Sample records for mixed mode loading

  1. Fractographic study of epoxy fractured under mode I loading and mixed mode I/III loading

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ren, Fei; Wang, Jy-An John; Bertelsen, Williams D.

    2011-01-01

    Fiber reinforced polymeric composite materials are widely used in structural components such as wind turbine blades, which are typically subject to complicated loading conditions. Thus, material response under mixed mode loading is of great significance to the reliability of these structures. Epoxy is a thermosetting polymer that is currently used in manufacturing wind turbine blades. The fracture behavior of epoxy is relevant to the mechanical integrity of the wind turbine composite materials. In this study, a novel fracture testing methodology, the spiral notch torsion test (SNTT), was applied to study the fracture behavior of an epoxy material. SNTT samples weremore » tested using either monotonic loading or cyclic loading, while both mode I and mixed mode I/III loading conditions were used. Fractographic examination indicated the epoxy samples included in this study were prone to mode I failure even when the samples were subject to mixed mode loading. Different fatigue precracks were observed on mode I and mixed mode samples, i.e. precracks appeared as a uniform band under mode I loading, and a semi-ellipse under mixed mode loading. Fracture toughness was also estimated using quantitative fractography.« less

  2. Effect of Compressive Mode I on the Mixed Mode I/II Fatigue Crack Growth Rate of 42CrMo4

    NASA Astrophysics Data System (ADS)

    Heirani, Hasan; Farhangdoost, Khalil

    2018-01-01

    Subsurface cracks in mechanical contact loading components are subjected to mixed mode I/II, so it is necessary to evaluate the fatigue behavior of materials under mixed mode loading. For this purpose, fatigue crack propagation tests are performed with compact tension shear specimens for several stress intensity factor (SIF) ratios of mode I and mode II. The effect of compressive mode I loading on mixed mode I/II crack growth rate and fracture surface is investigated. Tests are carried out for the pure mode I, pure mode II, and two different mixed mode loading angles. On the basis of the experimental results, mixed mode crack growth rate parameters are proposed according to Tanaka and Richard with Paris' law. Results show neither Richard's nor Tanaka's equivalent SIFs are very useful because these SIFs depend strongly on the loading angle, but Richard's equivalent SIF formula is more suitable than Tanaka's formula. The compressive mode I causes the crack closure, and the friction force between the crack surfaces resists against the crack growth. In compressive loading with 45° angle, d a/d N increases as K eq decreases.

  3. Characterization of mode 1 and mixed-mode failure of adhesive bonds between composite adherends

    NASA Technical Reports Server (NTRS)

    Mall, S.; Johnson, W. S.

    1985-01-01

    A combined experimental and analytical investigation of an adhesively bonded composite joint was conducted to characterize both the static and fatigue beyond growth mechanism under mode 1 and mixed-mode 1 and 2 loadings. Two bonded systems were studied: graphite/epoxy adherends bonded with EC 3445 and FM-300 adhesives. For each bonded system, two specimen types were tested: a double-cantilever-beam specimen for mode 1 loading and a cracked-lapshear specimen for mixed-mode 1 and 2 loading. In all specimens tested, failure occurred in the form of debond growth. Debonding always occurred in a cohesive manner with EC 3445 adhesive. The FM-300 adhesive debonded in a cohesive manner under mixed-mode 1 and 2 loading, but in a cohesive, adhesive, or combined cohesive and adhesive manner under mode 1 loading. Total strain-energy release rate appeared to be the driving parameter for debond growth under static and fatigue loadings.

  4. Assessment of Crack Path Prediction in Non-Proportional Mixed-Mode Fatigue

    NASA Technical Reports Server (NTRS)

    Highsmith, Shelby, Jr.; Johnson, Steve; Swanson, Gregory; Sayyah, Tarek; Pettit, Richard

    2008-01-01

    Non-proportional mixed-mode loading is present in many systems and a growing crack can experience any manner of mixed-mode loading. Prediction of the resulting crack path is important when assessing potential failure modes or when performing a failure investigation. Current crack path selection criteria are presented along with data for Inconel 718 under non-proportional mixed-mode loading. Mixed-mode crack growth can transition between path deflection mechanisms with very different orientations. Non-proportional fatigue loadings lack a single parameter for input to current crack path criteria. Crack growth transitions were observed in proportional and non-proportional FCG tests. Different paths displayed distinct fracture surface morphologies. New crack path drivers & transition criteria must be developed.

  5. Influence of Mixed Mode I-Mode II Loading on Fatigue Delamination Growth Characteristics of a Graphite Epoxy Tape Laminate

    NASA Technical Reports Server (NTRS)

    Ratcliffe, James G.; Johnston, William M., Jr.

    2014-01-01

    Mixed mode I-mode II interlaminar tests were conducted on IM7/8552 tape laminates using the mixed-mode bending test. Three mixed mode ratios, G(sub II)/G(sub T) = 0.2, 0.5, and 0.8, were considered. Tests were performed at all three mixed-mode ratios under quasi-static and cyclic loading conditions, where the former static tests were used to determine initial loading levels for the latter fatigue tests. Fatigue tests at each mixed-mode ratio were performed at four loading levels, Gmax, equal to 0.5G(sub c), 0.4G(sub c), 0.3G(sub c), and 0.2G(sub c), where G(sub c) is the interlaminar fracture toughness of the corresponding mixed-mode ratio at which a test was performed. All fatigue tests were performed using constant-amplitude load control and delamination growth was automatically documented using compliance solutions obtained from the corresponding quasi-static tests. Static fracture toughness data yielded a mixed-mode delamination criterion that exhibited monotonic increase in Gc with mixed-mode ratio, G(sub II)/G(sub T). Fatigue delamination onset parameters varied monotonically with G(sub II)/G(sub T), which was expected based on the fracture toughness data. Analysis of non-normalized data yielded a monotonic change in Paris law exponent with mode ratio. This was not the case when normalized data were analyzed. Fatigue data normalized by the static R-curve were most affected in specimens tested at G(sub II)/G(sub T)=0.2 (this process has little influence on the other data). In this case, the normalized data yielded a higher delamination growth rate compared to the raw data for a given loading level. Overall, fiber bridging appeared to be the dominant mechanism, affecting delamination growth rates in specimens tested at different load levels and differing mixed-mode ratios.

  6. Mixed-Mode Bending Method for Delamination Testing

    NASA Technical Reports Server (NTRS)

    Reeder, James R.; Crews, John R., Jr.

    1990-01-01

    A mixed mode delamination test procedure was developed combining double cantilever beam (DCB) mode I loading and end-notch fixture (ENF) mode II loading on a split unidirectional laminate. By loading with a lever, a single applied load simultaneously produces mode I and mode II bending loads on the specimen. This mixed-mode bending (MMB) test was analyzed using both finite-element procedures and beam theory to calculate the mode I and mode II components of strain-energy release rate G(sub I) and G(sub II), respectively. A wide range of G(sub I)/G(sub II) ratios can be produced by varying the load position on the lever. As the delamination extended, the G(sub I)/G(sub II) ratios varied by less than 5%. Beam theory equations agreed closely with the finite-element results and provide a basis for selection of G(sub I)/G(sub II) test ratios and a basis for computing the mode I and mode II components of measured delamination toughness. The MMB test was demonstrated using AS4/PEEK (APC2) unidirectional laminates. The MMB test introduced in this paper is rather simple and is believed to offer several advantages over most current mixed-mode test.

  7. The mixed-mode bending method for delamination testing

    NASA Technical Reports Server (NTRS)

    Reeder, James R.; Crews, John H., Jr.

    1989-01-01

    A mixed-mode bending (MMB) test procedure is presented which combines double cantilever beam mode-I loading and end-notch flexure mode II loading on a split, unidirectional laminate. The MMB test has been analyzed by FEM and by beam theory in order to ascertain the mode I and mode II components' respective strain energy release rates, G(I) and G(II); these analyses indicate that a wide range of G(I)/G(II) ratios can be generated by varying the applied load's position on the loading lever. The MMB specimen analysis and test procedures are demonstrated for the case of AS4/PEEK unidirectional laminates.

  8. Determination of stress intensity factors for interface cracks under mixed-mode loading

    NASA Technical Reports Server (NTRS)

    Naik, Rajiv A.; Crews, John H., Jr.

    1992-01-01

    A simple technique was developed using conventional finite element analysis to determine stress intensity factors, K1 and K2, for interface cracks under mixed-mode loading. This technique involves the calculation of crack tip stresses using non-singular finite elements. These stresses are then combined and used in a linear regression procedure to calculate K1 and K2. The technique was demonstrated by calculating three different bimaterial combinations. For the normal loading case, the K's were within 2.6 percent of an exact solution. The normalized K's under shear loading were shown to be related to the normalized K's under normal loading. Based on these relations, a simple equation was derived for calculating K1 and K2 for mixed-mode loading from knowledge of the K's under normal loading. The equation was verified by computing the K's for a mixed-mode case with equal and normal shear loading. The correlation between exact and finite element solutions is within 3.7 percent. This study provides a simple procedure to compute K2/K1 ratio which has been used to characterize the stress state at the crack tip for various combinations of materials and loadings. Tests conducted over a range of K2/K1 ratios could be used to fully characterize interface fracture toughness.

  9. Rock Fracture Toughness Study Under Mixed Mode I/III Loading

    NASA Astrophysics Data System (ADS)

    Aliha, M. R. M.; Bahmani, A.

    2017-07-01

    Fracture growth in underground rock structures occurs under complex stress states, which typically include the in- and out-of-plane sliding deformation of jointed rock masses before catastrophic failure. However, the lack of a comprehensive theoretical and experimental fracture toughness study for rocks under contributions of out-of plane deformations (i.e. mode III) is one of the shortcomings of this field. Therefore, in this research the mixed mode I/III fracture toughness of a typical rock material is investigated experimentally by means of a novel cracked disc specimen subjected to bend loading. It was shown that the specimen can provide full combinations of modes I and III and consequently a complete set of mixed mode I/III fracture toughness data were determined for the tested marble rock. By moving from pure mode I towards pure mode III, fracture load was increased; however, the corresponding fracture toughness value became smaller. The obtained experimental fracture toughness results were finally predicted using theoretical and empirical fracture models.

  10. Energy absorption behavior of polyurea coatings under laser-induced dynamic tensile and mixed-mode loading

    NASA Astrophysics Data System (ADS)

    Jajam, Kailash; Lee, Jaejun; Sottos, Nancy

    2015-06-01

    Energy absorbing, lightweight, thin transparent layers/coatings are desirable in many civilian and military applications such as hurricane resistant windows, personnel face-shields, helmet liners, aircraft canopies, laser shields, blast-tolerant sandwich structures, sound and vibration damping materials to name a few. Polyurea, a class of segmented block copolymer, has attracted recent attention for its energy absorbing properties. However, most of the dynamic property characterization of polyurea is limited to tensile and split-Hopkinson-pressure-bar compression loading experiments with strain rates on the order of 102 and 104 s-1, respectively. In the present work, we report the energy absorption behavior of polyurea thin films (1 to 2 μm) subjected to laser-induced dynamic tensile and mixed-mode loading. The laser-generated high amplitude stress wave propagates through the film in short time frames (15 to 20 ns) leading to very high strain rates (107 to 108 s-1) . The substrate stress, surface velocity and fluence histories are inferred from the displacement fringe data. On comparing input and output fluences, test results indicate significant energy absorption by the polyurea films under both tensile and mixed-mode loading conditions. Microscopic examination reveals distinct changes in failure mechanisms under mixed-mode loading from that observed under pure tensile loading. Office of Naval Research MURI.

  11. Mathematical modeling of the crack growth in linear elastic isotropic materials by conventional fracture mechanics approaches and by molecular dynamics method: crack propagation direction angle under mixed mode loading

    NASA Astrophysics Data System (ADS)

    Stepanova, Larisa; Bronnikov, Sergej

    2018-03-01

    The crack growth directional angles in the isotropic linear elastic plane with the central crack under mixed-mode loading conditions for the full range of the mixity parameter are found. Two fracture criteria of traditional linear fracture mechanics (maximum tangential stress and minimum strain energy density criteria) are used. Atomistic simulations of the central crack growth process in an infinite plane medium under mixed-mode loading using Large-scale Molecular Massively Parallel Simulator (LAMMPS), a classical molecular dynamics code, are performed. The inter-atomic potential used in this investigation is Embedded Atom Method (EAM) potential. The plane specimens with initial central crack were subjected to Mixed-Mode loadings. The simulation cell contains 400000 atoms. The crack propagation direction angles under different values of the mixity parameter in a wide range of values from pure tensile loading to pure shear loading in a wide diapason of temperatures (from 0.1 К to 800 К) are obtained and analyzed. It is shown that the crack propagation direction angles obtained by molecular dynamics method coincide with the crack propagation direction angles given by the multi-parameter fracture criteria based on the strain energy density and the multi-parameter description of the crack-tip fields.

  12. Stress intensities for cracks emanating from pin-loaded holes

    NASA Technical Reports Server (NTRS)

    Smith, C. W.; Jolles, M.; Peters, W. H.

    1977-01-01

    A series of stress freezing photoelastic experiments were conducted on large plates containing central holes with cracks emanating from the edge formed by the intersection of the hole with the plate surface. Loads were applied through rigid pins with neat fits in the holes. Stress-intensity factors (SIF) were estimated by a computer assisted least squares analysis of the photoelastic data taken from slices near the points of intersection of the flaw border with the hole boundary and the plate surface. Results indicate that the local mode of loading changes from Mode 1 near the hole boundary to mixed mode near the plate surface. The analysis is extended to include mixed mode loading, and results are compared with an existing approximate theory.

  13. Guidelines and Parameter Selection for the Simulation of Progressive Delamination

    NASA Technical Reports Server (NTRS)

    Song, Kyongchan; Davila, Carlos G.; Rose, Cheryl A.

    2008-01-01

    Turon s methodology for determining optimal analysis parameters for the simulation of progressive delamination is reviewed. Recommended procedures for determining analysis parameters for efficient delamination growth predictions using the Abaqus/Standard cohesive element and relatively coarse meshes are provided for single and mixed-mode loading. The Abaqus cohesive element, COH3D8, and a user-defined cohesive element are used to develop finite element models of the double cantilever beam specimen, the end-notched flexure specimen, and the mixed-mode bending specimen to simulate progressive delamination growth in Mode I, Mode II, and mixed-mode fracture, respectively. The predicted responses are compared with their analytical solutions. The results show that for single-mode fracture, the predicted responses obtained with the Abaqus cohesive element correlate well with the analytical solutions. For mixed-mode fracture, it was found that the response predicted using COH3D8 elements depends on the damage evolution criterion that is used. The energy-based criterion overpredicts the peak loads and load-deflection response. The results predicted using a tabulated form of the BK criterion correlate well with the analytical solution and with the results predicted with the user-written element.

  14. Instability-related delamination growth in thermoset and thermoplastic composites

    NASA Technical Reports Server (NTRS)

    Gillespie, John W., Jr.; Carlsson, Leif A.; Rothschilds, Robert J.

    1988-01-01

    Mixed-mode crack propagation in compressively loaded thermoset and thermoplastic composite columns with an imbedded through-width delamination is investigated. Beam theory is used to analyze the geometrically nonlinear load-deformation relationship of the delaminated subregion. The elastic restraint model (ERM), combined with existing FSM modeling of the crack-tip region, yields expressions for the Mode I and Mode II components of the strain energy release rate G(I) and G(II) to predict the critical load at the onset of delamination growth. Experimental data were generated for geometries yielding a wide range of G(I)/G(II) ratios at the onset of crack growth. A linear mixed-mode crack growth criterion in conjunctuion with the ERM provides good agreement between predicted and measured critical loads for both materials studied.

  15. Decohesion Elements using Two and Three-Parameter Mixed-Mode Criteria

    NASA Technical Reports Server (NTRS)

    Davila, Carlos G.; Camanho, Pedro P.

    2001-01-01

    An eight-node decohesion element implementing different criteria to predict delamination growth under mixed-mode loading is proposed. The element is used at the interface between solid finite elements to model the initiation and propagation of delamination. A single displacement-based damage parameter is used in a softening law to track the damage state of the interface. The power law criterion and a three-parameter mixed-mode criterion are used to predict delamination growth. The accuracy of the predictions is evaluated in single mode delamination and in the mixed-mode bending tests.

  16. A surface crack in shells under mixed-mode loading conditions

    NASA Technical Reports Server (NTRS)

    Joseph, P. F.; Erdogan, F.

    1988-01-01

    The present consideration of a shallow shell's surface crack under general loading conditions notes that while the mode I state can be separated, modes II and III remain coupled. A line spring model is developed to formulate the part-through crack problem under mixed-mode conditions, and then to consider a shallow shell of arbitrary curvature having a part-through crack located on the outer or the inner surface of the shell; Reissner's transverse shear theory is used to formulate the problem under the assumption that the shell is subjected to all five moment and stress resultants.

  17. 3-D Mixed Mode Delamination Fracture Criteria - An Experimentalist's Perspective

    NASA Technical Reports Server (NTRS)

    Reeder, James R.

    2006-01-01

    Many delamination failure criteria based on fracture toughness have been suggested over the past few decades, but most only covered the region containing mode I and mode II components of loading because that is where toughness data existed. With new analysis tools, more 3D analyses are being conducted that capture a mode III component of loading. This has increased the need for a fracture criterion that incorporates mode III loading. The introduction of a pure mode III fracture toughness test has also produced data on which to base a full 3D fracture criterion. In this paper, a new framework for visualizing 3D fracture criteria is introduced. The common 2D power law fracture criterion was evaluated to produce unexpected predictions with the introduction of mode III and did not perform well in the critical high mode I region. Another 2D criterion that has been shown to model a wide range of materials well was used as the basis for a new 3D criterion. The new criterion is based on assumptions that the relationship between mode I and mode III toughness is similar to the relation between mode I and mode II and that a linear interpolation can be used between mode II and mode III. Until mixed-mode data exists with a mode III component of loading, 3D fracture criteria cannot be properly evaluated, but these assumptions seem reasonable.

  18. Microstructural effects on fracture toughness of polycrystalline ceramics in combined mode I and mode II loading

    NASA Technical Reports Server (NTRS)

    Singh, D.; Shetty, D. K.

    1988-01-01

    Fracture toughness of polycrystalline alumina and ceria partially-stabilized tetragonal zirconia (CeO2-TZP) ceramics were assessed in combined mode I and mode II loading using precracked disk specimens in diametral compression. Stress states ranging from pure mode I, combined mode I and mode II, and pure mode II were obtained by aligning the center crack at specific angles relative to the loading diameter. The resulting mixed-mode fracture toughness envelope showed significant deviation to higher fracture toughness in mode II relative to the predictions of the linear elastic fracture mechanics theory. Critical comparison with corresponding results on soda-lime glass and fracture surface observations showed that crack surface resistance arising from grain interlocking and abrasion was the main source of the increased fracture toughness in mode II loading of the polycrystalline ceramics. The normalized fracture toughness for pure mode II loading, (KII/KIc), increased with increasing grain size for the CeO2-TZP ceramics. Quantitative fractography confirmed an increased percentage of transgranular fracture of the grains in mode II loading.

  19. A comparison of pure mode I and mixed mode I-III cracking of an adhesive containing an open knit cloth carrier

    NASA Technical Reports Server (NTRS)

    Ripling, E. J.; Crosley, P. B.; Johnson, W. S.

    1988-01-01

    Static and fatigue tests were carried out on two commercial modified epoxy film adhesives with a wide open knit polyester carrier in order to compare crack resistance in mode I and mixed mode I-III loading. The carrier cloth is found to have a significant influence on the cracking behavior of the adhesives. The open air net carrier used in this study separates from the adhesive in mode I cracking but shreds during mixed-mode crack extension. This decreases the opening mode toughness but increases the mixed-mode toughness as compared with results obtained earlier using a heavier knit carrier. The results suggest that the type of carrier may have a far larger influence on crack resistance than is generally recognized.

  20. Modeling of crack growth under mixed-mode loading by a molecular dynamics method and a linear fracture mechanics approach

    NASA Astrophysics Data System (ADS)

    Stepanova, L. V.

    2017-12-01

    Atomistic simulations of the central crack growth process in an infinite plane medium under mixed-mode loading using Large-Scale Atomic/Molecular Massively Parallel Simulator (LAMMPS), a classical molecular dynamics code, are performed. The inter-atomic potential used in this investigation is the Embedded Atom Method (EAM) potential. Plane specimens with an initial central crack are subjected to mixed-mode loadings. The simulation cell contains 400,000 atoms. The crack propagation direction angles under different values of the mixity parameter in a wide range of values from pure tensile loading to pure shear loading in a wide range of temperatures (from 0.1 K to 800 K) are obtained and analyzed. It is shown that the crack propagation direction angles obtained by molecular dynamics coincide with the crack propagation direction angles given by the multi-parameter fracture criteria based on the strain energy density and the multi-parameter description of the crack-tip fields. The multi-parameter fracture criteria are based on the multi-parameter stress field description taking into account the higher order terms of the Williams series expansion of the crack tip fields.

  1. Development and Application of Benchmark Examples for Mixed-Mode I/II Quasi-Static Delamination Propagation Predictions

    NASA Technical Reports Server (NTRS)

    Krueger, Ronald

    2012-01-01

    The development of benchmark examples for quasi-static delamination propagation prediction is presented. The example is based on a finite element model of the Mixed-Mode Bending (MMB) specimen for 50% mode II. The benchmarking is demonstrated for Abaqus/Standard, however, the example is independent of the analysis software used and allows the assessment of the automated delamination propagation prediction capability in commercial finite element codes based on the virtual crack closure technique (VCCT). First, a quasi-static benchmark example was created for the specimen. Second, starting from an initially straight front, the delamination was allowed to propagate under quasi-static loading. Third, the load-displacement as well as delamination length versus applied load/displacement relationships from a propagation analysis and the benchmark results were compared, and good agreement could be achieved by selecting the appropriate input parameters. The benchmarking procedure proved valuable by highlighting the issues associated with choosing the input parameters of the particular implementation. Overall, the results are encouraging, but further assessment for mixed-mode delamination fatigue onset and growth is required.

  2. Panel Stiffener Debonding Analysis using a Shell/3D Modeling Technique

    NASA Technical Reports Server (NTRS)

    Krueger, Ronald; Ratcliffe, James G.; Minguet, Pierre J.

    2008-01-01

    A shear loaded, stringer reinforced composite panel is analyzed to evaluate the fidelity of computational fracture mechanics analyses of complex structures. Shear loading causes the panel to buckle. The resulting out -of-plane deformations initiate skin/stringer separation at the location of an embedded defect. The panel and surrounding load fixture were modeled with shell elements. A small section of the stringer foot, web and noodle as well as the panel skin near the delamination front were modeled with a local 3D solid model. Across the width of the stringer fo to, the mixed-mode strain energy release rates were calculated using the virtual crack closure technique. A failure index was calculated by correlating the results with a mixed-mode failure criterion of the graphite/epoxy material. The objective was to study the effect of the fidelity of the local 3D finite element model on the computed mixed-mode strain energy release rates and the failure index.

  3. Panel-Stiffener Debonding and Analysis Using a Shell/3D Modeling Technique

    NASA Technical Reports Server (NTRS)

    Krueger, Ronald; Ratcliffe, James G.; Minguet, Pierre J.

    2007-01-01

    A shear loaded, stringer reinforced composite panel is analyzed to evaluate the fidelity of computational fracture mechanics analyses of complex structures. Shear loading causes the panel to buckle. The resulting out-of-plane deformations initiate skin/stringer separation at the location of an embedded defect. The panel and surrounding load fixture were modeled with shell elements. A small section of the stringer foot, web and noodle as well as the panel skin near the delamination front were modeled with a local 3D solid model. Across the width of the stringer foot, the mixed-mode strain energy release rates were calculated using the virtual crack closure technique. A failure index was calculated by correlating the results with a mixed-mode failure criterion of the graphite/epoxy material. The objective was to study the effect of the fidelity of the local 3D finite element model on the computed mixed-mode strain energy release rates and the failure index.

  4. Fracture toughness of the IEA heat of F82H ferritic/martensitic stainless steel as a function of loading mode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Huaxin; Gelles, D.S.; Hirth, J.P.

    1997-04-01

    Mode I and mixed-mode I/III fracture toughness tests were performed for the IEA heat of the reduced activation ferritic/martensitic stainless steel F82H at ambient temperature in order to provide comparison with previous measurements on a small heat given a different heat treatment. The results showed that heat to heat variations and heat treatment had negligible consequences on Mode I fracture toughness, but behavior during mixed-mode testing showed unexpected instabilities.

  5. A path-dependent fatigue crack propagation model under non-proportional modes I and III loading conditions

    DOE PAGES

    Mei, J.; Dong, P.; Kalnaus, S.; ...

    2017-07-21

    It has been well established that fatigue damage process is load-path dependent under non-proportional multi-axial loading conditions. Most of studies to date have been focusing on interpretation of S-N based test data by constructing a path-dependent fatigue damage model. Our paper presents a two-parameter mixed-mode fatigue crack growth model which takes into account of crack growth dependency on both load path traversed and a maximum effective stress intensity attained in a stress intensity factor plane (e.g.,KI-KIII plane). Furthermore, by taking advantage of a path-dependent maximum range (PDMR) cycle definition (Dong et al., 2010; Wei and Dong, 2010), the two parametersmore » are formulated by introducing a moment of load path (MLP) based equivalent stress intensity factor range (ΔKNP) and a maximum effective stress intensity parameter KMax incorporating an interaction term KI·KIII. To examine the effectiveness of the proposed model, two sets of crack growth rate test data are considered. The first set is obtained as a part of this study using 304 stainless steel disk specimens subjected to three combined non-proportional modes I and III loading conditions (i.e., with a phase angle of 0°, 90°, and 180°). The second set was obtained by Feng et al. (2007) using 1070 steel disk specimens subjected to similar types of non-proportional mixed-mode conditions. Once the proposed two-parameter non-proportional mixed-mode crack growth model is used, it is shown that a good correlation can be achieved for both sets of the crack growth rate test data.« less

  6. A path-dependent fatigue crack propagation model under non-proportional modes I and III loading conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mei, J.; Dong, P.; Kalnaus, S.

    It has been well established that fatigue damage process is load-path dependent under non-proportional multi-axial loading conditions. Most of studies to date have been focusing on interpretation of S-N based test data by constructing a path-dependent fatigue damage model. Our paper presents a two-parameter mixed-mode fatigue crack growth model which takes into account of crack growth dependency on both load path traversed and a maximum effective stress intensity attained in a stress intensity factor plane (e.g.,KI-KIII plane). Furthermore, by taking advantage of a path-dependent maximum range (PDMR) cycle definition (Dong et al., 2010; Wei and Dong, 2010), the two parametersmore » are formulated by introducing a moment of load path (MLP) based equivalent stress intensity factor range (ΔKNP) and a maximum effective stress intensity parameter KMax incorporating an interaction term KI·KIII. To examine the effectiveness of the proposed model, two sets of crack growth rate test data are considered. The first set is obtained as a part of this study using 304 stainless steel disk specimens subjected to three combined non-proportional modes I and III loading conditions (i.e., with a phase angle of 0°, 90°, and 180°). The second set was obtained by Feng et al. (2007) using 1070 steel disk specimens subjected to similar types of non-proportional mixed-mode conditions. Once the proposed two-parameter non-proportional mixed-mode crack growth model is used, it is shown that a good correlation can be achieved for both sets of the crack growth rate test data.« less

  7. Mixed Mode Fracture of Plasma Sprayed Thermal Barrier Coatings: Effects of Anisotropy and Heterogeneity

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Choi, Sung R.; Ghosn, Louis L.

    2008-01-01

    The combined mode I-mode II fracture behavior of anisotropic ZrO2-8wt%Y2O3 thermal barrier coatings was determined in asymmetric flexure loading at both ambient and elevated temperatures. A fracture envelope of KI versus KII was determined for the coating material at ambient and elevated temperatures. Propagation angles of fracture as a function of KI/KII were also determined. The mixed-mode fracture behavior of the microsplat coating material was modeled using Finite Element approach to account for anisotropy and micro cracked structures, and predicted in terms of fracture envelope and propagation angle using mixed-mode fracture theories.

  8. Mixed-mode cyclic debonding of adhesively bonded composite joints. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Rezaizadeh, M. A.; Mall, S.

    1985-01-01

    A combined experimental-analytical investigation to characterize the cyclic failure mechanism of a simple composite-to-composite bonded joint is conducted. The cracked lap shear (CLS) specimens of graphite/epoxy adherend bonded with EC-3445 adhesive are tested under combined mode 1 and 2 loading. In all specimens tested, fatigue failure occurs in the form of cyclic debonding. The cyclic debond growth rates are measured. The finite element analysis is employed to compute the mode 1, mode 2, and total strain energy release rates (i.e., GI, GII, and GT). A wide range of mixed-mode loading, i.e., GI/GII ranging from 0.03 to 0.38, is obtained. The total strain energy release rate, G sub T, appeared to be the driving parameter for cyclic debonding in the tested composite bonded system.

  9. Subcritical crack growth in soda-lime glass in combined mode I and mode II loading

    NASA Technical Reports Server (NTRS)

    Singh, Dileep; Shetty, Dinesh K.

    1990-01-01

    Subcritical crack growth under mixed-mode loading was studied in soda-lime glass. Pure mode I, combined mode I and mode II, and pure mode II loadings were achieved in precracked disk specimens by loading in diametral compression at selected angles with respect to the symmetric radial crack. Crack growth was monitored by measuring the resistance changes in a microcircuit grid consisting of parallel, electrically conducting grid lines deposited on the surface of the disk specimens by photolithography. Subcritical crack growth rates in pure mode I, pure mode II, and combined mode I and mode II loading could be described by an exponential relationship between crack growth rate and an effective crack driving force derived from a mode I-mode II fracture toughness envelope. The effective crack driving force was based on an empirical representation of the noncoplanar strain energy release rate. Stress intensities for kinked cracks were assessed using the method of caustics and an initial decrease and a subsequent increase in the subcritical crack growth rates of kinked cracks were shown to correlate with the variations of the mode I and the mode II stress intensities.

  10. Mixed-Mode Decohesion Finite Elements for the Simulation of Delamination in Composite Materials

    NASA Technical Reports Server (NTRS)

    Camanho, Pedro P.; Davila, Carlos G.

    2002-01-01

    A new decohesion element with mixed-mode capability is proposed and demonstrated. The element is used at the interface between solid finite elements to model the initiation and non-self-similar growth of delaminations. A single relative displacement-based damage parameter is applied in a softening law to track the damage state of the interface and to prevent the restoration of the cohesive state during unloading. The softening law for mixed-mode delamination propagation can be applied to any mode interaction criterion such as the two-parameter power law or the three-parameter Benzeggagh-Kenane criterion. To demonstrate the accuracy of the predictions and the irreversibility capability of the constitutive law, steady-state delamination growth is simulated for quasistatic loading-unloading cycles of various single mode and mixed-mode delamination test specimens.

  11. Combined Mode I and Mode II Fracture of Plasma-Sprayed Thermal Barrier Coatings at Ambient and Elevated Temperatures

    NASA Technical Reports Server (NTRS)

    Choi, Sung R.; Zhu, Dongming; Miller, Robert A.

    2003-01-01

    The mode I, mode II, and combined mode I-mode II fracture behavior of ZrO2 - 8wt%Y2O3 thermal barrier coatings was determined in asymmetric flexure loading at both ambient and elevated temperatures. Precracks were introduced in test specimens using the single-edge-v-notched beam (SEVNB) method incorporated with final diamond polishing to achieve sharp crack tips. A fracture envelope of KI versus KII was determined for the coating material at ambient and elevated temperatures. Propagation angles of fracture as a function of KI/KII were also determined. The mixed-mode fracture behaviors of the coating material were compared with those of monolithic advanced ceramics determined previously. The mixed-mode fracture behavior of the plasma- sprayed thermal barrier coating material was predicted in terms of fracture envelope and propagation angle using mixed-mode fracture theories.

  12. Combined Mode I and Mode II Fracture of Plasma-Sprayed Thermal Barrier Coatings at Ambient and Elevated Temperatures

    NASA Technical Reports Server (NTRS)

    Choi, Sung R.; Zhu, Dongming; Miller, Robert A.

    2003-01-01

    The mode I, mode II, and combined mode I-mode II fracture behavior of ZrO2- 8wt%Y2O3 thermal barrier coatings was determined in asymmetric flexure loading at both ambient and elevated temperatures. Precracks were introduced in test specimens using the single-edge-v-notched beam (SEVNB) method incorporated with final diamond polishing to achieve sharp crack tips. A fracture envelope of KI versus KII was determined for the coating material at ambient and elevated temperatures. Propagation angles of fracture as a function of K(sub I)/K(sub II) were also determined. The mixed-mode fracture behaviors of the coating material were compared with those of monolithic advanced ceramics determined previously. The mixed-mode fracture behavior of the plasma-sprayed thermal barrier coating material was predicted in terms of fracture envelope and propagation angle using mixed-mode fracture theories.

  13. An equivalent domain integral for analysis of two-dimensional mixed mode problems

    NASA Technical Reports Server (NTRS)

    Raju, I. S.; Shivakumar, K. N.

    1989-01-01

    An equivalent domain integral (EDI) method for calculating J-integrals for two-dimensional cracked elastic bodies subjected to mixed mode loading is presented. The total and product integrals consist of the sum of an area or domain integral and line integrals on the crack faces. The EDI method gave accurate values of the J-integrals for two mode I and two mixed mode problems. Numerical studies showed that domains consisting of one layer of elements are sufficient to obtain accurate J-integral values. Two procedures for separating the individual modes from the domain integrals are presented. The procedure that uses the symmetric and antisymmetric components of the stress and displacement fields to calculate the individual modes gave accurate values of the integrals for all the problems analyzed.

  14. Delamination modeling of laminate plate made of sublaminates

    NASA Astrophysics Data System (ADS)

    Kormaníková, Eva; Kotrasová, Kamila

    2017-07-01

    The paper presents the mixed-mode delamination of plates made of sublaminates. To this purpose an opening load mode of delamination is proposed as failure model. The failure model is implemented in ANSYS code to calculate the mixed-mode delamination response as energy release rate. The analysis is based on interface techniques. Within the interface finite element modeling there are calculated the individual components of damage parameters as spring reaction forces, relative displacements and energy release rates along the lamination front.

  15. Synthetic oligonucleotide separations by mixed-mode reversed-phase/weak anion-exchange liquid chromatography.

    PubMed

    Zimmermann, Aleksandra; Greco, Roberto; Walker, Isabel; Horak, Jeannie; Cavazzini, Alberto; Lämmerhofer, Michael

    2014-08-08

    Synthetic oligonucleotides gain increasing importance in new therapeutic concepts and as probes in biological sciences. If pharmaceutical-grade purities are required, chromatographic purification using ion-pair reversed-phase chromatography is commonly carried out. However, separation selectivity for structurally closely related impurities is often insufficient, especially at high sample loads. In this study, a "mixed-mode" reversed-phase/weak anion exchanger stationary phase has been investigated as an alternative tool for chromatographic separation of synthetic oligonucleotides with minor sequence variations. The employed mixed-mode phase shows great flexibility in method development. It has been run in various gradient elution modes, viz. one, two or three parameter (mixed) gradients (altering buffer pH, buffer concentration, and organic modifier) to find optimal elution conditions and gain further insight into retention mechanisms. Compared to ion-pair reversed-phase and mere anion-exchange separation, enhanced selectivities were observed with the mixed-mode phase for 20-23 nucleotide (nt) long oligonucleotides with similar sequences. Oligonucleotides differing by 1, 2 or 3 nucleotides in length could be readily resolved and separation factors for single nucleotide replacements declined in the order Cytosine (C)/Guanine (G)>Adenine (A)/Guanine∼Guanine/Thymine (T)>Adenine/Cytosine∼Cytosine/Thymine>Adenine/Thymine. Selectivities were larger when the modification was at the 3' terminal-end, declined when it was in the middle of the sequence and was smallest when it was located at the 5' terminus. Due to the lower surface area of the 200Å pore size mixed-mode stationary phase compared to the corresponding 100Å material, lower retention times with equal selectivities under milder elution conditions were achievable. Considering high sample loading capacities of the mixed-mode anion-exchanger phase, it should have great potential for chromatographic oligonucleotide separation and purification. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. An equivalent domain integral method for three-dimensional mixed-mode fracture problems

    NASA Technical Reports Server (NTRS)

    Shivakumar, K. N.; Raju, I. S.

    1991-01-01

    A general formulation of the equivalent domain integral (EDI) method for mixed mode fracture problems in cracked solids is presented. The method is discussed in the context of a 3-D finite element analysis. The J integral consists of two parts: the volume integral of the crack front potential over a torus enclosing the crack front and the crack surface integral due to the crack front potential plus the crack face loading. In mixed mode crack problems the total J integral is split into J sub I, J sub II, and J sub III representing the severity of the crack front in three modes of deformations. The direct and decomposition methods are used to separate the modes. These two methods were applied to several mixed mode fracture problems, were analyzed, and results were found to agree well with those available in the literature. The method lends itself to be used as a post-processing subroutine in a general purpose finite element program.

  17. An equivalent domain integral method for three-dimensional mixed-mode fracture problems

    NASA Technical Reports Server (NTRS)

    Shivakumar, K. N.; Raju, I. S.

    1992-01-01

    A general formulation of the equivalent domain integral (EDI) method for mixed mode fracture problems in cracked solids is presented. The method is discussed in the context of a 3-D finite element analysis. The J integral consists of two parts: the volume integral of the crack front potential over a torus enclosing the crack front and the crack surface integral due to the crack front potential plus the crack face loading. In mixed mode crack problems the total J integral is split into J sub I, J sub II, and J sub III representing the severity of the crack front in three modes of deformations. The direct and decomposition methods are used to separate the modes. These two methods were applied to several mixed mode fracture problems, were analyzed, and results were found to agree well with those available in the literature. The method lends itself to be used as a post-processing subroutine in a general purpose finite element program.

  18. Mode I and mixed I/III crack initiation and propagation behavior of V-4Cr-4Ti alloy at 25{degrees}C

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, H.X.; Kurtz, R.J.; Jones, R.H.

    1997-04-01

    The mode I and mixed-mode I/III fracture behavior of the production-scale heat (No. 832665) of V-4Cr-4Ti has been investigated at 25{degrees}C using compact tension (CT) specimens for a mode I crack and modified CT specimens for a mixed-mode I/III crack. The mode III to mode I load ratio was 0.47. Test specimens were vacuum annealed at 1000{degrees}C for 1 h after final machining. Both mode I and mixed-mode I/III specimens were fatigue cracked prior to J-integral testing. It was noticed that the mixed-mode I/III crack angle decreased from an initial 25 degrees to approximately 23 degrees due to crack planemore » rotation during fatigue cracking. No crack plane rotation occurred in the mode I specimen. The crack initiation and propagation behavior was evaluated by generating J-R curves. Due to the high ductility of this alloy and the limited specimen thickness (6.35 mm), plane strain requirements were not met so valid critical J-integral values were not obtained. However, it was found that the crack initiation and propagation behavior was significantly different between the mode I and the mixed-mode I/III specimens. In the mode I specimen crack initiation did not occur, only extensive crack tip blunting due to plastic deformation. During J-integral testing the mixed-mode crack rotated to an increased crack angle (in contrast to fatigue precracking) by crack blunting. When the crack initiated, the crack angle was about 30 degrees. After crack initiation the crack plane remained at 30 degrees until the test was completed. Mixed-mode crack initiation was difficult, but propagation was easy. The fracture surface of the mixed-mode specimen was characterized by microvoid coalescence.« less

  19. Mixed-mode crack tip loading and crack deflection in 1D quasicrystals

    NASA Astrophysics Data System (ADS)

    Wang, Zhibin; Scheel, Johannes; Ricoeur, Andreas

    2016-12-01

    Quasicrystals (QC) are a new class of materials besides crystals and amorphous solids and have aroused much attention of researchers since they were discovered. This paper presents a generalized fracture theory including the J-integral and crack closure integrals, relations between J1, J2 and the stress intensity factors as well as the implementation of the near-tip stress and displacement solutions of 1D QC. Different crack deflection criteria, i.e. the J-integral and maximum circumferential stress criteria, are investigated for mixed-mode loading conditions accounting for phonon-phason coupling. One focus is on the influence of phason stress intensity factors on crack deflection angles.

  20. Development and Application of Benchmark Examples for Mixed-Mode I/II Quasi-Static Delamination Propagation Predictions

    NASA Technical Reports Server (NTRS)

    Krueger, Ronald

    2012-01-01

    The development of benchmark examples for quasi-static delamination propagation prediction is presented and demonstrated for a commercial code. The examples are based on finite element models of the Mixed-Mode Bending (MMB) specimen. The examples are independent of the analysis software used and allow the assessment of the automated delamination propagation prediction capability in commercial finite element codes based on the virtual crack closure technique (VCCT). First, quasi-static benchmark examples were created for the specimen. Second, starting from an initially straight front, the delamination was allowed to propagate under quasi-static loading. Third, the load-displacement relationship from a propagation analysis and the benchmark results were compared, and good agreement could be achieved by selecting the appropriate input parameters. Good agreement between the results obtained from the automated propagation analysis and the benchmark results could be achieved by selecting input parameters that had previously been determined during analyses of mode I Double Cantilever Beam and mode II End Notched Flexure specimens. The benchmarking procedure proved valuable by highlighting the issues associated with choosing the input parameters of the particular implementation. Overall the results are encouraging, but further assessment for mixed-mode delamination fatigue onset and growth is required.

  1. Characterization of crack growth under combined loading

    NASA Technical Reports Server (NTRS)

    Feldman, A.; Smith, F. W.; Holston, A., Jr.

    1977-01-01

    Room-temperature static and cyclic tests were made on 21 aluminum plates in the shape of a 91.4x91.4-cm Maltese cross with 45 deg flaws to develop crack growth and fracture toughness data under mixed-mode conditions. During cyclic testing, it was impossible to maintain a high proportion of shear-mode deformation on the crack tips. Cracks either branched or turned. Under static loading, cracks remained straight if shear stress intensity exceeded normal stress intensity. Mixed-mode crack growth rate data compared reasonably well with published single-mode data, and measured crack displacements agreed with the straight and branched crack analyses. Values of critical strain energy release rate at fracture for pure shear were approximately 50% higher than for pure normal opening, and there was a large reduction in normal stress intensity at fracture in the presence of high shear stress intensity. Net section stresses were well into the inelastic range when fracture occurred under high shear on the cracks.

  2. A Criterion to Control Nonlinear Error in the Mixed-Mode Bending Test

    NASA Technical Reports Server (NTRS)

    Reeder, James R.

    2002-01-01

    The mixed-mode bending test ha: been widely used to measure delamination toughness and was recently standardized by ASTM as Standard Test Method D6671-01. This simple test is a combination of the standard Mode I (opening) test and a Mode II (sliding) test. This test uses a unidirectional composite test specimen with an artificial delamination subjected to bending loads to characterize when a delamination will extend. When the displacements become large, the linear theory used to analyze the results of the test yields errors in the calcu1ated toughness values. The current standard places no limit on the specimen loading and therefore test data can be created using the standard that are significantly in error. A method of limiting the error that can be incurred in the calculated toughness values is needed. In this paper, nonlinear models of the MMB test are refined. One of the nonlinear models is then used to develop a simple criterion for prescribing conditions where thc nonlinear error will remain below 5%.

  3. Crack Growth Mechanisms under Anti-Plane Shear in Composite Laminates

    NASA Astrophysics Data System (ADS)

    Horner, Allison Lynne

    The research conducted for this dissertation focuses on determining the mechanisms associated with crack growth in polymer matrix composite laminates subjected to anti-plane shear (mode III) loading. For mode III split-beam test methods were proposed, and initial evaluations were conducted. A single test method was selected for further evaluation. Using this test method, it was determined that the apparent mode III delamination toughness, GIIIc , depended on geometry, which indicated a true material property was not being measured. Transverse sectioning and optical microscopy revealed an array of transverse matrix cracks, or echelon cracks, oriented at approximately 45° and intersecting the plane of the delamination. Subsequent investigations found the echelon array formed prior to the onset of planar delamination advance and that growth of the planar delamination is always coupled to echelon array formation in these specimens. The evolution of the fracture surfaces formed by the echelon array and planar delamination were studied, and it was found that the development was similar to crack growth in homogenous materials subjected to mode III or mixed mode I-III loading, although the composite laminate architecture constrained the fracture surface development differently than homogenous materials. It was also found that, for split-beam specimens such as those used herein, applying an anti-plane shear load results in twisting of the specimen's uncracked region which gives rise to a mixed-mode I-III load condition. This twisting has been related to the apparent mode III toughness as well as the orientation of the transverse matrix cracks. A finite element model was then developed to study the mechanisms of initial echelon array formation. From this, it is shown that an echelon array will develop, but will become self-limiting prior to the onset of planar delamination growth.

  4. Investigation of Cracks Found in Helicopter Longerons

    NASA Technical Reports Server (NTRS)

    Newman, John A.; Baughman, James M.; Wallace, Terryl A.

    2009-01-01

    Four cracked longerons, containing a total of eight cracks, were provided for study. Cracked regions were cut from the longerons. Load was applied to open the cracks, enabling crack surface examination. Examination revealed that crack propagation was driven by fatigue loading in all eight cases. Fatigue crack initiation appears to have occurred on the top edge of the longerons near geometric changes that affect component bending stiffness. Additionally, metallurigical analysis has revealed a local depletion in alloying elements in the crack initiation regions that may be a contributing factor. Fatigue crack propagation appeared to be initially driven by opening-mode loading, but at a crack length of approximately 0.5 inches (12.7 mm), there is evidence of mixed-mode crack loading. For the longest cracks studied, shear-mode displacements destroyed crack-surface features of interest over significant portions of the crack surfaces.

  5. Investigation of Helicopter Longeron Cracks

    NASA Technical Reports Server (NTRS)

    Newman, John A.; Baughman, James; Wallace, Terryl A.

    2009-01-01

    Four cracked longerons, containing a total of eight cracks, were provided for study. Cracked regions were cut from the longerons. Load was applied to open the cracks, enabling crack surface examination. Examination revealed that crack propagation was driven by fatigue loading in all eight cases. Fatigue crack initiation appears to have occurred on the top edge of the longerons near geometric changes that affect component bending stiffness. Additionally, metallurgical analysis has revealed a local depletion in alloying elements in the crack initiation regions that may be a contributing factor. Fatigue crack propagation appeared to be initially driven by opening-mode loading, but at a crack length of approximately 0.5 inches (12.7 mm), there is evidence of mixed-mode crack loading. For the longest cracks studied, shear-mode displacements destroyed crack-surface features of interest over significant portions of the crack surfaces.

  6. Analysis of mixed-mode crack propagation using the boundary integral method

    NASA Technical Reports Server (NTRS)

    Mendelson, A.; Ghosn, L. J.

    1986-01-01

    Crack propagation in a rotating inner raceway of a high speed roller bearing is analyzed using the boundary integral equation method. The method consists of an edge crack in a plate under tension, upon which varying Hertzian stress fields are superimposed. A computer program for the boundary integral equation method was written using quadratic elements to determine the stress and displacement fields for discrete roller positions. Mode I and Mode II stress intensity factors and crack extension forces G sub 00 (energy release rate due to tensile opening mode) and G sub r0 (energy release rate due to shear displacement mode) were computed. These calculations permit determination of that crack growth angle for which the change in the crack extension forces is maximum. The crack driving force was found to be the alternating mixed-mode loading that occurs with each passage of the most heavily loaded roller. The crack is predicted to propagate in a step-like fashion alternating between radial and inclined segments, and this pattern was observed experimentally. The maximum changes DeltaG sub 00 and DeltaG sub r0 of the crack extension forces are found to be good measures of the crack propagation rate and direction.

  7. On stress field near a stationary crack tip

    NASA Technical Reports Server (NTRS)

    Nemat-Nasser, S.; Obata, M.

    1984-01-01

    It is well known that the stress and elastic-plastic deformation fields near a crack tip have important roles in the corresponding fracture process. For elastic-perfectly-plastic solids, different solutions are given in the literature. In this work several of these solutions are examined and compared for Mode I (tension), Mode II (shear), and mixed Modes I and II loading conditions in plane strain. By consideration of the dynamic solution, it is shown that the assumption that the material is yielding all around a crack tip may not be reasonable in all cases. By admitting the existence of some elastic sectors, continuous stress fields are obtained even for mixed Modes I and II.

  8. Crack Front Segmentation and Facet Coarsening in Mixed-Mode Fracture

    NASA Astrophysics Data System (ADS)

    Chen, Chih-Hung; Cambonie, Tristan; Lazarus, Veronique; Nicoli, Matteo; Pons, Antonio J.; Karma, Alain

    2015-12-01

    A planar crack generically segments into an array of "daughter cracks" shaped as tilted facets when loaded with both a tensile stress normal to the crack plane (mode I) and a shear stress parallel to the crack front (mode III). We investigate facet propagation and coarsening using in situ microscopy observations of fracture surfaces at different stages of quasistatic mixed-mode crack propagation and phase-field simulations. The results demonstrate that the bifurcation from propagating a planar to segmented crack front is strongly subcritical, reconciling previous theoretical predictions of linear stability analysis with experimental observations. They further show that facet coarsening is a self-similar process driven by a spatial period-doubling instability of facet arrays.

  9. Mode 2 fatigue crack growth specimen development

    NASA Technical Reports Server (NTRS)

    Buzzard, R. J.; Gross, B.; Srawley, J. E.

    1983-01-01

    A Mode II test specimen was developed which has potential application in understanding phemonena associated with mixed mode fatigue failures in high performance aircraft engine bearing races. The attributes of the specimen are: it contains one single ended notch, which simplifiers data gathering and reduction; the fatigue crack grous in-line with the direction of load application; a single axis test machine is sufficient to perform testing; and the Mode I component is vanishingly small.

  10. Millimeter-Wave Generation Via Plasma Three-Wave Mixing

    DTIC Science & Technology

    1988-06-01

    are coupled to a third space -charge wave with dispersion 2w W k -k k . (16) A plasma-loaded-waveguide mode is excited at the intersection of this...DISPERSION "FAST" W PLASMA WAVE Wc PLASMA WAVE A-lA oppositely directed EPWs with different phase velocities (wp/k., and wO/k. 2) are coupled to a third ... space -charge wave with dispersion 2w I- k k .(16) e 2 A plaama-loaded-waveguide mode is excited at the intersection of this coupled space-charge wave

  11. Development of Benchmark Examples for Delamination Onset and Fatigue Growth Prediction

    NASA Technical Reports Server (NTRS)

    Krueger, Ronald

    2011-01-01

    An approach for assessing the delamination propagation and growth capabilities in commercial finite element codes was developed and demonstrated for the Virtual Crack Closure Technique (VCCT) implementations in ABAQUS. The Double Cantilever Beam (DCB) specimen was chosen as an example. First, benchmark results to assess delamination propagation capabilities under static loading were created using models simulating specimens with different delamination lengths. For each delamination length modeled, the load and displacement at the load point were monitored. The mixed-mode strain energy release rate components were calculated along the delamination front across the width of the specimen. A failure index was calculated by correlating the results with the mixed-mode failure criterion of the graphite/epoxy material. The calculated critical loads and critical displacements for delamination onset for each delamination length modeled were used as a benchmark. The load/displacement relationship computed during automatic propagation should closely match the benchmark case. Second, starting from an initially straight front, the delamination was allowed to propagate based on the algorithms implemented in the commercial finite element software. The load-displacement relationship obtained from the propagation analysis results and the benchmark results were compared. Good agreements could be achieved by selecting the appropriate input parameters, which were determined in an iterative procedure.

  12. Dynamic fracture mechanics analysis for an edge delamination crack

    NASA Technical Reports Server (NTRS)

    Rizzi, Stephen A.; Doyle, James F.

    1994-01-01

    A global/local analysis is applied to the problem of a panel with an edge delamination crack subject to an impulse loading to ascertain the dynamic J integral. The approach uses the spectral element method to obtain the global dynamic response and local resultants to obtain the J integral. The variation of J integral along the crack front is shown. The crack behavior is mixed mode (Mode 2 and Mode 3), but is dominated by the Mode 2 behavior.

  13. Fatigue crack growth and life prediction under mixed-mode loading

    NASA Astrophysics Data System (ADS)

    Sajith, S.; Murthy, K. S. R. K.; Robi, P. S.

    2018-04-01

    Fatigue crack growth life as a function of crack length is essential for the prevention of catastrophic failures from damage tolerance perspective. In damage tolerance design approach, principles of fracture mechanics are usually applied to predict the fatigue life of structural components. Numerical prediction of crack growth versus number of cycles is essential in damage tolerance design. For cracks under mixed mode I/II loading, modified Paris law (d/a d N =C (ΔKe q ) m ) along with different equivalent stress intensity factor (ΔKeq) model is used for fatigue crack growth rate prediction. There are a large number of ΔKeq models available for the mixed mode I/II loading, the selection of proper ΔKeq model has significant impact on fatigue life prediction. In the present investigation, the performance of ΔKeq models in fatigue life prediction is compared with respect to the experimental findings as there are no guidelines/suggestions available on the selection of these models for accurate and/or conservative predictions of fatigue life. Within the limitations of availability of experimental data and currently available numerical simulation techniques, the results of present study attempt to outline models that would provide accurate and conservative life predictions. Such a study aid the numerical analysts or engineers in the proper selection of the model for numerical simulation of the fatigue life. Moreover, the present investigation also suggests a procedure to enhance the accuracy of life prediction using Paris law.

  14. Fatigue behavior of a cross-ply metal matrix composite at elevated temperature under strain controlled mode. Master`s thesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dennis, L.B.

    1994-12-01

    This research extends the existing knowledge of cross-ply metal matrix composites (MMC) to include fatigue behavior under strain-controlled fully reversed loading. This study investigated fatigue life, failure modes and damage mechanisms of the SCS-6/Ti-15-3, (O/9O)2s, MMC. The laminate was subjected to fully reversed fatigue at elevated temperature (427 deg C) at various strain levels. Stress, strain and modulus data were analyzed to characterize the macro-mechanical behavior of the composite. Microscopy and fractography were accomplished to identify and characterize the damage mechanisms at the microscopic level. Failure modes varied according to the maximum applied strain level showing either mixed mode (i.e.more » combination of both fiber and matrix dominated modes) or matrix dominated fatigue failures. As expected, higher strain loadings resulted in more ductility of the matrix at failure, evidenced by fracture surface features. For testing of the same composite laminate, the fatigue life under strain controlled mode slightly increased, compared to its load-controlled mode counterpart, using the effective strain range comparison basis. However, the respective fatigue life curves converged in the high cycle region, suggesting that the matrix dominated failure mode produces equivalent predicted fatigue lives for both control modes.« less

  15. Fracture Mechanics Analysis of Stitched Stiffener-Skin Debonding

    NASA Technical Reports Server (NTRS)

    Glaessgen, E. H.; Raju, I. S.; Poe, C. C., Jr.

    1998-01-01

    An analysis based on plate finite elements and the virtual crack closure technique has been implemented to study the effect of stitching on mode I and mode II strain energy release rates for debond configurations. The stitches were modeled as discrete nonlinear fastener elements with a compliance determined by experiment. The axial and shear behavior of the stitches was considered, however, the two compliances and failure loads were assumed to be independent. Both a double cantilever beam (mode I) and a mixed mode skin-stiffener debond configuration were studied. In the double cantilever beam configurations, G(sub I) began to decrease once the debond had grown beyond the first row of stitches and was reduced to zero for long debonds. In the mixed-mode skin-stiffener configurations, G(sub I) showed a similar behavior as in the double cantilever beam configurations, however, G(sub u), continued to increase with increasing debond length.

  16. Effects of mixing system and pilot fuel quality on diesel-biogas dual fuel engine performance.

    PubMed

    Bedoya, Iván Darío; Arrieta, Andrés Amell; Cadavid, Francisco Javier

    2009-12-01

    This paper describes results obtained from CI engine performance running on dual fuel mode at fixed engine speed and four loads, varying the mixing system and pilot fuel quality, associated with fuel composition and cetane number. The experiments were carried out on a power generation diesel engine at 1500 m above sea level, with simulated biogas (60% CH(4)-40% CO(2)) as primary fuel, and diesel and palm oil biodiesel as pilot fuels. Dual fuel engine performance using a naturally aspirated mixing system and diesel as pilot fuel was compared with engine performance attained with a supercharged mixing system and biodiesel as pilot fuel. For all loads evaluated, was possible to achieve full diesel substitution using biogas and biodiesel as power sources. Using the supercharged mixing system combined with biodiesel as pilot fuel, thermal efficiency and substitution of pilot fuel were increased, whereas methane and carbon monoxide emissions were reduced.

  17. A Mixed-Mode (I-II) Fracture Criterion for AS4/8552 Carbon/Epoxy Composite Laminate

    NASA Astrophysics Data System (ADS)

    Karnati, Sidharth Reddy

    A majority of aerospace structures are subjected to bending and stretching loads that introduce peel and shear stresses between the plies of a composite laminate. These two stress components cause a combination of mode I and II fracture modes in the matrix layer of the composite laminate. The most common failure mode in laminated composites is delamination that affects the structural integrity of composite structures. Damage tolerant designs of structures require two types of materials data: mixed-mode (I-II) delamination fracture toughness that predicts failure and delamination growth rate that predicts the life of the structural component. This research focuses determining mixed-mode (I-II) fracture toughness under a combination of mode I and mode II stress states and then a fracture criterion for AS4/8552 composite laminate, which is widely used in general aviation. The AS4/8552 prepreg was supplied by Hexcel Corporation and autoclave fabricated into a 20-ply unidirectional laminate with an artificial delamination by a Fluorinated Ethylene Propylene (FEP) film at the mid-plane. Standard split beam specimens were prepared and tested in double cantilever beam (DCB) and end notched flexure modes to determine mode I (GIC) and II (GIIC) fracture toughnesses, respectively. The DCB specimens were also tested in a modified mixed-mode bending apparatus at GIIm /GT ratios of 0.18, 0.37, 0.57 and 0.78, where GT is total and GIIm is the mode II component of energy release rates. The measured fracture toughness, GC, was found to follow the locus a power law equation. The equation was validated for the present and literature experimental data.

  18. Raman-Suppressing Coupling for Optical Parametric Oscillator

    NASA Technical Reports Server (NTRS)

    Savchenkov, Anatoliy; Maleki, Lute; Matsko, Andrey; Rubiola, Enrico

    2007-01-01

    A Raman-scattering-suppressing input/ output coupling scheme has been devised for a whispering-gallery-mode optical resonator that is used as a four-wave-mixing device to effect an all-optical parametric oscillator. Raman scattering is undesired in such a device because (1) it is a nonlinear process that competes with the desired nonlinear four-wave conversion process involved in optical parametric oscillation and (2) as such, it reduces the power of the desired oscillation and contributes to output noise. The essence of the present input/output coupling scheme is to reduce output loading of the desired resonator modes while increasing output loading of the undesired ones.

  19. Strength, Fracture Toughness, Fatigue, and Standardization Issues of Free-standing Thermal Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Choi, Sung R.; Zhu, Dong-Ming; Miller, Robert A.

    2003-01-01

    Strength, fracture toughness and fatigue behavior of free-standing thick thermal barrier coatings of plasma-sprayed ZrO2-8wt % Y2O3 were determined at ambient and elevated temperatures in an attempt to establish a database for design. Strength, in conjunction with deformation (stress-strain behavior), was evaluated in tension (uniaxial and trans-thickness), compression, and uniaxial and biaxial flexure; fracture toughness was determined in various load conditions including mode I, mode II, and mixed modes I and II; fatigue or slow crack growth behavior was estimated in cyclic tension and dynamic flexure loading. Effect of sintering was quantified through approaches using strength, fracture toughness, and modulus (constitutive relations) measurements. Standardization issues on test methodology also was presented with a special regard to material's unique constitutive relations.

  20. Joint loads resulting in ACL rupture: Effects of age, sex, and body mass on injury load and mode of failure in a mouse model.

    PubMed

    Blaker, Carina L; Little, Christopher B; Clarke, Elizabeth C

    2017-08-01

    Anterior cruciate ligament (ACL) tears are a common knee injury with a known but poorly understood association with secondary joint injuries and post-traumatic osteoarthritis (OA). Female sex and age are known risk factors for ACL injury but these variables are rarely explored in mouse models of injury. This study aimed to further characterize a non-surgical ACL injury model to determine its clinical relevance across a wider range of mouse specifications. Cadaveric and anesthetized C57BL/6 mice (9-52 weeks of age) underwent joint loading to investigate the effects of age, sex, and body mass on ACL injury mechanisms. The ACL injury load (whole joint load required to rupture the ACL) was measured from force-displacement data, and mode of failure was assessed using micro-dissection and histology. ACL injury load was found to increase with body mass and age (p < 0.001) but age was not significant when controlling for mass. Sex had no effect. In contrast, the mode of ACL failure varied with both age and sex groups. Avulsion fractures (complete or mixed with mid-substance tears) were common in all age groups but the proportion of mixed and mid-substance failures increased with age. Females were more likely than males to have a major avulsion relative to a mid-substance tear (p < 0.01). This data compliments studies in human cadaveric knees, and provides a basis for determining the severity of joint injury relative to a major ACL tear in mice, and for selecting joint loading conditions in future experiments using this model. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:1754-1763, 2017. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  1. Purging of working atmospheres inside freight containers.

    PubMed

    Braconnier, Robert; Keller, François-Xavier

    2015-06-01

    This article focuses on prevention of possible exposure to chemical agents, when opening, entering, and stripping freight containers. The container purging process is investigated using tracer gas measurements and numerical airflow simulations. Three different container ventilation conditions are studied, namely natural, mixed mode, and forced ventilation. The tests conducted allow purging time variations to be quantified in relation to various factors such as container size, degree of filling, or type of load. Natural ventilation performance characteristics prove to be highly variable, depending on environmental conditions. Use of a mechanically supplied or extracted airflow under mixed mode and forced ventilation conditions enables purging to be significantly accelerated. Under mixed mode ventilation, extracting air from the end of the container furthest from the door ensures quicker purging than supplying fresh air to this area. Under forced ventilation, purging rate is proportional to the applied ventilation flow. Moreover, purging rate depends mainly on the location at which air is introduced: the most favourable position being above the container loading level. Many of the results obtained during this study can be generalized to other cases of purging air in a confined space by general ventilation, e.g. the significance of air inlet positioning or the advantage of generating high air velocities to maximize stirring within the volume. © The Author 2015. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.

  2. Mixed-mode stress intensity factors for kink cracks with finite kink length loaded in tension and bending: application to dentin and enamel.

    PubMed

    Bechtle, Sabine; Fett, Theo; Rizzi, Gabriele; Habelitz, Stefan; Schneider, Gerold A

    2010-05-01

    Fracture toughness resistance curves describe a material's resistance against crack propagation. These curves are often used to characterize biomaterials like bone, nacre or dentin as these materials commonly exhibit a pronounced increase in fracture toughness with crack extension due to co-acting mechanisms such as crack bridging, crack deflection and microcracking. The knowledge of appropriate stress intensity factors which depend on the sample and crack geometry is essential for determining these curves. For the dental biomaterials enamel and dentin it was observed that, under bending and tensile loading, crack propagation occurs under certain constant angles to the initial notch direction during testing procedures used for fracture resistance curve determination. For this special crack geometry (a kink crack of finite length in a finite body) appropriate geometric function solutions are missing. Hence, we present in this study new mixed-mode stress intensity factors for kink cracks with finite kink length within samples of finite dimensions for two loading cases (tension and bending) which were derived from a combination of mixed-mode stress intensity factors of kink cracks with infinitely small kinks and of slant cracks. These results were further applied to determine the fracture resistance curves of enamel and dentin by testing single edge notched bending (SENB) specimens. It was found that kink cracks with finite kink length exhibit identical stress fields to slant cracks as soon as the kink length exceeds 0.15 times the initial straight crack or notch length. The use of stress intensity factor solutions for infinitely small kink cracks for the determination of dentin fracture resistance curves (as was done by other researchers) leads to an overestimation of dentin's fracture resistance of up to 30%. Copyright 2010 Elsevier Ltd. All rights reserved.

  3. Initiation and propagation of mixed mode fractures in granite and sandstone

    NASA Astrophysics Data System (ADS)

    Rück, Marc; Rahner, Roman; Sone, Hiroki; Dresen, Georg

    2017-10-01

    We investigate mixed mode fracture initiation and propagation in experimentally deformed granite and sandstone. We performed a series of asymmetric loading tests to induce fractures in cylindrical specimens at confining pressures up to 20 MPa. Loading was controlled using acoustic emission (AE) feedback control, which allows studying quasi-static fracture propagation for several hours. Location of acoustic emissions reveals distinct differences in spatial-temporal fracture evolution between granite and sandstone samples. Before reaching peak stress in experiments performed on granite, axial fractures initiate first at the edge of the indenter and then propagate through the entire sample. Secondary inclined fractures develop during softening of the sample. In sandstone, inclined shear fractures nucleate at peak stress and propagate through the specimen. AE source type analysis shows complex fracturing in both materials with pore collapse contributing significantly to fracture growth in sandstone samples. We compare the experimental results with numerical models to analyze stress distribution and energy release rate per unit crack surface area in the samples at different stages during fracture growth. We thereby show that for both rock types the energy release rate increases approximately linearly during fracture propagation. The study illuminates how different material properties modify fracture initiation direction under similar loading conditions.

  4. Modifications to JLab 12 GeV Refrigerator and Wide Range Mix Mode Performance Testing Results

    NASA Astrophysics Data System (ADS)

    Knudsen, P.; Ganni, V.; Hasan, N.; Dixon, K.; Norton, R.; Creel, J.

    2017-02-01

    Analysis of data obtained during the spring 2013 commissioning of the new 4.5 K refrigeration system at Jefferson Lab (JLab) for the 12 GeV upgrade indicated a wide capacity range with good efficiency and minimal operator interaction. Testing also showed that the refrigerator required higher liquid nitrogen (LN) consumption for its pre-cooler than anticipated by the design. This does not affect the capacity of the refrigerator, but it does result in an increased LN utility cost. During the summer of 2015 the modifications were implemented by the cold box manufacturer, according to a design similar to the JLab 12 GeV cold box specification. Subsequently, JLab recommissioned the cold box and performed extensive performance testing, ranging from 20% to 100% of the design maximum capacity, and in various modes of operation, ranging from pure refrigeration, pure liquefaction, half-and-half mix mode and at selected design modes using the Floating Pressure - Ganni Cycle. The testing demonstrated that the refrigerator system has a good and fairly constant performance over a wide capacity range and different modes of operation. It also demonstrated the modifications resulted in a LN consumption that met the design for the pure refrigeration mode (which is the most demanding) and was lower than the design for the nominal and maximum capacity modes. In addition, a pulsed-load test, similar to what is expected for cryogenic systems supporting fusion experiments, was conducted to observe the response using the Floating Pressure - Ganni Cycle, which was stable and robust. This paper will discuss the results and analysis of this testing pertaining to the LN consumption, the system efficiency over a wide range of capacity and different modes and the behaviour of the system to a pulsed load.

  5. Human Muscle Protein Synthetic Responses during Weight-Bearing and Non-Weight-Bearing Exercise: A Comparative Study of Exercise Modes and Recovery Nutrition.

    PubMed

    Pasiakos, Stefan M; McClung, Holly L; Margolis, Lee M; Murphy, Nancy E; Lin, Gregory G; Hydren, Jay R; Young, Andrew J

    2015-01-01

    Effects of conventional endurance (CE) exercise and essential amino acid (EAA) supplementation on protein turnover are well described. Protein turnover responses to weighted endurance exercise (i.e., load carriage, LC) and EAA may differ from CE, because the mechanical forces and contractile properties of LC and CE likely differ. This study examined muscle protein synthesis (MPS) and whole-body protein turnover in response to LC and CE, with and without EAA supplementation, using stable isotope amino acid tracer infusions. Forty adults (mean ± SD, 22 ± 4 y, 80 ± 10 kg, VO 2peak 4.0 ± 0.5 L ∙ min(-1)) were randomly assigned to perform 90 min, absolute intensity-matched (2.2 ± 0.1 VO2 L ∙ m(-1)) LC (performed on a treadmill wearing a vest equal to 30% of individual body mass, mean ± SD load carried 24 ± 3 kg) or CE (cycle ergometry performed at the same absolute VO2 as LC) exercise, during which EAA (10 g EAA, 3.6 g leucine) or control (CON, non-nutritive) drinks were consumed. Mixed-muscle and myofibrillar MPS were higher during exercise for LC than CE (mode main effect, P < 0.05), independent of dietary treatment. EAA enhanced mixed-muscle and sarcoplasmic MPS during exercise, regardless of mode (drink main effect, P < 0.05). Mixed-muscle and sarcoplasmic MPS were higher in recovery for LC than CE (mode main effect, P < 0.05). No other differences or interactions (mode x drink) were observed. However, EAA attenuated whole-body protein breakdown, increased amino acid oxidation, and enhanced net protein balance in recovery compared to CON, regardless of exercise mode (P < 0.05). These data show that, although whole-body protein turnover responses to absolute VO2-matched LC and CE are the same, LC elicited a greater muscle protein synthetic response than CE.

  6. Delamination growth in composite materials

    NASA Technical Reports Server (NTRS)

    Gillespie, J. W., Jr.; Carlson, L. A.; Pipes, R. B.; Rothschilds, R.; Trethewey, B.; Smiley, A.

    1985-01-01

    Research related to growth of an imbedded through-width delamination (ITWD) in a compression loaded composite structural element is presented. Composites with widely different interlaminar fracture resistance were examined, viz., graphite/epoxy (CYCOM 982) and graphite/PEEK (APC-2). The initial part of the program consisted of characterizing the material in tension, compression and shear mainly to obtain consistent material properties for analysis, but also as a check of the processing method developed for the thermoplastic APC-2 material. The characterization of the delamination growth in the ITWD specimen, which for the unidirectional case is essentially a mixed Mode 1 and 2 geometry, requires verified mixed-mode growth criteria for the two materials involved. For this purpose the main emphasis during this part of the investigation was on Mode 1 and 2 fracture specimens, namely the Double Cantilever Beam (DCB) and End Notched Flexure (ENF) specimens.

  7. Modelling of Dynamic Rock Fracture Process with a Rate-Dependent Combined Continuum Damage-Embedded Discontinuity Model Incorporating Microstructure

    NASA Astrophysics Data System (ADS)

    Saksala, Timo

    2016-10-01

    This paper deals with numerical modelling of rock fracture under dynamic loading. For this end, a combined continuum damage-embedded discontinuity model is applied in finite element modelling of crack propagation in rock. In this model, the strong loading rate sensitivity of rock is captured by the rate-dependent continuum scalar damage model that controls the pre-peak nonlinear hardening part of rock behaviour. The post-peak exponential softening part of the rock behaviour is governed by the embedded displacement discontinuity model describing the mode I, mode II and mixed mode fracture of rock. Rock heterogeneity is incorporated in the present approach by random description of the rock mineral texture based on the Voronoi tessellation. The model performance is demonstrated in numerical examples where the uniaxial tension and compression tests on rock are simulated. Finally, the dynamic three-point bending test of a semicircular disc is simulated in order to show that the model correctly predicts the strain rate-dependent tensile strengths as well as the failure modes of rock in this test. Special emphasis is laid on modelling the loading rate sensitivity of tensile strength of Laurentian granite.

  8. Mixed-mode ion exchange-based integrated proteomics technology for fast and deep plasma proteome profiling.

    PubMed

    Xue, Lu; Lin, Lin; Zhou, Wenbin; Chen, Wendong; Tang, Jun; Sun, Xiujie; Huang, Peiwu; Tian, Ruijun

    2018-06-09

    Plasma proteome profiling by LC-MS based proteomics has drawn great attention recently for biomarker discovery from blood liquid biopsy. Due to standard multi-step sample preparation could potentially cause plasma protein degradation and analysis variation, integrated proteomics sample preparation technologies became promising solution towards this end. Here, we developed a fully integrated proteomics sample preparation technology for both fast and deep plasma proteome profiling under its native pH. All the sample preparation steps, including protein digestion and two-dimensional fractionation by both mixed-mode ion exchange and high-pH reversed phase mechanism were integrated into one spintip device for the first time. The mixed-mode ion exchange beads design achieved the sample loading at neutral pH and protein digestion within 30 min. Potential sample loss and protein degradation by pH changing could be voided. 1 μL of plasma sample with depletion of high abundant proteins was processed by the developed technology with 12 equally distributed fractions and analyzed with 12 h of LC-MS gradient time, resulting in the identification of 862 proteins. The combination of the Mixed-mode-SISPROT and data-independent MS method achieved fast plasma proteome profiling in 2 h with high identification overlap and quantification precision for a proof-of-concept study of plasma samples from 5 healthy donors. We expect that the Mixed-mode-SISPROT become a generally applicable sample preparation technology for clinical oriented plasma proteome profiling. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Predicting the mixed-mode I/II spatial damage propagation along 3D-printed soft interfacial layer via a hyperelastic softening model

    NASA Astrophysics Data System (ADS)

    Liu, Lei; Li, Yaning

    2018-07-01

    A methodology was developed to use a hyperelastic softening model to predict the constitutive behavior and the spatial damage propagation of nonlinear materials with damage-induced softening under mixed-mode loading. A user subroutine (ABAQUS/VUMAT) was developed for numerical implementation of the model. 3D-printed wavy soft rubbery interfacial layer was used as a material system to verify and validate the methodology. The Arruda - Boyce hyperelastic model is incorporated with the softening model to capture the nonlinear pre-and post- damage behavior of the interfacial layer under mixed Mode I/II loads. To characterize model parameters of the 3D-printed rubbery interfacial layer, a series of scarf-joint specimens were designed, which enabled systematic variation of stress triaxiality via a single geometric parameter, the slant angle. It was found that the important model parameter m is exponentially related to the stress triaxiality. Compact tension specimens of the sinusoidal wavy interfacial layer with different waviness were designed and fabricated via multi-material 3D printing. Finite element (FE) simulations were conducted to predict the spatial damage propagation of the material within the wavy interfacial layer. Compact tension experiments were performed to verify the model prediction. The results show that the model developed is able to accurately predict the damage propagation of the 3D-printed rubbery interfacial layer under complicated stress-state without pre-defined failure criteria.

  10. Edge delamination of composite laminates subject to combined tension and torsional loading

    NASA Technical Reports Server (NTRS)

    Hooper, Steven J.

    1990-01-01

    Delamination is a common failure mode of laminated composite materials. Edge delamination is important since it results in reduced stiffness and strength of the laminate. The tension/torsion load condition is of particular significance to the structural integrity of composite helicopter rotor systems. Material coupons can easily be tested under this type of loading in servo-hydraulic tension/torsion test stands using techniques very similar to those used for the Edge Delamination Tensile Test (EDT) delamination specimen. Edge delamination of specimens loaded in tension was successfully analyzed by several investigators using both classical laminate theory and quasi-three dimensional (Q3D) finite element techniques. The former analysis technique can be used to predict the total strain energy release rate, while the latter technique enables the calculation of the mixed-mode strain energy release rates. The Q3D analysis is very efficient since it produces a three-dimensional solution to a two-dimensional domain. A computer program was developed which generates PATRAN commands to generate the finite element model. PATRAN is a pre- and post-processor which is commonly used with a variety of finite element programs such as MCS/NASTRAN. The program creates a sufficiently dense mesh at the delamination crack tips to support a mixed-mode fracture mechanics analysis. The program creates a coarse mesh in those regions where the gradients in the stress field are low (away from the delamination regions). A transition mesh is defined between these regions. This program is capable of generating a mesh for an arbitrarily oriented matrix crack. This program significantly reduces the modeling time required to generate these finite element meshes, thus providing a realistic tool with which to investigate the tension torsion problem.

