Process for removing copper in a recoverable form from solid scrap metal
Hartman, Alan D.; Oden, Laurance L.; White, Jack C.
1995-01-01
A process for removing copper in a recoverable form from a copper/solid ferrous scrap metal mix is disclosed. The process begins by placing a copper/solid ferrous scrap metal mix into a reactor vessel. The atmosphere within the reactor vessel is purged with an inert gas or oxidizing while the reactor vessel is heated in the area of the copper/solid ferrous scrap metal mix to raise the temperature within the reactor vessel to a selected elevated temperature. Air is introduced into the reactor vessel and thereafter hydrogen chloride is introduced into the reactor vessel to obtain a desired air-hydrogen chloride mix. The air-hydrogen chloride mix is operable to form an oxidizing and chloridizing atmosphere which provides a protective oxide coating on the surface of the solid ferrous scrap metal in the mix and simultaneously oxidizes/chloridizes the copper in the mix to convert the copper to a copper monochloride gas for transport away from the solid ferrous scrap metal. After the copper is completely removed from the copper/solid ferrous scrap metal mix, the flows of air and hydrogen chloride are stopped and the copper monochloride gas is collected for conversion to a recoverable copper species.
NASA Astrophysics Data System (ADS)
Novoselova, I. N.; Novosyolov, A. G.
2018-03-01
The article considers the influence of barite waste on clinker formation processes in raw mixes with the increased content of magnesium oxide. A by-product of the barite concentrate manufacture of Tolcheinskoye deposit has been used as a barite waste, its predominant content of barium sulphate BaSO4 amounts to 76,11%. The impact of BaO and SO3 has been revealed, particularly the impact of barium oxide on clinker formation processes in raw mixes with the increased content of magnesium oxide. It has been clarified that the addition of barite waste into a raw mix causes the formation of dicalcium silicate in two modifications, reduces the amount of alite and influences on the composition of tricalcium aluminate. Barium mono-alluminate is formed in the composition of the intermediate material. Solid solutions with barium oxide are formed in clinker phases. The authors have determined the saturation speed of calcium oxide in magnesium-bearing raw mixes with saturation coefficient (SC) 0,91 and 0,80 in the presence of 2 and 3% barite waste in the temperature range 1300-1450°C.
Implementation of an evaporative oxidation process for treatment of aqueous mixed wastes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bounini, L.; Stelmach, J.
1995-12-31
The US Department of Energy and Rust Geotech conducted treatability tests for mixed wastes with a pilot-scale evaporative oxidation unit known as the mini-PO*WW*ER unit. In the evaporative oxidation process, water and volatile organic compounds are vaporized and passed through a catalytic oxidizer to destroy the organic compounds. Nonvolatiles are concentrated into a brine that may be solidified. Ten experiment runs were made. The oxidation of the unit was calculated using total organic carbon analyses of feed and composite product condensate samples. These data indicate that the technology is capable of achieving oxidation efficiencies as high as 99.999 percent onmore » mixed wastes when the bed temperature is near 600 C, residence times are about 0.2 seconds, and adequate oxygen flow is maintained. Concentrations of the tested volatile organic compounds in the product-condensate composite samples were well below standards for wastewaters. Combined gross alpha and beta radioactivity levels in the samples were below detection limites of 12.5 pico-Cu/l, so the liquid would not qualify as a radioactive waste. Thus, the product condensate process by the process is not restricted as either hazardous or mixed waste and is suitable for direct disposal. The brines produced were not considered mixed waste and could be handled and disposed of as radioactive waste.« less
Process for etching mixed metal oxides
Ashby, Carol I. H.; Ginley, David S.
1994-01-01
An etching process using dicarboxylic and tricarboxylic acids as chelating etchants for mixed metal oxide films such as high temperature superconductors and ferroelectric materials. Undesirable differential etching rates between different metal oxides are avoided by selection of the proper acid or combination of acids. Feature sizes below one micron, excellent quality vertical edges, and film thicknesses in the 100 Angstom range may be achieved by this method.
Fermentative process for making inorganic nanoparticles
Phelps, Tommy J.; Lauf, Robert J.; Moon, Ji-Won; Roh, Yul
2006-06-13
A method for producing mixed metal oxide compounds includes the steps of: providing a supply of a metal reducing bacteria; providing a culture medium suitable for growth of the bacteria; providing a first mixed metal oxide phase comprising at least a first and a second metal, at least one of the first and second metal being reducible from a higher to a lower oxidation state by the bacteria; and, combining the bacteria, the culture medium, the first mixed metal oxide, and at least one electron donor in a reactor, wherein the bacteria reduces at least one of the first metal and the second metal from the higher to the lower oxidation state to form a second mixed metal oxide phase.
Dynamics and Thermochemistry of Oxygen Uptake by a Mixed Ce-Pr Oxide
NASA Astrophysics Data System (ADS)
Sinev, M. Yu.; Fattakhova, Z. T.; Bychkov, V. Yu.; Lomonosov, V. I.; Gordienko, Yu. A.
2018-03-01
The dynamics of oxygen uptake by mixed Ce0.55Pr0.45O2-x oxide is studied in a pulsed oxygen supply mode using in situ high-temperature heat flow differential scanning calorimetry. It is stated that the oxidation proceeds in two regimes: a fast one at the beginning of the oxidation process, and a slow one, which is controlled by the diffusion of oxygen through the bulk of the solid at the later stages of the process. Analysis of the shape of calorimetric profiles reveals some processes, accompanied by heat release, that occur in the sample in the absence of oxygen in the gas phase. These could be due to both the redistribution of consumed oxygen in the oxide lattice and the lattice relaxation associated with the transformation of phases with different arrangements of oxygen vacancies in them. The heat effect (which diminishes from 60 to 40 kJ/mol in the course of oxygen uptake) associated with the oxidation of the reduced form of mixed Ce-Pr oxide, corresponds to the oxidation of praseodymium ions from (3+) to (4+).
Process for etching mixed metal oxides
Ashby, C.I.H.; Ginley, D.S.
1994-10-18
An etching process is described using dicarboxylic and tricarboxylic acids as chelating etchants for mixed metal oxide films such as high temperature superconductors and ferroelectric materials. Undesirable differential etching rates between different metal oxides are avoided by selection of the proper acid or combination of acids. Feature sizes below one micron, excellent quality vertical edges, and film thicknesses in the 100 Angstrom range may be achieved by this method. 1 fig.
Alternative oxidation technologies for organic mixed waste
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borduin, L.C.; Fewell, T.
1998-07-01
The Mixed Waste Focus Area (MWFA) is currently supporting the development and demonstration of several alternative oxidation technology (AOT) processes for treatment of combustible mixed low-level wastes. AOTs have been defined as technologies that destroy organic material without using open-flame reactions. AOTs include both thermal and nonthermal processes that oxidize organic wastes but operate under significantly different physical and chemical conditions than incinerators. Nonthermal processes currently being studied include Delphi DETOX and acid digestion at the Savannah River Site (SRS), and direct chemical oxidation at Lawrence Livermore National Laboratory (LLNL). All three technologies are at advanced stages of development ormore » are entering the demonstration phase. Nonflame thermal processes include catalytic chemical oxidation, which is being developed and deployed at Lawrence Berkeley National Laboratory (LBNL), and steam reforming, a commercial process being supported by the Department of Energy (DOE). Although testing is complete on some AOT technologies, most require additional support to complete some or all of the identified development objectives. Brief descriptions, status, and planned paths forward for each of the technologies are presented.« less
Solution-Processed Gallium–Tin-Based Oxide Semiconductors for Thin-Film Transistors
Zhang, Xue; Lee, Hyeonju; Kim, Jungwon; Kim, Eui-Jik; Park, Jaehoon
2017-01-01
We investigated the effects of gallium (Ga) and tin (Sn) compositions on the structural and chemical properties of Ga–Sn-mixed (Ga:Sn) oxide films and the electrical properties of Ga:Sn oxide thin-film transistors (TFTs). The thermogravimetric analysis results indicate that solution-processed oxide films can be produced via thermal annealing at 500 °C. The oxygen deficiency ratio in the Ga:Sn oxide film increased from 0.18 (Ga oxide) and 0.30 (Sn oxide) to 0.36, while the X-ray diffraction peaks corresponding to Sn oxide significantly reduced. The Ga:Sn oxide film exhibited smaller grains compared to the nanocrystalline Sn oxide film, while the Ga oxide film exhibited an amorphous morphology. We found that the electrical properties of TFTs significantly improve by mixing Ga and Sn. Here, the optimum weight ratio of the constituents in the mixture of Ga and Sn precursor sols was determined to be 1.0:0.9 (Ga precursor sol:Sn precursor sol) for application in the solution-processed Ga:Sn oxide TFTs. In addition, when the Ga(1.0):Sn(0.9) oxide film was thermally annealed at 900 °C, the field-effect mobility of the TFT was notably enhanced from 0.02 to 1.03 cm2/Vs. Therefore, the mixing concentration ratio and annealing temperature are crucial for the chemical and morphological properties of solution-processed Ga:Sn oxide films and for the TFT performance. PMID:29283408
Separation of uranium from (Th,U)O.sub.2 solid solutions
Chiotti, Premo; Jha, Mahesh Chandra
1976-09-28
Uranium is separated from mixed oxides of thorium and uranium by a pyrometallurgical process in which the oxides are mixed with a molten chloride salt containing thorium tetrachloride and thorium metal which reduces the uranium oxide to uranium metal which can then be recovered from the molten salt. The process is particularly useful for the recovery of uranium from generally insoluble high-density sol-gel thoria-urania nuclear reactor fuel pellets.
Method for continuous synthesis of metal oxide powders
Berry, David A.; Haynes, Daniel J.; Shekhawat, Dushyant; Smith, Mark W.
2015-09-08
A method for the rapid and continuous production of crystalline mixed-metal oxides from a precursor solution comprised of a polymerizing agent, chelated metal ions, and a solvent. The method discharges solution droplets of less than 500 .mu.m diameter using an atomizing or spray-type process into a reactor having multiple temperature zones. Rapid evaporation occurs in a first zone, followed by mixed-metal organic foam formation in a second zone, followed by amorphous and partially crystalline oxide precursor formation in a third zone, followed by formation of the substantially crystalline mixed-metal oxide in a fourth zone. The method operates in a continuous rather than batch manner and the use of small droplets as the starting material for the temperature-based process allows relatively high temperature processing. In a particular embodiment, the first zone operates at 100-300.degree. C., the second zone operates at 300-700.degree. C., and the third operates at 700-1000.degree. C., and fourth zone operates at at least 700.degree. C. The resulting crystalline mixed-metal oxides display a high degree of crystallinity and sphericity with typical diameters on the order of 50 .mu.m or less.
Process for fabricating ZnO-based varistors
Lauf, R.J.
The invention is a process for producing ZnO-based varistors incorporating a metal oxide dopant. In one form, the invention comprises providing a varistor powder mix of colloidal particles of ZnO and metal-oxide dopants including Bi/sub 2/O/sub 3/. The mix is hot-pressed to form a compact at temperatures below 850/sup 0/C and under conditions effecting reduction of the ZnO to sub-stoichiometric oxide. This promotes densification while restricting liquid formation and grain growth. The compact then is heated under conditions restoring the zinc oxide to stoichiometric composition, thus improving the varistor properties of the compact. The process produces fine-grain varistors characterized by a high actual breakdown voltage and a high average breakdown voltage per individual grain boundary.
Process for fabricating ZnO-based varistors
Lauf, Robert J.
1985-01-01
The invention is a process for producing ZnO-based varistors incorporating a metal oxide dopant. In one form, the invention comprises providing a varistor powder mix of colloidal particles of ZnO and metal-oxide dopants including Bi.sub.2 O.sub.3. The mix is hot-pressed to form a compact at temperatures below 850.degree. C. and under conditions effecting reduction of the ZnO to sub-stoichiometric oxide. This promotes densification while restricting liquid formation and grain growth. The compact then is heated under conditions restoring the zinc oxide to stoichiometric composition, thus improving the varistor properties of the compact. The process produces fine-grain varistors characterized by a high actual breakdown voltage and a high average breakdown voltage per individual grain boundary.
Process for the manufacture of an attrition resistant sorbent used for gas desulfurization
Venkataramani, Venkat S.; Ayala, Raul E.
2003-09-16
This process produces a sorbent for use in desulfurization of coal gas. A zinc titanate compound and a metal oxide are mixed by milling the compounds in an aqueous medium, the resulting mixture is dried and then calcined, crushed, sleved and formed into pellets for use in a moving-bed reactor. Metal oxides suitable for use as an additive in this process include: magnesium oxide, magnesium oxide plus molybdenum oxide, calcium oxide, yttrium oxide, hafnium oxide, zirconium oxide, cupric oxide, and tin oxide. The resulting sorbent has a percentage of the original zinc or titanium ions substituted for the oxide metal of the chosen additive.
Chemical interaction matrix between reagents in a Purex based process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brahman, R.K.; Hennessy, W.P.; Paviet-Hartmann, P.
2008-07-01
The United States Department of Energy (DOE) is the responsible entity for the disposal of the United States excess weapons grade plutonium. DOE selected a PUREX-based process to convert plutonium to low-enriched mixed oxide fuel for use in commercial nuclear power plants. To initiate this process in the United States, a Mixed Oxide (MOX) Fuel Fabrication Facility (MFFF) is under construction and will be operated by Shaw AREVA MOX Services at the Savannah River Site. This facility will be licensed and regulated by the U.S. Nuclear Regulatory Commission (NRC). A PUREX process, similar to the one used at La Hague,more » France, will purify plutonium feedstock through solvent extraction. MFFF employs two major process operations to manufacture MOX fuel assemblies: (1) the Aqueous Polishing (AP) process to remove gallium and other impurities from plutonium feedstock and (2) the MOX fuel fabrication process (MP), which processes the oxides into pellets and manufactures the MOX fuel assemblies. The AP process consists of three major steps, dissolution, purification, and conversion, and is the center of the primary chemical processing. A study of process hazards controls has been initiated that will provide knowledge and protection against the chemical risks associated from mixing of reagents over the life time of the process. This paper presents a comprehensive chemical interaction matrix evaluation for the reagents used in the PUREX-based process. Chemical interaction matrix supplements the process conditions by providing a checklist of any potential inadvertent chemical reactions that may take place. It also identifies the chemical compatibility/incompatibility of the reagents if mixed by failure of operations or equipment within the process itself or mixed inadvertently by a technician in the laboratories. (aut0010ho.« less
NASA Astrophysics Data System (ADS)
Lu, Lun; Gao, Yan-Li; Yang, Zhi-Zheng; Wang, Cheng; Wang, Jin-Guo; Wang, Hui-Yuan; Jiang, Qi-Chuan
2018-04-01
Mesoporous nanoring-like Zn-Co mixed oxides are synthesized via a simple template-free solvothermal method with a subsequent annealing process. The ring-like nanostructures with hollow interiors are formed under the complexing effects of potassium sodium tartrate. Numerous mesopores are generated after the precursor is annealed at 500 °C. When applied as anode materials, the mesoporous nanoring-like Zn-Co mixed oxides can deliver a high discharge capacity of 1102 mAh g-1 after 200 cycles at 500 mA g-1. Even when the current density is increased to 2 A g-1, the mixed oxides can still retain a reversible capacity of 761 mAh g-1. Such high cycling stability and rate capability are mainly derived from the unique mesoporous ring-like nanostructures and the synergistic effects between Zn and Co based oxides.
NASA Astrophysics Data System (ADS)
Cosano, Daniel; Esquinas, Carlos; Jiménez-Sanchidrián, César; Ruiz, José Rafael
2016-02-01
Calcining magnesium/aluminium layered double hydroxides (Mg/Al LDHs) at 450 °C provides excellent sorbents for removing cyanide from aqueous solutions. The process is based on the "memory effect" of LDHs; thus, rehydrating a calcined LDH in an aqueous solution restores its initial structure. The process, which conforms to a first-order kinetics, was examined by Raman spectroscopy. The metal ratio of the LDH was found to have a crucial influence on the adsorption capacity of the resulting mixed oxide. In this work, Raman spectroscopy was for the first time use to monitor the adsorption process. Based on the results, this technique is an effective, expeditious choice for the intended purpose and affords in situ monitoring of the adsorption process. The target solids were characterized by using various instrumental techniques including X-ray diffraction spectroscopy, which confirmed the layered structure of the LDHs and the periclase-like structure of the mixed oxides obtained by calcination.
NASA Astrophysics Data System (ADS)
Khot, P. M.; Nehete, Y. G.; Fulzele, A. K.; Baghra, Chetan; Mishra, A. K.; Afzal, Mohd.; Panakkal, J. P.; Kamath, H. S.
2012-01-01
Impregnated Agglomerate Pelletization (IAP) technique has been developed at Advanced Fuel Fabrication Facility (AFFF), BARC, Tarapur, for manufacturing (Th, 233U)O 2 mixed oxide fuel pellets, which are remotely fabricated in hot cell or shielded glove box facilities to reduce man-rem problem associated with 232U daughter radionuclides. This technique is being investigated to fabricate the fuel for Indian Advanced Heavy Water Reactor (AHWR). In the IAP process, ThO 2 is converted to free flowing spheroids by powder extrusion route in an unshielded facility which are then coated with uranyl nitrate solution in a shielded facility. The dried coated agglomerate is finally compacted and then sintered in oxidizing/reducing atmosphere to obtain high density (Th,U)O 2 pellets. In this study, fabrication of (Th,U)O 2 mixed oxide pellets containing 3-5 wt.% UO 2 was carried out by IAP process. The pellets obtained were characterized using optical microscopy, XRD and alpha autoradiography. The results obtained were compared with the results for the pellets fabricated by other routes such as Coated Agglomerate Pelletization (CAP) and Powder Oxide Pelletization (POP) route.
Bench-scale operation of the DETOX wet oxidation process for mixed waste
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dhooge, P.M.
1993-01-01
Waste matrices containing organics, radionuclides, and metals pose difficult problems in waste treatment and disposal when the organic compounds and/or metals are considered to be hazardous. A means of destroying hazardous organic components while safely containing and concentrating metals would be extremely useful in mixed waste volume reduction or conversion to a radioactive-only form. Previous studies have found the DETOX, a patented process utilizing a novel catalytic wet oxidation by iron(III) oxidant, cold have successful application to mixed wastes, and to many other waste types. This paper describes the results of bench scale studies of DETOX applied to the componentsmore » of liquid mixed wastes, with the goal of establishing parameters for the design of a prototype waste treatment unit. Apparent organic reaction rate orders, and the dependence of apparent reaction rate on the contact area, were measured for vacuum pump oil, scintillation fluids, and trichloroethylene. It was found that reaction rate was proportional to contact area above about 2.% w/w loading of organic. Oxidations in a 4 liter. volume, mixed bench top reactor have given destruction efficiencies of 99.9999+% for common organics. Reaction rates achieved in the mixedbench top reactor were one to two orders of magnitude greater than had been achieved in unmixed reactions; a thoroughly mixed reactor should be capable of oxidizing 10. to 100.+ grams of organic per liter-hour,depending on the nature and concentration of the organic.« less
Bench-scale operation of the DETOX wet oxidation process for mixed waste
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dhooge, P.M.
1993-03-01
Waste matrices containing organics, radionuclides, and metals pose difficult problems in waste treatment and disposal when the organic compounds and/or metals are considered to be hazardous. A means of destroying hazardous organic components while safely containing and concentrating metals would be extremely useful in mixed waste volume reduction or conversion to a radioactive-only form. Previous studies have found the DETOX, a patented process utilizing a novel catalytic wet oxidation by iron(III) oxidant, cold have successful application to mixed wastes, and to many other waste types. This paper describes the results of bench scale studies of DETOX applied to the componentsmore » of liquid mixed wastes, with the goal of establishing parameters for the design of a prototype waste treatment unit. Apparent organic reaction rate orders, and the dependence of apparent reaction rate on the contact area, were measured for vacuum pump oil, scintillation fluids, and trichloroethylene. It was found that reaction rate was proportional to contact area above about 2.% w/w loading of organic. Oxidations in a 4 liter. volume, mixed bench top reactor have given destruction efficiencies of 99.9999+% for common organics. Reaction rates achieved in the mixedbench top reactor were one to two orders of magnitude greater than had been achieved in unmixed reactions; a thoroughly mixed reactor should be capable of oxidizing 10. to 100.+ grams of organic per liter-hour,depending on the nature and concentration of the organic.« less
Development of a novel wet oxidation process for hazardous and mixed wastes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dhooge, P.M.
