wave mixing (SWM) under double dressing effects in an inverted Y-type system. Especially, we get the triple tailored nonlinear dispersion (about 60 MHz) of the dressed FWM and SWM through the interaction between electromagnetically induced transparency (EIT) windows and the Kerr nonlinearity. Moreover, SWM and dressed FWM with narrow linewidth are obtained through the tailoring of the three EIT windows, which is much narrower than the EIT. In addition, we first elaborate the modulation effect from the self-Kerr coefficient of FWM on the spot. We also investigate the spatial characteristics (defocusing, shifting, and splitting) of FWM and SWM induced by tailored self-Kerr and cross-Kerr effects among the relative fields. Such spatial shifting, splitting induced by the tailored nonlinear dispersion can be used for a higher contrast and high speed switch as well as a high resolution router.
NASA Astrophysics Data System (ADS)
Negrello, Camille; Gosselet, Pierre; Rey, Christian
2018-05-01
An efficient method for solving large nonlinear problems combines Newton solvers and Domain Decomposition Methods (DDM). In the DDM framework, the boundary conditions can be chosen to be primal, dual or mixed. The mixed approach presents the advantage to be eligible for the research of an optimal interface parameter (often called impedance) which can increase the convergence rate. The optimal value for this parameter is often too expensive to be computed exactly in practice: an approximate version has to be sought for, along with a compromise between efficiency and computational cost. In the context of parallel algorithms for solving nonlinear structural mechanical problems, we propose a new heuristic for the impedance which combines short and long range effects at a low computational cost.
Vu, Cung Khac; Nihei, Kurt; Johnson, Paul A; Guyer, Robert; Ten Cate, James A; Le Bas, Pierre-Yves; Larmat, Carene S
2014-12-30
A system and a method for investigating rock formations includes generating, by a first acoustic source, a first acoustic signal comprising a first plurality of pulses, each pulse including a first modulated signal at a central frequency; and generating, by a second acoustic source, a second acoustic signal comprising a second plurality of pulses. A receiver arranged within the borehole receives a detected signal including a signal being generated by a non-linear mixing process from the first-and-second acoustic signal in a non-linear mixing zone within the intersection volume. The method also includes-processing the received signal to extract the signal generated by the non-linear mixing process over noise or over signals generated by a linear interaction process, or both.
Constrained spacecraft reorientation using mixed integer convex programming
NASA Astrophysics Data System (ADS)
Tam, Margaret; Glenn Lightsey, E.
2016-10-01
A constrained attitude guidance (CAG) system is developed using convex optimization to autonomously achieve spacecraft pointing objectives while meeting the constraints imposed by on-board hardware. These constraints include bounds on the control input and slew rate, as well as pointing constraints imposed by the sensors. The pointing constraints consist of inclusion and exclusion cones that dictate permissible orientations of the spacecraft in order to keep objects in or out of the field of view of the sensors. The optimization scheme drives a body vector towards a target inertial vector along a trajectory that consists solely of permissible orientations in order to achieve the desired attitude for a given mission mode. The non-convex rotational kinematics are handled by discretization, which also ensures that the quaternion stays unity norm. In order to guarantee an admissible path, the pointing constraints are relaxed. Depending on how strict the pointing constraints are, the degree of relaxation is tuneable. The use of binary variables permits the inclusion of logical expressions in the pointing constraints in the case that a set of sensors has redundancies. The resulting mixed integer convex programming (MICP) formulation generates a steering law that can be easily integrated into an attitude determination and control (ADC) system. A sample simulation of the system is performed for the Bevo-2 satellite, including disturbance torques and actuator dynamics which are not modeled by the controller. Simulation results demonstrate the robustness of the system to disturbances while meeting the mission requirements with desirable performance characteristics.
Domaracka, Alicja; Delaunay, Rudy; Mika, Arkadiusz; Gatchell, Michael; Zettergren, Henning; Cederquist, Henrik; Rousseau, Patrick; Huber, Bernd A
2018-05-23
Ionization, fragmentation and molecular growth have been studied in collisions of 22.5 keV He2+- or 3 keV Ar+-projectiles with pure loosely bound clusters of coronene (C24H12) molecules or with loosely bound mixed C60-C24H12 clusters by using mass spectrometry. The heavier and slower Ar+ projectiles induce prompt knockout-fragmentation - C- and/or H-losses - from individual molecules and highly efficient secondary molecular growth reactions before the clusters disintegrate on picosecond timescales. The lighter and faster He2+ projectiles have a higher charge and the main reactions are then ionization by ions that are not penetrating the clusters. This leads mostly to cluster fragmentation without molecular growth. However, here penetrating collisions may also lead to molecular growth but to a much smaller extent than with 3 keV Ar+. Here we present fragmentation and molecular growth mass distributions with 1 mass unit resolution, which reveals that the same numbers of C- and H-atoms often participate in the formation and breaking of covalent bonds inside the clusters. We find that masses close to those with integer numbers of intact coronene molecules, or with integer numbers of both intact coronene and C60 molecules, are formed where often one or several H-atoms are missing or have been added on. We also find that super-hydrogenated coronene is formed inside the clusters.
Baran, Richard; Northen, Trent R
2013-10-15
Untargeted metabolite profiling using liquid chromatography and mass spectrometry coupled via electrospray ionization is a powerful tool for the discovery of novel natural products, metabolic capabilities, and biomarkers. However, the elucidation of the identities of uncharacterized metabolites from spectral features remains challenging. A critical step in the metabolite identification workflow is the assignment of redundant spectral features (adducts, fragments, multimers) and calculation of the underlying chemical formula. Inspection of the data by experts using computational tools solving partial problems (e.g., chemical formula calculation for individual ions) can be performed to disambiguate alternative solutions and provide reliable results. However, manual curation is tedious and not readily scalable or standardized. Here we describe an automated procedure for the robust automated mass spectra interpretation and chemical formula calculation using mixed integer linear programming optimization (RAMSI). Chemical rules among related ions are expressed as linear constraints and both the spectra interpretation and chemical formula calculation are performed in a single optimization step. This approach is unbiased in that it does not require predefined sets of neutral losses and positive and negative polarity spectra can be combined in a single optimization. The procedure was evaluated with 30 experimental mass spectra and was found to effectively identify the protonated or deprotonated molecule ([M + H](+) or [M - H](-)) while being robust to the presence of background ions. RAMSI provides a much-needed standardized tool for interpreting ions for subsequent identification in untargeted metabolomics workflows.
A mixed-integer linear programming approach to the reduction of genome-scale metabolic networks.
Röhl, Annika; Bockmayr, Alexander
2017-01-03
Constraint-based analysis has become a widely used method to study metabolic networks. While some of the associated algorithms can be applied to genome-scale network reconstructions with several thousands of reactions, others are limited to small or medium-sized models. In 2015, Erdrich et al. introduced a method called NetworkReducer, which reduces large metabolic networks to smaller subnetworks, while preserving a set of biological requirements that can be specified by the user. Already in 2001, Burgard et al. developed a mixed-integer linear programming (MILP) approach for computing minimal reaction sets under a given growth requirement. Here we present an MILP approach for computing minimum subnetworks with the given properties. The minimality (with respect to the number of active reactions) is not guaranteed by NetworkReducer, while the method by Burgard et al. does not allow specifying the different biological requirements. Our procedure is about 5-10 times faster than NetworkReducer and can enumerate all minimum subnetworks in case there exist several ones. This allows identifying common reactions that are present in all subnetworks, and reactions appearing in alternative pathways. Applying complex analysis methods to genome-scale metabolic networks is often not possible in practice. Thus it may become necessary to reduce the size of the network while keeping important functionalities. We propose a MILP solution to this problem. Compared to previous work, our approach is more efficient and allows computing not only one, but even all minimum subnetworks satisfying the required properties.
Mode Reduction and Upscaling of Reactive Transport Under Incomplete Mixing
NASA Astrophysics Data System (ADS)
Lester, D. R.; Bandopadhyay, A.; Dentz, M.; Le Borgne, T.
2016-12-01
Upscaling of chemical reactions in partially-mixed fluid environments is a challenging problem due to the detailed interactions between inherently nonlinear reaction kinetics and complex spatio-temporal concentration distributions under incomplete mixing. We address this challenge via the development of an order reduction method for the advection-diffusion-reaction equation (ADRE) via projection of the reaction kinetics onto a small number N of leading eigenmodes of the advection-diffusion operator (the so-called "strange eigenmodes" of the flow) as an N-by-N nonlinear system, whilst mixing dynamics only are projected onto the remaining modes. For simple kinetics and moderate Péclet and Damkhöler numbers, this approach yields analytic solutions for the concentration mean, evolving spatio-temporal distribution and PDF in terms of the well-mixed reaction kinetics and mixing dynamics. For more complex kinetics or large Péclet or Damkhöler numbers only a small number of modes are required to accurately quantify the mixing and reaction dynamics in terms of the concentration field and PDF, facilitating greatly simplified approximation and analysis of reactive transport. Approximate solutions of this low-order nonlinear system provide quantiative predictions of the evolving concentration PDF. We demonstrate application of this method to a simple random flow and various mass-action reaction kinetics.
Quantum statistics of four-wave mixing by a nonlinear resonant microcavity
NASA Astrophysics Data System (ADS)
Sherkunov, Y.; Whittaker, David M.; Schomerus, Henning; Fal'ko, Vladimir
2014-09-01
We analyze the correlation and spectral properties of two-photon states resonantly transmitted by a nonlinear optical microcavity. We trace the correlation properties of transmitted two-photon states to the decay spectrum of multiphoton resonances in the nonlinear microcavity.
ERIC Educational Resources Information Center
Bolyard, Johnna; Moyer-Packenham, Patricia
2012-01-01
This study investigated how the use of virtual manipulatives in integer instruction impacts student achievement for integer addition and subtraction. Of particular interest was the influence of using virtual manipulatives on students' ability to create and translate among representations for integer computation. The research employed a…
Teachers' Construction of Meanings of Signed Quantities and Integer Operation
ERIC Educational Resources Information Center
Kumar, Ruchi S.; Subramaniam, K.; Naik, Shweta Shripad
2017-01-01
Understanding signed quantities and its arithmetic is one of the challenging topics of middle school mathematics. The "specialized content knowledge" (SCK) for teaching integers includes understanding of a variety of representations that may be used while teaching. In this study, we argue that meanings of integers and integer operations…
Anisotropic fractal media by vector calculus in non-integer dimensional space
NASA Astrophysics Data System (ADS)
Tarasov, Vasily E.
2014-08-01
A review of different approaches to describe anisotropic fractal media is proposed. In this paper, differentiation and integration non-integer dimensional and multi-fractional spaces are considered as tools to describe anisotropic fractal materials and media. We suggest a generalization of vector calculus for non-integer dimensional space by using a product measure method. The product of fractional and non-integer dimensional spaces allows us to take into account the anisotropy of the fractal media in the framework of continuum models. The integration over non-integer-dimensional spaces is considered. In this paper differential operators of first and second orders for fractional space and non-integer dimensional space are suggested. The differential operators are defined as inverse operations to integration in spaces with non-integer dimensions. Non-integer dimensional space that is product of spaces with different dimensions allows us to give continuum models for anisotropic type of the media. The Poisson's equation for fractal medium, the Euler-Bernoulli fractal beam, and the Timoshenko beam equations for fractal material are considered as examples of application of suggested generalization of vector calculus for anisotropic fractal materials and media.
Fatigue Life Prediction of Metallic Materials Based on the Combined Nonlinear Ultrasonic Parameter
NASA Astrophysics Data System (ADS)
Zhang, Yuhua; Li, Xinxin; Wu, Zhenyong; Huang, Zhenfeng; Mao, Hanling
2017-08-01
The fatigue life prediction of metallic materials is always a tough problem that needs to be solved in the mechanical engineering field because it is very important for the secure service of mechanical components. In this paper, a combined nonlinear ultrasonic parameter based on the collinear wave mixing technique is applied for fatigue life prediction of a metallic material. Sweep experiments are first conducted to explore the influence of driving frequency on the interaction of two driving signals and the fatigue damage of specimens, and the amplitudes of sidebands at the difference frequency and sum frequency are tracked when the driving frequency changes. Then, collinear wave mixing tests are carried out on a pair of cylindrically notched specimens with different fatigue damage to explore the relationship between the fatigue damage and the relative nonlinear parameters. The experimental results show when the fatigue degree is below 65% the relative nonlinear parameter increases quickly, and the growth rate is approximately 130%. If the fatigue degree is above 65%, the increase in the relative nonlinear parameter is slow, which has a close relationship with the microstructure evolution of specimens. A combined nonlinear ultrasonic parameter is proposed to highlight the relationship of the relative nonlinear parameter and fatigue degree of specimens; the fatigue life prediction model is built based on the relationship, and the prediction error is below 3%, which is below the prediction error based on the relative nonlinear parameters at the difference and sum frequencies. Therefore, the combined nonlinear ultrasonic parameter using the collinear wave mixing method can effectively estimate the fatigue degree of specimens, which provides a fast and convenient method for fatigue life prediction.
Sun, Yan; Lang, Maoxiang; Wang, Danzhu
2016-01-01
The transportation of hazardous materials is always accompanied by considerable risk that will impact public and environment security. As an efficient and reliable transportation organization, a multimodal service should participate in the transportation of hazardous materials. In this study, we focus on transporting hazardous materials through the multimodal service network and explore the hazardous materials multimodal routing problem from the operational level of network planning. To formulate this problem more practicably, minimizing the total generalized costs of transporting the hazardous materials and the social risk along the planned routes are set as the optimization objectives. Meanwhile, the following formulation characteristics will be comprehensively modelled: (1) specific customer demands; (2) multiple hazardous material flows; (3) capacitated schedule-based rail service and uncapacitated time-flexible road service; and (4) environmental risk constraint. A bi-objective mixed integer nonlinear programming model is first built to formulate the routing problem that combines the formulation characteristics above. Then linear reformations are developed to linearize and improve the initial model so that it can be effectively solved by exact solution algorithms on standard mathematical programming software. By utilizing the normalized weighted sum method, we can generate the Pareto solutions to the bi-objective optimization problem for a specific case. Finally, a large-scale empirical case study from the Beijing–Tianjin–Hebei Region in China is presented to demonstrate the feasibility of the proposed methods in dealing with the practical problem. Various scenarios are also discussed in the case study. PMID:27483294
Impact of Spatial Pumping Patterns on Groundwater Management
NASA Astrophysics Data System (ADS)
Yin, J.; Tsai, F. T. C.
2017-12-01
Challenges exist to manage groundwater resources while maintaining a balance between groundwater quantity and quality because of anthropogenic pumping activities as well as complex subsurface environment. In this study, to address the impact of spatial pumping pattern on groundwater management, a mixed integer nonlinear multi-objective model is formulated by integrating three objectives within a management framework to: (i) maximize total groundwater withdrawal from potential wells; (ii) minimize total electricity cost for well pumps; and (iii) attain groundwater level at selected monitoring locations as close as possible to the target level. Binary variables are used in the groundwater management model to control the operative status of pumping wells. The NSGA-II is linked with MODFLOW to solve the multi-objective problem. The proposed method is applied to a groundwater management problem in the complex Baton Rouge aquifer system, southeastern Louisiana. Results show that (a) non-dominated trade-off solutions under various spatial distributions of active pumping wells can be achieved. Each solution is optimal with regard to its corresponding objectives; (b) operative status, locations and pumping rates of pumping wells are significant to influence the distribution of hydraulic head, which in turn influence the optimization results; (c) A wide range of optimal solutions is obtained such that decision makers can select the most appropriate solution through negotiation with different stakeholders. This technique is beneficial to finding out the optimal extent to which three objectives including water supply concern, energy concern and subsidence concern can be balanced.
A hybrid learning method for constructing compact rule-based fuzzy models.
Zhao, Wanqing; Niu, Qun; Li, Kang; Irwin, George W
2013-12-01
The Takagi–Sugeno–Kang-type rule-based fuzzy model has found many applications in different fields; a major challenge is, however, to build a compact model with optimized model parameters which leads to satisfactory model performance. To produce a compact model, most existing approaches mainly focus on selecting an appropriate number of fuzzy rules. In contrast, this paper considers not only the selection of fuzzy rules but also the structure of each rule premise and consequent, leading to the development of a novel compact rule-based fuzzy model. Here, each fuzzy rule is associated with two sets of input attributes, in which the first is used for constructing the rule premise and the other is employed in the rule consequent. A new hybrid learning method combining the modified harmony search method with a fast recursive algorithm is hereby proposed to determine the structure and the parameters for the rule premises and consequents. This is a hard mixed-integer nonlinear optimization problem, and the proposed hybrid method solves the problem by employing an embedded framework, leading to a significantly reduced number of model parameters and a small number of fuzzy rules with each being as simple as possible. Results from three examples are presented to demonstrate the compactness (in terms of the number of model parameters and the number of rules) and the performance of the fuzzy models obtained by the proposed hybrid learning method, in comparison with other techniques from the literature.
A mathematical programming approach for sequential clustering of dynamic networks
NASA Astrophysics Data System (ADS)
Silva, Jonathan C.; Bennett, Laura; Papageorgiou, Lazaros G.; Tsoka, Sophia
2016-02-01
A common analysis performed on dynamic networks is community structure detection, a challenging problem that aims to track the temporal evolution of network modules. An emerging area in this field is evolutionary clustering, where the community structure of a network snapshot is identified by taking into account both its current state as well as previous time points. Based on this concept, we have developed a mixed integer non-linear programming (MINLP) model, SeqMod, that sequentially clusters each snapshot of a dynamic network. The modularity metric is used to determine the quality of community structure of the current snapshot and the historical cost is accounted for by optimising the number of node pairs co-clustered at the previous time point that remain so in the current snapshot partition. Our method is tested on social networks of interactions among high school students, college students and members of the Brazilian Congress. We show that, for an adequate parameter setting, our algorithm detects the classes that these students belong more accurately than partitioning each time step individually or by partitioning the aggregated snapshots. Our method also detects drastic discontinuities in interaction patterns across network snapshots. Finally, we present comparative results with similar community detection methods for time-dependent networks from the literature. Overall, we illustrate the applicability of mathematical programming as a flexible, adaptable and systematic approach for these community detection problems. Contribution to the Topical Issue "Temporal Network Theory and Applications", edited by Petter Holme.