  11. Reactor Pressure Vessel Fracture Analysis Capabilities in Grizzly

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spencer, Benjamin; Backman, Marie; Chakraborty, Pritam

    2015-03-01

    Efforts have been underway to develop fracture mechanics capabilities in the Grizzly code to enable it to be used to perform deterministic fracture assessments of degraded reactor pressure vessels (RPVs). Development in prior years has resulted a capability to calculate -integrals. For this application, these are used to calculate stress intensity factors for cracks to be used in deterministic linear elastic fracture mechanics (LEFM) assessments of fracture in degraded RPVs. The -integral can only be used to evaluate stress intensity factors for axis-aligned flaws because it can only be used to obtain the stress intensity factor for pure Mode Imore » loading. Off-axis flaws will be subjected to mixed-mode loading. For this reason, work has continued to expand the set of fracture mechanics capabilities to permit it to evaluate off-axis flaws. This report documents the following work to enhance Grizzly’s engineering fracture mechanics capabilities for RPVs: • Interaction Integral and -stress: To obtain mixed-mode stress intensity factors, a capability to evaluate interaction integrals for 2D or 3D flaws has been developed. A -stress evaluation capability has been developed to evaluate the constraint at crack tips in 2D or 3D. Initial verification testing of these capabilities is documented here. • Benchmarking for axis-aligned flaws: Grizzly’s capabilities to evaluate stress intensity factors for axis-aligned flaws have been benchmarked against calculations for the same conditions in FAVOR. • Off-axis flaw demonstration: The newly-developed interaction integral capabilities are demon- strated in an application to calculate the mixed-mode stress intensity factors for off-axis flaws. • Other code enhancements: Other enhancements to the thermomechanics capabilities that relate to the solution of the engineering RPV fracture problem are documented here.« less

  12. Mixed mode stress-intensity-factors in mode-3 loaded middle crack tension specimen

    NASA Technical Reports Server (NTRS)

    Shivakumar, Kunigal N.

    1992-01-01

    A three dimensional stress analysis of a middle-crack tension specimen subjected to mode-3 type loading was performed using fracture mechanics based finite element code FRAC3D. Three-dimensional stress intensity factors were calculated for a range of specimen thicknesses that represent the structures used in aerospace and nuclear industries. Calculated SIF for very thick specimen (thickness-to-crack length b/a greater than or equal to 30) agreed very well with the antiplane solution in the literature. The K(sub II) stress field exists near the intersection of the crack front and free surface in a boundary-layer region covers the complete thickness of the plate and K(sub II) dominates all through the thickness. For very thin plates (b/a is less than .1), the average K(sub II) is larger than K(sub III) (about 25% for b/a = 0.1).

  13. The role of peel stresses in cyclic debonding

    NASA Technical Reports Server (NTRS)

    Everett, R. A., Jr.

    1982-01-01

    When an adhesively bonded joint is undergoing cyclic loading, one of the possible damage modes that occurs is called cyclic debonding - progressive separation of the adherends by failure of the adhesive bond under cyclic loading. In most practical structures, both peel and shear stresses exist in the adhesive bonding during cyclic loading. The results of an experimental and analytical study to determine the role of peel stresses on cyclic debonding in a mixed mode specimen are presented. Experimentally, this was done by controlling the forces that create the peel stresses by applying a clamping force to oppose the peel stresses. Cracked lap shear joints were chosen for this study. A finite element analysis was developed to assess the effect of the clamping force on the strain energy release rates due to shear and peel stresses. The results imply that the peel stress is the principal stress causing cyclic debonding.

  14. Degradation, fatigue and failure of resin dental composite materials

    PubMed Central

    Drummond, James L.

    2008-01-01

    The intent of this article is to review the numerous factors that affect the mechanical properties of particle or fiber filler containing, indirect dental resin composite materials. The focus will be on degradation due to aging in different media, mainly water and water and ethanol, cyclic loading, and mixed mode loading on the flexure strength and fracture toughness. Next several selected papers will be examined in detail with respect to mixed and cyclic loading and then an examination of 3D tomography using multiaxial compression specimens. The main cause of failure, for most dental resin composites, is the breakdown of the resin matrix and or the interface between the filler and the resin matrix. In clinical studies, it appears that failure in the first 5 years is a restoration issue (technique or material selection) and after that time period from secondary decay. PMID:18650540

  15. Degradation, Fatigue, and Failure of Resin Dental Composite Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Drummond, J.L.

    The intent of this article is to review the numerous factors that affect the mechanical properties of particle- or fiber-filler-containing indirect dental resin composite materials. The focus will be on the effects of degradation due to aging in different media, mainly water and water and ethanol, cyclic loading, and mixed-mode loading on flexure strength and fracture toughness. Several selected papers will be examined in detail with respect to mixed and cyclic loading, and 3D tomography with multi-axial compression specimens. The main cause of failure, for most dental resin composites, is the breakdown of the resin matrix and/or the interface betweenmore » the filler and the resin matrix. In clinical studies, it appears that failure in the first 5 years is a restoration issue (technique or material selection); after that time period, failure most often results from secondary decay.« less

  16. The Relationships Between Internal and External Measures of Training Load and Intensity in Team Sports: A Meta-Analysis.

    PubMed

    McLaren, Shaun J; Macpherson, Tom W; Coutts, Aaron J; Hurst, Christopher; Spears, Iain R; Weston, Matthew

    2018-03-01

    The associations between internal and external measures of training load and intensity are important in understanding the training process and the validity of specific internal measures. We aimed to provide meta-analytic estimates of the relationships, as determined by a correlation coefficient, between internal and external measures of load and intensity during team-sport training and competition. A further aim was to examine the moderating effects of training mode on these relationships. We searched six electronic databases (Scopus, Web of Science, PubMed, MEDLINE, SPORTDiscus, CINAHL) for original research articles published up to September 2017. A Boolean search phrase was created to include search terms relevant to team-sport athletes (population; 37 keywords), internal load (dependent variable; 35 keywords), and external load (independent variable; 81 keywords). Articles were considered for meta-analysis when a correlation coefficient describing the association between at least one internal and one external measure of session load or intensity, measured in the time or frequency domain, was obtained from team-sport athletes during normal training or match-play (i.e., unstructured observational study). The final data sample included 122 estimates from 13 independent studies describing 15 unique relationships between three internal and nine external measures of load and intensity. This sample included 295 athletes and 10,418 individual session observations. Internal measures were session ratings of perceived exertion (sRPE), sRPE training load (sRPE-TL), and heart-rate-derived training impulse (TRIMP). External measures were total distance (TD), the distance covered at high and very high speeds (HSRD ≥ 13.1-15.0 km h -1 and VHSRD ≥ 16.9-19.8 km h -1 , respectively), accelerometer load (AL), and the number of sustained impacts (Impacts > 2-5 G). Distinct training modes were identified as either mixed (reference condition), skills, metabolic, or neuromuscular. Separate random effects meta-analyses were conducted for each dataset (n = 15) to determine the pooled relationships between internal and external measures of load and intensity. The moderating effects of training mode were examined using random-effects meta-regression for datasets with at least ten estimates (n = 4). Magnitude-based inferences were used to interpret analyses outcomes. During all training modes combined, the external load relationships for sRPE-TL were possibly very large with TD [r = 0.79; 90% confidence interval (CI) 0.74 to 0.83], possibly large with AL (r = 0.63; 90% CI 0.54 to 0.70) and Impacts (r = 0.57; 90% CI 0.47 to 0.64), and likely moderate with HSRD (r = 0.47; 90% CI 0.32 to 0.59). The relationship between TRIMP and AL was possibly large (r = 0.54; 90% CI 0.40 to 0.66). All other relationships were unclear or not possible to infer (r range 0.17-0.74, n = 10 datasets). Between-estimate heterogeneity [standard deviations (SDs) representing unexplained variation; τ] in the pooled internal-external relationships were trivial to extremely large for sRPE (τ range = 0.00-0.47), small to large for sRPE-TL (τ range = 0.07-0.31), and trivial to moderate for TRIMP (τ range= 0.00-0.17). The internal-external load relationships during mixed training were possibly very large for sRPE-TL with TD (r = 0.82; 90% CI 0.75 to 0.87) and AL (r = 0.81; 90% CI 0.74 to 0.86), and TRIMP with AL (r = 0.72; 90% CI 0.55 to 0.84), and possibly large for sRPE-TL with HSRD (r = 0.65; 90% CI 0.44 to 0.80). A reduction in these correlation magnitudes was evident for all other training modes (range of the change in r when compared with mixed training - 0.08 to - 0.58), with these differences being unclear to possibly large. Training mode explained 24-100% of the between-estimate variance in the internal-external load relationships. Measures of internal load derived from perceived exertion and heart rate show consistently positive associations with running- and accelerometer-derived external loads and intensity during team-sport training and competition, but the magnitude and uncertainty of these relationships are measure and training mode dependent.

  17. Three-dimensional effects in interfacial crack propagation

    NASA Astrophysics Data System (ADS)

    Liechti, K. M.; Chai, Y.-S.; Liang, Y.-M.

    1992-09-01

    The paper describes the use of crack-opening interferometry for examining the variation in normal crack-opening displacements (NCOD) along the front of an interfacial crack in an edge-cracked bimaterial strip under biaxial loading. For the glass/epoxy combination considered here, the crack front was concave in the direction of crack growth, in contrast to previous observations with a glass/polyurethane/glass sandwich specimen and cracks in homogeneous materials. The NCOD were greatest in the interior of the specimen for all mode-mixes considered and the exponents in a power-law fit of NCOD versus distance from the crack front decreased toward the free surface. The exponents varied with mode-mix, suggesting that interfacial crack-front geometries could be similarly affected.

  18. Skin-Stiffener Debond Prediction Based on Computational Fracture Analysis

    NASA Technical Reports Server (NTRS)

    Krueger, Ronald; Minguet, Pierre J.; Gates, Tom (Technical Monitor)

    2005-01-01

    Interlaminar fracture mechanics has proven useful for characterizing the onset of delaminations in composites and has been used with limited success primarily to investigate onset in fracture toughness specimens and laboratory size coupon type specimens. Future acceptance of the methodology by industry and certification authorities however, requires the successful demonstration of the methodology on structural level. For this purpose a panel was selected that is reinforced with stringers. Shear loading causes the panel to buckle and the resulting out-of-plane deformations initiate skin/stringer separation at the location of an embedded defect. For finite element analysis, the panel and surrounding load fixture were modeled with shell elements. A small section of the stringer foot and the panel in the vicinity of the embedded defect were modeled with a local 3D solid model. Across the width of the stringer foot the mixed-mode strain energy release rates were calculated using the virtual crack closure technique. A failure index was calculated by correlating the results with the mixed-mode failure criterion of the graphite/epoxy material. For small applied loads the failure index is well below one across the entire width. With increasing load the failure index approaches one first near the edge of the stringer foot from which delamination is expected to grow. With increasing delamination lengths the buckling pattern of the panel changes and the failure index increases which suggests that rapid delamination growth from the initial defect is to be expected.

  19. Directional stability of crack propagation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Streit, R.D.; Finnie, I.

    Despite many alternative models, the original Erdogan and Sih (1963) hypothesis that a crack will grow in the direction perpendicular to the maximum circumferential stress sigma/sub theta/ is seen to be adequate for predicting the angle of crack growth under the condition of mixed mode loading. Their predictions, which were based on the singularity terms in the series expansion for the Mode I and Mode II stress fields, can be improved if the second term in the series is also included. Although conceptually simple, their predictions of the crack growth direction fit very closely to the data obtained from manymore » sources.« less

  20. Modeling Delamination in Postbuckled Composite Structures Under Static and Fatigue Loads

    NASA Technical Reports Server (NTRS)

    Bisagni, Chiara; Brambilla, Pietro; Bavila, Carlos G.

    2013-01-01

    The ability of the Abaqus progressive Virtual Crack Closure Technique (VCCT) to model delamination in composite structures was investigated for static, postbuckling, and fatigue loads. Preliminary evaluations were performed using simple Double Cantilever Beam (DCB) and Mixed-Mode Bending (MMB) specimens. The nodal release sequences that describe the propagation of the delamination front were investigated. The effect of using a sudden or a gradual nodal release was evaluated by considering meshes aligned with the crack front as well as misaligned meshes. Fatigue simulations were then performed using the Direct Cyclic Fatigue (DCF) algorithm. It was found that in specimens such as the DCB, which are characterized by a nearly linear response and a pure fracture mode, the algorithm correctly predicts the Paris Law rate of propagation. However, the Abaqus DCF algorithm does not consider different fatigue propagation laws in different fracture modes. Finally, skin/stiffener debonding was studied in an aircraft fuselage subcomponent in which debonding occurs deep into post-buckling deformation. VCCT was shown to be a robust tool for estimating the onset propagation. However, difficulties were found with the ability of the current implementation of the Abaqus progressive VCCT to predict delamination propagation within structures subjected to postbuckling deformations or fatigue loads.

  1. Fracture toughness determination using spiral-grooved cylindrical specimen and pure torsional loading

    DOEpatents

    Wang, Jy-An; Liu, Kenneth C.

    2003-07-08

    A method for determining fracture toughness K.sub.IC of materials ranging from metallic alloys, brittle ceramics and their composites, and weldments. A cylindrical specimen having a helical V-groove with a 45.degree. pitch is subjected to pure torsion. This loading configuration creates a uniform tensile-stress crack-opening mode, and a transverse plane-strain state along the helical groove. The full length of the spiral groove is equivalent to the thickness of a conventional compact-type specimen. K.sub.IC values are determined from the fracture torque and crack length measured from the test specimen using a 3-D finite element program (TOR3D-KIC) developed for the purpose. In addition, a mixed mode (combined tensile and shear stress mode) fracture toughness value can be determined by varying the pitch of the helical groove. Since the key information needed for determining the K.sub.IC value is condensed in the vicinity of the crack tip, the specimen can be significantly miniaturized without the loss of generality.

  2. A Method for Calculating Strain Energy Release Rates in Preliminary Design of Composite Skin/Stringer Debonding Under Multi-Axial Loading

    NASA Technical Reports Server (NTRS)

    Krueger, Ronald; Minguet, Pierre J.; OBrien, T. Kevin

    1999-01-01

    Three simple procedures were developed to determine strain energy release rates, G, in composite skin/stringer specimens for various combinations of unaxial and biaxial (in-plane/out-of-plane) loading conditions. These procedures may be used for parametric design studies in such a way that only a few finite element computations will be necessary for a study of many load combinations. The results were compared with mixed mode strain energy release rates calculated directly from nonlinear two-dimensional plane-strain finite element analyses using the virtual crack closure technique. The first procedure involved solving three unknown parameters needed to determine the energy release rates. Good agreement was obtained when the external loads were used in the expression derived. This superposition technique was only applicable if the structure exhibits a linear load/deflection behavior. Consequently, a second technique was derived which was applicable in the case of nonlinear load/deformation behavior. The technique involved calculating six unknown parameters from a set of six simultaneous linear equations with data from six nonlinear analyses to determine the energy release rates. This procedure was not time efficient, and hence, less appealing. A third procedure was developed to calculate mixed mode energy release rates as a function of delamination lengths. This procedure required only one nonlinear finite element analysis of the specimen with a single delamination length to obtain a reference solution for the energy release rates and the scale factors. The delamination was extended in three separate linear models of the local area in the vicinity of the delamination subjected to unit loads to obtain the distribution of G with delamination lengths. This set of sub-problems was Although additional modeling effort is required to create the sub- models, this local technique is efficient for parametric studies.

  3. Application of Benchmark Examples to Assess the Single and Mixed-Mode Static Delamination Propagation Capabilities in ANSYS

    NASA Technical Reports Server (NTRS)

    Krueger, Ronald

    2012-01-01

    The application of benchmark examples for the assessment of quasi-static delamination propagation capabilities is demonstrated for ANSYS. The examples are independent of the analysis software used and allow the assessment of the automated delamination propagation in commercial finite element codes based on the virtual crack closure technique (VCCT). The examples selected are based on two-dimensional finite element models of Double Cantilever Beam (DCB), End-Notched Flexure (ENF), Mixed-Mode Bending (MMB) and Single Leg Bending (SLB) specimens. First, the quasi-static benchmark examples were recreated for each specimen using the current implementation of VCCT in ANSYS . Second, the delamination was allowed to propagate under quasi-static loading from its initial location using the automated procedure implemented in the finite element software. Third, the load-displacement relationship from a propagation analysis and the benchmark results were compared, and good agreement could be achieved by selecting the appropriate input parameters. The benchmarking procedure proved valuable by highlighting the issues associated with choosing the input parameters of the particular implementation. Overall the results are encouraging, but further assessment for three-dimensional solid models is required.

  4. Mixed H2/H∞ pitch control of wind turbine with a Markovian jump model

    NASA Astrophysics Data System (ADS)

    Lin, Zhongwei; Liu, Jizhen; Wu, Qiuwei; Niu, Yuguang

    2018-01-01

    This paper proposes a Markovian jump model and the corresponding H2/H∞ control strategy for the wind turbine driven by the stochastic switching wind speed, which can be used to regulate the generator speed in order to harvest the rated power while reducing the fatigue loads on the mechanical side of wind turbine. Through sampling the low-frequency wind speed data into separate intervals, the stochastic characteristic of the steady wind speed can be represented as a Markov process, while the high-frequency wind speed in the each interval is regarded as the disturbance input. Then, the traditional operating points of wind turbine can be divided into separate subregions correspondingly, where the model parameters and the control mode can be fixed in each mode. Then, the mixed H2/H∞ control problem is discussed for such a class of Markovian jump wind turbine working above the rated wind speed to guarantee both the disturbance rejection and the mechanical loads objectives, which can reduce the power volatility and the generator torque fluctuation of the whole transmission mechanism efficiently. Simulation results for a 2 MW wind turbine show the effectiveness of the proposed method.

  5. Mechanical characterization of composite repairs for fiberglass wind turbine blades

    NASA Astrophysics Data System (ADS)

    Chawla, Tanveer Singh

    While in service, wind turbine blades experience various modes of loading. An example is impact loading in the form of hail or bird strikes, which might lead to localized damage or formation of cracks a few plies deep on the blade surface. One of the methods to conduct repairs on wind turbine blades that are damaged while in service is hand lay-up of the repair part after grinding out the damaged portion and some of its surrounding area. The resin used for such repairs usually differs from the parent plate resin in composition and properties such as gel time, viscosity, etc. As a result the properties of the repaired parts are not the same as that of the undamaged blades. Subsequent repetitive loading can be detrimental to weak repairs to such an extent so as to cause delamination at the parent-repair bondline causing the repairs to eventually fall off the blade. Thus the strength and toughness of the repair are of critical importance. Initial part of this work consists of an effort to increase repair strength by identifying an optimum hand layup repair resin for fiberglass wind turbine blades currently being manufactured by a global company. As delamination of the repair from the parent blade is a major concern and unidirectional glass fibers along with a polymer resin are used to manufacture blades under consideration, testing method detailed in ASTM D 5528 (Test Method for Mode I Interlaminar Fracture Toughness of Unidirectional Fiber-Reinforced Polymer Matrix Composites) was followed to determine propagation fracture toughness values of the prospective vinyl ester repair resin candidates. These values were compared to those for a base polyester repair resin used by the company. Experimental procedure and results obtained from the above mentioned testing using double cantilever beam (DCB) specimens are detailed. Three new repair resins were shortlisted through mode I testing. It was also found that variation in the depth of the ground top ply of the parent part affects the propagation fracture toughness values of the repair. Repairs conducted on surfaces with partially ground top plies possess higher fracture toughness values than those conducted on surfaces with complete top plies ground off. The three top repair resin candidates were then evaluated against the base repair resin under fatigue loading. The specimen configuration and testing method were chosen so as to be able to test hand layup repairs under tension -- tension cyclic loading. It was observed that all three new repair resins perform better than the base repair resin. The selection of the optimum repair resin was based on results from mode I and fatigue testing. Global manufacturing regulations and standards were also of prime concern. The final new repair resin is being used by the company in all of its plants over the globe. The balance of this work involves study of the effect of mixed mode I -- mode II loading on the strength of repairs conducted on fiber reinforced composite parts using hand lay-up technique. The specimens for this part were similar to those manufactured for mode I testing but with different dimensions and layup. They were made and tested in accordance with ASTM D 6671 (Standard Test Method for Mixed Mode I -- Mode II Interlaminar Fracture Toughness of Unidirectional Fiber Reinforced Polymer Matrix Composites). Comparison was made between the fracture toughness of the above chosen optimum repair resin and the base repair resin. At least two levels of mode mixture GII/G (Mode II fracture toughness / Mode I and II fracture toughness) were examined. Also, two levels of grinding were considered (complete ply vs. partial ply ground off) in order to establish the influence of varying top-ply grinding depths on the strength of hand layup repairs conducted on fiberglass composite structures. The results of this work have the potential to improve the repair process for current fiberglass wind turbine blades.

  6. Implementation of equivalent domain integral method in the two-dimensional analysis of mixed mode problems

    NASA Technical Reports Server (NTRS)

    Raju, I. S.; Shivakumar, K. N.

    1989-01-01

    An equivalent domain integral (EDI) method for calculating J-intergrals for two-dimensional cracked elastic bodies is presented. The details of the method and its implementation are presented for isoparametric elements. The total and product integrals consist of the sum of an area of domain integral and line integrals on the crack faces. The line integrals vanish only when the crack faces are traction free and the loading is either pure mode 1 or pure mode 2 or a combination of both with only the square-root singular term in the stress field. The EDI method gave accurate values of the J-integrals for two mode I and two mixed mode problems. Numerical studies showed that domains consisting of one layer of elements are sufficient to obtain accurate J-integral values. Two procedures for separating the individual modes from the domain integrals are presented. The procedure that uses the symmetric and antisymmetric components of the stress and displacement fields to calculate the individual modes gave accurate values of the integrals for all problems analyzed. The EDI method when applied to a problem of an interface crack in two different materials showed that the mode 1 and mode 2 components are domain dependent while the total integral is not. This behavior is caused by the presence of the oscillatory part of the singularity in bimaterial crack problems. The EDI method, thus, shows behavior similar to the virtual crack closure method for bimaterial problems.

  7. Microcracking, microcrack-induced delamination, and longitudinal splitting of advanced composite structures

    NASA Technical Reports Server (NTRS)

    Nairn, John A.

    1992-01-01

    A combined analytical and experimental study was conducted to analyze microcracking, microcrack-induced delamination, and longitudinal splitting in polymer matrix composites. Strain energy release rates, calculated by a variational analysis, were used in a failure criterion to predict microcracking. Predictions and test results were compared for static, fatigue, and cyclic thermal loading. The longitudinal splitting analysis accounted for the effects of fiber bridging. Test data are analyzed and compared for longitudinal splitting and delamination under mixed-mode loading. This study emphasizes the importance of using fracture mechanics analyses to understand the complex failure processes that govern composite strength and life.

  8. Effect of loading modes and hydrogen on fracture toughness of a low activation ferritic/martensitic stainless steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, H.; Jones, R.H.; Gelles, D.S.

    1995-12-31

    Various mixed-mode I/III critical J-integrals (J{sub TQ}) were examined for a low activation ferritic/martensitic stainless steel (F-82H) at ambient temperature. A determination of J{sub TQ} was made using modified compact-tension specimens. Different ratios of tension/shear stress were achieved by varying the principal axis of the crack plane between 0 and 55 degrees from the load line. A specimen with 0 degree crack angle was the same as a standard mode 1 compact tension specimen. J{sub IIIQ} was determined using triple-pantleg like specimens. The results showed that F-82H steel was a tough steel. Both J{sub IQ} and J{sub IIIQ} were aboutmore » 500 kJ/m{sup 2}, and the mode 1 tearing modulus (dJ{sub I}/da) was about (360 mJ/m{sup 3}). However, J{sub TQ} and mixed-mode tearing modulus (dJ{sub T}/da) values varied with the crack angles and were lower than their mode I and mode III counterparts. Both the minimum J{sub TQ} and dJ{sub T}/da values occurred at a crack angle between 35 and 55 degrees [P{sub iii}/(P{sub iii} + P{sub i}) = 0.4 and 0.6]. Effects of hydrogen (H) on the J{sub TQ} values were also examined at ambient temperature. The specimens were charged with H at a H{sub 2} gas pressure of 138 MPa at 300 C for two weeks, which resulted in a H content of 4 ppm(wt). Results showed that H decreased overall J{sub TQ} and dJ{sub T}/da values from those without H. However, the presence of H did not change the dependence of J{sub TQ} and dJ{sub T}/da values on the crack angles. Both J{sub IQ} and dJ{sub I}/da exhibited the highest relative values. The minimum values of both J{sub TQ} and dJ{sub T}/da occurred at a crack angle between 35 and 55{degree}. The J{sub min} with H was 100 kJ/m{sup 2}, only 25% of J{sub IQ} without H. The morphology of fracture surfaces was consistent with the change of J{sub TQ} and dJ{sub T}/da values. A mechanism of the combined effect of H and mixed-mode on J{sub TQ} and dJ{sub T}/da is discussed.« less

  9. Extraction of acidic degradation products of organophosphorus chemical warfare agents. Comparison between silica and mixed-mode strong anion-exchange cartridges.

    PubMed

    Kanaujia, Pankaj K; Pardasani, Deepak; Gupta, A K; Kumar, Rajesh; Srivastava, R K; Dubey, D K

    2007-08-17

    The analysis of alkyl alkylphosphonic acids (AAPAs) and alkylphosphonic acids (APAs), the hydrolyzed products of nerve agents, constitutes an important aspect for verifying the compliance to the Chemical weapons convention (CWC). This work devotes on the development of solid-phase extraction method using polymeric mixed-mode strong anion-exchange (Oasis MAX) cartridges for extraction of AAPAs and APAs from water. The extracted analytes were analyzed by GC-MS under full scan and selected ion monitoring mode. The extraction efficiencies of MAX and silica-based anion-exchange cartridges were compared, and results revealed that MAX sorbents yielded better recoveries. Extraction parameters, such as loading capacity, extraction solvent, its volume, and washing solvent were optimized. Best recoveries were obtained using 1 mL of acidic methanol (0.1 M), and limits of detection could be achieved up to 5 x 10(-4) microg mL(-1) (in SIM) and 0.05 microg mL(-1) in full scan mode. The method was successfully employed for the detection and identification of alkylphosphonic acids present in soil sample sent by the Organization for Prohibition of Chemical Weapons (OPCW) in the official proficiency tests.

  10. Improved purification of immunoglobulin G from plasma by mixed-mode chromatography.

    PubMed

    Chai, Dong-Sheng; Sun, Yan; Wang, Xiao-Ning; Shi, Qing-Hong

    2014-12-01

    Efficient loading of immunoglobulin G in mixed-mode chromatography is often a serious bottleneck in the chromatographic purification of immunoglobulin G. In this work, a mixed-mode ligand, 4-(1H-imidazol-1-yl) aniline, was coupled to Sepharose Fast Flow to fabricate AN SepFF adsorbents with ligand densities of 15-64 mmol/L, and the chromatographic performances of these adsorbents were thoroughly investigated to identify a feasible approach to improve immunoglobulin G purification. The results indicate that a critical ligand density exists for immunoglobulin G on the AN SepFF adsorbents. Above the critical ligand density, the adsorbents showed superior selectivity to immunoglobulin G at high salt concentrations, and also exhibited much higher dynamic binding capacities. For immunoglobulin G purification, both the yield and binding capacity increased with adsorbent ligand density along with a decrease in purity. It is difficult to improve the binding capacity, purity, and yield of immunoglobulin G simultaneously in AN SepFF chromatography. By using tandem AN SepFF chromatography, a threefold increase in binding capacity as well as high purity and yield of immunoglobulin G were achieved. Therefore, the tandem chromatography demonstrates that AN SepFF adsorbent is a practical and feasible alternative to MEP HyperCel adsorbents for immunoglobulin G purification. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Numerical Analysis of Crack Tip Plasticity and History Effects under Mixed Mode Conditions

    NASA Astrophysics Data System (ADS)

    Lopez-Crespo, Pablo; Pommier, Sylvie

    The plastic behaviour in the crack tip region has a strong influence on the fatigue life of engineering components. In general, residual stresses developed as a consequence of the plasticity being constrained around the crack tip have a significant role on both the direction of crack propagation and the propagation rate. Finite element methods (FEM) are commonly employed in order to model plasticity. However, if millions of cycles need to be modelled to predict the fatigue behaviour of a component, the method becomes computationally too expensive. By employing a multiscale approach, very precise analyses computed by FEM can be brought to a global scale. The data generated using the FEM enables us to identify a global cyclic elastic-plastic model for the crack tip region. Once this model is identified, it can be employed directly, with no need of additional FEM computations, resulting in fast computations. This is done by partitioning local displacement fields computed by FEM into intensity factors (global data) and spatial fields. A Karhunen-Loeve algorithm developed for image processing was employed for this purpose. In addition, the partitioning is done such as to distinguish into elastic and plastic components. Each of them is further divided into opening mode and shear mode parts. The plastic flow direction was determined with the above approach on a centre cracked panel subjected to a wide range of mixed-mode loading conditions. It was found to agree well with the maximum tangential stress criterion developed by Erdogan and Sih, provided that the loading direction is corrected for residual stresses. In this approach, residual stresses are measured at the global scale through internal intensity factors.

  12. Durability of polymer/metal interfaces under cyclic loading

    NASA Astrophysics Data System (ADS)

    Du, Tianbao

    Fatigue crack growth along metal/epoxy interface was examined in an aqueous environment and under mixed-mode conditions. A stress corrosion cracking mechanism was identified in this process. The fatigue crack growth rate in an aqueous environment was increased by several orders of magnitude and the fatigue threshold decreased by a factor of 10. The loss of adhesion in the aqueous environment was induced by the hydration of the surface oxide which resulted in a hydroxide with poor adhesion to the substrate metal. Self-assembled monolayer of long chain alkyl phosphonic acid and amino phosphonic acid were synthesized to enhance the adhesion and improve the durability of Al/epoxy interfacial bonding system. The same approach was taken to promote adhesion between copper and epoxy, where a two-component coupling system of 11-mercapto-1-undercanol and 3-aminopropyltriethoxysilane provided the most significant improvement in the copper/epoxy adhesion. The mixed-mode was applied by a piezoelectric actuator. Subcritical crack growth was observed along the epoxy/aluminum interface and the growth rate was found to depend on the magnitude of the applied electric field. Kinetics of the crack growth was correlated with the piezoelectric driving force. The resulting crack growth behavior was compared with the results from the conventional mechanical testing technique. Large differences were found between these two methods. Using this newly developed technique, effects of loading mode and frequency were studied. The fatigue resistance was found to increase with the mode II component and was expressed as a function of the KII/K I ratio. A strong frequency effect was observed for the subcritical crack growth along the Al/Epoxy interface, their fatigue resistance increased with the testing frequency.

  13. Aggregate Effect on the Concrete Cone Capacity of an Undercut Anchor under Quasi-Static Tensile Load

    PubMed Central

    Marcon, Marco; Ninčević, Krešimir; Boumakis, Ioannis; Czernuschka, Lisa-Marie

    2018-01-01

    In the last decades, fastening systems have become an essential part of the construction industry. Post-installed mechanical anchors are frequently used in concrete members to connect them with other load bearing structural members, or to attach appliances. Their performance is limited by the concrete related failure modes which are highly influenced by the concrete mix design. This paper aims at investigating the effect that different aggregates used in the concrete mix have on the capacity of an undercut anchor under tensile quasi-static loading. Three concrete batches were cast utilising three different aggregate types. For two concrete ages (28 and 70 days), anchor tensile capacity and concrete properties were obtained. Concrete compressive strength, fracture energy and elastic modulus are used to normalize and compare the undercut anchor concrete tensile capacity employing some of the most widely used prediction models. For a more insightful comparison, a statistical method that yields also scatter information is introduced. Finally, the height and shape of the concrete cones are compared by highly precise and objective photogrammetric means. PMID:29723972

  14. Aggregate Effect on the Concrete Cone Capacity of an Undercut Anchor under Quasi-Static Tensile Load.

    PubMed

    Marcon, Marco; Ninčević, Krešimir; Boumakis, Ioannis; Czernuschka, Lisa-Marie; Wan-Wendner, Roman

    2018-05-01

    In the last decades, fastening systems have become an essential part of the construction industry. Post-installed mechanical anchors are frequently used in concrete members to connect them with other load bearing structural members, or to attach appliances. Their performance is limited by the concrete related failure modes which are highly influenced by the concrete mix design. This paper aims at investigating the effect that different aggregates used in the concrete mix have on the capacity of an undercut anchor under tensile quasi-static loading. Three concrete batches were cast utilising three different aggregate types. For two concrete ages (28 and 70 days), anchor tensile capacity and concrete properties were obtained. Concrete compressive strength, fracture energy and elastic modulus are used to normalize and compare the undercut anchor concrete tensile capacity employing some of the most widely used prediction models. For a more insightful comparison, a statistical method that yields also scatter information is introduced. Finally, the height and shape of the concrete cones are compared by highly precise and objective photogrammetric means.

  15. Dynamic divertor control using resonant mixed toroidal harmonic magnetic fields during ELM suppression in DIII-D

    NASA Astrophysics Data System (ADS)

    Jia, M.; Sun, Y.; Paz-Soldan, C.; Nazikian, R.; Gu, S.; Liu, Y. Q.; Abrams, T.; Bykov, I.; Cui, L.; Evans, T.; Garofalo, A.; Guo, W.; Gong, X.; Lasnier, C.; Logan, N. C.; Makowski, M.; Orlov, D.; Wang, H. H.

    2018-05-01

    Experiments using Resonant Magnetic Perturbations (RMPs), with a rotating n = 2 toroidal harmonic combined with a stationary n = 3 toroidal harmonic, have validated predictions that divertor heat and particle flux can be dynamically controlled while maintaining Edge Localized Mode (ELM) suppression in the DIII-D tokamak. Here, n is the toroidal mode number. ELM suppression over one full cycle of a rotating n = 2 RMP that was mixed with a static n = 3 RMP field has been achieved. Prominent heat flux splitting on the outer divertor has been observed during ELM suppression by RMPs in low collisionality regime in DIII-D. Strong changes in the three dimensional heat and particle flux footprint in the divertor were observed during the application of the mixed toroidal harmonic magnetic perturbations. These results agree well with modeling of the edge magnetic field structure using the TOP2D code, which takes into account the plasma response from the MARS-F code. These results expand the potential effectiveness of the RMP ELM suppression technique for the simultaneous control of divertor heat and particle load required in ITER.

  16. Fatigue damage prognosis of internal delamination in composite plates under cyclic compression loadings using affine arithmetic as uncertainty propagation tool

    NASA Astrophysics Data System (ADS)

    Gbaguidi, Audrey J.-M.

    Structural health monitoring (SHM) has become indispensable for reducing maintenance costs and increasing the in-service capacity of a structure. The increased use of lightweight composite materials in aircraft structures drastically increased the effects of fatigue induced damage on their critical structural components and thus the necessity to predict the remaining life of those components. Damage prognosis, one of the least investigated fields in SHM, uses the current damage state of the system to forecast its future performance by estimating the expected loading environments. A successful damage prediction model requires the integration of technologies in areas like measurements, materials science, mechanics of materials, and probability theories, but most importantly the quantification of uncertainty in all these areas. In this study, Affine Arithmetic is used as a method for incorporating the uncertainties due to the material properties into the fatigue life prognosis of composite plates subjected to cyclic compressive loadings. When loadings are compressive in nature, the composite plates undergo repeated buckling-unloading of the delaminated layer which induces mixed modes I and II states of stress at the tip of the delamination in the plates. The Kardomateas model-based prediction law is used to predict the growth of the delamination, while the integration of the effects of the uncertainties for modes I and II coefficients in the fatigue life prediction model is handled using Affine arithmetic. The Mode I and Mode II interlaminar fracture toughness and fatigue characterization of the composite plates are first experimentally studied to obtain the material coefficients and fracture toughness, respectively. Next, these obtained coefficients are used in the Kardomateas law to predict the delamination lengths in the composite plates while using Affine Arithmetic to handle their uncertainties. At last, the fatigue characterization of the composite plates during compressive-buckling loadings is experimentally studied, and the delamination lengths obtained are compared with the predicted values to check the performance of Affine Arithmetic as an uncertainty propagation tool.

  17. Development of a numerical procedure for mixed mode K-solutions and fatigue crack growth in FCC single crystal superalloys

    NASA Astrophysics Data System (ADS)

    Ranjan, Srikant

    2005-11-01

    Fatigue-induced failures in aircraft gas turbine and rocket engine turbopump blades and vanes are a pervasive problem. Turbine blades and vanes represent perhaps the most demanding structural applications due to the combination of high operating temperature, corrosive environment, high monotonic and cyclic stresses, long expected component lifetimes and the enormous consequence of structural failure. Single crystal nickel-base superalloy turbine blades are being utilized in rocket engine turbopumps and jet engines because of their superior creep, stress rupture, melt resistance, and thermomechanical fatigue capabilities over polycrystalline alloys. These materials have orthotropic properties making the position of the crystal lattice relative to the part geometry a significant factor in the overall analysis. Computation of stress intensity factors (SIFs) and the ability to model fatigue crack growth rate at single crystal cracks subject to mixed-mode loading conditions are important parts of developing a mechanistically based life prediction for these complex alloys. A general numerical procedure has been developed to calculate SIFs for a crack in a general anisotropic linear elastic material subject to mixed-mode loading conditions, using three-dimensional finite element analysis (FEA). The procedure does not require an a priori assumption of plane stress or plane strain conditions. The SIFs KI, KII, and KIII are shown to be a complex function of the coupled 3D crack tip displacement field. A comprehensive study of variation of SIFs as a function of crystallographic orientation, crack length, and mode-mixity ratios is presented, based on the 3D elastic orthotropic finite element modeling of tensile and Brazilian Disc (BD) specimens in specific crystal orientations. Variation of SIF through the thickness of the specimens is also analyzed. The resolved shear stress intensity coefficient or effective SIF, Krss, can be computed as a function of crack tip SIFs and the resolved shear stress on primary slip planes. The maximum value of Krss and DeltaKrss was found to determine the crack growth direction and the fatigue crack growth rate respectively. The fatigue crack driving force parameter, DeltaK rss, forms an important multiaxial fatigue damage parameter that can be used to predict life in superalloy components.

  18. Processing of aerosol particles within the Habshan pollution plume

    NASA Astrophysics Data System (ADS)

    Semeniuk, T. A.; Bruintjes, R.; Salazar, V.; Breed, D.; Jensen, T.; Buseck, P. R.

    2015-03-01

    The Habshan industrial site in the United Arab Emirates produces a regional-scale pollution plume associated with oil and gas processing, discharging high loadings of sulfates and chlorides into the atmosphere, which interact with the ambient aerosol population. Aerosol particles and trace gas chemistry at this site were studied on two flights in the summer of 2002. Measurements were collected along vertical plume profiles to show changes associated with atmospheric processing of particle and gas components. Close to the outlet stack, particle concentrations were over 10,000 cm-3, dropping to <2000 cm-3 in more dilute plume around 1500 m above the stack. Particles collected close to the stack and within the dilute plume were individually measured for size, morphology, composition, and mixing state using transmission electron microscopy coupled with energy-dispersive X-ray spectroscopy. Close to the stack, most coarse particles consisted of mineral dust and NaCl crystals from burning oil brines, while sulfate droplets dominated the fine mode. In more dilute plume, at least 1500 m above the stack, the particle spectrum was more diverse, with a significant increase in internally mixed particle types. Dilute plume samples consisted of coarse NaCl/silicate aggregates or NaCl-rich droplets, often with a sulfate component, while fine-fraction particles were of mixed cation sulfates, also internally mixed with nanospherical soot or silicates. Thus, both chloride and sulfate components of the pollution plume rapidly reacted with ambient mineral dust to form coated and aggregate particles, enhancing particle size, hygroscopicity, and reactivity of the coarse mode. The fine-fraction sulfate-bearing particles formed in the plume contribute to regional transport of sulfates, while coarse sulfate-bearing fractions locally reduced the SO2 loading through sedimentation. The chloride- and sulfate-bearing internally mixed particles formed in the plume markedly changed the reflectivity and scattering properties of the ambient aerosol population, as well as its hygroscopic and ice nucleation properties.

  19. Exposure to fine particulate, black carbon, and particle number concentration in transportation microenvironments

    NASA Astrophysics Data System (ADS)

    Morales Betancourt, R.; Galvis, B.; Balachandran, S.; Ramos-Bonilla, J. P.; Sarmiento, O. L.; Gallo-Murcia, S. M.; Contreras, Y.

    2017-05-01

    This research determined intake dose of fine particulate matter (PM2.5), equivalent black carbon (eBC), and number of sub-micron particles (Np) for commuters in Bogotá, Colombia. Doses were estimated through measurements of exposure concentration, a surrogate of physical activity, as well as travel times and speeds. Impacts of travel mode, traffic load, and street configuration on dose and exposure were explored. Three road segments were selected because of their different traffic loads and composition, and dissimilar street configuration. The transport modes considered include active modes (walking and cycling) and motorized modes (bus, car, taxi, and motorcycle). Measurements were performed simultaneously in the available modes at each road segment. High average eBC concentrations were observed throughout the campaign, ranging from 20 to 120 μgm-3 . Commuters in motorized modes experienced significantly higher exposure concentrations than pedestrians and bicyclists. The highest average concentrations of PM2.5, eBC , and Np were measured inside the city's Bus Rapid Transit (BRT) system vehicles. Pedestrians and bicycle users in an open street configuration were exposed to the lowest average concentrations of PM2.5 and eBC , six times lower than those experienced by commuters using the BRT in the same street segment. Pedestrians experienced the highest particulate matter intake dose in the road segments studied, despite being exposed to lower concentrations than commuters in motorized modes. Average potential dose of PM2.5 and eBC per unit length traveled were nearly three times higher for pedestrians in a street canyon configuration compared to commuters in public transport. Slower travel speed and elevated inhalation rates dominate PM dose for pedestrians. The presence of dedicated bike lanes on sidewalks has a significant impact on reducing the exposure concentration for bicyclists compared to those riding in mixed traffic lanes. This study proposes a simple method to perform loading effect correction for measurements of black carbon using multiple portable aethalometers.

  20. Abutments with reduced diameter for both cement and screw retentions: analysis of failure modes and misfit of abutment-crown-connections after cyclic loading.

    PubMed

    Moris, Izabela Cristina Maurício; Faria, Adriana Cláudia Lapria; Ribeiro, Ricardo Faria; Rodrigues, Renata Cristina Silveira

    2017-04-01

    The aim of this study was to analyze failure modes and misfit of abutments with reduced diameter for both cement and screw retentions after cyclic loading. Forty morse-taper abutment/implant sets of titanium were divided into four groups (N = 10): G4.8S-4.8 abutment with screw-retained crown; G4.8C-4.8 abutment with cemented crown; G3.8S-3.8 abutment with screw-retained crown; and G3.8C-3.8 abutment with cemented crown. Copings were waxed on castable cylinders and cast by oxygen gas flame and injected by centrifugation. After, esthetic veneering ceramic was pressed on these copings for obtaining metalloceramic crowns of upper canine. Cemented crowns were cemented on abutments with provisional cement (Temp Bond NE), and screw-retained crowns were tightened to their abutments with torque recommended by manufacturer (10 N cm). The misfit was measured using a stereomicroscope in a 10× magnification before and after cyclic loading (300,000 cycles). Tests were visually monitored, and failures (decementation, screw loosening and fractures) were registered. Misfit was analyzed by mixed linear model while failure modes by chi-square test (α = 0.05). Cyclic loading affected misfit of 3.8C (P ≤ 0.0001), 3.8S (P = 0.0055) and 4.8C (P = 0.0318), but not of 4.8S (P = 0.1243). No differences were noted between 3.8S with 4.8S before (P = 0.1550) and after (P = 0.9861) cyclic loading, but 3.8C was different from 4.8C only after (P = 0.0015) loading. Comparing different types of retentions at the same diameter abutment, significant difference was noted before and after cyclic loading for 3.8 and 4.8 abutments. Analyzing failure modes, retrievable failures were present at 3.8S and 3.8C groups, while irretrievable were only present at 3.8S. The cyclic loading decreased misfit of cemented and screw-retained crowns on reduced diameter abutments, and misfit of cemented crowns is greater than screw-retained ones. Abutments of reduced diameter failed more than conventional. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  1. Investigation of fretting behaviour in pressure armour layers of flexible pipes

    NASA Astrophysics Data System (ADS)

    Don Rasika Perera, Solangarachchige

    The incidence of fretting damage in the pressure armour wires of flexible pipes used in offshore oil explorations has been investigated. A novel experimental facility which is capable of simulating nub and valley contact conditions of interlocking wire winding with dynamic slip, representative of actual pipe loading, has been developed. The test set-up is equipped with a state of the art data acquisition system and a controller with transducers to measure and control the normal load, slip amplitude and friction force at the contact, in addition to the hoop stress in the wire. Tests were performed with selected loading and the fretted regions were examined using optical microscopy techniques. Results show that the magnitude of contact loading and the slip amplitude have a distinct influence on surface damage. Surface cracks originated from a fretting scar were observed at high contact loads in mixed slip sliding while surface damage predominantly due to wear was observed under gross slip. The position of surface cracks and the wear profile have been related to the contact pressure distribution. The evolution of friction force and surface damage under different slip and normal pressure conditions has been analysed. A fracture mechanics based numerical procedure has been developed to analyse the fretting damage behaviour. A severity parameter is proposed in order to ascertain whether the crack growth is in mode I or mode II cracking. The analysis show the influence of mode II cracking in the early stages of crack growth following which the crack deviates in the mode I direction making mode I the dominant crack propagation mechanism. The crack path determined by the numerical procedure correlates well with the experimental results. A numerical analysis was carried out for the fretting fatigue condition where a cyclic bulk stress superimposes with the friction force. The analysis correlates well with short crack growth behaviour. The analysis confirms that fretting is a significant factor that should be taken into account in design and operation of the pressure armour wires of flexible pipes at high contact pressure if the bulk cyclic load superimposes with the friction force. As predicted by the numerical procedure and further by experimental investigations, the surface cracks initiating on the wire in this condition are self arresting after propagating into a certain depth.

  2. Effect of tooth substrate and porcelain thickness on porcelain veneer failure loads in vitro.

    PubMed

    Ge, Chunling; Green, Chad C; Sederstrom, Dalene A; McLaren, Edward A; Chalfant, James A; White, Shane N

    2017-12-19

    Bonded porcelain veneers are widely used esthetic restorations. High success and survival rates have been reported, but failures do occur. Fractures are the commonest failure mode. Minimally invasive or thin veneers have gained popularity. Increased enamel and porcelain thickness improve the strength of veneers bonded to enamel, but less is known about dentin or mixed substrates. The purpose of this in vitro study was to measure the influences of tooth substrate type (all-enamel, all-dentin, or half-dentin-half-enamel) and veneer thickness on the loads needed to cause initial and catastrophic porcelain veneer failure. Model discoid porcelain veneer specimens of varying thicknesses were bonded to the flattened facial surfaces of incisors with different enamel and dentin tooth substrates, artificially aged, and loaded to failure with a small sphere. Initial and catastrophic fracture events were identified and analyzed statistically and fractographically. Fracture events included initial Hertzian cracks, intermediate radial cracks, and catastrophic gross failure. All specimens retained some porcelain after catastrophic failure. Cement failure occurred at the cement-porcelain interface not at the cement-tooth interface. Porcelain veneers bonded to enamel were substantially stronger and more damage-tolerant than those bonded to dentin or mixed substrates. Increased porcelain thickness substantially raised the loads to catastrophic failure on enamel substrates but only moderately raised the loads to catastrophic failure on dentin or mixed substrates. The veneers bonded to half-dentin-half-enamel behaved remarkably like those bonded wholly to dentin. Porcelain veneers bonded to enamel were substantially stronger and more damage-tolerant than those bonded to dentin or half-enamel-half dentin. Copyright © 2017 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  3. Identification of sudden stiffness changes in the acceleration response of a bridge to moving loads using ensemble empirical mode decomposition

    NASA Astrophysics Data System (ADS)

    Aied, H.; González, A.; Cantero, D.

    2016-01-01

    The growth of heavy traffic together with aggressive environmental loads poses a threat to the safety of an aging bridge stock. Often, damage is only detected via visual inspection at a point when repairing costs can be quite significant. Ideally, bridge managers would want to identify a stiffness change as soon as possible, i.e., as it is occurring, to plan for prompt measures before reaching a prohibitive cost. Recent developments in signal processing techniques such as wavelet analysis and empirical mode decomposition (EMD) have aimed to address this need by identifying a stiffness change from a localised feature in the structural response to traffic. However, the effectiveness of these techniques is limited by the roughness of the road profile, the vehicle speed and the noise level. In this paper, ensemble empirical mode decomposition (EEMD) is applied by the first time to the acceleration response of a bridge model to a moving load with the purpose of capturing sudden stiffness changes. EEMD is more adaptive and appears to be better suited to non-linear signals than wavelets, and it reduces the mode mixing problem present in EMD. EEMD is tested in a variety of theoretical 3D vehicle-bridge interaction scenarios. Stiffness changes are successfully identified, even for small affected regions, relatively poor profiles, high vehicle speeds and significant noise. The latter is due to the ability of EEMD to separate high frequency components associated to sudden stiffness changes from other frequency components associated to the vehicle-bridge interaction system.

  4. On the application of blind source separation for damping estimation of bridges under traffic loading

    NASA Astrophysics Data System (ADS)

    Brewick, P. T.; Smyth, A. W.

    2014-12-01

    The accurate and reliable estimation of modal damping from output-only vibration measurements of structural systems is a continuing challenge in the fields of operational modal analysis (OMA) and system identification. In this paper a modified version of the blind source separation (BSS)-based Second-Order Blind Identification (SOBI) method was used to perform modal damping identification on a model bridge structure under varying loading conditions. The bridge model was created with finite elements and consisted of a series of stringer beams supported by a larger girder. The excitation was separated into two categories: ambient noise and traffic loads with noise modeled with random forcing vectors and traffic simulated with moving loads for cars and partially distributed moving masses for trains. The acceleration responses were treated as the mixed output signals for the BSS algorithm. The modified SOBI method used a windowing technique to maximize the amount of information used for blind identification from the responses. The modified SOBI method successfully found the mode shapes for both types of excitation with strong accuracy, but power spectral densities (PSDs) of the recovered modal responses showed signs of distortion for the traffic simulations. The distortion had an adverse affect on the damping ratio estimates for some of the modes but no correlation could be found between the accuracy of the damping estimates and the accuracy of the recovered mode shapes. The responses and their PSDs were compared to real-world collected data and patterns similar to distortion were observed implying that this issue likely affects real-world estimates.

  5. Mixed-mode fatigue fracture of adhesive joints in harsh environments and nonlinear viscoelastic modeling of the adhesive

    NASA Astrophysics Data System (ADS)

    Arzoumanidis, Alexis Gerasimos

    A four point bend, mixed-mode, reinforced, cracked lap shear specimen experimentally simulated adhesive joints between load bearing composite parts in automotive components. The experiments accounted for fatigue, solvent and temperature effects on a swirled glass fiber composite adherend/urethane adhesive system. Crack length measurements based on compliance facilitated determination of da/dN curves. A digital image processing technique was also utilized to monitor crack growth from in situ images of the side of the specimen. Linear elastic fracture mechanics and finite elements were used to determine energy release rate and mode-mix as a function of crack length for this specimen. Experiments were conducted in air and in a salt water bath at 10, 26 and 90°C. Joints tested in the solvent were fully saturated. In air, both increasing and decreasing temperature relative to 26°C accelerated crack growth rates. In salt water, crack growth rates increased with increasing temperature. Threshold energy release rate is shown to be the most appropriate design criteria for joints of this system. In addition, path of the crack is discussed and fracture surfaces are examined on three length scales. Three linear viscoelastic properties were measured for the neat urethane adhesive. Dynamic tensile compliance (D*) was found using a novel extensometer and results were considerably more accurate and precise than standard DMTA testing. Dynamic shear compliance (J*) was determined using an Arcan specimen. Dynamic Poisson's ratio (nu*) was extracted from strain gage data analyzed to include gage reinforcement. Experiments spanned three frequency decades and isothermal data was shifted by time-temperature superposition to create master curves spanning thirty decades. Master curves were fit to time domain Prony series. Shear compliance inferred from D* and nu* compared well with measured J*, forming a basis for finding the complete time dependent material property matrix for this isotropic material. A constitutive model is introduced which replaces time with internal energy in time-temperature superposition. Internal energy for mechanical loading was calculated from stress history and time domain Prony series representation of compliance. The model also included pressure and volume effects. Ramp loading experiments conducted at strain rates spanning three decades were effectively predicted, but unloading predictions were poor.

  6. Mechanical Behavior of Brittle Rock-Like Specimens with Pre-existing Fissures Under Uniaxial Loading: Experimental Studies and Particle Mechanics Approach

    NASA Astrophysics Data System (ADS)

    Cao, Ri-hong; Cao, Ping; Lin, Hang; Pu, Cheng-zhi; Ou, Ke

    2016-03-01

    Joints and fissures with similar orientation or characteristics are common in natural rocks; the inclination and density of the fissures affect the mechanical properties and failure mechanism of the rock mass. However, the strength, crack coalescence pattern, and failure mode of rock specimens containing multi-fissures have not been studied comprehensively. In this paper, combining similar material testing and discrete element numerical method (PFC2D), the peak strength and failure characteristics of rock-like materials with multi-fissures are explored. Rock-like specimens were made of cement and sand and pre-existing fissures created by inserting steel shims into cement mortar paste and removing them during curing. The peak strength of multi-fissure specimens depends on the fissure angle α (which is measured counterclockwise from horizontal) and fissure number ( N f). Under uniaxial compressional loading, the peak strength increased with increasing α. The material strength was lowest for α = 25°, and highest for α = 90°. The influence of N f on the peak strength depended on α. For α = 25° and 45°, N f had a strong effect on the peak strength, while for higher α values, especially for the 90° sample, there were no obvious changes in peak strength with different N f. Under uniaxial compression, the coalescence modes between the fissures can be classified into three categories: S-mode, T-mode, and M-mode. Moreover, the failure mode can be classified into four categories: mixed failure, shear failure, stepped path failure, and intact failure. The failure mode of the specimen depends on α and N f. The peak strength and failure modes in the numerically simulated and experimental results are in good agreement.

  7. Couple stresses and the fracture of rock.

    PubMed

    Atkinson, Colin; Coman, Ciprian D; Aldazabal, Javier

    2015-03-28

    An assessment is made here of the role played by the micropolar continuum theory on the cracked Brazilian disc test used for determining rock fracture toughness. By analytically solving the corresponding mixed boundary-value problems and employing singular-perturbation arguments, we provide closed-form expressions for the energy release rate and the corresponding stress-intensity factors for both mode I and mode II loading. These theoretical results are augmented by a set of fracture toughness experiments on both sandstone and marble rocks. It is further shown that the morphology of the fracturing process in our centrally pre-cracked circular samples correlates very well with discrete element simulations. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  8. Dynamic Response and Failure Mechanism of Brittle Rocks Under Combined Compression-Shear Loading Experiments

    NASA Astrophysics Data System (ADS)

    Xu, Yuan; Dai, Feng

    2018-03-01

    A novel method is developed for characterizing the mechanical response and failure mechanism of brittle rocks under dynamic compression-shear loading: an inclined cylinder specimen using a modified split Hopkinson pressure bar (SHPB) system. With the specimen axis inclining to the loading direction of SHPB, a shear component can be introduced into the specimen. Both static and dynamic experiments are conducted on sandstone specimens. Given carefully pulse shaping, the dynamic equilibrium of the inclined specimens can be satisfied, and thus the quasi-static data reduction is employed. The normal and shear stress-strain relationships of specimens are subsequently established. The progressive failure process of the specimen illustrated via high-speed photographs manifests a mixed failure mode accommodating both the shear-dominated failure and the localized tensile damage. The elastic and shear moduli exhibit certain loading-path dependence under quasi-static loading but loading-path insensitivity under high loading rates. Loading rate dependence is evidently demonstrated through the failure characteristics involving fragmentation, compression and shear strength and failure surfaces based on Drucker-Prager criterion. Our proposed method is convenient and reliable to study the dynamic response and failure mechanism of rocks under combined compression-shear loading.

  9. Development and Applications of Benchmark Examples for Static Delamination Propagation Predictions

    NASA Technical Reports Server (NTRS)

    Krueger, Ronald

    2013-01-01

    The development and application of benchmark examples for the assessment of quasistatic delamination propagation capabilities was demonstrated for ANSYS (TradeMark) and Abaqus/Standard (TradeMark). The examples selected were based on finite element models of Double Cantilever Beam (DCB) and Mixed-Mode Bending (MMB) specimens. First, quasi-static benchmark results were created based on an approach developed previously. Second, the delamination was allowed to propagate under quasi-static loading from its initial location using the automated procedure implemented in ANSYS (TradeMark) and Abaqus/Standard (TradeMark). Input control parameters were varied to study the effect on the computed delamination propagation. Overall, the benchmarking procedure proved valuable by highlighting the issues associated with choosing the appropriate input parameters for the VCCT implementations in ANSYS® and Abaqus/Standard®. However, further assessment for mixed-mode delamination fatigue onset and growth is required. Additionally studies should include the assessment of the propagation capabilities in more complex specimens and on a structural level.

  10. Operational limit conditions of the spur gears in lubricated modes

    NASA Astrophysics Data System (ADS)

    Benilha, S.; Belarifi, F.

    2018-01-01

    The calculation of the gear teeth resistance, shows the using of a certain number of coefficients determined experimentally and which are accepted by the various international standards. However, this kind of calculation determines the gears by excess material and does not support the tribological parameters of operation. We propose in this work the support of these parameters, to determine the limit operation conditions of the spur gears, using the equivalent geometry. This is represented by two cylinders, which geometrically models of the contact between two teeth of a gear and whose lubrication is generally in mixed lubrication mode. The concept of Mc cool is used to determine the distribution of the load and the friction force, which are distributed in liquid (elastohydrodynamic) and solid domains and interact with each other. The phenomenon of interaction between the two domains is used, to predict the tribological limit conditions of operation. The proposed model is based on the resolution of elastohydrodynamic equations for the determination of load and friction as well as the deduction of mixed friction by tracing the Stribeck curve. This is calculated by the model of the decomposition of the patterns profile of rough surfaces in contacts. The results of non-dimensional calculations allow us to deduce the boundary conditions and can be adapted for any type of gear pair defined according to pre-established operating conditions.

  11. Design, fabrication and performance of a mixed-reactant membraneless micro direct methanol fuel cell stack

    NASA Astrophysics Data System (ADS)

    Abrego-Martínez, J. C.; Moreno-Zuria, A.; Cuevas-Muñiz, F. M.; Arriaga, L. G.; Sun, Shuhui; Mohamedi, Mohamed

    2017-12-01

    In the present work, we report the design, fabrication and evaluation of a membraneless mixed-reactant and air-breathing microfluidic direct methanol fuel cell (ML-μDMFC) stack operated in passive mode. The operation under mixed-reactant conditions was achieved by using a highly methanol-tolerant Ag/Pt/CP cathode with ultra-low Pt loading in alkaline medium. Prior to the fabrication of the stack, a flow simulation was made in order to study the behavior of the reactants stream in the microchannel through the 2 cells. Subsequently, the device was tested in passive mode using a mixture of 5 M MeOH +0.5 M KOH. The results showed that by connecting the 2 cells in series, it is possible to effectively double the voltage of a single ML-μDMFC, as well as increasing the absolute power by 75% with practically no cost increase. The stack was capable of operate continuously for more than 2 h with a single charge of 40 μL, producing an OCV of 0.89 V and a maximum power density of 3.33 mW mgPt-1. Additionally, the device exhibited good stability throughout a 10 h test.

  12. Modeling the Interactions Between Multiple Crack Closure Mechanisms at Threshold

    NASA Technical Reports Server (NTRS)

    Newman, John A.; Riddell, William T.; Piascik, Robert S.

    2003-01-01

    A fatigue crack closure model is developed that includes interactions between the three closure mechanisms most likely to occur at threshold; plasticity, roughness, and oxide. This model, herein referred to as the CROP model (for Closure, Roughness, Oxide, and Plasticity), also includes the effects of out-of plane cracking and multi-axial loading. These features make the CROP closure model uniquely suited for, but not limited to, threshold applications. Rough cracks are idealized here as two-dimensional sawtooths, whose geometry induces mixed-mode crack- tip stresses. Continuum mechanics and crack-tip dislocation concepts are combined to relate crack face displacements to crack-tip loads. Geometric criteria are used to determine closure loads from crack-face displacements. Finite element results, used to verify model predictions, provide critical information about the locations where crack closure occurs.

  13. A randomised trial and economic evaluation of the effect of response mode on response rate, response bias, and item non-response in a survey of doctors.

    PubMed

    Scott, Anthony; Jeon, Sung-Hee; Joyce, Catherine M; Humphreys, John S; Kalb, Guyonne; Witt, Julia; Leahy, Anne

    2011-09-05

    Surveys of doctors are an important data collection method in health services research. Ways to improve response rates, minimise survey response bias and item non-response, within a given budget, have not previously been addressed in the same study. The aim of this paper is to compare the effects and costs of three different modes of survey administration in a national survey of doctors. A stratified random sample of 4.9% (2,702/54,160) of doctors undertaking clinical practice was drawn from a national directory of all doctors in Australia. Stratification was by four doctor types: general practitioners, specialists, specialists-in-training, and hospital non-specialists, and by six rural/remote categories. A three-arm parallel trial design with equal randomisation across arms was used. Doctors were randomly allocated to: online questionnaire (902); simultaneous mixed mode (a paper questionnaire and login details sent together) (900); or, sequential mixed mode (online followed by a paper questionnaire with the reminder) (900). Analysis was by intention to treat, as within each primary mode, doctors could choose either paper or online. Primary outcome measures were response rate, survey response bias, item non-response, and cost. The online mode had a response rate 12.95%, followed by the simultaneous mixed mode with 19.7%, and the sequential mixed mode with 20.7%. After adjusting for observed differences between the groups, the online mode had a 7 percentage point lower response rate compared to the simultaneous mixed mode, and a 7.7 percentage point lower response rate compared to sequential mixed mode. The difference in response rate between the sequential and simultaneous modes was not statistically significant. Both mixed modes showed evidence of response bias, whilst the characteristics of online respondents were similar to the population. However, the online mode had a higher rate of item non-response compared to both mixed modes. The total cost of the online survey was 38% lower than simultaneous mixed mode and 22% lower than sequential mixed mode. The cost of the sequential mixed mode was 14% lower than simultaneous mixed mode. Compared to the online mode, the sequential mixed mode was the most cost-effective, although exhibiting some evidence of response bias. Decisions on which survey mode to use depend on response rates, response bias, item non-response and costs. The sequential mixed mode appears to be the most cost-effective mode of survey administration for surveys of the population of doctors, if one is prepared to accept a degree of response bias. Online surveys are not yet suitable to be used exclusively for surveys of the doctor population.

  14. A randomised trial and economic evaluation of the effect of response mode on response rate, response bias, and item non-response in a survey of doctors

    PubMed Central

    2011-01-01

    Background Surveys of doctors are an important data collection method in health services research. Ways to improve response rates, minimise survey response bias and item non-response, within a given budget, have not previously been addressed in the same study. The aim of this paper is to compare the effects and costs of three different modes of survey administration in a national survey of doctors. Methods A stratified random sample of 4.9% (2,702/54,160) of doctors undertaking clinical practice was drawn from a national directory of all doctors in Australia. Stratification was by four doctor types: general practitioners, specialists, specialists-in-training, and hospital non-specialists, and by six rural/remote categories. A three-arm parallel trial design with equal randomisation across arms was used. Doctors were randomly allocated to: online questionnaire (902); simultaneous mixed mode (a paper questionnaire and login details sent together) (900); or, sequential mixed mode (online followed by a paper questionnaire with the reminder) (900). Analysis was by intention to treat, as within each primary mode, doctors could choose either paper or online. Primary outcome measures were response rate, survey response bias, item non-response, and cost. Results The online mode had a response rate 12.95%, followed by the simultaneous mixed mode with 19.7%, and the sequential mixed mode with 20.7%. After adjusting for observed differences between the groups, the online mode had a 7 percentage point lower response rate compared to the simultaneous mixed mode, and a 7.7 percentage point lower response rate compared to sequential mixed mode. The difference in response rate between the sequential and simultaneous modes was not statistically significant. Both mixed modes showed evidence of response bias, whilst the characteristics of online respondents were similar to the population. However, the online mode had a higher rate of item non-response compared to both mixed modes. The total cost of the online survey was 38% lower than simultaneous mixed mode and 22% lower than sequential mixed mode. The cost of the sequential mixed mode was 14% lower than simultaneous mixed mode. Compared to the online mode, the sequential mixed mode was the most cost-effective, although exhibiting some evidence of response bias. Conclusions Decisions on which survey mode to use depend on response rates, response bias, item non-response and costs. The sequential mixed mode appears to be the most cost-effective mode of survey administration for surveys of the population of doctors, if one is prepared to accept a degree of response bias. Online surveys are not yet suitable to be used exclusively for surveys of the doctor population. PMID:21888678

  15. INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY: Polar Mixing Optical Phonon Spectra in Wurtzite GaN Cylindrical Quantum Dots: Quantum Size and Dielectric Effects

    NASA Astrophysics Data System (ADS)

    Zhang, Li; Liao, Jian-Shang

    2010-05-01

    The interface-optical-propagating (IO-PR) mixing phonon modes of a quasi-zero-dimensional (QoD) wurtzite cylindrical quantum dot (QD) structure are derived and studied by employing the macroscopic dielectric continuum model. The analytical phonon states of IO-PR mixing modes are given. It is found that there are two types of IO-PR mixing phonon modes, i.e. ρ-IO/z-PR mixing modes and the z-IO/ρ-PR mixing modes existing in QoD wurtzite QDs. And each IO-PR mixing modes also have symmetrical and antisymmetrical forms. Via a standard procedure of field quantization, the Fröhlich Hamiltonians of electron-(IO-PR) mixing phonons interaction are obtained. Numerical calculations on a wurtzite GaN cylindrical QD are performed. The results reveal that both the radial-direction size and the axial-direction size as well as the dielectric matrix have great influence on the dispersive frequencies of the IO-PR mixing phonon modes. The limiting features of dispersive curves of these phonon modes are discussed in depth. The phonon modes “reducing" behavior of wurtzite quantum confined systems has been observed obviously in the structures. Moreover, the degenerating behaviors of the IO-PR mixing phonon modes in wurtzite QoD QDs to the IO modes and PR modes in wurtzite Q2D QW and Q1D QWR systems are analyzed deeply from both of the viewpoints of physics and mathematics.

  16. Summer aerosol particle mixing in different climate and source regions of the United Arab Emirates (UAE)

    NASA Astrophysics Data System (ADS)

    Semeniuk, T. A.; Bruintjes, R. T.; Salazar, V.; Breed, D. W.; Jensen, T. L.; Buseck, P. R.

    2005-12-01

    The high aerosol loadings over the UAE reflect local to regional natural and anthropogenic pollution sources. To understand the impact of the high levels of pollution on both local and global climate systems, aerosol characterization flights in summer 2002 were used to sample major source areas, and to provide information on the interaction of aerosol particles within different geographic regions of the UAE. Atmospheric information and aerosol samples were collected from the marine/oil-industry region, NW coastal industries and cities, Oman Mountain Range, and NE coastal region. Aerosol samples were collected with multi-stage impactors and were analysed later using transmission electron microscopy. All samples are dominated by mineral grains or mineral aggregates in the coarse-mode fraction, and ammonium sulfate droplets in the fine-mode fraction. Differences in the types of mineral grains (different regional desert sources), inorganic salt and soot fractions, and types of internally mixed particles occur between regions. Oil-related industry sites have an abundance of coated and internally mixed particles, including sulfate-coated mineral grains, and mineral aggregates with chloride and sulfate. Cities have slightly elevated soot fractions, and typically have metal oxides. The NE coastal area is characterized by high soot fractions (local shipping) and mixed volatile droplets (regional Asian pollution). Particle populations within the convection zone over the Oman Mountain Range comprise an external mixture of particles from NW and NE sources, with many deliquesced particles. Both land-sea breezes in the NW regions and convection systems in the mountains mix aerosol particles from different local and regional sources, resulting in the formation of abundant internally mixed particles. The interaction between desert dust and anthropogenic pollution, and in particular the formation of mineral aggregates with chloride and sulfate, enhances the coarse-mode fraction and droplet fraction in industrial and mountainous regions.

  17. Failure strengths of denture teeth fabricated on injection molded or compression molded denture base resins.

    PubMed

    Robison, Nathan E; Tantbirojn, Daranee; Versluis, Antheunis; Cagna, David R

    2016-08-01

    Denture tooth fracture or debonding remains a common problem in removable prosthodontics. The purpose of this in vitro study was to explore factors determining failure strengths for combinations of different denture tooth designs (shape, materials) and injection or compression molded denture base resins. Three central incisor denture tooth designs were tested: nanohybrid composite (NHC; Ivoclar Phonares II), interpenetrating network (IPN; Dentsply Portrait), and microfiller reinforced polyacrylic (MRP; VITA Physiodens). Denture teeth of each type were processed on an injection molded resin (IvoBase HI; Ivoclar Vivadent AG) or a compression molded resin (Lucitone 199; Dentsply Intl) (n=11 or 12). The denture teeth were loaded at 45 degrees on the incisal edge. The failure load was recorded and analyzed with 2-way ANOVA (α=.05), and the fracture mode was categorized from observed fracture surfaces as cohesive, adhesive, or mixed failure. The following failure loads (mean ±SD) were recorded: NHC/injection molded 280 ±52 N; IPN/injection molded 331 ±41 N; MRP/injection molded 247 ±23 N; NHC/compression molded 204 ±31 N; IPN/compression molded 184 ±17 N; MRP/compression molded 201 ±16 N. Injection molded resin yielded significantly higher failure strength for all denture teeth (P<.001), among which IPN had the highest strength. Failure was predominantly cohesive in the teeth, with the exception of mixed mode for the IPN/compression group. When good bonding was achieved, the strength of the structure (denture tooth/base resin combination) was determined by the strength of the denture teeth, which may be affected by the processing technique. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  18. Crack Growth Prediction Methodology for Multi-Site Damage: Layered Analysis and Growth During Plasticity

    NASA Technical Reports Server (NTRS)

    James, Mark Anthony

    1999-01-01

    A finite element program has been developed to perform quasi-static, elastic-plastic crack growth simulations. The model provides a general framework for mixed-mode I/II elastic-plastic fracture analysis using small strain assumptions and plane stress, plane strain, and axisymmetric finite elements. Cracks are modeled explicitly in the mesh. As the cracks propagate, automatic remeshing algorithms delete the mesh local to the crack tip, extend the crack, and build a new mesh around the new tip. State variable mapping algorithms transfer stresses and displacements from the old mesh to the new mesh. The von Mises material model is implemented in the context of a non-linear Newton solution scheme. The fracture criterion is the critical crack tip opening displacement, and crack direction is predicted by the maximum tensile stress criterion at the crack tip. The implementation can accommodate multiple curving and interacting cracks. An additional fracture algorithm based on nodal release can be used to simulate fracture along a horizontal plane of symmetry. A core of plane strain elements can be used with the nodal release algorithm to simulate the triaxial state of stress near the crack tip. Verification and validation studies compare analysis results with experimental data and published three-dimensional analysis results. Fracture predictions using nodal release for compact tension, middle-crack tension, and multi-site damage test specimens produced accurate results for residual strength and link-up loads. Curving crack predictions using remeshing/mapping were compared with experimental data for an Arcan mixed-mode specimen. Loading angles from 0 degrees to 90 degrees were analyzed. The maximum tensile stress criterion was able to predict the crack direction and path for all loading angles in which the material failed in tension. Residual strength was also accurately predicted for these cases.

  19. Determination of a flame retardant hydrolysis product in human urine by SPE and LC-MS. Comparison of molecularly imprinted solid-phase extraction with a mixed-mode anion exchanger.

    PubMed

    Möller, Kristina; Crescenzi, Carlo; Nilsson, Ulrika

    2004-01-01

    Diphenyl phosphate is a hydrolysis product and possible metabolite of the flame retardant and plasticiser additive triphenyl phosphate. A molecularly imprinted polymer solid-phase extraction (MISPE) method for extracting diphenyl phosphate from aqueous solutions has been developed and compared with SPE using a commercially available mixed-mode anion exchanger. The imprinted polymer was prepared using 2-vinylpyridine (2-Vpy) as the functional monomer, ethylene glycol dimethacrylate (EGDMA) as the cross-linker, and a structural analogue of the analyte as the template molecule. The imprinted polymer was evaluated for use as a SPE sorbent, in tests with both aqueous standards and spiked urine samples, by comparing recovery and breakthrough data obtained using the imprinted form of the polymer and a non-imprinted form (NIP). Extraction from aqueous solutions resulted in more than 80% recovery. Adsorption by the molecularly imprinted polymer (MIP) was non-selective, but selectivity was achieved by selective desorption in the wash steps. Diphenyl phosphate could also be selectively extracted from urine samples, although the urine matrix reduced the capacity of the MISPE cartridges. Recoveries from urine extraction were higher than 70%. It was important to control pH during sample loading. The MISPE method was found to yield a less complex LC-ESI-MS chromatogram of the urine extracts compared with the mixed-mode anion-exchanger method. An LC-ESI-MS method using a Hypercarb LC column with a graphitised carbon stationary phase was also evaluated for organophosphate diesters. LC-ESI-MS using negative-ion detection in selected ion monitoring (SIM) mode was shown to be linear for diphenyl phosphate in the range 0.08-20 ng microL(-1).

  20. The effect of fatigue and environment on the adhesion and delamination of thin polymer films

    NASA Astrophysics Data System (ADS)

    Snodgrass, Jeffrey Matthew

    Polymers are increasingly used in the interconnect and packaging levels of microelectronic devices. Thus, adhesion of polymer films to their adjacent inorganic layers is critical to the manufacturability and reliability of microelectronic components. Weak interfacial adhesion can result in delamination, causing a loss of package hermeticity or the failure of electrical contacts. Recently, interface fracture mechanics techniques have been applied to the problem of thin film delamination and are now used to measure interface adhesion. These techniques allow for characterization of interface adhesion in terms of the critical strain energy release rate, GC, in units of J/m2. In this dissertation, studies are described that quantify the effects of fundamental parameters on the critical adhesion and resistance to subcritical (time-dependent) delamination of benzocyclobutene (BCB)/silica and epoxy underfill/polyimide interfaces. Results are presented detailing the action of small-molecule adhesion promoters on the critical interface adhesion energy of BCB/silica. Silane coupling agents with different functional end groups were used to increase chemical bonding at this interface in order to achieve optimized adhesion. Testing was performed at different mode mixities to evaluate the effect of loading mode on the polymer interface fracture. Subcritical debonding data were measured under two different loading conditions and results are presented in terms of the debond growth rate as a function of applied strain energy release rate. Monotonic loading was used to examine environment-assisted delamination processes, while fatigue loading was used to understand the effects of thermomechanical cycling. Debond growth rates over the range of 10-3 to 10-9 m/s were characterized under mode I and mixed-mode loading. Atomic force microscopy and X-ray photoelectron spectroscopy were used to characterize the fracture surfaces of these interfaces and to generate detailed information about the debond fracture path and mechanisms. The AFM and XPS results suggest that the failure mode of BCB/silica interfaces is cohesive in the BCB layer, in a region very close to the interface. Mechanical fatigue was found to considerably accelerate subcritical debond growth rates and decrease debond growth thresholds to as low as 25% of the critical adhesion energy. Fatigue loading produced fatigue striations on the BCB surface with a striation height of ˜1--2 nm and a spacing that was correlated with the debond growth rate. Finally, a model is presented for the mechanism of striation formation.