1994-11-01
This article describes and evaluates the DETOX{sup sm} process for processing of mixed wastes. Many DOE waste streams and remediates contain complex and variable mixtures of organic compounds, toxic metals, and radionuclides, often dispersed in organic or inorganic matrices, such as personal protective equipment, various sludges, soils, and water. The DETOX{sup sm} process, patented by Delphi Research, uses a unique combination of metal catalysts to increase the rate of oxidation of organic materials. Included are the following subject areas: project description (phases I-IV); results of all phases; and future work. 5 figs., 1 tab.
Process for making transition metal nitride whiskers
Bamberger, Carlos E.
1989-01-01
A process for making metal nitrides, particularly titanium nitride whiskers, using a cyanide salt as a reducing agent for a metal compound in the presence of an alkali metal oxide. Sodium cyanide, various titanates and titanium oxide mixed with sodium oxide react to provide titanium nitride whiskers that can be used as reinforcement to ceramic composites.
Ceramic membranes with mixed conductivity and their application
NASA Astrophysics Data System (ADS)
Kozhevnikov, V. L.; Leonidov, I. A.; Patrakeev, M. V.
2013-08-01
Data on the catalytic reactors with ceramic membranes possessing mixed oxygen ion and electronic conductivity that make it possible to integrate the processes of oxygen separation and oxidation are analyzed and generalized. The development of this approach is of interest for the design of energy efficient and environmentally friendly processes for processing natural gas and other raw materials. The general issues concerning the primary processing of light alkanes in reactors with oxygen separating membranes are expounded and general demands to the membrane materials are discussed. Particular attention is paid to the process of oxidative conversion of methane to synthesis gas. The bibliography includes 110 references.
Mixed Waste Focus Area alternative oxidation technologies development and demonstration program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borduin, L.C.; Fewell, T.; Gombert, D.
1998-07-01
The Mixed Waste Focus Area (MWFA) is currently supporting the development and demonstration of several alternative oxidation technology (AOT) processes for treatment of combustible mixed low-level wastes. The impetus for this support derives from regulatory and political hurdles frequently encountered by traditional thermal techniques, primarily incinerators. AOTs have been defined as technologies that destroy organic material without using open-flame reactions. Whether thermal or nonthermal, the processes have the potential advantages of relatively low-volume gaseous emissions, generation of few or no dioxin/furan compounds, and operation at low enough temperatures that metals (except mercury) and most radionuclides are not volatilized. Technology developmentmore » and demonstration are needed to confirm and realize the potential of AOTs and to compare them on an equal basis with their fully demonstrated thermal counterparts. AOTs include both thermal and nonthermal processes that oxidize organic wastes but operate under significantly different physical and chemical conditions than incinerators. Nonthermal processes currently being studied include Delphi DETOX and acid digestion at the Savannah River Site, and direct chemical oxidation at Lawrence Livermore National Laboratory. All three technologies are at advanced stages of development or are entering the demonstration phase. Nonflame thermal processes include catalytic chemical oxidation, which is being developed and deployed at Lawrence Berkeley National Laboratory, and team reforming, a commercial process being supported by Department of Energy. Related technologies include two low-flow, secondary oxidation processes (Phoenix and Thermatrix units) that have been tested at MSE, Inc., in Butte, Montana. Although testing is complete on some AOT technologies, most require additional support to complete some or all of the identified development objectives. Brief descriptions, status, and planned paths forward for each of the technologies are presented.« less
Flexible Electronics Powered by Mixed Metal Oxide Thin Film Transistors
NASA Astrophysics Data System (ADS)
Marrs, Michael
A low temperature amorphous oxide thin film transistor (TFT) and amorphous silicon PIN diode backplane technology for large area flexible digital x-ray detectors has been developed to create 7.9-in. diagonal backplanes. The critical steps in the evolution of the backplane process include the qualification and optimization of the low temperature (200 °C) metal oxide TFT and a-Si PIN photodiode process, the stability of the devices under forward and reverse bias stress, the transfer of the process to flexible plastic substrates, and the fabrication and assembly of the flexible detectors. Mixed oxide semiconductor TFTs on flexible plastic substrates suffer from performance and stability issues related to the maximum processing temperature limitation of the polymer. A novel device architecture based upon a dual active layer improves both the performance and stability. Devices are directly fabricated below 200 ºC on a polyethylene naphthalate (PEN) substrate using mixed metal oxides of either zinc indium oxide (ZIO) or indium gallium zinc oxide (IGZO) as the active semiconductor. The dual active layer architecture allows for adjustment to the saturation mobility and threshold voltage stability without the requirement of high temperature annealing, which is not compatible with flexible plastic substrates like PEN. The device performance and stability is strongly dependent upon the composition of the mixed metal oxide; this dependency provides a simple route to improving the threshold voltage stability and drive performance. By switching from a single to a dual active layer, the saturation mobility increases from 1.2 cm2/V-s to 18.0 cm2/V-s, while the rate of the threshold voltage shift decreases by an order of magnitude. This approach could assist in enabling the production of devices on flexible substrates using amorphous oxide semiconductors. Low temperature (200°C) processed amorphous silicon photodiodes were developed successfully by balancing the tradeoffs between low temperature and low stress (less than -70 MPa compressive) and device performance. Devices with a dark current of less than 1.0 pA/mm2 and a quantum efficiency of 68% have been demonstrated. Alternative processing techniques, such as pixelating the PIN diode and using organic photodiodes have also been explored for applications where extreme flexibility is desired.
Process for making transition metal nitride whiskers
Bamberger, C.E.
1988-04-12
A process for making metal nitrides, particularly titanium nitride whiskers, using a cyanide salt as a reducing agent for a metal compound in the presence of an alkali metal oxide. Sodium cyanide, various titanates and titanium oxide mixed with sodium oxide react to provide titanium nitride whiskers that can be used as reinforcement to ceramic composites. 1 fig., 1 tab.
Method for fabricating solar cells having integrated collector grids
NASA Technical Reports Server (NTRS)
Evans, J. C., Jr. (Inventor)
1979-01-01
A heterojunction or Schottky barrier photovoltaic device comprising a conductive base metal layer compatible with and coating predominately the exposed surface of the p-type substrate of the device such that a back surface field region is formed at the interface between the device and the base metal layer, a transparent, conductive mixed metal oxide layer in integral contact with the n-type layer of the heterojunction or Schottky barrier device having a metal alloy grid network of the same metal elements of the oxide constituents of the mixed metal oxide layer embedded in the mixed metal oxide layer, an insulating layer which prevents electrical contact between the conductive metal base layer and the transparent, conductive metal oxide layer, and a metal contact means covering the insulating layer and in intimate contact with the metal grid network embedded in the transparent, conductive oxide layer for conducting electrons generated by the photovoltaic process from the device.
Photochemical route for accessing amorphous metal oxide materials for water oxidation catalysis.
Smith, Rodney D L; Prévot, Mathieu S; Fagan, Randal D; Zhang, Zhipan; Sedach, Pavel A; Siu, Man Kit Jack; Trudel, Simon; Berlinguette, Curtis P
2013-04-05
Large-scale electrolysis of water for hydrogen generation requires better catalysts to lower the kinetic barriers associated with the oxygen evolution reaction (OER). Although most OER catalysts are based on crystalline mixed-metal oxides, high activities can also be achieved with amorphous phases. Methods for producing amorphous materials, however, are not typically amenable to mixed-metal compositions. We demonstrate that a low-temperature process, photochemical metal-organic deposition, can produce amorphous (mixed) metal oxide films for OER catalysis. The films contain a homogeneous distribution of metals with compositions that can be accurately controlled. The catalytic properties of amorphous iron oxide prepared with this technique are superior to those of hematite, whereas the catalytic properties of a-Fe(100-y-z)Co(y)Ni(z)O(x) are comparable to those of noble metal oxide catalysts currently used in commercial electrolyzers.
Sekaran, Alan; Palaniswamy, Murthi; Balaraju, Sivagnanaprakash
2015-01-01
Environmental and economic factors increasingly encourage higher utility of industrial by-products. The basic objective of this study was to identify alternative source for good quality aggregates which is depleting very fast due to fast pace of construction activities in India. EAF oxidizing slag as a by-product obtained during the process in steel making industry provides great opportunity to utilize it as an alternative to normally available coarse aggregates. The primary aim of this research was to evaluate the physical, mechanical, and durability properties of concrete made with EAF oxidizing slag in addition to supplementary cementing material fly ash. This study presents the experimental investigations carried out on concrete grades of M20 and M30 with three mixes: (i) Mix A, conventional concrete mix with no material substitution, (ii) Mix B, 30% replacement of cement with fly ash, and (iii) Mix C, 30% replacement of cement with fly ash and 50% replacement of coarse aggregate with EAF oxidizing slag. Tests were conducted to determine mechanical and durability properties up to the age of 90 days. The test results concluded that concrete made with EAF oxidizing slag and fly ash (Mix C) had greater strength and durability characteristics when compared to Mix A and Mix B. Based on the overall observations, it could be recommended that EAF oxidizing slag and fly ash could be effectively utilized as coarse aggregate replacement and cement replacement in all concrete applications. PMID:26421315
Sekaran, Alan; Palaniswamy, Murthi; Balaraju, Sivagnanaprakash
2015-01-01
Environmental and economic factors increasingly encourage higher utility of industrial by-products. The basic objective of this study was to identify alternative source for good quality aggregates which is depleting very fast due to fast pace of construction activities in India. EAF oxidizing slag as a by-product obtained during the process in steel making industry provides great opportunity to utilize it as an alternative to normally available coarse aggregates. The primary aim of this research was to evaluate the physical, mechanical, and durability properties of concrete made with EAF oxidizing slag in addition to supplementary cementing material fly ash. This study presents the experimental investigations carried out on concrete grades of M20 and M30 with three mixes: (i) Mix A, conventional concrete mix with no material substitution, (ii) Mix B, 30% replacement of cement with fly ash, and (iii) Mix C, 30% replacement of cement with fly ash and 50% replacement of coarse aggregate with EAF oxidizing slag. Tests were conducted to determine mechanical and durability properties up to the age of 90 days. The test results concluded that concrete made with EAF oxidizing slag and fly ash (Mix C) had greater strength and durability characteristics when compared to Mix A and Mix B. Based on the overall observations, it could be recommended that EAF oxidizing slag and fly ash could be effectively utilized as coarse aggregate replacement and cement replacement in all concrete applications.
Cau, Camille; Guari, Yannick; Chave, Tony; Larionova, Joulia; Nikitenko, Sergey I
2014-07-01
Porous (Ce0.5Zr0.5)O2 solid solutions were prepared by thermolysis (T=285 °C) or sonolysis (20 kHz, I=32 W cm(-2), Pac=0.46 W mL(-1), T=200 °C) of Ce(III) and Zr(IV) acetylacetonates in oleylamine or hexadecylamine under argon followed by heat treatment of the precipitates obtained in air at 450 °C. Transmission Electron Microscopy images of the samples show nanoparticles of ca. 4-6 nm for the two synthetic approaches. The powder X-ray diffraction, scanning electron microscopy, energy dispersive X-ray and μ-Raman spectroscopy of solids obtained after heat treatment indicate the formation of (Ce0.5Zr0.5)O2 solid solutions with a metastable tetragonal crystal structure for the two synthetic routes. The specific surface area of the samples varies between 78 and 149 m(2) g(-1) depending on synthesis conditions. The use of Barrett-Joyner-Halenda and t-plot methods reveal the formation of mixed oxides with a hybrid morphology that combines mesoporosity and microporosity regardless of the method of preparation. Platinum nanoparticles were deposited on the surface of the mixed oxides by sonochemical reduction of Pt(IV). It was found that the materials prepared by sonochemistry exhibit better resistance to dissolution during the deposition process of platinum. X-ray photoelectron spectroscopy analysis shows the presence of Pt(0) and Pt(II) on the surface of mixed oxides. Porous (Ce0.5Zr0.5)O2 mixed oxides loaded with 1.5%wt. platinum exhibit high activity in catalytic wet air oxidation of formic acid at 40 °C. Copyright © 2014 Elsevier B.V. All rights reserved.
Simulation of uranium and plutonium oxides compounds obtained in plasma
NASA Astrophysics Data System (ADS)
Novoselov, Ivan Yu.; Karengin, Alexander G.; Babaev, Renat G.
2018-03-01
The aim of this paper is to carry out thermodynamic simulation of mixed plutonium and uranium oxides compounds obtained after plasma treatment of plutonium and uranium nitrates and to determine optimal water-salt-organic mixture composition as well as conditions for their plasma treatment (temperature, air mass fraction). Authors conclude that it needs to complete the treatment of nitric solutions in form of water-salt-organic mixtures to guarantee energy saving obtainment of oxide compounds for mixed-oxide fuel and explain the choice of chemical composition of water-salt-organic mixture. It has been confirmed that temperature of 1200 °C is optimal to practice the process. Authors have demonstrated that condensed products after plasma treatment of water-salt-organic mixture contains targeted products (uranium and plutonium oxides) and gaseous products are environmental friendly. In conclusion basic operational modes for practicing the process are showed.
NASA Astrophysics Data System (ADS)
Vauchy, Romain; Robisson, Anne-Charlotte; Martin, Philippe M.; Belin, Renaud C.; Aufore, Laurence; Scheinost, Andreas C.; Hodaj, Fiqiri
2015-01-01
The impact of the cation distribution homogeneity of the U0.54Pu0.45Am0.01O2-x mixed oxide on the americium oxidation state was studied by coupling X-ray diffraction (XRD), electron probe micro analysis (EPMA) and X-ray absorption spectroscopy (XAS). Oxygen-hypostoichiometric Am-bearing uranium-plutonium mixed oxide pellets were fabricated by two different co-milling based processes in order to obtain different cation distribution homogeneities. The americium was generated from β- decay of 241Pu. The XRD analysis of the obtained compounds did not reveal any structural difference between the samples. EPMA, however, revealed a high homogeneity in the cation distribution for one sample, and substantial heterogeneity of the U-Pu (so Am) distribution for the other. The difference in cation distribution was linked to a difference in Am chemistry as investigated by XAS, with Am being present at mixed +III/+IV oxidation state in the heterogeneous compound, whereas only Am(IV) was observed in the homogeneous compound. Previously reported discrepancies on Am oxidation states can hence be explained by cation distribution homogeneity effects.
Code of Federal Regulations, 2012 CFR
2012-07-01
... entire vapor processing system except the exhaust port(s) or stack(s). Flare means a thermal oxidation...(ee). Thermal oxidation system means a combustion device used to mix and ignite fuel, air pollutants...
Code of Federal Regulations, 2014 CFR
2014-07-01
... entire vapor processing system except the exhaust port(s) or stack(s). Flare means a thermal oxidation...(ee). Thermal oxidation system means a combustion device used to mix and ignite fuel, air pollutants...
Code of Federal Regulations, 2013 CFR
2013-07-01
... entire vapor processing system except the exhaust port(s) or stack(s). Flare means a thermal oxidation...(ee). Thermal oxidation system means a combustion device used to mix and ignite fuel, air pollutants...
Code of Federal Regulations, 2011 CFR
2011-07-01
... entire vapor processing system except the exhaust port(s) or stack(s). Flare means a thermal oxidation...(ee). Thermal oxidation system means a combustion device used to mix and ignite fuel, air pollutants...
Removal of Hazardous Pollutants from Wastewaters: Applications of TiO 2 -SiO 2 Mixed Oxide Materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rasalingam, Shivatharsiny; Peng, Rui; Koodali, Ranjit T.
The direct release of untreated wastewaters from various industries and households results in the release of toxic pollutants to the aquatic environment. Advanced oxidation processes (AOP) have gained wide attention owing to the prospect of complete mineralization of nonbiodegradable organic substances to environmentally innocuous products by chemical oxidation. In particular, heterogeneous photocatalysis has been demonstrated to have tremendous promise in water purification and treatment of several pollutant materials that include naturally occurring toxins, pesticides, and other deleterious contaminants. In this work, we have reviewed the different removal techniques that have been employed for water purification. In particular, the application ofmore » TiO 2 -SiO 2 binary mixed oxide materials for wastewater treatment is explained herein, and it is evident from the literature survey that these mixed oxide materials have enhanced abilities to remove a wide variety of pollutants.« less
Removal of Hazardous Pollutants from Wastewaters: Applications of TiO 2 -SiO 2 Mixed Oxide Materials
Rasalingam, Shivatharsiny; Peng, Rui; Koodali, Ranjit T.
2014-01-01
The direct release of untreated wastewaters from various industries and households results in the release of toxic pollutants to the aquatic environment. Advanced oxidation processes (AOP) have gained wide attention owing to the prospect of complete mineralization of nonbiodegradable organic substances to environmentally innocuous products by chemical oxidation. In particular, heterogeneous photocatalysis has been demonstrated to have tremendous promise in water purification and treatment of several pollutant materials that include naturally occurring toxins, pesticides, and other deleterious contaminants. In this work, we have reviewed the different removal techniques that have been employed for water purification. In particular, the application ofmore » TiO 2 -SiO 2 binary mixed oxide materials for wastewater treatment is explained herein, and it is evident from the literature survey that these mixed oxide materials have enhanced abilities to remove a wide variety of pollutants.« less
Device for staged carbon monoxide oxidation
Vanderborgh, Nicholas E.; Nguyen, Trung V.; Guante, Jr., Joseph
1993-01-01
A method and apparatus for selectively oxidizing carbon monoxide in a hydrogen rich feed stream. The method comprises mixing a feed stream consisting essentially of hydrogen, carbon dioxide, water and carbon monoxide with a first predetermined quantity of oxygen (air). The temperature of the mixed feed/oxygen stream is adjusted in a first the heat exchanger assembly (20) to a first temperature. The mixed feed/oxygen stream is sent to reaction chambers (30,32) having an oxidation catalyst contained therein. The carbon monoxide of the feed stream preferentially absorbs on the catalyst at the first temperature to react with the oxygen in the chambers (30,32) with minimal simultaneous reaction of the hydrogen to form an intermediate hydrogen rich process stream having a lower carbon monoxide content than the feed stream. The elevated outlet temperature of the process stream is carefully controlled in a second heat exchanger assembly (42) to a second temperature above the first temperature. The process stream is then mixed with a second predetermined quantity of oxygen (air). The carbon monoxide of the process stream preferentially reacts with the second quantity of oxygen in a second stage reaction chamber (56) with minimal simultaneous reaction of the hydrogen in the process stream. The reaction produces a hydrogen rich product stream having a lower carbon monoxide content than the process stream. The product stream is then cooled in a third heat exchanger assembly (72) to a third predetermined temperature. Three or more stages may be desirable, each with metered oxygen injection.
Bench scale demonstration and conceptual engineering for DETOX{sup SM} catalyzed wet oxidation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moslander, J.; Bell, R.; Robertson, D.
1994-06-01
Laboratory and bench scale studies of the DETOX{sup SM} catalyzed wet oxidation process have been performed with the object of developing the process for treatment of hazardous and mixed wastes. Reaction orders, apparent rates, and activation energies have been determined for a range of organic waste surrogates. Reaction intermediates and products have been analyzed. Metals` fates have been determined. Bench scale units have been designed, fabricated, and tested with solid and liquid organic waste surrogates. Results from the laboratory and bench scale studies have been used to develop conceptual designs for application of the process to hazardous and mixed wastes.
Glynn, Colm; Aureau, Damien; Collins, Gillian; O'Hanlon, Sally; Etcheberry, Arnaud; O'Dwyer, Colm
2015-12-21
Devices composed of transparent materials, particularly those utilizing metal oxides, are of significant interest due to increased demand from industry for higher fidelity transparent thin film transistors, photovoltaics and a myriad of other optoelectronic devices and optics that require more cost-effective and simplified processing techniques for functional oxides and coatings. Here, we report a facile solution processed technique for the formation of a transparent thin film through an inter-diffusion process involving substrate dopant species at a range of low annealing temperatures compatible with processing conditions required by many state-of-the-art devices. The inter-diffusion process facilitates the movement of Si, Na and O species from the substrate into the as-deposited vanadium oxide thin film forming a composite fully transparent V0.0352O0.547Si0.4078Na0.01. Thin film X-ray diffraction and Raman scattering spectroscopy show the crystalline component of the structure to be α-NaVO3 within a glassy matrix. This optical coating exhibits high broadband transparency, exceeding 90-97% absolute transmission across the UV-to-NIR spectral range, while having low roughness and free of surface defects and pinholes. The production of transparent films for advanced optoelectronic devices, optical coatings, and low- or high-k oxides is important for planar or complex shaped optics or surfaces. It provides opportunities for doping metal oxides to ternary, quaternary or other mixed metal oxides on glass, encapsulants or other substrates that facilitate diffusional movement of dopant species.