Product-line selection and pricing with remanufacturing under availability constraints
NASA Astrophysics Data System (ADS)
Aras, Necati; Esenduran, G.÷k.‡e.; Altinel, I. Kuban
2004-12-01
Product line selection and pricing are two crucial decisions for the profitability of a manufacturing firm. Remanufacturing, on the other hand, may be a profitable strategy that captures the remaining value in used products. In this paper we develop a mixed-integer nonlinear programming model form the perspective of an original equipment manufacturer (OEM). The objective of the OEM is to select products to manufacture and remanufacture among a set of given alternatives and simultaneously determine their prices so as to maximize its profit. It is assumed that the probability a customer selects a product is proportional to its utility and inversely proportional to its price. The utility of a product is an increasing function of its perceived quality. In our base model, products are discriminated by their unit production costs and utilities. We also analyze a case where remanufacturing is limited by the available quantity of collected remanufacturable products. We show that the resulting problem is decomposed into the pricing and product line selection subproblems. Pricing problem is solved by a variant of the simplex search procedure which can also handle constraints, while complete enumeration and a genetic algorithm are used for the solution of the product line selection problem. A number of experiments are carried out to identify conditions under which it is economically viable for the firm to sell remanufactured products. We also determine the optimal utility and unit production cost values of a remanufactured product, which maximizes the total profit of the OEM.
NASA Astrophysics Data System (ADS)
Adams, L. E.; Lund, J. R.; Moyle, P. B.; Quiñones, R. M.; Herman, J. D.; O'Rear, T. A.
2017-09-01
Building reservoir release schedules to manage engineered river systems can involve costly trade-offs between storing and releasing water. As a result, the design of release schedules requires metrics that quantify the benefit and damages created by releases to the downstream ecosystem. Such metrics should support making operational decisions under uncertain hydrologic conditions, including drought and flood seasons. This study addresses this need and develops a reservoir operation rule structure and method to maximize downstream environmental benefit while meeting human water demands. The result is a general approach for hedging downstream environmental objectives. A multistage stochastic mixed-integer nonlinear program with Markov Chains, identifies optimal "environmental hedging," releases to maximize environmental benefits subject to probabilistic seasonal hydrologic conditions, current, past, and future environmental demand, human water supply needs, infrastructure limitations, population dynamics, drought storage protection, and the river's carrying capacity. Environmental hedging "hedges bets" for drought by reducing releases for fish, sometimes intentionally killing some fish early to reduce the likelihood of large fish kills and storage crises later. This approach is applied to Folsom reservoir in California to support survival of fall-run Chinook salmon in the lower American River for a range of carryover and initial storage cases. Benefit is measured in terms of fish survival; maintaining self-sustaining native fish populations is a significant indicator of ecosystem function. Environmental hedging meets human demand and outperforms other operating rules, including the current Folsom operating strategy, based on metrics of fish extirpation and water supply reliability.
2015-09-30
hour tidally -resolving transects showing the generation conditions leading to wave formation 6. Nine synthetic aperture images collected during...High resolution measurements of nonlinear internal waves and mixing on the Washington continental...email: jmickett@apl.washington.edu Grant Number: N00014-13-1-0390 LONG-TERM GOALS We are interested in the general problems of internal waves and
Approximating a nonlinear advanced-delayed equation from acoustics
NASA Astrophysics Data System (ADS)
Teodoro, M. Filomena
2016-10-01
We approximate the solution of a particular non-linear mixed type functional differential equation from physiology, the mucosal wave model of the vocal oscillation during phonation. The mathematical equation models a superficial wave propagating through the tissues. The numerical scheme is adapted from the work presented in [1, 2, 3], using homotopy analysis method (HAM) to solve the non linear mixed type equation under study.
A farm-level precision land management framework based on integer programming
Li, Qi; Hu, Guiping; Jubery, Talukder Zaki; Ganapathysubramanian, Baskar
2017-01-01
Farmland management involves several planning and decision making tasks including seed selection and irrigation management. A farm-level precision farmland management model based on mixed integer linear programming is proposed in this study. Optimal decisions are designed for pre-season planning of crops and irrigation water allocation. The model captures the effect of size and shape of decision scale as well as special irrigation patterns. The authors illustrate the model with a case study on a farm in the state of California in the U.S. and show the model can capture the impact of precision farm management on profitability. The results show that threefold increase of annual net profit for farmers could be achieved by carefully choosing irrigation and seed selection. Although farmers could increase profits by applying precision management to seed or irrigation alone, profit increase is more significant if farmers apply precision management on seed and irrigation simultaneously. The proposed model can also serve as a risk analysis tool for farmers facing seasonal irrigation water limits as well as a quantitative tool to explore the impact of precision agriculture. PMID:28346499
Enhanced ant colony optimization for inventory routing problem
NASA Astrophysics Data System (ADS)
Wong, Lily; Moin, Noor Hasnah
2015-10-01
The inventory routing problem (IRP) integrates and coordinates two important components of supply chain management which are transportation and inventory management. We consider a one-to-many IRP network for a finite planning horizon. The demand for each product is deterministic and time varying as well as a fleet of capacitated homogeneous vehicles, housed at a depot/warehouse, delivers the products from the warehouse to meet the demand specified by the customers in each period. The inventory holding cost is product specific and is incurred at the customer sites. The objective is to determine the amount of inventory and to construct a delivery routing that minimizes both the total transportation and inventory holding cost while ensuring each customer's demand is met over the planning horizon. The problem is formulated as a mixed integer programming problem and is solved using CPLEX 12.4 to get the lower and upper bound (best integer) for each instance considered. We propose an enhanced ant colony optimization (ACO) to solve the problem and the built route is improved by using local search. The computational experiments demonstrating the effectiveness of our approach is presented.
Handling Nonlinearities in ELF/VLF Generation Using Modulated Heating at HAARP
NASA Astrophysics Data System (ADS)
Jin, G.; Spasojevic, M.; Cohen, M.; Inan, U. S.
2011-12-01
George Jin Maria Spasojevic Morris Cohen Umran Inan Stanford University Modulated HF heating of the D-region ionosphere near the auroral electrojet can generate extremely low frequency (ELF) waves in the kilohertz range. This process is nonlinear and generates harmonics at integer multiples of the ELF modulation frequency. The nonlinear distortion has implications for any communications applications since the harmonics contain a substantial fraction of the signal power and use up bandwidth. We examine two techniques for handling the nonlinearity. First we modulate the HF heating with a non-sinusoidal envelope designed to create a sinusoidal change in the Hall conductivity at a particular altitude in the ionosphere to minimize any generated harmonics. The modulation waveform is generated by inverting a numerical HF heating model, starting from the desired conductivity time series, and obtaining the HF power envelope that will result in that conductivity. The second technique attempts to use the energy in the harmonics to improve bit error rates when digital modulation is applied to the ELF carrier. In conventional quadrature phase-shift keying (QPSK), where a ELF carrier is phase-shifted by 0°, 90°, 180°, and 270° in order to transmit a pair of bits, the even harmonics cannot distinguish between the four possible shifts. By using different phase values, all the energy in the harmonics can contribute to determining the phase of the carrier and thus improve the bit error rate.
1990-10-29
the equivalent type names in the basic X libary . 37. Intrinsics Contains the type declarations common to all Xt toolkit routines. 38. Widget-Package...Memory-Size constant Integer 1; MinInt constant I-reger Integer’First; MaxInt const-i’ integer Integer’Last; -- Max- Digits constant Integer 1; -- MaxMan...connection between some type names used by Xt routines and the equivalent type names in the basic X libary . .package RenamedXlibTypes is P;’ge 65 29
Dielectric Optical-Controllable Magnifying Lens by Nonlinear Negative Refraction
Cao, Jianjun; Shang, Ce; Zheng, Yuanlin; Feng, Yaming; Chen, Xianfeng; Liang, Xiaogan; Wan, Wenjie
2015-01-01
A simple optical lens plays an important role for exploring the microscopic world in science and technology by refracting light with tailored spatially varying refractive indices. Recent advancements in nanotechnology enable novel lenses, such as, superlens and hyperlens, with sub-wavelength resolution capabilities by specially designed materials’ refractive indices with meta-materials and transformation optics. However, these artificially nano- or micro-engineered lenses usually suffer high losses from metals and are highly demanding in fabrication. Here, we experimentally demonstrate, for the first time, a nonlinear dielectric magnifying lens using negative refraction by degenerate four-wave mixing in a plano-concave glass slide, obtaining magnified images. Moreover, we transform a nonlinear flat lens into a magnifying lens by introducing transformation optics into the nonlinear regime, achieving an all-optical controllable lensing effect through nonlinear wave mixing, which may have many potential applications in microscopy and imaging science. PMID:26149952
Functional Nonlinear Mixed Effects Models For Longitudinal Image Data
Luo, Xinchao; Zhu, Lixing; Kong, Linglong; Zhu, Hongtu
2015-01-01
Motivated by studying large-scale longitudinal image data, we propose a novel functional nonlinear mixed effects modeling (FN-MEM) framework to model the nonlinear spatial-temporal growth patterns of brain structure and function and their association with covariates of interest (e.g., time or diagnostic status). Our FNMEM explicitly quantifies a random nonlinear association map of individual trajectories. We develop an efficient estimation method to estimate the nonlinear growth function and the covariance operator of the spatial-temporal process. We propose a global test and a simultaneous confidence band for some specific growth patterns. We conduct Monte Carlo simulation to examine the finite-sample performance of the proposed procedures. We apply FNMEM to investigate the spatial-temporal dynamics of white-matter fiber skeletons in a national database for autism research. Our FNMEM may provide a valuable tool for charting the developmental trajectories of various neuropsychiatric and neurodegenerative disorders. PMID:26213453
Improved Convergence and Robustness of USM3D Solutions on Mixed-Element Grids
NASA Technical Reports Server (NTRS)
Pandya, Mohagna J.; Diskin, Boris; Thomas, James L.; Frink, Neal T.
2016-01-01
Several improvements to the mixed-element USM3D discretization and defect-correction schemes have been made. A new methodology for nonlinear iterations, called the Hierarchical Adaptive Nonlinear Iteration Method, has been developed and implemented. The Hierarchical Adaptive Nonlinear Iteration Method provides two additional hierarchies around a simple and approximate preconditioner of USM3D. The hierarchies are a matrix-free linear solver for the exact linearization of Reynolds-averaged Navier-Stokes equations and a nonlinear control of the solution update. Two variants of the Hierarchical Adaptive Nonlinear Iteration Method are assessed on four benchmark cases, namely, a zero-pressure-gradient flat plate, a bump-in-channel configuration, the NACA 0012 airfoil, and a NASA Common Research Model configuration. The new methodology provides a convergence acceleration factor of 1.4 to 13 over the preconditioner-alone method representing the baseline solver technology.
Improved Convergence and Robustness of USM3D Solutions on Mixed-Element Grids
NASA Technical Reports Server (NTRS)
Pandya, Mohagna J.; Diskin, Boris; Thomas, James L.; Frinks, Neal T.
2016-01-01
Several improvements to the mixed-elementUSM3Ddiscretization and defect-correction schemes have been made. A new methodology for nonlinear iterations, called the Hierarchical Adaptive Nonlinear Iteration Method, has been developed and implemented. The Hierarchical Adaptive Nonlinear Iteration Method provides two additional hierarchies around a simple and approximate preconditioner of USM3D. The hierarchies are a matrix-free linear solver for the exact linearization of Reynolds-averaged Navier-Stokes equations and a nonlinear control of the solution update. Two variants of the Hierarchical Adaptive Nonlinear Iteration Method are assessed on four benchmark cases, namely, a zero-pressure-gradient flat plate, a bump-in-channel configuration, the NACA 0012 airfoil, and a NASA Common Research Model configuration. The new methodology provides a convergence acceleration factor of 1.4 to 13 over the preconditioner-alone method representing the baseline solver technology.
A generalized nonlinear model-based mixed multinomial logit approach for crash data analysis.
Zeng, Ziqiang; Zhu, Wenbo; Ke, Ruimin; Ash, John; Wang, Yinhai; Xu, Jiuping; Xu, Xinxin
2017-02-01
The mixed multinomial logit (MNL) approach, which can account for unobserved heterogeneity, is a promising unordered model that has been employed in analyzing the effect of factors contributing to crash severity. However, its basic assumption of using a linear function to explore the relationship between the probability of crash severity and its contributing factors can be violated in reality. This paper develops a generalized nonlinear model-based mixed MNL approach which is capable of capturing non-monotonic relationships by developing nonlinear predictors for the contributing factors in the context of unobserved heterogeneity. The crash data on seven Interstate freeways in Washington between January 2011 and December 2014 are collected to develop the nonlinear predictors in the model. Thirteen contributing factors in terms of traffic characteristics, roadway geometric characteristics, and weather conditions are identified to have significant mixed (fixed or random) effects on the crash density in three crash severity levels: fatal, injury, and property damage only. The proposed model is compared with the standard mixed MNL model. The comparison results suggest a slight superiority of the new approach in terms of model fit measured by the Akaike Information Criterion (12.06 percent decrease) and Bayesian Information Criterion (9.11 percent decrease). The predicted crash densities for all three levels of crash severities of the new approach are also closer (on average) to the observations than the ones predicted by the standard mixed MNL model. Finally, the significance and impacts of the contributing factors are analyzed. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Khushaini, Muhammad Asif A.; Ibrahim, Abdel-Baset M. A.; Choudhury, P. K.
2018-05-01
In this paper, we provide a complete mathematical model of the phenomenon of optical bistability (OB) resulting from the degenerate two-wave mixing (TWM) process of laser beams interacting with a single nonlinear layer of ferroelectric material. Starting with the electromagnetic wave equation for optical wave propagating in nonlinear media, a nonlinear coupled wave (CW) system with both self-phase modulation (SPM) and cross-phase modulation (XPM) sources of nonlinearity are derived. The complete CW system with full nonlinearity is solved numerically and a comparison between both the cases of with and without SPM at various combinations of design parameters is given. Furthermore, to provide a reliable theoretical model for the OB via TWM process, the results obtained theoretically are compared with the available experimental data. We found that the nonlinear system without SPM fails to predict the bistable response at lower combinations of the input parameters. However, at relatively higher values, the solution without SPM shows a reduction in the switching contrast and period in the OB response. A comparison with the experimental results shows better agreement with the system with full nonlinearity.
Optimal clinical trial design based on a dichotomous Markov-chain mixed-effect sleep model.
Steven Ernest, C; Nyberg, Joakim; Karlsson, Mats O; Hooker, Andrew C
2014-12-01
D-optimal designs for discrete-type responses have been derived using generalized linear mixed models, simulation based methods and analytical approximations for computing the fisher information matrix (FIM) of non-linear mixed effect models with homogeneous probabilities over time. In this work, D-optimal designs using an analytical approximation of the FIM for a dichotomous, non-homogeneous, Markov-chain phase advanced sleep non-linear mixed effect model was investigated. The non-linear mixed effect model consisted of transition probabilities of dichotomous sleep data estimated as logistic functions using piecewise linear functions. Theoretical linear and nonlinear dose effects were added to the transition probabilities to modify the probability of being in either sleep stage. D-optimal designs were computed by determining an analytical approximation the FIM for each Markov component (one where the previous state was awake and another where the previous state was asleep). Each Markov component FIM was weighted either equally or by the average probability of response being awake or asleep over the night and summed to derive the total FIM (FIM(total)). The reference designs were placebo, 0.1, 1-, 6-, 10- and 20-mg dosing for a 2- to 6-way crossover study in six dosing groups. Optimized design variables were dose and number of subjects in each dose group. The designs were validated using stochastic simulation/re-estimation (SSE). Contrary to expectations, the predicted parameter uncertainty obtained via FIM(total) was larger than the uncertainty in parameter estimates computed by SSE. Nevertheless, the D-optimal designs decreased the uncertainty of parameter estimates relative to the reference designs. Additionally, the improvement for the D-optimal designs were more pronounced using SSE than predicted via FIM(total). Through the use of an approximate analytic solution and weighting schemes, the FIM(total) for a non-homogeneous, dichotomous Markov-chain phase advanced sleep model was computed and provided more efficient trial designs and increased nonlinear mixed-effects modeling parameter precision.
Counting Triangles to Sum Squares
ERIC Educational Resources Information Center
DeMaio, Joe
2012-01-01
Counting complete subgraphs of three vertices in complete graphs, yields combinatorial arguments for identities for sums of squares of integers, odd integers, even integers and sums of the triangular numbers.
An investigation of the uniform random number generator
NASA Technical Reports Server (NTRS)
Temple, E. C.
1982-01-01
Most random number generators that are in use today are of the congruential form X(i+1) + AX(i) + C mod M where A, C, and M are nonnegative integers. If C=O, the generator is called the multiplicative type and those for which C/O are called mixed congruential generators. It is easy to see that congruential generators will repeat a sequence of numbers after a maximum of M values have been generated. The number of numbers that a procedure generates before restarting the sequence is called the length or the period of the generator. Generally, it is desirable to make the period as long as possible. A detailed discussion of congruential generators is given. Also, several promising procedures that differ from the multiplicative and mixed procedure are discussed.
Slip and Slide Method of Factoring Trinomials with Integer Coefficients over the Integers
ERIC Educational Resources Information Center
Donnell, William A.
2012-01-01
In intermediate and college algebra courses there are a number of methods for factoring quadratic trinomials with integer coefficients over the integers. Some of these methods have been given names, such as trial and error, reversing FOIL, AC method, middle term splitting method and slip and slide method. The purpose of this article is to discuss…
Solving Integer Programs from Dependence and Synchronization Problems
1993-03-01
DEFF.NSNE Solving Integer Programs from Dependence and Synchronization Problems Jaspal Subhlok March 1993 CMU-CS-93-130 School of Computer ScienceT IC...method Is an exact and efficient way of solving integer programming problems arising in dependence and synchronization analysis of parallel programs...7/;- p Keywords: Exact dependence tesing, integer programming. parallelilzng compilers, parallel program analysis, synchronization analysis Solving
ERIC Educational Resources Information Center
Bishop, Jessica Pierson; Lamb, Lisa L.; Philipp, Randolph A.; Whitacre, Ian; Schappelle, Bonnie P.; Lewis, Melinda L.
