Sample records for mixed ligand complex

  1. Synthesis, structural elucidation, biological, antioxidant and nuclease activities of some 5-Fluorouracil-amino acid mixed ligand complexes

    NASA Astrophysics Data System (ADS)

    Shobana, Sutha; Subramaniam, Perumal; Mitu, Liviu; Dharmaraja, Jeyaprakash; Arvind Narayan, Sundaram

    2015-01-01

    Some biologically active mixed ligand complexes (1-9) have been synthesized from 5-Fluorouracil (5-FU; A) and amino acids (B) such as glycine (gly), L-alanine (ala) and L-valine (val) with Ni(II), Cu(II) and Zn(II) ions. The synthesized mixed ligand complexes (1-9) were characterized by various physico-chemical, spectral, thermal and morphological studies. 5-Fluorouracil and its mixed ligand complexes have been tested for their in vitro biological activities against some pathogenic bacterial and fungal species by the agar well diffusion method. The in vitro antioxidant activities of 5-Fluorouracil and its complexes have also been investigated by using the DPPH assay method. The results demonstrate that Cu(II) mixed ligand complexes (4-6) exhibit potent biological as well as antioxidant activities compared to 5-Fluorouracil and Ni(II) (1-3) and Zn(II) (7-9) mixed ligand complexes. Further, the cleaving activities of CT DNA under aerobic conditions show moderate activity with the synthesized Cu(II) and Ni(II) mixed ligand complexes (1-6) while no activity is seen with Zn(II) complexes (7-9). Binding studies of CT DNA with these complexes show a decrease in intensity of the charge transfer band to the extent of 5-15% along with a minor red shift. The free energy change values (Δ‡G) calculated from intrinsic binding constants indicate that the interaction between mixed ligand complex and DNA is spontaneous.

  2. Mixed ligand complexation of some transition metal ions in solution and solid state: Spectral characterization, antimicrobial, antioxidant, DNA cleavage activities and molecular modeling

    NASA Astrophysics Data System (ADS)

    Shobana, Sutha; Dharmaraja, Jeyaprakash; Selvaraj, Shanmugaperumal

    2013-04-01

    Equilibrium studies of Ni(II), Cu(II) and Zn(II) mixed ligand complexes involving a primary ligand 5-fluorouracil (5-FU; A) and imidazoles viz., imidazole (him), benzimidazole (bim), histamine (hist) and L-histidine (his) as co-ligands(B) were carried out pH-metrically in aqueous medium at 310 ± 0.1 K with I = 0.15 M (NaClO4). In solution state, the stoichiometry of MABH, MAB and MAB2 species have been detected. The primary ligand(A) binds the central M(II) ions in a monodentate manner whereas him, bim, hist and his co-ligands(B) bind in mono, mono, bi and tridentate modes respectively. The calculated Δ log K, log X and log X' values indicate higher stability of the mixed ligand complexes in comparison to binary species. Stability of the mixed ligand complex equilibria follows the Irving-Williams order of stability. In vitro biological evaluations of the free ligand(A) and their metal complexes by well diffusion technique show moderate activities against common bacterial and fungal strains. Oxidative cleavage interaction of ligand(A) and their copper complexes with CT DNA is also studied by gel electrophoresis method in the presence of oxidant. In vitro antioxidant evaluations of the primary ligand(A), CuA and CuAB complexes by DPPH free radical scavenging model were carried out. In solid, the MAB type of M(II)sbnd 5-FU(A)sbnd his(B) complexes were isolated and characterized by various physico-chemical and spectral techniques. Both the magnetic susceptibility and electronic spectral analysis suggest distorted octahedral geometry. Thermal studies on the synthesized mixed ligand complexes show loss of coordinated water molecule in the first step followed by decomposition of the organic residues subsequently. XRD and SEM analysis suggest that the microcrystalline nature and homogeneous morphology of MAB complexes. Further, the 3D molecular modeling and analysis for the mixed ligand MAB complexes have also been carried out.

  3. Complexation equilibria and coordination aspects of Zn(II) complexes contain 2-aminobenzamide and some bioactive amino acid mixed ligands: pH-metric, spectroscopic and thermodynamic studies.

    PubMed

    Dharmaraja, Jeyaprakash; Subbaraj, Paramasivam; Esakkidurai, Thirugnanasamy; Shobana, Sutha; Raji, Saravanan

    2014-01-01

    Mixed ligand complexation of 2-aminobenzamide (2AB) as ligand [L] with Zn(II) in the presence of some bio-relevant amino acid constituents like glycine (gly), L-alanine (ala), L-valine (val) and L-phenylalanine (phe) as ligand [B] have been investigated using pH-metric measurements with a combined pH electrode at different temperatures (300, 310, 320 and 330 ± 0.1 K) in 50% (v/v) ethanol-water mixture containing I = 0.15 M NaClO(4) as supporting electrolyte. Computer assisted analysis of the experimental titration data showed the presence of ZnLB and ZnLB2 species as mixed ligand complexes in addition to various binary species. In ZnLB/ZnLB(2) species, both primary and secondary ligands act as bidentate to form a stable six, five membered chelate ring. The calculated stabilization parameter Deltalog K, log X, log X' and % R.S. values clearly show the mixed ligand complexes have higher stabilities than their binary. Thermodynamic parameters DeltaG, DeltaH and DeltaS have been derived from the temperature dependence of the stability constants. The complexation behavior of ZnLB species has been studied by means of electronic spectra. The percentage distribution of various binary and mixed ligand species of each type of the complexes in solution depending on pH and the ratio of Zn(II) to 2-aminobenzamide/amino acid of the systems.

  4. Synthesis, spectral, thermal and biological studies of mixed ligand complexes with newly prepared Schiff base and 1,10-phenanthroline ligands

    NASA Astrophysics Data System (ADS)

    Abd El-Halim, Hanan F.; Mohamed, Gehad G.; Khalil, Eman A. M.

    2017-10-01

    A series of mixed ligand complexes were prepared from the Schiff base (L1) as a primary ligand, prepared by condensation of oxamide and furan-2-carbaldehyde, and 1,10-phenanthroline (1,10-phen) as a secondary ligand. The Schiff base ligand and its mixed ligand chelates were characterized based on elemental analysis, IR, 1H NMR, thermal analysis, UV-Visible, mass, molar conductance, magnetic moment. X-ray diffraction, solid reflectance and ESR also have been studied. The mixed ligand complexes were found to have the formulae of [M(L1) (1,10-phen)]Clm.nH2O (M = Cr(III) and Fe(III) (m = 3) (n = 0); M = Mn(II), Cu(II) and Cd(II) (m = 2) (n = 0); and M = Co(II) (m = 2) (n = 1), Ni(II) (m = 2) (n = 2) and Zn(II) (m = 2) (n = 3)) and that the geometrical structure of the complexes were octahedral. The parameters of thermodynamic using Coats-Redfern and Horowitz-Metzger equations were calculated. The synthesized Schiff base ligand, 1,10-phenanthroline ligand and Their mixed ligand complexes were also investigated for their antibacterial and antifungal activity against bacterial species (Gram-Ve bacteria: Pseudomonas aeruginosa and Escherichia coli) and (Gram + Ve bacteria: Bacillus subtilis and Streptococcus pneumonia) and fungi (Aspergillus fumigates and Candida albicans). The anticancer activity of the new compounds had been tested against breast (MFC7) and colon (HCT-116) cell lines. The results showed high activity for the synthesized compounds.

  5. Composition, Characterization and Antibacterial activity of Mn(II), Co(II),Ni(II), Cu(II) Zn(II) and Cd(II) mixed ligand complexes Schiff base derived from Trimethoprim with 8-Hydroxy quinoline

    NASA Astrophysics Data System (ADS)

    Numan, Ahmed T.; Atiyah, Eman M.; Al-Shemary, Rehab K.; Ulrazzaq, Sahira S. Abd

    2018-05-01

    New Schiff base ligand 2-((4-amino-5-(3, 4, 5-trimethoxybenzyl) pyrimidin-2-ylimino) (phenyl)methyl)benzoic acid] = [HL] was synthesized using microwave irradiation trimethoprim and 2-benzoyl benzoic acid. Mixed ligand complexes of Mn((II), Co(II), Ni(II), Cu(II), Zn(II) and Cd(II) are reacted in ethanol with Schiff base ligand [HL] and 8-hydroxyquinoline [HQ] then reacted with metal salts in ethanol as a solvent in (1:1:1) ratio. The ligand [HL] is characterized by FTIR, UV-Vis, melting point, elemental microanalysis (C.H.N), 1H-NMR, 13C-NMR, and mass spectra. The mixed ligand complexes are characterized by infrared spectra, electronic spectra, (C.H.N), melting point, atomic absorption, molar conductance and magnetic moment measurements. These measurements indicate that the ligand [HL] coordinates with metal (II) ion in a tridentate manner through the oxygen and nitrogen atoms of the ligand, octahedral structures are suggested for these complexes. Antibacterial activity of the ligands [HL], [HQ] and their complexes are studied against (gram positive) and (gram negative) bacteria.

  6. A mixed valence zinc dithiolene system with spectator metal and reactor ligands.

    PubMed

    Ratvasky, Stephen C; Mogesa, Benjamin; van Stipdonk, Michael J; Basu, Partha

    2016-08-16

    Neutral complexes of zinc with N,N'-diisopropylpiperazine-2,3-dithione ( i Pr 2 Dt 0 ) and N,N'-dimethylpiperazine-2,3-dithione (Me 2 Dt 0 ) with chloride or maleonitriledithiolate (mnt 2- ) as coligands have been synthesized and characterized. The molecular structures of these zinc complexes have been determined using single crystal X-ray diffractometry. Complexes recrystallize in monoclinic P type systems with zinc adopting a distorted tetrahedral geometry. Two zinc complexes with mixed-valent dithiolene ligands exhibit ligand-to-ligand charge transfer bands. Optimized geometries, molecular vibrations and electronic structures of charge-transfer complexes were calculated using density functional theory (B3LYP/6-311G+(d,p) level). Redox orbitals are shown to be almost exclusively ligand in nature, with a HOMO based heavily on the electron-rich maleonitriledithiolate ligand, and a LUMO comprised mostly of the electron-deficient dithione ligand. Charge transfer is thus believed to proceed from dithiolate HOMO to dithione LUMO, showing ligand-to-ligand redox interplay across a d 10 metal.

  7. Polymer complexes.. XXXX. Supramolecular assembly on coordination models of mixed-valence-ligand poly[1-acrylamido-2-(2-pyridyl)ethane] complexes

    NASA Astrophysics Data System (ADS)

    El-Sonbati, A. Z.; El-Bindary, A. A.; Diab, M. A.

    2003-02-01

    The build-up of polymer metallic supramolecules based on homopolymer (1-acrylamido-2-(2-pyridyl)ethane (AEPH)) and ruthenium, rhodium, palladium as well as platinum complexes has been pursued with great interest. The homopolymer shows three types of coordination behaviour. In the mixed valence paramagnetic trinuclear polymer complexes [( 11)+( 12)] in the paper and in mononuclear polymer complexes ( 1)-( 5) it acts as a neutral bidentate ligand coordinating through the N-pyridine and NH-imino atoms, while in the mixed ligand diamagnetic poly-chelates, which are obtained from the reaction of AEPH with PdX 2 and KPtCl 4 in the presence of N-heterocyclic base consisting of polymer complexes ( 9)+( 10), and in monouclear compounds ( 6)-( 8), it behaves as a monobasic bidentate ligand coordinating through the same donor atoms. In mononuclear compounds ( 13)+( 14) it acts as a monobasic and neutral bidentate ligand coordinating only through the same donor atoms. Monomeric distorted octahedral or trimeric chlorine-bridged, approximately octahedral structures are proposed for these polymer complexes. The poly-chelates are of 1:1, 1:2 and 3:2 (metal-homopolymer) stoichiometry and exhibit six coordination. The values of ligand field parameters were calculated. The homopolymer and their polymer complexes have been characterized physicochemically.

  8. Polymer complexes. XXXX. Supramolecular assembly on coordination models of mixed-valence-ligand poly[1-acrylamido-2-(2-pyridyl)ethane] complexes.

    PubMed

    El-Sonbati, A Z; El-Bindary, A A; Diab, M A

    2003-02-01

    The build-up of polymer metallic supramolecules based on homopolymer (1-acrylamido-2-(2-pyridyl)ethane (AEPH)) and ruthenium, rhodium, palladium as well as platinum complexes has been pursued with great interest. The homopolymer shows three types of coordination behaviour. In the mixed valence paramagnetic trinuclear polymer complexes [(11)+(12)] in the paper and in mononuclear polymer complexes (1)-(5) it acts as a neutral bidentate ligand coordinating through the N-pyridine and NH-imino atoms, while in the mixed ligand diamagnetic poly-chelates, which are obtained from the reaction of AEPH with PdX2 and KPtCl4 in the presence of N-heterocyclic base consisting of polymer complexes (9)+(10), and in monouclear compounds (6)-(8), it behaves as a monobasic bidentate ligand coordinating through the same donor atoms. In mononuclear compounds (13)+(14) it acts as a monobasic and neutral bidentate ligand coordinating only through the same donor atoms. Monomeric distorted octahedral or trimeric chlorine-bridged, approximately octahedral structures are proposed for these polymer complexes. The poly-chelates are of 1:1, 1:2 and 3:2 (metal-homopolymer) stoichiometry and exhibit six coordination. The values of ligand field parameters were calculated. The homopolymer and their polymer complexes have been characterized physicochemically.

  9. Theoretical studies of molecular structure, electronic structure, spectroscopic properties and the ancillary ligand effect: a comparison of tris-chelate ML3-type and ML2X-type species for gallium(III) complexes with N,O-donor phenolic ligand, 2-(2-hydroxyphenyl)benzothiazole.

    PubMed

    Tong, Yi-Ping; Lin, Yan-Wen

    2011-02-01

    Two Ga(III) complexes with main ligand, 2-(2-hydroxyphenyl)benzothiazole (HL'), namely mixed-ligand ML2X-type [GaL'2X'] (1) (HX'=acetic acid, as ancillary ligand) and the meridianal tris-chelate [GaL'3] (2) have been investigated by the density functional theory (DFT/TDDFT) level calculations. Both 1 and 2 can be presented as a similar "mixed-ligand ML2X-type" species. The molecular geometries, electronic structures, metal-ligand bonding property of Ga-O (N) (main ligand), Ga-O (N) (ancillary ligand) interactions, and the ancillary ligand effect on their HOMO-LUMO gap, their absorption/emission property, and their absorption/emission wavelengths/colors for them have been discussed in detail based on the orbital interactions, the partial density of states (PDOS), and so on. The current investigation also indicates that it is quite probable that by introduction of different ancillary ligands, a series of new mixed-ligand ML2X-type complexes for group 13 metals can be designed with their absorption/emission property and the absorption/emission wavelengths and colors being tuned. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. Heavy ligand atom induced large magnetic anisotropy in Mn(ii) complexes.

    PubMed

    Chowdhury, Sabyasachi Roy; Mishra, Sabyashachi

    2017-06-28

    In the search for single molecule magnets, metal ions are considered pivotal towards achieving large magnetic anisotropy barriers. In this context, the influence of ligands with heavy elements, showing large spin-orbit coupling, on magnetic anisotropy barriers was investigated using a series of Mn(ii)-based complexes, in which the metal ion did not have any orbital contribution. The mixing of metal and ligand orbitals was achieved by explicitly correlating the metal and ligand valence electrons with CASSCF calculations. The CASSCF wave functions were further used for evaluating spin-orbit coupling and zero-field splitting parameters for these complexes. For Mn(ii) complexes with heavy ligand atoms, such as Br and I, several interesting inter-state mixings occur via the spin-orbit operator, which results in large magnetic anisotropy in these Mn(ii) complexes.

  11. Synthesis, magnetic, spectral, and antimicrobial studies of Cu(II), Ni(II) Co(II), Fe(III), and UO 2(II) complexes of a new Schiff base hydrazone derived from 7-chloro-4-hydrazinoquinoline

    NASA Astrophysics Data System (ADS)

    El-Behery, Mostafa; El-Twigry, Haifaa

    2007-01-01

    A new hydrazone ligand, HL, was prepared by the reaction of 7-chloro-4-hydrazinoquinoline with o-hydroxybenzaldehyde. The ligand behaves as monoprotic bidentate. This was accounted for as the ligand contains a phenolic group and its hydrogen atom is reluctant to be replaced by a metal ion. The ligand reacted with Cu(II), Ni(II), Co(II), Fe(III), and UO 2(II) ions to yield mononuclear complexes. In the case of Fe(III) ion two complexes, mono- and binuclear complexes, were obtained in the absence and presence of LiOH, respectively. Also, mixed ligand complexes were obtained from the reaction of the metal cations Cu(II), Ni(II) and Fe(III) with the ligand (HL) and 8-hydroxyquinoline (8-OHqu) in the presence of LiOH, in the molar ratio 1:1:1:1. It is clear that 8-OHqu behaves as monoprotic bidentate ligand in such mixed ligand complexes. The ligand, HL, and its metal complexes were characterized by elemental analyses, IR, UV-vis, mass, and 1H NMR spectra, as well as magnetic moment, conductance measurements, and thermal analyses. All complexes have octahedral configurations except Cu(II) complex which has an extra square-planar geometry, while Ni(II) mixed complex has also formed a tetrahedral configuration and UO 2(II) complex which formed a favorable pentagonal biprymidial geometry. Magnetic moment of the binuclear Fe(III) complex is quite low compared to calculated value for two iron ions complex and thus shows antiferromagnetic interactions between the two adjacent ferric ions. The HL and metal complexes were tested against one stain Gram positive bacteria ( Staphylococcus aureus), Gram negative bacteria ( Escherichia coli), and fungi ( Candida albicans). The tested compounds exhibited higher antibacterial acivities.

  12. The impact of mixed solvents on the complexation thermodynamics of Eu(III) by simple carboxylate and amino carboxylate ligands

    DOE PAGES

    Felmy, Heather M.; Bennett, Kevin T.; Clark, Sue B.

    2017-05-12

    To gain insight on the role of mixed solvents on the thermodynamic driving forces for the complexation between trivalent f-elements and organic ligands, solution phase thermodynamic parameters were determined for Eu(III) complexation with 2-hydroxyisobutyric acid (HIBA) and 2-aminoisobutyric acid (AIBA) in mixed methanol (MeOH)-water and N,N-dimethylformamide (DMF)-water solvents. Included in this study were the determination of mixed solvent autoprotolysis constants (pK α) as well as the thermodynamic formation constants: log β, ΔG, ΔH, and ΔS, for ligand protonation and Eu(III)-ligand complexation utilizing potentiometry and calorimetry techniques. The results presented are conditional thermodynamic values determined at an ionic strength of 1.0more » M NaClO 4 and a temperature of 298 K. It was found that moving from an aqueous solution to a binary aqueous-organic solvent affected all solution equilibria to some degree and that the extent of change depended on both the type of mixed solvent and the ligand in each study. Here, the ability to understand and predict these changes in thermodynamic values as a function of solvent composition provides important information about the chemistry of the trivalent f-elements.« less

  13. The impact of mixed solvents on the complexation thermodynamics of Eu(III) by simple carboxylate and amino carboxylate ligands

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Felmy, Heather M.; Bennett, Kevin T.; Clark, Sue B.

    To gain insight on the role of mixed solvents on the thermodynamic driving forces for the complexation between trivalent f-elements and organic ligands, solution phase thermodynamic parameters were determined for Eu(III) complexation with 2-hydroxyisobutyric acid (HIBA) and 2-aminoisobutyric acid (AIBA) in mixed methanol (MeOH)-water and N,N-dimethylformamide (DMF)-water solvents. Included in this study were the determination of mixed solvent autoprotolysis constants (pK α) as well as the thermodynamic formation constants: log β, ΔG, ΔH, and ΔS, for ligand protonation and Eu(III)-ligand complexation utilizing potentiometry and calorimetry techniques. The results presented are conditional thermodynamic values determined at an ionic strength of 1.0more » M NaClO 4 and a temperature of 298 K. It was found that moving from an aqueous solution to a binary aqueous-organic solvent affected all solution equilibria to some degree and that the extent of change depended on both the type of mixed solvent and the ligand in each study. Here, the ability to understand and predict these changes in thermodynamic values as a function of solvent composition provides important information about the chemistry of the trivalent f-elements.« less

  14. Microreactor and method for preparing a radiolabeled complex or a biomolecule conjugate

    DOEpatents

    Reichert, David E; Kenis, Paul J. A.; Wheeler, Tobias D; Desai, Amit V; Zeng, Dexing; Onal, Birce C

    2015-03-17

    A microreactor for preparing a radiolabeled complex or a biomolecule conjugate comprises a microchannel for fluid flow, where the microchannel comprises a mixing portion comprising one or more passive mixing elements, and a reservoir for incubating a mixed fluid. The reservoir is in fluid communication with the microchannel and is disposed downstream of the mixing portion. A method of preparing a radiolabeled complex includes flowing a radiometal solution comprising a metallic radionuclide through a downstream mixing portion of a microchannel, where the downstream mixing portion includes one or more passive mixing elements, and flowing a ligand solution comprising a bifunctional chelator through the downstream mixing portion. The ligand solution and the radiometal solution are passively mixed while in the downstream mixing portion to initiate a chelation reaction between the metallic radionuclide and the bifunctional chelator. The chelation reaction is completed to form a radiolabeled complex.

  15. Thermometric titration studies of mixed ligand complexes of thorium.

    PubMed

    Kugler, G C; Carey, G H

    1970-10-01

    Mixed-ligand chelates consisting of two different multidentate ligands linked to a central thorium(IV) ion have been prepared in aqueous solution and their heats of formation studied thermo metrically. Pyrocatechol, tiron, chromotropic acid, potassium hydrogen phthalate, 8-hydroxyquinoline-S-sulphonic acid, iminodiacetic acid, 5-sulphosalicylic acid and salicylic acid were used as the secondary ligands, while ethylenediaminetetra-acetate and 1, 2-diaminocyclohexane-N,N,N',N'-tetra-acetate were used as primary ligands. DeltaH values for the overall reactions are given, and where possible, the DeltaH and DeltaS values for the specific secondary ligand addition were calculated. The overall stability of the mixed-ligand chelates and the enhanced stability of EDTA mixed chelates relative to the analogous DCTA chelates were found to be due to entropy rather than enthalpy effects.

  16. Synthesis, Characterization, and Antibacterial Studies of Mixed Ligand Dioxouranium Complexes with 8-Hydroxyquinoline and Some Amino Acids

    PubMed Central

    Patil, Sunil S.; Thakur, Ganesh A.; Shaikh, Manzoor M.

    2011-01-01

    Mixed ligand complexes of dioxouranium (VI) of the type [UO2(Q)(L)·2H2O] have been synthesized using 8-hydroxyquinoline (HQ) as a primary ligand and amino acids (HL) such as L-threonine, L-tryptophan, and L-isoleucine as secondary ligands. The metal complexes have been characterized by elemental analysis, electrical conductance, magnetic susceptibility measurements, and spectral and thermal studies. The electrical conductance studies of the complexes indicate their nonelectrolytic nature. Magnetic susceptibility measurements revealed diamagnetic nature of the complexes. Electronic absorption spectra of the complexes show intraligand and charge transfer transitions, respectively. Bonding of the metal ion through N- and O-donor atoms of the ligands is revealed by IR studies, and the chemical environment of the protons is confirmed by NMR studies. The thermal analysis data of the complexes indicate the presence of coordinated water molecules. The agar cup and tube dilution methods have been used to study the antibacterial activity of the complexes against the pathogenic bacteria S. aureus, C. diphtheriae, S. typhi, and E. coli. PMID:22389843

  17. Newer mixed ligand Schiff base complexes from aquo-N-(2‧-hydroxy acetophenone) glycinatocopper(II) as synthon: DFT, antimicrobial activity and molecular docking study

    NASA Astrophysics Data System (ADS)

    Pramanik, Harun A. R.; Das, Dharitri; Paul, Pradip C.; Mondal, Paritosh; Bhattacharjee, Chira R.

    2014-02-01

    Synthesis of a series of newer mixed ligand copper(II) complexes of aminoacid Schiff base of the type [CuL(X)] (L = N-(2‧-hydroxy acetophenone) glycinate, X = imidazole (im) 2, benzimidazole (benz) 3, pyridine (py) 4, hydrazine (hz) 5,8-hydroxyquinoline (8-hq) 6, pyrrolidine (pyrr) 7, piperidine (pip) 8, and nicotinamide (nic) 9) have been accomplished from the interaction of an aquated Schiff base complex, [CuL(H2O)]·H2O, 1 with some selected neutral nitrogen-donor ligands. The copper(II) Schiff base complex, [CuL(H2O)]·H2O, L = N-(2‧-hydroxy acetophenone) glycinate was synthesized from the reaction of glycine and 2‧ hydroxy acetophenone and copper(II) acetate. The compounds were characterised by elemental analysis, spectral, magnetic and thermal studies. The density functional theory calculations were performed using LANL2DZ and 6-311 G(d, p) basis sets with B3LYP correlation functional to ascertain the stable electronic structure, HOMO-LUMO energy gap, chemical hardness and dipole moment of the mixed ligand complexes. A distorted square planar geometry has been conjectured for the complexes. Antibacterial activities of the ligand and its metal complexes have been tested against selected gram-positive and gram-negative strains and correlated with computational docking scores.

  18. Screening the efficient biological prospects of triazole allied mixed ligand metal complexes

    NASA Astrophysics Data System (ADS)

    Utthra, Ponnukalai Ponya; Kumaravel, Ganesan; Raman, Natarajan

    2017-12-01

    Triazole appended mixed ligand complexes (1-8) of the general formula [ML (bpy/phen)2]Cl2, where M = Cu(II), Co(II), Ni(II) and Zn(II), L = triazole appended Schiff base (E)sbnd N-(4-nitrobenzylidene)-1H-1,2,4-triazol-3-amine and bpy/phen = 2,2‧-bipyridine/1,10-phenanthroline, have been synthesized. The design and synthesis of this elaborate ligand has been performed with the aim of increasing stability and conjugation of 1,2,4 triazole, whose Schiff base derivatives are known as biologically active compounds thereby exploring their DNA binding affinity and other biological applications. The compounds have been comprehensively characterized by elemental analysis, spectroscopic methods (IR, UV-Vis, EPR, 1H and 13C NMR spectroscopy), ESI mass spectrometry and magnetic susceptibility measurements. The complexes were found to exhibit octahedral geometry. The complexes 1-8 were subjected to DNA binding techniques evaluated using UV-Vis absorption, CV, CD, Fluorescence spectroscopy and hydrodynamic measurements. Complex 5 showed a Kb value of 3.9 × 105 M-1. The DNA damaging efficacy for the complexes was observed to be high compared to the ligand. The antimicrobial screening of the compounds against bacterial and fungal strains indicates that the complexes possess excellent antimicrobial activity than the ligand. The overall biological activity of the complexes with phen as a co-ligand possessed superior potential than the ligand.

  19. Electrogenerated chemiluminescence. 58. Ligand-sensitized electrogenerated chemiluminescence in europium labels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richter, M.M.; Bard, A.J.

    The electrochemistry and electrogenerated chemiluminescence (ECL) of a series of europium chelates, cryptates, and mixed-ligand chelate/cryptand complexes were studied. The complexes were of the following general forms: EuL{sub 4}{sup -}, where L = {beta}-diketonate, a bis-chelating ligand (such as dibenzoylmethide), added as salts (A)EuL{sub 4}, where A= tetrabutylammonium ion or piperidinium ion (pipH{sup +}); Eu(crypt){sup 3+}, where crypt = a cryptand ligand, e.g., 4,7,13,16,21-pentaoxa-1,10-diazabicyclo[8,8,5]-tricosa ne; and Eu(crypt)(L){sup 2+} for the mixed-ligand systems. ECL was obtained for the chelates and mixed-ligand systems by reducing the complexes at a Pt electrode in the presence of peroxydisulfate in acetonitrile solutions and was attributedmore » to the electron-transfer reaction between the reduced bound ligands and SO{sub 4}{sup .-}, followed by intramolecular excitation transfer from the excited ligand orbitals to the metal-centered 4f states. No ECL was observed under the same conditions for the europium complexes incorporating only the cryptand ligands in aqueous solution. The ECL spectra matched the photoluminescence spectra with a narrow emission band observed at 612 nm, corresponding to a metal-centered 4f-4f transition. The ECL efficiencies for the ECL-active species were low, about 10{sup -1}-10{sup -4}% of that of the Ru-(bpy){sub 3}{sup 2+}/S{sub 2}O{sub 8}{sup 2-} system under similar conditions. 38 refs., 6 figs., 2 tabs.« less

  20. Synthesis, Properties, and Light-Emitting Electrochemical Cell (LEEC) Device Fabrication of Cationic Ir(III) Complexes Bearing Electron-Withdrawing Groups on the Cyclometallating Ligands

    PubMed Central

    2016-01-01

    The structure–property relationship study of a series of cationic Ir(III) complexes in the form of [Ir(C^N)2(dtBubpy)]PF6 [where dtBubpy = 4,4′-di-tert-butyl-2,2′-bipyridine and C^N = cyclometallating ligand bearing an electron-withdrawing group (EWG) at C4 of the phenyl substituent, i.e., −CF3 (1), −OCF3 (2), −SCF3 (3), −SO2CF3 (4)] has been investigated. The physical and optoelectronic properties of the four complexes were comprehensively characterized, including by X-ray diffraction analysis. All the complexes exhibit quasireversible dtBubpy-based reductions from −1.29 to −1.34 V (vs SCE). The oxidation processes are likewise quasireversible (metal + C^N ligand) and are between 1.54 and 1.72 V (vs SCE). The relative oxidation potentials follow a general trend associated with the Hammett parameter (σ) of the EWGs. Surprisingly, complex 4 bearing the strongest EWG does not adhere to the expected Hammett behavior and was found to exhibit red-shifted absorption and emission maxima. Nevertheless, the concept of introducing EWGs was found to be generally useful in blue-shifting the emission maxima of the complexes (λem = 484–545 nm) compared to that of the prototype complex [Ir(ppy)2(dtBubpy)]PF6 (where ppy = 2-phenylpyridinato) (λem = 591 nm). The complexes were found to be bright emitters in solution at room temperature (ΦPL = 45–66%) with microsecond excited-state lifetimes (τe = 1.14–4.28 μs). The photophysical properties along with density functional theory (DFT) calculations suggest that the emission of these complexes originates from mixed contributions from ligand-centered (LC) transitions and mixed metal-to-ligand and ligand-to-ligand charge transfer (LLCT/MLCT) transitions, depending on the EWG. In complexes 1, 3, and 4 the 3LC character is prominent over the mixed 3CT character, while in complex 2, the mixed 3CT character is much more pronounced, as demonstrated by DFT calculations and the observed positive solvatochromism effect. Due to the quasireversible nature of the oxidation and reduction waves, fabrication of light-emitting electrochemical cells (LEECs) using these complexes as emitters was possible with the LEECs showing moderate efficiencies. PMID:27681985

  1. Mixed ligand complex formation of 2-aminobenzamide with Cu(II) in the presence of some amino acids: Synthesis, structural, biological, pH-metric, spectrophotometric and thermodynamic studies

    NASA Astrophysics Data System (ADS)

    Dharmaraja, Jeyaprakash; Esakkidurai, Thirugnanasamy; Subbaraj, Paramasivam; Shobana, Sutha

    2013-10-01

    Mixed ligand Cu(II) complexes of 2-aminobenzamide (2AB) and amino acids viz., glycine (gly), L-alanine (ala), L-valine (val) and L-phenylalanine (phe) have been synthesised and characterized by various physico-chemical and spectral techniques. The calculated g-tensor values for Cu(II) complexes at 77 K and 300 K, show the distorted octahedral geometry which has been confirmed from the absorption studies. Consequently, the thermal studies illustrate that the loss of water and acetate molecules in the initial stage which are followed by the decomposition of organic residues. The powder X-ray diffraction and SEM analysis reflect that all the complexes have well-defined crystallinity nature with homogeneous morphology. The binding activities of CT DNA with CuAB complexes have been examined by absorption studies. Further, the oxidative cleavage interactions of 2-aminobenzamide and CuAB complexes with DNA were studied by gel electrophoresis method in H2O2 medium. Also, the complex formation of Cu(II) involving 2-aminobenzamide and amino acids were carried out by a combined pH-metric and spectrophotometric techniques in 50% (v/v) water-ethanol mixture at 300, 310, 320 and 330 ± 0.1 K with I = 0.15 mol dm-3 (NaClO4). In solution, CuAB and CuAB2 species has been detected and the binding modes of 2-aminobenzamide and amino acids in both binary and mixed ligand complexes are same. The calculated stabilization value of Δ log K, log X and log X' indicates higher stabilities for the mixed ligand complexes rather than their binary species. The thermodynamic parameters like ΔG, ΔH and ΔS have been determined from temperature dependence of the stability constant. In vitro biological activities of 2-aminobenzamide, CuA and CuAB complexes show remarkable activities against some bacterial and fungal strains. The percentage distribution of various binary and mixed ligand species in solution at dissimilar pH intervals were also evaluated.

  2. Formation of Mixed-Ligand Complexes of Metals(II) with Monoamine Complexones and Amino Acids in Solution

    NASA Astrophysics Data System (ADS)

    Pyreu, D. F.; Gridchin, S. N.

    2018-05-01

    The formation of mixed-ligand complexes in the M(II)-Nta, Ida-L (M = Cu(II), Ni, Zn, Co(II), L = Ser, Thr, Asp, Arg, Asn) systems, where Ida and Nta are the residues of iminodiacetic and nitrilotriacetic acids, respectively, is studied using pH measurements, calorimetry and spectrophotometry. The thermodynamic parameters (log K, Δr G 0, Δr H, Δr S) of their formation at 298.15 K and ionic strength I = 0.5 (KNO3) are determined. The most likely scenario of amino acid residue coordination in the composition of mixed complexes is discussed.

  3. Synthesis, spectroscopic characterization, electrochemical behavior and computational analysis of mixed diamine ligand gold(III) complexes: antiproliferative and in vitro cytotoxic evaluations against human cancer cell lines.

    PubMed

    Al-Jaroudi, Said S; Monim-ul-Mehboob, M; Altaf, Muhammad; Al-Saadi, Abdulaziz A; Wazeer, Mohammed I M; Altuwaijri, Saleh; Isab, Anvarhusein A

    2014-12-01

    The gold(III) complexes of the type [(DACH)Au(en)]Cl3, 1,2-Diaminocyclohexane ethylenediamine gold(III) chloride [where 1,2-DACH = cis-, trans-1,2- and S,S-1,2diaminocyclohexane and en = ethylenediamine] have been synthesized and characterized using various analytical and spectroscopic techniques including elemental analysis, UV-Vis and FTIR spectra; and solution as well as solid-state NMR measurements. The solid-state (13)C NMR shows that 1,2-diaminocyclohexane (1,2-DACH) and ethylenediamine (en) are strongly bound to the gold(III) center via N donor atoms. The stability of the mixed diamine ligand gold(III) was determined by (1)H and (13)C NMR spectra. Their electrochemical behavior was studied by cyclic voltammetry. The structural details and relative stabilities of the four possible isomers of the complexes were also reported at the B3LYP/LANL2DZ level of theory. The coordination sphere of these complexes around gold(III) center adopts distorted square planar geometry. The computational study also demonstrates that trans- conformations is slightly more stable than the cis-conformations. The antiproliferative effects and cytotoxic properties of the mixed diamine ligand gold(III) complexes were evaluated in vitro on human gastric SGC7901 and prostate PC3 cancer cells using MTT assay. The antiproliferative study of the gold(III) complexes on PC3 and SGC7901 cells indicate that complex 1 is the most effective antiproliferative agent among mixed ligand based gold(III) complexes 1-3. The IC50 data reveal that the in vitro cytotoxicity of complexes 1 and 3 against SGC7901 cancer cells are fairly better than that of cisplatin.

  4. Crystal structures and DFT calculations of mixed chloride-azide zinc(II) and chloride-isocyanate cadmium(II) complexes with the condensation product of 2-quinolinecarboxaldehyde and Girard's T reagent

    NASA Astrophysics Data System (ADS)

    Anđelković, Katarina; Pevec, Andrej; Grubišić, Sonja; Turel, Iztok; Čobeljić, Božidar; Milenković, Milica R.; Keškić, Tanja; Radanović, Dušanka

    2018-06-01

    The mixed chloride-azide [ZnL(N3)1.65Cl0.35] (1) and chloride-isocyanate [CdL(NCO)1.64Cl0.36] (2) complexes with the condensation product of 2-quinolinecarboxaldehyde and trimethylammonium acetohydrazide chloride (Girard's T reagent) (HLCl) have been prepared and characterized by X-ray crystallography. In complexes 1 and 2, Zn1 and Cd1 ions, respectively, are five-coordinated in a distorted square based pyramidal geometry with NNO set of donor atoms of deprotonated hydrazone ligand and two monodentate ligands N3- and/or N3- and Cl- in the case of 1 and OCN- and/or OCN- and Cl- in the case of 2. The structural parameters of 1 and 2 have been discussed in relation to those of previously reported M(II) complexes with the same hydrazone ligand. Density functional theory calculations have been employed to study the interaction between the Zn2+ and Cd2+ ions and ligands. High affinity of ligands towards the Zn2+ and Cd2+ ions are predicted for both complexes.

  5. Photoinitiated Electron Collection in Mixed-Metal Supramolecular Complexes: Development of Photocatalysts for Hydrogen Production. Final Report of Progress August 2017

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanko, James M.

    Mixed-metal supramolecular complexes containing one or two RuII light absorbing subunits coupled through polyazine bridging ligands to a RhIII reactive metal center were prepared for use as photocatalysts for the production of solar H 2 fuel from H 2O. The electrochemical, photophysical, and photochemical properties upon variation of the monodentate, labile ligands coordinated to the Rh reactive metal center were investigated.

  6. One-electron oxidation of electronically diverse manganese(III) and nickel(II) salen complexes: transition from localized to delocalized mixed-valence ligand radicals.

    PubMed

    Kurahashi, Takuya; Fujii, Hiroshi

    2011-06-01

    Ligand radicals from salen complexes are unique mixed-valence compounds in which a phenoxyl radical is electronically linked to a remote phenolate via a neighboring redox-active metal ion, providing an opportunity to study electron transfer from a phenolate to a phenoxyl radical mediated by a redox-active metal ion as a bridge. We herein synthesize one-electron-oxidized products from electronically diverse manganese(III) salen complexes in which the locus of oxidation is shown to be ligand-centered, not metal-centered, affording manganese(III)-phenoxyl radical species. The key point in the present study is an unambiguous assignment of intervalence charge transfer bands by using nonsymmetrical salen complexes, which enables us to obtain otherwise inaccessible insight into the mixed-valence property. A d(4) high-spin manganese(III) ion forms a Robin-Day class II mixed-valence system, in which electron transfer is occurring between the localized phenoxyl radical and the phenolate. This is in clear contrast to a d(8) low-spin nickel(II) ion with the same salen ligand, which induces a delocalized radical (Robin-Day class III) over the two phenolate rings, as previously reported by others. The present findings point to a fascinating possibility that electron transfer could be drastically modulated by exchanging the metal ion that bridges the two redox centers. © 2011 American Chemical Society

  7. A new mixed-ligand copper(II) complex of (E)-N";-(2-hydroxybenzylidene) acetohydrazide: Synthesis, characterization, NLO behavior, DFT calculation and biological activities

    NASA Astrophysics Data System (ADS)

    Yousef Ebrahimipour, S.; Sheikhshoaie, Iran; Crochet, Aurelien; Khaleghi, Moj; Fromm, Katharina M.

    2014-08-01

    A tridentate hydrazone Schiff base ligand, (E)-N";-(2-hydroxybenzylidene)acetohydrazide [HL], and its mixed-ligand Cu(II) complex [CuL(phen)], have been synthesized and characterized by elemental analyses, FT-IR, molar conductivity, UV-Vis spectroscopy. The structure of the complex has been determined by X-ray diffraction. This complex has square pyramidal geometry and the positions around central atom are occupied with donor atoms of Schiff base ligand and two nitrogens of 1,10-phenanthroline. Computational studies of compounds were performed by using DFT calculations. The linear polarizabilities and first hyperpolarizabilities of the studied molecules indicate that these compounds can be good candidates of nonlinear optical materials. It is in accordance with experimental data. In addition, invitro antimicrobial results show that these compounds specially [CuL(phen)] have great potential of antibacterial activity against Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, Listeria monocytogenes bacteria and antifungal activity against Candida Albicans in comparison to some standard drugs.

  8. Spectroscopic, cyclic voltammetric and biological studies of transition metal complexes with mixed nitrogen-sulphur (NS) donor macrocyclic ligand derived from thiosemicarbazide

    NASA Astrophysics Data System (ADS)

    Chandra, Sulekh; Gupta, Lokesh Kumar; Sangeetika

    2005-11-01

    The complexation of new mixed thia-aza-oxa macrocycle viz., 2,12-dithio-5,9,14,18-tetraoxo-7,16-dithia-1,3,4,10,11,13-hexaazacyclooctadecane containing thiosemicarba-zone unit with a series of transition metals Co(II), Ni(II) and Cu(II) has been investigated, by different spectroscopic techniques. The structural features of the ligand have been studied by EI-mass, 1H NMR and IR spectral techniques. Elemental analyses, magnetic moment susceptibility, molar conductance, IR, electronic, and EPR spectral studies characterized the complexes. Electronic absorption and IR spectra of the complexes indicate octahedral geometry for chloro, nitrato, thiocyanato or acetato complexes. The dimeric and neutral nature of the sulphato complexes are confirmed from magnetic susceptibility and low conductance values. Electronic spectra suggests square-planar geometry for all sulphato complexes. The redox behaviour was studied by cyclic voltammetry, show metal-centered reduction processes for all complexes. The complexes of copper show both oxidation and reduction process. The redox potentials depend on the conformation of central atom in the macrocyclic complexes. Newly synthesized macrocyclic ligand and its transition metal complexes show markedly growth inhibitory activity against pathogenic bacterias and plant pathogenic fungi under study. Most of the complexes have higher activity than that of the metal free ligand.

  9. Synthesis, characterization and electrochemical investigations of mixed-ligand copper(II)-organic supramolecular frameworks

    NASA Astrophysics Data System (ADS)

    Singh, Sandeep K.; Srivastava, Ashish Kumar; Srivastava, Krishna; Banerjee, Rahul; Prasad, Jagdish

    2017-11-01

    Two mixed-ligand copper(II)-organic coordination compounds with 5,5‧-dimethyl-2,2‧-bipyridine (5,5‧-Me2bpy) as a primary ligand while aliphatic malonate (Hmal) and aromatic 2-hydroxynicotinate (2-OHNA) as secondary ligands, were synthesized. These complexes are formulated as: [Cu(Hmal)(5,5‧-Me2bpy)(H2O)](ClO4) 1 and [Cu2(2-OHNA)2(5,5‧-Me2bpy)2(NO3)](NO3) 2. These two complexes were structurally characterized by single crystal X-ray diffraction analysis. Characterization was further supported by powder X-ray diffraction analysis, elemental analyses, FT-IR, FAB-MASS and TGA, DSC studies. Cyclic voltammetric and UV-visible spectral studies of these two complexes have also been done. The electrochemical studies of complex 1 in DMSO and DMF have shown that this complex undergoes quasi-reversible diffusion-controlled one-electron transfer reaction without any chemical complication while complex 2 in DMSO undergoes quasi-reversible diffusion-controlled one electron transfer reaction, following EC mechanism. The electrochemical behaviour of complex 2 in DMF is complicated probably due to presence of more than one species in solution phase.

  10. Redox chemistry of nickel(II) complexes supported by a series of noninnocent β-diketiminate ligands.

    PubMed

    Takaichi, June; Morimoto, Yuma; Ohkubo, Kei; Shimokawa, Chizu; Hojo, Takayuki; Mori, Seiji; Asahara, Haruyasu; Sugimoto, Hideki; Fujieda, Nobutaka; Nishiwaki, Nagatoshi; Fukuzumi, Shunichi; Itoh, Shinobu

    2014-06-16

    Nickel complexes of a series of β-diketiminate ligands ((R)L(-), deprotonated form of 2-substituted N-[3-(phenylamino)allylidene]aniline derivatives (R)LH, R = Me, H, Br, CN, and NO2) have been synthesized and structurally characterized. One-electron oxidation of the neutral complexes [Ni(II)((R)L(-))2] by AgSbF6 or [Ru(III)(bpy)3](PF6)3 (bpy = 2,2'-bipyridine) gave the corresponding metastable cationic complexes, which exhibit an EPR spectrum due to a doublet species (S = 1/2) and a characteristic absorption band in near IR region ascribable to a ligand-to-ligand intervalence charge-transfer (LLIVCT) transition. DFT calculations have indicated that the divalent oxidation state of nickel ion (Ni(II)) is retained, whereas one of the β-diketiminate ligands is oxidized to give formally a mixed-valence complex, [Ni(II)((R)L(-))((R)L(•))](+). Thus, the doublet spin state of the oxidized cationic complex can be explained by taking account of the antiferromagnetic interaction between the high-spin nickel(II) ion (S = 1) and the organic radical (S = 1/2) of supporting ligand. A single-crystal structure of one of the cationic complexes (R = H) has been successfully determined to show that both ligands in the cationic complex are structurally equivalent. On the basis of theoretical analysis of the LLIVCT band and DFT calculations as well as the crystal structure, the mixed-valence complexes have been assigned to Robin-Day class III species, where the radical spin is equally delocalized between the two ligands to give the cationic complex, which is best described as [Ni(II)((R)L(0.5•-))2](+). One-electron reduction of the neutral complexes with decamethylcobaltocene gave the anionic complexes when the ligand has the electron-withdrawing substituent (R = CN, NO2, Br). The generated anionic complexes exhibited EPR spectra due to a doublet species (S = 1/2) but showed no LLIVCT band in the near-IR region. Thus, the reduced complexes are best described as the d(9) nickel(I) complexes supported by two anionic β-diketiminate ligands, [Ni(I)((R)L(-))2](-). This conclusion was also supported by DFT calculations. Substituent effects on the electronic structures of the three oxidation states (neutral, cationic, and anionic) of the complexes are systematically evaluated on the basis of DFT calculations.

  11. Novel mixed ligand complexes of bioactive Schiff base (E)-4-(phenyl (phenylimino) methyl) benzene-1,3-diol and 2-aminophenol/2-aminobenzoic acid: Synthesis, spectral characterization, antimicrobial and nuclease studies

    NASA Astrophysics Data System (ADS)

    Subbaraj, P.; Ramu, A.; Raman, N.; Dharmaraja, J.

    2014-01-01

    A novel bidentate Schiff base ligand has been synthesized using 2,4-dihydroxybenzophenone and aniline. Its mixed ligand complexes of MAB type [M = Mn(II), Co(II), Ni(II), Cu(II) and Zn(II); HA = Schiff base and B = 2-aminophenol/2-aminobenzoic acid] have been synthesized and characterized on the basis of spectral data UV-Vis, IR, 1H NMR, FAB-Mass, EPR, SEM and magnetic studies. All the complexes were soluble in DMF and DMSO. Elemental analysis and molar conductance values indicate that the complexes are non-electrolytes. HA binds with M(II) ions through azomethine and deprotonated phenolic group and B binds through the primary amine group and deprotonated phenolic/carboxylic groups. Using FAB-Mass the cleavage pattern of the ligand (HA) has been established. All the complexes adopt octahedral geometry around the metal ions. It has been confirmed with the help of UV-Vis, IR, 1H NMR and FAB-Mass spectral data. DNA binding activities of the complexes 1d and 2d are studied by UV-Vis spectroscopy and cleavage studies of Schiff base ligand and its complexes 1d and 2d have been by agarose gel electrophoresis method. In vitro biological activities of the free ligand (HA) and their metal complexes (1a-1e and 2a-2e) were screened against few bacteria, Escherichia coli, Staphylococcus saphyphiticus, Staphylococcus aureus, Pseudomonas aeruginosa and fungi Aspergillus niger, Enterobacter species, Candida albicans by well diffusion technique.

  12. Mixed-ligand Pt(II) dithione-dithiolato complexes: influence of the dicyanobenzodithiolato ligand on the second-order NLO properties.

    PubMed

    Espa, Davide; Pilia, Luca; Marchiò, Luciano; Artizzu, Flavia; Serpe, Angela; Mercuri, Maria Laura; Simão, Dulce; Almeida, Manuel; Pizzotti, Maddalena; Tessore, Francesca; Deplano, Paola

    2012-03-28

    The mixed-ligand dithiolene complex [Pt(Bz(2)pipdt)(dcbdt)] (1) bearing the two ligands Bz(2)pipdt = 1,4-dibenzyl-piperazine-3,2-dithione and dcbdt = dicyanobenzodithiolato, has been synthesized, characterized and studied to evaluate its second-order optical nonlinearity. The dithione/dithiolato character of the two ligands gives rise to an asymmetric distribution of the charge in the molecule. This is reflected by structural data showing that in the C(2)S(2)PtS(2)C(2) dithiolene core the four sulfur atoms define a square-planar coordination environment of the metal where the Pt-S bond distances involving the two ligands are similar, while the C-S bond distances in the C(2)S(2) units exhibit a significant difference in Bz(2)pipdt (dithione) and dcbdt (dithiolato). 1 shows a moderately strong absorption peak in the visible region, which can be related to a HOMO-LUMO transition, where the dcbdt ligand (dithiolato) contributes mostly to the HOMO, and the Bz(2)pipdt one (dithione) mostly to the LUMO. Thus this transition has ligand-to-ligand charge transfer (CT) character with some contribution of the metal and undergoes negative solvatochromism and molecular quadratic optical nonlinearity (μβ(0) = -1296 × 10(-48) esu), which was determined by the EFISH (electric-field-induced second-harmonic generation) technique and compared with the values of similar complexes on varying the dithiolato ligand (mnt = maleonitriledithiolato, dmit = 2-thioxo-1,3-dithiole-4,5-dithiolato). Theoretical calculations help to elucidate the role of the dithiolato ligands in affecting the molecular quadratic optical nonlinearity of these complexes.

  13. Synthesis, characterization and biological evaluation of a novel "3 + 1" mixed ligand 99mTc complex having an aliphatic thiol as coligand.

    PubMed

    Rey, A; Papadopoulos, M; Leon, E; Mallo, L; Pirmettis, Y; Manta, E; Raptopoulou, C; Chiotellis, E; Leon, A

    2001-03-01

    A novel "3 + 1" mixed ligand 99mTc complex with N,N-bis(2-mercaptoethyl)-N'N'-diethyl-ethilenediamine as ligand and 1-octanethiol as coligand was prepared and evaluated as potential brain radiopharmaceutical. Preparation at tracer level was accomplished by substitution, using 99mTc-glucoheptonate as precursor and a coligand/ligand ratio of 5. Under these conditions the labeling yield was over 80% and a major product with radiochemical purity >80% was isolated by HPLC methods and used for biological evaluation. Chemical characterization at carrier level was developed using the corresponding rhenium and 99gTc complexes. Results were consistent with the expected "3 + 1" structure and X-ray diffraction study demonstrated that the complex adopted a distorted trigonal bipyramidal geometry. All sulphur atoms underwent ionization leading to the formation of a neutral compound. Biodistribution in mice demonstrated early brain uptake, fast blood clearance and excretion through hepatobiliary system. Although brain/blood ratio increased significantly with time, this novel 99mTc complex did not exhibit ideal properties as brain perfusion radiopharmaceutical since brain uptake was too low.

  14. Novel mixed ligand complexes of bioactive Schiff base (E)-4-(phenyl (phenylimino) methyl) benzene-1,3-diol and 2-aminophenol/2-aminobenzoic acid: synthesis, spectral characterization, antimicrobial and nuclease studies.

    PubMed

    Subbaraj, P; Ramu, A; Raman, N; Dharmaraja, J

    2014-01-03

    A novel bidentate Schiff base ligand has been synthesized using 2,4-dihydroxybenzophenone and aniline. Its mixed ligand complexes of MAB type [M=Mn(II), Co(II), Ni(II), Cu(II) and Zn(II); HA=Schiff base and B=2-aminophenol/2-aminobenzoic acid] have been synthesized and characterized on the basis of spectral data UV-Vis, IR, (1)H NMR, FAB-Mass, EPR, SEM and magnetic studies. All the complexes were soluble in DMF and DMSO. Elemental analysis and molar conductance values indicate that the complexes are non-electrolytes. HA binds with M(II) ions through azomethine and deprotonated phenolic group and B binds through the primary amine group and deprotonated phenolic/carboxylic groups. Using FAB-Mass the cleavage pattern of the ligand (HA) has been established. All the complexes adopt octahedral geometry around the metal ions. It has been confirmed with the help of UV-Vis, IR, (1)H NMR and FAB-Mass spectral data. DNA binding activities of the complexes 1d and 2d are studied by UV-Vis spectroscopy and cleavage studies of Schiff base ligand and its complexes 1d and 2d have been by agarose gel electrophoresis method. In vitro biological activities of the free ligand (HA) and their metal complexes (1a-1e and 2a-2e) were screened against few bacteria, Escherichia coli, Staphylococcus saphyphiticus, Staphylococcus aureus, Pseudomonas aeruginosa and fungi Aspergillus niger, Enterobacter species, Candida albicans by well diffusion technique. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Synthesis, structural characterization, DFT studies and in-vitro antidiabetic activity of new mixed ligand oxovanadium(IV) complex with tridentate Schiff base

    NASA Astrophysics Data System (ADS)

    Patel, R. N.; Singh, Yogendra Pratap

    2018-02-01

    The mixed ligand oxovanadium(IV) complex [VO(L1)(L2)] [L1 = N'-[(Z)-phenyl(pyridin-2-yl)methylidene]benzohydrazide and L2 = Benzohydrazide] has been synthesized in aerobic condition. The complex was characterized by elemental analysis spectroscopic (UV-vis, IR, epr) and electrochemical methods. X-ray diffraction pattern was also used to characterize this complex, which has a distorted octahedral structure. Single crystal diffraction analysis reveals that Csbnd H⋯π (aryl/metal chelate rings) interactions contribute to the stabilization of the crystal structure in given dimension. The room temperature magnetic susceptibility data shows paramagnetic nature of the complex. The complex was also tested for in-vitro antidiabetic activity. Moderate α-glucosidase inhibition is shown by this complex, which may be considered as α-glucosidase inhibitors.

  16. Electron paramagnetic resonance spectral study of [Mn(acs){sub 2}(2–pic){sub 2}(H{sub 2}O){sub 2}] single crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kocakoç, Mehpeyker, E-mail: mkocakoc@cu.edu.tr; Tapramaz, Recep, E-mail: recept@omu.edu.tr

    Acesulfame potassium salt is a synthetic and non-caloric sweetener. It is also important chemically for its capability of being ligand in coordination compounds, because it can bind over Nitrogen and Oxygen atoms of carbonyl and sulfonyl groups and ring oxygen. Some acesulfame containing transition metal ion complexes with mixed ligands exhibit solvato and thermo chromic properties and these properties make them physically important. In this work single crystals of Mn{sup +2} ion complex with mixed ligand, [Mn(acs){sub 2}(2-pic){sub 2}(H{sub 2}O){sub 2}], was studied with electron paramagnetic resonance (EPR) spectroscopy. EPR parameters were determined. Zero field splitting parameters indicated that themore » complex was highly symmetric. Variable temperature studies showed no detectable chance in spectra.« less

  17. Synthesis, spectroscopic, thermogravimetric and antimicrobial studies of mixed ligands complexes

    NASA Astrophysics Data System (ADS)

    Mahmoud, Walaa H.; Mahmoud, Nessma F.; Mohamed, Gehad G.; El-Sonbati, Adel Z.; El-Bindary, Ashraf A.

    2015-09-01

    An interesting series of mixed ligand complexes have been synthesized by the reaction of metal chloride with guaifenesin (GFS) in the presence of 2-aminoacetic acid (HGly) (1:1:1 molar ratio). The elemental analysis, magnetic moments, molar conductance, spectral (UV-Vis, IR, 1H NMR and ESR) and thermal studies were used to characterize the isolated complexes. The molecular structure of GFS is optimized theoretically and the quantum chemical parameters are calculated. The IR showed that the ligand (GFS) acts as monobasic tridentate through the hydroxyl, phenoxy etheric and methoxy oxygen atoms and co-ligand (HGly) as monobasic bidentate through the deprotonated carboxylate oxygen atom and nitrogen atom of amino group. The molar conductivities showed that all the complexes are non-electrolytes except Cr(III) complex is electrolyte. Electronic and magnetic data proposed the octahedral structure for all complexes under investigation. ESR spectrum for Cu(II) revealed data which confirm the proposed structure. Antibacterial screening of the compounds were carried out in vitro on gram positive (Bacillus subtilis and Staphylococcus aureus), gram negative (Escherichia coli and Neisseria gonorrhoeae) bacteria and for in vitro antifungal activity against Candida albicans organism. However, some complexes showed more chemotherapeutic efficiency than the parent GFS drug. The complexes were also screened for their in vitro anticancer activity against the breast cell line (MFC7) and the results obtained showed that they exhibit a considerable anticancer activity.

  18. Mixed-ligand Ru(II) complexes with 2,2'-bipyridine and aryldiazo-beta-diketonato auxillary ligands: synthesis, physico-chemical study and antitumour properties.

    PubMed

    Mishra, Lallan; Yadaw, Ajay K; Bhattacharya, Subrato; Dubey, Santosh K

    2005-05-01

    The complexes of Ru(II)-2,2'-bipyridyl with substituted diazopentane-2,4-diones (L1H-L5H) were synthesized and characterized by elemental analyses, conductance, FAB (fast atom bombardment) mass and spectral (IR, UV/Vis (UV/visible), NMR) studies. Molecular geometry optimization of the complexes was also made. None of the complexes luminesce. However, facilitated oxidation of Ru(II) to Ru(III) was evidenced from their lower reduction potential data. The ligands and their complexes were tested for their antitumour activity against a variety of tumour cell lines. Though activity is found to vary with the type of tumour cell lines used, yet complex 5 with naphtyldiazopentane-2,4-dione as co-ligand was found to be a potential compound as it showed in general significant activity against all cell lines studied.

  19. Metal-assisted in situ formation of a tridentate acetylacetone ligand for complexation of fac-Re(CO)3+ for radiopharmaceutical applications.

    PubMed

    Benny, Paul D; Fugate, Glenn A; Barden, Adam O; Morley, Jennifer E; Silva-Lopez, Elsa; Twamley, Brendan

    2008-04-07

    Reaction of [NEt4]2[ReBr3(CO)3] with 2,4-pentanedione (acac) yields a complex of the type fac-Re(acac)(OH2)(CO)3 (1) under aqueous conditions. 1 was further reacted with a monodentate ligand (pyridine) to yield a fac-Re(acac)(pyridine)(CO)3 complex (2). Complex 1 was found to react with primary amines to generate a Schiff base (imine) in aqueous solutions. When a mixed-nitrogen donor bidentate ligand, 2-(2-aminoethyl)pyridine, that has different coordination affinities for fac-Re(acac)(OH2)(CO)3 was utilized, a unique tridentate ligand was formed in situ utilizing a metal-assisted Schiff base formation to yield a complex fac-Re(CO)3(3[(2-phenylethyl)imino]-2-pentanone) (3). Tridentate ligand formation was found to occur only with the Re-coordinated acac ligand. Reactions of acac with fac-Re(CO)3Br(2-(2-aminoethyl)pyridine) (4) or a mixture of [NEt4]2[ReBr3(CO)3], acac, and 2-(2-aminoethyl)pyridine did not yield the formation of complex 3 in water.

  20. Electrochemistry of mixed-metal bimetallic complexes containing the pentacyanoferrate(II) or pentaammineruthenium(II) metal center

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moore, K.J.; Lee, L.; Mabbott, G.A.

    1983-03-30

    The electrochemistry of a series of mixed-metal bimetallic complexes of the type B/sub 5/MLM'B'/sub 5/, where B/sub 5/M = (CNN)/sub 5/Fe/sup II/ or (NH/sub 3/)/sub 5/Ru/sup II/, L = pyrazine, 4,4'-bipyridine, or 4-cyanopyridine, M'B'/sub 5/ = Rh/sup III/(NH/sub 3/)/sub 5/ or Co/sup III/(CN)/sub 5/, is reported. The bimetallic complexes all have metal-to-ligand charge-transfer (MLCT) bands associated with the M-B unit (d/sub ..pi../M ..-->.. p/sub ..pi../*L). The effect of the remote metal center, M'B'/sub 5/, is to function as a Lewis acid, shifting the MLCT maximum to lower energy and shifting the M/sup III///sup II/ reduction potential more positive with respectmore » to free B/sub 5/ML. The remote metal influence is attenuated by longer bridging ligands and by reduced ..pi..-overlap. A comparison of the electrochemical data of the mixed-valence Fe(II)/Fe(III) and Ru(II)/Ru(III) complexes to the mixed-metal Fe(II)/Co(III) and Ru(II)/Rh(III) complexes has enabled a quantitative measure of the stabilization due to electron delocalization in the mixed-valence complexes. The results show that electron delocalization is greater for the ruthenium complexes than for the iron complexes, is a small contributor to the total stabilization of the mixed-valence state, and even in ruthenium drops off rapidly as the length of the bridge increases.« less

  1. A theoretical investigation on the neutral Cu(I) phosphorescent complexes with azole-based and phosphine mixed ligand

    NASA Astrophysics Data System (ADS)

    Ding, Xiao-Li; Shen, Lu; Zou, Lu-Yi; Ma, Ming-Shuo; Ren, Ai-Min

    2018-04-01

    A theoretical study on a series of neutral heteroleptic Cu(I) complexes with different azole-pyridine-based N^N ligands has been presented to get insight into the effect of various nitrogen atoms in the azole ring on photophysical properties. The results reveal that the highest occupied molecular orbital (HOMO) levels and the emission wavelengths of these complexes are mainly governed by the nitrogen atom number in azole ring. With the increasing number of nitrogen atom , the electron density distribution of HOMO gradually extend from the N^N ligand to the whole molecule, meanwhile, the improved contribution from Cu(d) orbits in HOMO results in an effective mixing of various charge transfermodes, and hence, the fast radiative decay(kr) and the slow non-radiative decay rate(knr) are achieved. The photoluminescence quantum yield (PLQY) show an apparent dependence on the nitrogen atom number in the five-membered nitrogen heterocycles. However, the increasing number of nitrogen atoms is not necessary for increasing PLQY. The complex 3 with 1,2,4-triazole-pyridine-based N^N ligands is considered to be a potential emitter with high phosphorescence efficiency. Finally, we hope that our investigations will contribute to systematical understanding and guiding for material molecular engineering.

  2. Pharmacological Role of Anions (Sulphate, Nitrate, Oxalate and Acetate) on the Antibacterial Activity of Cobalt(II), Copper(II) and Nickel(II) Complexes With Nicotinoylhydrazine-Derived ONO, NNO and SNO Ligands

    PubMed Central

    Rauf, Abdur

    1996-01-01

    Mixed ligands biologically active complexes of cobalt(II), copper(II) and nickel(II) with nicotinoylhydrazine-derived ONO, NNO and SNO donor schiff-base ligands having the same metal ion but different anions such as sulphate, nitrate, oxalate and acetate have been synthesised and characterised on the basis of their physical, analytical and spectral data. In order to evaluate the role of anions on their bioability, these ligands and their synthesised metal complexes with various anions have been screened against bacterial species such as Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus and the title studies have proved a definative role of anions in increasing the biological activity PMID:18472896

  3. Rhenium tetrazolato complexes coordinated to thioalkyl-functionalised phenanthroline ligands: synthesis, photophysical characterisation, and incubation in live HeLa cells.

    PubMed

    Werrett, Melissa V; Wright, Phillip J; Simpson, Peter V; Raiteri, Paolo; Skelton, Brian W; Stagni, Stefano; Buckley, Alysia G; Rigby, Paul J; Massi, Massimiliano

    2015-12-21

    Three new complexes of formulation fac-[Re(CO)3(diim)L], where diim is either 1,10-phenanthroline or 1,10-phenanthroline functionalised at position 5 by a thioalkyl chain, and L is either a chloro or aryltetrazolato ancillary ligand, were synthesised and photophysically characterised. The complexes exhibit phosphorescent emission with maxima around 600 nm, originating from triplet metal-to-ligand charge transfer states with partially mixed ligand-to-ligand charge transfer character. The emission is relatively long-lived, within the 200-400 ns range, and with quantum yields of 2-4%. The complexes were trialed as cellular markers in live HeLa cells, along with two previously reported rhenium tetrazolato complexes bound to unsubstituted 1,10-phenanthroline. All five complexes exhibit good cellular uptake and non-specific perinuclear localisation. Upon excitation at 405 nm, the emission from the rhenium complexes could be clearly distinguished from autofluorescence, as demonstrated by spectral detection within the live cells. Four of the complexes did not appear to be toxic, however prolonged excitation could result in membrane blebbing. No major sign of photobleaching was detected upon multiple imaging on the same cell sample.

  4. Mixed-ligand Cu II complexes with Me 5dien and heterocyclic acids. Synthesis, antioxidant and anti-inflammatory activity. Crystal structure of [Cu(Me 5dien)(tpaa)(H 2O)](ClO 4)

    NASA Astrophysics Data System (ADS)

    Christidis, Panayiotis C.; Georgousis, Zacharias D.; Hadjipavlou-Litina, Dimitra; Bolos, Christos A.

    2008-01-01

    The reaction of sodium salt of 2-thiophenecarboxylic acid (tpca), 2-thiopheneacetic acid (tpaa), 2-furoic acid (fa) and picolinic acid (pica), with [Cu(Me 5dien)(ClO 4) 2] ( 1) (Me 5dien = N, N, N', N″ N″-pentamethyldiethylenetriamine) in a 1:1 molar ratio, afforded new mixed-ligand compounds of the type [Cu(Me 5dien)(tpca)(H 2O)](ClO 4) ( 2), [Cu(Me 5dien)(tpaa)(H 2O)](ClO 4) ( 3), [Cu(Me 5dien)(fa)](BPh 4) ( 4) and [Cu(Me 5dien)(pica)](ClO 4) ( 5). The new mixed-ligand complexes are mononuclear, paramagnetic, conductive compounds with a distorted square pyramidal geometry. The square pyramidal stereochemistry proposed by spectroscopic (IR, UV-vis) data was further confirmed by the X-ray structure analysis of the compound ( 3) in which the Cu atom is coordinated by the three N atoms from the Me 5dien ligand, one O atom from the mono-carboxylate anion, lying on the equatorial square plane, and one O atom from the water molecule, occupying the axial position. The two Cu sbnd O bond distances are 1.955(2) and 2.212(2) Ǻ, respectively. The complexes were tested for antioxidant/anti-inflammatory activity. Complex 4 is the most active against soybean lipoxygenase with IC 50 = 100 μM. The presence of a furoic ring leads to higher lipoxygenase inhibition, whereas the picolinyl-ring supports scavenging activity.

  5. Synthesis and structure of the heterobimetallic Yb(II) complex of composition L2Yb2LiI3 supported with the β-diketiminato ligand [L=Et2NCH2CH2NC(Me)CHC(Me)NCH2CH2NEt2

    NASA Astrophysics Data System (ADS)

    Nikiforov, Grigori B.; Roesky, Herbert W.; Vidovic, Denis; Magull, Jörg

    2003-08-01

    The heterobimetallic Yb(II) mixed ligand complex L2Yb2LiI31 has been prepared by the reaction of the lithium salt of the ligand L with the ytterbium diiodide. Compound 1 is characterized by single crystal X-ray structural analysis, multinuclear NMR and mass spectrometry. Complex 1 consists of LYbI and LLi units connected with the central Yb(1) atom. The latter is surrounded by the LYbI and LLi moieties in a sandwich like structure including two bridging iodine atoms. The NCCCN unsaturated system of the ligand in each of the units is almost planar and π coordinated to the Yb(1) atom. These two planar units are tilted to each other and the pendant arms of the β-diketiminato ligand in each moiety are bent. The metal atoms are located out of the NCCCN plane of the ligands and the three metal atoms in complex 1 form almost a straight line.

  6. Crystal and electronic structures of magnesium(II), copper(II), and mixed magnesium(II)-copper(II) complexes of the quinoline half of styrylquinoline-type HIV-1 integrase inhibitors.

    PubMed

    Courcot, B; Firley, D; Fraisse, B; Becker, P; Gillet, J-M; Pattison, P; Chernyshov, D; Sghaier, M; Zouhiri, F; Desmaële, D; d'Angelo, J; Bonhomme, F; Geiger, S; Ghermani, N E

    2007-05-31

    A new target in AIDS therapy development is HIV-1 integrase (IN). It was proven that HIV-1 IN required divalent metal cations to achieve phosphodiester bond cleavage of DNA. Accordingly, all newly investigated potent IN inhibitors contain chemical fragments possessing a high ability to chelate metal cations. One of the promising leads in the polyhydroxylated styrylquinolines (SQLs) series is (E)-8-hydroxy-2-[2-(4,5-dihydroxy-3-methoxyphenyl)-ethenyl]-7-quinoline carboxylic acid (1). The present study focuses on the quinoline-based progenitor (2), which is actually the most probable chelating part of SQLs. Conventional and synchrotron low-temperature X-ray crystallographic studies were used to investigate the chelating power of progenitor 2. Mg2+ and Cu2+ cations were selected for this purpose, and three types of metal complexes of 2 were obtained: Mg(II) complex (4), Cu(II) complex (5) and mixed Mg(II)-Cu(II) complexes (6 and 7). The analysis of the crystal structure of complex 4 indicates that two tridentate ligands coordinate two Mg2+ cations, both in octahedral geometry. The Mg-Mg distance was found equal to 3.221(1) A, in agreement with the metal-metal distance of 3.9 A encountered in the crystal structure of Escherichia coli DNA polymerase I. In 5, the complex is formed by two bidentate ligands coordinating one copper ion in tetrahedral geometry. Both mixed Mg(II)-Cu(II) complexes, 6 and 7 exhibit an original arrangement of four ligands linked to a central heterometallic cluster consisting of three octahedrally coordinated magnesium ions and one tetrahedrally coordinated copper ion. Quantum mechanics calculations were also carried out in order to display the electrostatic potential generated by the dianionic ligand 2 and complex 4 and to quantify the binding energy (BE) during the formation of the magnesium complex of progenitor 2. A comparison of the binding energies of two hypothetical monometallic Mg(II) complexes with that found in the bimetallic magnesium complex 4 was made.

  7. Determining the magnitude and direction of photoinduced ligand field switching in photochromic metal-organic complexes: molybdenum-tetracarbonyl spirooxazine complexes.

    PubMed

    Paquette, Michelle M; Patrick, Brian O; Frank, Natia L

    2011-07-06

    The ability to optically switch or tune the intrinsic properties of transition metals (e.g., redox potentials, emission/absorption energies, and spin states) with photochromic metal-ligand complexes is an important strategy for developing "smart" materials. We have described a methodology for using metal-carbonyl complexes as spectroscopic probes of ligand field changes associated with light-induced isomerization of photochromic ligands. Changes in ligand field between the ring-closed spirooxazine (SO) and ring-opened photomerocyanine (PMC) forms of photochromic azahomoadamantyl and indolyl phenanthroline-spirooxazine ligands are demonstrated through FT-IR, (13)C NMR, and computational studies of their molybdenum-tetracarbonyl complexes. The frontier molecular orbitals (MOs) of the SO and PMC forms differ considerably in both electron density distributions and energies. Of the multiple π* MOs in the SO and PMC forms of the ligands, the LUMO+1, a pseudo-b(1)-symmetry phenanthroline-based MO, mixes primarily with the Mo(CO)(4) fragment and provides the major pathway for Mo(d)→phen(π*) backbonding. The LUMO+1 is found to be 0.2-0.3 eV lower in energy in the SO form relative to the PMC form, suggesting that the SO form is a better π-acceptor. Light-induced isomerization of the photochromic ligands was therefore found to lead to changes in the energies of their frontier MOs, which in turn leads to changes in π-acceptor ability and ligand field strength. Ligand field changes associated with photoisomerizable ligands allow tuning of excited-state and ground-state energies that dictate energy/electron transfer, optical/electrical properties, and spin states of a metal center upon photoisomerization, positioning photochromic ligand-metal complexes as promising targets for smart materials.

  8. Revisiting Mn and Fe removal in humic rich estuaries

    NASA Astrophysics Data System (ADS)

    Oldham, Véronique E.; Miller, Megan T.; Jensen, Laramie T.; Luther, George W.

    2017-07-01

    Metal removal by estuarine mixing has been studied for several decades, but few studies emphasize dissolved metal speciation and organic ligand complexation. Findings from the last decade indicate that metal-humic complexation can be significant for dissolved metals including Cu(II), Al(III) and Fe(III), but little consideration is given to the precipitation of these complexes with humic material at pH < 2. Given that total soluble metal analysis involves an acidification step for sample preservation, we show that Mn and other metal concentrations may have been underestimated in estuaries, especially when humic substance concentrations are high. A competitive ligand assay of selected samples from our study site, a coastal waterway bordered by wetlands (Broadkill River, DE), showed that Mn(III)-humic complexation is significant, and that some Mn(III)-L complexes precipitate during acidification. In the oxygenated surface waters of the Broadkill River, total dissolved Mn (dMnT) was up to 100% complexed to ambient ligands as Mn(III)-L, and we present evidence for humic-type Mn(III)-L complexes. The Mn(III) complexes were kinetically stabilized against Fe(II) reduction, even when [Fe(II)] was 17 times higher than [dMnT]. Unlike typical oceanic surface waters, [Fe(II)] > [Fe(III)-L] in surface waters, which may be attributed to high rates of photoreduction of Fe(III)-L complexes. Total [Mn(III)-L] ranged from 0.22 to 8.4 μM, in excess of solid MnOx (below 0.28 μM in all samples). Filtration of samples through 0.02 μm filters indicated that all Mn(III)-L complexes pass through the filters and were not colloidal species in contrast to dissolved Fe. Incubation experiments indicated that the reductive dissolution of solid MnOx by ambient ligands may be responsible for Mn(III) formation in this system. Unlike previous studies of estuarine mixing, which demonstrated metal removal during mixing, we show significant export of dMn and dissolved Fe (dFe) in the summer and fall of 2015. Thus, we propose that estuarine removal should be considered seasonal for dMn and dFe, with export in the summer and fall and removal during the winter.

  9. Spectroscopic studies on some fluorescent mixed-ligand titanium(IV) complexes.

    PubMed

    Baranwal, Balram Prasad; Singh, Alok Kumar; Varma, Anand

    2011-12-15

    A novel route to synthesize some titanium(IV) complexes containing acetylacetone, straight chain carboxylic acid and hydroxycarboxylic acid ligands has been investigated. Complexes with the general formula [Ti(acac)Cl(2-n)(OOCR*)(n)(OOCC(15)H(31))] (where Hacac=acetylacetone, R*COOH=hydroxycarboxylic acids and n=1 or 2) have been isolated and characterized. Molecular weight determinations indicated mononuclear nature of the complexes. LMCT bands were observed in the electronic spectra. Infrared spectra suggested bidentate nature of the ligands. Fluorescent behaviour of the complexes was noticed on the basis of fluorescence spectra. Powder XRD indicated them to be semi-crystalline having the crystallite size in 136-185 nm range. Transmission electron microscopy (TEM) indicated spherical particles of ~ 200 nm diameter. On the basis of physico-chemical studies, it is suggested that titanium is having coordination number 7 or 8 in these complexes. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. A Dicobalt Complex with an Unsymmetrical Quinonoid Bridge Isolated in Three Units of Charge: A Combined Structural, (Spectro)electrochemical, Magnetic and Spectroscopic Study.

    PubMed

    van der Meer, Margarethe; Rechkemmer, Yvonne; Frank, Uta; Breitgoff, Frauke D; Hohloch, Stephan; Su, Cheng-Yong; Neugebauer, Petr; Marx, Raphael; Dörfel, María; van Slageren, Joris; Sarkar, Biprajit

    2016-09-19

    Quinonoid ligands are excellent bridges for generating redox-rich dinuclear assemblies. A large majority of these bridges are symmetrically substituted, with examples of unsymmetrically substituted quinonoid bridges being extremely rare. We present here a dicobalt complex in its various redox states with an unsymmetrically substituted quinonoid bridging ligand. Two homovalent forms and one mixed-valent form have been isolated and characterized by single crystal X-ray diffraction. The complex displays a large comproportionation constant for the mixed-valent state which is three orders of magnitude higher than that observed for the analogous complex with a symmetrically substituted bridge. Results from electrochemistry, UV/Vis/NIR spectroelectrochemistry, SQUID magnetometry, multi-frequency EPR spectroscopy and FIR spectroscopy are used to probe the electronic structures of these complexes. FIR provides direct evidence of exchange coupling. The results presented here display the advantages of using an unsymmetrically substituted bridge: site specific redox chemistry, high thermodynamic stabilization of the mixed-valent form, isolation and crystallization of various redox forms of the complex. This work represents an important step on the way to generating heterodinuclear complexes for use in cooperative catalysis. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Nonlinear optical and G-Quadruplex DNA stabilization properties of novel mixed ligand copper(II) complexes and coordination polymers: Synthesis, structural characterization and computational studies

    NASA Astrophysics Data System (ADS)

    Rajasekhar, Bathula; Bodavarapu, Navya; Sridevi, M.; Thamizhselvi, G.; RizhaNazar, K.; Padmanaban, R.; Swu, Toka

    2018-03-01

    The present study reports the synthesis and evaluation of nonlinear optical property and G-Quadruplex DNA Stabilization of five novel copper(II) mixed ligand complexes. They were synthesized from copper(II) salt, 2,5- and 2,3- pyridinedicarboxylic acid, diethylenetriamine and amide based ligand (AL). The crystal structure of these complexes were determined through X-ray diffraction and supported by ESI-MAS, NMR, UV-Vis and FT-IR spectroscopic methods. Their nonlinear optical property was studied using Gaussian09 computer program. For structural optimization and nonlinear optical property, density functional theory (DFT) based B3LYP method was used with LANL2DZ basis set for metal ion and 6-31G∗ for C,H,N,O and Cl atoms. The present work reveals that pre-polarized Complex-2 showed higher β value (29.59 × 10-30e.s.u) as compared to that of neutral complex-1 (β = 0.276 × 10-30e.s.u.) which may be due to greater advantage of polarizability. Complex-2 is expected to be a potential material for optoelectronic and photonic technologies. Docking studies using AutodockVina revealed that complex-2 has higher binding energy for both G-Quadruplex DNA (-8.7 kcal/mol) and duplex DNA (-10.1 kcal/mol). It was also observed that structure plays an important role in binding efficiency.

  12. Structural diversity in binuclear complexes of alkaline earth metal ions with 4,6-diacetylresorcinol

    NASA Astrophysics Data System (ADS)

    Shebl, Magdy; Khalil, Saied M. E.; Taha, A.; Mahdi, M. A. N.

    2012-11-01

    A new series of binuclear and mixed-ligand complexes with the general formula: [M 2(LO)yClz]; where M = Mg(II), Ca(II), Sr(II) and Ba(II); H2L = 4,6-diacetylresorcinol, the secondary ligand L' = acetylacetone (acac), 8-hydroxyquinoline (8-HQ) or 2,2'-bipyridyl (Bipy), n = 0-2, m = 1, 2, x = 0, 1, 2, 4, y = 0, 2, 4, 5 and z = 0-2; have been synthesized. They have been characterized by the analytical and spectral methods (IR, 1H NMR and mass) as well as TGA and molar conductivity measurements. The spectroscopic and conductance data suggested that the H2L ligand behaves as a neutral, monobasic or dibasic tetradentate ligand, depending on the basicity of the secondary ligand, through the two phenolic and two carbonyl groups. Binuclear octahedral geometry has been assigned to all of the prepared complexes in various molar ratios 2:2; 2:2:2; 1:2:1 and 1:2:4 (L:M:L'). Molecular orbital calculations were performed for the ligands and their complexes using Hyperchem 7.52 program on the bases of PM3 level and the results were correlated with the experimental data. The ligand and some of its alkaline metal(II) complexes showed antibacterial activity towards some of Gram-positive and Gram-negative bacteria, yeast (Candida albicans) and fungus (Aspergillus fumigatus).

  13. Synthesis, spectral and thermal studies of some transition metal mixed ligand complexes: Modeling of equilibrium composition and biological activity

    NASA Astrophysics Data System (ADS)

    Neelakantan, M. A.; Sundaram, M.; Nair, M. Sivasankaran

    2011-09-01

    Several mixed ligand Ni(II), Cu(II) and Zn(II) complexes of 2-amino-3-hydroxypyridine (AHP) and imidazoles viz., imidazole (him), benzimidazole (bim), histamine (hist) and L-histidine (his) have been synthesized and characterized by elemental and spectral (vibrational, electronic, 1H NMR and EPR) data as well as by magnetic moment values. On the basis of elemental analysis and molar conductance values, all the complexes can be formulated as [MAB]Cl except histidine complexes as MAB. Thermogravimetric studies reveal the presence of coordinated water molecules in most of the complexes. From the magnetic measurements and electronic spectral data, octahedral structure was proposed for Ni(II) and Cu(II)-AHP-his, tetrahedral for Cu(II)-AHP-him/bim/hist, but square planar for the Cu(II)-AHP complex. The g∥/ A∥ calculated supports tetrahedral environment around the Cu(II) in Cu(II)-AHP-him/bim/hist and distorted octahedral for Cu(II)-AHP-his complexes. The morphology of the reported metal complexes was investigated by scanning electron micrographs (SEM). The potentiometric study has been performed in aqueous solution at 37 °C and I = 0.15 mol dm -3 NaClO 4. MABH, MAB and MAB 2 species has been identified in the present systems. Proton dissociation constants of AHP and stability constants of metal complexes were determined using MINIQUAD-75. The most probable structure of the mixed ligand species is discussed based upon their stability constants. The in vitro biological activity of the complexes was tested against the Gram positive and Gram negative bacteria, fungus and yeast. The oxidative DNA cleavage studies of the complexes were performed using gel electrophoresis method. Cu(II) complexes have been found to promote DNA cleavage in presence of biological reductant such as ascorbate and oxidant like hydrogen peroxide.

  14. Synthesis, structures and properties of three copper complexes with dibutyldithiocarbamate ligand

    NASA Astrophysics Data System (ADS)

    Wang, Chen; Niu, Jiao; Li, Jun; Ma, Xiaoxun

    2017-05-01

    Three copper complexes constructed with sulfur-containing dibutyldithiocarbamate ligand (DDTC), [(Et2NCS2)4Cu2] (1), [(Et2NCS2)(EtO)Cu]2 (2) and [(Et2NCS2)6Cu13I10]n (3) have been synthesized through the reaction of CuI with different mole ratios of DDTC under solution-diffusion conditions. The single crystal X-ray diffraction revealed that divalent Cu cations in complexes 1 and 2 imply that the reactant, Cu(I), was involved in the redox process. They formed binuclear complexes according to bridging S from DDTC ligands and O atoms from ethanol molecules respectively. The mixed valence Cu cations had two types of coordination environments in complex 3 and formed a two-dimensional layered coordination polymer by bridging the five-core Cu(I) clusters and Cu(II). The powder X-ray diffraction, luminescent, thermogravimetric analysis, etc. were also studied in this paper.

  15. Reactivity of tris(acetylacetonato) iron(III) with tridentate [ONO] donor Schiff base as an access to newer mixed-ligand iron(III) complexes

    NASA Astrophysics Data System (ADS)

    Bhattacharjee, Chira R.; Goswami, Pankaj; Pramanik, Harun A. R.; Paul, Pradip C.; Mondal, Paritosh

    2011-05-01

    Two new mixed-ligand iron(III) complexes, [Fe(L n)(acac)(C 2H 5OH)] incorporating coordinated ethanol from the reaction solvent were accessed from the reaction of [Fe(acac) 3] with [ONO] donor dibasic tridentate unsymmetrical Schiff base ligands derived from condensation of 2-hydroxy-1-napthaldehyde with 2-aminophenol (H 2L 1) or 2-aminobenzoic acid (H 2L 2). The thermal study (TGA-DTA) provided evidence for weakly bound ethanol which is readily substituted by neutral N-donor molecule imidazole, benzimidazole or pyridine to produce an array of newer complexes, [Fe(L n)(acac)X] ( n = 1, 2; X = Im, Bim, Py). The compounds were characterized by elemental analyses, FT-IR, UV-vis, solution electrical conductivity, FAB mass, 1H and 13C NMR spectroscopy. Room temperature magnetic susceptibility measurements ( μeff ˜ 5.8 B.M.) are consistent with spin-free octahedral iron(III) complexes. Cyclic voltammetry of ethanol complexes revealed a quasi-reversible one electron redox response (Δ Ep > 100 mV) for the Fe(III)/Fe(II) couple. Low half wave redox potential ( E1/2) values suggested easy redox susceptibility. The ground state geometries of the ethanol and imidazole complexes have been ascertained to be distorted octahedral by density functional theory using DMol3 program at BLYP/DNP level.

  16. Synthesis, structural characterization, in vitro antimicrobial and anticancer activity studies of ternary metal complexes containing glycine amino acid and the anti-inflammatory drug lornoxicam

    NASA Astrophysics Data System (ADS)

    Mahmoud, Walaa H.; Mohamed, Gehad G.; El-Dessouky, Maher M. I.

    2015-02-01

    Mixed ligand complexes were synthesized using lornoxicam (LOR) as the primary ligand and glycine amino acid (HGly) as the secondary ligand. They were characterized by FT-IR, UV-Vis, mass, 1H NMR, ESR spectral studies, TG-DTG, X-ray powder diffraction and physical analytical studies. From the molar conductance, magnetic moment and electronic spectral data of the synthesized complexes, general formulae of [M(LOR)2(Gly)]·Xn·yH2O where M = Cr(III) (X = Cl, n = 2, y = 3), Mn(II) (X = Cl, n = 1, y = 1), Co(II) (X = BF4, n = 1, y = 0), Ni(II) (X = Cl, n = 1, y = 0), Cu(II) (X = BF4, n = 1, y = 2) and Zn(II) (X = BF4, n = 1, y = 2) and (M = Fe(II) (X = BF4, n = 1, y = 1) and Fe(III) (X = Cl, n = 2, y = 1) with an octahedral structure were proposed. Thermal analyses show that the complexes lose water molecules of hydration initially and subsequently expel anionic parts and organic ligands in continuous steps. The kinetic parameters namely E, ΔH∗, ΔS∗ and ΔG∗ illustrate the spontaneous association of the metal and ligands in the formation of the complexes. The antimicrobial efficiency of the LOR and HGly ligands and the ternary complexes were examined by in vitro method against various pathogenic bacterial and fungal strains. The metal complexes were found to possess efficient antimicrobial properties compared to lornoxicam and most of these complexes could turn out to be excellent models for the design of effective antibiotic drug substances. Also, the two ligands, in comparison to ternary metal complexes are screened for their anticancer activity against breastic cancer cell line. The results showed that the metal complexes be more active than the parent LOR and glycine free ligands except Cr(III) ternary complex which was found to be inactive.

  17. Effect of lanthanide contraction on the mixed polyamine systems Ln/Sb/Se/(en+dien) and Ln/Sb/Se/(en+trien): Syntheses and characterizations of lanthanide complexes with a tetraelenidoantimonate ligand

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao Jing; Liang Jingjing; Pan Yingli

    Mixed polyamine systems Ln/Sb/Se/(en+dien) and Ln/Sb/Se/(en+trien) (Ln=lanthanide, en=ethylenediamine, dien=diethylenetriamine, trien=triethylenetetramine) were investigated under solvothermal conditions, and novel mixed-coordinated lanthanide(III) complexes [Ln(en){sub 2}(dien)({eta}{sup 2}-SbSe{sub 4})] (Ln=Ce(1a), Nd(1b)), [Ln(en){sub 2}(dien)(SbSe{sub 4})] (Ln=Sm(2a), Gd(2b), Dy(2c)), [Ln(en)(trien)({mu}-{eta}{sup 1},{eta}{sup 2}-SbSe{sub 4})]{sub {infinity}} (Ln=Ce(3a), Nd(3b)) and [Sm(en)(trien)({eta}{sup 2}-SbSe{sub 4})] (4a) were prepared. Two structural types of lanthanide selenidoantimonates were obtained across the lanthanide series in both en+dien and en+trien systems. The tetrahedral anion [SbSe{sub 4}]{sup 3-} acts as a monodentate ligand mono-SbSe{sub 4}, a bidentate chelating ligand {eta}{sup 2}-SbSe{sub 4} or a tridentate bridging ligand {mu}-{eta}{sup 1},{eta}{sup 2}-SbSe{sub 4} to the lanthanide(III) center depending on themore » Ln{sup 3+} ions and the mixed ethylene polyamines, indicating the effect of lanthanide contraction on the structures of the lanthanide(III) selenidoantimonates. The lanthanide selenidoantimonates exhibit semiconducting properties with E{sub g} between 2.08 and 2.51 eV. - Graphical Abstract: Two structural types of lanthanide(III) selenidoantimonates are formed in both en-dien and en-trien mixed polyamines across lanthanide series, indicating the lanthanide contraction effect on the structures of the lanthanide(III) selenidoantimonates. Highlights: > Two structural types of lanthanide selenidoantimonates are prepared across the lanthanide series in both Ln/Sb/Se/(en+dien) and Ln/Sb/Se/(en+trien) systems. > The [SbSe{sub 4}]{sup 3-} anion acts as a mono-SbSe{sub 4}, a {eta}{sup 2}-SbSe{sub 4} or a {mu}-{eta}{sup 1},{eta}{sup 2}-SbSe{sub 4} ligand to the Ln{sup 3+} ions. > The soft base ligand [SbSe{sub 4}]{sup 3-} can be controlled to coordinate to the Ln{sup 3+} ions with en+dien and en+trien as co-ligands.« less

  18. Reversing Conventional Reactivity of Mixed Oxo/Alkyl Rare-Earth Complexes: Non-Redox Oxygen Atom Transfer.

    PubMed

    Hong, Jianquan; Tian, Haiwen; Zhang, Lixin; Zhou, Xigeng; Del Rosal, Iker; Weng, Linhong; Maron, Laurent

    2018-01-22

    The preferential substitution of oxo ligands over alkyl ones of rare-earth complexes is commonly considered as "impossible" due to the high oxophilicity of metal centers. Now, it has been shown that simply assembling mixed methyl/oxo rare-earth complexes to a rigid trinuclear cluster framework cannot only enhance the activity of the Ln-oxo bond, but also protect the highly reactive Ln-alkyl bond, thus providing a previously unrecognized opportunity to selectively manipulate the oxo ligand in the presence of numerous reactive functionalities. Such trimetallic cluster has proved to be a suitable platform for developing the unprecedented non-redox rare-earth-mediated oxygen atom transfer from ketones to CS 2 and PhNCS. Controlled experiments and computational studies shed light on the driving force for these reactions, emphasizing the importance of the sterical accessibility and multimetallic effect of the cluster framework in promoting reversal of reactivity of rare-earth oxo complexes. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Novel mixed ligand technetium complexes as 5-HT1A receptor imaging agents.

    PubMed

    León, A; Rey, A; Mallo, L; Pirmettis, I; Papadopoulos, M; León, E; Pagano, M; Manta, E; Incerti, M; Raptopoulou, C; Terzis, A; Chiotellis, E

    2002-02-01

    The synthesis, characterization and biological evaluation of two novel 3 + 1 mixed ligand 99mTc-complexes, bearing the 1-(2-methoxyphenylpiperazine) moiety, a fragment of the true 5-HT1A antagonist WAY 100635, is reported. Complexes at tracer level 99mTcO[(CH3CH2)2NCH2CH2N(CH2CH2S)2][o-CH3OC6H4N(CH2CH2)2NCH2CH2S], 99mTc-1, and 99mTcO[((CH3)2CH)2NCH2CH2N(CH2CH2S)2][o-CH3OC6H4N (CH2CH2)2NCH2CH2S], 99mTc-2, were prepared using 99mTc-glucoheptonate as precursor. For structural characterization, the analogous oxorhenium complexes, Re-1 and Re-2, were prepared by ligand exchange reaction using ReOCl3(PPh3)2 as precursor, and characterized by elemental analysis and spectroscopic methods. Complex Re-1 was further characterized by crystallographic analysis. Labeling was performed with high yield (>85%) and radiochemical purity (>90%) using very low ligand concentration. The structure of 99mTc complexes was established by comparative HPLC using the well-characterized oxorhenium analogues as references. In vitro binding assays demonstrated the affinity of these complexes for 5-HT1A receptors (IC50 : 67 and 45 nM for Re-1 and Re-2 respectively). Biological studies in mice showed the ability of 99mTc-1 and 99mTc-2 complexes to cross the intact blood-brain barrier (1.4 and 0.9% dose/g, respectively at 1 min post-inj.). The distribution of these complexes in various regions in rat brain is inhomogeneous. The highest ratio between areas reach and poor in 5-HT1A receptors was calculated for complex Tc-1 at 60 min p.i. (hippocampus/cerebellum = 1.7).

  20. Measuring Aptamer Equilbria Using Gradient Micro Free Flow Electrophoresis

    PubMed Central

    Turgeon, Ryan T.; Fonslow, Bryan R.; Jing, Meng; Bowser, Michael T.

    2010-01-01

    Gradient micro free flow electrophoresis (μFFE) was used to observe the equilibria of DNA aptamers with their targets (IgE or HIVRT) across a range of ligand concentrations. A continuous stream of aptamer was mixed online with an increasing concentration of target and introduced into the μFFE device, which separated ligand-aptamer complexes from the unbound aptamer. The continuous nature of μFFE allowed the equilibrium distribution of aptamer and complex to be measured at 300 discrete target concentrations within 5 minutes. This is a significant improvement in speed and precision over affinity capillary electrophoresis (ACE) assays. The dissociation constant of the aptamer-IgE complex was estimated to be 48± 3 nM. The high coverage across the range of ligand concentrations allowed complex stoichiometries of the aptamer-HIVRT complexes to be observed. Nearly continuous observation of the equilibrium distribution from 0 to 500 nM HIVRT revealed the presence of complexes with 3:1 (aptamer:HIVRT), 2:1 and 1:1 stoichiometries. PMID:20373790

  1. Structural, molecular orbital and optical characterizations of binuclear mixed ligand copper (II) complex of phthalate with N,N,N',N'-tetramethylethylenediamine and its applications.

    PubMed

    Taha, A; Farag, A A M; Ammar, A H; Ahmed, H M

    2014-09-15

    A new binuclear mixed ligand complex, [Cu2(Phth)(Me4en)2(H2O)2(NO3)2]·H2O (where, Phth=phthalate, and (Me4en)=N,N,N',N'tetramethylethylenediamine) was synthesized and characterized using analytical, spectral, magnetic, molar conductance, thermal gravimetric analysis (TGA), X-ray diffraction (XRD) and transmission electron microscope (TEM) measurements. The XRD data of Cu(II)-complex was analyzed on the basis of Williamson-Hall (W-H) and compared with TEM results. The results indicate that the complex is well crystalline and correspond to hexagonal crystal structure. Analysis of the absorption coefficient near the absorption edge reveals that the optical band gaps are indirect allowed transition with values of 1.17 and 1.78 eV. The d-d absorption bands of the complex (dissolved in various solvents) exhibit a color changes (solvatochromic). Specific and non-specific interactions of solvent molecules with the complex were investigated using Multiple Linear Regression Analysis (MLRA). Transient photocurrent characteristics of Cu(II)-complex/n-Si heterojunctions indicate that photocurrent under illumination increase with increasing of light intensity and explained by continuous distribution of traps. Structural parameters of the free ligands and their Cu(II)-complex were calculated on the basis of semi-empirical PM3 level and compared with the experimental data. The present copper (II) complex was screened for its antimicrobial activity against some Gram-positive and Gram-negative bacteria and fungus strain. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Computational design of enzyme-ligand binding using a combined energy function and deterministic sequence optimization algorithm.

    PubMed

    Tian, Ye; Huang, Xiaoqiang; Zhu, Yushan

    2015-08-01

    Enzyme amino-acid sequences at ligand-binding interfaces are evolutionarily optimized for reactions, and the natural conformation of an enzyme-ligand complex must have a low free energy relative to alternative conformations in native-like or non-native sequences. Based on this assumption, a combined energy function was developed for enzyme design and then evaluated by recapitulating native enzyme sequences at ligand-binding interfaces for 10 enzyme-ligand complexes. In this energy function, the electrostatic interaction between polar or charged atoms at buried interfaces is described by an explicitly orientation-dependent hydrogen-bonding potential and a pairwise-decomposable generalized Born model based on the general side chain in the protein design framework. The energy function is augmented with a pairwise surface-area based hydrophobic contribution for nonpolar atom burial. Using this function, on average, 78% of the amino acids at ligand-binding sites were predicted correctly in the minimum-energy sequences, whereas 84% were predicted correctly in the most-similar sequences, which were selected from the top 20 sequences for each enzyme-ligand complex. Hydrogen bonds at the enzyme-ligand binding interfaces in the 10 complexes were usually recovered with the correct geometries. The binding energies calculated using the combined energy function helped to discriminate the active sequences from a pool of alternative sequences that were generated by repeatedly solving a series of mixed-integer linear programming problems for sequence selection with increasing integer cuts.

  3. Copper-phospholipid interaction at cell membrane model hydrophobic surfaces.

    PubMed

    Mlakar, Marina; Cuculić, Vlado; Frka, Sanja; Gašparović, Blaženka

    2018-04-01

    Detailed investigation of Cu (II) binding with natural lipid phosphatidylglycerol (PG) in aqueous solution was carried out by voltammetric measurements at the mercury drop electrode, complemented by monolayer studies in a Langmuir trough and electrophoretic measurements, all used as models for hydrophobic cell membranes. Penetration of copper ions into the PG layer was facilitated by the formation of hydrophilic Cu-Phenanthroline (Phen) complex in the subphase, followed by the mixed ligand Cu-Phen-PG complex formation at the hydrophobic interface. Electrophoretic measurements indicated a comparatively low abundance of the formed mixed ligand complex within the PG vesicles, resulting it the zeta potential change of +0.83mV, while monolayer studies confirmed their co-existence at the interface. The Cu-Phen-PG complex was identified in the pH range from 6 to 9. The stoichiometry of the complex ([PhenCuOHPG]), as well as its stability and kinetics of formation, were determined at the mercury drop electrode. Cu-Phen-PG reduces quasireversibly at about -0.7V vs. Ag/AgCl including reactant adsorption, followed by irreversible mixed complex dissociation, indicating a two-electron transfer - chemical reaction (EC mechanism). Consequently, the surface concentration (γ) of the adsorbed [PhenCuOHPG] complex at the hydrophobic electrode surface was calculated to be (3.35±0.67)×10 -11 molcm -2 . Information on the mechanism of Cu (II) - lipid complex formation is a significant contribution to the understanding of complex processes at natural cell membranes. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Biodegradation of Metal-EDTA Complexes by an Enriched Microbial Population

    PubMed Central

    Thomas, Russell A. P.; Lawlor, Kirsten; Bailey, Mark; Macaskie, Lynne E.