Balachandran, Uthamalingam; Poeppel, Roger B.; Kleefisch, Mark S.; Kobylinski, Thaddeus P.; Udovich, Carl A.
1994-01-01
This invention discloses cross-flow electrochemical reactor cells containing oxygen permeable materials which have both electron conductivity and oxygen ion conductivity, cross-flow reactors, and electrochemical processes using cross-flow reactor cells having oxygen permeable monolithic cores to control and facilitate transport of oxygen from an oxygen-containing gas stream to oxidation reactions of organic compounds in another gas stream. These cross-flow electrochemical reactors comprise a hollow ceramic blade positioned across a gas stream flow or a stack of crossed hollow ceramic blades containing a channel or channels for flow of gas streams. Each channel has at least one channel wall disposed between a channel and a portion of an outer surface of the ceramic blade, or a common wall with adjacent blades in a stack comprising a gas-impervious mixed metal oxide material of a perovskite structure having electron conductivity and oxygen ion conductivity. The invention includes reactors comprising first and second zones seprated by gas-impervious mixed metal oxide material material having electron conductivity and oxygen ion conductivity. Prefered gas-impervious materials comprise at least one mixed metal oxide having a perovskite structure or perovskite-like structure. The invention includes, also, oxidation processes controlled by using these electrochemical reactors, and these reactions do not require an external source of electrical potential or any external electric circuit for oxidation to proceed.
Volatile organic compounds and isoprene oxidation products at a temperate deciduous forest site
NASA Astrophysics Data System (ADS)
Helmig, Detlev; Greenberg, Jim; Guenther, Alex; Zimmerman, Pat; Geron, Chris
1998-09-01
Biogenic volatile organic compounds (BVOCs) and their role in atmospheric oxidant formation were investigated at a forest site near Oak Ridge, Tennessee, as part of the Nashville Southern Oxidants Study (SOS) in July 1995. Of 98 VOCs detected, a major fraction were anthropogenic VOCs such as chlorofluorocarbons (CFCs), alkanes, alkenes and aromatic compounds. Isoprene was the dominant BVOC during daytime. Primary products from BVOC oxidation were methylvinylketone, methacrolein and 3-methylfuran. Other compounds studied include the BVOCs α-pinene, camphene, β-pinene, p-cymene, limonene and cis-3-hexenyl acetate and a series of light alkanes, aromatic hydrocarbons and seven of the CFCs. The correlation of meteorological parameters, with the mixing ratios of these different compounds, reveals information on atmospheric oxidation processes and transport. Long-lived VOCs show very steady mixing ratio time series. Regionally and anthropogenically emitted VOCs display distinct diurnal cycles with a strong mixing ratio decrease in the morning from the breakup of the nocturnal boundary layer. Nighttime mixing ratio increases of CFCs and anthropogenic VOCs are suspected to derive from emissions within the Knoxville urban area into the shallow nocturnal boundary layer. In contrast, the time series of BVOCs and their oxidation products are determined by a combination of emission control, atmospheric oxidation and deposition, and boundary layer dynamics. Mixing ratio time series data for monoterpenes and cis-3-hexenyl acetate suggest a temporarily emission rate increase during and after heavy rain events. The isoprene oxidation products demonstrate differences in the oxidation pathways during night and day and in their dry and wet deposition rates.
URANIUM LEACHING AND RECOVERY PROCESS
McClaine, L.A.
1959-08-18
A process is described for recovering uranium from carbonate leach solutions by precipitating uranium as a mixed oxidation state compound. Uranium is recovered by adding a quadrivalent uranium carbon;te solution to the carbonate solution, adjusting the pH to 13 or greater, and precipitating the uranium as a filterable mixed oxidation state compound. In the event vanadium occurs with the uranium, the vanadium is unaffected by the uranium precipitation step and remains in the carbonate solution. The uranium-free solution is electrolyzed in the cathode compartment of a mercury cathode diaphragm cell to reduce and precipitate the vanadium.
Sodium chloride-catalyzed oxidation of multiwalled carbon nanotubes for environmental benefit.
Endo, Morinobu; Takeuchi, Kenji; Tajiri, Takeyuki; Park, Ki Chul; Wang, Feng; Kim, Yoong-Ahm; Hayashi, Takuya; Terrones, Mauricio; Dresselhaus, Mildred S
2006-06-22
A sodium chloride (NaCl) catalyst (0.1 w/w %) lowers the oxidation temperature of graphitized multiwalled carbon nanotubes: MWCNT-20 (diameter: 20-70 nm) and MWCNT-80 (diameter: 80-150 nm). The analysis of the reaction kinetics indicates that the oxidation of MWCNT-20 and MWCNT-80 mixed with no NaCl exhibits single reaction processes with activation energies of E(a) = 159 and 152 kJ mol(-1), respectively. The oxidation reaction in the presence of NaCl is shown to consist of two different reaction processes, that is, a first reaction and a second reaction process. The first reaction process is dominant at a low temperature of around 600 degrees C, while the second reaction process becomes more dominant than the first one in a higher temperature region. The activation energies of the first reaction processes (MWCNT-20: E(a1) = 35.7 kJ mol(-1); MWCNT-80: E(a1) = 43.5 kJ mol(-1)) are much smaller than those of the second reaction processes (MWCNT-20: E(a2) = 170 kJ mol(-1); MWCNT-80: E(a2) = 171 kJ mol(-1)). The comparison of the kinetic parameters and the results of the spectroscopic and microscopic analyses imply that the lowering of the oxidation temperature in the presence of NaCl results from the introduction of disorder into the graphitized MWCNTs (during the first reaction process), thus increasing the facility of the oxidation reaction of the disorder-induced nanotubes (in the second reaction process). It is found that the larger nanopits and cracks on the outer graphitic layers are caused by the catalytic effect of NaCl. Therefore, the NaCl-mixed samples showed more rapid and stronger oxidation compared with that of the nonmixed samples at the same residual quantity.
NASA Technical Reports Server (NTRS)
Houseman, J. (Inventor)
1976-01-01
A process and apparatus is described for producing a hydrogen rich gas by introducing a liquid hydrocarbon fuel in the form of a spray into a partial oxidation region and mixing with a mixture of steam and air that is preheated by indirect heat exchange with the formed hydrogen rich gas, igniting the hydrocarbon fuel spray mixed with the preheated mixture of steam and air within the partial oxidation region to form a hydrogen rich gas.
Technology for High Pure Aluminum Oxide Production from Aluminum Scrap
NASA Astrophysics Data System (ADS)
Ambaryan, G. N.; Vlaskin, M. S.; Shkolnikov, E. I.; Zhuk, A. Z.
2017-10-01
In this study a simple ecologically benign technology of high purity alumina production is presented. The synthesis process consists of three steps) oxidation of aluminum in water at temperature of 90 °C) calcinations of Al hydroxide in atmosphere at 1100 °C) high temperature vacuum processing of aluminum alpha oxide at 1750 °C. Oxidation of aluminum scrap was carried out under intensive mixing in water with small addition of KOH as a catalyst. It was shown that under implemented experimental conditions alkali was continuously regenerated during oxidation reaction and synergistic effect of low content alkali aqueous solution and intensive mixing worked. The product of oxidation of aluminum scrap is the powder of Al(OH)3. Then it can be preliminary granulated or directly subjected to thermal treatment deleting the impurities from the product (aluminum oxide). It was shown the possibility to produce the high-purity aluminum oxide of 5N grade (99.999 %). Aluminum oxide, synthesized by means of the proposed method, meets the requirements of industrial manufacturers of synthetic sapphire (aluminum oxide monocrystals). Obtained high pure aluminum oxide can be also used for the manufacture of implants, artificial joints, microscalpels, high-purity ceramics and other refractory shapes for manufacture of ultra-pure products.
Photochemical metal organic deposition of metal oxides
NASA Astrophysics Data System (ADS)
Law, Wai Lung (Simon)
This thesis pertains to the study of the deposition of metal oxide thin films via the process of Photochemical Metal Organic Deposition (PMOD). In this process, an amorphous metal organic precursor thin film is subjected to irradiation under ambient conditions. Fragmentation of the metal precursor results from the photoreaction, leading to the formation of metal oxide thin films in the presence of oxygen. The advantage of PMOD lies in its ability to perform lithography of metal oxide thin film without the application of photoresist. The metal organic precursor can be imaged directly by photolysis through a lithography mask under ambient conditions. Thus the PMOD process provides an attractive alternative to the conventional VLSI fabrication process. Metal carboxylates and metal acetylacetonates complexes were used as the precursors for PMOD process in this thesis. Transition metal carboxylate and metal acetylacetonate complexes have shown previously that when deposited as amorphous thin films, they will undergo fragmentation upon photolysis, leading to the formation of metal oxide thin films under ambient conditions. In this thesis, the formation of main group metal oxides of aluminum, indium and tin, as well as the formation of rare-earth metal oxides of cerium and europium by PMOD from its corresponding metal organic precursor will be presented. The nature of the photoreactions as well as the properties of the thin films deposited by PMOD will be investigated. Doped metal oxide thin films can also be prepared using the PMOD process. By mixing the metal precursors prior to deposition in the desired ratio, precursor films containing more than one metal precursor can be obtained. Mixed metal oxide thin films corresponding to the original metal ratio, in the precursor mixture, can be obtained upon photolysis under ambient conditions. In this thesis, the properties of doped metal oxide thin films of europium doped aluminum oxide as well as tin doped indium oxide thin films will also be presented.
A KINETIC MODEL FOR H2O2/UV PROCESS IN A COMPLETELY MIXED BATCH REACTOR. (R825370C076)
A dynamic kinetic model for the advanced oxidation process (AOP) using hydrogen peroxide and ultraviolet irradiation (H2O2/UV) in a completely mixed batch reactor (CMBR) is developed. The model includes the known elementary chemical and photochemical reac...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiaofei Guan; Peter A. Zink; Uday B. Pal
2012-01-01
Pure magnesium (Mg) is recycled from 19g of partially oxidized 50.5wt.% Mg-Aluminum (Al) alloy. During the refining process, potentiodynamic scans (PDS) were performed to determine the electrorefining potential for magnesium. The PDS show that the electrorefining potential increases over time as the magnesium content inside the Mg-Al scrap decreases. Up to 100% percent of magnesium is refined from the Mg-Al scrap by a novel refining process of dissolving magnesium and its oxide into a flux followed by vapor phase removal of dissolved magnesium and subsequently condensing the magnesium vapor. The solid oxide membrane (SOM) electrolysis process is employed in themore » refining system to enable additional recycling of magnesium from magnesium oxide (MgO) in the partially oxidized Mg-Al scrap. The combination of the refining and SOM processes yields 7.4g of pure magnesium.« less
How to stabilize highly active Cu + cations in a mixed-oxide catalyst
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mudiyanselage, Kumudu; Luo, Si; Kim, Hyun You
Mixed-metal oxides exhibit novel properties that are not present in their isolated constituent metal oxides and play a significant role in heterogeneous catalysis. In this study, a titanium-copper mixed-oxide (TiCuO x) film has been synthesized on Cu(111) and characterized by complementary experimental and theoretical methods. At sub-monolayer coverages of titanium, a Cu 2O-like phase coexists with TiCuO x and TiO x domains. When the mixed-oxide surface is exposed at elevated temperatures (600–650 K) to oxygen, the formation of a well-ordered TiCuO x film occurs. Stepwise oxidation of TiCuO x shows that the formation of the mixed-oxide is faster than thatmore » of pure Cu 2O. As the Ti coverage increases, Ti-rich islands (TiO x) form. The adsorption of CO has been used to probe the exposed surface sites on the TiO x–CuO x system, indicating the existence of a new Cu + adsorption site that is not present on Cu 2O/Cu(111). Adsorption of CO on Cu + sites of TiCuO x is thermally more stable than on Cu(111), Cu 2O/Cu(111) or TiO 2(110). The Cu + sites in TiCuO x domains are stable under both reducing and oxidizing conditions whereas the Cu 2O domains present on sub-monolayer loads of Ti can be reduced or oxidized under mild conditions. Furthermore, the results presented here demonstrate novel properties of TiCuO x films, which are not present on Cu(111), Cu 2O/Cu(111), or TiO 2(110), and highlight the importance of the preparation and characterization of well-defined mixed-metal oxides in order to understand fundamental processes that could guide the design of new materials.« less
How to stabilize highly active Cu + cations in a mixed-oxide catalyst
Mudiyanselage, Kumudu; Luo, Si; Kim, Hyun You; ...
2015-09-12
Mixed-metal oxides exhibit novel properties that are not present in their isolated constituent metal oxides and play a significant role in heterogeneous catalysis. In this study, a titanium-copper mixed-oxide (TiCuO x) film has been synthesized on Cu(111) and characterized by complementary experimental and theoretical methods. At sub-monolayer coverages of titanium, a Cu 2O-like phase coexists with TiCuO x and TiO x domains. When the mixed-oxide surface is exposed at elevated temperatures (600–650 K) to oxygen, the formation of a well-ordered TiCuO x film occurs. Stepwise oxidation of TiCuO x shows that the formation of the mixed-oxide is faster than thatmore » of pure Cu 2O. As the Ti coverage increases, Ti-rich islands (TiO x) form. The adsorption of CO has been used to probe the exposed surface sites on the TiO x–CuO x system, indicating the existence of a new Cu + adsorption site that is not present on Cu 2O/Cu(111). Adsorption of CO on Cu + sites of TiCuO x is thermally more stable than on Cu(111), Cu 2O/Cu(111) or TiO 2(110). The Cu + sites in TiCuO x domains are stable under both reducing and oxidizing conditions whereas the Cu 2O domains present on sub-monolayer loads of Ti can be reduced or oxidized under mild conditions. Furthermore, the results presented here demonstrate novel properties of TiCuO x films, which are not present on Cu(111), Cu 2O/Cu(111), or TiO 2(110), and highlight the importance of the preparation and characterization of well-defined mixed-metal oxides in order to understand fundamental processes that could guide the design of new materials.« less
Engineering development and demonstration of DETOX{sup SM} wet oxidation for mixed waste treatment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dhooge, P.M.; Goldblatt, S.D.; Moslander, J.E.
1997-12-01
DETOX{sup SM}, a catalyzed chemical oxidation process, is under development for treatment of hazardous and mixed wastes at Department of Energy sites. To support this effort, developmental engineering studies have been formed for aspects of the process to help ensure safe and effective operation. Subscale agitation studies have been preformed to identify a suitable mixing head and speed for the primary reaction vessel agitator. Mechanisms for feeding solid waste materials to the primary reaction vessel have been investigated. Filtration to remove solid field process residue, and the use of various filtration aids, has been studied. Extended compatibility studies on themore » materials of construction have been performed. Due to a change to Rocky Flats Environmental Technology Site (RFETS) for the mixed waste portion of the demonstration, types of wastes suitable and appropriate for treatment at RFETS had to be chosen. A Prototype unit has been fabricated and will be demonstrated on hazardous and mixed wastes at Savannah River Site (SRS) and RFETS during 1997 and 1998. The unit is in shakedown testing at present. Data validation and an engineering evaluation will be performed during the demonstration.« less
Nanoparticulate-catalyzed oxygen transfer processes
Hunt, Andrew T [Atlanta, GA; Breitkopf, Richard C [Dunwoody, GA
2009-12-01
Nanoparticulates of oxygen transfer materials that are oxides of rare earth metals, combinations of rare earth metals, and combinations of transition metals and rare earth metals are used as catalysts in a variety of processes. Unexpectedly large thermal efficiencies are achieved relative to micron sized particulates. Processes that use these catalysts are exemplified in a multistage reactor. The exemplified reactor cracks C6 to C20 hydrocarbons, desulfurizes the hydrocarbon stream and reforms the hydrocarbons in the stream to produce hydrogen. In a first reactor stage the steam and hydrocarbon are passed through particulate mixed rare earth metal oxide to crack larger hydrocarbon molecules. In a second stage, the steam and hydrocarbon are passed through particulate material that desulfurizes the hydrocarbon. In a third stage, the hydrocarbon and steam are passed through a heated, mixed transition metal/rare earth metal oxide to reform the lower hydrocarbons and thereby produce hydrogen. Stages can be alone or combined. Parallel reactors can provide continuous reactant flow. Each of the processes can be carried out individually.
Effect of key parameters on the selective acid leach of nickel from mixed nickel-cobalt hydroxide
NASA Astrophysics Data System (ADS)
Byrne, Kelly; Hawker, William; Vaughan, James
2017-01-01
Mixed nickel-cobalt hydroxide precipitate (MHP) is a relatively recent intermediate product in primary nickel production. The material is now being produced on a large scale (approximately 60,000 t/y Ni as MHP) at facilities in Australia (Ravensthorpe, First Quantum Minerals) and Papua New Guinea (Ramu, MCC/Highlands Pacific). The University of Queensland Hydrometallurgy research group developed a new processing technology to refine MHP based on a selective acid leach. This process provides a streamlined route to obtaining a high purity nickel product compared with conventional leaching / solvent extraction processes. The selective leaching of nickel from MHP involves stabilising manganese and cobalt into the solid phase using an oxidant. This paper describes a batch reactor study investigating the timing of acid and oxidant addition on the rate and extent of nickel, cobalt, manganese leached from industrial MHP. For the conditions studied, it is concluded that the simultaneous addition of acid and oxidant provide the best process outcomes.
Mixed Oxidant Process for Control of Biological Growth in Cooling Towers
2010-02-01
Concentration is < 1% (vs. 12.5% for bulk bleach ) • Will not form chlorine gas • No transport or storage of hazardous chemicals • Uses only salt as...Eliminates purchase, transport, and storage of hazardous biocide compounds such as hypochlorite or chlorine gas • Provides a constant dosage level of...patented MIOX equipment design • Chemical and biocidal properties are more effective than conventional chlorine Bulk Bleach On-Site Hypo Mixed Oxidants E
Ultra-fast 160:10 Gbit/s time demultiplexing by four wave mixing in 1 m-long B 2O 3-based fiber
NASA Astrophysics Data System (ADS)
Scaffardi, M.; Fresi, F.; Meloni, G.; Bogoni, A.; Potì, L.; Calabretta, N.; Guglielmucci, M.
2006-12-01
One meter-long spool of bismuth oxide-based fiber, with nonlinear coefficient of 1250 W -1 km -1, is used to realize an optical 160-to-10 Gbit/s demultiplexer based on four wave mixing. Bit-Error-Rate measurements demonstrate a demultiplexing penalty lower than 2 dB confirming the suitability of bismuth oxide-based fiber for 160 Gbit/s all-optical processing.
NASA Astrophysics Data System (ADS)
Wang, Qiyuan; Huang, Rujin; Zhao, Zhuzi; Cao, Junji; Ni, Haiyan; Tie, Xuexi; Zhu, Chongshu; Shen, Zhenxing; Wang, Meng; Dai, Wenting; Han, Yongming; Zhang, Ningning; Prévôt, André S. H.
2017-04-01
The relationship between the refractory black carbon (rBC) aerosol mixing state and the atmospheric oxidation capacity was investigated to assess the possible influence of oxidants on the particles’ light absorption effects at two large cities in China. The number fraction of thickly-coated rBC particles (F rBC) was positively correlated with a measure of the oxidant concentrations (OX = O3 + NO2), indicating an enhancement of coated rBC particles under more oxidizing conditions. The slope of a linear regression of F rBC versus OX was 0.58% ppb-1 for Beijing and 0.84% ppb-1 for Xi’an, and these relationships provide some insights into the evolution of rBC mixing state in relation to atmospheric oxidation processes. The mass absorption cross-section of rBC (MACrBC) increased with OX during the daytime at Xi’an, at a rate of 0.26 m2 g-1 ppb-1, suggesting that more oxidizing conditions lead to internal mixing that enhances the light-absorbing capacity of rBC particles. Understanding the dependence of the increasing rates of F rBC and MACrBC as a function of OX may lead to improvements of climate models that deal with the warming effects, but more studies in different cities and seasons are needed to gauge the broader implications of these findings.