2014-01-01
We identify and document 3 cognitive obstacles, 3 cognitive affordances, and 1 type of integer understanding that can function as either an obstacle or affordance for learners while they extend their numeric domains from whole numbers to include negative integers. In particular, we highlight 2 key subsets of integer reasoning: understanding or…
Anisotropic fractal media by vector calculus in non-integer dimensional space
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tarasov, Vasily E., E-mail: tarasov@theory.sinp.msu.ru
2014-08-15
A review of different approaches to describe anisotropic fractal media is proposed. In this paper, differentiation and integration non-integer dimensional and multi-fractional spaces are considered as tools to describe anisotropic fractal materials and media. We suggest a generalization of vector calculus for non-integer dimensional space by using a product measure method. The product of fractional and non-integer dimensional spaces allows us to take into account the anisotropy of the fractal media in the framework of continuum models. The integration over non-integer-dimensional spaces is considered. In this paper differential operators of first and second orders for fractional space and non-integer dimensionalmore » space are suggested. The differential operators are defined as inverse operations to integration in spaces with non-integer dimensions. Non-integer dimensional space that is product of spaces with different dimensions allows us to give continuum models for anisotropic type of the media. The Poisson's equation for fractal medium, the Euler-Bernoulli fractal beam, and the Timoshenko beam equations for fractal material are considered as examples of application of suggested generalization of vector calculus for anisotropic fractal materials and media.« less
Finding fixed satellite service orbital allotments with a k-permutation algorithm
NASA Technical Reports Server (NTRS)
Reilly, Charles H.; Mount-Campbell, Clark A.; Gonsalvez, David J. A.
1990-01-01
A satellite system synthesis problem, the satellite location problem (SLP), is addressed. In SLP, orbital locations (longitudes) are allotted to geostationary satellites in the fixed satellite service. A linear mixed-integer programming model is presented that views SLP as a combination of two problems: the problem of ordering the satellites and the problem of locating the satellites given some ordering. A special-purpose heuristic procedure, a k-permutation algorithm, has been developed to find solutions to SLPs. Solutions to small sample problems are presented and analyzed on the basis of calculated interferences.
1989-12-01
Sincere appreciation is deserved by Geraldo Veiga , Department of Industrial Engineering and Operations Research, at the University of California, Berkeley...Convergence 124 Veiga , University of California, Berkeley, must be credited with applying the MINOS code to our GMF-A problems). MINOS is a FORTRAN...placed in cart ACT,O,,TS23; and if the cart is full, an ACT,O,LSN8l3CARr.GE.LSMBl3FULL,TS24; entity is sent to TS24 to ACr,O,,TT fl ; empty the cart
2013-03-30
Abstract: We study multi-robot routing problems (MR- LDR ) where a team of robots has to visit a set of given targets with linear decreasing rewards over...time, such as required for the delivery of goods to rescue sites after disasters. The objective of MR- LDR is to find an assignment of targets to...We develop a mixed integer program that solves MR- LDR optimally with a flow-type formulation and can be solved faster than the standard TSP-type
NASA Technical Reports Server (NTRS)
Truong, T. K.; Chang, J. J.; Hsu, I. S.; Pei, D. Y.; Reed, I. S.
1986-01-01
The complex integer multiplier and adder over the direct sum of two copies of finite field developed by Cozzens and Finkelstein (1985) is specialized to the direct sum of the rings of integers modulo Fermat numbers. Such multiplication over the rings of integers modulo Fermat numbers can be performed by means of two integer multiplications, whereas the complex integer multiplication requires three integer multiplications. Such multiplications and additions can be used in the implementation of a discrete Fourier transform (DFT) of a sequence of complex numbers. The advantage of the present approach is that the number of multiplications needed to compute a systolic array of the DFT can be reduced substantially. The architectural designs using this approach are regular, simple, expandable and, therefore, naturally suitable for VLSI implementation.
NASA Astrophysics Data System (ADS)
Vinayagam, P. S.; Radha, R.; Al Khawaja, U.; Ling, Liming
2018-06-01
We investigate generalized nonlocal coupled nonlinear Schorödinger equation containing Self-Phase Modulation, Cross-Phase Modulation and four wave mixing involving nonlocal interaction. By means of Darboux transformation we obtained a family of exact breathers and solitons including the Peregrine soliton, Kuznetsov-Ma breather, Akhmediev breather along with all kinds of soliton-soliton and breather-soltion interactions. We analyze and emphasize the impact of the four-wave mixing on the nature and interaction of the solutions. We found that the presence of four wave mixing converts a two-soliton solution into an Akhmediev breather. In particular, the inclusion of four wave mixing results in the generation of a new solutions which is spatially and temporally periodic called "Soliton (Breather) lattice".
Nonlinear Wave Mixing Technique for Nondestructive Assessment of Infrastructure Materials
NASA Astrophysics Data System (ADS)
Ju, Taeho
To operate safely, structures and components need to be inspected or monitored either periodically or in real time for potential failure. For this purpose, ultrasonic nondestructive evaluation (NDE) techniques have been used extensively. Most of these ultrasonic NDE techniques utilize only the linear behavior of the ultrasound. These linear techniques are effective in detecting discontinuities in materials such as cracks, voids, interfaces, inclusions, etc. However, in many engineering materials, it is the accumulation of microdamage that leads to degradation and eventual failure of a component. Unfortunately, it is difficult for linear ultrasonic NDE techniques to characterize or quantify such damage. On the other hand, the acoustic nonlinearity parameter (ANLP) of a material is often positively correlated with such damage in a material. Thus, nonlinear ultrasonic NDE methods have been used in recently years to characterize cumulative damage such as fatigue in metallic materials, aging in polymeric materials, and degradation of cement-based materials due to chemical reactions. In this thesis, we focus on developing a suit of novel nonlinear ultrasonic NDE techniques based on the interactions of nonlinear ultrasonic waves, namely wave mixing. First, a noncollinear wave mixing technique is developed to detect localized damage in a homogeneous material by using a pair of noncollinear a longitudinal wave (L-wave) and a shear wave (S-wave). This pair of incident waves make it possible to conduct NDE from a single side of the component, a condition that is often encountered in practical applications. The proposed noncollinear wave mixing technique is verified experimentally by carrying out measurements on aluminum alloy (AA 6061) samples. Numerical simulations using the Finite Element Method (FEM) are also conducted to further demonstrate the potential of the proposed technique to detect localized damage in structural components. Second, the aforementioned nonlinear mixing technique is adapted to develop an NDE technique for characterizing thermal aging of adhesive joints. To this end, a nonlinear spring model is used to simulate the effect of the adhesive layer. Based on this nonlinear spring model, analytical expressions of the resonant wave generated by the adhesive layers is obtained through an asymptotic analysis when the adhesive layer thickness is much smaller than the pertinent wavelength. The solutions are expressed in terms of the properties of the adhesive layer. The nonlinear spring model shows a good agreement with the finite layer model solutions in the limit of a small thickness to wavelength ratio. Third, to demonstrate the effectiveness of this newly developed technique, measurements are conducted on adhesive joint samples made of two aluminum adherends bonded together by a polymer adhesive tape. The samples are aged in a thermal chamber to induce thermal ageing degradation in the adhesive layer. Using the developed wave-mixing technique in conjunction with the nonlinear spring model, we show that the thermal aging damage of the adhesive layer can be quantified from only one side of the sample. Finally, by mixing two L-waves, we develop a mixing technique to nondestructively evaluate the damage induced by alkali-silica reaction (ASR) in concrete. Experimental measurements are conducted on concrete prism samples that contain reactive aggregates and have been subjected to different ASR conditioning. This new technique takes into consideration of the significant attenuation caused by ASR-induced microcracks and scattering by the aggregates. The measurement results show that the ANLP has a much greater sensitivity to ASR damage than other parameters such as attenuation and wave speed. More remarkably, it is also found that the measured acoustic nonlinearity parameter is well-correlated with the reduction of the compressive strength induced by ASR damage. Thus, ANLP can be used to nondestructively track ASR damage in concrete.
Enhanced Third-Order Optical Nonlinearity Driven by Surface-Plasmon Field Gradients.
Kravtsov, Vasily; AlMutairi, Sultan; Ulbricht, Ronald; Kutayiah, A Ryan; Belyanin, Alexey; Raschke, Markus B
2018-05-18
Efficient nonlinear optical frequency mixing in small volumes is key for future on-chip photonic devices. However, the generally low conversion efficiency severely limits miniaturization to nanoscale dimensions. Here we demonstrate that gradient-field effects can provide for an efficient, conventionally dipole-forbidden nonlinear response. We show that a longitudinal nonlinear source current can dominate the third-order optical nonlinearity of the free electron response in gold in the technologically important near-IR frequency range where the nonlinearities due to other mechanisms are particularly small. Using adiabatic nanofocusing to spatially confine the excitation fields, from measurements of the 2ω_{1}-ω_{2} four-wave mixing response as a function of detuning ω_{1}-ω_{2}, we find up to 10^{-5} conversion efficiency with a gradient-field contribution to χ_{Au}^{(3)} of up to 10^{-19} m^{2}/V^{2}. The results are in good agreement with the theory based on plasma hydrodynamics and underlying electron dynamics. The associated increase in the nonlinear conversion efficiency with a decreasing sample size, which can even overcompensate the volume decrease, offers a new approach for enhanced nonlinear nano-optics. This will enable more efficient nonlinear optical devices and the extension of coherent multidimensional spectroscopies to the nanoscale.
Enhanced Third-Order Optical Nonlinearity Driven by Surface-Plasmon Field Gradients
NASA Astrophysics Data System (ADS)
Kravtsov, Vasily; AlMutairi, Sultan; Ulbricht, Ronald; Kutayiah, A. Ryan; Belyanin, Alexey; Raschke, Markus B.
2018-05-01
Efficient nonlinear optical frequency mixing in small volumes is key for future on-chip photonic devices. However, the generally low conversion efficiency severely limits miniaturization to nanoscale dimensions. Here we demonstrate that gradient-field effects can provide for an efficient, conventionally dipole-forbidden nonlinear response. We show that a longitudinal nonlinear source current can dominate the third-order optical nonlinearity of the free electron response in gold in the technologically important near-IR frequency range where the nonlinearities due to other mechanisms are particularly small. Using adiabatic nanofocusing to spatially confine the excitation fields, from measurements of the 2 ω1-ω2 four-wave mixing response as a function of detuning ω1-ω2, we find up to 10-5 conversion efficiency with a gradient-field contribution to χAu(3 ) of up to 10-19 m2/V2 . The results are in good agreement with the theory based on plasma hydrodynamics and underlying electron dynamics. The associated increase in the nonlinear conversion efficiency with a decreasing sample size, which can even overcompensate the volume decrease, offers a new approach for enhanced nonlinear nano-optics. This will enable more efficient nonlinear optical devices and the extension of coherent multidimensional spectroscopies to the nanoscale.
NASA Astrophysics Data System (ADS)
Kasatani, Kazuo; Okamoto, Hiroaki; Takenaka, Shunsuke
2003-11-01
Third-order optical nonlinearities of sol-gel silica coating films containing metal porphyrin derivatives were measured under resonant conditions by the femtosecond degenerate four-wave mixing (DFWM) technique. Temporal profiles of the DFWM signal were measured with a time resolution of 0.3 ps, and were found to consist of two components, the coherent instantaneous nonlinear response and the delayed response with a decay time constant of several to several hundred ps. The latter can be attributed to population grating of an excited state, and contribution of slow component was very little for a zinc porphyrin derivative. The values of electronic component of the optical nonlinear susceptibility, χ(3) xxxx, for these films were ca. 2 x 10-10 esu.
NASA Astrophysics Data System (ADS)
Hidalgo, J. J.; MacMinn, C. W.; Cueto-Felgueroso, L.; Fe, J.
2011-12-01
Dissolution by convective mixing is one of the main trapping mechanisms during CO2 sequestration in saline aquifers. The free-phase CO2 tends to rise due to buoyancy, accumulate beneath the caprock and dissolve into the brine, initially by diffusion. The CO2-brine mixture, however, is denser than the two initial fluids, leading to a Rayleigh-Bénard-type instability known as convective mixing, which greatly accelerates CO2 dissolution. Although this is a well-known process, it remains unclear how convective mixing scales with the governing parameters of the system and its impact on the actual mixing of CO2 and brine. Here, we perform high-resolution numerical simulations and laboratory experiments with an analogue fluid system (water and propylene glycol) to explore the dependence of the CO2 dissolution flux on the nonlinearity of the density and viscosity of the fluid mixture. We find that the convective flux depends strongly on the value of the concentration for which the density of the mixture is maximum, and on the viscosity contrast between the fluids. From the experimental and simulation results we elucidate the scaling behavior of convective mixing, and clarify the role of nonlinear density and viscosity feedbacks in the interpretation of the analogue-fluid experiments.
Fractional order fuzzy control of hybrid power system with renewable generation using chaotic PSO.
Pan, Indranil; Das, Saptarshi
2016-05-01
This paper investigates the operation of a hybrid power system through a novel fuzzy control scheme. The hybrid power system employs various autonomous generation systems like wind turbine, solar photovoltaic, diesel engine, fuel-cell, aqua electrolyzer etc. Other energy storage devices like the battery, flywheel and ultra-capacitor are also present in the network. A novel fractional order (FO) fuzzy control scheme is employed and its parameters are tuned with a particle swarm optimization (PSO) algorithm augmented with two chaotic maps for achieving an improved performance. This FO fuzzy controller shows better performance over the classical PID, and the integer order fuzzy PID controller in both linear and nonlinear operating regimes. The FO fuzzy controller also shows stronger robustness properties against system parameter variation and rate constraint nonlinearity, than that with the other controller structures. The robustness is a highly desirable property in such a scenario since many components of the hybrid power system may be switched on/off or may run at lower/higher power output, at different time instants. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.
Highly intense monocycle terahertz vortex generation by utilizing a Tsurupica spiral phase plate
Miyamoto, Katsuhiko; Kang, Bong Joo; Kim, Won Tae; Sasaki, Yuta; Niinomi, Hiromasa; Suizu, Koji; Rotermund, Fabian; Omatsu, Takashige
2016-01-01
Optical vortex, possessing an annular intensity profile and an orbital angular momentum (characterized by an integer termed a topological charge) associated with a helical wavefront, has attracted great attention for diverse applications due to its unique properties. In particular for terahertz (THz) frequency range, several approaches for THz vortex generation, including molded phase plates consisting of metal slit antennas, achromatic polarization elements and binary-diffractive optical elements, have been recently proposed, however, they are typically designed for a specific frequency. Here, we demonstrate highly intense broadband monocycle vortex generation near 0.6 THz by utilizing a polymeric Tsurupica spiral phase plate in combination with tilted-pulse-front optical rectification in a prism-cut LiNbO3 crystal. A maximum peak power of 2.3 MW was obtained for THz vortex output with an expected topological charge of 1.15. Furthermore, we applied the highly intense THz vortex beam for studying unique nonlinear behaviors in bilayer graphene towards the development of nonlinear super-resolution THz microscopy and imaging system. PMID:27966595
Software For Integer Programming
NASA Technical Reports Server (NTRS)
Fogle, F. R.
1992-01-01
Improved Exploratory Search Technique for Pure Integer Linear Programming Problems (IESIP) program optimizes objective function of variables subject to confining functions or constraints, using discrete optimization or integer programming. Enables rapid solution of problems up to 10 variables in size. Integer programming required for accuracy in modeling systems containing small number of components, distribution of goods, scheduling operations on machine tools, and scheduling production in general. Written in Borland's TURBO Pascal.
Hossein-Zadeh, Navid Ghavi
2016-08-01
The aim of this study was to compare seven non-linear mathematical models (Brody, Wood, Dhanoa, Sikka, Nelder, Rook and Dijkstra) to examine their efficiency in describing the lactation curves for milk fat to protein ratio (FPR) in Iranian buffaloes. Data were 43 818 test-day records for FPR from the first three lactations of Iranian buffaloes which were collected on 523 dairy herds in the period from 1996 to 2012 by the Animal Breeding Center of Iran. Each model was fitted to monthly FPR records of buffaloes using the non-linear mixed model procedure (PROC NLMIXED) in SAS and the parameters were estimated. The models were tested for goodness of fit using Akaike's information criterion (AIC), Bayesian information criterion (BIC) and log maximum likelihood (-2 Log L). The Nelder and Sikka mixed models provided the best fit of lactation curve for FPR in the first and second lactations of Iranian buffaloes, respectively. However, Wood, Dhanoa and Sikka mixed models provided the best fit of lactation curve for FPR in the third parity buffaloes. Evaluation of first, second and third lactation features showed that all models, except for Dijkstra model in the third lactation, under-predicted test time at which daily FPR was minimum. On the other hand, minimum FPR was over-predicted by all equations. Evaluation of the different models used in this study indicated that non-linear mixed models were sufficient for fitting test-day FPR records of Iranian buffaloes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vu, Cung Khac; Nihei, Kurt Toshimi; Johnson, Paul A.
A system and method of characterizing properties of a medium from a non-linear interaction are include generating, by first and second acoustic sources disposed on a surface of the medium on a first line, first and second acoustic waves. The first and second acoustic sources are controllable such that trajectories of the first and second acoustic waves intersect in a mixing zone within the medium. The method further includes receiving, by a receiver positioned in a plane containing the first and second acoustic sources, a third acoustic wave generated by a non-linear mixing process from the first and second acousticmore » waves in the mixing zone; and creating a first two-dimensional image of non-linear properties or a first ratio of compressional velocity and shear velocity, or both, of the medium in a first plane generally perpendicular to the surface and containing the first line, based on the received third acoustic wave.« less
IESIP - AN IMPROVED EXPLORATORY SEARCH TECHNIQUE FOR PURE INTEGER LINEAR PROGRAMMING PROBLEMS
NASA Technical Reports Server (NTRS)
Fogle, F. R.
1994-01-01
IESIP, an Improved Exploratory Search Technique for Pure Integer Linear Programming Problems, addresses the problem of optimizing an objective function of one or more variables subject to a set of confining functions or constraints by a method called discrete optimization or integer programming. Integer programming is based on a specific form of the general linear programming problem in which all variables in the objective function and all variables in the constraints are integers. While more difficult, integer programming is required for accuracy when modeling systems with small numbers of components such as the distribution of goods, machine scheduling, and production scheduling. IESIP establishes a new methodology for solving pure integer programming problems by utilizing a modified version of the univariate exploratory move developed by Robert Hooke and T.A. Jeeves. IESIP also takes some of its technique from the greedy procedure and the idea of unit neighborhoods. A rounding scheme uses the continuous solution found by traditional methods (simplex or other suitable technique) and creates a feasible integer starting point. The Hook and Jeeves exploratory search is modified to accommodate integers and constraints and is then employed to determine an optimal integer solution from the feasible starting solution. The user-friendly IESIP allows for rapid solution of problems up to 10 variables in size (limited by DOS allocation). Sample problems compare IESIP solutions with the traditional branch-and-bound approach. IESIP is written in Borland's TURBO Pascal for IBM PC series computers and compatibles running DOS. Source code and an executable are provided. The main memory requirement for execution is 25K. This program is available on a 5.25 inch 360K MS DOS format diskette. IESIP was developed in 1990. IBM is a trademark of International Business Machines. TURBO Pascal is registered by Borland International.