    1998-01-01

    A mixed culture utilizing EDTA as the sole carbon source was isolated from a mixed inoculum of water from the River Mersey (United Kingdom) and sludge from an industrial effluent treatment plant. Fourteen component organisms were isolated from the culture, including representatives of the genera Methylobacterium, Variovorax, Enterobacter, Aureobacterium, and Bacillus. The mixed culture biodegraded metal-EDTA complexes slowly; the biodegradability was in the order Fe>Cu>Co>Ni>Cd. By incorporation of inorganic phosphate into the medium as a precipitant ligand, heavy metals were removed in parallel to EDTA degradation. The mixed culture also utilized a number of possible EDTA degradation intermediates as carbon sources. PMID:9546167

  5. Ligand effects on the ferro- to antiferromagnetic exchange ratio in bis(o-semiquinonato)copper(II).

    PubMed

    Ovcharenko, Victor I; Gorelik, Elena V; Fokin, Sergey V; Romanenko, Galina V; Ikorskii, Vladimir N; Krashilina, Anna V; Cherkasov, Vladimir K; Abakumov, Gleb A

    2007-08-29

    Heterospin complexes [Cu(SQ)2Py].C7H8, Cu(SQ)2DABCO, and [Cu(SQ)2NIT-mPy].C6H6, where Cu(SQ)2 is bis(3,6-di-tert-butyl-o-benzosemiquinonato)copper(II), DABCO is 1,4-diazabicyclo(2,2,2)octane, and NIT-mPy is the nitronyl nitroxide 2-(pyridin-3-yl)-4,4,5,5-tetramethyl-4,5-dihydro-1H-imidazole-3-oxide-1-oxyl, have been synthesized. The molecules of these complexes have a specific combination of the intramolecular ferro- and antiferromagnetic exchange interactions between the odd electrons of Cu(II) and SQ ligands, characterized by large exchange coupling parameters |J| approximately 100-300 cm(-1). X-ray and magnetochemical studies of a series of mixed-ligand compounds revealed that an extra ligand (Py, NIT-mPy, or DABCO) coordinated to the metal atom produces a dramatic effect on the magnetic properties of the complex, changing the multiplicity of the ground state. Quantum chemical analysis of magnetostructural correlations showed that the energy of the antiferromagnetic exchange interaction between the odd electrons of the SQ ligands in the Cu(SQ)2 bischelate is extremely sensitive to both the nature of the extra ligand and structural distortions of the coordination unit, arising from extra ligand coordination.

  6. DNA binding of supramolecular mixed-metal complexes

    NASA Astrophysics Data System (ADS)

    Swavey, Shawn; Williams, Rodd L.; Fang, Zhenglai; Milkevitch, Matthew; Brewer, Karen J.

    2001-10-01

    The high binding affinity of cisplatin toward DNA has led to its popularity as an anticancer agent. Due to cumulative drug resistance and toxic side effects, researchers are exploring related metallodrugs. Our approach involves the use of supramolecular complexes. These mixed-metal complexes incorporate a reactive platinum moiety bridged by a polyazine ligand to a light absorbing metal-based chromophore. The presence of the light absorber allows excitation of these systems, opening up the possibility of photoactivation. The use of a supramolecular design allows components of the assembly to be varied to enhance device function and light absorbing properties. Aspects of our molecular design process and results on the DNA binding properties for a number of these mixed-metal complexes will be discussed.

  7. Mixed-ligand cobalt(II) complexes of bioinorganic and medicinal relevance, involving dehydroacetic acid and β-diketones: Their synthesis, hyphenated experimental-DFT, thermal and bactericidal facets

    NASA Astrophysics Data System (ADS)

    Maurya, R. C.; Malik, B. A.; Mir, J. M.; Vishwakarma, P. K.; Rajak, D. K.; Jain, N.

    2015-11-01

    The present report pertains to synthesis and combined experimental-DFT studies of a series of four novel mixed-ligand complexes of cobalt(II) of the general composition [Co(dha)(L)(H2O)2], where dhaH = dehydroacetic acid, LH = β-ketoenolates viz., o-acetoacetotoluidide (o-aatdH), o-acetoacetanisidide (o-aansH), acetylacetone (acacH) or 1-benzoylacetone (1-bac). The resulting complexes were formulated based on elemental analysis, molar conductance, magnetic measurements, mass spectrometric, IR, electronic, electron spin resonance and cyclic voltammetric studies. The TGA based thermal behavior of one representative complex was evaluated. Molecular geometry optimizations and vibrational frequency calculations have been performed with Gaussian 09 software package by using density functional theory (DFT) methods with B3LYP/LANL2MB combination for dhaH and one of its complexes, [Co(dha)(1-bac)(H2O)2]. Theoretical data has been found in an excellent agreement with the experimental results. Based on experimental and theoretical data, suitable trans-octahedral structure has been proposed for the present class of complexes. Moreover, the complexes also showed a satisfactory antibacterial activity.

  8. Reactivity of tris(acetylacetonato) iron(III) with tridentate [ONO] donor Schiff base as an access to newer mixed-ligand iron(III) complexes.

    PubMed

    Bhattacharjee, Chira R; Goswami, Pankaj; Pramanik, Harun A R; Paul, Pradip C; Mondal, Paritosh

    2011-05-01

    Two new mixed-ligand iron(III) complexes, [Fe(L(n))(acac)(C(2)H(5)OH)] incorporating coordinated ethanol from the reaction solvent were accessed from the reaction of [Fe(acac)(3)] with [ONO] donor dibasic tridentate unsymmetrical Schiff base ligands derived from condensation of 2-hydroxy-1-napthaldehyde with 2-aminophenol (H(2)L(1)) or 2-aminobenzoic acid (H(2)L(2)). The thermal study (TGA-DTA) provided evidence for weakly bound ethanol which is readily substituted by neutral N-donor molecule imidazole, benzimidazole or pyridine to produce an array of newer complexes, [Fe(L(n))(acac)X] (n=1, 2; X=Im, Bim, Py). The compounds were characterized by elemental analyses, FT-IR, UV-vis, solution electrical conductivity, FAB mass, (1)H and (13)C NMR spectroscopy. Room temperature magnetic susceptibility measurements (μ(eff)∼5.8 B.M.) are consistent with spin-free octahedral iron(III) complexes. Cyclic voltammetry of ethanol complexes revealed a quasi-reversible one electron redox response (ΔE(p)>100 mV) for the Fe(III)/Fe(II) couple. Low half wave redox potential (E(1/2)) values suggested easy redox susceptibility. The ground state geometries of the ethanol and imidazole complexes have been ascertained to be distorted octahedral by density functional theory using DMol3 program at BLYP/DNP level. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. DFT study of uranyl peroxo complexes with H2O, F-, OH-, CO3(2-), and NO3(-).

    PubMed

    Odoh, Samuel O; Schreckenbach, Georg

    2013-05-06

    The structural and electronic properties of monoperoxo and diperoxo uranyl complexes with aquo, fluoride, hydroxo, carbonate, and nitrate ligands have been studied using scalar relativistic density functional theory (DFT). Only the complexes in which the peroxo ligands are coordinated to the uranyl moiety in a bidentate mode were considered. The calculated binding energies confirm that the affinity of the peroxo ligand for the uranyl group far exceeds that of the F(-), OH(-), CO3(2-), NO3(-), and H2O ligands. The formation of the monoperoxo complexes from UO2(H2O)5(2+) and HO2(-) were found to be exothermic in solution. In contrast, the formation of the monouranyl-diperoxo, UO2(O2)2X2(4-) or UO2(O2)2X(4-/3-) (where X is any of F(-), OH(-), CO3(2-), or NO3(-)), complexes were all found to be endothermic in aqueous solution. This suggests that the monoperoxo species are the terminal monouranyl peroxo complexes in solution, in agreement with recent experimental work. Overall, we find that the properties of the uranyl-peroxo complexes conform to well-known trends: the coordination of the peroxo ligand weakens the U-O(yl) bonds, stabilizes the σ(d) orbitals and causes a mixing between the uranyl π- and peroxo σ- and π-orbitals. The weakening of the U-O(yl) bonds upon peroxide coordination results in uranyl stretching vibrational frequencies that are much lower than those obtained after the coordination of carbonato or hydroxo ligands.

  10. Preparation, characterization and cytotoxicity studies of some transition metal complexes with ofloxacin and 1,10-phenanthroline mixed ligand

    NASA Astrophysics Data System (ADS)

    Sadeek, S. A.; El-Hamid, S. M. Abd

    2016-10-01

    [Zn(Ofl)(Phen)(H2O)2](CH3COO)·2H2O (1), [ZrO(Ofl)(Phen)(H2O)]NO3·2H2O (2) and [UO2(Ofl)(Phen)(H2O)](CH3COO)·H2O (3) complexes of fluoroquinolone antibacterial agent ofloxacin (HOfl), containing a nitrogen donor heterocyclic ligand, 1,10-phenathroline monohydrate (Phen), were prepared and their structures were established with the help of elemental analysis, molar conductance, magnetic properties, thermal studies and different spectroscopic studies like IR, UV-Vis., 1H NMR and Mass. The IR data of HOfl and Phen ligands suggested the existing of a bidentate binding involving carboxylate O and pyridone O for HOfl ligand and two pyridine N atoms for Phen ligand. The coordination geometries and electronic structures are determined from electronic absorption spectra and magnetic moment measurements. From molar conductance studies reveals that metal complexes are electrolytes and of 1:1 type. The calculated bond length and force constant, F(Udbnd O), in the uranyl complex are 1.751 Å and 641.04 Nm-1. The thermal properties of the complexes were investigated by thermogravimetry (TGA) technique. The activation thermodynamic parameters are calculated using Coats-Redfern and Horowitz-Metzger methods. Antimicrobial activity of the compounds was evaluated against some bacteria and fungi species. The activity data show that most metal complexes have antibacterial activity than that of the parent HOfl drug. The in vitro cytotoxicities of ligands and their complexes were also evaluated against human breast and colon carcinoma cells.

  11. Two novel mixed-ligand complexes containing organosulfonate ligands.

    PubMed

    Li, Mingtian; Huang, Jun; Zhou, Xuan; Fang, Hua; Ding, Liyun

    2008-07-01

    The structures reported herein, viz. bis(4-aminonaphthalene-1-sulfonato-kappaO)bis(4,5-diazafluoren-9-one-kappa(2)N,N')copper(II), [Cu(C(10)H(8)NO(3)S)(2)(C(11)H(6)N(2)O)(2)], (I), and poly[[[diaquacadmium(II)]-bis(mu-4-aminonaphthalene-1-sulfonato)-kappa(2)O:N;kappa(2)N:O] dihydrate], {[Cd(C(10)H(8)NO(3)S)(2)(H(2)O)(2)].2H(2)O}(n), (II), are rare examples of sulfonate-containing complexes where the anion does not fulfill a passive charge-balancing role, but takes an active part in coordination as a monodentate and/or bridging ligand. Monomeric complex (I) possesses a crystallographic inversion center at the Cu(II) atom, and the asymmetric unit contains one-half of a Cu atom, one complete 4-aminonaphthalene-1-sulfonate (ans) ligand and one 4,5-diazafluoren-9-one (DAFO) ligand. The Cu(II) atom has an elongated distorted octahedral coordination geometry formed by two O atoms from two monodentate ans ligands and by four N atoms from two DAFO molecules. Complex (II) is polymeric and its crystal structure is built up by one-dimensional chains and solvent water molecules. Here also the cation (a Cd(II) atom) lies on a crystallographic inversion center and adopts a slightly distorted octahedral geometry. Each ans anion serves as a bridging ligand linking two Cd(II) atoms into one-dimensional infinite chains along the [010] direction, with each Cd(II) center coordinated by four ans ligands via O and N atoms and by two aqua ligands. In both structures, there are significant pi-pi stacking interactions between adjacent ligands and hydrogen bonds contribute to the formation of two- and three-dimensional networks.

  12. Bis-lactam-1,10-phenanthroline (BLPhen), a New Type of Preorganized Mixed N,O-Donor Ligand That Separates Am(III) over Eu(III) with Exceptionally High Efficiency

    DOE PAGES

    Jansone-Popova, Santa; Ivanov, Alexander S.; Bryantsev, Vyacheslav S.; ...

    2017-05-04

    Here, we report a new family of preorganized bislactam- 1,10-phenanthroline (BLPhen) complexants that possess both hard and soft donor atoms within a convergent cavity and show unprecedented extraction strength for the trivalent fblock metal ions. BLPhen ligands with saturated and unsaturated δ-lactam rings have notable differences in their affinity and selectivity for Am(III) over Eu(III), with the latter being the most selective mixed N,O-donor extractant of Am(III) reported to date. Saturated BLPhen was crystallized with five Ln(III) nitrates to form charge-neutral 1:1 complexes in the solid state. DFT calculations further elaborate on the variety of effects that dictate the performancemore » of these preorganized compounds.« less

  13. Multispectroscopic DNA-Binding studies and antimicrobial evaluation of new mixed-ligand Silver(I) complex and nanocomplex: A comparative study

    NASA Astrophysics Data System (ADS)

    Movahedi, Elaheh; Rezvani, Ali Reza

    2018-05-01

    A novel mixed-ligand Ag(I) complex, , has been synthesized and characterized by the elemental analysis, IR spectroscopy and 1HNMR. In the formula, dian and phen are N-(4,5-diazafluoren-9-ylidene)aniline and 1,10-phenanthroline, respectively. This complex also has been prepared at nano size by sonochemical technique and characterized by the FTIR and scanning electron microscopy (SEM). To evaluate the biological preferences of the Ag(I) complex and nanocomplex and verify the relationships between the structure and biological function, in vitro DNA binding and antibacterial experiments have been carried out. DNA-complex interaction has been pursued by electronic absorption titration, luminescence titration, competitive binding experiment, effect of ionic strength, thermodynamic studies, viscometric evaluation and circular dichroism spectroscopy in the physiological pH. Each compound displays significant binding trend to the CT-DNA. The mode of binding to the CT-DNA probably is a moderate intercalation mode with the partial insertion of the planar ligands between the base stacks of double-stranded DNA. The relative viscosities and circular dichroism spectra of the CT-DNA with the complex solutions, confirm the intense interactions of the Ag(I) complex and nanocomplex with DNA. An in vitro antibacterial test of the complex and nanocomplex on a series of the Gram-positive bacteria (Staphylococcus aureus, Enterococcus faecalis) and the Gram-negative bacteria (Escherichia coli, Pseudomonas aeruginosa) shows a remarkable antibacterial feature of the Ag(I) complex. The MIC values (minimum inhibitory concentration) of the compounds compare with silver nitrate and silver sulfadiazine. The bacterial inhibitions of the Ag(I) complex and nanocomplex are agreed to their DNA binding affinities.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kleinlein, Claudia; Zheng, Shao-Liang; Betley, Theodore A.

    Three ferric dipyrromethene complexes featuring different ancillary ligands were synthesized by one electron oxidation of ferrous precursors. Four-coordinate iron complexes of the type ( ArL)FeX 2 [ ArL = 1,9-(2,4,6-Ph 3C 6H 2) 2-5-mesityldipyrromethene] with X = Cl or tBuO were prepared and found to be high-spin (S = 5/2), as determined by superconducting quantum interference device magnetometry, electron paramagnetic resonance, and 57Fe Mössbauer spectroscopy. The ancillary ligand substitution was found to affect both ground state and excited properties of the ferric complexes examined. While each ferric complex displays reversible reduction and oxidation events, each alkoxide for chloride substitution resultsmore » in a nearly 600 mV cathodic shift of the Fe III/II couple. The oxidation event remains largely unaffected by the ancillary ligand substitution and is likely dipyrrin-centered. While the alkoxide substituted ferric species largely retain the color of their ferrous precursors, characteristic of dipyrrin-based ligand-to-ligand charge transfer (LLCT), the dichloride ferric complex loses the prominent dipyrrin chromophore, taking on a deep green color. Time-dependent density functional theory analyses indicate the weaker-field chloride ligands allow substantial configuration mixing of ligand-to-metal charge transfer into the LLCT bands, giving rise to the color changes observed. Furthermore, the higher degree of covalency between the alkoxide ferric centers is manifest in the observed reactivity. Delocalization of spin density onto the tert-butoxide ligand in ( ArL)FeCl(O tBu) is evidenced by hydrogen atom abstraction to yield ( ArL)FeCl and HOtBu in the presence of substrates containing weak C–H bonds, whereas the chloride ( ArL)FeCl 2 analogue does not react under these conditions.« less

  15. Ruthenium(II) bipyridine complexes bearing new keto-enol azoimine ligands: synthesis, structure, electrochemistry and DFT calculations.

    PubMed

    Al-Noaimi, Mousa; Awwadi, Firas F; Mansi, Ahmad; Abdel-Rahman, Obadah S; Hammoudeh, Ayman; Warad, Ismail

    2015-01-25

    The novel azoimine ligand, Ph-NH-N=C(COCH3)-NHPh(C≡CH) (H2L), was synthesized and its molecular structure was determined by X-ray crystallography. Catalytic hydration of the terminal acetylene of H2L in the presence of RuCl3·3H2O in ethanol at reflux temperature yielded a ketone (L1=Ph-N=N-C(COCH3)=N-Ph(COCH3) and an enol (L2=Ph-N=N-C(COCH3)=N-PhC(OH)=CH2) by Markovnikov addition of water. Two mixed-ligand ruthenium complexes having general formula, trans-[Ru(bpy)(Y)Cl2] (1-2) (where Y=L1 (1) and Y=L2 (2), bpy is 2.2'-bipyrdine) were achieved by the stepwise addition of equimolar amounts of (H2L) and bpy ligands to RuCl3·3H2O in absolute ethanol. Theses complexes were characterized by elemental analyses and spectroscopic (IR, UV-Vis, and NMR (1D (1)H NMR, (13)C NMR, (DEPT-135), (DEPT-90), 2D (1)H-(1)H and (13)C-(1)H correlation (HMQC) spectroscopy)). The two complexes exhibit a quasi-reversible one electron Ru(II)/Ru(III) oxidation couple at 604 mV vs. ferrocene/ferrocenium (Cp2Fe(0/+)) couple along with one electron ligand reduction at -1010 mV. The crystal structure of complex 1 showed that the bidentate ligand L1 coordinates to Ru(II) by the azo- and imine-nitrogen donor atoms. The complex adopts a distorted trans octahedral coordination geometry of chloride ligands. The electronic spectra of 1 and 1+ in dichloromethane have been modeled by time-dependent density functional theory (TD-DFT). Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Coordination properties of tridentate (N,O,O) heterocyclic alcohol (PDC) with Cu(II). Mixed ligand complex formation reactions of Cu(II) with PDC and some bio-relevant ligands.

    PubMed

    El-Sherif, Ahmed A; Shoukry, Mohamed M

    2007-03-01

    The formation equilibria of copper(II) complexes and the ternary complexes Cu(PDC)L (PDC=2,6-bis-(hydroxymethyl)-pyridine, HL=amino acid, amides or DNA constituents) have been investigated. Ternary complexes are formed by a simultaneous mechanism. The results showed the formation of Cu(PDC)L, Cu(PDC, H(-1))(L) and Cu(PDC, H(-2))(L) complexes. The concentration distribution of the complexes in solution is evaluated as a function of pH. The effect of dioxane as a solvent on the protonation constant of PDC and the formation constants of Cu(II) complexes are discussed. The thermodynamic parameters DeltaH degrees and DeltaS degrees calculated from the temperature dependence of the equilibrium constants are investigated.

  17. Two-dimensional turbulent flow chromatography coupled on-line to liquid chromatography-mass spectrometry for solution-based ligand screening against multiple proteins.

    PubMed

    Zhou, Jian-Liang; An, Jing-Jing; Li, Ping; Li, Hui-Jun; Jiang, Yan; Cheng, Jie-Fei

    2009-03-20

    We present herein a novel bioseparation/chemical analysis strategy for protein-ligand screening and affinity ranking in compound mixtures, designed to increase screening rates and improve sensitivity and ruggedness in performance. The strategy is carried out by combining on-line two-dimensional turbulent flow chromatography (2D-TFC) with liquid chromatography-mass spectrometry (LC-MS), and accomplished through the following steps: (1) a reversed-phase TFC stage to separate the protein/ligand complex from the unbound free molecules, (2) an on-line dissociation process to release the bound ligands from the complexes, and (3) a second mixed-mode cation-exchange/reversed-phase TFC stage to trap the bound ligands and to remove the proteins and salts, followed by LC-MS analysis for identification and determination of the binding affinities. The technique can implement an ultra-fast isolation of protein/ligand complex with the retention time of a complex peak in about 5s, and on-line prepare the "clean" sample to be directly compatible with the LC-MS analysis. The improvement in performance of this 2D-TFC/LC-MS approach over the conventional approach has been demonstrated by determining affinity-selected ligands of the target proteins acetylcholinesterase and butyrylcholinesterase from a small library with known binding affinities and a steroidal alkaloid library composed of structurally similar compounds. Our results show that 2D-TFC/LC-MS is a generic and efficient tool for high-throughput screening of ligands with low-to-high binding affinities, and structure-activity relationship evaluation.

  18. Structural, molecular orbital and optical characterizations of solvatochromic mixed ligand copper(II) complex of 5,5-Dimethyl cyclohexanate 1,3-dione and N,N,N',N'N″-pentamethyldiethylenetriamine.

    PubMed

    Taha, A; Farag, A A M; Ammar, A H; Ahmed, H M

    2014-03-25

    In this work, a new solvatochromic mononuclear mixed ligand complex with the formula, Cu(DMCHD)(Me5dien)NO3 (where, DMCHD=5,5-Dimethyl cyclohexanate 1,3-dione and (Me5dien)=N,N,N',N'N″-pentamethyldiethylenetriamine was synthesized and characterized by analytical, spectral, magnetic, molar conductance, thermal gravimetric analysis (TGA), X-ray diffraction (XRD) and transmission electron microscope (TEM) measurements. The formation constant-value for copper (II)-DMCHD was found to be much lower than the expected for similar β-diketones, revealing monobasic unidentate nature of this ligand. The d-d absorption bands of the prepared complex exhibit a color changes in various solvent (solvatochromic). Specific and non-specific interactions of solvent molecules with the complex were investigated using Multi Parametric Linear Regression Analysis (MLRA). Structural parameters of the free ligands and their Cu (II) - complex were calculated on the basis of semi-empirical PM3 level and compared with the experimental data. The crystallite size and morphology of Cu(DMCHD)(Me5dien)NO3 were examined using XRD analysis and TEM, revealing that the complex is well crystalline and correspond to the monoclinic crystal structure. The lattice strain and mean crystallite size were estimated by Williamson-Hall (W-H) plot using X-ray diffraction data. The main important absorption parameters such as extinction molar coefficient, oscillator strength and electric dipole strength of the principal optical transitions in the UV-Vis region were calculated. The analysis of absorption coefficient near the fundamental absorption edge reveals that the optical band gaps are direct allowed transitions with values of 2.78 eV and 3.59 eV. The present copper (II) complex was screened for its antimicrobial activity against Staphylococcus Aureus and Bacillus Subtilis as Gram-positive bacteria, Escherichia Coli and Salmonella Typhimurium as Gram-negative bacteria and Candida Albicans as fungus strain. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Voltage color tunable OLED with (Sm,Eu)-β-diketonate complex blend

    NASA Astrophysics Data System (ADS)

    Reyes, R.; Cremona, M.; Teotonio, E. E. S.; Brito, H. F.; Malta, O. L.

    2004-09-01

    Light emission from organic electroluminescent diodes (OLEDs) in which mixed samarium and europium β-diketonate complexes, [Sm 0.7Eu 0.3(TTA) 3(TPPO) 2], was used as the emitting layer is described. The electroluminescence spectra exhibit narrow peaks arising from 4f-intraconfigurational transitions of the Sm 3+ and Eu 3+ ions and a broad emission band attributed to the electrophosphorescence of the TTA ligand. The intensity ratio of the peaks determined by the bias voltage applied to the OLED, together with the ligand electrophosphorescence, allows to obtain a voltage-tunable color light source.

  20. New mixed ligand cobalt(II/III) complexes based on the drug sodium valproate and bioactive nitrogen-donor ligands. Synthesis, structure and biological properties

    NASA Astrophysics Data System (ADS)

    Abu Ali, Hijazi; Abu Shamma, Amani; Kamel, Shayma

    2017-08-01

    New cobalt valproate complexes with different nitrogen based ligands were synthesized and characterized using various techniques such as IR, UV-Vis, single crystal X-ray diffraction as well as other physical properties. The general formula of the prepared complexes is [Con(valp)m(L)z], (n = 1, 2 …; m = 1, 2, …; Z = 1, 2 …). The complexes [Co2(valp)4] (1), [Co(valp)2(2-ampy)2] (2) and [Co2(valp)4(quin)2] (3) showed different carboxylate coordination modes. The crystal structures of the complexes 2 and 3 were determined using single crystal X-ray diffraction. Kinetic studies of hydrolysis reactions of BNPP [bis-(p-nitrophenyl)phosphate] with complexes 2 and 3 were performed. The hydrolysis rate of BNPP was studied at different temperatures, pH and concentrations by UV-Vis spectrophotometric method. The results showed that the hydrolysis rate of BNPP was 7.70 × 102 L mol-1 s-1 for (3) and 2.60 × 10-1 L mol-1 s-1 for (2).

  1. Dynamic torsional motion of a diruthenium complex with four homo-catecholates and first synthesis of a diruthenium complex with mixed-catecholates

    NASA Astrophysics Data System (ADS)

    Chang, Ho-Chol; Mochizuki, Katsunori; Kitagawa, Susumu

    2008-11-01

    Dynamic properties of a diruthenium complex with ligand-unsupported Ru-Ru triple bonds, Na 2[Ru 2(3,6-DTBCat) 4] ( 1), were studied using variable-temperature 1H NMR. Structural freedom derived from the ligand-unsupported structure leads to torsional motion about the Ru-Ru bonds in THF and in DMF. The observed solvent dependency corresponds to the electrostatic interactions between the diruthenium complex and Na + counter cations, which are sensitive to the polarity of solvents. In addition, a new diruthenium complex, [{Na(THF) 2(H 2O)}{Na(THF) 0.5(H 2O)}{Ru 2(3,6-DTBCat) 2(H 4Cat) 2}] ( 2·2.5THF·2H 2O), with a ligand-unsupported Ru-Ru bond surrounded by two different kinds of catecholate derivatives, has been synthesized and crystallographically characterized. The complex, which was characterized by single-crystal structural analysis, will provide an opportunity to investigate not only static molecular structures but also dynamic physicochemical properties in comparison with analogues containing four identical catecholate derivatives.

  2. X-ray absorption spectral studies of copper (II) mixed ligand complexes

    NASA Astrophysics Data System (ADS)

    Soni, B.; Dar, Davood Ah; Shrivastava, B. D.; Prasad, J.; Srivastava, K.

    2014-09-01

    X-ray absorption spectra at the K-edge of copper have been studied in two copper mixed ligand complexes, one having tetramethyethylenediamine (tmen) and the other having tetraethyethylenediamine (teen) as one of the ligands. The spectra have been recorded at BL-8 dispersive extended X-ray absorption fine structure (EXAFS) beamline at the 2.5 GeV INDUS- 2 synchrotron, RRCAT, Indore, India. The data obtained has been processed using the data analysis program Athena. The energy of the K-absorption edge, chemical shift, edge-width and shift of the principal absorption maximum in the complexes have been determined and discussed. The values of these parameters have been found to be approximately the same in both the complexes indicating that the two complexes possess similar chemical environment around the copper metal atom. The chemical shift has been utilized to estimate effective nuclear charge on the absorbing atom. The normalized EXAFS spectra have been Fourier transformed. The position of the first peak in the Fourier transform gives the value of first shell bond length, which is shorter than the actual bond length because of energy dependence of the phase factors in the sine function of the EXAFS equation. This distance is thus the phase- uncorrected bond length. Bond length has also been determined by Levy's, Lytle's and Lytle, Sayers and Stern's (LSS) methods. The results obtained from LSS and the Fourier transformation methods are comparable with each other, since both are phase uncorrected bond lengths.

  3. Chemical and biological evaluation of moxifloxacin-benzimidazole mixed ligands complexes: Anti-cancer and anti-oxidant activities

    NASA Astrophysics Data System (ADS)

    Refaat, Heba M.; Noor El-Din, Doaa A.

    2018-07-01

    Novel complexes of the formula [M(MOX)(Ben)Cl(H2O)m].nH2O and [Ag(MOX)(Ben)] 3.5H2O; M = Co, Ni, and Zn, n = 1.5, 2 and 1, m = 0 or 2, MOX; Moxifloxacin and Ben; benzimidazole, were synthesized. Their effect on different cancer cells together with bacterial and fungal activity was determined. Formulation of the complexes was based on elemental analyses, different spectrophotometric methods (FT-IR, UV/Vis, NMR), and magnetic studies. FT-IR data indicated that the bonding of the Co(II), Ni(II) and Zn(II) ions with MOX to be achieved through the quinolone and carboxylate oxygen atoms. On the other hand Ag(I) bonded to the MOX through hydro-pyrrolopyridine nitrogen atom. TGA and DTA studies for the metal complexes showed them to possess considerable stability. Thermodynamic parameters ΔE*, ΔS* and ΔH* were evaluated and the appearance of fractional orders suggested that the reactions proceed via complicated mechanisms. The novel mixed ligands complexes were evaluated for their biological activity against the bacterial species (S. aureus) and (E. coli) and the fungal species Aspergillus flavus and Candida albicans. The complexes were found to possess better antibacterial and antifungal activities compared to the Moxifloxacin ligand. The compounds' effects were also screened for their anti-oxidant activity by DPPH method and were tested for their cytotoxicity activity against Breast cancer cell lines (MCF-7), Colon carcinoma cells (HCT) and Hepatocellular carcinoma cells (HepG2) by viability assay method.

  4. Synthesis and characterization of fac-[M(CO)3(P)(OO)] and cis-trans-[M(CO)2(P)2(OO)] complexes (M = Re, (99m)Tc) with acetylacetone and curcumin as OO donor bidentate ligands.

    PubMed

    Triantis, Charalampos; Tsotakos, Theodoros; Tsoukalas, Charalampos; Sagnou, Marina; Raptopoulou, Catherine; Terzis, Aris; Psycharis, Vassilis; Pelecanou, Maria; Pirmettis, Ioannis; Papadopoulos, Minas

    2013-11-18

    The synthesis and characterization of neutral mixed ligand complexes fac-[M(CO)3(P)(OO)] and cis-trans-[M(CO)2(P)2(OO)] (M = Re, (99m)Tc), with deprotonated acetylacetone or curcumin as the OO donor bidentate ligands and a phosphine (triphenylphosphine or methyldiphenylphosphine) as the monodentate P ligand, is described. The complexes were synthesized through the corresponding fac-[M(CO)3(H2O)(OO)] (M = Re, (99m)Tc) intermediate aqua complex. In the presence of phosphine, replacement of the H2O molecule of the intermediate complex at room temperature generates the neutral tricarbonyl monophosphine fac-[Re(CO)3(P)(OO)] complex, while under reflux conditions further replacement of the trans to the phosphine carbonyl generates the new stable dicarbonyl bisphosphine complex cis-trans-[Re(CO)2(P)2(OO)]. The Re complexes were fully characterized by elemental analysis, spectroscopic methods, and X-ray crystallography showing a distorted octahedral geometry around Re. Both the monophosphine and the bisphosphine complexes of curcumin show selective binding to β-amyloid plaques of Alzheimer's disease. At the (99m)Tc tracer level, the same type of complexes, fac-[(99m)Tc(CO)3(P)(OO)] and cis-trans-[(99m)Tc(CO)2(P)2(OO)], are formed introducing new donor combinations for (99m)Tc(I). Overall, β-diketonate and phosphine constitute a versatile ligand combination for Re(I) and (99m)Tc(I), and the successful employment of the multipotent curcumin as β-diketone provides a solid example of the pharmacological potential of this system.

  5. Two novel copper(II) complexes constructed from dicarboxylate ligands with different spacer lengths and 2-phenylimidazo[4,5- f]1,10-phenanthroline (PIP): Synthesis, structures and properties

    NASA Astrophysics Data System (ADS)

    Wang, X.-L.; Chen, Yongqiang; Liu, Guocheng; Lin, Hongyan; Zhang, Jinxia

    2009-09-01

    Two novel metal-organic coordination polymers [Cu(PIP)(bpea)(H 2O)]·H 2O ( 1) and [Cu(PIP)(1,4-bdc)] ( 2) have been obtained from hydrothermal reaction of copper(II) with the mixed ligands [biphenylethene-4,4'-dicarboxylic acid (bpea) for 1, benzene-1,4-dicarboxylic acid (1,4-H 2bdc) for 2, and 2-phenylimidazo[4,5- f]1,10-phenanthroline (PIP)]. Both complexes have been structurally characterized by elemental analyses, IR and single-crystal X-ray diffraction analyses. Structural analyses reveal that complex 1 possesses infinite one-dimensional zigzag chain, 2 exhibits a two-dimensional (4,4) network, both of which are extended into three-dimensional supramolecular network by weak interactions. The different structures of the title complexes illustrate the influence of the flexibility (the spacer length of carboxyl groups and the structural rigidity of the spacer) of organic dicarboxylate ligands on the formation of such coordination architectures. Moreover, the thermal properties and the voltammetric behavior of complexes 1 and 2 have been reported.

  6. Homoleptic nickel(II) complexes of redox-tunable pincer-type ligands.

    PubMed

    Hewage, Jeewantha S; Wanniarachchi, Sarath; Morin, Tyler J; Liddle, Brendan J; Banaszynski, Megan; Lindeman, Sergey V; Bennett, Brian; Gardinier, James R

    2014-10-06

    Different synthetic methods have been developed to prepare eight new redox-active pincer-type ligands, H(X,Y), that have pyrazol-1-yl flanking donors attached to an ortho-position of each ring of a diarylamine anchor and that have different groups, X and Y, at the para-aryl positions. Together with four previously known H(X,Y) ligands, a series of 12 Ni(X,Y)2 complexes were prepared in high yields by a simple one-pot reaction. Six of the 12 derivatives were characterized by single-crystal X-ray diffraction, which showed tetragonally distorted hexacoordinate nickel(II) centers. The nickel(II) complexes exhibit two quasi-reversible one-electron oxidation waves in their cyclic voltammograms, with half-wave potentials that varied over a remarkable 700 mV range with the average of the Hammett σ(p) parameters of the para-aryl X, Y groups. The one- and two-electron oxidized derivatives [Ni(Me,Me)2](BF4)n (n = 1, 2) were prepared synthetically, were characterized by X-band EPR, electronic spectroscopy, and single-crystal X-ray diffraction (for n = 2), and were studied computationally by DFT methods. The dioxidized complex, [Ni(Me,Me)2](BF4)2, is an S = 2 species, with nickel(II) bound to two ligand radicals. The mono-oxidized complex [Ni(Me,Me)2](BF4), prepared by comproportionation, is best described as nickel(II) with one ligand centered radical. Neither the mono- nor the dioxidized derivative shows any substantial electronic coupling between the metal and their bound ligand radicals because of the orthogonal nature of their magnetic orbitals. On the other hand, weak electronic communication occurs between ligands in the mono-oxidized complex as evident from the intervalence charge transfer (IVCT) transition found in the near-IR absorption spectrum. Band shape analysis of the IVCT transition allowed comparisons of the strength of the electronic interaction with that in the related, previously known, Robin-Day class II mixed valence complex, [Ga(Me,Me)2](2+).

  7. Potentiometric study of binary complexes of 3-[(1 R)-1-hydroxy-2-(methylamino)ethyl]phenol hydrochloride with some lanthanide ions in aqueous and mixed solutions

    NASA Astrophysics Data System (ADS)

    Sharma, S. S.; Kadia, M. V.

    2014-12-01

    The complexation of lanthanide ions (Y3+, La3+, Ce3+, Pr3+, Nd3+, Sm3+, Gd3+, Tb3+, and Dy3+) with 3-[(1 R)-1-hydroxy-2-(methylamino)ethyl]phenol hydrochloride was studied at different temperatures and different ionic strengths in aqueous solutions by Irving-Rossotti pH titration technique. Stepwise calculation, PKAS and BEST Fortran IV computer programs were used for determination of proton-ligand and metal-ligand stability constants. The formation of species like MA, MA2, and MA(OH) is considered in SPEPLOT. Thermodynamic parameters of complex formation (Δ G, Δ H, and Δ S) are also evaluated. Negative Δ G and Δ H values indicate that complex formation is favourable in these experimental conditions. The stability of complexes is also studied at in different solvent-aqueous (vol/vol). The stability series of lanthanide complexes has shown to have the "gadolinium break." Stability of complexes decreases with increase in ionic strength and temperature. Effect of systematic errors like effect of dissolved carbon dioxide, concentration of alkali, concentration of acid, concentration of ligand and concentration of metal have also been explained.

  8. Mixed-ligand copper(II) complexes activate aryl hydrocarbon receptor AhR and induce CYP1A genes expression in human hepatocytes and human cell lines.

    PubMed

    Kubešová, Kateřina; Dořičáková, Aneta; Trávníček, Zdeněk; Dvořák, Zdeněk

    2016-07-25

    The effects of four copper(II) mixed-ligand complexes [Cu(qui1)(L)]NO3·H2O (1-3) and [Cu(qui2)(phen)]NO3 (4), where qui1=2-phenyl-3-hydroxy-4(1H)-quinolinone, Hqui2=2-(4-amino-3,5-dichlorophenyl)-N-propyl-3-hydroxy-4(1H)-quinolinone-7-carboxamide, L=1,10-phenanthroline (phen) (1), 5-methyl-1,10-phenanthroline (mphen) (2), bathophenanthroline (bphen) (3), on transcriptional activities of steroid receptors, nuclear receptors and xenoreceptors have been studied. The complexes (1-4) did not influence basal or ligand-inducible activities of glucocorticoid receptor, androgen receptor, thyroid receptor, pregnane X receptor and vitamin D receptor, as revealed by gene reporter assays. The complexes 1 and 2 dose-dependently induced luciferase activity in stable gene reporter AZ-AhR cell line, and this induction was reverted by resveratrol, indicating involvement of aryl hydrocarbon receptor (AhR) in the process. The complexes 1, 2 and 3 induced CYP1A1 mRNA in LS180 cells and CYP1A1/CYP1A2 in human hepatocytes through AhR. Electrophoretic mobility shift assay EMSA showed that the complexes 1 and 2 transformed AhR in its DNA-binding form. Collectively, we demonstrate that the complexes 1 and 2 activate AhR and induce AhR-dependent genes in human hepatocytes and cancer cell lines. In conclusion, the data presented here might be of toxicological importance, regarding the multiple roles of AhR in human physiology and pathophysiology. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  9. Unusual saccharin-N,O (carbonyl) coordination in mixed-ligand copper(II) complexes: Synthesis, X-ray crystallography and biological activity

    NASA Astrophysics Data System (ADS)

    Mokhtaruddin, Nur Shuhada Mohd; Yusof, Enis Nadia Md; Ravoof, Thahira B. S. A.; Tiekink, Edward R. T.; Veerakumarasivam, Abhi; Tahir, Mohamed Ibrahim Mohamed

    2017-07-01

    Three tridentate Schiff bases containing N and S donor atoms were synthesized via the condensation reaction between S-2-methylbenzyldithiocarbazate with 2-acetyl-4-methylpyridine (S2APH); 4-methyl-3-thiosemicarbazide with 2-acetylpyridine (MT2APH) and 4-ethyl-3-thiosemicarbazide with 2-acetylpyridine (ET2APH). Three new, binuclear and mixed-ligand copper(II) complexes with the general formula, [Cu(sac)(L)]2 (sac = saccharinate anion; L = anion of the Schiff base) were then synthesized, and subsequently characterized by IR and UV/Vis spectroscopy as well as by molar conductivity and magnetic susceptibility measurements. The Schiff bases were also spectroscopically characterized using NMR and MS to further confirm their structures. The spectroscopic data indicated that the Schiff bases behaved as a tridentate NNS donor ligands coordinating via the pyridyl-nitrogen, azomethine-nitrogen and thiolate-sulphur atoms. Magnetic data indicated a square pyramidal environment for the complexes and the conductivity values showed that the complexes were essentially non-electrolytes in DMSO. The X-ray crystallographic analysis of one complex, [Cu(sac)(S2AP)]2 showed that the Cu(II) atom was coordinated to the thiolate-S, azomethine-N and pyridyl-N donors of the S2AP Schiff base and to the saccharinate-N from one anion, as well as to the carbonyl-O atom from a symmetry related saccharinate anion yielding a centrosymmetric binuclear complex with a penta-coordinate, square pyramidal geometry. All the copper(II) saccharinate complexes were found to display strong cytotoxic activity against the MCF-7 and MDA-MB-231 human breast cancer cell lines.

  10. An oxadiazole-functionalized ligand and its yellow-emitting Re(I) complex for organoelectronic application

    NASA Astrophysics Data System (ADS)

    Hu, Ge; Guo, Lei; Wei, Sheng; Zhang, Shuang

    2012-06-01

    A Re(I) complex of Re(CO)3(PTO)Br with 2-(pyridin-2-yl)-5-p-tolyl-1,3,4-oxadiazole (PTO) as the diamine ligand is synthesized, resulting in a phosphorescent emitter which contains oxadiazole functional moiety. Single crystal analysis confirms that oxadiazole moiety of PTO ligand participates in the coordination with Re center. Coordination ability difference between N atom from pyridine ring and that from oxadiazole moiety is found. Density functional theory calculation on the crystal suggests that the onset electronic transition owns a mixed character of metal-to-ligand-charge-transfer and ligand-to-ligand-charge-transfer. Upon photon excitation, Re(CO)3(PTO)Br exhibits a yellow emission peaking at 549 nm with a short excited state lifetime of 0.15 μs. Further measurements suggest that Re(CO)3(PTO)Br owns HOMO and LUMO energy levels of -5.79 V and -3.49 V and a high decomposition temperature of 322 °C. The optimal electroluminescence device using Re(CO)3(PTO)Br as the emitting dopant shows an orange light of 598 nm, with a maximum luminance of 4600 cd/m2 and a maximum current efficiency of 11.5 cd/A.

  11. Thermodynamic Investigation and Mixed Ligand Complex Formation of 1,4-Bis-(3-aminopropyl)-piperazine and Biorelevant Ligands.

    PubMed

    El-Sherif, Ahmed A; Shehata, Mohamed R; Shoukry, Mohamed M; Barakat, Mohammad H

    2012-01-01

    Thermodynamic parameters for protonation of 1,4-bis(3-aminopropyl)-piperazine (BAPP) and its metal complexation with some divalent metal ions were determined in aqueous solution at constant ionic strength (0.1 M NaNO(3)) using a potentiometric technique. The order of -ΔG(0) and -ΔH(0) was found to obey Co(2+) < Ni(2+) < Cu(2+) > Zn(2+), in accordance with the Irving-Williams order. The formation equilibria of zinc (II) complexes and the ternary complexes Zn(BAPP)L, where L = amino acid, amides, or DNA constituents), have been investigated. Ternary complexes are formed by a simultaneous mechanism. The concentration distribution of the complexes in solution was evaluated as a function of pH. Stoichiometry and stability constants for the complexes formed are reported and discussed. The stability of ternary complexes was quantitatively compared with their corresponding binary complexes in terms of the parameter Δlog K.

  12. Thermodynamic Investigation and Mixed Ligand Complex Formation of 1,4-Bis-(3-aminopropyl)-piperazine and Biorelevant Ligands

    PubMed Central

    El-Sherif, Ahmed A.; Shehata, Mohamed R.; Shoukry, Mohamed M.; Barakat, Mohammad H.

    2012-01-01

    Thermodynamic parameters for protonation of 1,4-bis(3-aminopropyl)-piperazine (BAPP) and its metal complexation with some divalent metal ions were determined in aqueous solution at constant ionic strength (0.1 M NaNO3) using a potentiometric technique. The order of –ΔG0 and –ΔH0 was found to obey Co2+ < Ni2+ < Cu2+ > Zn2+, in accordance with the Irving-Williams order. The formation equilibria of zinc (II) complexes and the ternary complexes Zn(BAPP)L, where L = amino acid, amides, or DNA constituents), have been investigated. Ternary complexes are formed by a simultaneous mechanism. The concentration distribution of the complexes in solution was evaluated as a function of pH. Stoichiometry and stability constants for the complexes formed are reported and discussed. The stability of ternary complexes was quantitatively compared with their corresponding binary complexes in terms of the parameter Δlog K. PMID:23226992

  13. Improved 18F Labeling of Peptides with a Fluoride-Aluminum-Chelate Complex

    PubMed Central

    McBride, William J.; D’Souza, Christopher A.; Sharkey, Robert M.; Karacay, Habibe; Rossi, Edmund A.; Chang, Chien-Hsing; Goldenberg, David M.

    2010-01-01

    We reported previously the feasibility to radiolabel peptides with fluorine-18 (18F) using a rapid, one-pot, method that first mixes 18F− with Al3+, and then binds the (Al18F)2+ complex to a NOTA ligand on the peptide. In this report, we examined several new NOTA ligands and determined how temperature, reaction time, and reagent concentration affected the radiolabeling yield. Four structural variations of the NOTA ligand had isolated radiolabeling yields ranging from 5.8% to 87% under similar reaction conditions. All of the Al18F NOTA complexes were stable in vitro in human serum and those that were tested in vivo also were stable. The radiolabeling reactions were performed at 100°C and the peptides could be labeled in as little as five minutes. The IMP467 peptide could be labeled up to 115 GBq/μmol (3100 Ci/mmol), with a total reaction and purification time of 30 min without chromatographic purification. PMID:20540570

  14. ESI-MS studies of the reactions of novel platinum(II) complexes containing O,O'-chelated acetylacetonate and sulfur ligands with selected model proteins.

    PubMed

    Marzo, Tiziano; De Pascali, Sandra A; Gabbiani, Chiara; Fanizzi, Francesco P; Messori, Luigi; Pratesi, Alessandro

    2017-08-01

    A group of mixed-ligand Pt(II) complexes bearing acetylacetonate and sulphur ligands were recently developed in the University of Lecce as a new class of prospective anticancer agents that manifested promising pharma-cological properties in preliminary in vitro and in vivo tests. Though modelled on the basis of cisplatin, these Pt(II) complexes turned out to exhibit a profoundly distinct mode of action as they were found to act mainly on non-genomic targets rather than on DNA. Accordingly, we have explored here their reactions with two representative model proteins through an established ESI-MS procedure with the aim to describe their general interaction mechanism with protein targets. A pronounced reactivity with the tested proteins was indeed documented; the nature of the resulting metallodrug-protein interactions could be characterised in depth in the various cases. Preferential binding to protein targets compared to DNA is supported by independent ICP-OES measurements. The implications of these findings are discussed.

  15. Incipient class II mixed valency in a plutonium solid-state compound

    NASA Astrophysics Data System (ADS)

    Cary, Samantha K.; Galley, Shane S.; Marsh, Matthew L.; Hobart, David L.; Baumbach, Ryan E.; Cross, Justin N.; Stritzinger, Jared T.; Polinski, Matthew J.; Maron, Laurent; Albrecht-Schmitt, Thomas E.

    2017-09-01

    Electron transfer in mixed-valent transition-metal complexes, clusters and materials is ubiquitous in both natural and synthetic systems. The degree to which intervalence charge transfer (IVCT) occurs, dependent on the degree of delocalization, places these within class II or III of the Robin-Day system. In contrast to the d-block, compounds of f-block elements typically exhibit class I behaviour (no IVCT) because of localization of the valence electrons and poor spatial overlap between metal and ligand orbitals. Here, we report experimental and computational evidence for delocalization of 5f electrons in the mixed-valent PuIII/PuIV solid-state compound, Pu3(DPA)5(H2O)2 (DPA = 2,6-pyridinedicarboxylate). The properties of this compound are benchmarked by the pure PuIII and PuIV dipicolinate complexes, [PuIII(DPA)(H2O)4]Br and PuIV(DPA)2(H2O)3·3H2O, as well as by a second mixed-valent compound, PuIII[PuIV(DPA)3H0.5]2, that falls into class I instead. Metal-to-ligand charge transfer is involved in both the formation of Pu3(DPA)5(H2O)2 and in the IVCT.

  16. Syntheses, characterization and antioxidant activity studies of mixed-ligand copper(II) complexes of 2,2‧-bipyridine and glycine: The X-ray crystal structure of [Cu(BPy)(Gly)]ClO4

    NASA Astrophysics Data System (ADS)

    Ibrahim, Mohamed M.; Ramadan, Abd El-Motaleb M.; Shaban, Shaban Y.; Mersal, Gaber A. M.; El-Shazly, Samir A.; Al-Juaid, Salih

    2017-04-01

    A series of mixed-ligand complexes, viz., [CuLL'X]Y {L = bipyridine; L' = glycine; X = 0, Y = ClO4- (1); X = Cl, Y = 2H2O (2); X = H2O, Y = NO3- (3); X = CH3COO-, Y = H2O (4)} and {[Cu(Gly)(BPy)]2-μ-(SO4)}(5)} have been synthesized and characterized by means of elemental analysis, spectroscopic (FT-IR, UV-Vis and ESR), and thermal analysis, as well as magnetic moment measurements. Spectral and X-ray structural features led to the conclusion that complexes 2-5 have square-pyramidal environments around copper(II) center with coordination chromophores CuN3OCl and CuN3O2, respectively. Whereas complex 1 displays square planar geometry. The quasi-reversible CuII/CuI redox couple slightly improves its reversibility with considerable decrease in current intensity. Additionally, the antioxidant (superoxide dismutase and catalase) biomimetic catalytic activities of the obtained complexes have been tested and found to be promising candidates as dual functional mimic enzyme to serve for complete reactive oxygen species (ROS) detoxification, both with respect to the superoxide radicals and the related peroxides.

  17. Third-order nonlinear optical properties of soluble Cr(III)-dioxolene complexes

    NASA Astrophysics Data System (ADS)

    Noro, Shin-ichiro; Sassa, Takafumi; Aoyama, Tetsuya; Chang, Ho-Chol; Kitagawa, Susumu; Wada, Tatsuo

    2004-10-01

    We synthesized novel ligand-based mixed valence (LBMV) CrIII-dioxolene complexes, [Cr(X4SQ)(X4Cat)(4,4'-di-tert-butyl-2,2'-bpy)] (SQ = semiquinone, Cat = catecohol, 2,2'-bpy = 2,2'-bipyridine; X = Cl (2a) and Br (2b)) and [Cr(X4SQ)(X4Cat)(4,4'-dinonyl-2,2'-bpy)] (X = Cl (3a) and Br (3b)), and prepared thin films for investigating their third-order nonlinear optical (NLO) properties in terms of the mixed valence states. Electronic absorption spectra of these complexes in solution and solid states showed an intervalence charge-transfer (IVCT) band from Cat2- to SQ"- at the IR region, indicating of a coexistence of SQ and Cat ligands, namely, LBMV state of the complexes. These complexes were well soluble in nonpolar organic solvent, which allowed us to prepare thin films by spin coating. The obtained films showed the electronic absorption spectra similar to those in solution and were amorphous because of steric hindrance of halogen and alkyl substituents in o-dioxolene and 2,2'-bpy moieties, respectively. The x(3) values of the films of 3a and 3b with a thickness of 30 ~ 40 nm were determined for 1.0 × 10-12 esu at 1.907 μm.

  18. Chemical composition of an aqueous oxalato-/citrato-VO(2+) solution as determinant for vanadium oxide phase formation.

    PubMed

    Peys, Nick; Maurelli, Sara; Reekmans, Gunter; Adriaensens, Peter; De Gendt, Stefan; Hardy, An; Van Doorslaer, Sabine; Van Bael, Marlies K

    2015-01-05

    Aqueous solutions of oxalato- and citrato-VO(2+) complexes are prepared, and their ligand exchange reaction is investigated as a function of the amount of citrate present in the aqueous solution via continuous-wave electron paramagnetic resonance (CW EPR) and hyperfine sublevel correlation (HYSCORE) spectroscopy. With a low amount of citrate, monomeric cis-oxalato-VO(2+) complexes occur with a distorted square-pyramidal geometry. As the amount of citrate increases, oxalate is gradually exchanged for citrate. This leads to (i) an intermediate situation of monomeric VO(2+) complexes with a mix of oxalate/citrate ligands and (ii) a final situation of both monomeric and dimeric complexes with exclusively citrato ligands. The monomeric citrato-VO(2+) complexes dominate (abundance > 80%) and are characterized by a 6-fold chelation of the vanadium(IV) ion by 4 RCO2(-) ligands at the equatorial positions and a H2O/R-OH ligand at the axial position. The different redox stabilities of these complexes, relative to that of dissolved O2 in the aqueous solution, is analyzed via (51)V NMR. It is shown that the oxidation rate is the highest for the oxalato-VO(2+) complexes. In addition, the stability of the VO(2+) complexes can be drastically improved by evacuation of the dissolved O2 from the solution and subsequent storage in a N2 ambient atmosphere. The vanadium oxide phase formation process, starting with the chemical solution deposition of the aqueous solutions and continuing with subsequent processing in an ambient 0.1% O2 atmosphere, differs for the two complexes. The oxalato-VO(2+) complexes turn into the oxygen-deficient crystalline VO2 B at 400 °C, which then turns into crystalline V6O13 at 500 °C. In contrast, the citrato-VO(2+) complexes form an amorphous film at 400 °C that crystallizes into VO2 M1 and V6O13 at 500 °C.

  19. Near-infrared-emitting heteroleptic cationic iridium complexes derived from 2,3-diphenylbenzo[g]quinoxaline as in vitro theranostic photodynamic therapy agents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Li; Yin, Huimin; Cui, Peng

    Five heteroleptic cationic iridium complexes with a π-expansive cyclometalating 2,3-diphenylbenzo[g] quinoxaline (dpbq) ligand (C^N ligand) and different diimine ligands (N^N ligands) (i.e. 2,2’-bipyridine (bpy, 1), phenanthroline (phen, 2), 2-(2-pyridinyl)quinoline (pqu, 3), 2,2’-bisquinoline (bqu, 4), and 2-(quinolin-2-yl)quinoxaline (quqo, 5)) were synthesized and characterized. The lowest-energy singlet electronic transitions (S1 states) were mainly dpbq ligand-centred 1ILCT (intraligand charge transfer)/1MLCT (metal to ligand charge transfer) transitions mixed with some 1π,π* transitions for complexes 1–4 with increased contributions from 1LLCT (ligand to ligand charge transfer) in 3 and 4. For complex 5, the S1 state was switched to the 1LLCT/1MLCT transitions. All five complexesmore » displayed weak near-infrared (NIR) phosphorescence, with maximal emission output spanning 700–1400 nm and quantum yields being on the order of 10-3. The triplet state absorptions of 1–4 all resembled that of the [Ir(dpbq)2Cl]2 dimer with lifetimes of ca. 400 ns, while the TA spectrum of 5 possessed the characteristics of both the quqo ligand and the [Ir(dpbq)2Cl]2 dimer with a bi-exponential decay of ca. 5 μs and 400 ns. While the photophysics of these complexes differ slightly, their theranostic photodynamic therapy (PDT) effects varied drastically. All of the complexes were biologically active toward melanoma cells. Complexes 2 and 3 were the most cytotoxic, with 230–340 nM activity and selectivity factors for melanoma cells over normal skin fibroblasts of 34 to 40 fold. Complexes 2, 3, and 5 became very potent cytotoxins with light activation, with EC50 values as low as 12–18 nM. This potent nanomolar light-triggered activity combined with a lower dark toxicity resulted in 5 having a phototherapeutic index (PI) margin of almost 275. The bpy coligand led to the least amount of dark toxicity of 1, while phen and pqu produced cytotoxic but selective complexes 2 and 3. The quqo coligand produced the most potent complex 5 for in vitro PDT, both in terms of photocytotoxicity and PI. All Ir(III) complexes exhibited very bright NIR phosphorescence in melanoma cells. The wide range of cytotoxicity and photocytotoxicity effects within a relatively small class of complexes highlights the importance of the identity of the coligand in the biological activity of the π-expansive biscyclometalated Ir(III) complexes, and their bright NIR emission in live cells demonstrates their potential as theranostic PDT agents.« less

  20. The Control of Orbital Mixing in Ruthenium Complexes Containing Quinone Related Ligands

    DTIC Science & Technology

    1991-04-04

    and sodium, respectively. Tetrabutylammonium perchlorate (TBAP) and tetrabutylammonium hexafluorophosphate (Kodak; TBAH) were recrystallized from...solution. Lithium perchlorate trihydrate (0.036 g; 0.23 mmol) in methanol (2 mL) was added to the hot reaction mixture. The mixture was cooled to room...and lithium aluminum hydride suspension in THF (this required the use of the 4,5-dimethylated orthophenylenediamine complex for solubility reasons

  1. Effect of Atmospheric Organics on Bioavailable Fe Lifetime in the Oceans

    NASA Technical Reports Server (NTRS)

    Meskhidze, Nicholas; Hurley, David; Royalty, Taylor Michael; Johnson, Matthew S.

    2016-01-01

    The deposition of atmospheric aerosols is an important supply pathway of soluble iron (sol-Fe) to the global oceans influencing marine ecosystem processes and climate. Previous studies have shown that natural and anthropogenic acidic trace gases, when mixed with mineral dust, can lead to production of sol-Fe, leading to considerable increase in dust-Fe solubility. Recent studies have further highlighted the importance of atmospheric organic compounds/ligands in the production of sol-Fe during atmospheric transport and transformation of mineral aerosols. However, the actual scope of this aerosol sol-Fe for stimulating the primary productivity in the oceans is determined by both: the total atmospheric fluxes of sol-Fe and the lifetime of sol-Fe after its deposition to the ocean. In this study several atmospheric organic ligands were investigated for their effect on the lifetime of sol-Fe after mixing with seawater. Organic ligands were selected based on their abundance in the marine boundary layer and rainwater and their ability to form bidentate complexes with Fe. The results reveal that the tested organics had minor influence on Fe(II) lifetime in seawater. However, results also show that some organic acid considerably extended the lifetime of colloidal and aqueous Fe(III). Using these results we simulate aerosol sol-Fe lifetime in the ocean for different mineral dust deposition events in the presence and the absence of atmospheric organic ligands. The calculations suggest that when a large dust plume is assumed to contain Fe(II) alone, less than 15% of aerosol sol-Fe gets complexed with marine organic ligands. However, this fraction increases to over 90% when atmospheric Fe is allowed to bond with atmospheric organic acids prior to deposition to the oceans. Calculations also show that for the conditions when seawater organic ligands get titrated by Fe released from dust aerosol particles, retention of sol-Fe in the ocean depends on surface ocean mixing, i.e., replenishing rates for Fe-bonding ligands from below. This study suggests that in future ocean biogeochemistry models more attention should be devoted to better quantification of the role of atmospheric organic acids in the lifetime of aerosol sol-Fe after its deposition to the ocean and the improvements of upper ocean turbulence parameterizations.

  2. Strong ligand field effects of blue phosphorescent Ir(III) complexes with phenylpyrazole and phosphines.

    PubMed

    Park, Se Won; Ham, Ho Wan; Kim, Young Sik

    2012-04-01

    In the paper, we describe new Ir complexes for achieving efficient blue phosphorescence. New blue-emitting mixed-ligand Ir complexes comprising one cyclometalating, two phosphines trans to each other such as Ir(dppz)(PPh3)2(H)(L) (Ll= Cl, NCMe+, CN), [dppz = 3,5-Diphenylpyrazole] were synthesized and studied to tune the phosphorescence wavelength to the deep blue region and to enhance the luminescence efficiencies. To gain insight into the factors responsible for the emission color change and the variation of luminescence efficiency, we investigate the electron-withdrawing capabilities of ancillary ligands using DFT and TD-DFT calculations on the ground and excited states of the complexes. To achieve deep blue emission and increase the emission efficiency, (1) we substitute the phenyl group on the 3-position of the pyrazole ring that lowers the triplet energy enough that the quenching channel is not thermally accessible and (2) change the ancillary ligands coordinated to iridium atom to phosphine and cyano groups known as very strong field ligands. Their inclusion in the coordination sphere can increase the HOMO-LUMO gap to achieve the hypsochromic shift in emission color and lower the HOMO and LUMO energy level, which causes a large d-orbital energy splitting and avoids the quenching effect to improve the luminescence efficiency. The maximum emission spectra of Ir(dppz)(PPh3)2(H)(CI) and Ir(dppz)(PPh3)2(H)(CN) were in the ranges of 439, 432 nm, respectively.

  3. Syntheses, X-ray structures, solid state high-field electron paramagnetic resonance, and density-functional theory investigations on chloro and aqua Mn(II) mononuclear complexes with amino-pyridine pentadentate ligands.

    PubMed

    Hureau, Christelle; Groni, Sihem; Guillot, Régis; Blondin, Geneviève; Duboc, Carole; Anxolabéhère-Mallart, Elodie

    2008-10-20

    The two pentadentate amino-pyridine ligands L5(2) and L5(3) (L5(2) and L5(3) stand for the N-methyl-N,N',N'-tris(2-pyridylmethyl)ethane-1,2-diamine and the N-methyl-N,N',N'-tris(2-pyridylmethyl)propane-1,3-diamine, respectively) were used to synthesize four mononuclear Mn(II) complexes, namely [(L5(2))MnCl](PF6) (1(PF6)), [(L5(3))MnCl](PF6) (2(PF6)), [(L5(2))Mn(OH2)](BPh4)2 (3(BPh4)2), and [(L5(3))Mn(OH2)](BPh4)2 (4(BPh4)2). The X-ray diffraction studies revealed different configurations for the ligand L5(n) (n = 2, 3) depending on the sixth exogenous ligand and/or the counterion. Solid state high-field electron paramagnetic resonance spectra were recorded on complexes 1-4 as on previously described mononuclear Mn(II) systems with tetra- or hexadentate amino-pyridine ligands. Positive and negative axial zero-field splitting (ZFS) parameters D were determined whose absolute values ranged from 0.090 to 0.180 cm(-1). Density-functional theory calculations were performed unraveling that, in contrast with chloro systems, the spin-spin and spin-orbit coupling contributions to the D-parameter are comparable for mixed N,O-coordination sphere complexes.

  4. Gas adsorption and gas mixture separations using mixed-ligand MOF material

    DOEpatents

    Hupp, Joseph T [Northfield, IL; Mulfort, Karen L [Chicago, IL; Snurr, Randall Q [Evanston, IL; Bae, Youn-Sang [Evanston, IL

    2011-01-04

    A method of separating a mixture of carbon dioxiode and hydrocarbon gas using a mixed-ligand, metal-organic framework (MOF) material having metal ions coordinated to carboxylate ligands and pyridyl ligands.

  5. 3D coordination polymers with nitrilotriacetic and 4,4'-bipyridyl mixed ligands: structural variation based on dinuclear or tetranuclear subunits assisted by Na-O and/or O-H...O interactions.

    PubMed

    Lü, Xing-Qiang; Jiang, Ji-Jun; Chen, Chun-Long; Kang, Bei-Sheng; Su, Cheng-Yong

    2005-06-27

    The reactions of Cu(II) with the mixed nitrilotriacetic acid (H3NTA) and 4,4'-bipyridyl (4,4'-bpy) ligands in different metal-to-ligand ratios in the presence of NaOH and NaClO4 afforded two complexes, Na3[Cu2(NTA)2(4,4'-bpy)]ClO4 x 5H2O (1) and [Cu2(NTA) (4,4'-bpy)2]ClO4 x 4H2O (2). The two complexes have been characterized by elemental analysis, IR, XRD, and single-crystal X-ray diffraction. 1 contains a basic doubly negatively charged [Cu2(NTA)2(4,4'-bpy)]2- dinuclear unit which was further assembled via multiple Na-O and O-H...O interactions into a three-dimensional (3D) pillared-layer structure. 2 features a two-dimensional (2D) undulated brick-wall architecture containing a basic doubly positively charged [Cu4(NTA)2(4,4'-bpy)2]2+ tetranuclear unit. The 2D network possesses large cavities hosting guest molecules and was further assembled via O-H...O hydrogen bonds into a 3D structure with several channels running in different directions.

  6. Copper(II) complexes with naringenin and hesperetin: cytotoxic activity against A 549 human lung adenocarcinoma cells and investigation on the mode of action.

    PubMed

    Tamayo, Lenka V; Gouvea, Ligiane R; Sousa, Anna C; Albuquerque, Ronniel M; Teixeira, Sarah Fernandes; de Azevedo, Ricardo Alexandre; Louro, Sonia R W; Ferreira, Adilson Kleber; Beraldo, Heloisa

    2016-02-01

    Copper(II) complexes [Cu(H2O)2 (L1)(phen)](ClO4) (1) and [Cu(H2O)(L2)(phen)](ClO4) (2) (HL1 = naringenin; HL2 = hesperetin) were obtained, in which an anionic flavonoid ligand is attached to the metal center along with 1,10-phenanthroline (phen) as co-ligand. Complexes (1) and (2) were assayed for their cytotoxic activity against A549 lung carcinoma and against normal lung fibroblasts (LL-24) and human umbilical vein endothelial cells (HUVEC). We found IC50 = 16.42 µM (1) and IC50 = 5.82 µM (2) against A549 tumor cells. Complexes (1) and (2) exhibited slight specificity, being more cytotoxic against malignant than against non-malignant cells. 1 and 2 induced apoptosis on A549 cells in a mitochondria-independent pathway, and showed antioxidant activity. The antioxidant effect of the complexes could possibly improve their apoptotic action, most likely by a PI3K-independent reduction of autophagy. Complexes (1) and (2) interact in vitro with calf thymus DNA by an intercalative binding mode. EPR data indicated that 1 and 2 interact with human serum albumin (HSA) forming mixed ligand species.

  7. Manipulating charge transfer excited state relaxation and spin crossover in iron coordination complexes with ligand substitution

    DOE PAGES

    Zhang, Wenkai; Kjaer, Kasper S.; Alonso-Mori, Roberto; ...

    2016-08-25

    Developing light-harvesting and photocatalytic molecules made with iron could provide a cost effective, scalable, and environmentally benign path for solar energy conversion. To date these developments have been limited by the sub-picosecond metal-to-ligand charge transfer (MLCT) electronic excited state lifetime of iron based complexes due to spin crossover – the extremely fast intersystem crossing and internal conversion to high spin metal-centered excited states. We revitalize a 30 year old synthetic strategy for extending the MLCT excited state lifetimes of iron complexes by making mixed ligand iron complexes with four cyanide (CN –) ligands and one 2,2'-bipyridine (bpy) ligand. This enablesmore » MLCT excited state and metal-centered excited state energies to be manipulated with partial independence and provides a path to suppressing spin crossover. We have combined X-ray Free-Electron Laser (XFEL) Kβ hard X-ray fluorescence spectroscopy with femtosecond time-resolved UV-visible absorption spectroscopy to characterize the electronic excited state dynamics initiated by MLCT excitation of [Fe(CN) 4(bpy)] 2–. The two experimental techniques are highly complementary; the time-resolved UV-visible measurement probes allowed electronic transitions between valence states making it sensitive to ligand-centered electronic states such as MLCT states, whereas the Kβ fluorescence spectroscopy provides a sensitive measure of changes in the Fe spin state characteristic of metal-centered excited states. Here, we conclude that the MLCT excited state of [Fe(CN) 4(bpy)] 2– decays with roughly a 20 ps lifetime without undergoing spin crossover, exceeding the MLCT excited state lifetime of [Fe(2,2'-bipyridine) 3] 2+ by more than two orders of magnitude.« less

  8. Perchlorate mixed-ligand copper(II) complexes of beta-diketone and ethylene diamine derivatives: thermal, spectroscopic and biochemical studies.

    PubMed

    El-Ayaan, Usama; El-Metwally, Nashwa M; Youssef, Magdy M; El Bialy, Serry A A

    2007-12-31

    The present work carried out a study on perchlorate mixed-ligand copper(II) complexes which have been synthesized from ethylenediamine derivatives (3a-c) and beta-diketones. These complexes, namely [Cu(DA-Cl)(acac)H(2)O]ClO(4)4, [Cu(DA-Cl)(bzac)H(2)O]H(2)O.ClO(4)5, [Cu(DA-OMe)(acac)H(2)O]ClO(4)6, [Cu(DA-OMe)(bzac)H(2)O]ClO(4)7, [Cu(DA-H)(acac)H(2)O]2H(2)O.ClO(4)8 and [Cu(DA-H)(bzac)H(2)O]ClO(4)9 (where acac, acetylacetonate and bzac, benzoylacetonate) were characterized by elemental analysis, spectral (IR and UV-vis) and magnetic moment measurements. Thermal properties and decomposition kinetics of all complexes are investigated. The interpretation, mathematical analysis and evaluation of kinetic parameters (E, A, DeltaH, DeltaS and DeltaG) of all thermal decomposition stages have been evaluated using Coats-Redfern equation. The biochemical studies showed that, the diamines 3a-c have powerful effects on degradation of DNA and protein. The antibacterial screening demonstrated that, the diamine (DA-Cl), 3b has the maximum and broad activities against Gram +ve and Gram -ve bacterial strains.

  9. Connecting [NiFe]- and [FeFe]-Hydrogenases: Mixed-Valence Nickel-Iron Dithiolates With Rotated Structures

    PubMed Central

    Schilter, David; Rauchfuss, Thomas B.; Stein, Matthias

    2012-01-01

    A series of mixed-valence iron-nickel dithiolates is described that exhibits structures similar to those of mixed-valence diiron dithiolates. Interaction of tricarbonyl salt [(dppe)Ni(pdt)Fe(CO)3]BF4 ([1]BF4, dppe = Ph2PCH2CH2PPh2, pdtH2 = HSCH2CH2CH2SH) with P-donor ligands (L) afforded the substituted derivatives [(dppe)Ni(pdt)Fe(CO)2L]BF4 incorporating L = PHCy2 ([1a]BF4), PPh(NEt2)2 ([1b]BF4), P(NMe2)3 ([1c]BF4), P(i-Pr)3 ([1d]BF4) and PCy3 ([1e]BF4). The related precursor [(dcpe)Ni(pdt)Fe(CO)3]BF4 ([2]BF4, dcpe = Cy2PCH2CH2PCy2) gave the more electron-rich family of compounds [(dcpe)Ni(pdt)Fe(CO)2L]BF4 for L = PPh2(2-pyridyl) ([2a]BF4), PPh3 ([2b]BF4) and PCy3 ([2c]BF4). For bulky and strongly basic monophosphorus ligands, the salts feature distorted Fe coordination geometries: crystallographic analyses of [1e]BF4 and [2c]BF4 showed they adopt ‘rotated’ Fe(I) centers, in which PCy3 occupies a basal site and one CO ligand partially bridges the Ni and Fe centers. Like the undistorted mixed-valence derivatives, the new class of complexes are described as Ni(II)Fe(I) (S = ½) systems according to EPR spectroscopy, although with attenuated 31P hyperfine interactions. DFT calculations using the BP86, B3LYP, and PBE0 exchange-correlation functionals agree with the structural and spectroscopic data, suggesting that the spin for [1e]+ is localized in a Fe(I)-centered d(z2) orbital, orthogonal to the Fe-P bond. The PCy3 complexes, rare examples of species featuring ‘rotated’ Fe centers, both structurally and spectroscopically resemble mixed-valence diiron dithiolates. Also reproducing the NiS2Fe core of the [NiFe]-H2ase active site, the hybrid models incorporate key features of the two major classes of H2ase. Furthermore, cyclic voltammetry experiments suggest that the highly basic phosphine ligands enable a second oxidation corresponding to the couple [(dxpe)Ni(pdt)Fe(CO)2L]+/2+. The resulting unsaturated 32e− dications represent the closest approach to modeling the highly electrophilic Ni-SIa state. In the case of L = PPh2(2-pyridyl) chelation of this ligand accompanies the second oxidation. PMID:22838645

  10. Diimine triscarbonyl Re(I) of isomeric pyridyl-fulvene ligands: an electrochemical, spectroscopic, and computational investigation.

    PubMed

    Chartrand, Daniel; Castro Ruiz, Carlos A; Hanan, Garry S

    2012-12-03

    The synthesis and characterization of a novel family of positively charged fac-[Re(bpy)(CO)(3)(L)]PF(6) (bpy = 2,2'-bipyridine) complexes are reported, where L is a pyridine functionalized in para or meta position with a fulvene moiety, namely, 4-fluoren-9-ylidenemethyl-pyridine (pFpy) and 3-fluoren-9-ylidenemethyl-pyridine (mFpy). The complexes were prepared in high yield (86%) by direct addition at room temperature of the corresponding pyridine to the tetrahydrofuran (THF) adduct fac-[Re(bpy)(CO)(3)(THF)][PF(6)] precursor. Both ligand and complex structures were fully characterized by a variety of techniques including X-ray crystallography. The complexes did not exhibit the expected triplet mixed metal-ligand-to-ligand charge transfer (MLLCT) emission, because of its deactivation by the non-emissive triplet excited state of fulvene. The absorption profile shows that the MLLCT is overshadowed by the fulvene centered π-π* transition of higher molar absorptivity as shown by time dependent density functional theory (TD-DFT) calculations. The position of the fulvene on the pyridyl ring has a large effect on this transition, the para position displaying a much higher absorption coefficient (21.3 × 10(3) M(-1) cm(-1)) at lower energy (364 nm) than the meta position (331 nm, 16.0 × 10(3) M(-1) cm(-1)).

  11. Interaction of Pyrrolobenzodiazepine (PBD) Ligands with Parallel Intermolecular G-Quadruplex Complex Using Spectroscopy and ESI-MS

    PubMed Central

    Raju, Gajjela; Srinivas, Ragampeta; Santhosh Reddy, Vangala; Idris, Mohammed M.; Kamal, Ahmed; Nagesh, Narayana

    2012-01-01

    Studies on ligand interaction with quadruplex DNA, and their role in stabilizing the complex at concentration prevailing under physiological condition, has attained high interest. Electrospray ionization mass spectrometry (ESI-MS) and spectroscopic studies in solution were used to evaluate the interaction of PBD and TMPyP4 ligands, stoichiometry and selectivity to G-quadruplex DNA. Two synthetic ligands from PBD family, namely pyrene-linked pyrrolo[2,1-c][1,4]benzodiazepine hybrid (PBD1), mixed imine-amide pyrrolobenzodiazepine dimer (PBD2) and 5,10,15,20-tetrakis(N-methyl-4-pyridyl)porphyrin (TMPyP4) were studied. G-rich single-stranded oligonucleotide d(5′GGGGTTGGGG3′) designated as d(T2G8), from the telomeric region of Tetrahymena Glaucoma, was considered for the interaction with ligands. ESI-MS and spectroscopic methods viz., circular dichroism (CD), UV-Visible, and fluorescence were employed to investigate the G-quadruplex structures formed by d(T2G8) sequence and its interaction with PBD and TMPyP4 ligands. From ESI-MS spectra, it is evident that the majority of quadruplexes exist as d(T2G8)2 and d(T2G8)4 forms possessing two to ten cations in the centre, thereby stabilizing the complex. CD band of PBD1 and PBD2 showed hypo and hyperchromicity, on interaction with quadruplex DNA, indicating unfolding and stabilization of quadruplex DNA complex, respectively. UV-Visible and fluorescence experiments suggest that PBD1 bind externally where as PBD2 intercalate moderately and bind externally to G-quadruplex DNA. Further, melting experiments using SYBR Green indicate that PBD1 unfolds and PBD2 stabilizes the G-quadruplex complex. ITC experiments using d(T2G8) quadruplex with PBD ligands reveal that PBD1 and PBD2 prefer external/loop binding and external/intercalative binding to quadruplex DNA, respectively. From experimental results it is clear that the interaction of PBD2 and TMPyP4 impart higher stability to the quadruplex complex. PMID:22558271

  12. Synthesis and photophysical studies of blue phosphorescent Ir(III) complexes with dimethylphenylphospine.

    PubMed

    Ham, Ho-Wan; Jung, Kyung-Yoon; Kim, Young-Sik

    2012-02-01

    New blue emitting mixed ligand iridium(III) complexes comprising one cyclometalating, two phosphines trans to each other such as Ir{(CF3)2Meppy}(PPhMe3)2(H)(L) [L = CI, NCMe, CN] [(CF3)2Meppy = 2-(3', 5'-bis-trifluoromethylphenyl)-4-methylpyridine] were synthesized and studied to tune the phosphorescence wavelength to the deep blue region and to enhance the luminescence efficiencies. To achieve deep blue emission, the trifluoromethyl group substituted on the phenyl ring and the methyl group substituted on the pyridyl ring increased HOMO-LUMO gap and achieved the hypsochromic shift. To gain insight into the factors responsible for the emission color change and the different luminescence efficiency, we investigate the electron-withdrawing capabilities of ancillary ligands using the DFT and TD-DFT calculations on the ground and excited states of the complexes. From these results, we discuss how the ancillary ligand influences the emission peak as well as the metal to ligand charge transfer (MLCT) transition efficiency. The maximum emission spectra of Ir{(CF3)2Meppy}(PPhMe3)2(H)(Cl), [Ir{(CF3),Meppy)(PPhMe3),(H)(NCMe)]+ and Ir{(CF3)2Meppy}(PPhMe3)2(H)(CN) were in the ranges of 441, 435, 434 nm, respectively.

  13. Probing the electronic structure of platinum(II) chromophores: crystal structures, NMR structures, and photophysical properties of six new bis- and di- phenolate/thiolate Pt(II)diimine chromophores.

    PubMed

    Weinstein, Julia A; Tierney, Mark T; Davies, E Stephen; Base, Karel; Robeiro, Anthony A; Grinstaff, Mark W

    2006-05-29

    A general route for synthesis of six structurally similar Pt(II) diimine thiolate/phenolates chromophores possessing bulky phenolate or thiolate ligands is reported. The Pt chromophores were characterized using an array of techniques including 1H, 13C, and 195Pt NMR, absorption, emission, (spectro)electrochemistry, and EPR spectroscopy. Systematic variation of the electronic structure of the Pt(II) chromophores studied was achieved by (i) changing solvent polarity; (ii) substituting oxygen for sulfur in the donor ligand; (iii) alternating donor ligands from bis- to di-coordination; and (iv) changing the electron donating/withdrawing properties of the ligand(s). The lowest excited state in these new chromophores was assigned to a [charge-transfer-to-diimine] transition from the HOMO of mixed Pt/S (or Pt/O) character on the basis of absorption and emission spectroscopy, UV/vis (spectro)electrochemistry, and EPR spectroscopy. One of the chromophores, Pt(dpphen)(3,5-di-tert-butyl-catecholate) represents an example of a Pt(II) diimine phenolate chromophore that possesses a reversible oxidation centered predominantly on the donor ligand. Results from EPR spectroscopy indicate participation of the Pt(II) orbitals in the HOMO. There is a dramatic difference in the photophysical properties of carborane complexes compared to other mixed-ligand Pt(II) compounds, which includes room-temperature emission and photostability. The charge-transfer character of the lowest excited state in this series of chromophores is maintained throughout. Moreover, the absorption and emission energies and the redox properties of the excited state can be significantly tuned.

  14. Mono- and Dinuclear Manganese Carbonyls Supported by 1,8-Disubstituted (L = Py, SMe, SH) Anthracene Ligand Scaffolds.

    PubMed

    Manes, Taylor A; Rose, Michael J

    2016-06-06

    Presented herein is a synthetic scheme to generate symmetric and asymmetric ligands based on a 1,8-disubstituted anthracene scaffold. The metal-binding scaffolds were prepared by aryl chloride activation of 1,8-dichloroanthracene using Suzuki-type couplings facilitated by [Pd(dba)2] as a Pd source; the choice of cocatalyst (XPhos or SPhos) yielded symmetrically or asymmetrically substituted scaffolds (respectively): namely, Anth-SMe2 (3), Anth-N2 (4), and Anth-NSMe (6). The ligands exhibit a nonplanar geometry in the solid state (X-ray), owing to steric hindrance between the anthracene scaffold and the coupled aryl units. To determine the flexibility and binding characteristics of the anthracene-based ligands, the symmetric scaffolds were complexed with [Mn(CO)5Br] to afford the mononuclear species [(Anth-SMe2)Mn(CO)3Br] (8) and [(Anth-N2)Mn(CO)3Br] (9), in which the donor moieties chelate the Mn center in a cis fashion. The asymmetric ligand Anth-NSMe (6) binds preferentially through the py moieties, affording the bis-ligated complex [(Anth-NSMe)2Mn(CO)3Br] (10), wherein the thioether-S donors remain unbound. Alternatively, deprotection of the thioether in 6 affords the free thiol ligand Anth-NSH (7), which more readily binds the Mn center. Complexation of 7 ultimately affords the mixed-valence Mn(I)/Mn(II) dimer of formula [(Anth-NS)3Mn2(CO)3] (11), which exhibits a fac-{Mn(CO)3} unit supported by a triad of bridging thiolates, which are in turn ligated to a supporting Mn(II) center (EPR: |D| = 0.053 cm(-1), E/|D| = 0.3, Aiso = -150 MHz). All of the metal complexes have been characterized by single-crystal X-ray diffraction, IR spectroscopy and NMR/EPR measurements-all of which demonstrate that the meta-linked, anthracene-based ligand scaffold is a viable approach for the coordination of metal carbonyls.

  15. Molecular Dynamics in Mixed Solvents Reveals Protein-Ligand Interactions, Improves Docking, and Allows Accurate Binding Free Energy Predictions.

    PubMed

    Arcon, Juan Pablo; Defelipe, Lucas A; Modenutti, Carlos P; López, Elias D; Alvarez-Garcia, Daniel; Barril, Xavier; Turjanski, Adrián G; Martí, Marcelo A

    2017-04-24

    One of the most important biological processes at the molecular level is the formation of protein-ligand complexes. Therefore, determining their structure and underlying key interactions is of paramount relevance and has direct applications in drug development. Because of its low cost relative to its experimental sibling, molecular dynamics (MD) simulations in the presence of different solvent probes mimicking specific types of interactions have been increasingly used to analyze protein binding sites and reveal protein-ligand interaction hot spots. However, a systematic comparison of different probes and their real predictive power from a quantitative and thermodynamic point of view is still missing. In the present work, we have performed MD simulations of 18 different proteins in pure water as well as water mixtures of ethanol, acetamide, acetonitrile and methylammonium acetate, leading to a total of 5.4 μs simulation time. For each system, we determined the corresponding solvent sites, defined as space regions adjacent to the protein surface where the probability of finding a probe atom is higher than that in the bulk solvent. Finally, we compared the identified solvent sites with 121 different protein-ligand complexes and used them to perform molecular docking and ligand binding free energy estimates. Our results show that combining solely water and ethanol sites allows sampling over 70% of all possible protein-ligand interactions, especially those that coincide with ligand-based pharmacophoric points. Most important, we also show how the solvent sites can be used to significantly improve ligand docking in terms of both accuracy and precision, and that accurate predictions of ligand binding free energies, along with relative ranking of ligand affinity, can be performed.

  16. The influence of citrate and oxalate on 99TcVII, Cs, NpV and UVI sorption to a Savannah River Site soil.

    PubMed

    Montgomery, D; Barber, K; Edayilam, N; Oqujiuba, K; Young, S; Biotidara, T; Gathers, A; Danjaji, M; Tharayil, N; Martinez, N; Powell, B

    2017-06-01

    Batch sorption experiments were conducted with 0.5-50 ppb 99 Tc, 133 Cs, 237 Np and U in the presence and absence of citrate and/or oxalate in a 25 g/L Savannah River Site (SRS) soil suspension. Citrate and oxalate were the ligands of choice due to their relevancy to plant exudates, the nuclides were selected for their wide range of biogeochemical behavior, and the soil from SRS was selected as a model Department of Energy (DOE) site soil. Batch samples were continually mixed on a rotary shaker and maintained at a pH of approximately 5. Analysis via ICP-MS indicated that sorption of 237 Np increased with ligand concentration compared to baseline studies, as did sorption of 99 Tc although to a lesser extent. The increased sorption of 237 Np is proposed to be due to a combination of factors that are dependent on the ligand(s) present in the specific system including, ligand dissolution of the soil by citrate and formation of tertiary soil-oxalate-Np complexes. The increased 99 Tc sorption is attributed to the dissolution of the soil by the ligands, leading to an increase in the number of available sorption sites for 99 Tc. Uranium sorption decreased and dissolution of native uranium was also observed with increasing ligand concentration, thought to be a result of the formation of strong U-ligand complexes remaining in the aqueous phase. The majority of these effects were observed at the highest ligand concentrations of 50 mg C /L. No notable changes were observed for the 133 Cs system which is ascribed to the minimal interaction of Cs + with these organic ligands. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Luminescent low-valent rhenium complexes with 1,2-bis(dialkylphosphino)ethane ligands. synthesis and X-ray crystallographic, electrochemical, and spectroscopic characterization.

    PubMed

    Messersmith, Stephania J; Kirschbaum, Kristin; Kirchhoff, Jon R

    2010-04-19

    A series of low-valent rhenium phosphine complexes with the general formula [Re(dmpe)(3-x)(depe)(x)](2+/+) (x = 0-3), where dmpe is 1,2-bis(dimethylphosphino)ethane and depe is 1,2-bis(diethylphosphino)ethane, were synthesized and characterized. The reaction of [Re(benzil)(PPh(3))Cl(3)] with the appropriate phosphine yielded the homoleptic tris complexes [Re(dmpe)(3)](+) and [Re(depe)(3)](2+), while the mixed-ligand complexes [Re(dmpe)(2)(depe)](+) and [Re(dmpe)(depe)(2)](2+) were prepared from [Re(dmpe)(2)Cl(2)](+) and [Re(depe)(2)Cl(2)](+), respectively. The oxidation state of the final product strongly depends on the donating properties of the ligand. Each complex, however, exhibits a diffusion-controlled, reversible one-electron transfer between Re(I) and Re(II) with formal reduction potentials, E degrees ', ranging from -0.09 to -0.28 V versus a ferrocene external standard. Subsequent oxidation to Re(III) was found to be chemically irreversible. UV-vis and luminescence spectroelectrochemical techniques were used to study the spectral properties of the Re(I) and Re(II) forms. The Re(II) complexes are red in color and exhibit absorption features from 350 to 600 nm; the lowest-energy transition was assigned as a sigma(P) to dpi(Re) ligand-to-metal charge-transfer (LMCT) transition. Excitation into the lowest-energy absorption band revealed rare examples of luminescent (Phi approximately 0.07) LMCT excited states from d(5) transition-metal complexes in a room temperature solution. Structural characterization of salts of both oxidation states of [Re(dmpe)(2)(depe)](2+/+) was also performed.

  18. Crystal structure of a mixed-ligand dinuclear Ba-Zn complex with 2-meth-oxy-ethanol having tri-phenyl-acetate and chloride bridges.

    PubMed

    Utko, Józef; Sobocińska, Maria; Dobrzyńska, Danuta; Lis, Tadeusz

    2015-07-01

    The dinuclear barium-zinc complex, μ-chlorido-1:2κ(2) Cl:Cl-chlorido-2κCl-bis-(2-meth-oxy-ethanol-1κO)bis-(2-meth-oxy-ethanol-1κ(2) O,O')bis-(μ-tri-phenyl-acetato-1:2κ(2) O:O')bariumzinc, [BaZn(C20H15O2)2Cl2(C3H8O2)4], has been synthesized by the reaction of barium tri-phenyl-acetate, anhydrous zinc chloride and 2-meth-oxy-ethanol in the presence of toluene. The barium and zinc metal cations in the dinuclear complex are linked via one chloride anion and carboxyl-ate O atoms of the tri-phenyl-acetate ligands, giving a Ba⋯Zn separation of 3.9335 (11) Å. The irregular nine-coordinate BaO8Cl coordination centres comprise eight O-atom donors, six of them from 2-meth-oxy-ethanol ligands (four from two bidentate O,O'-chelate inter-actions and two from monodentate inter-actions), two from bridging tri-phenyl-acetate ligands and one from a bridging Cl donor. The distorted tetra-hedral coordination sphere of zinc comprises two O-atom donors from the tri-phenyl-acetate ligands and two Cl donors (one bridging and one terminal). In the crystal, O-H⋯Cl, O-H⋯O and C-H⋯Cl inter-molecular inter-actions form a layered structure, lying parallel to (001).

  19. Two New Families of Lanthanide Mixed-Ligand Complexes, Oxalate-Carbonate and Oxalate-Formate: Synthesis and Structure of [Ce(H 2O)] 2(C 2O 4) 2(CO 3)·2.5 H 2O and Ce(C 2O 4)(HCO 2)

    NASA Astrophysics Data System (ADS)

    Romero, S.; Mosset, A.; Trombe, J. C.

    1996-12-01

    Two new families of lanthanide complexes associating the ligands oxalate and carbonate or oxalate and formate have been prepared under autogenous pressure at 200°C using a pseudo-hydrothermal method. The two families have been extended to some lanthanides ( Ln): oxalate-carbonate Ln= Ce, Pr, Nd, and Eu; oxalate-formate Ln= La, Ce, and Sm. The starting suspension contains either oxalate or a mixture of oxalate and oxalic acid. The structures have been solved for the element cerium. In both cases, the structure is built up from cerium atoms sharing all their oxygen atoms with oxalate and carbonate or oxalate and formate ligands, thus forming a three-dimensional network. The cerium polyhedra share either faces or edges or corners. The coordination scheme of the oxalate ligands is variable: bischelating, bischelating and monodentate, or bischelating and bismonodentate. The carbonate group acts as a bischelating and bismonodentate ligand while the formate group is chelating and monodentate. The characterization of these two original families by infrared spectra and thermal behavior is presented for some pure phases. A tentative explanation of the synthesis of these two phases will be emphasized.

  20. Self-assembly of hybrid organic-inorganic polyoxovanadates: functionalised mixed-valent clusters and molecular cages.

    PubMed

    Breen, John M; Clérac, Rodolphe; Zhang, Lei; Cloonan, Suzanne M; Kennedy, Elaine; Feeney, Martin; McCabe, Thomas; Williams, D Clive; Schmitt, Wolfgang

    2012-03-14

    Herein we report the intra- and inter-molecular assembly of a {V(5)O(9)} subunit. This mixed-valent structural motif can be stabilised as [V(5)O(9)(L(1-3))(4)](5-/9-) (1-3) by a range of organoarsonate ligands (L(1)-L(3)) whose secondary functionalities influence its packing arrangement within the crystal structures. Variation of the reaction conditions results in the dodecanuclear cage structure [V(12)O(14)(OH)(4)(L(1))(10)](4-) (4) where two modified convex building units are linked via two dimeric {O(4)V(IV)(OH)(2)V(IV)O(4)} moieties. Bi-functional phosphonate ligands, L(4)-L(6) allow the intramolecular connectivity of the {V(5)O(9)} subunit to give hybrid capsules [V(10)O(18)(L(4-6))(4)](10-) (5-7). The dimensions of the electrophilic cavities of the capsular entities are determined by the incorporated ligand type. Mass spectrometry experiments confirm the stability of the complexes in solution. We investigate and model the temperature-dependent magnetic properties of representative complexes 1, 4, 6 and 7 and provide preliminary cell-viability studies of three different cancer cell lines with respect to Na(8)H(2)[6]·36H(2)O and Na(8)H(2)[7]·2DMF·29H(2)O.

  1. Fluorescence and electron paramagnetic resonance studies of norfloxacin and N-donor mixed-ligand ternary copper(II) complexes: Stability and interaction with SDS micelles

    NASA Astrophysics Data System (ADS)

    Vignoli Muniz, Gabriel S.; Incio, Jimmy Llontop; Alves, Odivaldo C.; Krambrock, Klaus; Teixeira, Letícia R.; Louro, Sonia R. W.

    2018-01-01

    The stability of ternary copper(II) complexes of a heterocyclic ligand, L (L being 2,2‧-bipyridine (bipy) or 1,10-phenanthroline (phen)) and the fluorescent antibacterial agent norfloxacin (NFX) as the second ligand was studied at pH 7.4 and different ionic strengths. Fluorescence quenching upon titration of NFX with the binary complexes allowed to obtain stability constants for NFX binding, Kb, as a function of ionic strength. The Kb values vary by more than two orders of magnitude when buffer concentration varies from 0.5 to 100 mM. It was observed that previously synthesized ternary complexes dissociate in buffer according with the obtained stability constants. This shows that equimolar solutions of NFX and binary complexes are equivalent to solutions of synthesized ternary complexes. The interaction of the ternary copper complexes with anionic SDS (sodium dodecyl sulfate) micelles was studied by fluorescence and electron paramagnetic resonance (EPR). Titration of NFX-loaded SDS micelles with the complexes Cu:L allowed to determine the stability constants inside the micelles. Fluorescence quenching demonstrated that SDS micelles increase the stability constants by factors around 50. EPR spectra gave details of the copper(II) local environment, and demonstrated that the structure of the ternary complexes inside SDS micelles is different from that in buffer. Mononuclear ternary complexes formed inside the micelles, while in buffer most ternary complexes are binuclear. The results show that anionic membrane interfaces increase formation of copper fluoroquinolone complexes, which can influence bioavailability, membrane diffusion, and mechanism of action of the antibiotics.

  2. Nonlinear optical properties and excited state dynamics of sandwich-type mixed (phthalocyaninato)(Schiff-base) triple-decker complexes: Effect of rare earth atom

    NASA Astrophysics Data System (ADS)

    Li, Zhongguo; Gao, Feng; Xiao, Zhengguo; Wu, Xingzhi; Zuo, Jinglin; Song, Yinglin

    2018-07-01

    The third-order nonlinear optical properties of two di-lanthanide (Ln = Tb and Dy) sandwich complexes with mixed phthalocyanine and Schiff-base ligands were studied using Z-scan technique at 532 nm with 20 ps and 4 ns pulses. Both complexes exhibit reverse saturable absorption and self-focusing effect in ps regime, while the second-order hyperpolarizability decreases from Dy to Tb. Interestingly, the Tb triple-decker complexes show larger nonlinear absorption than Dy complexes on ns timescale. The time-resolved pump-probe measurements demonstrate that the nonlinear optical response was caused by excited-state mechanism related to the five-level model, while the singlet state lifetime of Dy complexes is 3 times shorter than that of Tb complexes. Our results indicate the lanthanide ions play a critical role in the photo-physical properties of triple-decker phthalocyanine complexes for their application as optical limiting materials.

  3. Synthesis, characterization and solid state electrical properties of 1-D coordination polymer of the type [Cu{sub x}Ni{sub 1-x}(dadb){center_dot}yH{sub 2}O]{sub n}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prasad, R.L., E-mail: rlpjc@yahoo.co.in; Kushwaha, A.; Shrivastava, O.N.

    2012-12-15

    New heterobimetallic complexes [Cu{sub x}Ni{sub 1-x}(dadb){center_dot}yH{sub 2}O]{sub n} {l_brace}where dadb=2,5-Diamino-3,6-dichloro-1,4-benzoquinone (1); x=1 (2), 0.5 (4), 0.25 (5), 0.125 (6), 0.0625 (7) and 0 (3); y=2; n=degree of polymerization{r_brace} were synthesized and characterized. Heterobimetallic complexes show normal magnetic moments, whereas, monometallic complexes exhibit magnetic moments less than the value due to spin only. Thermo-gravimetric analysis shows that degradation of the ligand dadb moiety is being controlled by the electronic environment of the Cu(II) ions in preference over Ni(II) in heterobimetallic complexes. Existence of the mixed valency/non-integral oxidation states of copper and nickel metal ions in the complex 4 has been attributedmore » from magnetic moment and ESR spectral results. Solid state dc electrical conductivity of all the complexes was investigated. Monometallic complexes were found to be semiconductors, whereas heterobimetallic coordination polymer 4 was found to exhibit metallic behaviour. Existence of mixed valency/ non-integral oxidation state of metal ions seems to be responsible for the metallic behaviour. - Graphical abstract: Contrast to the semiconductor monometallic complexes 2 and 3, the heterobimetallic complex 4 exhibits metallic behaviour attributed to the mixed valency/non-integral oxidation state of the metal ions concluded from magnetic and ESR spectral studies. Highlights: Black-Right-Pointing-Pointer 1-D coordination compounds of the type Cu{sub x}Ni{sub 1-x}(dadb){center_dot}yH{sub 2}O were synthesized and characterized. Black-Right-Pointing-Pointer Thermal degradation of the complexes provides an indication of long range electronic communication between metal to ligand. Black-Right-Pointing-Pointer On inclusion of Ni(II) into 1-D coordination polymer of Cu(II). (a) Cu(II) and Ni(II) ions exhibit non-integral oxidation state. (b) resulting heterobimetallic complex 4 exhibits metallic behaviour at all temperature range of the present study whereas monometallic complexes are semiconductor.« less

  4. Excitation energy transfer in europium chelate with doxycycline in the presence of a second ligand in micellar solutions of nonionic surfactants

    NASA Astrophysics Data System (ADS)

    Smirnova, T. D.; Shtykov, S. N.; Kochubei, V. I.; Khryachkova, E. S.

    2011-01-01

    The complexation of Eu3+ with doxycycline (DC) antibiotic in the presence of several second ligands and surfactant micelles of different types is studied by the spectrophotometric and luminescence methods. It is found that the efficiency of excitation energy transfer in Eu3+-DC chelate depends on the nature of the second ligand and surfactant micelles. Using thenoyltrifluoroacetone (TTA) as an example, it is shown that the second ligand additionally sensitizes the europium fluorescence, and the possibility of intermediate sensitization of DC and then of europium is shown by the example of 1,10-phenanthroline. In all cases, the excitation energy transfer efficiency was increased due to the so-called antenna effect. The decay kinetics of the sensitized fluorescence of the binary and mixed-ligand chelates in aqueous and micellar solutions of nonionic surfactants is studied and the relative quantum yields and lifetimes of fluorescence are determined.