Song, Yu; Liu, Tian-Yu; Yao, Bin; Kou, Tian-Yi; Feng, Dong-Yang; Liu, Xiao-Xia; Li, Yat
2017-04-01
Previous studies show that vanadium oxides suffer from severe capacity loss during cycling in the liquid electrolyte, which has hindered their applications in electrochemical energy storage. The electrochemical instability is mainly due to chemical dissolution and structural pulverization of vanadium oxides during charge/discharge cyclings. In this study the authors demonstrate that amorphous mixed-valence vanadium oxide deposited on exfoliated carbon cloth (CC) can address these two limitations simultaneously. The results suggest that tuning the V 4+ /V 5+ ratio of vanadium oxide can efficiently suppress the dissolution of the active materials. The oxygen-functionalized carbon shell on exfoliated CC can bind strongly with VO x via the formation of COV bonding, which retains the electrode integrity and suppresses the structural degradation of the oxide during charging/discharging. The uptake of structural water during charging and discharging processes also plays an important role in activating the electrode material. The amorphous mixed-valence vanadium oxide without any protective coating exhibits record-high cycling stability in the aqueous electrolyte with no capacitive decay in 100 000 cycles. This work provides new insights on stabilizing vanadium oxide, which is critical for the development of vanadium oxide based energy storage devices. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tench, D.M.; Kendig, M.W.; Jeanjaquet, S.
1993-06-01
The overall objective of this project was to develop a process for direct electrodeposition of Y-Ba-Cu superconducting oxides from a molten salt at relatively low temperatures (300-550 deg C). An important finding was that cathodic deposition of metallic oxides, rather than free metals, generally occurs from nitrate melts, apparently via reduction of metal nitrato complexes. Oxide deposition was confirmed for Cu as CuO, Y as Y2O3, and Co as Co3O4, and apparently also occurs for Ba. Deposition of mixed Ba-Y-Cu oxides was demonstrated on both Cu and Pt substrates. Data were compiled that provide a good basis for designing schemesmore » for deposition of various mixed oxides from nitrate melts. A sequential anodic injection method was conceived for depositing ultrathin mixed oxide layers, which can be viewed as an analog of molecular beam epitaxy. Results obtained with this approach were encouraging but were inconclusive because of contamination with Gd from the Y injection anode. Based on the results of this program and literature studies, cathodic metal oxide deposition from nitrate melts is a general phenomenon that could ultimately prove to be a practical means of preparing a variety of single and mixed anhydrous metal oxide films. It is recommended that future work focus initially on deposition of perovskite materials, which are of considerable practical interest and involve only two metallic components so that the required deposition schemes are inherently simpler.« less
IMPROVED MAGNESIUM OXIDE SLIP CASTING METHOD
Stoddard, S.D.; Nuckolls, D.E.
1963-12-31
A process for making an aqueous magnesium oxide slip casting slurry comprising the steps of mixing finely ground fused magnesium oxide with water, milling the slurry for at least 30 hours at a temperature of 2-10 deg C (the low temperature during milling inhibiting the formation of hydrated magnesium oxide), discharging the slurry from the mill, adding hydrochloric acid as a deflocculent, and adding a scum inhibitor is presented. (AEC)
Factors Affecting Oxidation of Thiosalts by Thiobacilli
Silver, M.; Dinardo, O.
1981-01-01
The effects of temperature, initial pH, and the concentrations of ammonium, phosphate, and heavy metals on the oxidation of thiosalts by an authentic strain of Thiobacillus thiooxidans (ATCC 8085) and by a mixed culture isolated from a base metal-processing mill effluent pond were studied. The optimum temperature was 30°C and the optimum initial pH was 3.75 for both cultures using thiosulfate and for the mixed culture using tetrathionate. T. thiooxidans ATCC 8085 did not oxidize tetrathionate. For a thiosalt concentration of 2,000 ppm (2,000 mg/liter), maximal rates of destruction occurred at concentrations of ammonium ion above 2 mg/liter and in the presence of 1 mg of phosphate per liter. Under optimal conditions, the rate of thiosulfate oxidation by the pure culture was 55 ± 3 mg/liter per h; the mixed culture oxidized thiosulfate at the rate of 40 ± 1 mg/liter per h and tetrathionate at the rate of 50 ± 2 mg/liter per h. Metal ions caused normal inhibition kinetics in the oxidation of thiosulfate by T. thiooxidans ATCC 8085. Ki values were calculated for cadmium (16 mg/liter), copper (0.46 mg/liter), lead (2 mg/liter), silver (3.1 mg/liter), and zinc (33 mg/liter). Only a slight additive effect was apparent in the presence of all of these metal ions. The mixed culture of thiosalt-oxidizing bacteria was less sensitive to heavy metal inhibition; the order of inhibition of thiosulfate oxidation was Cd < Zn < Pb < Ag < Cu, and that of tetrathionate oxidation was Zn < Cd < Pb < Ag < Cu. PMID:16345785
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guan, Xiaofei; Zink, Peter; Pal, Uday
2012-03-11
Pure magnesium (Mg) is recycled from 19g of partially oxidized 50.5wt.%Mg-Aluminum (Al) alloy. During the refining process, potentiodynamic scans (PDS) were performed to determine the electrorefining potential for magnesium. The PDS show that the electrorefining potential increases over time as the Mg content inside the Mg-Al scrap decreases. Up to 100% percent of magnesium is refined from the Mg-Al scrap by a novel refining process of dissolving magnesium and its oxide into a flux followed by vapor phase removal of dissolved magnesium and subsequently condensing the magnesium vapors in a separate condenser. The solid oxide membrane (SOM) electrolysis process ismore » employed in the refining system to enable additional recycling of magnesium from magnesium oxide (MgO) in the partially oxidized Mg-Al scrap. The combination of the refining and SOM processes yields 7.4g of pure magnesium; could not collect and weigh all of the magnesium recovered.« less
NASA Astrophysics Data System (ADS)
Huang, Yuan; Liu, Hao; Gong, Li; Hou, Yanglong; Li, Quan
2017-04-01
Introducing Mg2+ to LiFePO4 and reduced graphene oxide composite via mechanical mixing and annealing leads to largely improved rate performance of the cathode (e.g. ∼78 mA h g-1 at 20 C for LiFePO4 and reduced graphene oxide composite with Mg2+ introduction vs. ∼37 mA h g-1 at 20 C for LiFePO4 and reduced graphene oxide composite). X-ray photoelectron spectroscopy unravels that the enhanced reduction of Fe2+ to Fe0 occurs in the simultaneous presence of Mg2+ and reduced graphene oxide, which is beneficial for the rate capability of cathode. The simple fabrication process provides a simple and effective means to improve the rate performance of the LiFePO4 and reduced graphene oxide composite cathode.
Li, Zhen; Yang, Jian; Ye, Heng; Ding, Mingming; Luo, Feng; Li, Jianshu; Li, Jiehua; Tan, Hong; Fu, Qiang
2018-06-11
The degradation behaviors including oxidation and hydrolysis of silicone modified polycarbonate urethanes were thoroughly investigated. These polyurethanes were based on polyhexamethylene carbonate (PHMC)/polydimethylsiloxane (PDMS) mixed macrodiols with molar ratio of PDMS ranging from 5% to 30%. It was proved that PDMS tended to migrate toward surface and even a small amount of PDMS could form a silicone-like surface. Macrophages-mediated oxidation process indicated that the PDMS surface layer was desirable to protect the fragile soft PHMC from the attack of degradative species. Hydrolysis process was probed in detail after immersing in boiling buffered water using combined analytical tools. Hydrolytically stable PDMS could act as protective shields for the bulk to hinder the chain scission of polycarbonate carbonyls whereas the hydrolysis of urethane linkages was less affected. Although the promoted phase separation at higher PDMS fractions lead to possible physical defects and mechanical compromise after degradation, simultaneously enhanced oxidation and hydrolysis resistance could be achieved for the polyurethanes with proper PDMS incorporation.
DETOX{sup SM} catalyzed wet oxidation as a highly suitable pretreatment for vitrification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rogers, T.W.; Dhooge, P.M.; Goldblatt, S.D.
1995-11-01
A catalyzed wet oxidation process has been developed which uses ferric iron in an acidic water solution to oxidize organic compounds in the presence of platinum ion and/or ruthenium ion catalysts. The process is capable of oxidizing a wide range of organic compounds to carbon dioxide and water with great efficiency. The process has been tested in the bench-scale with many different types of organics. Conceptual engineering for application of the process to treatment of liquid and solid organic waste materials has been followed by engineering design for a demonstration unit. Fabrication of the unit and demonstration on hazardous andmore » mixed wastes at two Department of Energy sites is planned in 1995 through 1997.« less
A hybrid water-splitting cycle using copper sulfate and mixed copper oxides
NASA Technical Reports Server (NTRS)
Schreiber, J. D.; Remick, R. J.; Foh, S. E.; Mazumder, M. M.
1980-01-01
The Institute of Gas Technology has derived and developed a hybrid thermochemical water-splitting cycle based on mixed copper oxides and copper sulfate. Similar to other metal oxide-metal sulfate cycles that use a metal oxide to 'concentrate' electrolytically produced sulfuric acid, this cycle offers the advantage of producing oxygen (to be vented) and sulfur dioxide (to be recycled) in separate steps, thereby eliminating the need of another step to separate these gases. The conceptual process flow-sheet efficiency of the cycle promises to exceed 50%. It has been completely demonstrated in the laboratory with recycled materials. Research in the electrochemical oxidation of sulfur dioxide to produce sulfuric acid and hydrogen performed at IGT indicates that the cell performance goals of 200 mA/sq cm at 0.5 V will be attainable using relatively inexpensive electrode materials.
The effect of mixed oxidants and powdered activated carbon on the removal of natural organic matter.
Alvarez-Uriarte, Jon I; Iriarte-Velasco, Unai; Chimeno-Alanís, Noemí; González-Velasco, Juan R
2010-09-15
Present paper studies the influence of electrochemically generated mixed oxidants on the physicochemical properties of natural organic matter, and especially from the disinfection by-products formation point of view. The study was carried out in a full scale water treatment plant. Results indicate that mixed oxidants favor humic to non-humic conversion of natural organic matter. Primary treatment preferentially removes the more hydrophobic fraction. This converted the non-humic fraction in an important source of disinfection by-products with a 20% contribution to the final trihalomethane formation potential (THMFP(F)) of the finished water. Enhanced coagulation at 40 mg l(-1) of polyaluminium chloride with a moderate mixing intensity (80 rpm) and pH of 6.0 units doubled the removal efficiency of THMFP(F) achieved at full scale plant. However, gel permeation chromatography data revealed that low molecular weight fractions were still hardly removed. Addition of small amounts of powdered activated carbon, 50 mg l(-1), allowed reduction of coagulant dose by 50% whereas removal of THMFP(F) was maintained or even increased. In systems where mixed oxidants are used addition of powdered activated carbon allows complementary benefits by a further reduction in the THMFP(F) compared to the conventional only coagulation-flocculation-settling process. Copyright 2010 Elsevier B.V. All rights reserved.
Development studies of a novel wet oxidation process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rogers, T.W.; Dooge, P.M.
1996-12-31
The objective of this study is to develop a novel catalytic chemical oxidation process that can be used to effectively treat multi-component wastes with a minimum of pretreatment characterization, thus providing a versatile, non-combustion method which will destroy hazardous organic compounds while simultaneously containing and concentrating toxic and radioactive metals for recovery or disposal in a readily stabilized matrix. Although the DETOX{sup SM} process had been tested to a limited extent for potential application to mixed wastes, there had not been sufficient experience with the process to determine its range of application to multicomponent waste forms. The potential applications ofmore » the process needed to be better identified. Then, the process needed to be demonstrated on wastes and remediate types on a practical scale in order that data could be obtained on application range, equipment size, capital and operating costs, effectiveness, safety, reliability, permittability, and potential commercial applications of the process. The approach for the project was, therefore, to identify the potential range of applications of the process (Phase I), to choose demonstration sites and design a demonstration prototype (Phase II), to fabricate and shakedown the demonstration unit (Phase III), then finally to demonstrate the process on surrogate hazardous and mixed wastes, and on actual mixed wastes (Phase IV).« less
Design for application of the DETOX{sup SM} wet oxidation process to mixed wastes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bell, R.A.; Dhooge, P.M.
1994-04-01
Conceptual engineering has been performed for application of the DETOX{sup SM} wet oxidation process to treatment of specific mixed waste types. Chemical compositions, mass balances, energy balances, temperatures, pressures, and flows have been used to define design parameters for treatment units capable of destroying 5. Kg per hour of polychlorinated biphenyls and 25. Kg per hour of tributyl phosphate. Equipment for the units has been sized and materials of construction have been specified. Secondary waste streams have been defined. Environmental safety and health issues in design have been addressed. Capital and operating costs have been estimated based on the conceptualmore » designs.« less
Photochemical oxidation: A solution for the mixed waste dilemma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prellberg, J.W.; Thornton, L.M.; Cheuvront, D.A.
1995-12-31
Numerous technologies are available to remove organic contamination from water or wastewater. A variety of techniques also exist that are used to neutralize radioactive waste. However, few technologies can satisfactorily address the treatment of mixed organic/radioactive waste without creating unacceptable secondary waste products or resulting in extremely high treatment costs. An innovative solution to the mixed waste problem is on-site photochemical oxidation. Liquid-phase photochemical oxidation has a long- standing history of successful application to the destruction of organic compounds. By using photochemical oxidation, the organic contaminants are destroyed on-site leaving the water, with radionuclides, that can be reused or disposedmore » of as appropriate. This technology offers advantages that include zero air emissions, no solid or liquid waste formation, and relatively low treatment cost. Discussion of the photochemical process will be described, and several case histories from recent design testing, including cost analyses for the resulting full-scale installations, will be presented as examples.« less
Mapping the Iron Oxidation State in Martian Meteorites
NASA Technical Reports Server (NTRS)
Martin, A. M.; Treimann, A. H.; Righter, K.
2017-01-01
Several types of Martian igneous meteorites have been identified: clinopyroxenites (nakhlites), basaltic shergottites, peridotitic shergottites, dunites (chassignites) and orthopyroxenites [1,2]. In order to constrain the heterogeneity of the Martian mantle and crust, and their evolution through time, numerous studies have been performed on the iron oxidation state of these meteorites [3,4,5,6,7,8,9]. The calculated fO2 values all lie within the FMQ-5 to FMQ+0.5 range (FMQ representing the Fayalite = Magnetite + Quartz buffer); however, discrepancies appear between the various studies, which are either attributed to the choice of the minerals/melts used, or to the precision of the analytical/calculation method. The redox record in volcanic samples is primarily related to the oxidation state in the mantle source(s). However, it is also influenced by several deep processes: melting, crystallization, magma mixing [10], assimilation and degassing [11]. In addition, the oxidation state in Martian meteorites is potentially affected by several surface processes: assimilation of sediment/ crust during lava flowing at Mars' surface, low temperature micro-crystallization [10], weathering at the surface of Mars and low temperature reequilibration, impact processes (i.e. high pressure phase transitions, mechanical mixing, shock degassing and melting), space weathering, and weathering on Earth (at atmospheric conditions different from Mars). Decoding the redox record of Martian meteorites, therefore, requires large-scale quantitative analysis methods, as well as a perfect understanding of oxidation processes.
Preparation of energy storage materials
Li, Lin Song; Jia, Quanxi
2003-01-01
A process is provided for the preparation of a metallic oxide composite including mixing an aqueous solution of a water-soluble metal compound and colloidal silica, depositing the mixture upon a substrate, heating the mixture-coated substrates at temperatures from about 150.degree. C. to about 300.degree. C. for time sufficient to form a metallic oxide film, and, removing the silica from the metallic oxide film whereby a porous metal oxide structure is formed.
Preparation Of Energy Storage Materials
Li, Lin Song; Jia, Quanxi
2003-12-02
A process is provided for the preparation of a metallic oxide composite including mixing an aqueous solution of a water-soluble metal compound and colloidal silica, depositing the mixture upon a substrate, heating the mixture-coated substrates at temperatures from about 150.degree. C. to about 300.degree. C. for time sufficient to form a metallic oxide film, and, removing the silica from the metallic oxide film whereby a porous metal oxide structure is formed.
Pal, Umapada; Sandoval, Alberto; Madrid, Sergio Isaac Uribe; Corro, Grisel; Sharma, Vivek; Mohanty, Paritosh
2016-11-01
Mixed oxide nanoparticles containing Ti, Si, and Al of 8-15 nm size range were synthesized using a combined sol-gel - hydrothermal method. Effects of composition on the structure, morphology, and optical properties of the nanoparticles were studied using X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), microRaman spectroscopy, and diffuse reflectance spectroscopy (DRS). Dye removal abilities of the nanoparticles from aqueous solutions were tested for different cationic dyes. While all the mixed oxide nanoparticles revealed high and fast adsorption of cationic dyes, the particles containing Ti and Si turned out to be the best. The adsorption kinetics and equilibrium adsorption behavior of the adsorbate - adsorbent systems could be well described by pseudo-second-order kinetics and Langmuir isotherm model, respectively. Estimated thermodynamic parameters revealed the adsorption process is spontaneous, driven mainly by the electrostatic force between the cationic dye molecules and negative charge at nanoparticle surface. Highest dye adsorption capacity (162.96 mg MB/g) of the mixed oxide nanostructures containing Ti and Si is associated to their high specific surface area, and the presence of surface Si-O(δ-) groups, in addition to the hydroxyl groups of amorphous titania. Mixed oxide nanoparticles containing 75% Ti and 25% Si seen to be the most efficient adsorbents for removing cationic dye molecules from wastewater. Copyright © 2016 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kodaira, S., E-mail: koda@nirs.go.jp; Kurano, M.; Hosogane, T.
A CR-39 plastic nuclear track detector was used for quality assurance of mixed oxide fuel pellets for next-generation nuclear power plants. Plutonium (Pu) spot sizes and concentrations in the pellets are significant parameters for safe use in the plants. We developed an automatic Pu detection system based on dense α-radiation tracks in the CR-39 detectors. This system would greatly improve image processing time and measurement accuracy, and will be a powerful tool for rapid pellet quality assurance screening.
Sun, Junming; Zhu, Kake; Gao, Feng; Wang, Chongmin; Liu, Jun; Peden, Charles H F; Wang, Yong
2011-07-27
We report the design and synthesis of nanosized Zn(x)Zr(y)O(z) mixed oxides for direct and high-yield conversion of bio-ethanol to isobutene (~83%). ZnO is addded to ZrO(2) to selectively passivate zirconia's strong Lewis acidic sites and weaken Brönsted acidic sites, while simultaneously introducing basicity. As a result, the undesired reactions of bio-ethanol dehydration and acetone polymerization/coking are suppressed. Instead, a surface basic site-catalyzed ethanol dehydrogenation to acetaldehyde, acetaldehyde to acetone conversion via a complex pathway including aldol-condensation/dehydrogenation, and a Brönsted acidic site-catalyzed acetone-to-isobutene reaction pathway dominates on the nanosized Zn(x)Zr(y)O(z) mixed oxide catalyst, leading to a highly selective process for direct conversion of bio-ethanol to isobutene.
Conditional Moment Closure of Mixing and Reaction in Turbulent Nonpremixed Combustion
NASA Technical Reports Server (NTRS)
Smith, Nigel S. A.
1996-01-01
Nonpremixed combustion is the process whereby fuel and oxidizer species, which are each nonflammable in isolation, concurrently mix to burn a flammable mixture, and chemically react in the flammable mixture. In cases of practical industrial interest, the bulk of nonpremixed combustion occurs in a turbulent mixing regime where enhanced mass transfer rates flow the maximum power density to be achieved in any given thermochemical device.