  1. Intralaminar and Interlaminar Progressive Failure Analysis of Composite Panels with Circular Cutouts

    NASA Technical Reports Server (NTRS)

    Goyal, Vinay K.; Jaunky, Navin; Johnson, Eric R.; Ambur, Damodar

    2002-01-01

    A progressive failure methodology is developed and demonstrated to simulate the initiation and material degradation of a laminated panel due to intralaminar and interlaminar failures. Initiation of intralaminar failure can be by a matrix-cracking mode, a fiber-matrix shear mode, and a fiber failure mode. Subsequent material degradation is modeled using damage parameters for each mode to selectively reduce lamina material properties. The interlaminar failure mechanism such as delamination is simulated by positioning interface elements between adjacent sublaminates. A nonlinear constitutive law is postulated for the interface element that accounts for a multi-axial stress criteria to detect the initiation of delamination, a mixed-mode fracture criteria for delamination progression, and a damage parameter to prevent restoration of a previous cohesive state. The methodology is validated using experimental data available in the literature on the response and failure of quasi-isotropic panels with centrally located circular cutouts loaded into the postbuckling regime. Very good agreement between the progressive failure analyses and the experimental results is achieved if the failure analyses includes the interaction of intralaminar and interlaminar failures.

  2. Analysis of SNL/MSU/DOE Fatigue Database Trends for Wind Turbine Blade Materials 2010-2015.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mandell, John F.; Samborsky, Daniel D.; Miller, David A.

    Wind turbine blades are designed to several major structural conditions, including tip deflection, strength and b uckling during severe loading, as well as very high numbers of fatigue cycles and various service environments. The MSU Database Program has, since 1989, addressed the broad range of properties needed for current and potential blade materials through stati c and fatigue testing and test development in cooperation with Sandia National Laboratories and wind industry and supplier partners. This report is the latest in a series, giving test results and analysis for the period 2010 - 2015. Program data are compiled in a publicmore » database [1] and other reports and publications given in the cited references. The report begins with an executive summary and introductory material including background discussion of previous related studies. Section 3 describes experimental methods including processing, test methods, instrumentation and test development. Section 4 provides static tension, compression and shear stress - strain properties in three directions using coupons sectioned from a thick infused unidirectional glass/epoxy laminate. The nonlinear, shear dominated static properties were characterized with loading - u nloading - reloading (LUR) tests in tension and compression to increasing load levels, for +-45O laminates. Section 5 explores the origins of tensile fatigue sensitivity in glass fiber dominated laminates with variations in fabric architecture including speci ally prepared fabrics and aligned strand laminates. Several types of resins are considered, with variations in resin toughness and bonding to fibers, as well as cure cycle variations for an epoxy. Conclusions are drawn as to the limits of tensile fatigue r esistance and the effects of resin type and fabric architecture, including the behavior of a commercial aligned glass strand product. Interactions between cyclic fatigue response and creep are addressed for off - axis (+-45O) glass/epoxy laminates in Sectio n 6. The nonlinear fatigue and creep stress - strain and cumulative strain response are characterized in tension and compression as a function of stress level, cycles and cumulative time, using square and sinewave loading over a broad range of frequency. The results are analyzed in terms of the cycles and cumulative time under load. A cumulative strain failure criterion is established, and used to construct shear and tension constant life diagrams (CLD's) with data for nine R - values. The effects of a more duc tile urethne resin are also explored. A previous study of thick adhesives testing is extended to mixed mode fracture mechanics testing in Section 7. Mechanisms of static and fatigue crack extension near the laminate adherend interface are reported in deta il. Data are presented for mixed mode adhesive fracture, compared to mixed mode fracture in ply delamination. Fatigue crack growth exponents are also developed for a mixed mode cracked lap shear coupon. The data for fatigue trends and relative failure stra ins and exponents are compared for various blade component materials in Section 8. The effects of temperature and seawater saturation are considered for selected materials of interest for wind and hydrokinetic turbine blades in Section 9. Section 10 gives detailed conclusions for each section. A cknowledgements The research presented in this report was carried out under Sandia National Laboratories purchase orders 1325028 an d 1543945 between 2010 and 2015, with support from the DOE Wind and Water Technologies Office . In addition to the authors listed, significant contributions were made by Patrick Flaherty, Pancastya Agastra, Michael Schuster, and Michael Voth. Industry m aterials suppliers include Vectorply, Saertex, OCV, AGY, Bayer, Ashland, 3M and Nextel. Industry suppliers with significant contributions to the study were Hexion, PPG, Reichhold, Gurit and NEPTCO. Intentionally Left Blank« less

  3. Low-Load High Volume Resistance Exercise Stimulates Muscle Protein Synthesis More Than High-Load Low Volume Resistance Exercise in Young Men

    PubMed Central

    Burd, Nicholas A.; West, Daniel W. D.; Staples, Aaron W.; Atherton, Philip J.; Baker, Jeff M.; Moore, Daniel R.; Holwerda, Andrew M.; Parise, Gianni; Rennie, Michael J.; Baker, Steven K.; Phillips, Stuart M.

    2010-01-01

    Background We aimed to determine the effect of resistance exercise intensity (% 1 repetition maximum—1RM) and volume on muscle protein synthesis, anabolic signaling, and myogenic gene expression. Methodology/Principal Findings Fifteen men (21±1 years; BMI = 24.1±0.8 kg/m2) performed 4 sets of unilateral leg extension exercise at different exercise loads and/or volumes: 90% of repetition maximum (1RM) until volitional failure (90FAIL), 30% 1RM work-matched to 90%FAIL (30WM), or 30% 1RM performed until volitional failure (30FAIL). Infusion of [ring-13C6] phenylalanine with biopsies was used to measure rates of mixed (MIX), myofibrillar (MYO), and sarcoplasmic (SARC) protein synthesis at rest, and 4 h and 24 h after exercise. Exercise at 30WM induced a significant increase above rest in MIX (121%) and MYO (87%) protein synthesis at 4 h post-exercise and but at 24 h in the MIX only. The increase in the rate of protein synthesis in MIX and MYO at 4 h post-exercise with 90FAIL and 30FAIL was greater than 30WM, with no difference between these conditions; however, MYO remained elevated (199%) above rest at 24 h only in 30FAIL. There was a significant increase in AktSer473 at 24h in all conditions (P = 0.023) and mTORSer2448 phosphorylation at 4 h post-exercise (P = 0.025). Phosporylation of Erk1/2Tyr202/204, p70S6KThr389, and 4E-BP1Thr37/46 increased significantly (P<0.05) only in the 30FAIL condition at 4 h post-exercise, whereas, 4E-BP1Thr37/46 phosphorylation was greater 24 h after exercise than at rest in both 90FAIL (237%) and 30FAIL (312%) conditions. Pax7 mRNA expression increased at 24 h post-exercise (P = 0.02) regardless of condition. The mRNA expression of MyoD and myogenin were consistently elevated in the 30FAIL condition. Conclusions/Significance These results suggest that low-load high volume resistance exercise is more effective in inducing acute muscle anabolism than high-load low volume or work matched resistance exercise modes. PMID:20711498

  4. Fretting Stresses in Single Crystal Superalloy Turbine Blade Attachments

    NASA Technical Reports Server (NTRS)

    Arakere, Nagaraj K.; Swanson, Gregory

    2000-01-01

    Single crystal nickel base superalloy turbine blades are being utilized in rocket engine turbopumps and turbine engines because of their superior creep, stress rupture, melt resistance and thermomechanical fatigue capabilities over polycrystalline alloys. Currently the most widely used single crystal nickel base turbine blade superalloys are PWA 1480/1493 and PWA 1484. These alloys play an important role in commercial, military and space propulsion systems. High Cycle Fatigue (HCF) induced failures in aircraft gas turbine and rocket engine turbopump blades is a pervasive problem. Blade attachment regions are prone to fretting fatigue failures. Single crystal nickel base superalloy turbine blades are especially prone to fretting damage because the subsurface shear stresses induced by fretting action at the attachment regions can result in crystallographic initiation and crack growth along octahedral planes. Furthermore, crystallographic crack growth on octahedral planes under fretting induced mixed mode loading can be an order of magnitude faster than under pure mode I loading. This paper presents contact stress evaluation in the attachment region for single crystal turbine blades used in the NASA alternate Advanced High Pressure Fuel Turbo Pump (HPFTP/AT) for the Space Shuttle Main Engine (SSME). Single crystal materials have highly orthotropic properties making the position of the crystal lattice relative to the part geometry a significant factor in the overall analysis. Blades and the attachment region are modeled using a large-scale 3D finite element (FE) model capable of accounting for contact friction, material orthotrophy, and variation in primary and secondary crystal orientation. Contact stress analysis in the blade attachment regions is presented as a function of coefficient of friction and primary and secondary crystal orientation, Stress results are used to discuss fretting fatigue failure analysis of SSME blades. Attachment stresses are seen to reach peak values at locations where fretting cracks have been observed. Fretting stresses at the attachment region are seen to vary significantly as a function of crystal orientation. Attempts to adapt techniques used for estimating fatigue life in the airfoil region, for life calculations in the attachment region, are presented. An effective model for predicting crystallographic crack initiation under mixed mode loading is required for life prediction under fretting action.

  5. AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 34th and AIAA/ASME Adaptive Structures Forum, La Jolla, CA, Apr. 19-22, 1993, Technical Papers. Pts. 1-6

    NASA Astrophysics Data System (ADS)

    Topics addressed include the prediction of helicopter component loads using neural networks, spacecraft on-orbit coupled loads analysis, hypersonic flutter of a curved shallow panel with aerodynamic heating, thermal-acoustic fatigue of ceramic matrix composite materials, transition elements based on transfinite interpolation, damage progression in stiffened composite panels, a direct treatment of min-max dynamic response optimization problems, and sources of helicopter rotor hub inplane shears. Also discussed are dynamics of a layered elastic system, confidence bounds on structural reliability, mixed triangular space-time finite elements, advanced transparency development for USAF aircraft, a low-velocity impact on a graphite/PEEK, an automated mode-tracking strategy, transonic flutter suppression by a passive flap, a nonlinear response of composite panels to random excitation, an optimal placement of elastic supports on a simply supported plate, a probabilistic assessment of composite structures, a model for mode I failure of laminated composites, a residual flexibility approach to multibody dynamics,and multilayer piezoelectric actuators.

  6. Prediction of Frequency for Simulation of Asphalt Mix Fatigue Tests Using MARS and ANN

    PubMed Central

    Fakhri, Mansour

    2014-01-01

    Fatigue life of asphalt mixes in laboratory tests is commonly determined by applying a sinusoidal or haversine waveform with specific frequency. The pavement structure and loading conditions affect the shape and the frequency of tensile response pulses at the bottom of asphalt layer. This paper introduces two methods for predicting the loading frequency in laboratory asphalt fatigue tests for better simulation of field conditions. Five thousand (5000) four-layered pavement sections were analyzed and stress and strain response pulses in both longitudinal and transverse directions was determined. After fitting the haversine function to the response pulses by the concept of equal-energy pulse, the effective length of the response pulses were determined. Two methods including Multivariate Adaptive Regression Splines (MARS) and Artificial Neural Network (ANN) methods were then employed to predict the effective length (i.e., frequency) of tensile stress and strain pulses in longitudinal and transverse directions based on haversine waveform. It is indicated that, under controlled stress and strain modes, both methods (MARS and ANN) are capable of predicting the frequency of loading in HMA fatigue tests with very good accuracy. The accuracy of ANN method is, however, more than MARS method. It is furthermore shown that the results of the present study can be generalized to sinusoidal waveform by a simple equation. PMID:24688400

  7. Prediction of frequency for simulation of asphalt mix fatigue tests using MARS and ANN.

    PubMed

    Ghanizadeh, Ali Reza; Fakhri, Mansour

    2014-01-01

    Fatigue life of asphalt mixes in laboratory tests is commonly determined by applying a sinusoidal or haversine waveform with specific frequency. The pavement structure and loading conditions affect the shape and the frequency of tensile response pulses at the bottom of asphalt layer. This paper introduces two methods for predicting the loading frequency in laboratory asphalt fatigue tests for better simulation of field conditions. Five thousand (5000) four-layered pavement sections were analyzed and stress and strain response pulses in both longitudinal and transverse directions was determined. After fitting the haversine function to the response pulses by the concept of equal-energy pulse, the effective length of the response pulses were determined. Two methods including Multivariate Adaptive Regression Splines (MARS) and Artificial Neural Network (ANN) methods were then employed to predict the effective length (i.e., frequency) of tensile stress and strain pulses in longitudinal and transverse directions based on haversine waveform. It is indicated that, under controlled stress and strain modes, both methods (MARS and ANN) are capable of predicting the frequency of loading in HMA fatigue tests with very good accuracy. The accuracy of ANN method is, however, more than MARS method. It is furthermore shown that the results of the present study can be generalized to sinusoidal waveform by a simple equation.

  8. The Use of Doublers in Delamination Toughness Testing

    NASA Technical Reports Server (NTRS)

    Reeder, James R.; Demarco, Kevin; Whitley, Karen S.

    2002-01-01

    In this paper, the data reduction equations for common delamination toughness tests are rederived for use with specimens which have bonded doublers. The common toughness tests considered here are the double cantilever beam (DCB) for mode I toughness; the end notch flexure (3ENF) and 4 point ENF (4ENF) for mode II toughness; and the mixed mode bending (MMB) test for testing under combined mode I and mode II loading. Because the addition of the doublers changes the bending stiffness of the specimens, these data reduction equations may need to be corrected. Doublers were added to the delamination test specimens to solve a premature failure problem. Delamination toughness is normally tested using a beam with an imbedded insert so that one end of the specimen is split into two arms. If the specimen is too thin, or if the toughness of the material is too high, an arm of the specimen may fail in bending before the delamination grows. When this occurs, the toughness of the material cannot be determined. To delay the bending failure so that delamination growth occurs, doubler plates were bonded to both top and bottom surfaces of the specimen. A doubler parameter, beta, which describes how much the use of doubler plates changed the ratio of full thickness to delaminated bending stiffnesses, was defined. When changes to the data reduction equations were required, the changes were minor when written in terms of the beta parameter. The doubler plate technique was demonstrated by measuring the mixed-mode fracture toughness of a carbon-carbon composite using test specimens which would otherwise have failed before delamination growth occurred. The doubler plate technique may solve several problems that can be encountered when testing delamination fracture toughness.

  9. Mixed Matrix Membranes of Boron Icosahedron and Polymers of Intrinsic Microporosity (PIM-1) for Gas Separation

    PubMed Central

    Khan, Muntazim Munir; Shishatskiy, Sergey; Filiz, Volkan

    2018-01-01

    This work reports on the preparation and gas transport performance of mixed matrix membranes (MMMs) based on the polymer of intrinsic microporosity (PIM-1) and potassium dodecahydrododecaborate (K2B12H12) as inorganic particles (IPs). The effect of IP loading on the gas separation performance of these MMMs was investigated by varying the IP content (2.5, 5, 10 and 20 wt %) in a PIM-1 polymer matrix. The derived MMMs were characterized by scanning electron microscopy (SEM), thermogravimetric analysis (TGA), single gas permeation tests and sorption measurement. The PIM1/K2B12H12 MMMs show good dispersion of the IPs (from 2.5 to 10 wt %) in the polymer matrix. The gas permeability of PIM1/K2B12H12 MMMs increases as the loading of IPs increases (up to 10 wt %) without sacrificing permselectivity. The sorption isotherm in PIM-1 and PIM1/K2B12H12 MMMs demonstrate typical dual-mode sorption behaviors for the gases CO2 and CH4. PMID:29301312

  10. Analysis of the performance of the space ultravacuum research facility in attached and free-flyer mode

    NASA Technical Reports Server (NTRS)

    Naumann, Robert J.

    1988-01-01

    The old concept of using the wake of a spacecraft to obtain an ultrahigh vacuum is revisited with a somewhat different emphasis. Since it is possible to configure a wake shield so that a surface of interest does not subtend any walls that could become contaminated, it appears that it should be possible to achieve a contamination-free, ultrahigh vacuum capability with infinite pumping speed even in the presence of high heat loads and moderate gas loads. With the new interest in developing thin films with precision controlled synthetic microstructures such as superlattices, mixed metal oxide high temperature superconductors, rare-earth magneto-optical devices, and nano-crystalline alloys, the ability to work with a variety of different materials without cross contamination should be of significance. This paper analyzes the performance of the conceptual design for a Space Ultravacuum Research Facility (SURF), both in a Shuttle-attached mode and as a free-flyer. It is shown that even in the Shuttle-attached mode, it should be possible to obtain vacuum levels equivalent to 10 to the -10 Torr with O and N2 as the primary constituents. This should be sufficient to demonstrate the feasibility of the concept, particularly the infinite pumping speed and virtual elimination of contamination aspects. As a free-flyer the SURF will be limited primarily by the gas load associated with the process being performed. For chemical beam epitaxy (CBE) it is shown that equivalent vacuum levels of 10 to the -14 Torr should be possible at 300 km.

  11. Effect of Plate Curvature on Blast Response of Structural Steel Plates

    NASA Astrophysics Data System (ADS)

    Veeredhi, Lakshmi Shireen Banu; Ramana Rao, N. V.; Veeredhi, Vasudeva Rao

    2018-04-01

    In the present work an attempt is made, through simulation studies, to determine the effect of plate curvature on the blast response of a door structure made of ASTM A515 grade 50 steel plates. A door structure with dimensions of 5.142 m × 2.56 m × 10 mm having six different radii of curvatures is analyzed which is subjected to blast load. The radii of curvature investigated are infinity (flat plate), 16.63, 10.81, 8.26, 6.61 and 5.56 m. In the present study, a stand-off distance of 11 m is considered for all the cases. Results showed that the door structure with smallest radius of curvature experienced least plastic deformation and yielding when compared to a door with larger radius of curvature with same projected area. From the present Investigation, it is observed that, as the radius of curvature of the plate increases, the deformation mode gradually shifts from indentation mode to flexural mode. The plates with infinity and 16.63 m radius of curvature have undergone flexural mode of deformation and plates with 6.61 and 5.56 m radius of curvature undergo indentation mode of deformation. Whereas, mixed mode of deformation that consists of both flexural and indentation mode of deformations are seen in the plates with radius of curvature 10.81 and 8.26 m. As the radius of curvature of the plate decreases the ability of the plate to mitigate the effect the blast loads increased. It is observed that the plate with smaller radius of curvature deflects most of the blast energy and results in least indentation mode of deformation. The most significant observation made in the present investigation is that the strain energy absorbed by the steel plate gets reduced to 1/3 rd when the radius of curvature is approximately equal to the stand-off distance which could be the critical radius of curvature.

  12. Numerical Evaluation of Mode 1 Stress Intensity Factor as a Function of Material Orientation For BX-265 Foam Insulation Material

    NASA Technical Reports Server (NTRS)

    Knudsen, Erik; Arakere, Nagaraj K.

    2006-01-01

    Foam; a cellular material, is found all around us. Bone and cork are examples of biological cell materials. Many forms of man-made foam have found practical applications as insulating materials. NASA uses the BX-265 foam insulation material on the external tank (ET) for the Space Shuttle. This is a type of Spray-on Foam Insulation (SOFI), similar to the material used to insulate attics in residential construction. This foam material is a good insulator and is very lightweight, making it suitable for space applications. Breakup of segments of this foam insulation on the shuttle ET impacting the shuttle thermal protection tiles during liftoff is believed to have caused the space shuttle Columbia failure during re-entry. NASA engineers are very interested in understanding the processes that govern the breakup/fracture of this complex material from the shuttle ET. The foam is anisotropic in nature and the required stress and fracture mechanics analysis must include the effects of the direction dependence on material properties. Material testing at NASA MSFC has indicated that the foam can be modeled as a transversely isotropic material. As a first step toward understanding the fracture mechanics of this material, we present a general theoretical and numerical framework for computing stress intensity factors (SIFs), under mixed-mode loading conditions, taking into account the material anisotropy. We present mode I SIFs for middle tension - M(T) - test specimens, using 3D finite element stress analysis (ANSYS) and FRANC3D fracture analysis software, developed by the Cornel1 Fracture Group. Mode I SIF values are presented for a range of foam material orientations. Also, NASA has recorded the failure load for various M(T) specimens. For a linear analysis, the mode I SIF will scale with the far-field load. This allows us to numerically estimate the mode I fracture toughness for this material. The results represent a quantitative basis for evaluating the strength and fracture properties of anisotropic foam insulation material.

  13. Effect of fuel injection pressure on a heavy-duty diesel engine nonvolatile particle emission.

    PubMed

    Lähde, Tero; Rönkkö, Topi; Happonen, Matti; Söderström, Christer; Virtanen, Annele; Solla, Anu; Kytö, Matti; Rothe, Dieter; Keskinen, Jorma

    2011-03-15

    The effects of the fuel injection pressure on a heavy-duty diesel engine exhaust particle emissions were studied. Nonvolatile particle size distributions and gaseous emissions were measured at steady-state engine conditions while the fuel injection pressure was changed. An increase in the injection pressure resulted in an increase in the nonvolatile nucleation mode (core) emission at medium and at high loads. At low loads, the core was not detected. Simultaneously, a decrease in soot mode number concentration and size and an increase in the soot mode distribution width were detected at all loads. Interestingly, the emission of the core was independent of the soot mode concentration at load conditions below 50%. Depending on engine load conditions, growth of the geometric mean diameter of the core mode was also detected with increasing injection pressure. The core mode emission and also the size of the mode increased with increasing NOx emission while the soot mode size and emission decreased simultaneously.

  14. Inactivation of viruses using novel protein A wash buffers.

    PubMed

    Bolton, Glen R; Selvitelli, Keith R; Iliescu, Ionela; Cecchini, Douglas J

    2015-01-01

    Low pH viral inactivation is typically performed in the eluate pool following the protein A capture step during the manufacturing of monoclonal antibodies and Fc-fusion proteins. However, exposure to low pH has the potential to alter protein quality. To avoid these difficulties, novel wash buffers capable of inactivating viruses while antibodies or Fc-fusion proteins were bound to protein A or mixed mode resins were developed. By equilibrating the column in high salt buffer (2 M ammonium sulfate or 3 M sodium chloride) after loading, the hydrophobic interactions between antibodies and protein A ligands were increased enough to prevent elution at pH 3. The ammonium sulfate was also found to cause binding of an antibody to a mixed mode cation exchange and a mixed mode anion exchange resin at pH values that caused elution in conventional cation and anion exchange resins (pH 3.5 for Capto Adhere and pH 8.0 for Capto MMC), indicating that retention was due to enhanced hydrophobic interactions. The potential of the 2 M ammonium sulfate pH 3 buffer, a 1 M arginine buffer, and a buffer containing the detergent LDAO to inactivate XMuLV virus when used as protein A wash buffers with a 1 hour contact time were studied. The high salt and detergent containing wash buffers provided about five logs of removal, determined using PCR, and complete combined removal and inactivation (> 6 logs), determined by measuring infectivity. The novel protein A washes could provide more rapid, automated viral inactivation steps with lower pool conductivities. © 2014 American Institute of Chemical Engineers.

  15. Recent Enhancements to the National Transonic Facility (Mixed Mode Operations)

    NASA Technical Reports Server (NTRS)

    Kilgore, W. Allen; Chan, David; Balakrishna, S.; Wahls, Richard A.

    2006-01-01

    The U.S. National Transonic Facility continues to make enhancements to provide quality data in a safe, efficient and cost effective method for aerodynamic ground testing. Recent enhancements discussed in this paper include the development of a Mixed-mode of operations that combine Air-mode operations with Nitrogen-mode operations. This implementation and operational results of this new Mixed-mode expands the ambient temperature transonic region of testing beyond the Air-mode limitations at a significantly reduced cost over Nitrogen Mode operation.

  16. Sublaminate- or ply-level analysis of composites and strain energy release rates of end-notch and mixed-mode fracture specimens

    NASA Technical Reports Server (NTRS)

    Valisetty, Rao R.; Chamis, Christos C.

    1988-01-01

    The sublaminate or ply-level analysis of composite structures is presently undertaken by a computational procedure yielding the stresses in regions affected by delaminations, transverse cracks, and discontinuities that are related to material properties, geometries, and loads. Attention is given to layers or groups of layers that are immediately affected by flaws; these are analyzed as if they were homogeneous bodies in equilibrium, in isolation from the rest of the laminate. Computed stresses agree with those from a three-dimensional FEM analysis.

  17. The crack and wedging problem for an orthotropic strip

    NASA Technical Reports Server (NTRS)

    Cinar, A.; Erdogan, F.

    1982-01-01

    The plane elasticity problem for an orthotropic strip containing a crack parallel to its boundaries is considered. The problem is formulated under general mixed mode loading conditions. The stress intensity factors depend on two dimensionless orthotropic constants only. For the crack problem the results are given for a single crack and two collinear cracks. The calculated results show that of the two orthotropic constants the influence of the stiffness ratio on the stress intensity factors is much more significant than that of the shear parameter. The problem of loading the strip by a rigid rectangular lengths continuous contact is maintained along the wedge strip interface; at a certain critical wedge length the separation starts at the midsection of the wedge, and the length of the separation zone increases rapidly with increasing wedge length.

  18. Analysis of fatigue on surface course using dissipated energy approach

    NASA Astrophysics Data System (ADS)

    Michael; Setyawan, A.; Pramesti, F. P.

    2018-03-01

    As an important transportation infrastructure, pavement is subjected to repeated vehicle loads that may cause fatigue, which often leads to cracking. The point when this cracking initiates can be determined from the energy dissipated during the loading. This research investigates fatigue in Adi Soemarmo Airport mix-design using bitumen Pen 60/70 + EVA (Ethyl Vinyl Acetate) polymer. An Indirect Tensile Fatigue Test (ITFT) was conducted using stress-controlled loading mode to determine its fatigue life. The stress levels were 500, 600, and 700 kPa, while the loading frequency and the temperature were 10 Hz and 20°C, respectively. The test exhibits strain levels for each loading cycle, which were used to determine the dissipated energy (DE). The result indicates that the DE increases when the number of loading cycles increases, due to progress of the strain levels. The values of DE are 7122.8, 8614.3, and 2654.9 J/m3 for loading levels of 500, 600, and 700 kPa, respectively, whereas the failure points for stress levels of 500, 600, and 700 kPa are 8171, 5161, and 841 cycles, respectively. Thus, the longer the time until the pavement failure point is reached (fatigue life), the greater the amount of energy that is dissipated.

  19. Using the phase shift to asymptotically characterize the dipolar mixed modes in post-main-sequence stars

    NASA Astrophysics Data System (ADS)

    Jiang, C.; Christensen-Dalsgaard, J.; Cunha, M.

    2018-03-01

    Mixed modes have been extensively observed in post-main-sequence stars by the Kepler and CoRoT space missions. The mixture of the p and g modes can be measured by the dimensionless coefficient q, the so-called coupling strength factor. In this paper, we discuss the utility of the phase shifts θ from the eigenvalue condition for mixed modes as a tool to characterize dipolar mixed modes from the theoretical as well as the practical point of view. Unlike the coupling strength, whose variation in a given star is very small over the relevant frequency range, the phase shifts vary significantly for different modes. The analysis in terms of θ can also provide a better understanding of the pressure and gravity radial order for a given mixed mode. Observed frequencies of the Kepler red-giant star KIC 3744043 are used to test the method. The results are very promising.

  20. Analysis of shear buckling of cylindrical shells. II - Effects of combined loadings

    NASA Astrophysics Data System (ADS)

    Kokubo, Kunio; Nagashima, Hideaki; Takayanagi, Masaaki; Madokoro, Manabu; Mochizuki, Akira; Ikeuchi, Hisaaki

    1992-03-01

    Cylindrical shells subjected to lateral loads buckle in shear or bending buckling modes. The effects of combined loadings are investigated by developing a special-purpose FEM program using the 8-node isoparametric shell element. Three types of loading, lateral and axial loads, and pure bending moments are considered. For short cylindrical shells, shear buckling modes are dominant, but elephant-foot bulges take place with an increase in bending moments. Effects of axial loads on shear buckling and the elephant-foot bulge are investigated. In the case of shear buckling the axial load affects the buckling mode as well as the buckling load. For bending bucklings, the axial loads have a great effect on the buckling load.

  1. Anaerobic co-digestion of cyanide containing cassava pulp with pig manure.

    PubMed

    Glanpracha, Naraporn; Annachhatre, Ajit P

    2016-08-01

    Anaerobic co-digestion of cyanide-containing cassava pulp with pig manure was evaluated using laboratory scale mesophilic digester. The digester was operated in a semi-continuous mode with the mixed feedstock having C/N ratio of 35:1. Digester startup was accomplished in 60days with loading of 0.5-1kgVS/m(3)d. Subsequently, the loading to digester was increased step-wise from 2 to 9kgVS/m(3)d. Digester performance was stable at loading between 2 and 6kgVS/m(3)d with an average volatile solid removal and methane yield of 82% and 0.38m(3)/kgVSadded, respectively. However, beyond loading of 7kgVS/m(3)d, solubilization of particulate matter did not take place efficiently. Cyanide present in cassava pulp was successfully degraded indicating that anaerobic sludge in the digester was well acclimatized to cyanide. The results show that cassava pulp can be successfully digested anaerobically with pig manure as co-substrate without any inhibitory effect of cyanide present in the cassava pulp. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Atomic force microscope image contrast mechanisms on supported lipid bilayers.

    PubMed

    Schneider, J; Dufrêne, Y F; Barger, W R; Lee, G U

    2000-08-01

    This work presents a methodology to measure and quantitatively interpret force curves on supported lipid bilayers in water. We then use this method to correlate topographic imaging contrast in atomic force microscopy (AFM) images of phase-separated Langmuir-Blodgett bilayers with imaging load. Force curves collected on pure monolayers of both distearoylphosphatidylethanolamine (DSPE) and monogalactosylethanolamine (MGDG) and dioleoylethanolamine (DOPE) deposited at similar surface pressures onto a monolayer of DSPE show an abrupt breakthrough event at a repeatable, material-dependent force. The breakthrough force for DSPE and MGDG is sizable, whereas the breakthrough force for DOPE is too small to measure accurately. Contact-mode AFM images on 1:1 mixed monolayers of DSPE/DOPE and MGDG/DOPE have a high topographic contrast at loads between the breakthrough force of each phase, and a low topographic contrast at loads above the breakthrough force of both phases. Frictional contrast is inverted and magnified at loads above the breakthrough force of both phases. These results emphasize the important role that surface forces and mechanics can play in imaging multicomponent biomembranes with AFM.

  3. Test and Analysis of Composite Hat Stringer Pull-off Test Specimens

    NASA Technical Reports Server (NTRS)

    Li, Jian; OBrien, T. Kevin; Rousseau, Carl Q.

    1996-01-01

    Hat stringer pull-off tests were performed to evaluate the delamination failure mechanisms in the flange region for a rod-reinforced hat stringer section. A special test fixture was used to pull the hat off the stringer while reacting the pull-off load through roller supports at both stringer flanges. Microscopic examinations of the failed specimens revealed that failure occurred at the ply termination in the flange area where the flange of the stiffener is built up by adding 45/-45 tape plies on the top surface. Test results indicated that the as-manufactured microstructure in the flange region has a strong influence on the delamination initiation and the associated pull-off loads. Finite element models were created for each specimen with a detailed mesh based on micrographs of the critical location. A fracture mechanics approach and a mixed mode delamination criterion were used to predict the onset of delamination and the pull-off load. By modeling the critical local details of each specimen from micrographs, the model was able to accurately predict the hat stringer pull-off loads and replicate the variability in the test results.

  4. Effect of axial load on mode shapes and frequencies of beams

    NASA Technical Reports Server (NTRS)

    Shaker, F. J.

    1975-01-01

    An investigation of the effect of axial load on the natural frequencies and mode shapes of uniform beams and of a cantilevered beam with a concentrated mass at the tip is presented. Characteristic equations which yield the frequencies and mode shape functions for the various cases are given. The solutions to these equations are presented by a series of graphs so that frequency as a function of axial load can readily be determined. The effect of axial load on the mode shapes are also depicted by another series of graphs.

  5. Mode Equivalence of Health Indicators Between Data Collection Modes and Mixed-Mode Survey Designs in Population-Based Health Interview Surveys for Children and Adolescents: Methodological Study

    PubMed Central

    Hoffmann, Robert; Houben, Robin; Krause, Laura; Kamtsiuris, Panagiotis; Gößwald, Antje

    2018-01-01

    Background The implementation of an Internet option in an existing public health interview survey using a mixed-mode design is attractive because of lower costs and faster data availability. Additionally, mixed-mode surveys can increase response rates and improve sample composition. However, mixed-mode designs can increase the risk of measurement error (mode effects). Objective This study aimed to determine whether the prevalence rates or mean values of self- and parent-reported health indicators for children and adolescents aged 0-17 years differ between self-administered paper-based questionnaires (SAQ-paper) and self-administered Web-based questionnaires (SAQ-Web), as well as between a single-mode control group and different mixed-mode groups. Methods Data were collected for a methodological pilot of the third wave of the "German Health Interview and Examination Survey for Children and Adolescents". Questionnaires were completed by parents or adolescents. A population-based sample of 11,140 children and adolescents aged 0-17 years was randomly allocated to 4 survey designs—a single-mode control group with paper-and-pencil questionnaires only (n=970 parents, n=343 adolescents)—and 3 mixed-mode designs, all of which offered Web-based questionnaire options. In the concurrent mixed-mode design, both questionnaires were offered at the same time (n=946 parents, n=290 adolescents); in the sequential mixed-mode design, the SAQ-Web was sent first, followed by the paper questionnaire along with a reminder (n=854 parents, n=269 adolescents); and in the preselect mixed-mode design, both options were offered and the respondents were asked to request the desired type of questionnaire (n=698 parents, n=292 adolescents). In total, 3468 questionnaires of parents of children aged 0-17 years (SAQ-Web: n=708; SAQ-paper: n=2760) and 1194 questionnaires of adolescents aged 11-17 years (SAQ-Web: n=299; SAQ-paper: n=895) were analyzed. Sociodemographic characteristics and a broad range of health indicators for children and adolescents were compared by survey design and data collection mode by calculating predictive margins from regression models. Results There were no statistically significant differences in sociodemographic characteristics or health indicators between the single-mode control group and any of the mixed-mode survey designs. Differences in sociodemographic characteristics between SAQ-Web and SAQ-paper were found. Web respondents were more likely to be male, have higher levels of education, and higher household income compared with paper respondents. After adjusting for sociodemographic characteristics, only one of the 38 analyzed health indicators showed different prevalence rates between the data collection modes, with a higher prevalence rate for lifetime alcohol consumption among the online-responding adolescents (P<.001). Conclusions These results suggest that mode bias is limited in health interview surveys for children and adolescents using a mixed-mode design with Web-based and paper questionnaires. PMID:29506967

  6. Study of node and mass sensitivity of resonant mode based cantilevers with concentrated mass loading

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Kewei, E-mail: drzkw@126.com; Chai, Yuesheng; Fu, Jiahui

    2015-12-15

    Resonant-mode based cantilevers are an important type of acoustic wave based mass-sensing devices. In this work, the governing vibration equation of a bi-layer resonant-mode based cantilever attached with concentrated mass is established by using a modal analysis method. The effects of resonance modes and mass loading conditions on nodes and mass sensitivity of the cantilever were theoretically studied. The results suggested that the node did not shift when concentrated mass was loaded on a specific position. Mass sensitivity of the cantilever was linearly proportional to the square of the point displacement at the mass loading position for all the resonancemore » modes. For the first resonance mode, when mass loading position x{sub c} satisfied 0 < x{sub c} < ∼ 0.3l (l is the cantilever beam length and 0 represents the rigid end), mass sensitivity decreased as the mass increasing while the opposite trend was obtained when mass loading satisfied ∼0.3l ≤ x{sub c} ≤ l. Mass sensitivity did not change when concentrated mass was loaded at the rigid end. This work can provide scientific guidance to optimize the mass sensitivity of a resonant-mode based cantilever.« less

  7. Mixed-Mode Surveys: A Strategy to Reduce Costs and Enhance Response Rates

    ERIC Educational Resources Information Center

    Tobin, Daniel; Thomson, Joan; Radhakrishna, Rama; LaBorde, Luke

    2012-01-01

    Mixed-mode surveys present one opportunity for Extension to determine program outcomes at lower costs. In order to conduct a follow-up evaluation, we implemented a mixed-mode survey that relied on communication using the Web, postal mailings, and telephone calls. Using multiple modes conserved costs by reducing the number of postal mailings yet…

  8. Comparing Two Web/Mail Mixed-Mode Contact Protocols to a Unimode Mail Survey

    ERIC Educational Resources Information Center

    Newberry, Milton G., III; Israel, Glenn D.

    2017-01-01

    Recent research has shown mixed-mode surveys are advantageous for organizations to use in collecting data. Previous research explored web/mail mode effects for four-contact waves. This study explores the effect of web/mail mixed-mode systems over a series of contacts on the customer satisfaction data from the Florida Cooperative Extension Service…

  9. Fatigue damage prognosis using affine arithmetic

    NASA Astrophysics Data System (ADS)

    Gbaguidi, Audrey; Kim, Daewon

    2014-02-01

    Among the essential steps to be taken in structural health monitoring systems, damage prognosis would be the field that is least investigated due to the complexity of the uncertainties. This paper presents the possibility of using Affine Arithmetic for uncertainty propagation of crack damage in damage prognosis. The structures examined are thin rectangular plates made of titanium alloys with central mode I cracks and a composite plate with an internal delamination caused by mixed mode I and II fracture modes, under a harmonic uniaxial loading condition. The model-based method for crack growth rates are considered using the Paris Erdogan law model for the isotropic plates and the delamination growth law model proposed by Kardomateas for the composite plate. The parameters for both models are randomly taken and their uncertainties are considered as defined by an interval instead of a probability distribution. A Monte Carlo method is also applied to check whether Affine Arithmetic (AA) leads to tight bounds on the lifetime of the structure.

  10. Dynamic ELM and divertor control using resonant toroidal multi-mode magnetic fields in DIII-D and EAST

    NASA Astrophysics Data System (ADS)

    Sun, Youwen

    2017-10-01

    A rotating n = 2 Resonant Magnetic Perturbation (RMP) field combined with a stationary n = 3 RMP field has validated predictions that access to ELM suppression can be improved, while divertor heat and particle flux can also be dynamically controlled in DIII-D. Recent observations in the EAST tokamak indicate that edge magnetic topology changes, due to nonlinear plasma response to magnetic perturbations, play a critical role in accessing ELM suppression. MARS-F code MHD simulations, which include the plasma response to the RMP, indicate the nonlinear transition to ELM suppression is optimized by configuring the RMP coils to drive maximal edge stochasticity. Consequently, mixed toroidal multi-mode RMP fields, which produce more densely packed islands over a range of additional rational surfaces, improve access to ELM suppression, and further spread heat loading on the divertor. Beneficial effects of this multi-harmonic spectrum on ELM suppression have been validated in DIII-D. Here, the threshold current required for ELM suppression with a mixed n spectrum, where part of the n = 3 RMP field is replaced by an n = 2 field, is smaller than the case with pure n = 3 field. An important further benefit of this multi-mode approach is that significant changes of 3D particle flux footprint profiles on the divertor are found in the experiment during the application of a rotating n = 2 RMP field superimposed on a static n = 3 RMP field. This result was predicted by modeling studies of the edge magnetic field structure using the TOP2D code which takes into account plasma response from MARS-F code. These results expand physics understanding and potential effectiveness of the technique for reliably controlling ELMs and divertor power/particle loading distributions in future burning plasma devices such as ITER. Work supported by USDOE under DE-FC02-04ER54698 and NNSF of China under 11475224.

  11. Microtensile bond strength of etch and rinse versus self-etch adhesive systems.

    PubMed

    Hamouda, Ibrahim M; Samra, Nagia R; Badawi, Manal F

    2011-04-01

    The aim of this study was to compare the microtensile bond strength of the etch and rinse adhesive versus one-component or two-component self-etch adhesives. Twelve intact human molar teeth were cleaned and the occlusal enamel of the teeth was removed. The exposed dentin surfaces were polished and rinsed, and the adhesives were applied. A microhybride composite resin was applied to form specimens of 4 mm height and 6 mm diameter. The specimens were sectioned perpendicular to the adhesive interface to produce dentin-resin composite sticks, with an adhesive area of approximately 1.4 mm(2). The sticks were subjected to tensile loading until failure occurred. The debonded areas were examined with a scanning electron microscope to determine the site of failure. The results showed that the microtensile bond strength of the etch and rinse adhesive was higher than that of one-component or two-component self-etch adhesives. The scanning electron microscope examination of the dentin surfaces revealed adhesive and mixed modes of failure. The adhesive mode of failure occurred at the adhesive/dentin interface, while the mixed mode of failure occurred partially in the composite and partially at the adhesive/dentin interface. It was concluded that the etch and rinse adhesive had higher microtensile bond strength when compared to that of the self-etch adhesives. Copyright © 2010 Elsevier Ltd. All rights reserved.

  12. Consideration of Moving Tooth Load in Gear Crack Propagation Predictions

    NASA Technical Reports Server (NTRS)

    Lewicki, David G.; Handschuh, Robert F.; Spievak, Lisa E.; Wawrzynek, Paul A.; Ingraffea, Anthony R.

    2001-01-01

    Robust gear designs consider not only crack initiation, but crack propagation trajectories for a fail-safe design. In actual gear operation, the magnitude as well as the position of the force changes as the gear rotates through the mesh. A study to determine the effect of moving gear tooth load on crack propagation predictions was performed. Two-dimensional analysis of an involute spur gear and three-dimensional analysis of a spiral-bevel pinion gear using the finite element method and boundary element method were studied and compared to experiments. A modified theory for predicting gear crack propagation paths based on the criteria of Erdogan and Sih was investigated. Crack simulation based on calculated stress intensity factors and mixed mode crack angle prediction techniques using a simple static analysis in which the tooth load was located at the highest point of single tooth contact was validated. For three-dimensional analysis, however, the analysis was valid only as long as the crack did not approach the contact region on the tooth.

  13. Elastic-Plastic Finite Element Analysis of Fatigue Crack Growth in Mode 1 and Mode 2 Conditions

    NASA Technical Reports Server (NTRS)

    Nakagaki, M.; Atluri, S. N.

    1978-01-01

    Presented is an alternate cost-efficient and accurate elastic-plastic finite element procedure to analyze fatigue crack closure and its effects under general spectrum loading. Both Modes 1 and 2 type cycling loadings are considered. Also presented are the results of an investigation, using the newly developed procedure, of various factors that cause crack growth acceleration or retardation and delay effects under high-to-low, low-to-high, single overload, and constant amplitude type cyclic loading in a Mode 1 situation. Further, the results of an investigation of a centercracked panel under external pure shear (Mode 2) cyclic loading, of constant amplitude, are reported.

  14. Development and evaluation of a novel drug delivery: Soluplus®/TPGS mixed micelles loaded with piperine in vitro and in vivo.

    PubMed

    Ding, Yingying; Wang, Changyuan; Wang, Yutong; Xu, Youwei; Zhao, Jing; Gao, Meng; Ding, Yanfang; Peng, Jinyong; Li, Lei

    2018-05-27

    Although piperine can inhibit cells of tumors, the poor water solubility restricted its clinical application. This paper aimed to develop mixed micelles based on Soluplus ® and D-α-tocopherol polyethylene glycol succinate (TPGS) to improve the aqueous solubility and anti-cancer effect. Piperine-loaded mixed micelles were prepared using a thin-film hydration method, and their physicochemical properties were characterized. The cellular uptake of the micelles was confirmed by confocal laser scanning microscopy in A549 lung cancer cells and HepG 2 liver cancer cells. In addition, cytotoxicity of the piperine mixed micelles was studied in A549 lung cancer cells and HepG 2 liver cancer cells. Free piperine or piperine-loaded Soluplus ® /TPGS mixed micelles were administered at an equivalent dose of piperine at 3.2 mg/kg via a single intravenous injection in the tail vain for the pharmacokinetic study in vivo. The diameter of piperine-loaded Soluplus ® /TPGS (4:1) mixed micelles was about 61.9 nm and the zeta potential -1.16 ± 1.06 mV with 90.9% of drug encapsulation efficiency and 4.67% of drug-loading efficiency. Differential scanning calorimetry (DSC) studies confirmed that piperine is encapsulated by the Soluplus ® /TPGS. The release results in vitro showed that the piperine-loaded Soluplus ® /TPGS mixed micelles presented sustained release behavior compared to the free piperine. The mixed micelles exhibited better antitumor efficacy compared to free piperine and physical mixture against in A549 and HepG 2 cells by MTT assay. The pharmacokinetic study revealed that the AUC of piperine-loaded mixed micelles was 2.56 times higher than that of piperine and the MRT for piperine-loaded mixed micelles was 1.2-fold higher than piperine (p < .05). The results of the study suggested that the piperine-loaded mixed micelles developed might be a potential nano-drug delivery system for cancer chemotherapy. These results demonstrated that piperine-loaded Soluplus ® /TPGS mixed micelles are an effective strategy to deliver piperine for cancer therapy.

  15. Deformation behavior of Nb nanowires in TiNiCu shape memory alloy matrix

    DOE PAGES

    Jiang, Daqiang; Liu, Yinong; Yu, Cun; ...

    2015-08-18

    An in-situ nanowire Nb/TiNiCu composite is fabricated based on the concept of strain under-matching between a phase transforming matrix and high strength nanomaterials. The deformation behavior of the Nb nanowire was investigated by means of in-situ synchrotron X-ray diffraction when the TiNiCu matrix underwent different deformation modes. The maximum lattice strain of the Nb nanowires was about 5% when the matrix deformed via martensitic transformation or 1% when deforming plastically by dislocation slip. As a result, the Nb nanowires showed a lattice strain of 3.5% when the matrix deformed in the mixed mode of plastic deformation and martensitic transformation, whichmore » means that the occurrence of plastic deformation does not impede load transfer from the matrix to the nanowires.« less

  16. Measurement Error Calibration in Mixed-Mode Sample Surveys

    ERIC Educational Resources Information Center

    Buelens, Bart; van den Brakel, Jan A.

    2015-01-01

    Mixed-mode surveys are known to be susceptible to mode-dependent selection and measurement effects, collectively referred to as mode effects. The use of different data collection modes within the same survey may reduce selectivity of the overall response but is characterized by measurement errors differing across modes. Inference in sample surveys…

  17. Mode Equivalence of Health Indicators Between Data Collection Modes and Mixed-Mode Survey Designs in Population-Based Health Interview Surveys for Children and Adolescents: Methodological Study.

    PubMed

    Mauz, Elvira; Hoffmann, Robert; Houben, Robin; Krause, Laura; Kamtsiuris, Panagiotis; Gößwald, Antje

    2018-03-05

    The implementation of an Internet option in an existing public health interview survey using a mixed-mode design is attractive because of lower costs and faster data availability. Additionally, mixed-mode surveys can increase response rates and improve sample composition. However, mixed-mode designs can increase the risk of measurement error (mode effects). This study aimed to determine whether the prevalence rates or mean values of self- and parent-reported health indicators for children and adolescents aged 0-17 years differ between self-administered paper-based questionnaires (SAQ-paper) and self-administered Web-based questionnaires (SAQ-Web), as well as between a single-mode control group and different mixed-mode groups. Data were collected for a methodological pilot of the third wave of the "German Health Interview and Examination Survey for Children and Adolescents". Questionnaires were completed by parents or adolescents. A population-based sample of 11,140 children and adolescents aged 0-17 years was randomly allocated to 4 survey designs-a single-mode control group with paper-and-pencil questionnaires only (n=970 parents, n=343 adolescents)-and 3 mixed-mode designs, all of which offered Web-based questionnaire options. In the concurrent mixed-mode design, both questionnaires were offered at the same time (n=946 parents, n=290 adolescents); in the sequential mixed-mode design, the SAQ-Web was sent first, followed by the paper questionnaire along with a reminder (n=854 parents, n=269 adolescents); and in the preselect mixed-mode design, both options were offered and the respondents were asked to request the desired type of questionnaire (n=698 parents, n=292 adolescents). In total, 3468 questionnaires of parents of children aged 0-17 years (SAQ-Web: n=708; SAQ-paper: n=2760) and 1194 questionnaires of adolescents aged 11-17 years (SAQ-Web: n=299; SAQ-paper: n=895) were analyzed. Sociodemographic characteristics and a broad range of health indicators for children and adolescents were compared by survey design and data collection mode by calculating predictive margins from regression models. There were no statistically significant differences in sociodemographic characteristics or health indicators between the single-mode control group and any of the mixed-mode survey designs. Differences in sociodemographic characteristics between SAQ-Web and SAQ-paper were found. Web respondents were more likely to be male, have higher levels of education, and higher household income compared with paper respondents. After adjusting for sociodemographic characteristics, only one of the 38 analyzed health indicators showed different prevalence rates between the data collection modes, with a higher prevalence rate for lifetime alcohol consumption among the online-responding adolescents (P<.001). These results suggest that mode bias is limited in health interview surveys for children and adolescents using a mixed-mode design with Web-based and paper questionnaires. ©Elvira Mauz, Robert Hoffmann, Robin Houben, Laura Krause, Panagiotis Kamtsiuris, Antje Gößwald. Originally published in the Journal of Medical Internet Research (http://www.jmir.org), 05.03.2018.

  18. The crack and wedging problem for an orthotropic strip

    NASA Technical Reports Server (NTRS)

    Cinar, A.; Erdogan, F.

    1983-01-01

    The plane elasticity problem for an orthotropic strip containing a crack parallel to its boundaries is considered. The problem is formulated under general mixed mode loading conditions. The stress intensity factors depend on two dimensionless orthotropic constants only. For the crack problem the results are given for a single crack and two collinear cracks. The calculated results show that of the two orthotropic constants the influence of the stiffness ratio on the stress intensity factors is much more significant than that of the shear parameter. The problem of loading the strip by a rigid rectangular lengths continuous contact is maintained along the wedge strip interface; at a certain critical wedge length the separation starts at the midsection of the wedge, and the length of the separation zone increases rapidly with increasing wedge length. Previously announced in STAR as N82-26707

  19. Comparison of Mode II and III Monotonic and Fatigue Delamination Onset Behavior for Carbon/Toughened Epoxy Composites

    NASA Technical Reports Server (NTRS)

    Li, Jian; OBrien, T. Kevin; Lee, Shaw Ming

    1997-01-01

    Monotonic and fatigue tests were performed to compare the Mode II and III interlaminar fracture toughness and fatigue delamination onset for Tenax-HTA/R6376 carbon/toughened epoxy composites. The Mode II interlaminar fracture toughness and fatigue delamination onset were characterized using the end-notched flexure (ENF) test while the Mode III interlaminar fracture toughness and fatigue delamination onset were characterized by using the edge crack torsion (ECT) test. Monotonic tests show that the Mode III fracture toughness is higher than the Mode II fracture toughness. Both Mode II and III cyclic loading greatly increases the tendency for a delamination to grow relative to a single monotonically increasing load. Under fatigue loading, the Mode III specimen also has a longer life than the Mode II specimen.

  20. Multimode power processor

    DOEpatents

    O'Sullivan, G.A.; O'Sullivan, J.A.

    1999-07-27

    In one embodiment, a power processor which operates in three modes: an inverter mode wherein power is delivered from a battery to an AC power grid or load; a battery charger mode wherein the battery is charged by a generator; and a parallel mode wherein the generator supplies power to the AC power grid or load in parallel with the battery. In the parallel mode, the system adapts to arbitrary non-linear loads. The power processor may operate on a per-phase basis wherein the load may be synthetically transferred from one phase to another by way of a bumpless transfer which causes no interruption of power to the load when transferring energy sources. Voltage transients and frequency transients delivered to the load when switching between the generator and battery sources are minimized, thereby providing an uninterruptible power supply. The power processor may be used as part of a hybrid electrical power source system which may contain, in one embodiment, a photovoltaic array, diesel engine, and battery power sources. 31 figs.

  1. Multimode power processor

    DOEpatents

    O'Sullivan, George A.; O'Sullivan, Joseph A.

    1999-01-01

    In one embodiment, a power processor which operates in three modes: an inverter mode wherein power is delivered from a battery to an AC power grid or load; a battery charger mode wherein the battery is charged by a generator; and a parallel mode wherein the generator supplies power to the AC power grid or load in parallel with the battery. In the parallel mode, the system adapts to arbitrary non-linear loads. The power processor may operate on a per-phase basis wherein the load may be synthetically transferred from one phase to another by way of a bumpless transfer which causes no interruption of power to the load when transferring energy sources. Voltage transients and frequency transients delivered to the load when switching between the generator and battery sources are minimized, thereby providing an uninterruptible power supply. The power processor may be used as part of a hybrid electrical power source system which may contain, in one embodiment, a photovoltaic array, diesel engine, and battery power sources.

  2. [Characteristics of electroosmotic flow in open-tubular capillary electrochromatography with magnetic nanoparticle coating as mixed-mode stationary phase].

    PubMed

    Qin, Sasa; Zhou, Chaoran; Zhu, Yaxian; Ren, Zhiyu; Zhang, Lingyi; Fu, Honggang; Zhang, Weibing

    2011-09-01

    A novel open-tubular capillary electrochromatography (OT-CEC) column with magnetic nanoparticle coating as mixed-mode stationary phase was prepared. The mixed-mode stationary phases were obtained by mixing C18 and amino modified magnetic nanoparticles with different ratios. The mixed modified magnetic nanoparticles as stationary phase were introduced into the capillary by using external magnetic force. The magnetic nanoparticle coating can be easily regenerated by removing the external magnetic field, and applied to other separation modes. The characteristics of electroosmotic flow (EOF) were theoretically investigated through the effect of physicochemical properties of different stationary phases on EOF. The experiment was conducted under different ratios of mixed-mode stationary phases and coating lengths, and it was verified that the theoretical conclusions accorded with the experimental results. It was shown that the EOF can be easily adjusted by changing the ratio of stationary phases or the number of permanent magnets.

  3. Mixed-mode oscillations in memristor emulator based Liénard system

    NASA Astrophysics Data System (ADS)

    Kingston, S. Leo; Suresh, K.; Thamilmaran, K.

    2018-04-01

    We report the existence of mixed-mode oscillations in memristor emulator based Liénard system which is externally driven by sinusoidal force. The charge and flux relationship of memristor emulator device explored based on the smooth cubic nonlinear element. The system exhibits the successive period adding sequences of mixed-mode oscillations in the wide parameter region. The electronics circuit of the memristor emulator is successfully implemented through PSpice simulation and mixed mode oscillations are observed through PSpice experiment and the obtained results are qualitatively matches with the numerical simulation.

  4. Strain gage based determination of mixed mode SIFs

    NASA Astrophysics Data System (ADS)

    Murthy, K. S. R. K.; Sarangi, H.; Chakraborty, D.

    2018-05-01

    Accurate determination of mixed mode stress intensity factors (SIFs) is essential in understanding and analysis of mixed mode fracture of engineering components. Only a few strain gage determination of mixed mode SIFs are reported in literatures and those also do not provide any prescription for radial locations of strain gages to ensure accuracy of measurement. The present investigation experimentally demonstrates the efficacy of a proposed methodology for the accurate determination of mixed mode I/II SIFs using strain gages. The proposed approach is based on the modified Dally and Berger's mixed mode technique. Using the proposed methodology appropriate gage locations (optimal locations) for a given configuration have also been suggested ensuring accurate determination of mixed mode SIFs. Experiments have been conducted by locating the gages at optimal and non-optimal locations to study the efficacy of the proposed approach. The experimental results from the present investigation show that highly accurate SIFs (0.064%) can be determined using the proposed approach if the gages are located at the suggested optimal locations. On the other hand, results also show the very high errors (212.22%) in measured SIFs possible if the gages are located at non-optimal locations. The present work thus clearly substantiates the importance of knowing the optimal locations of the strain gages apriori in accurate determination of SIFs.

  5. Fracture modes of high modulus graphite/epoxy angleplied laminates subjected to off-axis tensile loads

    NASA Technical Reports Server (NTRS)

    Sinclair, J. H.

    1980-01-01

    Angelplied laminates of high modulus graphite fiber/epoxy were studied in several ply configurations at various tensile loading angles to the zero ply direction in order to determine the effects of ply orientations on tensile properties, fracture modes, and fracture surface characteristics of the various plies. It was found that fracture modes in the plies of angleplied laminates can be characterized by scanning electron microscope observation. The characteristics for a given fracture mode are similar to those for the same fracture mode in unidirectional specimens. However, no simple load angle range can be associated with a given fracture mode.

  6. Enhanced bioethanol production by fed-batch simultaneous saccharification and co-fermentation at high solid loading of Fenton reaction and sodium hydroxide sequentially pretreated sugarcane bagasse.

    PubMed

    Zhang, Teng; Zhu, Ming-Jun

    2017-04-01

    A study on the fed-batch simultaneous saccharification and co-fermentation (SSCF) of Fenton reaction combined with NaOH pretreated sugarcane bagasse (SCB) at a high solid loading of 10-30% (w/v) was investigated. Enzyme feeding mode, substrate feeding mode and combination of both were compared with the batch mode under respective solid loadings. Ethanol concentrations of above 80g/L were obtained in batch and enzyme feeding modes at a solid loading of 30% (w/v). Enzyme feeding mode was found to increase ethanol productivity and reduce enzyme loading to a value of 1.23g/L/h and 9FPU/g substrate, respectively. The present study provides an economically feasible process for high concentration bioethanol production. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Guided waves by axisymmetric and non-axisymmetric surface loading on hollow cylinders

    PubMed

    Shin; Rose

    1999-06-01

    Guided waves generated by axisymmetric and non-axisymmetric surface loading on a hollow cylinder are studied. For the theoretical analysis of the superposed guided waves, a normal mode concept is employed. The amplitude factors of individual guided wave modes are studied with respect to varying surface pressure loading profiles. Both theoretical and experimental focus is given to the guided waves generated by both axisymmetric and non-axisymmetric excitation. For the experiments, a comb transducer and high power tone burst function generator system are used on a sample Inconel tube. Surface loading conditions, such as circumferential loading angles and axial loading lengths, are used with the frequency and phase velocity to control the axisymmetric and non-axisymmetric mode excitations. The experimental study demonstrates the use of a practical non-axisymmetric partial loading technique in generating axisymmetric modes, particularly useful in the inspection of tubing and piping with limited circumferential access. From both theoretical and experimental studies, it also could be said that the amount of flexural modes reflected from a defect contains information on the reflector's circumferential angle, as well as potentially other classification and sizing feature information. The axisymmetric and non-axisymmetric guided wave modes should both be carefully considered for improvement of the overall analysis of guided waves generated in hollow cylinders.

  8. Slow crack growth in glass in combined mode I and mode II loading

    NASA Technical Reports Server (NTRS)

    Shetty, D. K.; Rosenfield, A. R.

    1991-01-01

    Slow crack growth in soda-lime glass under combined mode I and mode II loading was investigated in precracked disk specimens in which pure mode I, pure mode II, and various combinations of mode I and mode II were achieved by loading in diametral compression at selected angles with respect to symmetric radial cracks. It is shown that slow crack growth under these conditions can be described by a simple exponential relationship with elastic strain energy release rate as the effective crack-driving force parameter. It is possible to interpret this equation in terms of theoretical models that treat subcritical crack growth as a thermally activated bond-rupture process with an activation energy dependent on the environment, and the elastic energy release rate as the crack-driving force parameter.

  9. The Impact of Mixing Modes on Reliability in Longitudinal Studies

    ERIC Educational Resources Information Center

    Cernat, Alexandru

    2015-01-01

    Mixed-mode designs are increasingly important in surveys, and large longitudinal studies are progressively moving to or considering such a design. In this context, our knowledge regarding the impact of mixing modes on data quality indicators in longitudinal studies is sparse. This study tries to ameliorate this situation by taking advantage of a…

  10. Center for the Built Environment: Research on Building Envelope Systems

    Science.gov Websites

    Studies Facade and Perimeter Zone Field Study Facades and Thermal Comfort Facade Symposium Mixed-Mode Research Adaptive Comfort Model Mixed-Mode Case Studies Operable Windows and Thermal Comfort Occupant thermal preferences in naturally ventilated as sealed buildings? Case Study Research of Mixed-Mode Office

  11. Multi-load Groups Coordinated Load Control Strategy Considering Power Network Constraints

    NASA Astrophysics Data System (ADS)

    Liu, Meng; Zhao, Binchao; Wang, Jun; Zhang, Guohui; Wang, Xin

    2017-05-01

    Loads with energy storage property can actively participate in power balance for power systems, this paper takes air conditioner as a controllable load example, proposing a multi-load groups coordinated load control strategy considering power network constraints. Firstly, two load control modes considering recovery of load diversity are designed, blocking power oscillation of aggregated air conditioners. As the same time, air conditioner temperature setpoint recovery control strategy is presented to avoid power recovery peak. Considering inherent characteristics of two load control modes, an coordinated load control mode is designed by combining the both. Basing on this, a multi-load groups coordinated load control strategy is proposed. During the implementing of load control, power network constraints should be satisfied. An indice which can reflect the security of power system operating is defined. By minimizing its value through optimization, the change of air conditioning loads’ aggregated power on each load bus can be calculated. Simulations are conducted on an air conditioners group and New England 10-generator 39-bus system, verifying the effectiveness of the proposed multi-load groups coordinated load control strategy considering power network constraints.

  12. ENANTIOSEPARATION OF MALATHION, CRUFORMATE, AND FENSULFOTHION ORGANOSPHOSPHORUS PESTICIDES BY MIXED-MODE ELECTROKINETIC CAPILLARY CHROMATOGRAPHY

    EPA Science Inventory

    Mixed-mode electrokinetic capillary chromatography (mixed-ECC) has been used for the enantioseparation of organophosphorus pesticides. In mixed-ECC, a combination of three pseudostationary phases including surfactants, neutral, and charged cyclodextrins, are used to resolve very ...

  13. Systems and methods for providing power to a load based upon a control strategy

    DOEpatents

    Perisic, Milun; Kajouke, Lateef A; Ransom, Ray M

    2013-12-24

    Systems and methods are provided for an electrical system. The electrical system includes a load, an interface configured to receive a voltage from a voltage source, and a controller configured to receive the voltage from the voltage source through the interface and to provide a voltage and current to the load. Wherein, when the controller is in a constant voltage mode, the controller provides a constant voltage to the load, when the controller is in a constant current mode, the controller provides a constant current to the load, and when the controller is in a constant power mode, the controller provides a constant power to the load.

  14. A study on the nature of interactions of mixed-mode ligands HEA and PPA HyperCel using phenylglyoxal modified lysozyme.

    PubMed

    Pezzini, J; Cabanne, C; Dupuy, J-W; Gantier, R; Santarelli, X

    2014-06-01

    Mixed mode chromatography, or multimodal chromatography, involves the exploitation of combinations of several interactions in a controlled manner, to facilitate the rapid capture of proteins. Mixed-mode ligands like HEA and PPA HyperCel™ facilitate different kinds of interactions (hydrophobic, ionic, etc.) under different conditions. In order to better characterize the nature of this multi-modal interaction, we sought to study a protein, lysozyme, which is normally not retained by these mixed mode resins under normal binding conditions. Lysozyme was modified specifically at Arginine residues by the action of phenylglyoxal, and was extensively studied in this work to better characterize the mixed-mode interactions of HEA HyperCel™ and PPA HyperCel™ chromatographic supports. We show here that the adsorption behaviour of lysozyme on HEA and PPA HyperCel™ mixed mode sorbents varies depending on the degree of charge modification at the surface of the protein. Experiments using conventional cation exchange and hydrophobic interaction chromatography confirm that both charge and hydrophobicity modification occurs at the surface of the protein after lysozyme reaction with phenylglyoxal. The results emanating from this work using HEA and PPA HyperCel sorbents strongly suggest that mixed mode chromatography can efficiently separate closely related proteins of only minor surface charge and/or hydrophobicity differences. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Mixed-mode sorption of hydroxylated atrazine degradation products to sell: A mechanism for bound residue

    USGS Publications Warehouse

    Lerch, R.N.; Thurman, E.M.; Kruger, E.L.

    1997-01-01

    This study tested the hypothesis that sorption of hydroxylated atrazine degradation products (HADPs: hydroxyatrazine, HA; deethylhydroxyatrazine, DEHA; and deisopropylhydroxyatrazine, DIHA) to soils occurs by mixed-mode binding resulting from two simultaneous mechanisms: (1) cation exchange and (2) hydrophobic interaction. The objective was to use liquid chromatography and soil extraction experiments to show that mixed-mode binding is the mechanism controlling HADP sorption to soils and is also a mechanism for bound residue. Overall, HADP binding to solid-phase extraction (SPE) sorbents occurred in the order: cation exchange >> octadecyl (C18) >> cyanopropyl. Binding to cation exchange SPE and to a high-performance liquid chromatograph octyl (C8) column showed evidence for mixed-mode binding. Comparison of soil extracted by 0.5 M KH2P04, pH 7.5, or 25% aqueous CH3CN showed that, for HA and DIHA, cation exchange was a more important binding mechanism to soils than hydrophobic interaction. Based on differences between several extractants, the extent of HADP mixed-mode binding to soil occurred in the following order: HA > DIHA > DEHA. Mixed-mode extraction recovered 42.8% of bound atrazine residues from aged soil, and 88% of this fraction was identified as HADPs. Thus, a significant portion of bound atrazine residues in soils is sorbed by the mixed-mode binding mechanisms.

  16. Nonlinear Stability and Structure of Compressible Reacting Mixing Layers

    NASA Technical Reports Server (NTRS)

    Day, M. J.; Mansour, N. N.; Reynolds, W. C.

    2000-01-01

    The parabolized stability equations (PSE) are used to investigate issues of nonlinear flow development and mixing in compressible reacting shear layers. Particular interest is placed on investigating the change in flow structure that occurs when compressibility and heat release are added to the flow. These conditions allow the 'outer' instability modes- one associated with each of the fast and slow streams-to dominate over the 'central', Kelvin-Helmholtz mode that unaccompanied in incompressible nonreacting mixing layers. Analysis of scalar probability density functions in flows with dominant outer modes demonstrates the ineffective, one-sided nature of mixing that accompany these flow structures. Colayer conditions, where two modes have equal growth rate and the mixing layer is formed by two sets of vortices, offer some opportunity for mixing enhancement. Their extent, however, is found to be limited in the mixing layer's parameter space. Extensive validation of the PSE technique also provides a unique perspective on central- mode vortex pairing, further supporting the view that pairing is primarily governed perspective sheds insight on how linear stability theory is able to provide such an accurate prediction of experimentally-observed, fully nonlinear flow phenomenon.

  17. Fracture characterization of human cortical bone under mode II loading using the end-notched flexure test.

    PubMed

    Silva, F G A; de Moura, M F S F; Dourado, N; Xavier, J; Pereira, F A M; Morais, J J L; Dias, M I R; Lourenço, P J; Judas, F M

    2017-08-01

    Fracture characterization of human cortical bone under mode II loading was analyzed using a miniaturized version of the end-notched flexure test. A data reduction scheme based on crack equivalent concept was employed to overcome uncertainties on crack length monitoring during the test. The crack tip shear displacement was experimentally measured using digital image correlation technique to determine the cohesive law that mimics bone fracture behavior under mode II loading. The developed procedure was validated by finite element analysis using cohesive zone modeling considering a trapezoidal with bilinear softening relationship. Experimental load-displacement curves, resistance curves and crack tip shear displacement versus applied displacement were used to validate the numerical procedure. The excellent agreement observed between the numerical and experimental results reveals the appropriateness of the proposed test and procedure to characterize human cortical bone fracture under mode II loading. The proposed methodology can be viewed as a novel valuable tool to be used in parametric and methodical clinical studies regarding features (e.g., age, diseases, drugs) influencing bone shear fracture under mode II loading.

  18. A Comparison of Tension and Compression Creep in a Polymeric Composite and the Effects of Physical Aging on Creep Behavior

    NASA Technical Reports Server (NTRS)

    Gates, Thomas S.; Veazie, David R.; Brinson, L. Catherine

    1996-01-01

    Experimental and analytical methods were used to investigate the similarities and differences of the effects of physical aging on creep compliance of IM7/K3B composite loaded in tension and compression. Two matrix dominated loading modes, shear and transverse, were investigated for two load cases, tension and compression. The tests, run over a range of sub-glass transition temperatures, provided material constants, material master curves and aging related parameters. Comparing results from the short-term data indicated that although trends in the data with respect to aging time and aging temperature are similar, differences exist due to load direction and mode. The analytical model used for predicting long-term behavior using short-term data as input worked equally as well for the tension or compression loaded cases. Comparison of the loading modes indicated that the predictive model provided more accurate long term predictions for the shear mode as compared to the transverse mode. Parametric studies showed the usefulness of the predictive model as a tool for investigating long-term performance and compliance acceleration due to temperature.

  19. Using Mixed-Mode Contacts in Client Surveys: Getting More Bang for Your Buck

    ERIC Educational Resources Information Center

    Israel, Glenn D.

    2013-01-01

    Surveys are commonly used in Extension to identify client needs or evaluate program outcomes. This article examines how available email addresses can be incorporated into mixed-mode procedures for surveys. When mail and email addresses are used to implement a sequence of email and postal invitations in a mixed-mode survey, response rates were…

  20. Determination of mixed mode (I/II) SIFs of cracked orthotropic materials

    NASA Astrophysics Data System (ADS)

    Chakraborty, D.; Chakraborty, Debaleena; Murthy, K. S. R. K.

    2018-05-01

    Strain gage techniques have been successfully but sparsely used for the determination of stress intensity factors (SIFs) of orthotropic materials. For mode I cases, few works have been reported on the strain gage based determination of mode I SIF of orthotropic materials. However, for mixed mode (I/II) cases, neither a theoretical development of a strain gage based technique nor any recommended guidelines for minimum number of strain gages and their locations were reported in the literature for determination of mixed mode SIFs. The authors for the first time came up with a theoretical proposition to successfully use strain gages for determination of mixed mode SIFs of orthotropic materials [1]. Based on these formulations, the present paper discusses a finite element (FE) based numerical simulation of the proposed strain gage technique employing [902/0]10S carbon-epoxy laminates with a slant edge crack. An FE based procedure has also been presented for determination of the optimal radial locations of the strain gages apriori to actual experiments. To substantiate the efficacy of the proposed technique, numerical simulations for strain gage based determination of mixed mode SIFs have been conducted. Results show that it is possible to accurately determine the mixed mode SIFs of orthotropic laminates when the strain gages are placed within the optimal radial locations estimated using the present formulation.

  1. Analysis of influence of different pressure and different depth of pvd on soft foundation treatment

    NASA Astrophysics Data System (ADS)

    Li, Bin; Wang, XueKui

    2018-02-01

    According to the depth of plastic vertical drainage (pvd), the arrangement mode and the loading mode to analyze the influence of Vacuum preloading near the existing road. An arrangement mode of vacuum preloading to reduce the impact was put forward. The combination of different depth of pvd and loading modes are used to analyze the effect of vacuum preloading treatment and its influence range. The calculations show that the deformation and the influence distance are smaller by using the 40kPa vacuum loading and 41kPa surcharge load preloading. Reducing the depth of the pvd and vacuum combined surcharge preloading can weaken the influence to the existing highway.

  2. Influence of the resin on interlaminar mixed-mode fracture

    NASA Technical Reports Server (NTRS)

    Johnson, W. S.; Mangalgiri, P. D.

    1987-01-01

    Both literature review data and new data on toughness behavior of seven matrix and adhesive systems in four types of tests were studied in order to assess the influence of the resin on interlaminar fracture. Mixed mode (i.e., various combinations of opening mode 1, G sub 1, and shearing mode 2; G sub 2) fracture toughness data showed that the mixed mode relationship for failure appears to be linear in terms of G sub 1 and G sub 2. The study further indicates that fracture of brittle resins is controlled by the G sub 1 component, and that fracture of many tough resins is controlled by total strain-energy release rate, G sub T. Regarding the relation of polymer structure and the mixed mode fracture: high mode 1 toughness requires resin dilatation; dilatation is low in unmodified epoxies at room temperature/dry conditions; dilatation is higher in plasticized epoxies, heated epoxies, and in modified epoxies; modification improves mode 2 toughness only slightly compared with mode 1 improvements. Analytical aspects of the cracked lap shear test specimen were explored.

  3. Influence of the resin on interlaminar mixed-mode fracture

    NASA Technical Reports Server (NTRS)

    Johnson, W. S.; Mangalgiri, P. D.

    1985-01-01

    Both literature review data and new data on toughness behavior of seven matrix and adhesive systems in four types of tests were studied in order to assess the influence of the resin on interlaminar fracture. Mixed mode (i.e., various combinations of opening mode 1, G sub 1, and shearing mode 2; G sub 2) fracture toughness data showed that the mixed mode relationship for failure appears to be linear in terms of G sub 1 and G sub 2. The study further indicates that fracture of brittle resins is controlled by the G sub 1 component, and that fracture of many tough resins is controlled by total strain-energy release rate, G sub T. Regarding the relation of polymer structure and the mixed mode fracture: high mode 1 toughness requires resin dilatation; dilatation is low in unmodified epoxies at room temperature/dry conditions; dilatation is higher in plasticized epoxies, heated epoxies, and in modified epoxies; modification improves mode 2 toughness only slightly compared with mode 1 improvements. Analytical aspects of the cracked lap shear test specimen were explored.

  4. Matrix Fatigue Cracking Mechanisms of Alpha(2) TMC for Hypersonic Applications

    NASA Technical Reports Server (NTRS)

    Gabb, Timothy P.; Gayda, John

    1994-01-01

    The objective of this work was to understand matrix cracking mechanisms in a unidirectional alpha(sub 2) TMC in possible hypersonic applications. A (0)(sub 8) SCS-6/Ti-24Al-11Nb (at. percent) TMC was first subjected to a variety of simple isothermal and nonisothermal fatigue cycles to evaluate the damage mechanisms in simple conditions. A modified ascent mission cycle test was then performed to evaluate the combined effects of loading modes. This cycle mixes mechanical cycling at 150 and 483 C, sustained loads, and a slow thermal cycle to 815 C. At low cyclic stresses and strains more common in hypersonic applications, environment-assisted surface cracking limited fatigue resistance. This damage mechanism was most acute for out-of-phase nonisothermal cycles having extended cycle periods and the ascent mission cycle. A simple linear fraction damage model was employed to help understand this damage mechanism. Time-dependent environmental damage was found to strongly influence out-of-phase and mission life, with mechanical cycling damage due to the combination of external loading and CTE mismatch stresses playing a smaller role. The mechanical cycling and sustained loads in the mission cycle also had a smaller role.