  5. Two new coordination polymers with flexible alicyclic carboxylate and bipyridyl co-ligands bearing trinuclear [Ni3(COO)6] SBUs: Synthesis, crystal structures, and magnetic properties

    NASA Astrophysics Data System (ADS)

    Zhu, Xian-Dong; Li, Yong; Gao, Jian-Gang; Wang, Fen-Hua; Li, Qing-Hai; Yang, Hong-Xun; Chen, Lei

    2017-02-01

    Two new coordination polymers generally formulated as [Ni3(Hchda)2(chda)2(bpy)2(H2O)2]n (1) and [Ni3(Hchda)2(chda)2(bpp)2(H2O)2]n (2) [H2chda = 1,1'-cyclohexanediacetic acid, bpy = 4,4'-bipyridine and bpp = 1,3-bis(4-pyridyl)propane], have been successfully assembled through mixed-ligands synthetic strategy with flexible alicyclic carboxylate and bipyridyl ligands. There structures feature trinuclear nickel secondary building units connected via the bridging bipyridyl spacers to form two-dimensional (4,4) grid layer. The nature of the different N-donor auxiliary ligands leads to the discrepancy in supramolecular structure of the two compounds. Magnetic studies indicate the ferromagnetic intra-complex magnetic interaction in the molecule for 1 and 2.

  6. Quantifying covalent interactions with resonant inelastic soft X-ray scattering: Case study of Ni 2+ aqua complex

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kunnus, K.; Josefsson, I.; Schreck, S.

    We analyze the effects of covalent interactions in Ni 2p3d resonant inelastic X-ray scattering (RIXS) spectra from aqueous Ni 2+ ions and find that the relative RIXS intensities of ligand-to-metal charge-transfer final states with respect to the ligand-field final states reflect the covalent mixing between Ni 3d and water orbitals. Specifically, the experimental intensity ratio at the Ni L 3-edge allows to determine that the Ni 3d orbitals have on average 5.5% of water character. Here, we propose that 2p3d RIXS at the Ni L 3-edge can be utilized to quantify covalency in Ni complexes without the use of externalmore » references or simulations.« less

  7. Quantifying covalent interactions with resonant inelastic soft X-ray scattering: Case study of Ni 2+ aqua complex

    DOE PAGES

    Kunnus, K.; Josefsson, I.; Schreck, S.; ...

    2016-12-23

    We analyze the effects of covalent interactions in Ni 2p3d resonant inelastic X-ray scattering (RIXS) spectra from aqueous Ni 2+ ions and find that the relative RIXS intensities of ligand-to-metal charge-transfer final states with respect to the ligand-field final states reflect the covalent mixing between Ni 3d and water orbitals. Specifically, the experimental intensity ratio at the Ni L 3-edge allows to determine that the Ni 3d orbitals have on average 5.5% of water character. Here, we propose that 2p3d RIXS at the Ni L 3-edge can be utilized to quantify covalency in Ni complexes without the use of externalmore » references or simulations.« less

  8. First examples of ternary lanthanide 5-aminoisophthalate complexes: Hydrothermal syntheses and structures of lanthanide coordination polymers with 5-aminoisophthalate and oxalate

    NASA Astrophysics Data System (ADS)

    Liu, Chong-Bo; Wen, Hui-Liang; Tan, Sheng-Shui; Yi, Xiu-Guang

    2008-05-01

    Two new lanthanide coordination polymers with mixed-carboxylates, [Ln(OX)(HAPA)(H 2O)] n[Ln = Eu ( 1), Ho ( 2); H 2APA = 5-aminoisophthalic acid; OX = oxalate] were obtained by hydrothermal reactions, and characterized by single crystal X-ray diffraction, elemental analysis and IR spectra. Complexes 1 and 2 are both 3-D supramolecular structure, in which lanthanide ions are bridged by oxalate and 5-aminoisophthalate ligands forming 2-D metal-organic framework, and 2-D networks are further architectured to form 3-D supramolecular structures by hydrogen bonds. The two carboxylate groups of H 2APA ligand are all deprotonated and exhibit chelating and bridging bidentate coordination modes, respectively, and the amino group in HAPA presents - NH3+ in the titled complexes. The thermogravimetric analysis was carried out to examine the thermal stability of the titled complexes. And the photoluminescence property of 1 was investigated.

  9. Monomer and metallopolymer compounds of Tb(III) as precursors for OLEDs

    NASA Astrophysics Data System (ADS)

    Irina, Savchenko; Oleksandra, Berezhnytska; Olena, Trunova; Yaroslav, Fedorov; Sergiy, Smola; Nataliya, Rusakova

    2018-03-01

    The Terbium (III) complexes [Tb(III)-water, mixed-ligand complex Tb(III)-phenanthroline] with 2-methyl-5-phenyl-1-pentene-3,5-dione were synthesized. The polycomplex was obtained by free-radical polymerization. The results of above studies have shown that the configuration of the chelate unit is unchanged during the polymerization. As a result, the type of coordination was determined and the structure of coordination polyhedra was assumed. The luminescence spectra of obtained metallocomplexes and polymer were investigated and analyzed. The solubilization of terbium complex with phenanthroline, was shown to change luminescence intensity in this complex.

  10. Equilibrium, Kinetic and Structural Properties of Gallium(III) and Some Divalent Metal Complexes Formed with the New DATAm and DATA5m Ligands.

    PubMed

    Farkas, Edit; Nagel, Johannes; Waldron, Bradley P; Parker, David; Tóth, Imre; Brücher, Ernő; Rösch, Frank; Baranyai, Zsolt

    2017-08-01

    The development of 68 Ge/ 68 Ga generators has made the positron-emitting 68 Ga isotope widely accessible and raised interest in new chelate complexes of Ga 3+ . The hexadentate 1,4-di(acetate)-6-methyl[amino(methyl)acetate]perhydro-1,4-diazepane (DATA m ) ligand and its bifunctional analogue, 1,4-di(acetate)-6-pentanoic acid[amino(methyl)acetate]perhydro-1,4-diazepane (DATA 5m ), rapidly form complexes with 68 Ga in high radiochemical yield. The stability constants of DATA m and DATA 5m complexes formed with Ga 3+ , Zn 2+ , Cu 2+ , Mn 2+ and Ca 2+ have been determined by using pH potentiometry, spectrophotometry (Cu 2+ ) and 1 H and 71 Ga NMR spectroscopy (Ga 3+ ). The stability constants of Ga(DATA m ) and Ga(DATA 5m ) complexes are slightly higher than those of Ga(AAZTA). The species distribution calculations indicated the predominance of Ga(L)OH mixed-hydroxo complexes at physiological pH. The 1 H and 71 Ga NMR spectroscopy studies provided information about the coordinated functional groups of ligands and on the kinetics of exchange between the Ga(L) and Ga(L)OH complexes. The transmetalation reactions between the Ga(L) complexes and Cu 2+ citrate (6

  11. Cation Distribution and Local Configuration of Fe 2+ Ions in Structurally Nonequivalent Lattice Sites of Heterometallic Fe(II)/ M(II) ( M = Mn, Co, Ni, Cu, Zn) Diaquadiformato Complexes

    NASA Astrophysics Data System (ADS)

    Devillers, M.; Ladrière, J.

    1993-03-01

    57Fe Mössbauer investigations are carried out on a wide series of heterometallic diaquadiformato Fe(II)/ M(II) complexes with M = Mn, Co, Ni, Cu, and Zn to provide a local picture of the coordination environment of the 57Fe 2+ ions as a function of (i) the nature of the host cation and (ii) the relative amounts of both metals in the matrix (between 50 and 0.25 at.% Fe). Information is obtained on the quantitative distribution of both metals between the two structurally nonequivalent lattice sites and on the local geometry around the dopant atom in each crystal site. In the mixed Fe-Cu complexes. Fe 2+ ions are preferentially incorporated in the tetrahydrated site; in Cu-rich Fe xCu 1- x(HCO 2) 2· 2H 2O, the 57Fe 2+ ions located in the hexaformato-coordinated site are surrounded by an axially compressed octahedron of formate ligands which contrasts with the elongated configuration observed in the pure iron compound and in the other mixed systems. Semiquantitative estimations of the tetragonal field splitting and of the extent of metal-ligand interactions are proposed from the temperature dependence of the quadrupole splitting values.

  12. Luminescence of ytterbium(III) in mixed-ligand compounds with cinnamic acid and neutral phosphorus-containing ligands

    NASA Astrophysics Data System (ADS)

    Kalinovskaya, I. V.

    2014-09-01

    The luminescence spectral characteristics of mixed-ligand compounds of ytterbium(III) with cinnamic acid and neutral phosphorus-containing ligands were studied by luminescence spectroscopy. The intensity of luminescence of the compounds was determined. The highest intensity of luminescence was found for the ytterbium(III) compound with triphenylphosphine oxide.

  13. Three isostructural one-dimensional Ln(III) chains with distorted cubane motifs showing dual fluorescence and slow magnetic relaxation/magnetocaloric effect.

    PubMed

    Li, Yan; Yu, Jia-Wen; Liu, Zhong-Yi; Yang, En-Cui; Zhao, Xiao-Jun

    2015-01-05

    Three new homometallic lanthanide complexes with mixed carboxylate-modified rigid ligands, [Ln(μ3-OH)(na)(pyzc)]n (na(-) = 1-naphtholate, pyzc(-) = 2-pyrazinecarboxylate, Ln = Dy (1), Yb (2), and Gd (3)), were solvothermally synthesized, and their structures and magnetic as well as photophysical properties were completely investigated. Complexes 1-3 are crystallographically isostructural, exhibiting linear chains with four bidentate bridging μ-COO(-) moieties encapsulated cubic {Ln4(μ3-OH)4}(8+) clusters repeatedly extended by 4-fold chelating-bridging-pyzc(-) connectors. Magnetically, the former two complexes with highly anisotropic Dy(III) and weak anisotropic Yb(III) ions in the distorted NO7 triangular dodecahedron coordination environment display field-induced slow relaxation of magnetization. Fitting the dynamic magnetic data to the Arrhenius law gives energy barrier ΔE/kB = 39.6 K and pre-exponential factor τo = 1.52 × 10(-8) s for 1 and ΔE/kB = 14.1 K and τo = 2.13 × 10(-7) s for 2. By contrast, complex 3 with isotropic Gd(III) ion and weak intracluster antiferromagnetic coupling shows a significant cryogenic magnetocaloric effect, with a maximum -ΔSm value of 30.0 J kg(-1) K(-1) at 2.5 K and 70 kOe. Additionally, the chromophoric na(-) and pyzc(-) ligands can serve as antenna groups, selectively sensitizing the Dy(III)- and Yb(III)-based luminescence of 1 and 2 in the UV-visible region by an intramolecular energy transfer process. Thus, complexes 1-3, incorporating field-induced slow magnetic magnetization and interesting luminescence together, can be used as composite magneto-optical materials. More importantly, these interesting results further demonstrate that the mixed-ligand system with rigid carboxylate-functionalized chromophores can be excellent candidates for the preparations of new bifunctional magneto-optical materials.

  14. Establishment of primary mixed cell cultures from spontaneous canine mammary tumors: Characterization of classic and new cancer-associated molecules

    PubMed Central

    Gentile, Luciana B.; Nagamine, Marcia K.; Biondi, Luiz R.; Sanches, Daniel S.; Toyota, Fábio; Giovani, Tatiane M.; de Jesus, Isis P.; da Fonseca, Ivone I. M.; Queiroz-Hazarbassanov, Nicolle; Diaz, Bruno L.; Salles Gomes, Cristina de O. Massoco

    2017-01-01

    There are many factors which make canine cancer like cancer in humans. The occurrence of spontaneous mammary tumors in pet dogs, tumor genetics, molecular targets and exposure to the same environmental risk factors are among these factors. Therefore, the study of canine cancer can provide useful information to the oncology field. This study aimed to establish and characterize a panel of primary mixed cell cultures obtained from spontaneous canine mammary tumors. Eight established cell cultures obtained from one normal mammary gland, one complex adenoma, one mixed adenoma, two complex carcinomas and two mixed carcinomas were analyzed. The gene expression levels of classic molecular cancer players such as fibroblast growth factor receptor (FGFR) 2, breast cancer (BRCA) 1, BRCA2 and estrogen receptor (ESR) 1 were evaluated. For the first time, three orphan nuclear receptors, estrogen-related receptors (ERRs) α, β and γ were studied in canine mammary cancer. The highest expression level of ERRα was observed in complex carcinoma-derived cell culture, while the highest levels of ERRβ and γ were observed in cells derived from a mixed carcinoma. Meanwhile, complex carcinomas presented the highest levels of expression of ESR1, BRCA1 and FGFR2 among all samples. BRCA2 was found exclusively in complex adenoma. The transcription factor GATA3 had its highest levels in mixed carcinoma samples and its lowest levels in complex adenoma. Proliferation assays were also performed to evaluate the mixed cell cultures response to ER ligands, genistein and DES, both in normoxia and hypoxic conditions. Our results demonstrate that morphological and functional studies of primary mixed cell cultures derived from spontaneous canine mammary tumors are possible and provide valuable tool for the study of various stages of mammary cancer development. PMID:28945747

  15. All-metal aromatic cationic palladium triangles can mimic aromatic donor ligands with Lewis acidic cations† †Electronic supplementary information (ESI) available: Reaction procedures, characterization of complexes, copies of all spectra and cif files, modelling details and XYZ coordinates. CCDC 1410440–1410442. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c7sc03475j Click here for additional data file. Click here for additional data file.

    PubMed Central

    Wang, Yanlan; Monfredini, Anna; Deyris, Pierre-Alexandre; Blanchard, Florent; Derat, Etienne; Malacria, Max

    2017-01-01

    We present that cationic rings can act as donor ligands thanks to suitably delocalized metal–metal bonds. This could grant parent complexes with the peculiar properties of aromatic rings that are crafted with main group elements. We assembled Pd nuclei into equilateral mono-cationic triangles with unhindered faces. Like their main group element counterparts and despite their positive charge, these noble-metal rings form stable bonding interactions with other cations, such as positively charged silver atoms, to deliver the corresponding tetranuclear dicationic complexes. Through a mix of modeling and experimental techniques we propose that this bonding mode is an original coordination-like one rather than a 4-centre–2-electron bond, which have already been observed in three dimensional aromatics. The present results thus pave the way for the use of suitable metal rings as ligands. PMID:29163890

  16. A Hexanuclear Iron(II) Layer with Two Square-Planar FeO4 Units Spanned by Tetrasiloxide Ligands: Mimicking of Minerals and Catalysts.

    PubMed

    Manicke, N; Hoof, S; Keck, M; Braun-Cula, B; Feist, M; Limberg, C

    2017-07-17

    A hexanuclear iron(II) siloxide complex has been prepared by reacting an incompletely condensed silsesquioxane first with NaOMe and then with Fe(OTf) 2 . In the process of product formation, the siloxane framework undergoes a transformation and it was shown that this happens already upon addition of base: Treatment of the ligand precursor with NaOMe leads to a completely condensed silsesquioxane cage with 12 Si atoms that is composed of 2 equiv of the tetrasiloxide ligands found in the product complex. Its iron centers form a two-dimensional array reminiscent of the situations found in minerals and two-dimensional oxide films caused by segregation of FeO x and silica. As the hexairon(II) assembly contains two high-spin square-planar FeO 4 units-suggested to represent the active sites in Fe-zeolites, which react with N 2 O to generate strongly oxidizing sites-it was treated with Me 3 NO. This led to the oxidation of two of the iron centers to the oxidation state +III and elimination of one iron ion, so that a pentanuclear, mixed valent iron siloxide was formed. All complexes were fully characterized.

  17. Heterodinuclear titanium/zinc catalysis: synthesis, characterization and activity for CO2/epoxide copolymerization and cyclic ester polymerization.

    PubMed

    Garden, Jennifer A; White, Andrew J P; Williams, Charlotte K

    2017-02-21

    The preparation of heterodinuclear complexes, especially those comprising early-late transition metals coordinated by a simple or symmetrical ancillary ligand, represents a fundamental challenge and an opportunity to prepare catalysts benefitting from synergic properties. Here, two new mixed titanium(iv)-zinc(ii) complexes, [LTi(O i Pr) 2 ZnEt] and [LTi(O i Pr) 2 ZnPh], both coordinated by a diphenolate tetra(amine) macrocyclic ligand (L), are prepared. The synthesis benefits from the discovery that reaction of the ligand with a single equivalent of titanium tetrakis(iso-propoxide) allows the efficient formation of a mono-Ti(iv) complex, [LTi(O i Pr) 2 ]. All new complexes are characterized by a combination of single crystal X-ray diffraction, multinuclear NMR spectroscopy and mass spectrometry techniques. The two heterobimetallic complexes, [LTi(O i Pr) 2 ZnEt] and [LTi(O i Pr) 2 ZnPh], feature trianionic coordination by the macrocyclic ligand and bridging alkoxide groups coordinate to both the different metal centres. The heterodinuclear catalysts are compared to the mono-titanium analogue, [LTi(O i Pr) 2 ], in various polymerization reactions. In the alternating copolymerizations of carbon dioxide and cyclohexene oxide, the mono-titanium complex is totally inactive whilst the heterodinuclear complexes show moderate activity (TOF = 3 h -1 ); it should be noted the activity is measured using just 1 bar pressure of carbon dioxide. In the ring opening polymerization of lactide and ε-caprolactone, the mono-Ti(iv) complex is totally inactive whilst the heterodinuclear complexes show moderate-high activities, qualified by comparison to other known titanium polymerization catalysts (l-lactide, k obs = 11 × 10 -4 s -1 at 70 °C, 1 M in [lactide]) and ε-caprolactone (k obs = 5 × 10 -4 s -1 at 70 °C, 0.9 M in [ε-caprolactone]).

  18. Protonation at the aromatic ring vs at the carbonyl group of lanthanide-diaryl ketone dianion species by aryl alcohols. Formation, structural characterization, and reactivity of lanthanide aryloxide, mixed aryloxide/alkoxide, and aryloxide/enolate complexes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoshimura, Takashi; Hou, Z.; Wakatsuki, Yasua

    1995-11-01

    Reaction of the ytterbium-benzophenone dianion complex (1), which was formed by reaction of Yb metal with benzophenone in THF/HMPA, with 2,6-di-tert-butyl-4-methylphenol, yielded the ytterbium(II) aryloxide complex Yb(OAr){sub 2}(HMPA){sub 2} (2, Ar= C{sub 6}H{sub 2} -{sup t}Bu{sub 2}-2,6-Me-4) as a major product (80%) and the ytterbium(III) enolate complex (3) as a minor one (ca. 5% yield). The mechanisms of these reactions are discussed. X-ray crystallographic studies reveal that 3, 4a, and 7b are isostructural, and so are 5a and 6. The central metal ions in these complexes are all five-coordinated in a trigonal bipyramid form (highly distorted in the case ofmore » 5a and 6) with two HMPA ligands at the apical and three anionic oxygen ligands at the equatorial positions. 25 refs., 7 figs., 7 tabs.« less

  19. Preparation and reactivity of mixed-ligand ruthenium(II) hydride complexes with phosphites and polypyridyls.

    PubMed

    Albertin, Gabriele; Antoniutti, Stefano; Bacchi, Alessia; D'Este, Claudia; Pelizzi, Giancarlo

    2004-02-23

    Chloro complexes [RuCl(N-N)P3]BPh4 (1-3) [N-N = 2,2'-bipyridine, bpy; 1,10-phenanthroline, phen; 5,5'-dimethyl-2,2'-bipyridine, 5,5'-Me2bpy; P = P(OEt)3, PPh(OEt)2 and PPh2OEt] were prepared by allowing the [RuCl4(N-N)].H2O compounds to react with an excess of phosphite in ethanol. The bis(bipyridine) [RuCl(bpy)2[P(OEt)3

  20. Supramolecular architectures in Co(II) and Cu(II) complexes with thiophene-2-carboxylate and 2-amino-4,6-dimethoxypyrimidine ligands.

    PubMed

    Karthikeyan, Ammasai; Thomas Muthiah, Packianathan; Perdih, Franc

    2016-05-01

    The coordination chemistry of mixed-ligand complexes continues to be an active area of research since these compounds have a wide range of applications. Many coordination polymers and metal-organic framworks are emerging as novel functional materials. Aminopyrimidine and its derivatives are flexible ligands with versatile binding and coordination modes which have been proven to be useful in the construction of organic-inorganic hybrid materials and coordination polymers. Thiophenecarboxylic acid, its derivatives and their complexes exhibit pharmacological properties. Cobalt(II) and copper(II) complexes of thiophenecarboxylate have many biological applications, for example, as antifungal and antitumor agents. Two new cobalt(II) and copper(II) complexes incorporating thiophene-2-carboxylate (2-TPC) and 2-amino-4,6-dimethoxypyrimidine (OMP) ligands have been synthesized and characterized by X-ray diffraction studies, namely (2-amino-4,6-dimethoxypyrimidine-κN)aquachlorido(thiophene-2-carboxylato-κO)cobalt(II) monohydrate, [Co(C5H3O2S)Cl(C6H9N3O2)(H2O)]·H2O, (I), and catena-poly[copper(II)-tetrakis(μ-thiophene-2-carboxylato-κ(2)O:O')-copper(II)-(μ-2-amino-4,6-dimethoxypyrimidine-κ(2)N(1):N(3))], [Cu2(C5H3O2S)4(C6H9N3O2)]n, (II). In (I), the Co(II) ion has a distorted tetrahedral coordination environment involving one O atom from a monodentate 2-TPC ligand, one N atom from an OMP ligand, one chloride ligand and one O atom of a water molecule. An additional water molecule is present in the asymmetric unit. The amino group of the coordinated OMP molecule and the coordinated carboxylate O atom of the 2-TPC ligand form an interligand N-H...O hydrogen bond, generating an S(6) ring motif. The pyrimidine molecules also form a base pair [R2(2)(8) motif] via a pair of N-H...N hydrogen bonds. These interactions, together with O-H...O and O-H...Cl hydrogen bonds and π-π stacking interactions, generate a three-dimensional supramolecular architecture. The one-dimensional coordination polymer (II) contains the classical paddle-wheel [Cu2(CH3COO)4(H2O)2] unit, where each carboxylate group of four 2-TPC ligands bridges two square-pyramidally coordinated Cu(II) ions and the apically coordinated OMP ligands bridge the dinuclear copper units. Each dinuclear copper unit has a crystallographic inversion centre, whereas the bridging OMP ligand has crystallographic twofold symmetry. The one-dimensional polymeric chains self-assemble via N-H...O, π-π and C-H...π interactions, generating a three-dimensional supramolecular architecture.

  1. Ancillary ligand effects upon dithiolene redox noninnocence in tungsten bis(dithiolene) complexes.

    PubMed

    Yan, Yong; Keating, Christopher; Chandrasekaran, Perumalreddy; Jayarathne, Upul; Mague, Joel T; DeBeer, Serena; Lancaster, Kyle M; Sproules, Stephen; Rubtsov, Igor V; Donahue, James P

    2013-06-03

    An expanded set of compounds of the type [W(S2C2Me2)2L1L2](n) (n = 0: L1 = L2 = CO, 1; L1 = L2 = CN(t)Bu, 2; L1 = CO, L2 = carbene, 3; L1 = CO, L2 = phosphine, 4; L1 = L2 = phosphine, 5. n = 2-: L1 = L2 = CN(-), [6](2-)) has been synthesized and characterized. Despite isoelectronic formulations, the compound set reveals gradations in the dithiolene ligand redox level as revealed by intraligand bond lengths, υ(CCchelate), and rising edge energies in the sulfur K-edge X-ray absorption spectra (XAS). Differences among the terminal series members, 1 and [6](2-), are comparable to differences seen in homoleptic dithiolene complexes related by full electron transfer to/from a dithiolene-based MO. The key feature governing these differences is the favorable energy of the CO π* orbitals, which are suitably positioned to overlap with tungsten d orbitals and exert an oxidizing effect on both metal and dithiolene ligand via π-backbonding. The CN(-) π* orbitals are too high in energy to mix effectively with tungsten and thus leave the filled dithiolene π* orbitals unperturbed. This work shows how, and the degree to which, the redox level of a noninnocent ligand can be modulated by the choice of ancillary ligands(s).

  2. Mixed (phthalocyaninato)(Schiff-base) di-dysprosium sandwich complexes. Effect of magnetic coupling on the SMM behavior.

    PubMed

    Wang, Hailong; Liu, Chenxi; Liu, Tao; Zeng, Suyuan; Cao, Wei; Ma, Qi; Duan, Chunying; Dou, Jianmin; Jiang, Jianzhuang

    2013-11-21

    Reaction between Schiff-base ligand and half-sandwich complex M(Pc)(acac) led to the isolation of new sandwich-type mixed (phthalocyaninato)(Schiff-base) di-lanthanide compounds M2(Pc)2(L)H2O (M = Dy, Gd) (1, 2) [H2Pc = metal free phthalocyanine, Hacac = acetylacetone, H2L = N,N'-bis(3-methyloxysalicylidene)benzene-1,2-diamine] with the triple-decker molecular structure clearly revealed by single crystal X-ray diffraction analysis. For the comparative studies, sandwich triple-decker analogues with pure Schiff-base ligand M2(L)3H2O (M = Dy, Gd) (3, 4) were also prepared. Dynamic magnetic measurement result reveals the single-molecule magnet (SMM) nature of the di-dysprosium derivative 1, while the static magnetic investigation over both pure and the diamagnetic diluted samples of this compound discloses the interionic ferromagnetic coupling between the two dysprosium ions, which in turn effectively suppresses the QTM and enhances the energy barrier of this SMM. Nevertheless, comparative studies over the static magnetic properties of the di-dysprosium triple-decker complexes 1 and 3 indicate the stronger magnetic coupling between the two lanthanide ions in mixed (phthalocyaninato)(Schiff-base) species than in the pure Schiff-base triple-decker analogue, suggesting the special coordination sphere around the dysprosium ions in the former compound over the latter one on the more intense inter-ionic ferromagnetic coupling. As a very small step towards understanding the structure-property relationship, the present result will be surely helpful for the design and synthesis of the multinuclear lanthanide-based SMMs with good properties.

  3. Mixed-ligand complexes of zinc(II) with 1,1-dicyanoethylene-2,2-dithiolate and N-donor ligands: A combined experimental and theoretical study

    NASA Astrophysics Data System (ADS)

    Singh, Mahesh Kumar; Sutradhar, Sanjit; Paul, Bijaya; Adhikari, Suman; Laskar, Folguni; Acharya, Sandeep; Chakraborty, Debabrata; Biswas, Surajit; Das, Arijit; Roy, Subhadip; Frontera, Antonio

    2018-07-01

    The fascinating structural chemistry of zinc(II) with 1,1-dicyanoethylene- 2,2-dithiolate [i-MNT2- = {S2C:C(CN)2}2-] ligand is presented. To elaborate, the reactivity of zinc(II) salt towards potassium salt of 1,1-dicyanoethylene-2,2-dithiolate (K2i-MNT) and 1,3-diaminopropane (dap) was studied in the presence of two distinct N-donor ligands, α-picoline (2-Methylpyridine) and γ-picoline (4-Methylpyridine), respectively. As a result, two different Zn(II) coordination complexes of formule [Zn2(dap)2(i-MNT)2] (1) and {[Zn(dap)(i-MNT)(4-MePy)]·2H2O}n (2) were obtained. They were isolated as stable crystalline solids and fully characterized, including by single crystal X-ray diffraction. Complex 1 is a discrete 0D dimer, whereas 2 is a 1D coordination polymer. Although α-picoline was used during the synthesis of 1, it is not involved in the metal coordination. Aiming at rationalizing the influence of the different noncovalent interactions, such as H-bonding, unconventional Nsbnd H···π and anion-π, on the crystal packing of 1 and 2, DFT calculations (M06-2X/def2-TZVP) were performed. Moreover, luminescence property of the complex 2 was investigated. Finally, in vitro antifungal activity of complex 2 was also screened against five fungi viz. Synchitrium endobioticum, Pyricularia oryzae, Helminthosporium oryzae, Candida albicans (ATCC10231) and Trichophyton mentagrophytes by the disc diffusion method and found to be effective when compared to K2i-MNT.H2O.

  4. Novel thioarsenates {[Mn(2,2'-bipy)2(SCN)][Mn(2,2'-bipy)](As(V)S4)}2 and {[Mn(2,2'-bipy)2(SCN)]2[As(III)2(S2)2S2]}: introducing an anionic second ligand to modify MnII complex cations of 2,2'-bipyridine.

    PubMed

    Liu, Guang-Ning; Guo, Guo-Cong; Wang, Ming-Sheng; Huang, Jin-Shun

    2014-03-14

    Two novel manganese thioarsenates, {[Mn(2,2'-bipy)2(SCN)][Mn(2,2'-bipy)](As(V)S4)}2 (1, 2,2'-bipy = 2,2'-bipyridine) and {[Mn(2,2'-bipy)2(SCN)]2[As(III)2(S2)2S2]} (2), containing thiocyanate-modified Mn-2,2'-bipy complex cations were synthesized. They feature two terminal [Mn(2,2'-bipy)2(SCN)](+) complex cations bridged by a polyanion {[Mn(2,2'-bipy)]2(As(V)S4)2}(2-) for 1 and a cyclic thioarsenate anion (As(III)2S6)(2-) for 2. In 2, the [As(III)2(S2)2S2](2-) anion can be described as two (As(III)S3)(3-) trigonal-pyramids interlinked through S-S bonds. The method to obtain new metal complex cations shown here, introducing an anionic second ligand to modify the number of coordination sites and the charges of the metal complex cations simultaneously, is different from the traditional methods, varying either the TM center or the organic ligand or employing mixed neutral organic ligands, and may open up a new route for preparing novel chalcogenidometalates. Compounds 1 and 2 exhibit wide optical gaps of 2.20 and 2.67 eV, respectively, and photoluminescence with the emission maxima occurring around 440 nm. Magnetic measurements show the presence of antiferromagnetic interactions between Mn(II) centers in the two compounds.

  5. Manganese L-edge X-ray absorption spectroscopy of manganese catalase from Lactobacillus plantarum and mixed valence manganese complexes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grush, M.M.; Chen, J.; George, S.J.

    1996-01-10

    The first Mn L-edge absorption spectra of a Mn metalloprotein are presented in this paper. Both reduced and superoxidized Mn catalase have been examined by fluorescence-detected soft X-ray absorption spectroscopy, and their Mn L-edge spectra are dramatically different. The spectrum of reduced Mn(II)Mn(II) catalase has been interpreted by ligand field atomic multiplet calculations and by comparison to model compound spectra. The analysis finds a 10 Dq value of nearly 1.1 eV, consistent with coordination by predominately nitrogen and oxygen donor ligands. For interpretation of mixed valence Mn spectra, an empirical simulation procedure based on the addition of homovalent model compoundmore » spectra has been developed and was tested on a variety of Mn complexes and superoxidized Mn catalase. This routine was also used to determine the oxidation state composition of the Mn in [Ba{sub 8}Na{sub 2}ClMn{sub 16}(OH){sub 8}(CO{sub 3}){sub 4}L{sub 8}] .53 H{sub 2}O (L=1,3-diamino-2-hydroxypropane-N,N,N`N`-tetraacetic acid). 27 refs., 6 figs.« less

  6. Synthesis, structures and fluorescent properties of two novel lanthanide [Ln = Ce(III), Pr(III)] coordination polymers based on 1,3-benzenedicarboxylate and 2-(4-methoxyphenyl)-1H-imidazo[4,5-f][1,10]phenanthroline ligands

    NASA Astrophysics Data System (ADS)

    Wang, Lei; Ni, Liang; yao, Jia

    2012-09-01

    Two structurally diverse coordination polymers [Ce2(m-BDC)2(m-HBDC)2(MOPIP)2·3/2H2O]n (1) and [Pr2(m-BDC)3(MOPIP)2·H2O]n(2) have been synthesized by hydrothermal reaction of lanthanide chloride with mixed ligands benzene-1,3-dicarboxylic acid and 2-(4-methoxyphenyl)-1H-imidazo[4,5-f][1,10]phenanthroline (MOPIP). The crystal structures of the complexes are zipper-like chains of octacoordinate Ln3+ ions, in which Ln3+ ions are bridged in different coordination modes by m-BDC2+ and decorated by MOPIP ligands. These chains are further assembled into three-dimensional supramolecular framework by π⋯π stacking and hydrogen bonding interactions. The fluorescent property and thermal stability were also investigated. Additionally, Natural bond orbital (NBO) analysis of complex 2 shows a weak covalent interaction between the coordinated atoms and Pr3+ ions.

  7. Thermodynamic study of complex formation between Ce3+ and cryptand 222 in some binary mixed nonaqueous solvents

    NASA Astrophysics Data System (ADS)

    Rounaghi, G. H.; Dolatshahi, S.; Tarahomi, S.

    2014-12-01

    The stoichiometry, stability and the thermodynamic parameters of complex formation between cerium(III) cation and cryptand 222 (4,7,13,16,21,24-hexaoxa-1,10-diazabycyclo[8.8.8]-hexacosane) were studied by conductometric titration method in some binary solvent mixtures of dimethylformamide (DMF), 1,2-dichloroethane (DCE), ethyl acetate (EtOAc) and methyl acetate (MeOAc) with methanol (MeOH), at 288, 298, 308, and 318 K. A model based on 1: 1 stoichiometry has been used to analyze the conductivity data. The data have been fitted according to a non-linear least-squares analysis that provide the stability constant, K f, for the cation-ligand inclusion complex. The results revealed that the stability order of [Ce(cryptand 222)]3+ complex changes with the nature and composition of the solvent system. A non-linear relationship was observed between the stability constant (log K f) of [Ce(cryptand 222)]3+ complex versus the composition of the binary mixed solvent. Standard thermodynamic values were obtained from temperature dependence of the stability constant of the complex, show that the studied complexation process is mainly entropy governed and are influenced by the nature and composition of the binary mixed solvent solutions.

  8. Study of complexation process between 4'-nitrobenzo-15-crown-5 and yttrium(III) cation in binary mixed non-aqueous solvents using conductometric method

    NASA Astrophysics Data System (ADS)

    Habibi, N.; Rounaghi, G. H.; Mohajeri, M.

    2012-12-01

    The complexation reaction of macrocyclic ligand (4'-nitrobenzo-15C5) with Y3+ cation was studied in acetonitrile-methanol (AN-MeOH), acetonitrile-ethanol (AN-EtOH), acetonitrile-dimethylformamide (AN-DMF) and ethylacetate-methanol (EtOAc-MeOH) binary mixtures at different temperatures using conductometry method. The conductivity data show that in all solvent systems, the stoichiometry of the complex formed between 4'-nitrobenzo-15C5 and Y3+ cation is 1: 1 (ML). The stability order of (4'-nitrobenzo-15C5). Y3+ complex in pure non-aqueous solvents at 25°C was found to be: EtOAc > EtOH > AN ≈ DMF > MeOH, and in the case of most compositions of the binary mixed solvents at 25°C it was: AN≈MeOH ≈ AN-EtOH > AN-DMF > EtOAc-MeOH. But the results indicate that the sequence of the stability of the complex in the binary mixed solutions changes with temperature. A non-linear behavior was observed for changes of log K f of (4'-nitrobenzo-15C5 · Y3+) complex versus the composition of the binary mixed solvents, which was explained in terms of solvent-solvent interactions and also the hetero-selective solvation of the species involved in the complexation reaction. The values of thermodynamic parameters (Δ H {c/ℴ} and Δ S {c/ℴ}) for formation of the complex were obtained from temperature dependent of the stability constant using the van't Hoff plots. The results represent that in most cases, the complex is both enthalpy and entropy stabilized and the values and also the sign of thermodynamic parameters are influenced by the nature and composition of the mixed solvents.

  9. Polymer-Supported Optically Active fac(S)-Tris(thiotato)rhodium(III) Complex for Sulfur-Bridging Reaction With Precious Metal Ions.

    PubMed

    Aizawa, Sen-Ichi; Tsubosaka, Soshi

    2016-01-01

    The optically active mixed-ligand fac(S)-tris(thiolato)rhodium(III) complexes, ΔL -fac(S)-[Rh(aet)2 (L-cys-N,S)](-) (aet = 2-aminoethanethiolate, L-cys = L-cysteinate) () and ΔLL -fac(S)-[Rh(aet)(L-cys-N,S)2 ](2-) were newly prepared by the equatorial preference of the carboxyl group in the coordinated L-cys ligand. The amide formation reaction of with 1,10-diaminodecane and polyallylamine gave the diamine-bridged dinuclear Rh(III) complex and the single-chain polymer-supported Rh(III) complex with retention of the ΔL configuration of , respectively. These Rh(III) complexes reacted with Co(III) or Co(II) to give the linear-type trinuclear structure with the S-bridged Co(III) center and the two Δ-Rh(III) terminal moieties. The polymer-supported Rh(III) complex was applied not only to the CD spectropolarimetric detection and determination of a trace of precious metal ions such as Au(III), Pt(II), and Pd(II) but also to concentration and extraction of these metal ions into the solid polymer phase. Chirality 28:85-91, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  10. Synthesis and characterization of homo- and heterobimetallic niobium v and tantalum v peroxo-polyaminocarboxylato complexes and their use as single or multiple molecular precursors for Nb-Ta mixed oxides

    NASA Astrophysics Data System (ADS)

    Bayot, Daisy; Degand, Matthieu; Devillers, Michel

    2005-09-01

    New water-soluble bimetallic peroxo complexes of niobium V and/or tantalum V with high-denticity polyaminocarboxylate ligands have been prepared, characterized from the spectroscopic point of view, and used as molecular precursors for Nb-Ta mixed oxides. Four new homobimetallic complexes, (gu) 3[Nb 2(O 2) 4(dtpaO 3)]·3H 2O 1, (gu) 3[Ta 2(O 2) 4(dtpaO 3)]·5H 2O 2, (gu) 3[Nb 2(O 2) 4(HtthaO 4)]·2H 2O 4 and (gu) 3[Ta 2(O 2) 4(HtthaO 4)]·3H 2O 5 and the corresponding heterometallic complexes, (gu) 3[NbTa(O 2) 4(dtpaO 3)]·2.5H 2O 3 and (gu) 3[NbTa(O 2) 4(HtthaO 4)]·2H 2O 6 have been obtained. In these compounds, the in situ oxidation of the nitrogen atoms of the PAC ligands into N-oxide groups has been evidenced by IR spectroscopy and mass spectrometry. The thermal treatment of the homonuclear complexes in air at 700 or 800 °C, depending on the Ta content, provided Nb 2O 5 or Ta 2O 5 while the heteronuclear compounds led to the solid solution TaNbO 5. BET and SEM measurements have been carried out and comparison of the morphology of the samples prepared from homo- and heterometallic precursors is discussed.

  11. Aminotroponiminate calcium and strontium complexes.

    PubMed

    Datta, Simmi; Gamer, Michael T; Roesky, Peter W

    2008-06-07

    Heteroleptic aminotroponiminate complexes of calcium and strontium have been prepared. The monomeric calcium complex [((iPr)2ATI)CaI(THF)3] 1 ((iPr)2ATI = N-isopropyl-2-(isopropylamino)troponiminate) and the corresponding dimeric strontium compound [( (iPr)2ATI)SrI(THF)2]2 2 were obtained by reaction of [((iPr)2ATI)K] and MI2. Whereas the mixed ligand compound of composition [((iPr)2ATI)Ca(iPrAT)]2 3 (iPrAT = 2-(isopropylamino)troponate) was not obtained via a salt metathesis but by reaction of [Ca(N(SiMe3)2)2(THF)2] with ( (iPr)2ATI)H and (iPrAT)H, the diphosphanylamido complex [( (iPr)2ATI)Ca((Ph2P)2N)(THF)2] was obtained by reaction of CaI2 with the potassium compounds [( (iPr)2ATI)K] and [K(THF)n][N(PPh2)2]. The single crystal X-ray structures of all compounds were established and the latter compound shows a eta2-coordination mode of the ligand via the nitrogen and one phosphorus atom.

  12. Pyrazine as a building block for molecular architectures with PtII.

    PubMed

    Willermann, Michael; Mulcahy, Clodagh; Sigel, Roland K O; Cerdà, Marta Morell; Freisinger, Eva; Sanz Miguel, Pablo J; Roitzsch, Michael; Lippert, Bernhard

    2006-03-06

    A series of pyrazine (pz) complexes containing cis-(NH(3))(2)Pt(II), (tmeda)Pt(II) (tmeda = N,N,N',N'-tetramethylethylenediamine), and trans-(NH(3))(2)Pt(II) entities have been prepared and characterized by X-ray crystallography and/or 1H NMR spectroscopy. In these compounds, the pz ligands act as monodentate (1-3) or bidentate bridging ligands (4-7). Three variants of the latter case are described: a dinuclear complex [Pt(II)]2 (4b), a cyclic tetranuclear [Pt(II)](4) complex (5), and a trinuclear mixed-metal complex [Pt2Ag] (7). Mono- and bidentate binding modes are readily differentiated by 1H NMR spectroscopy, and the assignment of pz protons in the case of monodentate coordination is aided by the observation of (195)Pt satellites. Formation of the open molecular box cis-[{(NH3)2Pt(pz)}4](NO3)8.3.67H2O (5) from cis-(NH3)2Pt(II) and pz follows expectations of the "molecular library approach" for the generation of a cyclic tetramer.

  13. Mechanism and degradation kinetics of zinc complex containing isophthalato and 2,2‧-dipyridylamine ligands under different atmospheres

    NASA Astrophysics Data System (ADS)

    Zdravković, J. D.; Radovanović, L.; Poleti, D.; Rogan, J. R.; Vulić, P. J.; Radovanović, Ž.; Minić, D. M.

    2018-06-01

    The design of mixed-ligand complexes are of increasing interest from fundamental as well as technological and curative aspects. Having that in mind, we studied zinc complex containing 2,2‧-dipyridylamine (dipya) and dianion of isophthalic acid (ipht), [Zn(dipya)(ipht)]n, as promising precursor for synthesis of nanostructured metal oxide. In that sense, the mechanism and degradation kinetics of [Zn(dipya)(ipht)]n was analyzed under non-isothermal conditions in nitrogen and in air atmospheres. Peak deconvolution of the [Zn(dipya)(ipht)]n decomposition profile, in the form of a derivative thermogram (DTG), in nitrogen atmosphere, revealed the presence of three decomposition steps, while in air five single steps were isolated. In both cases ZnO is formed as residue at 530 °C: pure (in air) or in amorphous matrix (nitrogen). In air we obtained well crystalized ZnO nanospheres (∼25 nm), by thermal treatment in temperature range 370-530 °C showing that this complex could be considered as good precursor for production of nanosized ZnO.

  14. Biscatecholate-Monohydroxamate Mixed Ligand Siderophore-Carbacephalosporin Conjugates are Selective Sideromycin Antibiotics that Target Acinetobacter baumannii

    PubMed Central

    Wencewicz, Timothy A.; Miller, Marvin J.

    2013-01-01

    Chemical syntheses and biological evaluation of biscatecholate-monohydroxamate mixed ligand sideromycins utilizing the carbacephalosporin β-lactam antibiotic loracarbef and the fluo-roquinolone antibiotic ciprofloxacin are described. The mixed ligand β-lactam sideromycin (1b) had remarkably selective and extremely potent antibacterial activity against the Gram negative pathogen Acinetobacter baumannii ATCC 17961 (MIC = 0.0078 μM). The antibacterial activity of the β-lactam sideromycin was inversely related to the iron(III) concentration in the testing media and was antagonized by the presence of the competing parent siderophore. These data suggested that active transport of the mixed ligand β-lactam sideromycin across the outer cell membrane of A. baumannii via siderophore uptake pathways was responsible for the selective and potent antibacterial activity. PMID:23614627

  15. Mass spectrometry-based monitoring of millisecond protein–ligand binding dynamics using an automated microfluidic platform

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cong, Yongzheng; Katipamula, Shanta; Trader, Cameron D.

    2016-01-01

    Characterizing protein-ligand binding dynamics is crucial for understanding protein function and developing new therapeutic agents. We have developed a novel microfluidic platform that features rapid mixing of protein and ligand solutions, variable incubation times, and on-chip electrospray ionization to perform label-free, solution-based monitoring of protein-ligand binding dynamics. This platform offers many advantages including automated processing, rapid mixing, and low sample consumption.

  16. Developing a Highly Active Blood Anticoagulant—a Heparin Complex with Glutamic Acid—by Simulating Chemical Equilibria Based on pH-Metric Data

    NASA Astrophysics Data System (ADS)

    Nikolaeva, L. S.; Semenov, A. N.

    2018-02-01

    The anticoagulant activity of high-molecular-weight heparin is increased by developing a new highly active heparin complex with glutamate using the thermodynamic model of chemical equilibria based on pH-metric data. The anticoagulant activity of the developed complexes is estimated in the pH range of blood plasma according to the drop in the calculated equilibrium Ca2+ concentration associated with the formation of mixed ligand complexes of Ca2+ ions, heparin (Na4hep), and glutamate (H2Glu). A thermodynamic model is calculated by mathematically modelling chemical equilibria in the CaCl2-Na4hep-H2Glu-H2O-NaCl system in the pH range of 2.30 ≤ pH ≤ 10.50 in diluted saline that acts as a background electrolyte (0.154 M NaCl) at 37°C and initial concentrations of the main components of ν × 10-3 M, where n ≤ 4. The thermodynamic model is used to determine the main complex of the monomeric unit of heparin with glutamate (HhepGlu5-) and the most stable mixed ligand complex of Ca2+ with heparin and glutamate (Ca2hepGlu2-) in the pH range of blood plasma (6.80 ≤ pH ≤ 7.40). It is concluded that the Ca2hepGlu2- complex reduces the Ca2+ concentration 107 times more than the Ca2+ complex with pure heparin. The anticoagulant effect of the developed HhepGlu5- complex is confirmed in vitro and in vivo via coagulation tests on the blood plasma of laboratory rats. Additional antithrombotic properties of the developed complex are identified. The new highly active anticoagulant, HhepGlu5- complex with additional antithrombotic properties, is patented.

  17. Fluorescent mixed ligand copper(II) complexes of anthracene-appended Schiff bases: studies on DNA binding, nuclease activity and cytotoxicity.

    PubMed

    Jaividhya, Paramasivam; Ganeshpandian, Mani; Dhivya, Rajkumar; Akbarsha, Mohammad Abdulkadher; Palaniandavar, Mallayan

    2015-07-14

    A series of mixed ligand copper(ii) complexes of the type [Cu(L)(phen)(ACN)](ClO4)21-5, where L is a bidentate Schiff base ligand (N(1)-(anthracen-10-ylmethylene)-N(2)-methylethane-1,2-diamine (L1), N(1)-(anthracen-10-ylmethylene)-N(2),N(2)-dimethylethane-1,2-diamine (L2), N(1)-(anthracen-10-yl-methylene)-N(2)-ethylethane-1,2-diamine (L3), N(1)-(anthracen-10-ylmethylene)-N(2),N(2)-diethylethane-1,2-diamine (L4) and N(1)-(anthracen-10-ylmethylene)-N(3)-methylpropane-1,3-diamine (L5)) and phen is 1,10-phenanthroline, have been synthesized and characterized by spectral and analytical methods. The X-ray crystal structure of 5 reveals that the coordination geometry around Cu(ii) is square pyramidal distorted trigonal bipyramidal (τ, 0.76). The corners of the trigonal plane of the geometry are occupied by the N2 nitrogen atom of phen, the N4 nitrogen atom of L5 and the N5 nitrogen of acetonitrile while the N1 nitrogen of phen and the N3 nitrogen of L5 occupy the axial positions with an N1-Cu1-N3 bond angle of 176.0(3)°. All the complexes display a ligand field band (600-705 nm) and three less intense anthracene-based bands (345-395 nm) in solution. The Kb values calculated from absorption spectral titration of the complexes (π→π*, 250-265 nm) with Calf Thymus (CT) DNA vary in the order 5 > 4 > 3 > 2 > 1. The fluorescence intensity of the complexes (520-525 nm) decreases upon incremental addition of CT DNA, which reveals the involvement of phen rather than the appended anthracene ring in partial DNA intercalation with the DNA base stack. The extent of quenching is in agreement with the DNA binding affinities and the relative increase in the viscosity of DNA upon binding to the complexes as well. Thus 5 interacts with DNA more strongly than 4 on account of the stronger involvement in hydrophobic DNA interaction of the anthracenyl moiety, which is facilitated by the propylene ligand backbone with chair conformation. The ability of complexes (100 μM) to cleave DNA (pUC19 DNA) in 5 mM Tris-HCl/50 mM NaCl buffer at pH 7.1 in the absence of a reducing agent or light varies in the order 5 > 4 > 3 > 2 > 1, which is in conformity with their DNA binding affinities. Interestingly, cytotoxicity studies on the MCF-7 human breast cancer cell line show that the IC50 value of 5 is less than that of cisplatin for the same cell line, revealing that it can act as an effective cytotoxic drug in a time-dependent manner.

  18. Mixed-valent metals bridged by a radical ligand: fact or fiction based on structure-oxidation state correlations.

    PubMed

    Sarkar, Biprajit; Patra, Srikanta; Fiedler, Jan; Sunoj, Raghavan B; Janardanan, Deepa; Lahiri, Goutam Kumar; Kaim, Wolfgang

    2008-03-19

    Electron-rich Ru(acac)2 (acac- = 2,4-pentanedionato) binds to the pi electron-deficient bis-chelate ligands L, L = 2,2'-azobispyridine (abpy) or azobis(5-chloropyrimidine) (abcp), with considerable transfer of negative charge. The compounds studied, (abpy)Ru(acac)2 (1), meso-(mu-abpy)[Ru(acac)2]2 (2), rac-(mu-abpy)[Ru(acac)2]2 (3), and (mu-abcp)[Ru(acac)2]2 (4), were calculated by DFT to assess the degree of this metal-to-ligand electron shift. The calculated and experimental structures of 2 and 3 both yield about 1.35 A for the length of the central N-N bond which suggests a monoanion character of the bridging ligand. The NBO analysis confirms this interpretation, and TD-DFT calculations reproduce the observed intense long-wavelength absorptions. While mononuclear 1 is calculated with a lower net ruthenium-to-abpy charge shift as illustrated by the computed 1.30 A for d(N-N), compound 4 with the stronger pi accepting abcp bridge is calculated with a slightly lengthened N-N distance relative to that of 2. The formulation of the dinuclear systems with monoanionic bridging ligands implies an obviously valence-averaged Ru(III)Ru(II) mixed-valent state for the neutral molecules. Mixed valency in conjunction with an anion radical bridging ligand had been discussed before in the discussion of MLCT excited states of symmetrically dinuclear coordination compounds. Whereas 1 still exhibits a conventional electrochemical and spectroelectrochemical behavior with metal centered oxidation and two ligand-based one-electron reduction waves, the two one-electron oxidation and two one-electron reduction processes for each of the dinuclear compounds Ru2.5(L*-)Ru2.5 reveal more unusual features via EPR and UV-vis-NIR spectroelectrochemistry. In spite of intense near-infrared absorptions, the EPR results show that the first reduction leads to Ru(II)(L*-)Ru(II) species, with an increased metal contribution for system 4*-. The second reduction to Ru(II)(L2-)Ru(II) causes the disappearance of the NIR band. One-electron oxidation of the Ru2.5(L*-)Ru2.5 species produces a metal-centered spin for which the alternatives RuIII(L0)Ru(II) or Ru(III)(L*-)Ru(III) can be formulated. The absence of NIR bands as common for mixed-valent species with intervalence charge transfer (IVCT) absorption favors the second alternative. The second one-electron oxidation is likely to produce a dication with Ru(III)(L0)Ru(III) formulation. The usefulness and limitations of the increasingly popular structure/oxidation state correlations for complexes with noninnocent ligands is being discussed.

  19. Exhaustive oxidation of a nickel dithiolate complex: some mechanistic insights en route to sulfate formation.

    PubMed

    Hosler, Erik R; Herbst, Robert W; Maroney, Michael J; Chohan, Balwant S

    2012-01-21

    A study of the step-wise oxidation of a Ni(II) diaminodithiolate complex through the formation of sulfate, the ultimate sulfur oxygenate, is reported. Controlled oxygenations or peroxidations of a neutral, planar, tetracoordinate, low-spin Ni(II) complex of a N(2)S(2)-donor ligand, (N,N'-dimethyl-N-N'-bis(2-mecaptoethyl)-1,3-propanediaminato) nickel(ii) (1), led to a series of sulfur oxygenates that have been isolated and characterized by ESI-MS and single-crystal X-ray diffraction. A monosulfenate complex (2) was detected by ESI-MS as a product of oxidation with one equivalent of H(2)O(2). However, this complex proved too unstable to isolate. Reaction of the dithiolate (1) with two equivalents of H(2)O(2) or one O(2) molecule leads to the formation of a monosulfinate complex (3), which was isolated and fully characterized by crystallography. The oxidation product of the monosulfinate (3) produced with either O(2) or H(2)O(2) is an interesting dimeric complex containing both sulfonate and thiolate ligands (4), this complex was fully characterized by crystallography, details of which were reported earlier by us. A disulfonate complex (7) is produced by reaction of 1 in the presence of O(2) or by reaction with exactly six equivalents of H(2)O(2). This complex was isolated and also fully characterized by crystallography. Possible intermediates in the conversion of the monosulfinate complex (3) to the disulfonate complex (7) include complexes with mixed sulfonate/sulfenate (5) or sulfonate/sulfinate (6) ligands. Complex 5, a four-oxygen adduct of 1, was not detected, but the sulfonate/sulfinate complex (6) was isolated and characterized. The oxidation chemistry of 1 is very different from that reported for other planar cis-N(2)S(2) Ni(ii) complexes including N,N'-dimethyl-N-N'-bis(2-mecaptoethyl)-1,3-ethylenediaminato) nickel(II), (8), and N,N'-bis(mercaptoethyl)-1,5-diazacyclooctane nickel(II). To address the structural aspects of the reactivity differences, the crystal structure of 8 was also determined. A comparison of the structures of planar Ni(II) complexes containing cis-dithiolate ligands, strongly suggests that the differences in reactivity are determined in part by the degree of flexibility that is allowed by the NN' chelate ring.

  20. Synthesis, electrochemical, structural, spectroscopic and biological activities of mixed ligand copper (II) complexes with 2-{[(Z)-(5-bromo-2-hydroxyphenyl)methylidene]amino}benzoic acid and nitrogenous bases

    NASA Astrophysics Data System (ADS)

    Choudhary, Mukesh; Patel, R. N.; Rawat, S. P.

    2014-02-01

    Three new copper (II) complexes viz. [Cu(L1)(bipy)]ṡ2H2O 1, [Cu(L1)(dmp)]ṡCH3CN 2, [Cu(L1)(phen)] 3 where L1H2 = 2-{[(Z)-(5-bromo-2-hydroxyphenyl)methylidene]amino}benzoic acid, bipy = 2,2‧-bipyridine; dmp = 2,9-dimethyl 1,10-phenanthroline, phen = 1,10-phenanthroline have been synthesized and characterized by physic-chemical and spectroscopic methods. The solid-state structures of 1 and 2 were determined by single crystal X-ray crystallography, which revealed distorted square pyramidal geometry. In solid-state structure, 1 is self-assembled via intermolecular π…π stacking and the distances between centroids of aromatic ring is 3.525 Å. L1H2 is a diprotic tridentate Schiff base ligand having ONO donor site. Infrared spectra, ligand field spectra and magnetic susceptibility measurements agree with the observed crystal structures. The EPR spectra of these complexes in frozen DMSO solutions showed a single at g ca. 2. The trend in g-value (g|| > g⊥ > 2.0023) suggests that the unpaired electron on copper (II) has d character. Copper (II) complexes 1-3 yielded an irreversible couple corresponding to the Cu (II)/Cu (I) redox process. Superoxide dismutase activity of all these complexes has been revealed to catalyze the dismutation of superoxide (O2-) and IC50 values were evaluated and discussed. Antimicrobial and antifungal activities of these complexes were also investigated.

  1. Dicoumarol complexes of Cu(II) based on 1,10-phenanthroline: Synthesis, X-ray diffraction studies, thermal behavior and biological evaluation

    NASA Astrophysics Data System (ADS)

    Dholariya, Hitesh R.; Patel, Ketan S.; Patel, Jiten C.; Patel, Kanuprasad D.

    2013-05-01

    A series of Cu(II) complexes containing dicoumarol derivatives and 1, 10-phenanthroline have been synthesized. Structural and spectroscopic properties of ligands were studied on the basis of mass spectra, NMR (1H and 13C) spectra, FT-IR spectrophotometry and elemental analysis, while physico-chemical, spectroscopic and thermal properties of mixed ligand complexes have been studied on the basis of infrared spectra, mass spectra, electronic spectra, powder X-ray diffraction, elemental analysis and thermogravimetric analysis. X-ray diffraction study suggested the suitable octahedral geometry for hexa-coordinated state. The kinetic parameters such as order of reaction (n), energy of activation (Ea), entropy (S*), pre-exponential factor (A), enthalpy (H*) and Gibbs free energy (G*) have been calculated using Freeman-Carroll method. Ferric-reducing antioxidant power (FRAP) of all complexes were measured. All the compounds were screened for their antibacterial activity against Escherichia coli, Pseudomonas aeruginosa, Streptococcus pyogenes and Bacillus subtilis, while antifungal activity against Candida albicans and Aspergillus niger have been carried out. Also compounds against Mycobacterium tuberculosis shows clear enhancement in the anti-tubercular activity upon copper complexation.

  2. Compartmentation of metals in foliage of Populus tremula grown on soils with mixed contamination. II. Zinc binding inside leaf cell organelles.

    PubMed

    Vollenweider, Pierre; Bernasconi, Petra; Gautschi, Hans-Peter; Menard, Terry; Frey, Beat; Günthardt-Goerg, Madeleine S

    2011-01-01

    The phytoextraction potential of plants for removing heavy metals from polluted soils is determined by their capacity to store contaminants in aboveground organs and complex them safely. In this study, the metal compartmentation, elemental composition of zinc deposits and zinc complexation within leaves from poplars grown on soil with mixed metal contamination was analysed combining several histochemical and microanalytical approaches. Zinc was the only heavy metal detected and was stored in several organelles in the form of globoid deposits showing β-metachromasy. It was associated to oxygen anions and different cations, noteworthy phosphorous. The deposit structure, elemental composition and element ratios indicated that zinc was chelated by phytic acid ligands. Maturation processes in vacuolar vs. cytoplasmic deposits were suggested by differences in size and amounts of complexed zinc. Hence, zinc complexation by phytate contributed to metal detoxification and accumulation in foliage but could not prevent toxicity reactions therein. Copyright © 2010 Elsevier Ltd. All rights reserved.

  3. Synthesis, structure and magnetic study of a novel mixed-valent Co(II)10Co(III)4 shield constructed by mixed pyridine-alcoholate ligands.

    PubMed

    Peng, Yan; Tian, Chong-Bin; Zhang, Hua-Bin; Li, Zhi-Hua; Lin, Ping; Du, Shao-Wu

    2012-04-28

    A novel tetradecanuclear mixed-valent cobalt cluster, formulated as [Co(II)(10)Co(III)(4)(OH)(2)O(6)(hmp)(10)(pdm)(4)(CH(3)OH)(2)]·5H(2)O (1), was obtained using mixed ligands of 2-(hydroxymethyl)pyridine (hmpH) and 2,6-pyridinedimethanol (pdmH(2)). The cobalt ions in 1 are connected by ten chelating hmp(-) ligands, four tris-chelating pdm(2-) ligands and six μ(3)-oxide/hydroxide anions, forming a unique shield-like planar structure that is rarely observed for Co-based clusters. Compound 1 displays slight frequency dependence at static zero field below 4.5 K, suggesting that it might be a single molecule magnet (SMM). This journal is © The Royal Society of Chemistry 2012

  4. Synthesis, structural characterization, and thermal stability studies of heteroleptic cadmium(II) dithiocarbamate with different pyridyl groups

    NASA Astrophysics Data System (ADS)

    Onwudiwe, Damian C.; Hosten, Eric C.

    2018-01-01

    The synthesis, characterization and crystal structures of three chloroform solvated adducts of cadmium with mixed ligands of N-alkyl-N-phenyldithiocarbamate and pyridine, 2,2-bipyridine and 1, 10 phenanthroline represented as [CdL1L2 (py)2]·CHCl3(1), [CdL1L2bpy]•CHCl3(2), and [CdL1L2phen]•CHCl3(3) (LI = N-methyl-N-phenyldithiocarbamate, L2 = N-ethyl-N-phenyldithiocarbamate, py = pyridine, bpy = 2,2-bipyridine and phen = 1,10-phenanthroline) respectively are reported. Complex 1, which crystallized in the monoclinic space group P-1, is a centrosymmetric dimeric structure where each Cd center is bonded to two monodentate pyridine, a bidentate terminal dithiocarbamate, and another bidentate bridging dithiocarbamate to form a four-membered ring. Complex 2 crystallized in the monoclinic space group P21/c, with four discrete monomeric molecules in the asymmetric unit. The structure presents a cadmium atom coordinated by two sulphur atoms of a dithiocarbamate ligand and two nitrogen atoms of the 2,2‧-bipyridine to form a CdS4N2 fragment, thus giving the structure around the Cd atom a distorted trigonal prism geometry. Complex 3 contains two discrete monomeric molecules of (phenanthroline) (N, N-methyl phenyl-N, N-ethyl phenyl dithiocarbamato)cadmium (II) per unit cell, and the complex crystallized in the triclinic space group P-1. The structure showed that the Cd atom is bonded to two bidentate dithiocarbamate ligands and to one bidentate phenanthroline ligand in a distorted trigonal prism geometry. All the compounds resulted in CdS as residue upon thermal decomposition process conducted under inert atmosphere.

  5. Contrasting coordination behavior of Group 12 perchlorate salts with an acyclic N3O2 donor ligand by X-ray crystallography and (1)H NMR.

    PubMed

    Tice, Daniel B; Pike, Robert D; Bebout, Deborah C

    2016-08-09

    An unbranched N3O2 ligand 2,6-bis[((2-pyridinylmethyl)oxy)methyl]pyridine (L1) was used to prepare new mononuclear heteroleptic Group 12 perchlorate complexes characterized by IR, (1)H NMR and X-ray crystallography. Racemic complexes with pentadentate L1 and one to four oxygens from either water or perchlorate bound to a metal ion were structurally characterized. Octahedral [Zn(L1)(OH2)](ClO4)2 (1) and pentagonal bipyramidal [Cd(L1)(OH2)(OClO3)]ClO4 (2) structures were found with lighter congeners. The polymorphic forms of [Hg(L1)(ClO4)2] characterized (3 in P1[combining macron] and 4 in P21/c) had a mix of monodentate, anisobidentate and bidentate perchlorates, providing the first examples of a tricapped trigonal prismatic Hg(ii) coordination geometry, as well as additional examples of a rare square antiprismatic Hg(ii) coordination geometry. Solution state (1)H NMR characterization of the Group 12 complexes in CD3CN indicated intramolecular reorganization remained rapid under conditions where intermolecular M-L1 exchange was slow on the chemical shift time scale for Zn(ii) and on the J(M(1)H) time scale for Cd(ii) and Hg(ii). Solution studies with more than one equivalent of ligand also suggested that a complex with a 1 : 2 ratio of M : L1 contributed significantly to solution equilibria with Hg(ii) but not the other metal ions. The behavior of related linear pentadentate ligands with Group 12 perchlorate salts is discussed.

  6. Radiochemical studies of 99mTc complexes of modified cysteine ligands and bifunctional chelating agents.

    PubMed

    Pillai, M R; Kothari, K; Banerjee, S; Samuel, G; Suresh, M; Sarma, H D; Jurisson, S

    1999-07-01

    The synthesis of four novel ligands using the amino-acid cysteine and its ethyl carboxylate derivative is described. The synthetic method involves a two-step procedure, wherein the intermediate Schiff base formed by the condensation of the amino group of the cysteine substrate and salicylaldehyde is reduced to give the target ligands. The intermediates and the final products were characterized by high resolution nuclear magnetic resonance spectroscopy. Complexation studies of the ligands with 99mTc were optimized using stannous tartrate as the reducing agent under varying reaction conditions. The complexes were characterized using standard quality control techniques such as thin layer chromatography, paper electrophoresis, and paper chromatography. Lipophilicities of the complexes were estimated by solvent extraction into chloroform. Substantial changes in net charge and lipophilicity of the 99mTc complexes were observed on substituting the carboxylic acid functionality in ligands I and II with the ethyl carboxylate groups (ligands II and IV). All the ligands formed 99mTc complexes in high yield. Whereas the complexes with ligands I and II were observed to be hydrophilic in nature and not extractable into CHCl3, ligands III and IV resulted in neutral and lipophilic 99mTc complexes. The 99mTc complex with ligand II was not stable and on storage formed a hydrophilic and nonextractable species. The biodistribution of the complexes of ligands I and II showed that they cleared predominantly through the kidneys, whereas the complexes with ligands III and IV were excreted primarily through the hepatobiliary system. No significant brain uptake was observed with the 99mTc complexes with ligands III and IV despite their favorable properties of neutrality, lipophilicity, and conversion into a hydrophilic species. These ligands offer potential for use as bifunctional chelating agents.

  7. At the Borderline between Metal-Metal Mixed Valency and a Radical Bridge Situation: Four Charge States of a Diruthenium Complex with a Redox-Active Bis( mer-tridentate) Ligand.

    PubMed

    Mondal, Sudipta; Schwederski, Brigitte; Frey, Wolfgang; Fiedler, Jan; Záliš, Stanislav; Kaim, Wolfgang

    2018-04-02

    The complex ions [L 3 Ru(μ,η 3 :η 3 -BL)RuL 3 ] n+ (1 n+ , L 3 = 4,4',4″-tri- tert-butyl-2,6,2',6″-terpyridine and H 2 BL 2- = 1,2-bis(salicyloyl)hydrazide(2-)) were isolated with PF 6 - or ClO 4 - counterions ( n = 1) and as bis(hexafluorophosphate) ( n = 2). Structural, electrochemical, and spectroscopic characterization reveals the monocation as intermediate ( K c = 10 8.2 ) in the three-step reversible redox system 1 0/+/2+/3+ . The 1 + ion has the molecule-bridged (Ru- - -Ru 4.727 Å) ruthenium centers involved in five- and six-membered chelate rings, and it exhibits long-wavelength absorptions at λ max 2240, 1660, and 1530 nm (ε max = 1000, 3000, and 8000 M -1 cm -1 , respectively), which would be compatible with a Ru III Ru II mixed-valent situation or with a coordinated radical ion bridge. In fact, EPR and DFT analysis of 1 + reveals that the spin is equally distributed over the ligand bridge and over both metals. The oxidized paramagnetic ions 1 2+ and 1 3+ have been studied by 1 H NMR and EPR and by TD-DFT supported UV-vis-NIR and MIR (mid-IR) spectroelectrochemistry. The capacity of various kinds of bis( mer-tridentate) bridging ligands (π donors or π acceptors, cyclometalated or noncyclometalated) for mediating metal-metal interactions is discussed.

  8. Predicting Displaceable Water Sites Using Mixed-Solvent Molecular Dynamics.

    PubMed

    Graham, Sarah E; Smith, Richard D; Carlson, Heather A

    2018-02-26

    Water molecules are an important factor in protein-ligand binding. Upon binding of a ligand with a protein's surface, waters can either be displaced by the ligand or may be conserved and possibly bridge interactions between the protein and ligand. Depending on the specific interactions made by the ligand, displacing waters can yield a gain in binding affinity. The extent to which binding affinity may increase is difficult to predict, as the favorable displacement of a water molecule is dependent on the site-specific interactions made by the water and the potential ligand. Several methods have been developed to predict the location of water sites on a protein's surface, but the majority of methods are not able to take into account both protein dynamics and the interactions made by specific functional groups. Mixed-solvent molecular dynamics (MixMD) is a cosolvent simulation technique that explicitly accounts for the interaction of both water and small molecule probes with a protein's surface, allowing for their direct competition. This method has previously been shown to identify both active and allosteric sites on a protein's surface. Using a test set of eight systems, we have developed a method using MixMD to identify conserved and displaceable water sites. Conserved sites can be determined by an occupancy-based metric to identify sites which are consistently occupied by water even in the presence of probe molecules. Conversely, displaceable water sites can be found by considering the sites which preferentially bind probe molecules. Furthermore, the inclusion of six probe types allows the MixMD method to predict which functional groups are capable of displacing which water sites. The MixMD method consistently identifies sites which are likely to be nondisplaceable and predicts the favorable displacement of water sites that are known to be displaced upon ligand binding.

  9. Hydrothermal syntheses, crystal structures, and photophysical properties of two coordination polymers with mixed ligands

    NASA Astrophysics Data System (ADS)

    Yan, Li; Liu, Chun-Ling

    2017-10-01

    Two novel metal-organic coordination polymers [Cd(ipdt)(m-BDC)·3H2O]n (1) and [Pb(mip)2(NTC) ·2H2O]n (2) [ipdt = 2,6-Dimethoxy-4-(1H-1,3,7,8-tetraaza-cyclopenta[l]phenanthren-2-yl)-phenol, mip = 2-(3-methoxyphenyl)-1H-imidazo[4,5-f][1,10]phenanthroline, m-BDC = isophthalic acid, NTC = nicotinic acid] have been synthesized by hydrothermal reactions and characterized by elemental analysis, thermogravimetric (TG) analysis, infrared spectrum (IR) and single-crystal X-ray diffraction. Single-crystal X-ray diffraction reveals that 1 exhibits two-dimensional (2D) layer architecture, and 2 shows 1D chain architecture. TG analysis shows clear courses of weight loss, which corresponds to the decomposition of different ligands. The luminescent properties for the ligand ipdt, mip and complexes 1-2 are also discussed in detail, which should be acted as potential luminescent material.

  10. Ligand-bridged dinuclear cyclometalated Ir(III) complexes: from metallamacrocycles to discrete dimers.

    PubMed

    Chandrasekhar, Vadapalli; Hajra, Tanima; Bera, Jitendra K; Rahaman, S M Wahidur; Satumtira, Nisa; Elbjeirami, Oussama; Omary, Mohammad A

    2012-02-06

    Metallamacrocycles 1, 2, and 3 of the general formula [{Ir(ppy)(2)}(2)(μ-BL)(2)](OTf)(2) (ppyH = 2-phenyl pyridine; BL = 1,2-bis(4-pyridyl)ethane (bpa) (1), 1,3-bis(4-pyridyl)propane (bpp) (2), and trans-1,2-bis(4-pyridyl)ethylene (bpe) (3)) have been synthesized by the reaction of [{(ppy)(2)Ir}(2)(μ-Cl)(2)], first with AgOTf to effect dechlorination and later with various bridging ligands. Open-frame dimers [{Ir(ppy)(2)}(2)(μ-BL)](OTf)(2) were obtained in a similar manner by utilizing N,N'-bis(2-pyridyl)methylene-hydrazine (abp) and N,N'-(bis(2-pyridyl)formylidene)ethane-1,2-diamine (bpfd) (for compounds 4 and 5, respectively) as bridging ligands. Molecular structures of 1, 3, 4, and 5 were established by X-ray crystallography. Cyclic voltammetry experiments reveal weakly interacting "Ir(ppy)(2)" units bridged by ethylene-linked bpe ligand in 3; on the contrary the metal centers are electronically isolated in 1 and 2 where the bridging ligands are based on ethane and propane linkers. The dimer 4 exhibits two accessible reversible reduction couples separated by 570 mV indicating the stability of the one-electron reduced species located on the diimine-based bridge abp. The "Ir(ppy)(2)" units in compound 5 are noninteracting as the electronic conduit is truncated by the ethane spacer in the bpfd bridge. The dinuclear compounds 1-5 show ligand centered (LC) transitions involving ppy ligands and mixed metal to ligand/ligand to ligand charge transfer (MLCT/LLCT) transitions involving both the cyclometalating ppy and bridging ligands (BL) in the UV-vis spectra. For the conjugated bridge bpe in compound 3 and abp in compound 4, the lowest-energy charge-transfer absorptions are red-shifted with enhanced intensity. In accordance with their similar electronic structures, compounds 1 and 2 exhibit identical emissions. The presence of vibronic structures in these compounds indicates a predominantly (3)LC excited states. On the contrary, broad and unstructured phosphorescence bands in compounds 3-5 strongly suggest emissive states of mixed (3)MLCT/(3)LLCT character. Density functional theory (DFT) calculations have been carried out to gain insight on the frontier orbitals, and to rationalize the electrochemical and photophysical properties of the compounds based on their electronic structures.

  11. Analysis of macromolecules, ligands and macromolecule-ligand complexes

    DOEpatents

    Von Dreele, Robert B [Los Alamos, NM

    2008-12-23

    A method for determining atomic level structures of macromolecule-ligand complexes through high-resolution powder diffraction analysis and a method for providing suitable microcrystalline powder for diffraction analysis are provided. In one embodiment, powder diffraction data is collected from samples of polycrystalline macromolecule and macromolecule-ligand complex and the refined structure of the macromolecule is used as an approximate model for a combined Rietveld and stereochemical restraint refinement of the macromolecule-ligand complex. A difference Fourier map is calculated and the ligand position and points of interaction between the atoms of the macromolecule and the atoms of the ligand can be deduced and visualized. A suitable polycrystalline sample of macromolecule-ligand complex can be produced by physically agitating a mixture of lyophilized macromolecule, ligand and a solvent.

  12. Study on the ternary mixed ligand complex of palladium(II)-aminophylline-fluorescein sodium by resonance Rayleigh scattering, second-order scattering and frequency doubling scattering spectrum and its analytical application.

    PubMed

    Chen, Peili; Liu, Shaopu; Liu, Zhongfang; Hu, Xiaoli

    2011-01-01

    The interaction between palladium(II)-aminophylline and fluorescein sodium was investigated by resonance Rayleigh scattering, second-order scattering and frequency doubling scattering spectrum. In pH 4.4 Britton-Robinson (BR) buffer medium, aminophylline (Ami) reacted with palladium(II) to form chelate cation([Pd(Ami)]2+), which further reacted with fluorescein sodium (FS) to form ternary mixed ligand complex [Pd(Ami)(FS)2]. As a result, resonance Rayleigh scattering (RRS), second-order scattering (SOS) and frequency doubling scattering spectrum (FDS) were enhanced. The maximum scattering wavelengths of [Pd(Ami)(FS)2] were located at 300 nm (RRS), 650 nm (SOS) and 304 nm (FDS). The scattering intensities were proportional to the Ami concentration in a certain range and the detection limits were 7.3 ng mL(-1) (RRS), 32.9 ng mL(-1) (SOS) and 79.1 ng mL(-1) (FDS), respectively. Based on it, the new simple, rapid, and sensitive scattering methods have been proposed to determine Ami in urine and serum samples. Moreover, the formation mechanism of [Pd(Ami)(FS)2] and the reasons for enhancement of RRS were fully discussed. Crown Copyright © 2010. Published by Elsevier B.V. All rights reserved.

  13. Metal–organic complexation in the marine environment

    PubMed Central

    Luther, George W; Rozan, Timothy F; Witter, Amy; Lewis, Brent

    2001-01-01

    We discuss the voltammetric methods that are used to assess metal–organic complexation in seawater. These consist of titration methods using anodic stripping voltammetry (ASV) and cathodic stripping voltammetry competitive ligand experiments (CSV-CLE). These approaches and a kinetic approach using CSV-CLE give similar information on the amount of excess ligand to metal in a sample and the conditional metal ligand stability constant for the excess ligand bound to the metal. CSV-CLE data using different ligands to measure Fe(III) organic complexes are similar. All these methods give conditional stability constants for which the side reaction coefficient for the metal can be corrected but not that for the ligand. Another approach, pseudovoltammetry, provides information on the actual metal–ligand complex(es) in a sample by doing ASV experiments where the deposition potential is varied more negatively in order to destroy the metal–ligand complex. This latter approach gives concentration information on each actual ligand bound to the metal as well as the thermodynamic stability constant of each complex in solution when compared to known metal–ligand complexes. In this case the side reaction coefficients for the metal and ligand are corrected. Thus, this method may not give identical information to the titration methods because the excess ligand in the sample may not be identical to some of the actual ligands binding the metal in the sample. PMID:16759421

  14. Comparative investigation of N donor ligand-lanthanide complexes from the metal and ligand point of view

    NASA Astrophysics Data System (ADS)

    Prüßmann, T.; Denecke, M. A.; Geist, A.; Rothe, J.; Lindqvist-Reis, P.; Löble, M.; Breher, F.; Batchelor, D. R.; Apostolidis, C.; Walter, O.; Caliebe, W.; Kvashnina, K.; Jorissen, K.; Kas, J. J.; Rehr, J. J.; Vitova, T.

    2013-04-01

    N-donor ligands such as n-Pr-BTP (2,6-bis(5,6-dipropyl-1,2,4-triazin-3-yl)pyridine) studied here preferentially bind An(III) over Ln(III) in liquid-liquid separation of trivalent ac-tinides from spent nuclear fuel. The chemical and physical processes responsible for this selectivity are not yet well understood. We present systematic comparative near-edge X-ray absorption structure (XANES) spectroscopy investigations at the Gd L3 edge of [GdBTP3](NO3)3, [Gd(BTP)3](OTf)3, Gd(NO3)3, Gd(OTf)3 and N K edge of [Gd(BTP)3](NO3)3, Gd(NO3)3 complexes. The pre-edge absorption resonance in Gd L3 edge high-energy resolution X-ray absorption near edge structure spectra (HR-XANES) is explained as arising from 2p3/2 → 4f/5d electronic transitions by calculations with the FEFF9.5 code. Experimental evidence is found for higher electronic density on Gd in [Gd(BTP)3](NO3)3 and [Gd(BTP)3](OTf)3 compared to Gd in Gd(NO3)3 and Gd(OTf)3, and on N in [Gd(BTP)3](NO3)3 compared to n-Pr-BTP. The origin of the pre-edge structure in the N K edge XANES is explained by density functional theory (DFT) with the ORCA code. Results at the N K edge suggest a change in ligand orbital occupancies and mixing upon complexation but further work is necessary to interpret observed spectral variations.

  15. 1,5-Diamido-9,10-anthraquinone, a Centrosymmetric Redox-Active Bridge with Two Coupled β-Ketiminato Chelate Functions: Symmetric and Asymmetric Diruthenium Complexes.

    PubMed

    Ansari, Mohd Asif; Mandal, Abhishek; Paretzki, Alexa; Beyer, Katharina; Fiedler, Jan; Kaim, Wolfgang; Lahiri, Goutam Kumar

    2016-06-06

    The dinuclear complexes {(μ-H2L)[Ru(bpy)2]2}(ClO4)2 ([3](ClO4)2), {(μ-H2L)[Ru(pap)2]2}(ClO4)2 ([4](ClO4)2), and the asymmetric [(bpy)2Ru(μ-H2L)Ru(pap)2](ClO4)2 ([5](ClO4)2) were synthesized via the mononuclear species [Ru(H3L)(bpy)2]ClO4 ([1]ClO4) and [Ru(H3L)(pap)2]ClO4 ([2]ClO4), where H4L is the centrosymmetric 1,5-diamino-9,10-anthraquinone, bpy is 2,2'-bipyridine, and pap is 2-phenylazopyridine. Electrochemistry of the structurally characterized [1]ClO4, [2]ClO4, [3](ClO4)2, [4](ClO4)2, and [5](ClO4)2 reveals multistep oxidation and reduction processes, which were analyzed by electron paramagnetic resonance (EPR) of paramagnetic intermediates and by UV-vis-NIR spectro-electrochemistry. With support by time-dependent density functional theory (DFT) calculations the redox processes could be assigned. Significant results include the dimetal/bridging ligand mixed spin distribution in 3(3+) versus largely bridge-centered spin in 4(3+)-a result of the presence of Ru(II)-stabilizig pap coligands. In addition to the metal/ligand alternative for electron transfer and spin location, the dinuclear systems allow for the observation of ligand/ligand and metal/metal site differentiation within the multistep redox series. DFT-supported EPR and NIR absorption spectroscopy of the latter case revealed class II mixed-valence behavior of the oxidized asymmetric system 5(3+) with about equal contributions from a radical bridge formulation. In comparison to the analogues with the deprotonated 1,4-diaminoanthraquinone isomer the centrosymmetric H2L(2-) bridge shows anodically shifted redox potentials and weaker electronic coupling between the chelate sites.

  16. Solvent dynamical control of ultrafast ground state electron transfer: implications for Class II-III mixed valency.

    PubMed

    Lear, Benjamin J; Glover, Starla D; Salsman, J Catherine; Londergan, Casey H; Kubiak, Clifford P

    2007-10-24

    We relate the solvent and temperature dependence of the rates of intramolecular electron transfer (ET) of mixed valence complexes of the type {[Ru3O(OAc)6(CO)(L)]2-BL}-1, where L = pyridyl ligand and BL = pyrazine. Complexes were reduced chemically or electrochemically to obtain the mixed valence anions in seven solvents: acetonitrile, methylene chloride, dimethylformamide, tetrahydrofuran, dimethylsulfoxide, chloroform, and hexamethylphosphoramide. Rate constants for intramolecular ET were estimated by simulating the observed degree of nu(CO) IR band shape coalescence in the mixed valence state. Correlations between rate constants for ET and solvent properties including static dielectric constant, optical dielectric constant, the quantity 1/epsilonop - 1/epsilonS, microscopic solvent polarity, viscosity, cardinal rotational moments of inertia, and solvent relaxation times were examined. In the temperature study, the complexes displayed a sharp increase in the ket as the freezing points of the solvents methylene chloride and acetonitrile were approached. The solvent phase transition causes a localized-to-delocalized transition in the mixed valence ions and an acceleration in the rate of ET. This is explained in terms of decoupling the slower solvent motions involved in the frequency factor nuN which increases the value of nuN. The observed solvent and temperature dependence of the ket for these complexes is used in order to formulate a new definition for Robin-Day class II-III mixed valence compounds. Specifically, it is proposed that class II-III compounds are those for which thermodynamic properties of the solvent exert no control over ket, but the dynamic properties of the solvent still influence ket.

  17. Ligand-controlled assembly of Cd(II) coordination polymers based on mixed ligands of naphthalene-dicarboxylate and dipyrido[3,2-d:2',3'-f]quinoxaline: From 0D+1D cocrystal, 2D rectangular network (4,4), to 3D PtS-type architecture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu Guocheng; Chen Yongqiang; Wang Xiuli

    Three novel Cd(II) coordination polymers, namely, [Cd(Dpq)(1,8-NDC)(H{sub 2}O){sub 2}][Cd(Dpq)(1,8-NDC)].2H{sub 2}O (1), [Cd(Dpq)(1,4-NDC)(H{sub 2}O)] (2), and [Cd(Dpq)(2,6-NDC)] (3) have been obtained from hydrothermal reactions of cadmium(II) nitrate with the mixed ligands dipyrido [3,2-d:2',3'-f]quinoxaline (Dpq) and three structurally related naphthalene-dicarboxylate ligands [1,8-naphthalene-dicarboxylic acid (1,8-H{sub 2}NDC), 1,4-naphthalene-dicarboxylic acid (1,4-H{sub 2}NDC), and 2,6-naphthalene-dicarboxylic acid (2,6-H{sub 2}NDC)]. Single-crystal X-ray diffraction analysis reveals that the three polymers exhibit novel structures due to different naphthalene-dicarboxylic acid. Compound 1 is a novel cocrystal of left- and right-handed helical chains and binuclear complexes and ultimately packed into a 3D supramolecular structure through hydrogen bonds and {pi}-{pi} stacking interactions. Compoundmore » 2 shows a 2D rectangular network (4,4) bridged by 1,4-NDC with two kinds of coordination modes and ultimately packed into a 3D supramolecular structure through inter-layer {pi}-{pi} stacking interactions. Compound 3 is a new 3D coordination polymer with distorted PtS-type network. In addition, the title compounds exhibit blue/green emission in solid state at room temperature. - Graphical abstract: Three novel Cd(II) compounds have been synthesized under hydrothermal conditions exhibiting a systematic variation of architecture by the employment of three structurally related naphthalene-dicarboxylate ligands.« less

  18. Synthesis, characterization and solid state electrical properties of 1-D coordination polymer of the type [CuxNi1-x(dadb)·yH2O]n

    NASA Astrophysics Data System (ADS)

    Prasad, R. L.; Kushwaha, A.; Shrivastava, O. N.

    2012-12-01

    New heterobimetallic complexes [CuxNi1-x(dadb)·yH2O]n {where dadb=2,5-Diamino-3,6-dichloro-1,4-benzoquinone (1); x=1 (2), 0.5 (4), 0.25 (5), 0.125 (6), 0.0625 (7) and 0 (3); y=2; n=degree of polymerization} were synthesized and characterized. Heterobimetallic complexes show normal magnetic moments, whereas, monometallic complexes exhibit magnetic moments less than the value due to spin only. Thermo-gravimetric analysis shows that degradation of the ligand dadb moiety is being controlled by the electronic environment of the Cu(II) ions in preference over Ni(II) in heterobimetallic complexes. Existence of the mixed valency/non-integral oxidation states of copper and nickel metal ions in the complex 4 has been attributed from magnetic moment and ESR spectral results. Solid state dc electrical conductivity of all the complexes was investigated. Monometallic complexes were found to be semiconductors, whereas heterobimetallic coordination polymer 4 was found to exhibit metallic behaviour. Existence of mixed valency/ non-integral oxidation state of metal ions seems to be responsible for the metallic behaviour.

  19. Study of complex formation of 5,5'-(2 E, 2' E)-2,2'-(ethane-1,2-diylidene)bis(hydrazine-1-yl-2-ylidene)bis(4-amino-4H-1,2,4-triazole-3-thiol) (HYT) macrocyclic ligand with Cd2+ cation in non-aqueous solution by spectroscopic and conductometric methods

    NASA Astrophysics Data System (ADS)

    Mallaekeh, Hassan; Shams, Alireza; Shaker, Mohammad; Bahramzadeh, Ehsan; Arefi, Donya

    2014-12-01

    In this paper the complexation reaction of the 5,5'-(2 E,2' E)-2,2'-(ethane-1,2-diylidene)bis(hydrazine-1-yl-2-ylidene)bis(4-amino-4H-1,2,4-triazole-3-thiol) ligand (HYT) with Cd2+ education was studied in some binary mixtures of methanol (MeOH), n-propanol (PrOH) and dimethyl-formamide (DMF) at different temperatures using the conductometry and spectrophotometry. The stability constants of the complex was determined using a GENPLOT computer program. The conductance data and absorbance-mole ratio plots show that in all solvent systems, the stoichiometry of the complex formed between (HYT) and Cd2+ cation is 1: 1. The obtained results show that the stability of (HYT)-Cd complex is sensitive to the mixed solvents composition. The values of thermodynamic parameters (Δ G ∘, Δ H ∘, and Δ S ∘) for formation of (HYT)-Cd complex were obtained from temperature dependence of the stability constant using the van't Hoff plots. The results show that in most cases, the complex are enthalpy destabilized but entropy stabilized and the complex formation is affected by pH, time, temperature and the nature of the solvent.

  20. A series of coordination polymers constructed from R-isophthalic acid (R=–SO{sub 3}H, –NO{sub 2}, and –OH) and N-donor ligands: Syntheses, structures and fluorescence properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Yong-Hong, E-mail: zhou21921@sina.com; Zhou, Xu-Wan; Zhou, Su-Rong

    Six novel Zn(II), Cd(II), and Cu(II) mixed-ligand coordination complexes, namely, [Zn{sub 2}Na(sip){sub 2}(bpp){sub 3}(Hbpp)(H{sub 2}O){sub 2}]·8H{sub 2}O (1), [Cd{sub 3}(sip){sub 2}(nbi){sub 6}(H{sub 2}O){sub 2}]·7H{sub 2}O (2), [Zn(sip)(nbi){sub 2}(H{sub 2}O)]·Hnbi·3H{sub 2}O (3), [Cd(hip)(nbi){sub 2}(H{sub 2}O)]·nbi·5H{sub 2}O (4), [Cd{sub 2}(nip){sub 2}(nbi){sub 2}(H{sub 2}O){sub 2}]·DMF (5), and [Cu(nip)(nbi)(H{sub 2}O){sub 2}]·H{sub 2}O (6) (H{sub 3}sip=5-sulfoisophthalic acid, H{sub 2}hip=5-hydroxylisophthalic acid, H{sub 2}nip=5-nitroisophthalic acid, bpp=1,3-bis(4-pyridyl)propane, and nbi=6-nitrobenzimidazole) have been synthesized hydrothermally by the self-assembly of R-isophthalic acid (R=–SO{sub 3}H, –NO{sub 2}, and –OH) and N-donor ligands. Single crystal X-ray analyses reveal that two Zn(II) ions and one Na(I) ion of complex 1 are linked through Omore » atoms to generate a 1D linear chain. Then the 2D supramolecular architectures are constructed via intermolecular interactions. In complex 2, the Cd1 ions are connected by bridging carboxyl groups from sip{sup 3−} anions to form 1D double chain, which are further connected by Cd2 ions to afford 2D layer structure. The adjacent 2D layers are further linked via hydrogen-bonding interactions to give 3D supramolecular network. Compounds 3–5 show 1D chain structures, which are assembled into 2D or 3D supramolecular frameworks via weak interactions. In compound 6, the Cu(II) ions are bridged by the nip{sup 2−} ligands to form 48-membered ring, which is assembled into 1Dchain via the π-π stacking interaction. In addition, the thermal stabilities and fluorescence properties of these compounds have also been studied. - Graphical abstract: A series of Cd(II)/Zn(II)/ Cu(II) coordination polymers based on R-isophthalic acid (R=–SO{sub 3}H, –NO{sub 2}, and –OH) and N-donor ligands have been synthesized under hydrothermal conditions and structurally characterized. Photoluminescent properties have been discussed. - Highlights: • Six coordination polymers were synthesized based on mixed-ligand strategy. • The polycarboxylate acids play a crucial role in determining the final structures. • Each complex shows diverse structures and different supramolecular interactions.« less

  1. Computational (DFT) and Experimental (EXAFS) Study of the Interaction of [Ir(IMes)(H)2 (L)3 ] with Substrates and Co-substrates Relevant for SABRE in Dilute Systems.

    PubMed

    van Weerdenburg, Bram J A; Engwerda, Anthonius H J; Eshuis, Nan; Longo, Alessandro; Banerjee, Dipanjan; Tessari, Marco; Guerra, Célia Fonseca; Rutjes, Floris P J T; Bickelhaupt, F Matthias; Feiters, Martin C

    2015-07-13

    Signal amplification by reversible exchange (SABRE) is an emerging hyperpolarization method in NMR spectroscopy, in which hyperpolarization is transferred through the scalar coupling network of para-hydrogen derived hydrides in a metal complex to a reversibly bound substrate. Substrates can even be hyperpolarized at concentrations below that of the metal complex by addition of a suitable co-substrate. Here we investigate the catalytic system used for trace detection in NMR spectroscopy with [Ir(IMes)(H)2 (L)3 ](+) (IMes=1,3-dimesitylimidazol-2-ylidene) as catalyst, pyridine as a substrate and 1-methyl-1,2,3-triazole as co-substrate in great detail. With density functional theory (DFT), validated by extended X-ray absorption fine structure (EXAFS) experiments, we provide explanations for the relative abundance of the observed metal complexes, as well as their contribution to SABRE. We have established that the interaction between iridium and ligands cis to IMes is weaker than that with the trans ligand, and that in mixed complexes with pyridine and triazole, the latter preferentially takes up the trans position. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Synthesis of phosphinoferrocene amides and thioamides from carbamoyl chlorides and the structural chemistry of Group 11 metal complexes with these mixed-donor ligands.

    PubMed

    Fernandes, Tiago A; Solařová, Hana; Císařová, Ivana; Uhlík, Filip; Štícha, Martin; Štěpnička, Petr

    2015-02-21

    The reaction of in situ generated 1'-(diphenylphosphino)-1-lithioferrocene with carbamoyl chlorides, ClC(E)NMe2, affords the corresponding (thio)amides, Ph2PfcC(E)NMe2 (E = O (), S (); fc = ferrocene-1,1'-diyl). These compounds as well as their analogues, Ph2PfcC(O)NHMe () and Ph2PfcC(O)NH2 (), prepared from 1'-(diphenylphosphino)ferrocene-1-carboxylic acid (Hdpf) were studied as ligands for the Group 11 metal ions. In the reactions with [Cu(MeCN)4][BF4], the amides give rise to bis-chelate complexes of the type [Cu(L-κ(2)O,P)2][BF4]. Similar products, [Ag(L-κ(2)O,P)2]ClO4, are obtained from silver(i) perchlorate and , or . In contrast, the reaction of AgClO4 with produces a unique molecular dimer [Ag()(ClO4-κO)]2, where the metal centres are bridged by the sulfur atoms of the P,S-chelating thioamides. The reactions of with [AuCl(tht)] (tht = tetrahydrothiophene) afford the expected gold(i)-phosphine complexes, [AuCl(L-κP)], containing uncoordinated (thio)amide moieties. Hemilabile coordination of the phosphinoamide ligands in complexes with the soft Group 11 metal ions is established by the crystal structure of a solvento complex, [Cu(-κ(2)O,P)(-κP)(CHCl3-κCl)][BF4], which was isolated serendipitously during an attempted crystallisation of [Cu(-κ(2)O,P)2][BF4]. All of the compounds are characterised by spectroscopic methods, and the structures of several representatives of both the free phosphinoamides and their complexes are determined by X-ray diffraction analysis and further studied by DFT calculations and cyclic voltammetry.

  3. 3D Motions of Iron in Six-Coordinate {FeNO} 7 Hemes by Nuclear Resonance Vibration Spectroscopy [3-D Motions of Iron in Six-coordinate {FeNO} 7 Hemes by NRVS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peng, Qian; Pavlik, Jeffrey W.; Silvernail, Nathan J.

    The vibrational spectrum of a six-coordinate nitrosyl iron porphyrinate, monoclinic [Fe(T pFPP)(1-MeIm)(NO)] (T pFPP = tetra- para-fluorophenylporphyrin; 1-MeIm=1-methylimidazole), has been studied by oriented single-crystal nuclear resonance vibrational spectroscopy (NRVS). The crystal was oriented to give spectra perpendicular to the porphyrin plane and two in-plane spectra perpendicular or parallel to the projection of the FeNO plane. These enable assignment of the FeNO bending and stretching modes. The measurements reveal that the two in-plane spectra have substantial differences that result from the strongly bonded axial NO ligand. The direction of the in-plane iron motion is found to be largely parallel and perpendicularmore » to the projection of the bent FeNO on the porphyrin plane. The out-of-plane Fe-N-O stretching and bending modes are strongly mixed with each other, as well as with porphyrin ligand modes. The stretch is mixed with v 50 as was also observed for dioxygen complexes. The frequency of the assigned stretching mode of eight Fe-X-O (X= N, C, and O) complexes is correlated with the Fe XO bond lengths. The nature of highest frequency band at ≈560 cm -1 has also been examined in two additional new derivatives. Previously assigned as the Fe NO stretch (by resonance Raman), it is better described as the bend, as the motion of the central nitrogen atom of the FeNO group is very large. There is significant mixing of this mode. In conclusion, the results emphasize the importance of mode mixing; the extent of mixing must be related to the peripheral phenyl substituents.« less

  4. 3D Motions of Iron in Six-Coordinate {FeNO} 7 Hemes by Nuclear Resonance Vibration Spectroscopy [3-D Motions of Iron in Six-coordinate {FeNO} 7 Hemes by NRVS

    DOE PAGES

    Peng, Qian; Pavlik, Jeffrey W.; Silvernail, Nathan J.; ...

    2016-03-21

    The vibrational spectrum of a six-coordinate nitrosyl iron porphyrinate, monoclinic [Fe(T pFPP)(1-MeIm)(NO)] (T pFPP = tetra- para-fluorophenylporphyrin; 1-MeIm=1-methylimidazole), has been studied by oriented single-crystal nuclear resonance vibrational spectroscopy (NRVS). The crystal was oriented to give spectra perpendicular to the porphyrin plane and two in-plane spectra perpendicular or parallel to the projection of the FeNO plane. These enable assignment of the FeNO bending and stretching modes. The measurements reveal that the two in-plane spectra have substantial differences that result from the strongly bonded axial NO ligand. The direction of the in-plane iron motion is found to be largely parallel and perpendicularmore » to the projection of the bent FeNO on the porphyrin plane. The out-of-plane Fe-N-O stretching and bending modes are strongly mixed with each other, as well as with porphyrin ligand modes. The stretch is mixed with v 50 as was also observed for dioxygen complexes. The frequency of the assigned stretching mode of eight Fe-X-O (X= N, C, and O) complexes is correlated with the Fe XO bond lengths. The nature of highest frequency band at ≈560 cm -1 has also been examined in two additional new derivatives. Previously assigned as the Fe NO stretch (by resonance Raman), it is better described as the bend, as the motion of the central nitrogen atom of the FeNO group is very large. There is significant mixing of this mode. In conclusion, the results emphasize the importance of mode mixing; the extent of mixing must be related to the peripheral phenyl substituents.« less

  5. Computational studies on the photophysical properties and NMR fluxionality of dinuclear platinum(II) A-frame alkynyl diphosphine complexes.

    PubMed

    Lam, Wai Han; Yam, Vivian Wing-Wah

    2010-12-06

    The structural geometry, electronic structure, photophysical properties, and the fluxional behavior of a series of A-frame diplatinum alkynyl complexes, [Pt(2)(μ-dppm)(2)(μ-C≡CR)(C≡CR)(2)](+) [R = (t)Bu (1), C(6)H(5) (2), C(6)H(4)Ph-p (3), C(6)H(4)Et-p (4), C(6)H(4)OMe-p (5); dppm = bis(diphenylphosphino)methane], have been studied by density functional theory (DFT) and time-dependent TD-DFT associated with conductor-like polarizable continuum model (CPCM) calculations. The results show that the Pt···Pt distance strongly depends on the binding mode of the alkynyl ligands. A significantly shorter Pt···Pt distance is found in the symmetrical form, in which the bridging alkynyl ligand is σ-bound to the two metal centers, than in the unsymmetrical form where the alkynyl ligand is σ-bound to one metal and π-bound to another. For the two structural forms in 1-5, both the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) energy levels show a dependence on the nature of the substituents attached to the alkynyl ligand. The energies of the HOMO and LUMO are found to increase and decrease, respectively, from R = (t)Bu to R = Ph and to R = C(6)H(4)Ph-p, because of the increase of the π- conjugation of the alkynyl ligand. On the basis of the TDDFT/CPCM calculations, the low-energy absorption band consists of two types of transitions, which are ligand-to-ligand charge-transfer (LLCT) [π(alkynyl) → σ*(dppm)]/metal-centered MC [dσ*(Pt(2)) → pσ(Pt(2))] transitions as well as interligand π → π* transition from the terminal alkynyl ligands to the bridging alkynyl ligand mixed with metal-metal-to-ligand charge transfer MMLCT [dσ*(Pt(2)) → π*(bridging alkynyl)] transition. The latter transition is lower in energy than the former. The calculation also indicates that the emission for the complexes originates from the triplet interligand π(terminal alkynyls) → π*(bridging alkynyl)/MMLCT [dσ*(Pt(2)) → π*(bridging alkynyl)] excited state. In terms of the fluxional behavior, calculations have been performed to study the details of the mechanisms for the three fluxional processes, which are the σ,π-alkynyl exchange, the ring-flipping, and the bridging-to-terminal alkynyl exchange processes.