Sun, Dengrong; Ye, Lin; Sun, Fangxiang; García, Hermenegildo; Li, Zhaohui
2017-05-01
Calcination of the mixed-metal species Co/Ni-MOF-74 leads to the formation of carbon-coated Co x Ni 1-x @Co y Ni 1-y O with a metal core diameter of ∼3.2 nm and a metal oxide shell thickness of ∼2.4 nm embedded uniformly in the ligand-derived carbon matrix. The close proximity of Co and Ni in the mixed-metal Co/Ni-MOF-74 promotes the metal alloying and the formation of a solid solution of metal oxide during the calcination process. The presence of the tightly coated carbon shell prohibits particle agglomeration and stabilizes the Co x Ni 1-x @Co y Ni 1-y O nanoparticles in small size. The Co x Ni 1-x @Co y Ni 1-y O@C derived from Co/Ni-MOF-74 nanocomposites show superior performance for the oxygen evolution reaction (OER). The use of mixed-metal MOFs as precursors represents a powerful strategy for the fabrication of metal alloy@metal oxide solid solution nanoparticles in small size. This method also holds great promise in the development of multifunctional carbon-coated complex core-shell metal/metal oxides owing to the diversified MOF structures and their flexible chemistry.
Lwin, Soe; Diao, Weijian; Baroi, Chinmoy; ...
2017-04-08
The domestic fossil feedstock in recent years is shifting towards light hydrocarbons due to abundance of shale gas from hydraulic fracturing. This shift induces a need for greater flexibility in both new and existing processing plants to produce consumer products (polymers, paints, lubricants, etc.) from new feedstocks. The oxidative catalytic reactions operate at milder conditions than the processing of feedstocks through steam cracking. The conversion of light feedstocks (C3 and shorter hydrocarbons) to high value chemicals through highly selective catalysts in the presence of oxygen plays a crucial role in eliminating wastes, reducing greenhouse gas emissions and lowering market prices.more » Among all catalysts for light hydrocarbon processing through oxidation reactions, bulk mixed metal oxides such as MoVTe(Sb)NbO x catalysts are the most promising due to their performance under favorable reaction conditions (temperature, pressure, etc). Here, state-of-the-art in situ/operando techniques along with transient kinetics can revolutionize the development of catalysts by providing information about the nature of active sites, intermediates and kinetics under realistic industrial conditions. Only through detailed understanding of these catalyst behaviors can new synthesis methods be developed that will improve reactivity, selectivity and lifetimes of these catalysts. In this review, dynamic changes of this mixed oxide catalyst during the reaction (such as changes in surface composition, oxidation states, acidity, etc) are discussed mainly from knowledge and insights obtained from these in situ/operando approaches. The most common oxidation reactions driven by the MoVTeNbO x catalysts and studied under operando/in situ conditions to be discussed here are: (1) oxidative dehydrogenation of light alkanes (ethane and propane), (2) propane ammoxidation to acrylonitrile and (3) selective oxidation of propane to acrylic acid.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lwin, Soe; Diao, Weijian; Baroi, Chinmoy
The domestic fossil feedstock in recent years is shifting towards light hydrocarbons due to abundance of shale gas from hydraulic fracturing. This shift induces a need for greater flexibility in both new and existing processing plants to produce consumer products (polymers, paints, lubricants, etc.) from new feedstocks. The oxidative catalytic reactions operate at milder conditions than the processing of feedstocks through steam cracking. The conversion of light feedstocks (C3 and shorter hydrocarbons) to high value chemicals through highly selective catalysts in the presence of oxygen plays a crucial role in eliminating wastes, reducing greenhouse gas emissions and lowering market prices.more » Among all catalysts for light hydrocarbon processing through oxidation reactions, bulk mixed metal oxides such as MoVTe(Sb)NbO x catalysts are the most promising due to their performance under favorable reaction conditions (temperature, pressure, etc). Here, state-of-the-art in situ/operando techniques along with transient kinetics can revolutionize the development of catalysts by providing information about the nature of active sites, intermediates and kinetics under realistic industrial conditions. Only through detailed understanding of these catalyst behaviors can new synthesis methods be developed that will improve reactivity, selectivity and lifetimes of these catalysts. In this review, dynamic changes of this mixed oxide catalyst during the reaction (such as changes in surface composition, oxidation states, acidity, etc) are discussed mainly from knowledge and insights obtained from these in situ/operando approaches. The most common oxidation reactions driven by the MoVTeNbO x catalysts and studied under operando/in situ conditions to be discussed here are: (1) oxidative dehydrogenation of light alkanes (ethane and propane), (2) propane ammoxidation to acrylonitrile and (3) selective oxidation of propane to acrylic acid.« less
NASA Astrophysics Data System (ADS)
Lomonosov, V. I.; Gordienko, Yu. A.; Sinev, M. Yu.; Rogov, V. A.; Sadykov, V. A.
2018-03-01
Mixed NaWMn/SiO2 oxide, samples containing individual components (Na, W, Mn) and their double combinations (Na-W, Na-Mn, W-Mn) supported on silica were studied by temperature programmed reduction (TPR) and desorption (TPD), and heat flow calorimetry during their reoxidation with molecular oxygen in pulse mode. The NaWMn/SiO2 mixed oxide was shown to contain two different types of reactive lattice oxygen. The weakly-bonded oxygen can be reversibly released from the oxide in a flow of inert gas in the temperature range of 575‒900°C, while the strongly-bonded oxygen can be removed during the reduction of the sample with hydrogen at 700-900°C. The measured thermal effect of oxygen consumption for these two oxygen forms are 185 and 350 kJ/mol, respectively. The amount of oxygen removed at reduction ( 443 μmol/g) considerably exceeded the amount desorbed in an inert gas flow ( 56 μmol/g). The obtained results suggest that the reversible oxygen desorption is due to the redox process in which manganese ions are involved, while during the temperature programmed reduction, mainly oxygen bonded with tungsten is removed.
NASA Astrophysics Data System (ADS)
Ibrahim, Marwa M.; El-Molla, Sahar A.; Ismail, Sahar A.
2018-04-01
In this study highly effective adsorbent ternary mixed oxide CeO2-Fe2O3-Al2O3 was prepared by precipitation method. Various methods used to treat the mixed hydroxide like calcination, ultrasonic, hydrothermal and ɣ radiation with different doses to obtain the ternary mixed oxide. XRD, TEM, EDX, FTIR and SBET are used to study the physicochemical properties of nanoparticles. The CFAH and CFAɣ0.8 have the different morphologies and high surface area. Batch adsorption experiments were performed to remove anionic Remazol Red RB-133 dye. The experimental data showed that The CFAH and CFAɣ0.8 have high adsorption rate for removing of dye. The removal of dye is enhanced by ultrasonic radiation and high temperature. The adsorption process was fitted well for pseudo second order kinetics and followed the Freundlich isotherm model. In addition to, Thermodynamic results of adsorption process displayed that, the adsorption of dye on adsorbent was spontaneous, endothermic and chemisorptions process.
NASA Astrophysics Data System (ADS)
Kim, Hunho; Kwack, Young-Jin; Yun, Eui-Jung; Choi, Woon-Seop
2016-09-01
Solution-processed gate dielectrics were fabricated with the combined ZrO2 and Al2O3 (ZAO) in the form of mixed and stacked types for oxide thin film transistors (TFTs). ZAO thin films prepared with double coatings for solid gate dielectrics were characterized by analytical tools. For the first time, the capacitance of the oxide semiconductor was extracted from the capacitance-voltage properties of the zinc-tin oxide (ZTO) TFTs with the combined ZAO dielectrics by using the proposed metal-insulator-semiconductor (MIS) structure model. The capacitance evolution of the semiconductor from the TFT model structure described well the threshold voltage shift observed in the ZTO TFT with the ZAO (1:2) gate dielectric. The electrical properties of the ZTO TFT with a ZAO (1:2) gate dielectric showed low voltage driving with a field effect mobility of 37.01 cm2/Vs, a threshold voltage of 2.00 V, an on-to-off current ratio of 1.46 × 105, and a subthreshold slope of 0.10 V/dec.
Kim, Hunho; Kwack, Young-Jin; Yun, Eui-Jung; Choi, Woon-Seop
2016-01-01
Solution-processed gate dielectrics were fabricated with the combined ZrO2 and Al2O3 (ZAO) in the form of mixed and stacked types for oxide thin film transistors (TFTs). ZAO thin films prepared with double coatings for solid gate dielectrics were characterized by analytical tools. For the first time, the capacitance of the oxide semiconductor was extracted from the capacitance-voltage properties of the zinc-tin oxide (ZTO) TFTs with the combined ZAO dielectrics by using the proposed metal-insulator-semiconductor (MIS) structure model. The capacitance evolution of the semiconductor from the TFT model structure described well the threshold voltage shift observed in the ZTO TFT with the ZAO (1:2) gate dielectric. The electrical properties of the ZTO TFT with a ZAO (1:2) gate dielectric showed low voltage driving with a field effect mobility of 37.01 cm2/Vs, a threshold voltage of 2.00 V, an on-to-off current ratio of 1.46 × 105, and a subthreshold slope of 0.10 V/dec. PMID:27641430
Delivery system for molten salt oxidation of solid waste
Brummond, William A.; Squire, Dwight V.; Robinson, Jeffrey A.; House, Palmer A.
2002-01-01
The present invention is a delivery system for safety injecting solid waste particles, including mixed wastes, into a molten salt bath for destruction by the process of molten salt oxidation. The delivery system includes a feeder system and an injector that allow the solid waste stream to be accurately metered, evenly dispersed in the oxidant gas, and maintained at a temperature below incineration temperature while entering the molten salt reactor.
Catalytic wet-oxidation of a mixed liquid waste: COD and AOX abatement.
Goi, D; de Leitenburg, C; Trovarelli, A; Dolcetti, G
2004-12-01
A series of catalytic wet oxidation (CWO) reactions, at temperatures of 430-500 K and in a batch bench-top pressure vessel were carried out utilizing a strong wastewater composed of landfill leachate and heavily organic halogen polluted industrial wastewater. A CeO2-SiO2 mixed oxide catalyst with large surface area to assure optimal oxidation performance was prepared. The catalytic process was examined during batch reactions controlling Chemical Oxygen Demand (COD) and Adsorbable Organic Halogen (AOX) parameters, resulting AOX abatement to achieve better effect. Color and pH were also controlled during batch tests. A simple first order-two stage reaction behavior was supposed and verified with the considered parameters. Finally an OUR test was carried out to evaluate biodegradability changes of wastewater as a result of the catalytic reaction.
40 CFR 721.4610 - Mixed metal oxides (generic).
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Mixed metal oxides (generic). 721.4610... Substances § 721.4610 Mixed metal oxides (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as mixed metal oxides (PMN P-98-0002...
40 CFR 721.10006 - Mixed metal oxide (generic).
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Mixed metal oxide (generic). 721.10006... Substances § 721.10006 Mixed metal oxide (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as mixed metal oxide (PMN P-99-511...
40 CFR 721.4610 - Mixed metal oxides (generic).
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Mixed metal oxides (generic). 721.4610... Substances § 721.4610 Mixed metal oxides (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as mixed metal oxides (PMN P-98-0002...
40 CFR 721.10500 - Acrylated mixed metal oxides (generic).
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Acrylated mixed metal oxides (generic... Specific Chemical Substances § 721.10500 Acrylated mixed metal oxides (generic). (a) Chemical substance and... mixed metal oxides (PMN P-06-341) is subject to reporting under this section for the significant new...
40 CFR 721.10006 - Mixed metal oxide (generic).
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Mixed metal oxide (generic). 721.10006... Substances § 721.10006 Mixed metal oxide (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as mixed metal oxide (PMN P-99-511...
40 CFR 721.4610 - Mixed metal oxides (generic).
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Mixed metal oxides (generic). 721.4610... Substances § 721.4610 Mixed metal oxides (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as mixed metal oxides (PMN P-98-0002...
40 CFR 721.4610 - Mixed metal oxides (generic).
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Mixed metal oxides (generic). 721.4610... Substances § 721.4610 Mixed metal oxides (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as mixed metal oxides (PMN P-98-0002...
40 CFR 721.10006 - Mixed metal oxide (generic).
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Mixed metal oxide (generic). 721.10006... Substances § 721.10006 Mixed metal oxide (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as mixed metal oxide (PMN P-99-511...
40 CFR 721.4610 - Mixed metal oxides (generic).
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Mixed metal oxides (generic). 721.4610... Substances § 721.4610 Mixed metal oxides (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as mixed metal oxides (PMN P-98-0002...
40 CFR 721.10006 - Mixed metal oxide (generic).
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Mixed metal oxide (generic). 721.10006... Substances § 721.10006 Mixed metal oxide (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as mixed metal oxide (PMN P-99-511...
40 CFR 721.10500 - Acrylated mixed metal oxides (generic).
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Acrylated mixed metal oxides (generic... Specific Chemical Substances § 721.10500 Acrylated mixed metal oxides (generic). (a) Chemical substance and... mixed metal oxides (PMN P-06-341) is subject to reporting under this section for the significant new...
Woodfield, Brian F.; Liu, Shengfeng; Boerio-Goates, Juliana; Liu, Qingyuan; Smith, Stacey Janel
2012-07-03
In preferred embodiments, metal nanoparticles, mixed-metal (alloy) nanoparticles, metal oxide nanoparticles and mixed-metal oxide nanoparticles are provided. According to embodiments, the nanoparticles may possess narrow size distributions and high purities. In certain preferred embodiments, methods of preparing metal nanoparticles, mixed-metal nanoparticles, metal oxide nanoparticles and mixed-metal nanoparticles are provided. These methods may provide tight control of particle size, size distribution, and oxidation state. Other preferred embodiments relate to a precursor material that may be used to form nanoparticles. In addition, products prepared from such nanoparticles are disclosed.
Poston, J.A.
1997-12-02
Mixed metal oxide pellets for removing hydrogen sulfide from fuel gas mixes derived from coal are stabilized for operation over repeated cycles of desulfurization and regeneration reactions by addition of a large promoter metal oxide such as lanthanum trioxide. The pellets, which may be principally made up of a mixed metal oxide such as zinc titanate, exhibit physical stability and lack of spalling or decrepitation over repeated cycles without loss of reactivity. The lanthanum oxide is mixed with pellet-forming components in an amount of 1 to 10 weight percent.
Poston, James A.
1997-01-01
Mixed metal oxide pellets for removing hydrogen sulfide from fuel gas mixes derived from coal are stabilized for operation over repeated cycles of desulfurization and regeneration reactions by addition of a large promoter metal oxide such as lanthanum trioxide. The pellets, which may be principally made up of a mixed metal oxide such as zinc titanate, exhibit physical stability and lack of spalling or decrepitation over repeated cycles without loss of reactivity. The lanthanum oxide is mixed with pellet-forming components in an amount of 1 to 10 weight percent.
40 CFR 721.5548 - Mixed metal oxide (generic).
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Mixed metal oxide (generic). 721.5548... Substances § 721.5548 Mixed metal oxide (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a mixed metal oxide (PMN P-97-956) is...
40 CFR 721.5548 - Mixed metal oxide (generic).
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Mixed metal oxide (generic). 721.5548... Substances § 721.5548 Mixed metal oxide (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a mixed metal oxide (PMN P-97-956) is...
40 CFR 721.5315 - Nickel, cobalt mixed metal oxide (generic).
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Nickel, cobalt mixed metal oxide... Specific Chemical Substances § 721.5315 Nickel, cobalt mixed metal oxide (generic). (a) Chemical substance... nickel, cobalt mixed metal oxide. (PMN P-02-90) is subject to reporting under this section for the...
40 CFR 721.10147 - Acrylate derivative of alkoxysilylalkane ester and mixed metal oxides (generic).
Code of Federal Regulations, 2011 CFR
2011-07-01
... alkoxysilylalkane ester and mixed metal oxides (generic). 721.10147 Section 721.10147 Protection of Environment... alkoxysilylalkane ester and mixed metal oxides (generic). (a) Chemical substance and significant new uses subject to... ester and mixed metal oxides (PMN P-07-198) is subject to reporting under this section for the...
40 CFR 721.10147 - Acrylate derivative of alkoxysilylalkane ester and mixed metal oxides (generic).
Code of Federal Regulations, 2014 CFR
2014-07-01
... alkoxysilylalkane ester and mixed metal oxides (generic). 721.10147 Section 721.10147 Protection of Environment... alkoxysilylalkane ester and mixed metal oxides (generic). (a) Chemical substance and significant new uses subject to... ester and mixed metal oxides (PMN P-07-198) is subject to reporting under this section for the...
40 CFR 721.5315 - Nickel, cobalt mixed metal oxide (generic).
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Nickel, cobalt mixed metal oxide... Specific Chemical Substances § 721.5315 Nickel, cobalt mixed metal oxide (generic). (a) Chemical substance... nickel, cobalt mixed metal oxide. (PMN P-02-90) is subject to reporting under this section for the...
40 CFR 721.5315 - Nickel, cobalt mixed metal oxide (generic).
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Nickel, cobalt mixed metal oxide... Specific Chemical Substances § 721.5315 Nickel, cobalt mixed metal oxide (generic). (a) Chemical substance... nickel, cobalt mixed metal oxide. (PMN P-02-90) is subject to reporting under this section for the...
40 CFR 721.5315 - Nickel, cobalt mixed metal oxide (generic).
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Nickel, cobalt mixed metal oxide... Specific Chemical Substances § 721.5315 Nickel, cobalt mixed metal oxide (generic). (a) Chemical substance... nickel, cobalt mixed metal oxide. (PMN P-02-90) is subject to reporting under this section for the...
40 CFR 721.10147 - Acrylate derivative of alkoxysilylalkane ester and mixed metal oxides (generic).
Code of Federal Regulations, 2013 CFR
2013-07-01
... alkoxysilylalkane ester and mixed metal oxides (generic). 721.10147 Section 721.10147 Protection of Environment... alkoxysilylalkane ester and mixed metal oxides (generic). (a) Chemical substance and significant new uses subject to... ester and mixed metal oxides (PMN P-07-198) is subject to reporting under this section for the...
Code of Federal Regulations, 2014 CFR
2014-07-01
... reaction products with mixed metal oxides (generic). 721.10574 Section 721.10574 Protection of Environment... reaction products with mixed metal oxides (generic). (a) Chemical substance and significant new uses... reaction products with mixed metal oxides (PMN P-09-48) is subject to reporting under this section for the...
40 CFR 721.5548 - Mixed metal oxide (generic).
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Mixed metal oxide (generic). 721.5548... Substances § 721.5548 Mixed metal oxide (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a mixed metal oxide (PMN P-97-956) is...
40 CFR 721.5548 - Mixed metal oxide (generic).
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Mixed metal oxide (generic). 721.5548... Substances § 721.5548 Mixed metal oxide (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a mixed metal oxide (PMN P-97-956) is...
40 CFR 721.10147 - Acrylate derivative of alkoxysilylalkane ester and mixed metal oxides (generic).
Code of Federal Regulations, 2012 CFR
2012-07-01
... alkoxysilylalkane ester and mixed metal oxides (generic). 721.10147 Section 721.10147 Protection of Environment... alkoxysilylalkane ester and mixed metal oxides (generic). (a) Chemical substance and significant new uses subject to... ester and mixed metal oxides (PMN P-07-198) is subject to reporting under this section for the...
40 CFR 721.5548 - Mixed metal oxide (generic).
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Mixed metal oxide (generic). 721.5548... Substances § 721.5548 Mixed metal oxide (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a mixed metal oxide (PMN P-97-956) is...
Code of Federal Regulations, 2013 CFR
2013-07-01
... reaction products with mixed metal oxides (generic). 721.10574 Section 721.10574 Protection of Environment... reaction products with mixed metal oxides (generic). (a) Chemical substance and significant new uses... reaction products with mixed metal oxides (PMN P-09-48) is subject to reporting under this section for the...
High-strength, creep-resistant molybdenum alloy and process for producing the same
Bianco, R.; Buckman, R.W. Jr.; Geller, C.B.
1999-02-09
A wet-doping process for producing an oxide-dispersion strengthened (ODS), creep-resistant molybdenum alloy is disclosed. The alloy is made by adding nitrate or acetate salts of lanthanum, cerium, thorium, or yttrium to molybdenum oxide to produce a slurry, heating the slurry in a hydrogen atmosphere to produce a powder, mixing and cold isostatically pressing the powder, sintering in a hydrogen atmosphere, and thermomechanically processing (swaging, extruding, cold drawing) the product. The ODS molybdenum alloy produced by the process contains 2--4% by volume (ca. 1--4% by weight) of an oxide of lanthanum, cerium, thorium, or yttrium. The alloy has high strength and improved creep-resistance at temperatures greater than 0.55T{sub m} of molybdenum. 10 figs.