  5. Simulation of load-sharing in standalone distributed generation system

    NASA Astrophysics Data System (ADS)

    Ajewole, Titus O.; Craven, Robert P. M.; Kayode, Olakunle; Babalola, Olufisayo S.

    2018-05-01

    This paper presents a study on load-sharing among the component generating units of a multi-source electric microgrid that is operated as an autonomous ac supply-mode system. Emerging trend in power system development permits deployment of microgrids for standalone or stand-by applications, thereby requiring active- and reactive power sharing among the discrete generating units contained in hybrid-source microgrids. In this study, therefore, a laboratory-scale model of a microgrid energized with three renewable energy-based sources is employed as a simulation platform to investigate power sharing among the power-generating units. Each source is represented by a source emulator that captures the real operational characteristics of the mimicked generating unit and, with implementation of real-life weather data and load profiles on the model; the sharing of the load among the generating units is investigated. There is a proportionate generation of power by the three source emulators, with their frequencies perfectly synchronized at the point of common coupling as a result of balance flow of power among them. This hybrid topology of renewable energy-based microgrid could therefore be seamlessly adapted into national energy mix by the indigenous electric utility providers in Nigeria.

  6. A Hybrid Converter for Improving Light Load Efficiency

    NASA Astrophysics Data System (ADS)

    Takahashi, Masaya; Nishijima, Kimihiro; Nagao, Michihiko; Sato, Terukazu; Nabeshima, Takashi

    In order to reduce power consumption of electronic equipment in stand-by mode, idle-mode and sleep-mode, a simple efficiency improvement technique for switching regulator in light load region is proposed. In this technique, under the light load, the small switching elements in a MOSFET driver circuit are used instead of the switching elements in a main regulator circuit to reduce driving losses. Of course, under the load heavier than light load, the MOSFET driver drives the switching elements in the main regulator circuit. The efficiency of a 2.5V/5A prototype buck converter is improved from 47.1% to 72.7% by using the proposed technique.

  7. ZIP3D: An elastic and elastic-plastic finite-element analysis program for cracked bodies

    NASA Technical Reports Server (NTRS)

    Shivakumar, K. N.; Newman, J. C., Jr.

    1990-01-01

    ZIP3D is an elastic and an elastic-plastic finite element program to analyze cracks in three dimensional solids. The program may also be used to analyze uncracked bodies or multi-body problems involving contacting surfaces. For crack problems, the program has several unique features including the calculation of mixed-mode strain energy release rates using the three dimensional virtual crack closure technique, the calculation of the J integral using the equivalent domain integral method, the capability to extend the crack front under monotonic or cyclic loading, and the capability to close or open the crack surfaces during cyclic loading. The theories behind the various aspects of the program are explained briefly. Line-by-line data preparation is presented. Input data and results for an elastic analysis of a surface crack in a plate and for an elastic-plastic analysis of a single-edge-crack-tension specimen are also presented.

  8. Analysis of Composite Panel-Stiffener Debonding Using a Shell/3D Modeling Technique

    NASA Technical Reports Server (NTRS)

    Krueger, Ronald; Minguet, Pierre J.

    2006-01-01

    Interlaminar fracture mechanics has proven useful for characterizing the onset of delaminations in composites and has been used with limited success primarily to investigate onset in fracture toughness specimens and laboratory size coupon type specimens. Future acceptance of the methodology by industry and certification authorities however, requires the successful demonstration of the methodology on structural level. For this purpose a panel was selected that was reinforced with stringers. Shear loading cases the panel to buckle and the resulting out-of-plane deformations initiate skin/stringer separation at the location of an embedded defect. For finite element analysis, the panel and surrounding load fixture were modeled with shell element. A small section of the stringer foot and the panel in the vicinity of the embedded defect were modeled with a local 3D solid model. A failure index was calculated by correlating computed mixed-mode failure criterion of the graphite/epoxy material.

  9. Preparative separation and purification of rebaudioside a from steviol glycosides using mixed-mode macroporous adsorption resins.

    PubMed

    Liu, Yongfeng; Di, Duolong; Bai, Qingqing; Li, Jintian; Chen, Zhenbin; Lou, Song; Ye, Helin

    2011-09-14

    Preparative separation and purification of rebaudioside A from steviol glycosides using mixed-mode macroporous adsorption resins (MARs) were systematically investigated. Mixed-mode MARs were prepared by a physical blending method. By evaluation of the adsorption/desorption ratio and adsorption/desorption capacity of mixed-mode MARs with different proportions toward RA and ST, the mixed-mode MAR 18 was chosen as the optimum strategy. On the basis of the static tests, it was found that the experimental data fitted best to the pseudosecond-order kinetics and Temkin-Pyzhev isotherm. Furthermore, the dynamic adsorption/desorption experiments were performed on the mini column packed with mixed-mode MAR 18. After one run treatment, the purity of rebaudioside A in purified product increased from 40.77 to 60.53%, with a yield rate of 38.73% (W/W), and that in residual product decreased from 40.77 to 36.17%, with a recovery yield of 57.61% (W/W). The total recovery yield reached 96.34% (W/W). The results showed that this method could be utilized in large-scale production of rebaudioside A from steviol glycosides in industry.

  10. Removal of dichloromethane from waste gas streams using a hybrid bubble column/biofilter bioreactor

    PubMed Central

    2014-01-01

    The performance of a hybrid bubble column/biofilter (HBCB) bioreactor for the removal of dichloromethane (DCM) from waste gas streams was studied in continuous mode for several months. The HBCB bioreactor consisted of two compartments: bubble column bioreactor removing DCM from liquid phase and biofilter removing DCM from gas phase. Effect of inlet DCM concentration on the elimination capacity was examined in the DCM concentration range of 34–359 ppm with loading rates ranged from 2.2 to 22.8 g/m3.h and constant total empty bed retention time (EBRT) of 200 s. In the equal loading rates, the elimination capacity and removal efficiency of the biofilter were higher than the corresponding values of the bubble column bioreactor. The maximum elimination capacity of the HBCB bioreactor was determined to be 15.7 g/m3.h occurred in the highest loading rate of 22.8 g/m3.h with removal efficiency of 69%. The overall mineralization portion of the HBCB bioreactor was in the range of 72-79%. The mixed liquor acidic pH especially below 5.5 inhibited microbial activity and decreased the elimination capacity. Inhibitory effect of high ionic strength was initiated in the mixed liquor electrical conductivity of 12.2 mS/cm. This study indicated that the HBCB bioreactor could benefit from advantages of both bubble column and biofilter reactors and could remove DCM from waste gas streams in a better manner. PMID:24406056

  11. Fracture Mechanics of Thin, Cracked Plates Under Tension, Bending and Out-of-Plane Shear Loading

    NASA Technical Reports Server (NTRS)

    Zehnder, Alan T.; Hui, C. Y.; Potdar, Yogesh; Zucchini, Alberto

    1999-01-01

    Cracks in the skin of aircraft fuselages or other shell structures can be subjected to very complex stress states, resulting in mixed-mode fracture conditions. For example, a crack running along a stringer in a pressurized fuselage will be subject to the usual in-plane tension stresses (Mode-I) along with out-of-plane tearing stresses (Mode-III like). Crack growth and initiation in this case is correlated not only with the tensile or Mode-I stress intensity factor, K(sub I), but depends on a combination of parameters and on the history of crack growth. The stresses at the tip of a crack in a plate or shell are typically described in terms of either the small deflection Kirchhoff plate theory. However, real applications involve large deflections. We show, using the von-Karman theory, that the crack tip stress field derived on the basis of the small deflection theory is still valid for large deflections. We then give examples demonstrating the exact calculation of energy release rates and stress intensity factors for cracked plates loaded to large deflections. The crack tip fields calculated using the plate theories are an approximation to the actual three dimensional fields. Using three dimensional finite element analyses we have explored the relationship between the three dimensional elasticity theory and two dimensional plate theory results. The results show that for out-of-plane shear loading the three dimensional and Kirchhoff theory results coincide at distance greater than h/2 from the crack tip, where h/2 is the plate thickness. Inside this region, the distribution of stresses through the thickness can be very different from the plate theory predictions. We have also explored how the energy release rate varies as a function of crack length to plate thickness using the different theories. This is important in the implementation of fracture prediction methods using finite element analysis. Our experiments show that under certain conditions, during fatigue crack growth, the presence of out-of-plane shear loads induces a great deal of contact and friction on the crack surfaces, dramatically reducing crack growth rate. A series of experiments and a proposed computational approach for accounting for the friction is discussed.

  12. Numerical Investigation of the Dynamic Properties of Intermittent Jointed Rock Models Subjected to Cyclic Uniaxial Compression

    NASA Astrophysics Data System (ADS)

    Liu, Yi; Dai, Feng; Zhao, Tao; Xu, Nu-wen

    2017-01-01

    Intermittent jointed rocks, which exist in a myriad of engineering projects, are extraordinarily susceptible to cyclic loadings. Understanding the dynamic fatigue properties of jointed rocks is necessary for evaluating the stability of rock engineering structures. This study numerically investigated the influences of cyclic loading conditions (i.e., frequency, maximum stress and amplitude) and joint geometric configurations (i.e., dip angle, persistency and interspace) on the dynamic fatigue mechanisms of jointed rock models. A reduction model of stiffness and strength was first proposed, and then, sixteen cyclic uniaxial loading tests with distinct loading parameters and joint geometries were simulated. Our results indicate that the reduction model can effectively reproduce the hysteresis loops and the accumulative plastic deformation of jointed rocks in the cyclic process. Both the loading parameters and the joint geometries significantly affect the dynamic properties, including the irreversible strain, damage evolution, dynamic residual strength and fatigue life. Three failure modes of jointed rocks, which are principally controlled by joint geometries, occur in the simulations: splitting failure through the entire rock sample, sliding failure along joint planes and mixed failure, which are principally controlled by joint geometries. Furthermore, the progressive failure processes of the jointed rock samples are numerically observed, and the different loading stages can be distinguished by the relationship between the number of broken bonds and the axial stress.

  13. Mixed-mode singularity and temperature effects on dislocation nucleation in strained interconnects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Jinhaeng; Gao, Yanfei

    2011-01-01

    Dislocations can be nucleated from sharp geometric features in strained interconnects due to thermal expansion coefficient mismatch, lattice mismatch, or stresses that arise during material processing. The asymptotic stress fields near the edge root can be described by mixed-mode singularities, which depend on the dihedral angle and material properties, and a transverse T-stress, which depends on how residual stress is realized in the interconnects. The critical condition for stress nucleation can be determined when an appropriate measure of the stress intensity factors (SIFs) reaches a critical value. Such a method, however, does not offer an explicit picture of the dislocationmore » nucleation process so that it has difficulties in studying complicated structures, mode mixity effects, and more importantly the temperature effects. Based on the Peierls concept, a dislocation can be described by a continuous slip field, and the dislocation nucleation condition corresponds when the total potential energy reaches a stationary state. Through implementing this ad hoc interface model into a finite element framework, it is found that dislocation nucleation becomes more difficult with the increase of mode mixity and T-stress, or the decrease of the width-to-height ratio of the surface pad, while the shape of the surface pad, being a square or a long line, plays a less important role. The Peierls dislocation model also allows us to determine the activation energy, which is the energy needed for the thermal activation of a dislocation when the applied load is lower than the athermal critical value. The calculated saddle point configuration compares favorably the molecular simulations in literature. Suggestions on making immortal strained interconnects are provided.« less

  14. Study on Impact of Electric Vehicles Charging Models on Power Load

    NASA Astrophysics Data System (ADS)

    Cheng, Chen; Hui-mei, Yuan

    2017-05-01

    With the rapid increase in the number of electric vehicles, which will lead the power load on grid increased and have an adversely affect. This paper gives a detailed analysis of the following factors, such as scale of the electric cars, charging mode, initial charging time, initial state of charge, charging power and other factors. Monte Carlo simulation method is used to compare the two charging modes, which are conventional charging and fast charging, and MATLAB is used to model and simulate the electric vehicle charging load. The results show that compared with the conventional charging mode, fast charging mode can meet the requirements of fast charging, but also bring great load to the distribution network which will affect the reliability of power grid.

  15. Phase transformation as the single-mode mechanical deformation of silicon

    DOE PAGES

    Wong, Sherman; Haberl, Bianca; Williams, James S.; ...

    2015-06-25

    The mixture of the metastable body-centered cubic (bc8) and rhombohedral (r8) phases of silicon that is formed via nanoindentation of diamond cubic (dc) silicon exhibits properties that are of scientifc and technological interest. This letter demonstrates that large regions of this mixed phase can be formed in crystalline Si via nanoindentation without signifcant damage to the surrounding crystal. Cross-sectional transmission electron microscopy is used to show that volumes 6 μm wide and up to 650 nm deep can be generated in this way using a spherical tip of ~21.5 μm diameter. The phase transformed region is characterised using both Ramanmore » microspectroscopy and transmission electron microscopy. It is found that uniform loading using large spherical indenters can favor phase transformation as the sole deformation mechanism as long as the maximum load is below a critical level. We suggest that the sluggish nature of the transformation from the dc-Si phase to the metallic (b-Sn) phase normally results in competing deformation mechanisms such as slip and cracking but these can be suppressed by controlled loading conditions.« less

  16. Strong coupling between 0D and 2D modes in optical open microcavities

    NASA Astrophysics Data System (ADS)

    Trichet, A. A. P.; Dolan, P. R.; Smith, J. M.

    2018-02-01

    We present a study of the coupling between confined modes and continuum states in an open microcavity system. The confined states are the optical modes of a plano-concave Fabry-Pérot cavity while the continuum states are the propagating modes in a surrounding planar cavity. The length tunability of the open cavity system allows to study the evolution of localised modes as they are progressively deconfined and coupled to the propagating modes. We observe an anti-crossing between the confined and propagating modes proving that mode-mixing takes place in between these two families of modes, and identify 0D-2D mixed modes which exhibit reduced loss compared with their highly localised counterparts. For practical design, we investigate the details of the microcavity shape that can be used to engineer the degree of mode-mixing. This study discusses for the first time experimentally and theoretically how light confinement arises in planar micromirrors and is of interest for the realisation of chip-based extended microphotonics using open cavities.

  17. An Irreversible Constitutive Law for Modeling the Delamination Process using Interface Elements

    NASA Technical Reports Server (NTRS)

    Goyal, Vinay K.; Johnson, Eric R.; Davila, Carlos G.; Jaunky, Navin; Ambur, Damodar (Technical Monitor)

    2002-01-01

    An irreversible constitutive law is postulated for the formulation of interface elements to predict initiation and progression of delamination in composite structures. An exponential function is used for the constitutive law such that it satisfies a multi-axial stress criterion for the onset of delamination, and satisfies a mixed mode fracture criterion for the progression of delamination. A damage parameter is included to prevent the restoration of the previous cohesive state between the interfacial surfaces. To demonstrate the irreversibility capability of the constitutive law, steady-state crack growth is simulated for quasi-static loading-unloading cycle of various fracture test specimens.

  18. An Irreversible Constitutive Law for Modeling the Delamination Process Using Interface Elements

    NASA Technical Reports Server (NTRS)

    Goyal, Vinay K.; Johnson, Eric R.; Davila, Carlos G.; Jaunky, Navin; Bushnell, Dennis M. (Technical Monitor)

    2002-01-01

    An irreversible constitutive law is postulated for the formulation of interface elements to predict initiation and progression of delamination in composite structures. An exponential function is used for the constitutive law such that it satisfies a multi-axial stress criterion for the onset of delamination, and satisfies a mixed mode fracture criterion for the progression of delamination. A damage parameter is included to prevent the restoration of the previous cohesive state between the interfacial surfaces. To demonstrate the irreversibility capability of the constitutive law, steady-state crack growth is simulated for quasi-static loading-unloading cycle of various fracture test specimens.

  19. An analytical and experimental investigation of edge delamination in laminates subjected to tension, bending, and torsion

    NASA Technical Reports Server (NTRS)

    Chan, Wen S.

    1989-01-01

    An integrated two-dimensional finite element was developed to calculate interlaminar stresses and strain energy release rates for the study of delamination in composite laminates subjected to uniaxial tension, bending, and torsion loads. Addressed are the formulation, implementation, and verification of the model. Parametric studies were conducted on the effect of Poisson's ratio mismatch between plies and the stacking sequence on interlaminar stress, and on the effect of delamination opening height and delamination length, due to bending, on strain energy release rate for various laminates. A comparison of strain energy release rates in all-graphite and graphite/glass hybrid laminates is included. The preliminary results of laminates subjected to torsion are also included. Fatigue tension tests were conducted on Mode 1 and mixed mode edge-delamination coupons to establish the relationship between fatigue load vs. onset of delamination cycle. The effect on the fatigue delamination onset of different frequencies (1 and 5 Hz) was investigated for glass, graphite,and their hybrid laminates. Although a 20 percent increase in the static onset-of-delamination strength and a 10 percent increase in ultimate strength resulted from hybridizing the all-graphite laminate with a 90 deg glass ply, the fatigue onset is lower in the hybrid laminate than in the all-graphite laminate.

  20. Elucidation and visualization of solid-state transformation and mixing in a pharmaceutical mini hot melt extrusion process using in-line Raman spectroscopy.

    PubMed

    Van Renterghem, Jeroen; Kumar, Ashish; Vervaet, Chris; Remon, Jean Paul; Nopens, Ingmar; Vander Heyden, Yvan; De Beer, Thomas

    2017-01-30

    Mixing of raw materials (drug+polymer) in the investigated mini pharma melt extruder is achieved by using co-rotating conical twin screws and an internal recirculation channel. In-line Raman spectroscopy was implemented in the barrels, allowing monitoring of the melt during processing. The aim of this study was twofold: to investigate (I) the influence of key process parameters (screw speed - barrel temperature) upon the product solid-state transformation during processing of a sustained release formulation in recirculation mode; (II) the influence of process parameters (screw speed - barrel temperature - recirculation time) upon mixing of a crystalline drug (tracer) in an amorphous polymer carrier by means of residence time distribution (RTD) measurements. The results indicated a faster mixing endpoint with increasing screw speed. Processing a high drug load formulation above the drug melting temperature resulted in the production of amorphous drug whereas processing below the drug melting point produced solid dispersions with partially amorphous/crystalline drug. Furthermore, increasing the screw speed resulted in lower drug crystallinity of the solid dispersion. RTD measurements elucidated the improved mixing capacity when using the recirculation channel. In-line Raman spectroscopy has shown to be an adequate PAT-tool for product solid-state monitoring and elucidation of the mixing behavior during processing in a mini extruder. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Enhancement of Voltage Stability of DC Smart Grid During Islanded Mode by Load Shedding Scheme

    NASA Astrophysics Data System (ADS)

    Nassor, Thabit Salim; Senjyu, Tomonobu; Yona, Atsushi

    2015-10-01

    This paper presents the voltage stability of a DC smart grid based on renewable energy resources during grid connected and isolated modes. During the islanded mode the load shedding, based on the state of charge of the battery and distribution line voltage, was proposed for voltage stability and reservation of critical load power. The analyzed power system comprises a wind turbine, a photovoltaic generator, storage battery as controllable load, DC loads, and power converters. A fuzzy logic control strategy was applied for power consumption control of controllable loads and the grid-connected dual active bridge series resonant converters. The proposed DC Smart Grid operation has been verified by simulation using MATLAB® and PLECS® Blockset. The obtained results show the effectiveness of the proposed method.

  2. Mixed-Mode Decohesion Elements for Analyses of Progressive Delamination

    NASA Technical Reports Server (NTRS)

    Davila, Carlos G.; Camanho, Pedro P.; deMoura, Marcelo F.

    2001-01-01

    A new 8-node decohesion element with mixed mode capability is proposed and demonstrated. The element is used at the interface between solid finite elements to model the initiation and propagation of delamination. A single displacement-based damage parameter is used in a strain softening law to track the damage state of the interface. The method can be used in conjunction with conventional material degradation procedures to account for inplane and intra-laminar damage modes. The accuracy of the predictions is evaluated in single mode delamination tests, in the mixed-mode bending test, and in a structural configuration consisting of the debonding of a stiffener flange from its skin.

  3. Linear stability analysis of particle-laden hypopycnal plumes

    NASA Astrophysics Data System (ADS)

    Farenzena, Bruno Avila; Silvestrini, Jorge Hugo

    2017-12-01

    Gravity-driven riverine outflows are responsible for carrying sediments to the coastal waters. The turbulent mixing in these flows is associated with shear and gravitational instabilities such as Kelvin-Helmholtz, Holmboe, and Rayleigh-Taylor. Results from temporal linear stability analysis of a two-layer stratified flow are presented, investigating the behavior of settling particles and mixing region thickness on the flow stability in the presence of ambient shear. The particles are considered suspended in the transport fluid, and its sedimentation is modeled with a constant valued settling velocity. Three scenarios, regarding the mixing region thickness, were identified: the poorly mixed environment, the strong mixed environment, and intermediate scenario. It was observed that Kelvin-Helmholtz and settling convection modes are the two fastest growing modes depending on the particles settling velocity and the total Richardson number. The second scenario presents a modified Rayleigh-Taylor instability, which is the dominant mode. The third case can have Kelvin-Helmholtz, settling convection, and modified Rayleigh-Taylor modes as the fastest growing mode depending on the combination of parameters.

  4. Strain energy release rates of composite interlaminar end-notch and mixed-mode fracture: A sublaminate/ply level analysis and a computer code

    NASA Technical Reports Server (NTRS)

    Valisetty, R. R.; Chamis, C. C.

    1987-01-01

    A computer code is presented for the sublaminate/ply level analysis of composite structures. This code is useful for obtaining stresses in regions affected by delaminations, transverse cracks, and discontinuities related to inherent fabrication anomalies, geometric configurations, and loading conditions. Particular attention is focussed on those layers or groups of layers (sublaminates) which are immediately affected by the inherent flaws. These layers are analyzed as homogeneous bodies in equilibrium and in isolation from the rest of the laminate. The theoretical model used to analyze the individual layers allows the relevant stresses and displacements near discontinuities to be represented in the form of pure exponential-decay-type functions which are selected to eliminate the exponential-precision-related difficulties in sublaminate/ply level analysis. Thus, sublaminate analysis can be conducted without any restriction on the maximum number of layers, delaminations, transverse cracks, or other types of discontinuities. In conjunction with the strain energy release rate (SERR) concept and composite micromechanics, this computational procedure is used to model select cases of end-notch and mixed-mode fracture specimens. The computed stresses are in good agreement with those from a three-dimensional finite element analysis. Also, SERRs compare well with limited available experimental data.

  5. Solute mixing regulates heterogeneity of mineral precipitation in porous media: Effect of Solute Mixing on Precipitation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cil, Mehmet B.; Xie, Minwei; Packman, Aaron I.

    Synchrotron X-ray microtomography was used to track the spatiotemporal evolution of mineral precipitation and the consequent alteration of the pore structure. Column experiments were conducted by injecting CaCl2 and NaHCO3 solutions into granular porous media either as a premixed supersaturated solution (external mixing) or as separate solutions that mixed within the specimen (internal mixing). The two mixing modes produced distinct mineral growth patterns. While internal mixing promoted transverse heterogeneity with precipitation at the mixing zone, external mixing favored relatively homogeneous precipitation along the flow direction. The impact of precipitation on pore water flow and permeability was assessed via 3-D flowmore » simulations, which indicated anisotropic permeability evolution for both mixing modes. Under both mixing modes, precipitation decreased the median pore size and increased the skewness of the pore size distribution. Such similar pore-scale evolution patterns suggest that the clogging of individual pores depends primarily on local supersaturation state and pore geometry.« less

  6. Mechanical Failure Mode of Metal Nanowires: Global Deformation versus Local Deformation

    PubMed Central

    Ho, Duc Tam; Im, Youngtae; Kwon, Soon-Yong; Earmme, Youn Young; Kim, Sung Youb

    2015-01-01

    It is believed that the failure mode of metal nanowires under tensile loading is the result of the nucleation and propagation of dislocations. Such failure modes can be slip, partial slip or twinning and therefore they are regarded as local deformation. Here we provide numerical and theoretical evidences to show that global deformation is another predominant failure mode of nanowires under tensile loading. At the global deformation mode, nanowires fail with a large contraction along a lateral direction and a large expansion along the other lateral direction. In addition, there is a competition between global and local deformations. Nanowires loaded at low temperature exhibit global failure mode first and then local deformation follows later. We show that the global deformation originates from the intrinsic instability of the nanowires and that temperature is a main parameter that decides the global or local deformation as the failure mode of nanowires. PMID:26087445

  7. Experimental investigation of leaky lamb modes by an optically induced grating.

    PubMed

    Van de Rostyne, Kris; Glorieux, Christ; Gao, Weimin; Lauriks, Walter; Thoen, Jan

    2002-09-01

    By removing the symmetry of a free plate configuration, fluid loading significantly modifies the nature of acoustic waves travelling along a plate, and it even gives existence to new acoustic modes. We present theoretical predictions for the existence, dispersive behavior, and spatial distribution of leaky Lamb waves in a fluid-loaded film. Although Lamb modes are often investigated by studying the radiated fluid waves resulting from their leakage, here their properties are assessed by detecting the wave displacements directly using laser beam deflection. By using crossed laser beam excitation, the detection and analysis of the different modes is done at a fixed wavelength, allowing one to verify the existence, the velocity, and the damping of each predicted mode in a simple and unambiguous way. Our theoretical predictions for the nature of the modes in a water-loaded Plexiglas film, including parts of looping modes, are experimentally confirmed.

  8. Transient analysis mode participation for modal survey target mode selection using MSC/NASTRAN DMAP

    NASA Technical Reports Server (NTRS)

    Barnett, Alan R.; Ibrahim, Omar M.; Sullivan, Timothy L.; Goodnight, Thomas W.

    1994-01-01

    Many methods have been developed to aid analysts in identifying component modes which contribute significantly to component responses. These modes, typically targeted for dynamic model correlation via a modal survey, are known as target modes. Most methods used to identify target modes are based on component global dynamic behavior. It is sometimes unclear if these methods identify all modes contributing to responses important to the analyst. These responses are usually those in areas of hardware design concerns. One method used to check the completeness of target mode sets and identify modes contributing significantly to important component responses is mode participation. With this method, the participation of component modes in dynamic responses is quantified. Those modes which have high participation are likely modal survey target modes. Mode participation is most beneficial when it is used with responses from analyses simulating actual flight events. For spacecraft, these responses are generated via a structural dynamic coupled loads analysis. Using MSC/NASTRAN DMAP, a method has been developed for calculating mode participation based on transient coupled loads analysis results. The algorithm has been implemented to be compatible with an existing coupled loads methodology and has been used successfully to develop a set of modal survey target modes.

  9. The Effect of Delamination on Damage Path and Failure Load Prediction for Notched Composite Laminates

    NASA Technical Reports Server (NTRS)

    Satyanarayana, Arunkumar; Bogert, Philip B.; Chunchu, Prasad B.

    2007-01-01

    The influence of delamination on the progressing damage path and initial failure load in composite laminates is investigated. Results are presented from a numerical and an experimental study of center-notched tensile-loaded coupons. The numerical study includes two approaches. The first approach considers only intralaminar (fiber breakage and matrix cracking) damage modes in calculating the progression of the damage path. In the second approach, the model is extended to consider the effect of interlaminar (delamination) damage modes in addition to the intralaminar damage modes. The intralaminar damage is modeled using progressive damage analysis (PDA) methodology implemented with the VUMAT subroutine in the ABAQUS finite element code. The interlaminar damage mode has been simulated using cohesive elements in ABAQUS. In the experimental study, 2-3 specimens each of two different stacking sequences of center-notched laminates are tensile loaded. The numerical results from the two different modeling approaches are compared with each other and the experimentally observed results for both laminate types. The comparisons reveal that the second modeling approach, where the delamination damage mode is included together with the intralaminar damage modes, better simulates the experimentally observed damage modes and damage paths, which were characterized by splitting failures perpendicular to the notch tips in one or more layers. Additionally, the inclusion of the delamination mode resulted in a better prediction of the loads at which the failure took place, which were higher than those predicted by the first modeling approach which did not include delaminations.

  10. Mixing modes in a population-based interview survey: comparison of a sequential and a concurrent mixed-mode design for public health research.

    PubMed

    Mauz, Elvira; von der Lippe, Elena; Allen, Jennifer; Schilling, Ralph; Müters, Stephan; Hoebel, Jens; Schmich, Patrick; Wetzstein, Matthias; Kamtsiuris, Panagiotis; Lange, Cornelia

    2018-01-01

    Population-based surveys currently face the problem of decreasing response rates. Mixed-mode designs are now being implemented more often to account for this, to improve sample composition and to reduce overall costs. This study examines whether a concurrent or sequential mixed-mode design achieves better results on a number of indicators of survey quality. Data were obtained from a population-based health interview survey of adults in Germany that was conducted as a methodological pilot study as part of the German Health Update (GEDA). Participants were randomly allocated to one of two surveys; each of the surveys had a different design. In the concurrent mixed-mode design ( n  = 617) two types of self-administered questionnaires (SAQ-Web and SAQ-Paper) and computer-assisted telephone interviewing were offered simultaneously to the respondents along with the invitation to participate. In the sequential mixed-mode design ( n  = 561), SAQ-Web was initially provided, followed by SAQ-Paper, with an option for a telephone interview being sent out together with the reminders at a later date. Finally, this study compared the response rates, sample composition, health indicators, item non-response, the scope of fieldwork and the costs of both designs. No systematic differences were identified between the two mixed-mode designs in terms of response rates, the socio-demographic characteristics of the achieved samples, or the prevalence rates of the health indicators under study. The sequential design gained a higher rate of online respondents. Very few telephone interviews were conducted for either design. With regard to data quality, the sequential design (which had more online respondents) showed less item non-response. There were minor differences between the designs in terms of their costs. Postage and printing costs were lower in the concurrent design, but labour costs were lower in the sequential design. No differences in health indicators were found between the two designs. Modelling these results for higher response rates and larger net sample sizes indicated that the sequential design was more cost and time-effective. This study contributes to the research available on implementing mixed-mode designs as part of public health surveys. Our findings show that SAQ-Paper and SAQ-Web questionnaires can be combined effectively. Sequential mixed-mode designs with higher rates of online respondents may be of greater benefit to studies with larger net sample sizes than concurrent mixed-mode designs.

  11. Excitation of plane Lamb wave in plate-like structures under applied surface loading

    NASA Astrophysics Data System (ADS)

    Zhou, Kai; Xu, Xinsheng; Zhao, Zhen; Yang, Zhengyan; Zhou, Zhenhuan; Wu, Zhanjun

    2018-02-01

    Lamb waves play an important role in structure health monitoring (SHM) systems. The excitation of Lamb waves has been discussed for a long time with absorbing results. However, little effort has been made towards the precise characterization of Lamb wave excitation by various transducer models with mathematical foundation. In this paper, the excitation of plane Lamb waves with plane strain assumption in isotropic plate structures under applied surface loading is solved with the Hamiltonian system. The response of the Lamb modes excited by applied loading is expressed analytically. The effect of applied loading is divided into the product of two parts as the effect of direction and the effect of distribution, which can be changed by selecting different types of transducer and the corresponding transducer configurations. The direction of loading determines the corresponding displacement of each mode. The effect of applied loading on the in-plane and normal directions depends on the in-plane and normal displacements at the surface respectively. The effect of the surface loading distribution on the Lamb mode amplitudes is mainly reflected by amplitude versus frequency or wavenumber. The frequencies at which the maxima and minima of the S0 or A0 mode response occur depend on the distribution of surface loading. The numerical results of simulations conducted on an infinite aluminum plate verify the theoretical prediction of not only the direction but also the distribution of applied loading. A pure S0 or A0 mode can be excited by selecting the appropriate direction and distribution at the corresponding frequency.

  12. Enhanced effect of folated pluronic F87-PLA/TPGS mixed micelles on targeted delivery of paclitaxel.

    PubMed

    Xiong, Xiang Yuan; Pan, Xiaoqian; Tao, Long; Cheng, Feng; Li, Zi Ling; Gong, Yan Chun; Li, Yu Ping

    2017-10-01

    Targeted drug delivery systems have great potential to overcome the side effect and improve the bioavailability of conventional anticancer drugs. In order to further improve the antitumor efficacy of paclitaxel (PTX) loaded in folated Pluronic F87/poly(lactic acid) (FA-F87-PLA) micelles, D-α-tocopheryl poly(ethylene glycol) 1000 succinate (TPGS or Vitamin E TPGS) were added into FA-F87-PLA to form FA-F87-PLA/TPGS mixed micelles. The LE of PTX-loaded mixed micelles (13.5%) was highest in the mass ratio 5 to 3 of FA-F87-PLA to TPGS. The in vitro cytotoxicity assays indicated that the IC50 values for free PTX injections, PTX-loaded FA-F87-PLA micelles and PTX-loaded FA-F87-PLA/TPGS mixed micelles after 72h of incubation were 1.52, 0.42 and 0.037mg/L, respectively. The quantitative cellular uptake of coumarin 6-loaded FA-F87-PLA/TPGS and FA-F87-PLA micelles showed that the cellular uptake efficiency of mixed micelles was higher for 2 and 4h incubation, respectively. In vivo pharmacokinetic studies found that the AUC of PTX-loaded FA-F87-PLA/TPGS mixed micelles is almost 1.4 times of that of PTX-loaded FA-F87-PLA micelles. The decreased particle size and inhibition of P-glycoprotein effect induced by the addition of TPGS could result in enhancing the cellular uptake and improving the antitumor efficiency of PTX-loaded FA-F87-PLA/TPGS mixed micelles. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Model I, Mode II, and Mixed-Mode Fracture of Plasma-Sprayed Thermal Barrier Coatings at Ambient and Elevated Temperatures

    NASA Astrophysics Data System (ADS)

    Choi, Sung R.; Zhu, Dongming; Miller, Robert A.

    The mixed-mode fracture behavior of plasma-sprayed ZrO2-8 wt% Y2O3 thermal barrier coatings was determined in air at 25 and 1316°C in asymmetric four-point flexure with single edge v-notched beam (SEVNB) test specimens. The mode I fracture toughness was found to be K Ic=1.15±0.07 and 0.98±0.13 MPa sqrt m , respectively, at 25 and 1316°C. The respective mode II fracture toughness values were K IIc=0.73±0.10 and 0.65±0.04 MPa sqrt m . Hence, there was an insignificant difference in either K Ic or K IIc between 25 and 1316°C for the coating material, whereas there was a noticeable distinction between K Ic and K IIc, resulting in K IIc/K Ic=0.65 at both temperatures. The empirical mixed-mode fracture criterion best described the coatings' mixed-mode fracture behavior among the four mixed-mode fracture theories considered. The angle of crack propagation was in reasonable agreement with the minimum strain energy density criterion. The effect of the directionality of the coating material in on K Ic was observed to be insignificant, while its sintering effect at 1316°C on K Ic was significant.

  14. Crack classification and evolution in anisotropic shale during cyclic loading tests by acoustic emission

    NASA Astrophysics Data System (ADS)

    Wang, Miaomiao; Tan, Chengxuan; Meng, Jing; Yang, Baicun; Li, Yuan

    2017-08-01

    Characterization and evolution of the cracking mode in shale formation is significant, as fracture networks are an important element in shale gas exploitation. In this study we determine the crack modes and evolution in anisotropic shale under cyclic loading using the acoustic emission (AE) parameter-analysis method based on the average frequency and RA (rise-time/amplitude) value. Shale specimens with bedding-plane orientations parallel and perpendicular to the axial loading direction were subjected to loading cycles with increasing peak values until failure occurred. When the loading was parallel to the bedding plane, most of the cracks at failure were shear cracks, while tensile cracks were dominant in the specimens that were loaded normal to the bedding direction. The evolution of the crack mode in the shale specimens observed in the loading-unloading sequence except for the first cycle can be divided into three stages: (I) no or several cracks (AE events) form as a result of the Kaiser effect, (II) tensile and shear cracks increase steadily at nearly equal proportions, (III) tensile cracks and shear cracks increase abruptly, with more cracks forming in one mode than in the other. As the dominant crack motion is influenced by the bedding, the failure mechanism is discussed based on the evolution of the different crack modes. Our conclusions can increase our understanding of the formation mechanism of fracture networks in the field.

  15. Mode I, Mode II, and Mixed-Mode Fracture of Plasma-sprayed Thermal Barrier Coatings at Ambient and Elevated Temperatures

    NASA Technical Reports Server (NTRS)

    Choi, Sung R.; Zhu, Dongming; Miller, Robert A.

    2003-01-01

    The mixed-mode fracture behavior of plasma-sprayed ZrO2-8 wt% Y2O3 thermal barrier coatings was determined in air at 25 and 1316 C in asymmetric four-point flexure with single edge v-notched beam (SEVNB) test specimens. The mode I fracture toughness was found to be K(sub Ic) = 1.15 plus or minus 0.07 and 0.98 plus or minus 0.13 MPa the square root of m, respectively, at 25 and 1316 C. The respective mode II fracture toughness values were K(sub IIc) = 0.73 plus or minus 0.10 and 0.65 plus or minus 0.04 MPa the square root of m. Hence, there was an insignificant difference in either K(sub Ic or K(sub IIc) between 25 and 1316 C for the coating material, whereas there was a noticeable distinction between K(sub Ic) and K(sub IIc), resulting in K(sub IIc) per K(sub Ic) = 0.65 at both temperatures. The empirical mixed-mode fracture criterion best described the coatings' mixed-mode fracture behavior among the four mixed-mode fracture theories considered. The angle of crack propagation was in reasonable agreement with the minimum strain energy density criterion. The effect of the directionality of the coating material in on K(sub Ic) was observed to be insignificant, while its sintering effect at 1316 C on K(sub Ic) was significant.

  16. Design and Flight Test of a Cable Angle Feedback Control System for Improving Helicopter Slung Load Operations at Low Speed

    DTIC Science & Technology

    2014-04-01

    improve the damping of the load pendulum motions, but the load feedback generally had the effect of making the load feel heavier to the pilot [28...0.25 2 1000lbs 16,000lbs 0.06 Another important parameter is the slung load pendulum frequency. Using a simple pendulum model, this natural...the expected yaw and heave modes. The presence of the load adds oscillatory pendulum modes in the pitch and roll axes, as expected. Table 2-3

  17. Interference of Multi-Mode Gaussian States and "non Appearance" of Quantum Correlations

    NASA Astrophysics Data System (ADS)

    Olivares, Stefano

    2012-01-01

    We theoretically investigate bilinear, mode-mixing interactions involving two modes of uncorrelated multi-mode Gaussian states. In particular, we introduce the notion of "locally the same states" (LSS) and prove that two uncorrelated LSS modes are invariant under the mode mixing, i.e. the interaction does not lead to the birth of correlations between the outgoing modes. We also study the interference of orthogonally polarized Gaussian states by means of an interferometric scheme based on a beam splitter, rotators of polarization and polarization filters.

  18. Application of mixed-mode, solid-phase extraction in environmental and clinical chemistry. Combining hydrogen-bonding, cation-exchange and Van der Waals interactions

    USGS Publications Warehouse

    Mills, M.S.; Thurman, E.M.; Pedersen, M.J.

    1993-01-01

    Silica- and styrene-divinylbenzene-based mixed-mode resins that contain C8, C18 and sulphonated cation-exchange groups were compared for their efficiency in isolation of neutral triazine compounds from water and of the basic drug, benzoylecgonine, from urine. The triazine compounds were isolated by a combination of Van der Waals and hydrogen-bonding interactions, and benzoylecgonine was isolated by Van der Waals interactions and cation exchange. All analytes were eluted with a polar organic solvent contaning 2% ammonium hydroxide. Larger recoveries (95%) were achieved on copolymerized mixed-mode resins where C18 and sulfonic acid are in closer proximity than on 'blended' mixed-mode resins (60-70% recovery).

  19. A Power Regulation and Droop Mode Control Method for a Stand-Alone Load Fed from a PV-Current Source Inverter

    NASA Astrophysics Data System (ADS)

    Khayamy, Mehdy; Ojo, Olorunfemi

    2015-04-01

    A current source inverter fed from photovoltaic cells is proposed to power an autonomous load when operating under either power regulation or voltage and frequency drooping modes. Input-output linearization technique is applied to the overall nonlinear system to achieve a globally stable system under feasible operating conditions. After obtaining the steady-state model that demarcates the modes of operation, computer Simulation results for variations in irradiance and the load power of the controlled system are generated in which an acceptable dynamic response of the power generator system under the two modes of operation is observed.

  20. Evolution of the fastest-growing relativistic mixed mode instability driven by a tenuous plasma beam in one and two dimensions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dieckmann, M. E.; Frederiksen, J. T.; Bret, A.

    2006-11-15

    Particle-in-cell simulations confirm here that a mixed plasma mode is the fastest growing when a highly relativistic tenuous electron-proton beam interacts with an unmagnetized plasma. The mixed modes grow faster than the filamentation and two-stream modes in simulations with beam Lorentz factors {gamma} of 4, 16, and 256, and are responsible for thermalizing the electrons. The mixed modes are followed to their saturation for the case of {gamma}=4 and electron phase space holes are shown to form in the bulk plasma, while the electron beam becomes filamentary. The initial saturation is electrostatic in nature in the considered one- and two-dimensionalmore » geometries. Simulations performed with two different particle-in-cell simulation codes evidence that a finite grid instability couples energy into high-frequency electromagnetic waves, imposing simulation constraints.« less

  1. Microfluidic T-form mixer utilizing switching electroosmotic flow.

    PubMed

    Lin, Che-Hsin; Fu, Lung-Ming; Chien, Yu-Sheng

    2004-09-15

    This paper presents a microfluidic T-form mixer utilizing alternatively switching electroosmotic flow. The microfluidic device is fabricated on low-cost glass slides using a simple and reliable fabrication process. A switching DC field is used to generate an electroosmotic force which simultaneously drives and mixes the fluid samples. The proposed design eliminates the requirements for moving parts within the microfluidic device and delicate external control systems. Two operation modes, namely, a conventional switching mode and a novel pinched switching mode, are presented. Computer simulation is employed to predict the mixing performance attainable in both operation modes. The simulation results are then compared to those obtained experimentally. It is shown that a mixing performance as high as 97% can be achieved within a mixing distance of 1 mm downstream from the T-junction when a 60 V/cm driving voltage and a 2-Hz switching frequency are applied in the pinched switching operation mode. This study demonstrates how the driving voltage and switching frequency can be optimized to yield an enhanced mixing performance. The novel methods presented in this study provide a simple solution to mixing problems in the micro-total-analysis-systems field.

  2. Dynamic Roughness Ratio-Based Framework for Modeling Mixed Mode of Droplet Evaporation.

    PubMed

    Gunjan, Madhu Ranjan; Raj, Rishi

    2017-07-18

    The spatiotemporal evolution of an evaporating sessile droplet and its effect on lifetime is crucial to various disciplines of science and technology. Although experimental investigations suggest three distinct modes through which a droplet evaporates, namely, the constant contact radius (CCR), the constant contact angle (CCA), and the mixed, only the CCR and the CCA modes have been modeled reasonably. Here we use experiments with water droplets on flat and micropillared silicon substrates to characterize the mixed mode. We visualize that a perfect CCA mode after the initial CCR mode is an idealization on a flat silicon substrate, and the receding contact line undergoes intermittent but recurring pinning (CCR mode) as it encounters fresh contaminants on the surface. The resulting increase in roughness lowers the contact angle of the droplet during these intermittent CCR modes until the next depinning event, followed by the CCA mode of evaporation. The airborne contaminants in our experiments are mostly loosely adhered to the surface and travel along with the receding contact line. The resulting gradual increase in the apparent roughness and hence the extent of CCR mode over CCA mode forces appreciable decrease in the contact angle observed during the mixed mode of evaporation. Unlike loosely adhered airborne contaminants on flat samples, micropillars act as fixed roughness features. The apparent roughness fluctuates about the mean value as the contact line recedes between pillars. Evaporation on these surfaces exhibits stick-jump motion with a short-duration mixed mode toward the end when the droplet size becomes comparable to the pillar spacing. We incorporate this dynamic roughness into a classical evaporation model to accurately predict the droplet evolution throughout the three modes, for both flat and micropillared silicon surfaces. We believe that this framework can also be extended to model the evaporation of nanofluids and the coffee-ring effect, among others.

  3. A Test for Characterizing Delamination Migration in Carbon/Epoxy Tape Laminates

    NASA Technical Reports Server (NTRS)

    Ratcliffe, James G.; Czabaj, Michael W.; O'Brien, Thomas K.

    2013-01-01

    A new test method is presented for the purpose of investigating migration of a delamination between neighboring ply interfaces in fiber-reinforced, polymer matrix tape laminates. The test is a single cantilever beam configuration consisting of a cross-ply laminate with a polytetrafluoroethylene insert implanted at the mid-plane and spanning part way along the length of the specimen. The insert is located between a 0- degree ply (specimen length direction) and a stack of four 90-degree plies (specimen width direction). The specimen is clamped at both ends onto a rigid baseplate and is loaded on its upper surface via a piano hinge. Tests were conducted with the load-application point located on the intact portion of the specimen in order to initiate delamination growth onset followed by migration of the delamination to a neighboring 90/0 ply interface by kinking through the 90-degree ply stack. Varying this position was found to affect the distance relative to the load-application point at which migration initiated. In each specimen, migration initiated by a gradual transition of the delamination at the 0/90 interface into the 90-degree ply stack. In contrast, transition of the kinked crack into the 90/0 interface was sudden. Fractography of the specimens indicated that delamination prior to migration was generally mixed mode-I/II. Inspection of the kink surface revealed mode-I fracture. In general, use of this test allows for the observation of the growth of a delamination followed by migration of the delamination to another ply interface, and should thus provide a means for validating analyses aimed at simulating migration.

  4. Characterizing Delamination Migration in Carbon/Epoxy Tape Laminates

    NASA Technical Reports Server (NTRS)

    Ratcliffe, James G.; Czabaj, Michael W.; Obrien, Thomas K.

    2012-01-01

    A new test method is presented for the purpose of investigating migration of a delamination between neighboring ply interfaces in fiber-reinforced, polymer matrix tape laminates. The test is a single cantilever beam configuration consisting of a cross-ply laminate with a polytetrafluoroethylene (PTFE) insert implanted at the mid-plane and spanning part way along the length of the specimen. The insert is located between a 0-degree ply (specimen length direction) and a stack of four 90-degree plies (specimen width direction). The specimen is clamped at both ends onto a rigid baseplate and is loaded on its upper surface via a piano hinge. Tests were conducted with the load-application point located on the intact portion of the specimen in order to initiate delamination growth onset followed by migration of the delamination to a neighboring 90/0 ply interface by kinking through the 90- degree ply stack. Varying this position was found to affect the distance relative to the load-application point at which migration initiated. In each specimen, migration initiated by a gradual transition of the delamination at the 0/90 interface into the 90- degree ply stack. In contrast, transition of the kinked crack into the 90/0 interface was sudden. Fractography of the specimens indicated that delamination prior to migration was generally mixed mode-I/II. Inspection of the kink surface revealed mode-I fracture. In general, use of this test allows for the observation of the growth of a delamination followed by migration of the delamination to another ply interface, and should thus provide a means for validating analyses aimed at simulating migration.

  5. Modeling of Beams’ Multiple-Contact Mode with an Application in the Design of a High-g Threshold Microaccelerometer

    PubMed Central

    Li, Kai; Chen, Wenyuan; Zhang, Weiping

    2011-01-01

    Beam’s multiple-contact mode, characterized by multiple and discrete contact regions, non-uniform stoppers’ heights, irregular contact sequence, seesaw-like effect, indirect interaction between different stoppers, and complex coupling relationship between loads and deformation is studied. A novel analysis method and a novel high speed calculation model are developed for multiple-contact mode under mechanical load and electrostatic load, without limitations on stopper height and distribution, providing the beam has stepped or curved shape. Accurate values of deflection, contact load, contact region and so on are obtained directly, with a subsequent validation by CoventorWare. A new concept design of high-g threshold microaccelerometer based on multiple-contact mode is presented, featuring multiple acceleration thresholds of one sensitive component and consequently small sensor size. PMID:22163897

  6. Comparative performance of rubber modified hot mix asphalt under ALF loading : technical summary.

    DOT National Transportation Integrated Search

    2004-07-01

    The objectives of this study were to evaluate the overall performance under accelerated loading of hot mix asphalt mixtures containing powdered rubber modifier (PRM) as compared to similar mixes with conventional HMA and to optimize the use of these ...

  7. Comparative performance of rubber modified hot mix asphalt under ALF loading.

    DOT National Transportation Integrated Search

    2003-08-01

    Experiment 2 at the Louisiana ALF site involved determining the engineering benefits of using powdered rubber (PRM) in hot mix asphalt mixes. Three full scale test sections were constructed and subjected to increasing loads from the ALF. Lane 2-1 inc...

  8. Multiparameter bifurcations and mixed-mode oscillations in Q-switched CO2 lasers.

    PubMed

    Doedel, Eusebius J; Pando L, Carlos L

    2014-05-01

    We study the origin of mixed-mode oscillations and related bifurcations in a fully molecular laser model that describes CO2 monomode lasers with a slow saturable absorber. Our study indicates that the presence of isolas of periodic mixed-mode oscillations, as the pump parameter and the cavity-frequency detuning change, is inherent to Q-switched CO2 monomode lasers. We compare this model, known as the dual four-level model, to the more conventional 3:2 model and to a CO2 laser model for fast saturable absorbers. In these models, we find similarities as well as qualitative differences, such as the different nature of the homoclinic tangency to a relevant unstable periodic orbit, where the Gavrilov-Shilnikov theory and its extensions may hold. We also show that there are isolas of periodic mixed-mode oscillations in a model for CO2 lasers with modulated losses, as the pump parameter varies. The coarse-grained bifurcation diagrams of the periodic mixed-mode oscillations in these models suggest that these oscillations belong to similar classes.

  9. Effect of Buckling Modes on the Fatigue Life and Damage Tolerance of Stiffened Structures

    NASA Technical Reports Server (NTRS)

    Davila, Carlos G.; Bisagni, Chiara; Rose, Cheryl A.

    2015-01-01

    The postbuckling response and the collapse of composite specimens with a co-cured hat stringer are investigated experimentally and numerically. These specimens are designed to evaluate the postbuckling response and the effect of an embedded defect on the collapse load and the mode of failure. Tests performed using controlled conditions and detailed instrumentation demonstrate that the damage tolerance, fatigue life, and collapse loads are closely tied with the mode of the postbuckling deformation, which can be different between two nominally identical specimens. Modes that tend to open skin/stringer defects are the most damaging to the structure. However, skin/stringer bond defects can also propagate under shearing modes. In the proposed paper, the effects of initial shape imperfections on the postbuckling modes and the interaction between different postbuckling deformations and the propagation of skin/stringer bond defects under quasi-static or fatigue loads will be examined.

  10. NCHRP project 20-07/task 361 : hamburg wheel-track test equipment requirements and improvements to AASHTO T 324 : research project capsule.

    DOT National Transportation Integrated Search

    2015-02-01

    The Loaded Wheel Test (LWT) is a laboratory-controlled rut depth test that uses loaded wheel(s) : to apply a moving load on hot-mix and warm-mix asphalt (HMA and WMA) specimens to simulate : tra c load applied on asphalt pavements. In the 1970s He...

  11. Failure modes of vacuum plasma spray tungsten coating created on carbon fibre composites under thermal loads

    NASA Astrophysics Data System (ADS)

    Hirai, T.; Bekris, N.; Coad, J. P.; Grisolia, C.; Linke, J.; Maier, H.; Matthews, G. F.; Philipps, V.; Wessel, E.

    2009-07-01

    Vacuum plasma spray tungsten (VPS-W) coating created on a carbon fibre reinforced composite (CFC) was tested under two thermal load schemes in the electron beam facility to examine the operation limits and failure modes. In cyclic ELM-like short transient thermal loads, the VPS-W coating was destroyed sub-layer by sub-layer at 0.33 GW/m 2 for 1 ms pulse duration. At longer single pulses, simulating steady-state thermal loads, the coating was destroyed at surface temperatures above 2700 °C by melting of the rhenium containing multilayer at the interface between VPS-W and CFC. The operation limits and failure modes of the VPS-W coating in the thermal load schemes are discussed in detail.

  12. Do English Listening Outcome and Cognitive Load Change for Different Media Delivery Modes in U-Learning?

    ERIC Educational Resources Information Center

    Chang, Chi-Cheng; Lei, Hao; Tseng, Ju-Shih

    2014-01-01

    Although ubiquitous learning enhances students' access to learning materials, it is crucial to find out which media delivery modes produce the best results for English listening comprehension. The present study examined the effect of media delivery mode (sound and text vs. sound) on English listening comprehension and cognitive load. Participants…

  13. Application of attachment modes in the control of large space structures

    NASA Technical Reports Server (NTRS)

    Craig, Roy R., Jr.

    1989-01-01

    Various ways are examined to obtain reduced order mathematical models of structures for use in dynamic response analyses and in controller design studies. Attachment modes are deflection shapes of a structure subjected to specified unit load distributions. Attachment modes are frequently employed to supplement free-interface normal modes to improve the modeling of components (structures) employed in component mode synthesis analyses. Deflection shapes of structures subjected to generalized loads of some specified distribution and of unit magnitude can also be considered to be attachment modes. Several papers which were written under this contract are summarized herein.

  14. Manual handling methods evaluation based on oxygen consumption

    NASA Astrophysics Data System (ADS)

    Nurmianto, E.; Ciptomulyono, U.; Suparno; Kromodihardjo, S.; Setijono, H.; Arief, N. A.

    2018-04-01

    Mining industry has become one of the largest industries in Indonesia, now competing in billions dollar market, with numbers people employed. Deliveries of a Return Rolls (RR) involve the use of a hand truck and, in many cases, a shoulder/elbow-mode of carriage. Workers usually prefer to the Gendong (carrying on the small of the back or the hip, supported by the waist and arm) mode or Manggul (carrying on some stuff shoulder) mode, because they feel safer by carrying RR on the shoulder/elbow. In this study, the physiological workload involved in shoulder/elbow-mode carrying was investigated, especially focusing on the effects of load weight and inclination. To measure heart rate and oxygen uptake while carrying on the shoulder/elbow, a laboratory experiment was conducted and safety guidelines for such tasks were proposed, based on the experimental results. Four healthy male subjects performed shoulder/elbow-mode carrying, weight between 20 and 24 kg: (1) on inclination of 10o, (2) 20o and (3) 30o. The results showed that inclination involved an increased physiological burden, and that a load of 24 kg entailed a significantly higher physiological cost than carrying a load of 20 kg. Although shoulder/elbow-mode carrying has some advantages, the worker should be advised to carry a load of less than 20 kg, to avoid a high physiological load. During shoulder/elbow-mode carrying, it is also recommended that a person prepare more training in order to have muscular strength.

  15. Buckling of circular cylindrical shells under dynamically applied axial loads

    NASA Technical Reports Server (NTRS)

    Tulk, J. D.

    1972-01-01

    A theoretical and experimental study was made of the buckling characteristics of perfect and imperfect circular cylindrical shells subjected to dynamic axial loading. Experimental data included dynamic buckling loads (124 data points), high speed photographs of buckling mode shapes and observations of the dynamic stability of shells subjected to rapidly applied sub-critical loads. A mathematical model was developed to describe the dynamic behavior of perfect and imperfect shells. This model was based on the Donnell-Von Karman compatibility and equilibrium equations and had a wall deflection function incorporating five separate modes of deflection. Close agreement between theory and experiment was found for both dynamic buckling strength and buckling mode shapes.

  16. Buckling of Cracked Laminated Composite Cylindrical Shells Subjected to Combined Loading

    NASA Astrophysics Data System (ADS)

    Allahbakhsh, Hamidreza; Shariati, Mahmoud

    2013-10-01

    A series of finite element analysis on the cracked composite cylindrical shells under combined loading is carried out to study the effect of loading condition, crack size and orientation on the buckling behavior of laminated composite cylindrical shells. The interaction buckling curves of cracked laminated composite cylinders subject to different combinations of axial compression, bending, internal pressure and external pressure are obtained, using the finite element method. Results show that the internal pressure increases the critical buckling load of the CFRP cylindrical shells and bending and external pressure decrease it. Numerical analysis show that axial crack has the most detrimental effect on the buckling load of a cylindrical shell and results show that for lower values of the axial compressive load and higher values of the external pressure, the buckling is usually in the global mode and for higher values of axial compressive load and lower levels of external pressure the buckling mode is mostly in the local mode.

  17. Multibody dynamics: Modeling component flexibility with fixed, free, loaded, constraint, and residual modes

    NASA Technical Reports Server (NTRS)

    Spanos, John T.; Tsuha, Walter S.

    1989-01-01

    The assumed-modes method in multibody dynamics allows the elastic deformation of each component in the system to be approximated by a sum of products of spatial and temporal functions commonly known as modes and modal coordinates respectively. The choice of component modes used to model articulating and non-articulating flexible multibody systems is examined. Attention is directed toward three classical Component Mode Synthesis (CMS) methods whereby component normal modes are generated by treating the component interface (I/F) as either fixed, free, or loaded with mass and stiffness contributions from the remaining components. The fixed and free I/F normal modes are augmented by static shape functions termed constraint and residual modes respectively. A mode selection procedure is outlined whereby component modes are selected from the Craig-Bampton (fixed I/F plus constraint), MacNeal-Rubin (free I/F plus residual), or Benfield-Hruda (loaded I/F) mode sets in accordance with a modal ordering scheme derived from balance realization theory. The success of the approach is judged by comparing the actuator-to-sensor frequency response of the reduced order system with that of the full order system over the frequency range of interest. A finite element model of the Galileo spacecraft serves as an example in demonstrating the effectiveness of the proposed mode selection method.

  18. Mixed-mode oscillations and chaos in a prey-predator system with dormancy of predators.

    PubMed

    Kuwamura, Masataka; Chiba, Hayato

    2009-12-01

    It is shown that the dormancy of predators induces mixed-mode oscillations and chaos in the population dynamics of a prey-predator system under certain conditions. The mixed-mode oscillations and chaos are shown to bifurcate from a coexisting equilibrium by means of the theory of fast-slow systems. These results may help to find experimental conditions under which one can demonstrate chaotic population dynamics in a simple phytoplankton-zooplankton (-resting eggs) community in a microcosm with a short duration.

  19. High-Power Rf Load

    DOEpatents

    Tantawi, Sami G.; Vlieks, Arnold E.

    1998-09-01

    A compact high-power RF load comprises a series of very low Q resonators, or chokes [16], in a circular waveguide [10]. The sequence of chokes absorb the RF power gradually in a short distance while keeping the bandwidth relatively wide. A polarizer [12] at the input end of the load is provided to convert incoming TE.sub.10 mode signals to circularly polarized TE.sub.11 mode signals. Because the load operates in the circularly polarized mode, the energy is uniformly and efficiently absorbed and the load is more compact than a rectangular load. Using these techniques, a load having a bandwidth of 500 MHz can be produced with an average power dissipation level of 1.5 kW at X-band, and a peak power dissipation of 100 MW. The load can be made from common lossy materials, such as stainless steel, and is less than 15 cm in length. These techniques can also produce loads for use as an alternative to ordinary waveguide loads in small and medium RF accelerators, in radar systems, and in other microwave applications. The design is easily scalable to other RF frequencies and adaptable to the use of other lossy materials.

  20. An adaptive two-stage energy-efficiency mechanism for the doze mode in EPON

    NASA Astrophysics Data System (ADS)

    Nikoukar, AliAkbar; Hwang, I.-Shyan; Su, Yu-Min; Liem, Andrew Tanny

    2016-07-01

    Sleep and doze power-saving modes are the common ways to reduce power consumption of optical network units (ONUs) in Ethernet passive optical network (EPON). The doze mode turns off the ONU transmitter when there is no traffic in the upstream direction while the sleep mode turns off the ONU transmitter and receiver. As the result, the sleep mode is more efficient compared to the doze mode, but it introduces additional complexity of scheduling and signaling, losses the clock synchronization and requires long clock recovery time; furthermore, it requires the cooperation of the optical line terminal (OLT) in the downstream direction to queue frames. To improve the energy-saving in the doze mode, a new two-stage mechanism is introduced that the doze sleep duration is extended for longer time with acceptable quality-of-services (QoS) metrics when ONU is idle in the current cycle. By this way the ONU enters the doze mode even in the high load traffic; moreover, the green dynamic bandwidth allocation (GBA) is proposed to calculate the doze sleep duration based on the ONU queue state and incoming traffic ratio. Simulation results show that the proposed mechanism significantly improves the energy-saving 74% and 54% when traffic load is from the light load to the high load in different traffic situations, and also promises the QoS performance.

  1. Effective Elastic Modulus as a Function of Angular Leaf Span for Curved Leaves of Pyrolytic Boron Nitride

    NASA Technical Reports Server (NTRS)

    Kaforey, M. L.; Deeb, C. W.; Matthiesen, D. H.

    1999-01-01

    A theoretical equation was derived to predict the spring constant (load/deflection) for a simply supported cylindrical section with a line force applied at the center. Curved leaves of PBN were mechanically deformed and the force versus deflection data was recorded and compared to the derived theoretical equation to yield an effective modulus for each leaf. The effective modulus was found to vary from the pure shear modulus for a flat plate to a mixed mode for a half cylinder as a function of the sine of one half the angular leaf span. The spring constants of individual PBN leaves were usually predicted to within 30%.

  2. Rigorous buoyancy driven bubble mixing for centrifugal microfluidics.

    PubMed

    Burger, S; Schulz, M; von Stetten, F; Zengerle, R; Paust, N

    2016-01-21

    We present batch-mode mixing for centrifugal microfluidics operated at fixed rotational frequency. Gas is generated by the disk integrated decomposition of hydrogen peroxide (H2O2) to liquid water (H2O) and gaseous oxygen (O2) and inserted into a mixing chamber. There, bubbles are formed that ascent through the liquid in the artificial gravity field and lead to drag flow. Additionaly, strong buoyancy causes deformation and rupture of the gas bubbles and induces strong mixing flows in the liquids. Buoyancy driven bubble mixing is quantitatively compared to shake mode mixing, mixing by reciprocation and vortex mixing. To determine mixing efficiencies in a meaningful way, the different mixers are employed for mixing of a lysis reagent and human whole blood. Subsequently, DNA is extracted from the lysate and the amount of DNA recovered is taken as a measure for mixing efficiency. Relative to standard vortex mixing, DNA extraction based on buoyancy driven bubble mixing resulted in yields of 92 ± 8% (100 s mixing time) and 100 ± 8% (600 s) at 130g centrifugal acceleration. Shake mode mixing yields 96 ± 11% and is thus equal to buoyancy driven bubble mixing. An advantage of buoyancy driven bubble mixing is that it can be operated at fixed rotational frequency, however. The additional costs of implementing buoyancy driven bubble mixing are low since both the activation liquid and the catalyst are very low cost and no external means are required in the processing device. Furthermore, buoyancy driven bubble mixing can easily be integrated in a monolithic manner and is compatible to scalable manufacturing technologies such as injection moulding or thermoforming. We consider buoyancy driven bubble mixing an excellent alternative to shake mode mixing, in particular if the processing device is not capable of providing fast changes of rotational frequency or if the low average rotational frequency is challenging for the other integrated fluidic operations.

  3. A sophisticated simulation for the fracture behavior of concrete material using XFEM

    NASA Astrophysics Data System (ADS)

    Zhai, Changhai; Wang, Xiaomin; Kong, Jingchang; Li, Shuang; Xie, Lili

    2017-10-01

    The development of a powerful numerical model to simulate the fracture behavior of concrete material has long been one of the dominant research areas in earthquake engineering. A reliable model should be able to adequately represent the discontinuous characteristics of cracks and simulate various failure behaviors under complicated loading conditions. In this paper, a numerical formulation, which incorporates a sophisticated rigid-plastic interface constitutive model coupling cohesion softening, contact, friction and shear dilatation into the XFEM, is proposed to describe various crack behaviors of concrete material. An effective numerical integration scheme for accurately assembling the contribution to the weak form on both sides of the discontinuity is introduced. The effectiveness of the proposed method has been assessed by simulating several well-known experimental tests. It is concluded that the numerical method can successfully capture the crack paths and accurately predict the fracture behavior of concrete structures. The influence of mode-II parameters on the mixed-mode fracture behavior is further investigated to better determine these parameters.

  4. FATIGUE OF DENTAL CERAMICS

    PubMed Central

    Zhang, Yu; Sailer, Irena; Lawn, Brian R

    2013-01-01

    Objectives Clinical data on survival rates reveal that all-ceramic dental prostheses are susceptible to fracture from repetitive occlusal loading. The objective of this review is to examine the underlying mechanisms of fatigue in current and future dental ceramics. Data/sources The nature of various fatigue modes is elucidated using fracture test data on ceramic layer specimens from the dental and biomechanics literature. Conclusions Failure modes can change over a lifetime, depending on restoration geometry, loading conditions and material properties. Modes that operate in single-cycle loading may be dominated by alternative modes in multi-cycle loading. While post-mortem examination of failed prostheses can determine the sources of certain fractures, the evolution of these fractures en route to failure remains poorly understood. Whereas it is commonly held that loss of load-bearing capacity of dental ceramics in repetitive loading is attributable to chemically-assisted 'slow crack growth' in the presence of water, we demonstrate the existence of more deleterious fatigue mechanisms, mechanical rather than chemical in nature. Neglecting to account for mechanical fatigue can lead to gross overestimates in predicted survival rates. Clinical significance Strategies for prolonging the clinical lifetimes of ceramic restorations are proposed based on a crack-containment philosophy. PMID:24135295

  5. Fatigue of dental ceramics.

    PubMed

    Zhang, Yu; Sailer, Irena; Lawn, Brian R

    2013-12-01

    Clinical data on survival rates reveal that all-ceramic dental prostheses are susceptible to fracture from repetitive occlusal loading. The objective of this review is to examine the underlying mechanisms of fatigue in current and future dental ceramics. The nature of various fatigue modes is elucidated using fracture test data on ceramic layer specimens from the dental and biomechanics literature. Failure modes can change over a lifetime, depending on restoration geometry, loading conditions and material properties. Modes that operate in single-cycle loading may be dominated by alternative modes in multi-cycle loading. While post-mortem examination of failed prostheses can determine the sources of certain fractures, the evolution of these fractures en route to failure remains poorly understood. Whereas it is commonly held that loss of load-bearing capacity of dental ceramics in repetitive loading is attributable to chemically assisted 'slow crack growth' in the presence of water, we demonstrate the existence of more deleterious fatigue mechanisms, mechanical rather than chemical in nature. Neglecting to account for mechanical fatigue can lead to gross overestimates in predicted survival rates. Strategies for prolonging the clinical lifetimes of ceramic restorations are proposed based on a crack-containment philosophy. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. A Comparison of a Postal Survey and Mixed-Mode Survey Using a Questionnaire on Patients’ Experiences With Breast Care

    PubMed Central

    Hendriks, Michelle; Koopman, Laura; Spreeuwenberg, Peter; Rademakers, Jany

    2011-01-01

    Background The Internet is increasingly considered to be an efficient medium for assessing the quality of health care seen from the patients’ perspective. Potential benefits of Internet surveys such as time efficiency, reduced effort, and lower costs should be balanced against potential weaknesses such as low response rates and accessibility for only a subset of potential participants. Combining an Internet questionnaire with a traditional paper follow-up questionnaire (mixed-mode survey) can possibly compensate for these weaknesses and provide an alternative to a postal survey. Objective To examine whether there are differences between a mixed-mode survey and a postal survey in terms of respondent characteristics, response rate and time, quality of data, costs, and global ratings of health care or health care providers (general practitioner, hospital care in the diagnostic phase, surgeon, nurses, radiotherapy, chemotherapy, and hospital care in general). Methods Differences between the two surveys were examined in a sample of breast care patients using the Consumer Quality Index Breast Care questionnaire. We selected 800 breast care patients from the reimbursement files of Dutch health insurance companies. We asked 400 patients to fill out the questionnaire online followed by a paper reminder (mixed-mode survey) and 400 patients, matched by age and gender, received the questionnaire by mail only (postal survey). Both groups received three reminders. Results The respondents to the two surveys did not differ in age, gender, level of education, or self-reported physical and psychological health (all Ps > .05). In the postal survey, the questionnaires were returned 20 days earlier than in the mixed-mode survey (median 12 and 32 days, respectively; P < .001), whereas the response rate did not differ significantly (256/400, 64.0% versus 242/400, 60.5%, respectively; P = .30). The costs were lower for the mixed-mode survey (€2 per questionnaire). Moreover, there were fewer missing items (3.4% versus 4.4%, P = .002) and fewer invalid answers (3.2% versus 6.2%, P < .001) in the mixed-mode survey than in the postal survey. The answers of the two respondent groups on the global ratings did not differ. Within the mixed-mode survey, 52.9% (128/242) of the respondents filled out the questionnaire online. Respondents who filled out the questionnaire online were significantly younger (P < .001), were more often highly educated (P = .002), and reported better psychological health (P = .02) than respondents who filled out the paper questionnaire. Respondents to the paper questionnaire rated the nurses significantly more positively than respondents to the online questionnaire (score 9.2 versus 8.4, respectively; χ2 1 = 5.6). Conclusions Mixed-mode surveys are an alternative method to postal surveys that yield comparable response rates and groups of respondents, at lower costs. Moreover, quality of health care was not rated differently by respondents to the mixed-mode or postal survey. Researchers should consider using mixed-mode surveys instead of postal surveys, especially when investigating younger or more highly educated populations. PMID:21946048

  7. A comparison of a postal survey and mixed-mode survey using a questionnaire on patients' experiences with breast care.

    PubMed

    Zuidgeest, Marloes; Hendriks, Michelle; Koopman, Laura; Spreeuwenberg, Peter; Rademakers, Jany

    2011-09-27

    The Internet is increasingly considered to be an efficient medium for assessing the quality of health care seen from the patients' perspective. Potential benefits of Internet surveys such as time efficiency, reduced effort, and lower costs should be balanced against potential weaknesses such as low response rates and accessibility for only a subset of potential participants. Combining an Internet questionnaire with a traditional paper follow-up questionnaire (mixed-mode survey) can possibly compensate for these weaknesses and provide an alternative to a postal survey. To examine whether there are differences between a mixed-mode survey and a postal survey in terms of respondent characteristics, response rate and time, quality of data, costs, and global ratings of health care or health care providers (general practitioner, hospital care in the diagnostic phase, surgeon, nurses, radiotherapy, chemotherapy, and hospital care in general). Differences between the two surveys were examined in a sample of breast care patients using the Consumer Quality Index Breast Care questionnaire. We selected 800 breast care patients from the reimbursement files of Dutch health insurance companies. We asked 400 patients to fill out the questionnaire online followed by a paper reminder (mixed-mode survey) and 400 patients, matched by age and gender, received the questionnaire by mail only (postal survey). Both groups received three reminders. The respondents to the two surveys did not differ in age, gender, level of education, or self-reported physical and psychological health (all Ps > .05). In the postal survey, the questionnaires were returned 20 days earlier than in the mixed-mode survey (median 12 and 32 days, respectively; P < .001), whereas the response rate did not differ significantly (256/400, 64.0% versus 242/400, 60.5%, respectively; P = .30). The costs were lower for the mixed-mode survey (€2 per questionnaire). Moreover, there were fewer missing items (3.4% versus 4.4%, P = .002) and fewer invalid answers (3.2% versus 6.2%, P < .001) in the mixed-mode survey than in the postal survey. The answers of the two respondent groups on the global ratings did not differ. Within the mixed-mode survey, 52.9% (128/242) of the respondents filled out the questionnaire online. Respondents who filled out the questionnaire online were significantly younger (P < .001), were more often highly educated (P = .002), and reported better psychological health (P = .02) than respondents who filled out the paper questionnaire. Respondents to the paper questionnaire rated the nurses significantly more positively than respondents to the online questionnaire (score 9.2 versus 8.4, respectively; χ²₁ = 5.6). Mixed-mode surveys are an alternative method to postal surveys that yield comparable response rates and groups of respondents, at lower costs. Moreover, quality of health care was not rated differently by respondents to the mixed-mode or postal survey. Researchers should consider using mixed-mode surveys instead of postal surveys, especially when investigating younger or more highly educated populations.

  8. Surface loading of a viscoelastic earth-I. General theory

    NASA Astrophysics Data System (ADS)

    Tromp, Jeroen; Mitrovica, Jerry X.

    1999-06-01

    We present a new normal-mode formalism for computing the response of an aspherical, self-gravitating, linear viscoelastic earth model to an arbitrary surface load. The formalism makes use of recent advances in the theory of the Earth's free oscillations, and is based upon an eigenfunction expansion methodology, rather than the tradi-tional Love-number approach to surface-loading problems. We introduce a surface-load representation theorem analogous to Betti's reciprocity relation in seismology. Taking advantage of this theorem and the biorthogonality of the viscoelastic modes, we determine the complete response to a surface load in the form of a Green's function. We also demonstrate that each viscoelastic mode has its own unique energy partitioning, which can be used to characterize it. In subsequent papers, we apply the theory to spherically symmetric and aspherical earth models.

  9. Exploiting symmetries in the modeling and analysis of tires

    NASA Technical Reports Server (NTRS)

    Noor, Ahmed K.; Andersen, Carl M.; Tanner, John A.

    1987-01-01

    A simple and efficient computational strategy for reducing both the size of a tire model and the cost of the analysis of tires in the presence of symmetry-breaking conditions (unsymmetry in the tire material, geometry, or loading) is presented. The strategy is based on approximating the unsymmetric response of the tire with a linear combination of symmetric and antisymmetric global approximation vectors (or modes). Details are presented for the three main elements of the computational strategy, which include: use of special three-field mixed finite-element models, use of operator splitting, and substantial reduction in the number of degrees of freedom. The proposed computational stategy is applied to three quasi-symmetric problems of tires: linear analysis of anisotropic tires, through use of semianalytic finite elements, nonlinear analysis of anisotropic tires through use of two-dimensional shell finite elements, and nonlinear analysis of orthotropic tires subjected to unsymmetric loading. Three basic types of symmetry (and their combinations) exhibited by the tire response are identified.

  10. Comparison of response patterns in different survey designs: a longitudinal panel with mixed-mode and online-only design.

    PubMed

    Rübsamen, Nicole; Akmatov, Manas K; Castell, Stefanie; Karch, André; Mikolajczyk, Rafael T

    2017-01-01

    Increasing availability of the Internet allows using only online data collection for more epidemiological studies. We compare response patterns in a population-based health survey using two survey designs: mixed-mode (choice between paper-and-pencil and online questionnaires) and online-only design (without choice). We used data from a longitudinal panel, the Hygiene and Behaviour Infectious Diseases Study (HaBIDS), conducted in 2014/2015 in four regions in Lower Saxony, Germany. Individuals were recruited using address-based probability sampling. In two regions, individuals could choose between paper-and-pencil and online questionnaires. In the other two regions, individuals were offered online-only participation. We compared sociodemographic characteristics of respondents who filled in all panel questionnaires between the mixed-mode group (n = 1110) and the online-only group (n = 482). Using 134 items, we performed multinomial logistic regression to compare responses between survey designs in terms of type (missing, "do not know" or valid response) and ordinal regression to compare responses in terms of content. We applied the false discovery rates (FDR) to control for multiple testing and investigated effects of adjusting for sociodemographic characteristic. For validation of the differential response patterns between mixed-mode and online-only, we compared the response patterns between paper and online mode among the respondents in the mixed-mode group in one region (n = 786). Respondents in the online-only group were older than those in the mixed-mode group, but both groups did not differ regarding sex or education. Type of response did not differ between the online-only and the mixed-mode group. Survey design was associated with different content of response in 18 of the 134 investigated items; which decreased to 11 after adjusting for sociodemographic variables. In the validation within the mixed-mode, only two of those were among the 11 significantly different items. The probability of observing by chance the same two or more significant differences in this setting was 22%. We found similar response patterns in both survey designs with only few items being answered differently, likely attributable to chance. Our study supports the equivalence of the compared survey designs and suggests that, in the studied setting, using online-only design does not cause strong distortion of the results.