  6. Syntheses, structures, electrochemistry and catalytic oxidation degradation of organic dyes of two new coordination polymers derived from Cu(II) and Mn(II) and 1-(tetrazo-5-yl)-4-(triazo-1-yl)benzene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Ming; Mu, Bao; Huang, Ru-Dan, E-mail: huangrd@bit.edu.cn

    Two new coordination polymers (CPs), namely, [Cu{sub 2}(ttbz)(H{sub 2}btc){sub 2}(OH)]{sub n} (1) and [Mn(ttbz){sub 2}(H{sub 2}O){sub 2}]{sub n} (2) (Httbz =1-(tetrazo-5-yl)-4-(triazo-1-yl)benzene, H{sub 3}btc =1,3,5-benzenetricarboxylic acid), have been hydrothermally synthesized and structurally characterized. Complex 1 exhibits a (3,5,5,5)-connected 2D layer with a Schläfli symbol of (3·4{sup 2})(3·4{sup 4}0.5{sup 2}0.6{sup 3})(3{sup 2}0.4{sup 4}0.5{sup 2}0.6{sup 2})(3{sup 2}0.4{sup 4}0.5{sup 3}0.6), in which the ttbz{sup -} ligand can be described as μ{sub 5}-bridge, linking Cu(II) ions into a 2D layer and H{sub 2}btc{sup -} ions play a supporting role in complex 1. The ttbz{sup -} ligand in complex 2 represents the bridging coordination mode, connectingmore » two Mn(II) ions to form the infinite 1D zigzag chains, respectively, which are further connected by two different types of hydrogen bonds to form a 3D supramolecular. Furthermore, catalytic oxidation activities toward organic dyes and electrochemical behaviors of the title complexes have been investigated at room temperature in aqueous solutions, indicating these complexes may be applicable to color removal in a textile wastewater stream and practical applications in areas of electrocatalytic reduction toward nitrite, respectively. - Graphical abstract: Two new coordination polymers based on different structural characteristics have been hydrothermally synthesized by the mixed ligands. The catalytic oxidation activities toward organic dyes and electrochemical behaviors of the title complexes have been investigated. - Highlights: • The organic ligand containing the tetrazolyl group and triazolyl group with some advantages has been used. • Two new coordination polymers with different structural characteristics has been discussed in detail. • Catalytic oxidation activities toward organic dyes and electrochemical behaviors of the title complexes have been investigated.« less

  7. Synthesis, crystal structures, and luminescent properties of Cd(II) coordination polymers assembled from semi-rigid multi-dentate N-containing ligand

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yuan, Gang; Shao, Kui-Zhan; Chen, Lei

    2012-12-15

    Three new polymers, [Cd(L){sub 2}(H{sub 2}O){sub 2}]{sub n} (1), [Cd{sub 3}(L){sub 2}({mu}{sub 3}-OH){sub 2}({mu}{sub 2}-Cl){sub 2}(H{sub 2}O){sub 2}]{sub n} (2), {l_brace}[Cd{sub 2}(L){sub 2}(nic){sub 2}(H{sub 2}O){sub 2}]{center_dot}H{sub 2}O{r_brace}{sub n} (3) (HL=5-(4-((1H-1,2,4-triazol-1-yl)methyl)phenyl)-1H-tetrazole, Hnic=nicotinic acid) have been prepared and structurally characterized. Compounds 1 and 2 display 2D monomolecular layers built by the inter-linking single helical chains and L{sup -} ligands connecting chain-like [Cd({mu}{sub 3}-OH)({mu}{sub 2}-Cl)]{sub n} secondary building units, respectively. Compound 3 is constructed from the mixed ligands and possesses a (3,4)-connected framework with (4{center_dot}8{sup 2})(4{center_dot}8{sup 2}{center_dot}10{sup 3}) topology. Moreover, the fluorescent properties of HL ligand and compounds 1-3 are also been investigated.more » - Graphical abstract: Three new coordination polymers based on the semi-rigid multidentate N-donor ligand have been successfully synthesized by hydrothermal reaction. Complexes 1 and 2 exhibit the 2D layers formed by inter-linking single helices and L{sup -} anions bridging 1D chain-like SBUs, respectively. Complex 3 is buit by L{sup -} and assistant nic{sup -} ligands connecting metal centers and possesses a (3,4)-connected framework with (4 Multiplication-Sign 8{sup 2})(4 Multiplication-Sign 8{sup 2} Multiplication-Sign 10{sup 3}) topology. Moreover, these complexes display fluorescent properties indicating that they may have potential applications as optical materials. Highlights: Black-Right-Pointing-Pointer Three Cd-compounds were prepared from semi-rigid HL ligand with different N-containing groups. Black-Right-Pointing-Pointer They exhibit diverse structures from 2D monomolecular layer to 3D covalent framework. Black-Right-Pointing-Pointer The HL ligands displayed various coordination modes under different reaction conditions. Black-Right-Pointing-Pointer These compounds exhibit good luminescent properties.« less

  8. Equilibrium Speciation of Select Lanthanides in the Presence of Acidic Ligands in Homo- and Heterogeneous Solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robinson, Troy A

    2011-08-01

    This dissertation explores lanthanide speciation in liquid solution systems related to separation schemes involving the acidic ligands: bis(2-ethylhexyl) phosphoric acid (HDEHP), lactate, and 8-hydroxyquinoline. Equilibrium speciation of neodymium (Nd 3+), sodium (Na+), HDEHP, water, and lactate in the TALSPEAK liquid-liquid extraction system was explored under varied Nd 3+ loading of HDEHP in the organic phase and through extraction from aqueous HCl and lactate media. System speciation was probed through vapor pressure osmometry, visible and Fourier Transform Infrared (FTIR) spectroscopy, 22Na and 13C labeled lactate radiotracer distribution measurements, Karl Fischer titrations, and equilibrium pH measurements. Distribution of Nd 3+, Na +,more » lactate, and equilibrium pH were modeled using the SXLSQI software to obtain logKNd and logKNa extraction constants under selected conditions. Results showed that high Nd 3+ loading of the HDEHP led to Nd 3+ speciation that departs from the ion exchange mechanism and includes formation of highly aggregated, polynuclear [NdLactate(DEHP) 2] x; (with x > 1). By substituting lanthanum (La 3+) for Nd 3+ in this system, NMR scoping experiments using 23Na, 31P nuclei and 13C labeled lactate were performed. Results indicated that this technique is sensitive to changes in system speciation, and that further experiments are warranted. In a homogeneous system representing the TALSPEAK aqueous phase, Lactate protonation behavior at various temperatures was characterized using a combination of potentiometric titration and modeling with the Hyperquad computer program. The temperature dependent deprotonation behavior of lactate showed little change with temperature at 2.0 M NaCl ionic strength. Cloud point extraction is a non-traditional separation technique that starts with a homogeneous phase that becomes heterogeneous by the micellization of surfactants through the increase of temperature. To better understand the behavior of europium (Eu 3+) and 8-hydroxyquinoline under cloud point extraction conditions, potentiometric and spectrophotometric titrations coupled with modeling with Hyperquad and SQUAD computer programs were performed to assess europium (Eu 3+) and 8-hydroxyquinoline speciation. Experiments in both water and a 1wt% Triton X-114/water mixed solvent were compared to understand the effect of Triton X-114 on the system speciation. Results indicated that increased solvation of 8-hydroxyquinoline by the mixed solvent lead to more stable complexes involving 8-hydroxyquinoline than in water, whereas competition between hydroxide and Triton X-114 for Eu 3+ led to lower stability hydrolysis complexes in the mixed solvent than in water. Lanthanide speciation is challenging due to the trivalent oxidation state that leads to multiple ligand complexes, including some mixed complexes. The complexity of the system demands well-designed and precise experiments that capture the nuances of the chemistry. This work increased the understanding of lanthanide speciation in the explored systems, but more work is required to produce a comprehensive understanding of the speciation involved.« less

  9. Synthesis, spectral and magnetic studies of mono- and bi-nuclear metal complexes of a new bis(tridentate NO2) Schiff base ligand derived from 4,6-diacetylresorcinol and ethanolamine.

    PubMed

    Shebl, Magdy

    2009-07-15

    A new bis(tridentate NO2) Schiff base ligand, H(4)L, was prepared by the reaction of the bifunctional carbonyl compound; 4,6-diacetylresorcinol (DAR) with ethanolamine. The ligand reacted with iron(III), cobalt(II), nickel(II), copper(II), zinc(II), cadmium(II), cerium(III) and uranyl(VI) ions, in absence and in presence of LiOH, to yield mono- and bi-nuclear complexes with different coordinating sites. The ligand and its metal complexes were characterized by elemental analyses, IR, (1)H NMR, electronic, ESR and mass spectra, conductivity and magnetic susceptibility measurements as well as thermal analyses. In absence of LiOH, mononuclear complexes (2, 3 and 5-9) as well as binuclear complexes (1 and 4) were obtained. In mononuclear complexes, the ligand acted as a neutral, mono- and di-basic/bi- and tetra-dentate ligand while in binuclear complexes (1 and 4), the ligand acted as a bis(mono- or di-basic/tridentate) ligand. On the other hand, in presence of LiOH, only binuclear complexes (10-15) were obtained in which the ligand acted as a bis(dibasic tridentate) ligand. The metal complexes exhibited different geometrical arrangements such as octahedral, tetrahedral, square planar, square pyramidal and pentagonal bipyramidal arrangements.

  10. Electroreduction of CO 2 Catalyzed by a Heterogenized Zn–Porphyrin Complex with a Redox-Innocent Metal Center

    DOE PAGES

    Wu, Yueshen; Jiang, Jianbing; Weng, Zhe; ...

    2017-07-26

    Transition-metal-based molecular complexes are a class of catalyst materials for electrochemical CO 2 reduction to CO that can be rationally designed to deliver high catalytic performance. One common mechanistic feature of these electrocatalysts developed thus far is an electrogenerated reduced metal center associated with catalytic CO 2 reduction. Here in this paper, we report a heterogenized zinc–porphyrin complex (zinc(II) 5,10,15,20-tetramesitylporphyrin) as an electrocatalyst that delivers a turnover frequency as high as 14.4 site –1 s –1 and a Faradaic efficiency as high as 95% for CO 2 electroreduction to CO at -1.7 V vs the standard hydrogen electrode in anmore » organic/water mixed electrolyte. While the Zn center is critical to the observed catalysis, in situ and operando X-ray absorption spectroscopic studies reveal that it is redox-innocent throughout the potential range. Cyclic voltammetry indicates that the porphyrin ligand may act as a redox mediator. Chemical reduction of the zinc–porphyrin complex further confirms that the reduction is ligand-based and the reduced species can react with CO 2. This represents the first example of a transition-metal complex for CO 2 electroreduction catalysis with its metal center being redox-innocent under working conditions.« less

  11. Electroreduction of CO2 Catalyzed by a Heterogenized Zn–Porphyrin Complex with a Redox-Innocent Metal Center

    PubMed Central

    2017-01-01

    Transition-metal-based molecular complexes are a class of catalyst materials for electrochemical CO2 reduction to CO that can be rationally designed to deliver high catalytic performance. One common mechanistic feature of these electrocatalysts developed thus far is an electrogenerated reduced metal center associated with catalytic CO2 reduction. Here we report a heterogenized zinc–porphyrin complex (zinc(II) 5,10,15,20-tetramesitylporphyrin) as an electrocatalyst that delivers a turnover frequency as high as 14.4 site–1 s–1 and a Faradaic efficiency as high as 95% for CO2 electroreduction to CO at −1.7 V vs the standard hydrogen electrode in an organic/water mixed electrolyte. While the Zn center is critical to the observed catalysis, in situ and operando X-ray absorption spectroscopic studies reveal that it is redox-innocent throughout the potential range. Cyclic voltammetry indicates that the porphyrin ligand may act as a redox mediator. Chemical reduction of the zinc–porphyrin complex further confirms that the reduction is ligand-based and the reduced species can react with CO2. This represents the first example of a transition-metal complex for CO2 electroreduction catalysis with its metal center being redox-innocent under working conditions. PMID:28852698

  12. Electroreduction of CO 2 Catalyzed by a Heterogenized Zn–Porphyrin Complex with a Redox-Innocent Metal Center

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Yueshen; Jiang, Jianbing; Weng, Zhe

    Transition-metal-based molecular complexes are a class of catalyst materials for electrochemical CO 2 reduction to CO that can be rationally designed to deliver high catalytic performance. One common mechanistic feature of these electrocatalysts developed thus far is an electrogenerated reduced metal center associated with catalytic CO 2 reduction. Here in this paper, we report a heterogenized zinc–porphyrin complex (zinc(II) 5,10,15,20-tetramesitylporphyrin) as an electrocatalyst that delivers a turnover frequency as high as 14.4 site –1 s –1 and a Faradaic efficiency as high as 95% for CO 2 electroreduction to CO at -1.7 V vs the standard hydrogen electrode in anmore » organic/water mixed electrolyte. While the Zn center is critical to the observed catalysis, in situ and operando X-ray absorption spectroscopic studies reveal that it is redox-innocent throughout the potential range. Cyclic voltammetry indicates that the porphyrin ligand may act as a redox mediator. Chemical reduction of the zinc–porphyrin complex further confirms that the reduction is ligand-based and the reduced species can react with CO 2. This represents the first example of a transition-metal complex for CO 2 electroreduction catalysis with its metal center being redox-innocent under working conditions.« less

  13. Electroreduction of CO 2 Catalyzed by a Heterogenized Zn–Porphyrin Complex with a Redox-Innocent Metal Center

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Yueshen; Jiang, Jianbing; Weng, Zhe

    Transition-metal-based molecular complexes are a class of catalyst materials for electrochemical CO2 reduction to CO that can be rationally designed to deliver high catalytic performance. One common mechanistic feature of these electrocatalysts developed thus far is an electrogenerated reduced metal center associated with catalytic CO2 reduction. Here we report a heterogenized zinc–porphyrin complex (zinc(II) 5,10,15,20-tetramesitylporphyrin) as an electrocatalyst that delivers a turnover frequency as high as 14.4 site–1 s–1 and a Faradaic efficiency as high as 95% for CO2 electroreduction to CO at -1.7 V vs the standard hydrogen electrode in an organic/water mixed electrolyte. While the Zn center ismore » critical to the observed catalysis, in situ and operando X-ray absorption spectroscopic studies reveal that it is redox-innocent throughout the potential range. Cyclic voltammetry indicates that the porphyrin ligand may act as a redox mediator. Chemical reduction of the zinc–porphyrin complex further confirms that the reduction is ligand-based and the reduced species can react with CO2. This represents the first example of a transition-metal complex for CO2 electroreduction catalysis with its metal center being redox-innocent under working conditions.« less

  14. DNA Cleavage, Cytotoxic Activities, and Antimicrobial Studies of Ternary Copper(II) Complexes of Isoxazole Schiff Base and Heterocyclic Compounds

    PubMed Central

    Chityala, Vijay Kumar; Sathish Kumar, K.; Macha, Ramesh; Tigulla, Parthasarathy; Shivaraj

    2014-01-01

    Novel mixed ligand bivalent copper complexes [Cu. L. A. ClO 4] and [Cu. L. A] where “L” is Schiff bases, namely 2-((3,4-dimethylisoxazol-5-ylimino)methyl)-4-bromophenol (DMIIMBP)/2-((3,4-dimethylisoxazol-5-ylimino)methyl)-4-chlorophenol (DMIIMCP), and “A” is heterocyclic compound, such as 1,10-phenanthroline (phen)/2,21-bipyridyl (bipy)/8-hydroxyquinoline (oxine)/5-chloro-8-hydroxyquinoline (5-Cl-oxine), have been synthesized. These complexes have been characterized by IR, UV-Vis, ESR, elemental analysis, magnetic moments, TG, and DTA. On the basis of spectral studies and analytical data, five-coordinated square pyramidal/four-coordinated square planar geometry is assigned to all complexes. The ligands and their ternary complexes with Cu(II) have been screened for antimicrobial activity against bacteria and fungi by paper disc method. The antimicrobial studies of Schiff bases and their metal complexes showed significant activity and further it is observed that the metal complexes showed more activity than corresponding Schiff bases. In vitro antitumor activity of Cu(II) complexes was assayed against human cervical carcinoma (HeLa) cancer cells and it was observed that few complexes exhibit good antitumor activity on HeLa cell lines. The DNA cleavage studies have also been carried out on pBR 322 and it is observed that these Cu(II) complexes are capable of cleaving supercoiled plasmid DNA in the presence of H2O2 and UV light. PMID:24895493

  15. Conformational Transitions upon Ligand Binding: Holo-Structure Prediction from Apo Conformations

    PubMed Central

    Seeliger, Daniel; de Groot, Bert L.

    2010-01-01

    Biological function of proteins is frequently associated with the formation of complexes with small-molecule ligands. Experimental structure determination of such complexes at atomic resolution, however, can be time-consuming and costly. Computational methods for structure prediction of protein/ligand complexes, particularly docking, are as yet restricted by their limited consideration of receptor flexibility, rendering them not applicable for predicting protein/ligand complexes if large conformational changes of the receptor upon ligand binding are involved. Accurate receptor models in the ligand-bound state (holo structures), however, are a prerequisite for successful structure-based drug design. Hence, if only an unbound (apo) structure is available distinct from the ligand-bound conformation, structure-based drug design is severely limited. We present a method to predict the structure of protein/ligand complexes based solely on the apo structure, the ligand and the radius of gyration of the holo structure. The method is applied to ten cases in which proteins undergo structural rearrangements of up to 7.1 Å backbone RMSD upon ligand binding. In all cases, receptor models within 1.6 Å backbone RMSD to the target were predicted and close-to-native ligand binding poses were obtained for 8 of 10 cases in the top-ranked complex models. A protocol is presented that is expected to enable structure modeling of protein/ligand complexes and structure-based drug design for cases where crystal structures of ligand-bound conformations are not available. PMID:20066034

  16. Synthesis, characterization and antimicrobial activity of some nickel, cadmium and mercury complexes of 5-methyl pyrazole-3yl-N-(2‧-methylthiophenyl) methyleneimine, (MPzOATA) ligand

    NASA Astrophysics Data System (ADS)

    Mandal, Susmita; Mondal, Monojit; Biswas, Jayanta Kumar; Cordes, David B.; Slawin, Alexandra M. Z.; Butcher, Ray J.; Saha, Manan; Chandra Saha, Nitis

    2018-01-01

    Herein, we report the syntheses and structures of Ni(II) complexes, [Ni(MPzOATA)2] (Cl) (PF6) (I), [Ni(MPzOATA)2](ClO4)2.CH3CN (II) & [Ni(MPzOATA)2](BF4)2.H2O (III); Cd(II) complex, [Cd(MPzOATA)Cl2]2 (IV) and a Hg(II) complex, [Hg(MPzOATA)Cl2] (V), of a pyrazole based 'NNS' donor ligand, 5-methylpyrazole-3yl-N-(2‧-methylthiophenyl)methyleneimine, (MPzOATA). The complexes are characterized by elemental analyses, electronic, IR, 1H- NMR (only for IV &V) spectral parameters, conductivity and fluorescence measurements. X-ray crystallographic data of the complexes reveal that the Ni(II) complexes have NiN4S2 octahedral coordination, one of them is a mixed-anion complex having Cl- and PF6- as counter anions; the Cd(II) complex is a chloro bridged binuclear complex with octahedral coordination environment around each metal centre, while the Hg(II) complex is a square pyramidal one. Among the reported complex species, the Ni(II) complexes are non-fluorescent, while the Cd(II) and Hg(II) complexes can be used as potential photoactive materials as indicated from their characteristic emission properties. The reported complexes are screened for their antimicrobial activities against some Gram positive and Gram negative microbial strains, and they are found to be potential antimicrobial agents in broad spectrum against both Gram positive and Gram negative bacteria.

  17. Synthesis, crystal structure, fluorescence and electrochemical studies of a new tridentate Schiff base ligand and its nickel(II) and palladium(II) complexes

    NASA Astrophysics Data System (ADS)

    Shafaatian, Bita; Soleymanpour, Ahmad; Kholghi Oskouei, Nasim; Notash, Behrouz; Rezvani, Seyyed Ahmad

    2014-07-01

    A new unsymmetrical tridentate Schiff base ligand was derived from the 1:1 M condensation of ortho-vanillin with 2-mercaptoethylamine. Nickel and palladium complexes were obtained by the reaction of the tridentate Schiff base ligand with nickel(II) acetate tetrahydrate and palladium(II) acetate in 2:1 M ratio. In nickel and palladium complexes the ligand was coordinated to metals via the imine N and enolic O atoms. The S groups of Schiff bases were not coordinated to the metals and S-S coupling was occured. The complexes have been found to possess 1:2 Metal:Ligand stoichiometry and the molar conductance data revealed that the metal complexes were non-electrolytes. The complexes exhibited octahedral coordination geometry. The emission spectra of the ligand and its complexes were studied in methanol. Electrochemical properties of the ligand and its metal complexes were investigated in the CH3CN solvent at the 100 mV s-1 scan rate. The ligand and metal complexes showed both reversible and quasi-reversible processes at this scan rate. The Schiff base and its complexes have been characterized by IR, 1H NMR, UV/Vis, elemental analyses and conductometry. The crystal structure of nickel complex has been determined by single crystal X-ray diffraction.

  18. Part I. Cobalt thiolate complexes modeling the active site of cobalt nitrile hydratase. Part II. Formation of inorganic nanoparticles on protein scaffolding in Escherichia coli glutamine synthetase

    NASA Astrophysics Data System (ADS)

    Kung, Irene Yuk Man

    Part I. A series of novel cobalt dithiolate complexes with mixed imine/amine ligand systems is presented here as electronic and structural models for the active site in the bacterial enzyme class, nitrile hydratase (NHase). Pentadentate cobalt(II) complexes with S2N 3 ligand environments are first studied as precursors to the more relevant cobalt(III) complexes. Adjustment of the backbone length by removal of a methylene group increases the reactivity of the system; whereas reduction of the two backbone imine bonds to allow free rotation about those bonds may decrease reactivity. Reactivity change due to the replacement of the backbone amine proton with a more sterically challenging methyl group is not yet clear. Upon oxidation, the monocationic pentadentate cobalt(III) complex, 1b, shows promising reactivity similar to that of NHase. The metal's open coordination site allows reversible binding of the endogenous, monoanionic ligands, N 3- and NCS-. Oxygenation of the thiolate sulfur atoms by exposure to O2 and H2O 2 produces sulfenate and sulfinate ligands in complex 8, which resembles the crystal structure of "deactivated" Fe NHase. However, its lack of reactivity argues against the oxygenated enzyme structure as the active form. Six-coordinate cobalt(III) complexes with S2N4 amine/amine ligand systems are also presented as analogues of previously reported iron(III) compounds, which mimic the spectroscopic properties of Fe NHase. The cobalt complexes do not seem to similarly model Co NHase. However, the S = 0 cobalt(III) center can be spectroscopically silent and difficult to detect, making comparison with synthetic models using common techniques hard. Part II. Dodecameric Escherichia coli glutamine synthetase mutant, E165C, stacks along its six-fold axis to produce tubular nanostructures in the presence of some divalent metal ions, as does the wild type enzyme. The centrally located, engineered Cys-165 residues appear to bind to various species and may serve as scaffolding for inorganic mineralization. US nanoclusters of discreet size seem to grow in the presence of E165C in aqueous solution spontaneously. Commercially available mono(maleimido)undecagold seem to bind only to E165C through the reactive cysteine side chains. Reduction of Au3+ to elemental gold in solution with E165C, generates long, linear structures of approximately 100-nm diameter.

  19. Molecular Structures, Vibrational Spectroscopy, and Normal-Mode Analysis of M(2)(C&tbd1;CR)(4)(PMe(3))(4) Dimetallatetraynes. Observation of Strongly Mixed Metal-Metal and Metal-Ligand Vibrational Modes.

    PubMed

    John, Kevin D.; Miskowski, Vincent M.; Vance, Michael A.; Dallinger, Richard F.; Wang, Louis C.; Geib, Steven J.; Hopkins, Michael D.

    1998-12-28

    The nature of the skeletal vibrational modes of complexes of the type M(2)(C&tbd1;CR)(4)(PMe(3))(4) (M = Mo, W; R = H, Me, Bu(t)(), SiMe(3)) has been deduced. Metrical data from X-ray crystallographic studies of Mo(2)(C&tbd1;CR)(4)(PMe(3))(4) (R = Me, Bu(t)(), SiMe(3)) and W(2)(C&tbd1;CMe)(4)(PMe(3))(4) reveal that the core bond distances and angles are within normal ranges and do not differ in a statistically significant way as a function of the alkynyl substituent, indicating that their associated force constants should be similarly invariant among these compounds. The crystal structures of Mo(2)(C&tbd1;CSiMe(3))(4)(PMe(3))(4) and Mo(2)(C&tbd1;CBu(t)())(4)(PMe(3))(4) are complicated by 3-fold disorder of the Mo(2) unit within apparently ordered ligand arrays. Resonance-Raman spectra ((1)(delta-->delta) excitation, THF solution) of Mo(2)(C&tbd1;CSiMe(3))(4)(PMe(3))(4) and its isotopomers (PMe(3)-d(9), C&tbd1;CSiMe(3)-d(9), (13)C&tbd1;(13)CSiMe(3)) exhibit resonance-enhanced bands due to a(1)-symmetry fundamentals (nu(a) = 362, nu(b) = 397, nu(c) = 254 cm(-)(1) for the natural-abundance complex) and their overtones and combinations. The frequencies and relative intensities of the fundamentals are highly sensitive to isotopic substitution of the C&tbd1;CSiMe(3) ligands, but are insensitive to deuteration of the PMe(3) ligands. Nonresonance-Raman spectra (FT-Raman, 1064 nm excitation, crystalline samples) for the Mo(2)(C&tbd1;CSiMe(3))(4)(PMe(3))(4) compounds and for Mo(2)(C&tbd1;CR)(4)(PMe(3))(4) (R = H, D, Me, Bu(t)(), SiMe(3)) and W(2)(C&tbd1;CMe)(4)(PMe(3))(4) exhibit nu(a), nu(b), and nu(c) and numerous bands due to alkynyl- and phosphine-localized modes, the latter of which are assigned by comparisons to FT-Raman spectra of Mo(2)X(4)L(4) (X = Cl, Br, I; L = PMe(3), PMe(3)-d(9))(4) and Mo(2)Cl(4)(AsMe(3))(4). Valence force-field normal-coordinate calculations on the model compound Mo(2)(C&tbd1;CH)(4)P(4), using core force constants transferred from a calculation on Mo(2)Cl(4)P(4), show that nu(a), nu(b), and nu(c) arise from modes of strongly mixed nu(Mo(2)), nu(MoC), and lambda(MoCC) character. The relative intensities of the resonance-Raman bands due to nu(a), nu(b), and nu(c) reflect, at least in part, their nu(M(2)) character. In contrast, the force field shows that mixing of nu(M(2)) and nu(C&tbd1;C) is negligible. The three-mode mixing is expected to be a general feature for quadruply bonded complexes with unsaturated ligands.

  20. Selectivity of Vibrio cholerae H-NOX for Gaseous Ligands Follows “Sliding Scale Rule” Hypothesis

    PubMed Central

    Wu, Gang; Liu, Wen; Berka, Vladimir; Tsai, Ah-lim

    2014-01-01

    Vc H-NOX (or VCA0720) is an H-NOX (heme-nitric oxide and oxygen binding) protein from facultative aerobic bacterium Vibrio cholerae. It shares significant sequence homology with soluble guanylyl cyclase (sGC), a NO sensor protein commonly found in animals. Similar to sGC, Vc H-NOX binds strongly to NO and CO with affinities of 0.27 nM and 0.77 μM, respectively, but weakly to O2. When positioned in “sliding scale” plot {Tsai, A.-L. et. al. (2012) Biochemistry, 51, pp172-86}, the line connecting logKD(NO) and logKD(CO) of Vc H-NOX is almost superimposable with that of Ns H-NOX. Therefore, the measured affinities and kinetic parameters of gaseous ligands to Vc H-NOX provide more evidence to validate the “sliding scale rule” hypothesis. Like sGC, Vc H-NOX binds NO in multiple steps, forming first a 6-coordinate heme-NO complex with a rate of 1.1 × 109 M−1s−1, and then converts to a 5c heme-NO complex at a rate also dependent on [NO]. Although the formation of oxyferrous Vc H-NOX is not detectable under normal atmospheric oxygen level, ferrous Vc H-NOX is oxidized to ferric form at a rate of 0.06 s−1 when mixed with O2. Ferric Vc H-NOX exists as a mixture of high- and low-spin states and is influenced by binding to different ligands. Characterization of both ferric and ferrous Vc H-NOX and their complexes with various ligands lay the foundation for understanding the possible dual roles in gas and redox sensing of Vc H-NOX. PMID:24351060

  1. Cationic Gold Clusters Ligated with Differently Substituted Phosphines: Effect of Substitution on Ligand Reactivity and Binding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Grant E.; Olivares, Astrid M.; Hill, David E.

    2015-01-01

    We present a systematic study of the effect of the number of methyl (Me) and cyclohexyl (Cy) functional groups in monodentate phosphine ligands on the solution-phase synthesis of ligated sub-nanometer gold clusters and their gas-phase fragmentation pathways. Small mixed ligand cationic gold clusters were synthesized using ligand exchange reactions between pre-formed triphenylphosphine ligated (PPh3) gold clusters and monodentate Me- and Cy-substituted ligands in solution and characterized using electrospray ionization mass spectrometry (ESI-MS) and collision-induced dissociation (CID) experiments. Under the same experimental conditions, larger gold-PPh3 clusters undergo efficient exchange of unsubstituted PPh3 ligands for singly Me- and Cy-substituted PPh2Me and PPh2Cymore » ligands. The efficiency of ligand exchange decreases with an increasing number of Me or Cy groups in the substituted phosphine ligands. CID experiments performed for a series of ligand-exchanged gold clusters indicate that loss of a neutral Me-substituted ligand is preferred over loss of a neutral PPh¬3 ligand while the opposite trend is observed for Cy-substituted ligands. The branching ratio of the competing ligand loss channels is strongly correlated with the electron donating ability of the phosphorous lone pair as determined by the relative proton affinity of the ligand. The results indicate that the relative ligand binding energies increase in the order PMe3 < PPhMe2 < PPh2Me < PPh3< PPh2Cy < PPhCy2< PCy3. Furthermore, the difference in relative ligand binding energies increases with the number of substituted PPh3-mMem or PPh3-mCym ligands (L) exchanged onto each cluster. This study provides the first experimental determination of the relative binding energies of ligated gold clusters containing differently substituted monophosphine ligands, which are important to controlling their synthesis and reactivity in solution. The results also indicate that ligand substitution is an important parameter that must be considered in theoretical modeling of these complex systems« less

  2. Ligand-controlled assembly of Cd(II) coordination polymers based on mixed ligands of naphthalene-dicarboxylate and dipyrido[3,2-d:2‧,3‧-f]quinoxaline: From 0D+1D cocrystal, 2D rectangular network (4,4), to 3D PtS-type architecture

    NASA Astrophysics Data System (ADS)

    Liu, Guocheng; Chen, Yongqiang; Wang, Xiuli; Chen, Baokuan; Lin, Hongyan

    2009-03-01

    Three novel Cd(II) coordination polymers, namely, [Cd(Dpq)(1,8-NDC)(H 2O) 2][Cd(Dpq)(1,8-NDC)]·2H 2O ( 1), [Cd(Dpq)(1,4-NDC)(H 2O)] ( 2), and [Cd(Dpq)(2,6-NDC)] ( 3) have been obtained from hydrothermal reactions of cadmium(II) nitrate with the mixed ligands dipyrido [3,2-d:2',3'-f]quinoxaline (Dpq) and three structurally related naphthalene-dicarboxylate ligands [1,8-naphthalene-dicarboxylic acid (1,8-H 2NDC), 1,4-naphthalene-dicarboxylic acid (1,4-H 2NDC), and 2,6-naphthalene-dicarboxylic acid (2,6-H 2NDC)]. Single-crystal X-ray diffraction analysis reveals that the three polymers exhibit novel structures due to different naphthalene-dicarboxylic acid. Compound 1 is a novel cocrystal of left- and right-handed helical chains and binuclear complexes and ultimately packed into a 3D supramolecular structure through hydrogen bonds and π- π stacking interactions. Compound 2 shows a 2D rectangular network (4,4) bridged by 1,4-NDC with two kinds of coordination modes and ultimately packed into a 3D supramolecular structure through inter-layer π- π stacking interactions. Compound 3 is a new 3D coordination polymer with distorted PtS-type network. In addition, the title compounds exhibit blue/green emission in solid state at room temperature.

  3. A Mixed QM/MM Scoring Function to Predict Protein-Ligand Binding Affinity

    PubMed Central

    Hayik, Seth A.; Dunbrack, Roland; Merz, Kenneth M.

    2010-01-01

    Computational methods for predicting protein-ligand binding free energy continue to be popular as a potential cost-cutting method in the drug discovery process. However, accurate predictions are often difficult to make as estimates must be made for certain electronic and entropic terms in conventional force field based scoring functions. Mixed quantum mechanics/molecular mechanics (QM/MM) methods allow electronic effects for a small region of the protein to be calculated, treating the remaining atoms as a fixed charge background for the active site. Such a semi-empirical QM/MM scoring function has been implemented in AMBER using DivCon and tested on a set of 23 metalloprotein-ligand complexes, where QM/MM methods provide a particular advantage in the modeling of the metal ion. The binding affinity of this set of proteins can be calculated with an R2 of 0.64 and a standard deviation of 1.88 kcal/mol without fitting and 0.71 and a standard deviation of 1.69 kcal/mol with fitted weighting of the individual scoring terms. In this study we explore using various methods to calculate terms in the binding free energy equation, including entropy estimates and minimization standards. From these studies we found that using the rotational bond estimate to ligand entropy results in a reasonable R2 of 0.63 without fitting. We also found that using the ESCF energy of the proteins without minimization resulted in an R2 of 0.57, when using the rotatable bond entropy estimate. PMID:21221417

  4. Synthesis, characterization, single crystal X-ray determination, fluorescence and electrochemical studies of new dinuclear nickel(II) and oxovanadium(IV) complexes containing double Schiff base ligands

    NASA Astrophysics Data System (ADS)

    Shafaatian, Bita; Ozbakzaei, Zahra; Notash, Behrouz; Rezvani, S. Ahmad

    2015-04-01

    A series of new bimetallic complexes of nickel(II) and vanadium(IV) have been synthesized by the reaction of the new double bidentate Schiff base ligands with nickel acetate and vanadyl acetylacetonate in 1:1 M ratio. In nickel and also vanadyl complexes the ligands were coordinated to the metals via the imine N and enolic O atoms. The complexes have been found to possess 1:1 metals to ligands stoichiometry and the molar conductance data revealed that the metal complexes were non-electrolytes. The nickel and vanadyl complexes exhibited distorted square planar and square pyramidal coordination geometries, respectively. The emission spectra of the ligands and their complexes were studied in methanol. Electrochemical properties of the ligands and their metal complexes were also investigated in DMSO solvent at 150 mV s-1 scan rate. The ligands and metal complexes showed both quasi-reversible and irreversible processes at this scan rate. The Schiff bases and their complexes have been characterized by FT-IR, 1H NMR, UV/Vis spectroscopies, elemental analysis and conductometry. The crystal structure of the nickel complex has been determined by single crystal X-ray diffraction.

  5. Preparation, characterization, and stereochemistry of binuclear vanadyl(IV) monomethyl- and dimethyltartrate(4-) complexes and the crystal structure of tetrasodium (. mu. -(+)-dimethyltartrato(4-))-(. mu. -(-)-dimethyltartrato(4-))-bis(oxovanadate(IV)) dodecahydrate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hahs, S.K.; Ortega, R.B.; Tapscott, R.E.

    1982-02-01

    The syntheses and characterizations (by ESR, IR, and electronic spectroscopies) of the sodium salts of the DL and DD (or LL) binuclear complexes of vanadyl(IV) with dimethyltartrate(4-), dmt, and with monomethyltartrate(4-), mmt, are described. Na/sub 4/((VO)/sub 22/((+)-dmt)((-)-dmt)) exists in two crystal forms - a blue dodecahydrate and a pink hexahydrate. An x-ray diffraction study of the former shows that the V-V distance (3.429 (3) A) of the binuclear anion is decreased relative to that of the unsubstituted tartrate(4-), tart, complex, as predicted from earlier ESR studies, and that this decrease is due in part to a dropping of the vanadiummore » atom into the plane of the four coordinating equatorial oxygen atoms. A sixth oxygen atom is weakly coordinated (2.377 (3) A) trans to the vanadyl oxygen atom. A purple tetradecahydrate also obtained with racenic dmt contains a mixture of ((VO)/sub 2/ ((+)-dmt)/sub 2/)/sup 4 -/ and ((VO)/sub 2/((-)-dmt)/sub 2/)/sup 4 -/). The aqueous solution ligand-exchange reaction between the DD and LL complexes of this salt to give the more stable DL isomer is remarkably slow (several hours at room temperature). Stereoselective effects allow the production of mixed-ligand species containing two of the three ligands tart, dmt, and mmt, and potentiometric titrations indicate a decreasing stability of the DL isomer (relative to the DD and LL isomers) as methyl substitution increases.« less

  6. Trialkylphosphine-stabilized copper(I) gallium(III) phenylchalcogenolate complexes: crystal structures and generation of ternary semiconductors by thermolysis.

    PubMed

    Kluge, Oliver; Krautscheid, Harald

    2012-06-18

    A series of organometallic trialkylphosphine-stabilized copper gallium phenylchalcogenolate complexes [(R(3)P)(m)Cu(n)Me(2-x)Ga(EPh)(n+x+1)] (R = Me, Et, (i)Pr, (t)Bu; E = S, Se, Te; x = 0, 1) has been prepared and structurally characterized by X-ray diffraction. From their molecular structures three groups of compounds can be distinguished: ionic compounds, ring systems, and cage structures. All these complexes contain one gallium atom bound to one or two methyl groups, whereas the number of copper atoms, and therefore the nuclearity of the complexes, is variable and depends mainly on size and amount of phosphine ligand used in synthesis. The Ga-E bonds are relatively rigid, in contrast to flexible Cu-E bonds. The lengths of the latter are controlled by the coordination number and steric influences. The Ga-E bond lengths depend systematically on the number of methyl groups bound to the gallium atom, with somewhat shorter bonds in monomethyl compounds compared to dimethyl compounds. Quantum chemical computations reproduce this trend and show furthermore that the rotation of one phenyl group around the Ga-E bond is a low energy process with two distinct minima, corresponding to two different conformations found experimentally. Mixtures of different types of chalcogen atoms on molecular scale are possible, and then ligand exchange reactions in solution lead to mixed site occupation. In thermogravimetric studies the complexes were converted into the ternary semiconductors CuGaE(2). The thermolysis reaction is completed at temperatures between 250 and 400 °C, typically with lower temperatures for the heavier chalcogens. Because of significant release of Me(3)Ga during the thermolysis process, and especially in case of copper excess in the precursor complexes, binary copper chalcogenides are obtained as additional thermolysis products. Quaternary semiconductors can be obtained from mixed chalcogen precursors.

  7. Potential of ethylenediaminedi(o-hydroxyphenylacetic acid) and N,N'-bis(hydroxybenzyl)ethylenediamine-N,N'-diacetic acid for the determination of metal ions by capillary electrophoresis.

    PubMed

    Krokhin, O V; Kuzina, O V; Hoshino, H; Shpigun, O A; Yotsuyanagi, T

    2000-08-25

    Two aromatic polyaminocarboxylate ligands, ethylenediaminedi(o-hydroxyphenylacetic acid) (EDDHA) and N,N'-bis(hydroxybenzyl)ethylenediamine-N,N'-diacetic acid (HBED), were applied for the separation of transition and heavy metal ions by the ion-exchange variant of electrokinetic chromatography. EDDHA structure contains two chiral carbon centers. It makes it impossible to use the commercially available ligand. All the studied metal ions showed two peaks, which correspond to meso and rac forms of the ligand. The separation of metal-HBED chelates was performed using poly(diallyldimethylammonium) polycations in mixed acetate-hydroxide form. Simultaneous separation of nine single- and nine double-charged HBED chelates, including In(III), Ga(III), Co(II)-(III) and Mn(II)-(III) pairs demonstrated the efficiency of 40,000-400,000 theoretical plates. The separation of Co(III), Fe(III) complexes with different arrangements of donor groups and oxidation of Co(II), Mn(H), Fe(II) ions in reaction with HBED have been discussed.

  8. Electronic spectra and photophysics of platinum(II) complexes with alpha-diimine ligands - Solid-state effects. I - Monomers and ligand pi dimers

    NASA Technical Reports Server (NTRS)

    Miskowski, Vincent M.; Houlding, Virginia H.

    1989-01-01

    Two types of emission behavior for Pt(II) complexes containing alpha-diimine ligands have been observed in dilute solution. If the complex also has weak field ligands such as chloride, ligand field (d-d) excited states become the lowest energy excited states. If only strong field ligands are present, a diimine 3(pi-pi/asterisk/) state becomes the lowest. In none of the cases studied did metal-to-ligand charge transfer excited state lie lowest.

  9. Chemical bonding in aqueous hexacyano cobaltate from photon- and electron-detection perspectives

    PubMed Central

    Lalithambika, Sreeju Sreekantan Nair; Atak, Kaan; Seidel, Robert; Neubauer, Antje; Brandenburg, Tim; Xiao, Jie; Winter, Bernd; Aziz, Emad F.

    2017-01-01

    The electronic structure of the [Co(CN)6]3− complex dissolved in water is studied using X-ray spectroscopy techniques. By combining electron and photon detection methods from the solutions ionized or excited by soft X-rays we experimentally identify chemical bonding between the metal center and the CN ligand. Non-resonant photoelectron spectroscopy provides solute electron binding energies, and nitrogen 1 s and cobalt 2p resonant core-level photoelectron spectroscopy identifies overlap between metal and ligand orbitals. By probing resonances we are able to qualitatively determine the ligand versus metal character of the respective occupied and non-occupied orbitals, purely by experiment. For the same excitations we also detect the emitted X-rays, yielding the complementary resonant inelastic X-ray scattering spectra. For a quantitative interpretation of the spectra, we perform theoretical electronic-structure calculations. The latter provide both orbital energies and orbital character which are found to be in good agreement with experimental energies and with experimentally inferred orbital mixing. We also report calculated X-ray absorption spectra, which in conjunction with our orbital-structure analysis, enables us to quantify various bonding interactions with a particular focus on the water-solvent – ligand interaction and the strength of π-backbonding between metal and ligand. PMID:28098216

  10. Synthesis, Structures, and Reactions of Manganese Complexes Containing Diphosphine Ligands With Pendant Amines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Welch, Kevin D.; Dougherty, William G.; Kassel, W. S.

    2010-10-01

    Addition of the pendant amine ligand PNRP (PNRP = Et2PCH2NRCH2PEt2; R = Me, Ph, n-Bu) to Mn(CO)5Br gives fac-Mn(PNRP)(CO)3Br. Photolysis of fac-Mn(PNRP)(CO)3Br with dppm [dppm = 1,2-bis(diphenylphosphino)methane] provides mixed bis(diphosphine) complexes, trans-Mn(PNRP)(dppm)(CO)(Br). Reaction of trans-Mn(PNRP)(dppm)(CO)(Br) with LiAlH4 leads to trans-Mn(PNRP)(dppm)(CO)(H). The crystal structure of trans-Mn(PNMeP)(dppm)(CO)(H) determined by x-ray diffraction shows an unusual distortion of the Mn-H towards one C-H of the dppm ligand, resulting in an H Mn CO angle of 155(1)° and C H • • • H Mn distance of 2.10(3) Å. Mn(P2PhN2Bn)(dppm)(CO)(H) [P2PhN2Bn = 1, 5-diphenyl-3,7-dibenzyl-1,5-diaza-3,7-diphosphacyclooctane] can be prepared in a similar manner; its structure has onemore » chelate ring in a chair conformation and the second in a boat conformation. The boat-conformer ring directs the nitrogen of the ring towards the carbonyl ligand, and the N • • • C distance between one N of the P2PhN2Bn ligand and CO is 3.171(4) Å, indicating a weak interaction between the N of the pendant amine and the CO ligand. Reaction of NaBArF4 (ArF = = 3,5-bis(trifluoromethyl)phenyl) with Mn(P P)(dppm)(CO)(Br) produces the cations [Mn(P P)(dppm)(CO)]+. The crystal structure of [Mn(PNMeP)(dppm)(CO)][BArF4] shows two very weak agostic interactions between C-H bonds on the phenyl ring and the Mn. The cationic complexes [Mn(P P)(dppm)(CO)]+ react with H2 to form dihydrogen complexes [Mn(H2)(P P)(dppm)(CO)]+ (Keq = 1 - 90 atm-1 in fluorobenzene, for a series of different P P ligands). Similar equilibria with N2 produce [Mn(N2)(P P)(dppm)(CO)]+ (Keq generally 1-3.5 atm-1 in fluorobenzene). This work was supported by the US Department of Energy Basic Energy Sciences' Chemical Sciences, Geosciences & Biosciences Division. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy.« less

  11. Influence of the Mixing Energy Consumption Affecting Coagulation and Floc Aggregation.

    PubMed

    Vadasarukkai, Yamuna S; Gagnon, Graham A

    2017-03-21

    The operational significance of energy-intensive rapid mixing processes remains unaddressed in coagulation and flocculation of insoluble precipitates (flocs), which play an important role in the removal of impurities from drinking water supplies. In this study, the influence of rapid mixing and associated mixing energy on floc aggregation was examined for a surface water source characterized by a high fraction of aquatic humic matter. Infrared spectral analyses showed that the colloidal complexes resulting from ligand exchange between iron and dissolved natural organic matter (DOM) were not substantially influenced by the mixing energy input. This signified that DOM removal by coagulation can be achieved at lower mixing intensity, thereby reducing energy consumption. In contrast, macroscopic investigations showed the coagulation mixing energy affected floc size distributions during the slow mixing stage in flocculation and, to some extent, their settling characteristics. The results from analysis of floc properties clearly showed that more mixing energy was expended than necessary in coagulation, which is typically designed at a high mixing intensity range of 600-1000 s -1 in treatment plants. The key findings from this study have practical implications to water utilities to strategically meet water quality goals while reducing energy demands.

  12. Method and apparatus for dissociating metals from metal compounds extracted into supercritical fluids

    DOEpatents

    Wai, Chien M.; Hunt, Fred H.; Smart, Neil G.; Lin, Yuehe

    2000-01-01

    A method for dissociating metal-ligand complexes in a supercritical fluid by treating the metal-ligand complex with heat and/or reducing or oxidizing agents is described. Once the metal-ligand complex is dissociated, the resulting metal and/or metal oxide form fine particles of substantially uniform size. In preferred embodiments, the solvent is supercritical carbon dioxide and the ligand is a .beta.-diketone such as hexafluoroacetylacetone or dibutyldiacetate. In other preferred embodiments, the metals in the metal-ligand complex are copper, silver, gold, tungsten, titanium, tantalum, tin, or mixtures thereof. In preferred embodiments, the reducing agent is hydrogen. The method provides an efficient process for dissociating metal-ligand complexes and produces easily-collected metal particles free from hydrocarbon solvent impurities. The ligand and the supercritical fluid can be regenerated to provide an economic, efficient process.

  13. Aminopyridinate-FI hybrids, their hafnium and titanium complexes, and their application in the living polymerization of 1-hexene.

    PubMed

    Haas, Isabelle; Dietel, Thomas; Press, Konstantin; Kol, Moshe; Kempe, Rhett

    2013-10-11

    Based on two well-established ligand systems, the aminopyridinato (Ap) and the phenoxyimine (FI) ligand systems, new Ap-FI hybrid ligands were developed. Four different Ap-FI hybrid ligands were synthesized through a simple condensation reaction and fully characterized. The reaction of hafnium tetrabenzyl with all four Ap-FI hybrid ligands exclusively led to mono(Ap-FI) complexes of the type [(Ap-FI)HfBn2 ]. The ligands acted as tetradentate dianionic chelates. Upon activation with tris(pentafluorophenyl)borane, the hafnium-dibenzyl complexes led to highly active catalysts for the polymerization of 1-hexene. Ultrahigh molecular weights and extremely narrow polydispersities support the living nature of this polymerization process. A possible deactivation product of the hafnium catalysts was characterized by single-crystal X-ray analysis and is discussed. The coordination modes of these new ligands were studied with the help of model titanium complexes. The reaction of titanium(IV) isopropoxide with ligand 1 led to a mono(Ap-FI) complex, which showed the desired fac-mer coordination mode. Titanium (IV) isopropoxide reacted with ligand 4 to give a complex of the type [(ApH-FI)2 Ti(OiPr)2 ], which featured the ligand in its monoanionic form. The two titanium complexes were characterized by X-ray crystal-structure analysis. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Synthesis and characterization of a cadmium(II)-organic supramolecular coordination compound based on the multifunctional 2-amino-5-sulfobenzoic acid ligand.

    PubMed

    Yuan, Gan Yin; Zhang, Lei; Wang, Meng Jie; Zhang, Kou Lin

    2016-12-01

    Much attention has been paid by chemists to the construction of supramolecular coordination compounds based on the multifunctional ligand 5-sulfosalicylic acid (H 3 SSA) due to the structural and biological interest of these compounds. However, no coordination compounds have been reported for the multifunctional amino-substituted sulfobenzoate ligand 2-amino-5-sulfobenzoic acid (H 2 asba). We expected that H 2 asba could be a suitable building block for the assembly of supramolecular networks due to its interesting structural characteristics. The reaction of cadmium(II) nitrate with H 2 asba in the presence of the auxiliary flexible dipyridylamide ligand N,N'-bis[(pyridin-4-yl)methyl]oxamide (4bpme) under ambient conditions formed a new mixed-ligand coordination compound, namely bis(3-amino-4-carboxybenzenesulfonato-κO 1 )diaquabis{N,N'-bis[(pyridin-4-yl)methyl]oxamide-κN}cadmium(II)-N,N'-bis[(pyridin-4-yl)methyl]oxamide-water (1/1/4), [Cd(C 7 H 6 NO 5 S) 2 (C 14 H 14 N 4 O 2 ) 2 (H 2 O) 2 ]·C 14 H 14 N 4 O 2 ·4H 2 O, (1), which was characterized by single-crystal and powder X-ray diffraction analysis (PXRD), FT-IR spectroscopy, thermogravimetric analysis (TG), and UV-Vis and photoluminescence spectroscopic analyses in the solid state. The central Cd II atom in (1) occupies a special position on a centre of inversion and exhibits a slightly distorted octahedral geometry, being coordinated by two N atoms from two monodentate 4bpme ligands, four O atoms from two monodentate 4-amino-3-carboxybenzenesulfonate (Hasba - ) ligands and two coordinated water molecules. Interestingly, complex (1) further extends into a threefold polycatenated 0D→2D (0D is zero-dimensional and 2D is two-dimensional) interpenetrated supramolecular two-dimensional (4,4) layer through intermolecular hydrogen bonding. The interlayer hydrogen bonding further links adjacent threefold polycatenated two-dimensional layers into a three-dimensional network. The optical properties of complex (1) indicate that it may be used as a potential indirect band gap semiconductor material. Complex (1) exhibits an irreversible dehydration-rehydration behaviour. The fluorescence properties have also been investigated in the solid state at room temperature.

  15. A TDDFT study of the ruthenium(II) polyazaaromatic complex [Ru(dppz)(phen) 2] 2+ in solution

    NASA Astrophysics Data System (ADS)

    Fantacci, Simona; De Angelis, Filippo; Sgamellotti, Antonio; Re, Nazzareno

    2004-09-01

    DFT/TDDFT calculations were performed to investigate the structural, electronic and optical properties of the [Ru(dppz)(phen) 2] 2+ complex in solution. TDDFT calculations in water show two groups of metal-to-ligand charge transfer (MLCT) transitions at ≈450 and 415 nm whose superposition gives account of the broad absorption band experimentally characterized at 440 nm. Also, a group of almost coincident MLCT transitions partially mixed with dppz intraligand π-π ∗ transitions centered at ≈380 nm is found to give rise to the narrow absorption band experimentally found at 380 nm. Our results provide insight into the hypochromic shifts experimentally characterized upon intercalation of the title complex into DNA.

  16. Synthesis, spectroscopy and biological investigations of manganese(III) Schiff base complexes derived from heterocyclic β-diketone with various primary amine and 2,2'-bipyridyl

    NASA Astrophysics Data System (ADS)

    Surati, Kiran R.

    2011-06-01

    The mixed ligand mononuclear complex [Mn(bipy)(HPMFP)(OAc)]ClO 4 was synthesized by reaction of Mn(OAc) 3·2H 2O with HPMFP and 2,2'-bipyridyl. The corresponding Schiff base complexes were prepared by condensation of [Mn(bipy)(HPMFP)(OAc)]ClO 4 with ethylenediamine, ethanolamine and glycine (where HPMFP = 1-phenyl-3methyl-4-formyl-2-pyrazolin-5one, bipy = 2,2'-bipyridyl). All the compounds have been characterized by elemental analysis, magnetic susceptibility, conductometry measurements and 1H and 13C NMR, FT-IR, mass spectrometry. Electronic spectral and magnetic susceptibility measurements indicate square pyramidal geometry around manganese(III) ion. The thermal stabilities, activation energy E*, entropy change Δ S*, enthalpy change Δ H* and heat capacity of thermal degradation for these complexes were determined by TGA and DSC. The in vitro antibacterial and antifungal activity of four coordination compounds and ligand HPMFP were investigated. In vitro activates of Bacillus subtillis (MTCC-619), Staphylococcus aureus (MTCC-96), Escherichia coli (MTCC-722) and Klebsiella pneumonia (MTCC-109) bacteria and the fungus Candida albicans (ATCC-90028) were determined. All the compounds showed good antimicrobial activity. The antimicrobial activities increased as formation of Schiff base.

  17. Structural, electrochemical characterization and SOD mimic activities of 1D chain or 3D network encouraged by unique μ2-bridging by adipate ion in mixed ligand complexes containing α-diimine as auxiliary ligand

    NASA Astrophysics Data System (ADS)

    Siddiqi, Zafar A.; Sharma, Prashant K.; Shahid, M.; Kumar, Sarvendra; Anjuli; Siddique, Armeen

    The present ternary complexes [Cu(ada)(phen)(H2O)]·2H2O (1), [Co2(ada)2(phen)2(H2O)2] (2) and [{Cu(ada)3(bipy)}n·3nH2O] (3) (H2ada = adipic acid, phen = 1,10-phenanthroline and bipy = 2,2'-bipyridine) obtained under varying experimental conditions were characterized by spectral, electrochemical and thermal studies. The bonding modes and the spatial arrangements of the carboxylate dianion around the metal ions have been investigated employing FTIR, EPR and X-ray crystallographic studies. Present data revealed a six coordinate distorted octahedral geometry for 2 with a = 8.068, b = 9.788, c = 11.788 Å, α = 70.464, β = 75.109, γ = 72.063° and a five coordinate square pyramidal geometry for 3 with a = 9.509, b = 9.912, c = 12.656 Å, α = 70.486, β = 73.604, γ = 75.162°. The superoxide dismutase (SOD) mimic activities of the complexes are in the order 1 > 3 > 2.

  18. Conformational diversity of flexible ligand in metal-organic frameworks controlled by size-matching mixed ligands

    NASA Astrophysics Data System (ADS)

    Hua, Xiu-Ni; Qin, Lan; Yan, Xiao-Zhi; Yu, Lei; Xie, Yi-Xin; Han, Lei

    2015-12-01

    Hydrothermal reactions of N-auxiliary flexible exo-bidentate ligand 1,3-bis(4-pyridyl)propane (bpp) and carboxylates ligands naphthalene-2,6-dicarboxylic acid (2,6-H2ndc) or 4,4‧-(hydroxymethylene)dibenzoic acid (H2hmdb), in the presence of cadmium(II) salts have given rise to two novel metal-organic frameworks based on flexible ligands (FL-MOFs), namely, [Cd2(2,6-ndc)2(bpp)(DMF)]·2DMF (1) and [Cd3(hmdb)3(bpp)]·2DMF·2EtOH (2) (DMF=N,N-Dimethylformamide). Single-crystal X-ray diffraction analyses revealed that compound 1 exhibits a three-dimensional self-penetrating 6-connected framework based on dinuclear cluster second building unit. Compound 2 displays an infinite three-dimensional 'Lucky Clover' shape (2,10)-connected network based on the trinuclear cluster and V-shaped organic linkers. The flexible bpp ligand displays different conformations in 1 and 2, which are successfully controlled by size-matching mixed ligands during the self-assembly process.

  19. Interaction of DNA with Simple and Mixed Ligand Copper(II) Complexes of 1,10-Phenanthrolines as Studied by DNA-Fiber EPR Spectroscopy

    PubMed Central

    Chikira, Makoto; Ng, Chew Hee; Palaniandavar, Mallayan

    2015-01-01

    The interaction of simple and ternary Cu(II) complexes of 1,10-phenanthrolines with DNA has been studied extensively because of their various interesting and important functions such as DNA cleavage activity, cytotoxicity towards cancer cells, and DNA based asymmetric catalysis. Such functions are closely related to the DNA binding modes of the complexes such as intercalation, groove binding, and electrostatic surface binding. A variety of spectroscopic methods have been used to study the DNA binding mode of the Cu(II) complexes. Of all these methods, DNA-fiber electron paramagnetic resonance (EPR) spectroscopy affords unique information on the DNA binding structures of the complexes. In this review we summarize the results of our DNA-fiber EPR studies on the DNA binding structure of the complexes and discuss them together with the data accumulated by using other measurements. PMID:26402668

  20. Synthesis, characterization and biological investigations of novel Schiff base ligands containing imidazoline moiety and their Co(II) and Cu(II) complexes

    NASA Astrophysics Data System (ADS)

    Radha, V. P.; Jone Kirubavathy, S.; Chitra, S.

    2018-08-01

    Novel imidazoline based Schiff base ligands L1 and L2 were synthesized from o-phenylenediamine/o-aminophenol with creatinine. The ligands were complexed with Co(II) and Cu(II) by direct reaction with metal salts. The synthesized ligands and the metal complexes were characterized by elemental analysis, FT-IR, 1H NMR, mass, electronic, thermal analyses, conductivity and magnetic susceptibility measurements. The conductivity measurements showed the non-electrolytic nature of the complexes. The thermogravimetric analyses confirmed the presence of lattice and coordinated water molecules in the complexes. The DFT calculations were carried out at B3LYP/6-31G(d,p) level for the determination of the optimized structure of the ligands. The synthesized ligands and the metal complexes were screened for their antimicrobial activity against two gram positive bacteria (Staphylococcus aureus and Bacillus subtilis) and two gram negative bacteria (Escherichia coli and Pseudomonas aeruginosa) and two fungal strains (Aspergillus niger and Candida albicans). The outcomes revealed that the metal complexes showed pronounced activity than the ligands.

  1. Insertion of Guest Molecules into a Mixed Ligand Metal-Organic Framework via Single-Crystal-to-Single Crystal Guest Exchange

    DTIC Science & Technology

    2014-07-01

    powder x-ray diffraction (PXRD), thermogravimentric analysis (TGA), and Fourier transform infrared (FTIR). 15. SUBJECT TERMS Metal organic frame work...the inclusion by using a variety of analytical techniques, such as powder x-ray diffraction (PXRD), thermo-gravimetric analysis (TGA), Fourier...Characterizations Analysis of the MOF and the complexes with the MOF and the guest molecules was performed using an Agilent GC-MS (Model 6890N GC and Model 5973N

  2. New mixed ligand palladium(II) complexes based on the antiepileptic drug sodium valproate and bioactive nitrogen-donor ligands: Synthesis, structural characterization, binding interactions with DNA and BSA, in vitro cytotoxicity studies and DFT calculations

    NASA Astrophysics Data System (ADS)

    Tabrizi, Leila; Chiniforoshan, Hossein; Tavakol, Hossein

    2015-04-01

    The complexes [Pd(valp)2(imidazole)2] (1), [Pd(valp)2(pyrazine)2] (2) (valp is sodium valproate) have been synthesized and characterized using IR, 1H NMR, 13C{1H} NMR and UV-Vis spectrometry. The interaction of complexes with CT-DNA has been investigated using spectroscopic tools and viscosity measurement. In each case, the association constant (Kb) was deduced from the absorption spectral study and the number of binding sites (n) and the binding constant (K) were calculated from relevant fluorescence quenching data. As a result, a non-covalent interaction between the metal complex and DNA was suggested, which could be assigned to an intercalative binding. In addition, the interaction of 1 and 2 was ventured with bovine serum albumin (BSA) with the help of absorption and fluorescence spectroscopy measurements. Through these techniques, the apparent association constant (Kapp) and the binding constant (K) could be calculated for each complex. Evaluation of cytotoxic activity of the complexes against four different cancer cell lines proved that the complexes exhibited cytotoxic specificity and significant cancer cell inhibitory rate. Moreover, density functional theory (DFT) calculations were employed to provide more evidence about the observed data. The majority of trans isomers were supported not only by energies, but also by the similarity of its calculated IR frequencies, UV adsorptions and NMR chemical shifts to the experimental values.

  3. Synthesis, spectroscopic characterization, electrochemistry and biological evaluation of some binuclear transition metal complexes of bicompartmental ONO donor ligands containing benzo[b]thiophene moiety

    NASA Astrophysics Data System (ADS)

    Mahendra Raj, K.; Vivekanand, B.; Nagesh, G. Y.; Mruthyunjayaswamy, B. H. M.

    2014-02-01

    A series of new binucleating Cu(II), Co(II), Ni(II) and Zn(II) complexes of bicompartmental ligands with ONO donor were synthesized. The ligands were obtained by the condensation of 3-chloro-6-substituted benzo[b]thiophene-2-carbohydrazides and 4,6-diacetylresorcinol. The synthesized ligands and their complexes were characterized by elemental analysis and various spectroscopic techniques. Elemental analysis, IR, 1H NMR, ESI-mass, UV-Visible, TG-DTA, magnetic measurements, molar conductance and powder-XRD data has been used to elucidate their structures. The bonding sites are the oxygen atom of amide carbonyl, azomethine nitrogen and phenolic oxygen for ligands 1 and 2. The binuclear nature of the complexes was confirmed by ESR spectral data. TG-DTA studies for some complexes showed the presence of coordinated water molecules and the final product is the metal oxide. All the complexes were investigated for their electrochemical activity, only the Cu(II) complexes showed the redox property. Cu(II) complexes were square planar, whereas Co(II), Ni(II) and Zn(II) complexes were octahedral. Powder-XRD pattern have been studied in order to test the degree of crystallinity of the complexes and unit cell calculations were made. In order to evaluate the effect of antimicrobial activity of metal ions upon chelation, both the ligands and their metal complexes were screened for their antibacterial and antifungal activities by minimum inhibitory concentration (MIC) method. The results showed that the metal complexes were found to be more active than free ligands. The DNA cleaving capacities of all the complexes were analyzed by agarose gel electrophoresis method against supercoiled plasmid DNA. Among the compounds tested for antioxidant capacity, ligand 1 displayed excellent activity than its metal complexes.

  4. Photophysical studies of europium coordination polymers based on a tetracarboxylate ligand.

    PubMed

    Gai, Yan-Li; Jiang, Fei-Long; Chen, Lian; Bu, Yang; Su, Kong-Zhao; Al-Thabaiti, Shaeel A; Hong, Mao-Chun

    2013-07-01

    Reaction of europium sulfate octahydrate with p-terphenyl-3,3″,5,5″-tetracarboxylic acid (H4ptptc) in a mixed solvent system has afforded three new coordination polymers formulated as {[Eu(ptptc)0.75(H2O)2]·0.5DMF·1.5H2O}n (1), {[Me2H2N]2 [Eu2(ptptc)2(H2O)(DMF)]·1.5DMF·7H2O}n (2), and {[Eu(Hptptc)(H2O)4]·0.5DMF·H2O}n (3). Complex 1 exhibits a three-dimensional (3D) metal-organic framework based on {Eu2(μ2-COO)2(COO)4}n chains, complex 2 shows a 3D metal-organic framework constructed by [Eu2(μ2-COO)2(COO)6](2-) dimetallic subunits, and complex 3 features a 2D layer architecture assembling to 3D framework through π···π interactions. All complexes exhibit the characteristic red luminescence of Eu(III) ion. The triplet state of ligand H4ptptc matches well with the emission level of Eu(III) ion, which allows the preparation of new optical materials with enhanced luminescence properties. The luminescence properties of these complexes are further studied in terms of their emission quantum yields, emission lifetimes, and the radiative/nonradiative rates.

  5. Identifying Marine Copper-Binding Ligands in Seawater

    NASA Astrophysics Data System (ADS)

    Whitby, H.; Hollibaugh, J. T.; Maldonado, M. T.; Ouchi, S.; van den Berg, S. M.

    2016-02-01

    Complexation reactions are important because they affect the bioavailability of trace metals such as copper and iron. For example, organic complexation can determine whether copper is a limiting or a toxic micronutrient at natural levels. Copper competes with iron for complexing ligands, and when iron is limiting, copper can also substitute for iron in some metabolic pathways. The speciation of copper can be measured using complexing capacity titrations, which provide the concentration of individual ligand classes (L1, L2 etc.) and the complex stabilities (log K). Using methods recently developed in our laboratory, we show that the ligands within these classes can be measured independently of titrations, thus confirming the titration method and simultaneously identifying the ligands within each class. Thiols were identified as the L1 ligand class and humic compounds as the weaker L2 class in samples from coastal Georgia, USA, collected monthly from April to December. Log K values of the ligand complexes were consistent with values expected for thiols and humic substances. Recent results from culture studies and from samples collected along Line P, a coastal - oceanic transect in the HNLC region of the NE subarctic Pacific, will be presented in comparison to the estuarine results. This comparison will help to broaden our perspective on copper complexation and the ligands responsible, furthering our understanding of ligand sources and life cycles.

  6. Synthesis and characterization of homo- and heterobimetallic niobium{sup v} and tantalum{sup v} peroxo-polyaminocarboxylato complexes and their use as single or multiple molecular precursors for Nb-Ta mixed oxides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bayot, Daisy; Degand, Matthieu; Devillers, Michel

    2005-09-15

    New water-soluble bimetallic peroxo complexes of niobium{sup V} and/or tantalum{sup V} with high-denticity polyaminocarboxylate ligands have been prepared, characterized from the spectroscopic point of view, and used as molecular precursors for Nb-Ta mixed oxides. Four new homobimetallic complexes (gu){sub 3}[Nb{sub 2}(O{sub 2}){sub 4}(dtpaO{sub 3})].3H{sub 2}O 1 (gu){sub 3}[Ta{sub 2}(O{sub 2}){sub 4}(dtpaO{sub 3})].5H{sub 2}O 2 (gu){sub 3}[Nb{sub 2}(O{sub 2}){sub 4}(HtthaO{sub 4})].2H{sub 2}O 4 and (gu){sub 3}[Ta{sub 2}(O{sub 2}){sub 4}(HtthaO{sub 4})].3H{sub 2}O 5 and the corresponding heterometallic complexes (gu){sub 3}[NbTa(O{sub 2}){sub 4}(dtpaO{sub 3})].2.5H{sub 2}O 3 and (gu){sub 3}[NbTa(O{sub 2}){sub 4}(HtthaO{sub 4)}].2H{sub 2}O 6 have been obtained. In these compounds, the in situmore » oxidation of the nitrogen atoms of the PAC ligands into N-oxide groups has been evidenced by IR spectroscopy and mass spectrometry. The thermal treatment of the homonuclear complexes in air at 700 or 800 deg. C, depending on the Ta content, provided Nb{sub 2}O{sub 5} or Ta{sub 2}O{sub 5} while the heteronuclear compounds led to the solid solution TaNbO{sub 5}. BET and SEM measurements have been carried out and comparison of the morphology of the samples prepared from homo- and heterometallic precursors is discussed.« less

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Christopher M. Leavitt; Garold L. Gresham; Michael T. Benson

    Diphenyldithiophosphinate (DTP) ligands modified with electron-withdrawing trifluoromethyl (TFM) substitutents are of high interest because they have demonstrated potential for exceptional separation of Am3+ from lanthanide3+ cations. Specifically, the bis(ortho-TFM) (L1-) and (ortho-TFM)(meta-TFM) (L2-) derivatives have shown excellent separation selectivity, while the bis(meta-TFM) (L3)- and unmodified DTP (Lu-) did not. Factors responsible for selective coordination have been investigated using density functional theory (DFT) calculations in concert with competitive dissociation reactions in the gas phase. To evaluate the role of (DTP+H) acidity, density functional calculations were used to predict pKa values, which followed the trend of L3 < L2 < L1 L1- > L2- > L3-.« less

  8. Chemodynamics of aquatic metal complexes: from small ligands to colloids.

    PubMed

    Van Leeuwen, Herman P; Buffle, Jacques

    2009-10-01

    Recent progress in understanding the formation/dissociation kinetics of aquatic metal complexes with complexants in different size ranges is evaluated and put in perspective, with suggestions for further studies. The elementary steps in the Eigen mechanism, i.e., diffusion and dehydration of the metal ion, are reviewed and further developed. The (de)protonation of both the ligand and the coordinating metal ion is reconsidered in terms of the consequences for dehydration rates and stabilities of the various outer-sphere complexes. In the nanoparticulate size range, special attention is given to the case of fulvic ligands, for which the impact of electrostatic interactions is especially large. In complexation with colloidal ligands (hard, soft, and combination thereof) the diffusive transport of metal ions is generally a slower step than in the case of complexation with small ligands in a homogeneous solution. The ensuing consequences for the chemodynamics of colloidal complexes are discussed in detail and placed in a generic framework, encompassing the complete range of ligand sizes.

  9. Zn and Fe complexes containing a redox active macrocyclic biquinazoline ligand.

    PubMed

    Banerjee, Priyabrata; Company, Anna; Weyhermüller, Thomas; Bill, Eckhard; Hess, Corinna R

    2009-04-06

    A series of iron and zinc complexes has been synthesized, coordinated by the macrocyclic biquinazoline ligand, 2-4:6-8-bis(3,3,4,4-tetramethyldihydropyrrolo)-10-15-(2,2'-biquinazolino)-[15]-1,3,5,8,10,14-hexaene-1,3,7,9,11,14-N(6) (Mabiq). The Mabiq ligand consists of a bipyrimidine moiety and two dihydropyrrole units. The electronic structures of the metal-Mabiq complexes have been characterized using spectroscopic and density-functional theory (DFT) computational methods. The parent zinc complex exhibits a ligand-centered reduction to generate the metal-coordinated Mabiq radical dianion, establishing the redox non-innocence of this ligand. Iron-Mabiq complexes have been isolated in three oxidation states. This redox series includes low-spin ferric and low-spin ferrous species, as well as an intermediate-spin Fe(II) compound. In the latter complex, the iron ion is antiferromagnetically coupled to a Mabiq-centered pi-radical. The results demonstrate the rich redox chemistry and electronic properties of metal complexes coordinated by the Mabiq ligand.

  10. Synthesis, spectroscopic, DFT studies and biological activity of some ruthenium carbonyl derivatives of bis-(salicylaldehyde)phenylenediimine Schiff base ligand

    NASA Astrophysics Data System (ADS)

    Ramadan, Ramadan M.; Abu Al-Nasr, Ahmad K.; Ali, Omayma A. M.

    2018-06-01

    Bis-(salicylaldehyde)phenylenediimine Schiff base (H2salphen) reacted oxidatively with the triruthenium dodecacarbonyl complex, [Ru3(CO)12] to give the dicarbonyl derivative [Ru(CO)2(salphen)], 1. In presence of a secondary ligand L (L = pyridine, triphenyl phosphine, 2-aminobenzimidazole or thiourea), the monocarbonyl derivatives [Ru(CO)(salphen)L], 2-5, were isolated. When the bipyridine (bpy) ligand was used as a secondary ligand, the dicarbonyl complex [Ru(CO)2(Hsalphen)(bpy)], 6, was obtained. In complexes 1-5, the Schiff base ligand acted as a tetradentate, while it coordinated as a bidentate in complex 6. The structure and stoichiometry of the complexes were investigated by the conventional analytical and spectroscopic techniques, which revealed that they have several structural arrangements. The structures of ligand and complexes were verified by theoretical calculations based on accurate DFT approximations. The relative reactivities were estimated using chemical descriptors analysis. Biological activities of the complexes against the Escherchia coli and Staphylococcus aureus bacteria were screened.

  11. Bioactive ruthenium(II)-arene complexes containing modified 18β-glycyrrhetinic acid ligands.

    PubMed

    Kong, Yaqiong; Chen, Feng; Su, Zhi; Qian, Yong; Wang, Fang-Xin; Wang, Xiuxiu; Zhao, Jing; Mao, Zong-Wan; Liu, Hong-Ke

    2018-05-01

    Metal-arene complexes containing bioactive natural-product derived ligands can have new and unusual properties. We report the synthesis, characterization and antiproliferative activity of two new Ru(II) arene complexes with imidazole (dichlorido complex 1) or bipyridyl (chlorido complex 2) ligands conjugated to 18β-glycyrrhetinic acid, an active triterpenoid metabolite of Glycyrrhiza glabra. In general, the conjugated ligands and complexes showed only moderate activity against HeLa (cervical), MCF-7 (breast) and A2780 (ovarian) cancer cells, although the activity of complex 2 in the former two cell lines approached that of the drug cisplatin. Complex 2 (in contrast to complex 1) also exhibited significant activity towards both Gram-positive S. aureus and Gram-negative E. coil bacteria. Complex 2 can induce condensation of DNA and enhances the generation of intracellular reactive oxygen species (ROS). The conjugation of natural products to ligands in organometallic half-sandwich complexes provides a strategy to enhance their biological activities. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. Synthesis and photoluminescence properties of novel Schiff base type polymer-rare earth complexes containing furfural-based bidentate Schiff base ligands

    NASA Astrophysics Data System (ADS)

    Gao, Baojiao; Zhang, Dandan; Li, Yanbin

    2018-03-01

    Luminescent polymer-rare earth complexes are an important class of photoluminescence and electroluminescence materials. Via molecular design, two furfural-based bidentate Schiff base ligands, furfural-aniline (FA) type ligand and furfural-cyclohexylamine (FC) type ligand, were bonded on the side chains of polysulfone (PSF), respectively, forming two functionalized macromolecules, PSF-FA and PSF-FC. And then through respective coordination reactions of the two functionalized macromolecules with Eu(Ⅲ) ion and Tb(Ⅲ) ion, novel luminescent binary and ternary (with 1,10-phenanthroline as the second ligand) polymer-rare earth complexes were synthesized. For these complexes, on basis of the characterization of their chemical structures, they photoluminescence properties were main researched, and the relationship between their luminescent properties and structures was explored. The experimental results show that the complexes coming from PSF-FA and Eu(Ⅲ) ion including binary and ternary complexes emit strong red luminescence, indicating that the bonded bidentate Schiff base ligand FA can sensitize the fluorescence emission of Eu(III) ion. While the complexes coming from PSF-FC and Tb(Ⅲ) ion produce green luminescence, displaying that the bonded bidentate Schiff base ligand FC can sensitize the fluorescence emission of Tb(Ⅲ) ion. The fluorescence emission intensities of the ternary complexes were stronger than that of binary complexes, reflecting the important effect of the second ligand. The fluorescence emission of the solid film of complexes is much stronger than that of the solutions of complexes. Besides, by comparison, it is found that the furfural (as a heteroaromatic compound)-based Schiff base type polymer-rare earth complexes have stronger fluorescence emission and higher energy transfer efficiency than salicylaldehyde (as a common aromatic compound)-based Schiff base type polymer-rare earth complexes.

  13. Electronic structure and reactivity of high-spin iron--alkyl- and--pterinperoxo complexes.

    PubMed

    Lehnert, Nicolai; Fujisawa, Kiyoshi; Solomon, Edward I

    2003-01-27

    The spectroscopic properties and electronic structure of the four-coordinate high-spin [FeIII(L3)(OOtBu)]+ complex (1; L3 = hydrotris(3-tert-butyl-5-isopropyl-1-pyrazolyl)borate; tBu = tert-butyl) are investigated and compared to the six-coordinated high-spin [Fe(6-Me3TPA)(OHx)(OOtBu)]x+ system (TPA = tris(2-pyridylmethyl)amine, x = 1 or 2) studied earlier [Lehnert, N.; Ho, R. Y. N.; Que, L., Jr.; Solomon, E. I. J. Am. Chem. Soc. 2001, 123, 12802-12816]. Complex 1 is characterized by Raman features at 889 and 830 cm-1 which are assigned to the O-O stretch (mixed with the symmetric C-C stretch) and a band at 625 cm-1 that corresponds to nu(Fe-O). The UV-vis spectrum shows a charge-transfer (CT) transition at 510 nm from the alkylperoxo pi v* (v = vertical to C-O-O plane) to a d orbital of Fe(III). A second CT is identified from MCD at 370 nm that is assigned to a transition from pi h* (h = horizontal to C-O-O plane) to an Fe(III) d orbital. For the TPA complex the pi v* CT is at 560 nm while the pi h* CT is to higher energy than 250 nm. These spectroscopic differences between four- and six-coordinate Fe(III)-OOR complexes are interpreted on the basis of their different ligand fields. In addition, the electronic structure of Fe-OOPtn complexes with the biologically relevant pterinperoxo ligand are investigated. Substitution of the tert-butyl group in 1 by pterin leads to the corresponding Fe(III)-OOPtn species (2), which shows a stronger electron donation from the peroxide to Fe(III) than 1. This is related to the lower ionization potential of pterin. Reduction of 2 by one electron leads to the Fe(II)-OOPtn complex (3), which is relevant as a model for potential intermediates in pterin-dependent hydroxylases. However, in the four-coordinate ligand field of 3, the additional electron is located in a nonbonding d orbital of iron. Hence, the pterinperoxo ligand is not activated for heterolytic cleavage of the O-O bond in this system. This is also evident from the calculated reaction energies that are endothermic by at least 20 kcal/mol.

  14. Protonation Studies of a Tungsten Dinitrogen Complex Supported by a Diphosphine Ligand Containing a Pendant Amine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weiss, Charles J.; Egbert, Jonathan D.; Chen, Shentan

    2014-04-28

    Treatment of trans-[W(N2)2(dppe)(PEtNMePEt)] (dppe = Ph2PCH2CH2PPh2; PEtNMePEt = Et2PCH2N(Me)CH2PEt2) with three equivalents of tetrafluoroboric acid (HBF4∙Et2O) at -78 °C generated the seven-coordinate tungsten hydride trans-[W(N2)2(H)(dppe)(PEtNMePEt)][BF4]. Depending on the temperature of the reaction, protonation of a pendant amine is also observed, affording trans-[W(N2)2(H)(dppe)(PEtNMe(H)PEt)][BF4]2, with formation of the hydrazido complex, [W(NNH2)(dppe)(PEtNMe(H)PEt)][BF4]2, as a minor product. Similar product mixtures were obtained using triflic acid (HOTf). Upon acid addition to the carbonyl analogue, cis-[W(CO)2(dppe)(PEtNMePEt)], the seven-coordinate carbonyl-hydride complex, trans-[W(CO)2(H)(dppe)(PEtN(H)MePEt)][OTf]2 was generated. The mixed diphosphine complex without the pendant amine in the ligand backbone, trans-[W(N2)2(dppe)(depp)] (depp = Et2P(CH2)3PEt2), was synthesized and treated with HBF4∙Et2O, selectivelymore » generating a hydrazido complex, [W(NNH2)(F)(dppe)(depp)][BF4]. Computational analysis was used to probe proton affinity of three sites of protonation, the metal, pendant amine, and N2 ligand in these complexes. Room temperature reactions with 100 equivalents of HOTf produced NH4+ from reduction of the N2 ligand (electrons come from W). The addition of 100 equivalents HOTf to trans-[W(N2)2(dppe)(PEtNMePEt)] afforded 0.88 ± 0.02 equivalents NH4+, while 0.36 ± 0.02 equivalents of NH4+was formed upon treatment of trans-[W(N2)2(dppe)(depp)], the complex without the pendant amine. This work was supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the U.S. Department of Energy Office of Science, Office of Basic Energy Sciences. Computational resources were provided by the National Energy Research Scientific Computing Center (NERSC) at Lawrence Berkeley National Laboratory. Pacific Northwest National Laboratory is operated by Battelle for DOE.« less

  15. Site specific ligand substitution in cubane-type Mo3FeS(4)(4+) clusters: kinetics and mechanism of reaction and isolation of mixed ligand Cl/SPh complexes.

    PubMed

    Algarra, Andrés G; Basallote, Manuel G; Fernandez-Trujillo, M J; Llusar, Rosa; Pino-Chamorro, Jose A; Sorribes, Ivan; Vicent, Cristian

    2010-04-21

    The synthesis, crystal structure and solution characterization of the cubane-type [Mo(3)(FeCl)S(4)(dmpe)(3)Cl(3)] (1) (dmpe = 1,2-bis(dimethylphophane-ethane)) cluster are reported and the ligand substitution processes of chloride by thiophenolate investigated. The kinetics and the intimate mechanism of these substitutions reveal that compound 1 undergoes a number of Fe and Mo site specific ligand substitution reactions in acetonitrile solutions. In particular, PhS(-) coordination at the tetrahedral Fe site proceeds in a single resolved kinetic step whereas such substitutions at the Mo sites proceed more slowly. The effect of the presence of acids in the reaction media is also investigated and reveals that an acid excess hinders substitution reactions both at the Fe and Mo sites; however, an acid-promoted solvolysis of the Fe-Cl bonds is observed. Electrospray ionization (ESI) and tandem (ESI-MS/MS) mass spectrometry allow the identification of all the reaction intermediates proposed on the basis of stopped-flow measurements. The distinctive site specific reactivity made it possible to isolate two new clusters of the Mo(3)FeS(4)(4+) family featuring mixed chlorine/thiophenolate ligands, namely Mo(3)S(4)(FeSPh)(dmpe)(3)Cl(3) (2) and [Mo(3)S(4)(FeSPh)(dmpe)(3)(SPh)(3)] (3). A detailed computational study has also been carried out to understand the details of the mechanism of substitution at the M-Cl (M = Mo and Fe) bonds as well as the solvolysis at the Fe-Cl sites, with particular emphasis on the role of acids on the substitution process. The results of the calculations are in agreement with the experimental observations, thus justifying the non-existence of an accelerating effect of acids on the thiophenolate substitution reaction, which differs from previous proposals for the Fe(4)S(4) and MoFe(3)S(4) clusters and some related compounds.

  16. Tantallacyclopentadiene as a unique metal-containing diene ligand coordinated to nickel for preparing tantalum-nickel heterobimetallic complexes.

    PubMed

    Laskar, Payel; Yamamoto, Keishi; Srinivas, Anga; Mifleur, Alexis; Nagae, Haruki; Tsurugi, Hayato; Mashima, Kazushi

    2017-10-03

    A mononuclear tantallacyclopentadiene complex, TaCl 3 (C 4 H 2 tBu 2 ) (3), serves as a unique ligand to nickel: the addition of Ni(COD) 2 to 3 selectively afforded heterobimetallic Ta-Ni complex 4. The cyclooctadiene ligand bound to the nickel center in complex 4 was readily substituted by monodentate and bidentate phosphine ligands, such as dimethylphenylphosphine, 1,2-bis(diphenylphosphino)ethane, and 1,2-bis(diethylphosphino)ethane, to give the corresponding phosphine complexes 5, 6a, and 6b. We also examined a ligand substitution reaction with 1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene (IPr) to produce the corresponding Ta-Ni complex 7. These newly prepared Ta-Ni heterobimetallic complexes were characterized spectroscopically together with the crystal structures of 4, 6a, and 7.

  17. Effect of the ortho-Hydroxyl Groups on a Bipyridine Ligand of Iridium Complexes for the High-Pressure Gas Generation from the Catalytic Decomposition of Formic Acid.

    PubMed

    Iguchi, Masayuki; Zhong, Heng; Himeda, Yuichiro; Kawanami, Hajime

    2017-12-14

    The hydroxyl groups of a 2,2'-bipyridine (bpy) ligand near the metal center activated the catalytic performance of the Ir complex for the dehydrogenation of formic acid at high pressure. The position of the hydroxyl groups on the ligand affected the catalytic durability for the high-pressure H 2 generation through the decomposition of formic acid. The Ir complex with a bipyridine ligand functionalized with para-hydroxyl groups shows a good durability with a constant catalytic activity during the reaction even under high-pressure conditions, whereas deactivation was observed for an Ir complex with a bipyridine ligand with ortho-hydroxyl groups (2). In the presence of high-pressure H 2 , complex 2 decomposed into the ligand and an Ir trihydride complex through the isomerization of the bpy ligand. This work provides the development of a durable catalyst for the high-pressure H 2 production from formic acid. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. The origin of phosphorescence in Iridium (III) complexes. The role of relativistic effects

    NASA Astrophysics Data System (ADS)

    Cantero-López, Plinio; Páez-Hernández, Dayan; Arratia-Pérez, Ramiro

    2017-10-01

    A series of luminescent Ir(III) complexes of the type [Ir(F2ppy)2L] (where L = Lpytz , LOMe , Lbut) have been studied using relativistic two-component density functional theory considering the spin-orbit coupling. The absorption spectra of the three complexes were determined. The most important transition appears in the region between 250 and 350 nm, which is in good agreement with the experimental reports. The three complexes show phosphorescent properties due to a metal-ligand charge transfer (MLCT) process, where the spin-orbit coupling (SOC) plays a key role due to the introduction of a zero field splitting (ZFS) and the mixing of states with different spins which contributes to modify the emission selection rule. The lifetimes of the emission processes were calculated, and the values are in the same order of the experimental reports.

  19. Bridged transition-metal complexes and uses thereof for hydrogen separation, storage and hydrogenation

    DOEpatents

    Lilga, Michael A.; Hallen, Richard T.

    1990-01-01

    The present invention constitutes a class of organometallic complexes which reversibly react with hydrogen to form dihydrides and processes by which these compounds can be utilized. The class includes bimetallic complexes in which two cyclopentadienyl rings are bridged together and also separately .pi.-bonded to two transition metal atoms. The transition metals are believed to bond with the hydrogen in forming the dihydride. Transition metals such as Fe, Mn or Co may be employed in the complexes although Cr constitutes the preferred metal. A multiple number of ancilliary ligands such as CO are bonded to the metal atoms in the complexes. Alkyl groups and the like may be substituted on the cyclopentadienyl rings. These organometallic compounds may be used in absorption/desorption systems and in facilitated transport membrane systems for storing and separating out H.sub.2 from mixed gas streams such as the produce gas from coal gasification processes.

  20. Bridged transition-metal complexes and uses thereof for hydrogen separation, storage and hydrogenation

    DOEpatents

    Lilga, M.A.; Hallen, R.T.

    1991-10-15

    The present invention constitutes a class of organometallic complexes which reversibly react with hydrogen to form dihydrides and processes by which these compounds can be utilized. The class includes bimetallic complexes in which two cyclopentadienyl rings are bridged together and also separately [pi]-bonded to two transition metal atoms. The transition metals are believed to bond with the hydrogen in forming the dihydride. Transition metals such as Fe, Mn or Co may be employed in the complexes although Cr constitutes the preferred metal. A multiple number of ancillary ligands such as CO are bonded to the metal atoms in the complexes. Alkyl groups and the like may be substituted on the cyclopentadienyl rings. These organometallic compounds may be used in absorption/desorption systems and in facilitated transport membrane systems for storing and separating out H[sub 2] from mixed gas streams such as the product gas from coal gasification processes. 3 figures.

  1. Bridged transition-metal complexes and uses thereof for hydrogen separation, storage and hydrogenation

    DOEpatents

    Lilga, M.A.; Hallen, R.T.

    1990-08-28

    The present invention constitutes a class of organometallic complexes which reversibly react with hydrogen to form dihydrides and processes by which these compounds can be utilized. The class includes bimetallic complexes in which two cyclopentadienyl rings are bridged together and also separately [pi]-bonded to two transition metal atoms. The transition metals are believed to bond with the hydrogen in forming the dihydride. Transition metals such as Fe, Mn or Co may be employed in the complexes although Cr constitutes the preferred metal. A multiple number of ancillary ligands such as CO are bonded to the metal atoms in the complexes. Alkyl groups and the like may be substituted on the cyclopentadienyl rings. These organometallic compounds may be used in absorption/desorption systems and in facilitated transport membrane systems for storing and separating out H[sub 2] from mixed gas streams such as the producer gas from coal gasification processes. 3 figs.

  2. Bridged transition-metal complexes and uses thereof for hydrogen separation, storage and hydrogenation

    DOEpatents

    Lilga, Michael A.; Hallen, Richard T.

    1991-01-01

    The present invention constitutes a class of organometallic complexes which reversibly react with hydrogen to form dihydrides and processes by which these compounds can be utilized. The class includes bimetallic complexes in which two cyclopentadienyl rings are bridged together and also separately .pi.-bonded to two transition metal atoms. The transition metals are believed to bond with the hydrogen in forming the dihydride. Transition metals such as Fe, Mn or Co may be employed in the complexes although Cr constitutes the preferred metal. A multiple number of ancilliary ligands such as CO are bonded to the metal atoms in the complexes. Alkyl groups and the like may be substituted on the cyclopentadienyl rings. These organometallic compounds may be used in absorption/desorption systems and in facilitated transport membrane systems for storing and separating out H.sub.2 from mixed gas streams such as the product gas from coal gasification processes.

  3. Dependence of the enthalpies of formation of glycylglycinate complexes of nickel(II) on the composition of a mixed water-dimethylsulfoxide solvent

    NASA Astrophysics Data System (ADS)

    Naumov, V. V.; Kovaleva, Yu. A.; Isaeva, V. A.; Usacheva, T. R.; Sharnin, V. A.

    2014-06-01

    The heat effects of the complexation reactions of nickel(II) with a glycylglycinate ion in a water-dimethylsulfoxide solvent in a range of compositions of 0.00-0.60 molar parts of dimethylsulfoxide (DMSO) (an ionic strength of 0.1 was maintained using sodium perchlorate) were determined by means of calorimetry at 298.15 K. It is established that the exothermicity of complexation reactions rises by the first two steps and falls upon the addition of a third glycylglycinate anion with an increase in the concentration of DMSO. It is shown that the formation of mono- and bis-glycylglycinate complexes of nickel(II) in a water-DMSO solvent is determined mostly by the enthalpic contribution. It is concluded that the formation of tris-ligand complexes is more associated with the entropic contribution.

  4. A family of acetato-diphenoxo triply bridged dimetallic Zn(II)Ln(III) complexes: SMM behavior and luminescent properties.

    PubMed

    Oyarzabal, Itziar; Artetxe, Beñat; Rodríguez-Diéguez, Antonio; García, JoséÁngel; Seco, José Manuel; Colacio, Enrique

    2016-06-21

    Eleven dimetallic Zn(II)-Ln(III) complexes of the general formula [Zn(µ-L)(µ-OAc)Ln(NO3)2]·CH3CN (Ln(III) = Pr (1), Nd (2), Sm (3), Eu (4), Gd (5), Tb (6), Dy (7), Ho (8), Er (9), Tm (10), Yb (11)) have been prepared in a one-pot reaction from the compartmental ligand N,N'-dimethyl-N,N'-bis(2-hydroxy-3-formyl-5-bromo-benzyl)ethylenediamine (H2L). In all these complexes, the Zn(II) ions occupy the internal N2O2 site whereas the Ln(III) ions show preference for the O4 external site. Both metallic ions are bridged by an acetate bridge, giving rise to triple mixed diphenoxido/acetate bridged Zn(II)Ln(III) compounds. The Nd, Dy, Er and Yb complexes exhibit field induced single-ion magnet (SIM) behaviour, with Ueff values ranging from 14.12 to 41.55 K. The Er complex shows two relaxation processes, but only the second relaxation process with an energy barrier of 21.0 K has been characterized. The chromophoric L(2-) ligand is able to act as an "antenna" group, sensitizing the near-infrared (NIR) Nd(III) and Yb(III)-based luminescence in complexes 2 and 11 and therefore, both compounds can be considered as magneto-luminescent materials. In addition, the Sm(III), Eu(III) and Tb(III) derivatives exhibit characteristic emissions in the visible region.

  5. Light-triggered Supramolecular Isomerism in a Self-catenated Zn(II)-organic Framework: Dynamic Photo-switching CO2 Uptake and Detection of Nitroaromatics.

    PubMed

    Song, Wei-Chao; Cui, Xun-Zhe; Liu, Zhong-Yi; Yang, En-Cui; Zhao, Xiao-Jun

    2016-10-11

    A self-catenated Zn(II)-organic framework formulated as [Zn 2 (3,3'-bpeab)(oba) 2 ]·DMF (1) exhibiting a six-connected 4 4 ·6 10 ·8 topology has been successfully synthesized through the mixed-ligand of kinked 3,3'-bis[2-(4-pyridyl)ethenyl]azobenzene (3,3'-bpeab) and 4,4'-oxybis-benzoic acid (H 2 oba) under solvothermal condition. UV light triggers isomerization of complex 1 in a single-crystal-to-single-crystal (SCSC) manner, giving rise to a conformational supramolecular isomer 1_UV through the pedal motion of photoresponsive double bonds. Dynamic photo-switching in the obtained light-responsive supramolecular isomers leads to instantly reversible CO 2 uptake. Furthermore, the ligand originated fluorescence emission of water-resistant complex 1 is selectively sensitive to 4-nitrotoluene (4-NT) owing to a higher quenching efficiency of the perilous explosive over other structurally similar nitroaromatics, prefiguring the potentials of 1 as a fluorescence sensor towards 4-NT in aquatic media.

  6. Light-triggered Supramolecular Isomerism in a Self-catenated Zn(II)-organic Framework: Dynamic Photo-switching CO2 Uptake and Detection of Nitroaromatics

    PubMed Central

    Song, Wei-Chao; Cui, Xun-Zhe; Liu, Zhong-Yi; Yang, En-Cui; Zhao, Xiao-Jun

    2016-01-01

    A self-catenated Zn(II)-organic framework formulated as [Zn2(3,3′-bpeab)(oba)2]·DMF (1) exhibiting a six-connected 44·610·8 topology has been successfully synthesized through the mixed-ligand of kinked 3,3′-bis[2-(4-pyridyl)ethenyl]azobenzene (3,3′-bpeab) and 4,4′-oxybis-benzoic acid (H2oba) under solvothermal condition. UV light triggers isomerization of complex 1 in a single-crystal-to-single-crystal (SCSC) manner, giving rise to a conformational supramolecular isomer 1_UV through the pedal motion of photoresponsive double bonds. Dynamic photo-switching in the obtained light-responsive supramolecular isomers leads to instantly reversible CO2 uptake. Furthermore, the ligand originated fluorescence emission of water-resistant complex 1 is selectively sensitive to 4-nitrotoluene (4-NT) owing to a higher quenching efficiency of the perilous explosive over other structurally similar nitroaromatics, prefiguring the potentials of 1 as a fluorescence sensor towards 4-NT in aquatic media. PMID:27725711

  7. Exchange Interactions on the Highest-Spin Reported Molecule: the Mixed-Valence Fe42 Complex

    NASA Astrophysics Data System (ADS)

    Aravena, Daniel; Venegas-Yazigi, Diego; Ruiz, Eliseo

    2016-04-01

    The finding of high-spin molecules that could behave as conventional magnets has been one of the main challenges in Molecular Magnetism. Here, the exchange interactions, present in the highest-spin molecule published in the literature, Fe42, have been analysed using theoretical methods based on Density Functional Theory. The system with a total spin value S = 45 is formed by 42 iron centres containing 18 high-spin FeIII ferromagnetically coupled and 24 diamagnetic low-spin FeII ions. The bridging ligands between the two paramagnetic centres are two cyanide ligands coordinated to the diamagnetic FeII cations. Calculations were performed using either small Fe4 or Fe3 models or the whole Fe42 complex, showing the presence of two different ferromagnetic couplings between the paramagnetic FeIII centres. Finally, Quantum Monte Carlo simulations for the whole system were carried out in order to compare the experimental and simulated magnetic susceptibility curves from the calculated exchange coupling constants with the experimental one. This comparison allows for the evaluation of the accuracy of different exchange-correlation functionals to reproduce such magnetic properties.

  8. Synthesis, spectroscopic, coordination and biological activities of some organometallic complexes derived from thio-Schiff base ligands

    NASA Astrophysics Data System (ADS)

    Abou-Hussein, Azza A.; Linert, Wolfgang

    2014-01-01

    Two series of mono- and binuclear complexes cyclic or acyclic thio-ferocine Schiff base ligands, derived from the condensation of 2-aminobenzenthiol (L) with monoacetyl ferrocene in the molar ratio 1:1 or in the molar ratio 1:2 for diacetyl ferocine have been prepared. The condensation reactions yield the corresponding Schiff Base ligands, HLa-Maf and H2Lb-Daf. The chelation of the ligands to metal ions occurs through the sulfur of the thiol group as well as the nitrogen atoms of the azomethine group of the ligands. HLa-Maf acts as monobasic bidentate or dibasic tetradentate, while H2Lb-Daf behaves as twice negatively cargend tetradentate ligand. The structures of these ligands were elucidated by elemental analysis, infrared, ultraviolet-visible spectra, as well as 1H NMR spectra. Reactions of the Schiff bases ligands with ruthenium(III), oxovanadium(IV) and dioxouranium(VI) afforded the corresponding transition metal complexes. The properties of the newly prepared complexes were analyse by elemental analyses, infrared, electronic spectra, 1H NMR as well as the magnetic susceptibility and conductivity measurement. The metal complexes exhibits different geometrical arrangements such as octahedral and square pyramidal coordination. Schiff base ligands and their metal complexes were tested against two pathogenic bacteria as Gram-positive and Gram-negative bacteria as well as one kind of fungi to study their biological activity. All the complexes exhibit antibacterial and antifungal activities against these organisms.