High-strength, creep-resistant molybdenum alloy and process for producing the same
Bianco, Robert; Buckman, Jr., R. William; Geller, Clint B.
1999-01-01
A wet-doping process for producing an oxide-dispersion strengthened (ODS), creep-resistant molybdenum alloy is disclosed. The alloy is made by adding nitrate or acetate salts of lanthanum, cerium, thorium, or yttrium to molybdenum oxide to produce a slurry, heating the slurry in a hydrogen atmosphere to produce a powder, mixing and cold isostatically pressing the powder, sintering in a hydrogen atmosphere, and thermomechanically processing (swaging, extruding, cold drawing) the product. The ODS molybdenum alloy produced by the process contains 2-4% by volume (.about.1-4% by weight) of an oxide of lanthanum, cerium, thorium, or yttrium. The alloy has high strength and improved creep-resistance at temperatures greater than 0.55T.sub.m of molybdenum.
Method for acid oxidation of radioactive, hazardous, and mixed organic waste materials
Pierce, Robert A.; Smith, James R.; Ramsey, William G.; Cicero-Herman, Connie A.; Bickford, Dennis F.
1999-01-01
The present invention is directed to a process for reducing the volume of low level radioactive and mixed waste to enable the waste to be more economically stored in a suitable repository, and for placing the waste into a form suitable for permanent disposal. The invention involves a process for preparing radioactive, hazardous, or mixed waste for storage by contacting the waste starting material containing at least one organic carbon-containing compound and at least one radioactive or hazardous waste component with nitric acid and phosphoric acid simultaneously at a contacting temperature in the range of about 140.degree. C. to about 210 .degree. C. for a period of time sufficient to oxidize at least a portion of the organic carbon-containing compound to gaseous products, thereby producing a residual concentrated waste product containing substantially all of said radioactive or inorganic hazardous waste component; and immobilizing the residual concentrated waste product in a solid phosphate-based ceramic or glass form.
Lead oxide as used in lead acid storage batteries, part two
DOE Office of Scientific and Technical Information (OSTI.GOV)
Orsino, J.A.
1986-06-01
Without oxide controls, the battery manufacturing business can become one of the most confusing and frustrating experiences known. Inexplicable things happen during mixing, pasting and assembly, and testing, in the laboratory or in the field becomes an unhappy event. Almost any oxide of sufficient purity can be processed to make a good battery, but the characteristics must be known to be able to process it right, and once the process has been established, the oxide must be uniformly made to make the resulting batteries uniformly good. Fortunately, the tests required to assure uniformity are few, and simple to perform. Assumingmore » pure pig lead from primary sources or from carefully refined secondary sources, three tests can tell the whole story. These tests are described.« less
Engineering design and test plan for demonstrating DETOX treatment of mixed wastes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goldblatt, S.; Dhooge, P.
1995-03-01
DETOX is a cocatalyzed wet oxidation process in which the catalysts are a relatively great concentration of iron ions (typically as iron(III) chloride) in the presence of small amounts of platinum and ruthenium ions. Organic compounds are oxidized completely to carbon dioxide, water, and (if chlorinated) hydrogen chloride. The process has shown promise as a non-thermal alternative to incineration for treatment and/or volume reduction of hazardous, radioactive, and mixed wastes. Design and fabrication of a demonstration unit capable of destroying 25. Kg/hr of organic material is now in progress. This paper describes the Title 2 design of the demonstration unit,more » and the planned demonstration effort at Savannah River Site (SRS) and Weldon Spring Site Remedial Action Project (WSSRAP).« less
The flotation and adsorption of mixed collectors on oxide and silicate minerals.
Xu, Longhua; Tian, Jia; Wu, Houqin; Lu, Zhongyuan; Sun, Wei; Hu, Yuehua
2017-12-01
The analysis of flotation and adsorption of mixed collectors on oxide and silicate minerals is of great importance for both industrial applications and theoretical research. Over the past years, significant progress has been achieved in understanding the adsorption of single collectors in micelles as well as at interfaces. By contrast, the self-assembly of mixed collectors at liquid/air and solid/liquid interfaces remains a developing area as a result of the complexity of the mixed systems involved and the limited availability of suitable analytical techniques. In this work, we systematically review the processes involved in the adsorption of mixed collectors onto micelles and at interface by examining four specific points, namely, theoretical background, factors that affect adsorption, analytical techniques, and self-assembly of mixed surfactants at the mineral/liquid interface. In the first part, the theoretical background of collector mixtures is introduced, together with several core solution theories, which are classified according to their application in the analysis of physicochemical properties of mixed collector systems. In the second part, we discuss the factors that can influence adsorption, including factors related to the structure of collectors and environmental conditions. We summarize their influence on the adsorption of mixed systems, with the objective to provide guidance on the progress achieved in this field to date. Advances in measurement techniques can greatly promote our understanding of adsorption processes. In the third part, therefore, modern techniques such as optical reflectometry, neutron scattering, neutron reflectometry, thermogravimetric analysis, fluorescence spectroscopy, ultrafiltration, atomic force microscopy, analytical ultracentrifugation, X-ray photoelectron spectroscopy, Vibrational Sum Frequency Generation Spectroscopy and molecular dynamics simulations are introduced in virtue of their application. Finally, focusing on oxide and silicate minerals, we review and summarize the flotation and adsorption of three most widely used mixed surfactant systems (anionic-cationic, anionic-nonionic, and cationic-nonionic) at the liquid/mineral interface in order to fully understand the self-assembly progress. In the end, the paper gives a brief future outlook of the possible development in the mixed surfactants. Copyright © 2017 Elsevier B.V. All rights reserved.
Goldsmith, Zachary K; Harshan, Aparna K; Gerken, James B; Vörös, Márton; Galli, Giulia; Stahl, Shannon S; Hammes-Schiffer, Sharon
2017-03-21
NiFe oxyhydroxide materials are highly active electrocatalysts for the oxygen evolution reaction (OER), an important process for carbon-neutral energy storage. Recent spectroscopic and computational studies increasingly support iron as the site of catalytic activity but differ with respect to the relevant iron redox state. A combination of hybrid periodic density functional theory calculations and spectroelectrochemical experiments elucidate the electronic structure and redox thermodynamics of Ni-only and mixed NiFe oxyhydroxide thin-film electrocatalysts. The UV/visible light absorbance of the Ni-only catalyst depends on the applied potential as metal ions in the film are oxidized before the onset of OER activity. In contrast, absorbance changes are negligible in a 25% Fe-doped catalyst up to the onset of OER activity. First-principles calculations of proton-coupled redox potentials and magnetizations reveal that the Ni-only system features oxidation of Ni 2+ to Ni 3+ , followed by oxidation to a mixed Ni 3+/4+ state at a potential coincident with the onset of OER activity. Calculations on the 25% Fe-doped system show the catalyst is redox inert before the onset of catalysis, which coincides with the formation of Fe 4+ and mixed Ni oxidation states. The calculations indicate that introduction of Fe dopants changes the character of the conduction band minimum from Ni-oxide in the Ni-only to predominantly Fe-oxide in the NiFe electrocatalyst. These findings provide a unified experimental and theoretical description of the electrochemical and optical properties of Ni and NiFe oxyhydroxide electrocatalysts and serve as an important benchmark for computational characterization of mixed-metal oxidation states in heterogeneous catalysts.
Goldsmith, Zachary K.; Harshan, Aparna K.; Gerken, James B.; Galli, Giulia; Stahl, Shannon S.
2017-01-01
NiFe oxyhydroxide materials are highly active electrocatalysts for the oxygen evolution reaction (OER), an important process for carbon-neutral energy storage. Recent spectroscopic and computational studies increasingly support iron as the site of catalytic activity but differ with respect to the relevant iron redox state. A combination of hybrid periodic density functional theory calculations and spectroelectrochemical experiments elucidate the electronic structure and redox thermodynamics of Ni-only and mixed NiFe oxyhydroxide thin-film electrocatalysts. The UV/visible light absorbance of the Ni-only catalyst depends on the applied potential as metal ions in the film are oxidized before the onset of OER activity. In contrast, absorbance changes are negligible in a 25% Fe-doped catalyst up to the onset of OER activity. First-principles calculations of proton-coupled redox potentials and magnetizations reveal that the Ni-only system features oxidation of Ni2+ to Ni3+, followed by oxidation to a mixed Ni3+/4+ state at a potential coincident with the onset of OER activity. Calculations on the 25% Fe-doped system show the catalyst is redox inert before the onset of catalysis, which coincides with the formation of Fe4+ and mixed Ni oxidation states. The calculations indicate that introduction of Fe dopants changes the character of the conduction band minimum from Ni-oxide in the Ni-only to predominantly Fe-oxide in the NiFe electrocatalyst. These findings provide a unified experimental and theoretical description of the electrochemical and optical properties of Ni and NiFe oxyhydroxide electrocatalysts and serve as an important benchmark for computational characterization of mixed-metal oxidation states in heterogeneous catalysts. PMID:28265083
NASA Astrophysics Data System (ADS)
Kao, Tzung-Ta; Chang, Yao-Chung
2014-01-01
The growth of anodic alumina oxide was conducted in the mixed solution of phosphoric and oxalic acids. The influence of anodizing voltage, electrolyte temperature, and concentration of phosphoric and oxalic acids on the volume expansion of anodic aluminum oxide has been investigated. Either anodizing parameter is chosen to its full extent of range that allows the anodization process to be conducted without electric breakdown and to explore the highest possible volume expansion factor. The volume expansion factors were found to vary between 1.25 and 1.9 depending on the anodizing parameters. The variation is explained in connection with electric field, ion transport number, temperature effect, concentration, and activity of acids. The formation of anodic porous alumina at anodizing voltage 160 V in 1.1 M phosphoric acid mixed with 0.14 M oxalic acid at 2 °C showed the peak volume expansion factor of 1.9 and the corresponding moderate growth rate of 168 nm/min.
Characterization of electrolyte-binder mixes for use in thermal batteries
NASA Astrophysics Data System (ADS)
Guidotti, R. A.; Reinhardt, F. W.
1991-03-01
A number of metal oxides were evaluated for their ability to immobilize molten LiCl-KCl eutectic in electrolyte-binder (EB) mixes used in thermally activated batteries. These metal oxides included fumed silicas, alumina, and a titania (all prepared by steam hydrolysis of the halides), floated silicas, MgO, and an alumina molecular sieve. The characteristics of the EB powders that were used as metrics were flow properties, homogeneity, BET surface area, particle-size distribution, and moisture content. The characteristics of EB pellets used as metrics were deformation at 530 C under an applied pressure and tendency for electrolyte leakage at 400 C. Many of the same characterization techniques used for EB powders were applied to the LiCl-KCl eutectic, its component halides, and the metal oxides as well. The reproducibility of the properties of several of the standard Sandia EB mixes was evaluated for materials prepared at a number of thermal-battery manufacturing facilities following the same processing procedures.
Magno, Scott; Wang, Ruiping; Derouane, Eric
2003-01-01
The present invention is a mixed oxide solid solution containing a tetravalent and a pentavalent cation that can be used as a support for a metal combustion catalyst. The invention is furthermore a combustion catalyst containing the mixed oxide solid solution and a method of making the mixed oxide solid solution. The tetravalent cation is zirconium(+4), hafnium(+4) or thorium(+4). In one embodiment, the pentavalent cation is tantalum(+5), niobium(+5) or bismuth(+5). Mixed oxide solid solutions of the present invention exhibit enhanced thermal stability, maintaining relatively high surface areas at high temperatures in the presence of water vapor.
THERMOCHEMICAL HEAT STORAGE FOR CONCENTRATED SOLAR POWER
DOE Office of Scientific and Technical Information (OSTI.GOV)
PROJECT STAFF
2011-10-31
Thermal energy storage (TES) is an integral part of a concentrated solar power (CSP) system. It enables plant operators to generate electricity beyond on sun hours and supply power to the grid to meet peak demand. Current CSP sensible heat storage systems employ molten salts as both the heat transfer fluid and the heat storage media. These systems have an upper operating temperature limit of around 400 C. Future TES systems are expected to operate at temperatures between 600 C to 1000 C for higher thermal efficiencies which should result in lower electricity cost. To meet future operating temperature andmore » electricity cost requirements, a TES concept utilizing thermochemical cycles (TCs) based on multivalent solid oxides was proposed. The system employs a pair of reduction and oxidation (REDOX) reactions to store and release heat. In the storage step, hot air from the solar receiver is used to reduce the oxidation state of an oxide cation, e.g. Fe3+ to Fe2+. Heat energy is thus stored as chemical bonds and the oxide is charged. To discharge the stored energy, the reduced oxide is re-oxidized in air and heat is released. Air is used as both the heat transfer fluid and reactant and no storage of fluid is needed. This project investigated the engineering and economic feasibility of this proposed TES concept. The DOE storage cost and LCOE targets are $15/kWh and $0.09/kWh respectively. Sixteen pure oxide cycles were identified through thermodynamic calculations and literature information. Data showed the kinetics of re-oxidation of the various oxides to be a key barrier to implementing the proposed concept. A down selection was carried out based on operating temperature, materials costs and preliminary laboratory measurements. Cobalt oxide, manganese oxide and barium oxide were selected for developmental studies to improve their REDOX reaction kinetics. A novel approach utilizing mixed oxides to improve the REDOX kinetics of the selected oxides was proposed. It partially replaces some of the primary oxide cations with selected secondary cations. This causes a lattice charge imbalance and increases the anion vacancy density. Such vacancies enhance the ionic mass transport and lead to faster re-oxidation. Reoxidation fractions of Mn3O4 to Mn2O3 and CoO to Co3O4 were improved by up to 16 fold through the addition of a secondary oxide. However, no improvement was obtained in barium based mixed oxides. In addition to enhancing the short term re-oxidation kinetics, it was found that the use of mixed oxides also help to stabilize or even improve the TES properties after long term thermal cycling. Part of this improvement could be attributed to a reduced grain size in the mixed oxides. Based on the measurement results, manganese-iron, cobalt-aluminum and cobalt iron mixed oxides have been proposed for future engineering scale demonstration. Using the cobalt and manganese mixed oxides, we were able to demonstrate charge and discharge of the TES media in both a bench top fixed bed and a rotary kiln-moving bed reactor. Operations of the fixed bed configuration are straight forward but require a large mass flow rate and higher fluid temperature for charging. The rotary kiln makes direct solar irradiation possible and provides significantly better heat transfer, but designs to transport the TES oxide in and out of the reactor will need to be defined. The final reactor and system design will have to be based on the economics of the CSP plant. A materials compatibility study was also conducted and it identified Inconel 625 as a suitable high temperature engineering material to construct a reactor holding either cobalt or manganese mixed oxides. To assess the economics of such a CSP plant, a packed bed reactor model was established as a baseline. Measured cobalt-aluminum oxide reaction kinetics were applied to the model and the influences of bed properties and process parameters on the overall system design were investigated. The optimal TES system design was found to be a network of eight fixed bed reactors at 18.75 MWth each with charge and discharge temperatures between 1200 C and 600 C, which provides a constant output temperature of 900 C. The charge and discharge time are 8 hours each respectively. This design was integrated into a process flowsheet of a CSP plant and the system's economics were determined using AspenPlus and NREL's Solar Advisory Model. Storage cost is very sensitive to materials cost and was calculated to be based around $40/kWh for cobalt based mixed oxide. It can potentially decrease to $10/kWh based on reduced materials cost on a bulk scale. The corresponding calculated LCOE was between $0.22 and 0.30/kW-h. The high LCOE is a result of the high charging temperature required in this first design and the cost of cobalt oxide. It is expected that a moving bed reactor using manganese oxide will significantly improve the economics of the proposed concept.« less
Highly Strong and Elastic Graphene Fibres Prepared from Universal Graphene Oxide Precursors
Huang, Guoji; Hou, Chengyi; Shao, Yuanlong; Wang, Hongzhi; Zhang, Qinghong; Li, Yaogang; Zhu, Meifang
2014-01-01
Graphene fibres are continuously prepared from universal graphene oxide precursors by a novel hydrogel-assisted spinning method. With assistance of a rolling process, meters of ribbon-like GFs, or GRs with improved conductivity, tensile strength, and a long-range ordered compact layer structure are successfully obtained. Furthermore, we refined our spinning process to obtained elastic GRs with a mixing microstructure and exceptional elasticity, which may provide a platform for electronic skins and wearable electronics, sensors, and energy devices. PMID:24576869
Kallinich, Constanze; Schefer, Simone; Rohn, Sascha
2018-01-29
In the last decade, electrochemical oxidation coupled with mass spectrometry has been successfully used for the analysis of metabolic studies. The application focused in this study was to investigate the redox potential of different phenolic compounds such as the very prominent chlorogenic acid. Further, EC/ESI-MS was used as preparation technique for analyzing adduct formation between electrochemically oxidized phenolic compounds and food proteins, e.g., alpha-lactalbumin or peptides derived from a tryptic digestion. In the first step of this approach, two reactant solutions are combined and mixed: one contains the solution of the digested protein, and the other contains the phenolic compound of interest, which was, prior to the mixing process, electrochemically transformed to several oxidation products using a boron-doped diamond working electrode. As a result, a Michael-type addition led to covalent binding of the activated phenolic compounds to reactive protein/peptide side chains. In a follow-up approach, the reaction mix was further separated chromatographically and finally detected using ESI-HRMS. Compound-specific, electrochemical oxidation of phenolic acids was performed successfully, and various oxidation and reaction products with proteins/peptides were observed. Further optimization of the reaction (conditions) is required, as well as structural elucidation concerning the final adducts, which can be phenolic compound oligomers, but even more interestingly, quite complex mixtures of proteins and oxidation products.
40 CFR 721.10148 - Acryloxy alkanoic alkane derivative with mixed metal oxides (generic).
Code of Federal Regulations, 2011 CFR
2011-07-01
... with mixed metal oxides (generic). 721.10148 Section 721.10148 Protection of Environment ENVIRONMENTAL... mixed metal oxides (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as acryloxy alkanoic alkane derivative with mixed metal...
40 CFR 721.10148 - Acryloxy alkanoic alkane derivative with mixed metal oxides (generic).
Code of Federal Regulations, 2012 CFR
2012-07-01
... with mixed metal oxides (generic). 721.10148 Section 721.10148 Protection of Environment ENVIRONMENTAL... mixed metal oxides (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as acryloxy alkanoic alkane derivative with mixed metal...
40 CFR 721.10148 - Acryloxy alkanoic alkane derivative with mixed metal oxides (generic).
Code of Federal Regulations, 2014 CFR
2014-07-01
... with mixed metal oxides (generic). 721.10148 Section 721.10148 Protection of Environment ENVIRONMENTAL... mixed metal oxides (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as acryloxy alkanoic alkane derivative with mixed metal...
40 CFR 721.10148 - Acryloxy alkanoic alkane derivative with mixed metal oxides (generic).
Code of Federal Regulations, 2013 CFR
2013-07-01
... with mixed metal oxides (generic). 721.10148 Section 721.10148 Protection of Environment ENVIRONMENTAL... mixed metal oxides (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as acryloxy alkanoic alkane derivative with mixed metal...
PROCESS OF PRODUCING REFRACTORY URANIUM OXIDE ARTICLES
Hamilton, N.E.
1957-12-01
A method is presented for fabricating uranium oxide into a shaped refractory article by introducing a uranium halide fluxing reagent into the uranium oxide, and then mixing and compressing the materials into a shaped composite mass. The shaped mass of uranium oxide and uranium halide is then fired at an elevated temperature so as to form a refractory sintered article. It was found in the present invention that the introduction of a uraninm halide fluxing agent afforded a fluxing action with the uranium oxide particles and that excellent cohesion between these oxide particles was obtained. Approximately 90% of uranium dioxide and 10% of uranium tetrafluoride represent a preferred composition.