  11. Comparison of modal superposition methods for the analytical solution to moving load problems.

    DOT National Transportation Integrated Search

    1994-01-01

    The response of bridge structures to moving loads is investigated using modal superposition methods. Two distinct modal superposition methods are available: the modedisplacement method and the mode-acceleration method. While the mode-displacement met...

  12. Radiation loss of planar surface plasmon polaritons transmission lines at microwave frequencies.

    PubMed

    Xu, Zhixia; Li, Shunli; Yin, Xiaoxing; Zhao, Hongxin; Liu, Leilei

    2017-07-21

    Radiation loss of a typical spoof surface plasmon polaritons (SSPPs) transmission line (TL) is investigated in this paper. A 325 mm-long SSPPs TL is designed and fabricated. Simulated results show that radiation loss contributes more to transmission loss than dielectric loss and conductor loss from 2 GHz to 10 GHz. Radiation loss of the SSPPs TL could be divided into two parts, one is caused by the input mode converter, and the other is caused by the corrugated metallic strip. This paper explains mechanisms of radiation loss from different parts, designs a loaded SSPPs TL with a series of resistors to absorb electromagnetic energy on corrugated metallic strip, and then discriminates radiation loss from the input mode converter, proposes the concept of average radiation length (ARL) to evaluate radiation loss from SSPPs of finite length, and concludes that radiation loss is mainly caused by corrugated structure of finite length at low frequency band and by the input mode converter at high frequency band. To suppress radiation loss, a mixed slow wave TL based on the combination of coplanar waveguides (CPWs) and SSPPs is presented. The designed structure, sample fabrication and experimental verification are discussed.

  13. Ideal MHD Stability and Characteristics of Edge Localized Modes on CFETR

    NASA Astrophysics Data System (ADS)

    Li, Zeyu; Chan, Vincent; Xu, Xueqiao; Wang, Xiaogang; Cfetr Physics Team

    2017-10-01

    Investigation on the equilibrium operation regime, its ideal magnetohydrodynamics (MHD) stability and edge localized modes (ELM) characteristics is performed for China Fusion Engineering Test Reactor (CFETR). The CFETR operation regime study starts with a baseline scenario derived from multi-code integrated modeling, with key parameters varied to build a systematic database. These parameters, under profile and pedestal constraints, provide the foundation for engineering design. The linear stabilities of low-n and intermediate-n peeling-ballooning modes for CFETR baseline scenario are analyzed. Multi-code benchmarking, including GATO, ELITE, BOUT + + and NIMROD, demonstrated good agreement in predicting instabilities. Nonlinear behavior of ELMs for the baseline scenario is simulated using BOUT + + . Instabilities are found both at the pedestal top and inside the pedestal region, which lead to a mix of grassy and type I ELMs. Pedestal structures extending inward beyond the pedestal top are also varied to study the influence on ELM characteristic. Preliminary results on the dependence of the Type-I ELM divertor heat load scaling on machine size and pedestal pressure will also be presented. Prepared by LLNL under Contract DE-AC52-07NA27344 and National Magnetic Confinement Fusion Research Program of China (Grant No. 2014GB110003 and 2014GB107004).

  14. Achiral and Chiral Separations Using Micellar Electrokinetic Chromatography, Polyelectrolyte Multilayer Coatings, and Mixed Mode Separation Techniques with Molecular Micelles

    PubMed Central

    Luces, Candace A.; Warner, Isiah M.

    2014-01-01

    Mixed mode separation using a combination of micellar electrokinetic chromatography (MEKC) and polyelectrolyte multilayer (PEM) coatings is herein reported for the separation of achiral and chiral analytes. Many analytes are difficult to separate by MEKC and PEM coatings alone. Therefore, the implementation of a mixed mode separation provides several advantages for overcoming the limitations of these well-established methods. In this study, it was observed that achiral separations using MEKC and PEM coatings individually resulted in partial resolution of 8 very similar aryl ketones when the molecular micelle (sodium poly(N-undecanoyl-l-glycinate) (poly-SUG)) concentration was varied from 0.25% – 1.00% (w/v) and the bilayer number varied from 2 – 4. However, when mixed mode separation was introduced, baseline resolution was achieved for all 8 analytes. In the case of chiral separations, temazepam, aminoglutethimide, benzoin, benzoin methyl ether and coumachlor were separated using the three separation techniques. For chiral separations, the chiral molecular micelle, sodium poly(N-undecanoyl-l-leucylvalinate) (poly-l-SULV), was employed at concentrations of 0.25–1.50% (w/v) for both MEKC and PEM coatings. Overall, the results revealed partial separation with MEKC and PEM coatings individually. However, mixed mode separation enabled baseline separation of each chiral mixture. The separation of achiral and chiral compounds from different compound classes demonstrates the versatility of this mixed mode approach. PMID:20155738

  15. Constraints on the structure of the core of subgiants via mixed modes: the case of HD 49385

    NASA Astrophysics Data System (ADS)

    Deheuvels, S.; Michel, E.

    2011-11-01

    Context. The solar-like pulsator HD 49385 was observed with the CoRoT satellite over a period of 137 days. The analysis of its oscillation spectrum yielded precise estimates of the mode frequencies over nine radial orders and distinguished some unusual characteristics, such as some modes outside the identified ridges in the échelle diagram and that the curvature of the ℓ = 1 ridge differs significantly from that of the ℓ = 0 ridge. Aims: We search for stellar models that can reproduce the peculiar features of the oscillation spectrum of HD 49385. After showing that they can be accounted for only by a low-frequency ℓ = 1 avoided crossing, we investigate the information provided by the mixed modes about the structure of the core of HD 49385. Methods: We propose a toy-model to study the case of avoided crossings with a strong coupling between the p-mode and g-mode cavities in order to establish the presence of mixed modes in the spectrum of HD 49385. We then show that traditional optimization techniques are ill-suited to stars with mixed modes in avoided crossing. We propose a new approach to the computation of grids of models that we apply to HD 49385. Results: The detection of mixed modes leads us to establish the post-main-sequence status of HD 49385. The mixed mode frequencies suggest that there is a strong coupling between the p-mode and g-mode cavities. As a result, we show that the amount of core overshooting in HD 49385 is either very small (0 < αov < 0.05) or moderate (0.18 < αov < 0.20). The mixing length parameter is found to be significantly lower than the solar one (αCGM = 0.55 ± 0.04 compared to the solar value α⊙ = 0.64). Finally, we show that the revised solar abundances of Asplund ensure closer agreement with the observations than the classical ones of Grevesse & Noels. At each step, we investigate the origin and meaning of these seismic diagnostics in terms of the physical structure of the star. Conclusions: The subgiant HD 49385 is the first star for which a thorough modeling has been attempted to reproduce all the properties of an avoided crossing. It has provided the opportunity to show that the study of the coupling between the cavities in these stars can provide valuable insight into open questions such as core overshooting, the efficiency of convection, and the abundances of heavy elements in stars.

  16. Ply-level failure analysis of a graphite/epoxy laminate under bearing-bypass loading

    NASA Technical Reports Server (NTRS)

    Naik, R. A.; Crews, J. H., Jr.

    1990-01-01

    A combined experimental and analytical study was conducted to investigate and predict the failure modes of a graphite/epoxy laminate subjected to combined bearing and bypass loading. Tests were conducted in a test machine that allowed the bearing-bypass load ratio to be controlled while a single-fastener coupon was loaded to failure in either tension or compression. Onset and ultimate failure modes and strengths were determined for each test case. The damage-onset modes were studied in detail by sectioning and micrographing the damaged specimens. A two-dimensional, finite-element analysis was conducted to determine lamina strains around the bolt hole. Damage onset consisted of matrix cracks, delamination, and fiber failures. Stiffness loss appeared to be caused by fiber failures rather than by matrix cracking and delamination. An unusual offset-compression mode was observed for compressive bearing-bypass loading in which the specimen failed across its width along a line offset from the hole. The computed lamina strains in the fiber direction were used in a combined analytical and experimental approach to predict bearing-bypass diagrams for damage onset from a few simple tests.

  17. Aerodynamic load control strategy of wind turbine in microgrid

    NASA Astrophysics Data System (ADS)

    Wang, Xiangming; Liu, Heshun; Chen, Yanfei

    2017-12-01

    A control strategy is proposed in the paper to optimize the aerodynamic load of the wind turbine in micro-grid. In grid-connection mode, the wind turbine adopts a new individual variable pitch control strategy. The pitch angle of the blade is rapidly given by the controller, and the pitch angle of each blade is fine tuned by the weight coefficient distributor. In islanding mode, according to the requirements of energy storage system, a given power tracking control method based on fuzzy PID control is proposed. Simulation result shows that this control strategy can effectively improve the axial aerodynamic load of the blade under rated wind speed in grid-connection mode, and ensure the smooth operation of the micro-grid in islanding mode.

  18. Evaluating Bias of Sequential Mixed-Mode Designs against Benchmark Surveys

    ERIC Educational Resources Information Center

    Klausch, Thomas; Schouten, Barry; Hox, Joop J.

    2017-01-01

    This study evaluated three types of bias--total, measurement, and selection bias (SB)--in three sequential mixed-mode designs of the Dutch Crime Victimization Survey: telephone, mail, and web, where nonrespondents were followed up face-to-face (F2F). In the absence of true scores, all biases were estimated as mode effects against two different…

  19. Effect of pretreatment on rehydration, colour and nanoindentation properties of potato cylinders dried using a mixed-mode solar dryer.

    PubMed

    Dhalsamant, Kshanaprava; Tripathy, Punyadarshini P; Shrivastava, Shanker L

    2017-08-01

    Desirable quality estimation is an important consumer driver for wider acceptability of mixed-mode solar drying of potatoes in food industries. The aim of this study is to characterise rehydration, colour, texture, nanoindentaion and microstructure of dried potato samples and to establish the influence of pre-drying treatment on the above qualities. The water absorption capacity and rehydration ability of solar dried potato were significantly influenced by pretreatment followed by rehydration temperature and sample diameter. The redness index (a*) of pretreated dried samples was lower with simultaneous higher value of yellowness index (b*), chroma (C*) and hue angle (h*). Also, the average nanohardness (H) of pretreated samples increased significantly by 22.64% compared to that of untreated samples. The average reduced modulus (E r ) and Young's modulus (E s ) of dried potato samples were 1.865 GPa and 1.403 GPa, respectively. Moreover, creep displacement of 43.27 nm was traced in the untreated potato samples during a 20 s dwell time under a constant load of 200 µN in the nanoindentation test. Micrographs revealed more uniform pore spaces in pretreated samples. Pretreated, thinner potato samples achieved better quality dried products in terms of rehydration, colour, texture and nanohardness indices with significantly improved microstructure and creep resistance properties. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  20. Decoding Mode-mixing in Black-hole Merger Ringdown

    NASA Technical Reports Server (NTRS)

    Kelly, Bernard J.; Baker, John G.

    2013-01-01

    Optimal extraction of information from gravitational-wave observations of binary black-hole coalescences requires detailed knowledge of the waveforms. Current approaches for representing waveform information are based on spin-weighted spherical harmonic decomposition. Higher-order harmonic modes carrying a few percent of the total power output near merger can supply information critical to determining intrinsic and extrinsic parameters of the binary. One obstacle to constructing a full multi-mode template of merger waveforms is the apparently complicated behavior of some of these modes; instead of settling down to a simple quasinormal frequency with decaying amplitude, some |m| = modes show periodic bumps characteristic of mode-mixing. We analyze the strongest of these modes the anomalous (3, 2) harmonic mode measured in a set of binary black-hole merger waveform simulations, and show that to leading order, they are due to a mismatch between the spherical harmonic basis used for extraction in 3D numerical relativity simulations, and the spheroidal harmonics adapted to the perturbation theory of Kerr black holes. Other causes of mode-mixing arising from gauge ambiguities and physical properties of the quasinormal ringdown modes are also considered and found to be small for the waveforms studied here.

  1. An efficient mode-splitting method for a curvilinear nearshore circulation model

    USGS Publications Warehouse

    Shi, Fengyan; Kirby, James T.; Hanes, Daniel M.

    2007-01-01

    A mode-splitting method is applied to the quasi-3D nearshore circulation equations in generalized curvilinear coordinates. The gravity wave mode and the vorticity wave mode of the equations are derived using the two-step projection method. Using an implicit algorithm for the gravity mode and an explicit algorithm for the vorticity mode, we combine the two modes to derive a mixed difference–differential equation with respect to surface elevation. McKee et al.'s [McKee, S., Wall, D.P., and Wilson, S.K., 1996. An alternating direction implicit scheme for parabolic equations with mixed derivative and convective terms. J. Comput. Phys., 126, 64–76.] ADI scheme is then used to solve the parabolic-type equation in dealing with the mixed derivative and convective terms from the curvilinear coordinate transformation. Good convergence rates are found in two typical cases which represent respectively the motions dominated by the gravity mode and the vorticity mode. Time step limitations imposed by the vorticity convective Courant number in vorticity-mode-dominant cases are discussed. Model efficiency and accuracy are verified in model application to tidal current simulations in San Francisco Bight.

  2. CFD modeling and experimental verification of a single-stage coaxial Stirling-type pulse tube cryocooler without either double-inlet or multi-bypass operating at 30-35 K using mixed stainless steel mesh regenerator matrices

    NASA Astrophysics Data System (ADS)

    Dang, Haizheng; Zhao, Yibo

    2016-09-01

    This paper presents the CFD modeling and experimental verifications of a single-stage inertance tube coaxial Stirling-type pulse tube cryocooler operating at 30-35 K using mixed stainless steel mesh regenerator matrices without either double-inlet or multi-bypass. A two-dimensional axis-symmetric CFD model with the thermal non-equilibrium mode is developed to simulate the internal process, and the underlying mechanism of significantly reducing the regenerator losses with mixed matrices is discussed in detail based on the given six cases. The modeling also indicates that the combination of the given different mesh segments can be optimized to achieve the highest cooling efficiency or the largest exergy ratio, and then the verification experiments are conducted in which the satisfactory agreements between simulated and tested results are observed. The experiments achieve a no-load temperature of 27.2 K and the cooling power of 0.78 W at 35 K, or 0.29 W at 30 K, with an input electric power of 220 W and a reject temperature of 300 K.

  3. Directional nonlinear guided wave mixing: Case study of counter-propagating shear horizontal waves

    NASA Astrophysics Data System (ADS)

    Hasanian, Mostafa; Lissenden, Cliff J.

    2018-04-01

    While much nonlinear ultrasonics research has been conducted on higher harmonic generation, wave mixing provides the potential for sensitive measurements of incipient damage unencumbered by instrumentation nonlinearity. Studies of nonlinear ultrasonic wave mixing, both collinear and noncollinear, for bulk waves have shown the robust capability of wave mixing for early damage detection. One merit of bulk wave mixing lies in their non-dispersive nature, but guided waves enable inspection of otherwise inaccessible material and a variety of mixing options. Co-directional guided wave mixing was studied previously, but arbitrary direction guided wave mixing has not been addressed until recently. Wave vector analysis is applied to study variable mixing angles to find wave mode triplets (two primary waves and a secondary wave) resulting in the phase matching condition. As a case study, counter-propagating Shear Horizontal (SH) guided wave mixing is analyzed. SH wave interactions generate a secondary Lamb wave mode that is readily receivable. Reception of the secondary Lamb wave mode is compared for an angle beam transducer, an air coupled transducer, and a laser Doppler vibrometer (LDV). Results from the angle beam and air coupled transducers are quite consistent, while the LDV measurement is plagued by variability issues.

  4. Linear models for sound from supersonic reacting mixing layers

    NASA Astrophysics Data System (ADS)

    Chary, P. Shivakanth; Samanta, Arnab

    2016-12-01

    We perform a linearized reduced-order modeling of the aeroacoustic sound sources in supersonic reacting mixing layers to explore their sensitivities to some of the flow parameters in radiating sound. Specifically, we investigate the role of outer modes as the effective flow compressibility is raised, when some of these are expected to dominate over the traditional Kelvin-Helmholtz (K-H) -type central mode. Although the outer modes are known to be of lesser importance in the near-field mixing, how these radiate to the far-field is uncertain, on which we focus. On keeping the flow compressibility fixed, the outer modes are realized via biasing the respective mean densities of the fast (oxidizer) or slow (fuel) side. Here the mean flows are laminar solutions of two-dimensional compressible boundary layers with an imposed composite (turbulent) spreading rate, which we show to significantly alter the growth of instability waves by saturating them earlier, similar to in nonlinear calculations, achieved here via solving the linear parabolized stability equations. As the flow parameters are varied, instability of the slow modes is shown to be more sensitive to heat release, potentially exceeding equivalent central modes, as these modes yield relatively compact sound sources with lesser spreading of the mixing layer, when compared to the corresponding fast modes. In contrast, the radiated sound seems to be relatively unaffected when the mixture equivalence ratio is varied, except for a lean mixture which is shown to yield a pronounced effect on the slow mode radiation by reducing its modal growth.

  5. Fracture mode during cyclic loading of implant-supported single-tooth restorations.

    PubMed

    Hosseini, Mandana; Kleven, Erik; Gotfredsen, Klaus

    2012-08-01

    Fracture of veneering ceramics in zirconia-based restorations has frequently been reported. Investigation of the fracture mode of implant-supported ceramic restorations by using clinically relevant laboratory protocols is needed. This study compared the mode of fracture and number of cyclic loads until veneering fracture when ceramic and metal ceramic restorations with different veneering ceramics were supported by implants. Thirty-two implant-supported single-tooth restorations were fabricated. The test group was composed of 16 ceramic restorations of zirconia abutment-retained crowns with zirconia copings veneered with glass-ceramics (n=8) and feldspathic ceramics (n=8). The control group was composed of 16 metal ceramic restorations of titanium abutment-retained crowns with gold alloy copings veneered with glass (n=8) and feldspathic ceramics (n=8). The palatal surfaces of the crowns were exposed to cyclic loading of 800 N with a frequency of 2 Hz, which continued to 4.2 million cycles or until fracture of the copings, abutments, or implants. The number of cycles and the fracture modes were recorded. The fracture modes were analyzed by descriptive analysis and the Mann-Whitney test (α=.05). The differences in loading cycles until veneering fracture were estimated with the Cox proportional hazards analysis. Veneering fracture was the most frequently observed fracture mode. The severity of fractures was significantly more in ceramic restorations than in metal ceramic restorations. Significantly more loading cycles until veneering fracture were estimated with metal ceramic restorations veneered with glass-ceramics than with other restorations. The metal ceramic restorations demonstrated fewer and less severe fractures and resisted more cyclic loads than the ceramic restorations, particularly when the metal ceramic crowns were veneered with glass-ceramics. Copyright © 2012 The Editorial Council of the Journal of Prosthetic Dentistry. Published by Mosby, Inc. All rights reserved.

  6. [Design and Optimization of Microfluidic Chips Used for Mixing Cryoprotectants].

    PubMed

    Zhou, Xinli; Yi, Xingyue; Zhou, Nanfeng; Yang, Yun

    2016-06-01

    Microfluidic chips can be used to realize continuous cryoprotectants(CPA)loading/unloading for oocytes,reducing osmotic damage and chemical toxicity of CPA.In this study,five different Y-shape microfluidic chips were fabricated to realize the continuous CPA loading/unloading.The effects of flow rate,entrance angle,aspect ratio and turning radius of microchannels on the mixing efficiency of microfluidic chips were analyzed quantitatively.The experimental results showed that with the decrease of flow rates,the increase of aspect ratios and the decrease of turning raradius of microchannel,the mixing length decreased and the mixing velocity was promoted,while the entrance angle had little effect on the mixing efficiency.However,the operating conditions and structural parameters of the chips in practical application should be determined based on an overall consideration of CPA loading/unloading time and machining accuracy.These results would provide a reference to the application of microfluidic chip in CPA mixing.

  7. Monoclonal antibody fragment removal mediated by mixed mode resins.

    PubMed

    O'Connor, Ellen; Aspelund, Matthew; Bartnik, Frank; Berge, Mark; Coughlin, Kelly; Kambarami, Mutsa; Spencer, David; Yan, Huiming; Wang, William

    2017-05-26

    Efforts to increase monoclonal antibody expression in cell culture can result in the presence of fragmented species requiring removal in downstream processing. Capto adhere, HEA Hypercel, and PPA Hypercel anion exchange/hydrophobic interaction mixed mode resins were evaluated for their fragment removal capabilities and found to separate large hinge IgG1 antibody fragment (LHF) from monomer. Removal of greater than 75% of LHF population occurred at pH 8 and low conductivity. The mechanism of fragment removal was investigated in two series of experiments. The first experimental series consisted of comparison to chromatographic behavior on corresponding single mode resins. Both single mode anion exchange and hydrophobic interaction resins failed to separate LHF. The second experimental series studied the impact of phase modifiers, ethylene glycol, urea, and arginine on the mixed mode mediated removal. The addition of ethylene glycol decreased LHF removal by half. Further decreases in LHF separation were seen upon incubation with urea and arginine. Therefore, it was discovered that the purification is the result of a mixed mode phenomena dominated by hydrophobic interaction and hydrogen bonding effects. The site of interaction between the LHF and mixed mode resin was determined by chemical labeling of lysine residues with sulfo-NHS acetate. The labeling identified the antibody hinge and light chain regions as mediating the fragment separation. Sequence analysis showed that under separation conditions, a hydrophobic proline patch and hydrogen bonding serine and threonine residues mediate the hinge interaction with the Capto adhere ligand. Additionally, a case study is presented detailing the optimization of fragment removal using Capto adhere resin to achieve purity and yield targets in a manufacturing facility. This study demonstrated that mixed mode resins can be readily integrated into commercial antibody platform processes when additional chromatographic abilities are required. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.

  8. Peridynamics for failure and residual strength prediction of fiber-reinforced composites

    NASA Astrophysics Data System (ADS)

    Colavito, Kyle

    Peridynamics is a reformulation of classical continuum mechanics that utilizes integral equations in place of partial differential equations to remove the difficulty in handling discontinuities, such as cracks or interfaces, within a body. Damage is included within the constitutive model; initiation and propagation can occur without resorting to special crack growth criteria necessary in other commonly utilized approaches. Predicting damage and residual strengths of composite materials involves capturing complex, distinct and progressive failure modes. The peridynamic laminate theory correctly predicts the load redistribution in general laminate layups in the presence of complex failure modes through the use of multiple interaction types. This study presents two approaches to obtain the critical peridynamic failure parameters necessary to capture the residual strength of a composite structure. The validity of both approaches is first demonstrated by considering the residual strength of isotropic materials. The peridynamic theory is used to predict the crack growth and final failure load in both a diagonally loaded square plate with a center crack, as well as a four-point shear specimen subjected to asymmetric loading. This study also establishes the validity of each approach by considering composite laminate specimens in which each failure mode is isolated. Finally, the failure loads and final failure modes are predicted in a laminate with various hole diameters subjected to tensile and compressive loads.

  9. Failure Maps for Rectangular 17-4PH Stainless Steel Sandwiched Foam Panels

    NASA Technical Reports Server (NTRS)

    Raj, S. V.; Ghosn, L. J.

    2007-01-01

    A new and innovative concept is proposed for designing lightweight fan blades for aircraft engines using commercially available 17-4PH precipitation hardened stainless steel. Rotating fan blades in aircraft engines experience a complex loading state consisting of combinations of centrifugal, distributed pressure and torsional loads. Theoretical failure plastic collapse maps, showing plots of the foam relative density versus face sheet thickness, t, normalized by the fan blade span length, L, have been generated for rectangular 17-4PH sandwiched foam panels under these three loading modes assuming three failure plastic collapse modes. These maps show that the 17-4PH sandwiched foam panels can fail by either the yielding of the face sheets, yielding of the foam core or wrinkling of the face sheets depending on foam relative density, the magnitude of t/L and the loading mode. The design envelop of a generic fan blade is superimposed on the maps to provide valuable insights on the probable failure modes in a sandwiched foam fan blade.

  10. Study on Control Scheme for the Inverters in Low Voltage Microgrid with Nonlinear Loads

    NASA Astrophysics Data System (ADS)

    Xu, Jiqiang; Lu, Wenzhou; Wu, Lei

    2017-05-01

    There are a lot of nonlinear loads in real low voltage microgrid system. It will cause serious output voltage and grid current harmonic distortions problems in island and grid-connected modes, respectively. To solve this problem, this paper proposes a droop control scheme with quasi-proportion and resonant (quasi-PR) controller based on αβ stationary reference frame to make microgrid smoothly switch between grid-connected and island modes without changing control method. Moreover, in island mode, not only stable output voltage and frequency, but also reduced output voltage harmonics with added nonlinear loads can be achieved; In grid-connected mode, not only constant power, but also reduced grid current harmonics can be achieved. Simulation results verify the effectiveness of the proposed control scheme.

  11. Advanced EMT and Phasor-Domain Hybrid Simulation with Simulation Mode Switching Capability for Transmission and Distribution Systems

    DOE PAGES

    Huang, Qiuhua; Vittal, Vijay

    2018-05-09

    Conventional electromagnetic transient (EMT) and phasor-domain hybrid simulation approaches presently exist for trans-mission system level studies. Their simulation efficiency is generally constrained by the EMT simulation. With an increasing number of distributed energy resources and non-conventional loads being installed in distribution systems, it is imperative to extend the hybrid simulation application to include distribution systems and integrated transmission and distribution systems. Meanwhile, it is equally important to improve the simulation efficiency as the modeling scope and complexity of the detailed system in the EMT simulation increases. To meet both requirements, this paper introduces an advanced EMT and phasor-domain hybrid simulationmore » approach. This approach has two main features: 1) a comprehensive phasor-domain modeling framework which supports positive-sequence, three-sequence, three-phase and mixed three-sequence/three-phase representations and 2) a robust and flexible simulation mode switching scheme. The developed scheme enables simulation switching from hybrid simulation mode back to pure phasor-domain dynamic simulation mode to achieve significantly improved simulation efficiency. The proposed method has been tested on integrated transmission and distribution systems. In conclusion, the results show that with the developed simulation switching feature, the total computational time is significantly reduced compared to running the hybrid simulation for the whole simulation period, while maintaining good simulation accuracy.« less

  12. Advanced EMT and Phasor-Domain Hybrid Simulation with Simulation Mode Switching Capability for Transmission and Distribution Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Qiuhua; Vittal, Vijay

    Conventional electromagnetic transient (EMT) and phasor-domain hybrid simulation approaches presently exist for trans-mission system level studies. Their simulation efficiency is generally constrained by the EMT simulation. With an increasing number of distributed energy resources and non-conventional loads being installed in distribution systems, it is imperative to extend the hybrid simulation application to include distribution systems and integrated transmission and distribution systems. Meanwhile, it is equally important to improve the simulation efficiency as the modeling scope and complexity of the detailed system in the EMT simulation increases. To meet both requirements, this paper introduces an advanced EMT and phasor-domain hybrid simulationmore » approach. This approach has two main features: 1) a comprehensive phasor-domain modeling framework which supports positive-sequence, three-sequence, three-phase and mixed three-sequence/three-phase representations and 2) a robust and flexible simulation mode switching scheme. The developed scheme enables simulation switching from hybrid simulation mode back to pure phasor-domain dynamic simulation mode to achieve significantly improved simulation efficiency. The proposed method has been tested on integrated transmission and distribution systems. In conclusion, the results show that with the developed simulation switching feature, the total computational time is significantly reduced compared to running the hybrid simulation for the whole simulation period, while maintaining good simulation accuracy.« less

  13. Mathematical model for calculation of the heat-hydraulic modes of heating points of heat-supplying systems

    NASA Astrophysics Data System (ADS)

    Shalaginova, Z. I.

    2016-03-01

    The mathematical model and calculation method of the thermal-hydraulic modes of heat points, based on the theory of hydraulic circuits, being developed at the Melentiev Energy Systems Institute are presented. The redundant circuit of the heat point was developed, in which all possible connecting circuits (CC) of the heat engineering equipment and the places of possible installation of control valve were inserted. It allows simulating the operating modes both at central heat points (CHP) and individual heat points (IHP). The configuration of the desired circuit is carried out automatically by removing the unnecessary links. The following circuits connecting the heating systems (HS) are considered: the dependent circuit (direct and through mixing elevator) and independent one (through the heater). The following connecting circuits of the load of hot water supply (HWS) were considered: open CC (direct water pumping from pipelines of heat networks) and a closed CC with connecting the HWS heaters on single-level (serial and parallel) and two-level (sequential and combined) circuits. The following connecting circuits of the ventilation systems (VS) were also considered: dependent circuit and independent one through a common heat exchanger with HS load. In the heat points, water temperature regulators for the hot water supply and ventilation and flow regulators for the heating system, as well as to the inlet as a whole, are possible. According to the accepted decomposition, the model of the heat point is an integral part of the overall heat-hydraulic model of the heat-supplying system having intermediate control stages (CHP and IHP), which allows to consider the operating modes of the heat networks of different levels connected with each other through CHP as well as connected through IHP of consumers with various connecting circuits of local systems of heat consumption: heating, ventilation and hot water supply. The model is implemented in the Angara data-processing complex. An example of the multilevel calculation of the heat-hydraulic modes of main heat networks and those connected to them through central heat point distribution networks in Petropavlovsk-Kamchatskii is examined.

  14. Anion permselective membrane

    NASA Technical Reports Server (NTRS)

    Hodgdon, R. B.; Waite, W. A.; Alexander, S. S.

    1984-01-01

    Two polymer ion exchange membranes were synthesized to fulfill the needs of both electrical resistivity and anolyte/catholyte separation for utility load leveling utilizing the DOE/NASA mixed electrolyte REDOX battery. Both membranes were shown to meet mixed electrolyte utility load leveling criteria. Several modifications of an anion exchange membrane failed to meet utility load leveling REDOX battery criteria using the unmixed electrolyte REDOX cell.

  15. Effects of Crimped Fiber Paths on Mixed Mode Delamination Behaviors in Woven Fabric Composites

    DTIC Science & Technology

    2016-09-01

    continuum finite - element models. Three variations of a plain-woven fabric architecture—each of which had different crimped fiber paths—were considered... Finite - Element Analysis Fracture Mechanics Fracture Toughness Mixed Modes Strain Energy Release Rate 16. SECURITY...polymer FB Fully balanced laminate FEA Finite - element analysis FTCM Fracture toughness conversion mechanism G Shear modulus GI, GII, GIII Mode

  16. Effects of a Mixed-Mode Peer Response on Student Response Behavior and Writing Performance

    ERIC Educational Resources Information Center

    Wang, Jen-Hang; Hsu, Shih-Hsun; Chen, Sherry Y.; Ko, Hwa-Wei; Ku, Yu-Min; Chan, Tak-Wai

    2014-01-01

    The study proposed a mix-mode peer response, the E-Peer Response (EPR), to overcome the bias of a single mode, and examined how students with different levels of ability react to the EPR. Two classes participated in this study. One was the experimental group (EG) with the EPR; the other was the control group (CG) with a teacher-centered writing…

  17. Irregular-regular-irregular mixed mode oscillations in a glow discharge plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghosh, Sabuj, E-mail: sabuj.ghosh@saha.ac.in; Shaw, Pankaj Kumar, E-mail: pankaj.shaw@saha.ac.in; Saha, Debajyoti, E-mail: debajyoti.saha@saha.ac.in

    2015-05-15

    Floating potential fluctuations of a glow discharge plasma are found to exhibit different kinds of mixed mode oscillations. Power spectrum analysis reveals that with change in the nature of the mixed mode oscillation (MMO), there occurs a transfer of power between the different harmonics and subharmonics. The variation in the chaoticity of different types of mmo was observed with the study of Lyapunov exponents. Estimates of correlation dimension and the Hurst exponent suggest that these MMOs are of low dimensional nature with an anti persistent character. Numerical modeling also reflects the experimentally found transitions between the different MMOs.

  18. Effects of biodiesel, engine load and diesel particulate filter on nonvolatile particle number size distributions in heavy-duty diesel engine exhaust.

    PubMed

    Young, Li-Hao; Liou, Yi-Jyun; Cheng, Man-Ting; Lu, Jau-Huai; Yang, Hsi-Hsien; Tsai, Ying I; Wang, Lin-Chi; Chen, Chung-Bang; Lai, Jim-Shoung

    2012-01-15

    Diesel engine exhaust contains large numbers of submicrometer particles that degrade air quality and human health. This study examines the number emission characteristics of 10-1000 nm nonvolatile particles from a heavy-duty diesel engine, operating with various waste cooking oil biodiesel blends (B2, B10 and B20), engine loads (0%, 25%, 50% and 75%) and a diesel oxidation catalyst plus diesel particulate filter (DOC+DPF) under steady modes. For a given load, the total particle number concentrations (N(TOT)) decrease slightly, while the mode diameters show negligible changes with increasing biodiesel blends. For a given biodiesel blend, both the N(TOT) and mode diameters increase modestly with increasing load of above 25%. The N(TOT) at idle are highest and their size distributions are strongly affected by condensation and possible nucleation of semivolatile materials. Nonvolatile cores of diameters less than 16 nm are only observed at idle mode. The DOC+DPF shows remarkable filtration efficiency for both the core and soot particles, irrespective of the biodiesel blend and engine load under study. The N(TOT) post the DOC+DPF are comparable to typical ambient levels of ≈ 10(4)cm(-3). This implies that, without concurrent reductions of semivolatile materials, the formation of semivolatile nucleation mode particles post the after treatment is highly favored. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. Study of vibrational modes in CuxAg1-xIn5S8 mixed crystals by infrared reflection measurements

    NASA Astrophysics Data System (ADS)

    Gasanly, N. M.

    2018-04-01

    Infrared reflection spectra of CuxAg1-xIn5S8 mixed crystals, grown by Bridgman method, were studied in the wide frequency range of 50-2000 cm-1. All four infrared-active modes were detected, which are in full agreement with the prediction of group-theoretical analysis. Real and imaginary parts of the dielectric function, refractive index and the energy losses function were evaluated from reflectivity measurements. The frequencies of TO and LO modes and oscillator strengths were also determined. The bands detected in IR spectra of studied crystals were assigned to various vibration types (valence and valence-deformation) on the basis of the symmetrized displacements of atoms obtained employing the Melvin projection operators. The linear dependencies of optical mode frequencies on the composition of CuxAg1-xIn5S8 mixed crystals were obtained. These dependencies display one-mode behavior.

  20. Theoretical studies of solar oscillations

    NASA Technical Reports Server (NTRS)

    Goldreich, P.

    1980-01-01

    Possible sources for the excitation of the solar 5 minute oscillations were investigated and a linear non-adiabatic stability code was applied to a preliminary study of the solar g-modes with periods near 160 minutes. Although no definitive conclusions concerning the excitation of these modes were reached, the excitation of the 5 minute oscillations by turbulent stresses in the convection zone remains a viable possibility. Theoretical calculations do not offer much support for the identification of the 160 minute global solar oscillation (reported by several independent observers) as a solar g-mode. A significant advance was made in attempting to reconcile mixing-length theory with the results of the calculations of linearly unstable normal modes. Calculations show that in a convective envelope prepared according to mixing length theory, the only linearly unstable modes are those which correspond to the turbulent eddies which are the basic element of the heuristic mixing length theory.

  1. A structured analysis of in vitro failure loads and failure modes of fiber, metal, and ceramic post-and-core systems.

    PubMed

    Fokkinga, Wietske A; Kreulen, Cees M; Vallittu, Pekka K; Creugers, Nico H J

    2004-01-01

    This study sought to aggregate literature data on in vitro failure loads and failure modes of prefabricated fiber-reinforced composite (FRC) post systems and to compare them to those of prefabricated metal, custom-cast, and ceramic post systems. The literature was searched using MEDLINE from 1984 to 2003 for dental articles in English. Keywords used were (post or core or buildup or dowel) and (teeth or tooth). Additional inclusion/exclusion steps were conducted, each step by two independent readers: (1) Abstracts describing post-and-core techniques to reconstruct endodontically treated teeth and their mechanical and physical characteristics were included (descriptive studies or reviews were excluded); (2) articles that included FRC post systems were selected; (3) in vitro studies, single-rooted human teeth, prefabricated FRC posts, and composite as the core material were the selection criteria; and (4) failure loads and modes were extracted from the selected papers, and failure modes were dichotomized (distinction was made between "favorable failures," defined as reparable failures, and "unfavorable failures,"defined as irreparable [root] fractures). The literature search revealed 1,984 abstracts. Included were 244, 42, and 12 articles in the first, second, and third selection steps, respectively. Custom-cast post systems showed higher failure loads than prefabricated FRC post systems, whereas ceramic showed lower failure loads. Significantly more favorable failures occurred with prefabricated FRC post systems than with prefabricated and custom-cast metal post systems. The variable "post system" had a significant effect on mean failure loads. FRC post systems more frequently showed favorable failure modes than did metal post systems.

  2. Computational fluid dynamics study on mixing mode and power consumption in anaerobic mono- and co-digestion.

    PubMed

    Zhang, Yuan; Yu, Guangren; Yu, Liang; Siddhu, Muhammad Abdul Hanan; Gao, Mengjiao; Abdeltawab, Ahmed A; Al-Deyab, Salem S; Chen, Xiaochun

    2016-03-01

    Computational fluid dynamics (CFD) was applied to investigate mixing mode and power consumption in anaerobic mono- and co-digestion. Cattle manure (CM) and corn stover (CS) were used as feedstock and stirred tank reactor (STR) was used as digester. Power numbers obtained by the CFD simulation were compared with those from the experimental correlation. Results showed that the standard k-ε model was more appropriate than other turbulence models. A new index, net power production instead of gas production, was proposed to optimize feedstock ratio for anaerobic co-digestion. Results showed that flow field and power consumption were significantly changed in co-digestion of CM and CS compared with those in mono-digestion of either CM or CS. For different mixing modes, the optimum feedstock ratio for co-digestion changed with net power production. The best option of CM/CS ratio for continuous mixing, intermittent mixing I, and intermittent mixing II were 1:1, 1:1 and 1:3, respectively. Copyright © 2016. Published by Elsevier Ltd.

  3. The efficacy of nimodipine drug delivery using mPEG-PLA micelles and mPEG-PLA/TPGS mixed micelles.

    PubMed

    Huang, Shuling; Yu, Xiaohong; Yang, Linlin; Song, Fenglan; Chen, Gang; Lv, Zhufen; Li, Tiao; Chen, De; Zhu, Wanhua; Yu, Anan; Zhang, Yongming; Yang, Fan

    2014-10-15

    In order to develop and compare mPEG-PLA micelles and mPEG-PLA/TPGS mixed micelles, with the intention to develop a highly efficient formulation for nimodipine (NIM), NIM-loaded micelles and mixed micelles were made and their pharmacokinetics were studied. Single factor experiments and orthogonal experiments were designed to optimize the final preparation process, characterizations and drug release behaviors were studied. Pharmacokinetics of NIM micelles, NIM mixed micelles were researched and were compared to NIM solution. Micelles and mixed micelles were prepared by solvent evaporation method, with relatively high drug loading efficiency and within nano-particle size range. The CMC value of mPEG-PLA was lower than that of mPEG-PLA/TPGS. The results of FTIR and TEM confirmed the spherical core-shell structure of micelles as well as mixed micelles, and the encapsulation of NIM inside the cores. In vitro release showed that micelles and mixed micelles had sustained release effect in the forms of passive diffusion and dissolution process, respectively. Following intraperitoneal administration (5mg/kg), micelles and mixed micelles were absorbed faster than solution, and with larger MRT(0-t), smaller CLz and larger AUC(0-t) as compared to that of solution, which showed micelles and mixed micelles had higher retention, slower elimination and higher bioavailability. This experiment also showed that mixed micelles released NIM more stably than micelles. By evaluate the bioequivalence, NIM micelles and NIM mixed micelles were testified non-bioequivalent to NIM solution. Micelles and mixed micelles could sustain the NIM concentrations more efficiently in plasma as compared to solution. Mixed micelles were the best ones since they had high loading content and released more stably. Thus, apprehending micelles and mixed micelles were suited as poor aqueous solubility drug carriers, and mixed micelles were better due to their high loading content and more stable release. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Nonclassical properties of coherent light in a pair of coupled anharmonic oscillators

    NASA Astrophysics Data System (ADS)

    Alam, Nasir; Mandal, Swapan

    2016-01-01

    The Hamiltonian and hence the equations of motion involving the field operators of two anharmonic oscillators coupled through a linear one is framed. It is found that these equations of motion involving the non-commuting field operators are nonlinear and are coupled to each other and hence pose a great problem for getting the solutions. In order to investigate the dynamics and hence the nonclassical properties of the radiation fields, we obtain approximate analytical solutions of these coupled nonlinear differential equations involving the non-commuting field operators up to the second orders in anharmonic and coupling constants. These solutions are found useful for investigating the squeezing of pure and mixed modes, amplitude squared squeezing, principal squeezing, and the photon antibunching of the input coherent radiation field. With the suitable choice of the parameters (photon number in various field modes, anharmonic, and coupling constants, etc.), we calculate the second order variances of field quadratures of various modes and hence the squeezing, amplitude squared, and mixed mode squeezing of the input coherent light. In the absence of anharmonicities, it is found that these nonlinear nonclassical phenomena (squeezing of pure and mixed modes, amplitude squared squeezing and photon antibunching) are completely absent. The percentage of squeezing, mixed mode squeezing, amplitude squared squeezing increase with the increase of photon number and the dimensionless interaction time. The collapse and revival phenomena in squeezing, mixed mode squeezing and amplitude squared squeezing are exhibited. With the increase of the interaction time, the monotonic increasing nature of the squeezing effects reveal the presence of unwanted secular terms. It is established that the mere coupling of two oscillators through a third one does not produces the squeezing effects of input coherent light. However, the pure nonclassical phenomena of antibunching of photons in vacuum field modes are obtained through the mere coupling and hence the transfers of photons from the remaining coupled mode.

  5. Debonding of Stitched Composite Joints: Testing and Analysis

    NASA Technical Reports Server (NTRS)

    Glaessgen, E. H.; Raju, I. S.; Poe, C. C., Jr.

    1999-01-01

    The effect of stitches on the failure of a single lap joint configuration was determined in a combined experimental and analytical study. The experimental study was conducted to determine debond growth under static monotonic loading. The stitches were shown to delay the initiation ofthe debond and provide load transfer beyond the load necessary to completely debond the stitched lap joint. The strain energy release rates at the debond front were calculated using a finite element-based technique. Models of the unstitched configuration showed significant values of modes I and II across the width of the joint and showed that mode III is zero at the centerline but increases near the free edge. Models of the stitched configuration showed that the stitches effectively reduced mode I to zero, but had less of an effect on modes II and III.

  6. Surface charge fine tuning of reversed-phase/weak anion-exchange type mixed-mode stationary phases for milder elution conditions.

    PubMed

    Zimmermann, Aleksandra; Horak, Jeannie; Sánchez-Muñoz, Orlando L; Lämmerhofer, Michael

    2015-08-28

    A series of new mixed-mode reversed-phase/weak anion-exchange (RP/WAX) phases have been synthesized by immobilization of N-undecenyl-3-α-aminotropane onto thiol-modified silica gel by thiol-ene click chemistry and subsequent introduction of acidic thiol-endcapping functionalities of different type and surface densities. Click chemistry allowed to adjust a controlled surface concentration of the RP/WAX ligand in such a way that a sufficient quantity of residual thiols remained unmodified which have been capped by thiol click with either 3-butenoic acid or allylsulfonic acid as co-ligands. In another embodiment, performic acid oxidation of N-undecenyl-3-α-aminotropane-derivatized thiol-modified silica gave a RP/WAX phase with high density of sulfonic acid end-capping groups. ζ-Potential determinations confirmed the fine-tuned pI of these mixed-mode stationary phases which was shifted from 9.5 to 8.2, 7.8, and 6.5 with 3-butenoic acid and allylsulfonic acid end-capping as well as performic acid oxidation. For acidic solutes, the co-ionic endcapping leads to strongly reduced retention times and clearly allowed elution of these analytes under lower ionic strength thus milder elution conditions. In spite of the acidic endcapping, the new mixed-mode phases maintained their hydrophobic and anion-exchange selectivity as well as their multimodal nature featuring RP and HILIC elution domains at acetonitrile percentages below and above 50%, respectively. Column classification by principal component analysis of an extended retention map in comparison to a set of polar commercial and in-house synthesized stationary phases confirmed complementarity of the new mixed-mode phases with respect to HILIC, polar RP, amino and commercial mixed-mode phases. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. The Role of E-Mail Communications in Determining Response Rates and Mode of Participation in a Mixed-Mode Design

    ERIC Educational Resources Information Center

    Cernat, Alexandru; Lynn, Peter

    2018-01-01

    This article is concerned with the extent to which the propensity to participate in a web face-to-face sequential mixed-mode survey is influenced by the ability to communicate with sample members by e-mail in addition to mail. Researchers may be able to collect e-mail addresses for sample members and to use them subsequently to send survey…

  8. Evaluation of the Edge Crack Torsion (ECT) Test for Mode 3 Interlaminar Fracture Toughness of Laminated Composites

    NASA Technical Reports Server (NTRS)

    Li, Jian; Lee, Edward W.; OBrien, T. Kevin; Lee, Shaw Ming

    1996-01-01

    An analytical and experimental investigation was carried out on G40-800/R6376 graphite epoxy laminates to evaluate the Edge Crack Torsion (ECT) test as a candidate for a standard Mode 3 interlaminar fracture toughness test for laminated composites. The ECT test consists of a (90/(+/- 45)(sub 3)/(+/- 45)(sub 3)/90))(sub s) laminate with a delamination introduced by a non-adhesive film at the mid-plane along one edge and loaded in a special fixture to create torsion along the length of the laminate. Dye penetrate enhanced X-radiograph of failed specimens revealed that the delamination initiated at the middle of the specimen length and propagated in a self similar manner along the laminate mid-plane. A three-dimensional finite element analysis was performed that indicated that a pure Mode 3 delamination exists at the middle of specimen length away from both ends. At the ends near the loading point a small Mode 2 component exists. However, the magnitude of this Mode 2 strain energy release rate at the loading point is small compared to the magnitude of Mode 3 component in the mid-section of the specimen. Hence, the ECT test yielded the desired Mode 3 delamination. The Mode 3 fracture toughness was obtained from a compliance calibration method and was in good agreement with the finite element results. Mode 2 End-Notched Flexure (ENF) tests and Mode 1 Double Cantilever Beam (DCB) tests were also performed for the same composite material. The Mode 1 fracture toughness was much smaller than both the Mode 2 and Mode 3 fracture toughness. The Mode 2 fracture toughness was found to be 75% of the Mode 3 fracture toughness.

  9. An equivalent domain integral method in the two-dimensional analysis of mixed mode crack problems

    NASA Technical Reports Server (NTRS)

    Raju, I. S.; Shivakumar, K. N.

    1990-01-01

    An equivalent domain integral (EDI) method for calculating J-integrals for two-dimensional cracked elastic bodies is presented. The details of the method and its implementation are presented for isoparametric elements. The EDI method gave accurate values of the J-integrals for two mode I and two mixed mode problems. Numerical studies showed that domains consisting of one layer of elements are sufficient to obtain accurate J-integral values. Two procedures for separating the individual modes from the domain integrals are presented.

  10. Failure of a laminated composite under tension-compression fatigue loading

    NASA Technical Reports Server (NTRS)

    Rotem, A.; Nelson, H. G.

    1989-01-01

    The fatigue behavior of composite laminates under tension-compression loading is analyzed and compared with behavior under tension-tension and compression-compression loading. It is shown that for meaningful fatigue conditions, the tension-compression case is the dominant one. Both tension and compression failure modes can occur under the reversed loading, and failure is dependent on the specific lay-up of the laminate and the difference between the tensile static strength and the absolute value of the compressive static strength. The use of a fatigue failure envelope for determining the fatigue life and mode of failure is proposed and demonstrated.

  11. Lamb Wave-Based Structural Health Monitoring on Composite Bolted Joints under Tensile Load

    PubMed Central

    Yang, Bin; Xuan, Fu-Zhen; Xiang, Yanxun; Li, Dan; Zhu, Wujun; Tang, Xiaojun; Xu, Jichao; Yang, Kang; Luo, Chengqiang

    2017-01-01

    Online and offline monitoring of composite bolted joints under tensile load were investigated using piezoelectric transducers. The relationships between Lamb wave signals, pre-tightening force, the applied tensile load, as well as the failure modes were investigated. Results indicated that S0/A0 wave amplitudes decrease with the increasing of load. Relationships between damage features and S0/A0 mode were built based on the finite element (FE) simulation and experimental results. The possibility of application of Lamb wave-based structure health monitoring in bolted joint-like composite structures was thus achieved. PMID:28773014

  12. Research on the Operation Mode of Intelligent-town Energy Internet Based on Source-Load Interaction

    NASA Astrophysics Data System (ADS)

    Li, Hao; Li, Wen; Miao, Bo; Li, Bin; Liu, Chang; Lv, Zhipeng

    2018-01-01

    On the background of the rise of intelligence and the increasing deepening of “Internet +”application, the energy internet has become the focus of the energy research field. This paper, based on the fundamental understanding on the energy internet of the intelligent town, discusses the mode of energy supply in the source-load interactive region, and gives an in-depth study on the output characteristics of the energy supply side and the load characteristics of the demand side, so as to derive the law of energy-load interaction of the intelligent-town energy internet.

  13. Mixing of ultrasonic Lamb waves in thin plates with quadratic nonlinearity.

    PubMed

    Li, Feilong; Zhao, Youxuan; Cao, Peng; Hu, Ning

    2018-07-01

    This paper investigates the propagation of Lamb waves in thin plates with quadratic nonlinearity by one-way mixing method using numerical simulations. It is shown that an A 0 -mode wave can be generated by a pair of S 0 and A 0 mode waves only when mixing condition is satisfied, and mixing wave signals are capable of locating the damage zone. Additionally, it is manifested that the acoustic nonlinear parameter increases linearly with quadratic nonlinearity but monotonously with the size of mixing zone. Furthermore, because of frequency deviation, the waveform of the mixing wave changes significantly from a regular diamond shape to toneburst trains. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. User document for computer programs for ring-stiffened shells of revolution

    NASA Technical Reports Server (NTRS)

    Cohen, G. A.

    1973-01-01

    A user manual and related program documentation is presented for six compatible computer programs for structural analysis of axisymmetric shell structures. The programs apply to a common structural model but analyze different modes of structural response. In particular, they are: (1) Linear static response under asymmetric loads; (2) Buckling of linear states under asymmetric loads; (3) Nonlinear static response under axisymmetric loads; (4) Buckling nonlinear states under axisymmetric (5) Imperfection sensitivity of buckling modes under axisymmetric loads; and (6) Vibrations about nonlinear states under axisymmetric loads. These programs treat branched shells of revolution with an arbitrary arrangement of a large number of open branches but with at most one closed branch.

  15. Postprandial glucose and insulin levels in type 2 diabetes mellitus patients after consumption of ready-to-eat mixed meals.

    PubMed

    Manios, Yannis; Moschonis, George; Mavrogianni, Christina; Tsoutsoulopoulou, Konstantina; Kogkas, Stergios; Lambrinou, Christina-Paulina; Efstathopoulou, Eirini

    2017-04-01

    To compare the effects of three ready-to-eat mixed meals, with a high fiber content and low glycemic index, on postprandial glycemic and insulinemic response in patients with Type 2 diabetes mellitus (T2DM). The current study followed a prospective, three-way, cross-over design. Twenty-four patients with T2DM consumed three ready-to-eat mixed meals, i.e., "wild greens pie" (meal 1), "chicken burgers with boiled vegetables" (meal 2) and "vegetable moussaka" (meal 3) and an oral glucose load, all providing 50 g of carbohydrates. Venous blood was collected at 0, 30, 60, 90 and 120 min postprandial. Statistical analyses included repeated measures analysis of variance and calculations of the area under the glucose and insulin curves (AUC) for each one of the test meals and the oral glucose load. Patients consuming each one of the three mixed meals showed better postprandial glycemic responses compared to the oral glucose load (P < 0.001). Furthermore, patients consuming meal 3 showed a better insulinemic response compared to the oral glucose load and meal 1, after 60 and 120 min postprandial, respectively (P < 0.05). In addition, the increase observed in HOMA-IR values from T0 to T120 was significantly lower for meal 3, compared to the oral glucose load (P < 0.001). The three ready-to-eat mixed meals examined in the present study were found to elicit significantly lower glycemic responses compared to the oral glucose load in diabetic patients. The mixed meals examined in the present study could be proposed as effective, palatable and practical solutions for diabetics for glucose control.

  16. Delamination and Stitched Failure in Stitched Composite Joints

    NASA Technical Reports Server (NTRS)

    Glaessgen, E. H.; Raju, I. S.; Poe, C. C., Jr.

    1999-01-01

    The effect of stitches on the failure of a single lap joint configuration was determined in a combined experimental and finite element study. The experimental program was conducted to determine debond growth under static monotonic loading. The stitches were shown to delay the initiation of the debond and provide load transfer beyond the load necessary to completely debond the stitched lap joint. The experimentally determined debond length vs. applied load was used as an input parameter in the finite element analysis of both configurations. The strain energy release rates at the debond from were calculated using plate finite elements. Nonlinear fastener elements were used to model the stitches and multipoint constraints were used to model the contact problem. Models of the unstitched configuration showed significant values of modes I and II across the width of the joint and showed that mode III is zero at the centerline but increases near the free edge. Models of the stitched configuration showed that the stitches were effective in reducing mode I to zero, but had less of an effect on modes II and III.

  17. Ply-level failure analysis of a graphite/epoxy laminate under bearing-bypass loading

    NASA Technical Reports Server (NTRS)

    Naik, R. A.; Crews, J. H., Jr.

    1988-01-01

    A combined experimental and analytical study was conducted to investigate and predict the failure modes of a graphite/epoxy laminate subjected to combined bearing and bypass loading. Tests were conducted in a test machine that allowed the bearing-bypass load ratio to be controlled while a single-fastener coupon was loaded to failure in either tension or compression. Onset and ultimate failure modes and strengths were determined for each test case. The damage-onset modes were studied in detail by sectioning and micrographing the damaged specimens. A two-dimensional, finite-element analysis was conducted to determine lamina strains around the bolt hole. Damage onset consisted of matrix cracks, delamination, and fiber failures. Stiffness loss appeared to be caused by fiber failures rather than by matrix cracking and delamination. An unusual offset-compression mode was observed for compressive bearing-bypass laoding in which the specimen failed across its width along a line offset from the hole. The computed lamina strains in the fiber direction were used in a combined analytical and experimental approach to predict bearing-bypass diagrams for damage onset from a few simple tests.

  18. Frequency Identification and Asteroseismic Analysis of the Red Giant KIC 9145955: Fundamental Parameters and Helium Core Size

    NASA Astrophysics Data System (ADS)

    Zhang, Xinyi; Wu, Tao; Li, Yan

    2018-03-01

    We have analyzed 18 quarters of long-cadence data of KIC 9145955 provided by Kepler, and extracted 61 oscillation frequencies from these high-precision photometric data. The oscillation frequencies include 7 l = 0 modes, 44 l = 1 modes, 7 l = 2 modes, and 3 l = 3 modes. We identify l = 0 modes as p modes and l = 2 modes as p-dominated modes. For l = 1 modes, all of them are identified as mixed modes. These mixed modes can be used to determine the size of the helium core. We conduct a series of asteroseismic models and the size of the helium core is determined to be M He = 0.210 ± 0.002 M ⊙ and {R}He}=0.0307+/- 0.0002 {R}ȯ . Furthermore, we find that only the acoustic radius τ 0 can be precisely determined with the asteroseismic method independently. The value of τ 0 is determined to be 0.494 ± 0.001 days. By combining asteroseismic results and spectroscopic observations, we obtain the best-fitting model. The physical parameters of this model are M = 1.24 M ⊙, Z = 0.009, α = 2.0, T eff = 5069 K, log g = 3.029, R = 5.636 R ⊙, and L = 18.759 L ⊙. In addition, we think that the observed frequency F39 (96.397 μHz) is more appropriate to be identified as a mixed mode of the most p-dominated.

  19. Development and Application of Benchmark Examples for Mode II Static Delamination Propagation and Fatigue Growth Predictions

    NASA Technical Reports Server (NTRS)

    Krueger, Ronald

    2011-01-01

    The development of benchmark examples for static delamination propagation and cyclic delamination onset and growth prediction is presented and demonstrated for a commercial code. The example is based on a finite element model of an End-Notched Flexure (ENF) specimen. The example is independent of the analysis software used and allows the assessment of the automated delamination propagation, onset and growth prediction capabilities in commercial finite element codes based on the virtual crack closure technique (VCCT). First, static benchmark examples were created for the specimen. Second, based on the static results, benchmark examples for cyclic delamination growth were created. Third, the load-displacement relationship from a propagation analysis and the benchmark results were compared, and good agreement could be achieved by selecting the appropriate input parameters. Fourth, starting from an initially straight front, the delamination was allowed to grow under cyclic loading. The number of cycles to delamination onset and the number of cycles during delamination growth for each growth increment were obtained from the automated analysis and compared to the benchmark examples. Again, good agreement between the results obtained from the growth analysis and the benchmark results could be achieved by selecting the appropriate input parameters. The benchmarking procedure proved valuable by highlighting the issues associated with choosing the input parameters of the particular implementation. Selecting the appropriate input parameters, however, was not straightforward and often required an iterative procedure. Overall the results are encouraging, but further assessment for mixed-mode delamination is required.

  20. Investigation of the relative fine and coarse mode aerosol loadings and properties in the Southern Arabian Gulf region

    NASA Astrophysics Data System (ADS)

    Kaku, Kathleen C.; Reid, Jeffrey S.; Reid, Elizabeth A.; Ross-Langerman, Kristy; Piketh, Stuart; Cliff, Steven; Al Mandoos, Abdulla; Broccardo, Stephen; Zhao, Yongjing; Zhang, Jianglong; Perry, Kevin D.

    2016-03-01

    The aerosol chemistry environment of the Arabian Gulf region is extraordinarily complex, with high concentrations of dust aerosols from surrounding deserts mixed with anthropogenic aerosols originating from a large petrochemical industry and pockets of highly urbanized areas. Despite the high levels of aerosols experienced by this region, little research has been done to explore the chemical composition of both the anthropogenic and mineral dust portion of the aerosol burden. The intensive portion of the United Arab Emirates Unified Aerosol Experiment (UAE2), conducted during August and September 2004 was designed in part to resolve the aerosol chemistry through the use of multiple size-segregated aerosol samplers. The coarse mode mass (derived by subtracting the PM2.5 aerosol mass from the PM10 mass) is largely dust at 76% ± 7% of the total coarse mode mass, but is significantly impacted by anthropogenic pollution, primarily sulfate and nitrate. The PM2.5 aerosol mass also contains a large dust burden, at 38% ± 26%, but the anthropogenic component dominates. The total aerosol burden has significant impact not only on the atmosphere, but also the local population, as the air quality levels for both the PM10 and PM2.5 aerosol masses reached unhealthy levels for 24% of the days sampled.

  1. Correlation coefficient measurement of the mode-locked laser tones using four-wave mixing.

    PubMed

    Anthur, Aravind P; Panapakkam, Vivek; Vujicic, Vidak; Merghem, Kamel; Lelarge, Francois; Ramdane, Abderrahim; Barry, Liam P

    2016-06-01

    We use four-wave mixing to measure the correlation coefficient of comb tones in a quantum-dash mode-locked laser under passive and active locked regimes. We study the uncertainty in the measurement of the correlation coefficient of the proposed method.

  2. Aerobic sludge digestion under low dissolved oxygen concentrations.

    PubMed

    Arunachalam, RaviSankar; Shah, Hemant K; Ju, Lu-Kwang

    2004-01-01

    Low dissolved oxygen (DO) concentrations occur commonly in aerobic digesters treating thickened sludge, with benefits of smaller digester size, much reduced aeration cost, and higher digestion temperature (especially important for plants in colder areas). The effects of low DO concentrations on digestion kinetics were studied using the sludge from municipal wastewater treatment plants in Akron, Ohio, and Los Lunas, New Mexico. The experiments were conducted in both batch digestion and a mixed mode of continuous, fed-batch, and batch operations. The low DO condition was clearly advantageous in eliminating the need for pH control because of the simultaneous occurrence of nitrification and denitrification. However, when compared with fully aerobic (high DO) systems under constant pH control (rare in full-scale plants), low DO concentrations and a higher solids loading had a negative effect on the specific volatile solids (VS) digestion kinetics. Nonetheless, the overall (volumetric) digestion performance depends not only on the specific digestion kinetics, but also the solids concentration, pH, and digester temperature. All of the latter factors favor the low DO digestion of thickened sludge. The significant effect of temperature on low DO digestion was confirmed in the mixed-mode study with the Akron sludge. When compared with the well-known empirical correlation between VS reduction and the product (temperature x solids retention time), the experimental data followed the same trend, but were lower than the correlation predictions. The latter was attributed to the lower digestible VS in the Akron sludge, the slower digestion at low DO concentrations, or both. Through model simulation, the first-order decay constant (kd) was estimated as 0.004 h(-1) in the mixed-mode operations, much lower than those (0.011 to 0.029 h(-1)) obtained in batch digestion. The findings suggested that the interactions among sludges with different treatment ages may have a substantially negative effect on digestion kinetics. The use of multistage digesters, especially with small front-end reactors, may be advantageous in both "process" kinetics and "biological reaction" kinetics for sludge digestion.

  3. Black carbon aerosol characterization in a remote area of Qinghai-Tibetan Plateau, western China.

    PubMed

    Wang, Qiyuan; Schwarz, J P; Cao, Junji; Gao, Rushan; Fahey, D W; Hu, Tafeng; Huang, R-J; Han, Yongming; Shen, Zhenxing

    2014-05-01

    The concentrations, size distributions, and mixing states of refractory black carbon (rBC) aerosols were measured with a ground-based Single Particle Soot Photometer (SP2), and aerosol absorption was measured with an Aethalometer at Qinghai Lake (QHL), a rural area in the Northeastern Tibetan Plateau of China in October 2011. The area was not pristine, with an average rBC mass concentration of 0.36 μg STP-m(-3) during the two-week campaign period. The rBC concentration peaked at night and reached the minimal in the afternoon. This diurnal cycle of concentration is negatively correlated with the mixed layer depth and ventilation. When air masses from the west of QHL were sampled in late afternoon to early evening, the average rBC concentration of 0.21 μg STP-m(-3) was observed, representing the rBC level in a larger Tibetan Plateau region because of the highest mixed layer depth. A lognormal primary mode with mass median diameter (MMD) of ~175 nm, and a small secondary lognormal mode with MMD of 470-500 nm of rBC were observed. Relative reduction in the secondary mode during a snow event supports recent work that suggested size dependent removal of rBC by precipitation. About 50% of the observed rBC cores were identified as thickly coated by non-BC material. A comparison of the Aethalometer and SP2 measurements suggests that non-BC species significantly affect the Aethalometer measurements in this region. A scaling factor for the Aethalometer data at a wavelength of 880 nm is therefore calculated based on the measurements, which may be used to correct other Aethalometer datasets collected in this region for a more accurate estimate of the rBC loading. The results present here significantly improve our understanding of the characteristics of rBC aerosol in the less studied Tibetan Plateau region and further highlight the size dependent removal of BC via precipitation. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Modelling Kepler red giants in eclipsing binaries: calibrating the mixing-length parameter with asteroseismology

    NASA Astrophysics Data System (ADS)

    Li, Tanda; Bedding, Timothy R.; Huber, Daniel; Ball, Warrick H.; Stello, Dennis; Murphy, Simon J.; Bland-Hawthorn, Joss

    2018-03-01

    Stellar models rely on a number of free parameters. High-quality observations of eclipsing binary stars observed by Kepler offer a great opportunity to calibrate model parameters for evolved stars. Our study focuses on six Kepler red giants with the goal of calibrating the mixing-length parameter of convection as well as the asteroseismic surface term in models. We introduce a new method to improve the identification of oscillation modes that exploits theoretical frequencies to guide the mode identification (`peak-bagging') stage of the data analysis. Our results indicate that the convective mixing-length parameter (α) is ≈14 per cent larger for red giants than for the Sun, in agreement with recent results from modelling the APOGEE stars. We found that the asteroseismic surface term (i.e. the frequency offset between the observed and predicted modes) correlates with stellar parameters (Teff, log g) and the mixing-length parameter. This frequency offset generally decreases as giants evolve. The two coefficients a-1 and a3 for the inverse and cubic terms that have been used to describe the surface term correction are found to correlate linearly. The effect of the surface term is also seen in the p-g mixed modes; however, established methods for correcting the effect are not able to properly correct the g-dominated modes in late evolved stars.

  5. Study of the strength of molybdenum under high pressure using electromagnetically applied compression-shear ramp loading

    NASA Astrophysics Data System (ADS)

    Ding, Jow; Alexander, C. Scott; Asay, James

    2015-06-01

    MAPS (Magnetically Applied Pressure Shear) is a new technique that has the potential to study material strength under mega-bar pressures. By applying a mixed-mode pressure-shear loading and measuring the resultant material responses, the technique provides explicit and direct information on material strength under high pressure. In order to apply sufficient shear traction to the test sample, the driver must have substantial strength. Molybdenum was selected for this reason along with its good electrical conductivity. In this work, the mechanical behavior of molybdenum under MAPS loading was studied. To understand the experimental data, a viscoplasticity model with tension-compression asymmetry was also developed. Through a combination of experimental characterization, model development, and numerical simulation, many unique insights were gained on the inelastic behavior of molybdenum such as the effects of strength on the interplay between longitudinal and shear stresses, potential interaction between the magnetic field and molybdenum strength, and the possible tension-compression asymmetry of the inelastic material response. Sandia National Labs is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corp., for the U.S. Dept. of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000.

  6. Field testing of stiffened deep cement mixing piles under lateral cyclic loading

    NASA Astrophysics Data System (ADS)

    Raongjant, Werasak; Jing, Meng

    2013-06-01

    Construction of seaside and underground wall bracing often uses stiffened deep cement mixed columns (SDCM). This research investigates methods used to improve the level of bearing capacity of these SDCM when subjected to cyclic lateral loading via various types of stiffer cores. Eight piles, two deep cement mixed piles and six stiffened deep cement mixing piles with three different types of cores, H shape cross section prestressed concrete, steel pipe, and H-beam steel, were embedded though soft clay into medium-hard clay on site in Thailand. Cyclic horizontal loading was gradually applied until pile failure and the hysteresis loops of lateral load vs. lateral deformation were recorded. The lateral carrying capacities of the SDCM piles with an H-beam steel core increased by 3-4 times that of the DCM piles. This field research clearly shows that using H-beam steel as a stiffer core for SDCM piles is the best method to improve its lateral carrying capacity, ductility and energy dissipation capacity.

  7. Fracture resistance and primary failure mode of endodontically treated teeth restored with a carbon fiber-reinforced resin post system in vitro.

    PubMed

    Raygot, C G; Chai, J; Jameson, D L

    2001-01-01

    This study was undertaken to characterize the fracture resistance and mode of fracture of endodontically treated incisors restored with cast post-and-core, prefabricated stainless steel post, or carbon fiber-reinforced composite post systems. Ten endodontically treated teeth restored with each technique were subjected to a compressive load delivered at a 130-degree angle to the long axis until the first sign of failure was noted. The fracture load and the mode of fracture were recorded. The failure loads registered in the three groups were not significantly different. Between 70%, and 80% of teeth from any of the three groups displayed fractures that were located above the simulated bone level. The use of carbon fiber-reinforced composite posts did not change the fracture resistance or the failure mode of endodontically treated central incisors compared to the use of metallic posts.

  8. Modeling the Influence of Stitching on Delamination Growth in Stitched Warp-Knit Composite Lap Joints

    NASA Technical Reports Server (NTRS)

    Glaessgen, E. H.; Raju, I. S.; Poe, C. C., Jr.

    1999-01-01

    The effect of stitches on the failure of a single lap joint configuration was determined in a combined experimental and analytical study. The experimental study was conducted to determine debond growth under static monotonic loading. The stitches were shown to delay the initiation of the debond and provide load transfer beyond the load necessary to completely debond the stitched lap joint. The strain energy release rates at the debond front were calculated using a finite element-based technique. Models of the unstitched configuration showed significant values of modes I and II across the width of the joint and showed that mode III is zero at the centerline but increases near the free edge. Models of the stitched configuration showed that the stitches effectively reduced mode I to zero, but had less of an effect on modes II and III.

  9. Microstructure-failure mode correlations in braided composites

    NASA Technical Reports Server (NTRS)

    Filatovs, G. J.; Sadler, Robert L.; El-Shiekh, Aly

    1992-01-01

    Explication of the fracture processes of braided composites is needed for modeling their behavior. Described is a systematic exploration of the relationship between microstructure, loading mode, and micro-failure mechanisms in carbon/epoxy braided composites. The study involved compression and fracture toughness tests and optical and scanning electron fractography, including dynamic in-situ testing. Principal failure mechanisms of low sliding, buckling, and unstable crack growth are correlated to microstructural parameters and loading modes; these are used for defining those microstructural conditions which are strength limiting.

  10. Stabilization of a Quadrotor With Uncertain Suspended Load Using Sliding Mode Control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Xu; Liu, Rui; Zhang, Jiucai

    2016-08-21

    The stability and trajectory control of a quadrotor carrying a suspended load with a fixed known mass has been extensively studied in recent years. However, the load mass is not always known beforehand in practical applications. This mass uncertainty brings uncertain disturbances to the quadrotor system, causing existing controllers to have a worse performance or to be collapsed. To improve the quadrotor's stability in this situation, we investigate the impacts of the uncertain load mass on the quadrotor. By comparing the simulation results of two controllers -- the proportional-derivative (PD) controller and the sliding mode controller (SMC) driven by amore » sliding mode disturbance of observer (SMDO), the quadrotor's performance is verified to be worse as the uncertainty increases. The simulation results also show a controller with stronger robustness against disturbances is better for practical applications.« less

  11. Tensile and compressive failure modes of laminated composites loaded by fatigue with different mean stress

    NASA Technical Reports Server (NTRS)

    Rotem, Assa

    1990-01-01

    Laminated composite materials tend to fail differently under tensile or compressive load. Under tension, the material accumulates cracks and fiber fractures, while under compression, the material delaminates and buckles. Tensile-compressive fatigue may cause either of these failure modes depending on the specific damage occurring in the laminate. This damage depends on the stress ratio of the fatigue loading. Analysis of the fatigue behavior of the composite laminate under tension-tension, compression-compression, and tension-compression had led to the development of a fatigue envelope presentation of the failure behavior. This envelope indicates the specific failure mode for any stress ratio and number of loading cycles. The construction of the fatigue envelope is based on the applied stress-cycles to failure (S-N) curves of both tensile-tensile and compressive-compressive fatigue. Test results are presented to verify the theoretical analysis.

  12. Effects of loading modes on densification efficiency of spark plasma sintering: sample study of zirconium carbide consolidation

    NASA Astrophysics Data System (ADS)

    Wei, Xialu; Maximenko, Andrey L.; Back, Christina; Izhvanov, Oleg; Olevsky, Eugene A.

    2017-07-01

    Theoretical studies on the densification kinetics of the new spark plasma sinter-forging (SPS-forging) consolidation technique and of the regular SPS have been carried out based on the continuum theory of sintering. Both modelling and verifying experimental results indicate that the loading modes play important roles in the densification efficiency of SPS of porous ZrC specimens. Compared to regular SPS, SPS-forging is shown to be able to enhance the densification more significantly during later sintering stages. The derived analytical constitutive equations are utilised to evaluate the high-temperature creep parameters of ZrC under SPS conditions. SPS-forging and regular SPS setups are combined to form a new SPS hybrid loading mode with the purpose of reducing shape irregularity in the SPS-forged specimens. Loading control is imposed to secure the geometry as well as the densification of ZrC specimens during hybrid SPS process.

  13. Thermal analysis of regenerative-cooled pylon in multi-mode rocket based combined cycle engine

    NASA Astrophysics Data System (ADS)

    Yan, Dekun; He, Guoqiang; Li, Wenqiang; Zhang, Duo; Qin, Fei

    2018-07-01

    Combining pylon injector with rocket is an effective method to achieve efficient mixing and combustion in the RBCC engine. This study designs a fuel pylon with active cooling structure, and numerically investigates the coupled heat transfer between active cooling process in the pylon and combustion in the combustor in different modes. Effect of the chemical reaction of the fuel on the flow, heat transfer and physical characteristics is also discussed. The numerical results present a good agreement with the experimental data. Results indicate that drastic supplementary combustion caused by rocket gas and secondary combustion caused by the fuel injection from the pylon result in severe thermal load on the pylon. Although regenerative cooling without cracking can reduce pylon's temperature below the allowable limit, a high-temperature area appears in the middle and nail section of the pylon due to the coolant's insufficient convective heat transfer coefficient. Comparatively, endothermic cracking can provide extra chemical heat sink for the coolant and low velocity contributes to prolong the reaction time to increase the heat absorption from chemical reaction, which further lowers and unifies the pylon surface temperature.

  14. Interlaminar shear fracture toughness and fatigue thresholds for composite materials

    NASA Technical Reports Server (NTRS)

    Obrien, T. Kevin; Murri, Gretchen B.; Salpekar, Satish A.

    1987-01-01

    Static and cyclic end notched flexure tests were conducted on a graphite epoxy, a glass epoxy, and graphite thermoplastic to determine their interlaminar shear fracture toughness and fatigue thresholds for delamination in terms of limiting values of the mode II strain energy release rate, G-II, for delamination growth. The influence of precracking and data reduction schemes are discussed. Finite element analysis indicated that the beam theory calculation for G-II with the transverse shear contribution included was reasonably accurate over the entire range of crack lengths. Cyclic loading significantly reduced the critical G-II for delamination. A threshold value of the maximum cyclic G-II below which no delamination occurred after one million cycles was identified for each material. Also, residual static toughness tests were conducted on glass epoxy specimens that had undergone one million cycles without delamination. A linear mixed-mode delamination criteria was used to characterize the static toughness of several composite materials; however, a total G threshold criterion appears to characterize the fatigue delamination durability of composite materials with a wide range of static toughness.

  15. Few-mode fiber, splice and SDM component characterization by spatially-diverse optical vector network analysis.

    PubMed

    Rommel, Simon; Mendinueta, José Manuel Delgado; Klaus, Werner; Sakaguchi, Jun; Olmos, Juan José Vegas; Awaji, Yoshinari; Monroy, Idelfonso Tafur; Wada, Naoya

    2017-09-18

    This paper discusses spatially diverse optical vector network analysis for space division multiplexing (SDM) component and system characterization, which is becoming essential as SDM is widely considered to increase the capacity of optical communication systems. Characterization of a 108-channel photonic lantern spatial multiplexer, coupled to a 36-core 3-mode fiber, is experimentally demonstrated, extracting the full impulse response and complex transfer function matrices as well as insertion loss (IL) and mode-dependent loss (MDL) data. Moreover, the mode-mixing behavior of fiber splices in the few-mode multi-core fiber and their impact on system IL and MDL are analyzed, finding splices to cause significant mode-mixing and to be non-negligible in system capacity analysis.