  9. Studies on Cu(II) ternary complexes involving an aminopenicillin drug and imidazole containing ligands

    NASA Astrophysics Data System (ADS)

    Regupathy, Sthanumoorthy; Nair, Madhavan Sivasankaran

    2010-02-01

    Equilibrium studies on the ternary complex systems involving ampicillin (amp) as ligand (A) and imidazole containing ligands viz., imidazole (Him), benzimidazole (Hbim), histamine (Hist) and histidine (His) as ligands (B) at 37 °C and I = 0.15 mol dm -3 (NaClO 4) show the presence of CuABH, CuAB and CuAB 2. The proton in the CuABH species is attached to ligand A. In the ternary complexes the ligand, amp(A) binds the metal ion via amino nitrogen and carbonyl oxygen atom. The CuAB (B = Hist/His)/CuAB 2 (B = Him/Hbim) species have also been isolated and the analytical data confirmed its formation. Non-electrolytic behavior and monomeric type of chelates have been assessed from their low conductance and magnetic susceptibility values. The electronic and vibrational spectral results were interpreted to find the mode of binding of ligands to metal and geometry of the complexes. This is also supported by the g tensor values calculated from ESR spectra. The thermal behaviour of complexes were studied by TGA/DTA. The redox behavior of the complexes has been studied by cyclic voltammetry. The antimicrobial activity and CT DNA cleavage study of the complexes show higher activity for ternary complexes.

  10. Significance of the concentration of chelating ligands on Fe3+-solubility, bioavailability, and uptake in rice plant.

    PubMed

    Hasegawa, Hiroshi; Rahman, M Mamunur; Kadohashi, Kouta; Takasugi, Yui; Tate, Yousuke; Maki, Teruya; Rahman, M Azizur

    2012-09-01

    Present study investigated the significance of the concentration of chelating ligand on Fe(3+)-solubility in growth medium and its influence on Fe bioavailability and uptake in rice plant. Rice seedlings were grown in modified Murashige and Skoog (MS) hydroponic growth medium with moderate (250 μM) and high (500 μM) concentrations of ethylenediaminetetraacetate (EDTA) and hydroxyiminodisuccinate (HIDS) under sterile and non-sterile conditions. Concentrations of soluble Fe in the growth medium increased with increasing ligand concentrations, and the growth of rice seedlings was higher at moderate ligand concentration than at control (without chelant) and high ligand concentration. This explains the relationship between Fe solubility and bioavailability in the growth medium, and its effect on Fe uptake in rice plant. Fe exists in the growth medium predominantly as particulate (insoluble) forms at low ligand concentration, and as soluble [Fe(OH)(2+), Fe(OH)(2)(+), Fe-L complex] and apparently soluble (colloidal) forms at moderate ligand concentration. At high ligand concentration, most of the Fe(3+) in the growth medium forms soluble Fe-L complex, however, the bioavailability of Fe from Fe-L complex decreased due to lopsided complex formation equilibrium reaction (CFER) between Fe and the ligands. Also, Fe is solubilized forming stable and soluble Fe-L complex, which is then detached as less stable, but soluble and bioavailable substance(s) after (time-dependent) biodegradation. Therefore- i) ligand concentration and stability constant of Fe-L complex (K(Fe-L)) influence Fe bioavailability and uptake in rice plant, and ii) the biodegradable ligands (e.g., HIDS) would be more effective Fe fertilizer than the environmentally persistent and less biodegradable ligands (e.g., EDTA). Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  11. Heteroleptic copper(I) complexes prepared from phenanthroline and bis-phosphine ligands.

    PubMed

    Kaeser, Adrien; Mohankumar, Meera; Mohanraj, John; Monti, Filippo; Holler, Michel; Cid, Juan-José; Moudam, Omar; Nierengarten, Iwona; Karmazin-Brelot, Lydia; Duhayon, Carine; Delavaux-Nicot, Béatrice; Armaroli, Nicola; Nierengarten, Jean-François

    2013-10-21

    Preparation of [Cu(NN)(PP)](+) derivatives has been systematically investigated starting from two libraries of phenanthroline (NN) derivatives and bis-phosphine (PP) ligands, namely, (A) 1,10-phenanthroline (phen), neocuproine (2,9-dimethyl-1,10-phenanthroline, dmp), bathophenanthroline (4,7-diphenyl-1,10-phenanthroline, Bphen), 2,9-diphenethyl-1,10-phenanthroline (dpep), and 2,9-diphenyl-1,10-phenanthroline (dpp); (B) bis(diphenylphosphino)methane (dppm), 1,2-bis(diphenylphosphino)ethane (dppe), 1,3-bis(diphenylphosphino)propane (dppp), 1,2-bis(diphenylphosphino)benzene (dppb), 1,1'-bis(diphenylphosphino)ferrocene (dppFc), and bis[(2-diphenylphosphino)phenyl] ether (POP). Whatever the bis-phosphine ligand, stable heteroleptic [Cu(NN)(PP)](+) complexes are obtained from the 2,9-unsubstituted-1,10-phenanthroline ligands (phen and Bphen). By contrast, heteroleptic complexes obtained from dmp and dpep are stable in the solid state, but a dynamic ligand exchange reaction is systematically observed in solution, and the homoleptic/heteroleptic ratio is highly dependent on the bis-phosphine ligand. Detailed analysis revealed that the dynamic equilibrium resulting from ligand exchange reactions is mainly influenced by the relative thermodynamic stability of the different possible complexes. Finally, in the case of dpp, only homoleptic complexes were obtained whatever the bis-phosphine ligand. Obviously, steric effects resulting from the presence of the bulky phenyl rings on the dpp ligand destabilize the heteroleptic [Cu(NN)(PP)](+) complexes. In addition to the remarkable thermodynamic stability of [Cu(dpp)2]BF4, this negative steric effect drives the dynamic complexation scenario toward almost exclusive formation of homoleptic [Cu(NN)2](+) and [Cu(PP)2](+) complexes. This work provides the definitive rationalization of the stability of [Cu(NN)(PP)](+) complexes, marking the way for future developments in this field.

  12. Design and synthesis of binucleating macrocyclic clefts derived from Schiff-base calixpyrroles.

    PubMed

    Givaja, Gonzalo; Volpe, Manuel; Leeland, James W; Edwards, Michael A; Young, Thomas K; Darby, S Barnie; Reid, Stuart D; Blake, Alexander J; Wilson, Claire; Wolowska, Joanna; McInnes, Eric J L; Schröder, Martin; Love, Jason B

    2007-01-01

    The syntheses, characterisation and complexation reactions of a series of binucleating Schiff-base calixpyrrole macrocycles are described. The acid-templated [2+2] condensations between meso-disubstituted diformyldipyrromethanes and o-phenylenediamines generate the Schiff-base pyrrolic macrocycles H(4)L(1) to H(4)L(6) upon basic workup. The single-crystal X-ray structures of both H(4)L(3).2 EtOH and H(4)L(6).H2O confirm that [2+2] cyclisation has occurred, with either EtOH or H2O hydrogen-bonded within the macrocyclic cleft. A series of complexation reactions generate the dipalladium [Pd2(L)] (L=L(1) to L(5)), dinickel [Ni2(L(1))] and dicopper [Cu2(L)] (L=L(1) to L(3)) complexes. All of these complexes have been structurally characterised in the solid state and are found to adopt wedged structures that are enforced by the rigidity of the aryl backbone to give a cleft reminiscent of the structures of Pacman porphyrins. The binuclear nickel complexes [Ni2(mu-OMe)2Cl2(HOMe)2(H(4)L(1))] and [Ni2(mu-OH)2Cl2(HOMe)(H(4)L(5))] have also been prepared, although in these cases the solid-state structures show that the macrocyclic ligand remains protonated at the pyrrolic nitrogen atoms, and the Ni(II) cations are therefore co-ordinated by the imine nitrogen atoms only to give an open conformation for the complex. The dicopper complex [Cu2(L(3))] was crystallised in the presence of pyridine to form the adduct [Cu2(py)(L(3))], in which, in the solid state, the pyridine ligand is bound within the binuclear molecular cleft. Reaction between H(4)L(1) and [Mn(thf){N(SiMe(3))2}2] results in clean formation of the dimanganese complex [Mn2(L(1))], which, upon crystallisation, formed the mixed-valent complex [Mn2(mu-OH)(L(1))] in which the hydroxo ligand bridges the metal centres within the molecular cleft.

  13. An unexpected semi-hydrogenation of a ligand in the complexation of 2,7-bispyridinyl-1,8-naphthyridine with Ru3(CO)12.

    PubMed

    Liao, Bei-Sih; Liu, Yi-Hung; Peng, Shie-Ming; Reddy, K Rajender; Liu, Shin-Hung; Chou, Pi-Tai; Liu, Shiuh-Tzung

    2014-03-07

    Thermal reaction of 2,7-bis(2-pyridinyl)-l,8-naphthyridine () with Ru3(CO)12 in the presence of moisture resulted in the formation of a formate-bridged diruthenium complex [(-H3)Ru2(μ-HCOO)(CO)4] (), in which the ligand was partially hydrogenated. Complex was fully characterized by spectroscopic analyses and X-ray single crystal determination. Regarding the partially reduced ligand in , it occurs through a water-gas shift type reduction. The bridging formate ligand can be substituted by other carboxylate ligands. Physical and chemical properties of the newly prepared complexes were investigated.

  14. Assembly of 4-, 6- and 8-connected Cd(II) pseudo-polymorphic coordination polymers: Synthesis, solvent-dependent structural variation and properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Zhao-Hao; Xue, Li-Ping, E-mail: lpxue@163.com; Miao, Shao-Bin

    2016-08-15

    The reaction of Cd(NO{sub 3}){sub 2}·4H{sub 2}O, 2,5-thiophenedicarboxylic acid (H{sub 2}tdc) and 1,2-bis(imidazol-1′-yl)methane (bimm) by modulating solvent systems yielded three highly connected pseudo-polymorphic coordination polymers based on different dinuclear [Cd{sub 2}(CO{sub 2}){sub 2}] subunits bridged by carboxylate groups. Single crystal structural analyses reveal structural variation from 4-connected 2D sql layer, 6-connected 2-fold interpenetrated 3D pcu to 8-connected 3D bcu-type network in compounds 1–3. The structural dissimilarity in the structures dependent on the coordination environments of Cd(II) ions and linking modes of mixed ligand influenced by different solvent systems during the synthesis process. Moreover, thermogravimetric and photoluminescence behaviors of 1–3 weremore » also investigated for the first time, and all the complexes emit blue luminescence in the solid state. - Graphical abstract: Key Topic. Different solvent systems modulated three Cd(II) pseudo-polymorphic coordination polymers based on thiophene-2,5-dicarboxylate and 1,2-bis(imidazol-1′-yl)methane mixed ligands. Display Omitted - Highlights: • Three solvent-dependent Cd(II) pseudo-polymorphic coordination polymers have been synthesized. • Structural variation from 4-connected 2D layer, 6-connected 2-fold interpenetrated 3D net to 8-connected 3D net. • All complexes emit blue luminescence.« less

  15. A general access to organogold(iii) complexes by oxidative addition of diazonium salts.

    PubMed

    Huang, Long; Rominger, Frank; Rudolph, Matthias; Hashmi, A Stephen K

    2016-05-11

    At room temperature under mild photochemical conditions, namely irradiation with a simple blue light LED, gold(i) chloro complexes of both phosphane and carbene ligands in combination with aryldiazonium salts afford arylgold(iii) complexes. With chelating P,N-ligands cationic six- or five-membered chelate complexes were isolated in the form of salts with weakly coordinating counter anions that were brought in from the diazonium salt. With monodentate P ligands or N-heterocyclic carbene ligands and diazonium chlorides neutral arylgold(iii) dichloro complexes were obtained. The coordination geometry was determined by X-ray crystal structure analyses of representative compounds, a cis arrangement of the aryl and the phosphane ligand at the square planar gold(iii) center is observed.

  16. Exchange Coupling Interactions from the Density Matrix Renormalization Group and N-Electron Valence Perturbation Theory: Application to a Biomimetic Mixed-Valence Manganese Complex.

    PubMed

    Roemelt, Michael; Krewald, Vera; Pantazis, Dimitrios A

    2018-01-09

    The accurate description of magnetic level energetics in oligonuclear exchange-coupled transition-metal complexes remains a formidable challenge for quantum chemistry. The density matrix renormalization group (DMRG) brings such systems for the first time easily within reach of multireference wave function methods by enabling the use of unprecedentedly large active spaces. But does this guarantee systematic improvement in predictive ability and, if so, under which conditions? We identify operational parameters in the use of DMRG using as a test system an experimentally characterized mixed-valence bis-μ-oxo/μ-acetato Mn(III,IV) dimer, a model for the oxygen-evolving complex of photosystem II. A complete active space of all metal 3d and bridge 2p orbitals proved to be the smallest meaningful starting point; this is readily accessible with DMRG and greatly improves on the unrealistic metal-only configuration interaction or complete active space self-consistent field (CASSCF) values. Orbital optimization is critical for stabilizing the antiferromagnetic state, while a state-averaged approach over all spin states involved is required to avoid artificial deviations from isotropic behavior that are associated with state-specific calculations. Selective inclusion of localized orbital subspaces enables probing the relative contributions of different ligands and distinct superexchange pathways. Overall, however, full-valence DMRG-CASSCF calculations fall short of providing a quantitative description of the exchange coupling owing to insufficient recovery of dynamic correlation. Quantitatively accurate results can be achieved through a DMRG implementation of second order N-electron valence perturbation theory (NEVPT2) in conjunction with a full-valence metal and ligand active space. Perspectives for future applications of DMRG-CASSCF/NEVPT2 to exchange coupling in oligonuclear clusters are discussed.

  17. Laser-Induced Dynamics of Peroxodicopper(II) Complexes Vary with the Ligand Architecture. One-Photon Two-Electron O2 Ejection and Formation of Mixed-Valent Cu(I)Cu(II)-Superoxide Intermediates.

    PubMed

    Saracini, Claudio; Ohkubo, Kei; Suenobu, Tomoyoshi; Meyer, Gerald J; Karlin, Kenneth D; Fukuzumi, Shunichi

    2015-12-23

    Photoexcitation of end-on trans-μ-1,2-peroxodicopper(II) complex [(tmpa)2Cu(II)2(O2)](2+) (1) (λmax = 525 and 600 nm) and side-on μ-η(2):η(2)-peroxodicopper(II) complexes [(N5)Cu(II)2(O2)](2+) (2) and [(N3)Cu(II)2(O2)](2+) (3) at -80 °C in acetone led to one-photon two-electron peroxide-to-dioxygen oxidation chemistry (O2(2-) + hν → O2 + 2e(-)). Interestingly, light excitation of 2 and 3 (having side-on μ-η(2):η(2)-peroxo ligation) led to release of dioxygen, while photoexcitation of 1 (having an end-on trans-1,2-peroxo geometry) did not, even though spectroscopic studies revealed that both reactions proceeded through previously unknown mixed-valent superoxide species: [Cu(II)(O2(•-))Cu(I)](2+) (λmax = 685-740 nm). For 1, this intermediate underwent further fast intramolecular electron transfer to yield an "O2-caged" dicopper(I) adduct, Cu(I)2-O2, and a barrierless stepwise back electron transfer to regenerate 1 occurred. Femtosecond laser excitation of 2 and 3 under the same conditions still led to [Cu(II)(O2(•-))Cu(I)](2+) intermediates that, instead, underwent O2 release with a quantum yield of 0.14 ± 0.1 for 3. Such remarkable differences in reaction pathways likely result from the well-known ligand-derived stability of 2 and 3 vs 1 indicated by ligand-Cu(II/I) redox potentials; (N5)Cu(I) and (N3)Cu(I) complexes are far more stable than (tmpa)Cu(I) species. The fast Cu(I)2/O2 rebinding kinetics was also measured after photoexcitation of 2 and 3, with the results closely tracking those known for the dicopper proteins hemocyanin and tyrosinase, for which the synthetic dicopper(I) precursors [(N5)Cu(I)2](2+) and [(N3)Cu(I)2](2+) and their dioxygen adducts serve as models. The biological relevance of the present findings is discussed, including the potential impact on the solar water splitting process.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jansone-Popova, Santa; Ivanov, Alexander S.; Bryantsev, Vyacheslav S.

    Here, we report a new family of preorganized bislactam- 1,10-phenanthroline (BLPhen) complexants that possess both hard and soft donor atoms within a convergent cavity and show unprecedented extraction strength for the trivalent fblock metal ions. BLPhen ligands with saturated and unsaturated δ-lactam rings have notable differences in their affinity and selectivity for Am(III) over Eu(III), with the latter being the most selective mixed N,O-donor extractant of Am(III) reported to date. Saturated BLPhen was crystallized with five Ln(III) nitrates to form charge-neutral 1:1 complexes in the solid state. DFT calculations further elaborate on the variety of effects that dictate the performancemore » of these preorganized compounds.« less

  19. fac-Re(CO)3 complexes of 2,6-bis(4-substituted-1,2,3-triazol-1-ylmethyl)pyridine "click" ligands: synthesis, characterisation and photophysical properties.

    PubMed

    Anderson, Christopher B; Elliott, Anastasia B S; Lewis, James E M; McAdam, C John; Gordon, Keith C; Crowley, James D

    2012-12-28

    The syntheses of the 4-n-propyl and 4-phenyl substituted fac-Re(CO)(3) complexes of the tridentate "click" ligand (2,6-bis(4-substituted-1,2,3-triazol-1-ylmethyl)pyridine) are described. The complexes were obtained by refluxing methanol solutions of [Re(CO)(5)Cl], AgPF(6) and either the 4-propyl or 4-phenyl substituted ligand for 16 h. The ligands and the two rhenium(I) complexes were characterised by elemental analysis, HR-ESMS, ATR-IR, (1)H and (13)C NMR spectroscopy and the molecular structures of both complexes were confirmed by X-ray crystallography. The electronic structure of the fac-Re(CO)(3) "click" complexes was probed using UV-Vis, Raman and emission spectroscopy, cyclic voltammetry and DFT calculations. Altering the electronic nature of the ligand's substituent, from aromatic to alkyl, had little effect on the absorption/emission maxima and electrochemical properties of the complexes indicating that the 1,2,3-triazole unit may insulate the metal centre from the electronic modification at the ligands' periphery. Both Re(I) complexes were found to be weakly emitting with short excited state lifetimes. The electrochemistry of the complexes is defined by quasi-reversible Re oxidation and irreversible triazole-based ligand reduction processes.

  20. AMMOS2: a web server for protein-ligand-water complexes refinement via molecular mechanics.

    PubMed

    Labbé, Céline M; Pencheva, Tania; Jereva, Dessislava; Desvillechabrol, Dimitri; Becot, Jérôme; Villoutreix, Bruno O; Pajeva, Ilza; Miteva, Maria A

    2017-07-03

    AMMOS2 is an interactive web server for efficient computational refinement of protein-small organic molecule complexes. The AMMOS2 protocol employs atomic-level energy minimization of a large number of experimental or modeled protein-ligand complexes. The web server is based on the previously developed standalone software AMMOS (Automatic Molecular Mechanics Optimization for in silico Screening). AMMOS utilizes the physics-based force field AMMP sp4 and performs optimization of protein-ligand interactions at five levels of flexibility of the protein receptor. The new version 2 of AMMOS implemented in the AMMOS2 web server allows the users to include explicit water molecules and individual metal ions in the protein-ligand complexes during minimization. The web server provides comprehensive analysis of computed energies and interactive visualization of refined protein-ligand complexes. The ligands are ranked by the minimized binding energies allowing the users to perform additional analysis for drug discovery or chemical biology projects. The web server has been extensively tested on 21 diverse protein-ligand complexes. AMMOS2 minimization shows consistent improvement over the initial complex structures in terms of minimized protein-ligand binding energies and water positions optimization. The AMMOS2 web server is freely available without any registration requirement at the URL: http://drugmod.rpbs.univ-paris-diderot.fr/ammosHome.php. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  1. Molecular models of site-isolated cobalt, rhodium, and iridium catalysts supported on zeolites: Ligand bond dissociation energies

    DOE PAGES

    Chen, Mingyang; Serna, Pedro; Lu, Jing; ...

    2015-09-28

    The chemistry of zeolite-supported site-isolated cobalt, rhodium, and iridium complexes that are essentially molecular was investigated with density functional theory (DFT) and the results compared with experimentally determined spectra characterizing rhodium and iridium species formed by the reactions of Rh(C 2H 4) 2(acac) and Ir(C 2H 4) 2(acac) (acac = acetylacetonate) with acidic zeolites such as dealuminated HY zeolite. The experimental results characterize ligand exchange reactions and catalytic reactions of adsorbed ligands, including olefin hydrogenation and dimerization. Two molecular models were used to characterize various binding sites of the metal complexes in the zeolites, and the agreement between experimental andmore » calculated infrared frequencies and metal-ligand distances determined by extended X-ray absorption fine structure spectroscopy was generally very good. The calculated structures and energies indicate a metal-support-oxygen (M(I)-O) coordination number of two for most of the supported complexes and a value of three when the ligands include the radicals C 2H 5 or H. The results characterizing various isomers of the supported metal complexes incorporating hydrocarbon ligands indicate that some carbene and carbyne ligands could form. Ligand bond dissociation energies (LDEs) are reported to explain the observed reactivity trends. The experimental observations of a stronger M-CO bond than M-(C 2H 4) bond for both Ir and Rh match the calculated LDEs, which show that the single-ligand LDEs of the mono and dual-ligand complexes for CO are similar to 12 and similar to 15 kcal/mol higher in energy (when the metal is Rh) and similar to 17 and similar to 20 kcal/mol higher (when the metal is Ir) than the single-ligand LDEs of the mono and dual ligand complexes for C 2H 4, respectively. The results provide a foundation for the prediction of the catalytic properties of numerous supported metal complexes, as summarized in detail here.« less

  2. Synthesis, spectral, thermal, X-ray single crystal of new RuCl₂(dppb)diamine complexes and their application in hydrogenation of Cinnamic aldehyde.

    PubMed

    Warad, Ismail; Al-Hussain, Hanan; Al-Far, Rawhi; Mahfouz, Refaat; Hammouti, Belkheir; Hadda, Taibi Ben

    2012-09-01

    The preparation of new three trans-[RuCl(2)(dppb)(N-N)] with mixed diamine (N-N) and 1,4-bis-(diphenylphosphino)butane (dppb) ligands, starting from RuCl(2)(PPh(3))(3) as precursor is presented. The complexes are characterized on the basis of elemental analysis, IR, (1)H, (13)C and (31)P{(1)H}NMR, FAB-MS, TG/DTA and single crystal X-ray diffraction studies. Complex (2L(1)) crystallizes in the monoclinic unit cells with the space group P2(1). The catalysts are evaluated for their Cinnamic aldehyde hydrogenation. The catalysts show excellent activity and selectivity for the unsaturated carbonyl compound under mild conditions. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Ligand protons in a frozen solution of copper histidine relax via a T1e-driven three-spin mechanism

    NASA Astrophysics Data System (ADS)

    Stoll, S.; Epel, B.; Vega, S.; Goldfarb, D.

    2007-10-01

    Davies electron-nuclear double resonance spectra can exhibit strong asymmetries for long mixing times, short repetition times, and large thermal polarizations. These asymmetries can be used to determine nuclear relaxation rates in paramagnetic systems. Measurements of frozen solutions of copper(L-histidine)2 reveal a strong field dependence of the relaxation rates of the protons in the histidine ligand, increasing from low (g‖) to high (g⊥) field. It is shown that this can be attributed to a concentration-dependent T1e-driven relaxation process involving strongly mixed states of three spins: the histidine proton, the Cu(II) electron spin of the same complex, and another distant electron spin with a resonance frequency differing from the spectrometer frequency approximately by the proton Larmor frequency. The protons relax more efficiently in the g⊥ region, since the number of distant electrons able to participate in this relaxation mechanism is higher than in the g‖ region. Analytical expressions for the associated nuclear polarization decay rate Teen-1 are developed and Monte Carlo simulations are carried out, reproducing both the field and the concentration dependences of the nuclear relaxation.

  4. Auto-assembly of nanometer thick, water soluble layers of plasmid DNA complexed with diamines and basic amino acids on graphite: Greatest DNA protection is obtained with arginine.

    PubMed

    Khalil, T T; Boulanouar, O; Heintz, O; Fromm, M

    2017-02-01

    We have investigated the ability of diamines as well as basic amino acids to condense DNA onto highly ordered pyrolytic graphite with minimum damage after re-dissolution in water. Based on a bibliographic survey we briefly summarize DNA binding properties with diamines as compared to basic amino acids. Thus, solutions of DNA complexed with these linkers were drop-cast in order to deposit ultra-thin layers on the surface of HOPG in the absence or presence of Tris buffer. Atomic Force Microscopy analyses showed that, at a fixed ligand-DNA mixing ratio of 16, the mean thickness of the layers can be statistically predicted to lie in the range 0-50nm with a maximum standard deviation ±6nm, using a simple linear law depending on the DNA concentration. The morphology of the layers appears to be ligand-dependent. While the layers containing diamines present holes, those formed in the presence of basic amino acids, except for lysine, are much more compact and dense. X-ray Photoelectron Spectroscopy measurements provide compositional information indicating that, compared to the maximum number of DNA sites to which the ligands may bind, the basic amino acids Arg and His are present in large excess. Conservation of the supercoiled topology of the DNA plasmids was studied after recovery of the complex layers in water. Remarkably, arginine has the best protection capabilities whether Tris was present or not in the initial solution. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Polymeric Cd(II), trinuclear and mononuclear Ni(II) complexes of 5-methyl-4-phenyl-1,2,4-triazole-3-thione: Synthesis, structural characterization, thermal behaviour, fluorescence properties and antibacterial activity

    NASA Astrophysics Data System (ADS)

    Bharty, M. K.; Paswan, S.; Dani, R. K.; Singh, N. K.; Sharma, V. K.; Kharwar, R. N.; Butcher, R. J.

    2017-02-01

    Syntheses of a polymeric Cd(II) complex, [Cd(mptt)2]n (1), a trinuclear Ni(II) complex, [Ni3(μ-mptt)4(μ-H2O)2(H2O)2(ttfa)2]·3H2O (2) and a mononuclear Ni(II) complex [Ni(mptt)2(en)2] (3) have been performed using the ligand 5-methyl-4-phenyl-1,2,4-triazole-3-thione (Hmptt) and nickel(II)/cadmium(II) salts {ttfa = thenoyltrifluroacetonate). The ligand and the complexes have been characterized by various physicochemical methods in addition to their single crystal X-ray structure. The Cd centre in complex 1 adopts a distorted tetrahedral geometry with one sulfur atom and two mptt ligands provide three nitrogen atoms from three triazole units. The sulfur atom of the ligand binds covalently and overall the ligand acts as uninigative N,S/N,N bidentate moiety. The polymeric structure of complex 1 results from the N atoms of the neighboring triazole units coordinating with the Cd(II) centre. The three Ni(II) centres in the trinuclear Ni(II) complex 2 form a linear arrangement and all have six coordinated arrangements. The middle Ni(II) binds with four deprotonated triazole ring nitrogens and two water molecules form two bridges. The terminal Ni(II) centres bind through two thenoyl oxygens, two triazole nitrogens and water molecules that formed bridges with the middle Ni centre. In complex 3, the nickel(II) centre is covalently bonded through two deprotonated triazole ring nitrogens from two ligand moieties and other four sites are occupied by four nitrogens from two bidentate en ligands. Thermogravimetric analyses (TGA) of the complexes indicated for NiO as the final residue. The bioefficacy of the ligand and complexes 2 and 3 have been examined against the growth of bacteria to evaluate their anti-microbial potential. Complex 2 showed high antibacterial activity as compared to the ligand and complex 3. Complexes 1, 2 and 3 are fluorescent materials with maximum emissions at 425, 421 and 396 nm at an excitation wavelength of 323, 348 and 322 nm, respectively.

  6. Theoretical Prediction of Am(III)/Eu(III) Selectivity to Aid the Design of Actinide-Lanthanide Separation Agents

    DOE PAGES

    Bryantsev, Vyacheslav S.; Hay, Benjamin P.

    2015-03-20

    Selective extraction of minor actinides from lanthanides is a critical step in the reduction of radiotoxicity of spent nuclear fuels. However, the design of suitable ligands for separating chemically similar 4f- and 5f-block trivalent metal ions poses a significant challenge. Furthermore, first-principles calculations should play an important role in the design of new separation agents, but their ability to predict metal ion selectivity has not been systematically evaluated. We examine the ability of several density functional theory methods to predict selectivity of Am(III) and Eu(III) with oxygen, mixed oxygen–nitrogen, and sulfur donor ligands. The results establish a computational method capablemore » of predicting the correct order of selectivities obtained from liquid–liquid extraction and aqueous phase complexation studies. To allow reasonably accurate predictions, it was critical to employ sufficiently flexible basis sets and provide proper account of solvation effects. The approach is utilized to estimate the selectivity of novel amide-functionalized diazine and 1,2,3-triazole ligands.« less

  7. Influence of bidentate ligand donor types on the formation and stability in 2 + 1 fac-[MI(CO)3]+ (M = Re, 99mTc) complexes.

    PubMed

    Hayes, Thomas R; Bottorff, Shalina C; Slocumb, Winston S; Barnes, Charles L; Clark, Aurora E; Benny, Paul D

    2017-01-24

    In the last two decades, a number of chelate strategies have been proposed for the fac-[M I (CO) 3 ] + (M = Re, 99m Tc) core in radiopharmaceutical applications. However, the development of new ligands/complexes with improved function and in vivo performance has been limited in recent years. Expanding on our previous studies using the 2 + 1 labeling strategy, a series of bidentate ligands (neutral vs. anionic) containing an aromatic amine in combination with monodentate pyridine analogs or imidazole were explored to determine the influence of the bidentate and monodentate ligands on the formation and stability of the respective complexes. The 2 + 1 complexes with Re and 99m Tc were synthesized in two steps and characterized by standard radio/chemical methods. X-ray characterization and density functional theory analysis of the Re 2 + 1 complexes with the complete bidentate series with 4-dimethylaminopyridine were conducted, indicating enhanced ligand binding energies of the neutral over anionic ligands. In the 99m Tc studies, anionic bidentate ligands had significantly higher formation yields of the 2 + 1 product, but neutral ligands appear to have increased stability in an amino acid challenge assay. Both bidentate series exhibited improved stability by increasing the basicity of the pyridine ligands.

  8. Influence of Bidentate Ligand Donor Types on the Formation and Stability in 2+1 fac-[MI(CO)3]+ (M = Re, 99mTc) Complexes

    PubMed Central

    Hayes, Thomas R.; Bottorff, Shalina C.; Slocumb, Winston S.; Barnes, Charles L.; Clark, Aurora E.; Benny, Paul D.

    2017-01-01

    In the last two decades, a number of chelate strategies have been proposed for the fac-[MI(CO)3]+ (M = Re, 99mTc) core in radiopharmaceutical applications. However, the development of new ligands/complexes with improved function and in vivo performance has been limited in recent years. Expanding on our previous studies using the 2+1 labeling strategy, a series of bidentate ligands (neutral vs. anionic) containing an aromatic amine in combination with monodentate pyridine analogs or imidazole were explored to determine the influence of the bidentate and monodentate ligands on the formation and stability of the respective complexes. The 2+1 complexes with Re and 99mTc were synthesized in two steps and characterized by standard radio/chemical methods. X-ray characterization and density functional theory analysis of the Re 2+1 complexes with the complete bidentate series with 4-dimethylaminopyridine were conducted, indicating enhanced ligand binding energies of the neutral over anionic ligands. In the 99mTc studies, anionic bidentate ligands had significantly higher formation yields of the 2+1 product, but neutral ligands appear to have increased stability in an amino acid challenge assay. Both bidentate series exhibited improved stability by increasing the basicity of the pyridine ligands. PMID:28045466

  9. Syntheses, spectroscopic characterization, thermal study, molecular modeling, and biological evaluation of novel Schiff's base benzil bis(5-amino-1,3,4-thiadiazole-2-thiol) with Ni(II), and Cu(II) metal complexes

    NASA Astrophysics Data System (ADS)

    Chandra, Sulekh; Gautam, Seema; Rajor, Hament Kumar; Bhatia, Rohit

    2015-02-01

    Novel Schiff's base ligand, benzil bis(5-amino-1,3,4-thiadiazole-2-thiol) was synthesized by the condensation of benzil and 5-amino-1,3,4-thiadiazole-2-thiol in 1:2 ratio. The structure of ligand was determined on the basis of elemental analyses, IR, 1H NMR, mass, and molecular modeling studies. Synthesized ligand behaved as tetradentate and coordinated to metal ion through sulfur atoms of thiol ring and nitrogen atoms of imine group. Ni(II), and Cu(II) complexes were synthesized with this nitrogen-sulfur donor (N2S2) ligand. Metal complexes were characterized by elemental analyses, molar conductance, magnetic susceptibility measurements, IR, electronic spectra, EPR, thermal, and molecular modeling studies. All the complexes showed molar conductance corresponding to non-electrolytic nature, expect [Ni(L)](NO3)2 complex, which was 1:2 electrolyte in nature. [Cu(L)(SO4)] complex may possessed square pyramidal geometry, [Ni(L)](NO3)2 complex tetrahedral and rest of the complexes six coordinated octahedral/tetragonal geometry. Newly synthesized ligand and its metal complexes were examined against the opportunistic pathogens. Results suggested that metal complexes were more biological sensitive than free ligand.

  10. Photodamage of a Mn(III/IV)-oxo mixed-valence compound and photosystem II: evidence that a high-valent manganese species is responsible for UV-induced photodamage of the oxygen-evolving complex in photosystem II.

    PubMed

    Wei, Zi; Cady, Clyde W; Brudvig, Gary W; Hou, Harvey J M

    2011-01-01

    The Mn cluster in photosystem II (PS II) is believed to play an important role in the UV photoinhibition of green plants, but the mechanism is still not clear at a molecular level. In this work, the photochemical stability of [Mn(III)(O)(2)Mn(IV)(H(2)O)(2)(Terpy)(2)](NO(3))(3) (Terpy=2,2':6',2''-terpyridine), designated as Mn-oxo mixed-valence dimer, a well characterized functional model of the oxygen-evolving complex in PS II, was examined in aqueous solution by exposing the complex to excess light irradiation at six different wavelengths in the range of 250 to 700 nm. The photodamage of the Mn-oxo mixed-valence dimer was confirmed by the decrease of its oxygen-evolution activity measured in the presence of the chemical oxidant oxone. Ultraviolet light irradiation induced a new absorption peak at around 400-440 nm of the Mn-oxo mixed-valence dimer. Visible light did not have the same effect on the Mn-oxo mixed-valence dimer. We speculate that the spectral change may be caused by conversion of the Mn(III)O(2)Mn(IV) dimer into a new structure--Mn(IV)O(2)Mn(IV). In the processes, the appearance of a 514 nm fluorescence peak was observed in the solution and may be linked to the hydration or protonation of Terpy ligand in the Mn-oxo dimer. In comparing the response of the PS II functional model compound and the PS II complex to excess light radiation, our results support the idea that UV photoinhibition is triggered at the Mn(4)Ca center of the oxygen-evolution complex in PS II by forming a modified structure, possibly a Mn(IV) species, and that the reaction of Mn ions is likely the initial step. Published by Elsevier B.V.

  11. Ruthenium complexes containing 2-(2-nitrosoaryl)pyridine: structural, spectroscopic, and theoretical studies.

    PubMed

    Chan, Siu-Chung; Cheung, Ho-Yuen; Wong, Chun-Yuen

    2011-11-21

    Ruthenium complexes containing 2-(2-nitrosoaryl)pyridine (ON(^)N) and tetradentate thioether 1,4,8,11-tetrathiacyclotetradecane ([14]aneS4), [Ru(ON(^)N)([14]aneS4)](2+) [ON(^)N = 2-(2-nitrosophenyl)pyridine (2a), 10-nitrosobenzo[h]quinoline (2b), 2-(2-nitroso-4-methylphenyl)pyridine, (2c), 2-(2-nitrosophenyl)-5-(trifluoromethyl)pyridine (2d)] and analogues with the 1,4,7-trithiacyclononane ([9]aneS3)/tert-butylisocyanide ligand set, [Ru(ON(^)N)([9]aneS3)(C≡N(t)Bu)](2+) (4a and 4b), have been prepared by insertion of a nitrosonium ion (NO(+)) into the Ru-aryl bond of cyclometalated ruthenium(II) complexes. The molecular structures of the ON(^)N-ligated complexes 2a and 2b reveal that (i) the ON(^)N ligands behave as bidentate chelates via the two N atoms and the bite angles are 86.84(18)-87.83(16)° and (ii) the Ru-N(NO) and N-O distances are 1.942(5)-1.948(4) and 1.235(6)-1.244(5) Å, respectively. The Ru-N(NO) and N-O distances, together with ν(N═O), suggest that the coordinated ON(^)N ligands in this work are neutral moiety (ArNO)(0) rather than monoanionic radical (ArNO)(•-) or dianion (ArNO)(2-) species. The nitrosated complexes 2a-2d show moderately intense absorptions centered at 463-484 nm [ε(max) = (5-6) × 10(3) dm(3) mol(-1) cm(-1)] and a clearly discriminable absorption shoulder around 620 nm (ε(max) = (6-9) × 10(2) dm(3) mol(-1) cm(-1)), which tails up to 800 nm. These visible absorptions are assigned as a mixing of d(Ru) → ON(^)N metal-to-ligand charge-transfer and ON(^)N intraligand transitions on the basis of time-dependent density functional theory (TD-DFT) calculations. The first reduction couples of the nitrosated complexes range from -0.53 to -0.62 V vs Cp(2)Fe(+/0), which are 1.1-1.2 V less negative than that for [Ru(bpy)([14]aneS4)](2+) (bpy = 2,2'-bipyridine). Both electrochemical data and DFT calculations suggest that the lowest unoccupied molecular orbitals of the nitrosated complexes are ON(^)N-centered. Natural population analysis shows that the amount of positive charge on the Ru centers and the [Ru([14]aneS4)] moieties in 2a and 2b is larger than that in [Ru(bpy)([14]aneS4)](2+). According to the results of the structural, spectroscopic, electrochemical, and theoretical investigations, the ON(^)N ligands in this work have considerable π-acidic character and behave as better electron acceptors than bpy.

  12. Effects of iron(III)chelates on the solubility of heavy metals in calcareous soils.

    PubMed

    Ylivainio, Kari

    2010-10-01

    In this study I evaluated the effects of complexing agents on the solubility of heavy metals in an incubation experiment up to 56 days when complexing agents were applied as Fe-chelates (Fe-EDDS(S,S), Fe-EDDS(mix), Fe-EDTA and Fe-EDDHA) on calcareous soils at a level sufficient to correct Fe chlorosis (0.1 mmol kg(-1)). Of these ligands, EDDHA was the most efficient in keeping Fe in water-soluble form, and EDDS increased the solubility of Cu and Zn most, and only EDTA increased the solubility of Cd and Pb. EDTA increased the solubility of Ni steadily during the incubation period, equalling about 5-8% of the added EDTA concentration. [S,S]-EDDS was biodegraded within 56 days, whereas EDDS(mix) was less biodegradable. Ni-chelates were the most recalcitrant against biodegradation. The study shows that even a moderate input of chelates to soil increases the solubility of toxic heavy metals and their risk of leaching. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  13. Synthesis, spectral, thermal and antimicrobial studies of transition metal complexes of 14-membered tetraaza[N4] macrocyclic ligand

    NASA Astrophysics Data System (ADS)

    Shankarwar, Sunil G.; Nagolkar, Bhagwat B.; Shelke, Vinod A.; Chondhekar, Trimbak K.

    2015-06-01

    A series of metal complexes of Mn(II), Co(II), Ni(II), Cu(II), have been synthesized with newly synthesized biologically active macrocyclic ligand. The ligand was synthesized by condensation of β-diketone 1-(4-chlorophenyl)-3-(2-hydroxyphenyl)propane-1,3-dione and o-phenylene diamine. All the complexes were characterized by elemental analysis, molar conductivity, magnetic susceptibility, thermal analysis, X-ray diffraction, IR, 1H-NMR, UV-Vis spectroscopy and mass spectroscopy. From the analytical data, stoichiometry of the complexes was found to be 1:2 (metal:ligand). Thermal behavior (TG/DTA) and kinetic parameters suggest more ordered activated state in complex formation. All the complexes are of high spin type and six coordinated. On the basis of IR, electronic spectral studies and magnetic behavior, an octahedral geometry has been assigned to these complexes. The antibacterial and antifungal activities of the ligand and its metal complexes, has been screened in vitro against Staphylococcus aureus, Escherichia coli and Aspergillus niger, Trichoderma respectively.

  14. Synthesis, characterization, thermal and biological evaluation of Cu (II), Co (II) and Ni (II) complexes of azo dye ligand containing sulfamethaxazole moiety

    NASA Astrophysics Data System (ADS)

    Mallikarjuna, N. M.; Keshavayya, J.; Maliyappa, M. R.; Shoukat Ali, R. A.; Venkatesh, Talavara

    2018-08-01

    A novel bioactive Cu (II), Co (II) and Ni (II) complexes of the azo dye ligand (L) derived from sulfamethoxazole were synthesized. The structures of the newly synthesized compounds were characterized by elemental analysis, molar conductance, magnetic susceptibility, FTIR, UV-visible, 1H NMR, mass, thermal and powder XRD spectral techniques. Molar conductivity measurements in DMSO solution confirmed the non-electrolytic nature of the complexes. All the synthesized metal complexes were found to be monomeric and showed square planar geometry except the Co (II) complex which has six coordinate, octahedral environment. The metal complexes have exhibited potential growth inhibitory effect against tested bacterial strains as compared to the free ligand. The ligand and complexes have also shown significant antioxidant and Calf Thymus DNA cleavage activities. Further, the in silico molecular docking studies were performed to predict the possible binding sites of the ligand (L) and its metal complexes with target receptor Glu-6P.

  15. Synthesis, structure and reactivity of tetranuclear square-type complexes of rhenium and manganese bearing pyrimidine-2-thiolate (pymS) ligands: versatile and efficient precursors for mono- and polynuclear compounds containing M(CO)(3) (M = Re, Mn) fragments.

    PubMed

    Kabir, S E; Alam, J; Ghosh, S; Kundu, K; Hogarth, G; Tocher, D A; Hossain, G M G; Roesky, H W

    2009-06-21

    Reactions of M(2)(CO)(10) (M = Re, Mn) with pyrimidine-2-thiol (pymSH) in the presence of Me(3)NO afford the tetranuclear square-type complexes [M(4)(CO)(12)(micro-kappa(3)-pymS)(4)] (, M = Re; , M = Mn). Both consist of four M(CO)(3) (M = Re, Mn) units, pairs of which are joined by tridentate pyrimidine-2-thiolate ligands. Treatment of with a variety of donor ligands results in cleavage of the square to afford mononuclear species with either a mono- or bidentate pyrimidine-2-thiolate ligand. Triphenylphosphine reacts with to give [Mn(CO)(3)(PPh(3))(kappa(2)-pymS)] () in which the pyrimidine-2-thiolate coordinates in a bidentate fashion. With diamines [M(CO)(3)(kappa(2)-L)(kappa(1)-pymS)] () (M = Re, Mn; L = 2,2'- bipy, 1,10-phen, en) result in which the pyrimidine-2-thiolate binds in a monodentate fashion through sulfur. With diphosphines, complexes with different stoichiometries and pyrimidine-2-thiolate binding modes are obtained depending on the nature of the metal and diphosphine. With dppm and dppe, gives [Re(CO)(2)(kappa(1)-pymS)(kappa(2)-dppm)] () and [Re(CO)(2)(kappa(2)-pymS)(kappa(1)-dppe)(2)] (), respectively, whereas affords [Mn(CO)(2)(kappa(2)-pymS)(kappa(1)-dppm)(2)] () and [Mn(CO)(2)(kappa(2)-pyS)(kappa(2)-dppe)] () under similar conditions. Reactions of with [Os(3)(CO)(10)(NCMe)(2)] affords mixed-metal butterfly clusters [MOs(3)(CO)(13)(micro(3)-kappa(2)-pymS)] () in which the group 7 metal occupies a wing-tip position and the pyrimidine-2-thiolate ligand caps a triangular Os(2)M face. With Ru(3)(CO)(12), carbon-sulfur bond cleavage occurs to give the tetranuclear clusters [MRu(3)(CO)(14)(micro(4)-S)(micro-kappa(1):eta(1)-pym)] () bearing both the extruded sulfur and the heterocyclic ring. The molecular structures of , and have been established by X-ray diffraction allowing the binding mode of the pyrimidine-2-thiolate ligands to be probed.

  16. Ruthenium(II) Complexes Containing Lutidine-Derived Pincer CNC Ligands: Synthesis, Structure, and Catalytic Hydrogenation of C-N bonds.

    PubMed

    Hernández-Juárez, Martín; López-Serrano, Joaquín; Lara, Patricia; Morales-Cerón, Judith P; Vaquero, Mónica; Álvarez, Eleuterio; Salazar, Verónica; Suárez, Andrés

    2015-05-11

    A series of Ru complexes containing lutidine-derived pincer CNC ligands have been prepared by transmetalation with the corresponding silver-carbene derivatives. Characterization of these derivatives shows both mer and fac coordination of the CNC ligands depending on the wingtips of the N-heterocyclic carbene fragments. In the presence of tBuOK, the Ru-CNC complexes are active in the hydrogenation of a series of imines. In addition, these complexes catalyze the reversible hydrogenation of phenantridine. Detailed NMR spectroscopic studies have shown the capability of the CNC ligand to be deprotonated and get involved in ligand-assisted activation of dihydrogen. More interestingly, upon deprotonation, the Ru-CNC complex 5 e(BF4 ) is able to add aldimines to the metal-ligand framework to yield an amido complex. Finally, investigation of the mechanism of the hydrogenation of imines has been carried out by means of DFT calculations. The calculated mechanism involves outer-sphere stepwise hydrogen transfer to the C-N bond assisted either by the pincer ligand or a second coordinated H2 molecule. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Adaptability and selectivity of human peroxisome proliferator-activated receptor (PPAR) pan agonists revealed from crystal structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oyama, Takuji; Toyota, Kenji; Waku, Tsuyoshi

    2009-08-01

    The structures of the ligand-binding domains (LBDs) of human peroxisome proliferator-activated receptors (PPARα, PPARγ and PPARδ) in complexes with a pan agonist, an α/δ dual agonist and a PPARδ-specific agonist were determined. The results explain how each ligand is recognized by the PPAR LBDs at an atomic level. Peroxisome proliferator-activated receptors (PPARs) belong to the nuclear hormone receptor family, which is defined as transcriptional factors that are activated by the binding of ligands to their ligand-binding domains (LBDs). Although the three PPAR subtypes display different tissue distribution patterns and distinct pharmacological profiles, they all are essentially related to fatty-acid andmore » glucose metabolism. Since the PPARs share similar three-dimensional structures within the LBDs, synthetic ligands which simultaneously activate two or all of the PPARs could be potent candidates in terms of drugs for the treatment of abnormal metabolic homeostasis. The structures of several PPAR LBDs were determined in complex with synthetic ligands, derivatives of 3-(4-alkoxyphenyl)propanoic acid, which exhibit unique agonistic activities. The PPARα and PPARγ LBDs were complexed with the same pan agonist, TIPP-703, which activates all three PPARs and their crystal structures were determined. The two LBD–ligand complex structures revealed how the pan agonist is adapted to the similar, but significantly different, ligand-binding pockets of the PPARs. The structures of the PPARδ LBD in complex with an α/δ-selective ligand, TIPP-401, and with a related δ-specific ligand, TIPP-204, were also determined. The comparison between the two PPARδ complexes revealed how each ligand exhibits either a ‘dual selective’ or ‘single specific’ binding mode.« less

  18. Rapid Computer Aided Ligand Design and Screening of Precious Metal Extractants from TRUEX Raffinate with Experimental Validation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clark, Aurora Sue; Wall, Nathalie; Benny, Paul

    2015-11-16

    Rhodium is the most extensively used metal in catalytic applications; it occurs in mixed ores with platinum group metals (PGMs) in the earth’s crust in low concentrations (0.4 - 10 ppb). It is resistant to aerial oxidation and insoluble in all acids, including aqua regia, making classical purification methods time-consuming and inefficient. To ensure adequate purity, several precipitation and dissolution steps are necessary during separation. Low abundance, high demand, and extensive processing make rhodium the most expensive of all PGMs. From alternative sources, rhodium is also produced in sufficient quantities (0.47 kg per ton initial heavy metal (tIHM)) during themore » fission of U-235 in nuclear reactors along with other PGMs (i.e., Ag, Pd, Ru). A typical power water reactor operating with UO 2 fuel after cooling can generate PGMs in quantities greater than found in the earth’s crust (0.5-2 kg/tIHM). This currently untapped supply of PGMs has the potential to yield $5,000-30,000/tIHM. It is estimated that by the year 2030, the amount of rhodium generated in reactors could exceed natural reserves. Typical SNF processing removes the heavier lanthanides and actinides and can leave PGMs at ambient temperatures in aqueous acidic (Cl⁻ or NO 3⁻; pH < 1) solutions at various activities. While the retrieval of these precious metals from SNF would minimize waste generation and improve resource utilization, it has been difficult to achieve thus far. Two general strategies have been utilized to extract Rh(III) from chloride media: ion pairing and coordination complexation. Ion pairing mechanisms have been studied primarily with the tertiary and quaternary amines. Additionally, mixed mechanism extractions have been observed in which ion pairing is the initial mechanism, and longer extraction equilibrium time generated coordination complexes. Very few coordination complexation extraction ligands have been studied. This project approached this problem through the design of a software program that uses state-of-the-art computational combinatorial chemistry, and is developed and validated with experimental data acquisition; the resulting tool allows for rapid design and screening of new ligands for the extraction of precious metals from SNF. This document describes the software that has been produced, ligands that have been designed, and fundamental new understandings of the extraction process of Rh(III) as a function of solution phase conditions (pH, nature of acid, etc.).« less

  19. Structure and luminescent property of complexes of aryl carboxylic acid-functionalized polystyrene with Eu(III) and Tb(III) ions.

    PubMed

    Gao, Baojiao; Shi, Nan; Qiao, Zongwen

    2015-11-05

    Via polymer reactions, naphthoic acid (NA) and benzoic acid (BA) were bonded onto the side chains of polystyrene (PS), respectively, and two aryl carboxylic acid-functionalized polystyrenes, PSNA and PSBA, were obtained. Using PSNA and PSBA as macromolecule ligands and Eu(3+) and Tb(3+) ions as central ions, various luminescent binary polymer-rare earth complexes were prepared. At the same time, with 1,10-phenanthroline (Phen) and 4,4'-bipyridine (Bipy) as small-molecule co-ligands, various ternary polymer-rare earth complexes were also prepared. On the basis of characterizing PSNA, PSBA and complexes, the relationship between structure and luminescent property for these prepared complexes were mainly investigated. The study results show that the macromolecule ligands PSNA and PSBA, or the bonded NA and BA ligands, can strongly sensitize the fluorescence emissions of Eu(3+) ion or Tb(3+) ion, but the sensitization effect is strongly dependent on the structure of the ligands and the property of the central ions, namely it is strongly dependent on the matching degree of energy levels. The fluorescence emission of the binary complex PS-(NA)3-Eu(III) is stronger than that PS-(BA)3-Eu(III), indicating ligand NA has stronger sensitization action for Eu(3+) ion than ligand BA; the binary complex PS-(BA)3-Tb(III) emit strong characteristic fluorescence of Tb(3+) ion, displaying that ligand BA can strongly sensitize Tb(3+) ion, whereas the binary complex PS-(NA)3-Tb(III) nearly does not emit the characteristic fluorescence of Tb(3+) ion, showing that ligand NA does not sensitize Tb(3+) ion. The fluorescence intensity of the ternary complexes is much stronger than that of the binary complexes in the same series. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Synthesis and luminescence properties of polymer-rare earth complexes containing salicylaldehyde-type bidentate Schiff base ligand.

    PubMed

    Zhang, Dandan; Gao, Baojiao; Li, Yanbin

    2017-08-01

    Using molecular design and polymer reactions, two types of bidentate Schiff base ligands, salicylaldehyde-aniline (SAN) and salicylaldehyde-cyclohexylamine (SCA), were synchronously synthesized and bonded onto the side chain of polysulfone (PSF), giving two bidentate Schiff base ligand-functionalized PSFs, PSF-SAN and PSF-SCA, referred to as macromolecular ligands. Following coordination reactions between the macromolecular ligands and Eu(III) and Tb(III) ions (the reaction occurred between the bonded ligands SAN or SCA and the lanthanide ion), two series of luminescent polymer-rare earth complexes, PSF-SAN-Eu(III) and PSF-SCA-Tb(III), were obtained. The two macromolecular ligands were fully characterized by Fourier transform infrared (FTIR), 1 H NMR and UV absorption spectroscopy, and the prepared complexes were also characterized by FTIR, UV absorption spectroscopy and thermo-gravity analysis. On this basis, the photoluminescence properties of these complexes and the relationships between their structure and luminescence were investigated in depth. The results show that the bonded bidentate Schiff base ligands, SAN and SCA, can effectively sensitize the fluorescence emission of Eu(III) and Tb(III) ions, respectively. PSF-SAN-Eu(III) series complexes, namely the binary complex PSF-(SAN) 3 -Eu(III) and the ternary complex PSF-(SAN) 3 -Eu(III)-(Phen) 1 (Phen is the small-molecule ligand 1,10-phenanthroline), produce strong red luminescence, suggesting that the triplet state energy level of SAN is lower and well matched with the resonant energy level of the Eu(III) ion. By contrast, PSF-SAN-Eu(III) series complexes, namely the binary complex PSF-(SCA) 3 -Tb(III) and the ternary complex PSF-(SCA) 3 -Tb(III)-(Phen) 1 , display strong green luminescence, suggesting that the triplet state energy level of SCA is higher and is well matched with the resonant energy level of Tb(III). Copyright © 2017 John Wiley & Sons, Ltd.

  1. Molecular recognition modes between adenine or adeniniun(1+) ion and binary M(II)(pdc) chelates (MCoZn; pdc=pyridine-2,6-dicarboxylate(2-) ion).

    PubMed

    Del Pilar Brandi-Blanco, María; Choquesillo-Lazarte, Duane; Domínguez-Martín, Alicia; Matilla-Hernández, Antonio; González-Pérez, Josefa María; Castiñeiras, Alfonso; Niclós-Gutiérrez, Juan

    2013-10-01

    Mixed ligand M(II)-complexes (MCoZn) with pyridine-2,6-dicarboxylate(2-) chelator (pdc) and adenine (Hade) have been synthesized and studied by X-ray diffraction and other spectral and thermal methods: [Cu(pdc)(H(N9)ade)(H2O)] (1), [Cu2(pdc)2(H2O)2(μ2-N3,N7-H(N9)ade)]·3H2O (2), trans-[M(pdc)(H(N9)ade)(H2O)2]·nH2O for MCo (3-L, 3-M, 3-H) or Zn (4-L, 4-H), where n is 0, 1 or 3 for the 'lowest' (L), 'medium' (M) and 'highest' (H) hydrated forms, and the salt trans-[Ni(pdc)(H2(N1,N9)ade)(H2O)2]Cl·2H2O (5). In all the nine compounds, both neutral and cationic adenine exist as their most stable tautomer and the molecular recognition pattern between the metal-pdc chelates and the adenine or adeninium(1+) ligands involves the MN7 bond in cooperation with an intra-molecular N6H⋯O(coordinated carboxylate) interligand interaction. In addition the dinuclear copper(II) compound (2) has the CuN3 bond and the N9H⋯O(coord. carboxylate) interaction. The structures of mononuclear ternary complexes proved that the molecular recognition pattern is the same irrespective of (a) the coordination geometry of the complex molecule, (b) the different hydrated forms of crystals with Co or Zn, and (c) the neutral of cationic form of the adenine ligand. These features are related to the mer-NO2 chelating ligand conformation (imposed by the planar rigidity of pdc) as a driving force for the observed metal binding mode. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. Kinetic and theoretical studies on the protonation of [Ni(2-SC6H4N){PhP(CH2CH2PPh2)2}]+: nitrogen versus sulfur as the protonation site.

    PubMed

    Petrou, Athinoula L; Koutselos, Andreas D; Wahab, Hilal S; Clegg, William; Harrington, Ross W; Henderson, Richard A

    2011-02-07

    The complexes [Ni(4-Spy)(triphos)]BPh(4) and [Ni(2-Spy)(triphos)]BPh(4) {triphos = PhP(CH(2)CH(2)PPh(2))(2), 4-Spy = 4-pyridinethiolate, 2-Spy = 2-pyridinethiolate} have been prepared and characterized both spectroscopically and using X-ray crystallography. In both complexes the triphos is a tridentate ligand. However, [Ni(4-Spy)(triphos)](+) comprises a 4-coordinate, square-planar nickel with the 4-Spy ligand bound to the nickel through the sulfur while [Ni(2-Spy)(triphos)](+) contains a 5-coordinate, trigonal-bipyramidal nickel with a bidentate 2-Spy ligand bound to the nickel through both sulfur and nitrogen. The kinetics of the reactions of [Ni(4-Spy)(triphos)](+) and [Ni(2-Spy)(triphos)](+) with lutH(+) (lut = 2,6-dimethylpyridine) in MeCN have been studied using stopped-flow spectrophotometry, and the two complexes show very different reactivities. The reaction of [Ni(4-Spy)(triphos)](+) with lutH(+) is complete within the deadtime of the stopped-flow apparatus (2 ms) and corresponds to protonation of the nitrogen. However, upon mixing [Ni(2-Spy)(triphos)](+) and lutH(+) a reaction is observed (on the seconds time scale) to produce an equilibrium mixture. The mechanistic interpretation of the rate law has been aided by the application of MSINDO semiempirical and ADF calculations. The kinetics and calculations are consistent with the reaction between [Ni(2-Spy)(triphos)](+) and lutH(+) involving initial protonation of the sulfur followed by dissociation of the nitrogen and subsequent transfer of the proton from sulfur to nitrogen. The factors affecting the position of protonation and the coupling of the coordination state of the 2-pyridinethiolate ligand to the site of protonation are discussed.

  3. DNA binding, anti-inflammatory and analgesic evaluation of metal complexes of N/S/O donor ligands; Synthesis, spectral characterization

    NASA Astrophysics Data System (ADS)

    Kumar Naik, K. H.; Ashok, B.; Naik, Nagaraja; Mulla, Jameel Ahmed S.; Prakasha, Avinash

    2015-04-01

    Transition metal complexes containing tri-dentate NSN donor ligands i.e., 5-((1(aminomethyl)cyclohexyl)methyl)-1,3,4-thiadiazol-2-amine (AMTA) (2) and 5-(2-aminophenyl)-1,3,4-thiadiazol-2-amine (ATA) (4i-ii) have been synthesized. The newly synthesized ligands and their respective complexes were characterized by elemental analysis, molar conductance measurement and various spectral studies [infrared (IR), electronic, and NMR (for ligands only)]. Metal complexes are like [M(AMTA)2], [M(ATA)2] type, where M = Mn(II), Co(II) and Cu(II). The proposed geometries of the complexes are octahedral in nature. The synthesized ligands and their complexes were exhibits effective anti-inflammatory, analgesic and DNA binding activities. All the tested compounds exhibited significant analgesic activity, whereas the compound 4i, 4(ia) and 4(iib) is equipotent with Diclofenac sodium.

  4. Non-metallocene organometallic complexes and related methods and systems

    DOEpatents

    Agapie, Theodor; Golisz, Suzanne Rose; Tofan, Daniel; Bercaw, John E.

    2010-12-07

    A non-metallocene organometallic complex comprising a tridentate ligand and a metal bonded to a tridentate ligand, wherein two substituted aryl groups in the tridentate ligand are connected to a cyclic group at the ortho position via semi-rigid ring-ring linkages, and selected so to provide the resulting non-metallocene organometallic complex with a C.sub.S geometry, a C.sub.1 geometry, a C.sub.2 geometry or a C.sub.2v geometry. Method for performing olefin polymerization with a non-metallocene organometallic complex as a catalyst, related catalytic systems, tridentate ligand and method for providing a non-metallocene organometallic complex.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Mingyang; Serna, Pedro; Lu, Jing

    The chemistry of zeolite-supported site-isolated cobalt, rhodium, and iridium complexes that are essentially molecular was investigated with density functional theory (DFT) and the results compared with experimentally determined spectra characterizing rhodium and iridium species formed by the reactions of Rh(C 2H 4) 2(acac) and Ir(C 2H 4) 2(acac) (acac = acetylacetonate) with acidic zeolites such as dealuminated HY zeolite. The experimental results characterize ligand exchange reactions and catalytic reactions of adsorbed ligands, including olefin hydrogenation and dimerization. Two molecular models were used to characterize various binding sites of the metal complexes in the zeolites, and the agreement between experimental andmore » calculated infrared frequencies and metal-ligand distances determined by extended X-ray absorption fine structure spectroscopy was generally very good. The calculated structures and energies indicate a metal-support-oxygen (M(I)-O) coordination number of two for most of the supported complexes and a value of three when the ligands include the radicals C 2H 5 or H. The results characterizing various isomers of the supported metal complexes incorporating hydrocarbon ligands indicate that some carbene and carbyne ligands could form. Ligand bond dissociation energies (LDEs) are reported to explain the observed reactivity trends. The experimental observations of a stronger M-CO bond than M-(C 2H 4) bond for both Ir and Rh match the calculated LDEs, which show that the single-ligand LDEs of the mono and dual-ligand complexes for CO are similar to 12 and similar to 15 kcal/mol higher in energy (when the metal is Rh) and similar to 17 and similar to 20 kcal/mol higher (when the metal is Ir) than the single-ligand LDEs of the mono and dual ligand complexes for C 2H 4, respectively. The results provide a foundation for the prediction of the catalytic properties of numerous supported metal complexes, as summarized in detail here.« less

  6. Pyrazolate-based copper(II) and nickel(II) [2 x 2] grid complexes: protonation-dependent self-assembly, structures and properties.

    PubMed

    Klingele, Julia; Prikhod'ko, Alexander I; Leibeling, Guido; Demeshko, Serhiy; Dechert, Sebastian; Meyer, Franc

    2007-05-28

    The pyrazole-based diamide ligand N,N'-bis(2-pyridylmethyl)pyrazole-3,5-dicarboxamide (H(3)L) has been structurally characterised and successfully employed in the preparation of [2 x 2] grid-type complexes. Thus, the reaction of H(3)L with Cu(ClO(4))2.6H(2)O or Ni(ClO(4))2.6H(2)O in the presence of added base (NaOH) affords the tetranuclear complexes [M(4)(HL(4))].8H(2)O (1: M = Cu, 2: M = Ni). Employment of a mixture of the two metal salts under otherwise identical reaction conditions leads to the formation of the mixed-metal species [Cu(x)Ni(4-x)(HL)(4)].8H(2)O (x

  7. Ligand placement based on prior structures: the guided ligand-replacement method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klei, Herbert E.; Bristol-Myers Squibb, Princeton, NJ 08543-4000; Moriarty, Nigel W., E-mail: nwmoriarty@lbl.gov

    2014-01-01

    A new module, Guided Ligand Replacement (GLR), has been developed in Phenix to increase the ease and success rate of ligand placement when prior protein-ligand complexes are available. The process of iterative structure-based drug design involves the X-ray crystal structure determination of upwards of 100 ligands with the same general scaffold (i.e. chemotype) complexed with very similar, if not identical, protein targets. In conjunction with insights from computational models and assays, this collection of crystal structures is analyzed to improve potency, to achieve better selectivity and to reduce liabilities such as absorption, distribution, metabolism, excretion and toxicology. Current methods formore » modeling ligands into electron-density maps typically do not utilize information on how similar ligands bound in related structures. Even if the electron density is of sufficient quality and resolution to allow de novo placement, the process can take considerable time as the size, complexity and torsional degrees of freedom of the ligands increase. A new module, Guided Ligand Replacement (GLR), was developed in Phenix to increase the ease and success rate of ligand placement when prior protein–ligand complexes are available. At the heart of GLR is an algorithm based on graph theory that associates atoms in the target ligand with analogous atoms in the reference ligand. Based on this correspondence, a set of coordinates is generated for the target ligand. GLR is especially useful in two situations: (i) modeling a series of large, flexible, complicated or macrocyclic ligands in successive structures and (ii) modeling ligands as part of a refinement pipeline that can automatically select a reference structure. Even in those cases for which no reference structure is available, if there are multiple copies of the bound ligand per asymmetric unit GLR offers an efficient way to complete the model after the first ligand has been placed. In all of these applications, GLR leverages prior knowledge from earlier structures to facilitate ligand placement in the current structure.« less

  8. Redox non-innocent bis(2,6-diimine-pyridine) ligand-iron complexes as anolytes for flow battery applications.

    PubMed

    Duarte, Gabriel M; Braun, Jason D; Giesbrecht, Patrick K; Herbert, David E

    2017-12-21

    Diiminepyridines are a well-known class of "non-innocent" ligands that confer additional redox activity to coordination complexes beyond metal-centred oxidation/reduction. Here, we demonstrate that metal coordination complexes (MCCs) of diiminepyridine (DIP) ligands with iron are suitable anolytes for redox-flow battery applications, with enhanced capacitance and stability compared with bipyridine analogs, and access to storage of up to 1.6 electron equivalents. Substitution of the ligand is shown to be a key factor in the cycling stability and performance of MCCs based on DIP ligands, opening the door to further optimization.

  9. Synthesis, characterization, DNA-binding and cleavage studies of polypyridyl copper(II) complexes

    NASA Astrophysics Data System (ADS)

    Gubendran, Ammavasi; Rajesh, Jegathalaprathaban; Anitha, Kandasamy; Athappan, Periyakaruppan

    2014-10-01

    Six new mixed-ligand copper(II) complexes were synthesized namely [Cu(phen)2OAc]ClO4ṡH2O(1), [Cu(bpy)2OAc]ClO4ṡH2O(2), [Cu(o-ampacac)(phen)]ClO4(3), [Cu(o-ampbzac)(phen)]ClO4(4), [Cu(o-ampacac)(bpy)]ClO4(5), and [Cu(o-ampbzac)(bpy)]ClO4(6) (phen = 1,10-phenanthroline, bpy = 2, 2‧-bipyridine, o-ampacac = (Z)-4-(2-hydroxylamino)pent-3-ene-2-one,o-ampbzac = (Z)-4-(2-hydroxylamino)-4-phenylbut-3-ene-2-one)and characterized by UV-Vis, IR, EPR and cyclic voltammetry. Ligands were characterized by NMR spectra. Single crystal X-ray studies of the complex 1 shows Cu(II) ions are located in a highly distorted octahedral environment. Absorption spectral studies reveal that the complexes 1-6 exhibit hypochromicity during the interaction with DNA and binding constant values derived from spectral and electrochemical studies indicate that complexes 1, 2 and 3 bind strongly with DNA possibly by an intercalative mode. Electrochemical studies reveal that the complexes 1-4 prefer to bind with DNA in Cu(I) rather than Cu(II) form. The shift in the formal potentials E1/2 and CD spectral studies suggest groove or electrostatic binding mode for the complexes 4-6. Complex 1 can cleave supercoiled (SC) pUC18 DNA efficiently into nicked form II under photolytic conditions and into an open circular form (form II) and linear form (form III) in the presence of H2O2 at pH 8.0 and 37 °C, while the complex 2 does not cleave DNA under similar conditions.

  10. Synthesis, structure, DNA binding and anticancer activity of mixed ligand ruthenium(II) complex

    NASA Astrophysics Data System (ADS)

    Gilewska, Agnieszka; Masternak, Joanna; Kazimierczuk, Katarzyna; Trynda, Justyna; Wietrzyk, Joanna; Barszcz, Barbara

    2018-03-01

    In order to obtain a potential chemotherapeutic which is not affected on the normal BALB/3T3 cell line, a new arene ruthenium(II) complex {[RuCl(L1)(η6-p-cymene)]PF6}2 · H2O has been synthesized by a direct reaction of precursor, [{(η6-p-cymene)Ru(μ-Cl)}2Cl2], with N,N-chelating ligand (L1 - 2,2‧-bis(4,5-dimethylimidazole). The compound has been fully characterized by elemental analysis, X-ray diffraction, IR, UV-Vis and 1H, 13C NMR spectroscopies. X-ray analysis have confirmed that the compound crystallized in the monoclinic group Cc as an inversion twin. The asymmetric unit contains two symmetrically independent cationic complexes [RuCl(L1)(η6-p-cymene)]+ whose charge is balanced by two PF6- counterions. The shape of each cationic coordination polyhedral can be described as a distorted dodecahedron and shows a typical piano-stool geometry. In addition, an analysis of the crystal structure and the Hirshfeld surface analysis were used to detect and visualize important hydrogen bonds and intermolecular interaction. Moreover, the antiproliferative behavior of the obtained complex was assayed against three human cells: MV-4-11, LoVo, MCF-7 and BALB/3T3 - normal mice fibroblast cells. To predict a binding mode, a potential interaction of ruthenium complex with calf thymus DNA (CT-DNA) has been explored using UV absorption and circular dichroism (CD).

  11. Synthesis and structural characterization of dioxomolybdenum and dioxotungsten hydroxamato complexes and their function in the protection of radiation induced DNA damage.

    PubMed

    Paul, Shiv Shankar; Selim, Md; Saha, Abhijit; Mukherjea, Kalyan K

    2014-02-21

    The synthesis and structural characterization of two novel dioxomolybdenum(VI) (1) and dioxotungsten(VI) (2) complexes with 2-phenylacetylhydroxamic acid (PAHH) [M(O)2(PAH)2] [M = Mo, W] have been accomplished. The dioxomolybdenum(VI) and dioxotungsten(VI) moiety is coordinated by the hydroxamate group (-CONHO(-)) of the 2-phenylacetylhydroxamate (PAH) ligand in a bi-dentate fashion. In both the complexes the PAHH ligand is coordinated through oxygen atoms forming a five membered chelate. The hydrogen atom of N-H of the hydroxamate group is engaged in intermolecular H-bonding with the carbonyl oxygen of another coordinated hydroxamate ligand, thereby forming an extended 1D chain. The ligand as well as both the complexes exhibit the ability to protect from radiation induced damage both in CTDNA as well as in pUC19 plasmid DNA. As the damage to DNA is caused by the radicals generated during radiolysis, its scavenging imparts protection from the damage to DNA. To understand the mechanism of protection, binding affinities of the ligand and the complex with DNA were determined using absorption and emission spectral studies and viscosity measurements, whereby the results indicate that both the complexes and the hydroxamate ligand interact with calf thymus DNA in the minor groove. The intrinsic binding constants, obtained from UV-vis studies, are 7.2 × 10(3) M(-1), 5.2 × 10(4) M(-1) and 1.2 × 10(4) M(-1) for the ligand and complexes 1 and 2 respectively. The Stern-Volmer quenching constants obtained from a luminescence study for both the complexes are 5.6 × 10(4) M(-1) and 1.6 × 10(4) M(-1) respectively. The dioxomolybdenum(VI) complex is found to be a more potent radioprotector compared to the dioxotungsten(VI) complex and the ligand. Radical scavenging chemical studies suggest that the complexes have a greater ability to scavenge both the hydroxyl as well as the superoxide radicals compared to the ligand. The free radical scavenging ability of the ligand and the complexes was further established by EPR spectroscopy using a stable free radical, the DPPH, as a probe. The experimental results of DNA binding are further supported by molecular docking studies.

  12. Synthesis and investigation of Pd(I) carbonyl complexes with heteroorganic ligands

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lamberov, A.A.; Polovnyak, V.K.; Akhmetov, N.S.

    1987-09-10

    Pd(I) carbonyl complexes are attracting attention because they have been shown to have catalytic properties in a series of organic syntheses. The stability and catalytic properties of these compounds are determined by the nature of the phosphine ligand and the bridge coordination of the carbonylgroup. Through the partial replacement of carbonyl and acido ligands by heteroorganic ligands in carbonyl halogenide and carbonyl acetate Pd(I) complexes, new stable Pd(I) complexes were obtained: (PdLX)/sub 2/CO, where L = PPh/sub 3/, X = OAc; L = AsPh/sub 3/, X = Cl, Br, OAc; L = SbPh/sub 3/, X = Cl Br, OAc; Lmore » = Ph/sub 2/PCH/sub 2/PPh/sub 2/, Ph/sub 2/AsCH/sub 2/AsPh/sub 2/, X = OAc. Atoms of the heteroorganic and acido ligands are equivalently coordinated to the palladium atoms. The carbonyl group in the complexes has bridge coordination to palladium atoms in the Pd(CO)Pd fragment; in complexes with bidentate heteroorganic ligands the covalent bond between palladium atoms is absent.« less

  13. Copper(II) complex of new non-innocent O-aminophenol-based ligand as biomimetic model for galactose oxidase enzyme in aerobic oxidation of alcohols

    NASA Astrophysics Data System (ADS)

    Safaei, Elham; Bahrami, Hadiseh; Pevec, Andrej; Kozlevčar, Bojan; Jagličić, Zvonko

    2017-04-01

    Mononuclear copper(II) complex of tetra-dentate o-aminophenol-based ligand (H2LBAPP) has been synthesized and characterized. The three dentate precursor (HLBAP) of the final ligand was synthesized first, while the title four-dentate copper bound ligand was synthesized in situ, isolated only in the final copper species [CuLBAPP]. This copper coordination complex reveals a distorted square-planar geometry around the copper(II) centre by one oxygen and three nitrogen atoms from the coordinating ligand. The ligand is thus twice deprotonated via hydroxy and amine groups. The complex is red, non-typical for copper(II), but the effective magnetic moment of 1.86 B M. and a single isotropic symmetry EPR signal with g 2.059 confirm a S = 1/2 diluted spin system, without copper-copper magnetic coupling. Electrochemical oxidation of this complex yields the corresponding Cu(II)-phenyl radical species. Finally, the title complex CuLBAPP has shown good and selective catalytic activity towards alcohol to aldehyde oxidation, at aerobic room temperature conditions, for a set of different alcohols.

  14. Two Zn coordination polymers with meso-helical chains based on mononuclear or dinuclear cluster units

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qin, Ling, E-mail: qinling@hfut.edu.cn; Jiangsu Engineering Technology Research Center of Environmental Cleaning Materials; State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing National Laboratory of Microstructures, Nanjing University, Nanjing 210093

    2016-07-15

    Two zinc coordination polymers {[Zn_2(TPPBDA)(oba)_2]·DMF·1.5H_2O}{sub n} (1), {[Zn(TPPBDA)_1_/_2(tpdc)]·DMF}{sub n} (2) have been synthesized by zinc metal salt, nanosized tetradentate pyridine ligand with flexible or rigid V-shaped carboxylate co-ligands. These complexes were characterized by elemental analyses and X-ray single-crystal diffraction analyses. Compound 1 is a 2-fold interpenetrated 3D framework with [Zn{sub 2}(CO{sub 2}){sub 4}] clusters. Compound 2 can be defined as a five folded interpenetrating bbf topology with mononuclear Zn{sup 2+}. These mononuclear or dinuclear cluster units are linked by mix-ligands, resulting in various degrees of interpenetration. In addition, the photoluminescent properties for TPPBDA ligand under different state and coordination polymersmore » have been investigated in detail. - Graphical abstract: Two zinc coordination polymers have been synthesized by zinc metal salt, nanosized tetradentate pyridine ligand with flexible or rigid V-shaped carboxylate co-ligands. Compound 1 is a 2-fold interpenetrated 3D framework with [Zn{sub 2}(CO{sub 2}){sub 4}] clusters. Compound 2 can be defined as a five folded interpenetrating bbf topology with mononuclear Zn{sup 2+}. In addition, the photoluminescent properties for TPPBDA ligand under different status and coordination polymers have been investigated in detail. Display Omitted - Highlights: • Two Zn coordination polymers based on mononuclear or dinuclear cluster units have been synthesized. • Compound 1 is a 2-fold interpenetrated 3D framework with [Zn{sub 2}(CO{sub 2}){sub 4}] clusters. • Compound 2 is a five folded interpenetrating bbf topology with mononuclear Zn{sup 2+}. • The photoluminescent properties for TPPBDA with different state and two coordination polymers have been investigated.« less

  15. 2,3-Di(2-pyridyl)-5-phenylpyrazine: a NN-CNN-type bridging ligand for dinuclear transition-metal complexes.

    PubMed

    Wu, Si-Hai; Zhong, Yu-Wu; Yao, Jiannian

    2013-07-01

    A new bridging ligand, 2,3-di(2-pyridyl)-5-phenylpyrazine (dpppzH), has been synthesized. This ligand was designed so that it could bind two metals through a NN-CNN-type coordination mode. The reaction of dpppzH with cis-[(bpy)2RuCl2] (bpy = 2,2'-bipyridine) affords monoruthenium complex [(bpy)2Ru(dpppzH)](2+) (1(2+)) in 64 % yield, in which dpppzH behaves as a NN bidentate ligand. The asymmetric biruthenium complex [(bpy)2Ru(dpppz)Ru(Mebip)](3+) (2(3+)) was prepared from complex 1(2+) and [(Mebip)RuCl3] (Mebip = bis(N-methylbenzimidazolyl)pyridine), in which one hydrogen atom on the phenyl ring of dpppzH is lost and the bridging ligand binds to the second ruthenium atom in a CNN tridentate fashion. In addition, the RuPt heterobimetallic complex [(bpy)2Ru(dpppz)Pt(C≡CPh)](2+) (4(2+)) has been prepared from complex 1(2+), in which the bridging ligand binds to the platinum atom through a CNN binding mode. The electronic properties of these complexes have been probed by using electrochemical and spectroscopic techniques and studied by theoretical calculations. Complex 1(2+) is emissive at room temperature, with an emission λmax = 695 nm. No emission was detected for complex 2(3+) at room temperature in MeCN, whereas complex 4(2+) displayed an emission at about 750 nm. The emission properties of these complexes are compared to those of previously reported Ru and RuPt bimetallic complexes with a related ligand, 2,3-di(2-pyridyl)-5,6-diphenylpyrazine. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Assignment of Pre-edge Features in the Ru K-edge X-ray Absorption Spectra of Organometallic Ruthenium Complexes

    PubMed Central

    Getty, Kendra; Delgado-Jaime, Mario Ulises

    2010-01-01

    The nature of the lowest energy bound-state transition in the Ru K-edge X-ray Absorption Spectra for a series of Grubbs-type ruthenium complexes was investigated. The pre-edge feature was unambiguously assigned as resulting from formally electric dipole forbidden Ru 4d←1s transitions. The intensities of these transitions are extremely sensitive to the ligand environment and the symmetry of the metal centre. In centrosymmetric complexes the pre-edge is very weak since it is limited by the weak electric quadrupole intensity mechanism. By contrast, upon breaking centrosymmetry, Ru 5p-4d mixing allows for introduction of electric dipole allowed character resulting in a dramatic increase in the pre-edge intensity. The information content of this approach is explored as it relates to complexes of importance in olefin metathesis and its relevance as a tool for the study of reactive intermediates. PMID:20151030

  17. Synthesis, spectroscopic characterization, biological screenings, DNA binding study and POM analyses of transition metal carboxylates.

    PubMed

    Uddin, Noor; Sirajuddin, Muhammad; Uddin, Nizam; Tariq, Muhammad; Ullah, Hameed; Ali, Saqib; Tirmizi, Syed Ahmed; Khan, Abdur Rehman

    2015-04-05

    This article contains the synthesis of a novel carboxylic acid derivative, its transition metal complexes and evaluation of biological applications. Six carboxylate complexes of transition metals, Zn(II) and Hg(II), have been successfully synthesized and characterized by FT-IR and NMR (1H, 13C). The ligand, HL, (4-[(2,6-Diethylphenyl)amino]-4-oxobutanoic acid) was also characterized by single crystal X-ray analysis. The complexation occurs via oxygen atoms of the carboxylate moiety. FT-IR date show the bidentate nature of the carboxylate moiety of the ligand as the Δν value in all complexes is less than that of the free ligand. The ligand and its complexes were screened for antifungal and antileishmanial activities. The results showed that the ligand and its complexes are active with few exceptions. UV-visible spectroscopy and viscometry results reveal that the ligand and its complexes interact with the DNA via intercalative mode of interaction. A new and efficient strategy to identify the pharmacophores and anti-pharmacophores sites in carboxylate derivatives for the antibacterial/antifungal activity using Petra, Osiris and Molinspiration (POM) analyses was also carried out. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Synthesis, spectroscopic characterization, biological screenings, DNA binding study and POM analyses of transition metal carboxylates

    NASA Astrophysics Data System (ADS)

    Uddin, Noor; Sirajuddin, Muhammad; Uddin, Nizam; Tariq, Muhammad; Ullah, Hameed; Ali, Saqib; Tirmizi, Syed Ahmed; Khan, Abdur Rehman

    2015-04-01

    This article contains the synthesis of a novel carboxylic acid derivative, its transition metal complexes and evaluation of biological applications. Six carboxylate complexes of transition metals, Zn(II) and Hg(II), have been successfully synthesized and characterized by FT-IR and NMR (1H, 13C). The ligand, HL, (4-[(2,6-Diethylphenyl)amino]-4-oxobutanoic acid) was also characterized by single crystal X-ray analysis. The complexation occurs via oxygen atoms of the carboxylate moiety. FT-IR date show the bidentate nature of the carboxylate moiety of the ligand as the Δν value in all complexes is less than that of the free ligand. The ligand and its complexes were screened for antifungal and antileishmanial activities. The results showed that the ligand and its complexes are active with few exceptions. UV-visible spectroscopy and viscometry results reveal that the ligand and its complexes interact with the DNA via intercalative mode of interaction. A new and efficient strategy to identify the pharmacophores and anti-pharmacophores sites in carboxylate derivatives for the antibacterial/antifungal activity using Petra, Osiris and Molinspiration (POM) analyses was also carried out.

  19. Syntheses, spectroscopic characterization, thermal study, molecular modeling, and biological evaluation of novel Schiff's base benzil bis(5-amino-1,3,4-thiadiazole-2-thiol) with Ni(II), and Cu(II) metal complexes.

    PubMed

    Chandra, Sulekh; Gautam, Seema; Rajor, Hament Kumar; Bhatia, Rohit

    2015-02-25

    Novel Schiff's base ligand, benzil bis(5-amino-1,3,4-thiadiazole-2-thiol) was synthesized by the condensation of benzil and 5-amino-1,3,4-thiadiazole-2-thiol in 1:2 ratio. The structure of ligand was determined on the basis of elemental analyses, IR, (1)H NMR, mass, and molecular modeling studies. Synthesized ligand behaved as tetradentate and coordinated to metal ion through sulfur atoms of thiol ring and nitrogen atoms of imine group. Ni(II), and Cu(II) complexes were synthesized with this nitrogen-sulfur donor (N2S2) ligand. Metal complexes were characterized by elemental analyses, molar conductance, magnetic susceptibility measurements, IR, electronic spectra, EPR, thermal, and molecular modeling studies. All the complexes showed molar conductance corresponding to non-electrolytic nature, expect [Ni(L)](NO3)2 complex, which was 1:2 electrolyte in nature. [Cu(L)(SO4)] complex may possessed square pyramidal geometry, [Ni(L)](NO3)2 complex tetrahedral and rest of the complexes six coordinated octahedral/tetragonal geometry. Newly synthesized ligand and its metal complexes were examined against the opportunistic pathogens. Results suggested that metal complexes were more biological sensitive than free ligand. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Metal-metal interactions in tetrakis(diphenylphosphino)benzene-bridged dimetallic complexes and their related coordination polymers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Pei-Wei; Fox, M.A.

    1994-06-22

    Electrochemical, EPR, and spectroelectrochemical methods have been used to probe electronic coupling through a 1,2,4,5-tetrakis(diphenylphosphino)benzene bridging ligand connecting metal centers in several Ni-, Pd-, and Pt-containing dimetallic complexes. These dimetalated complexes showed weak intervalence charge transfer (IT) bands and slightly shifted redox potentials in comparison with their monometallic models. A Marcus-Hush analysis of the energies of the IT bands for the electrochemically generated mixed-valence heterodimetallic complexes (Ni{sup o}-Pd{sup II} and Ni{sup o}-Pt{sup II}, respectively) established the magnitude of intermetallic electronic coupling. The weak thermal coupling observed in these dimetalated complexes is consistent with the very low conductivities (10{sup {minus}8}-10{sup {minus}10}{omega}{supmore » -1} cm{sup {minus}1}) observed in the polymeric analogs of these complexes, namely, the newly prepared metal coordination polymers (M = Ni{sup II}, Pd{sup II}, Pt{sup II}) with 1,2,4,5-tetrakis(diphenylphosphino)benzene.« less

  1. Single-molecule force spectroscopy study of interactions between angiotensin II type 1 receptor and different biased ligands in living cells.

    PubMed

    Li, Wenhui; Xu, Jiachao; Kou, Xiaolong; Zhao, Rong; Zhou, Wei; Fang, Xiaohong

    2018-05-01

    Angiotensin II type 1 receptor (AT1R), a typical G protein-coupled receptor, plays a key role in regulating many cardiovascular functions. Different ligands can bind with AT1R to selectively activate either G protein (Gq) or β-arrestin (β-arr) pathway, or both pathways, but the molecular mechanism is not clear yet. In this work, we used, for the first time, atomic force microscopy-based single molecule force spectroscopy (SMFS) to study the interactions of AT1R with three types of ligands, balanced ligand, Gq-biased ligand, and β-arr-biased ligand, in living cells. The results revealed their difference in binding force and binding stability. The complex of the Gq-biased ligand-AT1R overcame two energy barriers with an intermediate state during dissociation, whereas that of β-arr-biased ligand-AT1R complex overcame one energy barrier. This indicated that AT1R had different ligand-binding conformational substates and underwent different structural changes to activate downstream signaling pathways with variable agonist efficacies. Quantitative analysis of AT1R-ligand binding in living cells at the single-molecule level offers a new tool to study the molecular mechanism of AT1R biased activation. Graphical Abstract Single-molecule force measurement on the living cell expressing AT1R-eGFP with a ligand modified AFM tip (left), the dynamic force spectra of β-arrestin biased ligands-AT1R (middle), and Gq-biased ligands-AT1R (right). The complexes of β-arr-biased ligand-AT1R overcame one energy barrier, with one linear region in the spectra, whereas the Gq-biased ligand-AT1R complexes overcame two energy barriers with two linear regions.

  2. Photoinduced energy transfer in transition metal complex oligomers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1997-04-01

    The work we have done over the past three years has been directed toward the preparation, characterization and photophysical examination of mono- and bimetallic diimine complexes. The work is part of a broader project directed toward the development of stable, efficient, light harvesting arrays of transition metal complex chromophores. One focus has been the synthesis of rigid bis-bidentate and bis-tridentate bridging ligands. We have managed to make the ligand bphb in multigram quantities from inexpensive starting materials. The synthetic approach used has allowed us prepare a variety of other ligands which may have unique applications (vide infra). We have prepared,more » characterized and examined the photophysical behavior of Ru(II) and Re(I) complexes of the ligands. Energy donor/acceptor complexes of bphb have been prepared which exhibit nearly activationless energy transfer. Complexes of Ru(II) and Re(I) have also been prepared with other polyunsaturated ligands in which two different long lived ( > 50 ns) excited states exist; results of luminescence and transient absorbance measurements suggest the two states are metal-to-ligand charge transfer and ligand localized {pi}{r_arrow}{pi}* triplets. Finally, we have developed methods to prepare polymetallic complexes which are covalently bound to various surfaces. The long term objective of this work is to make light harvesting arrays for the sensitization of large band gap semiconductors. Details of this work are provided in the body of the report.« less

  3. AMMOS2: a web server for protein–ligand–water complexes refinement via molecular mechanics

    PubMed Central

    Labbé, Céline M.; Pencheva, Tania; Jereva, Dessislava; Desvillechabrol, Dimitri; Becot, Jérôme; Villoutreix, Bruno O.; Pajeva, Ilza

    2017-01-01

    Abstract AMMOS2 is an interactive web server for efficient computational refinement of protein–small organic molecule complexes. The AMMOS2 protocol employs atomic-level energy minimization of a large number of experimental or modeled protein–ligand complexes. The web server is based on the previously developed standalone software AMMOS (Automatic Molecular Mechanics Optimization for in silico Screening). AMMOS utilizes the physics-based force field AMMP sp4 and performs optimization of protein–ligand interactions at five levels of flexibility of the protein receptor. The new version 2 of AMMOS implemented in the AMMOS2 web server allows the users to include explicit water molecules and individual metal ions in the protein–ligand complexes during minimization. The web server provides comprehensive analysis of computed energies and interactive visualization of refined protein–ligand complexes. The ligands are ranked by the minimized binding energies allowing the users to perform additional analysis for drug discovery or chemical biology projects. The web server has been extensively tested on 21 diverse protein–ligand complexes. AMMOS2 minimization shows consistent improvement over the initial complex structures in terms of minimized protein–ligand binding energies and water positions optimization. The AMMOS2 web server is freely available without any registration requirement at the URL: http://drugmod.rpbs.univ-paris-diderot.fr/ammosHome.php. PMID:28486703

  4. Robust scoring functions for protein-ligand interactions with quantum chemical charge models.

    PubMed

    Wang, Jui-Chih; Lin, Jung-Hsin; Chen, Chung-Ming; Perryman, Alex L; Olson, Arthur J

    2011-10-24

    Ordinary least-squares (OLS) regression has been used widely for constructing the scoring functions for protein-ligand interactions. However, OLS is very sensitive to the existence of outliers, and models constructed using it are easily affected by the outliers or even the choice of the data set. On the other hand, determination of atomic charges is regarded as of central importance, because the electrostatic interaction is known to be a key contributing factor for biomolecular association. In the development of the AutoDock4 scoring function, only OLS was conducted, and the simple Gasteiger method was adopted. It is therefore of considerable interest to see whether more rigorous charge models could improve the statistical performance of the AutoDock4 scoring function. In this study, we have employed two well-established quantum chemical approaches, namely the restrained electrostatic potential (RESP) and the Austin-model 1-bond charge correction (AM1-BCC) methods, to obtain atomic partial charges, and we have compared how different charge models affect the performance of AutoDock4 scoring functions. In combination with robust regression analysis and outlier exclusion, our new protein-ligand free energy regression model with AM1-BCC charges for ligands and Amber99SB charges for proteins achieve lowest root-mean-squared error of 1.637 kcal/mol for the training set of 147 complexes and 2.176 kcal/mol for the external test set of 1427 complexes. The assessment for binding pose prediction with the 100 external decoy sets indicates very high success rate of 87% with the criteria of predicted root-mean-squared deviation of less than 2 Å. The success rates and statistical performance of our robust scoring functions are only weakly class-dependent (hydrophobic, hydrophilic, or mixed).

  5. Silver baits for the "miraculous draught" of amphiphilic lanthanide helicates.

    PubMed

    Terazzi, Emmanuel; Guénée, Laure; Varin, Johan; Bocquet, Bernard; Lemonnier, Jean-François; Emery, Daniel; Mareda, Jiri; Piguet, Claude

    2011-01-03

    The axial connection of flexible thioalkyls chains of variable length (n=1-12) within the segmental bis-tridentate 2-benzimidazole-8-hydroxyquinoline ligands [L12(Cn) -2 H](2-) provides amphiphilic receptors designed for the synthesis of neutral dinuclear lanthanides helicates. However, the stoichiometric mixing of metals and ligands in basic media only yields intricate mixtures of poorly soluble aggregates. The addition of Ag(I) in solution restores classical helicate architectures for n=3, with the quantitative formation of the discrete D(3) -symmetrical [Ln(2) Ag2(L12(C3) -2 H)(3) ](2+) complexes at millimolar concentration (Ln=La, Eu, Lu). The X-ray crystal structure supports the formation of [La(2) Ag(2) (L12(C3) -2 H)(3) ][OTf](2) , which exists in the solid state as infinite linear polymers bridged by S-Ag-S bonds. In contrast, molecular dynamics (MD) simulations in the gas phase and in solution confirm the experimental diffusion measurements, which imply the formation of discrete molecular entities in these media, in which the sulfur atoms of each lipophilic ligand are rapidly exchanged within the Ag(I) coordination sphere. Turned as a predictive tool, MD suggests that this Ag(I) templating effect is efficient only for n=1-3, while for n>3 very loose interactions occur between Ag(I) and the thioalkyl residues. The subsequent experimental demonstration that only 25 % of the total ligand speciation contributes to the formation of [Ln(2) Ag(2) (L12(C12) -2 H)(3) ](2+) in solution puts the bases for a rational approach for the design of amphiphilic helical complexes with predetermined molecular interfaces. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Tuning main group redox chemistry through steric loading: subvalent Group 13 metal complexes of carbazolyl ligands.

    PubMed

    Mansaray, Hassanatu B; Kelly, Michael; Vidovic, Dragoslav; Aldridge, Simon

    2011-05-02

    The ability of substituted carbazol-9-yl systems to ligate in σ fashion through the amido N-donor, or to adopt alternative coordination modes through the π system of the central five-membered ring, can be tuned by systematic variation in the steric demands of substituents in the 1- and 8-positions. The differing affinities of the two modes of coordination for hard and soft metal centres can be shown to influence not only cation selectivity, but also the redox properties of the metal centre. Thus, the highly sterically sterically demanding 1,3,6,8-tetra-tert-butylcarbazolyl ligand can be used to generate the structurally characterised amido-indium(I) complex, [{(tBu(4)carb)In}(n)], (together with its isostructural thallium counterpart) in which the metal centre interacts with the central pyrrolyl ring in η(3) fashion [d(In-N)=2.679(3) Å; d(In-C)=2.819(3), 2.899(3) Å]. By contrast, the smaller 3,6-di-tert-butylcarbazolyl system is less able to restrict the metal centre from binding at the anionic nitrogen donor in the plane of the carbazolyl ligand (i.e. in σ fashion). Analogous chemistry with In(I) precursors therefore leads to disproportionation to the much harder In(II) [and In(0)], and the formation of the mixed-valence product, [In(2){In(2)(tBu(2)carb)(6)}], a homoleptic molecular [In(4)(NR(2))(6)] system. This chemistry reveals a flexibility of ligation for carbazolyl systems that contrasts markedly with that of the similarly sterically encumbered terphenyl ligand family. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Understanding M-ligand bonding and mer-/fac-isomerism in tris(8-hydroxyquinolinate) metallic complexes.

    PubMed

    Lima, Carlos F R A C; Taveira, Ricardo J S; Costa, José C S; Fernandes, Ana M; Melo, André; Silva, Artur M S; Santos, Luís M N B F

    2016-06-28

    Tris(8-hydroxyquinolinate) metallic complexes, Mq3, are one of the most important classes of organic semiconductor materials. Herein, the nature of the chemical bond in Mq3 complexes and its implications on their molecular properties were investigated by a combined experimental and computational approach. Various Mq3 complexes, resulting from the alteration of the metal and substitution of the 8-hydroxyquinoline ligand in different positions, were prepared. The mer-/fac-isomerism in Mq3 was explored by FTIR and NMR spectroscopy, evidencing that, irrespective of the substituent, mer- and fac-are the most stable molecular configurations of Al(iii) and In(iii) complexes, respectively. The relative M-ligand bond dissociation energies were evaluated experimentally by electrospray ionization tandem mass spectrometry (ESI-MS-MS), showing a non-monotonous variation along the group (Al > In > Ga). The results reveal a strong covalent character in M-ligand bonding, which allows for through-ligand electron delocalization, and explain the preferred molecular structures of Mq3 complexes as resulting from the interplay between bonding and steric factors. The mer-isomer reduces intraligand repulsions, being preferred for smaller metals, while the fac-isomer is favoured for larger metals where stronger covalent M-ligand bonds can be formed due to more extensive through-ligand conjugation mediated by metal "d" orbitals.

  8. Evaluation of Cu(i) binding to the E2 domain of the amyloid precursor protein - a lesson in quantification of metal binding to proteins via ligand competition.

    PubMed

    Young, Tessa R; Wedd, Anthony G; Xiao, Zhiguang

    2018-01-24

    The extracellular domain E2 of the amyloid precursor protein (APP) features a His-rich metal-binding site (denoted as the M1 site). In conjunction with surrounding basic residues, the site participates in interactions with components of the extracellular matrix including heparins, a class of negatively charged polysaccharide molecules of varying length. This work studied the chemistry of Cu(i) binding to APP E2 with the probe ligands Bcs, Bca, Fz and Fs. APP E2 forms a stable Cu(i)-mediated ternary complex with each of these anionic ligands. The complex with Bca was selected for isolation and characterization and was demonstrated, by native ESI-MS analysis, to have the stoichiometry E2 : Cu(i) : Bca = 1 : 1 : 1. Formation of these ternary complexes is specific for the APP E2 domain and requires Cu(i) coordination to the M1 site. Mutation of the M1 site was consistent with the His ligands being part of the E2 ligand set. It is likely that interactions between the negatively charged probe ligands and a positively charged patch on the surface of APP E2 are one aspect of the generation of the stable ternary complexes. Their formation prevented meaningful quantification of the affinity of Cu(i) binding to the M1 site with these probe ligands. However, the ternary complexes are disrupted by heparin, allowing reliable determination of a picomolar Cu(i) affinity for the E2/heparin complex with the Fz or Bca probe ligands. This is the first documented example of the formation of stable ternary complexes between a Cu(i) binding protein and a probe ligand. The ready disruption of the complexes by heparin identified clear 'tell-tale' signs for diagnosis of ternary complex formation and allowed a systematic review of conditions and criteria for reliable determination of affinities for metal binding via ligand competition. This study also provides new insights into a potential correlation of APP functions regulated by copper binding and heparin interaction.