NASA Astrophysics Data System (ADS)
Aubry, Eric; Weber, Sylvain; Billard, Alain; Martin, Nicolas
2014-01-01
Silicon oxynitride thin films were sputter deposited by the reactive gas pulsing process. Pure silicon target was sputtered in Ar, N2 and O2 mixture atmosphere. Oxygen gas was periodically and solely introduced using exponential signals. In order to vary the injected O2 quantity in the deposition chamber during one pulse at constant injection time (TON), the tau mounting time τmou of the exponential signals was systematically changed for each deposition. Taking into account the real-time measurements of the discharge voltage and the I(O*)/I(Ar*) emission lines ratio, it is shown that the oscillations of the discharge voltage during the TON and TOFF times (injection of O2 stopped) are attributed to the preferential adsorption of the oxygen compared to that of the nitrogen. The sputtering mode alternates from a fully nitrided mode (TOFF time) to a mixed mode (nitrided and oxidized mode) during the TON time. For the highest injected O2 quantities, the mixed mode tends toward a fully oxidized mode due to an increase of the trapped oxygen on the target. The oxygen (nitrogen) concentration in the SiOxNy films similarly (inversely) varies as the oxygen is trapped. Moreover, measurements of the contamination speed of the Si target surface are connected to different behaviors of the process. At low injected O2 quantities, the nitrided mode predominates over the oxidized one during the TON time. It leads to the formation of Si3N4-yOy-like films. Inversely, the mixed mode takes place for high injected O2 quantities and the oxidized mode prevails against the nitrided one producing SiO2-xNx-like films.
Molten carbonate fuel cell cathode with mixed oxide coating
Hilmi, Abdelkader; Yuh, Chao-Yi
2013-05-07
A molten carbonate fuel cell cathode having a cathode body and a coating of a mixed oxygen ion conductor materials. The mixed oxygen ion conductor materials are formed from ceria or doped ceria, such as gadolinium doped ceria or yttrium doped ceria. The coating is deposited on the cathode body using a sol-gel process, which utilizes as precursors organometallic compounds, organic and inorganic salts, hydroxides or alkoxides and which uses as the solvent water, organic solvent or a mixture of same.
Rodríguez, N Husillos; Granados, R J; Blanco-Varela, M T; Cortina, J L; Martínez-Ramírez, S; Marsal, M; Guillem, M; Puig, J; Fos, C; Larrotcha, E; Flores, J
2012-03-01
This paper describes an industrial process for stabilising sewage sludge (SS) with lime and evaluates the viability of the stabilised product, denominated Neutral, as a raw material for the cement industry. Lime not only stabilised the sludge, raised the temperature of the mix to 80-100°C, furthering water evaporation, portlandite formation and the partial oxidation of the organic matter present in the sludge. Process mass and energy balances were determined. Neutral, a white powder consisting of portlandite (49.8%), calcite (16.6%), inorganic oxides (13.4%) and organic matter and moisture (20.2%), proved to be technologically apt for inclusion as a component in cement raw mixes. In this study, it was used instead of limestone in raw mixes clinkerised at 1400, 1450 and 1500°C. These raw meals exhibited greater reactivity at high temperatures than the limestone product and their calcination at 1500°C yielded clinker containing over 75% calcium silicates, the key phases in Portland clinker. Finally, the two types of raw meal (Neutral and limestone) were observed to exhibit similar mineralogy and crystal size and distribution. Published by Elsevier Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramasamy, Karthikeyan K.; Gray, Michel J.; Job, Heather M.
2016-04-10
tA highly versatile ethanol conversion process to selectively generate high value compounds is pre-sented here. By changing the reaction temperature, ethanol can be selectively converted to >C2alcohols/oxygenates or phenolic compounds over hydrotalcite derived bi-functional MgO–Al2O3cata-lyst via complex cascade mechanism. Reaction temperature plays a role in whether aldol condensationor the acetone formation is the path taken in changing the product composition. This article containsthe catalytic activity comparison between the mono-functional and physical mixture counterpart to thehydrotalcite derived mixed oxides and the detailed discussion on the reaction mechanisms.
NASA Technical Reports Server (NTRS)
Houseman, J.; Cerini, D. J. (Inventor)
1976-01-01
A process and apparatus are described for producing hydrogen-rich product gases. A spray of liquid hydrocarbon is mixed with a stream of air in a startup procedure and the mixture is ignited for partial oxidation. The stream of air is then heated by the resulting combustion to reach a temperature such that a signal is produced. The signal triggers a two way valve which directs liquid hydrocarbon from a spraying mechanism to a vaporizing mechanism with which a vaporized hydrocarbon is formed. The vaporized hydrocarbon is subsequently mixed with the heated air in the combustion chamber where partial oxidation takes place and hydrogen-rich product gases are produced.
Plasma synthesis of lithium based intercalation powders for solid polymer electrolyte batteries
Kong, Peter C [Idaho Falls, ID; Pink, Robert J [Pocatello, ID; Nelson, Lee O [Idaho Falls, ID
2005-01-04
The invention relates to a process for preparing lithium intercalation compounds by plasma reaction comprising the steps of: forming a feed solution by mixing lithium nitrate or lithium hydroxide or lithium oxide and the required metal nitrate or metal hydroxide or metal oxide and between 10-50% alcohol by weight; mixing the feed solution with O.sub.2 gas wherein the O.sub.2 gas atomizes the feed solution into fine reactant droplets, inserting the atomized feed solution into a plasma reactor to form an intercalation powder; and if desired, heating the resulting powder to from a very pure single phase product.
Gordon, John Howard [Salt Lake City, UT; Taylor, Dale M [Murray, UT
2011-06-07
Solid-state membrane modules comprising at least one membrane unit, where the membrane unit has a dense mixed conducting oxide layer, and at least one conduit or manifold wherein the conduit or manifold comprises a dense layer and at least one of a porous layer and a slotted layer contiguous with the dense layer. The solid-state membrane modules may be used to carry out a variety of processes including the separating of any ionizable component from a feedstream wherein such ionizable component is capable of being transported through a dense mixed conducting oxide layer of the membrane units making up the membrane modules. For ease of construction, the membrane units may be planar.
Ramasamy, Karthikeyan K.; Gray, Michel; Job, Heather; ...
2016-02-03
Here, a highly versatile ethanol conversion process to selectively generate high value compounds is presented here. By changing the reaction temperature, ethanol can be selectively converted to >C 2 alcohols/oxygenates or phenolic compounds over hydrotalcite derived bi-functional MgO–Al 2O 3 catalyst via complex cascade mechanism. Reaction temperature plays a role in whether aldol condensation or the acetone formation is the path taken in changing the product composition. This article contains the catalytic activity comparison between the mono-functional and physical mixture counterpart to the hydrotalcite derived mixed oxides and the detailed discussion on the reaction mechanisms.
NASA Astrophysics Data System (ADS)
Qin, Xiufang; Zhang, Jinqiong; Meng, Xiaojuan; Deng, Chenhua; Zhang, Lifang; Ding, Guqiao; Zeng, Hao; Xu, Xiaohong
2015-02-01
Nanoporous anodic aluminum oxides are often used as templates for preparation of nanostructures such as nanodot, nanowire and nanotube arrays. The interpore distance of anodic aluminum oxide is the most important parameter in controlling the periodicity of these nanostructures. Herein we demonstrate a simple and yet powerful method to fabricate ordered anodic aluminum oxides with continuously tunable interpore distances. By using mixed solution of citric and oxalic acids with different molar ratio, the range of anodizing voltages within which self-ordered films can be formed were extended to between 40 and 300 V, resulting in the interpore distances change from 100 to 750 nm. Our work realized very broad range of interpore distances in a continuously tunable fashion and the experiment processes are easily controllable and reproducible. The dependence of the interpore distances on acid ratios in mixed solutions was discussed through analysis of anodizing current and it was found that the effective dissociation constant of the mixed acids is of great importance. The interpore distances achieved are comparable to wavelengths ranging from UV to near IR, and may have potential applications in optical meta-materials for photovoltaics and optical sensing.
Continuous Precipitation of Ceria Nanoparticles from a Continuous Flow Micromixer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tseng, Chih Heng; Paul, Brian; Chang, Chih-hung
2013-01-01
Cerium oxide nanoparticles were continuously precipitated from a solution of cerium(III) nitrate and ammonium hydroxide using a micro-scale T-mixer. Findings show that the method of mixing is important in the ceria precipitation process. In batch mixing and deposition, disintegration and agglomeration dominates the deposited film. In T-mixing and deposition, more uniform nanorod particles are attainable. In addition, it was found that the micromixing approach reduced the exposure of the Ce(OH)3 precipates to oxygen, yielding hydroxide precipates in place of CeO2 precipitates. Advantages of the micro-scale T-mixing approach include shorter mixing times, better control of nanoparticle shape and less agglomeration.
A Silica-Supported Iron Oxide Catalyst Capable of Activating Hydrogen Peroxide at Neutral pH Values
Pham, Anh Le-Tuan; Lee, Changha; Doyle, Fiona M.; Sedlak, David L.
2009-01-01
Iron oxides catalyze the conversion of hydrogen peroxide (H2O2) into oxidants capable of transforming recalcitrant contaminants. Unfortunately, the process is relatively inefficient at circumneutral pH values due to competing reactions that decompose H2O2 without producing oxidants. Silica- and alumina-containing iron oxides prepared by sol-gel processing of aqueous solutions containing Fe(ClO4)3, AlCl3 and tetraethyl orthosilicate efficiently catalyzed the decomposition of H2O2 into oxidants capable of transforming phenol at circumneutral pH values. Relative to hematite, goethite and amorphous FeOOH, the silica-iron oxide catalyst exhibited a stoichiometric efficiency, defined as the number of moles of phenol transformed per mole of H2O2 consumed, that was 10 to 40 times higher than that of the iron oxides. The silica-alumina-iron oxide catalyst had a stoichiometric efficiency that was 50 to 80 times higher than that of the iron oxides. The significant enhancement in oxidant production is attributable to the interaction of Fe with Al and Si in the mixed oxides, which alters the surface redox processes, favoring the production of strong oxidants during H2O2 decomposition. PMID:19943668
Development of a novel wet oxidation process for hazardous and mixed wastes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dhooge, P.M.
1994-12-31
Many DOE waste streams and remediates contain complex and variable mixtures of organic compounds, toxic metals, and radionuclides. These materials are often dispersed in organic or inorganic matrices, such as personal protective equipment, various sludges, soils, and water. The over all objective of the effort described here is to develop a novel catalytic wet oxidation process for the treatment of these multi-component wastes, with the aim of providing a versatile, non-thermal method which will destroy hazardous organic compounds while simultaneously containing and concentrating toxic and radioactive metals for recovery or disposal in a readily stabilized matrix. The DETOX process usesmore » a unique combination of metal catalysts to increase the rate of oxidation of organic materials. The metal catalysts are in the form of salts dissolved in a dilute acid solution. A typical catalyst composition is 60% ferric chloride, 3--4% hydrochloric acid, 0.13% platinum ions, and 0.13% ruthenium ions in a water solution. The catalyst solution is maintained at 423--473 K. Wastes are introduced into contact with the solution, where their organic portion is oxidized to carbon dioxide and water. If the organic portion is chlorinated, hydrogen chloride will be produced as a product. The process is a viable alternative to incineration for the treatment of organic mixed wastes. Estimated costs for waste treatment using the process are from $2.50/kg to $25.00/kg, depending on the size of the unit and the amount of waste processed. Process units can be mobile for on-site treatment of wastes. Results from phase 1 and 2, design and engineering studies, are described.« less
Metal-Catalyzed Aqueous Oxidation Processes in Merged Microdroplets
NASA Astrophysics Data System (ADS)
Davis, R. D.; Wilson, K. R.
2017-12-01
Iron-catalyzed production of reactive oxygen species (ROS) from hydrogen peroxide (Fenton's reaction) is a fundamental process throughout nature, from groundwater to cloud droplets. In recent years, Fenton's chemistry has gained further interest in atmospheric science as a potentially important process in the oxidation of aqueous secondary organic aerosol (e.g., Chu et al., Sci. Rep., 2017), with some observations indicating that Fenton's reaction proceeds at a higher rate at aerosol interfaces compared to in the bulk (Enami et al., PNAS, 2014). However, a fundamental-level mechanistic understanding of this process remains elusive and the relative importance of interfacial versus bulk chemistry for aqueous organic processing via Fenton's has yet to be fully established. Here, we present a microreactor experimental approach to studying aqueous-phase Fenton's chemistry in microdroplets by rapidly mixing droplets of different composition. Utilizing two on-demand droplet generators, a stream of microdroplets containing aqueous iron chloride were merged with a separate stream of microdroplets containing aqueous hydrogen peroxide and a range of aromatic organic compounds, initiating ROS production and subsequent aqueous-phase oxidation reactions. Upon merging, mixing of the microdroplets occurred in submillisecond timescales, thus allowing the reaction progress to be monitored with high spatial and temporal resolution. For relatively large microreactor (droplet) sizes (50 µm diameter post-merging), the Fenton-initiated aqueous oxidation of aromatic organic compounds in merged microdroplets was consistent with bulk predictions with hydroxyl radicals as the ROS. The microdroplet-size dependence of this observation, along with the role of other ROS species produced from Fenton and Fenton-like processes, will be discussed in the context of relative importance to aqueous organic processing of atmospheric particles.
The Obtaining of Nano Oxide Systems SiO2-REE with Alkoxide Technology
NASA Astrophysics Data System (ADS)
Amelina, Anna; Grinberg, Evgenii
A lot of oxides systems with REE as dopants are used in catalytic processes in organic synthesis. They are very perspectives as thermostable coating in aerospace technics. These systems are usually based on silicon or aluminium oxides and doped with rare-earth elements. This systems can be produced by different methods. One of the most perspective of them is “sol-gel”-method with silicium, aluminium and rare-earth alkoxides as a precursor of doped silica and alumina, or their derivatives. Thus the obtaining of composite SiO _{2} - REE oxide materials by the hydrolysis doped with rare-earth elements was suggested. Some of alcoholate derivatives such as El(OR)n were used in this processes. The SiO _{2}- REE oxides were precipitated during the sol-gel process, where tetraethoxysilane (TEOS) as used as SiO _{2} sources. Also it is known that alkoxides of alkali metals, including lithium alkoxides, are widely used in industry and synthetic chemistry, as well as a source of lithium in various mixed oxide compositions, such as lithium niobate, lithium tantalate or lithium silicate. Therefore, we attempted to obtain the lithium silicate, which is also doped with rare-earth elements. Lithium silicate was obtained by alkaline hydrolysis of tetraethoxysilane with lithium alkoxide. Lithium alkoxide were synthesized by dissolving at metal in the corresponding alcohol are examined. The dependence of the rate of dissolving of the metal on the method of mixing of the reaction mixture and the degree of metal dispersion was investigated. The mathematical model of the process was composed and also optimization of process was carried out. Some oxide SiO _{2}, Al _{2}O _{3} and rare-earth nanostructured systems were obtained by sol-gel-method. The size of particle was determined by electron and X-ray spectroscopy and was in the range of 5 - 15 nm. Purity of this oxide examples for contaminating of heavy metals consists n.(1E-4...1E-5) wt%. Sols obtained by this method may be used for producing of thin coats on ceramics and metallic surfaces.
Process for the conversion of lower alcohols to higher branched oxygenates
Barger, Paul T.
1996-01-01
A process is provided for the production of branched C.sub.4+ oxygenates from lower alcohols such as methanol, ethanol, propanol and mixtures thereof. The process comprises contacting the lower alcohols with a solid catalyst comprising a mixed metal oxide support having components selected from the group consisting of oxides of zinc, magnesium, zirconia, titanium, manganese, chromium, and lanthanides, and an activation metal selected from the group consisting of Group VIII metal, Group IB metals, and mixtures thereof. The advantage of the process is improved yields and selectivity to isobutanol which can subsequently be employed in the production of high octane motor gasoline.
Process for the conversion of lower alcohols to higher branched oxygenates
Barger, P.T.
1996-09-24
A process is provided for the production of branched C{sub x} oxygenates from lower alcohols such as methanol, ethanol, propanol and mixtures thereof. The process comprises contacting the lower alcohols with a solid catalyst comprising a mixed metal oxide support having components selected from the group consisting of oxides of zinc, magnesium, zirconia, titanium, manganese, chromium, and lanthanides, and an activation metal selected from the group consisting of Group VIII metal, Group IB metals, and mixtures thereof. The advantage of the process is improved yields and selectivity to isobutanol which can subsequently be employed in the production of high octane motor gasoline.
Lively, Brooks; Kumar, Sandeep; Tian, Liu; Li, Bin; Zhong, Wei-Hong
2011-05-01
In this study we report the advantages of a 2-step method that incorporates an additional process pre-conditioning step for rapid and precise blending of the constituents prior to the commonly used melt compounding method for preparing polycarbonate/oxidized carbon nanofiber composites. This additional step (equivalent to a manufacturing cell) involves the formation of a highly concentrated solid nano-nectar of polycarbonate/carbon nanofiber composite using a solution mixing process followed by melt mixing with pure polycarbonate. This combined method yields excellent dispersion and improved mechanical and thermal properties as compared to the 1-step melt mixing method. The test results indicated that inclusion of carbon nanofibers into composites via the 2-step method resulted in dramatically reduced ( 48% lower) coefficient of thermal expansion compared to that of pure polycarbonate and 30% lower than that from the 1-step processing, at the same loading of 1.0 wt%. Improvements were also found in dynamic mechanical analysis and flexural mechanical properties. The 2-step approach is more precise and leads to better dispersion, higher quality, consistency, and improved performance in critical application areas. It is also consistent with Lean Manufacturing principles in which manufacturing cells are linked together using less of the key resources and creates a smoother production flow. Therefore, this 2-step process can be more attractive for industry.
NASA Astrophysics Data System (ADS)
Karasenkov, Y.; Frolov, G.; Pogorelsky, I.; Latuta, N.; Gusev, A.; Kuznetsov, D.; Leont'ev, V.
2015-11-01
New bactericidal containing nanoparticles colloids for application in dentistry, maxillofacial surgery, urology, obstetrics, gynaecology, ENT, proctology have been developed. The various water colloidal nanodispersive systems of metals and oxides have been obtained by means of electric impulse - condensation (electroerosion) method. These systems are based pure elements and alloys of argentum (Ag), titanium dioxide (TiO2), iron oxide (Fe2O3), tantalum oxide (TaO), vanadium oxide (VO2), cobalt oxide (CoO), tantalum dioxide TaO2, zinc oxide (ZnO), copper oxide (CuO) and mixed suspensions of titanium, aluminium and molybdenum oxides. The research has been made on culture of dentobacterial plaque and mixed culture issued from gingival spaces. The composition of culture was identified with S.aureus, S.epidermidis and nonfermentable kinds of E.coli. The observation period lasted more than nineteen days. All solutions showed highly prolonged bactericidal activity in dilutions from the whole solution 1-20 mg/L. The bactericidal activity of powder specimen of silica containing Ag and Fe2O3 nanoparticles used as dental filling material and disintegrates of composite materials (produced by “StomaDent” CJSC) have been studied. Tested materials have long (up to 19 days and more) bactericidal activity.
Investigation of TiO2 based Mixed-metal Oxide Catalysts for the Production of Hydrogen
NASA Astrophysics Data System (ADS)
Luo, Si
Abstract of the Dissertation. Investigation of TiO2 based Mixed-metal Oxide Catalysts for the Production of Hydrogen. by. Si Luo. Doctor of Philosophy. in. Chemistry. Stony Brook University. 2017. The environmental impacts of fossil fuel consumption and the resulting global warming have attracted increasing attention to technologies and fuels that are both sustainable and renewable in the 21st century. To date, hydrogen has been proposed as an encouraging candidate of the next generation of chemical fuels, which meets all demands for carbon free and efficient chemistries that could be produced from a variety of sources. However, despite tremendous efforts, there is a clear need to develop new catalysts for the production of hydrogen through catalytic processes that are sustainable, such as in the photocatalytic splitting of water (PCS: H2O → H2 + 0.5O2) and the water-gas shift process (WGS: CO + H2O → H2 + CO2). This thesis is primarily motivated by this challenge and has focused on the photochemical and thermal production of H2 by the employment of novel TiO2 based catalysts. TiO2 is one of the most widely studied photocatalysts in all history, due to its relatively high activity, robust stability, safety and low cost. In this thesis, several TiO2-based mixed metal oxide nano catalysts (CeOx-TiO2, Ru-TiO2, Ga-TiO2) have been synthesized with carefully controlled morphology/structure and with inclusion of co-catalysts (Pt). These novel materials were comprehensively characterized to better understand their morphology, crystal structure, and electronic properties in an attempt to unravel phenomena responsible for high catalytic performance for the production of H2 from H2O. We have discovered the importance of low-dimensional metal oxide and interfacial stabilized nano-scaled mixed metal oxides for H2 production, while learning how best to tune such structure to optimize both thermal and photochemical conversion. Optimized structure and/or composition have been identified for TiO2 modified in different ways by another metal oxide (CeOx) or with dopants (Ga, Ru). In addition, we have also studied the water gas shift reaction on several TiO2 supported catalysts, where similar concepts can be applied. Advanced In situ characterization enabled the investigation of the catalyst structure, surface chemical intermediates and active species under reaction conditions. The influence of metal-oxide, oxide-oxide interactions has been further revealed for both the water-gas shift and the photocatalytic splitting of water.