ERIC Educational Resources Information Center
Pong, Wai Yan
2007-01-01
We begin by answering the question, "Which natural numbers are sums of consecutive integers?" We then go on to explore the set of lengths (numbers of summands) in the decompositions of an integer as such sums.
All-optical regenerator of multi-channel signals.
Li, Lu; Patki, Pallavi G; Kwon, Young B; Stelmakh, Veronika; Campbell, Brandon D; Annamalai, Muthiah; Lakoba, Taras I; Vasilyev, Michael
2017-10-12
One of the main reasons why nonlinear-optical signal processing (regeneration, logic, etc.) has not yet become a practical alternative to electronic processing is that the all-optical elements with nonlinear input-output relationship have remained inherently single-channel devices (just like their electronic counterparts) and, hence, cannot fully utilise the parallel processing potential of optical fibres and amplifiers. The nonlinear input-output transfer function requires strong optical nonlinearity, e.g. self-phase modulation, which, for fundamental reasons, is always accompanied by cross-phase modulation and four-wave mixing. In processing multiple wavelength-division-multiplexing channels, large cross-phase modulation and four-wave mixing crosstalks among the channels destroy signal quality. Here we describe a solution to this problem: an optical signal processor employing a group-delay-managed nonlinear medium where strong self-phase modulation is achieved without such nonlinear crosstalk. We demonstrate, for the first time to our knowledge, simultaneous all-optical regeneration of up to 16 wavelength-division-multiplexing channels by one device. This multi-channel concept can be extended to other nonlinear-optical processing schemes.Nonlinear optical processing devices are not yet fully practical as they are single channel. Here the authors demonstrate all-optical regeneration of up to 16 channels by one device, employing a group-delay-managed nonlinear medium where strong self-phase modulation is achieved without nonlinear inter-channel crosstalk.
Analytical-numerical solution of a nonlinear integrodifferential equation in econometrics
NASA Astrophysics Data System (ADS)
Kakhktsyan, V. M.; Khachatryan, A. Kh.
2013-07-01
A mixed problem for a nonlinear integrodifferential equation arising in econometrics is considered. An analytical-numerical method is proposed for solving the problem. Some numerical results are presented.
NASA Astrophysics Data System (ADS)
Riseborough, P. S.; Lawrence, J. M.
2016-08-01
We review the theory of mixed-valent metals and make comparison with experiments. A single-impurity description of the mixed-valent state is discussed alongside the description of the nearly-integer valent or Kondo limit. The degeneracy N of the f-shell plays an important role in the description of the low-temperature Fermi-liquid state. In particular, for large N, there is a rapid cross-over between the mixed-valent and the Kondo limit when the number of f electrons is changed. We discuss the limitations on the application of the single-impurity description to concentrated compounds such as those caused by the saturation of the Kondo effect and those due to the presence of magnetic interactions between the impurities. This discussion is followed by a description of a periodic lattice of mixed-valent ions, including the role of the degeneracy N. The article concludes with a comparison of theory and experiment. Topics covered include the single-impurity Anderson model, Luttinger’s theorem, the Friedel sum rule, the Schrieffer-Wolff transformation, the single-impurity Kondo model, Kondo screening, the Wilson ratio, local Fermi-liquids, Fermi-liquid sum rules, the Noziéres exhaustion principle, Doniach’s diagram, the Anderson lattice model, the Slave-Boson method, etc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Riseborough, P. S.; Lawrence, Jon M.
Here, we review the theory of mixed-valent metals and make comparison with experiments. A single-impurity description of the mixed-valent state is discussed alongside the description of the nearly-integer valent or Kondo limit. The degeneracy N of the f-shell plays an important role in the description of the low-temperature Fermi-liquid state. In particular, for large N, there is a rapid cross-over between the mixed-valent and the Kondo limit when the number of f electrons is changed. We discuss the limitations on the application of the single-impurity description to concentrated compounds such as those caused by the saturation of the Kondo effectmore » and those due to the presence of magnetic interactions between the impurities. This discussion is followed by a description of a periodic lattice of mixed-valent ions, including the role of the degeneracy N. The article concludes with a comparison of theory and experiment. Topics covered include the single-impurity Anderson model, Luttinger's theorem, the Friedel sum rule, the Schrieffer–Wolff transformation, the single-impurity Kondo model, Kondo screening, the Wilson ratio, local Fermi-liquids, Fermi-liquid sum rules, the Nozieres exhaustion principle, Doniach's diagram, the Anderson lattice model, the Slave-Boson method, etc.« less
Riseborough, P. S.; Lawrence, Jon M.
2016-07-04
Here, we review the theory of mixed-valent metals and make comparison with experiments. A single-impurity description of the mixed-valent state is discussed alongside the description of the nearly-integer valent or Kondo limit. The degeneracy N of the f-shell plays an important role in the description of the low-temperature Fermi-liquid state. In particular, for large N, there is a rapid cross-over between the mixed-valent and the Kondo limit when the number of f electrons is changed. We discuss the limitations on the application of the single-impurity description to concentrated compounds such as those caused by the saturation of the Kondo effectmore » and those due to the presence of magnetic interactions between the impurities. This discussion is followed by a description of a periodic lattice of mixed-valent ions, including the role of the degeneracy N. The article concludes with a comparison of theory and experiment. Topics covered include the single-impurity Anderson model, Luttinger's theorem, the Friedel sum rule, the Schrieffer–Wolff transformation, the single-impurity Kondo model, Kondo screening, the Wilson ratio, local Fermi-liquids, Fermi-liquid sum rules, the Nozieres exhaustion principle, Doniach's diagram, the Anderson lattice model, the Slave-Boson method, etc.« less
NASA Astrophysics Data System (ADS)
Xu, Han-Xiang; Yang, Zhan-Ying; Zhao, Li-Chen; Duan, Liang; Yang, Wen-Li
2018-07-01
We study breathers and solitons on different backgrounds in optical fiber system, which is governed by generalized coupled Hirota equations with four wave mixing effect. On plane wave background, a transformation between different types of solitons is discovered. Then, on periodic wave background, we find breather-like nonlinear localized waves of which formation mechanism are related to the energy conversion between two components. The energy conversion results from four wave mixing. Furthermore, we prove that this energy conversion is controlled by amplitude and period of backgrounds. Finally, solitons on periodic wave background are also exhibited. These results would enrich our knowledge of nonlinear localized waves' excitation in coupled system with four wave mixing effect.
Edge mixing dynamics in graphene p–n junctions in the quantum Hall regime
Matsuo, Sadashige; Takeshita, Shunpei; Tanaka, Takahiro; Nakaharai, Shu; Tsukagoshi, Kazuhito; Moriyama, Takahiro; Ono, Teruo; Kobayashi, Kensuke
2015-01-01
Massless Dirac electron systems such as graphene exhibit a distinct half-integer quantum Hall effect, and in the bipolar transport regime co-propagating edge states along the p–n junction are realized. Additionally, these edge states are uniformly mixed at the junction, which makes it a unique structure to partition electrons in these edge states. Although many experimental works have addressed this issue, the microscopic dynamics of electron partition in this peculiar structure remains unclear. Here we performed shot-noise measurements on the junction in the quantum Hall regime as well as at zero magnetic field. We found that, in sharp contrast with the zero-field case, the shot noise in the quantum Hall regime is finite in the bipolar regime, but is strongly suppressed in the unipolar regime. Our observation is consistent with the theoretical prediction and gives microscopic evidence that the edge states are uniquely mixed along the p–n junction. PMID:26337445
Theory of plasmonic effects in nonlinear optics: the case of graphene
NASA Astrophysics Data System (ADS)
Rostami, Habib; Katsnelson, Mikhail I.; Polini, Marco; Mikhail I. Katsnelson Collaboration; Habib Rostami; Marco Polini Collaboration
The nonlinear optical properties of two-dimensional electronic systems are beginning to attract considerable interest both in the theoretical and experimental sectors. Recent experiments on the nonlinear optical properties of graphene reveal considerably strong third harmonic generation and four-wave mixing of this single-atomic-layer electronic system. We develop a large-N theory of electron-electron interaction corrections to multi-legged Feynman diagrams describing second- and third-order nonlinear response functions. Our theory is completely general and is useful to understand all second- and third-order nonlinear effects, including harmonic generation, wave mixing, and photon drag. We apply our theoretical framework to the case of graphene, by carrying out microscopic calculations of the second- and third-order nonlinear response functions of an interacting two-dimensional gas of massless Dirac fermions. We compare our results with recent measurements, where all-optical launching of graphene plasmons has been achieved. This work was supported by Fondazione Istituto Italiano di Tecnologia, the European Union's Horizon 2020 research and innovation programme under Grant agreement No. 696656 GrapheneCore, and the ERC Advanced Grant 338957 FEMTO/NANO (M.I.K.).
Experimental implementation of phase locking in a nonlinear interferometer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Hailong; Jing, Jietai, E-mail: jtjing@phy.ecnu.edu.cn; Marino, A. M.
2015-09-21
Based upon two cascade four-wave mixing processes in two identical hot rubidium vapor cells, a nonlinear interferometer has been experimentally realized [Jing et al., Appl. Phys. Lett. 99, 011110 (2011); Hudelist et al., Nat. Commun. 5, 3049 (2014)]. It has a higher degree of phase sensitivity than a traditional linear interferometer and has many potential applications in quantum metrology. Phase locking of the nonlinear interferometer is needed before it can find its way into applications. In this letter, we investigate the experimental implementation of phase locking of the relative phase between the three beams at different frequencies involved in suchmore » a nonlinear interferometer. We have utilized two different methods, namely, beat note locking and coherent modulation locking. We find that coherent modulation locking can achieve much better phase stability than beat note locking in our system. Our results pave the way for real applications of a nonlinear interferometer in precision measurement and quantum manipulation, for example, phase control in phase-sensitive N-wave mixing process, N-port nonlinear interferometer and quantum-enhanced real-time phase tracking.« less
MITIE: Simultaneous RNA-Seq-based transcript identification and quantification in multiple samples.
Behr, Jonas; Kahles, André; Zhong, Yi; Sreedharan, Vipin T; Drewe, Philipp; Rätsch, Gunnar
2013-10-15
High-throughput sequencing of mRNA (RNA-Seq) has led to tremendous improvements in the detection of expressed genes and reconstruction of RNA transcripts. However, the extensive dynamic range of gene expression, technical limitations and biases, as well as the observed complexity of the transcriptional landscape, pose profound computational challenges for transcriptome reconstruction. We present the novel framework MITIE (Mixed Integer Transcript IdEntification) for simultaneous transcript reconstruction and quantification. We define a likelihood function based on the negative binomial distribution, use a regularization approach to select a few transcripts collectively explaining the observed read data and show how to find the optimal solution using Mixed Integer Programming. MITIE can (i) take advantage of known transcripts, (ii) reconstruct and quantify transcripts simultaneously in multiple samples, and (iii) resolve the location of multi-mapping reads. It is designed for genome- and assembly-based transcriptome reconstruction. We present an extensive study based on realistic simulated RNA-Seq data. When compared with state-of-the-art approaches, MITIE proves to be significantly more sensitive and overall more accurate. Moreover, MITIE yields substantial performance gains when used with multiple samples. We applied our system to 38 Drosophila melanogaster modENCODE RNA-Seq libraries and estimated the sensitivity of reconstructing omitted transcript annotations and the specificity with respect to annotated transcripts. Our results corroborate that a well-motivated objective paired with appropriate optimization techniques lead to significant improvements over the state-of-the-art in transcriptome reconstruction. MITIE is implemented in C++ and is available from http://bioweb.me/mitie under the GPL license.
Armutlu, Pelin; Ozdemir, Muhittin E; Uney-Yuksektepe, Fadime; Kavakli, I Halil; Turkay, Metin
2008-10-03
A priori analysis of the activity of drugs on the target protein by computational approaches can be useful in narrowing down drug candidates for further experimental tests. Currently, there are a large number of computational methods that predict the activity of drugs on proteins. In this study, we approach the activity prediction problem as a classification problem and, we aim to improve the classification accuracy by introducing an algorithm that combines partial least squares regression with mixed-integer programming based hyper-boxes classification method, where drug molecules are classified as low active or high active regarding their binding activity (IC50 values) on target proteins. We also aim to determine the most significant molecular descriptors for the drug molecules. We first apply our approach by analyzing the activities of widely known inhibitor datasets including Acetylcholinesterase (ACHE), Benzodiazepine Receptor (BZR), Dihydrofolate Reductase (DHFR), Cyclooxygenase-2 (COX-2) with known IC50 values. The results at this stage proved that our approach consistently gives better classification accuracies compared to 63 other reported classification methods such as SVM, Naïve Bayes, where we were able to predict the experimentally determined IC50 values with a worst case accuracy of 96%. To further test applicability of this approach we first created dataset for Cytochrome P450 C17 inhibitors and then predicted their activities with 100% accuracy. Our results indicate that this approach can be utilized to predict the inhibitory effects of inhibitors based on their molecular descriptors. This approach will not only enhance drug discovery process, but also save time and resources committed.
Analysis misconception of integers in microteaching activities
NASA Astrophysics Data System (ADS)
Setyawati, R. D.; Indiati, I.
2018-05-01
This study view to analyse student misconceptions on integers in microteaching activities. This research used qualitative research design. An integers test contained questions from eight main areas of integers. The Integers material test includes (a) converting the image into fractions, (b) examples of positive numbers including rational numbers, (c) operations in fractions, (d) sorting fractions from the largest to the smallest, and vice versa; e) equate denominator, (f) concept of ratio mark, (g) definition of fraction, and (h) difference between fractions and parts. The results indicated an integers concepts: (1) the students have not been able to define concepts well based on the classification of facts in organized part; (2) The correlational concept: students have not been able to combine interrelated events in the form of general principles; and (3) theoretical concepts: students have not been able to use concepts that facilitate in learning the facts or events in an organized system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weiland, J., E-mail: elfjw@chalmers.se
2016-05-15
Basic aspects of turbulent transport in toroidal magnetized plasmas are discussed. In particular the fluid closure has strong effects on zonal flows which are needed to create an absorbing boundary for long wave lengths and also to obtain the Dimits nonlinear upshift. The fluid resonance in the energy equation is found to be instrumental for generating the L–H transition, the spin-up of poloidal rotation in internal transport barriers, as well as the nonlinear Dimits upshift. The difference between the linearly fastest growing mode number and the corresponding longer nonlinear correlation length is also addressed. It is found that the Kadomtsevmore » mixing length result is consistent with the non-Markovian diagonal limit of the transport at the nonlinearly obtained correlation length.« less
Nonlinear interaction between a pair of oblique modes in a supersonic mixing layer: Long-wave limit
NASA Technical Reports Server (NTRS)
Balsa, Thomas F.; Gartside, James
1995-01-01
The nonlinear interaction between a pair of symmetric, oblique, and spatial instability modes is studied in the long-wave limit using asymptotic methods. The base flow is taken to be a supersonic mixing layer whose Mach number is such that the corresponding vortex sheet is marginally stable according to Miles' criterion. It is shown that the amplitude of the mode obeys a nonlinear integro-differential equation. Numerical solutions of this equation show that, when the obliqueness angle is less than pi/4, the effect of the nonlinearity is to enhance the growth rate of the instability. The solution terminates in a singularity at a finite streamwise location. This result is reminiscent of that obtained in the vicinity of the neutral point by other authors in several different types of flows. On the other hand, when the obliqueness angle is more than pi/4, the streamwise development of the amplitude is characterized by a series of modulations. This arises from the fact that the nonlinear term in the amplitude equation may be either stabilizing or destabilizing, depending on the value of the streamwise coordinate. However, even in this case the amplitude of the disturbance increases, though not as rapidly as in the case for which the angle is less than pi/4. Quite generally then, the nonlinear interaction between two oblique modes in a supersonic mixing layer enhances the growth of the disturbance.
Spatial and temporal ultrafast imaging and control of terahertz wavepackets
NASA Astrophysics Data System (ADS)
Koehl, Richard Michael
Some polar optical phonons couple strongly to far- infrared electromagnetic radiation and move at light-like speeds through dielectric media. These phonon-polaritons retain both ionic and electromagnetic character. One of the fruitful implications of this mixing is that vibrational and electronic nonlinearities in ferroelectric and other highly anharmonic media interact with traveling electromagnetic waves spanning several frequency regimes, permitting nonlinear wave mixing at infrared and optical frequencies. Nonlinear optical mixing techniques are well-developed because optical light is easy to produce, but the lack of similar far- infrared sources has stymied similar efforts at terahertz frequencies. Nonlinear interactions in this frequency regime provide information about vibrational potential energy surfaces and are very strong when the lattice vibration is associated with a phase transition. In this thesis, I review methods based on a well known nonlinear optical technique, impulsive stimulated Raman scattering (ISRS), to monitor the progress of coherent phonon polaritons in a highly nonlinear ferroelectric, lithium tantalate. I also advance multiple-pulse ISRS optical techniques to attempt to elucidate information about the ferroelectric's vibrational potential energy surface, and I discuss significant recent progress that has been made in the development of ultrafast optical tools to generate far-infrared radiation through ISRS at specified times and spatial locations and control the interactions of coherent phonon-polariton wavepackets. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617-253-5668; Fax 617-253-1690.)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dell'Anno, Fabio; De Siena, Silvio; Illuminati, Fabrizio
2004-03-01
Extending the scheme developed for a single mode of the electromagnetic field in the preceding paper [F. Dell'Anno, S. De Siena, and F. Illuminati, Phys. Rev. A 69, 033812 (2004)], we introduce two-mode nonlinear canonical transformations depending on two heterodyne mixing angles. They are defined in terms of Hermitian nonlinear functions that realize heterodyne superpositions of conjugate quadratures of bipartite systems. The canonical transformations diagonalize a class of Hamiltonians describing nondegenerate and degenerate multiphoton processes. We determine the coherent states associated with the canonical transformations, which generalize the nondegenerate two-photon squeezed states. Such heterodyne multiphoton squeezed states are defined asmore » the simultaneous eigenstates of the transformed, coupled annihilation operators. They are generated by nonlinear unitary evolutions acting on two-mode squeezed states. They are non-Gaussian, highly nonclassical, entangled states. For a quadratic nonlinearity the heterodyne multiphoton squeezed states define two-mode cubic phase states. The statistical properties of these states can be widely adjusted by tuning the heterodyne mixing angles, the phases of the nonlinear couplings, as well as the strength of the nonlinearity. For quadratic nonlinearity, we study the higher-order contributions to the susceptibility in nonlinear media and we suggest possible experimental realizations of multiphoton conversion processes generating the cubic-phase heterodyne squeezed states.« less
NASA Astrophysics Data System (ADS)
dell'Anno, Fabio; de Siena, Silvio; Illuminati, Fabrizio
2004-03-01
Extending the scheme developed for a single mode of the electromagnetic field in the preceding paper [
Quantum nonlinear optics without photons
NASA Astrophysics Data System (ADS)
Stassi, Roberto; Macrı, Vincenzo; Kockum, Anton Frisk; Di Stefano, Omar; Miranowicz, Adam; Savasta, Salvatore; Nori, Franco
2017-08-01
Spontaneous parametric down-conversion is a well-known process in quantum nonlinear optics in which a photon incident on a nonlinear crystal spontaneously splits into two photons. Here we propose an analogous physical process where one excited atom directly transfers its excitation to a pair of spatially separated atoms with probability approaching 1. The interaction is mediated by the exchange of virtual rather than real photons. This nonlinear atomic process is coherent and reversible, so the pair of excited atoms can transfer the excitation back to the first one: the atomic analog of sum-frequency generation of light. The parameters used to investigate this process correspond to experimentally demonstrated values in ultrastrong circuit quantum electrodynamics. This approach can be extended to realize other nonlinear interatomic processes, such as four-atom mixing, and is an attractive architecture for the realization of quantum devices on a chip. We show that four-qubit mixing can efficiently implement quantum repetition codes and, thus, can be used for error-correction codes.