  9. Synthesis and antimalarial activity of metal complexes of cross-bridged tetraazamacrocyclic ligands.

    PubMed

    Hubin, Timothy J; Amoyaw, Prince N-A; Roewe, Kimberly D; Simpson, Natalie C; Maples, Randall D; Carder Freeman, TaRynn N; Cain, Amy N; Le, Justin G; Archibald, Stephen J; Khan, Shabana I; Tekwani, Babu L; Khan, M O Faruk

    2014-07-01

    Using transition metals such as manganese(II), iron(II), cobalt(II), nickel(II), copper(II), and zinc(II), several new metal complexes of cross-bridged tetraazamacrocyclic chelators namely, cyclen- and cyclam-analogs with benzyl groups, were synthesized and screened for in vitro antimalarial activity against chloroquine-resistant (W2) and chloroquine-sensitive (D6) strains of Plasmodium falciparum. The metal-free chelators tested showed little or no antimalarial activity. All the metal complexes of the dibenzyl cross-bridged cyclam ligand exhibited potent antimalarial activity. The Mn(2+) complex of this ligand was the most potent with IC50s of 0.127 and 0.157μM against the chloroquine-sensitive (D6) and chloroquine-resistant (W2) P. falciparum strains, respectively. In general, the dibenzyl hydrophobic ligands showed better anti-malarial activity compared to the activity of monobenzyl ligands, potentially because of their higher lipophilicity and thus better cell penetration ability. The higher antimalarial activity displayed by the manganese complex for the cyclam ligand in comparison to that of the cyclen, correlates with the larger pocket of cyclam compared to that of cyclen which produces a more stable complex with the Mn(2+). Few of the Cu(2+) and Fe(2+) complexes also showed improvement in activity but Ni(2+), Co(2+) and Zn(2+) complexes did not show any improvement in activity upon the metal-free ligands for anti-malarial development. Published by Elsevier Ltd.

  10. Improved purification of immunoglobulin G from plasma by mixed-mode chromatography.

    PubMed

    Chai, Dong-Sheng; Sun, Yan; Wang, Xiao-Ning; Shi, Qing-Hong

    2014-12-01

    Efficient loading of immunoglobulin G in mixed-mode chromatography is often a serious bottleneck in the chromatographic purification of immunoglobulin G. In this work, a mixed-mode ligand, 4-(1H-imidazol-1-yl) aniline, was coupled to Sepharose Fast Flow to fabricate AN SepFF adsorbents with ligand densities of 15-64 mmol/L, and the chromatographic performances of these adsorbents were thoroughly investigated to identify a feasible approach to improve immunoglobulin G purification. The results indicate that a critical ligand density exists for immunoglobulin G on the AN SepFF adsorbents. Above the critical ligand density, the adsorbents showed superior selectivity to immunoglobulin G at high salt concentrations, and also exhibited much higher dynamic binding capacities. For immunoglobulin G purification, both the yield and binding capacity increased with adsorbent ligand density along with a decrease in purity. It is difficult to improve the binding capacity, purity, and yield of immunoglobulin G simultaneously in AN SepFF chromatography. By using tandem AN SepFF chromatography, a threefold increase in binding capacity as well as high purity and yield of immunoglobulin G were achieved. Therefore, the tandem chromatography demonstrates that AN SepFF adsorbent is a practical and feasible alternative to MEP HyperCel adsorbents for immunoglobulin G purification. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. pH-sensitive polymer-modified liposome-based immunity-inducing system: Effects of inclusion of cationic lipid and CpG-DNA.

    PubMed

    Yoshizaki, Yuta; Yuba, Eiji; Sakaguchi, Naoki; Koiwai, Kazunori; Harada, Atsushi; Kono, Kenji

    2017-10-01

    Efficient vaccine carriers for cancer immunotherapy require two functions: antigen delivery to dendritic cells (DCs) and the activation of DCs, a so-called adjuvant effect. We previously reported antigen delivery system using liposomes modified with pH-sensitive polymers, such as 3-methylglutarylated hyperbranched poly(glycidol) (MGlu-HPG), for the induction of antigen-specific immune responses. We reported that inclusion of cationic lipids to MGlu-HPG-modified liposomes activates DCs and enhances antitumor effects. In this study, CpG-DNA, a ligand to Toll-like receptor 9 (TLR9) expressing in endosomes of DCs, was introduced to MGlu-HPG-modified liposomes containing cationic lipids using two complexation methods (Pre-mix and Post-mix) for additional activation of antigen-specific immunity. For Pre-mix, thin membrane of lipids and polymers were dispersed by a mixture of antigen/CpG-DNA. For Post-mix, CpG-DNA was added to pre-formed liposomes. Both Pre-mix and Post-mix delivered CpG-DNA to DC endosomes, where TLR9 is expressing, more efficiently than free CpG-DNA solution did. These liposomes promoted cytokine production from DCs and the expression of co-stimulatory molecules in vitro and induced antigen-specific immune responses in vivo. Both Pre-mix and Post-mix exhibited strong antitumor effects compared with conventional pH-sensitive polymer-modified liposomes. Results show that inclusion of multiple adjuvant molecules into pH-sensitive polymer-modified liposomes and suitable CpG-DNA complexation methods are important to design potent vaccine carriers. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Pore water distributions of dissolved copper and copper-complexing ligands in estuarine and coastal marine sediments

    NASA Astrophysics Data System (ADS)

    Skrabal, Stephen A.; Donat, John R.; Burdige, David J.

    2000-06-01

    The distributions and seasonal variability of total dissolved Cu (TDCu) and Cu-complexing ligands in sediment pore waters have been investigated at two contrasting sites in the Chesapeake Bay. Two ligand classes, which differ on the basis of the conditional stability constants ( K'cond) of their Cu complexes, were detected at all depths at both sites. At the sulfidic, muddy, mid-Bay Sta. M, concentrations and values of log K'cond ranged from 390-12,500 nM and ≥7.2->8.9, respectively, for the stronger ligand class ( L1 S) and 75-6,420 nM and 6.2-7.9 for the weaker ligand class ( L2 S). At the bioturbated, sandy Sta. S in the lower Bay, respective concentrations and values of log K'cond ranged from 135-807 nM and ≥7.6-≥10.2 for L1 S and 40-1,410 nM and 6.6-9.2 for L2 S. For comparison, one pore water profile from a slope station off of the Chesapeake Bay also showed the presence of two ligand classes, with respective concentrations and values of log K'cond of 140-270 nM and 8->11 for L1 S and 30-180 nM and 7-10 for L2 S. These ligands are in large excess relative to ambient TDCu concentrations (<0.1-24.3 nM), thereby maintaining very low inorganic Cu concentrations (typically <0.1 to <100 pM) and a high degree of organic complexation (87.2->99.9%) of Cu in Bay and slope sediment pore waters. Thus, virtually all TDCu fluxing from these sediments is complexed during sediment-water exchange. A relatively small fraction of the TDCu is exchanged as inorganic species, which are widely regarded as the most bioavailable form of Cu. Higher ligand concentrations at Sta. M suggest that sulfide or organic ligands containing reduced S contribute to the pool of complexing ligands; however, the exact nature and sources of the ligands in Bay pore waters are not known. The progressive increase in conditional stability constants of the CuL 2 S complexes from the mid-Bay to the slope sediments may reflect differences in biological or chemical processes at each site, as well as differences in the type of Cu-complexing organic matter. Total ligand concentrations ( L1 S + L2 S) are 15 to >100 times higher in the upper intervals of the pore waters relative to ligand concentrations in the bottom waters of the Chesapeake Bay (30-60 nM), consistent with previous observations of fluxes of these ligands from the sediments to overlying waters. These results suggest that sediments are potentially significant sources of Cu-complexing ligands to the overlying waters of the Chesapeake Bay, and perhaps, other shallow water estuarine and coastal environments. Copper-complexing ligands released from sediment pore waters may play an important role in influencing Cu speciation in overlying waters.

  13. What a difference a 5f element makes: trivalent and tetravalent uranium halide complexes supported by one and two bis[2-(diisopropylphosphino)-4-methylphenyl]amido (PNP) ligands.

    PubMed

    Cantat, Thibault; Scott, Brian L; Morris, David E; Kiplinger, Jaqueline L

    2009-03-02

    The coordination behavior of the bis[2-(diisopropylphosphino)-4-methylphenyl]amido ligand (PNP) toward UI3(THF)4 and UCl4 has been investigated to access new uranium(III) and uranium(IV) halide complexes supported by one and two PNP ligands. The reaction between (PNP)K (6) and 1 equiv of UI3(THF)4 afforded the trivalent halide complex (PNP)UI2(4-tBu-pyridine)2 (7) in the presence of 4-tert-butylpyridine. The same reaction carried out with UCl4 and no donor ligand gave [(PNP)UCl3]2 (8), in which the uranium coordination sphere in the (PNP)UCl3 unit is completed by a bridging chloride ligand. When UCl4 is reacted with 1 equiv (PNP)K (6) in the presence of THF, trimethylphosphine oxide (TMPO), or triphenylphosphineoxide (TPPO), the tetravalent halide complexes (PNP)UCl3(THF) (9), (PNP)UCl3(TMPO)2 (10), and (PNP)UCl3(TPPO) (11), respectively, are formed in excellent yields. The bis(PNP) complexes of uranium(III), (PNP)2UI (12), and uranium(IV), (PNP)2UCl2 (13), were easily isolated from the analogous reactions between 2 equiv of 6 and UI3(THF)4 or UCl4, respectively. Complexes 12 and 13 represent the first examples of complexes featuring two PNP ligands coordinated to a single metal center. Complexes 7-13 have been characterized by single-crystal X-ray diffraction and 1H and 31P NMR spectroscopy. The X-ray structures demonstrate the ability of the PNP ligand to adopt new coordination modes upon coordination to uranium. The PNP ligand can adopt both pseudo-meridional and pseudo-facial geometries when it is kappa3-(P,N,P) coordinated, depending on the steric demand at the uranium metal center. Additionally, its hemilabile character was demonstrated with an unusual kappa2-(P,N) coordination mode that is maintained in both the solid-state and in solution. Comparison of the structures of the mono(PNP) and bis(PNP) complexes 7, 9, 11-13 with their respective C5Me5 analogues 1-4 undoubtedly show that a more sterically congested environment is provided by the PNP ligand. The electronic influence of replacing the C5Me5 ligands with PNP was investigated using electronic absorption spectroscopy and electrochemistry. For 12 and 13, a chemically reversible wave corresponding to the UIV/UIII redox transformation comparable to that for 3 and 4 was observed. However, a 350 mV shift of this couple to more negative potentials was observed on substitution of the bis(C5Me5) by the bis(PNP) framework, therefore pointing to a greater electronic density at the metal center in the PNP complexes. The UV-visible region of the electronic spectra for the mono(PNP) and bis(PNP) complexes appear to be dominated by PNP ligand-based transitions that are shifted to higher energy in the uranium complexes than in the simple ligand anion (6) spectrum, for both the UVI and UIII oxidation states. The near IR region in complexes 1-4 and 7, 9, 11-13 is dominated by f-f transitions derived from the 5f3 and 5f2 valence electronic configuration of the metal center. Though complexes of both ligand sets exhibit similar intensities in their f-f bands, a somewhat larger ligand-field splitting was observed for the PNP system, consistent with its higher electron donating ability.

  14. Remediation of lead-contaminated soil with non-toxic biodegradable natural ligands extracted from soybean.

    PubMed

    Lee, Yong-Woo; Kim, Chulsung

    2012-01-01

    Bench-scale soil washing studies were performed to evaluate the potential application of non-toxic, biodegradable extracted soybean-complexing ligands for the remediation of lead-contaminated soils. Results showed that, with extracted soybean-complexing ligands, lead solubility extensively increased when pH of the solution was higher than 6, and approximately 10% (500 mg/kg) of lead was removed from a rifle range soil. Two potential primary factors controlling the effectiveness of lead extraction from lead-contaminated soils with natural ligands are adsorption of extracted aqueous lead ions onto the ground soybean and the pH of the extraction solution. More complexing ligands were extracted from the ground soybean as the reaction pH increased. As a result, significantly higher lead extraction efficiency was observed under basic environments. In addition, less adsorption onto soybean was observed when the pH of the solution was higher than 7. Among two available Lewis base functional groups in the extracted soybean-complexing ligands such as carboxylate and the alpha-amino functional groups, the non-protonated alpha-amino functional groups may play an important role for the dissolution of lead from lead-contaminated soil through the formation of soluble lead--ligand complexes.

  15. Structural study of complexes formed by acidic and neutral organophosphorus reagents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Braatz, Alexander D.; Antonio, Mark R.; Nilsson, Mikael

    The coordination of the trivalent 4f ions, Ln = La 3+, Dy 3+, and Lu 3+, with neutral and acidic organophosphorus reagents, both individually and combined, was studied by use of X-ray absorption spectroscopy. These studies provide metrical information about the interatomic interactions between these cations and the ligands tri- n-butyl phosphate (TBP) and di- n-butyl phosphoric acid (HDBP), whose behavior are of practical importance to chemical separation processes that are currently used on an industrial scale. Previous studies have suggested the existence of complexes involving a mixture of ligands, accounting for extraction synergy. Through systematic variation of the aqueousmore » phase acidity and extractant concentration and combination, we have found that complexes with Ln and TBP : HDBP at any mixture and HDBP alone involve direct Ln–O interactions involving 6 oxygen atoms and distant Ln–P interactions involving on average 3–5 phosphorus atoms per Ln ion. It was also found that Ln complexes formed by TBP alone seem to favor eight oxygen coordination, though we were unable to obtain metrical results regarding the distant Ln–P interactions due to the low signal attributed to a lower concentration of Ln ions in the organic phases. Our study does not support the existence of mixed Ln–TBP–HDBP complexes but, rather, indicates that the lanthanides are extracted as either Ln–HDBP complexes or Ln–TBP complexes and that these complexes exist in different ratios depending on the conditions of the extraction system. Furthermore, this fundamental structural information offers insight into the solvent extraction processes that are taking place and are of particular importance to issues arising from the separation and disposal of radioactive materials from used nuclear fuel.« less

  16. Structural study of complexes formed by acidic and neutral organophosphorus reagents

    DOE PAGES

    Braatz, Alexander D.; Antonio, Mark R.; Nilsson, Mikael

    2016-12-23

    The coordination of the trivalent 4f ions, Ln = La 3+, Dy 3+, and Lu 3+, with neutral and acidic organophosphorus reagents, both individually and combined, was studied by use of X-ray absorption spectroscopy. These studies provide metrical information about the interatomic interactions between these cations and the ligands tri- n-butyl phosphate (TBP) and di- n-butyl phosphoric acid (HDBP), whose behavior are of practical importance to chemical separation processes that are currently used on an industrial scale. Previous studies have suggested the existence of complexes involving a mixture of ligands, accounting for extraction synergy. Through systematic variation of the aqueousmore » phase acidity and extractant concentration and combination, we have found that complexes with Ln and TBP : HDBP at any mixture and HDBP alone involve direct Ln–O interactions involving 6 oxygen atoms and distant Ln–P interactions involving on average 3–5 phosphorus atoms per Ln ion. It was also found that Ln complexes formed by TBP alone seem to favor eight oxygen coordination, though we were unable to obtain metrical results regarding the distant Ln–P interactions due to the low signal attributed to a lower concentration of Ln ions in the organic phases. Our study does not support the existence of mixed Ln–TBP–HDBP complexes but, rather, indicates that the lanthanides are extracted as either Ln–HDBP complexes or Ln–TBP complexes and that these complexes exist in different ratios depending on the conditions of the extraction system. Furthermore, this fundamental structural information offers insight into the solvent extraction processes that are taking place and are of particular importance to issues arising from the separation and disposal of radioactive materials from used nuclear fuel.« less

  17. The preparation and use of metal salen complexes derived from cyclobutane diamine

    NASA Astrophysics Data System (ADS)

    Patil, Smita

    The helix is an important chiral motif in nature, there is increasing development in field of helical transition metal complexes and related supramolecular structures. Hence, the goals of this work are to apply the principles of helicity in order to produce metal complexes with predictable molecular shapes and to study their properties as asymmetric catalysts. Computational studies suggest that the (1R,2 R)-cyclobutyldiamine unit can produce highly twisted salen complexes with a large energy barrier between the M and P helical forms. To test this prediction, the tartrate salt of (1R,2R)-cyclobutyldiamine was synthesized and condensed with a series of saliclaldehydes to produce novel salen ligands. The salicylaldehydes chosen have extended phenanthryl or benz[a]anthryl sidearms to encourage formation of helical coordination complexes. These ligands were metallated with zinc, iron and manganese salts to produce salen metal complexes which were characterized by NMR analysis, high-resolution mass spectrometry, and IR spectroscopy. A second ligand type, neutral bis(pyridine-imine) has also been synthesized from (1R,2R)-cyclobutyldiamine and quinolylaldehydes. The synthesis of bis(pyridine-imine) ligands was conducted using greener method, solvent assisted grinding. These ligands, in-situ with nickel metal salts, showed good catalytic activity for asymmetric Diels-Alder reactions. The third ligand type studied was chiral acid-functionalized Schiff-base ligands. These were synthesized by the condensation of 3-formyl-5-methyl salicylic acid and (1R,2R)-cyclobutyldiamine. With this type of ligand, there is possibility of producing both mono and dinuclear metal complexes. In our studies, we were only able to synthesize mononuclear complexs. These were tested as catalysts for asymmetric direct Mannich-type reaction, but were found to be ineffective.

  18. The adsorption and reaction of adenine nucleotides on montmorillonite

    NASA Technical Reports Server (NTRS)

    Ferris, James P.; Hagan, William J., Jr.

    1986-01-01

    The binding of AMP to Zn(2+)-montmorillonite is investigated in the presence of salts and Good's zwitterion buffers, PIPES and MES. The initial concentrations of nucleotide and the percent adsorbtion are used to calculate the adsorption isotherms, and the Langmuir adsorption equation is used for the analysis of data. The adsorption coefficient was found to be three times greater in the presence of 0.2 M PIPES than in its absence. In addition, basal spacings measured by X-ray diffraction were increased by the buffer. These results are interpreted in terms of a model in which the adsorption of AMP is mediated by a Zn(2+) complex of PIPES in different orientations in the interlamellar region of the montmorillonite. Mixed ligand complexes of this type are reminiscent of the complexes observed between metal ions and biological molecules in living systems.

  19. Nucleophilic reactivity of a series of peroxomanganese(III) complexes supported by tetradentate aminopyridyl ligands.

    PubMed

    Geiger, Robert A; Chattopadhyay, Swarup; Day, Victor W; Jackson, Timothy A

    2011-02-28

    Peroxomanganese(iii) adducts have been postulated as important intermediates in manganese-containing enzymes and small molecule oxidation catalysts. Synthetic peroxomanganese(iii) complexes are known to be nucleophilic and facilitate aldehyde deformylation, offering a convenient way to compare relative reactivities of complexes supported by different ligands. In this work, tetradentate dipyridyldiazacycloalkane ligands with systematically perturbed steric and electronic properties were used to generate a series of manganese(ii) and peroxomanganese(iii) complexes. X-Ray crystal structures of five manganese(ii) complexes all show the ligands bound to give trans complexes. Treatment of these Mn(II) precursors with H(2)O(2) and Et(3)N in MeCN at -40 °C results in the formation of peroxomanganese(iii) complexes that differ only in the identity of the pyridine ring substituent and/or the number of carbons in the diazacycloalkane backbone. To determine the effects of small ligand perturbations on the reactivity of the peroxo group, the more thermally stable peroxomanganese(iii) complexes were reacted with cyclohexanecarboxaldehyde. For these complexes, the rate of deformylation does not correlate with the expected nucleophilicity of the peroxomanganese(iii) unit, as the inclusion of methyl substituents on the pyridines affords slower deformylation rates. It is proposed that adding methyl-substituents to the pyridines, or increasing the number of carbons on the diazacycloalkane, sterically hinders nucleophilic attack of the peroxo ligand on the carbonyl carbon of the aldehyde.

  20. The physical chemistry of coordinated aqua-, ammine-, and mixed-ligand Co2+ complexes: DFT studies on the structure, energetics, and topological properties of the electron density.

    PubMed

    Varadwaj, Pradeep R; Marques, Helder M

    2010-03-07

    Spin-unrestricted DFT-X3LYP/6-311++G(d,p) calculations have been performed on a series of complexes of the form [Co(H(2)O)(6-n)(NH(3))(n)](2+) (n = 0-6) to examine their equilibrium gas-phase structures, energetics, and electronic properties in their quartet electronic ground states. In all cases Co(2+) in the energy-minimised structures is in a pseudo-octahedral environment. The calculations overestimate the Co-O and Co-N bond lengths by 0.04 and 0.08 A, respectively, compared to the crystallographically observed mean values. There is a very small Jahn-Teller distortion in the structure of [Co(H(2)O)(6)](2+) which is in contrast to the very marked distortions observed in most (but not all) structures of this cation that have been observed experimentally. The successive replacement of ligated H(2)O by NH(3) leads to an increase in complex stability by 6 +/- 1 kcal mol(-1) per additional NH(3) ligand. Calculations using UB3LYP give stabilisation energies of the complexes about 5 kcal mol(-1) smaller and metal-ligand bond lengths about 0.005 A longer than the X3LYP values since the X3LYP level accounts for the London dispersion energy contribution to the overall stabilisation energy whilst it is largely missing at the B3LYP level. From a natural population analysis (NPA) it is shown that the formation of these complexes is accompanied by ligand-to-metal charge transfer the extent of which increases with the number of NH(3) ligands in the coordination sphere of Co(2+). From an examination of the topological properties of the electron charge density using Bader's quantum theory of atoms in molecules it is shown that the electron density rho(c) at the Co-O bond critical points is generally smaller than that at the Co-N bond critical points. Hence Co-O bonds are weaker than Co-N bonds in these complexes and the stability increases as NH(3) replaces H(2)O in the metal's coordination sphere. Several indicators, including the sign and magnitude of the Laplacian of the charge density nabla(2)rho(c), the ratio of the local potential and kinetic energy densities, |V(c)|/G(c), the sign of the total energy density H(c), and the delocalisation index delta(Co,X), X = O, N, are used to show that whilst the metal-ligand bonds are predominantly ionic in nature, they gain covalent character as NH(3) replaces H(2)O, and the Co-N bond is significantly more covalent than the Co-O bond. We have shown that the delocalisation index delta(Co,X), X = O, N, is strongly correlated with the zero-point corrected stabilisation energy E demonstrating that delta can be used as a measure of the bond stability in these complexes.

  1. Synthesis, characterization and relativistic DFT studies of fac-Re(CO)3(isonicotinic acid)2Cl complex

    NASA Astrophysics Data System (ADS)

    Zúñiga, César; Oyarzún, Diego P.; Martin-Transaco, Rudy; Yáñez-S, Mauricio; Tello, Alejandra; Fuentealba, Mauricio; Cantero-López, Plinio; Arratia-Pérez, Ramiro

    2017-11-01

    In this work, new fac-Re(CO)3(PyCOOH)2Cl from isonicotinic acid ligand has been prepared. The complex was characterized by structural (single-crystal X-ray diffraction), elemental analysis and spectroscopic (FTIR, NMR, UV-vis spectroscopy) methods. DFT and TDDFT calculations were performed to obtain the electronic transitions involved in their UV-Vis spectrum. The excitation energies agree with the experimental results. The TDDFT calculations suggest that experimental mixed absorption bands at 270 and 314 nm could be assigned to (MLCT-LLCT)/MLCT transitions. Natural Bond Orbitals (NBO) approach has enabled studying the effects of bonding interactions. E(2) energies confirm the occurrence of ICT (Intra-molecular Charge Transfer) within the molecule.

  2. Liquid phase low temperature method for production of methanol from synthesis gas and catalyst formulations therefor

    DOEpatents

    Mahajan, Devinder

    2005-07-26

    The invention provides a homogenous catalyst for the production of methanol from purified synthesis gas at low temperature and low pressure which includes a transition metal capable of forming transition metal complexes with coordinating ligands and an alkoxide, the catalyst dissolved in a methanol solvent system, provided the transition metal complex is not transition metal carbonyl. The coordinating ligands can be selected from the group consisting of N-donor ligands, P-donor ligands, O-donor ligands, C-donor ligands, halogens and mixtures thereof.

  3. Cyclometalated ruthenium(II) complexes with a bis-carbene CCC-pincer ligand.

    PubMed

    Zhang, You-Ming; Shao, Jiang-Yang; Yao, Chang-Jiang; Zhong, Yu-Wu

    2012-08-21

    The first series of cyclometalated ruthenium complexes with a CCC-pincer bis-carbene ligand have been obtained as bench-stable compounds. Single-crystal X-ray analysis of one of these complexes with 4'-di-p-anisylamino-2,2':6',2''-terpyridine is presented. The Ru(II/III) redox potentials and MLCT absorptions of these complexes can be varied by attaching an electron-donating or -withdrawing group on the noncyclometalating ligand.

  4. Structural, Spectroscopic, and Electrochemical Properties of Nonheme Fe(II)-Hydroquinonate Complexes: Synthetic Models of Hydroquinone Dioxygenases

    PubMed Central

    Baum, Amanda E.; Park, Heaweon; Wang, Denan; Lindeman, Sergey V.; Fiedler, Adam T.

    2012-01-01

    Using the tris(3,5-diphenylpyrazol-1-yl)borate (Ph2Tp) supporting ligand, a series of mono- and dinuclear ferrous complexes containing hydroquinonate (HQate) ligands have been prepared and structurally characterized with X-ray crystallography. The monoiron(II) complexes serve as faithful mimics of the substrate-bound form of hydroquinone dioxygenases (HQDOs) – a family of nonheme Fe enzymes that catalyze the oxidative cleavage of 1,4-dihydroxybenzene units. Reflecting the variety of HQDO substrates, the synthetic complexes feature both mono- and bidentate HQate ligands. The bidentate HQates cleanly provide five-coordinate, high-spin Fe(II) complexes with the general formula [Fe(Ph2Tp)(HLX)] (1X), where HLX is a HQate(1-) ligand substituted at the 2-position with a benzimidazolyl (1A), acetyl (1B and 1C), or methoxy (1D) group. In contrast, the monodentate ligand 2,6-dimethylhydroquinone (H2LF) exhibited a greater tendency to bridge between two Fe(II) centers, resulting in formation of [Fe2(Ph2Tp)2(μ-LF)(MeCN)] [2F(MeCN)]. However, addition of one equivalent of “free” pyrazole (Ph2pz) ligand provided the mononuclear complex, [Fe(Ph2Tp)(HLF)(Ph2pz)] [1F(Ph2pz)], which is stabilized by an intramolecular hydrogen bond between the HLF and Ph2pz donors. Complex 1F(Ph2pz) represents the first crystallographically-characterized example of a monoiron complex bound to an untethered HQate ligand. The geometric and electronic structures of the Fe/HQate complexes were further probed with spectroscopic (UV-vis absorption, 1H NMR) and electrochemical methods. Cyclic voltammograms of complexes in the 1X series revealed an Fe-based oxidation between 0 and −300 mV (vs. Fc+/0), in addition to irreversible oxidation(s) of the HQate ligand at higher potentials. The one-electron oxidized species (1Xox) were examined with UV-vis absorption and electron paramagnetic resonance (EPR) spectroscopies. PMID:22930005

  5. The interaction of an ionizing ligand with enzymes having a single ionizing group. Implications for the reaction of folate analogues with dihydrofolate reductase.

    PubMed

    Stone, S R; Morrison, J F

    1983-06-29

    Binding theory has been developed for the reaction of an ionizing enzyme with an ionizing ligand. Consideration has been given to the most general scheme in which all possible reactions and interconversions occur as well as to schemes in which certain interactions do not take place. Equations have been derived in terms of the variation of the apparent dissociation constant (Kiapp) as a function of pH. These equations indicate that plots of pKiapp against pH can be wave-, half-bell- or bell-shaped according to the reactions involved. A wave is obtained whenever there is formation of the enzyme-ligand complexes, ionized enzyme . ionized ligand and protonated enzyme . protonated ligand. The additional formation of singly protonated enzyme-ligand complexes does not affect the wave form of the plot, but can influence the shape of the overall curve. The formation of either ionized enzyme . ionized ligand or protonated enzyme . protonated ligand, with or without singly protonated enzyme-ligand species, gives rise to a half-bell-shaped plot. If only singly protonated enzyme-ligand complexes are formed the plots are bell-shaped, but it is not possible to deduce the ionic forms of the reactants that participate in complex formation. Depending on the reaction pathways, true values for the ionization and dissociation constants may or may not be determined.

  6. Crystallization of bi-functional ligand protein complexes.

    PubMed

    Antoni, Claudia; Vera, Laura; Devel, Laurent; Catalani, Maria Pia; Czarny, Bertrand; Cassar-Lajeunesse, Evelyn; Nuti, Elisa; Rossello, Armando; Dive, Vincent; Stura, Enrico Adriano

    2013-06-01

    Homodimerization is important in signal transduction and can play a crucial role in many other biological systems. To obtaining structural information for the design of molecules able to control the signalization pathways, the proteins involved will have to be crystallized in complex with ligands that induce dimerization. Bi-functional drugs have been generated by linking two ligands together chemically and the relative crystallizability of complexes with mono-functional and bi-functional ligands has been evaluated. There are problems associated with crystallization with such ligands, but overall, the advantages appear to be greater than the drawbacks. The study involves two matrix metalloproteinases, MMP-12 and MMP-9. Using flexible and rigid linkers we show that it is possible to control the crystal packing and that by changing the ligand-enzyme stoichiometric ratio, one can toggle between having one bi-functional ligand binding to two enzymes and having the same ligand bound to each enzyme. The nature of linker and its point of attachment on the ligand can be varied to aid crystallization, and such variations can also provide valuable structural information about the interactions made by the linker with the protein. We report here the crystallization and structure determination of seven ligand-dimerized complexes. These results suggest that the use of bi-functional drugs can be extended beyond the realm of protein dimerization to include all drug design projects. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. A new synthesis route for Os-complex modified redox polymers for potential biofuel cell applications.

    PubMed

    Pöller, Sascha; Beyl, Yvonne; Vivekananthan, Jeevanthi; Guschin, Dmitrii A; Schuhmann, Wolfgang

    2012-10-01

    A new synthesis route for Os-complex modified redox polymers was developed. Instead of ligand exchange reactions for coordinative binding of suitable precursor Os-complexes at the polymer, Os-complexes already exhibiting the final ligand shell containing a suitable functional group were bound to the polymer via an epoxide opening reaction. By separation of the polymer synthesis from the ligand exchange reaction at the Os-complex, the modification of the same polymer backbone with different Os-complexes or the binding of the same Os-complex to a number of different polymer backbones becomes feasible. In addition, the Os-complex can be purified and characterized prior to its binding to the polymer. In order to further understand and optimize suitable enzyme/redox polymer systems concerning their potential application in biosensors or biofuel cells, a series of redox polymers was synthesized and used as immobilization matrix for Trametes hirsuta laccase. The properties of the obtained biofuel cell cathodes were compared with similar biocatalytic interfaces derived from redox polymers obtained via ligand exchange reaction of the parent Os-complex with a ligand integrated into the polymer backbone during the polymer synthesis. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Rhenium Complex with Noninnocent Dioxolene Ligand: Combined Experimental and ab Initio Study of [(3,5-di-tert-Bu2C6H2O2)ReCl3(OPPh3)].

    PubMed

    Abramov, Pavel A; Gritsan, Nina P; Suturina, Elizaveta A; Bogomyakov, Artem S; Sokolov, Maxim N

    2015-07-20

    Reaction of [ReOCl3(PPh3)2] with 3,5-di-tert-butyl-1,2-benzoquinone (3,5-DTBQ) in hot toluene produces a new complex [(3,5-di-tert-Bu2C6H2O2)Re(OPPh3)Cl3] (1), which was isolated and characterized by elemental analysis, IR, UV-vis spectroscopy, and cyclic voltammetry. In order to clarify the charge state of rhenium and the coordinated dioxolene ligand, X-ray experiments at 150 and 290 K were carried out. The C-O, C-C, and Re-O bond distances at both 150 and 290 K fall between those for semiquinolate (3,5-DTBSQ) and catecholate (3,5-DTBCat) forms; an empirical "metrical oxidation state" of the dioxolene ligand was estimated to be -1.5. High-level ab initio calculations (SOC-CASSCF/NEVPT2) revealed a mixed valence nature of the triplet ground state of complex 1 corresponding to a superposition of the Re(IV)-SQ and Re(V)-cat forms. In agreement with the high-level ab initio and DFT calculations, the temperature dependence of the magnetic susceptibility (5-300 K) is well described in the assumption of the triplet ground state, with the anomalously large zero-field splitting (ZFS) arising from the spin-orbit coupling. According to the ab initio calculations, all absorption bands in the visible region of the electronic absorptions spectrum are assigned to the LMCT bands, with significant contribution of the intraligand transition in the most intense band at 555 nm.

  9. N-Heterocyclic carbene metal complexes: photoluminescence and applications.

    PubMed

    Visbal, Renso; Gimeno, M Concepción

    2014-05-21

    This review covers the advances made in the synthesis of luminescent transition metal complexes containing N-heterocyclic carbene (NHC) ligands. The presence of a high field strength ligand such as an NHC in the complexes gives rise to high energy emissions, and consequently, to the desired blue colour needed for OLED applications. Furthermore, the great versatility of NHC ligands for structural modifications, together with the use of other ancillary ligands in the complex, provides numerous possibilities for the synthesis of phosphorescent materials, with emission colours over the entire visible spectra and potential future applications in fields such as photochemical water-splitting, chemosensors, dye-sensitised solar cells, oxygen sensors, and medicine.

  10. Metal–organic coordination architectures of tetrazole heterocycle ligands bearing acetate groups: Synthesis, characterization and magnetic properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Bo-Wen, E-mail: bowenhu@hit.edu.cn; Zheng, Xiang-Yu; Ding, Cheng

    2015-12-15

    Two new coordination complexes with tetrazole heterocycle ligands bearing acetate groups, [Co(L){sub 2}]{sub n} (1) and [Co{sub 3}(L){sub 4}(N{sub 3}){sub 2}·2MeOH]{sub n} (2) (L=tetrazole-1-acetate) have been synthesized and structurally characterized. Single crystal structure analysis shows that the cobalt-complex 1 has the 3D 3,6-connected (4{sup 2}.6){sub 2}(4{sup 4}.6{sup 2}.8{sup 8}.10)-ant topology. By introducing azide in this system, complex 2 forms the 2D network containing the [Co{sub 3}] units. And the magnetic properties of 1 and 2 have been studied. - Graphical abstract: The synthesis, crystal structure, and magnetic properties of the new coordination complexes with tetrazole heterocycle ligands bearing acetate groupsmore » are reported. - Highlights: • Two novel Cobalt(II) complexes with tetrazole acetate ligands were synthesized. • The magnetic properties of two complexes were studied. • Azide as co-ligand resulted in different structures and magnetic properties. • The new coordination mode of tetrazole acetate ligand was obtained.« less

  11. 1-(2-biphenyl)-3-methyltriazenide-N-oxide as a template for intramolecular copper(II)⋯arene-π interactions

    NASA Astrophysics Data System (ADS)

    Paraginski, Gustavo Luiz; Hörner, Manfredo; Back, Davi Fernando; Wohlmuth Alves dos Santos, Aline Joana Rolina; Beck, Johannes

    2016-01-01

    Deprotonated triazene N-oxides are able to chelate metal ions resulting in five-membered rings without carbon atoms. A new ligand 1-(2-biphenyl)-3-methyltriazenide-N-oxide (1) and its mononuclear Cu(II) complex (2) were synthesized to verify the capability of this ligand to promote Cu(II)⋯arene-π interactions. Ligand 1 and complex 2 have been characterized by elemental analysis, mass spectrometry (ESI(+)-TOF), IR, and UV-Vis spectroscopy. In addition, ligand 1 was characterized by 1H and 13C NMR and complex 2 by X-ray diffraction on single crystal. The crystal structure of complex 2 reveals a distorted tetrahedral geometry of Cu(II) in the first coordination sphere, which expands to a distorted octahedral environment by two symmetrically independent intramolecular metal⋯arene-π interactions. These interactions are provided by ortho-phenyl rings of both triazene N-oxide ligands 1. The aim of this work was to contribute to the architecture of new Cu(II)⋯arene-π complexes based on the synthesis of appropriated ligand for intramolecular interactions

  12. Effects of axial coordination on immobilized Mn(salen) catalysts.

    PubMed

    Teixeira, Filipe; Mosquera, Ricardo A; Melo, André; Freire, Cristina; Cordeiro, M Natália D S

    2014-11-13

    The consequences of anchoring Mn(salen) catalysts onto a supporting material using one of the vacant positions of the metal center are tackled by studying several Mn(salen) complexes with different axial ligands attached. This is accomplished using Density Functional Theory at the X3LYP/Triple-ζ level of theory and the Atom In Molecules formalism. The results suggest that both Mn(salen) complexes and their oxo derivatives should lie in a triplet ground state. Also, the choice of the axial ligand bears a moderate effect on the energy involved in the oxidation of the former to oxo-Mn(salen) complexes, as well as in the stability of such complexes toward ligand removal by HCl. AIM analysis further suggests that the salen ligand acts as a "charge reservoir" for the metal center, with strong correlations being obtained between the charge of salen and the electron population donated by the axial ligand to the metal center. Moreover, the results suggest that the Mn atom in Mn(salen) complexes holds different hybridization of its valence orbitals depending on the type of axial ligand present in the system.

  13. A general and fast scoring function for protein-ligand interactions: a simplified potential approach.

    PubMed

    Muegge, I; Martin, Y C

    1999-03-11

    A fast, simplified potential-based approach is presented that estimates the protein-ligand binding affinity based on the given 3D structure of a protein-ligand complex. This general, knowledge-based approach exploits structural information of known protein-ligand complexes extracted from the Brookhaven Protein Data Bank and converts it into distance-dependent Helmholtz free interaction energies of protein-ligand atom pairs (potentials of mean force, PMF). The definition of an appropriate reference state and the introduction of a correction term accounting for the volume taken by the ligand were found to be crucial for deriving the relevant interaction potentials that treat solvation and entropic contributions implicitly. A significant correlation between experimental binding affinities and computed score was found for sets of diverse protein-ligand complexes and for sets of different ligands bound to the same target. For 77 protein-ligand complexes taken from the Brookhaven Protein Data Bank, the calculated score showed a standard deviation from observed binding affinities of 1.8 log Ki units and an R2 value of 0.61. The best results were obtained for the subset of 16 serine protease complexes with a standard deviation of 1.0 log Ki unit and an R2 value of 0.86. A set of 33 inhibitors modeled into a crystal structure of HIV-1 protease yielded a standard deviation of 0.8 log Ki units from measured inhibition constants and an R2 value of 0.74. In contrast to empirical scoring functions that show similar or sometimes better correlation with observed binding affinities, our method does not involve deriving specific parameters that fit the observed binding affinities of protein-ligand complexes of a given training set. We compared the performance of the PMF score, Böhm's score (LUDI), and the SMOG score for eight different test sets of protein-ligand complexes. It was found that for the majority of test sets the PMF score performs best. The strength of the new approach presented here lies in its generality as no knowledge about measured binding affinities is needed to derive atomic interaction potentials. The use of the new scoring function in docking studies is outlined.

  14. Synthesis, structural and biochemical activity studies of a new hexadentate Schiff base ligand and its Cu(II), Ni(II), and Co(II) complexes

    NASA Astrophysics Data System (ADS)

    Ekmekcioglu, Pinar; Karabocek, Nevin; Karabocek, Serdar; Emirik, Mustafa

    2015-11-01

    A new Schiff base ligand (H2L) and its metal complexes have been prepared and characterized by elemental analysis, magnetic moment and spectral studies. The comparative in-vitro antimicrobial activities against various pathogens with reference to known antibiotics activity under the standard control of different concentrations revealed that the metal complexes (6-8) showed enhanced antimicrobial activities in general as compared to free ligand. As an exception, the free ligand showed better activity against Trichoderma. The antifungal activity experiments were performed in triplicate. The order of biochemical activity for metal complexes were observed as in the following. CuL > CoL > NiL, which is exactly same as the order of stability constants of these complexes. Additionally, we performed DFT and TD-DFT calculation for free ligand and Cu(II) complex to support the experimental data. The geometries of the Cu(II) complex have been optimized using the B3LYP level of theory. The theoretical calculations confirm that the copper (II) center exhibits a distorted square pyramidal geometry which is favored by experimental results.

  15. In vivo potency revisited - Keep the target in sight.

    PubMed

    Gabrielsson, Johan; Peletier, Lambertus A; Hjorth, Stephan

    2018-04-01

    Potency is a central parameter in pharmacological and biochemical sciences, as well as in drug discovery and development endeavors. It is however typically defined in terms only of ligand to target binding affinity also in in vivo experimentation, thus in a manner analogous to in in vitro studies. As in vivo potency is in fact a conglomerate of events involving ligand, target, and target-ligand complex processes, overlooking some of the fundamental differences between in vivo and in vitro may result in serious mispredictions of in vivo efficacious dose and exposure. The analysis presented in this paper compares potency measures derived from three model situations. Model A represents the closed in vitro system, defining target binding of a ligand when total target and ligand concentrations remain static and constant. Model B describes an open in vivo system with ligand input and clearance (Cl (L) ), adding in parallel to the turnover (k syn , k deg ) of the target. Model C further adds to the open in vivo system in Model B also the elimination of the target-ligand complex (k e(RL) ) via a first-order process. We formulate corresponding equations of the equilibrium (steady-state) relationships between target and ligand, and complex and ligand for each of the three model systems and graphically illustrate the resulting simulations. These equilibrium relationships demonstrate the relative impact of target and target-ligand complex turnover, and are easier to interpret than the more commonly used ligand-, target- and complex concentration-time courses. A new potency expression, labeled L 50 , is then derived. L 50 is the ligand concentration at half-maximal target and complex concentrations and is an amalgamation of target turnover, target-ligand binding and complex elimination parameters estimated from concentration-time data. L 50 is then compared to the dissociation constant K d (target-ligand binding affinity), the conventional Black & Leff potency estimate EC 50 , and the derived Michaelis-Menten parameter K m (target-ligand binding and complex removal) across a set of literature data. It is evident from a comparison between parameters derived from in vitro vs. in vivo experiments that L 50 can be either numerically greater or smaller than the K d (or K m ) parameter, primarily depending on the ratio of k deg -to-k e(RL) . Contrasting the limit values of target R and target-ligand complex RL for ligand concentrations approaching infinity demonstrates that the outcome of the three models differs to a great extent. Based on the analysis we propose that a better understanding of in vivo pharmacological potency requires simultaneous assessment of the impact of its underlying determinants in the open system setting. We propose that L 50 will be a useful parameter guiding predictions of the effective concentration range, for translational purposes, and assessment of in vivo target occupancy/suppression by ligand, since it also encompasses target turnover - in turn also subject to influence by pathophysiology and drug treatment. Different compounds may have similar binding affinity for a target in vitro (same K d ), but vastly different potencies in vivo. L 50 points to what parameters need to be taken into account, and particularly that closed-system (in vitro) parameters should not be first choice when ranking compounds in vivo (open system). Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Some metal complexes of three new potentially heptadentate (N4O3) tripodal Schiff base ligands; synthesis, characterizatin and X-ray crystal structure of a novel eight coordinate Gd(III) complex

    NASA Astrophysics Data System (ADS)

    Golbedaghi, Reza; Moradi, Somaeyh; Salehzadeh, Sadegh; Blackman, Allan G.

    2016-03-01

    The symmetrical and asymmetrical potentially heptadentate (N4O3) tripodal Schiff base ligands (H3L1-H3L3) were synthesized from the condensation reaction of three tripodal tetraamine ligands tpt (trpn), tris (3-aminopropyl) amine; ppe (abap), (2-aminoethyl)bis(3-aminopropyl)amine, and tren, tris(2-aminoethyl)amine, with 5-methoxysalicylaldehyde. Then, the reaction of Ln(III) (Ln = Gd, La and Sm), Al(III), and Fe(III) metal ions with the above ligands was investigated. The resulting compounds were characterized by IR, mass spectrometry and elemental analysis in all cases and NMR spectroscopy in the case of the Schiff base ligands. The X-ray crystal structure of the Gd complex of H3L3 ligand showed that in addition to all donor atoms of the ligand one molecule of H2O is also coordinated to the metal ion and a neutral eight-coordinate complex is formed.

  17. Photoinduced energy transfer in transition metal complex oligomers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1997-06-01

    The work done over the past three years has been directed toward the preparation, characterization and photophysical examination of mono- and bimetallic diimine complexes. The work is part of a broader project directed toward the development of stable, efficient, light harvesting arrays of transition metal complex chromophores. One focus has been the synthesis of rigid bis-bidentate and bis-tridentate bridging ligands. The authors have managed to make the ligand bphb in multigram quantities from inexpensive starting materials. The synthetic approach used has allowed them to prepare a variety of other ligands which may have unique applications (vide infra). They have prepared,more » characterized and examined the photophysical behavior of Ru(II) and Re(I) complexes of the ligands. Energy donor/acceptor complexes of bphb have been prepared which exhibit nearly activationless energy transfer. Complexes of Ru(II) and Re(I) have also been prepared with other polyunsaturated ligands in which two different long lived (> 50 ns) excited states exist; results of luminescence and transient absorbance measurements suggest the two states are metal-to-ligand charge transfer and ligand localized {pi}{r_arrow}{pi}* triplets. Finally, the authors have developed methods to prepare polymetallic complexes which are covalently bound to various surfaces. The long term objective of this work is to make light harvesting arrays for the sensitization of large band gap semiconductors. Details of this work are provided in the body of the report.« less

  18. Trinuclear Mn(II) complex with paramagnetic bridging 1,2,3-dithiazolyl ligands.

    PubMed

    Sullivan, David J; Clérac, Rodolphe; Jennings, Michael; Lough, Alan J; Preuss, Kathryn E

    2012-11-18

    The first metal coordination complex of a radical ligand based on the 1,2,3-dithiazolyl heterocycle is reported. 6,7-Dimethyl-1,4-dioxo-naphtho[2,3-d][1,2,3]dithiazolyl acts as a bridging ligand in the volatile trinuclear Mn(hfac)(2)-Rad-Mn(hfac)(2)-Rad-Mn(hfac)(2) complex (hfac = 1,1,1,5,5,5-hexafluoroacetylacetonato-). The Mn(II) and radical ligand spins are coupled anti-ferromagnetically (AF) resulting in an S(T) = 13/2 spin ground state.

  19. Exchange Interactions on the Highest-Spin Reported Molecule: the Mixed-Valence Fe42 Complex

    PubMed Central

    Aravena, Daniel; Venegas-Yazigi, Diego; Ruiz, Eliseo

    2016-01-01

    The finding of high-spin molecules that could behave as conventional magnets has been one of the main challenges in Molecular Magnetism. Here, the exchange interactions, present in the highest-spin molecule published in the literature, Fe42, have been analysed using theoretical methods based on Density Functional Theory. The system with a total spin value S = 45 is formed by 42 iron centres containing 18 high-spin FeIII ferromagnetically coupled and 24 diamagnetic low-spin FeII ions. The bridging ligands between the two paramagnetic centres are two cyanide ligands coordinated to the diamagnetic FeII cations. Calculations were performed using either small Fe4 or Fe3 models or the whole Fe42 complex, showing the presence of two different ferromagnetic couplings between the paramagnetic FeIII centres. Finally, Quantum Monte Carlo simulations for the whole system were carried out in order to compare the experimental and simulated magnetic susceptibility curves from the calculated exchange coupling constants with the experimental one. This comparison allows for the evaluation of the accuracy of different exchange-correlation functionals to reproduce such magnetic properties. PMID:27033418

  20. Spectroscopic and biological studies of new mononuclear metal complexes of a bidentate NN and NO hydrazone-oxime ligand derived from egonol

    NASA Astrophysics Data System (ADS)

    Babahan, Ilknur; Emirdağ-Öztürk, Safiye; Poyrazoğlu-Çoban, Esin

    2015-04-01

    A novel ligand, vicinal dioxime ligand (egonol-hydrazone glyoxime) (LH2) was synthesized and characterized using 1H NMR, 13C NMR, MS, AAS, infrared spectroscopy, and magnetic susceptibility measurements. Mononuclear nickel (II), copper (II) and cobalt (II) complexes with a metal:ligand ratio of 1:2 for LH2 were also synthesized. Zn(II) forms complex [Zn(LH)Cl2] with a metal to ligand ratio of 1:1. IR spectrum shows that the ligand act in a bidentate manner and coordinates N4 donor groups of the ligands to NiII, CuII, CoII and ZnII ions. The detection of H-bonding (Osbnd H⋯O) in the [M(LH)2] metal complexes by IR spectra supported the square-planar MN4 coordination of Ni(II), Cu(II) and Co(II) complexes. The antimicrobial activities of compounds LH2 and their Ni(II), Cu(II), Co(II) and Zn(II) complexes were evaluated using the disc diffusion method against 16 bacteria and 5 yeasts. The minimal inhibitory concentrations (MICs) against all the bacteria and yeasts were also determined. Among the attempted test compounds, it is showed that all the compounds (L, LH2, [Ni(LH)2], [Cu(LH)2], [Co(LH)2(H2O)2], [Zn(LH)Cl2]) were effective against used test microorganisms.

  1. New mixed valence defect dicubane cobalt(II)/cobalt(III) complex: Synthesis, crystal structure, photoluminescence and magnetic properties

    NASA Astrophysics Data System (ADS)

    Coban, Mustafa Burak; Gungor, Elif; Kara, Hulya; Baisch, Ulrich; Acar, Yasemin

    2018-02-01

    A new defect dicubane cobalt(II)/cobalt(III), [(CoII2CoIII2L42(H2O)(CH3COO)(CH3COOH]. 4H2O complex (1) where H2L = [1-(3-hydroxypropyliminomethyl)naphthalene-2-ol], has been synthesized and characterized by element analysis, FT-IR, solid UV-Vis spectroscopy and single crystal X-ray diffraction. The crystal structure determination shows a cationic tetrameric arrangement consisting of a defect dicubane core with two missing vertexes. Each cobalt ion has a distorted octahedral geometry with six coordinate ordered CoII and CoIII ions. The solid state photoluminescence properties of complex (1) and its ligand H2L have been investigated under UV light at 349 nm in the visible region. H2L exhibits blue emission while complex (1) shows red emission at room temperature. Variable-temperature magnetic susceptibility measurements on the complex (1) in the range 2-300 K indicate an antiferromagnetic interaction.

  2. Synthesis, characterization and anti-microbial activity of a novel macrocyclic ligand derived from the reaction of 2,6-pyridinedicarboxylic acid with homopiperazine and its Co(II), Ni(II), Cu(II), and Zn(II) complexes

    NASA Astrophysics Data System (ADS)

    Soleimani, Esmaiel

    2011-05-01

    The preparation of a novel macrocyclic ligand ( 1), N,N'-diethylhomopiperazinyl,2,6-pyridinedicarboxylate and its Co(II), Ni(II), Cu(II), and Zn(II) complexes are described. The ligand was prepared in EtOH from the reaction of dipotassium salt of 2,6-pyridinedicarboxylic acid with 1,2-dibromoethane in the presence of homopiperazine. Reaction of macrocyclic ligand ( 1) in EtOH with CoCl 2.6H 2O, NiCl 2.6H 2O, CuCl 2.2H 2O, and ZnCl 2·2H 2O yielded the complexes with the general formula [M(L)Cl 2] {where M = Co(II) ( 2), Ni(II) ( 3), Cu(II) ( 4), Zn ( 5), respectively}. The analysis of IR, 1H and 13C NMR spectral data of macrocyclic ligand ( 1) and its Zn(II) complex ( 5) together with their molar conductivity values, and the magnetic moments of the complexes suggest that the macrocyclic ligand ( 1) is bonded to metal(II) ions through two oxygen atoms of ester moiety and the two nitrogen atoms of homopiperazine ring. The electronic spectral data of these complexes in DMSO are in good agreement with the octahedral coordination of M(II) ions. The ligand field parameters for these complexes, i.e. splitting energy and Racah parameter were calculated to be 14,945 and 673 cm -1 for the Co(II) ( 2), 16,260 and 774 cm -1 for the Ni(II) ( 3) complexes respectively. The spliting energy of 17,262 cm -1 was obtained for the Cu(II) complex ( 4).

  3. Mechanism of the photochemical ligand substitution reactions of fac-[Re(bpy)(CO)(3)(PR(3))](+) complexes and the properties of their triplet ligand-field excited states.

    PubMed

    Koike, Kazuhide; Okoshi, Nobuaki; Hori, Hisao; Takeuchi, Koji; Ishitani, Osamu; Tsubaki, Hideaki; Clark, Ian P; George, Michael W; Johnson, Frank P A; Turner, James J

    2002-09-25

    We report herein the mechanism of the photochemical ligand substitution reactions of a series of fac-[Re(X(2)bpy)(CO)(3)(PR(3))](+) complexes (1) and the properties of their triplet ligand-field ((3)LF) excited states. The reason for the photostability of the rhenium complexes [Re(X(2)bpy)(CO)(3)(py)](+) (3) and [Re(X(2)bpy)(CO)(3)Cl] (4) was also investigated. Irradiation of an acetonitrile solution of 1 selectively gave the biscarbonyl complexes cis,trans-[Re(X(2)bpy)(CO)(2)(PR(3))(CH(3)CN)](+) (2). Isotope experiments clearly showed that the CO ligand trans to the PR(3) ligand was selectively substituted. The photochemical reactions proceeded via a dissociative mechanism from the (3)LF excited state. The thermodynamical data for the (3)LF excited states of complexes 1 and the corrective nonradiative decay rate constants for the triplet metal-to-ligand charge-transfer ((3)MLCT) states were obtained from temperature-dependence data for the emission lifetimes and for the quantum yields of the photochemical reactions and the emission. Comparison of 1 with [Re(X(2)bpy)(CO)(3)(py)](+) (3) and [Re(X(2)bpy)(CO)(3)Cl] (4) indicated that the (3)LF states of some 3- and 4-type complexes are probably accessible from the (3)MLCT state even at ambient temperature, but these complexes were stable to irradiation at 365 nm. The photostability of 3 and 4, in contrast to 1, can be explained by differences in the trans effects of the PR(3), py, and Cl(-) ligands.

  4. A Mixed-Ligand Chiral Rhodium(II) Catalyst Enables the Enantioselective Total Synthesis of Piperarborenine B.

    PubMed

    Panish, Robert A; Chintala, Srinivasa R; Fox, Joseph M

    2016-04-11

    A novel, mixed-ligand chiral rhodium(II) catalyst, Rh2(S-NTTL)3(dCPA), has enabled the first enantioselective total synthesis of the natural product piperarborenine B. A crystal structure of Rh2(S-NTTL)3(dCPA) reveals a "chiral crown" conformation with a bulky dicyclohexylphenyl acetate ligand and three N-naphthalimido groups oriented on the same face of the catalyst. The natural product was prepared on large scale using rhodium-catalyzed bicyclobutanation/ copper-catalyzed homoconjugate addition chemistry in the key step. The route proceeds in ten steps with an 8% overall yield and 92% ee. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Brilliant Sm, Eu, Tb, and Dy Chiral Lanthanide Complexes with Strong Circularly Polarized Luminescence

    PubMed Central

    Petoud, Stéphane; Muller, Gilles; Moore, Evan G.; Xu, Jide; Sokolnicki, Jurek; Riehl, James P.; Le, Uyen N.; Cohen, Seth M.; Raymond, Kenneth N.

    2009-01-01

    The synthesis, characterization, and luminescent behavior of trivalent Sm, Eu, Dy, and Tb complexes of two enantiomeric, octadentate, chiral, 2-hydroxyisophthalamide ligands are reported. These complexes are highly luminescent in solution. Functionalization of the achiral parent ligand with a chiral 1-phenylethylamine substituent on the open face of the complex in close proximity to the metal center yields complexes with strong circularly polarized luminescence (CPL) activity. This appears to be the first example of a system utilizing the same ligand architecture to sensitize four different lanthanide cations and display CPL activity. The luminescence dissymmetry factor, glum, recorded for the Eu(III) complex is one of the highest values reported, and this is the first time the CPL effect has been demonstrated for a Sm(III) complex with a chiral ligand. The combination of high luminescence intensity with CPL activity should enable new bioanalytical applications of macromolecules in chiral environments. PMID:17199285

  6. Dinuclear lanthanide complexes based on amino alcoholate ligands: Structure, magnetic and fluorescent properties

    NASA Astrophysics Data System (ADS)

    Sun, Gui-Fang; Zhang, Cong-Ming; Guo, Jian-Ni; Yang, Meng; Li, Li-Cun

    2017-05-01

    Two binuclear lanthanide complexes [Ln2(hfac)6(HL)2] (LnIII = Dy(1), Tb(2); hfac = hexafluoroacetylacetonate, HL = (R)-2-amino-2-phenylethanol) have been successfully obtained by using amino alcoholate ligand. In two complexes, the Ln(III) ions are bridged by two alkoxido groups from HL ligands, resulting in binuclear complexes. The variable-temperature magnetic susceptibility studies indicate that there exists ferromagnetic interaction between two Ln(III) ions. Frequency dependent out-of-phase signals are observed for complex 1, suggesting SMM type behavior. Complexes 1 and 2 display intensely characteristic luminescent properties.

  7. Gold(I) Complexes of the Geminal Phosphinoborane tBu2PCH2BPh2.

    PubMed

    Boom, Devin H A; Ehlers, Andreas W; Nieger, Martin; Devillard, Marc; Bouhadir, Ghenwa; Bourissou, Didier; Slootweg, J Chris

    2018-04-30

    In this work, we explored the coordination properties of the geminal phosphinoborane t Bu 2 PCH 2 BPh 2 ( 2 ) toward different gold(I) precursors. The reaction of 2 with an equimolar amount of the sulfur-based complex (Me 2 S)AuCl resulted in displacement of the SMe 2 ligand and formation of linear phosphine gold(I) chloride 3 . Using an excess of ligand 2 , bisligated complex 4 was formed and showed dynamic behavior at room temperature. Changing the gold(I) metal precursor to the phosphorus-based complex, (Ph 3 P)AuCl impacted the coordination behavior of ligand 2 . Namely, the reaction of ligand 2 with (Ph 3 P)AuCl led to the heterolytic cleavage of the gold-chloride bond, which is favored over PPh 3 ligand displacement. To the best of our knowledge, 2 is the first example of a P/B-ambiphilic ligand capable of cleaving the gold-chloride bond. The coordination chemistry of 2 was further analyzed by density functional theory calculations.

  8. In situ formation of heterobimetallic salen complexes containing titanium and/or vanadium ions.

    PubMed

    Belokon, Yuri N; Harrington, Ross W; North, Michael; Young, Carl

    2008-05-05

    A combination of high-resolution electrospray mass spectrometry and (1)H NMR spectroscopy has been used to prove that when a mixture of [(salen)TiO]2 complexes containing two different salen ligands (salen and salen') is formed, an equilibrium is established between the homodimers and the heterodimer [(salen)TiO2Ti(salen')]. Depending upon the structure and stereochemistry of the two salen ligands, the equilibrium may favor either the homodimers or the heterodimer. Extension of this process to mixtures of titanium(salen) complexes [(salen)TiO]2 and vanadium (V)(salen') complexes [(salen')VO] (+)Cl (-) allowed the in situ formation of the heterobimetallic complex [(salen)TiO2V(salen')] (+)X (-) to be confirmed for all combinations of salen ligands studied except when the salen ligand attached to titanium contained highly electron-withdrawing nitro-groups. The rate of equilibration between heterobimetallic complexes is faster than that between two titanium complexes as determined by line broadening in the (1)H NMR spectra. These structural results explain the strong rate-inhibiting effect of vanadium (V)(salen) complexes in asymmetric cyanohydrin synthesis catalyzed by [(salen)TiO]2 complexes. It has also been demonstrated for the first time that the titanium and vanadium complexes can undergo exchange of salen ligands and that this is catalyzed by protic solvents. However, the ligand exchange is relatively slow (occurring on a time scale of days at room temperature) and so does not complicate studies aimed at using heterobimetallic titanium and vanadium salen complexes as asymmetric catalysts. Attempts to obtain a crystal structure of a heterobimetallic salen complex led instead to the isolation of a trinuclear titanium(salen) complex, the formation of which is also consistent with the catalytic results obtained previously.

  9. Spectral and in vitro antimicrobial properties of 2-oxo-4-phenyl-6-styryl-1,2,3,4-tetrahydro-pyrimidine-5-carboxylic acid transition metal complexes

    NASA Astrophysics Data System (ADS)

    Dhankar, Raksha P.; Rahatgaonkar, Anjali M.; Chorghade, Mukund S.; Tiwari, Ashutosh

    2-oxo-4-phenyl-6-styryl-1,2,3,4-tetrahydro-pyrimidine-5-carboxylic acid (ADP) was complexed with acetates of Mn(II), Ni(II), Cu(II) and Zn(II). The structures of the ligand and its metal complexes were characterized by microanalysis, IR, NMR, UV-vis spectroscopy, magnetic susceptibility and TGA-DTA analyses. Octahedral and square planar geometries were suggested for the complexes in which the central metal ion coordinated with sbnd O donors of ligand and acetate ions. Each ligand binds the metal using carboxylate oxygens. The ligand and complexes were evaluated for their antimicrobial activities against different species of pathogenic bacteria and fungi. The present novel pyrimidine containing complexes could constitute a new group of antibacterial and antifungal agents.

  10. Metal-organic complexes in geochemical processes: Estimation of standard partial molal thermodynamic properties of aqueous complexes between metal cations and monovalent organic acid ligands at high pressures and temperatures

    NASA Astrophysics Data System (ADS)

    Shock, Everetr L.; Koretsky, Carla M.

    1995-04-01

    Regression of standard state equilibrium constants with the revised Helgeson-Kirkham-Flowers (HKF) equation of state allows evaluation of standard partial molal entropies ( overlineSo) of aqueous metal-organic complexes involving monovalent organic acid ligands. These values of overlineSo provide the basis for correlations that can be used, together with correlation algorithms among standard partial molal properties of aqueous complexes and equation-of-state parameters, to estimate thermodynamic properties including equilibrium constants for complexes between aqueous metals and several monovalent organic acid ligands at the elevated pressures and temperatures of many geochemical processes which involve aqueous solutions. Data, parameters, and estimates are given for 270 formate, propanoate, n-butanoate, n-pentanoate, glycolate, lactate, glycinate, and alanate complexes, and a consistent algorithm is provided for making other estimates. Standard partial molal entropies of association ( Δ -Sro) for metal-monovalent organic acid ligand complexes fall into at least two groups dependent upon the type of functional groups present in the ligand. It is shown that isothermal correlations among equilibrium constants for complex formation are consistent with one another and with similar correlations for inorganic metal-ligand complexes. Additional correlations allow estimates of standard partial molal Gibbs free energies of association at 25°C and 1 bar which can be used in cases where no experimentally derived values are available.

  11. The coordination- and photochemistry of copper(i) complexes: variation of N^N ligands from imidazole to tetrazole.

    PubMed

    Bergmann, Larissa; Braun, Carolin; Nieger, Martin; Bräse, Stefan

    2018-01-02

    The prediction of coordination modes is of high importance when structure-property relationships are discussed. Herein, the coordination chemistry of copper(i) with pyridine-amines with a varying number of coordinating N-atoms, namely pyridine-benzimidazole, -triazole and -tetrazole, or their deprotonated analogues, and different phosphines was systematically studied and the photoluminescence properties of all synthesized complexes examined and related to DFT data. Each complex was characterized by single-crystal X-ray analysis and elemental analysis, and a set of prediction rules derived for the coordination chemistry of copper(i) with these ligands. A mononuclear cationic coordination motif was found for PPh 3 or DPEPhos with all N^N ligands, which exhibits blue to green luminescence of MLCT character d(Cu) → π*(pyridine-amine ligand) with quantum yields up to 46%. With the deprotonated N^N ligands, mononuclear neutral complexes were only expected with DPEPhos. The emission's nature of this complex type is strongly dependent on the electronic effects of the N^N ligand and was characterized as (ML + IL)CT transition. In contrast to the high quantum yields up to 78% for the tetrazolate complexes (as reported before), the triazolate and imidazolate based complexes show much lower emission efficiencies below 10%. Besides the mononuclear copper(i) complexes, cluster-type complexes were obtained, which show moderate luminescence in the blue to green region of the visible spectrum (469-505 nm).

  12. Synthesis, X-ray structure and cytotoxic effect of nickel(II) complexes with pyrazole ligands.

    PubMed

    Sobiesiak, Marta; Lorenz, Ingo-Peter; Mayer, Peter; Woźniczka, Magdalena; Kufelnicki, Aleksander; Krajewska, Urszula; Rozalski, Marek; Budzisz, Elzbieta

    2011-12-01

    Here we present the synthesis of the new Ni(II) complexes with chelating ligands 1-benzothiazol-2-yl-3,5-dimethyl-1H-pyrazole (a), 5-(2-hydroxyphenyl)-3-methyl-1-(2-pyridylo)-1H-pyrazole-4-carboxylic acid methyl ester (b) and 1-benzothiazol-2-yl-5-(2-hydroxyphenyl)-3-methyl-1H-pyrazole-4-carboxylic acid methyl ester (c). These ligands a-c create solid complexes with Ni(II). The crystal and molecular structures of two complexes were determined by X-ray diffraction method. Thermal stability of two complexes with ligand c by TG/DTG and DSC methods were also shown. Cytotoxic activity of all the complexes against three tumour cell lines and to normal endothelial cells (HUVEC) was also estimated. Complexes with ligand c exhibited relatively high cytotoxic activity towards HL-60 and NALM-6 leukaemia cells and WM-115 melanoma cells. Cytotoxic effectiveness of one of these complexes against melanoma WM-115 cells was two times higher than that of cisplatin. The protonation constant log K=9.63 of ligand b corresponding to the phenol 2-hydroxy group has been determined in 10% (v/v) DMSO/water solution (25°C). The coordination modes (formation of two monomeric species: NiL and NiL(2)) in the complexes with Ni(II) are discussed for b on the basis of the potentiometric and UV/Vis data. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  13. Early/Late Heterobimetallic Tantalum/Rhodium Species Assembled Through a Novel Bifunctional NHC-OH Ligand.

    PubMed

    Srivastava, Ravi; Moneuse, Raphaël; Petit, Julien; Pavard, Paul-Alexis; Dardun, Vincent; Rivat, Madleen; Schiltz, Pauline; Solari, Marius; Jeanneau, Erwann; Veyre, Laurent; Thieuleux, Chloé; Quadrelli, Elsje Alessandra; Camp, Clément

    2018-03-20

    The straightforward synthesis of a new unsymmetrical hydroxy-tethered N-heterocyclic carbene (NHC) ligand, HL, is presented. The free ligand exhibits an unusual OH-carbene hydrogen-bonding interaction. This OH-carbene motif was used to yield 1) the first tantalum complex displaying both a Fischer- and Schrock-type carbene ligand and 2) a unique NHC-based early/late heterobimetallic complex. More specifically, the protonolysis chemistry between the ligand's hydroxy group and imido-alkyl or alkylidene-alkyl tantalum precursor complexes yielded the rare monometallic tantalum-NHC complexes [Ta(XtBu)(L)(CH 2 tBu) 2 ] (X=N, CH), in which the alkoxy-carbene ligand acts as a chelate. In contrast, HL only binds to rhodium through the NHC unit in [Rh(HL)(cod)Cl] (cod=cycloocta-1,5-diene), the hydroxy pendant arm remaining unbound. This bifunctional ligand scaffold successfully promoted the assembly of rhodium/tantalum heterobimetallic complexes upon either 1) the insertion of [Rh(cod)Cl] 2 into the Ta-NHC bond in [Ta(NtBu)(L)(CH 2 tBu) 2 ] or 2) protonolysis between the free hydroxy group in [Rh(HL)(cod)Cl] and one alkyl group in [Ta(NtBu)(CH 2 tBu) 3 ]. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Improving binding mode and binding affinity predictions of docking by ligand-based search of protein conformations: evaluation in D3R grand challenge 2015

    NASA Astrophysics Data System (ADS)

    Xu, Xianjin; Yan, Chengfei; Zou, Xiaoqin

    2017-08-01

    The growing number of protein-ligand complex structures, particularly the structures of proteins co-bound with different ligands, in the Protein Data Bank helps us tackle two major challenges in molecular docking studies: the protein flexibility and the scoring function. Here, we introduced a systematic strategy by using the information embedded in the known protein-ligand complex structures to improve both binding mode and binding affinity predictions. Specifically, a ligand similarity calculation method was employed to search a receptor structure with a bound ligand sharing high similarity with the query ligand for the docking use. The strategy was applied to the two datasets (HSP90 and MAP4K4) in recent D3R Grand Challenge 2015. In addition, for the HSP90 dataset, a system-specific scoring function (ITScore2_hsp90) was generated by recalibrating our statistical potential-based scoring function (ITScore2) using the known protein-ligand complex structures and the statistical mechanics-based iterative method. For the HSP90 dataset, better performances were achieved for both binding mode and binding affinity predictions comparing with the original ITScore2 and with ensemble docking. For the MAP4K4 dataset, although there were only eight known protein-ligand complex structures, our docking strategy achieved a comparable performance with ensemble docking. Our method for receptor conformational selection and iterative method for the development of system-specific statistical potential-based scoring functions can be easily applied to other protein targets that have a number of protein-ligand complex structures available to improve predictions on binding.

  15. Prediction of Ordered Water Molecules in Protein Binding Sites from Molecular Dynamics Simulations: The Impact of Ligand Binding on Hydration Networks.

    PubMed

    Rudling, Axel; Orro, Adolfo; Carlsson, Jens

    2018-02-26

    Water plays a major role in ligand binding and is attracting increasing attention in structure-based drug design. Water molecules can make large contributions to binding affinity by bridging protein-ligand interactions or by being displaced upon complex formation, but these phenomena are challenging to model at the molecular level. Herein, networks of ordered water molecules in protein binding sites were analyzed by clustering of molecular dynamics (MD) simulation trajectories. Locations of ordered waters (hydration sites) were first identified from simulations of high resolution crystal structures of 13 protein-ligand complexes. The MD-derived hydration sites reproduced 73% of the binding site water molecules observed in the crystal structures. If the simulations were repeated without the cocrystallized ligands, a majority (58%) of the crystal waters in the binding sites were still predicted. In addition, comparison of the hydration sites obtained from simulations carried out in the absence of ligands to those identified for the complexes revealed that the networks of ordered water molecules were preserved to a large extent, suggesting that the locations of waters in a protein-ligand interface are mainly dictated by the protein. Analysis of >1000 crystal structures showed that hydration sites bridged protein-ligand interactions in complexes with different ligands, and those with high MD-derived occupancies were more likely to correspond to experimentally observed ordered water molecules. The results demonstrate that ordered water molecules relevant for modeling of protein-ligand complexes can be identified from MD simulations. Our findings could contribute to development of improved methods for structure-based virtual screening and lead optimization.

  16. Synthesis, characterization, nucleic acid interactions and photoluminescent properties of methaniminium hydrazone Schiff base and its Mn(II), Co(II), Ni(II), Cu(II), Zn(II) and Cd(II) complexes

    NASA Astrophysics Data System (ADS)

    Sennappan, M.; Murali Krishna, P.; Hosamani, Amar A.; Hari Krishna, R.

    2018-07-01

    An environmental benign and efficient reaction was carried out via amine exchange and condensation reaction in water and methanol mixture (3:1) and absence of catalyst between 1-[3-(2-hydroxy benzylidene)amine)phenyl]ethanone and benzhydrazide yields methaniminium hydrazone Schiff base in high yield. The prepared ligand was structurally characterized by using single crystal XRD, elemental analysis and spectroscopy (UV-Vis, FT-IR, LC-MS and NMR) techniques. The crystal data indicates the ligand crystallizes in orthorhombic system with Pna21 space group. Further, the ligand was used in synthesis of mononuclear Mn(II), Co(II), Ni(II), Cu(II), Zn(II) and Cd(II) complexes and were characterized by elemental analysis, magnetic moment and spectroscopy (UV-Vis, FT-IR and ESR) studies. The spectral data showed that ligand is coordinated to the metal ion through azomethine nitrogen and methaniminium nitrogen. The DNA binding absorption titrations reveals that, ligand, L and its metal complexes, 1-6 are avid binders to CT- DNA. The apparent binding constant values of compounds are in the order of 106 M-1. The nuclease activity of ligand, L and its metal complexes, 1-6 were investigated by gel electrophoresis method using pUC18 DNA. The photoluminescent properties of the methaniminium hydrazone ligand, L and its various metal complexes, 1-6 were investigated. The emission spectra of both ligand (L) and metal complexes (1-6) exhibits emission in the range of blue to red.

  17. Variable noninnocence of substituted azobis(phenylcyanamido)diruthenium complexes.

    PubMed

    Choudhuri, Mohommad M R; Behzad, Mahdi; Al-Noaimi, Mousa; Yap, Glenn P A; Kaim, Wolfgang; Sarkar, Biprajit; Crutchley, Robert J

    2015-02-16

    The synthetic chemistry of substituted 4,4'-azobis(phenylcyanamide) ligands was investigated, and the complexes [{Ru(tpy)(bpy)}2(μ-L)][PF6]2, where L = 2,2':5,5'-tetramethyl-4,4'-azobis(phenylcyanamido) (Me4adpc(2-)), 2,2'-dimethyl-4,4'-azobis(phenylcyanamido) (Me2adpc(2-)), unsubstituted (adpc(2-)), 3,3'-dichloro-4,4'-azobis(phenylcyanamido) (Cl2adpc(2-)), and 2,2':5,5'-tetrachloro-4,4'-azobis(phenylcyanamido) (Cl4adpc(2-)), were prepared and characterized by cyclic voltammetry and vis-near-IR (NIR) and IR spectroelectrochemistry. The room temperature electron paramagnetic resonance spectrum of [{Ru(tpy)(bpy)}2(μ-Me4adpc)](3+) showed an organic radical signal and is consistent with an oxidation-state description [Ru(II), Me4adpc(•-), Ru(II)](3+), while that of [{Ru(tpy)(bpy)}2(μ-Cl2adpc)](3+) at 10 K showed a low-symmetry Ru(III) signal, which is consistent with the description [Ru(III), Cl2adpc(2-), Ru(II)](3+). IR spectroelectrochemistry data suggest that [{Ru(tpy)(bpy)}2(μ-adpc)](3+) is delocalized and [{Ru(tpy)(bpy)}2(μ-Cl2adpc)](3+) and [{Ru(tpy)(bpy)}2(μ-Cl4adpc)](3+) are valence-trapped mixed-valence systems. A NIR absorption band that is unique to all [{Ru(tpy)(bpy)}2(μ-L)](3+) complexes is observed; however, its energy and intensity vary depending on the nature of the bridging ligand and, hence, the complexes' oxidation-state description.

  18. Metal complex-based electron-transfer mediators in dye-sensitized solar cells

    DOEpatents

    Elliott, C. Michael; Sapp, Shawn A.; Bignozzi, Carlo Alberto; Contado, Cristiano; Caramori, Stefano

    2006-03-28

    This present invention provides a metal-ligand complex and methods for using and preparing the same. In particular, the metal-ligand complex of the present invention is of the formula: L.sub.a-M-X.sub.b where L, M, X, a, and b are those define herein. The metal-ligand complexes of the present invention are useful in a variety of applications including as electron-transfer mediators in dye-sensitized solar cells and related photoelectrochromic devices.

  19. Structural, spectral analysis and DNA studies of heterocyclic thiosemicarbazone ligand and its Cr(III), Fe(III), Co(II) Hg(II), and U(VI) complexes

    NASA Astrophysics Data System (ADS)

    Yousef, T. A.; Abu El-Reash, G. M.; El Morshedy, R. M.

    2013-08-01

    The paper presents a combined experimental and computational study of novel Cr(III), Fe(III), Co(II), Hg(II) and U(VI) complexes of (E)-2-((3-hydroxynaphthalen-2-yl)methylene)-N-(pyridin-2-yl)hydrazinecarbothioamide (H2L). The ligand and its complexes have been characterized by elemental analyses, spectral (IR, UV-vis, 1H NMR and 13C NMR), magnetic and thermal studies. IR spectra show that H2L is coordinated to the metal ions in a mononegative bi or tri manner. The structures are suggested to be octahedral for all complexes except Hg(II) complex is tetrahedral. Theoretical calculations have been performed to obtain IR spectra of ligand and its complexes using AM1, MM, Zindo/1, MM+ and PM3, methods. Satisfactory theoretical-experimental agreements were achieved by MM method for the ligand and PM3 for its complexes. DOS calculations carried out by MM (ADF) method for ligand Hg complex from which we concluded that the thiol form of the ligand is more active than thione form and this explains that the most complexation take place in that form. The calculated IR vibrations of the metal complexes, using the PM3 method was the nearest method for the experimental data, and it could be used for all complexes. Also, valuable information are obtained from calculation of molecular parameters for all compounds carried out by the previous methods of calculation (electronegativity of the coordination sites, net dipole moment of the metal complexes, values of heat of formation and binding energy) which approved that the complexes are more stable than ligand. The low value of ΔE could be expected to indicate H2L molecule has high inclination to bind with the metal ions. Furthermore, the kinetic and thermodynamic parameters for the different decomposition steps were calculated using the Coats-Redfern and Horowitz-Metzger methods. Finally, the biochemical studies showed that, complex 2, 4 have powerful and complete degradation effect on DNA. For the foremost majority of cases the activity of the ligand is greatly enhanced by the presence of a metal ion. Thus presented results may be useful in design new more active or specific structures.

  20. H-Bonding Assisted Self-Assembly of Anionic and Neutral Ligand on Metal: A Comprehensive Strategy To Mimic Ditopic Ligands in Olefin Polymerization.

    PubMed

    Mote, Nilesh R; Patel, Ketan; Shinde, Dinesh R; Gaikwad, Shahaji R; Koshti, Vijay S; Gonnade, Rajesh G; Chikkali, Samir H

    2017-10-16

    Self-assembly of two neutral ligands on a metal to mimic bidentate ligand coordination has been frequently encountered in the recent past, but self-assembly of an anionic ligand on a metal template alongside a neutral ligand remains an elusive target. Such a self-assembly is hampered by additional complexity, wherein a highly negatively charged anion can form intermolecular hydrogen bonding with the supramolecular motif, leaving no scope for self-assembly with neutral ligand. Presented here is the self-association of anionic ligand 3-ureidobenzoic acid (2a) and neutral ligand 1-(3-(diphenylphosphanyl)phenyl)urea (1a) on a metal template to yield metal complex [{COOC 6 H 4 NH(CO)NH 2 }{Ph 2 PC 6 H 4 NH(CO)NH 2 }PdMeDMSO] (4a). The identity of 4a was established by NMR and mass spectroscopy. Along the same lines, 3-(3-phenylureido)benzoic acid (2b) and 1-(3-(diphenylphosphanyl)phenyl)-3-phenylurea (1b) self-assemble on a metal template to produce palladium complex [{COOC 6 H 4 NH(CO)NHPh}{Ph 2 PC 6 H 4 NH(CO)NHPh}PdMePy] (5c). The existence of 5c was confirmed by Job plot, 1-2D NMR spectroscopy, deuterium labeling, IR spectroscopy, UV-vis spectroscopy, model complex synthesis, and DFT calculations. These solution and gas phase investigations authenticated the presence of intramolecular hydrogen bonding between hydrogen's of 1b and carbonyl oxygen of 2b. The generality of the supramolecular approach has been validated by preparing six complexes from four monodentate ligands, and their synthetic utility was demonstrated in ethylene polymerization. Complex 4a was found to be the most active, leading to the production of highly branched polyethylene with a molecular weight of 55700 g/mol and melting temperature of 112 °C.

  1. Sugar-Annulated Oxazoline Ligands: A Novel Pd(II) Complex and Its Application in Allylic Substitution.

    PubMed

    Kraft, Jochen; Mill, Katharina; Ziegler, Thomas

    2016-12-10

    Two novel carbohydrate-derived pyridyl (PYOX)- and cyclopropyl (CYBOX)-substituted oxazoline ligands were prepared from d-glucosamine hydrochloride and 1,3,4,6-tetra- O -acetyl-2-amino-2-deoxy-β-d-glucopyranose hydrochloride in two steps, respectively. The sugar-annulated PYOX ligand formed a stable metal complex with Pd(II), which was fully characterized by NMR spectroscopy and X-ray crystallography. NMR and X-ray analysis revealed a change of the conformation in the sugar moiety upon complexation with the palladium(II) species. Both glycosylated ligands resulted in high asymmetric induction (up to 98% ee ) upon application as chiral ligands in the Pd-catalyzed allylic alkylation of rac -1,3-diphenylallyl acetate with dimethyl malonate (Tsuji-Trost reaction). Both ligands provided mainly the ( R )-enantiomer of the alkylation product.

  2. Chemometrics-assisted spectrophotometric method for simultaneous determination of Pb²⁺ and Cu²⁺ ions in different foodstuffs, soil and water samples using 2-benzylspiro [isoindoline-1,5'-oxazolidine]-2',3,4'-trione using continuous wavelet transformation and partial least squares - calculation of pKf of complexes with rank annihilation factor analysis.

    PubMed

    Abbasi Tarighat, Maryam; Nabavi, Masoume; Mohammadizadeh, Mohammad Reza

    2015-06-15

    A new multi-component analysis method based on zero-crossing point-continuous wavelet transformation (CWT) was developed for simultaneous spectrophotometric determination of Cu(2+) and Pb(2+) ions based on the complex formation with 2-benzyl espiro[isoindoline-1,5 oxasolidine]-2,3,4 trione (BSIIOT). The absorption spectra were evaluated with respect to synthetic ligand concentration, time of complexation and pH. Therefore according the absorbance values, 0.015 mmol L(-1) BSIIOT, 10 min after mixing and pH 8.0 were used as optimum values. The complex formation between BSIIOT ligand and the cations Cu(2+) and Pb(2+) by application of rank annihilation factor analysis (RAFA) were investigated. Daubechies-4 (db4), discrete Meyer (dmey), Morlet (morl) and Symlet-8 (sym8) continuous wavelet transforms for signal treatments were found to be suitable among the wavelet families. The applicability of new synthetic ligand and selected mother wavelets were used for the simultaneous determination of strongly overlapped spectra of species without using any pre-chemical treatment. Therefore, CWT signals together with zero crossing technique were directly applied to the overlapping absorption spectra of Cu(2+) and Pb(2+). The calibration graphs for estimation of Pb(2+) and Cu (2+)were obtained by measuring the CWT amplitudes at zero crossing points for Cu(2+) and Pb(2+) at the wavelet domain, respectively. The proposed method was validated by simultaneous determination of Cu(2+) and Pb(2+) ions in red beans, walnut, rice, tea and soil samples. The obtained results of samples with proposed method have been compared with those predicted by partial least squares (PLS) and flame atomic absorption spectrophotometry (FAAS). Copyright © 2015 Elsevier B.V. All rights reserved.

  3. ^1H NMR studies of the diamagnetic gallium (III) and paramagnetic iron (III) complexes of a chiral macrobicyclic ligand of bicapped tris (binaphtol) type

    NASA Astrophysics Data System (ADS)

    Baret, P.; Beaujolais, V.; Bougault, C.; Gaude, D.; Pierre, J.-L.

    1998-01-01

    ^1H NMR studies of the diamagnetic gallium (III) and paramagnetic iron (III) complexes of a chiral macrobicyclic ligand of bicapped tris (binaphtol) type are described. The study of the gallium complex emphasizes: (i) that the inversion of the octahedral center is not observed and: (ii) the absence of exchange between free ligand and complex, at room temperature. In the case of the iron complex, assignments of the hyperfine shifted resolved resonances are achieved, based on temperature-behavior studies, which evidence the D3 symmetry of the complex. These assignments are in complete agreement with measured T1 values and proton-to-iron distances obtained from molecular modelling. Les complexes du gallium (III) et du fer (III) d'un ligand macrobicyclique chiral impliquant trois sous-unités de type binaphtol sont étudiés en RMN du proton en solution méthanolique. L'étude du complexe (diamagnétique) du gallium permet de montrer que le complexe : (i) ne subit pas d'inversion de la configuration (Δ/Λ) du site octaédrique et : (ii) qu'il n'y a pas d'échange entre ligand libre et complexe à la température ambiante. L'évolution du spectre du complexe paramagnétique du fer avec la température permet une attribution des protons du ligand et met en évidence la symétrie D3 du complexe. Une bonne corrélation est obtenue entre la distance fer-proton (donnée par la modélisation moléculaire) et le T1 du proton considéré.

  4. Correlation between ionic radii of metals and thermal decomposition of supramolecular structure of azodye complexes

    NASA Astrophysics Data System (ADS)

    El-Sonbati, A. Z.; Diab, M. A.; El-Bindary, A. A.; Eldesoky, A. M.; Morgan, Sh. M.

    2015-01-01

    An interesting azodye heterocyclic ligand of copper(II), cobalt(II), nickel(II) and uranyl(II) complexes have been synthesized by the reaction of metal salts with 5-(2,3-dimethyl-1-phenylpyrazol-5-one azo)-2-thioxo-4-thiazolidinone (HL) yields 1:1 and 1:2 (M:L) complexes depending on the reaction conditions. The elemental analysis, magnetic moments, spectral (UV-Vis, IR, 1H and 13C NMR and ESR) and thermal studies were used to characterize the isolated complexes. The molecular structures of the ligand tautomers are optimized theoretically and the quantum chemical parameters are calculated. The IR spectra showed that the ligand (HL) act as monobasic tridentate/neutral bidentate through the (sbnd Ndbnd N), enolic (Csbnd O)- and/or oxygen keto moiety groups forming a five/six-membered structures. According to intramolecular hydrogen bond leads to increasing of the complexes stability. The molar conductivities show that all the complexes are non-electrolytes. The ESR spectra indicate that the free electron is in dxy orbital. The calculated bonding parameter indicates that in-plane σ-bonding is more covalent than in-plane π-bonding. The coordination geometry is five/six-coordinated trigonal bipyramidal for complex (1) and octahedral for complexes (2-6). The value of covalency factor β12 and orbital reduction factor K accounts for the covalent nature of the complexes. The activation thermodynamic parameters are calculated using Coats-Redfern and Horowitz-Metzger methods. The synthesized ligand (HL) and its Cu(II) complexes (1, 2 and 4) are screened for their biological activity against bacterial and fungal species. The ligand (HL) showed antimicrobial activities against Escherichia coli. The ligand (HL) and its Cu(II) complexes (2 and 4) have very high antifungal activity against Penicillium italicum. The inhibitive action of ligand (HL), against the corrosion of C-steel in 2 M HCl solution has been investigated using potentiodynamic polarization and electrochemical impedance spectroscopy (EIS).

  5. Electronic structure and reactivity of three-coordinate iron complexes.

    PubMed

    Holland, Patrick L

    2008-08-01

    [Reaction: see text]. The identity and oxidation state of the metal in a coordination compound are typically thought to be the most important determinants of its reactivity. However, the coordination number (the number of bonds to the metal) can be equally influential. This Account describes iron complexes with a coordination number of only three, which differ greatly from iron complexes with octahedral (six-coordinate) geometries with respect to their magnetism, electronic structure, preference for ligands, and reactivity. Three-coordinate complexes with a trigonal-planar geometry are accessible using bulky, anionic, bidentate ligands (beta-diketiminates) that steer a monodentate ligand into the plane of their two nitrogen donors. This strategy has led to a variety of three-coordinate iron complexes in which iron is in the +1, +2, and +3 oxidation states. Systematic studies on the electronic structures of these complexes have been useful in interpreting their properties. The iron ions are generally high spin, with singly occupied orbitals available for pi interactions with ligands. Trends in sigma-bonding show that iron(II) complexes favor electronegative ligands (O, N donors) over electropositive ligands (hydride). The combination of electrostatic sigma-bonding and the availability of pi-interactions stabilizes iron(II) fluoride and oxo complexes. The same factors destabilize iron(II) hydride complexes, which are reactive enough to add the hydrogen atom to unsaturated organic molecules and to take part in radical reactions. Iron(I) complexes use strong pi-backbonding to transfer charge from iron into coordinated alkynes and N 2, whereas iron(III) accepts charge from a pi-donating imido ligand. Though the imidoiron(III) complex is stabilized by pi-bonding in the trigonal-planar geometry, addition of pyridine as a fourth donor weakens the pi-bonding, which enables abstraction of H atoms from hydrocarbons. The unusual bonding and reactivity patterns of three-coordinate iron compounds may lead to new catalysts for oxidation and reduction reactions and may be used by nature in transient intermediates of nitrogenase enzymes.

  6. Investigations into the synthesis and fluorescence properties of Eu(III), Tb(III), Sm(III) and Gd(III) complexes of a novel bis- β-diketone-type ligand

    NASA Astrophysics Data System (ADS)

    Luo, Yi-Ming; Chen, Zhe; Tang, Rui-Ren; Xiao, Lin-Xiang; Peng, Hong-Jian

    2008-02-01

    A novel bis- β-diketon ligand, 1,1'-(2,6-bispyridyl)bis-3-phenyl-1,3-propane-dione (L), was designed and synthesized and its complexes with Eu(III), Tb(III), Sm(III) and Gd(III) ions were successfully prepared. The ligand and the corresponding metal complexes were characterized by elemental analysis, and infrared, mass and proton nuclear magnetic resonance spectroscopy. Analysis of the IR spectra suggested that each of the lanthanide metal ions coordinated to the ligand via the carbonyl oxygen atoms and the nitrogen atom of the pyridine ring. The fluorescence properties of these complexes in solid state were investigated and it was discovered that all of the lanthanide ions could be sensitized by the ligand (L) to some extent. In particular, the Tb(III) complex was an excellent green-emitter and would be a potential candidate material for applications in organic light-emitting devices (OLEDs) and medical diagnosis.

  7. Structural characterization and antimicrobial activities of transition metal complexes of a hydrazone ligand

    NASA Astrophysics Data System (ADS)

    Bakale, Raghavendra P.; Naik, Ganesh N.; Machakanur, Shrinath S.; Mangannavar, Chandrashekhar V.; Muchchandi, Iranna S.; Gudasi, Kalagouda B.

    2018-02-01

    A hydrazone ligand has been synthesized by the condensation of 2-nitrobenzaldehyde and hydralazine, and its Co(II), Ni(II), Cu(II) and Zn(II) complexes have been reported. Structural characterization of the ligand and its metal complexes has been performed by various spectroscopic [IR, NMR, UV-Vis, Mass], thermal and other physicochemical methods. The structure of the ligand and its Ni(II) complex has been characterized by single crystal X-ray diffraction studies. All the synthesized compounds have been screened for in vitro antimicrobial activity. The antibacterial activity is tested against Gram-positive strains Enterococcus faecalis, Streptococcus mutans and Staphylococcus aureus and Gram-negative strains Escherichia coli, Pseudomonas aeruginosa and Klebsiella pneumoniae using ciprofloxacin as the reference standard. Antifungal activity is tested against Candida albicans, Aspergillus fumigatus and Aspergillus niger using ketoconazole as the reference standard. The minimum inhibitory concentration (MIC) was determined for test compounds as well as for reference standard. Ligand, Cu(II) and Zn(II) complexes have shown excellent activity against Candida albicans.

  8. Synthesis, characterization and cytotoxicity of rare earth metal ion complexes of N,N‧-bis-(2-thiophenecarboxaldimine)-3,3‧-diaminobenzidene, Schiff base ligand

    NASA Astrophysics Data System (ADS)

    Shakir, Mohammad; Abbasi, Ambreen; Faraz, Mohammad; Sherwani, Asif

    2015-12-01

    Lanthanide complexes of La3+, Pr3+, Nd3+, Gd3+, Er3+ of general formula [Ln2 L(H2O)4(NO3)4](NO3)2·2H2O have been synthesized from Schiff base, N,N‧-bis-(2-thiophenecarboxaldimine)-3,3‧-diaminobenzidene. The complexes were characterized by elemental analysis, molar conductance, UV-Vis, fluorescence, FT-IR,1H NMR, mass spectroscopy, EDX, SEM and thermal analysis. FT-IR spectral data suggested that ligand coordinate with metal ions through azomethine nitrogen and uncondensed amino group. Molar conductance data revealed 1:2 electrolytic nature of complexes. From the analytical data, the stoichiometry of the complexes was found to be 1:2 (ligand:metal). Thephysico-chemical data suggested eight coordination number for Ln(III)Schiffbase complexes. SEM analysis shows morphological changes in the surfaces of complexes as compared to free ligand. Thermal decomposition profiles were consistent with proposed formulations. The anticancer activity of the complexes and theSchiffbase ligand has been studied towards human cervical cancer celllines (HeLa) and human breast cancer cell lines (MCF-7) and it was found that complexes exhibited greater activity than theSchiffbase.

  9. Electronic Structure of Manganese Corroles Revisited: X-ray Structures, Optical and X-ray Absorption Spectroscopies, and Electrochemistry as Probes of Ligand Noninnocence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ganguly, Sumit; MCormick, Laura J.; Conradie, Jeanet

    Presented herein is a detailed multitechnique investigation of ligand noninnocence in S = 3/2 manganese corrole derivatives at the formal Mn IV oxidation state. The Soret maxima of Mn[T pXPC]Cl (T pXPC = meso-tris( p-X-phenyl)corrole, where X = CF 3, H, Me, and OMe) were found to red-shift over a range of 37 nm with increasing electron-donating character of X. For Mn[T pXPC]Ph, in contrast, the complex Soret envelopes were found to be largely independent of X. These observations suggested a noninnocent corrole •2–-like ligand for the MnCl complexes and an innocent corrole 3– ligand for the MnPh complexes. Single-crystalmore » X-ray structures of three Mn[T pXPC]Cl complexes revealed skeletal bond-length alternations indicative of a noninnocent corrole, while no such alternation was observed for Mn[T pOMePC]Ph. B3LYP density functional theory (DFT) calculations on Mn[TPC]Cl yielded strong spatial separation of the α and β spin densities, consistent with an antiferromagnetically coupled Mn III-corrole •2– description. By comparison, relatively little spatial separation of the α and β spin densities was found for Mn[TPC]Ph, consistent with an essentially Mn IV-corrole 3– description. X-ray absorption of near-edge spectroscopy (XANES) revealed a moderate blue shift of 0.6 eV for the Mn K-pre-edge of Mn[T pCF 3PC]Ph and a striking enhancement of the pre-edge intensity, relative to Mn[T pCF 3PC]Cl, consistent with a more oxidized, i.e., Mn IV, center in Mn[T pCF 3PC]Ph. Time-dependent DFT calculations indicated that the enhanced intensity of the Mn K-pre-edge of Mn[T pCF 3PC]Ph results from the extra 3d z2 hole, which mixes strongly with the Mn 4p z orbital. Combined with similar results on Fe[TPC]Cl and Fe[TPC]Ph, the present study underscores the considerable potential of metal K-edge XANES in probing ligand noninnocence in first-row transition-metal corroles. As a result, cyclic voltammetry measurements revealed highly negative first reduction potentials for the Mn[T pXPC]Ph series (~–0.95 V) as well as large electrochemical HOMO-LUMO gaps of ~1.7 V. The first reductions, however, are irreversible, suggesting cleavage of the Mn–Ph bond.« less

  10. Electronic Structure of Manganese Corroles Revisited: X-ray Structures, Optical and X-ray Absorption Spectroscopies, and Electrochemistry as Probes of Ligand Noninnocence

    DOE PAGES

    Ganguly, Sumit; MCormick, Laura J.; Conradie, Jeanet; ...

    2018-06-06

    Presented herein is a detailed multitechnique investigation of ligand noninnocence in S = 3/2 manganese corrole derivatives at the formal Mn IV oxidation state. The Soret maxima of Mn[T pXPC]Cl (T pXPC = meso-tris( p-X-phenyl)corrole, where X = CF 3, H, Me, and OMe) were found to red-shift over a range of 37 nm with increasing electron-donating character of X. For Mn[T pXPC]Ph, in contrast, the complex Soret envelopes were found to be largely independent of X. These observations suggested a noninnocent corrole •2–-like ligand for the MnCl complexes and an innocent corrole 3– ligand for the MnPh complexes. Single-crystalmore » X-ray structures of three Mn[T pXPC]Cl complexes revealed skeletal bond-length alternations indicative of a noninnocent corrole, while no such alternation was observed for Mn[T pOMePC]Ph. B3LYP density functional theory (DFT) calculations on Mn[TPC]Cl yielded strong spatial separation of the α and β spin densities, consistent with an antiferromagnetically coupled Mn III-corrole •2– description. By comparison, relatively little spatial separation of the α and β spin densities was found for Mn[TPC]Ph, consistent with an essentially Mn IV-corrole 3– description. X-ray absorption of near-edge spectroscopy (XANES) revealed a moderate blue shift of 0.6 eV for the Mn K-pre-edge of Mn[T pCF 3PC]Ph and a striking enhancement of the pre-edge intensity, relative to Mn[T pCF 3PC]Cl, consistent with a more oxidized, i.e., Mn IV, center in Mn[T pCF 3PC]Ph. Time-dependent DFT calculations indicated that the enhanced intensity of the Mn K-pre-edge of Mn[T pCF 3PC]Ph results from the extra 3d z2 hole, which mixes strongly with the Mn 4p z orbital. Combined with similar results on Fe[TPC]Cl and Fe[TPC]Ph, the present study underscores the considerable potential of metal K-edge XANES in probing ligand noninnocence in first-row transition-metal corroles. As a result, cyclic voltammetry measurements revealed highly negative first reduction potentials for the Mn[T pXPC]Ph series (~–0.95 V) as well as large electrochemical HOMO-LUMO gaps of ~1.7 V. The first reductions, however, are irreversible, suggesting cleavage of the Mn–Ph bond.« less

  11. Phototoxicity of strained Ru(ii) complexes: is it the metal complex or the dissociating ligand?

    PubMed

    Azar, Daniel F; Audi, Hassib; Farhat, Stephanie; El-Sibai, Mirvat; Abi-Habib, Ralph J; Khnayzer, Rony S

    2017-09-12

    A photochemically dissociating ligand in Ru(bpy) 2 (dmphen)Cl 2 [bpy = 2,2'-bipyridine; dmphen = 2,9-dimethyl-1,10-phenanthroline] was found to be more cytotoxic on the ML-2 Acute Myeloid Leukemia cell line than Ru(bpy) 2 (H 2 O) 2 2+ and prototypical cisplatin. Our findings illustrate the potential potency of diimine ligands in photoactivatable Ru(ii) complexes.

  12. Circularly Polarized Luminescence in Enantiopure Europium and Terbium Complexes with Modular, All-Oxygen Donor Ligands

    PubMed Central

    Seitz, Michael; Do, King; Ingram, Andrew J.; Moore, Evan G.; Muller, Gilles; Raymond, Kenneth N.