  16. Experimental strength of restorations with fibre posts at different stages, with and without using a simulated ligament.

    PubMed

    Pérez-González, A; González-Lluch, C; Sancho-Bru, J L; Rodríguez-Cervantes, P J; Barjau-Escribano, A; Forner-Navarro, L

    2012-03-01

    The aim of this study was to analyse the strength and failure mode of teeth restored with fibre posts under retention and flexural-compressive loads at different stages of the restoration and to analyse whether including a simulated ligament in the experimental setup has any effect on the strength or the failure mode. Thirty human maxillary central incisors were distributed in three different groups to be restored with simulation of different restoration stages (1: only post, 2: post and core, 3: post-core and crown), using Rebilda fibre posts. The specimens were inserted in resin blocks and loaded by means of a universal testing machine until failure under tension (stage 1) and 50º flexion (stages 2-3). Half the specimens in each group were restored using a simulated ligament between root dentine and resin block and the other half did not use this element. Failure in stage 1 always occurred at the post-dentine interface, with a mean failure load of 191·2 N. Failure in stage 2 was located mainly in the core or coronal dentine (mean failure load of 505·9 N). Failure in stage 3 was observed in the coronal dentine (mean failure load 397·4 N). Failure loads registered were greater than expected masticatory loads. Fracture modes were mostly reparable, thus indicating that this post is clinically valid at the different stages of restoration studied. The inclusion of the simulated ligament in the experimental system did not show a statistically significant effect on the failure load or the failure mode. © 2011 Blackwell Publishing Ltd.

  17. Elite Junior Australian Football Players Experience Significantly Different Loads Across Levels of Competition and Training Modes.

    PubMed

    Lathlean, Timothy J H; Gastin, Paul B; Newstead, Stuart; Finch, Caroline F

    2018-07-01

    Lathlean, TJH, Gastin, PB, Newstead, S, and Finch, CF. Elite junior Australian football players experience significantly different loads across levels of competition and training modes. J Strength Cond Res 32(7): 2031-2038, 2018-Well-developed physical qualities such as high jumping ability, running endurance, acceleration, and speed can help aspiring junior elite Australian football (AF) players transition to the Australian Football League competition. To do so, players need to experience sufficient load to enhance their physical resilience without increasing their risk of negative outcomes in terms of impaired wellness or injury. The aim of this study was to investigate the differences in load for different levels of competition and training modes across one competitive season. Elite junior AF players (n = 562, aged 17.7 ± 0.3, range: 16-18 years) were recruited from 9 teams across the under-18 state league competition in Victoria. All players recorded their training and match intensities according to the session rating of perceived exertion method. Training sessions were categorized according to skills, strength, conditioning, and other activities, whereas matches were identified according to level of competition. The loads in U18 state league matches (656.7 ± 210.9 au) were significantly higher (p = 0.027) than those in school matches (643.3 ± 260.9 au) and those in U18 representative matches (617.2 ± 175.4). Players, who undertook more than one match per week, experienced significantly less load in subsequent matches (p < 0.001). Furthermore, U18 state league training sessions carried the most load when compared with other training modes. This article highlights that different combinations of training and match involvement affect overall player load, which may predispose players to negative outcomes such as impaired wellness or increased injury risk.

  18. Development and implementation of a novel measure for quantifying training loads in rowing: the T2minute method.

    PubMed

    Tran, Jacqueline; Rice, Anthony J; Main, Luana C; Gastin, Paul B

    2014-04-01

    The systematic management of training requires accurate training load measurement. However, quantifying the training of elite Australian rowers is challenging because of (a) the multicenter, multistate structure of the national program; (b) the variety of training undertaken; and (c) the limitations of existing methods for quantifying the loads accumulated from varied training formats. Therefore, the purpose of this project was to develop a new measure for quantifying training loads in rowing (the T2minute method). Sport scientists and senior coaches at the National Rowing Center of Excellence collaborated to develop the measure, which incorporates training duration, intensity, and mode to quantify a single index of training load. To account for training at different intensities, the method uses standardized intensity zones (T zones) established at the Australian Institute of Sport. Each zone was assigned a weighting factor according to the curvilinear relationship between power output and blood lactate response. Each training mode was assigned a weighting factor based on whether coaches perceived it to be "harder" or "easier" than on-water rowing. A common measurement unit, the T2minute, was defined to normalize sessions in different modes to a single index of load; one T2minute is equivalent to 1 minute of on-water single scull rowing at T2 intensity (approximately 60-72% VO2max). The T2minute method was successfully implemented to support national training strategies in Australian high performance rowing. By incorporating duration, intensity, and mode, the T2minute method extends the concepts that underpin current load measures, providing 1 consistent system to quantify loads from varied training formats.

  19. Guided wave propagation in metallic and resin plates loaded with water on single surface

    NASA Astrophysics Data System (ADS)

    Hayashi, Takahiro; Inoue, Daisuke

    2016-02-01

    Our previous papers reported dispersion curves for leaky Lamb waves in a water-loaded plate and wave structures for several typical modes including quasi-Scholte waves [1,2]. The calculations were carried out with a semi-analytical finite element (SAFE) method developed for leaky Lamb waves. This study presents SAFE calculations for transient guided waves including time-domain waveforms and animations of wave propagation in metallic and resin water-loaded plates. The results show that non-dispersive and non-attenuated waves propagating along the interface between the fluid and the plate are expected for effective non-destructive evaluation of such fluid-loaded plates as storage tanks and transportation pipes. We calculated transient waves in both steel and polyvinyl chloride (PVC) plates loaded with water on a single side and input dynamic loading from a point source on the other water-free surface as typical examples of metallic and resin plates. For a steel plate, there exists a non-dispersive and non-attenuated mode, called the quasi-Scholte wave, having an almost identical phase velocity to that of water. The quasi-Scholte wave has superior generation efficiency in the low frequency range due to its broad energy distribution across the plate, whereas it is localized near the plate-water interface at higher frequencies. This means that it has superior detectability of inner defects. For a PVC plate, plural non-attenuated modes exist. One of the non-attenuated modes similar to the A0 mode of the Lamb wave in the form of a group velocity dispersion curve is promising for the non-destructive evaluation of the PVC plate because it provides prominent characteristics of generation efficiency and low dispersion.

  20. System for loading slab-gel holders for electrophoresis separation

    DOEpatents

    Anderson, Norman G.; Anderson, Norman L.

    1979-01-01

    A slab-gel loading system includes a prismatic chamber for filling a plurality of slab-gel holders simultaneously. Each slab-gel holder comprises a pair of spaced apart plates defining an intermediate volume for gel containment. The holders are vertically positioned in the chamber with their major surfaces parallel to the chamber end walls. A liquid inlet is provided at the corner between the bottom and a side wall of the chamber for distributing a polymerizable monomer solution or a coagulable colloidal solution into each of the holders. The chamber is rotatably supported so that filling can begin with the corner having the liquid inlet directed downwardly such that the solution is gently funneled upwardly, without mixing, along the diverging side and bottom surfaces. As filling proceeds, the chamber is gradually rotated to position the bottom wall in a horizontal mode. The liquid filling means includes a plastic envelope with a septum dividing it into two compartments for intermixing two solutions of different density and thereby providing a liquid flow having a density gradient. The resulting gels have a density gradient between opposite edges for subsequent use in electrophoresis separations.

  1. Mixed retention mechanism of proteins in weak anion-exchange chromatography.

    PubMed

    Liu, Peng; Yang, Haiya; Geng, Xindu

    2009-10-30

    Using four commercial weak anion-exchange chromatography (WAX) columns and 11 kinds of different proteins, we experimentally examined the involvement of hydrophobic interaction chromatography (HIC) mechanism in protein retention on the WAX columns. The HIC mechanism was found to operate in all four WAX columns, and each of these columns had a better resolution in the HIC mode than in the corresponding WAX mode. Detailed analysis of the molecular interactions in a chromatographic system indicated that it is impossible to completely eliminate hydrophobic interactions from a WAX column. Based on these results, it may be possible to employ a single WAX column for protein separation by exploiting mixed modes (WAX and HIC) of retention. The stoichiometric displacement theory and two linear plots were used to show that mechanism of the mixed modes of retention in the system was a combination of two kinds of interactions, i.e., nonselective interactions in the HIC mode and selective interactions in the IEC mode. The obtained U-shaped elution curve of proteins could be distinguished into four different ranges of salt concentration, which also represent four retention regions.

  2. Compression and flexural strength of bone cement mixed with blood.

    PubMed

    Tan, J H; Koh, B Th; Ramruttun, A K; Wang, W

    2016-08-01

    To assess the compression and flexural strength of bone cement mixed with 0 ml, 1 ml, or 2 ml of blood. High viscosity polymethyl methacrylate (PMMA) loaded with or without gentamicin was used. Blood was collected from total knee arthroplasty patients. In the same operating room, one pack of cement each was mixed with 0 ml (control), 1 ml, or 2 ml of blood for 1 minute during the dough phase. The dough was extruded into cylindrical and rectangular moulds for 20 minutes of setting, and then cured in phosphate buffered saline at 37±1ºC for 7 days. The samples were visually inspected for fractures and areas of weakness, and then scanned using microcomputed tomography. 48 gentamicin-loaded and 59 non-gentamicin-loaded samples mixed with 0 ml (control), 1 ml, or 2 ml of blood were randomised for flexural and compression strength testing; each group had at least 6 samples. In samples loaded with or without gentamicin, the flexural and compressive strength was highest in controls, followed by samples mixed with 1 ml or 2 ml of blood. In samples mixed with 2 ml of blood, the flexural strength fell below the standard of 50 MPa. In samples mixed with 2 ml of blood and all gentamicin-loaded samples, the compressive strength fell below the standard of 70 MPa. Microcomputed tomography revealed areas of voids and pores indicating the presence of laminations and partitions within. The biomechanical strength of PMMA contaminated with blood may decrease. Precautions such as saline lavage, pack drying the bone, change of gloves, and prompt insertion of the implant should be taken to prevent blood from contaminating bone cement.

  3. pH and redox-responsive mixed micelles for enhanced intracellular drug release.

    PubMed

    Cai, Mengtan; Zhu, Kun; Qiu, Yongbin; Liu, Xinrong; Chen, Yuanwei; Luo, Xianglin

    2014-04-01

    In order to prepare pH and redox sensitive micelles, amphiphilic copolymers of poly (epsilon-caprolactone)-b-poly(2-(diethylamino) ethyl methacrylate) (PCL-PDEA) and disulfide-linked poly(ethyl glycol)-poly(epsilon-caprolactone) (mPEG-SS-PCL) were synthesized. The double-sensitive micelles were prepared simply by solvent-evaporating method with the mixed two copolymers. The pH sensitivity of the mixed micelles was confirmed by the change of micelle diameter/diameter distribution measured by dynamic lighting scattering (DLS) and the redox sensitivity of the mixed micelles was testified by the change of micellar morphous observed by scanning electron microscope (SEM). In vitro drug release showed that drug-loaded mixed micelles (mass ratio 5:5) could achieve above 90% of drug release under low pH and reducing condition within 10h. Moreover, the drug-loaded mixed micelles (mass ratio 5:5) showed the largest cellular toxicity compared with other drug-loaded micelles, while blank mixed micelles exhibited no toxicity. These results meant that the mixed micelles composed by the two amphiphilic copolymers can enhance intracellular drug release. It is concluded that the newly developed mixed micelles can serve as a potential drug delivery system for anticancer drugs. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Transfer of nonclassical features in quantum teleportation via a mixed quantum channel

    NASA Astrophysics Data System (ADS)

    Lee, Jinhyoung; Kim, M. S.; Jeong, Hyunseok

    2000-09-01

    Quantum teleportation of a continuous-variable state is studied for the quantum channel of a two-mode squeezed vacuum influenced by a thermal environment. Each mode of the squeezed vacuum is assumed to undergo the same thermal influence. It is found that when the mixed two-mode squeezed vacuum for the quantum channel is separable, any nonclassical features, which may be imposed in an original unknown state, cannot be transferred to a receiving station. A two-mode Gaussian state, one of which is a mixed two-mode squeezed vacuum, is separable if and only if a positive well-defined P function can be assigned to it. The fidelity of teleportation is considered in terms of the noise factor given by the imperfect channel. It is found that quantum teleportation may give more noise than direct transmission of a field under the thermal environment, which is due to the fragile nature of quantum entanglement of the quantum channel.

  5. Simplified data reduction methods for the ECT test for mode 3 interlaminar fracture toughness

    NASA Technical Reports Server (NTRS)

    Li, Jian; Obrien, T. Kevin

    1995-01-01

    Simplified expressions for the parameter controlling the load point compliance and strain energy release rate were obtained for the Edge Crack Torsion (ECT) specimen for mode 3 interlaminar fracture toughness. Data reduction methods for mode 3 toughness based on the present analysis are proposed. The effect of the transverse shear modulus, G(sub 23), on mode 3 interlaminar fracture toughness characterization was evaluated. Parameters influenced by the transverse shear modulus were identified. Analytical results indicate that a higher value of G(sub 23) results in a low load point compliance and lower mode 3 toughness estimation. The effect of G(sub 23) on the mode 3 toughness using the ECT specimen is negligible when an appropriate initial delamination length is chosen. A conservative estimation of mode 3 toughness can be obtained by assuming G(sub 23) = G(sub 12) for any initial delamination length.

  6. Design Spectrum Analysis in NASTRAN

    NASA Technical Reports Server (NTRS)

    Butler, T. G.

    1984-01-01

    The utility of Design Spectrum Analysis is to give a mode by mode characterization of the behavior of a design under a given loading. The theory of design spectrum is discussed after operations are explained. User instructions are taken up here in three parts: Transient Preface, Maximum Envelope Spectrum, and RMS Average Spectrum followed by a Summary Table. A single DMAP ALTER packet will provide for all parts of the design spectrum operations. The starting point for getting a modal break-down of the response to acceleration loading is the Modal Transient rigid format. After eigenvalue extraction, modal vectors need to be isolated in the full set of physical coordinates (P-sized as opposed to the D-sized vectors in RF 12). After integration for transient response the results are scanned over the solution time interval for the peak values and for the times that they occur. A module called SCAN was written to do this job, that organizes these maxima into a diagonal output matrix. The maximum amplifier in each mode is applied to the eigenvector of each mode which then reveals the maximum displacements, stresses, forces and boundary reactions that the structure will experience for a load history, mode by mode. The standard NASTRAN output processors have been modified for this task. It is required that modes be normalized to mass.

  7. Optical microfiber-loaded surface plasmonic TE-pass polarizer

    NASA Astrophysics Data System (ADS)

    Ma, Youqiao; Farrell, Gerald; Semenova, Yuliya; Li, Binghui; Yuan, Jinhui; Sang, Xinzhu; Yan, Binbin; Yu, Chongxiu; Guo, Tuan; Wu, Qiang

    2016-04-01

    We propose a novel optical microfiber-loaded plasmonic TE-pass polarizer consisting of an optical microfiber placed on top of a silver substrate and demonstrate its performance both numerically by using the finite element method (FEM) and experimentally. The simulation results show that the loss in the fundamental TE mode is relatively low while at the same time the fundamental TM mode suffers from a large metal dissipation loss induced by excitation of the microfiber-loaded surface plasmonic mode. The microfiber was fabricated using the standard microheater brushing-tapering technique. The measured extinction ratio over the range of the C-band wavelengths is greater than 20 dB for the polarizer with a microfiber diameter of 4 μm, which agrees well with the simulation results.

  8. Preparation of a silica stationary phase co-functionalized with Wulff-type phenylboronate and C12 for mixed-mode liquid chromatography.

    PubMed

    Li, Hengye; Zhang, Xuemeng; Zhang, Lin; Wang, Xiaojin; Kong, Fenying; Fan, Dahe; Li, Lei; Wang, Wei

    2017-04-15

    A silica stationary phase was designed and synthesized through the co-functionalization of silica with Wulff-type phenylboronate and C12 for mixed-mode liquid chromatography applications. The as-synthesized stationary phase was characterized by elemental analysis and Fourier Transform-InfraRed Spectroscopy (FT-IR). Retention mechanisms, including boronate affinity (BA), reversed-phase (RP) and anion-exchange (AE), were involved. Retention mechanism switching was easily realized by adjustment of the mobile phase constitution. Cis-diol compounds could be selectively captured under neutral conditions in BA mode and off-line separated in RP mode. Neutral, basic, acidic and amphiprotic compounds were chromatographed on the column in RP chromatography, while inorganic anions were chromatographed in AE chromatography to characterize the mixed-mode nature of the prepared stationary phase. In addition, the RP performance was compared with an octadecyl silica column in terms of column efficiency (N/m), asymmetry factor (A f ), retention factor (k) and resolution (Rs). The prepared stationary phase offered multiple interactions with analytes in addition to hydrophobic interactions under RP elution conditions. Based on the mixed-mode properties, off-line 2D-LC, for selective capture and separation of urinary nucleosides, was successfully realized on a single column, demonstrating its powerful application potential for complex samples. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Fracture modes in off-axis fiber composites

    NASA Technical Reports Server (NTRS)

    Sinclair, J. H.; Chamis, C. C.

    1978-01-01

    Criteria were developed for identifying, characterizing, and quantifying fracture modes in high-modulus graphite-fiber/resin unidirectional composites subjected to off-axis tensile loading. Procedures are described which use sensitivity analyses and off-axis data to determine the uniaxial strength of fiber composites. It was found that off-axis composites fail by three fracture modes which produce unique fracture surface characteristics. The stress that dominates each fracture mode and the load angle range of its dominance can be identified. Linear composite mechanics is adequate to describe quantitatively the mechanical behavior of off-axis composites. The uniaxial strengths predicted from off-axis data are comparable to these measured in uniaxial tests.

  10. Characterization of superconducting radiofrequency breakdown by two-mode excitation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eremeev, Grigory V.; Palczewski, Ari D.

    2014-01-14

    We show that thermal and magnetic contributions to the breakdown of superconductivity in radiofrequency (RF) fields can be separated by applying two RF modes simultaneously to a superconducting surface. We develop a simple model that illustrates how mode-mixing RF data can be related to properties of the superconductor. Within our model the data can be described by a single parameter, which can be derived either from RF or thermometry data. Our RF and thermometry data are in good agreement with the model. We propose to use mode-mixing technique to decouple thermal and magnetic effects on RF breakdown of superconductors.

  11. Generation of light and dark soliton trains in a dissipative four-wave mixing, mode-locked fibre ring laser

    NASA Astrophysics Data System (ADS)

    Zolotovskii, I. O.; Korobko, D. A.; Sysolyatin, A. A.

    2018-02-01

    We consider a model of a dissipative four-wave mixing, mode-locked fibre ring laser with an intracavity interferometer. The necessary conditions required for mode locking are presented. A pulse train generation is numerically simulated at different repetition rates and gain levels. Admissible ranges of values, for which successful mode locking is possible, are found. It is shown that in the case of normal dispersion of the resonator, a laser with an intracavity interferometer can generate a train of pulses with an energy much greater than that in the case of anomalous dispersion.

  12. Mixed Mode Fuel Injector And Injection System

    DOEpatents

    Stewart, Chris Lee; Tian, Ye; Wang, Lifeng; Shafer, Scott F.

    2005-12-27

    A fuel injector includes a homogenous charge nozzle outlet set and a conventional nozzle outlet set that are controlled respectively by first and second three way needle control valves. Each fuel injector includes first and second concentric needle valve members. One of the needle valve members moves to an open position for a homogenous charge injection event, while the other needle valve member moves to an open position for a conventional injection event. The fuel injector has the ability to operate in a homogenous charge mode with a homogenous charge spray pattern, a conventional mode with a conventional spray pattern or a mixed mode.

  13. Effects of Swept Tips on V-22 Whirl Flutter and Loads

    NASA Technical Reports Server (NTRS)

    Acree, C. W., Jr.

    2005-01-01

    A CAMRAD II model of the V-22 Osprey tiltrotor was constructed for the purpose of analyzing the effects of blade design changes on whirl flutter. The model incorporated a dual load-path grip/yoke assembly, a swashplate coupled to the transmission case, and a drive train. A multiple-trailer free wake was used for loads calculations. The effects of rotor design changes on whirl-mode stability were calculated for swept blades and offset tip masses. A rotor with swept tips and inboard tuning masses was examined in detail to reveal the mechanisms by which these design changes affect stability and loads. Certain combinations of design features greatly increased whirl-mode stability, with (at worst) moderate increases to loads.

  14. Conception d'un système de mesure automatisé pour la caractérisation expérimentale des moteurs piézo-électriquesAn automated test system for piezoelectric motors

    NASA Astrophysics Data System (ADS)

    Ferreira, A.

    1996-04-01

    This paper describes an automated test system for piezoelectric motors allowing the experimental characterization of its electromechanical behaviour. In the first part, an experimental method is given for evaluation of losses generated in the different mechanisms of conversion: electric energy into ultrasonic vibrating energy and ultrasonic vibrating energy into mechanical energy of revolving motion. In the second part, the present method is experimentally validated on a travelling-wave-type rotary motor (Shinsei USR-60). The free stator vibration is analysed by a laser vibrometer which gives a picture both of amplitude and of phase vibration. This result allows one to obtain an identification of vibrations modes and an evaluation of ultrasonic vibrating energy and electromechanical efficiency. To characterize the working of the complete motor, the no-load working mode is first considered. The measurement of its maximal mechanical characteristics (maximal no-load rotating speed, maximal driving torque) with respect to axial load allows the choice of optimum axial load. For this optimum value, the load working mode is, finally, investigated for the evaluation of load characteristics and conversion losses.

  15. Experimental study of complex mixed-mode oscillations generated in a Bonhoeffer-van der Pol oscillator under weak periodic perturbation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shimizu, Kuniyasu, E-mail: kuniyasu.shimizu@it-chiba.ac.jp; Sekikawa, Munehisa; Inaba, Naohiko

    2015-02-15

    Bifurcations of complex mixed-mode oscillations denoted as mixed-mode oscillation-incrementing bifurcations (MMOIBs) have frequently been observed in chemical experiments. In a previous study [K. Shimizu et al., Physica D 241, 1518 (2012)], we discovered an extremely simple dynamical circuit that exhibits MMOIBs. Our model was represented by a slow/fast Bonhoeffer-van der Pol circuit under weak periodic perturbation near a subcritical Andronov-Hopf bifurcation point. In this study, we experimentally and numerically verify that our dynamical circuit captures the essence of the underlying mechanism causing MMOIBs, and we observe MMOIBs and chaos with distinctive waveforms in real circuit experiments.

  16. Comparison of mixed-mode stress-intensity factors obtained through displacement correlation, J-integral formulation, and modified crack-closure integral

    NASA Astrophysics Data System (ADS)

    Bittencourt, Tulio N.; Barry, Ahmabou; Ingraffea, Anthony R.

    This paper presents a comparison among stress-intensity factors for mixed-mode two-dimensional problems obtained through three different approaches: displacement correlation, J-integral, and modified crack-closure integral. All mentioned procedures involve only one analysis step and are incorporated in the post-processor page of a finite element computer code for fracture mechanics analysis (FRANC). Results are presented for a closed-form solution problem under mixed-mode conditions. The accuracy of these described methods then is discussed and analyzed in the framework of their numerical results. The influence of the differences among the three methods on the predicted crack trajectory of general problems is also discussed.

  17. Mixed-mode oscillations and interspike interval statistics in the stochastic FitzHugh-Nagumo model

    NASA Astrophysics Data System (ADS)

    Berglund, Nils; Landon, Damien

    2012-08-01

    We study the stochastic FitzHugh-Nagumo equations, modelling the dynamics of neuronal action potentials in parameter regimes characterized by mixed-mode oscillations. The interspike time interval is related to the random number of small-amplitude oscillations separating consecutive spikes. We prove that this number has an asymptotically geometric distribution, whose parameter is related to the principal eigenvalue of a substochastic Markov chain. We provide rigorous bounds on this eigenvalue in the small-noise regime and derive an approximation of its dependence on the system's parameters for a large range of noise intensities. This yields a precise description of the probability distribution of observed mixed-mode patterns and interspike intervals.

  18. The study of the transition regime between slab and mixed slab-toroidal electron temperature gradient modes in a basic experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balbaky, Abed; Sokolov, Vladimir; Sen, Amiya K.

    2015-05-15

    Electron temperature gradient (ETG) modes are suspected sources of anomalous electron thermal transport in magnetically confined plasmas as in tokamaks. Prior work in the Columbia Linear Machine (CLM) has been able to produce and identify slab ETG modes in a slab geometry [Wei et al., Phys. Plasmas 17, 042108 (2010)]. Now by modifying CLM to introduce curvature to the confining axial magnetic field, we have excited mixed slab-toroidal modes. Linear theory predicts a transition between slab and toroidal ETG modes when (k{sub ∥}R{sub c})/(k{sub y}ρ) ∼1 [J. Kim and W. Horton, Phys. Fluids B 3, 1167 (1991)]. We observe changesmore » in the mode amplitude for levels of curvature R{sub c}{sup −1}≪(k{sub ∥,slab})/(k{sub ⊥}ρ) , which may be explained by reductions in k{sub ∥} in the transition from slab to mixed slab-toroidal modes, as also predicted by theory. We present mode amplitude scaling as a function of magnetic field curvature. Over the range of curvature available in CLM experimentally we find a modest increase in saturated ETG potential fluctuations (∼1.5×), and a substantial increase in the power density of individual mode peaks (∼4–5×)« less

  19. Timing the Mode Switch in a Sequential Mixed-Mode Survey: An Experimental Evaluation of the Impact on Final Response Rates, Key Estimates, and Costs

    PubMed Central

    Wagner, James; Schroeder, Heather M.; Piskorowski, Andrew; Ursano, Robert J.; Stein, Murray B.; Heeringa, Steven G.; Colpe, Lisa J.

    2017-01-01

    Mixed-mode surveys need to determine a number of design parameters that may have a strong influence on costs and errors. In a sequential mixed-mode design with web followed by telephone, one of these decisions is when to switch modes. The web mode is relatively inexpensive but produces lower response rates. The telephone mode complements the web mode in that it is relatively expensive but produces higher response rates. Among the potential negative consequences, delaying the switch from web to telephone may lead to lower response rates if the effectiveness of the prenotification contact materials is reduced by longer time lags, or if the additional e-mail reminders to complete the web survey annoy the sampled person. On the positive side, delaying the switch may decrease the costs of the survey. We evaluate these costs and errors by experimentally testing four different timings (1, 2, 3, or 4 weeks) for the mode switch in a web–telephone survey. This experiment was conducted on the fourth wave of a longitudinal study of the mental health of soldiers in the U.S. Army. We find that the different timings of the switch in the range of 1–4 weeks do not produce differences in final response rates or key estimates but longer delays before switching do lead to lower costs. PMID:28943717

  20. Significant impacts of heterogeneous reactions on the chemical composition and mixing state of dust particles: A case study during dust events over northern China

    NASA Astrophysics Data System (ADS)

    Wang, Zhe; Pan, Xiaole; Uno, Itsushi; Li, Jie; Wang, Zifa; Chen, Xueshun; Fu, Pingqing; Yang, Ting; Kobayashi, Hiroshi; Shimizu, Atsushi; Sugimoto, Nobuo; Yamamoto, Shigekazu

    2017-06-01

    The impact of heterogeneous reactions on the chemical components and mixing state of dust particles are investigated by observations and an air quality model over northern China between March 27, 2015 and April 2, 2015. Synergetic observations were conducted using a polarization optical particle counter (POPC), a depolarized two-wavelength Lidar and filter samples in Beijing. During this period, dust plume passed through Beijing on March 28, and flew back on March 29 because of synoptic weather changes. Mineral dust mixed with anthropogenic pollutants was simulated using the Nested Air Quality Prediction Modeling System (NAQPMS) to examine the role of heterogeneous processes on the dust. A comparison of observations shows that the NAQPMS successfully reproduces the time series of the vertical profile, particulate matter concentration, and chemical components of fine mode (diameter ≤ 2.5 μm) and coarse mode (2.5 μm < diameter ≤ 10 μm) particles. After considering the heterogeneous reactions, the simulated nitrate, ammonium, and sulfate are in better agreement with the observed values during this period. The modeling results with observations show that heterogeneous reactions are the major mechanisms producing nitrate reaching 19 μg/m3, and sulfate reaching 7 μg/m3, on coarse mode dust particles, which were almost 100% of the coarse mode nitrate and sulfate. The heterogeneous reactions are also important for fine mode secondary aerosols, for producing 17% of nitrate and 11% of sulfate on fine mode dust particles, with maximum mass concentrations of 6 μg/m3 and 4 μg/m3. In contrast, due to uptake of acid gases (e.g. HNO3 and SO2) by dust particles, the fine mode anthropogenic ammonium nitrate and ammonium sulfate decreased. As a result, the total fine mode nitrate decreased with a maximum of 14 μg/m3, while the total fine mode sulfate increased with a maximum of 2 μg/m3. Because of heterogeneous reactions, 15% of fine mode secondary inorganic aerosols and the entire coarse mode nitrate and sulfate were internally mixed with dust particles. The significant alterations of the chemical composition and mixing state of particles due to heterogeneous reactions are important for the direct and indirect climate effects of dust and anthropogenic aerosols.

  1. Application of cation-exchange solid-phase extraction for the analysis of amino alcohols from water and human plasma for verification of Chemical Weapons Convention.

    PubMed

    Kanaujia, Pankaj K; Tak, Vijay; Pardasani, Deepak; Gupta, A K; Dubey, D K

    2008-03-28

    The analysis of nitrogen containing amino alcohols, which are the precursors and degradation products of nitrogen mustards and nerve agent VX, constitutes an important aspect for verifying the compliance to the CWC (Chemical Weapons Convention). This work devotes on the development of solid-phase extraction method using silica- and polymer-based SCX (strong cation-exchange) and MCX (mixed-mode strong cation-exchange) cartridges for N,N-dialkylaminoethane-2-ols and alkyl N,N-diethanolamines, from water. The extracted analytes were analyzed by GC-MS (gas chromatography-mass spectrometry) in the full scan and selected ion monitoring modes. The extraction efficiencies of SCX and MCX cartridges were compared, and results revealed that SCX performed better. Extraction parameters, such as loading capacity, extraction solvent, its volume, and washing solvent were optimized. Best recoveries were obtained using 2 mL methanol containing 10% NH(4)OH and limits of detection could be achieved up to 5 x 10(-3) microg mL(-1) in the selected ion monitoring mode and 0.01 microg mL(-1) in full scan mode. The method was successfully employed for the detection and identification of amino alcohol present in water sample sent by Organization for Prohibition of Chemical Weapons (OPCW) in the official proficiency tests. The method was also applied to extract the analytes from human plasma. The SCX cartridge showed good recoveries of amino alcohols from human plasma after protein precipitation.

  2. The generalized fracture criteria based on the multi-parameter representation of the crack tip stress field

    NASA Astrophysics Data System (ADS)

    Stepanova, L. V.

    2017-12-01

    The paper is devoted to the multi-parameter asymptotic description of the stress field near the crack tip of a finite crack in an infinite isotropic elastic plane medium subject to 1) tensile stress; 2) in-plane shear; 3) mixed mode loading for a wide range of mode-mixity situations (Mode I and Mode II). The multi-parameter series expansion of stress tensor components containing higher-order terms is obtained. All the coefficients of the multiparameter series expansion of the stress field are given. The main focus is on the discussion of the influence of considering the higher-order terms of the Williams expansion. The analysis of the higher-order terms in the stress field is performed. It is shown that the larger the distance from the crack tip, the more terms it is necessary to keep in the asymptotic series expansion. Therefore, it can be concluded that several more higher-order terms of the Williams expansion should be used for the stress field description when the distance from the crack tip is not small enough. The crack propagation direction angle is calculated. Two fracture criteria, the maximum tangential stress criterion and the strain energy density criterion, are used. The multi-parameter form of the two commonly used fracture criteria is introduced and tested. Thirty and more terms of the Williams series expansion for the near-crack-tip stress field enable the angle to be calculated more precisely.

  3. Zonally asymmetric response of the Southern Ocean mixed-layer depth to the Southern Annular Mode

    NASA Astrophysics Data System (ADS)

    Sallée, J. B.; Speer, K. G.; Rintoul, S. R.

    2010-04-01

    Interactions between the atmosphere and ocean are mediated by the mixed layer at the ocean surface. The depth of this layer is determined by wind forcing and heating from the atmosphere. Variations in mixed-layer depth affect the rate of exchange between the atmosphere and deeper ocean, the capacity of the ocean to store heat and carbon and the availability of light and nutrients to support the growth of phytoplankton. However, the response of the Southern Ocean mixed layer to changes in the atmosphere is not well known. Here we analyse temperature and salinity data from Argo profiling floats to show that the Southern Annular Mode (SAM), the dominant mode of atmospheric variability in the Southern Hemisphere, leads to large-scale anomalies in mixed-layer depth that are zonally asymmetric. From a simple heat budget of the mixed layer we conclude that meridional winds associated with departures of the SAM from zonal symmetry cause anomalies in heat flux that can, in turn, explain the observed changes of mixed-layer depth and sea surface temperature. Our results suggest that changes in the SAM, including recent and projected trends attributed to human activity, drive variations in Southern Ocean mixed-layer depth, with consequences for air-sea exchange, ocean sequestration of heat and carbon, and biological productivity.

  4. Modulation of steady state functional connectivity in the default mode and working memory networks by cognitive load.

    PubMed

    Newton, Allen T; Morgan, Victoria L; Rogers, Baxter P; Gore, John C

    2011-10-01

    Interregional correlations between blood oxygen level dependent (BOLD) magnetic resonance imaging (fMRI) signals in the resting state have been interpreted as measures of connectivity across the brain. Here we investigate whether such connectivity in the working memory and default mode networks is modulated by changes in cognitive load. Functional connectivity was measured in a steady-state verbal identity N-back task for three different conditions (N = 1, 2, and 3) as well as in the resting state. We found that as cognitive load increases, the functional connectivity within both the working memory the default mode network increases. To test whether functional connectivity between the working memory and the default mode networks changed, we constructed maps of functional connectivity to the working memory network as a whole and found that increasingly negative correlations emerged in a dorsal region of the posterior cingulate cortex. These results provide further evidence that low frequency fluctuations in BOLD signals reflect variations in neural activity and suggests interaction between the default mode network and other cognitive networks. Copyright © 2010 Wiley-Liss, Inc.

  5. Purification of bone morphogenetic protein-2 from refolding mixtures using mixed-mode membrane chromatography.

    PubMed

    Gieseler, Gesa; Pepelanova, Iliyana; Stuckenberg, Lena; Villain, Louis; Nölle, Volker; Odenthal, Uwe; Beutel, Sascha; Rinas, Ursula; Scheper, Thomas

    2017-01-01

    In this study, we present the development of a process for the purification of recombinant human bone morphogenetic protein-2 (rhBMP-2) using mixed-mode membrane chromatography. RhBMP-2 was produced as inclusion bodies in Escherichia coli. In vitro refolding using rapid dilution was carried out according to a previously established protocol. Different membrane chromatography phases were analyzed for their ability to purify BMP-2. A membrane phase with salt-tolerant properties resulting from mixed-mode ligand chemistry was able to selectively purify BMP-2 dimer from refolding mixtures. No further purification or polishing steps were necessary and high product purity was obtained. The produced BMP-2 exhibited a biological activity of 7.4 × 10 5  U/mg, comparable to commercial preparations. Mixed-mode membrane chromatography can be a valuable tool for the direct purification of proteins from solutions with high-conductivity, for example refolding buffers. In addition, in this particular case, it allowed us to circumvent the use of heparin-affinity chromatography, thus allowing the design of an animal-component-free process.

  6. A mixed-mode crack analysis of rectilinear anisotropic solids using conservation laws of elasticity

    NASA Technical Reports Server (NTRS)

    Wang, S. S.; Yau, J. F.; Corten, H. T.

    1980-01-01

    A very simple and convenient method of analysis for studying two-dimensional mixed-mode crack problems in rectilinear anisotropic solids is presented. The analysis is formulated on the basis of conservation laws of anisotropic elasticity and of fundamental relationships in anisotropic fracture mechanics. The problem is reduced to a system of linear algebraic equations in mixed-mode stress intensity factors. One of the salient features of the present approach is that it can determine directly the mixed-mode stress intensity solutions from the conservation integrals evaluated along a path removed from the crack-tip region without the need of solving the corresponding complex near-field boundary value problem. Several examples with solutions available in the literature are solved to ensure the accuracy of the current analysis. This method is further demonstrated to be superior to other approaches in its numerical simplicity and computational efficiency. Solutions of more complicated and practical engineering problems dealing with the crack emanating from a circular hole in composites are presented also to illustrate the capacity of this method.

  7. Piezoelectric control of columns prone to instabilities and nonlinear modal interaction

    NASA Astrophysics Data System (ADS)

    Sridharan, Srinivasan; Kim, Sunjung

    2008-06-01

    This paper attempts to unravel the issues of piezoelectric control of structures prone to nonlinear static and dynamic instabilities. A simple yet typical example is considered, namely the problem of a simply supported axially compressed imperfect column on an elastic softening foundation. Here the significant nonlinearity arises from the softening foundation. The column is so designed as to have coincident critical loads for the first two modes of buckling. Piezoelectric actuators/sensors are deemed to be attached to a column in regions of maximum strain at several locations along the length of the column. The issues involved in (i) enhancing the static buckling load, (ii) suppression of vibrations as the column is compressed to a load close to its dynamic instability load and (iii) enhancing the dynamic instability load are investigated and discussed. It is shown that there is a premium price to pay for enhancing the buckling capacity of the column, be it static or dynamic. The paper concludes by alluding to the possibility of a failure of patch control if a higher-order shortwave mode happens to be the governing principal mode of the structure.

  8. Analysis of optimal design of low temperature economizer

    NASA Astrophysics Data System (ADS)

    Song, J. H.; Wang, S.

    2017-11-01

    This paper has studied the Off-design characteristic of low temperature economizer system based on thermodynamics analysis. Based on the data from one 1000 MW coal-fired unit, two modes of operation are contrasted and analyzed. One is to fix exhaust gas temperature and the other one is to take into account both of the average temperature difference and the exhaust gas temperature. Meanwhile, the cause of energy saving effect change is explored. Result shows that: in mode 1, the amount of decrease in coal consumption reduces from 1.11 g/kWh (under full load) to 0.54 g/kWh (under half load), and in mode 2, when the load decreases from 90% to 50%, the decrease in coal consumption reduces from 1.29 g/kWh to 0.84 g/kWh. From the result, under high load, the energy saving effect is superior, and under lower work load, energy saving effect declines rapidly when load is reduced. When load changes, the temperature difference of heat transfer, gas flow, the flue gas heat rejection and the waste heat recovery change. The energy saving effect corresponding changes result in that the energy saving effect under high load is superior and more stable. However, rational adjustment to the temperature of outlet gas can alleviate the decline of the energy saving effect under low load. The result provides theoretical analysis data for the optimal design and operation of low temperature economizer system of power plant.

  9. Q-mode versus R-mode principal component analysis for linear discriminant analysis (LDA)

    NASA Astrophysics Data System (ADS)

    Lee, Loong Chuen; Liong, Choong-Yeun; Jemain, Abdul Aziz

    2017-05-01

    Many literature apply Principal Component Analysis (PCA) as either preliminary visualization or variable con-struction methods or both. Focus of PCA can be on the samples (R-mode PCA) or variables (Q-mode PCA). Traditionally, R-mode PCA has been the usual approach to reduce high-dimensionality data before the application of Linear Discriminant Analysis (LDA), to solve classification problems. Output from PCA composed of two new matrices known as loadings and scores matrices. Each matrix can then be used to produce a plot, i.e. loadings plot aids identification of important variables whereas scores plot presents spatial distribution of samples on new axes that are also known as Principal Components (PCs). Fundamentally, the scores matrix always be the input variables for building classification model. A recent paper uses Q-mode PCA but the focus of analysis was not on the variables but instead on the samples. As a result, the authors have exchanged the use of both loadings and scores plots in which clustering of samples was studied using loadings plot whereas scores plot has been used to identify important manifest variables. Therefore, the aim of this study is to statistically validate the proposed practice. Evaluation is based on performance of external error obtained from LDA models according to number of PCs. On top of that, bootstrapping was also conducted to evaluate the external error of each of the LDA models. Results show that LDA models produced by PCs from R-mode PCA give logical performance and the matched external error are also unbiased whereas the ones produced with Q-mode PCA show the opposites. With that, we concluded that PCs produced from Q-mode is not statistically stable and thus should not be applied to problems of classifying samples, but variables. We hope this paper will provide some insights on the disputable issues.

  10. Poly(2-(diethylamino)ethyl methacrylate)-based, pH-responsive, copolymeric mixed micelles for targeting anticancer drug control release.

    PubMed

    Chen, Quan; Li, Siheng; Feng, Zixiong; Wang, Meng; Cai, Chengzhi; Wang, Jufang; Zhang, Lijuan

    2017-01-01

    We have demonstrated a novel drug delivery system to improve the selectivity of the current chemotherapy by pH-responsive, polymeric micelle carriers. The micelle carriers were prepared by the self-assembly of copolymers containing the polybasic poly(2-(diethylamino) ethyl methacrylate) (PDEAEMA) block. The mixed copolymers exhibited a comparatively low critical micelle concentration (CMC; 1.95-5.25 mg/L). The resultant mixed micelles were found to be <100 nm and were used to encapsulate the anticancer drug doxorubicin (DOX) with pretty good drug-loading content (24%) and entrapment efficiency (55%). Most importantly, the micelle carrier exhibited a pH-dependent conformational conversion and promoted the DOX release at the tumorous pH. Our in vitro studies demonstrated the comparable level of DOX-loaded mixed micelle delivery into tumor cells with the free DOX (80% of the tumor cells were killed after 48 h incubation). The DOX-loaded mixed micelles were effective to inhibit the proliferation of tumor cells after prolonged incubation. Overall, the pH-responsive mixed micelle system provided desirable potential in the controlled release of anticancer therapeutics.

  11. The Behaviour of Palm Oil Fibre Block Masonry Prism under Eccentric Compressive Loading

    NASA Astrophysics Data System (ADS)

    Mokhtar, Mardiha; Kolop, Roslan; Baizura Hamid, Nor; Kaamin, Masiri; Farhan Rosdi, Mohd; Ngadiman, Norhayati; Sahat, Suhaila

    2017-08-01

    Dry-stacked masonry offers great benefits in constructing masonry buildings. Several examples from previous research show that dry masonry is reasonable alternative to the traditional building system. By addition of fibre, the ductility and the propagation of cracking will be improved. This study investigates the dry stack oil palm fibre block prisms which were subjected to eccentricity compression loads. These concrete blocks were cast using a single mould with suitable fibre-cement composition namely 1:4 (cement: sand) and 0.40 water to the cement ratio based on cement weight. Prisms test using 400 (length) × 150 (width) × 510 (height) mm specimen was carried under eccentric load. There were forty eight (48) prisms built with different configurations based on their volume of fibre. In this study, one types of grout were used namely the fine grout of mix 1:3:2 (cement: sand: aggregate (5mm maximum). Based on the test performed, the failure mechanism and influencing parameters were discussed. From compressive strength test result, it shows that the strength of concrete block decreased with the increase of fibre used. Although the control sample has the higher strength compared to concrete with EFB, it can be seen from mode failure of masonry prism that fibre could extend the cracking time. These results show that the oil palm fibre blocks can improve the failure behaviour and suitable to be used as load bearing wall construction in Malaysia.

  12. Characterisation of diesel particulate emission from engines using commercial diesel and biofuels

    NASA Astrophysics Data System (ADS)

    Ajtai, T.; Pintér, M.; Utry, N.; Kiss-Albert, G.; Gulyás, G.; Pusztai, P.; Puskás, R.; Bereczky, Á.; Szabados, Gy.; Szabó, G.; Kónya, Z.; Bozóki, Z.

    2016-06-01

    In this paper, the number concentration and the size distribution of diluted diesel exhaust particulate matter were measured at three different engine operating points in the speed-load range of the engine as follows: 1600 rpm; 50% load, 1900 rpm; 25% load, 1900 rpm; 75% load, adopted from the UN ECE Vehicle Regulation no. 49 (Revision 2) test protocol using pure diesel and biodiesel fuels, as well as their controlled blends. The emitted particulate assembly had lognormal size distribution in the accumulation mode regardless of the engine operational condition and the type of fuel. The total number and volume concentration emitted by the diesel engine decreased with increasing revolution per minute and rated torque in case of all the fuel types. The mixing ratio of the fuels did not linearly affect the total emission but had a minimum at 75% biodiesel content. We also studied the thermal evolution of the emitted particulates using a specially designed thermodenuder (TD) heated at specific temperatures (50 °C, 120 °C, and 250 °C). The first transition, when the temperature was increased from 50 °C to 120 °C resulted in lower number concentrations with small relative shifts of the peak position. However, in case of the second transition, when the temperature reached 250 °C the individual volatile particulates adsorbed onto the surface of soot particles were completely or partly vaporised resulting in lower total number concentrations with a substantial shift in peak position.

  13. Testing and Analysis of Composite Skin/Stringer Debonding Under Multi-Axial Loading

    NASA Technical Reports Server (NTRS)

    Krueger, Ronald; Cvitkovich, Michael K.; O'Brien, T. Kevin; Minguet, Pierre J.

    2000-01-01

    A consistent step-wise approach is presented to investigate the damage mechanism in composite bonded skin/stringer constructions under uniaxial and biaxial (in-plane/out-of-plane) loading conditions. The approach uses experiments to detect the failure mechanism, computational stress analysis to determine the location of first matrix cracking and computational fracture mechanics to investigate the potential for delamination growth. In a first step, tests were performed on specimens, which consisted of a tapered composite flange, representing a stringer or frame, bonded onto a composite skin. Tests were performed under monotonic loading conditions in tension, three-point bending, and combined tension/bending to evaluate the debonding mechanisms between the skin and the bonded stringer. For combined tension/bending testing, a unique servohydraulic load frame was used that was capable of applying both in-plane tension and out-of-plane bending loads simultaneously. Specimen edges were examined on the microscope to document the damage occurrence and to identify typical damage patterns. For all three load cases, observed failure initiated in the flange, near the flange tip, causing the flange to almost fully debond from skin. In a second step, a two dimensional plane-strain finite element model was developed to analyze the different test cases using a geometrically nonlinear solution. For all three loading conditions, computed principal stresses exceeded the transverse strength of the material in those areas of the flange where the matrix cracks had developed during the tests. In a third step, delaminations of various lengths were simulated in two locations where delaminations were observed during the tests. The analyses showed that at the loads corresponding to matrix ply crack initiation computed strain energy release rates exceeded the values obtained from a mixed mode failure criterion in one location, Hence. Unstable delamination propagation is likely to occur as observed in the experiments.

  14. Testing and Analysis of Composite Skin/Stringer Debonding under Multi-Axial Loading

    NASA Technical Reports Server (NTRS)

    Krueger, Ronald; Cvitkovich, Michael; OBrien, Kevin; Minguet, Pierre J.

    2000-01-01

    A consistent step-wise approach is presented to investigate the damage mechanism in composite bonded skin/stringer constructions under uniaxial and biaxial (in-plane/out-of-plane) loading conditions. The approach uses experiments to detect the failure mechanism, computational stress analysis to determine the location of first matrix cracking and computational fracture mechanics to investigate the potential for delamination growth. In a first step, tests were performed on specimens, which consisted of a tapered composite flange, representing a stringer or frame, bonded onto a composite skin. Tests were performed under monotonic loading conditions in tension, three-point bending, and combined tension/bending to evaluate the debonding mechanisms between the skin and the bonded stringer. For combined tension/bending testing, a unique servohydraulic load frame was used that was capable of applying both in-plane tension and out-of-plane bending loads simultaneously. Specimen edges were examined on the microscope to document the damage occurrence and to identify typical damage patterns. For all three load cases, observed failure initiated in the flange, near the flange tip, causing the flange to almost fully debond from the skin. In a second step, a two-dimensional plane-strain finite element model was developed to analyze the different test cases using a geometrically nonlinear solution. For all three loading conditions, computed principal stresses exceeded the transverse strength of the material in those areas of the flange where the matrix cracks had developed during the tests. In a third step, delaminations of various lengths were simulated in two locations where delaminations were observed during the tests. The analyses showed that at the loads corresponding to matrix ply crack initiation computed strain energy release rates exceeded the values obtained from a mixed mode failure criterion in one location. Hence, unstable delamination propagation is likely to occur as observed in the experiments.

  15. Separation of cannabinoids on three different mixed-mode columns containing carbon/nanodiamond/amine-polymer superficially porous particles.

    PubMed

    Hung, Chuan-Hsi; Zukowski, Janusz; Jensen, David S; Miles, Andrew J; Sulak, Clayton; Dadson, Andrew E; Linford, Matthew R

    2015-09-01

    Three mixed-mode high-performance liquid chromatography columns packed with superficially porous carbon/nanodiamond/amine-polymer particles were used to separate mixtures of cannabinoids. Columns evaluated included: (i) reversed phase (C18 ), weak anion exchange, 4.6 × 33 mm, 3.6 μm, and 4.6 × 100 mm, 3.6 μm, (ii) reversed phase, strong anion exchange (quaternary amine), 4.6×33 mm, 3.6 μm, and (iii) hydrophilic interaction liquid chromatography, 4.6 × 150 mm, 3.6 μm. Different selectivities were achieved under various mobile phase and stationary phase conditions. Efficiencies and peak capacities were as high as 54 000 N/m and 56, respectively. The reversed phase mixed-mode column (C18 ) retained tetrahydrocannabinolic acid strongly under acidic conditions and weakly under basic conditions. Tetrahydrocannabinolic acid was retained strongly on the reversed phase, strong anion exchange mixed-mode column under basic polar organic mobile phase conditions. The hydrophilic interaction liquid chromatography column retained polar cannabinoids better than the (more) neutral ones under basic conditions. A longer reversed phase (C18 ) mixed-mode column (4.6 × 100 mm) showed better resolution for analytes (and a contaminant) than a shorter column. Fast separations were achieved in less than 5 min and sometimes 2 min. A real world sample (bubble hash extract) was also analyzed by gradient elution. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Evaluation and application of a mixed-mode chromatographic stationary phase in two-dimensional liquid chromatography for the separation of traditional Chinese medicine.

    PubMed

    Wei, Zhishen; Fu, Qing; Cai, Jianfeng; Huan, Liyun; Zhao, Jianchao; Shi, Hui; Jin, Yu; Liang, Xinmiao

    2016-06-01

    In this study, two mixed-mode chromatography stationary phases (C8SAX and C8SCX) were evaluated and used to establish a two-dimensional liquid chromatography system for the separation of traditional Chinese medicine. The chromatographic properties of the mixed-mode columns were systematically evaluated by comparing with other three columns of C8, strong anion exchanger, and strong cation exchanger. The result showed that C8SAX and C8SCX had a mixed-mode retention mechanism including electrostatic interaction and hydrophobic interaction. Especially, they were suitable for separating acidic and/or basic compounds and their separation selectivities could be easily adjusted by changing pH value. Then, several off-line 2D-LC systems based on the C8SAX in the first dimension and C8SAX, C8SCX, or C8 columns in the second dimension were developed to analyze a traditional Chinese medicine-Uncaria rhynchophylla. The two-dimensional liquid chromatography system of C8SAX (pH 3.0) × C8SAX (pH 6.0) exhibited the most effective peak distribution. Finally, fractions of U. rhynchophylla prepared from the first dimension were successfully separated on the C8SAX column with a gradient pH. Thus, the mixed-mode stationary phase could provide a platform to separate the traditional Chinese medicine in practical applications. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    van Rij, Jennifer A; Yu, Yi-Hsiang; Guo, Yi

    This study explores and verifies the generalized body-modes method for evaluating the structural loads on a wave energy converter (WEC). Historically, WEC design methodologies have focused primarily on accurately evaluating hydrodynamic loads, while methodologies for evaluating structural loads have yet to be fully considered and incorporated into the WEC design process. As wave energy technologies continue to advance, however, it has become increasingly evident that an accurate evaluation of the structural loads will enable an optimized structural design, as well as the potential utilization of composites and flexible materials, and hence reduce WEC costs. Although there are many computational fluidmore » dynamics, structural analyses and fluid-structure-interaction (FSI) codes available, the application of these codes is typically too computationally intensive to be practical in the early stages of the WEC design process. The generalized body-modes method, however, is a reduced order, linearized, frequency-domain FSI approach, performed in conjunction with the linear hydrodynamic analysis, with computation times that could realistically be incorporated into the WEC design process. The objective of this study is to verify the generalized body-modes approach in comparison to high-fidelity FSI simulations to accurately predict structural deflections and stress loads in a WEC. Two verification cases are considered, a free-floating barge and a fixed-bottom column. Details for both the generalized body-modes models and FSI models are first provided. Results for each of the models are then compared and discussed. Finally, based on the verification results obtained, future plans for incorporating the generalized body-modes method into the WEC simulation tool, WEC-Sim, and the overall WEC design process are discussed.« less

  18. Modeling and simulation performance of photovoltaic system integration battery and supercapacitor paralellization of MPPT prototipe for solar vehicle

    NASA Astrophysics Data System (ADS)

    Ajiatmo, Dwi; Robandi, Imam

    2017-03-01

    This paper proposes a control scheme photovoltaic, battery and super capacitor connected in parallel for use in a solar vehicle. Based on the features of battery charging, the control scheme consists of three modes, namely, mode dynamic irradian, constant load mode and constant voltage charging mode. The shift of the three modes can be realized by controlling the duty cycle of the mosffet Boost converter system. Meanwhile, the high voltage which is more suitable for the application can be obtained. Compared with normal charging method with parallel connected current limiting detention and charging method with dynamic irradian mode, constant load mode and constant voltage charging mode, the control scheme is proposed to shorten the charging time and increase the use of power generated from the PV array. From the simulation results and analysis conducted to determine the performance of the system in state transient and steady-state by using simulation software Matlab / Simulink. Response simulation results demonstrate the suitability of the proposed concept.

  19. Extended parametric gain range in photonic crystal fibers with strongly frequency-dependent field distributions.

    PubMed

    Petersen, Sidsel R; Alkeskjold, Thomas T; Olausson, Christina B; Lægsgaard, Jesper

    2014-08-15

    The parametric gain range of a degenerate four-wave mixing process is determined in the undepleted pump regime. The gain range is considered with and without taking the mode field distributions of the four-wave mixing components into account. It is found that the mode field distributions have to be included to evaluate the parametric gain correctly in dispersion-tailored speciality fibers and that mode profile engineering can provide a way to increase the parametric gain range.

  20. An attempt to estimate isotropic and anisotropic lateral structure of the Earth by spectral inversion incorporating mixed coupling

    NASA Astrophysics Data System (ADS)

    Oda, Hitoshi

    2005-02-01

    We present a way to calculate free oscillation spectra for an aspherical earth model, which is constructed by adding isotropic and anisotropic velocity perturbations to the seismic velocity parameters of a reference earth model, and examine the effect of the velocity perturbations on the free oscillation spectrum. Lateral variations of the velocity perturbations are parametrized as an expansion in generalized spherical harmonics. We assume weak hexagonal anisotropy for the seismic wave anisotropy in the upper mantle, where the hexagonal symmetry axes are horizontally distributed. The synthetic spectra show that the velocity perturbations cause not only strong self-coupling among singlets of a multiplet but also mixed coupling between toroidal and spheroidal multiplets. Both the couplings give rise to an amplitude anomaly on the vertical component spectrum. In this study, we identify the amplitude anomaly resulting from the mixed coupling as quasi-toroidal mode. Excitation of the quasi-toroidal mode by a vertical strike-slip fault is largest on nodal lines of the Rayleigh wave, decreases with increasing azimuth angle and becomes smallest on loop lines. This azimuthal dependence of the spectral amplitude is quite similar to the Love wave radiation pattern. In addition, the amplitude spectrum of the quasi-toroidal mode is more sensitive to the anisotropic velocity perturbation than to the isotropic velocity perturbation. This means that the mode spectrum allowing for the mixed-coupling effect may provide constraints on the anisotropic lateral structure as well as the isotropic lateral structure. An inversion method, called mixed-coupling spectral inversion, is devised to retrieve the isotropic and anisotropic velocity perturbations from the free oscillation spectra incorporating the quasi-toroidal mode. We confirm that the spectral inversion method correctly recovers the isotropic and anisotropic lateral structure. Moreover introducing the mixed-coupling effect in the spectral inversion makes it possible to estimate the odd-order lateral structure, which cannot be determined by the conventional spectral inversion, which takes no account of the mixed coupling. Higher order structure is biased by the mixed coupling when the conventional spectral inversion is applied to the amplitude spectra incorporating the mixed coupling.

  1. Porous polymer monolithic columns with gold nanoparticles as an intermediate ligand for the separation of proteins in reverse phase-ion exchange mixed mode

    DOE PAGES

    Terborg, Lydia; Masini, Jorge C.; Lin, Michelle; ...

    2014-11-04

    A new approach has been developed for the preparation of mixed-mode stationary phases to separate proteins. The pore surface of monolithic poly(glycidyl methacrylate- co-ethylene dimethacrylate) capillary columns was functionalized with thiols and coated with gold nanoparticles. The final mixed mode surface chemistry was formed by attaching, in a single step, alkanethiols, mercaptoalkanoic acids, and their mixtures on the free surface of attached gold nanoparticles. Use of these mixtures allowed fine tuning of the hydrophobic/hydrophilic balance. The amount of attached gold nanoparticles according to thermal gravimetric analysis was 44.8 wt.%. This value together with results of frontal elution enabled calculation ofmore » surface coverage with the alkanethiol and mercaptoalkanoic acid ligands. Interestingly, alkanethiols coverage in a range of 4.46–4.51 molecules/nm 2 significantly exceeded that of mercaptoalkanoic acids with 2.39–2.45 molecules/nm 2. The mixed mode character of these monolithic stationary phases was for the first time demonstrated in the separations of proteins that could be achieved in the same column using gradient elution conditions typical of reverse phase (using gradient of acetonitrile in water) and ion exchange chromatographic modes (applying gradient of salt in water), respectively.« less

  2. Development of an on-line mixed-mode gel liquid chromatography×reversed phase liquid chromatography method for separation of water extract from Flos Carthami.

    PubMed

    Wang, Yu-Qing; Tang, Xu; Li, Jia-Fu; Wu, Yun-Long; Sun, Yu-Ying; Fang, Mei-Juan; Wu, Zhen; Wang, Xiu-Min; Qiu, Ying-Kun

    2017-10-13

    A novel on-line comprehensive two-dimensional liquid chromatography (2D-LC) method by coupling mixed-mode gel liquid chromatography (MMG-LC) with reversed phase liquid chromatography (RPLC) was developed. A mixture of 17 reference compounds was used to study the separation mechanism. A crude water extract of Flos Carthami was applied to evaluate the performance of the novel 2D-LC system. In the first dimension, the extract was eluted with a gradient of water/methanol over a cross-linked dextran gel Sephadex LH-20 column. Meanwhile, the advantages of size exclusion, reversed phase partition and adsorption separation mechanism were exploited before further on-line reversed phase purification on the second dimension. This novel on-line mixed-mode Sephadex LH-20×RPLC method provided higher peak resolution, sample processing ability (2.5mg) and better orthogonality (72.9%) versus RPLC×RPLC and hydrophilic interaction liquid chromatography (HILIC)×RPLC. To the best of our knowledge, this is the first report of a mixed-mode Sephadex LH-20×RPLC separation method with successful applications in on-line mode, which might be beneficial for harvesting targets from complicated medicinal plants. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Soluplus/TPGS mixed micelles for dioscin delivery in cancer therapy.

    PubMed

    Zhao, Jing; Xu, Youwei; Wang, Changyuan; Ding, Yanfang; Chen, Manyu; Wang, Yifei; Peng, Jinyong; Li, Lei; Lv, Li

    2017-07-01

    Dioscin has shown cytotoxicity against cancer cells, but its poor solubility and stability have limited its clinical application. In this study, we designed mixed micelles composed of TPGS and Soluplus ® copolymers entrapping the poorly soluble anticancer drug dioscin. In order to improve the aqueous solubility and bioactivity of dioscin, TPGS/Soluplus ® mixed micelles with an optimal ratio were prepared using a thin-film hydration method, and their physicochemical properties were characterized. Cellular cytotoxicity and uptake of the dioscin-loaded TPGS/Soluplus ® mixed micelles were studied in MCF-7 breast cancer cells and A2780s ovarian cancer cells. The pharmacokinetics of free dioscin and dioscin-loaded TPGS/Soluplus ® mixed micelles was studied in vivo in male Sprague-Dawley rats via a single intravenous injection in the tail vein. The average size of the optimized mixed micelle was 67.15 nm, with 92.59% drug encapsulation efficiency and 4.63% drug loading efficiency. The in vitro release profile showed that the mixed micelles presented sustained release behavior compared to the anhydrous ethanol solution of dioscin. In vitro cytotoxicity assays were conducted on human cancer cell lines including A2780s ovarian cancer cells and MCF-7 breast cancer cells. The mixed micelles exhibited better antitumor activity compared to free dioscin against all cell lines, which may benefit from the significant increase in the cellular uptake of dioscin from mixed micelles compared to free dioscin. The pharmacokinetic study showed that the mixed micelle formulation achieved a 1.3 times longer mean residual time (MRT) in circulation and a 2.16 times larger area under the plasma concentration-time curve (AUC) than the free dioscin solution. Our results suggest that the dioscin-loaded mixed micelles developed in this study might be a potential nano drug-delivery system for cancer chemotherapy.

  4. IPS guidestar selection for stellar mode (ASTRO)

    NASA Technical Reports Server (NTRS)

    Mullins, Larry; Wooten, Lewis

    1988-01-01

    This report describes how guide stars are selected for the Optical Sensor Package (OSP) for the Instrument Pointing System (IPS) when it is operating in the stellar mode on the ASTRO missions. It also describes how the objective loads are written and how the various roll angles are related; i.e., the celestial roll or position angle, the objective load roll angles, and the IPS gimbal angles. There is a brief description of how the IPS operates and its various modes of operation; i.e., IDOP, IDIN, and OSPCAL.

  5. Finite element modeling and analysis of tires

    NASA Technical Reports Server (NTRS)

    Noor, A. K.; Andersen, C. M.

    1983-01-01

    Predicting the response of tires under various loading conditions using finite element technology is addressed. Some of the recent advances in finite element technology which have high potential for application to tire modeling problems are reviewed. The analysis and modeling needs for tires are identified. Reduction methods for large-scale nonlinear analysis, with particular emphasis on treatment of combined loads, displacement-dependent and nonconservative loadings; development of simple and efficient mixed finite element models for shell analysis, identification of equivalent mixed and purely displacement models, and determination of the advantages of using mixed models; and effective computational models for large-rotation nonlinear problems, based on a total Lagrangian description of the deformation are included.

  6. Mode I analysis of a cracked circular disk subject to a couple and a force

    NASA Technical Reports Server (NTRS)

    Gross, B.

    1978-01-01

    Mode I stress intensity coefficients were obtained for an edge-cracked disk (round compact specimen). Results for this plane elastostatic problem, obtained by a boundary collocation analysis are presented for A/D ratios of 0.35 to 1, where A is the crack length and D is the disk diameter. The results presented are for two complementary types of loading. By superposition of these results the stress intensity factor for any practical load line location of a pin-loaded round compact specimen can be obtained.

  7. TOPICAL REVIEW: Black silicon method X: a review on high speed and selective plasma etching of silicon with profile control: an in-depth comparison between Bosch and cryostat DRIE processes as a roadmap to next generation equipment

    NASA Astrophysics Data System (ADS)

    Jansen, H V; de Boer, M J; Unnikrishnan, S; Louwerse, M C; Elwenspoek, M C

    2009-03-01

    An intensive study has been performed to understand and tune deep reactive ion etch (DRIE) processes for optimum results with respect to the silicon etch rate, etch profile and mask etch selectivity (in order of priority) using state-of-the-art dual power source DRIE equipment. The research compares pulsed-mode DRIE processes (e.g. Bosch technique) and mixed-mode DRIE processes (e.g. cryostat technique). In both techniques, an inhibitor is added to fluorine-based plasma to achieve directional etching, which is formed out of an oxide-forming (O2) or a fluorocarbon (FC) gas (C4F8 or CHF3). The inhibitor can be introduced together with the etch gas, which is named a mixed-mode DRIE process, or the inhibitor can be added in a time-multiplexed manner, which will be termed a pulsed-mode DRIE process. Next, the most convenient mode of operation found in this study is highlighted including some remarks to ensure proper etching (i.e. step synchronization in pulsed-mode operation and heat control of the wafer). First of all, for the fabrication of directional profiles, pulsed-mode DRIE is far easier to handle, is more robust with respect to the pattern layout and has the potential of achieving much higher mask etch selectivity, whereas in a mixed-mode the etch rate is higher and sidewall scalloping is prohibited. It is found that both pulsed-mode CHF3 and C4F8 are perfectly suited to perform high speed directional etching, although they have the drawback of leaving the FC residue at the sidewalls of etched structures. They show an identical result when the flow of CHF3 is roughly 30 times the flow of C4F8, and the amount of gas needed for a comparable result decreases rapidly while lowering the temperature from room down to cryogenic (and increasing the etch rate). Moreover, lowering the temperature lowers the mask erosion rate substantially (and so the mask selectivity improves). The pulsed-mode O2 is FC-free but shows only tolerable anisotropic results at -120 °C. The downside of needing liquid nitrogen to perform cryogenic etching can be improved by using a new approach in which both the pulsed and mixed modes are combined into the so-called puffed mode. Alternatively, the use of tetra-ethyl-ortho-silicate (TEOS) as a silicon oxide precursor is proposed to enable sufficient inhibiting strength and improved profile control up to room temperature. Pulsed-mode processing, the second important aspect, is commonly performed in a cycle using two separate steps: etch and deposition. Sometimes, a three-step cycle is adopted using a separate step to clean the bottom of etching features. This study highlights an issue, known by the authors but not discussed before in the literature: the need for proper synchronization between gas and bias pulses to explore the benefit of three steps. The transport of gas from the mass flow controller towards the wafer takes time, whereas the application of bias to the wafer is relatively instantaneous. This delay causes a problem with respect to synchronization when decreasing the step time towards a value close to the gas residence time. It is proposed to upgrade the software with a delay time module for the bias pulses to be in pace with the gas pulses. If properly designed, the delay module makes it possible to switch on the bias exactly during the arrival of the gas for the bottom removal step and so it will minimize the ionic impact because now etch and deposition steps can be performed virtually without bias. This will increase the mask etch selectivity and lower the heat impact significantly. Moreover, the extra bottom removal step can be performed at (also synchronized!) low pressure and therefore opens a window for improved aspect ratios. The temperature control of the wafer, a third aspect of this study, at a higher etch rate and longer etch time, needs critical attention, because it drastically limits the DRIE performance. It is stressed that the exothermic reaction (high silicon loading) and ionic impact (due to metallic masks and/or exposed silicon) are the main sources of heat that might raise the wafer temperature uncontrollably, and they show the weakness of the helium backside technique using mechanical clamping. Electrostatic clamping, an alternative technique, should minimize this problem because it is less susceptible to heat transfer when its thermal resistance and the gap of the helium backside cavity are minimized; however, it is not a subject of the current study. Because oxygen-growth-based etch processes (due to their ultra thin inhibiting layer) rely more heavily on a constant wafer temperature than fluorocarbon-based processes, oxygen etches are more affected by temperature fluctuations and drifts during the etching. The fourth outcome of this review is a phenomenological model, which explains and predicts many features with respect to loading, flow and pressure behaviour in DRIE equipment including a diffusion zone. The model is a reshape of the flow model constructed by Mogab, who studied the loading effect in plasma etching. Despite the downside of needing a cryostat, it is shown that—when selecting proper conditions—a cryogenic two-step pulsed mode can be used as a successful technique to achieve high speed and selective plasma etching with an etch rate around 25 µm min-1 (<1% silicon load) with nearly vertical walls and resist etch selectivity beyond 1000. With the model in hand, it can be predicted that the etch rate can be doubled (50 µm min-1 at an efficiency of 33% for the fluorine generation from the SF6 feed gas) by minimizing the time the free radicals need to pass the diffusion zone. It is anticipated that this residence time can be reduced sufficiently by a proper inductive coupled plasma (ICP) source design (e.g. plasma shower head and concentrator). In order to preserve the correct profile at such high etch rates, the pressure during the bottom removal step should be minimized and, therefore, the synchronized three-step pulsed mode is believed to be essential to reach such high etch rates with sufficient profile control. In order to improve the etch rate even further, the ICP power should be enhanced; the upgrading of the turbopump seems not yet to be relevant because the throttle valve in the current study had to be used to restrict the turbo efficiency. In order to have a versatile list of state-of-the-art references, it has been decided to arrange it in subjects. The categories concerning plasma physics and applications are, for example, books, reviews, general topics, fluorine-based plasmas, plasma mixtures with oxygen at room temperature, wafer heat transfer and high aspect ratio trench (HART) etching. For readers 'new' to this field, it is advisable to study at least one (but rather more than one) of the reviews concerning plasma as found in the first 30 references. In many cases, a paper can be classified into more than one category. In such cases, the paper is directed to the subject most suited for the discussion of the current review. For example, many papers on heat transfer also treat cryogenic conditions and all the references dealing with highly anisotropic behaviour have been directed to the category HARTs. Additional pointers could get around this problem but have the disadvantage of creating a kind of written spaghetti. I hope that the adapted organization structure will help to have a quick look at and understanding of current developments in high aspect ratio plasma etching. Enjoy reading... Henri Jansen 18 June 2008

  8. Dispersion, mode-mixing and the electron-phonon interaction in nanostructures

    NASA Astrophysics Data System (ADS)

    Dyson, A.; Ridley, B. K.

    2018-03-01

    The electron-phonon interaction with polar optical modes in nanostructures is re-examined in the light of phonon dispersion relations and the role of the Fuchs-Kliewer (FK) mode. At an interface between adjacent polar materials the frequencies of the FK mode are drawn from the dielectric constants of the adjacent materials and are significantly smaller than the corresponding frequencies of the longitudinal optic (LO) modes at the zone centre. The requirement that all polar modes satisfy mechanical and electrical boundary conditions forces the modes to become hybrids. For a hybrid to have both FK and LO components the LO mode must have the FK frequency, which can only come about through the reduction associated with phonon dispersion relations. We illustrate the effect of phonon dispersion relations on the Fröhlich interaction by considering a simple linear-chain model of the zincblende lattice. Optical and acoustic modes become mixed towards short wavelengths in both optical and acoustic branches. A study of GaAs, InP and cubic GaN and AlN shows that the polarity of the optical branch and the acousticity of the acoustic branch are reduced by dispersion in equal measures, but the effect is relatively weak. Coupling coefficients quantifying the strengths of the interaction with electrons for optical and acoustic components of mixed modes in the optical branch show that, in most cases, the polar interaction dominates the acoustic interaction, and it is reduced from the long-wavelength result towards the zone boundary by only a few percent. The effect on the lower-frequency FK mode can be large.

  9. Buckling analysis of non-prismatic columns based on modified vibration modes

    NASA Astrophysics Data System (ADS)

    Rahai, A. R.; Kazemi, S.

    2008-10-01

    In this paper, a new procedure is formulated for the buckling analysis of tapered column members. The calculation of the buckling loads was carried out by using modified vibrational mode shape (MVM) and energy method. The change of stiffness within a column is characterized by introducing a tapering index. It is shown that, the changes in the vibrational mode shapes of a tapered column can be represented by considering a linear combination of various modes of uniform-section columns. As a result, by making use of these modified mode shapes (MVM) and applying the principle of stationary total potential energy, the buckling load of tapered columns can be obtained. Several numerical examples on tapered columns demonstrate the accuracy and efficiency of the proposed analytical method.

  10. Advanced high pressure engine study for mixed-mode vehicle applications

    NASA Technical Reports Server (NTRS)

    Luscher, W. P.; Mellish, J. A.

    1977-01-01

    High pressure liquid rocket engine design, performance, weight, envelope, and operational characteristics were evaluated for a variety of candidate engines for use in mixed-mode, single-stage-to-orbit applications. Propellant property and performance data were obtained for candidate Mode 1 fuels which included: RP-1, RJ-5, hydrazine, monomethyl-hydrazine, and methane. The common oxidizer was liquid oxygen. Oxygen, the candidate Mode 1 fuels, and hydrogen were evaluated as thrust chamber coolants. Oxygen, methane, and hydrogen were found to be the most viable cooling candidates. Water, lithium, and sodium-potassium were also evaluated as auxiliary coolant systems. Water proved to be the best of these, but the system was heavier than those systems which cooled with the engine propellants. Engine weight and envelope parametric data were established for candidate Mode 1, Mode 2, and dual-fuel engines. Delivered engine performance data were also calculated for all candidate Mode 1 and dual-fuel engines.

  11. Identification of g-Modes in a Sun with Mixed Core

    NASA Technical Reports Server (NTRS)

    Wolff, Charles L.

    2008-01-01

    The elusive g-mode oscillations mainly operate deep inside the Sun where the nuclear fires burn. They can modify the Sun's output on a cadence of months and years when coupled into groups. Scientists have failed to detect their oscillation periods because they were looking for periods much too short. This paper shows that if g-modes slowly mix the central 16% of the Sun on a million year time scale or less, then g-mode periods become two and a half times longer. These longer periods are identified in existing data from the orbiting GOLF and SOH0 experiments. This opens the door to measuring the Sun's central regions with g-modes just as helioseismology has used sound waves to probe its outer half.

  12. Fractography of composite delamination

    NASA Technical Reports Server (NTRS)

    Bascom, W. D.

    1989-01-01

    Delamination is a major failure mode of carbon fiber organic matrix composites. It can occur under a variety of loading conditions. Efforts to develop predictive models of the delamination of carbon fiber composites are hampered by a lack of information about the micromechanics of impact damage and delamination growth. Crack formation and propagation in these materials cannot be observed in sufficient detail to determine micro-damage using currently available nondestructive methods such as acoustic backscattering or x ray imaging. Consequently, destructive methods are required. Delamination of composites in Mode I, Mode II and after low energy impact loads were investigated using metallographic techniques of potting the failed specimens, sectioning and examining the cut sections for damage modes.

  13. EFFECTS OF A DEEP MIXED SHELL ON SOLAR g-MODES, p-MODES, AND NEUTRINO FLUX

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wolff, Charles L.