Fractal electrodynamics via non-integer dimensional space approach
NASA Astrophysics Data System (ADS)
Tarasov, Vasily E.
2015-09-01
Using the recently suggested vector calculus for non-integer dimensional space, we consider electrodynamics problems in isotropic case. This calculus allows us to describe fractal media in the framework of continuum models with non-integer dimensional space. We consider electric and magnetic fields of fractal media with charges and currents in the framework of continuum models with non-integer dimensional spaces. An application of the fractal Gauss's law, the fractal Ampere's circuital law, the fractal Poisson equation for electric potential, and equation for fractal stream of charges are suggested. Lorentz invariance and speed of light in fractal electrodynamics are discussed. An expression for effective refractive index of non-integer dimensional space is suggested.
NASA Astrophysics Data System (ADS)
Ignatyev, A. V.; Ignatyev, V. A.; Onischenko, E. V.
2017-11-01
This article is the continuation of the work made bt the authors on the development of the algorithms that implement the finite element method in the form of a classical mixed method for the analysis of geometrically nonlinear bar systems [1-3]. The paper describes an improved algorithm of the formation of the nonlinear governing equations system for flexible plane frames and bars with large displacements of nodes based on the finite element method in a mixed classical form and the use of the procedure of step-by-step loading. An example of the analysis is given.
NASA Astrophysics Data System (ADS)
Suthikarnnarunai, N.; Olinick, E.
2009-01-01
We present a case study on the application of techniques for solving the Vehicle Routing Problem (VRP) to improve the transportation service provided by the University of The Thai Chamber of Commerce to its staff. The problem is modeled as VRP with time windows, split deliveries, and a mixed fleet. An exact algorithm and a heuristic solution procedure are developed to solve the problem and implemented in the AMPL modeling language and CPLEX Integer Programming solver. Empirical results indicate that the heuristic can find relatively good solutions in a small fraction of the time required by the exact method. We also perform sensitivity analysis and find that a savings in outsourcing cost can be achieved with a small increase in vehicle capacity.
Nonlinear radiative heat flux and heat source/sink on entropy generation minimization rate
NASA Astrophysics Data System (ADS)
Hayat, T.; Khan, M. Waleed Ahmed; Khan, M. Ijaz; Alsaedi, A.
2018-06-01
Entropy generation minimization in nonlinear radiative mixed convective flow towards a variable thicked surface is addressed. Entropy generation for momentum and temperature is carried out. The source for this flow analysis is stretching velocity of sheet. Transformations are used to reduce system of partial differential equations into ordinary ones. Total entropy generation rate is determined. Series solutions for the zeroth and mth order deformation systems are computed. Domain of convergence for obtained solutions is identified. Velocity, temperature and concentration fields are plotted and interpreted. Entropy equation is studied through nonlinear mixed convection and radiative heat flux. Velocity and temperature gradients are discussed through graphs. Meaningful results are concluded in the final remarks.
Photoinduced Nonlinear Mixing of Terahertz Dipole Resonances in Graphene Metadevices.
In, Chihun; Kim, Hyeon-Don; Min, Bumki; Choi, Hyunyong
2016-02-17
The first experimental demonstration of nonlinear terahertz difference-frequency generation in a hybrid graphene metadevice is reported. Decades of research have revealed that terahertz-wave generation is impossible in single-layer graphene. This limitation is overcome and nonlinear terahertz generation by ultra-short optical pulse injection is demonstrated. This device is an essential step toward atomically thin, nonlinear terahertz optoelectronic components. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Chow, Sy-Miin; Bendezú, Jason J.; Cole, Pamela M.; Ram, Nilam
2016-01-01
Several approaches currently exist for estimating the derivatives of observed data for model exploration purposes, including functional data analysis (FDA), generalized local linear approximation (GLLA), and generalized orthogonal local derivative approximation (GOLD). These derivative estimation procedures can be used in a two-stage process to fit mixed effects ordinary differential equation (ODE) models. While the performance and utility of these routines for estimating linear ODEs have been established, they have not yet been evaluated in the context of nonlinear ODEs with mixed effects. We compared properties of the GLLA and GOLD to an FDA-based two-stage approach denoted herein as functional ordinary differential equation with mixed effects (FODEmixed) in a Monte Carlo study using a nonlinear coupled oscillators model with mixed effects. Simulation results showed that overall, the FODEmixed outperformed both the GLLA and GOLD across all the embedding dimensions considered, but a novel use of a fourth-order GLLA approach combined with very high embedding dimensions yielded estimation results that almost paralleled those from the FODEmixed. We discuss the strengths and limitations of each approach and demonstrate how output from each stage of FODEmixed may be used to inform empirical modeling of young children’s self-regulation. PMID:27391255
Chow, Sy-Miin; Bendezú, Jason J; Cole, Pamela M; Ram, Nilam
2016-01-01
Several approaches exist for estimating the derivatives of observed data for model exploration purposes, including functional data analysis (FDA; Ramsay & Silverman, 2005 ), generalized local linear approximation (GLLA; Boker, Deboeck, Edler, & Peel, 2010 ), and generalized orthogonal local derivative approximation (GOLD; Deboeck, 2010 ). These derivative estimation procedures can be used in a two-stage process to fit mixed effects ordinary differential equation (ODE) models. While the performance and utility of these routines for estimating linear ODEs have been established, they have not yet been evaluated in the context of nonlinear ODEs with mixed effects. We compared properties of the GLLA and GOLD to an FDA-based two-stage approach denoted herein as functional ordinary differential equation with mixed effects (FODEmixed) in a Monte Carlo (MC) study using a nonlinear coupled oscillators model with mixed effects. Simulation results showed that overall, the FODEmixed outperformed both the GLLA and GOLD across all the embedding dimensions considered, but a novel use of a fourth-order GLLA approach combined with very high embedding dimensions yielded estimation results that almost paralleled those from the FODEmixed. We discuss the strengths and limitations of each approach and demonstrate how output from each stage of FODEmixed may be used to inform empirical modeling of young children's self-regulation.
Multivariate-$t$ nonlinear mixed models with application to censored multi-outcome AIDS studies.
Lin, Tsung-I; Wang, Wan-Lun
2017-10-01
In multivariate longitudinal HIV/AIDS studies, multi-outcome repeated measures on each patient over time may contain outliers, and the viral loads are often subject to a upper or lower limit of detection depending on the quantification assays. In this article, we consider an extension of the multivariate nonlinear mixed-effects model by adopting a joint multivariate-$t$ distribution for random effects and within-subject errors and taking the censoring information of multiple responses into account. The proposed model is called the multivariate-$t$ nonlinear mixed-effects model with censored responses (MtNLMMC), allowing for analyzing multi-outcome longitudinal data exhibiting nonlinear growth patterns with censorship and fat-tailed behavior. Utilizing the Taylor-series linearization method, a pseudo-data version of expectation conditional maximization either (ECME) algorithm is developed for iteratively carrying out maximum likelihood estimation. We illustrate our techniques with two data examples from HIV/AIDS studies. Experimental results signify that the MtNLMMC performs favorably compared to its Gaussian analogue and some existing approaches. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
DOT National Transportation Integrated Search
2009-08-01
This study presents the numerical implementation and validation of general constitutive relationships for describing the : nonlinear behavior of asphalt concrete mixes. These constitutive relationships incorporate nonlinear viscoelasticity and : visc...
Investigation of Adhesive Bond Cure Conditions using Nonlinear Ultrasonic Methods
NASA Technical Reports Server (NTRS)
Berndt, Tobias P.; Green, Robert E., Jr.
1999-01-01
The objective of this presentation is to investigate various cure conditions of adhesive bonds using nonlinear ultrasonic methods with water coupling. Several samples were used to obtain normal incidence, oblique incidence, and wave mixing.
Convex relaxations for gas expansion planning
Borraz-Sanchez, Conrado; Bent, Russell Whitford; Backhaus, Scott N.; ...
2016-01-01
Expansion of natural gas networks is a critical process involving substantial capital expenditures with complex decision-support requirements. Here, given the non-convex nature of gas transmission constraints, global optimality and infeasibility guarantees can only be offered by global optimisation approaches. Unfortunately, state-of-the-art global optimisation solvers are unable to scale up to real-world size instances. In this study, we present a convex mixed-integer second-order cone relaxation for the gas expansion planning problem under steady-state conditions. The underlying model offers tight lower bounds with high computational efficiency. In addition, the optimal solution of the relaxation can often be used to derive high-quality solutionsmore » to the original problem, leading to provably tight optimality gaps and, in some cases, global optimal solutions. The convex relaxation is based on a few key ideas, including the introduction of flux direction variables, exact McCormick relaxations, on/off constraints, and integer cuts. Numerical experiments are conducted on the traditional Belgian gas network, as well as other real larger networks. The results demonstrate both the accuracy and computational speed of the relaxation and its ability to produce high-quality solution« less
NASA Astrophysics Data System (ADS)
Kasatani, Kazuo
2003-01-01
Third-order optical nonlinearities of several cyanine dyes were measured under resonant conditions by the femtosecond degenerate four-wave mixing (DFWM) technique. Temporal profiles of the DFWM signal were measured with a time resolution of 0.3 ps, and were found to consist of at least two components, the coherent instantaneous nonlinear response and the delayed response with a decay time constant of several hundred picoseconds. The latter can be attributed to molecular rotational relaxation of these dyes. The values of electronic component of the optical nonlinear susceptibility, χ e xxxx (3), for these dyes were ≈2×10 -12 esu at the very low concentration of 1×10 -5 mol dm -3. The electronic component of molecular hyperpolarizability, γe, was calculated to be ≈1×10 -28 esu for each dye.
Modulational Instability in a Pair of Non-identical Coupled Nonlinear Electrical Transmission Lines
NASA Astrophysics Data System (ADS)
Eric, Tala-Tebue; Aurelien, Kenfack-Jiotsa; Marius Hervé, Tatchou-Ntemfack; Timoléon Crépin, Kofané
2013-07-01
In this work, we investigate the dynamics of modulated waves non-identical coupled nonlinear transmission lines. Traditional methods for avoiding mode mixing in identical coupled nonlinear electrical lines consist of adding the same number of linear inductors in each branch. Adding linear inductors in a single line leads to asymmetric coupled nonlinear electrical transmission lines which propagate the signal and the mode mixing. On one hand, the difference between the two lines induced the fission for only one mode of propagation. This fission is influenced by the amplitude of the signal and the amount of the input energy as well; it also narrows the width of the input pulse soliton, leading to a possible increasing of the bit rate. On the other hand, the dissymmetry of the two lines converts the network into a good amplifier for the ω_ mode which corresponds to the regime admitting low frequencies.
A k-permutation algorithm for Fixed Satellite Service orbital allotments
NASA Technical Reports Server (NTRS)
Reilly, Charles H.; Mount-Campbell, Clark A.; Gonsalvez, David J. A.
1988-01-01
A satellite system synthesis problem, the satellite location problem (SLP), is addressed in this paper. In SLP, orbital locations (longitudes) are allotted to geostationary satellites in the Fixed Satellite Service. A linear mixed-integer programming model is presented that views SLP as a combination of two problems: (1) the problem of ordering the satellites and (2) the problem of locating the satellites given some ordering. A special-purpose heuristic procedure, a k-permutation algorithm, that has been developed to find solutions to SLPs formulated in the manner suggested is described. Solutions to small example problems are presented and analyzed.
The Optimization dispatching of Micro Grid Considering Load Control
NASA Astrophysics Data System (ADS)
Zhang, Pengfei; Xie, Jiqiang; Yang, Xiu; He, Hongli
2018-01-01
This paper proposes an optimization control of micro-grid system economy operation model. It coordinates the new energy and storage operation with diesel generator output, so as to achieve the economic operation purpose of micro-grid. In this paper, the micro-grid network economic operation model is transformed into mixed integer programming problem, which is solved by the mature commercial software, and the new model is proved to be economical, and the load control strategy can reduce the charge and discharge times of energy storage devices, and extend the service life of the energy storage device to a certain extent.
NASA Technical Reports Server (NTRS)
Lesso, W. G.; Kenyon, E.
1972-01-01
Consideration of the problems involved in choosing appropriate menus for astronauts carrying out SKYLAB missions lasting up to eight weeks. The problem of planning balanced menus on the basis of prepackaged food items within limitations on the intake of calories, protein, and certain elements is noted, as well as a number of other restrictions of both physical and arbitrary nature. The tailoring of a set of menus for each astronaut on the basis of subjective rankings of each food by the astronaut in terms of a 'measure of pleasure' is described, and a computer solution to this problem by means of a mixed integer programming code is presented.
Mixed Integer Programming and Heuristic Scheduling for Space Communication Networks
NASA Technical Reports Server (NTRS)
Lee, Charles H.; Cheung, Kar-Ming
2012-01-01
In this paper, we propose to solve the constrained optimization problem in two phases. The first phase uses heuristic methods such as the ant colony method, particle swarming optimization, and genetic algorithm to seek a near optimal solution among a list of feasible initial populations. The final optimal solution can be found by using the solution of the first phase as the initial condition to the SQP algorithm. We demonstrate the above problem formulation and optimization schemes with a large-scale network that includes the DSN ground stations and a number of spacecraft of deep space missions.
Systematic process synthesis and design methods for cost effective waste minimization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Biegler, L.T.; Grossman, I.E.; Westerberg, A.W.
We present progress on our work to develop synthesis methods to aid in the design of cost effective approaches to waste minimization. Work continues to combine the approaches of Douglas and coworkers and of Grossmann and coworkers on a hierarchical approach where bounding information allows it to fit within a mixed integer programming approach. We continue work on the synthesis of reactors and of flexible separation processes. In the first instance, we strive for methods we can use to reduce the production of potential pollutants, while in the second we look for ways to recover and recycle solvents.
A Kind of Nonlinear Programming Problem Based on Mixed Fuzzy Relation Equations Constraints
NASA Astrophysics Data System (ADS)
Li, Jinquan; Feng, Shuang; Mi, Honghai
In this work, a kind of nonlinear programming problem with non-differential objective function and under the constraints expressed by a system of mixed fuzzy relation equations is investigated. First, some properties of this kind of optimization problem are obtained. Then, a polynomial-time algorithm for this kind of optimization problem is proposed based on these properties. Furthermore, we show that this algorithm is optimal for the considered optimization problem in this paper. Finally, numerical examples are provided to illustrate our algorithms.
Xu, Bo; Omura, Mika; Takiguchi, Masato; Martinez, Amos; Ishigure, Takaaki; Yamashita, Shinji; Kuga, Takahiro
2013-02-11
In this paper, we demonstrate a nonlinear optical device based on a fiber taper coated with a carbon nanotube (CNT)/polymer composite. Using this device, four wave mixing (FWM) based wavelength conversion of 10 Gb/s Non-return-to-zero signal is achieved. In addition, we investigate wavelength tuning, two photon absorption and estimate the effective nonlinear coefficient of the CNTs embedded in the tapered fiber to be 1816.8 W(-1)km(-1).
Nonlinear optical magnetometry with accessible in situ optical squeezing
Otterstrom, N.; Pooser, R. C.; Lawrie, B. J.
2014-11-14
In this paper, we demonstrate compact and accessible squeezed-light magnetometry using four-wave mixing in a single hot rubidium vapor cell. The strong intrinsic coherence of the four-wave mixing process results in nonlinear magneto-optical rotation (NMOR) on each mode of a two-mode relative-intensity squeezed state. Finally, this framework enables 4.7 dB of quantum noise reduction while the opposing polarization rotation signals of the probe and conjugate fields add to increase the total signal to noise ratio.
Martin, Fred D.; Hatch, Melvin J.; Shepitka, Joel S.; Donaruma, Lorraine G.
1986-01-01
A monomer, polymers containing the monomer, and the use of the polymer in oilfield flooding is disclosed. The subject monomer is represented by the general formula: ##STR1## wherein: n is an integer from 0 to about 4; m is an integer from 0 to about 6; a is an integer equal to at least 1 except where m is equal to 0, a must equal 0 and where m is equal to 1, a must equal 0 or 1; p is an integer from 2 to about 10; b is an integer equal to at least 1 and is of sufficient magnitude that the ratio b/p is at least 0.2; and q is an integer from 0 to 2. The number of hydroxy groups in the monomer is believed to be critical, and therefore the sum of (a+b) divided by the sum (m+p) should be at least 0.2. The moieties linked to the acrylic nitrogen can be joined to provide a ringed structure.