    2009-01-01

    Abstract: Circulaly polarized luminescence from terbium(III) complexed and excited by chiral antenna ligands gives strong emission The modular synthesis of three new octadentate, enantiopure ligands are reported - one with the bidentate chelating unit 2-hydroxyisophthalamide (IAM) and two with 1-hydroxy-2-pyridinone (1,2-HOPO) units. A new design principle is introduced for the chiral, non-racemic hexamines which constitute the central backbones for the presented class of ligands. The terbium(III) complex of the IAM ligand, as well as the europium(III) complexes of the 1,2-HOPO ligands are synthesized and characterized by various techniques (NMR, UV, CD, luminescence spectroscopy). All species exhibit excellent stability and moderate to high luminescence efficiency (quantum yields ΦEu = 0.05–0.08 and ΦTb = 0.30–0.57) in aqueous solution at physiological pH. Special focus is put onto the properties of the complexes in regard to circularly polarized luminescence (CPL). The maximum luminescence dissymmetry factors (glum) in aqueous solution are high with |glum|max = 0.08 – 0.40. Together with the very favorable general properties (good stability, high quantum yields, long lifetimes), the presented lanthanide complexes can be considered as good candidates for analytical probes based on CPL in biologically relevant environments. PMID:19639983

  13. Three-component entanglements consisting of three crescent-shaped bidentate ligands coordinated to an octahedral metal centre.

    PubMed

    Durola, Fabien; Russo, Luca; Sauvage, Jean-Pierre; Rissanen, Kari; Wenger, Oliver S

    2007-01-01

    3,3'-biisoquinoline ligands (biiq) L, bearing aromatic substituents on their 8 and 8' positions, have been used to generate interwoven systems consisting of three crescent-shaped ligands disposed around an octahedral metal centre. Mono-ligand complexes of the type [ReL(CO)3py]+ (py: pyridine) have also been prepared, leading to sterically non-hindering complexes in spite of the endotopic nature of the chelate used. The three-component entanglements have been prepared by using either FeII or RuII as gathering metal centre. The synthetic procedure is simple and efficient, affording fully characterised complexes as their PF6 or SbCl6 salts. X-ray crystallography clearly shows that the crescent-shaped ligands do not repel each other in the tris-chelate complexes. In an analogous way, the ReI complexes show open structures with no steric repulsion between the L ligand and the ancillary CO or py groups. The FeL3 or RuL3 compounds are very unusual in the sense that, contrary to all the other tris-bidentate chelate complexes made till now, the three organic components are tangled up, in a situation which will be very favourable to the formation of new non trivial topologies of the catenane type.

  14. The concept of mixed organic ligands in metal-organic frameworks: design, tuning and functions.

    PubMed

    Yin, Zheng; Zhou, Yan-Ling; Zeng, Ming-Hua; Kurmoo, Mohamedally

    2015-03-28

    The research on metal-organic frameworks (MOFs) has been developing at an extraordinary pace in its two decades of existence, as judged by the exponential growth of novel structures and the constant expansion of its applicability and research scope. A major part of the research and its success are due to the vital role of the concept of mixed organic ligands in the design, tuning and functions. This perspective, therefore, reviews the recent advances in MOFs based on this concept, which is generally based on employing a small polydentate ligand (here labelled as "nodal ligand") to form either clusters, rods or layers, which are then connected by a second ditopic linker ligand to form the framework. The structures of the materials can be grouped into the following three categories: layer-spacer (usually known as pillared-layer), rod-spacer, and cluster-spacer based MOFs. Depending on the size and geometry of the spacer ligands, interpenetrations of frameworks are occasionally found. These MOFs show a wide range of properties such as (a) crystal-to-crystal transformations upon solvent modifications, post-synthetic metal exchange or ligand reactions, (b) gas sorption, solvent selectivity and purification, (c) specific catalysis, (d) optical properties including colour change, luminescence, non-linear optic, (e) short- and long range magnetic ordering, metamagnetism and reversible ground-state modifications and (f) drug and iodine carriers with controlled release. In the following, we will highlight the importance of the above concept in the design, tuning, and functions of a selection of existing MOFs having mixed organic ligands and their associated structures and properties. The results obtained so far using this concept look very promising for fine-tuning the pore size and shape for selective adsorption and specificity in catalytic reactions, which appears to be one way to propel the advances in the application and commercialization of MOFs.

  15. Silver(I)-pyridinyl Schiff base complexes: Synthesis, characterisation and antimicrobial studies

    NASA Astrophysics Data System (ADS)

    Njogu, Eric M.; Omondi, Bernard; Nyamori, Vincent O.

    2017-05-01

    Fifteen new silver(I)-pyridinyl complexes of the general formula [AgL2]X, where X = ClO4-, OTf or NO3-, were synthesised by reacting (E)-N-(pyridinylmethylene)aniline ligands and the respective silver(I) salts namely AgClO4, AgOTf, or AgNO3. The ligands were obtained by neat grinding of 2- or 4-pyridincarboaxaldehyde together with aniline, 2,6-dimethylaniline or 2,6-diisopropylaniline. The obtained (E)-N-(pyridinylmethylene)aniline ligands were further reacted with respective silver(I) salts in a 2:1 ratio in anhydrous ethanol at room temperature under inert atmosphere using the Schlenk techniques. Chemical structures of complexes were identified by nuclear magnetic resonance, electrospray ionization mass spectrometry, elemental analysis, infrared spectroscopy and some by single-crystal X-ray diffraction analysis. Reactions involving the 2-pyridinyl derivatives resulted in cationic complexes in which two ligands chelate silver(I) centres through the pyridinyl N and imine N atoms, with the counter anion out of the coordination sphere. The 4-pyridinyl derivatives conversely gave complexes in which two ligands coordinate to the silver(I) centre through their pyridinyl N atoms only, most likely a linear fashion. The newly synthesised silver(I) complexes and the free ligands were evaluated for their in vitro antimicrobial activity against Escherichia coli, Salmonella typhimirium, Staphylococcus aureus and Candida albicans. The complexes showed varied growth inhibitory activity against the test organisms.

  16. Diarylethene-containing cyclometalated platinum(II) complexes: tunable photochromism via metal coordination and rational ligand design.

    PubMed

    Chan, Jacky Chi-Hung; Lam, Wai Han; Wong, Hok-Lai; Zhu, Nianyong; Wong, Wing-Tak; Yam, Vivian Wing-Wah

    2011-08-17

    The synthesis, characterization, electrochemistry, photophysics and photochromic behavior of a new class of cyclometalated platinum(II) complexes [Pt(C(∧)N)(O(∧)O)] (1a-5a and 1b-5b), where C(∧)N is a cyclometalating 2-(2'-thienyl)pyridyl (thpy) or 2-(2'-thienothienyl)pyridyl (tthpy) ligand containing the photochromic dithienylethene (DTE) unit and O(∧)O is a β-diketonato ligand of acetylacetonato (acac) or hexafluoroacetylacetonato (hfac), have been reported. The X-ray crystal structures of five of the complexes have also been determined. The electrochemical studies reveal that the first quasi-reversible reduction couple, and hence the nature of lowest unoccupied molecular orbital (LUMO) of the complexes, is sensitive to the nature of the ancillary O(∧)O ligands. Upon photoexcitation, complexes 1a-3a and 1b-3b exhibit drastic color changes, ascribed to the reversible photochromic behavior, which is found to be sensitive to the substituents on the pyridyl ring and the extent of π-conjugation of the C(∧)N ligand as well as the nature of the ancillary ligand. The thermal bleaching kinetics of complex 1a has been studied in toluene at various temperatures, and the activation barrier for the thermal cycloreversion of the complex has been determined. Density functional theory (DFT) calculations have been performed to provide an insight into the electrochemical, photophysical and photochromic properties.

  17. Aromatic triamide-lanthanide complexes

    DOEpatents

    Raymond, Kenneth N; Petoud, Stephane; Xu, Jide

    2013-10-08

    The present invention provides luminescent lanthanide metal chelates comprising a metal ion of the lanthanide series and a complexing agent comprising at least one phthalamidyl moiety. Also provided are probes incorporating the phthalamidyl ligands of the invention and methods utilizing the ligands of the invention and probes comprising the ligands of the invention.

  18. Cationic copper (I) complexes with bulky 1,4-diaza-1,3-butadiene ligands - Synthesis, solid state structure and catalysis

    NASA Astrophysics Data System (ADS)

    Anga, Srinivas; Kottalanka, Ravi K.; Pal, Tigmansu; Panda, Tarun K.

    2013-05-01

    We report the full characterization of two glyoxal-based ligands N,N bis(diphenylmethyl)-1,4-diaza-1,3-butadiene ligand (DADPh2, 1) and more bulky N,N bis(triphenylmethyl)-1,4-diaza-1,3-butadiene ligand (DADPh3, 2) by the condensation reaction of glyoxal and diphenylmethanamine and triphenyl-methanamine respectively. The copper (I) complex of composition [Cu(DADPh2)2]PF6 (3) having two neutral bidentate N,N bis(diphenyl-methyl)-1,4-diaza-1,3-butadiene ligand was prepared by the reaction of [Cu(CH3CN)4]PF6 and 1 in 1:2 ratio in dichloromethane. In a similar reaction with N,N bis(triphenylmethyl)-1,4-diaza-1,3-butadiene ligand (2) and [Cu(CH3CN)4]PF6 in dichloromethane yielded corresponding heteroleptic copper (I) complex [Cu(DADPh3)(CH3CN)2]PF6 (4). Another copper (I) complex [Cu(DADPh2)(PPh3)]PF6 (5) can also be obtained by the one pot reaction involving ligand 1, [Cu(CH3CN)4]PF6 and triphenylphosphine. Solid state structures of all the five compounds were established by single crystal X-ray diffraction analysis. The solid state structures of the copper complexes 3-5 reveal a distorted tetrahedral geometry around the copper (I) centers. The copper complexes 3-5 were tested as catalysts for the coupling reaction of o-iodophenol and phenyl acetylene and it was observed that complex 4 exhibits the highest catalytic activity.

  19. Carbonate Complexation of Mn2+ in Aqueous Phase

    PubMed Central

    Dasgupta, Jyotishman; Tyryshkin, Alexei M.; Kozlov, Yuri N.; Klimov, Vyacheslav V.; Dismukes, G. Charles

    2008-01-01

    The chemical speciation of Mn2+ within cells is critical for its transport, availability and redox properties. Herein we investigate the redox behavior and complexation equilibria of Mn2+ in aqueous solutions of bicarbonate by voltametry and electron paramagnetic resonance (EPR) spectroscopy, and discuss the implications for the uptake of Mn2+ by mangano-cluster enzymes like photosystem II (PSII). Both the electrochemical reduction of Mn2+ to Mn0 at an Hg electrode and EPR (in the absence of a polarizing electrode), revealed formation of 1:1 and 1:2 Mn-(bi)carbonate complexes as a function of Mn2+ and bicarbonate concentrations. Pulsed EPR spectroscopy, including ENDOR, ESEEM and 2D-HYSCORE, were used to probe the hyperfine couplings to 1H and 13C nuclei of the ligand(s) bound to Mn2+. For the 1:2 complex the complete 13C hyperfine tensor for one of the (bi)carbonate ligands was determined and it was established that this ligand coordinates to Mn2+ in bidentate mode with 13C-Mn distance of 2.85 ± 0.1 Å. The second (bi)carbonate ligand in the 1:2 complex coordinates possibly in monodentate mode, which is structurally less defined, and its 13C signal is broad and unobservable. 1H ENDOR reveals that 1-2 water ligands are lost upon binding of one bicarbonate ion in the 1:1 complex while 3-4 water ligands are lost upon forming the 1:2 complex. Thus, we deduce that the dominant species above 0.1 M bicarbonate concentration is the 1:2 complex, [Mn(CO3)(HCO3)(OH2)3]-. PMID:16526753

  20. Rhenium complexes of bidentate, bis-bidentate and tridentate N-heterocyclic carbene ligands.

    PubMed

    Chan, Chung Ying; Barnard, Peter J

    2015-11-28

    A series of eight Rhenium(I)-N-heterocyclic carbene (NHC) complexes of the general form [ReCl(CO)3(C^C)] (where C^C is a bis(NHC) bidentate ligand), [ReCl(CO)3(C^C)]2 (where C^C is a bis-bidentate tetra-NHC ligand) and [Re(CO)3(C^N^C)](+)[X](-) (where C^N^C is a bis(NHC)-amine ligand and the counter ion X is either the ReO4(-) or PF6(-)) have been synthesised using a Ag2O transmetallation protocol. The novel precursor imidazolium salts and Re(I) complexes were characterized by elemental analysis, (1)H and (13)C NMR spectroscopy and the molecular structures for two imidazolium salt and six Re(I) complexes were determined by single crystal X-ray diffraction. These NHC ligand systems are of interest for possible applications in the development of Tc-99m or Re-186/188 radiopharmaceuticals and as such the stability of two complexes of the form [ReCl(CO)3(C^C)] and [Re(CO)3(C^N^C)][ReO4] were evaluated in ligand challenge experiments using the metal binding amino acids L-histidine or L-cysteine. These studies showed that the former was unstable, with the chloride ligand being replaced by either cysteine or histidine, while no evidence for transchelation was observed for the latter suggesting that bis(NHC)-amine ligands of this type may be suitable for biological applications.

  1. Electronic communication across diamagnetic metal bridges: a homoleptic gallium(III) complex of a redox-active diarylamido-based ligand and its oxidized derivatives

    PubMed Central

    Liddle, Brendan J.; Wanniarachchi, Sarath; Hewage, Jeewantha S.; Lindeman, Sergey V.; Bennett, Brian; Gardinier, James R.

    2012-01-01

    Complexes with cations of the type [Ga(L)2]n+ where L = bis(4-methyl-2-(1H-pyrazol-1-yl)phenyl)amido and n = 1, 2, 3 have been prepared and structurally characterized. The electronic properties of each were probed by electrochemical and spectroscopic means and were interpreted with the aid of DFT calculations. The dication, best described as [Ga(L−)(L0)]2+, and is a Robin-Day class II mixed-valence species. As such, a broad, weak, solvent-dependent intervalence charge transfer (IVCT) band was found in the NIR spectrum in the range 6390 to 6925 cm−1, depending on solvent. Band shape analyses and the use of Hush and Marcus relations revealed a modest electronic coupling, Hab of about 200 cm−1, and a large rate constant for electron transfer, ket, on the order of 1010 s−1 between redox active ligands. The di-oxidized complex [Ga(L0)2]3+ shows a half-field ΔMs = 2 transition in its solid-state X-Band EPR spectrum at 5 K which indicates that the triplet state is thermally populated. DFT calculations (M06/Def2-SV(P)) suggest that the singlet state is 21.7 cm−1 lower in energy than the triplet state. PMID:23163736

  2. Carbon-Based Oxamate Cobalt(III) Complexes as Bioenzyme Mimics for Contaminant Elimination in High Backgrounds of Complicated Constituents.

    PubMed

    Li, Nan; Zheng, Yun; Jiang, Xuemei; Zhang, Ran; Pei, Kemei; Chen, Wenxing

    2017-10-12

    Complex wastewater with massive components is now a serious environmental issue facing humanity. Selective removal of low-concentration contaminants in mixed constituents holds great promise for increasing water supplies. Bioenzymes like horseradish peroxidase exhibit oxidizing power and selectivity. Here, we manufactured its mimic through immobilizing non-heme oxamate anionic cobalt(III) complex ([Co III (opba)] - , opba = o-phenylenebis(oxamate)) onto pyridine (Py) modified multiwalled carbon nanotubes ([Co III (opba)] - -Py-MWCNTs, MWCNTs = multiwalled carbon nanotubes), where MWCNTs captured substrates and Py functioned as the fifth ligand. We chose typical azo dye (C.I. Acid Red 1) and antibiotic (ciprofloxacin) as model substrates. Without •OH, this catalyst could detoxify target micropollutants efficiently at pH from 8 to 11. It also remained efficient in repetitive tests, and the final products were non-poisonous OH-containing acids. Combined with radical scavenger tests and electron paramagnetic resonance result, we speculated that high-valent cobalt-oxo active species and oxygen atom transfer reaction dominated in the reaction pathway. According to density functional theory calculations, the electron spin density distribution order showed that electron-withdrawing ligand was beneficial for inward pulling the excess electron and lowering the corresponding energy levels, achieving an electrophilic-attack enhancement of the catalyst. With target removal property and recyclability, this catalyst is prospective in water detoxication.

  3. Coordination Chemistry of Linear Oligopyrrolic Fragments Inspired by Heme Metabolites

    NASA Astrophysics Data System (ADS)

    Gautam, Ritika

    Linear oligopyrroles are degradation products of heme, which is converted in the presence of heme oxygenase to bile pigments, such as biliverdin and bilirubin. These tetrapyrrolic oligopyrroles are ubiquitously present in biological systems and find applications in the fields of catalysis and sensing. These linear tetrapyrrolic scaffolds are further degraded into linear tripyrrolic and dipyrrolic fragments. Although these lower oligopyrroles are abundantly present, their coordination chemistry requires further characterization. This dissertation focuses mainly on two classes of bioinspired linear oligopyrroles, propentdyopent and tripyrrindione, and their transition metal complexes, which present a rich ligand-based redox chemistry. Chapter 1 offers an overview of heme degradation to different classes of linear oligopyrroles and properties of their transition metal complexes. Chapter 2 is focused on the tripyrrin-1,14-dione scaffold of the urinary pigment uroerythrin, which coordinates divalent transition metals palladium and copper with square planar geometry. Specifically, the tripyrrin-1, 14-dione ligand binds Cu(II) and Pd(II) as a dianionic organic radical under ambient conditions. The electrochemical study confirms the presence of ligand based redox chemistry, and one electron oxidation or reduction reactions do not alter the planar geometry around the metal center. The X-Ray analysis and the electron paramagnetic resonance (EPR) studies of the complexes in the solid and solution phase reveals intermolecular interactions between the ligand based unpaired electrons and therefore formation of neutral pi-pi dimers. In Chapter 3, the antioxidant activity and the fluorescence sensor properties of the tripyrrin-1,14-dione ligand in the presence of superoxide are described. We found that the tripyrrindione ligand undergoes one-electron reduction in the presence of the superoxide radical anion (O2•- ) to form highly fluorescent H3TD1•- radical anion, which emits at 635 nm. This reaction also explains the antioxidant properties of the linear tripyrrin-1,14-dione ligand, which acts as a scavenger of O2•-. In Chapter 4, the zinc binding properties of the tripyrrin-1,14-dione ligand are described. The tripyrrolic ligand coordinates as a dianionic ligand with the divalent Zn(II) ion in both organic and aqueous buffered conditions. The complex formed is highly fluorescent with a long wavelength emission band at 648 nm. The X-Ray crystallography analysis indicates the existence of dinuclear complex [Zn(TD1•)(H2O)]2, featuring a distorted square planar geometry around the Zn(II) center. In Chapter 5, the coordination chemistry of the dipyrrin-1,9-dione fragment of propentdyopent ligand is shown with a series of transition metals like (e.g., Co(II), Ni(II), Cu(II) and Zn(II)), which form homoleptic tetrahedral complexes. The spectroscopic and electrochemical characterization confirms that the complexes shows ligand-based redox chemistry and acts as reservoirs for unpaired electrons. Chapter 6 describes the formation of the fluorescent BODIPY complex of propentdyopent ligand. The dipyrrin-1,9-dione scaffold of heme metabolite propendyopent undergoes a one-pot reaction with borontrifluoride etherate in toluene to form a green fluorescent [(pdp)BF2] complex. Spectroscopic studies reveal that the meso-unsubstituted [(pdp)BF2] complex is stable in tetrahydrofuran and has a quantum yield of 0.13. Electrochemical studies confirm that the complex undergoes ligand-based reduction and acts as a host for an unpaired electron.

  4. Intramolecular Hydrogen Bonding Restricts Gd-Aqua-Ligand Dynamics [The Day the Water Stood Still: Intramolecular Hydrogen Bonding to Restrict Gd-Aqua Ligand Dynamics

    DOE PAGES

    Boros, Eszter; Srinivas, Raja; Kim, Hee -Kyung; ...

    2017-04-11

    Aqua ligands can undergo rapid internal rotation about the M-O bond. For magnetic resonance contrast agents, this rotation results in diminished relaxivity. Herein, we show that an intramolecular hydrogen bond to the aqua ligand can reduce this internal rotation and increase relaxivity. Molecular modeling was used to design a series of four Gd complexes capable of forming an intramolecular H-bond to the coordinated water ligand, and these complexes had anomalously high relaxivities compared to similar complexes lacking a H-bond acceptor. Molecular dynamics simulations supported the formation of a stable intramolecular H-bond, while alternative hypotheses that could explain the higher relaxivitymore » were systematically ruled out. Finally, intramolecular H-bonding represents a useful strategy to limit internal water rotational motion and increase relaxivity of Gd complexes.« less

  5. PLI: a web-based tool for the comparison of protein-ligand interactions observed on PDB structures.

    PubMed

    Gallina, Anna Maria; Bisignano, Paola; Bergamino, Maurizio; Bordo, Domenico

    2013-02-01

    A large fraction of the entries contained in the Protein Data Bank describe proteins in complex with low molecular weight molecules such as physiological compounds or synthetic drugs. In many cases, the same molecule is found in distinct protein-ligand complexes. There is an increasing interest in Medicinal Chemistry in comparing protein binding sites to get insight on interactions that modulate the binding specificity, as this structural information can be correlated with other experimental data of biochemical or physiological nature and may help in rational drug design. The web service protein-ligand interaction presented here provides a tool to analyse and compare the binding pockets of homologous proteins in complex with a selected ligand. The information is deduced from protein-ligand complexes present in the Protein Data Bank and stored in the underlying database. Freely accessible at http://bioinformatics.istge.it/pli/.

  6. The coordination chemistry of group 15 element ligand complexes--a developing area.

    PubMed

    Scheer, Manfred

    2008-09-07

    A survey of the contemporary challenges of the field of unsubstituted group 15 element ligand complexes (excluding N) is given. The focus of the article is on the coordination chemistry behaviour of such E(n) ligand complexes. This field is subdivided into two areas of reactivity: E(n) ligand complexes with (i) noncoordinated Lewis-acidic cations and (ii) Lewis-acidic coordination compounds containing at least one permanently coordinating ligand. In the latter case, insoluble 1D and 2D polymers respectively are obtained; however, under special conditions soluble, spherical, fullerene-like giant molecules are formed. These nano-sized molecules are up to 2.4 nm in diameter and are able to encapsulate small molecules in their holes. In contrast, the first-mentioned field uses weakly coordinating anions to obtain readily soluble di- and polycationic products. These show depolymerisation tendencies in solution under the formation of oligomer-monomer equilibria and thus reveal dynamic supramolecular aggregation processes.

  7. Electronic Structure and Bonding in Transition Metal Inorganic and Organometallic Complexes: New Basis Sets, Linear Semibridging Carbonyls and Thiocarbonyls, and Oxidative Addition of Molecular Hydrogen to Square - Iridium Complexes.

    NASA Astrophysics Data System (ADS)

    Sargent, Andrew Landman

    Approximate molecular orbital and ab initio quantum chemical techniques are used to investigate the electronic structure, bonding and reactivity of several transition metal inorganic and organometallic complexes. Modest-sized basis sets are developed for the second-row transition metal atoms and are designed for use in geometry optimizations of inorganic and organometallic complexes incorporating these atoms. The basis sets produce optimized equilibrium geometries which are slightly better than those produced with standard 3-21G basis sets, and which are significantly better than those produced with effective core potential basis sets. Linear semibridging carbonyl ligands in heterobimetallic complexes which contain a coordinatively unsaturated late transition metal center are found to accept electron density from, rather than donate electron density to, these centers. Only when the secondary metal center is a coordinatively unsaturated early transition metal center does the semibridging ligand donate electron density to this center. Large holes in the d shell around the metal center are more prominent and prevalent in early than in late transition metal centers, and the importance of filling in these holes outweighs the importance of mitigating the charge imbalance due to the dative metal-metal interaction. Semibridging thiocarbonyl ligands are more effective donors of electron density than the carbonyl ligands since the occupied donor orbitals of pi symmetry are higher in energy. The stereoselectivity of H_2 addition to d^8 square-planar transition metal complexes is controlled by the interactions between the ligands in the plane of addition and the concentrations of electronic charge around the metal center as the complex evolves from a four-coordinate to a six-coordinate species. Electron -withdrawing ligands help stabilize the five-coordinate species while strong electron donor ligands contribute only to the destabilizing repulsive interactions. The relative thermodynamic stabilities of the final complexes can be predicted based on the relative orientations of the strongest sigma-donor ligands.

  8. Calix[4]arenes as selective extracting agents. An NMR dynamic and conformational investigation of the lanthanide(III) and thorium(IV) complexes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lambert, B.; Jacques, V.; Shivanyuk, A.

    The lanthanide and Th{sup 4+} complexes with calix[4]arene ligands substituted either on the narrow or at the wide rim by four coordinating groups behave totally differently as shown by an NMR investigation of the dia- and paramagnetic complexes. Solutions of complexes were prepared by reacting anhydrous metal perchlorate salts with the ligands in dry acetonitrile (CAUTION). Relaxation time T{sub 1} titrations of acetonitrile solutions of Gd{sup 3+} by calixarenes indicate that ligands substituted on the narrow rim form stable 1:1 complexes whether they feature four amide groups (1) or four phosphine oxide functions. In contrast, a ligand substituted by fourmore » (carbamoylmethyl)-diphenylphosphine oxide moieties on the wide rim (3) and its derivatives form polymeric species even at a 1:1 ligand/metal concentration ratio. Nuclear magnetic relaxation dispersion (NMRD) curves (relaxation rates 1/T{sub 1} vs magnetic field strength) of Gd{sup 3+}, Gd{sup 3+}{center_dot}1 and Gd{sup 3+}{center_dot}3 perchlorates in acetonitrile are analyzed by an extended version of the Solomon-Bloembergen-Morgan equations. A comparison of the calculated rotational correlation times {tau}{sub r} shows that ligand 3 forms oligomeric Gd{sup 3+} species. The chelates of ligand 1 are axially symmetric (C{sub 4} symmetry), and the paramagnetic shifts induced by the Yb{sup 3+} ion are accounted for quantitatively. The addition of water or of nitrate ions does not modify the geometry of the complex. The metal chelates of 3 and its derivatives adopt a C{sub 2} symmetry, and the paramagnetic shifts are interpreted on a semiquantitative basis only. Water and NO{sub 3}{sup {minus}} ions completely labilize the complexes of the heavy lanthanides. The very high selectivity of ligand 3 through the lanthanide series stems from a complex interplay of factors.« less

  9. Ligational behaviour of lomefloxacin drug towards Cr(III), Mn(II), Fe(III), Co(II), Ni(II), Cu(II), Zn(II), Th(IV) and UO(2)(VI) ions: synthesis, structural characterization and biological activity studies.

    PubMed

    Abd el-Halim, Hanan F; Mohamed, Gehad G; el-Dessouky, Maher M I; Mahmoud, Walaa H

    2011-11-01

    Nine new mononuclear Cr(III), Mn(II), Fe(III), Co(II), Ni(II), Cu(II), Zn(II), Th(IV) and UO(2)(VI) complexes of lomefloxacin drug were synthesized. The structures of these complexes were elucidated by elemental analyses, IR, XRD, UV-vis, (1)H NMR as well as conductivity and magnetic susceptibility measurements and thermal analyses. The dissociation constants of lomefloxacin and stability constants of its binary complexes have been determined spectrophotometrically in aqueous solution at 25±1°C and at 0.1 M KNO(3) ionic strength. The discussion of the outcome data of the prepared complexes indicate that the lomefloxacin ligand behaves as a neutral bidentate ligand through OO coordination sites and coordinated to the metal ions via the carbonyl oxygen and protonated carboxylic oxygen with 1:1 (metal:ligand) stoichiometry for all complexes. The molar conductance measurements proved that the complexes are electrolytes. The powder XRD study reflects the crystalline nature for the investigated ligand and its complexes except Mn(II), Zn(II) and UO(2)(II). The geometrical structures of these complexes are found to be octahedral. The thermal behaviour of these chelates is studied where the hydrated complexes lose water molecules of hydration in the first steps followed by decomposition of the anions, coordinated water and ligand molecules in the subsequent steps. The activation thermodynamic parameters are calculated using Coats-Redfern and Horowitz-Metzger methods. A comparative study of the inhibition zones of the ligand and its metal complexes indicates that metal complexes exhibit higher antibacterial effect against one or more bacterial species than the free LFX ligand. The antifungal and anticancer activities were also tested. The antifungal effect of almost metal complexes is higher than the free ligand. LFX, [Co(LFX)(H(2)O)(4)]·Cl(2) and [Zn(LFX)(H(2)O)(4)]·Cl(2) were found to be very active with IC50 values 14, 11.2 and 43.1, respectively. While, other complexes had been found to be inactive at lower concentration than 100 μg/ml. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. Removal of acidic or basic α-amino acids in water by poorly water soluble scandium complexes.

    PubMed

    Hayashi, Nobuyuki; Jin, Shigeki; Ujihara, Tomomi

    2012-11-02

    To recognize α-amino acids with highly polar side chains in water, poorly water soluble scandium complexes with both Lewis acidic and basic portions were synthesized as artificial receptors. A suspension of some of these receptor molecules in an α-amino acid solution could remove acidic and basic α-amino acids from the solution. The compound most efficient at preferentially removing basic α-amino acids (arginine, histidine, and lysine) was the receptor with 7,7'-[1,3-phenylenebis(carbonylimino)]bis(2-naphthalenesulfonate) as the ligand. The neutral α-amino acids were barely removed by these receptors. Removal experiments using a mixed amino acid solution generally gave results similar to those obtained using solutions containing a single amino acid. The results demonstrated that the scandium complex receptors were useful for binding acidic and basic α-amino acids.

  11. Kinetics of brucite dissolution at 25°C in the presence of organic and inorganic ligands and divalent metals

    NASA Astrophysics Data System (ADS)

    Pokrovsky, Oleg S.; Schott, Jacques; Castillo, Alain

    2005-02-01

    Brucite (Mg(OH) 2) dissolution rate was measured at 25°C in a mixed-flow reactor at various pH (5 to 11) and ionic strengths (0.01 to 0.03 M) as a function of the concentration of 15 organic and 5 inorganic ligands and 8 divalent metals. At neutral and weakly alkaline pH, the dissolution is promoted by the addition of the following ligands ranked by decreasing effectiveness: EDTA ≥ H 2PO 4- > catechol ≥ HCO 3- > ascorbate > citrate > oxalate > acetate ˜ lactate and it is inhibited by boric acid. At pH >10.5, it decreases in the presence of PO 43-, CO 32-, F -, oxine, salicylate, lactate, acetate, 4-hydroxybenzoate, SO 42- and B(OH) 4- with orthophosphate and borate being the strongest and the weakest inhibitor, respectively. Xylose (up to 0.1 M), glycine (up to 0.05 M), formate (up to 0.3 M) and fulvic and humic acids (up to 40 mg/L DOC) have no effect on brucite dissolution kinetics. Fluorine inhibits dissolution both in neutral and alkaline solutions. From F sorption experiments in batch and flow-through reactors and the analysis of reacted surfaces using X-ray Photoelectron Spectroscopy (XPS), it is shown that fluorine adsorption is followed by its incorporation in brucite lattice likely via isomorphic substitution with OH. The effect of eight divalent metals (Sr, Ba, Ca, Pb, Mn, Fe, Co and Ni) studied at pH 4.9 and 0.01 M concentration revealed brucite dissolution rates to be correlated with the water molecule exchange rates in the first hydration sphere of the corresponding cation. The effect of investigated ligands on brucite dissolution rate can be modelled within the framework of the surface coordination approach taking into account the adsorption of ligands on dissolution-active sites and the molecular structure of the surface complexes they form. The higher the value of the ligand sorption constant, the stronger will be its catalyzing or inhibiting effect. As for Fe and Al oxides, bi- or multidentate mononuclear surface complexes, that labilize Mg-O bonds and water coordination to Mg atoms at the surface, enhance brucite dissolution whereas bi- or polynuclear surface complexes tend to inhibit dissolution by bridging two or more metal centers and extending the cross-linking at the solid surface. Overall, results of this study demonstrate that very high concentrations of organic ligands (0.01-0.1 M) are necessary to enhance or inhibit brucite dissolution. As a result, the effect of extracellular organic products on the weathering rate of Mg-bearing minerals is expected to be weak.

  12. Structural studies of P-type ATPase–ligand complexes using an X-ray free-electron laser

    DOE PAGES

    Bublitz, Maike; Nass, Karol; Drachmann, Nikolaj D.; ...

    2015-06-11

    Membrane proteins are key players in biological systems, mediating signalling events and the specific transport ofe.g.ions and metabolites. Consequently, membrane proteins are targeted by a large number of currently approved drugs. Understanding their functions and molecular mechanisms is greatly dependent on structural information, not least on complexes with functionally or medically important ligands. Structure determination, however, is hampered by the difficulty of obtaining well diffracting, macroscopic crystals. Here, the feasibility of X-ray free-electron-laser-based serial femtosecond crystallography (SFX) for the structure determination of membrane protein–ligand complexes using microcrystals of various native-source and recombinant P-type ATPase complexes is demonstrated. The data revealmore » the binding sites of a variety of ligands, including lipids and inhibitors such as the hallmark P-type ATPase inhibitor orthovanadate. By analyzing the resolution dependence of ligand densities and overall model qualities, SFX data quality metrics as well as suitable refinement procedures are discussed. Even at relatively low resolution and multiplicity, the identification of ligands can be demonstrated. This makes SFX a useful tool for ligand screening and thus for unravelling the molecular mechanisms of biologically active proteins.« less

  13. Co(II) and Cd(II) Complexes Derived from Heterocyclic Schiff-Bases: Synthesis, Structural Characterisation, and Biological Activity

    PubMed Central

    Ahmed, Riyadh M.; Yousif, Enaam I.; Al-Jeboori, Mohamad J.

    2013-01-01

    New monomeric cobalt and cadmium complexes with Schiff-bases, namely, N′-[(E)-(3-hydroxy-4-methoxyphenyl)methylidene]furan-2-carbohydrazide (L1) and N′-[(E)-(3-hydroxy-4-methoxyphenyl)methylidene]thiophene-2-carbohydrazide (L2) are reported. Schiff-base ligands L1 and L2 were derived from condensation of 3-hydroxy-4-methoxybenzaldehyde (iso-vanillin) with furan-2-carboxylic acid hydrazide and thiophene-2-carboxylic acid hydrazide, respectively. Complexes of the general formula [M(L)2]Cl2 (where M = Co(II) or Cd(II), L = L1 or L2) have been obtained from the reaction of the corresponding metal chloride with the ligands. The ligands and their metal complexes were characterised by spectroscopic methods (FTIR, UV-Vis, 1H, and 13C NMR spectra), elemental analysis, metal content, magnetic measurement, and conductance. These studies revealed the formation of four-coordinate complexes in which the geometry about metal ion is tetrahedral. Biological activity of the ligands and their metal complexes against gram positive bacterial strain Bacillus (G+) and gram negative bacteria Pseudomonas (G−) revealed that the metal complexes become less resistive to the microbial activities as compared to the free ligands. PMID:24027449

  14. Mononuclear, trinuclear, and hetero-trinuclear supramolecular complexes containing a new tri-sulfonate ligand and cobalt(II)/copper(II)-(1,10-phenanthroline) 2 building blocks

    NASA Astrophysics Data System (ADS)

    Yu, Yunfang; Wei, Yongqin; Broer, Ria; Sa, Rongjian; Wu, Kechen

    2008-03-01

    Novel mononuclear, trinuclear, and hetero-trinuclear supermolecular complexes, [Co(phen) 2(H 2O)(HTST)]·2H 2O ( 1), [Co 3(phen) 6(H 2O) 2(TST) 2]·7H 2O ( 2), and [Co 2Cu(phen) 6(H 2O) 2(TST) 2]·10H 2O ( 3), have been synthesized by the reactions of a new tri-sulfonate ligand (2,4,6-tris(4-sulfophenylamino)-1,3,5-triazine, H 3TST) with the M2+ ( M=Co, Cu) and the second ligand 1,10-phenanthroline (phen). Complex 1 contains a cis-Co(II)(phen) 2 building block and an HTST as monodentate ligand; complex 2 consists of two TST as bidentate ligands connecting one trans- and two cis-Co(II)(phen) 2 building blocks; complex 3 is formed by replacing the trans-Co(II)(phen) 2 in 2 with a trans-Cu(II)(phen) 2, which is the first reported hetero-trinuclear supramolecular complex containing both the Co(II)(phen) 2 and Cu(II)(phen) 2 as building blocks. The study shows the flexible multifunctional self-assembly capability of the H 3TST ligands presenting in these supramolecular complexes through coordinative, H-bonding and even π- π stacking interactions. The photoluminescent optical properties of these complexes are also investigated and discussed as well as the second-order nonlinear optical properties of 1.

  15. Synthesis, antiproliferative activity and mechanism of gallium(III)-thiosemicarbazone complexes as potential anti-breast cancer agents.

    PubMed

    Qi, Jinxu; Yao, Qian; Qian, Kun; Tian, Liang; Cheng, Zhen; Yang, Dongmei; Wang, Yihong

    2018-05-14

    Five thiosemicarbazone ligands were synthesized and characterized by condensation with different aldehydes or ketones by 4-phenylthiosemicarbazone. The representative dichlorido[2-(Di-2-pyridinylmethylene)-Nphenylhydrazinecarbothioamide-N,N,S]-gallium(III) (Ga4) was characterized by X-ray single crystal diffraction, which was 1:1 ligand/Ga(III) complexes. The structure-activity relationship of these ligands and Ga (III) complexes have been investigated, and the results demonstrate that the formation of Ga (III) complexes have significant antiproliferative activity over the corresponding ligands. The anticancer mechanism of gallium (III) complexes has been studied in detail, which is typical agents that effect on the mitochondrial apoptotic pathway. The ability of gallium (III) complexes to inhibit the cell cycle does not enhanced with the increasing concentrations, whereas the ability to promote apoptosis is concentration-dependent. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  16. Mixed-Ligand Uranyl Polyrotaxanes Incorporating a Sulfate/Oxalate Coligand: Achieving Structural Diversity via pH-Dependent Competitive Effect.

    PubMed

    Xie, Zhen-Ni; Mei, Lei; Hu, Kong-Qiu; Xia, Liang-Shu; Chai, Zhi-Fang; Shi, Wei-Qun

    2017-03-20

    A mixed-ligand system provides an alternative route to tune the structures and properties of metal-organic compounds by introducing functional organic or inorganic coligands. In this work, five new uranyl-based polyrotaxane compounds incorporating a sulfate or oxalate coligand have been hydrothermally synthesized via a mixed-ligand method. Based on C6BPCA@CB6 (C6BPCA = 1,1'-(hexane-1,6-diyl)bis(4-(carbonyl)pyridin-1-ium), CB6 = cucurbit[6]uril) ligand, UPS1 (UO 2 (L) 0.5 (SO 4 )(H 2 O)·2H 2 O, L = C6BPCA@CB6) is formed by the alteration of initial aqueous solution pH to a higher acidity. The resulting 2D uranyl polyrotaxane sheet structure of UPS1 is based on uranyl-sulfate ribbons connected by the C6BPCA@CB6 pseudorotaxane linkers. By using oxalate ligand instead of sulfate, four oxalate-containing uranyl polyrotaxane compounds, UPO1-UPO4, have been acquired by tuning reaction pH and ligand concentration: UPO1 (UO 2 (L) 0.5 (C 2 O 4 ) 0.5 (NO 3 )·3H 2 O) in one-dimensional chain was obtained at a low pH value range (1.47-1.89) and UPO2 (UO 2 (L)(C 2 O 4 )(H 2 O)·7H 2 O)obtained at a higher pH value range (4.31-7.21). By lowering the amount of oxalate, another two uranyl polyrotaxane network UPO3 ((UO 2 ) 2 (L) 0.5 (C 2 O 4 ) 2 (H 2 O)) and UPO4 ((UO 2 ) 2 O(OH)(L) 0.5 (C 2 O 4 ) 0.5 (H 2 O)) could be acquired at a low pH value of 1.98 and a higher pH value over 6, respectively. The UPO1-UPO4 compounds, which display structural diversity via pH-dependent competitive effect of oxalate, represent the first series of mixed-ligand uranyl polyrotaxanes with organic ligand as the coligand. Moreover, the self-assembly process and its internal mechanism concerning pH-dependent competitive effect and other related factors such as concentration of the reagents and coordination behaviors of the coligands were discussed in detail.

  17. C-H functionalization: thoroughly tuning ligands at a metal ion, a chemist can greatly enhance catalyst's activity and selectivity.

    PubMed

    Shul'pin, Georgiy B

    2013-09-28

    This brief essay consists of a few "exciting stories" devoted to relations within a metal-complex catalyst between a metal ion and a coordinated ligand. When, as in the case of a human couple, the rapport of the partners is cordial and a love cements these relations, a chemist finds an ideal married couple, in other words he obtains a catalyst of choice which allows him to functionalize C-H bonds very efficiently and selectively. Examples of such lucky marriages in the catalytic world of ions and ligands are discussed here. Activity of the catalyst is characterized by turnover number (TON) or turnover frequency (TOF) as well as by yield of a target product. Introducing a chelating N,N- or N,O-ligand to the catalyst molecule (this can be an iron or manganese derivative) sharply enhances its activity. However, the activity of vanadium derivatives (with additionally added to the solution pyrazinecarboxylic acid, PCA) as well as of various osmium complexes does not dramatically depend on the nature of ligands surrounding metal ions. Complexes of these metals are very efficient catalysts in oxidations with H2O2. Osmium derivatives are record-holders exhibiting extremely high TONs whereas vanadium complexes are on the second position. Finally, elegant examples of alkane functionalization on the ions of non-transition metals (aluminium, gallium etc.) are described when one ligand within the metal complex (namely, hydroperoxyl ligand HOO(-)) helps other ligand of this complex (H2O2 molecule coordinated to the metal) to disintegrate into two species, generating very reactive hydroxyl radical. Hydrogen peroxide molecule, even ligated to the metal ion, is perfectly stable without the assistance of the neighboring HOO(-) ligand. This ligand can be easily oxidized donating an electron to its partner ligand (H2O2). In an analogous case, when the central ion in the catalyst is a transition metal, this ion changing its oxidation state can donate an electron to the coordinated H2O2 fragment. This provokes the O-O bond rupture in the hydrogen peroxide molecule as is assumed for the role of Fe(2+) ions in the Fenton system.

  18. A Comparison of Gallium and Indium Alkoxide Complexes as Catalysts for Ring-Opening Polymerization of Lactide.

    PubMed

    Kremer, Alexandre B; Andrews, Ryan J; Milner, Matthew J; Zhang, Xu R; Ebrahimi, Tannaz; Patrick, Brian O; Diaconescu, Paula L; Mehrkhodavandi, Parisa

    2017-02-06

    The impact of the metal size and Lewis acidity on the polymerization activity of group 13 metal complexes was studied, and it was shown that, within the same ligand family, indium complexes are far more reactive and selective than their gallium analogues. To this end, gallium and aluminum complexes supported by a tridentate diaminophenolate ligand, as well as gallium complexes supported by N,N'-ethylenebis(salicylimine)(salen) ligands, were synthesized and compared to their indium analogues. Using the tridentate ligand set, it was possible to isolate the gallium chloride complexes 3 and (±)-4 and the aluminum analogues 5 and (±)-6. The alkoxygallium complex (±)-2, supported by a salen ligand, was also prepared and characterized and, along with the three-component system GaCl 3 /BnOH/NEt 3 , was tested for the ring-opening polymerization of lactide and ε-caprolactone. The polymerization rates and selectivities of both systems were significantly lower than those for the indium analogues. The reaction of (±)-2 with 1 equiv of lactide forms the first insertion product, which is stable in solution and can be characterized at room temperature. In order to understand the differences of the reactivity within the group 13 metal complexes, a Lewis acidity study using triethylphosphine oxide (the Gutmann-Beckett method) was undertaken for a series of aluminum, gallium, and indium halide complexes; this study shows that indium halide complexes are less Lewis acidic than their aluminum and gallium analogues. Density functional theory calculations show that the Mulliken charges for the indium complexes are higher than those for the gallium analogues. These data suggest that the impact of ligands on the reactivity is more significant than that of the metal Lewis acidity.

  19. Synthesis, spectroscopic characterization, electrochemistry and biological evaluation of some metal (II) complexes with ONO donor ligand containing benzo[b]thiophene and coumarin moieties

    NASA Astrophysics Data System (ADS)

    Mahendra Raj, K.; Mruthyunjayaswamy, B. H. M.

    2014-09-01

    Schiff base ligand 3-chloro-N‧-((7-hydroxy-4-methyl-2-oxo-2H-chromen-8-yl)methylene)benzo[b]thiophene-2-carbohydrazide and its Cu(II), Co(II), Ni(II) and Zn(II) complexes were synthesized, characterized by elemental analysis and various physico-chemical techniques like, IR, 1H NMR, ESI-mass, UV-Visible, thermogravimetry - differential thermal analysis, magnetic measurements and molar conductance. Spectral analysis indicates octahedral geometry for all the complexes. Cu(II) complex have 1:1 stoichiometry of the type [M(L)(Cl)(H2O)2], whereas Co(II), Ni(II) and Zn(II) complexes have 1:2 stoichiometric ratio of the type [M(L)2]. The bonding sites are the oxygen atom of amide carbonyl, nitrogen of azomethine function and phenolic oxygen of the Schiff base ligand via deprotonation. The thermogravimetry - differential thermal analysis studies gave evidence for the presence of coordinated water molecules in the composition of Cu(II) complex which was further supported by IR measurements. All the complexes were investigated for their electrochemical activity, but only the Cu(II) complex showed the redox property. In order to evaluate the effect of antimicrobial potency of metal ions upon chelation, ligand and its metal complexes along with their respective metal chlorides were screened for their antibacterial and antifungal activities by minimum inhibitory concentration (MIC) method. The results showed that the metal complexes were found to be more active than free ligand. Ligand and its complexes were screened for free radical scavenging activity by DPPH method and DNA cleavage activity using Calf-thymus DNA (Cat. No-105850).

  20. Synthesis and characterization of Pd(II)-methyl complexes with N-heterocyclic carbene-amine ligands.

    PubMed

    Warsink, Stefan; de Boer, Sandra Y; Jongens, Lianne M; Fu, Ching-Feng; Liu, Shiuh-Tzung; Chen, Jwu-Ting; Lutz, Martin; Spek, Anthony L; Elsevier, Cornelis J

    2009-09-21

    A number of palladium(ii) complexes with a heteroditopic NHC-amine ligand and their precursor silver(i) carbene complexes have been efficiently prepared and their structural features have been investigated. The heteroditopic coordination of this ligand class was unequivocally shown by NMR-spectroscopy and X-ray crystallographic analysis. The neutral and cationic cis-methyl-palladium(NHC) complexes are not prone to reductive elimination, which is normally a major degenerative pathway for this type of complex. In contrast, under carbon monoxide atmosphere rapid reductive elimination of the acyl-imidazolium salt was observed.

  1. Identification of protein-ligand binding sites by the level-set variational implicit-solvent approach.

    PubMed

    Guo, Zuojun; Li, Bo; Cheng, Li-Tien; Zhou, Shenggao; McCammon, J Andrew; Che, Jianwei

    2015-02-10

    Protein–ligand binding is a key biological process at the molecular level. The identification and characterization of small-molecule binding sites on therapeutically relevant proteins have tremendous implications for target evaluation and rational drug design. In this work, we used the recently developed level-set variational implicit-solvent model (VISM) with the Coulomb field approximation (CFA) to locate and characterize potential protein–small-molecule binding sites. We applied our method to a data set of 515 protein–ligand complexes and found that 96.9% of the cocrystallized ligands bind to the VISM-CFA-identified pockets and that 71.8% of the identified pockets are occupied by cocrystallized ligands. For 228 tight-binding protein–ligand complexes (i.e, complexes with experimental pKd values larger than 6), 99.1% of the cocrystallized ligands are in the VISM-CFA-identified pockets. In addition, it was found that the ligand binding orientations are consistent with the hydrophilic and hydrophobic descriptions provided by VISM. Quantitative characterization of binding pockets with topological and physicochemical parameters was used to assess the “ligandability” of the pockets. The results illustrate the key interactions between ligands and receptors and can be very informative for rational drug design.

  2. Homo- and Heterometallic Bis(Pentafluorobenzoyl)Methanide Complexes of Copper(II) and Cobalt(II)

    NASA Astrophysics Data System (ADS)

    Crowder, Janell M.

    beta-Diketones are well known to form metal complexes with practically every known metal and metalloid. Metal complexes of fluorinated beta-diketones generally exhibit increased volatility and thermal stability compared to the non-fluorinated analogues, and thus are used extensively in various chemical vapor deposition (CVD) processes for the deposition of metal, simple or mixed metal oxides, and fluorine-doped metal oxide thin films. Furthermore, the electron-withdrawing nature of the fluorinated ligand enhances the Lewis acidity of a coordinatively unsaturated metal center which facilitates additional coordination reactions. The physical and structural properties of fluorinated beta-diketonate complexes are discussed in Chapter 1 and a few key application examples are given. The focus of this work is the synthesis and single crystal X-ray structural characterization of unsolvated and coordinatively unsaturated metal complexes of bis(pentafluorobenzoyl)- methanide (L, C6F5COCHCOC 6F5-). In Chapter 2, we present the preparation and isolation of the unsolvated complex [Cu(L)2] in pure crystalline form for the first time. We subsequently investigated the reaction of unsolvated [Cu(L)2] with sodium hexafluoroacetylacetonate [Na(hfac)] in a solvent-free environment. This reaction allowed the isolation of the first heterometallic Na-Cu diketonate [Na2Cu2(L) 4(hfac)2] structurally characterized by single crystal X-ray crystallography. Thermal decomposition of [Na2Cu2(L) 4(hfac)2] was investigated for its potential application in MOCVD processes. In the final chapter, we present the first exploration of the anhydrous synthesis of Co(II) complexed with bis(pentafluorobenzoyl)methanide in order to produce a complex without ligated water. Single crystal X-ray crystallographic investigations revealed the isolation of the ethanol adduct, [Co2(L)4(C2H5OH)2], and following the removal of ethanol, a 1,4-dioxane adduct, [{Co 2(L)4}2(C4H8O2)]. In this work, we have provided the first investigation of the synthesis, isolation and single crystal X-ray structural characterization of unsolvated and coordinatively unsaturated Cu(II) and Co(II) complexes of bis(pentafluorobenzoyl)methanide ligand. These studies demonstrate how the electrophilicity of a coordinatively unsaturated metal complexed to highly-fluorinated â-diketone ligands can be utilized for the formation of new adducts or new and interesting heterometallic complexes. This body of work provides a basis upon which future research into unsolvated and unligated bis(pentafluorobenzoyl)methanide metal complexes can expand.

  3. Unsymmetric (μ-oxido)/(μ-pyrazolato) and Symmetric (μ-pyrazolato)2 Bridged Diosmium Frameworks: Electronic Structure and Magnetic Properties.

    PubMed

    Das, Ankita; Ghosh, Prabir; Priego, José Luis; Jiménez-Aparicio, Reyes; Lahiri, Goutam Kumar

    2016-09-06

    The present article deals with the structurally characterized unsymmetric oxido/pyrazolato-bridged [(bpy)2Os(III)(μ-oxido)(μ-pz)Os(III)(bpy)2](ClO4)3 ([1](ClO4)3) and symmetric dipyrazolato-bridged [(bpy)2Os(II)(μ-pz)2Os(II)(bpy)2](ClO4)2 ([2](ClO4)2) (pz = pyrazolato, bpy = 2,2'-bipyridine) complexes with the Os···Os separations of 3.484 and 4.172 Å, respectively. The anti-ferromagnetically coupled Os(III) centers [E(S = 1)-E(BS(1,1) S = 0) = 322.504 cm(-1)] in 1(3+) and diamagnetic (S = 0) 2(2+) exhibit well-resolved (1)H NMR resonances. [1](ClO4)3 shows temperature- and magnetic field-dependent paramagnetism at low magnetic field and diamagnetism at high magnetic field. 1(3+) and 2(2+) display successive metal-based oxidation processes involving the intermediate mixed-valent states and isovalent congeners: Os(IV)Os(IV) (1(5+))→Os(III)Os(IV) (1(4+))⇌Os(III)Os(III) (1(3+))⇌Os(III)Os(II) (1(2+)) and Os(III)Os(III) (2(4+))→Os(II)Os(III) (2(3+))⇌Os(II)Os(II) (2(2+)) as well as bpy-centered reductions. The effect of π donor O(2-) and σ/π-donating pz(-) in 1(3+) and 2(2+), respectively, leads to varying oxidation state of the metal ions in the isolated complexes: Os(III)Os(III) versus Os(II)Os(II). UV-visible-near-IR-electron paramagnetic resonance spectro-electrochemistry and density functional theory (DFT)/time-dependent DFT calculations collectively reveal overlapping of the metal- and ligand (pz, O, bpy)-based frontier orbitals in the delocalized mixed-valent states in 1(4+) and 1(2+) with comproportionation constant (Kc) value > 1 × 10(14) as well as in isovalent 1(3+), resulting in mixed metal/ligand to metal/ligand near-IR transitions in all the three states. The mixed-valent Os(II)Os(III) state in 2(3+) exhibits high Kc value of 1 × 10(22) corresponding to a strong electrochemical coupling situation. However, closeness of the bandwidth (Δν1/2, 4861 cm(-1)) of broad and weak intervalence charge transfer transition of 2(3+) at 1360 nm (ε/M(-1) cm(-1): 490) with the calculated Δν1/2 of 4121 cm(-1) based on the Hush formula as well as spin-density distributions of Os1: 0.811/0.799, Os2: 0.045/0042, and pz: 0.162/0.173 in meso and rac diastereomeric forms, respectively, attribute its localized class II state.

  4. Characterization of a Cadmium-Binding Complex of Cabbage Leaves 1

    PubMed Central

    Wagner, George J.

    1984-01-01

    The chemical nature of a principal, inducible cadmium-binding complex which accumulates in cabbage leaves (Wagner and Trotter 1982 Plant Physiol 69: 804-809) was studied and compared with that of animal metallothionein and copper-binding proteins isolated from various organisms. The apparent molecular weight of native cabbage complex and carboxymethylated ligand of the complex under native conditions as determined by gel filtration was about 10,000 daltons. Under denaturing conditions their apparent molecular weights were about 2000 daltons. Ligand of native complex contained 37, 28, and 9 residue per cent of glutamic acid-glutamine, cysteine, and glycine, respectively, and low aromatic residue, serine and lysine content. The high acidic and low hydrophobic residue content explain the behavior of complex on electrophoresis in the presence and absence of sodium dodecyl sulfate. Its isoelectric point was below 4.0 and it bound 4 to 6 moles cadmium per mole ligand in what appear to be cadmium-mercaptide chromophores. The complex was found to be heat stable, relatively protease insensitive, and lacking in disulfide bonds. Attempts to determine the primary sequence of reduced native complex and carboxymethylated, cleaved ligand using the Edman degradation procedure were unsuccessful. An electrophoretic procedure is described for preparative isolation of purified complex and a method is described for monitoring ligand of complex as its fluorescent dibromobimane adduct. Images Fig. 1 Fig. 3 PMID:16663927

  5. Oxidovanadium(IV) complexes involving dehydroacetic acid and β-diketones of bioinorganic and medicinal relevance: Their synthesis, characterization, thermal behavior and DFT aspects

    NASA Astrophysics Data System (ADS)

    Maurya, R. C.; Malik, B. A.; Mir, J. M.; Vishwakarma, P. K.

    2015-03-01

    Six new mixed-ligand complexes of oxidovanadium(IV) of the general composition [VO(dha)(L)(H2O)], where dhaH = dehydroacetic acid, LH = β-diketones, viz., acetoacetanilide (aaaH), o-acetoacetotoluidide (o-aatdH), o-acetoacetanisidide (o-aansH), acetylacetone (acacH), methyl acetoacetate (macacH) or ethyl acetoacetate (eacacH) have been synthesized by the reaction of VOSO4ṡ5H2O and the ligands given above in aqueous-ethanol medium. The resulting complexes have been characterized on the basis of elemental analyses, vanadium determination, molar conductance and magnetic measurements, mass spectrometry, thermogravimetric analysis, infrared and electron spin resonance spectral studies. The thermal decomposition processes of two representative complexes are discussed and the order of reaction (n) and the activation energy (Ea) for the particular decomposition steps have been calculated from thermogravimetric (TG) curve. Geometry optimizations were performed with the Gaussian 09 software package by using density functional theory (DFT) methods with Becke-3-Lee-Yang-Parr (B3LYP) hybrid exchange-correlation functional and the standard LANL2 MB basis set for dhaH and its complex [VO(dha)(acac)(H2O)]. Molecular surface electrostatic potentials (MSEP), vibrational frequency calculations, bond lengths, bond angles, dihedral angles, natural population analysis and calculations of molecular energies, HOMO and LUMO were made. No imaginary frequency was found in the optimized model compounds and hence ensures that the molecule is in the lowest point of the potential energy surface, that is, a energy minimum. Finally calculated results were applied to simulated Infrared spectra of the title compound which show good agreement with observed spectra. Based on experimental and theoretical data, suitable trans-octahedral structures have been proposed for these complexes.

  6. Cycloheptatrienyl zirconium sandwich complexes with lewis basic phospholyl ligands (phosphatrozircenes): synthesis, structure, bonding and coordination chemistry.

    PubMed

    Glöckner, Andreas; Bannenberg, Thomas; Büschel, Susanne; Daniliuc, Constantin G; Jones, Peter G; Tamm, Matthias

    2011-05-23

    The transmetalation reaction between [(η(7) -C(7) H(7) )ZrCl(tmeda)] (1; tmeda=N,N,N',N'-tetramethylethylenediamine) and various phospholide anions leads to a new class of mixed sandwich complexes: [(η(7)-C(7)H(7))Zr(η(5)-C(4)PMe(4))] (2), [(η(7)-C(7)H(7))Zr(η(5)-C(4)PH(2)Me(2))] (3) and [(η(7)-C(7)H(7))Zr(η(5)-C(4)PPhHMe(2))] (4). The presence of Lewis basic phosphorus atoms and Lewis acidic zirconium atoms allows ambiphilic behaviour to be observed, and X-ray diffraction analysis reveals dimeric arrangements for 2 and 3 with long intermolecular Zr-P bonds, whereas 4 remains monomeric in the solid state. DFT calculations indicate that the metal-phosphorus interaction is weak, and accordingly, complexes 2-4 act as monodentate ligands upon reaction with [W(CO)(5)(thf)]. The resulting complexes [W(CO)(5)(L)] 5-7 (L=2-4) were studied by IR spectroscopy and compared with the [W(CO)(5) ] complex 9, containing the phosphane-functionalised trozircene [(η(7)-C(7)H(7))Zr(η(5)-C(5)H(4)PPh(2))] (8). They all show a close resemblance to simple phosphanes, such as PMe(3) , although molecular orbital analysis of 2 reveals that the free electron pair in the phosphatrozircenes is not the HOMO. Four equivalents of 2 can replace 1,4-cyclooctadiene (COD) in [Ni(cod)(2)] to form the homoleptic, distorted tetrahedral complex [Ni{2}(4)] (10). Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Structure-based Understanding of Binding Affinity and Mode ...

    EPA Pesticide Factsheets

    The flexible hydrophobic ligand binding pocket (LBP) of estrogen receptor α (ERα) allows the binding of a wide variety of endocrine disruptors. Upon ligand binding, the LBP reshapes around the contours of the ligand and stabilizes the complex by complementary hydrophobic interactions and specific hydrogen bonds with the ligand. Here we present a framework for quantitative analysis of the steric and electronic features of the human ERα-ligand complex using three dimensional (3D) protein-ligand interaction description combined with 3D-QSAR approach. An empirical hydrophobicity density field is applied to account for hydrophobic contacts of ligand within the LBP. The obtained 3D-QSAR model revealed that hydrophobic contacts primarily determine binding affinity and govern binding mode with hydrogen bonds. Several residues of the LBP appear to be quite flexible and adopt a spectrum of conformations in various ERα-ligand complexes, in particular His524. The 3D-QSAR was combined with molecular docking based on three receptor conformations to accommodate receptor flexibility. The model indicates that the dynamic character of the LBP allows accommodation and stable binding of structurally diverse ligands, and proper representation of the protein flexibility is critical for reasonable description of binding of the ligands. Our results provide a quantitative and mechanistic understanding of binding affinity and mode of ERα agonists and antagonists that may be applicab

  8. Complexes of a Zn-metalloenzyme binding site with hydroxamate-containing ligands. A case for detailed benchmarkings of polarizable molecular mechanics/dynamics potentials when the experimental binding structure is unknown.

    PubMed

    Gresh, Nohad; Perahia, David; de Courcy, Benoit; Foret, Johanna; Roux, Céline; El-Khoury, Lea; Piquemal, Jean-Philip; Salmon, Laurent

    2016-12-15

    Zn-metalloproteins are a major class of targets for drug design. They constitute a demanding testing ground for polarizable molecular mechanics/dynamics aimed at extending the realm of quantum chemistry (QC) to very long-duration molecular dynamics (MD). The reliability of such procedures needs to be demonstrated upon comparing the relative stabilities of competing candidate complexes of inhibitors with the recognition site stabilized in the course of MD. This could be necessary when no information is available regarding the experimental structure of the inhibitor-protein complex. Thus, this study bears on the phosphomannose isomerase (PMI) enzyme, considered as a potential therapeutic target for the treatment of several bacterial and parasitic diseases. We consider its complexes with 5-phospho-d-arabinonohydroxamate and three analog ligands differing by the number and location of their hydroxyl groups. We evaluate the energy accuracy expectable from a polarizable molecular mechanics procedure, SIBFA. This is done by comparisons with ab initio quantum-chemistry (QC) calculations in the following cases: (a) the complexes of the four ligands in three distinct structures extracted from the entire PMI-ligand energy-minimized structures, and totaling up to 264 atoms; (b) the solvation energies of several energy-minimized complexes of each ligand with a shell of 64 water molecules; (c) the conformational energy differences of each ligand in different conformations characterized in the course of energy-minimizations; and (d) the continuum solvation energies of the ligands in different conformations. The agreements with the QC results appear convincing. On these bases, we discuss the prospects of applying the procedure to ligand-macromolecule recognition problems. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  9. Ligand Rearrangements at Fe/S Cofactors: Slow Isomerization of a Biomimetic [2Fe-2S] Cluster.

    PubMed

    Bergner, Marie; Roy, Lisa; Dechert, Sebastian; Neese, Frank; Ye, Shengfa; Meyer, Franc

    2017-04-18

    Ligand exchange plays an important role in the biogenesis of Fe/S clusters, most prominently during cluster transfer from a scaffold protein to its target protein. Although in vivo and in vitro studies have provided some insight into this process, the microscopic details of the ligand exchange steps are mostly unknown. In this work, the kinetics of the ligand rearrangement in a biomimetic [2Fe-2S] cluster with mixed S/N capping ligands have been studied. Two geometrical isomers of the cluster are present in solution, and mechanistic insight into the isomerization process was obtained by variable-temperature 1 H NMR spectroscopy. Combined experimental and computational results reveal that this is an associative process that involves the coordination of a solvent molecule to one of the ferric ions. The cluster isomerizes at least two orders of magnitude faster in its protonated and mixed-valent states. These findings may contribute to a deeper understanding of cluster transfer and sensing processes occurring in Fe/S cluster biogenesis. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Generating "fragment-based virtual library" using pocket similarity search of ligand-receptor complexes.

    PubMed

    Khashan, Raed S

    2015-01-01

    As the number of available ligand-receptor complexes is increasing, researchers are becoming more dedicated to mine these complexes to aid in the drug design and development process. We present free software which is developed as a tool for performing similarity search across ligand-receptor complexes for identifying binding pockets which are similar to that of a target receptor. The search is based on 3D-geometric and chemical similarity of the atoms forming the binding pocket. For each match identified, the ligand's fragment(s) corresponding to that binding pocket are extracted, thus forming a virtual library of fragments (FragVLib) that is useful for structure-based drug design. The program provides a very useful tool to explore available databases.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, Chunying; Lu, Jialin; Han, Jingyu

    Polymeric lanthanide complexes with thiostannate and polyamine mixed ligands, [Ln(peha)(μ–SnS{sub 4}H)]{sub n} [Ln=La (1a), Nd (1b)] and [(Ln(tepa)(μ–OH)){sub 2}(μ–Sn{sub 2}S{sub 6})]{sub n}nH{sub 2}O [Ln=Nd (2a), Sm (2b), Gd (2c), Dy (2d)] (peha=pentaethylenehexamine, tepa=tetraethylenepentamine) were respectively prepared in peha and tepa coordinative solvents by the solvothermal methods. In 1a and 1b, the Ln{sup 3+} ions are coordinated by a hexadentate peha ligand forming [Ln(peha)]{sup 3+} units. The [SnS{sub 4}H]{sup 3−} anion chelates a [Ln(peha)]{sup 3+} unit via two S atoms and coordinates to another [Ln(peha)]{sup 3+} unit via the third S atom. As a result, the [Ln(peha)]{sup 3+} units are connectedmore » into coordination polymers [Ln(peha)(μ–SnS{sub 4}H)]{sub n} by an unprecedented tridentate μ–η{sup 1},η{sup 2}–SnS{sub 4}H bridging ligands. In 2a–2d, the Ln{sup 3+} ions are coordinated by a pentadentate tepa ligand, and two [Ln(tepa)]{sup 3+} units are joined by two μ–OH bridges to form a binuclear [(Ln(tepa)(μ–OH)){sub 2}]{sup 4+} unit. Behaving as a bidentate μ–η{sup 1}, η{sup 1}–Sn{sub 2}S{sub 6} bridging ligand, the Sn{sub 2}S{sub 6} unit connects [(Ln(tepa)(μ–OH)){sub 2}]{sup 4+} units into a neutral coordination polymer [(Ln(tepa)(μ–OH)){sub 2}(μ–Sn{sub 2}S{sub 6})]{sub n} via the trans S atoms. The Ln{sup 3+} ions are in distorted monocapped square antiprismatic and bicapped trigonal prismatic environments in [(Ln(peha)(μ–SnS{sub 4}H)]{sub n} and [(Ln(tepa)(μ–OH)){sub 2}(μ–Sn{sub 2}S{sub 6})]{sub n}, respectively. The denticities of ethylene polyamine play an important role on the formation and complexation of the thiostannate in the presence of lanthanide ions. Compounds 1a–2d show well-defined absorption edges with band gaps between 2.81 and 3.15 eV. - Graphical abstract: Lanthanide coordination polymers concerning thiostannate ligands were prepared by the solvothermal methods, and μ{sub 3}–SnS{sub 4}H and μ–Sn{sub 2}S{sub 6} ligands to Ln(III) centers were obtained. - Highlights: • Lanthanide coordination polymers were prepared in polyamines with higher denticity. • The μ–η{sup 1},η{sup 2}–SnS{sub 4}H and μ–η{sup 1},η{sup 1}–Sn{sub 2}S{sub 6} ligands to Ln(III) centers were obtained. • Effect of amine on the complexation of Ln(III) with thiostannate is observed.« less

  12. Superoxide radical anion scavenging and dismutation by some Cu2+ and Mn2+ complexes: A pulse radiolysis study

    NASA Astrophysics Data System (ADS)

    Joshi, Ravi

    2017-10-01

    Copper (Cu) and manganese (Mn) ions are catalytic centers, in complexed form, in scavenging and dismutation process of superoxide radicals anion (O2.-) by superoxide dismutase enzyme. In the present work, fast reaction kinetics and mechanism of scavenging and dismutation of O2.- by Cu2+, Mn2+ and their complexes formed with some natural ligands have been studied using pulse radiolysis technique. Catechol, gentisic acid, tetrahydroxyquinone, tyrosine, tryptophan, embelin and bilirubin have been used as low molecular weight natural ligands for Cu2+ and Mn2+ to understand superoxide radical scavenging and dismutation reactions. These complexes have been found to be efficient scavengers of O2.- (k 107-109 M-1 s-1). The effects of nature of metal ion and ligand, and stoichiometry of complex on scavenging reaction rate constants are reported. Higher scavenging rate constants have been observed with complexes of: (1) Cu2+ as compared to Mn2+, and (2) at [ligand]/[metal] ratio of one as compared to two. A clear evidence of O2.- dismutation by free metal ions and some of the complexes has been observed. The study suggests that complexes of Cu2+ and Mn2+ with small natural ligands can also act as SOD mimics.

  13. Synthesis and studies on Cu(II), Co(II), Ni(II) complexes of Knoevenagel β-diketone ligands.

    PubMed

    Sumathi, S; Tharmaraj, P; Sheela, C D; Anitha, C

    2012-11-01

    Transition metal complexes of various acetylacetone based ligands of the type ML [where M=Cu(II), Ni(II), Co(II); L=3-(aryl)-pentane-2,4-dione] have been synthesized. The structural features have been derived from their elemental analysis, magnetic susceptibility, molar conductance, IR, UV-Vis, (1)H NMR, Mass and ESR spectral studies. Conductivity measurements reveal that all the complexes are non-electrolytic in nature. Spectroscopic and other analytical data of the complexes suggest octahedral geometry for other metal(II) complexes. The redox behavior of the copper(II) complexes have been studied by cyclic voltammetry. The free ligands and their metal complexes have been screened for their in vitro biological activities against the bacteria Pseudomonas aeruginosa, Escherichia coli and Staphylococcus aureus as well as the fungus Candida albicans by well diffusion method. The zone of inhibition value indicates that the most of the metal(II) complexes are found to possess increased activities compared to those of the free ligands. All synthesized compounds may serve as potential photoactive materials as indicated from their characteristic fluorescence properties. The second harmonic generation (SHG) efficiency of the ligands (L1-L3) was found to be considerable effect than that of urea and KDP (potassium dihydrogen phosphate). Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Synthesis and studies on Cu(II), Co(II), Ni(II) complexes of Knoevenagel β-diketone ligands

    NASA Astrophysics Data System (ADS)

    Sumathi, S.; Tharmaraj, P.; Sheela, C. D.; Anitha, C.

    2012-11-01

    Transition metal complexes of various acetylacetone based ligands of the type ML [where M = Cu(II), Ni(II), Co(II); L = 3-(aryl)-pentane-2,4-dione] have been synthesized. The structural features have been derived from their elemental analysis, magnetic susceptibility, molar conductance, IR, UV-Vis, 1H NMR, Mass and ESR spectral studies. Conductivity measurements reveal that all the complexes are non-electrolytic in nature. Spectroscopic and other analytical data of the complexes suggest octahedral geometry for other metal(II) complexes. The redox behavior of the copper(II) complexes have been studied by cyclic voltammetry. The free ligands and their metal complexes have been screened for their in vitro biological activities against the bacteria Pseudomonas aeruginosa, Escherichia coli and Staphylococcus aureus as well as the fungus Candida albicans by well diffusion method. The zone of inhibition value indicates that the most of the metal(II) complexes are found to possess increased activities compared to those of the free ligands. All synthesized compounds may serve as potential photoactive materials as indicated from their characteristic fluorescence properties. The second harmonic generation (SHG) efficiency of the ligands (L1-L3) was found to be considerable effect than that of urea and KDP (potassium dihydrogen phosphate).

  15. Nanostructured layers of thermoelectric materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Urban, Jeffrey J.; Lynch, Jared; Coates, Nelson

    This disclosure provides systems, methods, and apparatus related to thermoelectric materials. In one aspect, a method includes providing a plurality of nanostructures. The plurality of nanostructures comprise a thermoelectric material, with each nanostructure of the plurality of nanostructures having first ligands disposed on a surface of the nanostructure. The plurality of nanostructures is mixed with a solution containing second ligands and a ligand exchange process occurs in which the first ligands disposed on the plurality of nanostructures are replaced with the second ligands. The plurality of nanostructures is deposited on a substrate to form a layer. The layer is thermallymore » annealed.« less

  16. Construction and optical properties of infinite Cd and finite Cu molecules stairs

    NASA Astrophysics Data System (ADS)

    Zhao, Qiang; Mao, Wutao; Shen, Zhi; Wang, Qinghong; Zhou, Qian

    2017-02-01

    Two coordination complexes, namely [(hpdq)(pta)Cd]n (1) and [(pptp)(pta)Cu2Cl] (2) have been synthesized by solvothermal method based on two polypyridyl ligands, 2,3,6,7,10,11-hexakis- (2-pyridyl)dipyrazino[2,3-f:2‧,3‧-h]quinoxaline) (hpdq), 4‧-(4- (3H-pyrrol-3-yl)phenyl)- 2,2‧:6‧,2″- terpyridine (pptp) and auxiliary ligand p-phthalic acid (pta), respectively. Single crystal x-ray diffraction analyses reveal that complexes 1 and 2 assembled based on distinct asymmetric unit comprising one and two respective polypyridyl ligands but one Cd(II) and two Cu(I)ions, respectively. Among them, The asymmetric units in 1 was extended to one dimensional chain via the link of auxiliary ligand pta, just like infinite layers of stairs that connected by cadmium ions as the node. While that in 2 to Zero dimensional tetranuclear structure via the link of auxiliary ligand pta, just like finite four layers of stairs that Copper ion as the node connection. Furthermore, solid fluorescence spectra properties of two complexes were also investigated, and the result shows the fluorescence intensity of complex 1 is stronger than that of the hpdq ligand, but the fluorescence intensity of complex 2 is weaker than that of the pptp ligand. CCDC number of 1and 2 are 1483301 and 1483302.

  17. Reductive Elimination from Phosphine-Ligated Alkylpalladium(II) Amido Complexes To Form sp3 Carbon-Nitrogen Bonds.

    PubMed

    Peacock, D Matthew; Jiang, Quan; Hanley, Patrick S; Cundari, Thomas R; Hartwig, John F

    2018-04-11

    We report the formation of phosphine-ligated alkylpalladium(II) amido complexes that undergo reductive elimination to form alkyl-nitrogen bonds and a combined experimental and computational investigation of the factors controlling the rates of these reactions. The free-energy barriers to reductive elimination from t-Bu 3 P-ligated complexes were significantly lower (ca. 3 kcal/mol) than those previously reported from NHC-ligated complexes. The rates of reactions from complexes containing a series of electronically and sterically varied anilido ligands showed that the reductive elimination is slower from complexes of less electron-rich or more sterically hindered anilido ligands than from those containing more electron-rich and less hindered anilido ligands. Reductive elimination of alkylamines also occurred from complexes bearing bidentate P,O ligands. The rates of reactions of these four-coordinate complexes were slower than those for reactions of the three-coordinate, t-Bu 3 P-ligated complexes. The calculated pathway for reductive elimination from rigid, 2-methoxyarylphosphine-ligated complexes does not involve initial dissociation of the oxygen. Instead, reductive elimination is calculated to occur directly from the four-coordinate complex in concert with a lengthening of the Pd-O bond. To investigate this effect experimentally, a four-coordinate Pd(II) anilido complex containing a flexible, aliphatic linker between the P and O atoms was synthesized. Reductive elimination from this complex was faster than that from the analogous complex containing the more rigid, aryl linker. The flexible linker enables full dissociation of the ether ligand during reductive elimination, leading to the faster reaction of this complex.

  18. Salicylamide-lanthanide complexes for use as luminescent markers

    DOEpatents

    Raymond, Kenneth N.; Petoud, Stephane; Cohen, Seth; Xu, Jide

    2002-01-01

    The present invention provides luminescent lanthanide metal chelates comprising a metal ion of the lanthanide series and a complexing agent comprising at least one salicylamidyl moiety. Also provided are probes incorporating the salicylamidyl ligands of the invention and methods utilizing the ligands of the invention and probes comprising the ligands of the invention.

  19. Salicylamide-lanthanide complexes for use as luminescent markers

    DOEpatents

    Raymond, Kenneth N [Berkeley, CA; Petoud, Stephane [Berkeley, CA; Cohen, Seth [Boston, MA; Xu, Jide [Berkeley, CA

    2008-07-29

    The present invention provides luminescent lanthanide metal chelates comprising a metal ion of the lanthanide series and a complexing agent comprising at least one salicylamidyl moiety. Also provided are probes incorporating the salicylamidyl ligands of the invention and methods utilizing the ligands of the invention and probes comprising the ligands of the invention.

  20. Novel unsymmetrical P/O substituted ferrocene ligands and the first structurally characterised hydroxyferrocene derivative.

    PubMed

    Atkinson, Robert C J; Gibson, Vernon C; Long, Nicholas J; White, Andrew J P; Williams, David J

    2004-06-21

    Two new unsymmetrical 1'-substituted hydroxyferrocene ligands featuring either phosphine or phosphine oxide substituents have been synthesised and the phosphine oxide derivative has been structurally characterised. A nickel complex of the hydroxyl/phosphine ligand has been formed, along with preliminary evaluation of the complex for catalysis of ethylene polymerisation.

  1. Facile Preparation of Homo- and Hetero-dimetallic Complexes with a 4-Phosphino Substituted NHC Ligand. Toward the Design of Multifunctional Catalysts

    PubMed Central

    Mendoza-Espinosa, Daniel; Donnadieu, Bruno

    2011-01-01

    A series of bimetallic complexes supported by a 4-phosphino substituted NHC ligand have been synthesized. The use of the stable ligand reduces the number of synthetic steps and allows for a wide range of metal combinations. PMID:21322115

  2. Gold(I) Complexes of the Geminal Phosphinoborane tBu2PCH2BPh2

    PubMed Central

    2018-01-01

    In this work, we explored the coordination properties of the geminal phosphinoborane tBu2PCH2BPh2 (2) toward different gold(I) precursors. The reaction of 2 with an equimolar amount of the sulfur-based complex (Me2S)AuCl resulted in displacement of the SMe2 ligand and formation of linear phosphine gold(I) chloride 3. Using an excess of ligand 2, bisligated complex 4 was formed and showed dynamic behavior at room temperature. Changing the gold(I) metal precursor to the phosphorus-based complex, (Ph3P)AuCl impacted the coordination behavior of ligand 2. Namely, the reaction of ligand 2 with (Ph3P)AuCl led to the heterolytic cleavage of the gold–chloride bond, which is favored over PPh3 ligand displacement. To the best of our knowledge, 2 is the first example of a P/B-ambiphilic ligand capable of cleaving the gold–chloride bond. The coordination chemistry of 2 was further analyzed by density functional theory calculations. PMID:29732451

  3. Protein-ligand interfaces are polarized: discovery of a strong trend for intermolecular hydrogen bonds to favor donors on the protein side with implications for predicting and designing ligand complexes.

    PubMed

    Raschka, Sebastian; Wolf, Alex J; Bemister-Buffington, Joseph; Kuhn, Leslie A

    2018-04-01

    Understanding how proteins encode ligand specificity is fascinating and similar in importance to deciphering the genetic code. For protein-ligand recognition, the combination of an almost infinite variety of interfacial shapes and patterns of chemical groups makes the problem especially challenging. Here we analyze data across non-homologous proteins in complex with small biological ligands to address observations made in our inhibitor discovery projects: that proteins favor donating H-bonds to ligands and avoid using groups with both H-bond donor and acceptor capacity. The resulting clear and significant chemical group matching preferences elucidate the code for protein-native ligand binding, similar to the dominant patterns found in nucleic acid base-pairing. On average, 90% of the keto and carboxylate oxygens occurring in the biological ligands formed direct H-bonds to the protein. A two-fold preference was found for protein atoms to act as H-bond donors and ligand atoms to act as acceptors, and 76% of all intermolecular H-bonds involved an amine donor. Together, the tight chemical and geometric constraints associated with satisfying donor groups generate a hydrogen-bonding lock that can be matched only by ligands bearing the right acceptor-rich key. Measuring an index of H-bond preference based on the observed chemical trends proved sufficient to predict other protein-ligand complexes and can be used to guide molecular design. The resulting Hbind and Protein Recognition Index software packages are being made available for rigorously defining intermolecular H-bonds and measuring the extent to which H-bonding patterns in a given complex match the preference key.

  4. Protein-ligand interfaces are polarized: discovery of a strong trend for intermolecular hydrogen bonds to favor donors on the protein side with implications for predicting and designing ligand complexes

    NASA Astrophysics Data System (ADS)

    Raschka, Sebastian; Wolf, Alex J.; Bemister-Buffington, Joseph; Kuhn, Leslie A.

    2018-02-01

    Understanding how proteins encode ligand specificity is fascinating and similar in importance to deciphering the genetic code. For protein-ligand recognition, the combination of an almost infinite variety of interfacial shapes and patterns of chemical groups makes the problem especially challenging. Here we analyze data across non-homologous proteins in complex with small biological ligands to address observations made in our inhibitor discovery projects: that proteins favor donating H-bonds to ligands and avoid using groups with both H-bond donor and acceptor capacity. The resulting clear and significant chemical group matching preferences elucidate the code for protein-native ligand binding, similar to the dominant patterns found in nucleic acid base-pairing. On average, 90% of the keto and carboxylate oxygens occurring in the biological ligands formed direct H-bonds to the protein. A two-fold preference was found for protein atoms to act as H-bond donors and ligand atoms to act as acceptors, and 76% of all intermolecular H-bonds involved an amine donor. Together, the tight chemical and geometric constraints associated with satisfying donor groups generate a hydrogen-bonding lock that can be matched only by ligands bearing the right acceptor-rich key. Measuring an index of H-bond preference based on the observed chemical trends proved sufficient to predict other protein-ligand complexes and can be used to guide molecular design. The resulting Hbind and Protein Recognition Index software packages are being made available for rigorously defining intermolecular H-bonds and measuring the extent to which H-bonding patterns in a given complex match the preference key.

  5. XAFS Study of the Ferro- and Antiferromagnetic Binuclear Copper(II) Complexes of Azomethine Based Tridentate Ligands

    NASA Astrophysics Data System (ADS)

    Vlasenko, Valery G.; Vasilchenko, Igor S.; Pirog, Irina V.; Shestakova, Tatiana E.; Uraev, Ali I.; Burlov, Anatolii S.; Garnovskii, Alexander D.

    2007-02-01

    Binuclear copper complexes are known to be models for metalloenzymes containing copper active sites, and some of them are of considerable interest due to their magnetic and charge transfer properties. The reactions of the complex formation of bibasic tridentate heterocyclic imines with copper acetate leads to two types of chelates with mono deprotonated ligands and with totally deprotonated ligands. Cu K-edge EXAFS has been applied to determine the local structure around the metal center in copper(II) azomethine complexes with five tridentate ligands: 1-(salycilideneimino)- or 1-(2-tosylaminobenzilideneimino)-2-amino(oxo, thio)benzimidazoles. It has been found that some of the chelates studied are bridged binuclear copper complexes, and others are mononuclear complexes. The copper-copper interatomic distances in the bridged binuclear copper complexes were found to be 2.85-3.01 Å. Variable temperature magnetic susceptibility data indicate the presence of both ferromagnetic and antiferromagnetic interactions within the dimer, the former is dominating at low temperatures and the latter at high temperatures.

  6. Metallosupramolecular Architectures Obtained from Poly-N-heterocyclic Carbene Ligands.

    PubMed

    Sinha, Narayan; Hahn, F Ekkehardt

    2017-09-19

    Over the past two decades, self-assembly of supramolecular architectures has become a field of intensive research due to the wide range of applications for the resulting assemblies in various fields such as molecular encapsulation, supramolecular catalysis, drug delivery, metallopharmaceuticals, chemical and photochemical sensing, and light-emitting materials. For these purposes, a large number of coordination-driven metallacycles and metallacages featuring different sizes and shapes have been prepared and investigated. Almost all of these are Werner-type coordination compounds where metal centers are coordinated by nitrogen and/or oxygen donors of polydentate ligands. With the evolving interest in the coordination chemistry of N-heterocyclic carbenes (NHCs), discrete supramolecular complexes held together by M-C NHC bonds have recently become of interest. The construction of such metallosupramolecular assemblies requires the synthesis of suitable poly-NHC ligands where the NHC donors form labile bonds with metal centers thus enabling the formation of the thermodynamically most stable reaction product. In organometallic chemistry, these conditions are uniquely met by the combination of poly-NHCs and silver(I) ions where the resulting assemblies also offer the possibility to generate new structures by transmetalation of the poly-NHC ligands to additional metal centers forming more stable C NHC -M bonds. Stable metallosupramolecular assemblies obtained from poly-NHC ligands feature special properties such as good solubility in many less polar organic solvents and the presence of the often catalyticlly active {M(NHC) n } moiety as building block. In this Account, we review recent developments in organometallic supramolecular architectures derived from poly-NHC ligands. We describe dinuclear (M = Ag I , Au I , Cu I ) tetracarbene complexes obtained from bis-NHC ligands with an internal olefin or two external coumarin pendants and their postsynthetic modification via a photochemically induced single or double [2 + 2] cycloaddition to form dinuclear tetracarbene complexes featuring cyclobutane units. Even three-dimensional cage-like structures can be prepared by this postsynthetic strategy. Cylinder-like trinuclear, tetranuclear, and hexanuclear (M = Ag I , Au I , Cu I , Hg II , Pd II ) complexes have been obtained from benzene-bridged tris-, tetrakis-, or hexakis-NHC ligands. These complexes resemble polynuclear assemblies obtained from related polydentate Werner-type ligands. Contrary to the Werner-type complexes, cylinder-like assemblies with three, four, or six silver(I) ions sandwiched in between two tris-, tetrakis-, or hexakis-NHC ligands undergo a facile transmetalation reaction to give the complexes featuring more stable M-C NHC bonds, normally with retention of the metallosupramolecular structure. This unique behavior of NHC-Ag + complexes allows the prepration of assemblies containing various metals from the poly-NHC silver(I) assemblies. Narcissistic self-sorting phenomena have also been observed for mixtures of selected poly-NHC ligands and silver(I) ions. Even a very early type of metallosupramolecular assembly, the tetranuclear molecular square, can be prepared from four bridging dicarbene ligands and four transition metal ions either by a stepwise assembly or by a single-step protocol. At this point, it appears that procedures for the synthesis of metallosupramolecular assemblies using polydentate Werner-type ligands and metal ions can be transferred to organometallic chemistry by using suitable poly-NHC ligands. The resulting structures feature stable M-C NHC bonds (with the exception of the labile C NHC -Ag + bond) when compared to M-N/M-O bonds in classical Werner-type complexes. The generally good solubility of the compounds and the presence of the often catalytically active {M(NHC) n } moiety make organometallic supramolecular complexes a promising new class of molecular hosts for catalytic transformations and encapsulation of selected substrates.

  7. Access to Formally Ni(I) States in a Heterobimetallic NiZn System

    PubMed Central

    Uyeda, Christopher

    2014-01-01

    Heterobimetallic NiZn complexes featuring metal centers in distinct coordination environments have been synthesized using diimine-dioxime ligands as binucleating scaffolds. A tetramethylfuran-containing ligand derivative enables a stable one-electron-reduced S = 1/2 species to be accessed using Cp2Co as a chemical reductant. The resulting pseudo-square planar complex exhibits spectroscopic and crystallographic characteristics of a ligand-centered radical bound to a Ni(II) center. Upon coordination of a π-acidic ligand such as PPh3, however, a five-coordinate Ni(I) metalloradical is formed. The electronic structures of these reduced species provide insight into the subtle effects of ligand structure on the potential and reversibility of the NiII/I couple for complexes of redox-active tetraazamacrocycles. PMID:25614786

  8. A series of coordination polymers constructed from R-isophthalic acid (R=-SO3H, -NO2, and -OH) and N-donor ligands: Syntheses, structures and fluorescence properties

    NASA Astrophysics Data System (ADS)

    Zhou, Yong-Hong; Zhou, Xu-Wan; Zhou, Su-Rong; Tian, Yu-Peng; Wu, Jie-Ying

    2017-01-01

    Six novel Zn(II), Cd(II), and Cu(II) mixed-ligand coordination complexes, namely, [Zn2Na(sip)2(bpp)3(Hbpp)(H2O)2]·8H2O (1), [Cd3(sip)2(nbi)6(H2O)2]·7H2O (2), [Zn(sip)(nbi)2(H2O)]·Hnbi·3H2O (3), [Cd(hip)(nbi)2(H2O)]·nbi·5H2O (4), [Cd2(nip)2(nbi)2(H2O)2]·DMF (5), and [Cu(nip)(nbi)(H2O)2]·H2O (6) (H3sip=5-sulfoisophthalic acid, H2hip=5-hydroxylisophthalic acid, H2nip=5-nitroisophthalic acid, bpp=1,3-bis(4-pyridyl)propane, and nbi=6-nitrobenzimidazole) have been synthesized hydrothermally by the self-assembly of R-isophthalic acid (R=-SO3H, -NO2, and -OH) and N-donor ligands. Single crystal X-ray analyses reveal that two Zn(II) ions and one Na(I) ion of complex 1 are linked through O atoms to generate a 1D linear chain. Then the 2D supramolecular architectures are constructed via intermolecular interactions. In complex 2, the Cd1 ions are connected by bridging carboxyl groups from sip3- anions to form 1D double chain, which are further connected by Cd2 ions to afford 2D layer structure. The adjacent 2D layers are further linked via hydrogen-bonding interactions to give 3D supramolecular network. Compounds 3-5 show 1D chain structures, which are assembled into 2D or 3D supramolecular frameworks via weak interactions. In compound 6, the Cu(II) ions are bridged by the nip2- ligands to form 48-membered ring, which is assembled into 1Dchain via the π-π stacking interaction. In addition, the thermal stabilities and fluorescence properties of these compounds have also been studied.

  9. Expanding Thorium Hydride Chemistry Through Th²⁺, Including the Synthesis of a Mixed-Valent Th⁴⁺/Th³⁺ Hydride Complex.

    PubMed

    Langeslay, Ryan R; Fieser, Megan E; Ziller, Joseph W; Furche, Filipp; Evans, William J

    2016-03-30

    The reactivity of the recently discovered Th(2+) complex [K(18-crown-6)(THF)2][Cp″3Th], 1 [Cp'' = C5H3(SiMe3)2-1,3], with hydrogen reagents has been investigated and found to provide syntheses of new classes of thorium hydride compounds. Complex 1 reacts with [Et3NH][BPh4] to form the terminal Th(4+) hydride complex Cp″3ThH, 2, a reaction that formally involves a net two-electron reduction. Complex 1 also reacts in the solid state and in solution with H2 to form a mixed-valent bimetallic product, [K(18-crown-6)(Et2O)][Cp″2ThH2]2, 3, which was analyzed by X-ray crystallography, electron paramagnetic resonance and optical spectroscopy, and density functional theory. The existence of 3, which formally contains Th(3+) and Th(4+), suggested that KC8 could reduce [(C5Me5)2ThH2]2. In the presence of 18-crown-6, this reaction forms an analogous mixed-valent product formulated as [K(18-crown-6)(THF)][(C5Me5)2ThH2]2, 4. A similar complex with (C5Me4H)(1-) ligands was not obtained, but reaction of (C5Me4H)3Th with H2 in the presence of KC8 and 2.2.2-cryptand at -45 °C produced two monometallic hydride products, namely, (C5Me4H)3ThH, 5, and [K(2.2.2-cryptand)]{(C5Me4H)2[η(1):η(5)-C5Me3H(CH2)]ThH]}, 6. Complex 6 contains a metalated tetramethylcyclopentadienyl dianion, [C5Me3H(CH2)](2-), that binds in a tuck-in mode.

  10. Evidence of zinc superoxide formation in the gas phase: comparisons in behaviour between ligated Zn(I/II) and Cu(I/II) with regard to the attachment of O2 or H2O.

    PubMed

    Cox, Hazel; Norris, Caroline; Wu, Guohua; Guan, Jingang; Hessey, Stephen; Stace, Anthony J

    2011-11-14

    Singly and doubly charged atomic ions of zinc and copper have been complexed with pyridine and held in an ion trap. Complexes involving Zn(II) and Cu(I) (3d(10)) display a strong tendency to bind with H(2)O, whilst the Zn(I) (3d(10)4s(1)) complexes exhibit a strong preference for the attachment of O(2). DFT calculations show that this latter result can be interpreted as internal oxidation leading to the formation of superoxide complexes, [Zn(II)O(2)(-)](pyridine)(n), in the gas phase. The calculations also show that the oxidation of Zn(I) to form Zn(II)O(2)(-) is promoted by a mixing of the occupied 4s and vacant 4p orbitals on the metal cation, and that this process is facilitated by the presence of the pyridine ligands.

  11. Spectroscopic studies and biological evaluation of some transition metal complexes of azo Schiff-base ligand derived from (1-phenyl-2,3-dimethyl-4-aminopyrazol-5-one) and 5-((4-chlorophenyl)diazenyl)-2-hydroxybenzaldehyde

    NASA Astrophysics Data System (ADS)

    Anitha, C.; Sheela, C. D.; Tharmaraj, P.; Sumathi, S.

    2012-10-01

    A series of metal(II) complexes of VO(II), Co(II), Ni(II), Cu(II) and Zn(II) have been synthesized from the azo Schiff base ligand 4-((E)-4-((E)-(4-chlorophenyl)diazenyl)-2-hydroxybenzylideneamino)-1,5-dimethyl-2-phenyl-1H-pyrazol-3(2H)-one (CDHBAP) and characterized by elemental analysis, spectral (IR, UV-Vis, 1H NMR, ESR and EI-mass), magnetic moment measurements, molar conductance, DNA, SEM, X-ray crystallography and fluorescence studies. The electronic absorption spectra and magnetic susceptibility measurements of the complexes indicate square pyramidal geometry for VO(II) and octahedral geometry for all the other complexes. The important infrared (IR) spectral bands corresponding to the active groups in the ligand and the solid complexes under investigation were studied and implies that CDHBAP is coordinated to the metal ions in a neutral tridentate manner. The redox behavior of copper(II) and vanadyl(II) complexes have been studied by cyclic voltammetry. The nuclease activity of the above metal(II) complexes shows that the complexes cleave DNA. All the synthesized complexes can serve as potential photoactive materials as indicated from their characteristic fluorescence properties. The antibacterial and antifungal activities of the synthesized ligand and its metal complexes were screened against bacterial species (Staphylococcus aureus, Salmonella typhi, Escherichia coli, Bacillus subtilis, Shigella sonnie) and fungi (Candida albicans, Aspergillus niger, Rhizoctonia bataicola). Amikacin and Ketoconozole were used as references for antibacterial and antifungal studies. The activity data show that the metal complexes have a promising biological activity comparable with the parent Schiff base ligand against bacterial and fungal species. The second harmonic generation (SHG) efficiency of the ligand was measured and the NLO (non-linear optical) properties of the ligand are expected to result in the realization of advanced optical devices in optical fiber communication (OFC) and optical computing. The SEM image of the copper(II) complex implies that the size of the particles is 1 μm.

  12. N-phosphino-p-tolylsulfinamide ligands: synthesis, stability, and application to the intermolecular Pauson-Khand reaction.

    PubMed

    Revés, Marc; Achard, Thierry; Solà, Jordi; Riera, Antoni; Verdaguer, Xavier

    2008-09-19

    Here we synthesized a family of racemic and optically pure N-phosphino-p-tolylsulfinamide (PNSO) ligands. Their stability and coordination behavior toward dicobalt-alkyne complexes was evaluated. Selectivities of up to 3:1 were achieved in the ligand exchange process with (mu-TMSC2H)Co2(CO)6. The resulting optically pure major complexes were tested in the asymmetric intermolecular Pauson-Khand reaction and yielded up to 94% ee. X-ray studies of the major complex 18a indicated that the presence of an aryl group on the sulfinamide reduces the hemilabile character of the PNSO ligands.

  13. Perfluorinated Ligands in Organometallic Chemistry

    DTIC Science & Technology

    1989-12-12

    C49t00ooVER ,or C M’ AD"OV’~mDecember 12) 199IFinal 1/1/86 to 8/31/89C smuS. FUNOING NUMgIERS cJ Perfluorinated Ligands in Organometallic Chemistry 612...compounds, stabilized by tridentate perfluorinated ligands. Dinuclear rhodium complexes of OFCOT undergo a selective C-F bond activation reaction...hexafluorocyclooctatrieneyne ligand. Stereospecific cleavage of a fluorinated C-C bond,#-bond in perfluorocyclopropene by platinum and iridium complexes has been achieved

  14. Four transition metal complexes with a semicarbazone ligand bearing pyrazine unit

    NASA Astrophysics Data System (ADS)

    Chen, Hong; Ma, Xiu-qin; Lv, Yan-yun; Jia, Lei; Xu, Jun; Wang, Yuan; Ge, Zhi-jun

    2016-04-01

    Four new complexes based on L (where L = 3-ethyl-2-acetylpyrazine semicarbazone), namely [CoL2]Cl2·0.5H2O (1), [CoL2](NO3)2 (2), [CdL(H2O)2(NO3)](NO3)·H2O (3) and [CuL(CH3OH)Cl2]·[CuLCl2] (4) have been synthesized and characterized by X-ray diffraction analyses. The results show that the semicarbazone acts as a tridentate neutral ligand in all complexes. Each of complex 1 and 2 reveals a distorted octahedral geometry around the metal ion provided by two units of the ligand, while the ratio of the ligand and metal is 1:1 in complexes 3 and 4. The effect of complexes 1-4 on cell proliferation, apoptosis of human pancreatic cancer (Patu8988), human gastric cancer (SGC7901) and human hepatic cancer (SMMC7721) cell lines have been detected by MTT assay, Annexin V/PI double staining flow cytometry and TUNEL assay. The results show that complexes 1-4 can inhibit cell proliferation of Patu8988, SGC7901 and SMMC7721 cells, significantly higher than the effect of the ligand. However, the complex 4 reveals higher apoptosis rate, and displays up-regulated expression level of caspase 3, detected by western blotting, which also indicates the complex 4 can induce caspase-dependent cell apoptosis in SMMC7721.

  15. Synthesis, photoluminescence and biological properties of terbium(III) complexes with hydroxyketone and nitrogen containing heterocyclic ligands

    NASA Astrophysics Data System (ADS)

    Poonam; Kumar, Rajesh; Boora, Priti; Khatkar, Anurag; Khatkar, S. P.; Taxak, V. B.