    2009-08-10

    A mixed-shell model that reflects g-modes away from the Sun's center is developed further by calibrating its parameters and evaluating a mixing mechanism: buoyancy. The shell roughly doubles g-mode oscillation periods and would explain why there is no definitive detection of their periods. But the shell has only minor effects on most p-modes. The model provides a mechanism for causing short-term fluctuations in neutrino flux and makes plausible the correlations between this flux and solar activity levels. Relations are derived for a shell heated asymmetrically by transient increases in nuclear burning in small 'hot spots'. The size of these spotsmore » and the timing of a heating event are governed by sets(l) of standing asymptotic g-modes, coupled by a maximal principle that greatly enhances their excitation and concentrates power toward the equator, assisting the detection of higher-l sets. Signals from all sets, except one, in the range 2 {<=} l {<=} 8 are identified by difference periods between consecutive radial states using the method of Garcia et al. and reinterpreting their latest spectrum. This confirms two detections of sets in a similar range of l by their rotation rates. The mean radius of shell mixing is r{sub m} = 0.16 R{sub sun}, which improves an earlier independent estimate of 0.18 by the author. The shell may cause the unexplained dip in measured sound speed at its location. Another sound speed error, centered near 0.67 R{sub sun}, and reversing flows in the same place with a period originally near 1.3 yr suggest that the g-modes are depositing there about 3% of the solar luminosity. That implies the shell at r{sub m} is receiving a similar magnitude of power, which would be enough energy to mix the corresponding shell in a standard solar model in <<10{sup 7} yr.« less

  14. Teaching Mixed-Mode: A Case Study in Remote Delivery of Computer Science in Africa

    ERIC Educational Resources Information Center

    Howell, Sheila; Harris, Michael; Wilkinson, Simon; Zuluaga, Catherine; Voutier, Paul

    2004-01-01

    In February 2003, RMIT University in Melbourne, Australia, commenced delivery of a Computer Science diploma and degree programme using mixed mode delivery to 250 university students in sub-Saharan Africa, through a World Bank funded project designed for the African Virtual University (AVU). The project is a unique experience made possible by…

  15. The Mediating Effect of Context Variation in Mixed Practice for Transfer of Basic Science

    ERIC Educational Resources Information Center

    Kulasegaram, Kulamakan; Min, Cynthia; Howey, Elizabeth; Neville, Alan; Woods, Nicole; Dore, Kelly; Norman, Geoffrey

    2015-01-01

    Applying a previously learned concept to a novel problem is an important but difficult process called transfer. Practicing multiple concepts together (mixed practice mode) has been shown superior to practicing concepts separately (blocked practice mode) for transfer. This study examined the effect of single and multiple practice contexts for both…

  16. Optimized undulator to generate low energy photons from medium to high energy accelerators

    NASA Astrophysics Data System (ADS)

    Chung, Ting-Yi; Chiu, Mau-Sen; Luo, Hao-Wen; Yang, Chin-Kang; Huang, Jui-Che; Jan, Jyh-Chyuan; Hwang, Ching-Shiang

    2017-07-01

    While emitting low energy photons from a medium or high energy storage ring, the on-axis heat load on the beam line optics can become a critical issue. In addition, the heat load in the bending magnet chamber, especially in the vertical and circular polarization mode of operation may cause some concern. In this work, we compare the heat loads for the APPLE-II and the Knot-APPLE, both optimized to emit 10 eV photons from the 3 GeV TPS. Under this constraint the heat load analysis, synchrotron radiation performance and features in various polarization modes are presented. Additional consideration is given to beam dynamics effect.

  17. [Cyclic fatigue of Vita mark II machinable ceramics under Hertzian's contact].

    PubMed

    Liu, Wei-Cai; Zhang, Zhi-Shen; Huang, Cheng-Min; Chao, Yong-Lie; Wan, Qian-Bing

    2006-08-01

    To investigate the cyclic fatigue modes of Vita mark II machinable ceramics under Hertzian's contact. Hertzian's contact technique (WC spheres r = 3.18 mm) was used to investigate the cyclic fatigue of Vita mark II machinable ceramic. All specimens were fatigued by cyclic loading in moist environment, furthermore, surviving strength was examined by three point test and morphology damage observation. In homogeneous Vita mark II machinable ceramics, two fatigue damage modes existed after cyclic loading with spheres under moist environment, including conventional tensile-driven cone cracking (brittle mode) and shear-driven microdamage accumulation (quasi-plastic mode). The latter generated radial cracks and deeply penetrating secondary cone crack. Initial strength degradation were caused by the cone cracks, subsequent and much more deleterious loss was caused by radial cracks. Cyclic fatigue modes of Vita mark II machinable ceramics includes brittle and quasi-plastic mode.

  18. [DETERMINATION OF THE OPTIMAL SAFE MODE OF PHYSICAL ACTIVITY FOR THE MILITARY SERVANTS UNDER CONDITIONS CLOSE TO FIGHTING].

    PubMed

    Chernozub, A; Radchenko, Y

    2015-01-01

    The paper presents the results of research, allowing to establish the need for and feasibility of an integrated method to determine the most effective but at the same time safe modes of load to the body troops. We found that despite the rather promising application of our proposed mode of load of high intensity (Ra = 0.71) to increase the level of physical military training as soon as possible in time of peace (with a minimum set of combat equipment), problematic issue is that in most cases there is a complete-mismatch achieved in the degree of physical development of the body of military requirements and the challenges posed in terms of direct hostilities. Using the integral method developed by us we determine the safest modes of exercise for the military servants to optimize the most appropriate parameters of volume and intensity of the load, and speed up the adaptive changes in their body to enhance maximum performance at this stage of preparation.

  19. Finite-time adaptive sliding mode force control for electro-hydraulic load simulator based on improved GMS friction model

    NASA Astrophysics Data System (ADS)

    Kang, Shuo; Yan, Hao; Dong, Lijing; Li, Changchun

    2018-03-01

    This paper addresses the force tracking problem of electro-hydraulic load simulator under the influence of nonlinear friction and uncertain disturbance. A nonlinear system model combined with the improved generalized Maxwell-slip (GMS) friction model is firstly derived to describe the characteristics of load simulator system more accurately. Then, by using particle swarm optimization (PSO) algorithm ​combined with the system hysteresis characteristic analysis, the GMS friction parameters are identified. To compensate for nonlinear friction and uncertain disturbance, a finite-time adaptive sliding mode control method is proposed based on the accurate system model. This controller has the ability to ensure that the system state moves along the nonlinear sliding surface to steady state in a short time as well as good dynamic properties under the influence of parametric uncertainties and disturbance, which further improves the force loading accuracy and rapidity. At the end of this work, simulation and experimental results are employed to demonstrate the effectiveness of the proposed sliding mode control strategy.

  20. Cdc45-induced loading of human RPA onto single-stranded DNA

    PubMed Central

    Tessmer, Ingrid; Prus, Piotr; Schlott, Bernhard; Pospiech, Helmut

    2017-01-01

    Abstract Cell division cycle protein 45 (Cdc45) is an essential component of the eukaryotic replicative DNA helicase. We found that human Cdc45 forms a complex with the single-stranded DNA (ssDNA) binding protein RPA. Moreover, it actively loads RPA onto nascent ssDNA. Pull-down assays and surface plasmon resonance studies revealed that Cdc45-bound RPA complexed with ssDNA in the 8–10 nucleotide binding mode, but dissociated when RPA covered a 30-mer. Real-time analysis of RPA-ssDNA binding demonstrated that Cdc45 catalytically loaded RPA onto ssDNA. This placement reaction required physical contacts of Cdc45 with the RPA70A subdomain. Our results imply that Cdc45 controlled stabilization of the 8-nt RPA binding mode, the subsequent RPA transition into 30-mer mode and facilitated an ordered binding to ssDNA. We propose that a Cdc45-mediated loading guarantees a seamless deposition of RPA on newly emerging ssDNA at the nascent replication fork. PMID:28100698

  1. Mixing induced by a propagating normal mode in long term experiments

    NASA Astrophysics Data System (ADS)

    Dossmann, Yvan; Pollet, Florence; Odier, Philippe; Dauxois, Thierry

    2017-04-01

    The energy pathways from propagating internal waves to the scales of irreversible mixing in the ocean are numerous. The triadic resonant instability (TRI) is an intrinsic destabilization process that can lead to mixing away from topographies. It consists in the destabilization of a primary internal wave generation leading to the radiation of two secondary waves of lower frequencies and different wave vectors. In the process, internal wave energy is carried down to smaller scales. A previous study focused on the assessment of instantaneous turbulent fluxes fields associated with the TRI process in laboratory experiments [1]. The present study investigates the integrated impact of mixing processes induced by a propagative normal mode over long term experiments using a similar setup. Configurations for which the TRI process is either favored or inhibited are tackled. Optical measurements using the light attenuation technique allow to follow the internal waves dynamics and the evolution of the density profile between two runs of one hour typical duration. The horizontally averaged turbulent diffusivity Kt(z) and the mixing efficiency Γ are assessed. One finds values up to Kt = 10-6 m2/s and Γ = 11 %, with slightly larger values in the presence of TRI. The maximum value for Kt is measured at the position(s) of the maximum shear normal mode shear for both normal modes 1 and 2. The development of staircases in the density profile is observed after several hours of forcing. This mechanism can be explained by Phillips' argument by which sharp interfaces can form due to vertical variations of the buoyancy flux. The staircases are responsible for large variations in the vertical distribution of turbulent diffusivity. These results could help to refine parameterizations of the impact of low order normal modes in ocean mixing. Reference : [1] Dossmann et al. 2016, Mixing by internal waves quantified using combined PIV/PLIF technique, Experiments in Fluids, 57, 132.

  2. Using the Web to Collect Data on Sensitive Behaviours: A Study Looking at Mode Effects on the British National Survey of Sexual Attitudes and Lifestyles

    PubMed Central

    Burkill, Sarah; Copas, Andrew; Couper, Mick P.; Clifton, Soazig; Prah, Philip; Datta, Jessica; Conrad, Frederick; Wellings, Kaye; Johnson, Anne M.; Erens, Bob

    2016-01-01

    Background Interviewer-administered surveys are an important method of collecting population-level epidemiological data, but suffer from declining response rates and increasing costs. Web surveys offer more rapid data collection and lower costs. There are concerns, however, about data quality from web surveys. Previous research has largely focused on selection biases, and few have explored measurement differences. This paper aims to assess the extent to which mode affects the responses given by the same respondents at two points in time, providing information on potential measurement error if web surveys are used in the future. Methods 527 participants from the third British National Survey of Sexual Attitudes and Lifestyles (Natsal-3), which uses computer assisted personal interview (CAPI) and self-interview (CASI) modes, subsequently responded to identically-worded questions in a web survey. McNemar tests assessed whether within-person differences in responses were at random or indicated a mode effect, i.e. higher reporting of more sensitive responses in one mode. An analysis of pooled responses by generalized estimating equations addressed the impact of gender and question type on change. Results Only 10% of responses changed between surveys. However mode effects were found for about a third of variables, with higher reporting of sensitive responses more commonly found on the web compared with Natsal-3. Conclusions The web appears a promising mode for surveys of sensitive behaviours, most likely as part of a mixed-mode design. Our findings suggest that mode effects may vary by question type and content, and by the particular mix of modes used. Mixed-mode surveys need careful development to understand mode effects and how to account for them. PMID:26866687

  3. Sodium deoxycholate mediated enhanced solubilization and stability of hydrophobic drug Clozapine in pluronic micelles

    NASA Astrophysics Data System (ADS)

    Singla, Pankaj; Singh, Onkar; Chabba, Shruti; Aswal, V. K.; Mahajan, Rakesh Kumar

    2018-02-01

    In this report, the solubilization behaviour of a hydrophobic drug Clozapine (CLZ) in micellar suspensions of pluronics having different hydrophilic lipophilic balance (HLB) ratios viz. P84, F127 and F108 in the absence and presence of bile salt sodium deoxycholate (SDC) has been studied. UV-Vis spectroscopy has been exploited to determine the solubilization capacity of the investigated micellar systems in terms of drug loading efficiency, average number of drug molecules solubilized per micelle (ns), partition coefficient (P) and standard free energy of solubilization (Δ G°). The morphological and structural changes taking place in pluronics in different concentration regimes of SDC and with the addition of drug CLZ has been explored using dynamic light scattering (DLS) and small angle neutron scattering (SANS) measurements. The SANS results revealed that aggregation behaviour of pluronic-SDC mixed micelles gets improved in the presence of drug. The micropolarity measurements have been performed to shed light on the locus of solubilization of the drug in pure and mixed micellar systems. The compatibility between CLZ and drug carriers (pluronics and SDC) was confirmed using powder X-ray diffraction (PXRD) and Fourier transform infrared spectroscopy (FTIR) techniques. Among the investigated systems, P84-SDC mixed system was found to be highly efficient for CLZ loading. The long term stability data indicated that CLZ loaded P84-SDC mixed micellar formulation remained stable for 3 months at room temperature. Further, it was revealed that the CLZ loaded P84-SDC mixed micelles are converted into CLZ loaded pure P84 micelles at 30-fold dilutions which remain stable up to 48-fold dilutions. The results from the present studies suggest that P84-SDC mixed micelles can serve as suitable delivery vehicles for hydrophobic drug CLZ.

  4. Mode Reduction and Upscaling of Reactive Transport Under Incomplete Mixing

    NASA Astrophysics Data System (ADS)

    Lester, D. R.; Bandopadhyay, A.; Dentz, M.; Le Borgne, T.

    2016-12-01

    Upscaling of chemical reactions in partially-mixed fluid environments is a challenging problem due to the detailed interactions between inherently nonlinear reaction kinetics and complex spatio-temporal concentration distributions under incomplete mixing. We address this challenge via the development of an order reduction method for the advection-diffusion-reaction equation (ADRE) via projection of the reaction kinetics onto a small number N of leading eigenmodes of the advection-diffusion operator (the so-called "strange eigenmodes" of the flow) as an N-by-N nonlinear system, whilst mixing dynamics only are projected onto the remaining modes. For simple kinetics and moderate Péclet and Damkhöler numbers, this approach yields analytic solutions for the concentration mean, evolving spatio-temporal distribution and PDF in terms of the well-mixed reaction kinetics and mixing dynamics. For more complex kinetics or large Péclet or Damkhöler numbers only a small number of modes are required to accurately quantify the mixing and reaction dynamics in terms of the concentration field and PDF, facilitating greatly simplified approximation and analysis of reactive transport. Approximate solutions of this low-order nonlinear system provide quantiative predictions of the evolving concentration PDF. We demonstrate application of this method to a simple random flow and various mass-action reaction kinetics.

  5. Phase change based cooling for high burst mode heat loads with temperature regulation above the phase change temperature

    DOEpatents

    The United States of America as represented by the United States Department of Energy

    2009-12-15

    An apparatus and method for transferring thermal energy from a heat load is disclosed. In particular, use of a phase change material and specific flow designs enables cooling with temperature regulation well above the fusion temperature of the phase change material for medium and high heat loads from devices operated intermittently (in burst mode). Exemplary heat loads include burst mode lasers and laser diodes, flight avionics, and high power space instruments. Thermal energy is transferred from the heat load to liquid phase change material from a phase change material reservoir. The liquid phase change material is split into two flows. Thermal energy is transferred from the first flow via a phase change material heat sink. The second flow bypasses the phase change material heat sink and joins with liquid phase change material exiting from the phase change material heat sink. The combined liquid phase change material is returned to the liquid phase change material reservoir. The ratio of bypass flow to flow into the phase change material heat sink can be varied to adjust the temperature of the liquid phase change material returned to the liquid phase change material reservoir. Varying the flowrate and temperature of the liquid phase change material presented to the heat load determines the magnitude of thermal energy transferred from the heat load.

  6. Advanced Technology Blade testing on the XV-15 Tilt Rotor Research Aircraft

    NASA Technical Reports Server (NTRS)

    Wellman, Brent

    1992-01-01

    The XV-15 Tilt Rotor Research Aircraft has just completed the first series of flight tests with the Advanced Technology Blade (ATB) rotor system. The ATB are designed specifically for flight research and provide the ability to alter blade sweep and tip shape. A number of problems were encountered from first installation through envelope expansion to airplane mode flight that required innovative solutions to establish a suitable flight envelope. Prior to operation, the blade retention hardware had to be requalified to a higher rated centrifugal load, because the blade weight was higher than expected. Early flights in the helicopter mode revealed unacceptably high vibratory control system loads which required a temporary modification of the rotor controls to achieve higher speed flight and conversion to airplane mode. The airspeed in airplane mode was limited, however, because of large static control loads. Furthermore, analyses based on refined ATB blade mass and inertia properties indicated a previously unknown high-speed blade mode instability, also requiring airplane-mode maximum airspeed to be restricted. Most recently, a structural failure of an ATB cuff (root fairing) assembly retention structure required a redesign of the assembly. All problems have been addressed and satisfactory solutions have been found to allow continued productive flight research of the emerging tilt rotor concept.

  7. Load variation effects on the pressure fluctuations exerted on a Kaplan turbine runner

    NASA Astrophysics Data System (ADS)

    Amiri, K.; Mulu, B.; Raisee, M.; Cervantes, M. J.

    2014-03-01

    Introduction of intermittent electricity production systems like wind power and solar systems to electricity market together with the consumption-based electricity production resulted in numerous start/stops, load variations and off-design operation of water turbines. The hydropower systems suffer from the varying loads exerted on the stationary and rotating parts of the turbines during load variations which they are not designed for. On the other hand, investigations on part load operation of single regulated turbines, i.e., Francis and propeller, proved the formation of rotating vortex rope (RVR) in the draft tube. The RVR induces oscillating flow both in plunging and rotating modes which results in oscillating force with two different frequencies on the runner blades, bearings and other rotating parts of the turbine. The purpose of this study is to investigate the effect of transient operations on the pressure fluctuations on the runner and mechanism of the RVR formation/mitigation. Draft tube and runner blades of the Porjus U9 model, a Kaplan turbine, were equipped with pressure sensors. The model was run in off-cam mode during different load variation conditions to check the runner performance under unsteady condition. The results showed that the transients between the best efficiency point and the high load happens in a smooth way while transitions to/from the part load, where rotating vortex rope (RVR) forms in the draft tube induces high level of fluctuations with two frequencies on the runner; plunging and rotating mode of the RVR.

  8. The Effects of Response Modes and Cues on Language Learning, Cognitive Load and Self-Efficacy Beliefs in Web-Based Learning

    ERIC Educational Resources Information Center

    Chen, Ching-Huei; Huang, Kun

    2014-01-01

    An experiment was conducted to examine how different response modes for practice questions and the presence or absence of cues influenced students' self-efficacy beliefs, perceived cognitive load, and performance in language recall and recognition tasks. One hundred fifty-seven 6th grade students were randomly assigned to one of four conditions:…

  9. A Planar Quasi-Static Constraint Mode Tire Model

    DTIC Science & Technology

    2015-07-10

    strikes a balance between simple tire models that lack the fidelity to make accurate chassis load predictions and computationally intensive models that...strikes a balance between heuristic tire models (such as a linear point-follower) that lack the fidelity to make accurate chassis load predictions...UNCLASSIFIED: Distribution Statement A. Cleared for public release A PLANAR QUASI-STATIC CONSTRAINT MODE TIRE MODEL Rui Maa John B. Ferris

  10. Mode tunable p-type Si nanowire transistor based zero drive load logic inverter.

    PubMed

    Moon, Kyeong-Ju; Lee, Tae-Il; Lee, Sang-Hoon; Han, Young-Uk; Ham, Moon-Ho; Myoung, Jae-Min

    2012-07-25

    A design platform for a zero drive load logic inverter consisting of p-channel Si nanowire based transistors, which controlled their operating mode through an implantation into a gate dielectric layer was demonstrated. As a result, a nanowire based class D inverter having a 4.6 gain value at V(DD) of -20 V was successfully fabricated on a substrate.

  11. Cyclic Load Effects on Long Term Behavior of Polymer Matrix Composites

    NASA Technical Reports Server (NTRS)

    Shah, A. R.; Chamis, C. C.

    1996-01-01

    A methodology to compute the fatigue life for different ratios, r, of applied stress to the laminate strength based on first ply failure criteria combined with thermal cyclic loads has been developed and demonstrated. Degradation effects resulting from long term environmental exposure and thermo-mechanical cyclic loads are considered in the simulation process. A unified time-stress dependent multi-factor interaction equation model developed at NASA Lewis Research Center has been used to account for the degradation of material properties caused by cyclic and aging loads. Effect of variation in the thermal cyclic load amplitude on a quasi-symmetric graphite/epoxy laminate has been studied with respect to the impending failure modes. The results show that, for the laminate under consideration, the fatigue life under combined mechanical and low thermal amplitude cyclic loads is higher than that due to mechanical loads only. However, as the thermal amplitude increases, the life also decreases. The failure mode changes from tensile under mechanical loads only to the compressive and shear at high mechanical and thermal loads. Also, implementation of the developed methodology in the design process has been discussed.

  12. Preparation and evaluation of icariside II-loaded binary mixed micelles using Solutol HS15 and Pluronic F127 as carriers.

    PubMed

    Hou, Jian; Wang, Jing; Sun, E; Yang, Lei; Yan, Hong-Mei; Jia, Xiao-Bin; Zhang, Zhen-Hai

    2016-11-01

    An effective anti-cancer drug, icariside II (IS), has been used to treat a variety of cancers in vitro. However, its poor aqueous solubility and permeability lead to low oral bioavailability. The aim of this work was to use Solutol®HS15 and Pluronic F127 as surfactants to develop novel mixed micelles to enhance the oral bioavailability of IS by improving permeability and inhibiting efflux. The IS-loaded mixed micelles were prepared using the method of ethanol thin-film hydration. The physicochemical properties, dissolution property, oral bioavailability of the male SD rats, permeability and efflux of Caco-2 transport models, and gastrointestinal safety of the mixed micelles were evaluated. The optimized IS-loaded mixed micelles showed that at 4:1 ratio of Solutol®HS15 and Pluronic F127, the particle size was 12.88 nm with an acceptable polydispersity index of 0.172. Entrapment efficiency (94.6%) and drug loading (9.7%) contributed to the high solubility (11.7 mg/mL in water) of IS, which increased about 900-fold. The SF-IS mixed micelle release profile showed a better sustained release property than that of IS. In Caco-2 cell monolayer models, the efflux ratio dramatically decreased by 83.5%, and the relative bioavailability of the mixed micelles (AUC 0-∞ ) compared with that of IS (AUC 0-∞ ) was 317%, indicating potential for clinical application. In addition, a gastrointestinal safety assay also provided reliable clinical evidence for the safe use of this micelle.

  13. NASA Structural Analysis Report on the American Airlines Flight 587 Accident - Local Analysis of the Right Rear Lug

    NASA Technical Reports Server (NTRS)

    Raju, Ivatury S; Glaessgen, Edward H.; Mason, Brian H; Krishnamurthy, Thiagarajan; Davila, Carlos G

    2005-01-01

    A detailed finite element analysis of the right rear lug of the American Airlines Flight 587 - Airbus A300-600R was performed as part of the National Transportation Safety Board s failure investigation of the accident that occurred on November 12, 2001. The loads experienced by the right rear lug are evaluated using global models of the vertical tail, local models near the right rear lug, and a global-local analysis procedure. The right rear lug was analyzed using two modeling approaches. In the first approach, solid-shell type modeling is used, and in the second approach, layered-shell type modeling is used. The solid-shell and the layered-shell modeling approaches were used in progressive failure analyses (PFA) to determine the load, mode, and location of failure in the right rear lug under loading representative of an Airbus certification test conducted in 1985 (the 1985-certification test). Both analyses were in excellent agreement with each other on the predicted failure loads, failure mode, and location of failure. The solid-shell type modeling was then used to analyze both a subcomponent test conducted by Airbus in 2003 (the 2003-subcomponent test) and the accident condition. Excellent agreement was observed between the analyses and the observed failures in both cases. From the analyses conducted and presented in this paper, the following conclusions were drawn. The moment, Mx (moment about the fuselage longitudinal axis), has significant effect on the failure load of the lugs. Higher absolute values of Mx give lower failure loads. The predicted load, mode, and location of the failure of the 1985-certification test, 2003-subcomponent test, and the accident condition are in very good agreement. This agreement suggests that the 1985-certification and 2003- subcomponent tests represent the accident condition accurately. The failure mode of the right rear lug for the 1985-certification test, 2003-subcomponent test, and the accident load case is identified as a cleavage-type failure. For the accident case, the predicted failure load for the right rear lug from the PFA is greater than 1.98 times the limit load of the lugs. I.

  14. Structural Analysis of the Right Rear Lug of American Airlines Flight 587

    NASA Technical Reports Server (NTRS)

    Raju, Ivatury S.; Glaessgen, Edward H.; Mason, Brian H.; Krishnamurthy, Thiagarajan; Davila, Carlos G.

    2006-01-01

    A detailed finite element analysis of the right rear lug of the American Airlines Flight 587 - Airbus A300-600R was performed as part of the National Transportation Safety Board s failure investigation of the accident that occurred on November 12, 2001. The loads experienced by the right rear lug are evaluated using global models of the vertical tail, local models near the right rear lug, and a global-local analysis procedure. The right rear lug was analyzed using two modeling approaches. In the first approach, solid-shell type modeling is used, and in the second approach, layered-shell type modeling is used. The solid-shell and the layered-shell modeling approaches were used in progressive failure analyses (PFA) to determine the load, mode, and location of failure in the right rear lug under loading representative of an Airbus certification test conducted in 1985 (the 1985-certification test). Both analyses were in excellent agreement with each other on the predicted failure loads, failure mode, and location of failure. The solid-shell type modeling was then used to analyze both a subcomponent test conducted by Airbus in 2003 (the 2003-subcomponent test) and the accident condition. Excellent agreement was observed between the analyses and the observed failures in both cases. The moment, Mx (moment about the fuselage longitudinal axis), has significant effect on the failure load of the lugs. Higher absolute values of Mx give lower failure loads. The predicted load, mode, and location of the failure of the 1985- certification test, 2003-subcomponent test, and the accident condition are in very good agreement. This agreement suggests that the 1985-certification and 2003-subcomponent tests represent the accident condition accurately. The failure mode of the right rear lug for the 1985-certification test, 2003-subcomponent test, and the accident load case is identified as a cleavage-type failure. For the accident case, the predicted failure load for the right rear lug from the PFA is greater than 1.98 times the limit load of the lugs.

  15. Efficient vibration mode analysis of aircraft with multiple external store configurations

    NASA Technical Reports Server (NTRS)

    Karpel, M.

    1988-01-01

    A coupling method for efficient vibration mode analysis of aircraft with multiple external store configurations is presented. A set of low-frequency vibration modes, including rigid-body modes, represent the aircraft. Each external store is represented by its vibration modes with clamped boundary conditions, and by its rigid-body inertial properties. The aircraft modes are obtained from a finite-element model loaded by dummy rigid external stores with fictitious masses. The coupling procedure unloads the dummy stores and loads the actual stores instead. The analytical development is presented, the effects of the fictitious mass magnitudes are discussed, and a numerical example is given for a combat aircraft with external wing stores. Comparison with vibration modes obtained by a direct (full-size) eigensolution shows very accurate coupling results. Once the aircraft and stores data bases are constructed, the computer time for analyzing any external store configuration is two to three orders of magnitude less than that of a direct solution.

  16. Using New Technologies for Time Diary Data Collection: Instrument Design and Data Quality Findings from a Mixed-Mode Pilot Survey.

    PubMed

    Chatzitheochari, Stella; Fisher, Kimberly; Gilbert, Emily; Calderwood, Lisa; Huskinson, Tom; Cleary, Andrew; Gershuny, Jonathan

    2018-01-01

    Recent years have witnessed a steady growth of time-use research, driven by the increased research and policy interest in population activity patterns and their associations with long-term outcomes. There is recent interest in moving beyond traditional paper-administered time diaries to use new technologies for data collection in order to reduce respondent burden and administration costs, and to improve data quality. This paper presents two novel diary instruments that were employed by a large-scale multi-disciplinary cohort study in order to obtain information on the time allocation of adolescents in the United Kingdom. A web-administered diary and a smartphone app were created, and a mixed-mode data collection approach was followed: cohort members were asked to choose between these two modes, and those who were unable or refused to use the web/app modes were offered a paper diary. Using data from a pilot survey of 86 participants, we examine diary data quality indicators across the three modes. Results suggest that the web and app modes yield an overall better time diary data quality than the paper mode, with a higher proportion of diaries with complete activity and contextual information. Results also show that the web and app modes yield a comparable number of activity episodes to the paper mode. These results suggest that the use of new technologies can improve diary data quality. Future research using larger samples should systematically investigate selection and measurement effects in mixed-mode time-use survey designs.

  17. Probabilistic fatigue life prediction of metallic and composite materials

    NASA Astrophysics Data System (ADS)

    Xiang, Yibing

    Fatigue is one of the most common failure modes for engineering structures, such as aircrafts, rotorcrafts and aviation transports. Both metallic materials and composite materials are widely used and affected by fatigue damage. Huge uncertainties arise from material properties, measurement noise, imperfect models, future anticipated loads and environmental conditions. These uncertainties are critical issues for accurate remaining useful life (RUL) prediction for engineering structures in service. Probabilistic fatigue prognosis considering various uncertainties is of great importance for structural safety. The objective of this study is to develop probabilistic fatigue life prediction models for metallic materials and composite materials. A fatigue model based on crack growth analysis and equivalent initial flaw size concept is proposed for metallic materials. Following this, the developed model is extended to include structural geometry effects (notch effect), environmental effects (corroded specimens) and manufacturing effects (shot peening effects). Due to the inhomogeneity and anisotropy, the fatigue model suitable for metallic materials cannot be directly applied to composite materials. A composite fatigue model life prediction is proposed based on a mixed-mode delamination growth model and a stiffness degradation law. After the development of deterministic fatigue models of metallic and composite materials, a general probabilistic life prediction methodology is developed. The proposed methodology combines an efficient Inverse First-Order Reliability Method (IFORM) for the uncertainty propogation in fatigue life prediction. An equivalent stresstransformation has been developed to enhance the computational efficiency under realistic random amplitude loading. A systematical reliability-based maintenance optimization framework is proposed for fatigue risk management and mitigation of engineering structures.

  18. Dual-mode, high energy utilization system concept for mars missions

    NASA Astrophysics Data System (ADS)

    El-Genk, Mohamed S.

    2000-01-01

    This paper describes a dual-mode, high energy utilization system concept based on the Pellet Bed Reactor (PeBR) to support future manned missions to Mars. The system uses proven Closed Brayton Cycle (CBC) engines to partially convert the reactor thermal power to electricity. The electric power generated is kept the same during the propulsion and the power modes, but the reactor thermal power in the former could be several times higher, while maintaining the reactor temperatures almost constant. During the propulsion mode, the electric power of the system, minus ~1-5 kWe for house keeping, is used to operate a Variable Specific Impulse Magnetoplasma Rocket (VASIMR). In addition, the reactor thermal power, plus more than 85% of the head load of the CBC engine radiators, are used to heat hydrogen. The hot hydrogen is mixed with the high temperature plasma in a VASIMR to provide both high thrust and Isp>35,000 N.s/kg, reducing the travel time to Mars to about 3 months. The electric power also supports surface exploration of Mars. The fuel temperature and the inlet temperatures of the He-Xe working fluid to the nuclear reactor core and the CBC turbine are maintained almost constant during both the propulsion and power modes to minimize thermal stresses. Also, the exit temperature of the He-Xe from the reactor core is kept at least 200 K below the maximum fuel design temperature. The present system has no single point failure and could be tested fully assembled in a ground facility using electric heaters in place of the nuclear reactor. Operation and design parameters of a 40-kWe prototype are presented and discussed to illustrate the operation and design principles of the proposed system. .

  19. Thermal effects on the enhanced ductility in non-monotonic uniaxial tension of DP780 steel sheet

    NASA Astrophysics Data System (ADS)

    Majidi, Omid; Barlat, Frederic; Korkolis, Yannis P.; Fu, Jiawei; Lee, Myoung-Gyu

    2016-11-01

    To understand the material behavior during non-monotonic loading, uniaxial tension tests were conducted in three modes, namely, the monotonic loading, loading with periodic relaxation and periodic loading-unloadingreloading, at different strain rates (0.001/s to 0.01/s). In this study, the temperature gradient developing during each test and its contribution to increasing the apparent ductility of DP780 steel sheets were considered. In order to assess the influence of temperature, isothermal uniaxial tension tests were also performed at three temperatures (298 K, 313 K and 328 K (25 °C, 40 °C and 55 °C)). A digital image correlation system coupled with an infrared thermography was used in the experiments. The results show that the non-monotonic loading modes increased the apparent ductility of the specimens. It was observed that compared with the monotonic loading, the temperature gradient became more uniform when a non-monotonic loading was applied.

  20. Quantitative comparison of two independent lateral force calibration techniques for the atomic force microscope.

    PubMed

    Barkley, Sarice S; Deng, Zhao; Gates, Richard S; Reitsma, Mark G; Cannara, Rachel J

    2012-02-01

    Two independent lateral-force calibration methods for the atomic force microscope (AFM)--the hammerhead (HH) technique and the diamagnetic lateral force calibrator (D-LFC)--are systematically compared and found to agree to within 5 % or less, but with precision limited to about 15 %, using four different tee-shaped HH reference probes. The limitations of each method, both of which offer independent yet feasible paths toward traceable accuracy, are discussed and investigated. We find that stiff cantilevers may produce inconsistent D-LFC values through the application of excessively high normal loads. In addition, D-LFC results vary when the method is implemented using different modes of AFM feedback control, constant height and constant force modes, where the latter is more consistent with the HH method and closer to typical experimental conditions. Specifically, for the D-LFC apparatus used here, calibration in constant height mode introduced errors up to 14 %. In constant force mode using a relatively stiff cantilever, we observed an ≈ 4 % systematic error per μN of applied load for loads ≤ 1 μN. The issue of excessive load typically emerges for cantilevers whose flexural spring constant is large compared with the normal spring constant of the D-LFC setup (such that relatively small cantilever flexural displacements produce relatively large loads). Overall, the HH method carries a larger uncertainty, which is dominated by uncertainty in measurement of the flexural spring constant of the HH cantilever as well as in the effective length dimension of the cantilever probe. The D-LFC method relies on fewer parameters and thus has fewer uncertainties associated with it. We thus show that it is the preferred method of the two, as long as care is taken to perform the calibration in constant force mode with low applied loads.

  1. A comparison of web-based and paper-based survey methods: testing assumptions of survey mode and response cost.

    PubMed

    Greenlaw, Corey; Brown-Welty, Sharon

    2009-10-01

    Web-based surveys have become more prevalent in areas such as evaluation, research, and marketing research to name a few. The proliferation of these online surveys raises the question, how do response rates compare with traditional surveys and at what cost? This research explored response rates and costs for Web-based surveys, paper surveys, and mixed-mode surveys. The participants included evaluators from the American Evaluation Association (AEA). Results included that mixed-mode, while more expensive, had higher response rates.

  2. Mixing with applications to inertial-confinement-fusion implosions

    NASA Astrophysics Data System (ADS)

    Rana, V.; Lim, H.; Melvin, J.; Glimm, J.; Cheng, B.; Sharp, D. H.

    2017-01-01

    Approximate one-dimensional (1D) as well as 2D and 3D simulations are playing an important supporting role in the design and analysis of future experiments at National Ignition Facility. This paper is mainly concerned with 1D simulations, used extensively in design and optimization. We couple a 1D buoyancy-drag mix model for the mixing zone edges with a 1D inertial confinement fusion simulation code. This analysis predicts that National Ignition Campaign (NIC) designs are located close to a performance cliff, so modeling errors, design features (fill tube and tent) and additional, unmodeled instabilities could lead to significant levels of mix. The performance cliff we identify is associated with multimode plastic ablator (CH) mix into the hot-spot deuterium and tritium (DT). The buoyancy-drag mix model is mode number independent and selects implicitly a range of maximum growth modes. Our main conclusion is that single effect instabilities are predicted not to lead to hot-spot mix, while combined mode mixing effects are predicted to affect hot-spot thermodynamics and possibly hot-spot mix. Combined with the stagnation Rayleigh-Taylor instability, we find the potential for mix effects in combination with the ice-to-gas DT boundary, numerical effects of Eulerian species CH concentration diffusion, and ablation-driven instabilities. With the help of a convenient package of plasma transport parameters developed here, we give an approximate determination of these quantities in the regime relevant to the NIC experiments, while ruling out a variety of mix possibilities. Plasma transport parameters affect the 1D buoyancy-drag mix model primarily through its phenomenological drag coefficient as well as the 1D hydro model to which the buoyancy-drag equation is coupled.

  3. Mixing with applications to inertial-confinement-fusion implosions.

    PubMed

    Rana, V; Lim, H; Melvin, J; Glimm, J; Cheng, B; Sharp, D H

    2017-01-01

    Approximate one-dimensional (1D) as well as 2D and 3D simulations are playing an important supporting role in the design and analysis of future experiments at National Ignition Facility. This paper is mainly concerned with 1D simulations, used extensively in design and optimization. We couple a 1D buoyancy-drag mix model for the mixing zone edges with a 1D inertial confinement fusion simulation code. This analysis predicts that National Ignition Campaign (NIC) designs are located close to a performance cliff, so modeling errors, design features (fill tube and tent) and additional, unmodeled instabilities could lead to significant levels of mix. The performance cliff we identify is associated with multimode plastic ablator (CH) mix into the hot-spot deuterium and tritium (DT). The buoyancy-drag mix model is mode number independent and selects implicitly a range of maximum growth modes. Our main conclusion is that single effect instabilities are predicted not to lead to hot-spot mix, while combined mode mixing effects are predicted to affect hot-spot thermodynamics and possibly hot-spot mix. Combined with the stagnation Rayleigh-Taylor instability, we find the potential for mix effects in combination with the ice-to-gas DT boundary, numerical effects of Eulerian species CH concentration diffusion, and ablation-driven instabilities. With the help of a convenient package of plasma transport parameters developed here, we give an approximate determination of these quantities in the regime relevant to the NIC experiments, while ruling out a variety of mix possibilities. Plasma transport parameters affect the 1D buoyancy-drag mix model primarily through its phenomenological drag coefficient as well as the 1D hydro model to which the buoyancy-drag equation is coupled.

  4. Learning Environment Associated with Use of Mixed Mode Delivery Model among Secondary Business Studies Students in Singapore

    ERIC Educational Resources Information Center

    Koh, Noi Keng; Fraser, Barry J.

    2014-01-01

    At many teacher education institutes around the world, preservice teachers are empowered to use pedagogical tools and strategies that engage their students. We used a modified version of the Constructivist Learning Environment Survey (CLES) to evaluate the effectiveness of a pedagogical model known as the Mixed Mode Delivery (MMD) model in terms…

  5. Using Mixed-Modality Learning Strategies via e-Learning for Second Language Vocabulary Acquisition

    ERIC Educational Resources Information Center

    Yang, Fang-Chuan Ou; Wu, Wen-Chi Vivian

    2015-01-01

    This study demonstrated an e-learning system, MyEVA, based on a mixed-modality vocabulary strategy in assisting learners of English as a second language (L2 learners) to improve their vocabulary. To explore the learning effectiveness of MyEVA, the study compared four vocabulary-learning techniques, MyEVA in preference mode, MyEVA in basic mode, an…

  6. Analysis of Biomechanical Effects of Different Sites and Modes of Orthodontic Loading On Arch Expansion in a Preadolescent Mandible: An FEA Study.

    PubMed

    Haresh, Ajmera Deepal; Pradeep, Singh; Song, Jinlin; Wang, Chao; Fan, Yubo

    2018-05-11

    The aim of commencing treatment in younger age is to rectify the developing dento-alveolar, skeletal and muscular imbalances. With growing dependence on arch development and expansion, the pendulum is oscillating more towards the non-extraction treatment lately, in resolving constriction and crowding issues. Since, a limited number of attempts have been made for mandibular expansion, this study aimes to evaluate the effect of different modes and sites of loading on the expansion of preadolescent mandible using biomechanics. To address the research purpose, a total of 9 Finite Element models were simulated. Biomechanical response of the mandibular bone and dentition was analyzed under different loading conditions including site and mode, using the simulated FE models. The values of displacement envisaged by the FE models, predict hybrid mode to offer substantial expansion of the mandibular bone as compared to tooth borne and bone borne. In addition, biomechanical effect of site II on mandibular expansion in terms of displacement on X-axis, was significant. In conclusion, the results of our study suggest hybrid mode at site II to be better option for true bony expansion in preadolescent mandible.

  7. Stress Distribution and Damage Mode of Ceramic-Dentin Bilayer Systems

    NASA Astrophysics Data System (ADS)

    Kurtoglu, Cem; Demiroz, S. Suna; Mehmetov, Emirullah; Uysal, Hakan

    The aim of this study was to evaluate the damage modes of ceramic systems bonded to dentin under Hertzian indentation. Single-cycle Hertzian contact test over 150-850 N load range was applied randomly to 210 ceramic-dentin bilayer disc specimens of zirconia or IPS Empress II -1 mm, -1.5 mm and of feldspathic porcelain -1 mm, -1.5 mm, -2 mm. Optical microscopy was employed for the identification of quasiplastic mode and radial cracks. Finite element analysis was used to analyze the stress distribution. Our results showed that the degree of damage in both modes evolved progressively and the origin changed with contact load. Stress location and value were consistent with the mechanical test results. It was concluded that microstructure and thickness of the material have a significant effect on the damage modes of ceramic layer systems.

  8. On-line coupling of size exclusion chromatography with mixed-mode liquid chromatography for comprehensive profiling of biopharmaceutical drug product.

    PubMed

    He, Yan; Friese, Olga V; Schlittler, Michele R; Wang, Qian; Yang, Xun; Bass, Laura A; Jones, Michael T

    2012-11-02

    A methodology based on on-line coupling of size exclusion chromatography (SEC) with mixed-mode liquid chromatography (LC) has been developed. The method allows for simultaneous measurement of a wide range of components in biopharmaceutical drug products. These components include the active pharmaceutical ingredient (protein) and various kinds of excipients such as cations, anions, nonionic hydrophobic surfactant and hydrophilic sugars. Dual short SEC columns are used to separate small molecule excipients from large protein molecules. The separated protein is quantified using a UV detector at 280 nm. The isolated excipients are switched, online, to the Trinity P1 mixed-mode column for separation, and detected by an evaporative light scattering detector (ELSD). Using a stationary phase with 1.7 μm particles in SEC allows for the use of volatile buffers for both SEC and mix-mode separation. This facilitates the detection of different excipients by ELSD and provides potential for online characterization of the protein with mass spectrometry (MS). The method has been applied to quantitate protein and excipients in different biopharmaceutical drug products including monoclonal antibodies (mAb), antibody drug conjugates (ADC) and vaccines. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Metering error quantification under voltage and current waveform distortion

    NASA Astrophysics Data System (ADS)

    Wang, Tao; Wang, Jia; Xie, Zhi; Zhang, Ran

    2017-09-01

    With integration of more and more renewable energies and distortion loads into power grid, the voltage and current waveform distortion results in metering error in the smart meters. Because of the negative effects on the metering accuracy and fairness, it is an important subject to study energy metering combined error. In this paper, after the comparing between metering theoretical value and real recorded value under different meter modes for linear and nonlinear loads, a quantification method of metering mode error is proposed under waveform distortion. Based on the metering and time-division multiplier principles, a quantification method of metering accuracy error is proposed also. Analyzing the mode error and accuracy error, a comprehensive error analysis method is presented which is suitable for new energy and nonlinear loads. The proposed method has been proved by simulation.

  10. Mode I analysis of a cracked circular disk subject to a couple and a force

    NASA Technical Reports Server (NTRS)

    Gross, B.

    1977-01-01

    Mode 1 stress intensity coefficients were obtained for an edge-cracked disk (round compact specimen). Results for this plane elastostatic problem, obtained by a boundary collocation analysis are presented for ratios 0.35 less than A/D less than 1, where A is the crack length and D is the disk diameter. The results presented are for two complementary types of loading. By superposition of these results the stress intensity factor K sub I for any practical load line location of a pin-loaded round compact specimen can be obtained.

  11. Shear fatigue crack growth - A literature survey

    NASA Technical Reports Server (NTRS)

    Liu, H. W.

    1985-01-01

    Recent studies of shear crack growth are reviewed, emphasizing test methods and data analyses. The combined mode I and mode II elastic crack tip stress fields are considered. The development and design of the compact shear specimen are described, and the results of fatigue crack growth tests using compact shear specimens are reviewed. The fatigue crack growth tests are discussed and the results of inclined cracks in tensile panels, center cracks in plates under biaxial loading, cracked beam specimens with combined bending and shear loading, center-cracked panels and double edge-cracked plates under cyclic shear loading are examined and analyzed in detail.

  12. Study of mixed mode fracture toughness and fracture trajectories in gypsum interlayers in corrosive environment

    PubMed Central

    Xiankai, Bao; Jinchang, Zhao

    2018-01-01

    Based on the engineering background of water dissolving mining for hydrocarbon storage in multi-laminated salt stratum, the mixed mode fracture toughness and fracture trajectory of gypsum interlayers soaked in half-saturated brine at various temperatures (20°C, 50°C and 80°C) were studied by using CSNBD (centrally straight-notched Brazilian disc) specimens with required inclination angles (0°, 7°, 15°, 22°, 30°, 45°, 60°, 75°, 90°) and SEM (scanning electron microscopy). The results showed: (i) The fracture load of gypsum specimens first decreased then increased with increasing inclination angle, due to the effect of friction coefficient. When soaked in brine, the fracture toughness of gypsum specimens gradually decreased with increasing brine temperature. (ii) When soaked in brine, the crystal boundaries of gypsum separated and became clearer, and the boundaries became more open between the crystals with increasing brine temperature. Besides, tensile micro-cracks appeared on the gypsum crystals when soaked in 50°C brine, and the intensity of tensile cracks became more severe when soaking in 80°C brine. (iii) The experimental fracture envelopes derived from the conventional fracture criteria and lay outside these conventional criteria. The experimental fracture envelopes were dependent on the brine temperature and gradually expanded outward as brine temperature increases. (iv) The size of FPZ (fracture process zone) was greatly dependent on the damage degree of materials and gradually increased with increase of brine temperature. The study has important implication for the control of shape and size of salt cavern. PMID:29410841

  13. Reducing Undue Conservatism in "Higher Frequency" Structural Design Loads in Aerospace Components

    NASA Technical Reports Server (NTRS)

    Knight, J. Brent

    2012-01-01

    This study is intended to investigate the frequency dependency of significant strain due to vibratory loads in aerospace vehicle components. The notion that "higher frequency" dynamic loads applied as static loads is inherently conservative is perceived as widely accepted. This effort is focused on demonstrating that principle and attempting to evolve methods to capitalize on it to mitigate undue conservatism. It has been suggested that observations of higher frequency modes that resulted in very low corresponding strain did so due to those modes not being significant. Two avionics boxes, one with its first significant mode at 341 Hz and the other at 857 Hz, were attached to a flat panel installed on a curved orthogrid panel which was driven acoustically in tests performed at NASA/MSFC. Strain and acceleration were measured at select locations on each of the boxes. When possible, strain gage rosettes and accelerometers were installed on either side of a given structural member so that measured strain and acceleration data would directly correspond to one another. Ultimately, a frequency above which vibratory loads can be disregarded for purposes of static structural analyses and sizing of typical robust aerospace components is sought.

  14. Recovering bridge deflections from collocated acceleration and strain measurements

    NASA Astrophysics Data System (ADS)

    Bell, M.; Ma, T. W.; Xu, N. S.

    2015-04-01

    In this research, an internal model based method is proposed to estimate the displacement profile of a bridge subjected to a moving traffic load using a combination of acceleration and strain measurements. The structural response is assumed to be within the linear range. The deflection profile is assumed to be dominated by the fundamental mode of the bridge, therefore only requiring knowledge of the first mode. This still holds true under a multiple vehicle loading situation as the high mode shapes don't impact the over all response of the structure. Using the structural modal parameters and partial knowledge of the moving vehicle load, the internal models of the structure and the moving load can be respectively established, which can be used to form an autonomous state-space representation of the system. The structural displacements, velocities, and accelerations are the states of such a system, and it is fully observable when the measured output contains structural accelerations and strains. Reliable estimates of structural displacements are obtained using the standard Kalman filtering technique. The effectiveness and robustness of the proposed method has been demonstrated and evaluated via numerical simulation of a simply supported single span concrete bridge subjected to a moving traffic load.

  15. Axisymmetric magnetic modes of neutron stars having mixed poloidal and toroidal magnetic fields

    NASA Astrophysics Data System (ADS)

    Lee, Umin

    2018-05-01

    We calculate axisymmetric magnetic modes of a neutron star possessing a mixed poloidal and toroidal magnetic field, where the toroidal field is assumed to be proportional to a dimensionless parameter ζ0. Here, we assume an isentropic structure for the neutron star and consider no effects of rotation. Ignoring the equilibrium deformation due to the magnetic field, we employ a polytrope of the index n = 1 as the background model for our modal analyses. For the mixed poloidal and toroidal magnetic field with ζ _0\

  16. Resonant Mode-hopping Micromixing

    PubMed Central

    Jang, Ling-Sheng; Chao, Shih-Hui; Holl, Mark R.; Meldrum, Deirdre R.

    2009-01-01

    A common micromixer design strategy is to generate interleaved flow topologies to enhance diffusion. However, problems with these designs include complicated structures and dead volumes within the flow fields. We present an active micromixer using a resonating piezoceramic/silicon composite diaphragm to generate acoustic streaming flow topologies. Circulation patterns are observed experimentally and correlate to the resonant mode shapes of the diaphragm. The dead volumes in the flow field are eliminated by rapidly switching from one discrete resonant mode to another (i.e., resonant mode-hop). Mixer performance is characterized by mixing buffer with a fluorescence tracer containing fluorescein. Movies of the mixing process are analyzed by converting fluorescent images to two-dimensional fluorescein concentration distributions. The results demonstrate that mode-hopping operation rapidly homogenized chamber contents, circumventing diffusion-isolated zones. PMID:19551159

  17. Performance of distributed multiscale simulations

    PubMed Central

    Borgdorff, J.; Ben Belgacem, M.; Bona-Casas, C.; Fazendeiro, L.; Groen, D.; Hoenen, O.; Mizeranschi, A.; Suter, J. L.; Coster, D.; Coveney, P. V.; Dubitzky, W.; Hoekstra, A. G.; Strand, P.; Chopard, B.

    2014-01-01

    Multiscale simulations model phenomena across natural scales using monolithic or component-based code, running on local or distributed resources. In this work, we investigate the performance of distributed multiscale computing of component-based models, guided by six multiscale applications with different characteristics and from several disciplines. Three modes of distributed multiscale computing are identified: supplementing local dependencies with large-scale resources, load distribution over multiple resources, and load balancing of small- and large-scale resources. We find that the first mode has the apparent benefit of increasing simulation speed, and the second mode can increase simulation speed if local resources are limited. Depending on resource reservation and model coupling topology, the third mode may result in a reduction of resource consumption. PMID:24982258

  18. Determination of elastomeric foam parameters for simulations of complex loading.

    PubMed

    Petre, M T; Erdemir, A; Cavanagh, P R

    2006-08-01

    Finite element (FE) analysis has shown promise for the evaluation of elastomeric foam personal protection devices. Although appropriate representation of foam materials is necessary in order to obtain realistic simulation results, material definitions used in the literature vary widely and often fail to account for the multi-mode loading experienced by these devices. This study aims to provide a library of elastomeric foam material parameters that can be used in FE simulations of complex loading scenarios. Twelve foam materials used in footwear were tested in uni-axial compression, simple shear and volumetric compression. For each material, parameters for a common compressible hyperelastic material model used in FE analysis were determined using: (a) compression; (b) compression and shear data; and (c) data from all three tests. Material parameters and Drucker stability limits for the best fits are provided with their associated errors. The material model was able to reproduce deformation modes for which data was provided during parameter determination but was unable to predict behavior in other deformation modes. Simulation results were found to be highly dependent on the extent of the test data used to determine the parameters in the material definition. This finding calls into question the many published results of simulations of complex loading that use foam material parameters obtained from a single mode of testing. The library of foam parameters developed here presents associated errors in three deformation modes that should provide for a more informed selection of material parameters.

  19. Foraminiferal biotopes and their distribution control in Ria de Aveiro (Portugal): a multiproxy approach.

    PubMed

    Martins, Maria Virgínia Alves; Frontalini, Fabrizio; Laut, Lazaro L M; Silva, Frederico S; Moreno, João; Sousa, Silvia; Zaaboub, Noureddine; El Bour, Monia; Rocha, Fernando

    2014-12-01

    Ria de Aveiro, which is located in the centre of Portugal (40° 38' N, 8° 45' W), is a well-mixed and complex coastal lagoon that is separated from the sea by a sandy barrier and connects with the Atlantic through an artificial inlet. Tidal currents are the main factor controlling the lagoon's hydrodynamics and, to a great extent, the sedimentary dynamic. The inner lagoonal zones receive input from several rivers and experience the pressure caused by the accumulation of organic matter and pollutants (namely, trace metals) from diverse anthropic activities. This paper is the first piece of work aiming to recognize, characterize and explain the main benthic foraminiferal biotopes in Ria de Aveiro. To provide a broad overview of this kind of setting, our results are compared to those of previous published studies conducted in similar transitional environments. The research is based on an investigation of 225 sites spread throughout this ecosystem. Utilizing a statistical approach, this study analyses the details of dead benthic foraminiferal assemblages composed of 260 taxa, the texture and composition (mineralogical and geochemical) of the sediment and physicochemical data. On the basis of the results of R-mode and Q-mode cluster analyses, several different biotopes can be defined as marsh biotope/near-marsh biotope; marginal urban/marginal urban mixing biotope; inner-outer lagoon biotope or enclosed lagoon; outer lagoon biotope, mixed sub-biotope; and outer lagoon, marine sub-biotope. These biotopes are related to foraminifera assemblages and substrate type and are influenced by local currents, water depth, chemical and physicochemical conditions, river or oceanic proximity, and anthropogenic impact, as evidenced by the mapping of the six factor loadings of the principal component analysis conducted herein. Based on a similar methodology of analysis as that applied in previous studies in the Lagoon of Venice, comparable biotypes were identified in Lagoon of Aveiro.

  20. An Analysis of the Joint Modular Intermodal Distribution System

    DTIC Science & Technology

    2007-06-01

    the differing airframes. “Two methods are available to move a CROP-load of ammunition: 1. Reconfigure the load from the CROP onto multiple 463L...used among the services lack: • Transportability across different modes without re-handling/packaging • Quick reconfiguration for onward movement...numerous linkages among different channels of distribution. In the world of integrated logistics, that means that ground, rail, air, and sea modes of

  1. Analysis of crack propagation in roller bearings using the boundary integral equation method - A mixed-mode loading problem

    NASA Technical Reports Server (NTRS)

    Ghosn, L. J.

    1988-01-01

    Crack propagation in a rotating inner raceway of a high-speed roller bearing is analyzed using the boundary integral method. The model consists of an edge plate under plane strain condition upon which varying Hertzian stress fields are superimposed. A multidomain boundary integral equation using quadratic elements was written to determine the stress intensity factors KI and KII at the crack tip for various roller positions. The multidomain formulation allows the two faces of the crack to be modeled in two different subregions, making it possible to analyze crack closure when the roller is positioned on or close to the crack line. KI and KII stress intensity factors along any direction were computed. These calculations permit determination of crack growth direction along which the average KI times the alternating KI is maximum.

  2. Design of long-endurance unmanned airplanes incorporating solar and fuel cell propulsion

    NASA Technical Reports Server (NTRS)

    Youngblood, J. W.; Talay, T. A.; Pegg, R. J.

    1984-01-01

    Attention is given to the design features and operational capabilities of a class of unmanned flight vehicles possessing multiday mission endurance capabilities, based on the use of a mixed-mode electric power system which incorporates solar cells for diurnal energy production and a nonregenerative H2-O2 fuel cell for nocturnal energy supply. Energy is thereby provided for not only propulsion, but also the operation of the payload and the vehicle's avionics. The excess solar energy available during high insolation portions of the diurnal period may be used for climb/maneuvering or payload-related functions. Empirical structure scaling algorithms are combined with low Reynolds number aerodynamics algorithms to estimate requisite size and geometry for the chosen mission. Wing loadings will be of the order of 0.9-1.3 lb/sq ft.

  3. Renal stone characterization using high resolution imaging mode on a photon counting detector CT system

    NASA Astrophysics Data System (ADS)

    Ferrero, A.; Gutjahr, R.; Henning, A.; Kappler, S.; Halaweish, A.; Abdurakhimova, D.; Peterson, Z.; Montoya, J.; Leng, S.; McCollough, C.

    2017-03-01

    In addition to the standard-resolution (SR) acquisition mode, a high-resolution (HR) mode is available on a research photon-counting-detector (PCD) whole-body CT system. In the HR mode each detector consists of a 2x2 array of 0.225 mm x 0.225 mm subpixel elements. This is in contrast to the SR mode that consists of a 4x4 array of the same subelements, and results in 0.25 mm isotropic resolution at iso-center for the HR mode. In this study, we quantified ex vivo the capabilities of the HR mode to characterize renal stones in terms of morphology and mineral composition. Forty pure stones - 10 uric acid (UA), 10 cystine (CYS), 10 calcium oxalate monohydrate (COM) and 10 apatite (APA) - and 14 mixed stones were placed in a 20 cm water phantom and scanned in HR mode, at radiation dose matched to that of routine dual-energy stone exams. Data from micro CT provided a reference for the quantification of morphology and mineral composition of the mixed stones. The area under the ROC curve was 1.0 for discriminating UA from CYS, 0.89 for CYS vs COM and 0.84 for COM vs APA. The root mean square error (RMSE) of the percent UA in mixed stones was 11.0% with a medium-sharp kernel and 15.6% with the sharpest kernel. The HR showed qualitatively accurate characterization of stone morphology relative to micro CT.

  4. Renal Stone Characterization using High Resolution Imaging Mode on a Photon Counting Detector CT System.

    PubMed

    Ferrero, A; Gutjahr, R; Henning, A; Kappler, S; Halaweish, A; Abdurakhimova, D; Peterson, Z; Montoya, J; Leng, S; McCollough, C

    2017-03-09

    In addition to the standard-resolution (SR) acquisition mode, a high-resolution (HR) mode is available on a research photon-counting-detector (PCD) whole-body CT system. In the HR mode each detector consists of a 2x2 array of 0.225 mm × 0.225 mm subpixel elements. This is in contrast to the SR mode that consists of a 4x4 array of the same sub-elements, and results in 0.25 mm isotropic resolution at iso-center for the HR mode. In this study, we quantified ex vivo the capabilities of the HR mode to characterize renal stones in terms of morphology and mineral composition. Forty pure stones - 10 uric acid (UA), 10 cystine (CYS), 10 calcium oxalate monohydrate (COM) and 10 apatite (APA) - and 14 mixed stones were placed in a 20 cm water phantom and scanned in HR mode, at radiation dose matched to that of routine dual-energy stone exams. Data from micro CT provided a reference for the quantification of morphology and mineral composition of the mixed stones. The area under the ROC curve was 1.0 for discriminating UA from CYS, 0.89 for CYS vs COM and 0.84 for COM vs APA. The root mean square error (RMSE) of the percent UA in mixed stones was 11.0% with a medium-sharp kernel and 15.6% with the sharpest kernel. The HR showed qualitatively accurate characterization of stone morphology relative to micro CT.

  5. Load-bearing capacity of screw-retained CAD/CAM-produced titanium implant frameworks (I-Bridge®2) before and after cyclic mechanical loading.

    PubMed

    Dittmer, Marc Philipp; Nensa, Moritz; Stiesch, Meike; Kohorst, Philipp

    2013-01-01

    Implant-supported screw-retained fixed dental prostheses (FDPs) produced by CAD/ CAM have been introduced in recent years for the rehabilitation of partial or total endentulous jaws. However, there is a lack of data about the long-term mechanical characteristics. The aim of this study was to investigate the failure mode and the influence of extended cyclic mechanical loading on the load-bearing capacity of these frameworks. Ten five-unit FDP frameworks simulating a free-end situation in the mandibular jaw were manufactured according to the I-Bridge®2-concept (I-Bridge®2, Biomain AB, Helsingborg, Sweden) and each was screw-retained on three differently angulated Astra Tech implants (30º buccal angulation/0º angulation/30º lingual angulation). One half of the specimens was tested for static load-bearing capacity without any further treatment (control), whereas the other half underwent five million cycles of mechanical loading with 100 N as the upper load limit (test). All specimens were loaded until failure in a universal testing machine with an occlusal force applied at the pontics. Load-displacement curves were recorded and the failure mode was macro- and microscopically analyzed. The statistical analysis was performed using a t-test (p=0.05). All the specimens survived cyclic mechanical loading and no obvious failure could be observed. Due to the cyclic mechanical loading, the load-bearing capacity decreased from 8,496 N±196 N (control) to 7,592 N±901 N (test). The cyclic mechanical loading did not significantly influence the load-bearing capacity (p=0.060). The failure mode was almost identical in all specimens: large deformations of the framework at the implant connection area were obvious. The load-bearing capacity of the I-Bridge®2 frameworks is much higher than the clinically relevant occlusal forces, even with considerably angulated implants. However, the performance under functional loading in vivo depends on additional aspects. Further studies are needed to address these aspects.

  6. Load-bearing capacity of screw-retained CAD/CAM-produced titanium implant frameworks (I-Bridge®2) before and after cyclic mechanical loading

    PubMed Central

    DITTMER, Marc Philipp; NENSA, Moritz; STIESCH, Meike; KOHORST, Philipp

    2013-01-01

    Implant-supported screw-retained fixed dental prostheses (FDPs) produced by CAD/ CAM have been introduced in recent years for the rehabilitation of partial or total endentulous jaws. However, there is a lack of data about the long-term mechanical characteristics. Objective The aim of this study was to investigate the failure mode and the influence of extended cyclic mechanical loading on the load-bearing capacity of these frameworks. Material and Methods Ten five-unit FDP frameworks simulating a free-end situation in the mandibular jaw were manufactured according to the I-Bridge®2-concept (I-Bridge®2, Biomain AB, Helsingborg, Sweden) and each was screw-retained on three differently angulated Astra Tech implants (30º buccal angulation/0º angulation/30º lingual angulation). One half of the specimens was tested for static load-bearing capacity without any further treatment (control), whereas the other half underwent five million cycles of mechanical loading with 100 N as the upper load limit (test). All specimens were loaded until failure in a universal testing machine with an occlusal force applied at the pontics. Load-displacement curves were recorded and the failure mode was macro- and microscopically analyzed. The statistical analysis was performed using a t-test (p=0.05). Results All the specimens survived cyclic mechanical loading and no obvious failure could be observed. Due to the cyclic mechanical loading, the load-bearing capacity decreased from 8,496 N±196 N (control) to 7,592 N±901 N (test). The cyclic mechanical loading did not significantly influence the load-bearing capacity (p=0.060). The failure mode was almost identical in all specimens: large deformations of the framework at the implant connection area were obvious. Conclusion The load-bearing capacity of the I-Bridge®2 frameworks is much higher than the clinically relevant occlusal forces, even with considerably angulated implants. However, the performance under functional loading in vivo depends on additional aspects. Further studies are needed to address these aspects. PMID:24037068

  7. Effects of friction and high torque on fatigue crack propagation in Mode III

    NASA Astrophysics Data System (ADS)

    Nayeb-Hashemi, H.; McClintock, F. A.; Ritchie, R. O.

    1982-12-01

    Turbo-generator and automotive shafts are often subjected to complex histories of high torques. To provide a basis for fatigue life estimation in such components, a study of fatigue crack propagation in Mode III (anti-plane shear) for a mill-annealed AISI 4140 steel (RB88, 590 MN/m2 tensile strength) has been undertaken, using torsionally-loaded, circumferentially-notched cylindrical specimens. As demonstrated previously for higher strength AISI 4340 steel, Mode III cyclic crack growth rates (dc/dN) IIIcan be related to the alternating stress intensity factor ΔKIII for conditions of small-scale yielding. However, to describe crack propagation behavior over an extended range of crack growth rates (˜10-6 to 10-2 mm per cycle), where crack growth proceeds under elastic-plastic and full plastic conditions, no correlation between (dc/dN) III and ΔKIII is possible. Accordingly, a new parameter for torsional crack growth, termed the plastic strain intensity Γ III, is introduced and is shown to provide a unique description of Mode III crack growth behavior for a wide range of testing conditions, provided a mean load reduces friction, abrasion, and interlocking between mating fracture surfaces. The latter effect is found to be dependent upon the mode of applied loading (i.e., the presence of superimposed axial loads) and the crack length and torque level. Mechanistically, high-torque surfaces were transverse, macroscopically flat, and smeared. Lower torques showed additional axial cracks (longitudinal shear cracking) perpendicular to the main transverse surface. A micro-mechanical model for the main radi l Mode III growth, based on the premise that crack advance results from Mode II coalescence of microcracks initiated at inclusions ahead of the main crack front, is extended to high nominal stress levels, and predicts that Mode III fatigue crack propagation rates should be proportional to the range of plastic strain intensity (ΔΓIII if local Mode II growth rates are proportional to the displacements. Such predictions are shown to be in agreement with measured growth rates in AISI {dy4140} steel from 10-6 to 10-2 mm per cycle.

  8. Photos for Estimating Residue Loadings Before and After Burning in Southern Appalachian Mixed Pine - Hardwood Clearcuts

    Treesearch

    Bradford M. Sanders; David H. van Lear

    1988-01-01

    Paired photographs show fuel conditions before and after burning in recently clearcut stands of mixed pine-hardwoods in the Southern Appalachians. Comparison with the photos permits fast assessment of fuel loading and probable burning success. Information with each photo includes measured weights, volumes, and other residue data, information about the timber stand and...

  9. Deviations from a uniform period spacing of gravity modes in a massive star.

    PubMed

    Degroote, Pieter; Aerts, Conny; Baglin, Annie; Miglio, Andrea; Briquet, Maryline; Noels, Arlette; Niemczura, Ewa; Montalban, Josefina; Bloemen, Steven; Oreiro, Raquel; Vucković, Maja; Smolders, Kristof; Auvergne, Michel; Baudin, Frederic; Catala, Claude; Michel, Eric

    2010-03-11

    The life of a star is dominantly determined by the physical processes in the stellar interior. Unfortunately, we still have a poor understanding of how the stellar gas mixes near the stellar core, preventing precise predictions of stellar evolution. The unknown nature of the mixing processes as well as the extent of the central mixed region is particularly problematic for massive stars. Oscillations in stars with masses a few times that of the Sun offer a unique opportunity to disentangle the nature of various mixing processes, through the distinct signature they leave on period spacings in the gravity mode spectrum. Here we report the detection of numerous gravity modes in a young star with a mass of about seven solar masses. The mean period spacing allows us to estimate the extent of the convective core, and the clear periodic deviation from the mean constrains the location of the chemical transition zone to be at about 10 per cent of the radius and rules out a clear-cut profile.

  10. 40 CFR 1045.505 - How do I test engines using discrete-mode or ramped-modal duty cycles?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... your own testing. If you submit certification test data collected with both discrete-mode and ramped...-use operation. (d) For full-load operating modes, operate the engine at wide-open throttle. (e) See 40...

  11. Denitrification and mixing in a stream-aquifer system: Effects on nitrate loading to surface water

    USGS Publications Warehouse

    McMahon, P.B.; Böhlke, J.K.

    1996-01-01

    Ground water in terrace deposits of the South Platte River alluvial aquifer near Greeley, Colorado, USA, had a median nitrate concentration of 1857 ??mol l-1. Median nitrate concentrations in ground water from adjacent floodplain deposits (468 ??mol l-1) and riverbed sediments (461 ??mol l-1), both of which are downgradient from the terrace deposits, were lower than the median concentration in the terrace deposits. The concentrations and ??15N values of nitrate and N2 in ground water indicated that denitrifying activity in the floodplain deposits and riverbed sediments accounted for 15- 30% of the difference in nitrate concentrations. Concentrations of Cl- and SiO2 indicated that mixing between river water and ground water in the floodplain deposits and riverbed sediments accounted for the remainder of the difference in nitrate concentrations. River flux measurements indicated that ground-water discharge in a 7.5 km segment of river had a nitrate load of 1718 kg N day-1 and accounted for about 18% of the total nitrate load in the river at the downstream end of that segment. This nitrate load was 70% less than the load predicted on the basis of the median nitrate concentration in the terrace deposits and assuming no denitrification or mixing in the aquifer. Water exchange between the river and aquifer caused ground water that originally discharged to the river to reenter denitrifying sediments in the riverbed and floodplain, thereby further decreasing the nitrate load in this stream-aquifer system. Results from this study indicated that denitrification and mixing within alluvial aquifer sediments may substantially decrease the nitrate load added to rivers by discharging ground water.

  12. Convective-core Overshoot and Suppression of Oscillations: Constraints from Red Giants in NGC 6811

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arentoft, T.; Brogaard, K.; Jessen-Hansen, J.

    Using data from the NASA spacecraft Kepler , we study solar-like oscillations in red giant stars in the open cluster NGC 6811. We determine oscillation frequencies, frequency separations, period spacings of mixed modes, and mode visibilities for eight cluster giants. The oscillation parameters show that these stars are helium-core-burning red giants. The eight stars form two groups with very different oscillation power spectra; the four stars with the lowest Δ ν values display rich sets of mixed l = 1 modes, while this is not the case for the four stars with higher Δ ν . For the four starsmore » with lowest Δ ν , we determine the asymptotic period spacing of the mixed modes, Δ P , which together with the masses we derive for all eight stars suggest that they belong to the so-called secondary clump. Based on the global oscillation parameters, we present initial theoretical stellar modeling that indicates that we can constrain convective-core overshoot on the main sequence and in the helium-burning phase for these ∼2 M {sub ⊙} stars. Finally, our results indicate less mode suppression than predicted by recent theories for magnetic suppression of certain oscillation modes in red giants.« less

  13. Time- and temperature-dependent failures of a bonded joint

    NASA Astrophysics Data System (ADS)

    Sihn, Sangwook

    This dissertation summarizes my study of time- and temperature-dependent behavior of a tubular lap bonded joint to provide a design methodology for windmill blade structures. The bonded joint is between a cast-iron rod and a GFRP composite pipe. The adhesive material is an epoxy containing chopped glass fibers. We proposed a new fabrication method to make concentric and void-less specimens of the tubular joint with a thick adhesive bondline to stimulate the root bond of a blade. The thick bondline facilitates the joint assembly of actual blades. For a better understanding of the behavior of the bonded joint, we studied viscoelastic behavior of the adhesive materials by measuring creep compliance at several temperatures during loading period. We observed that the creep compliance depends highly on the period of loading and the temperature. We applied time-temperature equivalence to the creep compliance of the adhesive material to obtain time-temperature shift factors. We also performed constant-rate of monotonically increased uniaxial tensile tests to measure static strength of the tubular lap joint at several temperatures and different strain-rates. We observed two failure modes from load-deflection curves and failed specimens. One is the brittle mode, which was caused by weakness of the interfacial strength occurring at low temperature and short period of loading. The other is the ductile mode, which was caused by weakness of the adhesive material at high temperature and long period of loading. Transition from the brittle to the ductile mode appeared as the temperature or the loading period increased. We also performed tests under uniaxial tensile-tensile cyclic loadings to measure fatigue strength of the bonded joint at several temperatures, frequencies and stress ratios. The fatigue data are analyzed statistically by applying the residual strength degradation model to calculate statistical distribution of the fatigue life. Combining the time-temperature equivalence and the residual strength degradation model enables us to estimate the fatigue life of the bonded joint at different load levels, frequencies and temperatures with a certain probability. A numerical example shows how to apply the life estimation method to a structure subjected to a random load history by rainflow cycle counting.

  14. Loading Mode and Environment Effects on Surface Profile Characteristics of Martensite Plates in Cu-Based SMAs

    NASA Astrophysics Data System (ADS)

    Suru, Marius-Gabriel; Paraschiv, Adrian-Liviu; Lohan, Nicoleta Monica; Pricop, Bogdan; Ozkal, Burak; Bujoreanu, Leandru-Gheorghe

    2014-07-01

    The present work reports the influence of the loading mode provided during training under constant stress, in bending, applied to lamellar specimens of Cu-Zn-Al shape memory alloys (SMAs). During training, the specimens were bent by a load fastened at their free end, while being martensitic at room temperature and they lifted the load by one-way effect (1WE), during heating up to austenitic field. On cooling to martensite field, the lower concave surface of bent specimens was compressed, and during heating it was elongated, being subjected to a series of tension-compression cycles, during heating-cooling, respectively. Conversely, the upper convex surface of bent specimens was elongated during cooling and compressed during heating, being subjected to compression-tension cycles. Furthermore, 2WE-trained actuators were tested by means of a hydraulic installation where, this time heating-cooling cycles were performed in oil conditions. Considering that the lower concave surface of the specimens was kept in compressed state, while the upper convex surface was kept in elongated state, the study reveals the influence of the two loading modes and environments on the width of martensite plates of the specimens trained under various numbers of cycles. In this purpose, Cu-Zn-Al specimens, trained under 100-300-500 cycles, were prepared and analyzed by atomic force microscopy (AFM) as well as optical and scanning electron microscopy (OM and SEM, respectively). The analysis also included AFM micrographs corroborated with statistical evaluations in order to reveal the effects of loading mode (tension or compression) in different environmental conditions of the specimens, on the surface profile characteristics of martensite plates, revealed by electropolishing.

  15. Impact of dust and smoke mixing on column-integrated aerosol properties from observations during a severe wildfire episode over Valencia (Spain).

    PubMed

    Gómez-Amo, J L; Estellés, V; Marcos, C; Segura, S; Esteve, A R; Pedrós, R; Utrillas, M P; Martínez-Lozano, J A

    2017-12-01

    The most destructive wildfire experienced in Spain since 2004 occurred close to Valencia in summer 2012. A total of 48.500ha were affected by two wildfires, which were mostly active during 29-30 June. The fresh smoke plume was detected at the Burjassot measurement station simultaneously to a severe dust episode. We propose an empirical method to evaluate the dust and smoke mixing and its impact on the microphysical and optical properties. For this, we combine direct-sun measurements with a Cimel CE-318 sun-photometer with an inversion methodology, and the Mie theory to derive the column-integrated size distribution, single scattering albedo (SSA) and asymmetry parameter (g). The mixing of dust and smoke greatly increased the aerosol load and modified the background aerosol properties. Mineral dust increased the aerosol optical depth (AOD) up to 1, while the smoke plume caused an extreme AOD peak of 8. The size distribution of the mixture was bimodal, with a fine and coarse modes dominated by the smoke particles and mineral dust, respectively. The SSA and g for the dust-smoke mixture show a marked sensitivity on the smoke mixing-ratio, mainly at longer wavelengths. Mineral dust and smoke share a similar SSA at 440nm (~0.90), but with opposite spectral dependency. A small dust contribution to the total AOD substantially affects the SSA of the mixture, and also SSA at 1020nm increases from 0.87 to 0.95. This leads to a different spectral behaviour of SSA that changes from positive (smoke plume) to negative (dust), depending on the dust and smoke mixing-ratio. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Principal component analysis of Raman spectra for TiO2 nanoparticle characterization

    NASA Astrophysics Data System (ADS)

    Ilie, Alina Georgiana; Scarisoareanu, Monica; Morjan, Ion; Dutu, Elena; Badiceanu, Maria; Mihailescu, Ion

    2017-09-01

    The Raman spectra of anatase/rutile mixed phases of Sn doped TiO2 nanoparticles and undoped TiO2 nanoparticles, synthesised by laser pyrolysis, with nanocrystallite dimensions varying from 8 to 28 nm, was simultaneously processed with a self-written software that applies Principal Component Analysis (PCA) on the measured spectrum to verify the possibility of objective auto-characterization of nanoparticles from their vibrational modes. The photo-excited process of Raman scattering is very sensible to the material characteristics, especially in the case of nanomaterials, where more properties become relevant for the vibrational behaviour. We used PCA, a statistical procedure that performs eigenvalue decomposition of descriptive data covariance, to automatically analyse the sample's measured Raman spectrum, and to interfere the correlation between nanoparticle dimensions, tin and carbon concentration, and their Principal Component values (PCs). This type of application can allow an approximation of the crystallite size, or tin concentration, only by measuring the Raman spectrum of the sample. The study of loadings of the principal components provides information of the way the vibrational modes are affected by the nanoparticle features and the spectral area relevant for the classification.