Hybrid-optimization algorithm for the management of a conjunctive-use project and well field design
Chiu, Yung-Chia; Nishikawa, Tracy; Martin, Peter
2012-01-01
Hi‐Desert Water District (HDWD), the primary water‐management agency in the Warren Groundwater Basin, California, plans to construct a waste water treatment plant to reduce future septic‐tank effluent from reaching the groundwater system. The treated waste water will be reclaimed by recharging the groundwater basin via recharge ponds as part of a larger conjunctive‐use strategy. HDWD wishes to identify the least‐cost conjunctive‐use strategies for managing imported surface water, reclaimed water, and local groundwater. As formulated, the mixed‐integer nonlinear programming (MINLP) groundwater‐management problem seeks to minimize water‐delivery costs subject to constraints including potential locations of the new pumping wells, California State regulations, groundwater‐level constraints, water‐supply demand, available imported water, and pump/recharge capacities. In this study, a hybrid‐optimization algorithm, which couples a genetic algorithm and successive‐linear programming, is developed to solve the MINLP problem. The algorithm was tested by comparing results to the enumerative solution for a simplified version of the HDWD groundwater‐management problem. The results indicate that the hybrid‐optimization algorithm can identify the global optimum. The hybrid‐optimization algorithm is then applied to solve a complex groundwater‐management problem. Sensitivity analyses were also performed to assess the impact of varying the new recharge pond orientation, varying the mixing ratio of reclaimed water and pumped water, and varying the amount of imported water available. The developed conjunctive management model can provide HDWD water managers with information that will improve their ability to manage their surface water, reclaimed water, and groundwater resources.
NASA Astrophysics Data System (ADS)
Hecht, J. S.; Kirshen, P. H.; Vogel, R. M.
2016-12-01
Making long-term floodplain management decisions under uncertain climate change is a major urban planning challenge of the 21stcentury. To support these efforts, we introduce a screening-level optimization model that identifies adaptation portfolios by minimizing the regrets associated with their flood-control and damage costs under different climate change trajectories that are deeply uncertain, i.e. have probabilities that cannot be specified plausibly. This mixed integer program explicitly considers the coupled damage-reduction impacts of different floodwall designs and property-scale investments (first-floor elevation, wet floodproofing of basements, permanent retreat and insurance), recommends implementation schedules, and assesses impacts to stakeholders residing in three types of homes. An application to a stylized municipality illuminates many nonlinear system dynamics stemming from large fixed capital costs, infrastructure design thresholds, and discharge-depth-damage relationships. If stakeholders tolerate mild damage, floodwalls that fully protect a community from large design events are less cost-effective than portfolios featuring both smaller floodwalls and property-scale measures. Potential losses of property tax revenue from permanent retreat motivate municipal property-tax initiatives for adaptation financing. Yet, insurance incentives for first-floor elevation may discourage locally financed floodwalls, in turn making lower-income residents more vulnerable to severe flooding. A budget constraint analysis underscores the benefits of flexible floodwall designs with low incremental expansion costs while near-optimal solutions demonstrate the scheduling flexibility of many property-scale measures. Finally, an equity analysis shows the importance of evaluating the overpayment and under-design regrets of recommended adaptation portfolios for each stakeholder and contrasts them to single-scenario model results.
Millimeter-wave interconnects for microwave-frequency quantum machines
NASA Astrophysics Data System (ADS)
Pechal, Marek; Safavi-Naeini, Amir H.
2017-10-01
Superconducting microwave circuits form a versatile platform for storing and manipulating quantum information. A major challenge to further scalability is to find approaches for connecting these systems over long distances and at high rates. One approach is to convert the quantum state of a microwave circuit to optical photons that can be transmitted over kilometers at room temperature with little loss. Many proposals for electro-optic conversion between microwave and optics use optical driving of a weak three-wave mixing nonlinearity to convert the frequency of an excitation. Residual absorption of this optical pump leads to heating, which is problematic at cryogenic temperatures. Here we propose an alternative approach where a nonlinear superconducting circuit is driven to interconvert between microwave-frequency (7 ×109 Hz) and millimeter-wave-frequency photons (3 ×1011 Hz). To understand the potential for quantum state conversion between microwave and millimeter-wave photons, we consider the driven four-wave mixing quantum dynamics of nonlinear circuits. In contrast to the linear dynamics of the driven three-wave mixing converters, the proposed four-wave mixing converter has nonlinear decoherence channels that lead to a more complex parameter space of couplings and pump powers that we map out. We consider physical realizations of such converter circuits by deriving theoretically the upper bound on the maximum obtainable nonlinear coupling between any two modes in a lossless circuit, and synthesizing an optimal circuit based on realistic materials that saturates this bound. Our proposed circuit dissipates less than 10-9 times the energy of current electro-optic converters per qubit. Finally, we outline the quantum link budget for optical, microwave, and millimeter-wave connections, showing that our approach is viable for realizing interconnected quantum processors for intracity or quantum data center environments.
A Paper-and-Pencil gcd Algorithm for Gaussian Integers
ERIC Educational Resources Information Center
Szabo, Sandor
2005-01-01
As with natural numbers, a greatest common divisor of two Gaussian (complex) integers "a" and "b" is a Gaussian integer "d" that is a common divisor of both "a" and "b". This article explores an algorithm for such gcds that is easy to do by hand.
Characterization of Infrastructure Materials using Nonlinear Ultrasonics
NASA Astrophysics Data System (ADS)
Liu, Minghe
In order to improve the safety, reliability, cost, and performance of civil and mechanical structures/components, it is necessary to develop techniques that are capable of characterizing and quantifying the amount of distributed damage in engineering materials before any detectable discontinuities (cracks, delaminations, voids, etc.) appear. In this dissertation, novel nonlinear ultrasonic NDE methods are developed and applied to characterize cumulative damage such as fatigue damage in metallic materials and degradation of cement-based materials due to chemical reactions. First, nonlinear Rayleigh surface waves are used to measure the near-surface residual stresses in shot-peened aluminum alloy (AA 7075) samples. Results show that the nonlinear Rayleigh wave is very sensitive to near-surface residual stresses, and has the potential to quantitatively detect them. Second, a novel two-wave mixing method is theoretically developed and numerically verified. This method is then successfully applied to detect the fatigue damage in aluminum alloy (AA 6061) samples subjected to monotonic compression. In addition to its high sensitivity to fatigue damage, this collinear wave mixing method allows the measurement over a specific region of interest in the specimen, and this capability makes it possible to obtain spatial distribution of fatigue damage through the thickness direction of the sample by simply timing the transducers. Third, the nonlinear wave mixing method is used to characterize the degradation of cement-based materials caused by alkali-silica reaction (ASR). It is found that the nonlinear ultrasonic method is sensitive to detect ASR damage at very early stage, and has the potential to identify the different damage stages. Finally, a micromechanics-based chemo-mechanical model is developed which relates the acoustic nonlinearity parameter to ASR damage. This model provides a way to quantitatively predict the changes in the acoustic nonlinearity parameter due to ASR damage, which can be used to guide experimental measurements for nondestructive evaluation of ASR damage.
Gyrofluid turbulence models with kinetic effects
NASA Astrophysics Data System (ADS)
Dorland, W.; Hammett, G. W.
1993-03-01
Nonlinear gyrofluid equations are derived by taking moments of the nonlinear, electrostatic gyrokinetic equation. The principal model presented includes evolution equations for the guiding center n, u∥, T∥, and T⊥ along with an equation expressing the quasineutrality constraint. Additional evolution equations for higher moments are derived that may be used if greater accuracy is desired. The moment hierarchy is closed with a Landau damping model [G. W. Hammett and F. W. Perkins, Phys. Rev. Lett. 64, 3019 (1990)], which is equivalent to a multipole approximation to the plasma dispersion function, extended to include finite Larmor radius effects (FLR). In particular, new dissipative, nonlinear terms are found that model the perpendicular phase mixing of the distribution function along contours of constant electrostatic potential. These ``FLR phase-mixing'' terms introduce a hyperviscositylike damping ∝k⊥2‖Φkk×k'‖, which should provide a physics-based damping mechanism at high k⊥ρ which is potentially as important as the usual polarization drift nonlinearity. The moments are taken in guiding center space to pick up the correct nonlinear FLR terms and the gyroaveraging of the shear. The equations are solved with a nonlinear, three-dimensional initial value code. Linear results are presented, showing excellent agreement with linear gyrokinetic theory.
Generalized Fractional Derivative Anisotropic Viscoelastic Characterization.
Hilton, Harry H
2012-01-18
Isotropic linear and nonlinear fractional derivative constitutive relations are formulated and examined in terms of many parameter generalized Kelvin models and are analytically extended to cover general anisotropic homogeneous or non-homogeneous as well as functionally graded viscoelastic material behavior. Equivalent integral constitutive relations, which are computationally more powerful, are derived from fractional differential ones and the associated anisotropic temperature-moisture-degree-of-cure shift functions and reduced times are established. Approximate Fourier transform inversions for fractional derivative relations are formulated and their accuracy is evaluated. The efficacy of integer and fractional derivative constitutive relations is compared and the preferential use of either characterization in analyzing isotropic and anisotropic real materials must be examined on a case-by-case basis. Approximate protocols for curve fitting analytical fractional derivative results to experimental data are formulated and evaluated.
NASA Astrophysics Data System (ADS)
Rahmatullah; Ellahi, Rahmat; Mohyud-Din, Syed Tauseef; Khan, Umar
2018-03-01
We have computed new exact traveling wave solutions, including complex solutions of fractional order Boussinesq-Like equations, occurring in physical sciences and engineering, by applying Exp-function method. The method is blended with fractional complex transformation and modified Riemann-Liouville fractional order operator. Our obtained solutions are verified by substituting back into their corresponding equations. To the best of our knowledge, no other technique has been reported to cope with the said fractional order nonlinear problems combined with variety of exact solutions. Graphically, fractional order solution curves are shown to be strongly related to each other and most importantly, tend to fixate on their integer order solution curve. Our solutions comprise high frequencies and very small amplitude of the wave responses.
Investigation of the Nicole model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adam, C.; Sanchez-Guillen, J.; Vazquez, R.A.
2006-05-15
We study soliton solutions of the Nicole model - a non-linear four-dimensional field theory consisting of the CP{sup 1} Lagrangian density to the non-integer power (3/2) - using an ansatz within toroidal coordinates, which is indicated by the conformal symmetry of the static equations of motion. We calculate the soliton energies numerically and find that they grow linearly with the topological charge (Hopf index). Further we prove this behavior to hold exactly for the ansatz. On the other hand, for the full three-dimensional system without symmetry reduction we prove a sub-linear upper bound, analogously to the case of the Faddeev-Niemimore » model. It follows that symmetric solitons cannot be true minimizers of the energy for sufficiently large Hopf index, again in analogy to the Faddeev-Niemi model.« less
NASA Astrophysics Data System (ADS)
Tuo, Shengquan; CMS Collaboration
2017-11-01
The mixed higher-order flow harmonics and nonlinear response coefficients of charged particles are presented as a function of pT and centrality in PbPb collisions at √{sNN} = 2.76 TeV and 5.02 TeV with the CMS detector. The results are obtained using the scalar product method, and cover a pT range from 0.3 GeV/c to 8.0 GeV/c, pseudorapidity | η | < 2.4, and a centrality range of 0-60%. The mixed harmonic results at 5.02 TeV are compared to the matching higher-order flow harmonics from two-particle correlations, which measure vn values with respect to the n-th order event plane. It is observed that the nonlinear response coefficients of the odd harmonics are larger than the even harmonics ones. The results are compared with hydrodynamic predictions using different shear viscosity to entropy density ratios and different initial conditions.
Foo, Lee Kien; McGree, James; Duffull, Stephen
2012-01-01
Optimal design methods have been proposed to determine the best sampling times when sparse blood sampling is required in clinical pharmacokinetic studies. However, the optimal blood sampling time points may not be feasible in clinical practice. Sampling windows, a time interval for blood sample collection, have been proposed to provide flexibility in blood sampling times while preserving efficient parameter estimation. Because of the complexity of the population pharmacokinetic models, which are generally nonlinear mixed effects models, there is no analytical solution available to determine sampling windows. We propose a method for determination of sampling windows based on MCMC sampling techniques. The proposed method attains a stationary distribution rapidly and provides time-sensitive windows around the optimal design points. The proposed method is applicable to determine sampling windows for any nonlinear mixed effects model although our work focuses on an application to population pharmacokinetic models. Copyright © 2012 John Wiley & Sons, Ltd.
Finite element modeling and analysis of tires
NASA Technical Reports Server (NTRS)
Noor, A. K.; Andersen, C. M.
1983-01-01
Predicting the response of tires under various loading conditions using finite element technology is addressed. Some of the recent advances in finite element technology which have high potential for application to tire modeling problems are reviewed. The analysis and modeling needs for tires are identified. Reduction methods for large-scale nonlinear analysis, with particular emphasis on treatment of combined loads, displacement-dependent and nonconservative loadings; development of simple and efficient mixed finite element models for shell analysis, identification of equivalent mixed and purely displacement models, and determination of the advantages of using mixed models; and effective computational models for large-rotation nonlinear problems, based on a total Lagrangian description of the deformation are included.
Mixed convection flow of viscoelastic fluid by a stretching cylinder with heat transfer.
Hayat, Tasawar; Anwar, Muhammad Shoaib; Farooq, Muhammad; Alsaedi, Ahmad
2015-01-01
Flow of viscoelastic fluid due to an impermeable stretching cylinder is discussed. Effects of mixed convection and variable thermal conductivity are present. Thermal conductivity is taken temperature dependent. Nonlinear partial differential system is reduced into the nonlinear ordinary differential system. Resulting nonlinear system is computed for the convergent series solutions. Numerical values of skin friction coefficient and Nusselt number are computed and discussed. The results obtained with the current method are in agreement with previous studies using other methods as well as theoretical ideas. Physical interpretation reflecting the contribution of influential parameters in the present flow is presented. It is hoped that present study serves as a stimulus for modeling further stretching flows especially in polymeric and paper production processes.
Sub-nanometer periodic nonlinearity error in absolute distance interferometers
NASA Astrophysics Data System (ADS)
Yang, Hongxing; Huang, Kaiqi; Hu, Pengcheng; Zhu, Pengfei; Tan, Jiubin; Fan, Zhigang
2015-05-01
Periodic nonlinearity which can result in error in nanometer scale has become a main problem limiting the absolute distance measurement accuracy. In order to eliminate this error, a new integrated interferometer with non-polarizing beam splitter is developed. This leads to disappearing of the frequency and/or polarization mixing. Furthermore, a strict requirement on the laser source polarization is highly reduced. By combining retro-reflector and angel prism, reference and measuring beams can be spatially separated, and therefore, their optical paths are not overlapped. So, the main cause of the periodic nonlinearity error, i.e., the frequency and/or polarization mixing and leakage of beam, is eliminated. Experimental results indicate that the periodic phase error is kept within 0.0018°.
Mixed Convection Flow of Viscoelastic Fluid by a Stretching Cylinder with Heat Transfer
Hayat, Tasawar; Anwar, Muhammad Shoaib; Farooq, Muhammad; Alsaedi, Ahmad
2015-01-01
Flow of viscoelastic fluid due to an impermeable stretching cylinder is discussed. Effects of mixed convection and variable thermal conductivity are present. Thermal conductivity is taken temperature dependent. Nonlinear partial differential system is reduced into the nonlinear ordinary differential system. Resulting nonlinear system is computed for the convergent series solutions. Numerical values of skin friction coefficient and Nusselt number are computed and discussed. The results obtained with the current method are in agreement with previous studies using other methods as well as theoretical ideas. Physical interpretation reflecting the contribution of influential parameters in the present flow is presented. It is hoped that present study serves as a stimulus for modeling further stretching flows especially in polymeric and paper production processes. PMID:25775032
NASA Technical Reports Server (NTRS)
Truong, T. K.; Hsu, I. S.; Chang, J. J.; Shyu, H. C.; Reed, I. S.
1986-01-01
A quadratic-polynomial Fermat residue number system (QFNS) has been used to compute complex integer multiplications. The advantage of such a QFNS is that a complex integer multiplication requires only two integer multiplications. In this article, a new type Fermat number multiplier is developed which eliminates the initialization condition of the previous method. It is shown that the new complex multiplier can be implemented on a single VLSI chip. Such a chip is designed and fabricated in CMOS-pw technology.
NASA Technical Reports Server (NTRS)
Shyu, H. C.; Reed, I. S.; Truong, T. K.; Hsu, I. S.; Chang, J. J.
1987-01-01
A quadratic-polynomial Fermat residue number system (QFNS) has been used to compute complex integer multiplications. The advantage of such a QFNS is that a complex integer multiplication requires only two integer multiplications. In this article, a new type Fermat number multiplier is developed which eliminates the initialization condition of the previous method. It is shown that the new complex multiplier can be implemented on a single VLSI chip. Such a chip is designed and fabricated in CMOS-Pw technology.
Elasticity of fractal materials using the continuum model with non-integer dimensional space
NASA Astrophysics Data System (ADS)
Tarasov, Vasily E.
2015-01-01
Using a generalization of vector calculus for space with non-integer dimension, we consider elastic properties of fractal materials. Fractal materials are described by continuum models with non-integer dimensional space. A generalization of elasticity equations for non-integer dimensional space, and its solutions for the equilibrium case of fractal materials are suggested. Elasticity problems for fractal hollow ball and cylindrical fractal elastic pipe with inside and outside pressures, for rotating cylindrical fractal pipe, for gradient elasticity and thermoelasticity of fractal materials are solved.
Theta phase precession and phase selectivity: a cognitive device description of neural coding
NASA Astrophysics Data System (ADS)
Zalay, Osbert C.; Bardakjian, Berj L.
2009-06-01
Information in neural systems is carried by way of phase and rate codes. Neuronal signals are processed through transformative biophysical mechanisms at the cellular and network levels. Neural coding transformations can be represented mathematically in a device called the cognitive rhythm generator (CRG). Incoming signals to the CRG are parsed through a bank of neuronal modes that orchestrate proportional, integrative and derivative transformations associated with neural coding. Mode outputs are then mixed through static nonlinearities to encode (spatio) temporal phase relationships. The static nonlinear outputs feed and modulate a ring device (limit cycle) encoding output dynamics. Small coupled CRG networks were created to investigate coding functionality associated with neuronal phase preference and theta precession in the hippocampus. Phase selectivity was found to be dependent on mode shape and polarity, while phase precession was a product of modal mixing (i.e. changes in the relative contribution or amplitude of mode outputs resulted in shifting phase preference). Nonlinear system identification was implemented to help validate the model and explain response characteristics associated with modal mixing; in particular, principal dynamic modes experimentally derived from a hippocampal neuron were inserted into a CRG and the neuron's dynamic response was successfully cloned. From our results, small CRG networks possessing disynaptic feedforward inhibition in combination with feedforward excitation exhibited frequency-dependent inhibitory-to-excitatory and excitatory-to-inhibitory transitions that were similar to transitions seen in a single CRG with quadratic modal mixing. This suggests nonlinear modal mixing to be a coding manifestation of the effect of network connectivity in shaping system dynamic behavior. We hypothesize that circuits containing disynaptic feedforward inhibition in the nervous system may be candidates for interpreting upstream rate codes to guide downstream processes such as phase precession, because of their demonstrated frequency-selective properties.