    2016-01-01

    The ternary terbium(III) complexes [Tb(HDAP)3ṡbiq], [Tb(HDAP)3ṡdmph] and [Tb(HDAP)3ṡbathophen] were prepared by using methoxy substituted hydroxyketone ligand HDAP (2-hydroxy-4,6-dimethoxyacetophenone) and an ancillary ligand 2,2-biquinoline or 5,6-dimethyl-1,10-phenanthroline or bathophenanthroline respectively. The ligand and synthesized complexes were characterised based on elemental analysis, FT-IR and 1H NMR. Thermal behaviour of the synthesized complexes illustrates the general decomposition patterns of the complexes by thermogravimetric analysis. Photophysical properties such as excitation spectra, emission spectra and luminescence decay curves of the complexes were investigated in detail. The main green emitting peak at 548 nm can be attributed to 5D4 → 7F5 of Tb3+ ion. Thus, these complexes might be used to make a bright green light-emitting diode for display purpose. In addition the in vitro antibacterial activities of HDAP and its Tb(III) complexes against Bacillus subtilis, Staphylococcus aureus, Escherichia coli and antifungal activities against Candida albicans and Aspergillus niger are reported. The Tb3+ complexes were found to be more potent antimicrobial agent as compared to the ligand. Among all these complexes, [Tb(HDAP)3ṡbathophen] exhibited excellent antimicrobial activity which proves its potential usefulness as an antimicrobial agent. Furthermore, in vitro antioxidant activity tests were carried out by using DPPH method which indicates that the complexes have considerable antioxidant activity when compared with the standard ascorbic acid.

  16. Postprocessing of docked protein-ligand complexes using implicit solvation models.

    PubMed

    Lindström, Anton; Edvinsson, Lotta; Johansson, Andreas; Andersson, C David; Andersson, Ida E; Raubacher, Florian; Linusson, Anna

    2011-02-28

    Molecular docking plays an important role in drug discovery as a tool for the structure-based design of small organic ligands for macromolecules. Possible applications of docking are identification of the bioactive conformation of a protein-ligand complex and the ranking of different ligands with respect to their strength of binding to a particular target. We have investigated the effect of implicit water on the postprocessing of binding poses generated by molecular docking using MM-PB/GB-SA (molecular mechanics Poisson-Boltzmann and generalized Born surface area) methodology. The investigation was divided into three parts: geometry optimization, pose selection, and estimation of the relative binding energies of docked protein-ligand complexes. Appropriate geometry optimization afforded more accurate binding poses for 20% of the complexes investigated. The time required for this step was greatly reduced by minimizing the energy of the binding site using GB solvation models rather than minimizing the entire complex using the PB model. By optimizing the geometries of docking poses using the GB(HCT+SA) model then calculating their free energies of binding using the PB implicit solvent model, binding poses similar to those observed in crystal structures were obtained. Rescoring of these poses according to their calculated binding energies resulted in improved correlations with experimental binding data. These correlations could be further improved by applying the postprocessing to several of the most highly ranked poses rather than focusing exclusively on the top-scored pose. The postprocessing protocol was successfully applied to the analysis of a set of Factor Xa inhibitors and a set of glycopeptide ligands for the class II major histocompatibility complex (MHC) A(q) protein. These results indicate that the protocol for the postprocessing of docked protein-ligand complexes developed in this paper may be generally useful for structure-based design in drug discovery.

  17. PEGylated N-methyl-S-methyl dithiocarbazate as a new reagent for the high-yield preparation of nitrido Tc-99m and Re-188 radiopharmaceuticals.

    PubMed

    Boschi, Alessandra; Massi, Alessandro; Uccelli, Licia; Pasquali, Micol; Duatti, Adriano

    2010-11-01

    A novel nitrido nitrogen atom donor for the preparation of (99m)Tc and (188)Re radiopharmaceuticals containing a metal-nitrogen multiple bond is presented. HO(2)C-PEG(600)-DTCZ was obtained by conjugation of N-methyl-S-methyl dithiocarbazate [H(2)N-N(CH(3))-C(S)SCH(3), HDTCZ] with polyethylene glycol 600 (PEG(600)). Asymmetrical heterocomplexes of the type [M(N)(PNP)(B)](0/+) (M=(99m)Tc, (188)Re; PNP=diphosphine ligands, B=DBODC, DEDC, NSH, H(2)OS, CysNAc, HDTCZ) and symmetrical nitride compounds of the type [M(N)(L)(2)] (L=DEDC, DPDC) have been prepared in high yield by using the newly designed nitride nitrogen atom donor HO(2)C-PEG(600)-DTCZ. A two-step procedure was applied for preparing the above symmetrical and asymmetrical complexes. The first step involved the preliminary formation of a mixture of nitride Tc-99m or Re-188 precursors, which contained the [M≡N](2+) core, through reduction of generator-eluted (99m)Tc-pertechnetate or (188)Re-perrhenate with thin (II) chloride in the presence of HO(2)C-PEG(600)-DTCZ. In the second step, the intermediate mixture was converted either in the final mixed asymmetrical complex by the simultaneous addition of diphosphine ligand and the suitable bidentate ligand B, or in the final symmetrical complex by the only addition of the bidentate ligand L. It was also demonstrated that the novel water-soluble nitride nitrogen atom donor HO(2)C-PEG(600)-DTCZ did not show coordinating properties toward the M≡N ((99m)Tc, (188)Re) core. Biodistribution studies in rats of the hitherto unreported [(99m)Tc(N)(PNP(3))DTCZ](+) and [(99m)Tc(N)(PNP(5))DTCZ](+) complexes showed that they selectively localize in the myocardium of rats with a favourable heart-to-lung and heart-to-liver uptake ratios. In particular, the heart-to-lung and heart-to-liver uptake ratios dramatically increased in the interval between 60 and 120 min postinjection. Hence, the combination of the favourable chemical and biological properties of HO(2)C-PEG(600)-DTCZ might confer to this novel compound an important role for the development of new (99m)Tc and (188)Re-nitrido radiopharmaceuticals. Copyright © 2010 Elsevier Inc. All rights reserved.

  18. Syntheses, crystal structures and spectroscopic properties of copper(II)-tetracyanometallate(II) complexes with nicotinamide and isonicotinamide ligands

    NASA Astrophysics Data System (ADS)

    Sayın, Elvan; Kürkçüoğlu, Güneş Süheyla; Yeşilel, Okan Zafer; Hökelek, Tuncer

    2015-09-01

    Four new one dimensional (1D) cyanide complexes, namely {[Cu(NH3)4(μ-na)][M‧(CN)4]}n and {[Cu(NH3)2(ina)2M‧(μ-CN)2(CN)2]}n (M‧(II) = Pd (1 and 3) or Pt (2 and 4), na:nicotinamide and ina:isonicotinamide) have been synthesized and characterized by elemental, spectral (FT-IR and Raman), and thermal (TG, DTG and DTA) analyses. The crystal structures of complexes 1-3 have been determined by single crystal X-ray diffraction technique. In complexes 1 and 2, na ligand is coordinated to the adjacent Cu(II) ions as a bridging ligand, giving rise to 1D linear cationic chain and the [M‧(CN)4]2- anionic complex acts as a counter ion. Complexes 3 and 4 are also 1D linear chain in which two cyanide ligands bridged neighboring M‧(II) and Cu(II) ions, while ina ligand is coordinated Cu(II) ion through nitrogen atom of pyridine ring. In the complexes, the Cu(II) ions adopt distorted octahedral geometries, while M‧(II) ions are four coordinated with four carbon atoms from cyanide ligands in square-planar geometries. The adjacent chains are further stacked through intermolecular hydrogen bond, Nsbnd Hṡṡṡπ, Csbnd H⋯M‧ and M‧⋯π interactions to form 3D supramolecular networks. Vibration assignments are given for all the observed bands. In addition, thermal stabilities of the compounds are also discussed.

  19. Analysis of protein-protein docking decoys using interaction fingerprints: application to the reconstruction of CaM-ligand complexes.

    PubMed

    Uchikoga, Nobuyuki; Hirokawa, Takatsugu

    2010-05-11

    Protein-protein docking for proteins with large conformational changes was analyzed by using interaction fingerprints, one of the scales for measuring similarities among complex structures, utilized especially for searching near-native protein-ligand or protein-protein complex structures. Here, we have proposed a combined method for analyzing protein-protein docking by taking large conformational changes into consideration. This combined method consists of ensemble soft docking with multiple protein structures, refinement of complexes, and cluster analysis using interaction fingerprints and energy profiles. To test for the applicability of this combined method, various CaM-ligand complexes were reconstructed from the NMR structures of unbound CaM. For the purpose of reconstruction, we used three known CaM-ligands, namely, the CaM-binding peptides of cyclic nucleotide gateway (CNG), CaM kinase kinase (CaMKK) and the plasma membrane Ca2+ ATPase pump (PMCA), and thirty-one structurally diverse CaM conformations. For each ligand, 62000 CaM-ligand complexes were generated in the docking step and the relationship between their energy profiles and structural similarities to the native complex were analyzed using interaction fingerprint and RMSD. Near-native clusters were obtained in the case of CNG and CaMKK. The interaction fingerprint method discriminated near-native structures better than the RMSD method in cluster analysis. We showed that a combined method that includes the interaction fingerprint is very useful for protein-protein docking analysis of certain cases.

  20. Oxovanadium(IV), cerium(III), thorium(IV) and dioxouranium(VI) complexes of 1-ethyl-4-hydroxy-3-(nitroacetyl)quinolin-2(1H)-one: Synthesis, spectral, thermal, fluorescence, DFT calculations, antimicrobial and antitumor studies

    NASA Astrophysics Data System (ADS)

    El-Shafiy, H. F.; Shebl, Magdy

    2018-03-01

    A new series of mononuclear oxovanadium(IV), cerium(III), thorium(IV) and dioxouranium(VI) complexes of a quinolinone ligand; 1-ethyl-4-hydroxy-3-(nitroacetyl)quinolin-2(1H)-one (H2L) have been synthesized. The metal complexes were characterized by different techniques such as elemental and thermal analyses, IR, 1H NMR, electronic, ESR, mass spectra and powder XRD, TEM in addition to magnetic susceptibility and conductivity measurements. The quinolinone ligand acts as a dibasic bidentate ligand forming mononuclear complexes, which can be formulated as: [(L)VO(H2O)2]·0.5H2O, [(L)M(NO3)x(H2O)y]·nH2O; M = Ce or Th, x = 1 or 2, y = 3 or 4 and n = 2 or 7 and [(L)UO2(H2O)x(MeOH)y]·nH2O; x = 2 or 3, y = 0 or 1 and n = 0.5 or 2.5. The photoluminescent properties of the prepared complexes were studied. The ligand and its thorium(IV) complex are characterized by an intense green emission. Kinetic parameters (Ea, A, ΔH, ΔS and ΔG) of the thermal decomposition stages have been evaluated using Coats-Redfern equations. The geometry of the ligand and its oxovanadium(IV) complex has been optimized using density functional theory (DFT). Total energy, energy of HOMO and LUMO, dipole moment and structure activity relationship were performed and confirmed practical antimicrobial and antitumor results. The antimicrobial activity of the ligand and its metal complexes was conducted against the microorganisms S. aureus, K. pnemonia, E. coli, P. vulgaris and C. albicans and the MIC values were determined. The antitumor activity of the ligand and its metal complexes was investigated against human Hepatocelluar carcinoma and human breast cancer cell lines.

  1. Synthesis, characterization, spectroscopic and theoretical studies of new zinc(II), copper(II) and nickel(II) complexes based on imine ligand containing 2-aminothiophenol moiety

    NASA Astrophysics Data System (ADS)

    Shafaatian, Bita; Mousavi, S. Sedighe; Afshari, Sadegh

    2016-11-01

    New dimer complexes of zinc(II), copper(II) and nickel(II) were synthesized using the Schiff base ligand which was formed by the condensation of 2-aminothiophenol and 2-hydroxy-5-methyl benzaldehyde. This tridentate Schiff base ligand was coordinated to the metal ions through the NSO donor atoms. In order to prevent the oxidation of the thiole group during the formation of Schiff base and its complexes, all of the reactions were carried out under an inert atmosphere of argon. The X-ray structure of the Schiff base ligand showed that in the crystalline form the SH groups were oxidized to produce a disulfide Schiff base as a new double Schiff base ligand. The molar conductivity values of the complexes in dichloromethane implied the presence of non-electrolyte species. The fluorescence properties of the Schiff base ligand and its complexes were also studied in dichloromethane. The products were characterized by FT-IR, 1H NMR, UV/Vis spectroscopies, elemental analysis, and conductometry. The crystal structure of the double Schiff base was determined by single crystal X-ray diffraction. Furthermore, the density functional theory (DFT) calculations were performed at the B3LYP/6-31G(d,p) level of theory for the determination of the optimized structures of Schiff base complexes.

  2. Synthesis, spectral and electrochemical studies of binuclear Ru(III) complexes containing dithiosemicarbazone ligand

    NASA Astrophysics Data System (ADS)

    Kanchana Devi, A.; Ramesh, R.

    2014-01-01

    Synthesis of several new octahedral binuclear ruthenium(III) complexes of the general composition [(EPh3)2(X)Ru-L-Ru(X)(EPh3)2] containing benzene dithiosemicarbazone ligands (where E = P or As; X = Cl or Br; L = binucleating ligands) is presented. All the complexes have been fully characterized by elemental analysis, FT-IR, UV-vis and EPR spectroscopy together with magnetic susceptibility measurements. IR study shows that the dithiosemicarbazone ligands behave as dianionic tridentate ligands coordinating through the oxygen atom of the deprotonated phenolic group, nitrogen atom of the azomethine group and thiolate sulphur. In DMF solution, all the complexes exhibit intense d-d transition and ligand-to-metal charge transfer (LMCT) transition in the visible region. The magnetic moment values of the complexes are in the range 1.78-1.82 BM, which reveals the presence of one unpaired electron on each metal ion. The EPR spectra of the liquid samples at LNT show the presence of three different 'g' values (gx ≠ gy ≠ gz) indicate a rhombic distortion around the ruthenium ion. All the complexes exhibit two quasi-reversible one electron oxidation responses (RuIII-RuIII/RuIII-RuIV; RuIII-RuIV/RuIV-RuIV) within the E1/2 range of 0.61-0.74 V and 0.93-0.98 V respectively, versus Ag/AgCl.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hua, Xiu-Ni; Qin, Lan; Yan, Xiao-Zhi

    Hydrothermal reactions of N-auxiliary flexible exo-bidentate ligand 1,3-bis(4-pyridyl)propane (bpp) and carboxylates ligands naphthalene-2,6-dicarboxylic acid (2,6-H{sub 2}ndc) or 4,4′-(hydroxymethylene)dibenzoic acid (H{sub 2}hmdb), in the presence of cadmium(II) salts have given rise to two novel metal-organic frameworks based on flexible ligands (FL-MOFs), namely, [Cd{sub 2}(2,6-ndc){sub 2}(bpp)(DMF)]·2DMF (1) and [Cd{sub 3}(hmdb){sub 3}(bpp)]·2DMF·2EtOH (2) (DMF=N,N-Dimethylformamide). Single-crystal X-ray diffraction analyses revealed that compound 1 exhibits a three-dimensional self-penetrating 6-connected framework based on dinuclear cluster second building unit. Compound 2 displays an infinite three-dimensional ‘Lucky Clover’ shape (2,10)-connected network based on the trinuclear cluster and V-shaped organic linkers. The flexible bpp ligand displays different conformations inmore » 1 and 2, which are successfully controlled by size-matching mixed ligands during the self-assembly process. - Graphical abstract: Compound 1 exhibits a 3D self-penetrating 6-connected framework based on dinuclear cluster, and 2 displays an infinite 3D ‘Lucky Clover’ shape (2,10)-connected network based on the trinuclear cluster. The flexible 1,3-bis(4-pyridyl)propane ligand displays different conformations in 1 and 2, which successfully controlled by size-matching mixed ligands during the self-assembly process.« less

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Zhi-Hao; Zhao, Yue; Chen, Shui-Sheng

    Seven new coordination polymers [Zn(H{sub 2}L)(mbdc)] (1), [Zn(H{sub 3}L)(btc)] (2), [Zn(H{sub 2}L)(Hbtc)] (3), [Zn(H{sub 2}L)(Hbtc)]·H{sub 2}O (4), [Zn{sub 2}(H{sub 2}L)(btc)(μ{sub 2}-OH)] (5), [Cd(H{sub 2}L)(mbdc)] (6) and [Cd{sub 3}(H{sub 2}L){sub 2}(btc){sub 2}(H{sub 2}O)]·5H{sub 2}O (7) were synthesized by reactions of the corresponding metal salt with rigid ligand 1,3-di(1H-imidazol-4-yl)benzene (H{sub 2}L) and different carboxylic acids of 1,3-benzenedicarboxylic acid (H{sub 2}mbdc) and benzene-1,3,5-tricarboxylic acid (H{sub 3}btc), respectively. The results of X-ray crystallographic analysis indicate that complex 1 is 1D chain while 2 is a (3,3)-connected 2D network with Point (Schläfli) symbol of (4,8{sup 2}). Complexes 3 and 6 are 2D networks, 4 ismore » a 3-fold interpenetrating 3D framework with Point (Schläfli) symbol of (6{sup 5},8) and 5 is a (3,8)-connected 2D network with Point (Schläfli) symbol of (3,4{sup 2}){sub 2}(3{sup 4},4{sup 6},5{sup 6},6{sup 8},7{sup 3},8), while 7 is a (3,10)-connected 3D net with Schläfli symbol of (3,4,5){sub 2}(3{sup 4},4{sup 8},5{sup 18},6{sup 12},7{sup 2},8). The thermal stability and photoluminescence of the complexes were investigated. Furthermore, DFT calculations were performed for 2–4 to discuss the temperature controlled self-assembly of the complexes. - Graphical abstract: Seven new coordination polymers with multicarboxylate and rigid ditopic 4-imidazole containing ligands have been obtained and found to show different structures and topologies. - Highlights: • Metal complexes with diverse structures of 1D chain, 2D network and 3D framework. • Mixed ligands of 1,3-di(1H-imidazol-4-yl)benzene and multicarboxylate. • Photoluminescence property.« less

  5. Pincer-CNC mononuclear, dinuclear and heterodinuclear Au(III) and Pt(II) complexes supported by mono- and poly-N-heterocyclic carbenes: synthesis and photophysical properties.

    PubMed

    Gonell, S; Poyatos, M; Peris, E

    2016-04-07

    A family of cyclometallated Au(iii) and Pt(ii) complexes containing a CNC-pincer ligand (CNC = 2,6-diphenylpyridine) supported by pyrene-based mono- or bis-NHC ligands have been synthesized and characterized, together with the preparation of a Pt-Au hetero-dimetallic complex based on a Y-shaped tris-NHC ligand. The photophysical properties of all the new species and of two related Ru(ii)-arene complexes were studied and compared. Whereas the pyrene-based complexes only exhibit emission in solution, those containing the Y-shaped tris-NHC ligand are only luminescent when dispersed in poly(methyl methacrylate) (PMMA). In particular, the pyrene-based complexes were found to be emissive in the range of 373-440 nm, with quantum yields ranging from 3.1 to 6.3%, and their emission spectra were found to be almost superimposable, pointing to the fluorescent pyrene-centered nature of the emission. This observation suggests that the emission properties of the pyrene fragment may be combined with some of the numerous applications of NHCs as supporting ligands allowing, for instance, the design of biological luminescent agents.

  6. Exploring the potential energy surface for the interaction of sterically hindered trichloro(diethylenetriamine)gold(III) complexes with water.

    PubMed

    Dos Santos, Hélio F; Paschoal, Diego; Burda, Jaroslav V

    2012-11-15

    The reactivity of gold(III) complexes is analyzed for a series of derivatives of 3-azapentane-1,5-diamine (dien) tridentate ligand that can contain some bulky substituents. Two distinct series of compounds are considered where the dien ligand is either deprotonated (R-dien-H) or protonated (R-dien) at the secondary amine where R = ethyl (Et) or methyl (Me). While the deprotonated species will occur in neutral and basic solutions, the protonated forms are likely to be present in acidic environment. Hydration reaction (water/Cl(-) ligand exchange) of 14 complexes is modeled with quantum chemical calculations. Our calculations predict that the reactivity decreases with the increase in the molecular volume of the substituted dien ligand, and the calculated rate constants are in satisfactory agreement with experimental results. In addition, quantitative structure/reactivity models are proposed where the angle between the entering and leaving groups in the transition state structure (the reactivity angle) is used as a molecular descriptor. These models explain the trend of the relative reactivity of these complexes and can be used to design new ligands for gold(III) complexes aiming to adjust the reactivity of the complex.

  7. Substituent-directed structural and physicochemical controls of diruthenium catecholate complexes with ligand-unsupported Ru-Ru bonds.

    PubMed

    Chang, Ho-Chol; Mochizuki, Katsunori; Kitagawa, Susumu

    2005-05-30

    A family of diruthenium complexes with ligand-unsupported Ru-Ru bonds has been systematically synthesized, and their crystal structures and physical properties have been examined. A simple, useful reaction between Ru2(OAc)4Cl (OAc- = acetate) and catechol derivatives in the presence of bases afforded a variety of diruthenium complexes, generally formulated as [Na(n){Ru2(R4Cat)4}] (n = 2 or 3; R4 = -F4, -Cl4, -Br4, -H4, -3,5-di-t-Bu, and -3,6-di-t-Bu; Cat(2-) = catecholate). The most characteristic feature of the complexes is the formation of short ligand-unsupported Ru-Ru bonds (2.140-2.273 A). These comprehensive studies were carried out to evaluate the effects of the oxidation states and the substituents governing the molecular structures and physicochemical properties. The Ru-Ru bond distances, rotational conformations, and bending structures of the complexes were successfully varied. The results presented in this manuscript clearly demonstrate that the complexes with ligand-unsupported Ru-Ru bonds can sensitively respond to redox reactions and ligand substituents on the basis of the greater degree of freedom in their molecular structures.

  8. Expanding the Library of Uranyl Amide Derivatives: New Complexes Featuring the tert-Butyldimethylsilylamide Ligand.

    PubMed

    Pattenaude, Scott A; Coughlin, Ezra J; Collins, Tyler S; Zeller, Matthias; Bart, Suzanne C

    2018-04-16

    New uranyl derivatives featuring the amide ligand, -N(SiHMe 2 ) t Bu, were synthesized and characterized by X-ray crystallography, multinuclear NMR spectroscopy, and absorption spectroscopies. Steric properties of these complexes were also quantified using the computational program Solid-G. The increased basicity of the free ligand -N(SiHMe 2 ) t Bu was demonstrated by direct comparison to -N(SiMe 3 ) 2 , a popular supporting ligand for uranyl. Substitutional lability on a uranyl center was also demonstrated by exchange with the -N(SiMe 3 ) 2 ligand. The increased basicity of this ligand and diverse characterization handles discussed here will make these compounds useful synthons for future reactivity.

  9. New Insights into Structure and Luminescence of Eu III and Sm III Complexes of the 3,4,3-LI(1,2-HOPO) Ligand

    DOE PAGES

    Daumann, Lena J.; Tatum, David S.; Snyder, Benjamin E. R.; ...

    2015-01-21

    We report the preparation and new insight into photophysical properties of luminescent hydroxypyridonate complexes [M IIIL] - (M = Eu or Sm) of the versatile 3,4,3-LI(1,2-HOPO) ligand (L). We report the crystal structure of this ligand with EuIII as well as insights into the coordination behavior and geometry in solution by using magnetic circular dichroism. In addition TD-DFT calculations were used to examine the excited states of the two different chromophores present in the 3,4,3-LI(1,2-HOPO) ligand. We find that the Eu III and Sm III complexes of this ligand undergo a transformation after in situ preparation to yield complexes withmore » higher quantum yield (QY) over time. We propose that the lower QY in the in situ complexes is not only due to water quenching but could also be due to a lower degree of f-orbital overlap (in a kinetic isomer) as indicated by magnetic circular dichroism measurements.« less

  10. New 15-membered tetraaza (N4) macrocyclic ligand and its transition metal complexes: Spectral, magnetic, thermal and anticancer activity

    NASA Astrophysics Data System (ADS)

    El-Boraey, Hanaa A.; EL-Gammal, Ohyla A.

    2015-03-01

    Novel tetraamidemacrocyclic 15-membered ligand [L] i.e. naphthyl-dibenzo[1,5,9,12]tetraazacyclopentadecine-6,10,11,15-tetraoneand its transition metal complexes with Fe(II), Co(II), Ni(II), Cu(II), Ru(III) and Pd(II) have been synthesized and characterized by elemental analysis, spectral, thermal as well as magnetic and molar conductivity measurements. On the basis of analytical, spectral (IR, MS, UV-Vis, 1H NMR and EPR) and thermal studies distorted octahedral or square planar geometry has been proposed for the complexes. The antitumor activity of the synthesized ligand and some complexes against human breast cancer cell lines (MCF-7) and human hepatocarcinoma cell lines (HepG2) has been studied. The complexes (IC50 = 2.27-2.7, 8.33-31.1 μg/mL, respectively) showed potent antitumor activity, towards the former cell lines comparable with their ligand (IC50 = 13, 26 μg/mL, respectively). The results show that the activity of the ligand towards breast cancer cell line becomes more pronounced and significant when coordinated to the metal ion.

  11. Laser initiation of Fe(II) complexes of 4-nitro-pyrazolyl substituted tetrazine ligands

    DOE PAGES

    Myers, Thomas Winfield; Brown, Kathryn Elizabeth; Chavez, David E.; ...

    2017-02-01

    Here, the synthesis and characterization of new 1,2,4-triazolyl and 4-nitro-pyrazolyl substituted tetrazine ligands has been achieved. The strongly electron deficient 1,2,4-triazolyl substituted ligands did not coordinate Fe(II) metal centers, while the mildly electron deficient 4-nitro-pyrazolyl substituted ligands did coordinate Fe(II) metal centers in a 2:1 ratio of ligand to metal. The thermal stability and mechanical sensitivity characteristics of the complexes are similar to the conventional explosive pentaerythritol tetranitrate. The complexes had strong absorption in the visible region of the spectrum that extended into the near-infrared. In spite of having improved oxygen balances, increased mechanical sensitivity, and similar absorption of NIRmore » light to recently reported Fe(II) tetrazine complexes, these newly synthesized explosives were more difficult to initiate with Nd:YAG pulsed laser light. More specifically, the complexes required lower densities (0.9 g/cm 3) to initiate at the same threshold utilized to initiate previous materials at higher densities (1.05 g/cm 3).« less

  12. Synthesis, structural studies and antimicrobial activity of N'-((2Z, 3E)-3-(hydroxyimino)butan-2-ylidene)-2-phenylacetohydrazide and its Co(II), Ni(II) complexes

    NASA Astrophysics Data System (ADS)

    Karadeniz, Şeyma; Ataol, Cigdem Yuksektepe; Şahin, Onur; İdil, Önder; Bati, Hümeyra

    2018-06-01

    A new aroylhydrazoneoxime, N'-((2Z, 3E)-3-(hydroxyimino)butan-2-ylidene)-2-phenylacetohydrazide ligand (LH2) and its Ni(II) and Co(II) complexes, have been synthesized and characterized by elemental and thermal analyses, IR and UV-vis spectroscopy, magnetic moment and X-ray diffraction. The antimicrobial activities of these compounds were tested by using minimal inhibitory concentration method (MIC). The ligand-containing aroylhydrazone and oxime groups and its Ni complex crystallize in the triclinic system and P 1 - space group, while its Co complex crystallizes in the monoclinic system and the C 2/c space group. X-ray results show that the ligand in the keto form is transformed into enolic form when it forms coordination. From elemental analysis data, the stoichiometry of Co(II) complex was found to be 1:2 (metal/ligand), but 1:1 for Ni(II). IR spectra indicate that the ligand acts as monoanionic NNO- tridentate and coordination takes place form through the oxime nitrogen, imine nitrogen, and enolate oxygen atoms.

  13. Cyclometalated platinum(ii) complexes of 2,2'-bipyridine N-oxide containing a 1,1'-bis(diphenylphosphino)ferrocene ligand: structural, computational and electrochemical studies.

    PubMed

    Shahsavari, Hamid R; Fereidoonnezhad, Masood; Niazi, Maryam; Mosavi, S Talaat; Habib Kazemi, Sayed; Kia, Reza; Shirkhan, Shima; Abdollahi Aghdam, Siamak; Raithby, Paul R

    2017-02-14

    The preparation and characterization of new heteronuclear-platinum(ii) complexes containing a 1,1'-bis(diphenylphosphino)ferrocene (dppf) ligand are described. The reaction of the known starting complex [PtMe(κ 2 N,C-bipyO-H)(SMe 2 )], A, in which bipyO-H is a cyclometalated rollover 2,2'-bipyridine N-oxide, with the dppf ligand in a 2 : 1 ratio or an equimolar ratio led to the formation of the corresponding binuclear complex [Pt 2 Me 2 (κ 2 N,C-bipyO-H) 2 (μ-dppf)], 1, or the mononuclear complex [PtMe(κ 1 C-bipyO-H)(dppf)], 2, respectively. According to the reaction conditions, the dppf ligand in 1 and 2 behaves as either a bridging or chelating ligand. All complexes were characterized by NMR spectroscopy. The solid-state structure of 2 was determined by the single-crystal X-ray diffraction method and it was shown that the chelating dppf ligand in this complex was arranged in a "synclinal-staggered" conformation. Also, the occurrence of intermolecular C-H Cp O bipyO-H interactions in the solid-state gave rise to an extended 1-D network. The electronic absorption spectra and the electrochemical behavior of these complexes are discussed. Density functional theory (DFT) was used for geometry optimization of the singlet states in solution and for electronic structure calculations. The analysis of the molecular orbital (MO) compositions in terms of occupied and unoccupied fragment orbitals in 2 was performed.

  14. Structural and Electrochemical Consequences of [Cp*] Ligand Protonation.

    PubMed

    Peng, Yun; Ramos-Garcés, Mario V; Lionetti, Davide; Blakemore, James D

    2017-09-05

    There are few examples of the isolation of analogous metal complexes bearing [η 5 -Cp*] and [η 4 -Cp*H] (Cp* = pentamethylcyclopentadienyl) complexes within the same metal/ligand framework, despite the relevance of such structures to catalytic applications. Recently, protonation of Cp*Rh(bpy) (bpy = 2,2'-bipyridyl) has been shown to yield a complex bearing the uncommon [η 4 -Cp*H] ligand, rather than generating a [Rh III -H] complex. We now report the purification and isolation of this protonated species, as well as characterization of analogous complexes of 1,10-phenanthroline (phen). Specifically, reaction of Cp*Rh(bpy) or Cp*Rh(phen) with 1 equiv of Et 3 NH + Br - affords rhodium compounds bearing endo-η 4 -pentamethylcyclopentadiene (η 4 -Cp*H) as a ligand. NMR spectroscopy and single-crystal X-ray diffraction studies confirm protonation of the Cp* ligand, rather than formation of metal hydride complexes. Analysis of new structural data and electronic spectra suggests that phen is significantly reduced in Cp*Rh(phen), similar to the case of Cp*Rh(bpy). Backbonding interactions with olefinic motifs are activated by formation of [η 4 -Cp*H]; protonation of [Cp*] stabilizes the low-valent metal center and results in loss of reduced character on the diimine ligands. In accord with these changes in electronic structure, electrochemical studies reveal a distinct manifold of redox processes that are accessible in the [Cp*H] complexes in comparison with their [Cp*] analogues; these processes suggest new applications in catalysis for the complexes bearing endo-η 4 -Cp*H.

  15. Probing Aspergillus niger glucose oxidase with pentacyanoferrate(III) aza- and thia-complexes.

    PubMed

    Kulys, J; Tetianec, L; Ziemys, A

    2006-10-01

    Complexes of pentacyanoferrate(III) and biologically relevant ligands, such as pyridine, pyrazole, imidazole, histidine, and other aza- and thia-heterocycles, were synthesized. Their spectral, electrochemical properties, electron exchange constants, electronic structure parameters, and reactivity with glucose oxidase from Aspergillus niger were determined. The formation of the complexes following ammonia replacement by the ligands was associated with the appearance of a new band of absorbance in the visible spectrum. The constants of the complexes formation calculated at a ligand-pentacyanoferrate(III) concentrations ratio of 10:1, were 7.5 x 10(-5), 7.7 x 10(-5), and 1.8 x 10(-3) s(-1) for benzotriazole, benzimidazole, and aminothiazole ligands, respectively. The complexes showed quasi-reversible redox conversion at a glassy carbon electrode. The redox potential of the complexes spanned the potential range from 70 to 240 mV vs. saturated calomel electrode (SCE) at pH7.2. For most of the complexes self-exchange constants (k(11)) were similar to or larger than that of hexacyanoferrate(III) (ferricyanide). The complexes containing pyridine derivatives and thia-heterocyclic ligands held a lower value of k(11) than that of ferricyanide. All complexes reacted with reduced glucose oxidase at pH7.2. The reactivity of the complex containing pyrazole was the largest in comparison to the rest of the complexes. Correlations between the complexes' reactivity and both the free energy of reaction and k(11) shows that the reactivity of pentacyanoferrates obeys the principles of Marcus's electron transfer theory. The obtained data suggest that large negative charges of the complexes decrease their reactivity.

  16. NMR Reveals Double Occupancy of Quinone-type Ligands in the Catalytic Quinone Binding Site of the Na+-translocating NADH:Quinone Oxidoreductase from Vibrio cholerae*

    PubMed Central

    Nedielkov, Ruslan; Steffen, Wojtek; Steuber, Julia; Möller, Heiko M.

    2013-01-01

    The sodium ion-translocating NADH:quinone oxidoreductase (Na+-NQR) from the pathogen Vibrio cholerae exploits the free energy liberated during oxidation of NADH with ubiquinone to pump sodium ions across the cytoplasmic membrane. The Na+-NQR consists of four membrane-bound subunits NqrBCDE and the peripheral NqrF and NqrA subunits. NqrA binds ubiquinone-8 as well as quinones with shorter prenyl chains (ubiquinone-1 and ubiquinone-2). Here we show that the quinone derivative 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone (DBMIB), a known inhibitor of the bc1 and b6f complexes found in mitochondria and chloroplasts, also inhibits quinone reduction by the Na+-NQR in a mixed inhibition mode. Tryptophan fluorescence quenching and saturation transfer difference NMR experiments in the presence of Na+-NQR inhibitor (DBMIB or 2-n-heptyl-4-hydroxyquinoline N-oxide) indicate that two quinone analog ligands are bound simultaneously by the NqrA subunit with very similar interaction constants as observed with the holoenzyme complex. We conclude that the catalytic site of quinone reduction is located on NqrA. The two ligands bind to an extended binding pocket in direct vicinity to each other as demonstrated by interligand Overhauser effects between ubiquinone-1 and DBMIB or 2-n-heptyl-4-hydroxyquinoline N-oxide, respectively. We propose that a similar spatially close arrangement of the native quinone substrates is also operational in vivo, enhancing the catalytic efficiency during the final electron transfer steps in the Na+-NQR. PMID:24003222

  17. Synthesis, structure and stability of a chiral imine-based Schiff-based ligand derived from L-glutamic acid and its [Cu4] complex

    NASA Astrophysics Data System (ADS)

    Muche, Simon; Levacheva, Irina; Samsonova, Olga; Biernasiuk, Anna; Malm, Anna; Lonsdale, Richard; Popiołek, Łukasz; Bakowsky, Udo; Hołyńska, Małgorzata

    2017-01-01

    Studies of the stability of a ligand derived from L-glutamic acid and ortho-vanillin and its new [Cu4] complex are presented. The [Cu4] complex contains a heterocubane [CuII4O4] core and pendant carboxylic groups increasing its solubility in water, also under basic conditions. The stability of the complex in different solvents is confirmed with ESI-MS studies and such experiments as successful recrystallization. The complex is stable also under physiological conditions whereas the ligand is partly decomposed to L-glutamic acid and ortho-vanillin.

  18. Studies on Some Biologically Cobalt(II), Copper(II) and Zinc(II) Complexes With ONO, NNO and SNO Donor Pyrazinoylhydrazine-Derived Ligands

    PubMed Central

    Praveen, Marapaka; Sherazi, Syed K. A.

    1998-01-01

    Biologically active complexes of Co(II), Ni(II), Cu(II) and Zn(II) with novel ONO, NNO and SNO donor pyrazinoylhydrazine-derived compounds have been prepared and characterized on the basis of analytical data and various physicochemical studies. Distorted octahedral structures for all the complexes have been proposed. The synthesized ligands and their complexes have been screened for their antibacterial activity against bacterial species Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus and Klebsiella pneumonae. The activity data show the metal complexes to be more active than the parent free ligands against one or more bacterial species. PMID:18475857

  19. Synthesis, characterization and extraction studies of some metal (II) complexes containing (hydrazoneoxime and bis-acylhydrazone) moieties

    NASA Astrophysics Data System (ADS)

    Al-Ne'aimi, Mohammed Mahmmod; Al-Khuder, Mohammed Moudar

    2013-03-01

    In this study, diacetylmonoximebenzoylhydrazone (L1H2) and 1,4-diacetylbenzene bis(benzoyl hydrazone) (L2H2) were synthesized by the condensation of benzohydrazide with diacetyl monoxime and 1,4-diacetylbenzene, respectively. Complexes of these ligands with Co(II), Ni(II), Cu(II), Zn(II) and Cd(II) inos were prepared with a metal:ligand ratio of 1:2 for L1H2 ligand, and 1:1 for L2H2 ligand. The ligands and their complexes were elucidated on the basis of elemental analyses CHN, AAS, FT-IR, 1H- and 13C NMR spectra, UV-vis spectra and magnetic susceptibility measurements. Results show the L1H2 ligand act as monoanionic O,N,N-tridentate and coordination takes place in the enol form through the oxime nitrogen, the imine nitrogen and the enolate oxygen atoms with a N4O2 donor environment, while the L2H2 ligand act as a dianionic O,N,N,O-tetradentate and coordination takes place in the enol form through the enolate oxygen and the azomethine nitrogen atoms with a N2O2 donor environment. These results are consistent with the formation of mononuclear metal (II) complexes [M(L1H)2], and binuclear polymeric metal (II) complexes [{M2(L2)}n]. The extraction ability of both ligands were examined in chloroform by the liquid-liquid extraction of selected transition metal [Co2+, Ni2+, Cu2+, Zn2+ and Pb2+] cations. The effects of pH and contact time on the percentage extraction of metal (II) ions were studied under the optimum extraction conditions. The (L1H2) ligand shows strong binding ability toward copper(II) and lead(II) ions, while the (L2H2) ligand shows strong binding ability toward nickel(II) and zinc(II) ions.

  20. Synthesis, characterization and extraction studies of some metal (II) complexes containing (hydrazoneoxime and bis-acylhydrazone) moieties.

    PubMed

    Al-Ne'aimi, Mohammed Mahmmod; Al-Khuder, Mohammed Moudar

    2013-03-15

    In this study, diacetylmonoximebenzoylhydrazone (L(1)H(2)) and 1,4-diacetylbenzene bis(benzoyl hydrazone) (L(2)H(2)) were synthesized by the condensation of benzohydrazide with diacetyl monoxime and 1,4-diacetylbenzene, respectively. Complexes of these ligands with Co(II), Ni(II), Cu(II), Zn(II) and Cd(II) inos were prepared with a metal:ligand ratio of 1:2 for L(1)H(2) ligand, and 1:1 for L(2)H(2) ligand. The ligands and their complexes were elucidated on the basis of elemental analyses CHN, AAS, FT-IR, (1)H- and (13)C NMR spectra, UV-vis spectra and magnetic susceptibility measurements. Results show the L(1)H(2) ligand act as monoanionic O,N,N-tridentate and coordination takes place in the enol form through the oxime nitrogen, the imine nitrogen and the enolate oxygen atoms with a N(4)O(2) donor environment, while the L(2)H(2) ligand act as a dianionic O,N,N,O-tetradentate and coordination takes place in the enol form through the enolate oxygen and the azomethine nitrogen atoms with a N(2)O(2) donor environment. These results are consistent with the formation of mononuclear metal (II) complexes [M(L(1)H)(2)], and binuclear polymeric metal (II) complexes [{M(2)(L(2))}(n)]. The extraction ability of both ligands were examined in chloroform by the liquid-liquid extraction of selected transition metal [Co(2+), Ni(2+), Cu(2+), Zn(2+) and Pb(2+)] cations. The effects of pH and contact time on the percentage extraction of metal (II) ions were studied under the optimum extraction conditions. The (L(1)H(2)) ligand shows strong binding ability toward copper(II) and lead(II) ions, while the (L(2)H(2)) ligand shows strong binding ability toward nickel(II) and zinc(II) ions. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Oxidative condensation reactions of (diethylenetriamine)cobalt(III) complexes with substituted bis(pyridin-2-yl)methane ligands

    NASA Astrophysics Data System (ADS)

    Zhou, Xiangting; Hockless, David C. R.; Willis, Anthony C.; Jackson, W. Gregory

    2005-04-01

    The synthesis and characterisation of Co(III) complexes derived from a condensation reaction with a central or terminal nitrogen of a dien ligand and the α-carbon of a range of substituted bis(pyridin-2-yl)methane ligands are described. Aerial oxidation of bpm {bis(pyridin-2-yl)methane with Co(II)/dien or direct reaction with Co(dien)Cl 3 provided in low yield a single C-N condensation product 1 (at the primary terminal NH 2) after the pyridyl -CH 2- is formally oxidised to -CH +-. The methyl substituted ligand bpe {1,1-bis(pyridin-2-yl)ethane} behaves likewise, except both terminal (prim) and central (sec) amines condense to yield isomeric products 2 and 3. Two of these three materials have been characterised by single crystal X-ray crystallography. The corresponding reactions for the bis(pyridyl) ligand bpk {bis(pyridin-2-yl)ketone} provided C-N condensation products without the requirement for oxidation at the α-C center; two carbinolamine complexes in different geometrical configurations resulted, mer-anti-[Co(dienbpc)Cl]ZnCl 4, 5, and unsym- fac-[Co(dienbpc)Cl]ZnCl 4, 6, {dienbpc=[2-(2-aminoethylamino)-ethylamino]-di-pyridin-2-yl-methanol}. In addition, a novel complex, [Co(bpk)(bpd-OH)Cl]ZnCl 4, 4, in which one bidentate N, N-bonded bpk ligand and one tridentate N, O, N-bonded bpd (the diol from bpk+OH -) were coordinated, was obtained via the Co(II)/O 2 synthetic route. When the bpc ligand (bpc=bis(pyridin-2-yl)methanol) was employed directly as a reagent along with dien, no condensation reactions were observed, but rather a single isomeric complex [Co(dien)(bpc)]Cl.ZnCl 4, 7, in which the ligand bpc acted as a N,N,O-bonded tridentate ligand rather than as a N,N-bidentate ligand was isolated. 13C, 1D and 2D 1H NMR studies are reported for all the complexes; they establish the structures unambiguously.

  2. A combined experimental and DFT study of active structures and self-cycle mechanisms of mononuclear tungsten peroxo complexes in oxidation reactions

    NASA Astrophysics Data System (ADS)

    Jin, Peng; Wei, Donghui; Wen, Yiqiang; Luo, Mengfei; Wang, Xiangyu; Tang, Mingsheng

    2011-04-01

    Tungsten peroxo complexes have been widely used in olefin epoxidation, alcohol oxidation, Baeyer-Villiger oxidation and other oxidation reactions, however, there is still not a unanimous viewpoint for the active structure of mononuclear tungsten peroxo complex by now. In this paper, the catalysis of mononuclear tungsten peroxo complexes 0- 5 with or without acidic ligands for the green oxidation of cyclohexene to adipic acid in the absence of organic solvent and phase-transfer catalyst has been researched in experiment. Then we have suggested two possible kinds of active structures of mononuclear tungsten peroxo complexes including peroxo ring ( nA, n = 0-1) and hydroperoxo ( nB, n = 0-1) structures, which have been investigated using density functional theory (DFT). Moreover, the calculations on self-cycle mechanisms involving the two types of active structures of tungsten peroxo complexes with and without oxalic acid ligand have also been carried out at the B3LYP/[LANL2DZ/6-31G(d, p)] level. The highest energy barrier are 26.17 kcal/mol ( 0A, peroxo ring structure without oxalic acid ligand), 23.91 kcal/mol ( 1A, peroxo ring structure with oxalic acid ligand), 18.19 kcal/mol ( 0B, hydroperoxo structure without oxalic acid ligand) and 13.10 kcal/mol ( 1B, hydroperoxo structure with oxalic acid ligand) in the four potential energy profiles, respectively. The results indicate that both the energy barriers of active structure self-cycle processes with oxalic acid ligands are lower than those without oxalic acid ligands, so the active structures with oxalic acid ligands should be easier to recycle, which is in good agreement with our experimental results. However, due to the higher energy of product than that of the reactant, the energy profile of the self-cycle process of 1B shows that the recycle of 1B could not occur at all in theory. Moreover, the crystal data of peroxo ring structure with oxalic acid ligand could be found in some experimental references. Thus, the viewpoint that the peroxo ring active structure should be the real active structure has been proved in this paper.

  3. Reversible Hydrogen Activation by a Pyridonate Borane Complex: Combining Frustrated Lewis Pair Reactivity with Boron-Ligand Cooperation.

    PubMed

    Gellrich, Urs

    2018-04-16

    A pyridone borane complex that liberates dihydrogen under mild conditions is described. The reverse reaction, dihydrogen activation by the formed pyridonate borane complex, is achieved under moderate H 2 pressure (2 bar) at room temperature. DFT and DLPNO-CCSD(T) computations reveal that the active form of the pyridonate borane complex is a boroxypyridine that can be described as a single component frustrated Lewis pair (FLP). Significantly, the boroxypyridine undergoes a chemical transformation to a neutral pyridone donor ligand in the course of the hydrogen activation. This unprecedented mode of action may thus, in analogy to metal-ligand cooperation, be regarded as an example of boron-ligand cooperation. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Ru(II) complexes of N 4 and N 2O 2 macrocyclic Schiff base ligands: Their antibacterial and antifungal studies

    NASA Astrophysics Data System (ADS)

    Shanker, Kanne; Rohini, Rondla; Ravinder, Vadde; Reddy, P. Muralidhar; Ho, Yen-Peng

    2009-07-01

    Reactions of [RuCl 2(DMSO) 4] with some of the biologically active macrocyclic Schiff base ligands containing N 4 and N 2O 2 donor group yielded a number of stable complexes, effecting complete displacement of DMSO groups from the complex. The interaction of tetradentate ligand with [RuCl 2(DMSO) 4] gave neutral complexes of the type [RuCl 2(L)] [where L = tetradentate macrocyclic ligand]. These complexes were characterized by elemental, IR, 1H, 13C NMR, mass, electronic, thermal, molar conductance and magnetic susceptibility measurements. An octahedral geometry has been proposed for all complexes. All the macrocycles and macrocyclic Ru(II) complexes along with existing antibacterial drugs were screened for antibacterial activity against Gram +ve ( Bacillus subtilis, Staphylococcus aureus) and Gram -ve ( Escherichia coli, Klebsiella pneumonia) bacteria. All these compounds were found to be more active when compared to streptomycin and ampicillin. The representative macrocyclic Schiff bases and their complexes were also tested in vitro to evaluate their activity against fungi, namely, Aspergillus flavus and Fusarium species.

  5. Antimicrobial, spectral, magnetic and thermal studies of Cu(II), Ni(II), Co(II), UO(2)(VI) and Fe(III) complexes of the Schiff base derived from oxalylhydrazide.

    PubMed

    Melha, Khlood Abou

    2008-04-01

    The Schiff base ligand, oxalyl [( 2 - hydroxybenzylidene) hydrazone] [corrected].H(2)L, and its Cu(II), Ni(II), Co(II), UO(2)(VI) and Fe(III) complexes were prepared and tested as antibacterial agents. The Schiff base acts as a dibasic tetra- or hexadentate ligand with metal cations in molar ratio 1:1 or 2:1 (M:L) to yield either mono- or binuclear complexes, respectively. The ligand and its metal complexes were characterized by elemental analyses, IR, (1)H NMR, Mass, and UV-Visible spectra and the magnetic moments and electrical conductance of the complexes were also determined. For binuclear complexes, the magnetic moments are quite low compared to the calculated value for two metal ions complexes and this shows antiferromagnetic interactions between the two adjacent metal ions. The ligand and its metal complexes were tested against a Gram + ve bacteria (Staphylococcus aureus), a Gram -ve bacteria (Escherichia coli), and a fungi (Candida albicans). The tested compounds exhibited high antibacterial activities.

  6. Synthesis and amino acids complexation of tripodal hexasubstituted benzene chiral receptors

    NASA Astrophysics Data System (ADS)

    Choksakulporn, Saowanaporn; Punkvang, Auradee; Sritana-anant, Yongsak

    2015-02-01

    The parent 1,3,5-triacetyl-2,4,6-trihydroxybenzene was prepared in up to 91% yield using a one-pot, one step reaction catalyzed by aluminum chloride. Its alkylations with 1,5-dibromopentane generated a symmetric tripodal hexasubstituted benzene precursor in the alternated conformer predicted by a theoretical calculation. Subsequent substitutions and reductions provided the corresponding tris-amine in 59% yield. Aminations of the tripodal precursor with (R)-(+)-1-phenylethylamine obtained a chiral tris-amine ligand in 44% yield. 1H NMR titrations of this ligand with each of three L-amino acid derivatives as guest molecules confirmed the presence of their complexes, in which the complex with alanine derivative displayed the strongest interactions with the ligand. Job plots suggested that all complexes composed of 1:2 ratios of the ligand and these guests. Theoretical calculations additionally revealed the structures and the associated binding parameters of the complexes.

  7. Synthesis and structural characterization of two half-sandwich nickel(II) complexes with the scorpionate ligands

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, G.-F., E-mail: wgf1979@126.com, E-mail: s-shuwen@163.com; Zhang, X., E-mail: zhangx@hit.edu.cn; Sun, S.-W.

    The synthesis and characterization of two new halfsandwich mononuclear nickel(II) complexes with the scorpionate ligands, [k{sup 3}-N, N',N''-Tp{sup t-Bu}, {sup Me}NiI] (1) and [k{sup 3}-N,N',N''-Tp{sup t-Bu}, {sup Me}NiNO{sub 3}] (2), are reported. These complexes have been fully characterized by elemental analyses and infrared spectra. Their molecular structures were determined by single crystal X-ray diffraction. The nickel(II) ion of complex 1 is in a four-coordinate environment, in which the donor atoms are provided by three nitrogen atoms of a hydrotris(pyrazolyl) borate ligand and one iodide atom, while that of complex 2 is in a five-coordinate environment with three nitrogen atoms frommore » a hydrotris(pyrazolyl)borate ligand and two oxygen atoms from a nitrate ion.« less

  8. Transition metal complexes of a new 15-membered [N5] penta-azamacrocyclic ligand with their spectral and anticancer studies

    NASA Astrophysics Data System (ADS)

    El-Boraey, Hanaa A.; Serag El-Din, Azza A.

    2014-11-01

    Novel penta-azamacrocyclic 15-membered [N5] ligand [L] i.e. 1,5,8,12-tetetraaza-3,4: 9,10-dibenzo-6-ethyl-7-methyl-1,12-(2,6-pyrido)cyclopentadecan-5,7 diene-2,11-dione and its transition metal complexes with Co(II), Ni(II), Cu(II), Ru(III) and Pd(II) have been synthesized and structurally characterized by elemental analysis, spectral, thermal as well as magnetic and molar conductivity measurements. On basis of IR, MS, UV-Vis 1H NMR and EPR spectral studies an octahedral geometry has been proposed for all complexes except Co(II), Cu(II) nitrate complexes and Pd(II) chloride complex that adopt tetrahedral, square pyramidal and square planar geometries, respectively. The antitumor activity of the synthesized ligand and some complexes against human breast cancer cell lines (MCF-7) and human hepatocarcinoma cell lines (HepG2) has been studied. The complexes (IC50 = 2.04-9.7, 2.5-3.7 μg/mL) showed potent antitumor activity comparable with their ligand (IC50 = 11.7, 3.45 μg/mL) against the above mentioned cell lines, respectively. The results evidently show that the activity of the ligand becomes more pronounced and significant when coordinated to the metal ion.

  9. Construction of Polynuclear Lanthanide (Ln = Dy(III), Tb(III), and Nd(III)) Cage Complexes Using Pyridine-Pyrazole-Based Ligands: Versatile Molecular Topologies and SMM Behavior.

    PubMed

    Bala, Sukhen; Sen Bishwas, Mousumi; Pramanik, Bhaskar; Khanra, Sumit; Fromm, Katharina M; Poddar, Pankaj; Mondal, Raju

    2015-09-08

    Employment of two different pyridyl-pyrazolyl-based ligands afforded three octanuclear lanthanide(III) (Ln = Dy, Tb) cage compounds and one hexanuclear neodymium(III) coordination cage, exhibiting versatile molecular architectures including a butterfly core. Relatively less common semirigid pyridyl-pyrazolyl-based asymmetric ligand systems show an interesting trend of forming polynuclear lanthanide cage complexes with different coordination environments around the metal centers. It is noteworthy here that construction of lanthanide complex itself is a challenging task in a ligand system as soft N-donor rich as pyridyl-pyrazol. We report herein some lanthanide complexes using ligand containing only one or two O-donors compare to five N-coordinating sites. The resultant multinuclear lanthanide complexes show interesting magnetic and spectroscopic features originating from different spatial arrangements of the metal ions. Alternating current (ac) susceptibility measurements of the two dysprosium complexes display frequency- and temperature-dependent out-of-phase signals in zero and 0.5 T direct current field, a typical characteristic feature of single-molecule magnet (SMM) behavior, indicating different energy reversal barriers due to different molecular topologies. Another aspect of this work is the occurrence of the not-so-common SMM behavior of the terbium complex, further confirmed by ac susceptibility measurement.

  10. Synthesis, characterization and electrochemistry studies of iron(III) complex with curcumin ligand.

    PubMed

    Özbolat, Gülüzar; Yegani, Arash Alizadeh; Tuli, Abdullah

    2018-05-11

    Iron overload is a serious clinical condition for humans and is a key target in drug development. The aim of this study was to investigate the coordination of iron(III) ions with curcumin ligand that may be used in the treatment of iron overload. Iron(III) complex of curcumin was synthesized and structurally characterized in its solid and solution state by FT-IR, UV-Vis, elemental analysis, and magnetic susceptibility. Electrochemical behaviour of the ligand and the complexes were examined using cyclic voltammetry. The cytotoxic activities of the ligand and the iron(III) complex were evaluated by the MTT assay. Curcumin reacted with iron in high concentrations at physiological pH at room temperature. Subsequently, a brown-red complex was formed. Data regarding magnetic susceptibility showed that the complexes with a 1:2 (metal/ligand) mole ratio had octahedral geometry. The complex showed higher anti-oxidant effect towards the cell line ECV304 at IC 50 values of 4.83 compared to curcumin. The complex exhibited very high cytotoxic activity and showed a cytotoxic effect that was much better than that of the ligand. The potentials for redox were calculated as 0.180 V and 0.350 V, respectively. The electrochemistry studies showed that Fe 3+ /Fe 2+ couple redox process occurred at low potentials. This value was within the range of compounds that are expected to show superoxide dismutase activity. This finding indicates that the iron complex is capable of removing free radicals. The observed cytotoxicity could be pursued to obtain a potential drug. Further studies investigating the use of curcumin for this purpose are needed. © 2018 John Wiley & Sons Australia, Ltd.

  11. Spectral studies, thermal investigation and biological activity of some metal complexes derived from (E)-N‧-(1-(4-aminophenyl)ethylidene)morpholine-4-carbothiohydrazide

    NASA Astrophysics Data System (ADS)

    El-Samanody, El-Sayed A.; Polis, Magdy W.; Emara, Esam M.

    2017-09-01

    A new series of biologically active Co(II), Ni(II), Cu(II), Zn(II) and Cd(II) complexes derived from the novel thiosemicarbazone ligand; (E)-N‧-(1-(4-aminophenyl)ethylidene)morpholine-4-carbothiohydrazide (HL) were synthesized. The mode of bonding of the ligand and the geometrical structures of its metal complexes were achieved by different analytical and spectral methods. The ligand coordinated with metal ions in a neutral bidentate fashion through the thione sulfur and azomethine nitrogen atoms. All metal complexes adopted octahedral geometry, except Cu(II) complexes (3, 6, 7) which have a square planar structure. The general thermal decomposition pathways of the ligand along with its metal complexes were explained. The thermal stability of the complexes is controlled by the number of outer and inner sphere water molecules, ionic radii and the steric hindrance. The activation thermodynamic parameters; (activation energy (E*), enthalpy of activation (ΔH*), entropy of activation (ΔS*) and Gibbs free energy (ΔG*)) along with order of reaction (n) were estimated from DTG curves. The ESR spectra of Cu(II) complexes indicated that (dx2-y2)1 is the ground state with covalence character of metal-ligand bonds. The molluscicidal and biochemical effects of the ligand and its Ni(II); Cu(II) complexes (2; 3, 5, 7) along with their combinations with metaldehyde were screened in vitro on the mucous gland of Eobania vermiculata. The tested compounds exhibited a significant toxicity against the tested animals and have almost the same toxic effect of metaldehyde which increases the mucous secretion of the snails and leads to death.

  12. High temperature ethylene polymerization catalyzed by titanium(IV) complexes with tetradentate aminophenolate ligands in cis-O, N, N chelating mode.

    PubMed

    Zhao, Ruiguo; Liu, Taotao; Wang, Liying; Ma, Haiyan

    2014-09-07

    A series of titanium trichloride complexes , ligated with claw-type tetradentate aminophenolate ligands were synthesized from the direct reaction of TiCl4(THF)2 with 1 equiv. of the corresponding aminophenol in the presence of triethylamine. For comparison purposes, titanium isopropoxide complexes were also synthesized via the reaction of Ti(O(i)Pr)4 and 1 equiv. of the proligand. Similar reactions of ZrCl4(THF)2 with the corresponding aminophenol ligands in the presence of triethylamine only allowed the isolation of zirconium complex . The X-ray diffraction studies reveal that titanium trichloride complexes , and titanium triisopropoxide complex all possess a distorted octahedral geometry with the tetradentate aminophenolate ligand in cis-O, N, N chelating mode, where the methoxy group of the aryl unit does not coordinate with the metal center in the solid state. Upon activation with MMAO, these titanium and zirconium(iv) complexes exhibited moderate to high catalytic activities for ethylene polymerization at 30-120 °C, producing high-molecular-weight polyethylenes with broad distributions (Mw/Mn = 10.2-34.8). The activities of titanium trichloride complexes are significantly higher than those of titanium isopropoxide and zirconium trichloride complexes at high temperatures. The highest activity of 15 456 kg (mol-Ti h)(-1) could be achieved by titanium trichloride complex with bromo groups on both ortho- and para-positions of the phenolate ring of the ligand at 120 °C.

  13. Light-emitting properties of cationic iridium complexes containing phenanthroline based ancillary ligand with blue-green and green emission colors

    NASA Astrophysics Data System (ADS)

    Kwon, Yiseul; Sunesh, Chozhidakath Damodharan; Choe, Youngson

    2015-01-01

    We report here two new cationic iridium(III) complexes with phenanthroline-based ancillary ligands, [Ir(dfppy)2(dibutyl-phen)]PF6 (Complex 1) and [Ir(ppz)2(dibutyl-phen)]PF6 (Complex 2) and their uses in light-emitting electrochemical cells (LECs). The design is based on 2-(2,4-difluorophenyl)pyridine (dfppy) and 1-phenylpyrazole (ppz) as the cyclometalating ligands and 2,9-dibutyl-1,10-phenanthroline (dibutyl-phen) as the ancillary ligand. The photophysical and electrochemical properties of the complexes were studied and the results obtained were corroborated with theoretical density functional theory (DFT) calculations. LECs were fabricated incorporating each complexes which resulted in blue-green light emission (502 nm) with Commission Internationale de l'Eclairage (CIE) coordinates of (0.26, 0.49) for Complex 1 and green (530 nm) electroluminescence with CIE coordinates of (0.33, 0.54) for Complex 2. The luminance and the current efficiency of the LECs based on Complex 1 are 947 cd m-2 and 0.25 cd A-1, respectively, which are relatively higher than that of Complex 2 with a maximum luminance of 773 cd m-2 and an efficiency of 0.16 cd A-1.

  14. Gold nanoparticles protected by mixed hydrogenated/fluorinated monolayers: controlling and exploring the surface features

    NASA Astrophysics Data System (ADS)

    Şologan, Maria; Gentilini, Cristina; Bidoggia, Silvia; Boccalon, Mariangela; Pace, Alice; Pengo, Paolo; Pasquato, Lucia

    2018-06-01

    Harnessing the reciprocal phobicity of hydrogenated and fluorinated thiolates proved to be a valuable strategy in preparing gold nanoparticles displaying mixed monolayers with a well-defined and pre-determined morphology. Our studies display that the organisation of the fluorinated ligands in phase-separated domains takes place even when these represent a small fraction of the ligands grafted on the gold surface. Using simple model ligands and by combining 19F NMR or ESR spectroscopies, and multiscale molecular simulations, we could demonstrate how the monolayer morphology responds in a predictable manner to structural differences between the thiolates. This enables a straightforward preparation of gold nanoparticles with monolayers displaying stripe-like, Janus, patchy, and random morphologies. Additionally, solubility properties may be tuned as function of the nature of the ligands and of the monolayer morphology obtaining gold nanoparticles soluble in organic solvents or in aqueous solutions. Most importantly, this rich diversity can be achieved not by resorting to ad hoc developed fabrication techniques, but rather relying on the spontaneous self-sorting of the ligands upon assembly on the nanoparticle surface. Besides enabling control over the monolayer morphology, fluorinated ligands endow the nanoparticles with several properties that can be exploited in the development of novel materials with applications, for instance in drug delivery and diagnostic imaging.

  15. Supramolecular complexes of Co(II), Ni(II) and Zn(II) p-hydroxybenzoates with caffeine: Synthesis, spectral characterization and crystal structure

    NASA Astrophysics Data System (ADS)

    Taşdemir, Erdal; Özbek, Füreya Elif; Sertçelik, Mustafa; Hökelek, Tuncer; Çelik, Raziye Çatak; Necefoğlu, Hacali

    2016-09-01

    Three novel complexes Co(II), Ni(II) and Zn(II) containing p-hydroxybenzoates and caffeine ligands were synthesized and characterized by elemental analysis, FT-IR and UV-vis Spectroscopy, molar conductivity and single crystal X-ray diffraction methods. The thermal properties of the synthesized complexes were investigated by TGA/DTA. The general formula of the complexes is [M(HOC6H4COO)2(H2O)4]·2(C8H10N4O2)·8H2O (where: M: Co, Ni and Zn). The IR studies showed that carboxylate groups of p-hydroxybenzoate ligands have monodentate coordination mode. The M2+ ions are octahedrally coordinated by two p-hydroxybenzoate ligands, four water molecules leading to an overall MO6 coordination environment. The medium-strength hydrogen bondings involving the uncoordinated caffeine ligands and water molecules, coordinated and uncoordinated water molecules and p-hydroxybenzoate ligands lead to three-dimensional supramolecular networks in the crystal structures.

  16. C^C* cyclometalated platinum(II) N-heterocyclic carbene complexes with a sterically demanding β-diketonato ligand – synthesis, characterization and photophysical properties.

    PubMed

    Tenne, M; Metz, S; Wagenblast, G; Münster, Ingo; Strassner, T

    2015-05-14

    Neutral cyclometalated platinum(ii) N-heterocyclic carbene complexes [Pt(C^C*)(O^O)] with C^C* ligands based on 1-phenyl-1,2,4-triazol-5-ylidene and 4-phenyl-1,2,4-triazol-5-ylidene, as well as acetylacetonato (O^O = acac) and 1,3-bis(2,4,6-trimethylphenyl)propan-1,3-dionato (O^O = mesacac) ancillary ligands were synthesized and characterized. All complexes are emissive at room temperature in a poly(methyl methacrylate) (PMMA) matrix with emission maxima in the blue region of the spectrum. High quantum efficiencies and short decay times were observed for all complexes with mesacac ancillary ligands. The sterically demanding mesityl groups of the mesacac ligand effectively prevent molecular stacking. The emission behavior of these emitters is in general independent of the position of the nitrogen in the backbone of the N-heterocyclic carbene (NHC) unit and a variety of substituents in 4-position of the phenyl unit, meta to the cyclometalating bond.

  17. Engineering endomorphin drugs: state of the art

    PubMed Central

    Lazarus, Lawrence H; Okada, Yoshio

    2011-01-01

    Importance of the field Although EM-1 (H-Tyr-Pro-Phe-Trp-NH2) and EM-2 (H-Tyr-Pro-Phe-Phe-NH2) are primarily considered agonists for the μ-opioid receptor (MOR), systematic alterations to specific residues provided antagonists and ligands with mixed μ/δ-opioid properties suitable for application to health related topics. Areas covered in this review This review attempts to succinctly provide insight on the development and bioactivity of endomorphin analogues during the past decade. Rational design approaches will focus on the engineering of endomorphin agonists, antagonists and mixed ligands for their application as a multi-target ligand. What the reader will gain While the application of endomorphins as antinociceptive agents and numerous biological endpoints were experimental delineated in laboratory animals and in vitro, clinical use is currently absent. However, structural alterations provide enhanced stability, formation of MOR antagonists or mixed and dual μ/δ-acting ligands could find considerable therapeutic potential. Take home message Aside from alleviating pain, EM analogues open new horizons in the treatment of medical syndromes involving neural reward mechanisms and extraneural regulation effects on homeostasis. Highly selective MOR antagonists may be promising to reduce inflammation, attenuate addiction to drugs and excess consumption of high caloric food, ameliorate alcoholism, affect the immune system and combat opioid bowel dysfunction. PMID:22214283

  18. Brilliant Sm, Eu, Tb and Dy chiral lanthanide complexes withstrong circularly polarized luminescence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petoud, Stephane; Muller, Gilles; Moore, Evan G.

    The synthesis, characterization and luminescent behavior of trivalent Sm, Eu, Dy and Tb complexes of two enantiomeric, octadentate, chiral, 2-hydroxyisophthalamide ligands are reported. These complexes are highly luminescent in solution. Functionalization of the achiral parent ligand with a chiral 1-phenylethylamine substituent on the open face of the complex in close proximity to the metal center yields complexes with strong circularly polarized luminescence (CPL) activity. This appears to be the first example of a system utilizing the same ligand architecture to sensitize four different lanthanide cations and display CPL activity. The luminescence dissymmetry factor, g{sub lum}, recorded for the Eu(III) complexmore » is one of the highest values reported, and this is the first time the CPL effect has been demonstrated for a Sm(III) complex with a chiral ligand. The combination of high luminescence intensity with CPL activity should enable new bioanalytical applications of macromolecules in chiral environments.« less

  19. Eu(III) and Tb(III) complexes with the nonsteroidal anti-inflammatory drug carprofen: synthesis, crystal structure, and photophysical properties.

    PubMed

    Zhou, Xianju; Zhao, Xiaoqi; Wang, Yongjie; Wu, Bing; Shen, Jun; Li, Li; Li, Qingxu

    2014-12-01

    Two new lanthanide complexes with general formula [Ln2(carprofen)6(DMF)2] (Ln = Eu (1), Tb (2), DMF = N,N-dimethylformamide, carprofen = 6-chloro-α-methylcarbazole-2-acetic acid) have been synthesized by a hydrothermal method. Complex 1 was characterized by single-crystal X-ray diffraction (XRD), and it was found to crystallize in the monoclinic space group C2/c. The coordination of the ligand to the lanthanide ion has been investigated by Fourier-transform infrared (FTIR) spectra and ultraviolet-visible (UV-vis) absorption spectra. Complex 1 emits red light, but the antenna effect of the ligand is not effective, whereas complex 2 presents intense green emission with effective energy transfer from the ligand. The different performance of the two complexes is related to the energy matching between the excited states of the lanthanide ion and the triplet state of the ligand. The intramolecular energy transfer mechanisms are also discussed.

  20. Spectral, optical and cytotoxicity studies on 2-isonicotinoyl-N-phenylhydrazine-1-carboxamide(H3L) and some of its metal complexes

    NASA Astrophysics Data System (ADS)

    Hosny, Nasser M.; Hassan, Nader Y.; Mahmoud, Heba M.; Abdel-Rhman, Mohamed H.

    2018-03-01

    The ligand 2-isonicotinoyl-N-phenylhydrazine-1-carboxamide (H3L) and its metal complexes with Co(II), Ni(II), Cu(II) and Zn(II) acetates have been synthesized. The isolated compounds have been characterized by elemental analyses, FT-IR, 1H NMR, 13C NMR, ESR, mass, electronic spectra, electrical conductivity, effective magnetic moments and thermal analyses. The free organic ligand exists in the keto form, but in the metal complexes, it coordinates in the enol form. Four coordinated species were suggested for all the isolated metal complexes. The measured optical band gap values confirmed the presence of direct electronic transition and the semi-conductivity of the compounds. The ligand and its Zn(II) complex were examined as cytotoxic agent against HCT-116 and HePG-2. The ligand showed very strong cytotoxic effect against HePG-2, but moderate cytotoxicity against HCT-116. Zn(II) complex showed weak cytotoxicity against the two cell lines.

  1. Evidence of mixed valence states in U M2Al 3 ( M = Ni, Pd) studied by X-ray photoemission spectroscopy

    NASA Astrophysics Data System (ADS)

    Fujimori, Shin-ichi; Saito, Yasuharu; Sato, Noriaki; Komatsubara, Takemi; Suzuki, Shoji; Sato, Shigeru; Ishii, Takehiko

    1998-01-01

    We have measured the XPS valence band and core-level spectra of U M2Al 3 ( M = Ni and Pd). The results are compared with those of reference materials, dilute alloy U 0.1La 0.9Pd 2Al 3 and itinerant 5 f compound URh 3. The similarity of the core-level spectra between UPd 2Al 3 and U 0.1La 0.9Pd 2Al 3 suggests that their core-level spectra are governed by the interaction between U 5 f and ligand states of neighboring palladium and aluminum sites, with negligible contributions from neighboring uranium states. A complex satellite structure, observed in the core-level spectra of U M2Al 3, suggests that the uranium atoms are in the strong mixed valence states with 5 f2(U 4+) and 5 f3(U 3+).

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiong, J.-P.; Stehle, T.; Zhang, R.

    The structural basis for the divalent cation-dependent binding of heterodimeric alpha beta integrins to their ligands, which contain the prototypical Arg-Gly-Asp sequence, is unknown. Interaction with ligands triggers tertiary and quaternary structural rearrangements in integrins that are needed for cell signaling. Here we report the crystal structure of the extracellular segment of integrin alpha Vbeta 3 in complex with a cyclic peptide presenting the Arg-Gly-Asp sequence. The ligand binds at the major interface between the alpha V and beta 3 subunits and makes extensive contacts with both. Both tertiary and quaternary changes are observed in the presence of ligand. Themore » tertiary rearrangements take place in beta A, the ligand-binding domain of beta 3; in the complex, beta A acquires two cations, one of which contacts the ligand Asp directly and the other stabilizes the ligand-binding surface. Ligand binding induces small changes in the orientation of alpha V relative to beta 3.« less

  3. Organic iron (III) complexing ligands during an iron enrichment experiment in the western subarctic North Pacific

    NASA Astrophysics Data System (ADS)

    Kondo, Yoshiko; Takeda, Shigenobu; Nishioka, Jun; Obata, Hajime; Furuya, Ken; Johnson, William Keith; Wong, C. S.

    2008-06-01

    Complexation of iron (III) with natural organic ligands was investigated during a mesoscale iron enrichment experiment in the western subarctic North Pacific (SEEDS II). After the iron infusions, ligand concentrations increased rapidly with subsequent decreases. While the increases of ligands might have been partly influenced by amorphous iron colloids formation (12-29%), most in-situ increases were attributable to the <200 kDa fraction. Dilution of the fertilized patch may have contributed to the rapid decreases of the ligands. During the bloom decline, ligand concentration increased again, and the high concentrations persisted for 10 days. The conditional stability constant was not different between inside and outside of the fertilized patch. These results suggest that the chemical speciation of the released iron was strongly affected by formation of the ligands; the production of ligands observed during the bloom decline will strongly impact the iron cycle and bioavailability in the surface water.

  4. Optical Absorbance Enhancement in PbS QD/Cinnamate Ligand Complexes.

    PubMed

    Kroupa, Daniel M; Vörös, Márton; Brawand, Nicholas P; Bronstein, Noah; McNichols, Brett W; Castaneda, Chloe V; Nozik, Arthur J; Sellinger, Alan; Galli, Giulia; Beard, Matthew C

    2018-06-08

    We studied the optical absorption enhancement in colloidal suspensions of PbS quantum dots (QD) upon ligand exchange from oleate to a series of cinnamate ligands. By combining experiments and ab initio simulations, we elucidate physical parameters that govern the optical absorption enhancement. We find that, within the cinnamate/PbS QD system, the optical absorption enhancement scales linearly with the electronic gap of the ligand, indicating that the ligand/QD coupling occurs equally efficient between the QD and ligand HOMO and their respective LUMO levels. Disruption of the conjugation that connects the aromatic ring and its substituents to the QD core causes a reduction of the electronic coupling. Our results further support the notion that the ligand/QD complex should be considered as a distinct chemical system with emergent behavior rather than a QD core with ligands whose sole purpose is to passivate surface dangling bonds and prevent agglomeration.

  5. A Mixed-Ligand Approach for a Gigantic and Hollow Heterometallic Cage {Ni64 RE96 } for Gas Separation and Magnetic Cooling Applications.

    PubMed

    Chen, Wei-Peng; Liao, Pei-Qin; Yu, Youzhu; Zheng, Zhiping; Chen, Xiao-Ming; Zheng, Yan-Zhen

    2016-08-01

    Nanosized aggregations of metal ions shielded by organic ligands possessing both exquisite structural aesthetics and intriguing properties are fundamentally interesting. Three isostructural gigantic transition-metal-rare-earth heterometallic coordination cages are reported, abbreviated as {Ni64 RE96 } (RE=Gd, Dy, and Y) and obtained by a mixed-ligand approach, each possessing a cuboidal framework made of 160 metal ions and a nanosized spherical cavity in the center. Along with the structural novelty, these hollow cages show highly selective adsorptions for CO2 over CH4 or N2 at ambient temperatures. Moreover, the gadolinium analogue exhibits large magnetocaloric effect at ultralow temperatures. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Effects of structures of bidentate Schiff base type bonded-ligands derived from benzaldehyde on the photoluminescence performance of polymer-rare earth complexes.

    PubMed

    Gao, Baojiao; Zhang, Liqin; Zhang, Dandan

    2018-02-07

    Two kinds of bidentate Schiff base ligands derived from benzaldehyde, benzaldehyde/m-aminophenol (BAMA) type and benzaldehyde/glutamic acid (BAGL) type ligands, were synchronously synthesized and bonded on the backbone of polysulfone (PSF) through molecular design and by polymer reactions, and two functional polymers, PSF-BAMA and PSF-BAGL, were obtained. Then two series of novel luminescent Schiff base-type polymer-rare earth complexes were prepared via coordination reactions. In this work, the effects of the structures of the bonded ligands on the photoluminescence performance of the complexes were investigated in detail, and for the different photophysical properties of the prepared complexes, relevant theoretical explanations were given. The experimental results show that the bonded ligand BAMA can strongly sensitize the fluorescence emission of Eu(iii) ions, and the binary complex PSF-(BAMA) 3 -Eu(iii) emits strong red fluorescence under UV light. The reason for this lies in the fact that a larger conjugate π-bond system is contained in the structure of BAMA, and so the triplet state of BAMA can be matched with the resonant energy level of the Eu(iii) ion. While the bonded ligand BAGL can effectively sensitize the fluorescence emission of Tb(iii) ions, the binary complex PSF-(BAGL) 3 -Tb(iii) exhibits very strong green fluorescence under UV light. The reason is that a smaller conjugate π-bond system is contained in the structure of BAGL and there is a good energy level matching between the triplet state of BAGL and the resonant energy level of the Tb(iii) ion. The fluorescence intensities of the two ternary complexes, PSF-(BAMA) 3 -Eu(iii)-(Phen) 1 (phenanthroline, Phen) and PSF-(BAGL) 3 -Tb(iii)-(Phen) 1 , are much stronger than that of the corresponding binary complex because Phen as the second ligand has two effects, the effect of synergistic coordination with the first ligand and the effect of replacing the coordinated water around the central ion, and it has been confirmed by fluorescence spectroscopy and thermogravimetric analysis.

  7. Crystal structures and vibrational spectroscopy of copper(I) thiourea complexes.

    PubMed

    Bowmaker, Graham A; Hanna, John V; Pakawatchai, Chaveng; Skelton, Brian W; Thanyasirikul, Yupa; White, Allan H

    2009-01-05

    Several synthetic strategies using copper(I) starting materials or copper(II) compounds and an in situ sulfite reductant have been used to systematically explore the chemistry of copper(I) complexes with thiourea and substituted thiourea ligands. This has resulted in the discovery of several new complexes and methods for the bulk synthesis of some previously reported complexes that had been prepared adventitiously in small quantity. The new complexes are (tu = thiourea, dmtu = N,N'-dimethylthiourea, etu = ethylenethiourea): [I(4)Cu(4)(tu)(6)].H(2)O, [Cu(4)(tu)(10)](NO(3)).tu.3H(2)O, [BrCu(dmtu)(3)], [ICu(dmtu)(3)](2), [BrCu(etu)(2)](2), [ICu(etu)(2)], [ICu(etu)(2)](3). [I(4)Cu(4)(tu)(6)].H(2)O has an adamantanoid structure, with four terminal iodide ligands and six doubly bridging tu ligands. In contrast to this, [Cu(4)(tu)(10)](NO(3)).tu.3H(2)O contains a tetranuclear cluster in which four of the tu ligands are terminal and the other six are doubly bridging. [BrCu(dmtu)(3)] is a mononuclear complex with tetrahedral coordination of copper by one bromide and three dmtu ligands, whereas [Cu(dmtu)(3)](2)I(2) has a centrosymmetric dimeric cation with two uncoordinated iodides, four terminal dmtu and two doubly bridging dmtu ligands, [(dmtu)(2)Cu(mu-S-dmtu)(2)Cu(dmtu)(2)]I(2). A reversal of this monomer to dimer trend from bromide to iodide is seen for the etu counterparts: [BrCu(etu)(2)](2) is a centrosymmetric dimer with two doubly bridging etu ligands, [(etu)BrCu(mu-S-etu)(2)CuBr(etu)], whereas [ICu(etu)(2)] is a trigonal planar monomer, although the novel [I(3)Cu(3)(etu)(6)] is also defined. Infrared and Raman spectra of the synthesized complexes were recorded and the metal-ligand vibrational frequencies have been assigned in many cases. The results confirm previously observed correlations between the vibrational frequencies and the corresponding bond lengths for complexes of the unsubstituted tu ligand. A mechanochemical/infrared method was used to synthesize [I(3)Cu(3)(etu)(6)] from CuI and etu, and to demonstrate the polymorphic transition from [ICu(etu)(2)] to [I(3)Cu(3)(etu)(6)].

  8. Oxoiron(IV) Tetramethylcyclam Complexes with Axial Carboxylate Ligands: Effect of Tethering the Carboxylate on Reactivity.

    PubMed

    Bigelow, Jennifer O; England, Jason; Klein, Johannes E M N; Farquhar, Erik R; Frisch, Jonathan R; Martinho, Marlène; Mandal, Debasish; Münck, Eckard; Shaik, Sason; Que, Lawrence

    2017-03-20

    Oxoiron(IV) species are implicated as reactive intermediates in nonheme monoiron oxygenases, often acting as the agent for hydrogen-atom transfer from substrate. A histidine is the most likely ligand trans to the oxo unit in most enzymes characterized thus far but is replaced by a carboxylate in the case of isopenicillin N synthase. As the effect of a trans carboxylate ligand on the properties of the oxoiron(IV) unit has not been systematically studied, we have synthesized and characterized four oxoiron(IV) complexes supported by the tetramethylcyclam (TMC) macrocycle and having a carboxylate ligand trans to the oxo unit. Two complexes have acetate or propionate axial ligands, while the other two have the carboxylate functionality tethered to the macrocyclic ligand framework by one or two methylene units. Interestingly, these four complexes exhibit substrate oxidation rates that differ by more than 100-fold, despite having E p,c values for the reduction of the Fe═O unit that span a range of only 130 mV. Eyring parameters for 1,4-cyclohexadiene oxidation show that reactivity differences originate from differences in activation enthalpy between complexes with tethered carboxylates and those with untethered carboxylates, in agreement with computational results. As noted previously for the initial subset of four complexes, the logarithms of the oxygen atom transfer rates of 11 complexes of the Fe IV (O)TMC(X) series increase linearly with the observed E p,c values, reflecting the electrophilicity of the Fe═O unit. In contrast, no correlation with E p,c values is observed for the corresponding hydrogen atom transfer (HAT) reaction rates; instead, the HAT rates increase as the computed triplet-quintet spin state gap narrows, consistent with Shaik's two-state-reactivity model. In fact, the two complexes with untethered carboxylates are among the most reactive HAT agents in this series, demonstrating that the axial ligand can play a key role in tuning the HAT reactivity in a nonheme iron enzyme active site.

  9. New multifunctional ligands for potential use in the design therapeutic or diagnostic radiopharmaceutical imaging agents

    DOEpatents

    Katti, Kattesh V.; Volkert, Wynn A.; Ketring, Alan R.; Singh, Prahlad R.

    1997-01-01

    A class of diagnostic and therapeutic compounds derived from phosphinimines that include ligands containing either a single phosphinimine functionality or both a phosphinimine group and a phosphine or arsine group, or an aminato group, or a second phosphinimine moiety. These phosphinimine ligands are complexed to early transition metal radionuclides (e.g. .sup.99m Tc or .sup.186 Re/.sup.188 Re) or late transition metals (e.g., .sup.105 Rh or .sup.109 Pd). The complexes with these metals .sup.186 Re/.sup.188 Re, .sup.99m Tc and .sup.109 Pd exhibit a high in vitro and high in vivo stability. The complexes are formed in high yields and can be neutral or charged. These ligands can also be used to form stable compounds with paramagnetic transition metals (e.g. Fe and Mn) for potential use as MRI contrast agents. Applications for the use of ligands and making the ligands are also disclosed.

  10. New multifunctional ligands for potential use in the design therapeutic or diagnostic radiopharmaceutical imaging agents

    DOEpatents

    Katti, K.V.; Volkert, W.A.; Ketring, A.R.; Singh, P.R.

    1997-02-11

    A class of diagnostic and therapeutic compounds are derived from phosphinimines that include ligands containing either a single phosphinimine functionality or both a phosphinimine group and a phosphine or arsine group, or an aminato group, or a second phosphinimine moiety. These phosphinimine ligands are complexed to early transition metal radionuclides (e.g., {sup 99m}Tc or {sup 186}Re/{sup 188}Re) or late transition metals (e.g., {sup 105}Rh or {sup 109}Pd). The complexes with these metals {sup 186}Re/{sup 188}Re, {sup 99m}Tc and {sup 109}Pd exhibit a high in vitro and high in vivo stability. The complexes are formed in high yields and can be neutral or charged. These ligands can also be used to form stable compounds with paramagnetic transition metals (e.g., Fe and Mn) for potential use as MRI contrast agents. Applications for the use of ligands and making the ligands are also disclosed.

  11. Predicting Stability Constants for Uranyl Complexes Using Density Functional Theory

    DOE PAGES

    Vukovic, Sinisa; Hay, Benjamin P.; Bryantsev, Vyacheslav S.

    2015-04-02

    The ability to predict the equilibrium constants for the formation of 1:1 uranyl:ligand complexes (log K 1 values) provides the essential foundation for the rational design of ligands with enhanced uranyl affinity and selectivity. We also use density functional theory (B3LYP) and the IEFPCM continuum solvation model to compute aqueous stability constants for UO 2 2+ complexes with 18 donor ligands. Theoretical calculations permit reasonably good estimates of relative binding strengths, while the absolute log K 1 values are significantly overestimated. Accurate predictions of the absolute log K 1 values (root mean square deviation from experiment < 1.0 for logmore » K 1 values ranging from 0 to 16.8) can be obtained by fitting the experimental data for two groups of mono and divalent negative oxygen donor ligands. The utility of correlations is demonstrated for amidoxime and imide dioxime ligands, providing a useful means of screening for new ligands with strong chelate capability to uranyl.« less

  12. Derivatization of bichromic cyclometalated Ru(II) complexes with hydrophobic substituents.

    PubMed

    Robson, Kiyoshi C D; Koivisto, Bryan D; Berlinguette, Curtis P

    2012-02-06

    The syntheses and physical properties of cyclometalated Ru(II) complexes containing a triphenylamine (TPA) unit bearing aliphatic groups are reported. Each member of the series consists of an octahedral Ru(II) center coordinated by a tridentate polypyridyl ligand and a tridentate cyclometalating ligand. One of the chelating ligands contains electron-deficient methyl ester groups, while a TPA unit is attached to the central ring of the adjacent chelating ligand through a thiophene bridge. This study builds on our previous work (Inorg. Chem. 2011, 50, 6019-6028; Inorg. Chem. 2011, 50, 5494-5508) by (i) outlining a synthetic protocol for installing aliphatic groups on the TPA substituents, (ii) examining the role that terminal -O-hexyl and -S-hexyl groups situated on the TPA have on the electrochemical properties, and (iii) demonstrating the potential benefit of installing the TPA on the neutral chelating ligand rather than the anionic chelating ligand. The results reported herein provide important synthetic advances for our broader goal of developing bis-tridentate cyclometalated Ru(II) complexes for light-harvesting applications.

  13. Blue-to-Green Emitting Neutral Ir(III) Complexes Bearing Pentafluorosulfanyl Groups: A Combined Experimental and Theoretical Study

    PubMed Central

    2017-01-01

    A structure–property relationship study of neutral heteroleptic (1 and 2, [Ir(C∧N)2(L∧X)]) and homoleptic (3 and 4, fac-[Ir(C∧N)3]) Ir(III) complexes (where L∧X = anionic 2,2,6,6-tetramethylheptane-3,5-dionato-κO3,κO6 (thd) and C∧N = a cyclometalating ligand bearing a pentafluorosulfanyl (−SF5) electron-withdrawing group (EWG) at the C4 (HL1) and C3 (HL2) positions of the phenyl moiety) is presented. These complexes have been fully structurally characterized, including by single-crystal X-ray diffraction, and their electrochemical and optical properties have also been extensively studied. While complexes 1 ([Ir(L1)2(thd)]), 3 (Ir(L1)3), and 4 (Ir(L2)3) exhibit irreversible first reduction waves based on the pentafluorosulfanyl substituent in the range of −1.71 to −1.88 V (vs SCE), complex 2 ([Ir(L2)2(thd)]) exhibits a quasi-reversible pyridineC∧N-based first reduction wave that is anodically shifted at −1.38 V. The metal + C∧N ligand oxidation waves are all quasi-reversible in the range of 1.08–1.54 V (vs SCE). The optical gap, determined from the lowest energy absorption maxima, decreases from 4 to 2 to 3 to 1, and this trend is consistent with the Hammett behavior (σm/σp with respect to the metal–carbon bond) of the −SF5 EWG. In degassed acetonitrile, for complexes 2–4, introduction of the −SF5 group produced a blue-shifted emission (λem 484–506 nm) in comparison to reference complexes [Ir(ppy)2(acac)] (R1, where acac = acetylacetonato) (λem 528 nm in MeCN), [Ir(CF3-ppy) (acac)] (R3, where CF3-ppyH = 2-(4-(trifluoromethyl)phenyl)pyridine) (λem 522 nm in DCM), and [Ir(CF3-ppy)3] (R8) (λem 507 nm in MeCN). The emission of complex 1, in contrast, was modestly red shifted (λem 534 nm). Complexes 2 and 4, where the −SF5 EWG is substituted para to the Ir–CC∧N bond, are efficient phosphorescent emitters, with high photoluminescence quantum yields (ΦPL = 58–79% in degassed MeCN solution) and microsecond emission lifetimes (τε = 1.35–3.02 μs). Theoretical and experimental observations point toward excited states that are principally ligand centered (3LC) in nature, but with a minor metal-to-ligand charge-transfer (3MLCT) transition component, as a function of the regiochemistry of the pentafluorosulfanyl group. The 3LC character is predominant over the mixed 3CT character for complexes 1, 2, and 4, while in complex 3, there is exclusive 3LC character as demonstrated by unrestricted density functional theory (DFT) calculations. The short emission lifetimes and reasonable ΦPL values in doped thin film (5 wt % in PMMA), particularly for 4, suggest that these neutral complexes would be attractive candidate emitters in organic light-emitting diodes. PMID:28613074

  14. Nitric oxide production by visible light irradiation of aqueous solution of nitrosyl ruthenium complexes.

    PubMed

    Sauaia, Marília Gama; de Lima, Renata Galvão; Tedesco, Antonio Claudio; da Silva, Roberto Santana

    2005-12-26

    [Ru(II)L(NH(3))(4)(pz)Ru(II)(bpy)(2)(NO)](PF(6))(5) (L is NH(3), py, or 4-acpy) was prepared with good yields in a straightforward way by mixing an equimolar ratio of cis-[Ru(NO(2))(bpy)(2)(NO)](PF(6))(2), sodium azide (NaN(3)), and trans-[RuL(NH(3))(4)(pz)] (PF(6))(2) in acetone. These binuclear compounds display nu(NO) at ca. 1945 cm(-)(1), indicating that the nitrosyl group exhibits a sufficiently high degree of nitrosonium ion (NO(+)). The electronic spectrum of the [Ru(II)L(NH(3))(4)(pz)Ru(II)(bpy)(2)(NO)](5+) complex in aqueous solution displays the bands in the ultraviolet and visible regions typical of intraligand and metal-to-ligand charge transfers, respectively. Cyclic voltammograms of the binuclear complexes in acetonitrile give evidence of three one-electron redox processes consisting of one oxidation due to the Ru(2+/3+) redox couple and two reductions concerning the nitrosyl ligand. Flash photolysis of the [Ru(II)L(NH(3))(4)(pz)Ru(II)(bpy)(2)(NO)](5+) complex is capable of releasing nitric oxide (NO) upon irradiation at 355 and 532 nm. NO production was detected and quantified by an amperometric technique with a selective electrode (NOmeter). The irradiation at 532 nm leads to NO release as a consequence of a photoinduced electron transfer. All species exhibit similar photochemical behavior, a feature that makes their study extremely important for their future application in the upgrade of photodynamic therapy in living organisms.

  15. Mixed-valent dicobalt and iron-cobalt complexes with high-spin configurations and short metal-metal bonds.

    PubMed

    Zall, Christopher M; Clouston, Laura J; Young, Victor G; Ding, Keying; Kim, Hyun Jung; Zherebetskyy, Danylo; Chen, Yu-Sheng; Bill, Eckhard; Gagliardi, Laura; Lu, Connie C

    2013-08-19

    Cobalt-cobalt and iron-cobalt bonds are investigated in coordination complexes with formally mixed-valent [M2](3+) cores. The trigonal dicobalt tris(diphenylformamidinate) compound, Co2(DPhF)3, which was previously reported by Cotton, Murillo, and co-workers (Inorg. Chim. Acta 1996, 249, 9), is shown to have an energetically isolated, high-spin sextet ground-state by magnetic susceptibility and electron paramagnetic resonance (EPR) spectroscopy. A new tris(amidinato)amine ligand platform is introduced. By tethering three amidinate donors to an apical amine, this platform offers two distinct metal-binding sites. Using the phenyl-substituted variant (abbreviated as L(Ph)), the isolation of a dicobalt homobimetallic and an iron-cobalt heterobimetallic are demonstrated. The new [Co2](3+) and [FeCo](3+) cores have high-spin sextet and septet ground states, respectively. Their solid-state structures reveal short metal-metal bond distances of 2.29 Å for Co-Co and 2.18 Å for Fe-Co; the latter is the shortest distance for an iron-cobalt bond to date. To assign the positions of iron and cobalt atoms as well as to determine if Fe/Co mixing is occurring, X-ray anomalous scattering experiments were performed, spanning the Fe and Co absorption energies. These studies show only a minor amount of metal-site mixing in this complex, and that FeCoL(Ph) is more precisely described as (Fe0.94(1)Co0.06(1))(Co0.95(1)Fe0.05(1))L(Ph). The iron-cobalt heterobimetallic has been further characterized by Mössbauer spectroscopy. Its isomer shift of 0.65 mm/s and quadrupole splitting of 0.64 mm/s are comparable to the related diiron complex, Fe2(DPhF)3. On the basis of spectroscopic data and theoretical calculations, it is proposed that the formal [M2](3+) cores are fully delocalized.

  16. Mixed-Valent Dicobalt and Iron-Cobalt Complexes with High-Spin Configurations and Short Metal-Metal Bonds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zall, Christopher M.; Clouston, Laura J.; Young, Jr., Victor G.

    2013-09-23

    Cobalt–cobalt and iron–cobalt bonds are investigated in coordination complexes with formally mixed-valent [M 2] 3+ cores. The trigonal dicobalt tris(diphenylformamidinate) compound, Co 2(DPhF) 3, which was previously reported by Cotton, Murillo, and co-workers (Inorg. Chim. Acta 1996, 249, 9), is shown to have an energetically isolated, high-spin sextet ground-state by magnetic susceptibility and electron paramagnetic resonance (EPR) spectroscopy. A new tris(amidinato)amine ligand platform is introduced. By tethering three amidinate donors to an apical amine, this platform offers two distinct metal-binding sites. Using the phenyl-substituted variant (abbreviated as L Ph), the isolation of a dicobalt homobimetallic and an iron–cobalt heterobimetallic aremore » demonstrated. The new [Co 2] 3+ and [FeCo] 3+ cores have high-spin sextet and septet ground states, respectively. Their solid-state structures reveal short metal–metal bond distances of 2.29 Å for Co–Co and 2.18 Å for Fe–Co; the latter is the shortest distance for an iron–cobalt bond to date. To assign the positions of iron and cobalt atoms as well as to determine if Fe/Co mixing is occurring, X-ray anomalous scattering experiments were performed, spanning the Fe and Co absorption energies. These studies show only a minor amount of metal-site mixing in this complex, and that FeCoL Ph is more precisely described as (Fe 0.94(1)Co 0.06(1))(Co 0.95(1)Fe 0.05(1))L Ph. The iron–cobalt heterobimetallic has been further characterized by Mössbauer spectroscopy. Its isomer shift of 0.65 mm/s and quadrupole splitting of 0.64 mm/s are comparable to the related diiron complex, Fe 2(DPhF) 3. On the basis of spectroscopic data and theoretical calculations, it is proposed that the formal [M 2] 3+ cores are fully delocalized.« less

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gibson, John K.; de Jong, Wibe A.; van Stipdonk, Michael J.

    In uranyl coordination complexes, UO 2(L) n 2+, uranium in the formally dipositive [O=U=O] 2+ moiety is coordinated by n neutral organic electron donor ligands, L. The extent of ligand electron donation, which results in partial reduction of uranyl and weakening of the U=O bonds, is revealed by the magnitude of the red-shift of the uranyl asymmetric stretch frequency, ν 3 . This phenomenon appears in gas-phase complexes in which uranyl is coordinated by electron donor ligands: the ν 3 red-shift increases as the number of ligands and their proton affinity (PA) increases. Because PA is a measure of themore » enthalpy change associated with a proton-ligand interaction, which is much stronger and of a different nature than metal ion-ligand bonding, it is not necessarily expected that ligand PAs should reliably predict uranyl-ligand bonding and the resulting ν 3 red-shift. In this study, ν 3 was measured for uranyl coordinated by ligands with a relatively broad range of PAs, revealing a surprisingly good correlation between PA and ν 3 frequency. From computed ν 3 frequencies for bare UO 2 cations and neutrals, it is inferred that the effective charge of uranyl in UO 2(L) n 2+ complexes can be reduced to near zero upon ligation by sufficiently strong charge-donor ligands. The basis for the correlation between ν 3 and ligand PAs, as well as limitations and deviations from it, are considered. It is demonstrated that the correlation evidently extends to a ligand that exhibits polydentate metal ion coordination.« less

  18. Pharmacokinetic Steady-States Highlight Interesting Target-Mediated Disposition Properties.

    PubMed

    Gabrielsson, Johan; Peletier, Lambertus A

    2017-05-01

    In this paper, we derive explicit expressions for the concentrations of ligand L, target R and ligand-target complex RL at steady state for the classical model describing target-mediated drug disposition, in the presence of a constant-rate infusion of ligand. We demonstrate that graphing the steady-state values of ligand, target and ligand-target complex, we obtain striking and often singular patterns, which yield a great deal of insight and understanding about the underlying processes. Deriving explicit expressions for the dependence of L, R and RL on the infusion rate, and displaying graphs of the relations between L, R and RL, we give qualitative and quantitive information for the experimentalist about the processes involved. Understanding target turnover is pivotal for optimising these processes when target-mediated drug disposition (TMDD) prevails. By a combination of mathematical analysis and simulations, we also show that the evolution of the three concentration profiles towards their respective steady-states can be quite complex, especially for lower infusion rates. We also show how parameter estimates obtained from iv bolus studies can be used to derive steady-state concentrations of ligand, target and complex. The latter may serve as a template for future experimental designs.

  19. Synthesis and characterization of glucosyl-curcuminoids as Fe3+ suppliers in the treatment of iron deficiency.

    PubMed

    Ferrari, Erika; Arezzini, Beatrice; Ferrali, Marco; Lazzari, Sandra; Pignedoli, Francesca; Spagnolo, Ferdinando; Saladini, Monica

    2009-10-01

    The Fe(3+) chelating ability of some curcumin glucosyl derivatives (Glc-H; Glc-OH; Glc-OCH(3)) is tested by means of UV and NMR study. The pK(a) values of the ligands and the overall stability constants of Fe(3+) and Ga(3+) complexes are evaluated from UV spectra. The only metal binding site of the ligand is the beta-diketo moiety in the keto-enolic form; the glucosyl moiety does not interact with metal ion but it contributes to the stability of metal/ligand 1:2 complexes by means of hydrophilic interactions. These glucosyl derivatives are able to bind Fe(3+) in a wide pH rage, forming complex species thermodynamically more stable than those of other ligands commonly used in the treatment of iron deficiency. In addition they demonstrate to have a poor affinity for competitive biological metal ions such as Ca(2+). All ligands and their iron complexes have a good lypophilicity (log P > -0.7) suggesting an efficient gastrointestinal absorption in view of their possible use as iron supplements in oral therapy. The ligand molecules are also tested for their antioxidant properties in "ex vivo" biological system.

  20. The Effect of Complex Formation upon the Redox Potentials of Metallic Ions. Cyclic Voltammetry Experiments.

    ERIC Educational Resources Information Center

    Ibanez, Jorge G.; And Others

    1988-01-01

    Describes experiments in which students prepare in situ soluble complexes of metal ions with different ligands and observe and estimate the change in formal potential that the ion undergoes upon complexation. Discusses student formation and analysis of soluble complexes of two different metal ions with the same ligand. (CW)

Top