  17. SAR Imaging of Wave Tails: Recognition of Second Mode Internal Wave Patterns and Some Mechanisms of their Formation

    NASA Astrophysics Data System (ADS)

    da Silva, Jose C. B.; Magalhaes, J. M.; Buijsman, M. C.; Garcia, C. A. E.

    2016-08-01

    Mode-2 internal waves are usually not as energetic as larger mode-1 Internal Solitary Waves (ISWs), but they have attracted a great deal of attention in recent years because they have been identified as playing a significant role in mixing shelf waters [1]. This mixing is particularly effective for mode-2 ISWs because the location of these waves in the middle of the pycnocline plays an important role in eroding the barrier between the base of the surface mixed layer and the stratified deep layer below. An urgent problem in physical oceanography is therefore to account for the magnitude and distribution of ISW-driven mixing, including mode-2 ISWs. Several generation mechanisms of mode-2 ISWs have been identified. These include: (1) mode-1 ISWs propagating onshore (shoaling) and entering the breaking instability stage, or propagating over a steep sill; (2) a mode-1 ISW propagating offshore (antishoaling) over steep slopes of the shelf break, and undergoing modal transformation; (3) intrusion of the whole head of a gravity current into a three-layer fluid; (4) impingement of an internal tidal beam on the pycnocline, itself emanating from critical bathymetry; (5) nonlinear disintegration of internal tide modes; (6) lee wave mechanism. In this paper we provide methods to identify internal wave features denominated "Wave Tails" in SAR images of the ocean surface, which are many times associated with second mode internal waves. The SAR case studies that are presented portray evidence of the aforementioned generation mechanisms, and we further discuss possible methods to discriminate between the various types of mode-2 ISWs in SAR images, that emerge from these physical mechanisms. Some of the SAR images correspond to numerical simulations with the MITgcm in fully nonlinear and nonhydrostatic mode and in a 2D configuration with realistic stratification, bathymetry and other environmental conditions.Results of a global survey with some of these observations are presented, including: the Mascarene Ridge of the Indian Ocean; South China Sea; Andaman Sea; tropical Atlantic off the Amazon shelf break, Bay of Biscay of the western European margin; etc. The survey included the following SAR missions: ERS-1/2; Envisat and TerraSAR-X.

  18. MEASUREMENT OF WASTE LOADING IN SALTSTONE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harbour, J; Vickie Williams, V

    2008-07-18

    One of the goals of the Saltstone variability study is to identify the operational and compositional variables that control or influence the important processing and performance properties of Saltstone grout mixtures. One of those properties of importance is the Waste Loading (WL) of the decontaminated salt solution (DSS) in the Saltstone waste form. Waste loading is a measure of the amount of waste that can be incorporated within a waste form. The value of the Saltstone waste loading ultimately determines the number of vaults that will be required to disposition all of the DSS. In this report, the waste loadingmore » is defined as the volume in milliliters of DSS per liter of Saltstone waste form. The two most important parameters that determine waste loading for Saltstone are water to cementitious material (w/cm) ratio and the cured grout density. Data are provided that show the dependence of waste loading on the w/cm ratio for a fixed DSS composition using the current premix material (45% Blast Furnace Slag (BFS), 45% Fly Ash (FA) and 10% Ordinary Portland Cement (OPC)). The impact of cured grout density on waste loading was also demonstrated. Mixes (at 0.60 w/cm) made with a Modular Caustic side extraction Unit (MCU) simulant and either OPC or BFS have higher cured grout densities than mixes made with premix and increase the WL to 709 mL/L for the OPC mix and 689 mL/L for the BFS mix versus the value of 653 mL/L for MCU in premix at 0.60 w/cm ratio. Bleed liquid reduces the waste loading and lowers the effective w/cm ratio of Saltstone. A method is presented (and will be used in future tasks) for correcting the waste loading and the w/cm ratio of the as-batched mixes in those cases where bleed liquid is present. For example, the Deliquification, Dissolution and Adjustment (DDA) mix at an as-batched 0.60 w/cm ratio, when corrected for % bleed, gives a mix with a 0.55 w/cm ratio and a WL that has been reduced from 662 to 625 mL/L. An example is provided that demonstrated the quantitative impact of WL on the number of cells (each Saltstone vault contains two cells) required to disposition all of the {approx}100 million gallons of DSS available in the tanks. This calculation revealed that the number of cells required over the range of 0.48 to 0.62 w/cm ratio (equivalent to a WL range of 591 to 666 mL/L) varies from 65 to 57 cells (33 to 29 vaults). The intent of this oversimplified example was to show the range of variation in vaults expected due to w/cm ratio rather than to estimate the actual number of vaults required. There is a tradeoff between the waste loading and the processing and performance properties of Saltstone. The performance properties improve in general as the w/cm ratio decreases whereas the waste loading is reduced at lower w/cm ratios resulting in a larger number of Saltstone vaults. The final performance and processing requirements of Saltstone will determine the maximum waste loading achievable.« less

  19. Nonlinear Reduced Order Random Response Analysis of Structures with Shallow Curvature

    NASA Technical Reports Server (NTRS)

    Przekop, Adam; Rizzi, Stephen A.

    2006-01-01

    The goal of this investigation is to further develop nonlinear modal numerical simulation methods for application to geometrically nonlinear response of structures with shallow curvature under random loadings. For reduced order analysis, the modal basis selection must be capable of reflecting the coupling in both the linear and nonlinear stiffness. For the symmetric shallow arch under consideration, four categories of modal basis functions are defined. Those having symmetric transverse displacements (ST modes) can be designated as transverse dominated (ST-T) modes and in-plane dominated (ST-I) modes. Those having anti-symmetric transverse displacements (AT modes) can similarly be designated as transverse dominated (AT-T) modes and in-plane dominated (AT-I) modes. The response of an aluminum arch under a uniformly distributed transverse random loading is investigated. Results from nonlinear modal simulations made using various modal bases are compared with those obtained from a numerical simulation in physical degrees-of-freedom. While inclusion of ST-T modes is important for all response regimes, it is found that the ST-I modes become increasingly important in the nonlinear response regime, and that AT-T and AT-I modes are critical in the autoparametric regime.

  20. Nonlinear Reduced Order Random Response Analysis of Structures With Shallow Curvature

    NASA Technical Reports Server (NTRS)

    Przekop, Adam; Rizzi, Stephen A.

    2005-01-01

    The goal of this investigation is to further develop nonlinear modal numerical simulation methods for application to geometrically nonlinear response of structures with shallow curvature under random loadings. For reduced order analysis, the modal basis selection must be capable of reflecting the coupling in both the linear and nonlinear stiffness. For the symmetric shallow arch under consideration, four categories of modal basis functions are defined. Those having symmetric transverse displacements (ST modes) can be designated as transverse dominated (ST-T) modes and in-plane dominated (ST-I) modes. Those having anti-symmetric transverse displacements (AT modes) can similarly be designated as transverse dominated (AT-T) modes and in-plane dominated (AT-I) modes. The response of an aluminum arch under a uniformly distributed transverse random loading is investigated. Results from nonlinear modal simulations made using various modal bases are compared with those obtained from a numerical simulation in physical degrees-of-freedom. While inclusion of ST-T modes is important for all response regimes, it is found that the ST-I modes become increasingly important in the nonlinear response regime, and that AT-T and AT-I modes are critical in the autoparametric regime.

  1. Failure Prediction in Fiber Metal Laminates for Next Generation Aero Materials

    NASA Astrophysics Data System (ADS)

    Jeevan Rao, H.; Janaki Ramulu, Perumalla; Vishnu Vardhan, M.; Chandramouli, CH

    2016-09-01

    In aerospace industry, there is huge demand for low density and low cost materials with better mechanical properties. In this view, there are many researchers developed new materials interms of composites. Similar manner, the present paper also aimed to produce a new approach for cost effective materials of 3D weaved glass fiber metal laminates (FML) with different compositions using a numerical study. A method for the simulation of progressive delamination based on de-cohesion elements has been presented. De-cohesion elements are placed between layers of solid elements that open and shear in response to the loading situation. The onset of damage and the growth of delamination are simulated without previous knowledge about the location, the size, or the direction of propagation of the de-laminations. A softening law for mixed-mode delamination that can be applied to any interaction criterion is also proposed. The constitutive equation proposed uses a single variable, the maximum relative displacement, to track the damage at the interface under general loading conditions. The material properties required to define the element constitutive equation are the inter-laminar fracture toughness's, the penalty stiffness, and the strengths.

  2. Fracture Strength of Three-Unit Implant Supported Fixed Partial Dentures with Excessive Crown Height Fabricated from Different Materials.

    PubMed

    Nazari, Vahideh; Ghodsi, Safoura; Alikhasi, Marzieh; Sahebi, Majid; Shamshiri, Ahmad Reza

    2016-11-01

    Fracture strength is an important factor influencing the clinical long-term success of implant-supported prostheses especially in high stress situations like excessive crown height space (CHS). The purpose of this study was to compare the fracture strength of implant-supported fixed partial dentures (FPDs) with excessive crown height, fabricated from three different materials. Two implants with corresponding abutments were mounted in a metal model that simulated mandibular second premolar and second molar. Thirty 3-unit frameworks with supportive anatomical design were fabricated using zirconia, nickel-chromium alloy (Ni-Cr), and polyetheretherketone (PEEK) (n=10). After veneering, the CHS was equal to 15mm. Then; samples were axially loaded on the center of pontics until fracture in a universal testing machine at a crosshead speed of 0.5 mm/minute. The failure load data were analyzed by one-way ANOVA and Games-Howell tests at significance level of 0.05. The mean failure loads for zirconia, Ni-Cr and PEEK restorations were 2086±362N, 5591±1200N and 1430±262N, respectively. There were significant differences in the mean failure loads of the three groups (P<0.001). The fracture modes in zirconia, metal ceramic and PEEK restorations were cohesive, mixed and adhesive type, respectively. According to the findings of this study, all implant supported three-unit FPDs fabricated of zirconia, metal ceramic and PEEK materials are capable to withstand bite force (even para-functions) in the molar region with excessive CHS.

  3. Sliding mode controller with modified sliding function for DC-DC Buck Converter.

    PubMed

    Naik, B B; Mehta, A J

    2017-09-01

    This article presents design of Sliding Mode Controller with proportional integral type sliding function for DC-DC Buck Converter for the controlled power supply. The converter with conventional sliding mode controller results in a steady state error in load voltage. The proposed modified sliding function improves the steady state and dynamic performance of the Convertor and facilitates better choices of controller tuning parameters. The conditions for existence of sliding modes for proposed control scheme are derived. The stability of the closed loop system with proposed sliding mode control is proved and improvement in steady state performance is exemplified. The idea of adaptive tuning for the proposed controller to compensate load variations is outlined. The comparative study of conventional and proposed control strategy is presented. The efficacy of the proposed strategy is endowed by the simulation and experimental results. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  4. Delamination growth analysis in quasi-isotropic laminates under loads simulating low-velocity impact

    NASA Technical Reports Server (NTRS)

    Shivakumar, K. N.; Elber, W.

    1984-01-01

    A geometrically nonlinear finite-element analysis has been developed to calculate the strain energy released by delaminating plates during impact loading. Only the first mode of deformation, which is equivalent to static deflection, was treated. Both the impact loading and delamination in the plate were assumed to be axisymmetric. The strain energy release rate in peeling, GI, and shear sliding, GII, modes were calculated using the fracture mechanics crack closure technique. Energy release rates for various delamination sizes and locations and for various plate configurations and materials were compared. The analysis indicated that shear sliding was the primary mode of delamination growth. The analysis also indicated that the midplane (maximum transverse shear stress plane) delamination was more critical and would grow first before any other delamination of the same size near the midplane region. The delamination growth rate was higher (neutrally stable) for a low toughness (brittle) matrix and slower (stable) for high toughness matrix. The energy release rate in the peeling mode, GI, for a near-surface delamination can be as high as 0.5GII, and can contribute significantly to the delamination growth.

  5. 46 CFR 197.434 - Surface-supplied mixed-gas diving.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Surface-supplied mixed-gas diving. 197.434 Section 197... HEALTH STANDARDS GENERAL PROVISIONS Commercial Diving Operations Specific Diving Mode Procedures § 197.434 Surface-supplied mixed-gas diving. The diving supervisor shall insure that— (a) When mixed-gas...

  6. 3D Motions of Iron in Six-Coordinate {FeNO} 7 Hemes by Nuclear Resonance Vibration Spectroscopy [3-D Motions of Iron in Six-coordinate {FeNO} 7 Hemes by NRVS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peng, Qian; Pavlik, Jeffrey W.; Silvernail, Nathan J.

    The vibrational spectrum of a six-coordinate nitrosyl iron porphyrinate, monoclinic [Fe(T pFPP)(1-MeIm)(NO)] (T pFPP = tetra- para-fluorophenylporphyrin; 1-MeIm=1-methylimidazole), has been studied by oriented single-crystal nuclear resonance vibrational spectroscopy (NRVS). The crystal was oriented to give spectra perpendicular to the porphyrin plane and two in-plane spectra perpendicular or parallel to the projection of the FeNO plane. These enable assignment of the FeNO bending and stretching modes. The measurements reveal that the two in-plane spectra have substantial differences that result from the strongly bonded axial NO ligand. The direction of the in-plane iron motion is found to be largely parallel and perpendicularmore » to the projection of the bent FeNO on the porphyrin plane. The out-of-plane Fe-N-O stretching and bending modes are strongly mixed with each other, as well as with porphyrin ligand modes. The stretch is mixed with v 50 as was also observed for dioxygen complexes. The frequency of the assigned stretching mode of eight Fe-X-O (X= N, C, and O) complexes is correlated with the Fe XO bond lengths. The nature of highest frequency band at ≈560 cm -1 has also been examined in two additional new derivatives. Previously assigned as the Fe NO stretch (by resonance Raman), it is better described as the bend, as the motion of the central nitrogen atom of the FeNO group is very large. There is significant mixing of this mode. In conclusion, the results emphasize the importance of mode mixing; the extent of mixing must be related to the peripheral phenyl substituents.« less

  7. 3D Motions of Iron in Six-Coordinate {FeNO} 7 Hemes by Nuclear Resonance Vibration Spectroscopy [3-D Motions of Iron in Six-coordinate {FeNO} 7 Hemes by NRVS

    DOE PAGES

    Peng, Qian; Pavlik, Jeffrey W.; Silvernail, Nathan J.; ...

    2016-03-21

    The vibrational spectrum of a six-coordinate nitrosyl iron porphyrinate, monoclinic [Fe(T pFPP)(1-MeIm)(NO)] (T pFPP = tetra- para-fluorophenylporphyrin; 1-MeIm=1-methylimidazole), has been studied by oriented single-crystal nuclear resonance vibrational spectroscopy (NRVS). The crystal was oriented to give spectra perpendicular to the porphyrin plane and two in-plane spectra perpendicular or parallel to the projection of the FeNO plane. These enable assignment of the FeNO bending and stretching modes. The measurements reveal that the two in-plane spectra have substantial differences that result from the strongly bonded axial NO ligand. The direction of the in-plane iron motion is found to be largely parallel and perpendicularmore » to the projection of the bent FeNO on the porphyrin plane. The out-of-plane Fe-N-O stretching and bending modes are strongly mixed with each other, as well as with porphyrin ligand modes. The stretch is mixed with v 50 as was also observed for dioxygen complexes. The frequency of the assigned stretching mode of eight Fe-X-O (X= N, C, and O) complexes is correlated with the Fe XO bond lengths. The nature of highest frequency band at ≈560 cm -1 has also been examined in two additional new derivatives. Previously assigned as the Fe NO stretch (by resonance Raman), it is better described as the bend, as the motion of the central nitrogen atom of the FeNO group is very large. There is significant mixing of this mode. In conclusion, the results emphasize the importance of mode mixing; the extent of mixing must be related to the peripheral phenyl substituents.« less

  8. LabVIEW Serial Driver Software for an Electronic Load

    NASA Technical Reports Server (NTRS)

    Scullin, Vincent; Garcia, Christopher

    2003-01-01

    A LabVIEW-language computer program enables monitoring and control of a Transistor Devices, Inc., Dynaload WCL232 (or equivalent) electronic load via an RS-232 serial communication link between the electronic load and a remote personal computer. (The electronic load can operate at constant voltage, current, power consumption, or resistance.) The program generates a graphical user interface (GUI) at the computer that looks and acts like the front panel of the electronic load. Once the electronic load has been placed in remote-control mode, this program first queries the electronic load for the present values of all its operational and limit settings, and then drops into a cycle in which it reports the instantaneous voltage, current, and power values in displays that resemble those on the electronic load while monitoring the GUI images of pushbuttons for control actions by the user. By means of the pushbutton images and associated prompts, the user can perform such operations as changing limit values, the operating mode, or the set point. The benefit of this software is that it relieves the user of the need to learn one method for operating the electronic load locally and another method for operating it remotely via a personal computer.

  9. Separation of density and viscosity influence on liquid-loaded surface acoustic wave devices

    NASA Astrophysics Data System (ADS)

    Herrmann, F.; Hahn, D.; Büttgenbach, S.

    1999-05-01

    Love-mode sensors are reported for separate measurement of liquid density and viscosity. They combine the general merits of Love-mode devices, e.g., ease of sensitivity adjustment and robustness, with a highly effective procedure of separate determination of liquid density and viscosity. A model is proposed to describe the frequency response of the devices to liquid loading. Moreover, design rules are given for further optimization and sensitivity enhancement.

  10. Delamination Fracture in Graphite/Epoxy Materials.

    DTIC Science & Technology

    1986-06-01

    stress fields for the two loading conditions. Figures 7-10 indicate the results of a finite element analysis % for the test coupons loaded in mode I and...results somewhat approximate, the difference in the shape of the Srespective stress fields and the different rates of decay of the _ stress fields...Shear deformation is dominant feature .: observed. 1000x (all). 7. ay stress contour plot of split laminate beam tested under . mode I conditions. 8

  11. Cascaded H-bridge multilevel inverter for renewable energy generation

    NASA Astrophysics Data System (ADS)

    Pandey, Ravikant; Nath Tripathi, Ravi; Hanamoto, Tsuyoshi

    2016-04-01

    In this paper cascaded H-bridge multilevel inverter (CHBMLI) has been investigated for the application of renewable energy generation. Energy sources like solar, wind, hydro, biomass or combination of these can be manipulated to obtain alternative sources for renewable energy generation. These renewable energy sources have different electrical characteristics like DC or AC level so it is challenging to use generated power by connecting to grid or load directly. The renewable energy source require specific power electronics converter as an interface for conditioning generated power .The multilevel inverter can be utilized for renewable energy sources in two different modes, the power generation mode (stand-alone mode), and compensator mode (statcom). The performance of the multilevel inverter has been compared with two level inverter. In power generation mode CHBMLI supplies the active and reactive power required by the different loads. For operation in compensator mode the indirect current control based on synchronous reference frame theory (SRFT) ensures the grid operating in unity power factor and compensate harmonics and reactive power.

  12. Fracture modes in human teeth.

    PubMed

    Lee, J J-W; Kwon, J-Y; Chai, H; Lucas, P W; Thompson, V P; Lawn, B R

    2009-03-01

    The structural integrity of teeth under stress is vital to functional longevity. We tested the hypothesis that this integrity is limited by fracture of the enamel. Experiments were conducted on molar teeth, with a metal rod loaded onto individual cusps. Fracture during testing was tracked with a video camera. Two longitudinal modes of cracking were observed: median cracking from the contact zone, and margin cracking along side walls. Median cracks initiated from plastic damage at the contact site, at first growing slowly and then accelerating to the tooth margin. Margin cracks appeared to originate from the cemento-enamel junction, and traversed the tooth wall adjacent to the loaded cusp from the gingival to the occlusal surface. All cracks remained confined within the enamel shell up to about 550 N. At higher loads, additional crack modes--such as enamel chipping and delamination--began to manifest themselves, leading to more comprehensive failure of the tooth structure.

  13. [Particulate distribution characteristics of Chinese phrase V diesel engine based on butanol-diesel blends].

    PubMed

    Lou, Di-Ming; Xu, Ning; Fan, Wen-Jia; Zhang, Tao

    2014-02-01

    With a common rail diesel engine without any modification and the engine exhaust particle number and particle size analyzer EEPS, this study used the air-fuel ratio to investigate the particulate number concentration, mass concentration and number distribution characteristics of a diesel engine fueled with butanol-diesel blends (Bu10, Bu15, Bu20, Bu30 and Bu40) and petroleum diesel. The results show: for all test fuels, the particle number distributions turn to be unimodal. With the increasing of butanol, numbers of nucleation mode particles and small accumulation mode particle decrease. At low speed and low load conditions, the number of large accumulation mode particle increases slightly, but under higher speed and load conditions, the number does not increase. When the fuels contain butanol, the total particle number concentration and mass concentration in all conditions decrease and that is more obvious at high speed load.

  14. Cdc45-induced loading of human RPA onto single-stranded DNA.

    PubMed

    Szambowska, Anna; Tessmer, Ingrid; Prus, Piotr; Schlott, Bernhard; Pospiech, Helmut; Grosse, Frank

    2017-04-07

    Cell division cycle protein 45 (Cdc45) is an essential component of the eukaryotic replicative DNA helicase. We found that human Cdc45 forms a complex with the single-stranded DNA (ssDNA) binding protein RPA. Moreover, it actively loads RPA onto nascent ssDNA. Pull-down assays and surface plasmon resonance studies revealed that Cdc45-bound RPA complexed with ssDNA in the 8-10 nucleotide binding mode, but dissociated when RPA covered a 30-mer. Real-time analysis of RPA-ssDNA binding demonstrated that Cdc45 catalytically loaded RPA onto ssDNA. This placement reaction required physical contacts of Cdc45 with the RPA70A subdomain. Our results imply that Cdc45 controlled stabilization of the 8-nt RPA binding mode, the subsequent RPA transition into 30-mer mode and facilitated an ordered binding to ssDNA. We propose that a Cdc45-mediated loading guarantees a seamless deposition of RPA on newly emerging ssDNA at the nascent replication fork. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  15. Wall Pressure Unsteadiness and Side Loads in Overexpanded Rocket Nozzles

    NASA Technical Reports Server (NTRS)

    Baars, Woutijn J.; Tinney, Charles E.; Ruf, Joseph H.; Brown, Andrew M.; McDaniels, David M.

    2012-01-01

    Surveys of both the static and dynamic wall pressure signatures on the interior surface of a sub-scale, cold-flow and thrust optimized parabolic nozzle are conducted during fixed nozzle pressure ratios corresponding to FSS and RSS states. The motive is to develop a better understanding for the sources of off-axis loads during the transient start-up of overexpanded rocket nozzles. During FSS state, pressure spectra reveal frequency content resembling SWTBLI. Presumably, when the internal flow is in RSS state, separation bubbles are trapped by shocks and expansion waves; interactions between the separated flow regions and the waves produce asymmetric pressure distributions. An analysis of the azimuthal modes reveals how the breathing mode encompasses most of the resolved energy and that the side load inducing mode is coherent with the response moment measured by strain gauges mounted upstream of the nozzle on a flexible tube. Finally, the unsteady pressure is locally more energetic during RSS, albeit direct measurements of the response moments indicate higher side load activity when in FSS state. It is postulated that these discrepancies are attributed to cancellation effects between annular separation bubbles.

  16. Nonlinear Analysis of the Space Shuttle Superlightweight LO2 Tank. Part 2; Behavior Under 3g End-of-Flight Loads

    NASA Technical Reports Server (NTRS)

    Nemeth, Michael P.; Young, Richard D.; Collins, Timothy J.; Starnes, James H.,Jr.

    1998-01-01

    Results of linear bifurcation and nonlinear analyses of the Space Shuttle super lightweight (SLWT) external liquid-oxygen (LO2) tank are presented for an important end-of-flight loading condition. These results illustrate an important type of response mode for thin-walled shells, that are subjected to combined mechanical and thermal loads, that may be encountered in the design of other liquid-fuel launch vehicles. Linear bifurcation analyses are presented that predict several nearly equal eigenvalues that correspond to local buckling modes in the aft dome of the LO2 tank. In contrast, the nonlinear response phenomenon is shown to consist of a short-wavelength bending deformation in the aft elliptical dome of the LO2 tank that grows in amplitude in a stable manner with increasing load. Imperfection sensitivity analyses are presented that show that the presence of several nearly equal eigenvalues does not lead to a premature general instability mode for the aft dome. For the linear bifurcation and nonlinear analyses, the results show that accurate predictions of the response of the shell generally require a large-scale, high fidelity finite-element model. Results are also presented that show that the SLWT LO2 tank can support loads in excess of approximately 1.9 times the values of the operational loads considered.

  17. Theta phase precession and phase selectivity: a cognitive device description of neural coding

    NASA Astrophysics Data System (ADS)

    Zalay, Osbert C.; Bardakjian, Berj L.

    2009-06-01

    Information in neural systems is carried by way of phase and rate codes. Neuronal signals are processed through transformative biophysical mechanisms at the cellular and network levels. Neural coding transformations can be represented mathematically in a device called the cognitive rhythm generator (CRG). Incoming signals to the CRG are parsed through a bank of neuronal modes that orchestrate proportional, integrative and derivative transformations associated with neural coding. Mode outputs are then mixed through static nonlinearities to encode (spatio) temporal phase relationships. The static nonlinear outputs feed and modulate a ring device (limit cycle) encoding output dynamics. Small coupled CRG networks were created to investigate coding functionality associated with neuronal phase preference and theta precession in the hippocampus. Phase selectivity was found to be dependent on mode shape and polarity, while phase precession was a product of modal mixing (i.e. changes in the relative contribution or amplitude of mode outputs resulted in shifting phase preference). Nonlinear system identification was implemented to help validate the model and explain response characteristics associated with modal mixing; in particular, principal dynamic modes experimentally derived from a hippocampal neuron were inserted into a CRG and the neuron's dynamic response was successfully cloned. From our results, small CRG networks possessing disynaptic feedforward inhibition in combination with feedforward excitation exhibited frequency-dependent inhibitory-to-excitatory and excitatory-to-inhibitory transitions that were similar to transitions seen in a single CRG with quadratic modal mixing. This suggests nonlinear modal mixing to be a coding manifestation of the effect of network connectivity in shaping system dynamic behavior. We hypothesize that circuits containing disynaptic feedforward inhibition in the nervous system may be candidates for interpreting upstream rate codes to guide downstream processes such as phase precession, because of their demonstrated frequency-selective properties.

  18. Analysis of Composite Skin-Stiffener Debond Specimens Using Volume Elements and a Shell/3D Modeling Technique

    NASA Technical Reports Server (NTRS)

    Krueger, Ronald; Minguet, Pierre J.; Bushnell, Dennis M. (Technical Monitor)

    2002-01-01

    The debonding of a skin/stringer specimen subjected to tension was studied using three-dimensional volume element modeling and computational fracture mechanics. Mixed mode strain energy release rates were calculated from finite element results using the virtual crack closure technique. The simulations revealed an increase in total energy release rate in the immediate vicinity of the free edges of the specimen. Correlation of the computed mixed-mode strain energy release rates along the delamination front contour with a two-dimensional mixed-mode interlaminar fracture criterion suggested that in spite of peak total energy release rates at the free edge the delamination would not advance at the edges first. The qualitative prediction of the shape of the delamination front was confirmed by X-ray photographs of a specimen taken during testing. The good correlation between prediction based on analysis and experiment demonstrated the efficiency of a mixed-mode failure analysis for the investigation of skin/stiffener separation due to delamination in the adherents. The application of a shell/3D modeling technique for the simulation of skin/stringer debond in a specimen subjected to three-point bending is also demonstrated. The global structure was modeled with shell elements. A local three-dimensional model, extending to about three specimen thicknesses on either side of the delamination front was used to capture the details of the damaged section. Computed total strain energy release rates and mixed-mode ratios obtained from shell/3D simulations were in good agreement with results obtained from full solid models. The good correlations of the results demonstrated the effectiveness of the shell/3D modeling technique for the investigation of skin/stiffener separation due to delamination in the adherents.

  19. The resonance of twin supersonic jets

    NASA Technical Reports Server (NTRS)

    Morris, Philip J.

    1989-01-01

    This paper presents an analytical study of the resonant interaction between twin supersonic jets. An instability wave model is used to describe the large scale coherent structures in the jet mixing layers. A linearized shock cell model is also given for the jets when operating off design. The problem's geometry admits four types of normal modes associated with each azimuthal mode number in the single jet. The stability of these modes is examined for both a vortex sheet model of the jet and a jet flow represented by realistic profiles. The growth rates of each mode number and type are found to vary with jet separation and mixing layer thickness and Strouhal number. Contours of equal pressure level are obtained for each mode. The region close to the symmetry axis is found to have the greatest pressure fluctuation amplitude.

  20. Dynamic plasticity and failure of high-purity alumina under shock loading.

    PubMed

    Chen, M W; McCauley, J W; Dandekar, D P; Bourne, N K

    2006-08-01

    Most high-performance ceramics subjected to shock loading can withstand high failure strength and exhibit significant inelastic strain that cannot be achieved under conventional loading conditions. The transition point from elastic to inelastic response prior to failure during shock loading, known as the Hugoniot elastic limit (HEL), has been widely used as an important parameter in the characterization of the dynamic mechanical properties of ceramics. Nevertheless, the underlying micromechanisms that control HEL have been debated for many years. Here we show high-resolution electron microscopy of high-purity alumina, soft-recovered from shock-loading experiments. The change of deformation behaviour from dislocation activity in the vicinity of grain boundaries to deformation twinning has been observed as the impact pressures increase from below, to above HEL. The evolution of deformation modes leads to the conversion of material failure from an intergranular mode to transgranular cleavage, in which twinning interfaces serve as the preferred cleavage planes.

  1. Effect of adhesive interleaving and discontinuous plies on failure of composite laminates subject to transverse normal loads

    NASA Technical Reports Server (NTRS)

    Jegley, Dawn C.

    1989-01-01

    Results of a series of tests to determine the effects of adhesive interleaving and discontinuous plies (plies with end-to-end gaps) on the displacements, failure loads and failure modes of graphite-epoxy laminates subjected to transverse normal loads are presented. Adhesive interleaving can be used to contain local damage within a group of plies, i.e., to arrest crack propagation on the interlaminate level, and it can increase the amount of normal displacement the laminate can withstand before failure. However, the addition of adhesive interleaving to a laminate does not significantly increase its load carrying capability. A few discontinuous plies in a laminate can reduce the normal displacement and load at failure by 10 to 40 percent compared to a laminate with no discontinuous plies, but the presence of the ply discontinuities does not generally change the failure location or the failure mode of the laminate.

  2. Load power device and system for real-time execution of hierarchical load identification algorithms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Yi; Madane, Mayura Arun; Zambare, Prachi Suresh

    A load power device includes a power input; at least one power output for at least one load; and a plurality of sensors structured to sense voltage and current at the at least one power output. A processor is structured to provide real-time execution of: (a) a plurality of load identification algorithms, and (b) event detection and operating mode detection for the at least one load.

  3. Sediment and Fecal Indicator Bacteria Loading in a Mixed Land Use Watershed: Contributions from Suspended and Bed Load Transport

    EPA Science Inventory

    Water quality studies that quantify sediment and fecal bacteria loading commonly focus on suspended contaminants transported during high flows. Fecal contaminants in bed sediments are typically ignored and need to be considered because of their potential to increase pathogen load...

  4. Composite Interlaminar Shear Fracture Toughness, G(sub 2c): Shear Measurement of Sheer Myth?

    NASA Technical Reports Server (NTRS)

    OBrien, T. Kevin

    1997-01-01

    The concept of G2c as a measure of the interlaminar shear fracture toughness of a composite material is critically examined. In particular, it is argued that the apparent G2c as typically measured is inconsistent with the original definition of shear fracture. It is shown that interlaminar shear failure actually consists of tension failures in the resin rich layers between plies followed by the coalescence of ligaments created by these failures and not the sliding of two planes relative to one another that is assumed in fracture mechanics theory. Several strain energy release rate solutions are reviewed for delamination in composite laminates and structural components where failures have been experimentally documented. Failures typically occur at a location where the mode 1 component accounts for at least one half of the total G at failure. Hence, it is the mode I and mixed-mode interlaminar fracture toughness data that will be most useful in predicting delamination failure in composite components in service. Although apparent G2c measurements may prove useful for completeness of generating mixed-mode criteria, the accuracy of these measurements may have very little influence on the prediction of mixed-mode failures in most structural components.

  5. Optimal Design of a Traveling-Wave Kinetic Inductance Amplifier Operated in Three-Wave Mixing Mode

    NASA Astrophysics Data System (ADS)

    Erickson, Robert; Bal, Mustafa; Ku, Ksiang-Sheng; Wu, Xian; Pappas, David

    In the presence of a DC bias, an injected pump, of frequency fP, and a signal, of frequency fS, undergo parametric three-way mixing (3WM) within a traveling-wave kinetic inductance (KIT) amplifier, producing an idler product of frequency fI =fP -fS . Periodic frequency stops are engineered into the coplanar waveguide of the device to enhance signal amplification. With fP placed just above the first frequency stop gap, 3WM broadband signal gain is achieved with maximum gain at fS =fP / 2 . Within a theory of the dispersion of traveling waves in the presence of these engineered loadings, which accounts for this broadband signal gain, we show how an optimal frequency-stop design may be constructed to achieve maximum signal amplification. The optimization approach we describe can be applied to the design of other nonlinear traveling-wave parametric amplifiers. This work was supported by the Army Research Office and the Laboratory for Physical Sciences under EAO221146, EAO241777, and the NIST Quantum Initiative. RPE acknowledges Grant 60NANB14D024 from the US Department of Commerce, NIST.

  6. Favorable effects of turbulent plasma mixing on the performance of innovative tokamak divertors

    NASA Astrophysics Data System (ADS)

    Ryutov, D. D.; Cohen, R. H.; Rognlien, T. D.; Umansky, M. V.

    2013-10-01

    The problem of reducing the heat load on plasma-facing components is one of the most demanding issues for MFE devices. The general approach to the solution of this problem is the use of a specially configured poloidal magnetic field, so called magnetic divertors. In recent years, novel divertors possessing the 2-nd and 3-rd order nulls of the poloidal field (PF) have been proposed. They are called a ``snowflake'' (SF) and a ``cloverleaf'' (CL) divertor, respectively, due to characteristic shape of the magnetic separatrix. Among several beneficial features of such divertors is an effect of strong turbulent plasma mixing that is intrinsic to the zone of weak PF near the null-point. The turbulence spreads the heat flux between multiple divertor exhaust channels and increases the heat flux width within each channel. Among physical processes affecting the onset of convection the curvature-driven mode of axisymmetric rolls is most prominent. The effect is quite significant for the SF and is even stronger for the CL divertor. Projections to future ITER-scale facilities are discussed. Work performed for U.S. DoE by LLNL under Contract DE-AC52-07NA27344.

  7. Where have we gone wrong? Perceptual load does not affect selective attention.

    PubMed

    Benoni, Hanna; Tsal, Yehoshua

    2010-06-18

    The theory of perceptual load (Lavie & Tsal, 1994) proposes that with low load in relevant processing left over resources spill over to process irrelevant distractors. Interference could only be prevented under High-Load Conditions where relevant processing exhausts attentional resources. The theory is based primarily on the finding that distractor interference obtained in low load displays, when the target appears alone, is eliminated in high load displays when it is embedded among neutral letters. However, a possible alternative interpretation of this effect is that the distractor is similarly processed in both displays, yet its interference in the large displays is diluted by the presence of the neutral letters. We separated the possible effects of load and dilution by adding dilution displays that were high in dilution and low in perceptual load. In the first experiment these displays contained as many letters as the high load displays, but their neutral letters were clearly distinguished from the target, thereby allowing for a low load processing mode. In the second experiment we presented identical multicolor displays in the Dilution and High-Load Conditions. However, in the former the target color was known in advance (thereby preserving a low load processing mode) whereas in the latter it was not. In both experiments distractor interference was completely eliminated under the Dilution Condition. Thus, it is dilution not perceptual load affecting distractor processing. 2010 Elsevier Ltd. All rights reserved.

  8. Damage assessment in PRC and RC beams by dynamic tests

    NASA Astrophysics Data System (ADS)

    Capozucca, R.

    2011-07-01

    The present paper reports on damaged prestressed reinforced concrete (PRC) beams and reinforced concrete (RC) beams experimentally investigated through dynamic testing in order to verify damage degree due to reinforcement corrosion or cracking correlated to loading. The experimental program foresaw that PRC beams were subjected to artificial reinforcement corrosion and static loading while RC beams were damaged by increasing applied loads to produce bending cracking. Dynamic investigation was developed both on undamaged and damaged PRC and RC beams measuring natural frequencies and evaluating vibration mode shapes. Dynamic testing allowed the recording of frequency response variations at different vibration modes. The experimental results are compared with theoretical results and discussed.

  9. Passively Shunted Piezoelectric Damping of Centrifugally-Loaded Plates

    NASA Technical Reports Server (NTRS)

    Duffy, Kirsten P.; Provenza, Andrew J.; Trudell, Jeffrey J.; Min, James B.

    2009-01-01

    Researchers at NASA Glenn Research Center have been investigating shunted piezoelectric circuits as potential damping treatments for turbomachinery rotor blades. This effort seeks to determine the effects of centrifugal loading on passively-shunted piezoelectric - damped plates. Passive shunt circuit parameters are optimized for the plate's third bending mode. Tests are performed both non-spinning and in the Dynamic Spin Facility to verify the analysis, and to determine the effectiveness of the damping under centrifugal loading. Results show that a resistive shunt circuit will reduce resonant vibration for this configuration. However, a tuned shunt circuit will be required to achieve the desired damping level. The analysis and testing address several issues with passive shunt circuit implementation in a rotating system, including piezoelectric material integrity under centrifugal loading, shunt circuit implementation, and tip mode damping.

  10. Transverse load sensor based on Mach-Zehnder interferometer constructed by a bowknot type taper

    NASA Astrophysics Data System (ADS)

    Lou, Weimin; Shentu, Fengying; Wang, Youqing; Shen, Changyu; Dong, Xinyong

    2018-01-01

    A transverse load fiber sensor based on Mach-Zehnder interferometer constructed by a Bowknot-type taper between a single mode fiber (SMF) and a polarization maintaining fiber (PMF) was proposed. Due to the polarization maintaining fiber's birefringence, intensities of the two peaks which are corresponding to the fast and slow axis modes changed with the transverse load applied on the PMF. The experimental results showed that the structure with a 2 cm-long PMF has the sensitivities of 104.52 and -102.94 dB/(N/mm) for the fast and slow axis spectral dip wavelengths of 1485 and 1545 nm in the interference pattern, respectively, which are almost 7 times higher than that of the current similar existing transverse load sensor.

  11. A Programmable and Configurable Mixed-Mode FPAA SoC

    DTIC Science & Technology

    2016-03-17

    A Programmable and Configurable Mixed-Mode FPAA SoC Sahil Shah, Sihwan Kim, Farhan Adil, Jennifer Hasler, Suma George, Michelle Collins, Richard...Abstract: The authors present a Floating-Gate based, System-On-Chip large-scale Field- Programmable Analog Array IC that integrates divergent concepts...Floating-Gate, SoC, Command Word Classification This paper presents a Floating-Gate (FG) based, System- On-Chip (SoC) large-scale Field- Programmable

  12. The Effectiveness of a Mixed-Mode Survey on Domestic Violence in Curaçao: Response and Data Quality

    ERIC Educational Resources Information Center

    van Wijk, Nikil; de Leeuw, Edith; de Bruijn, Jeanne

    2015-01-01

    To collect reliable statistical data on domestic violence in Curaçao, we conducted a large-scale quantitative study (n = 816). To meet with the special needs of the population and topic, we designed a tailored mixed-mode survey to assess the prevalence of domestic violence in Curaçao and its health consequences. Great care was taken to reduce…

  13. Sliding Mode Observer-Based Current Sensor Fault Reconstruction and Unknown Load Disturbance Estimation for PMSM Driven System.

    PubMed

    Zhao, Kaihui; Li, Peng; Zhang, Changfan; Li, Xiangfei; He, Jing; Lin, Yuliang

    2017-12-06

    This paper proposes a new scheme of reconstructing current sensor faults and estimating unknown load disturbance for a permanent magnet synchronous motor (PMSM)-driven system. First, the original PMSM system is transformed into two subsystems; the first subsystem has unknown system load disturbances, which are unrelated to sensor faults, and the second subsystem has sensor faults, but is free from unknown load disturbances. Introducing a new state variable, the augmented subsystem that has sensor faults can be transformed into having actuator faults. Second, two sliding mode observers (SMOs) are designed: the unknown load disturbance is estimated by the first SMO in the subsystem, which has unknown load disturbance, and the sensor faults can be reconstructed using the second SMO in the augmented subsystem, which has sensor faults. The gains of the proposed SMOs and their stability analysis are developed via the solution of linear matrix inequality (LMI). Finally, the effectiveness of the proposed scheme was verified by simulations and experiments. The results demonstrate that the proposed scheme can reconstruct current sensor faults and estimate unknown load disturbance for the PMSM-driven system.

  14. Investigating vibrational anharmonic couplings in cyanide-bridged transition metal mixed valence complexes using two-dimensional infrared spectroscopy.

    PubMed

    Slenkamp, Karla M; Lynch, Michael S; Van Kuiken, Benjamin E; Brookes, Jennifer F; Bannan, Caitlin C; Daifuku, Stephanie L; Khalil, Munira

    2014-02-28

    Using polarization-selective two-dimensional infrared (2D IR) spectroscopy, we measure anharmonic couplings and angles between the transition dipole moments of the four cyanide stretching (νCN) vibrations found in [(NH3)5Ru(III)NCFe(II)(CN)5](-) (FeRu) dissolved in D2O and formamide and [(NC)5Fe(II)CNPt(IV)(NH3)4NCFe(II)(CN)5](4-) (FePtFe) dissolved in D2O. These cyanide-bridged transition metal complexes serve as model systems for studying the role of high frequency vibrational modes in ultrafast photoinduced charge transfer reactions. Here, we focus on the spectroscopy of the νCN modes in the electronic ground state. The FTIR spectra of the νCN modes of the bimetallic and trimetallic systems are strikingly different in terms of frequencies, amplitudes, and lineshapes. The experimental 2D IR spectra of FeRu and FePtFe and their fits reveal a set of weakly coupled anharmonic νCN modes. The vibrational mode anharmonicities of the individual νCN modes range from 14 to 28 cm(-1). The mixed-mode anharmonicities range from 2 to 14 cm(-1). In general, the bridging νCN mode is most weakly coupled to the radial νCN mode, which involves the terminal CN ligands. Measurement of the relative transition dipole moments of the four νCN modes reveal that the FeRu molecule is almost linear in solution when dissolved in formamide, but it assumes a bent geometry when dissolved in D2O. The νCN modes are modelled as bilinearly coupled anharmonic oscillators with an average coupling constant of 6 cm(-1). This study elucidates the role of the solvent in modulating the molecular geometry and the anharmonic vibrational couplings between the νCN modes in cyanide-bridged transition metal mixed valence complexes.

  15. Influence of Fault Surface Heterogeneity on Apparent Frictional Strength, Slip Mode and Rupture Mode: Insights from Meter-Scale Rock Friction Experiments

    NASA Astrophysics Data System (ADS)

    Xu, S.; Fukuyama, E.; Yamashita, F.; Mizoguchi, K.; Takizawa, S.; Kawakata, H.

    2016-12-01

    Influence of fault zone heterogeneity on the behavior of fault motion has been studied in many aspects, such as strain partitioning, heat generation, slip mode, rupture mode, and effective friction law. However, a multi-scale investigation of fault behavior due to heterogeneity was difficult in nature, because of the limited access to natural fault zones at the seismogenic depth and the lack of in situ high-resolution observations. To overcome these difficulties, we study the behavior of a meter-scale synthetic fault made of Indian metagabbro during laboratory direct shear experiments, utilizing high-density arrays of strain gauges mounted close to the fault. We focus on two target experiments that are loaded under the same normal stress of 6.7 MPa and loading rate of 0.01 mm/s, but with different initial surface conditions. To change the surface condition, we applied a fast loading experiment under a rate of 1 mm/s between the two target experiments. It turned out the fast loading activated many foreshocks before the mainshock and caused a roaming of the mainshock nucleation site. These features were closely related to the re-distribution of the real contact area and surface wear, which together reflected a more heterogeneous state of the surface condition. During the first target experiment before the fast loading, the synthetic fault moved in a classic stick-slip fashion and the typical rupture mode was subshear within the range of the fault length. However, during the second target experiment, the synthetic fault inherited the heterogeneous features generated from the previous fast loading, showing a macroscopic creep-like behavior that actually consisted of many small stick-slip events. The apparent frictional strength increased while the recurrence interval and the stress drop decreased, compared to the levels seen in the first target experiment. The rupture mode became more complicated; supershear phases sometimes emerged but may only exist transiently. Their occurrence or termination showed a strong correlation with the local stress field characterized by short-range coherence. These observations highlight the role of surface heterogeneity in influencing fault motion, both macroscopically and locally, and have important implications for understanding the behavior of natural faults.

  16. Parietal EEG alpha suppression time of memory retrieval reflects memory load while the alpha power of memory maintenance is a composite of the visual process according to simultaneous and successive Sternberg memory tasks.

    PubMed

    Okuhata, Shiho; Kusanagi, Takuya; Kobayashi, Tetsuo

    2013-10-25

    The present study investigated EEG alpha activity during visual Sternberg memory tasks using two different stimulus presentation modes to elucidate how the presentation mode affected parietal alpha activity. EEGs were recorded from 10 healthy adults during the Sternberg tasks in which memory items were presented simultaneously and successively. EEG power and suppression time (ST) in the alpha band (8-13Hz) were computed for the memory maintenance and retrieval phases. The alpha activity differed according to the presentation mode during the maintenance phase but not during the retrieval phase. Results indicated that parietal alpha power recorded during the maintenance phase did not reflect the memory load alone. In contrast, ST during the retrieval phase increased with the memory load for both presentation modes, indicating a serial memory scanning process, regardless of the presentation mode. These results indicate that there was a dynamic transition in the memory process from the maintenance phase, which was sensitive to external factors, toward the retrieval phase, during which the process converged on the sequential scanning process, the Sternberg task essentially required. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  17. Coupled Groups of g-Modes in a Sun with Mixed Core

    NASA Technical Reports Server (NTRS)

    Wolff, Charles L.; ODonovan, Adam

    2007-01-01

    Groups of linear g-modes can sum to create long-lived nonlinear oscillations in small "hot volumes" very deep in the Sun that help drive the modes. In these volumes (dimensions -10 Mm), the time average rate of He-3 burning doubles as temperature fluctuations exceed 10% and rises by an order of magnitude for fluctuations of 25%. To be consistent with locally large motions, we impose a mixed shell on an otherwise standard solar model before computing g-mode solutions. Mixing in the assumed shell r = (0.10+/-0.03) R(sub sun) is rapid (<<10(exp 6) yr) with slower mixing somewhat beyond. If l is the principal spherical harmonic index, a set of g-modes for any single l less than or equal to 15 with five consecutive radial harmonics can be excited with nearly linear thermal amplitudes, A(sub T) less than or equal to 0.053, throughout the star and a fractional temperature fluctuation in its hot volume of (Delta)T/T less than or equal to 0.18. These thresholds for excitation will become smaller when sets for several values of l are computed simultaneously. There is some evidence for the rotation of g-mode sets in the long solar activity record and g-mode upward wave flux has been suggested to explain the 1.3 yr reversing flows tentatively detected below the Sun's convective envelope (CE). The large local amplitudes needed for excitation implies that g-modes may transport a non-negligible fraction of the solar luminosity, yet their near linear amplitudes outside the hot volume suggests amplitudes over most of the solar surface that would be barely detectable for l > 3. A formalism is presented for summing the g-modes and estimating growth rates under the approximation that modes are strictly linear except in a hot volume which holds only a few percent of mode kinetic energy. Finally over the range 2 less than or equal to l less than or equal to 30, we summed all zonal harmonics, m, for a given l and computed the relative angular orientations that would release the most nuclear energy. This should be close to the physically preferred angular state of such a family and a few examples were displayed.

  18. Biomechanical comparison of anterior cervical plating and combined anterior/lateral mass plating.

    PubMed

    Adams, M S; Crawford, N R; Chamberlain, R H; Bse; Sonntag, V K; Dickman, C A

    2001-01-01

    Previous studies showed anterior plates of older design to be inadequate for stabilizing the cervical spine in all loading directions. No studies have investigated enhancement in stability obtained by combining anterior and posterior plates. To determine which modes of loading are stabilized by anterior plating after a cervical burst fracture and to determine whether adding posterior plating further significantly stabilizes the construct. A repeated-measures in vitro biomechanical flexibility experiment was performed to investigate how surgical destabilization and subsequent addition of hardware components alter spinal stability. Six human cadaveric specimens were studied. Angular range of motion (ROM) and neutral zone (NZ) were quantified during flexion, extension, lateral bending, and axial rotation. Nonconstraining, nondestructive torques were applied while recording three-dimensional motion optoelectronically. Specimens were tested intact, destabilized by simulated burst fracture with posterior distraction, plated anteriorly with a unicortical locking system, and plated with a combined anterior/posterior construct. The anterior plate significantly (p<.05) reduced the ROM relative to normal in all modes of loading and significantly reduced the NZ in flexion and extension. Addition of the posterior plates further significantly reduced the ROM in all modes of loading and reduced the NZ in lateral bending. Anterior plating systems are capable of substantially stabilizing the cervical spine in all modes of loading after a burst fracture. The combined approach adds significant stability over anterior plating alone in treating this injury but may be unnecessary clinically. Further study is needed to assess the added clinical benefits of the combined approach and associated risks.

  19. Optical Dark-Field and Electron Energy Loss Imaging and Spectroscopy of Symmetry-Forbidden Modes in Loaded Nanogap Antennas.

    PubMed

    Brintlinger, Todd; Herzing, Andrew A; Long, James P; Vurgaftman, Igor; Stroud, Rhonda; Simpkins, B S

    2015-06-23

    We have produced large numbers of hybrid metal-semiconductor nanogap antennas using a scalable electrochemical approach and systematically characterized the spectral and spatial character of their plasmonic modes with optical dark-field scattering, electron energy loss spectroscopy with principal component analysis, and full wave simulations. The coordination of these techniques reveal that these nanostructures support degenerate transverse modes which split due to substrate interactions, a longitudinal mode which scales with antenna length, and a symmetry-forbidden gap-localized transverse mode. This gap-localized transverse mode arises from mode splitting of transverse resonances supported on both antenna arms and is confined to the gap load enabling (i) delivery of substantial energy to the gap material and (ii) the possibility of tuning the antenna resonance via active modulation of the gap material's optical properties. The resonant position of this symmetry-forbidden mode is sensitive to gap size, dielectric strength of the gap material, and is highly suppressed in air-gapped structures which may explain its absence from the literature to date. Understanding the complex modal structure supported on hybrid nanosystems is necessary to enable the multifunctional components many seek.

  20. Energy efficient fluid powered linear actuator with variable area

    DOEpatents

    Lind, Randall F.; Love, Lonnie J.

    2016-09-13

    Hydraulic actuation systems having variable displacements and energy recovery capabilities include cylinders with pistons disposed inside of barrels. When operating in energy consuming modes, high speed valves pressurize extension chambers or retraction chambers to provide enough force to meet or counteract an opposite load force. When operating in energy recovery modes, high speed valves return a working fluid from extension chambers or retraction chambers, which are pressurized by a load, to an accumulator for later use.

  1. Effects of Carbon Nanomaterial Reinforcement on Composite Joints Under Cyclic and Impact Loading

    DTIC Science & Technology

    2012-03-01

    prepreg . 2 Figure 1. Composite decks on DDG1000. (From [3]) Figure 2. USV built from nanotube-reinforced carbon fiber composites. (From [2...been proven that the infusion of CNTs enhances the strength and fracture toughness of CFRP laminates under static loading (mode I and mode II...Kostopoulos et al. [5] investigated the influence of the multi-walled carbon nanotubes (MWCNTs) on the impact and after-impact behavior of CFRP laminates

  2. Stationary Crossflow Breakdown due to Mixed Mode Spectra of Secondary Instabilities

    NASA Technical Reports Server (NTRS)

    Li, Fei; Choudhari, Meelan M.; Duan, Lian

    2016-01-01

    Numerical simulations are used to study laminar breakdown characteristics associated with stationary crossflow instability in the boundary-layer flow over a subsonic swept-wing configuration. Previous work involving the linear and nonlinear development of individual, fundamental modes of secondary instability waves is extended by considering the role of more complex, yet controlled, spectra of the secondary instability modes. Direct numerical simulations target a mixed mode transition scenario involving the simultaneous presence of Y and Z modes of secondary instability. For the initial amplitudes investigated in this paper, the Y modes are found to play an insignificant role during the onset of transition, in spite of achieving rather large, O(5%), amplitudes of RMS velocity fluctuation prior to transition. Analysis of the numerical simulations shows that this rather surprising finding can be attributed to the fact that the Y modes are concentrated near the top of the crossflow vortex and exert relatively small influence on the Z modes that reside closer to the surface and can lead to transition via nonlinear spreading that does not involve interactions with the Y mode. Finally, secondary instability calculations reveal that subharmonic modes of secondary instability have substantially lower growth rates than those of the fundamental modes, and hence, are less likely to play an important role during the breakdown process involving complex initial spectra.

  3. Development of a hybrid mode linear transformer driver stage

    NASA Astrophysics Data System (ADS)

    Zhang, Le; Wang, Meng; Zhou, Liangji; Tian, Qing; Guo, Fan; Wang, Lingyun; Qing, Yanling; Zhao, Yue; Dai, Yingmin; Han, Wenhui; Chen, Lin; Xie, Weiping

    2018-02-01

    At present, the mainstream technologies of primary power sources of large pulse power devices adopt Marx or linear transformer driver (LTD) designs. Based on the analysis of the characteristics of these two types of circuit topologies, the concept of a hybrid mode LTD stage based on Marx branches is proposed. The analysis shows that the hybrid mode LTD stage can realize the following goals: (a) to reduce the energy and power handled by the basic components (switch and capacitor) to lengthen their lifetime; (b) to reduce the requirements of the multipath synchronous trigger system; and (c) to improve the maintainability of the LTD stage by using independent Marx generators instead of "traditional LTD bricks." To verify the technique, a hybrid mode LTD stage consisting of 50 branches (four-stage compact Marx generators) was designed, manufactured and tested. The stage has a radius of about 3.3 m and a height of 0.6 m. The single Marx circuit's load current is about 21 kA, with a rise time of ˜90 ns (10%-90%), under the conditions of capacitors charged to ±40 kV and a 6.9 Ω matched load. The whole stage's load current is ˜1 MA , with a rise time of ˜112 ns (10%-90%), when the capacitors are charged to ±45 kV and the matched load is 0.14 Ω .

  4. Numerical analysis of rotating stall instabilities of a pump- turbine in pump mode

    NASA Astrophysics Data System (ADS)

    Xia, L. S.; Cheng, Y. G.; Zhang, X. X.; Yang, J. D.

    2014-03-01

    Rotating stall may occur at part load flow of a pump-turbine in pump mode. Unstable flow structures developing under stall condition can lead to a sudden drop of efficiency, high dynamic load and even cavitation. CFD simulations on a pump-turbine model in pump mode were carried out to reveal the onset and developed mechanisms of these unstable flow phenomena at part load. The simulation results of energy-discharge and efficiency characteristics are in good agreement with those obtained by experiments. The more deviate from design conditions with decreasing flow rate, the more flow separations within the vanes. Under specific conditions, four stationary separation zones begin to progress on the circumference, rotating at a fraction of the impeller rotation rate. Rotating stalls lead to the flow in the vane diffuser channels alternating between outward jet flow and blockage. Strong jets impact the spiral casing wall causing high pressure pulsations. Severe separations of the stall cells disturb the flow inducing periodical large amplitude pressure fluctuations, of which the intensity at different span wise of the guide vanes is different. The enforced rotating nonuniform pressure distributions on the circumference lead to dynamic uniform forces on the impeller and guide vanes. The results show that the CFD simulations are capable to gain the complicated flow structure information for analysing the unstable characteristics of the pump mode at part load.

  5. Enhanced tunability of the composition in silicon oxynitride thin films by the reactive gas pulsing process

    NASA Astrophysics Data System (ADS)

    Aubry, Eric; Weber, Sylvain; Billard, Alain; Martin, Nicolas

    2014-01-01

    Silicon oxynitride thin films were sputter deposited by the reactive gas pulsing process. Pure silicon target was sputtered in Ar, N2 and O2 mixture atmosphere. Oxygen gas was periodically and solely introduced using exponential signals. In order to vary the injected O2 quantity in the deposition chamber during one pulse at constant injection time (TON), the tau mounting time τmou of the exponential signals was systematically changed for each deposition. Taking into account the real-time measurements of the discharge voltage and the I(O*)/I(Ar*) emission lines ratio, it is shown that the oscillations of the discharge voltage during the TON and TOFF times (injection of O2 stopped) are attributed to the preferential adsorption of the oxygen compared to that of the nitrogen. The sputtering mode alternates from a fully nitrided mode (TOFF time) to a mixed mode (nitrided and oxidized mode) during the TON time. For the highest injected O2 quantities, the mixed mode tends toward a fully oxidized mode due to an increase of the trapped oxygen on the target. The oxygen (nitrogen) concentration in the SiOxNy films similarly (inversely) varies as the oxygen is trapped. Moreover, measurements of the contamination speed of the Si target surface are connected to different behaviors of the process. At low injected O2 quantities, the nitrided mode predominates over the oxidized one during the TON time. It leads to the formation of Si3N4-yOy-like films. Inversely, the mixed mode takes place for high injected O2 quantities and the oxidized mode prevails against the nitrided one producing SiO2-xNx-like films.

  6. Effect of engine load and biogas flow rate to the performance of a compression ignition engine run in dual-fuel (dieselbiogas) mode

    NASA Astrophysics Data System (ADS)

    Ambarita, H.

    2018-02-01

    The Government of Indonesia (GoI) has released a target on reduction Green Houses Gases emissions (GHG) by 26% from level business-as-usual by 2020, and the target can be up to 41% by international supports. In the energy sector, this target can be reached effectively by promoting fossil fuel replacement or blending with biofuel. One of the potential solutions is operating compression ignition (CI) engine in dual-fuel (diesel-biogas) mode. In this study effects of engine load and biogas flow rate on the performance and exhaust gas emissions of a compression ignition engine run in dual-fuel mode are investigated. In the present study, the used biogas is refined with methane content 70% of volume. The objectives are to explore the optimum operating condition of the CI engine run in dual-fuel mode. The experiments are performed on a four-strokes CI engine with rated output power of 4.41 kW. The engine is tested at constant speed 1500 rpm. The engine load varied from 600W to 1500W and biogas flow rate varied from 0 L/min to 6 L/min. The results show brake thermal efficiency of the engine run in dual-fuel mode is better than pure diesel mode if the biogas flow rates are 2 L/min and 4 L/min. It is recommended to operate the present engine in a dual-fuel mode with biogas flow rate of 4 L/min. The consumption of diesel fuel can be replaced up to 50%.

  7. Mixing Of Mode Symmetries In Top Gated Bilayer And Multilayer Graphene Field Effect Devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chakraborty, Biswanath; Das, Anindya; Sood, A. K.

    2011-07-15

    We report Raman study to investigate the influence of stacking on the inversion symmetry breaking in top gated bi- and multi-layer ({approx}10 layers) graphene field effect transistors. The G phonon mode splits into a low frequency (G{sub low}) and a high frequency (G{sub high}) mode in bi- and multi-layer graphene and the two modes show different dependence on doping. The mode splitting is explained in terms of mixing of zone-center in-plane optical phonons representing in-phase and out-of-phase inter-layer atomic motions. Unlike in bilayer graphene, there is no transfer of intensity from G{sub low} to G{sub high} in multilayer graphene. Amore » comparison is made for the bilayer graphene data with the recent theory of Gava et al. [Phys. Rev. B 80, 155422 (2009)].« less

  8. Spectrally tailored supercontinuum generation from single-mode-fiber amplifiers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hao, Qiang; Guo, Zhengru; Zhang, Qingshan

    Spectral filtering of an all-normal-dispersion Yb-doped fiber laser was demonstrated effective for broadband supercontinuum generation in the picosecond time region. The picosecond pump pulses were tailored in spectrum with 1 nm band-pass filter installed between two single-mode fiber amplifiers. By tuning the spectral filter around 1028 nm, four-wave mixing was initiated in a photonic crystal fiber spliced with single-mode fiber, as manifested by the simultaneous generation of Stokes wave at 1076 nm and anti-Stokes wave at 984 nm. Four-wave mixing took place in cascade with the influence of stimulated Raman scattering and eventually extended the output spectrum more than 900 nm of 10 dB bandwidth.more » This technique allows smooth octave supercontinuum generation by using simple single-mode fiber amplifiers rather than complicated multistage large-mode-area fiber amplifiers.« less

  9. Nanoscale elastic modulus variation in loaded polymeric micelle reactors.

    PubMed

    Solmaz, Alim; Aytun, Taner; Deuschle, Julia K; Ow-Yang, Cleva W

    2012-07-17

    Tapping mode atomic force microscopy (TM-AFM) enables mapping of chemical composition at the nanoscale by taking advantage of the variation in phase angle shift arising from an embedded second phase. We demonstrate that phase contrast can be attributed to the variation in elastic modulus during the imaging of zinc acetate (ZnAc)-loaded reverse polystyrene-block-poly(2-vinylpyridine) (PS-b-P2VP) diblock co-polymer micelles less than 100 nm in diameter. Three sample configurations were characterized: (i) a 31.6 μm thick polystyrene (PS) support film for eliminating the substrate contribution, (ii) an unfilled PS-b-P2VP micelle supported by the same PS film, and (iii) a ZnAc-loaded PS-b-P2VP micelle supported by the same PS film. Force-indentation (F-I) curves were measured over unloaded micelles on the PS film and over loaded micelles on the PS film, using standard tapping mode probes of three different spring constants, the same cantilevers used for imaging of the samples before and after loading. For calibration of the tip geometry, nanoindentation was performed on the bare PS film. The resulting elastic modulus values extracted by applying the Hertz model were 8.26 ± 3.43 GPa over the loaded micelles and 4.17 ± 1.65 GPa over the unloaded micelles, confirming that phase contrast images of a monolayer of loaded micelles represent maps of the nanoscale chemical and mechanical variation. By calibrating the tip geometry indirectly using a known soft material, we are able to use the same standard tapping mode cantilevers for both imaging and indentation.

  10. A study of air breathing rockets. 3: Supersonic mode combustors

    NASA Astrophysics Data System (ADS)

    Masuya, G.; Chinzel, N.; Kudo, K.; Murakami, A.; Komuro, T.; Ishii, S.

    An experimental study was made on supersonic mode combustors of an air breathing rocket engine. Supersonic streams of room-temperature air and hot fuel-rich rocket exhaust were coaxially mixed and burned in a concially diverging duct of 2 deg half-angle. The effect of air inlet Mach number and excess air ratio was investigated. Axial wall pressure distribution was measured to calculate one dimensional change of Mach number and stagnation temperature. Calculated results showed that supersonic combustion occurred in the duct. At the exit of the duct, gas sampling and Pitot pressure measurement was made, from which radial distributions of various properties were deduced. The distribution of mass fraction of elements from rocket exhaust showed poor mixing performance in the supersonic mode combustors compared with the previously investigated cylindrical subsonic mode combustors. Secondary combustion efficiency correlated well with the centerline mixing parameter, but not with Annushkin's non-dimensional combustor length. No major effect of air inlet Mach number or excess air ratio was seen within the range of conditions under which the experiment was conducted.

  11. The behaviour of arcs in carbon mixed-mode high-power impulse magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Tucker, M. D.; Putman, K. J.; Ganesan, R.; Lattemann, M.; Stueber, M.; Ulrich, S.; Bilek, M. M. M.; McKenzie, D. R.; Marks, N. A.

    2017-04-01

    Mixed-mode deposition of carbon is an extension of high-power impulse magnetron sputtering in which a short-lived arc is deliberately allowed to ignite on the target surface to increase the ionised fraction of carbon in the deposition flux. Here we investigate the ignition and evolution of these arcs and examine their behaviour for different conditions of argon pressure, power supply voltage, and current. We find that mixed-mode deposition is sensitive to the condition of the target surface, and changing the operating parameters causes changes in the target surface condition which themselves affect the discharge in a process of negative feedback. Initially the arcs are evenly distributed on the target racetrack, but after a long period of operation the mode of erosion changes and arcs become localised in a small region, resulting in a pronounced nodular structure. We also quantify macroparticle generation and observe a power-law size distribution typical of arc discharges. Fewer particles are generated for operation at lower Ar pressure when the arc spot velocity is higher.

  12. Influence of fuel properties, nitrogen oxides, and exhaust treatment by an oxidation catalytic converter on the mutagenicity of diesel engine emissions.

    PubMed

    Bünger, Jürgen; Krahl, Jürgen; Weigel, Andreas; Schröder, Olaf; Brüning, Thomas; Müller, Michael; Hallier, Ernst; Westphal, Götz

    2006-08-01

    Particle emissions of diesel engines (DEP) content polycyclic aromatic hydrocarbons (PAH) these compounds cause a strong mutagenicity of solvent extracts of DEP. We investigated the influence of fuel properties, nitrogen oxides (NO( x )), and an oxidation catalytic converter (OCC) on the mutagenic effects of DEP. The engine was fuelled with common diesel fuel (DF), low-sulphur diesel fuel (LSDF), rapeseed oil methyl ester (RME), and soybean oil methyl ester (SME) and run at five different load modes in two series with and without installation of an OCC in the exhaust pipe. Particles from the cooled and diluted exhaust were sampled onto glass fibre filters and extracted with dichloromethane in a soxhlet apparatus. The mutagenicity of the extracts was tested using the Salmonella typhimurium/mammalian microsome assay with tester strains TA98 and TA100. Without OCC the number of revertant colonies was lower in extracts of LSDF than in extracts of DF. The lowest numbers of revertant colonies were induced by the plant oil derived fuels. In three load modes, operation with the OCC led to a reduction of the mutagenicity. However, direct mutagenic effects under heavy duty conditions (load mode A) were significantly increased for RME (TA98, TA100) and SME (TA98). A consistent but not significant increase in direct mutagenicity was observed for DF and LSDF at load mode A, and for DF at idling (load mode E) when emissions were treated with the OCC. These results raise concern over the use of oxidation catalytic converters with diesel engines. We hypothesise that the OCC increases formation of direct acting mutagens under certain conditions by the reaction of NO( x ) with PAH resulting in the formation of nitrated-PAH. Most of these compounds are powerful direct acting mutagens.

  13. Time-dependent crack growth behavior of alloy 617 and alloy 230 at elevated temperatures

    NASA Astrophysics Data System (ADS)

    Roy, Shawoon Kumar

    2011-12-01

    Two Ni-base solid-solution-strengthened superalloys: INCONEL 617 and HAYNES 230 were studied to check sustained loading crack growth (SLCG) behavior at elevated temperatures appropriate for Next Generation Nuclear Plant (NGNP) applictaions with constant stress intensity factor (Kmax= 27.75 MPa✓m) in air. The results indicate a time-dependent rate controlling process which can be characterized by a linear elastic fracture mechanics (LEFM) parameter -- stress intensity factor (K). At elevated temperatures, the crack growth mechanism was best described using a damage zone concept. Based on results and study, SAGBOE (stress accelerated grain boundary oxidation embrittlement) is considered the primary reason for time-dependent SLCG. A thermodynamic equation was considered to correlate all the SLCG results to determine the thermal activation energy in the process. A phenomenological model based on a time-dependent factor was developed considering the previous researcher's time-dependent fatigue crack propagation (FCP) results and current SLCG results to relate cycle-dependent and time-dependent FCP for both alloys. Further study includes hold time (3+300s) fatigue testing and no hold (1s) fatigue testing with various load ratios (R) at 700°C with a Kmax of 27.75 MPa✓m. Study results suggest an interesting point: crack growth behavior is significantly affected with the change in R value in cycle-dependent process whereas in time-dependent process, change in R does not have any significant effect. Fractography study showed intergranular cracking mode for all time-dependent processes and transgranular cracking mode for cycle-dependent processes. In Alloy 230, SEM images display intergranular cracking with carbide particles, dense oxides and dimple mixed secondary cracks for time-dependent 3+300s FCP and SLCG test. In all cases, Alloy 230 shows better crack growth resistance compared to Alloy 617.

  14. Oscillations in the reduction of permanganate by hydrogen peroxide or by ninhydrin in a batch reactor and mixed-mode oscillations in a continuous-flow stirred tank reactor

    NASA Astrophysics Data System (ADS)

    Tóthová, Mária; Nagy, Arpád; Treindl, Ľudovít.

    1999-01-01

    The periodical reduction of permanganate by hydrogen peroxide or by ninhydrin with transient oscillations in a closed system has been observed and discussed in relation to the first two permanganate oscillators described earlier. The mixed-mode oscillations of the permanganate-H 2O 2 oscillating system in a continuous-flow stirred tank reactor have been described.

  15. A mixed-mode crack analysis of isotropic solids using conservation laws of elasticity

    NASA Technical Reports Server (NTRS)

    Yau, J. F.; Wang, S. S.; Corten, H. T.

    1980-01-01

    A simple and convenient method of analysis for studying two-dimensional mixed-mode crack problems is presented. The analysis is formulated on the basis of conservation laws of elasticity and of fundamental relationships in fracture mechanics. The problem is reduced to the determination of mixed-mode stress-intensity factor solutions in terms of conservation integrals involving known auxiliary solutions. One of the salient features of the present analysis is that the stress-intensity solutions can be determined directly by using information extracted in the far field. Several examples with solutions available in the literature are solved to examine the accuracy and other characteristics of the current approach. This method is demonstrated to be superior in its numerical simplicity and computational efficiency to other approaches. Solutions of more complicated and practical engineering fracture problems dealing with the crack emanating from a circular hole are presented also to illustrate the capacity of this method

  16. Stiffness-generated rigid-body mode shapes for Lanczos eigensolution with SUPORT DOF by way of a MSC/NASTRAN DMAP alter

    NASA Technical Reports Server (NTRS)

    Abdallah, Ayman A.; Barnett, Alan R.; Widrick, Timothy W.; Manella, Richard T.; Miller, Robert P.

    1994-01-01

    When using all MSC/NASTRAN eigensolution methods except Lanczos, the analyst can replace the coupled system rigid-body modes calculated within DMAP module READ with mass orthogonalized and normalized rigid-body modes generated from the system stiffness. This option is invoked by defining MSC/NASTRAN r-set degrees of freedom via the SUPORT bulk data card. The newly calculated modes are required if the rigid-body modes calculated by the eigensolver are not 'clean' due to numerical roundoffs in the solution. When performing transient structural dynamic load analysis, the numerical roundoffs can result in inaccurate rigid-body accelerations which affect steady-state responses. Unfortunately, when using the Lanczos method and defining r-set degrees of freedom, the rigid-body modes calculated within DMAP module REIGL are retained. To overcome this limitation and to allow MSC/NASTRAN to handle SUPORT degrees of freedom identically for all eigensolvers, a DMAP Alter has been written which replaces Lanczos-calculated rigid-body modes with stiffness-generated rigid-body modes. The newly generated rigid-body modes are normalized with respect to the system mass and orthogonalized using the Gram-Schmidt technique. This algorithm has been implemented as an enhancement to an existing coupled loads methodology.

  17. Mechanical behavior and fracture characteristics of off-axis fiber composites. 1: Experimental investigation. [at the Lewis Research Center

    NASA Technical Reports Server (NTRS)

    Sinclair, J. H.; Chamis, C. C.

    1977-01-01

    The mechanical behavior, fracture surfaces, and fracture modes of unidirectional high-modulus graphite-fiber/epoxy composites subjected to off-axis tensile loads were investigated experimentally. The investigation included the generation of stress-strain-to-fracture data and scanning electron microscope studies of the fractured surfaces. The results led to the identification of fracture modes and distinct fracture surface characteristics for off-axis tensile loading. The results also led to the formulation of critical for identifying and characterizing these fracture modes and their associated fracture surfaces. The results presented and discussed herein were used in the theoretical investigation and comparisons described in Part 2. These results should also provide a good foundation for identifying, characterizing, and quantifying fracture modes in both off-axis and angle-plied laminates.

  18. A boundary element alternating method for two-dimensional mixed-mode fracture problems

    NASA Technical Reports Server (NTRS)

    Raju, I. S.; Krishnamurthy, T.

    1992-01-01

    A boundary element alternating method, denoted herein as BEAM, is presented for two dimensional fracture problems. This is an iterative method which alternates between two solutions. An analytical solution for arbitrary polynomial normal and tangential pressure distributions applied to the crack faces of an embedded crack in an infinite plate is used as the fundamental solution in the alternating method. A boundary element method for an uncracked finite plate is the second solution. For problems of edge cracks a technique of utilizing finite elements with BEAM is presented to overcome the inherent singularity in boundary element stress calculation near the boundaries. Several computational aspects that make the algorithm efficient are presented. Finally, the BEAM is applied to a variety of two dimensional crack problems with different configurations and loadings to assess the validity of the method. The method gives accurate stress intensity factors with minimal computing effort.

  19. Magnetic field and flavor effects on the gamma-ray burst neutrino flux

    NASA Astrophysics Data System (ADS)

    Baerwald, Philipp; Hümmer, Svenja; Winter, Walter

    2011-03-01

    We reanalyze the prompt muon neutrino flux from gamma-ray bursts (GRBs) in terms of the particle physics involved, as in the example of the often-used reference Waxman-Bahcall GRB flux. We first reproduce this reference flux explicitly treating synchrotron energy losses of the secondary pions. Then we include additional neutrino production modes, the neutrinos from muon decays, the magnetic field effects on all secondary species, and flavor mixing with the current parameter uncertainties. We demonstrate that the combination of these effects modifies the shape of the original Waxman-Bahcall GRB flux significantly and changes the normalization by a factor of 3 to 4. As a consequence, the gamma-ray burst search strategy of neutrino telescopes may be based on the wrong flux shape, and the constraints derived for the GRB neutrino flux, such as the baryonic loading, may in fact be much stronger than anticipated.

  20. Development of a Benchmark Example for Delamination Fatigue Growth Prediction

    NASA Technical Reports Server (NTRS)

    Krueger, Ronald

    2010-01-01

    The development of a benchmark example for cyclic delamination growth prediction is presented and demonstrated for a commercial code. The example is based on a finite element model of a Double Cantilever Beam (DCB) specimen, which is independent of the analysis software used and allows the assessment of the delamination growth prediction capabilities in commercial finite element codes. First, the benchmark result was created for the specimen. Second, starting from an initially straight front, the delamination was allowed to grow under cyclic loading in a finite element model of a commercial code. The number of cycles to delamination onset and the number of cycles during stable delamination growth for each growth increment were obtained from the analysis. In general, good agreement between the results obtained from the growth analysis and the benchmark results could be achieved by selecting the appropriate input parameters. Overall, the results are encouraging but further assessment for mixed-mode delamination is required

Top