The roll-up and merging of coherent structures in shallow mixing layers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lam, M. Y., E-mail: celmy@connect.ust.hk; Ghidaoui, M. S.; Kolyshkin, A. A.
2016-09-15
The current study seeks a fundamental explanation to the development of two-dimensional coherent structures (2DCSs) in shallow mixing layers. A nonlinear numerical model based on the depth-averaged shallow water equations is used to investigate the temporal evolution of shallow mixing layers, where the mapping from temporal to spatial results is made using the velocity at the center of the mixing layers. The flow is periodic in the streamwise direction. Transmissive boundary conditions are used in the cross-stream boundaries to prevent reflections. Numerical results are compared to linear stability analysis, mean-field theory, and secondary stability analysis. Results suggest that the onsetmore » and development of 2DCS in shallow mixing layers are the result of a sequence of instabilities governed by linear theory, mean-field theory, and secondary stability theory. The linear instability of the shearing velocity gradient gives the onset of 2DCS. When the perturbations reach a certain amplitude, the flow field of the perturbations changes from a wavy shape to a vortical (2DCS) structure because of nonlinearity. The development of the vertical 2DCS does not appear to follow weakly nonlinear theory; instead, it follows mean-field theory. After the formation of 2DCS, separate 2DCSs merge to form larger 2DCS. In this way, 2DCSs grow and shallow mixing layers develop and grow in scale. The merging of 2DCS in shallow mixing layers is shown to be caused by the secondary instability of the 2DCS. Eventually 2DCSs are dissipated by bed friction. The sequence of instabilities can cause the upscaling of the turbulent kinetic energy in shallow mixing layers.« less
Experimental comparison of conventional and nonlinear model-based control of a mixing tank
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haeggblom, K.E.
1993-11-01
In this case study concerning control of a laboratory-scale mixing tank, conventional multiloop single-input single-output (SISO) control is compared with model-based'' control where the nonlinearity and multivariable characteristics of the process are explicitly taken into account. It is shown, especially if the operating range of the process is large, that the two outputs (level and temperature) cannot be adequately controlled by multiloop SISO control even if gain scheduling is used. By nonlinear multiple-input multiple-output (MIMO) control, on the other hand, very good control performance is obtained. The basic approach to nonlinear control used in this study is first to transformmore » the process into a globally linear and decoupled system, and then to design controllers for this system. Because of the properties of the resulting MIMO system, the controller design is very easy. Two nonlinear control system designs based on a steady-state and a dynamic model, respectively, are considered. In the dynamic case, both setpoint tracking and disturbance rejection can be addressed separately.« less
Nonlinear Electromagnetic Stabilization of Plasma Microturbulence
NASA Astrophysics Data System (ADS)
Whelan, G. G.; Pueschel, M. J.; Terry, P. W.
2018-04-01
The physical causes for the strong stabilizing effect of finite plasma β on ion-temperature-gradient-driven turbulence, which far exceeds quasilinear estimates, are identified from nonlinear gyrokinetic simulations. The primary contribution stems from a resonance of frequencies in the dominant nonlinear interaction between the unstable mode, the stable mode, and zonal flows, which maximizes the triplet correlation time and therefore the energy transfer efficiency. A modification to mixing-length transport estimates is constructed, which reproduces nonlinear heat fluxes throughout the examined β range.
Operator mixing in the ɛ -expansion: Scheme and evanescent-operator independence
NASA Astrophysics Data System (ADS)
Di Pietro, Lorenzo; Stamou, Emmanuel
2018-03-01
We consider theories with fermionic degrees of freedom that have a fixed point of Wilson-Fisher type in noninteger dimension d =4 -2 ɛ . Due to the presence of evanescent operators, i.e., operators that vanish in integer dimensions, these theories contain families of infinitely many operators that can mix with each other under renormalization. We clarify the dependence of the corresponding anomalous-dimension matrix on the choice of renormalization scheme beyond leading order in ɛ -expansion. In standard choices of scheme, we find that eigenvalues at the fixed point cannot be extracted from a finite-dimensional block. We illustrate in examples a truncation approach to compute the eigenvalues. These are observable scaling dimensions, and, indeed, we find that the dependence on the choice of scheme cancels. As an application, we obtain the IR scaling dimension of four-fermion operators in QED in d =4 -2 ɛ at order O (ɛ2).
A multi-period optimization model for energy planning with CO(2) emission consideration.
Mirzaesmaeeli, H; Elkamel, A; Douglas, P L; Croiset, E; Gupta, M
2010-05-01
A novel deterministic multi-period mixed-integer linear programming (MILP) model for the power generation planning of electric systems is described and evaluated in this paper. The model is developed with the objective of determining the optimal mix of energy supply sources and pollutant mitigation options that meet a specified electricity demand and CO(2) emission targets at minimum cost. Several time-dependent parameters are included in the model formulation; they include forecasted energy demand, fuel price variability, construction lead time, conservation initiatives, and increase in fixed operational and maintenance costs over time. The developed model is applied to two case studies. The objective of the case studies is to examine the economical, structural, and environmental effects that would result if the electricity sector was required to reduce its CO(2) emissions to a specified limit. Copyright 2009 Elsevier Ltd. All rights reserved.
Exact Dissipative Moment Closures for Simulation of Magnetospheric Plasmas
NASA Astrophysics Data System (ADS)
Newman, D. L.; Sen, N.; Goldman, M. V.
2004-11-01
Dissipative fluid closures produce a kinetic-like plasma response in simulations based on the evolution of moments of the Vlasov equation. Such methods were previously shown to approximate the kinetic susceptibility of a Maxwellian plasma.(G. W. Hammett and F. W. Perkins Phys. Rev. Lett.) 64, 3019 (1990). We show here that dissipative closures can yield the exact linear response for kappa velocity distributions (i.e., f(v)∝(v^2+w^2)^-κ in 1-D, where w∝ v_th), provided κ is an integer and κ+1 moments are retained in the closure. This finding is particularly relevant to the simulation of collisionless space plasmas, which frequently exhibit power-law tails characteristic of kappa distributions. Such dissipative algorithms can be made energy conserving by evolving the thermal parameter w. Dominant nonlinearities (e.g., ponderomotive effects) can also be incorporated into the algorithm. These methods have proven especially valuable in the context of reduced 2-D Vlasov simulations,(N. Sen, et al., Reduced 2-D Vlasov Simulationsldots), this meeting. where they have been used to model perpendicular ion dynamics in the evolution of nonlinear structures (e.g., double layers) in the auroral ionosphere.
McMillan Lens in a System with Space Charge
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lobach, I.; Nagaitsev, S.; Stern, E.
Space charge (SC) in a circulating beam in a ring produces both betatron tune shift and betatron tune spread. These effects make some particles move on to a machine resonance and become unstable. Linear elements of beam optics cannot reduce the tune spread induced by SC because of its intrinsic nonlinear nature. We investigate the possibility to mitigate it by a thin McMillan lens providing a nonlinear axially symmetric kick, which is qualitatively opposite to the accumulated kick by SC. Experimentally, the proposed concept can be tested in Fermilab's IOTA ring. A thin McMillan lens can be implemented by amore » short (70 cm) insertion of an electron beam with specifically chosen density distribution in transverse directions. In this article, to see if McMillan lenses reduce the tune spread induced by SC, we make several simulations with particle tracking code Synergia. We choose such beam and lattice parameters that tune spread is roughly 0.5 and a beam instability due to the half-integer resonance 0.5 is observed. Then, we try to reduce emittance growth by shifting betatron tunes by adjusting quadrupoles and reducing the tune spread by McMillan lenses.« less
Cheng, Guanhui; Huang, Guohe; Dong, Cong; Xu, Ye; Chen, Jiapei; Chen, Xiujuan; Li, Kailong
2017-03-01
As presented in the first companion paper, distributed mixed-integer fuzzy hierarchical programming (DMIFHP) was developed for municipal solid waste management (MSWM) under complexities of heterogeneities, hierarchy, discreteness, and interactions. Beijing was selected as a representative case. This paper focuses on presenting the obtained schemes and the revealed mechanisms of the Beijing MSWM system. The optimal MSWM schemes for Beijing under various solid waste treatment policies and their differences are deliberated. The impacts of facility expansion, hierarchy, and spatial heterogeneities and potential extensions of DMIFHP are also discussed. A few of findings are revealed from the results and a series of comparisons and analyses. For instance, DMIFHP is capable of robustly reflecting these complexities in MSWM systems, especially for Beijing. The optimal MSWM schemes are of fragmented patterns due to the dominant role of the proximity principle in allocating solid waste treatment resources, and they are closely related to regulated ratios of landfilling, incineration, and composting. Communities without significant differences among distances to different types of treatment facilities are more sensitive to these ratios than others. The complexities of hierarchy and heterogeneities pose significant impacts on MSWM practices. Spatial dislocation of MSW generation rates and facility capacities caused by unreasonable planning in the past may result in insufficient utilization of treatment capacities under substantial influences of transportation costs. The problems of unreasonable MSWM planning, e.g., severe imbalance among different technologies and complete vacancy of ten facilities, should be gained deliberation of the public and the municipal or local governments in Beijing. These findings are helpful for gaining insights into MSWM systems under these complexities, mitigating key challenges in the planning of these systems, improving the related management practices, and eliminating potential socio-economic and eco-environmental issues resulting from unreasonable management.
Obstacle avoidance handling and mixed integer predictive control for space robots
NASA Astrophysics Data System (ADS)
Zong, Lijun; Luo, Jianjun; Wang, Mingming; Yuan, Jianping
2018-04-01
This paper presents a novel obstacle avoidance constraint and a mixed integer predictive control (MIPC) method for space robots avoiding obstacles and satisfying physical limits during performing tasks. Firstly, a novel kind of obstacle avoidance constraint of space robots, which needs the assumption that the manipulator links and the obstacles can be represented by convex bodies, is proposed by limiting the relative velocity between two closest points which are on the manipulator and the obstacle, respectively. Furthermore, the logical variables are introduced into the obstacle avoidance constraint, which have realized the constraint form is automatically changed to satisfy different obstacle avoidance requirements in different distance intervals between the space robot and the obstacle. Afterwards, the obstacle avoidance constraint and other system physical limits, such as joint angle ranges, the amplitude boundaries of joint velocities and joint torques, are described as inequality constraints of a quadratic programming (QP) problem by using the model predictive control (MPC) method. To guarantee the feasibility of the obtained multi-constraint QP problem, the constraints are treated as soft constraints and assigned levels of priority based on the propositional logic theory, which can realize that the constraints with lower priorities are always firstly violated to recover the feasibility of the QP problem. Since the logical variables have been introduced, the optimization problem including obstacle avoidance and system physical limits as prioritized inequality constraints is termed as MIPC method of space robots, and its computational complexity as well as possible strategies for reducing calculation amount are analyzed. Simulations of the space robot unfolding its manipulator and tracking the end-effector's desired trajectories with the existence of obstacles and physical limits are presented to demonstrate the effectiveness of the proposed obstacle avoidance strategy and MIPC control method of space robots.
NASA Astrophysics Data System (ADS)
Tang, Jiafu; Liu, Yang; Fung, Richard; Luo, Xinggang
2008-12-01
Manufacturers have a legal accountability to deal with industrial waste generated from their production processes in order to avoid pollution. Along with advances in waste recovery techniques, manufacturers may adopt various recycling strategies in dealing with industrial waste. With reuse strategies and technologies, byproducts or wastes will be returned to production processes in the iron and steel industry, and some waste can be recycled back to base material for reuse in other industries. This article focuses on a recovery strategies optimization problem for a typical class of industrial waste recycling process in order to maximize profit. There are multiple strategies for waste recycling available to generate multiple byproducts; these byproducts are then further transformed into several types of chemical products via different production patterns. A mixed integer programming model is developed to determine which recycling strategy and which production pattern should be selected with what quantity of chemical products corresponding to this strategy and pattern in order to yield maximum marginal profits. The sales profits of chemical products and the set-up costs of these strategies, patterns and operation costs of production are considered. A simulated annealing (SA) based heuristic algorithm is developed to solve the problem. Finally, an experiment is designed to verify the effectiveness and feasibility of the proposed method. By comparing a single strategy to multiple strategies in an example, it is shown that the total sales profit of chemical products can be increased by around 25% through the simultaneous use of multiple strategies. This illustrates the superiority of combinatorial multiple strategies. Furthermore, the effects of the model parameters on profit are discussed to help manufacturers organize their waste recycling network.
Zhang, Huiling; Huang, Qingsheng; Bei, Zhendong; Wei, Yanjie; Floudas, Christodoulos A
2016-03-01
In this article, we present COMSAT, a hybrid framework for residue contact prediction of transmembrane (TM) proteins, integrating a support vector machine (SVM) method and a mixed integer linear programming (MILP) method. COMSAT consists of two modules: COMSAT_SVM which is trained mainly on position-specific scoring matrix features, and COMSAT_MILP which is an ab initio method based on optimization models. Contacts predicted by the SVM model are ranked by SVM confidence scores, and a threshold is trained to improve the reliability of the predicted contacts. For TM proteins with no contacts above the threshold, COMSAT_MILP is used. The proposed hybrid contact prediction scheme was tested on two independent TM protein sets based on the contact definition of 14 Å between Cα-Cα atoms. First, using a rigorous leave-one-protein-out cross validation on the training set of 90 TM proteins, an accuracy of 66.8%, a coverage of 12.3%, a specificity of 99.3% and a Matthews' correlation coefficient (MCC) of 0.184 were obtained for residue pairs that are at least six amino acids apart. Second, when tested on a test set of 87 TM proteins, the proposed method showed a prediction accuracy of 64.5%, a coverage of 5.3%, a specificity of 99.4% and a MCC of 0.106. COMSAT shows satisfactory results when compared with 12 other state-of-the-art predictors, and is more robust in terms of prediction accuracy as the length and complexity of TM protein increase. COMSAT is freely accessible at http://hpcc.siat.ac.cn/COMSAT/. © 2016 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Yang, Ruijie; Dai, Jianrong; Yang, Yong; Hu, Yimin
2006-08-01
The purpose of this study is to extend an algorithm proposed for beam orientation optimization in classical conformal radiotherapy to intensity-modulated radiation therapy (IMRT) and to evaluate the algorithm's performance in IMRT scenarios. In addition, the effect of the candidate pool of beam orientations, in terms of beam orientation resolution and starting orientation, on the optimized beam configuration, plan quality and optimization time is also explored. The algorithm is based on the technique of mixed integer linear programming in which binary and positive float variables are employed to represent candidates for beam orientation and beamlet weights in beam intensity maps. Both beam orientations and beam intensity maps are simultaneously optimized in the algorithm with a deterministic method. Several different clinical cases were used to test the algorithm and the results show that both target coverage and critical structures sparing were significantly improved for the plans with optimized beam orientations compared to those with equi-spaced beam orientations. The calculation time was less than an hour for the cases with 36 binary variables on a PC with a Pentium IV 2.66 GHz processor. It is also found that decreasing beam orientation resolution to 10° greatly reduced the size of the candidate pool of beam orientations without significant influence on the optimized beam configuration and plan quality, while selecting different starting orientations had large influence. Our study demonstrates that the algorithm can be applied to IMRT scenarios, and better beam orientation configurations can be obtained using this algorithm. Furthermore, the optimization efficiency can be greatly increased through proper selection of beam orientation resolution and starting beam orientation while guaranteeing the optimized beam configurations and plan quality.
ERIC Educational Resources Information Center
Shi, Yixun
2010-01-01
Starting with an interesting number game sometimes used by school teachers to demonstrate the factorization of integers, "sum-difference numbers" are defined. A positive integer n is a "sum-difference number" if there exist positive integers "x, y, w, z" such that n = xy = wz and x ? y = w + z. This paper characterizes all sum-difference numbers…
Order and Value: Transitioning to Integers
ERIC Educational Resources Information Center
Bofferding, Laura
2014-01-01
As students progress from working with whole numbers to working with integers, they must wrestle with the big ideas of number values and order. Using objects to show positive quantities is easy, but no physical negative quantities exist. Therefore, when talking about integers, the author refers to number values instead of number quantities. The…
A time series model: First-order integer-valued autoregressive (INAR(1))
NASA Astrophysics Data System (ADS)
Simarmata, D. M.; Novkaniza, F.; Widyaningsih, Y.
2017-07-01
Nonnegative integer-valued time series arises in many applications. A time series model: first-order Integer-valued AutoRegressive (INAR(1)) is constructed by binomial thinning operator to model nonnegative integer-valued time series. INAR (1) depends on one period from the process before. The parameter of the model can be estimated by Conditional Least Squares (CLS). Specification of INAR(1) is following the specification of (AR(1)). Forecasting in INAR(1) uses median or Bayesian forecasting methodology. Median forecasting methodology obtains integer s, which is cumulative density function (CDF) until s, is more than or equal to 0.5. Bayesian forecasting methodology forecasts h-step-ahead of generating the parameter of the model and parameter of innovation term using Adaptive Rejection Metropolis Sampling within Gibbs sampling (ARMS), then finding the least integer s, where CDF until s is more than or equal to u . u is a value taken from the Uniform(0,1) distribution. INAR(1) is applied on pneumonia case in Penjaringan, Jakarta Utara, January 2008 until April 2016 monthly.
Superradiance Effects in the Linear and Nonlinear Optical Response of Quantum Dot Molecules
NASA Astrophysics Data System (ADS)
Sitek, A.; Machnikowski, P.
2008-11-01
We calculate the linear optical response from a single quantum dot molecule and the nonlinear, four-wave-mixing response from an inhomogeneously broadened ensemble of such molecules. We show that both optical signals are affected by the coupling-dependent superradiance effect and by optical interference between the two polarizations. As a result, the linear and nonlinear responses are not identical.
Vector calculus in non-integer dimensional space and its applications to fractal media
NASA Astrophysics Data System (ADS)
Tarasov, Vasily E.
2015-02-01
We suggest a generalization of vector calculus for the case of non-integer dimensional space. The first and second orders operations such as gradient, divergence, the scalar and vector Laplace operators for non-integer dimensional space are defined. For simplification we consider scalar and vector fields that are independent of angles. We formulate a generalization of vector calculus for rotationally covariant scalar and vector functions. This generalization allows us to describe fractal media and materials in the framework of continuum models with non-integer dimensional space. As examples of application of the suggested calculus, we consider elasticity of fractal materials (fractal hollow ball and fractal cylindrical pipe with pressure inside and outside), steady distribution of heat in fractal media, electric field of fractal charged cylinder. We solve the correspondent equations for non-integer dimensional space models.
NASA Astrophysics Data System (ADS)
Carrillo-Delgado, C.; García-Gil, C. I.; Trejo-Valdez, M.; Torres-Torres, C.; García-Merino, J. A.; Martínez-Gutiérrez, H.; Khomenko, A. V.; Torres-Martínez, R.
2016-01-01
Measurements of the third-order nonlinear optical properties exhibited by a ZnO thin solid film deposited on a SnO2 substrate are presented. The samples were prepared by a spray pyrolysis processing route. Scanning electron microscopy analysis and UV-Vis spectroscopy studies were carried out. The picosecond response at 1064 nm was explored by the z-scan technique. A large optical Kerr effect with two-photon absorption was obtained. The inhibition of the nonlinear optical absorption together with a noticeable enhancement in the optical Kerr effect in the sample was achieved by the incorporation of Au nanoparticles into the ZnO film. Additionally, a two-wave mixing configuration at 532 nm was performed and an optical Kerr effect was identified as the main cause of the nanosecond third-order optical nonlinearity. The relaxation time of the photothermal response of the sample was estimated to be about 1 s when the sample was excited by nanosecond single-shots. The rotation of the sample during the nanosecond two-wave mixing experiments was analyzed. It was stated that a non-monotonic relation between rotating frequency and pulse repetition rate governs the thermal contribution to the nonlinear refractive index exhibited by a rotating film. Potential applications for switching photothermal interactions in rotating samples can be contemplated. A rotary logic system dependent on Kerr transmittance in a two-wave mixing experiment was proposed.
Trace of totally positive algebraic integers and integer transfinite diameter
NASA Astrophysics Data System (ADS)
Flammang, V.
2009-06-01
Explicit auxiliary functions can be used in the ``Schur-Siegel- Smyth trace problem''. In the previous works, these functions were constructed only with polynomials having all their roots positive. Here, we use several polynomials with complex roots, which are found with Wu's algorithm, and we improve the known lower bounds for the absolute trace of totally positive algebraic integers. This improvement has a consequence for the search of Salem numbers that have a negative trace. The same method also gives a small improvement of the upper bound for the integer transfinite diameter of [0,1].
Integer cosine transform for image compression
NASA Technical Reports Server (NTRS)
Cheung, K.-M.; Pollara, F.; Shahshahani, M.
1991-01-01
This article describes a recently introduced transform algorithm called the integer cosine transform (ICT), which is used in transform-based data compression schemes. The ICT algorithm requires only integer operations on small integers and at the same time gives a rate-distortion performance comparable to that offered by the floating-point discrete cosine transform (DCT). The article addresses the issue of implementation complexity, which is of prime concern for source coding applications of interest in deep-space communications. Complexity reduction in the transform stage of the compression scheme is particularly relevant, since this stage accounts for most (typically over 80 percent) of the computational load.
Recent advances in reduction methods for nonlinear problems. [in structural mechanics
NASA Technical Reports Server (NTRS)
Noor, A. K.
1981-01-01
Status and some recent developments in the application of reduction methods to nonlinear structural mechanics problems are summarized. The aspects of reduction methods discussed herein include: (1) selection of basis vectors in nonlinear static and dynamic problems, (2) application of reduction methods in nonlinear static analysis of structures subjected to prescribed edge displacements, and (3) use of reduction methods in conjunction with mixed finite element models. Numerical examples are presented to demonstrate the effectiveness of reduction methods in nonlinear problems. Also, a number of research areas which have high potential for application of reduction methods are identified.
NASA Astrophysics Data System (ADS)
Delrue, S.; Tabatabaeipour, M.; Hettler, J.; Van Den Abeele, K.
With the growing demand from industry to optimize and further develop existing Non-Destructive Testing & Evaluation (NDT&E) techniques or new methods to detect and characterize incipient damage with high sensitivity and increased quality, ample efforts have been devoted to better understand the typical behavior of kissing bonds, such as delaminations and cracks. Recently, it has been shown experimentally that the nonlinear ultrasonic response of kissing bonds could be enhanced by using Local Defect Resonance (LDR) spectroscopy. LDR spectroscopy is an efficient NDT technique that takes advantage of the characteristic fre- quencies of the defect (defect resonances) in order to provide maximum acoustic wave-defect interaction. In fact, for nonlinear methodologies, the ultrasonic excitation of the sample should occur at either multiples or integer ratios of the characteristic defect resonance frequencies, in order to obtain the highest signal-to-noise response in the nonlinear LDR spectroscopy. In this paper, the potential of using LDR spectroscopy for the detection, localization and characterization of kissing bonds is illustrated using a 3D simulation code for elastic wave propagation in materials containing closed but dynamically active cracks or delaminations. Using the model, we are able to define an appropriate method, based on the Scaling Subtraction Method (SSM), to determine the local defect resonance frequencies of a delamination in a composite plate and to illustrate an increase in defect nonlinearity due to LDR. The simulation results will help us to obtain a better understanding of the concept of LDR and to assist in the further design and testing of LDR spectroscopy for the detection, localization and characterization of kissing bonds.
Zouari, Farouk; Ibeas, Asier; Boulkroune, Abdesselem; Cao, Jinde; Mehdi Arefi, Mohammad
2018-06-01
This study addresses the issue of the adaptive output tracking control for a category of uncertain nonstrict-feedback delayed incommensurate fractional-order systems in the presence of nonaffine structures, unmeasured pseudo-states, unknown control directions, unknown actuator nonlinearities and output constraints. Firstly, the mean value theorem and the Gaussian error function are introduced to eliminate the difficulties that arise from the nonaffine structures and the unknown actuator nonlinearities, respectively. Secondly, the immeasurable tracking error variables are suitably estimated by constructing a fractional-order linear observer. Thirdly, the neural network, the Razumikhin Lemma, the variable separation approach, and the smooth Nussbaum-type function are used to deal with the uncertain nonlinear dynamics, the unknown time-varying delays, the nonstrict feedback and the unknown control directions, respectively. Fourthly, asymmetric barrier Lyapunov functions are employed to overcome the violation of the output constraints and to tune online the parameters of the adaptive neural controller. Through rigorous analysis, it is proved that the boundedness of all variables in the closed-loop system and the semi global asymptotic tracking are ensured without transgression of the constraints. The principal contributions of this study can be summarized as follows: (1) based on Caputo's definitions and new lemmas, methods concerning the controllability, observability and stability analysis of integer-order systems are extended to fractional-order ones, (2) the output tracking objective for a relatively large class of uncertain systems is achieved with a simple controller and less tuning parameters. Finally, computer-simulation studies from the robotic field are given to demonstrate the effectiveness of the proposed controller. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Hasanian, Mostafa; Lissenden, Cliff J.
2017-08-01
The extraordinary sensitivity of nonlinear ultrasonic waves to the early stages of material degradation makes them excellent candidates for nondestructive material characterization. However, distinguishing weak material nonlinearity from instrumentation nonlinearity remains problematic for second harmonic generation approaches. A solution to this problem is to mix waves having different frequencies and to let their mutual interaction generate sum and difference harmonics at frequencies far from those of the instrumentation. Mixing of bulk waves and surface waves has been researched for some time, but mixing of guided waves has not yet been investigated in depth. A unique aspect of guided waves is their dispersive nature, which means we need to assure that a wave can propagate at the sum or difference frequency. A wave vector analysis is conducted that enables selection of primary waves traveling in any direction that generate phase matched secondary waves. We have tabulated many sets of primary waves and phase matched sum and difference harmonics. An example wave mode triplet of two counter-propagating collinear shear horizontal waves that interact to generate a symmetric Lamb wave at the sum frequency is simulated using finite element analysis and then laboratory experiments are conducted. The finite element simulation eliminates issues associated with instrumentation nonlinearities and signal-to-noise ratio. A straightforward subtraction method is used in the experiments to identify the material nonlinearity induced mutual interaction and show that the generated Lamb wave propagates on its own and is large enough to measure. Since the Lamb wave has different polarity than the shear horizontal waves the material nonlinearity is clearly identifiable. Thus, the mutual interactions of shear horizontal waves in plates could enable volumetric characterization of material in remote regions from transducers mounted on just one side of the plate.
Influence of sintering time on switching of the femtosecond nonlinear optical properties of CuNb2O6
NASA Astrophysics Data System (ADS)
Priyadarshani, N.; Sabari Girisun, T. C.; Venugopal Rao, S.
2017-04-01
Transition of mixed phases (monoclinic and orthorhombic) to pure orthorhombic phase was achieved during the synthesis process of CuNb2O6 by varying the sintering time. The suppression of monoclinic phase and dominant formation of orthorhombic CuNb2O6 was confirmed from the XRD and FTIR data analysis. FESEM studies demonstrated that due to increase in sintering time, coarsening process initiated the grain growth and trapping of pores leading to pore-free structures. The nonlinear optical (NLO) properties of mixed and pure copper niobate were studied by the Z-scan technique using near-infrared (800 nm, ∼150 fs, 80 MHz) laser excitation. Mixed phases exhibited saturable absorption and self-defocusing behaviour while pure orthorhombic demonstrated reverse saturable absorption and self-focusing process. The switching of nonlinearity along with increase in NLO coefficient of O-CuNb2O6 was attributed to the decreased metal-oxygen bond length and pore free structure. The increase in nonlinear absorption coefficient with input irradiance suggests the occurrence of effective 3 PA (2 PA followed by ESA) process. The magnitudes of nonlinear absorption coefficient (2.14 × 10-23m3/W2) and nonlinear refractive index (6.0 × 0-17 m2/W) of O-CuNb2O6 were found to be higher than well-known NLO materials. Orthorhombic CuNb2O6 exhibited optical limiting action with low limiting threshold of 38.26 μJ/cm2 and favouring NLO properties suggesting that the material to be an entrant candidate for safety devices against ultrashort pulsed lasers.
Achieving nonlinear optical modulation via four-wave mixing in a four-level atomic system
NASA Astrophysics Data System (ADS)
Li, Hai-Chao; Ge, Guo-Qin; Zubairy, M. Suhail
2018-05-01
We propose an accessible scheme for implementing tunable nonlinear optical amplification and attenuation via a synergetic mechanism of four-wave mixing (FWM) and optical interference in a four-level ladder-type atomic system. By constructing a cyclic atom-field interaction, we show that two reverse FWM processes can coexist via optical transitions in different branches. In the suitable input-field conditions, strong interference effects between the input fields and the generated FWM fields can be induced and result in large amplification and deep attenuation of the output fields. Moreover, such an optical modulation from enhancement to suppression can be controlled by tuning the relative phase. The quantum system can be served as a switchable optical modulator with potential applications in quantum nonlinear optics.
Theory of multiwave mixing within the superconducting kinetic-inductance traveling-wave amplifier
NASA Astrophysics Data System (ADS)
Erickson, R. P.; Pappas, D. P.
2017-03-01
We present a theory of parametric mixing within the coplanar waveguide (CPW) of a superconducting nonlinear kinetic-inductance traveling-wave (KIT) amplifier engineered with periodic dispersion loadings. This is done by first developing a metamaterial band theory of the dispersion-engineered KIT using a Floquet-Bloch construction and then applying it to the description of mixing of the nonlinear RF traveling waves. Our theory allows us to calculate signal gain versus signal frequency in the presence of a frequency stop gap, based solely on loading design. We present results for both three-wave mixing (3WM), with applied dc bias, and four-wave mixing (4WM), without dc. Our theory predicts an intrinsic and deterministic origin to undulations of 4WM signal gain with signal frequency, apart from extrinsic sources, such as impedance mismatch, and shows that such undulations are absent from 3WM signal gain achievable with dc. Our theory is extensible to amplifiers based on Josephson junctions in a lumped LC-ladder transmission line (TWPA).
NASA Astrophysics Data System (ADS)
Hayat, T.; Khan, M. Waleed Ahmed; Khan, M. Ijaz; Waqas, M.; Alsaedi, A.
2018-06-01
Flow of magnetohydrodynamic (MHD) viscous fluid between two rotating disks is modeled. Angular velocities of two disks are different. Flow is investigated for nonlinear mixed convection. Heat transfer is analyzed for nonlinear thermal radiation and heat generation/absorption. Chemical reaction is also implemented. Convective conditions of heat and mass transfer are studied. Transformations used lead to reduction of PDEs into the ODEs. The impacts of important physical variables like Prandtl number, Reynold number, Hartman number, mixed convection parameter, chemical reaction and Schmidt number on velocities, temperature and concentration are elaborated. In addition velocity and temperature gradients are physically interpreted. Our obtained results indicate that radial, axial and tangential velocities decrease for higher estimation of Hartman number.
Introduction to nonlinear acoustics
NASA Astrophysics Data System (ADS)
Bjørnø, Leif
2010-01-01
A brief review of the basic principles of fluid mechanics needed for development of linear and nonlinear ultrasonic concepts will be given. The fundamental equations of nonlinear ultrasonics will be derived and their physical properties explained. It will be shown how an originally monochromatic finite-amplitude ultrasonic wave, due to nonlinear effects, will distort during its propagation in time and space to form higher harmonics to its fundamental frequency. The concepts of shock formation will be presented. The material nonlinearity, described by the nonlinearity parameter B/A of the material, and the convective nonlinearity, described by the ultrasonic Mach Number, will be explained. Two procedures for determination of B/A will briefly be described and some B/A-values characterizing biological materials will be presented. Shock formation, described by use of the Goldberg Number,and Ultrasonic Saturation will be discussed.. An introduction to focused ultrasonic fields will be given and it will be shown how the ultrasonic intensity will vary axially and laterally in and near the focal region and how the field parameters of interest to biomedical applications may be described by use of the KZK-Model. Finally, an introduction will be given to the parametric acoustic array formed by mixing and interaction of two monochromatic, finite-amplitude ultrasonic waves in a liquid and the potentials of this mixing process in biomedical ultrasound will briefly be mentioned.
Elliptic Curve Integral Points on y2 = x3 + 3x ‑ 14
NASA Astrophysics Data System (ADS)
Zhao, Jianhong
2018-03-01
The positive integer points and integral points of elliptic curves are very important in the theory of number and arithmetic algebra, it has a wide range of applications in cryptography and other fields. There are some results of positive integer points of elliptic curve y 2 = x 3 + ax + b, a, b ∈ Z In 1987, D. Zagier submit the question of the integer points on y 2 = x 3 ‑ 27x + 62, it count a great deal to the study of the arithmetic properties of elliptic curves. In 2009, Zhu H L and Chen J H solved the problem of the integer points on y 2 = x 3 ‑ 27x + 62 by using algebraic number theory and P-adic analysis method. In 2010, By using the elementary method, Wu H M obtain all the integral points of elliptic curves y 2 = x 3 ‑ 27x ‑ 62. In 2015, Li Y Z and Cui B J solved the problem of the integer points on y 2 = x 3 ‑ 21x ‑ 90 By using the elementary method. In 2016, Guo J solved the problem of the integer points on y 2 = x 3 + 27x + 62 by using the elementary method. In 2017, Guo J proved that y 2 = x 3 ‑ 21x + 90 has no integer points by using the elementary method. Up to now, there is no relevant conclusions on the integral points of elliptic curves y 2 = x 3 + 3x ‑ 14, which is the subject of this paper. By using congruence and Legendre Symbol, it can be proved that elliptic curve y 2 = x 3 + 3x ‑ 14 has only one integer point: (x, y) = (2, 0).
Geometric Structure-Preserving Discretization Schemes for Nonlinear Elasticity
2015-08-13
conditions. 15. SUBJECT TERMS geometric theory for nonlinear elasticity, discrete exterior calculus 16. SECURITY CLASSIFICATION OF: 17. LIMITATION...associated Laplacian. We use the general theory for approximation of Hilbert complexes and the finite element exterior calculus and introduce some stable mixed
Integer aperture ambiguity resolution based on difference test
NASA Astrophysics Data System (ADS)
Zhang, Jingyu; Wu, Meiping; Li, Tao; Zhang, Kaidong
2015-07-01
Carrier-phase integer ambiguity resolution (IAR) is the key to highly precise, fast positioning and attitude determination with Global Navigation Satellite System (GNSS). It can be seen as the process of estimating the unknown cycle ambiguities of the carrier-phase observations as integers. Once the ambiguities are fixed, carrier phase data will act as the very precise range data. Integer aperture (IA) ambiguity resolution is the combination of acceptance testing and integer ambiguity resolution, which can realize better quality control of IAR. Difference test (DT) is one of the most popular acceptance tests. This contribution will give a detailed analysis about the following properties of IA ambiguity resolution based on DT: 1.
A Criterion to Control Nonlinear Error in the Mixed-Mode Bending Test
NASA Technical Reports Server (NTRS)
Reeder, James R.
2002-01-01
The mixed-mode bending test ha: been widely used to measure delamination toughness and was recently standardized by ASTM as Standard Test Method D6671-01. This simple test is a combination of the standard Mode I (opening) test and a Mode II (sliding) test. This test uses a unidirectional composite test specimen with an artificial delamination subjected to bending loads to characterize when a delamination will extend. When the displacements become large, the linear theory used to analyze the results of the test yields errors in the calcu1ated toughness values. The current standard places no limit on the specimen loading and therefore test data can be created using the standard that are significantly in error. A method of limiting the error that can be incurred in the calculated toughness values is needed. In this paper, nonlinear models of the MMB test are refined. One of the nonlinear models is then used to develop a simple criterion for prescribing conditions where thc nonlinear error will remain below 5%.
NASA Astrophysics Data System (ADS)
Li, Zhongguo; Gao, Feng; Xiao, Zhengguo; Wu, Xingzhi; Zuo, Jinglin; Song, Yinglin
2018-07-01
The third-order nonlinear optical properties of two di-lanthanide (Ln = Tb and Dy) sandwich complexes with mixed phthalocyanine and Schiff-base ligands were studied using Z-scan technique at 532 nm with 20 ps and 4 ns pulses. Both complexes exhibit reverse saturable absorption and self-focusing effect in ps regime, while the second-order hyperpolarizability decreases from Dy to Tb. Interestingly, the Tb triple-decker complexes show larger nonlinear absorption than Dy complexes on ns timescale. The time-resolved pump-probe measurements demonstrate that the nonlinear optical response was caused by excited-state mechanism related to the five-level model, while the singlet state lifetime of Dy complexes is 3 times shorter than that of Tb complexes. Our results indicate the lanthanide ions play a critical role in the photo-physical properties of triple-decker phthalocyanine complexes for their application as optical limiting materials.