Fabrication of (U,Am)O2 pellet with controlled porosity from oxide microspheres
NASA Astrophysics Data System (ADS)
Ramond, Laure; Coste, Philippe; Picart, Sébastien; Gauthé, Aurélie; Bataillea, Marc
2017-08-01
U1-xAmxO2±δ mixed-oxides are considered as promising compounds for americium heterogeneous transmutation in Sodium Fast Neutron Reactor. Porous microstructure is envisaged in order to facilitate helium and fission gas release and to reduce pellet swelling during irradiation and under self-irradiation. In this study, the porosity is created by reducing (U,Am)3O8 microspheres into (U,Am)O2 during the sintering. This reduction is accompanied by a decrease of the lattice volume that leads to the creation of open porosity. Finally, an (U0.90Am0.10)O2 porous ceramic pellet (D∼89% of the theoretical density TD) with controlled porosity (≥8% open porosity) was obtained from mixed-oxide microspheres obtained by the Weak Acid Resin (WAR) process.
The measurement of U(VI) and Np(IV) mass transfer in a single stage centrifugal contactor
NASA Astrophysics Data System (ADS)
May, I.; Birkett, E. J.; Denniss, I. S.; Gaubert, E. T.; Jobson, M.
2000-07-01
BNFL currently operates two reprocessing plants for the conversion of spent nuclear fuel into uranium and plutonium products for fabrication into uranium oxide and mixed uranium and plutonium oxide (MOX) fuels. To safeguard the future commercial viability of this process, BNFL is developing novel single cycle flowsheets that can be operated in conjunction with intensified centrifugal contactors.
Energy Conservation at the West Dover, Vermont, Water Pollution Control Facility.
1982-11-01
chlorination of oxidation ditch effluent ---- 8 Discontinue aerobic digestion --------------------------- 8 Discharge contents of holding pond into...Immediate Discontinue aerobic digestion Instead of aerobically digesting the waste activated sludge, it may be possible to mix it directly with pond...elimi- nated by replacing the oxidation ditches with facultative ponds. Also, this would eliminate the need for aerobic digestion , in-plant process water
Ma, Yue; Tai, Cheuk-Wai; Li, Shaowen; Edström, Kristina; Wei, Bingqing
2018-06-13
Interconnected macro/mesoporous structures of mixed metal oxide (MMO) are developed on nickel foam as freestanding anodes for Li-ion batteries. The sustainable production is realized via a wet chemical etching process with bio-friendly chemicals. By means of divalent iron doping during an in situ recrystallization process, the as-developed MMO anodes exhibit enhanced levels of cycling efficiency. Furthermore, this atomic-scale modification coherently synergizes with the encapsulation layer across a micrometer scale. During this step, we develop a quasi-gel-state tri-copolymer, i.e., F127-resorcinol-melamine, as the N-doped carbon source to regulate the interfacial chemistry of the MMO electrodes. Electrochemical tests of the modified Fe x Ni 1- x O@NC-NiF anode in both half-cell and full-cell configurations unravel the favorable suppression of the irreversible capacity loss and satisfactory cyclability at the high rates. This study highlights a proof-of-concept modification strategy across multiple scales to govern the interfacial chemical process of the electrodes toward better reversibility.
Relationship between peroxyacetyl nitrate and nitrogen oxides in the clean troposphere
NASA Technical Reports Server (NTRS)
Singh, H. B.; Salas, L. J.; Ridley, B. A.; Shetter, J. D.; Donahue, N. M.
1985-01-01
The first study is presented in which the mixing ratios of peroxyactyl nitrate (PAN) and nitrogen oxides, as well as those of peroxypropionyl nitrate and O3 and relevant meteorological parameters, were measured concurrently at a location that receives clean, continental air. The results show that, in clean conditions, nitrogen oxides present in the form of PAN can be as much or more abundant than the inorganic form. In addition, PAN can be an important source of peroxyacetyl radicals which may be important to oxidation processes in the gas as well as liquid phases.
PROCESS OF MAKING SHAPED FUEL FOR NUCLEAR REACTORS
O'Leary, W.J.; Fisher, E.A.
1964-02-11
A process for making uranium dioxide fuel of great strength, density, and thermal conductivity by mixing it with 0.1 to 1% of a densifier oxide (tin, aluminum, zirconium, ferric, zinc, chromium, molybdenum, titanium, or niobium oxide) and with a plasticizer (0.5 to 3% of bentonite and 0.05 to 2% of methylcellulose, propylene glycol alginate, or ammonium alginate), compacting the mixture obtained, and sintering the bodies in an atmosphere of carbon monoxide or carbon dioxide, with or without hydrogen, or of a nitrogen-hydrogen mixture is described. (AEC)
The Bidirectional Exchange of VOCs between a Mixed Forest and the Atmosphere in the Southeast US
NASA Astrophysics Data System (ADS)
Misztal, P. K.; Arata, C.; Su, L.; Park, J. H.; Holzinger, R.; Seco, R.; Kaser, L.; Mak, J. E.; Guenther, A. B.; Goldstein, A. H.
2014-12-01
Biogenic and anthropogenic volatile organic compounds (VOC) are known to play important roles in atmospheric chemistry, formation of secondary organic aerosol (SOA), and thus climate. However, understanding the full range of emissions, and the fate of these organic compounds following their oxidation in the atmosphere is currently a major quantitative challenge. We looked closer to investigate emission, oxidation, and deposition of VOCs in a forested region of the South East US as part of the SOAS summer 2013 campaign. Fluxes and concentration of gas-phase VOCs were measured at 10 Hz by a PTR-ToF-MS which was coupled to a 10 Hz RM Young sonic anemometer at the top of the Centreville SEARCH tower located in a mixed deciduous forest near Brent, Alabama. Investigations of BVOC oxidation pathways were also explored in the CalTech chamber during the FIXIT study. The combination of laboratory oxidation studies and concentrations and fluxes measured in the field provides a broader dynamic picture of the physical and chemical processes behind effective oxidation yields which can improve understanding of BVOC oxidation compound fates and thus the accuracies of SOA formation estimates. We investigate the relative contribution of individual VOCs, and classes of VOCs distinguished by the number of oxygen they include, to the mixing ratio, emission and deposition flux burdens. We also investigate how the exchange velocities of VOCs differ during the day and highlight the bidirectional character of the fluxes occurring for a large fraction of observed organic ions.
NASA Astrophysics Data System (ADS)
Deng, Shuping; Li, Decong; Chen, Zhong; Tang, Yu; Shen, Lanxian; Deng, Shukang
2017-12-01
Single crystal samples β-Zn4Sb3 have been prepared by using Bi-Sn mixed-flux method. The obtained crystals exhibit p-type conduction behavior with carrier concentration varying from 4.40 × 1019 to 18.12 × 1019 cm-3 as carrier mobility changes from 25.8 to 61.5 cm2 V-1 s-1 at room temperature. Electrical transport properties of the samples were optimized by Bi-Sn co-doped, which brought by Bi-Sn mixed-flux. And the maximal power factor of 1.45 × 10-3 W m-1 K-2 is achieved at 510 K for the sample with Bi flux content x = 0.5. Consequently, the oxidation resistance of the sample was determined by exploring the effects of heat treatment in air on electrical transport properties and thermal stability, which the single crystalline β-Zn4Sb3 still possess an excellent oxidation resistance and thermal stability after the heat treatment process.
Detox{sup SM} wet oxidation system studies for engineering scale up
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robertson, D.T.; Moslander, J.E.; Zigmond, J.A.
1995-12-31
Catalyzed wet oxidation utilizing iron(III) has been shown to have promise for treating many hazardous and mixed wastes. The reaction occurs at the surface of contact between an aqueous iron(III) solution and organic material. Studies with liquid- and vapor-phase organic waste surrogates have established reaction kinetics and the limits of reaction rate based on organic concentration and iron(III) diffusion. Continuing engineering studies have concentrated on reaction vessel agitator and solids feed configurations, an improved bench scale reflux condenser and reflux condenser calculations, sparging of organic compounds from the process condensate water, filtration of solids from the process solution, and flammabilitymore » limits for volatile organic compounds in the headspace of the reaction vessel under the reaction conditions. Detailed engineering design and fabrication of a demonstration unit for treatment of mixed waste is in progress.« less
Dip-coating of nano-sized CeO2 on SiC membrane and its effect on thermal diffusivity.
Park, Jihye; Jung, Miewon
2014-05-01
CeO2-SiC mixed composite membrane was fabricated with porous SiC ceramic and cerium oxide powder synthesized by sol-gel process. This CeO2-SiC membrane and SiC membrane which is made by the purified SiC ceramic were pressed and sintered in Ar atmosphere. And then, the SiC membrane was dip-coated by cerium oxide precursor sol solution and heat-treated in air. The surface morphology, particle size, porosity and structure analysis of the mixing and dip-coating SiC membrane were monitored by FE-SEM and X-ray diffraction analysis. Surface area, pore volume and pore diameter were determined by BET instrument. Thermal diffusivity was measured by laser flash method with increasing temperature. The relation between porosity and thermal diffusivity from different preparation process has been discussed on this study.
Low work function materials for microminiature energy conversion and recovery applications
Zavadil, Kevin R.; Ruffner, Judith A.; King, Donald B.
2003-05-13
Low work function materials are disclosed together with methods for their manufacture and integration with electrodes used in thermionic conversion applications (specifically microminiature thermionic conversion applications). The materials include a mixed oxide system and metal in a compositionally modulated structure comprised of localized discontinuous structures of material that are deposited using techniques suited to IC manufacture, such as rf sputtering or CVD. The structures, which can include layers are then heated to coalescence yielding a thin film that is both durable and capable of electron emission under thermionic conversion conditions used for microminiature thermionic converters. Using the principles of the invention, thin film electrodes (emitters and collectors) required for microconverter technology are manufactured using a single process deposition so as to allow for full fabrication integration consistent with batch processing, and tailoring of emission/collection properties. In the preferred embodiment, the individual layers include mixed BaSrCaO, scandium oxide and tungsten.
Intrinsic electronic defects and multiple-atom processes in the oxidic semiconductor Ga2O3
NASA Astrophysics Data System (ADS)
Schmeißer, Dieter; Henkel, Karsten
2018-04-01
We report on the electronic structure of gallium oxide (Ga2O3) single crystals as studied by resonant photoelectron spectroscopy (resPES). We identify intrinsic electronic defects that are formed by mixed-atomic valence states. We differentiate three coexisting defect states that differ in their electronic correlation energy and their spatial localization lengths. Their relative abundance is described by a fractional ionicity with covalent and ionic bonding contributions. For Ga2O3, our analyses of the resPES data enable us to derive two main aspects: first, experimental access is given to determine the ionicity based on the original concepts of Pauling and Phillips. Second, we report on multi-atomic energy loss processes in the Ga2p core level and X-ray absorption data. The two experimental findings can be explained consistently in the same context of mixed-atomic valence states and intrinsic electronic defects.
Sobel, Sabrina G.; Hastings, Harold M.; Testa, Matthew
2009-01-01
Imore » mperfect mixing is a concern in industrial processes, everyday processes (mixing paint, bread machines), and in understanding salt water-fresh water mixing in ecosystems. The effects of imperfect mixing become evident in the unstirred ferroin-catalyzed Belousov-Zhabotinsky reaction, the prototype for chemical pattern formation. Over time, waves of oxidation (high ferriin concentration, blue) propagate into a background of low ferriin concentration (red); their structure reflects in part the history of mixing in the reaction vessel. However, it may be difficult to separate mixing effects from reaction effects. We describe a simpler model system for visualizing density-driven pattern formation in an essentially unmixed chemical system: the reaction of pale yellow Fe 3 + with colorless SCN − to form the blood-red Fe ( SCN ) 2 + complex ion in aqueous solution. Careful addition of one drop of Fe ( NO 3 ) 3 to KSCN yields striped patterns after several minutes. The patterns appear reminiscent of Rayleigh-Taylor instabilities and convection rolls, arguing that pattern formation is caused by density-driven mixing.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sobel, Sabrina G.; Hastings, Harold M.; Testa, Matthew
Imore » mperfect mixing is a concern in industrial processes, everyday processes (mixing paint, bread machines), and in understanding salt water-fresh water mixing in ecosystems. The effects of imperfect mixing become evident in the unstirred ferroin-catalyzed Belousov-Zhabotinsky reaction, the prototype for chemical pattern formation. Over time, waves of oxidation (high ferriin concentration, blue) propagate into a background of low ferriin concentration (red); their structure reflects in part the history of mixing in the reaction vessel. However, it may be difficult to separate mixing effects from reaction effects. We describe a simpler model system for visualizing density-driven pattern formation in an essentially unmixed chemical system: the reaction of pale yellow Fe 3 + with colorless SCN − to form the blood-red Fe ( SCN ) 2 + complex ion in aqueous solution. Careful addition of one drop of Fe ( NO 3 ) 3 to KSCN yields striped patterns after several minutes. The patterns appear reminiscent of Rayleigh-Taylor instabilities and convection rolls, arguing that pattern formation is caused by density-driven mixing.« less
The effect of mixed dopants on the stability of Fricke gel dosimeters
NASA Astrophysics Data System (ADS)
Penev, K.; Mequanint, K.
2013-06-01
Auto-oxidation and fast diffusion in Fricke gels are major drawbacks to wide-spread application of these gels in 3D dosimetry. Aiming to limit both processes, we used mixed dopants: the ferric-specific ligand xylenol orange with a ferrous-specific ligand (1,10-phenanthroline) and/or a bi-functional cross-linking agent (glyoxal). Markedly improved auto-oxidation stability was observed in the xylenol orange and phenanthroline doped gel at the expense of increased background absorbance and faster diffusion. Addition of glyoxal limited the diffusion rate and led to a partial bleaching of the gel. It is conceivable that these two new compositions may find useful practical application.
Thermal and chemical remediation of mixed wastes
Nelson, Paul A.; Swift, William M.
1997-01-01
A process for treating organic waste materials without venting gaseous emissions to the atmosphere which includes oxidizing the organic waste materials at an elevated temperature not less than about 500.degree. C. with a gas having an oxygen content in the range of from about 20% to about 70% to produce an oxidation product containing CO.sub.2 gas. The gas is then filtered to remove particulates, and then contacted with an aqueous absorbent solution of alkali metal carbonates or alkanolamines to absorb a portion of the CO.sub.2 gas from the particulate-free oxidation product. The CO.sub.2 absorbent is thereafter separated for further processing. A process and system are also disclosed in which the waste materials are contacted with a reactive medium such as lime and product treatment as described.
One pot synthesis of exchange coupled Nd2Fe14B/alpha-Fe by pechini type sol-gel method.
Hussain, Abid; Jadhav, Abhijit P; Baek, Yeon Kyung; Choi, Hul Jin; Lee, Jaeho; Kang, Young Soo
2013-11-01
In this work, a combination of nanoparticles of Nd2Fe14B hard magnetic phase and alpha-Fe soft magnetic phase were synthesized by one pot chemical synthesis technique using sol-gel method. A gel of Nd-Fe-B was prepared using NdCl3 x 6H2O, FeCl3 x 6H2O, H3BO3, citric acid, and ethylene glycol by pechini type sol-gel method. The gel was subsequently calcined and annealed to obtain the mixed oxide powders. The produced metal oxide particles were identified with XRD, SEM, TEM to obtain the crystal structure, shape and domain structure of them. The nanoparticles of mixed phase of Nd2Fe14B/alpha-Fe were obtained from these oxides by a process of reduction-diffusion in vacuum by employing CaH2 as reducing agent. During this process it was optimized by controlling temperature, reaction time and concentration of the reducing agent (CaH2). The phase formation of Nd2Fe14B was resulted by the direct diffusion of NdH2, Fe and B. The magnetic property of produced hard and soft phases was successfully identified with vibrating sample magnetometer (VSM). The mixed domains of the hard and soft phases were identified with selected area electron diffraction method (SAED) patterns.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prieur, D., E-mail: dam.prieur@gmail.com; Lebreton, F.; Martin, P.M.
2015-10-15
Uranium–americium mixed oxides are potential compounds to reduce americium inventory in nuclear waste via a partitioning and transmutation strategy. A thorough assessment of the oxygen-to-metal ratio is paramount in such materials as it determines the important underlying electronic structure and phase relations, affecting both thermal conductivity of the material and its interaction with the cladding and coolant. In 2011, various XAS experiments on U{sub 1−x}Am{sub x}O{sub 2±δ} samples prepared by different synthesis methods have reported contradictory results on the charge distribution of U and Am. This work alleviates this discrepancy. The XAS results confirm that, independently of the synthesis process,more » the reductive sintering of U{sub 1−x}Am{sub x}O{sub 2±δ} leads to the formation of similar fluorite solid solution indicating the presence of Am{sup +III} and U{sup +V} in equimolar proportions. - Graphical abstract: Formation of (U{sup IV/V},Am{sup III})O{sup 2} solid solution by sol–gel and by powder metallurgy. - Highlights: • Uranium–americium mixed oxides were synthesized by sol–gel and powder metallurgy. • Fluorite solid solutions with similar local environment have been obtained. • U{sup V} and Am{sup III} are formed in equimolar proportions.« less
Treating contaminated organics using the DETOX process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elsberry, K.D.; Dhooge, P.M.
1993-05-01
Waste matrices containing organics, radionuclides, and metals pose difficult problems in waste treatment and disposal when the organic compounds and/or metals are considered to be hazardous. This paper describes the results of bench-scale studies of DETOX applied to the components of liquid mixed wastes, with the goal of establishing parameters for designing a prototype waste treatment unit. Apparent organic reaction rate orders and the dependence of apparent reaction rate on solution composition and the contact area were measured for vacuum pump oil scintillation fluids, and trichloroethylene. Reaction rate was superior in chloride-based solutions and was proportional to the contact areamore » above about 2% w/w loading of organic. Oxidations in a 4-liter volume, mixed bench-top reactor have given destruction efficiencies of 99.9999 + % for common organics. Reaction rates achieved in the mixed bench-top reactor were one to two orders of magnitude greater than had been achieved in unmixed reactions; a thoroughly mixed reactor should be capable of oxidizing 10 to 100 + grams of organic per liter-hour. Results are also presented on the solvation efficiency of DETOX for mercury, cerium, and neodymium, and for removal/destruction of organics sorbed on vermiculite. The next stage of development will be converting the bench-top unit to continuous processing.« less
NASA Astrophysics Data System (ADS)
Zheng, Yuying; Dou, Zhengjie; Fang, Yanxiong; Li, Muwu; Wu, Xin; Zeng, Jianhuang; Hou, Zhaohui; Liao, Shijun
2016-02-01
Polyol approach is commonly used in synthesizing Pt nanoparticles in polymer electrolyte membrane fuel cells. However, the application of this process consumes a great deal of time and energy, as the reduction of precursors requires elevated temperatures and several hours. Moreover, the ethylene glycol and its oxidizing products bound to Pt are difficult to remove. In this work, we utilize the advantages of ethylene glycol and prepare Pt nanoparticles through a room-temperature hydrogen gas reduction in an ethylene glycol/water mixed solvent, which is followed by subsequent harvesting by carbon nanotubes as electrocatalysts. This method is simple, facile, and time-efficient, as the entire room-temperature reduction process is completed in a few minutes. As the solvent changes from water to an ethylene glycol/water mix, the size of Pt nanoparticles varies from 10 to 3 nm and their shape transitions from polyhedral to spherical. Pt nanoparticles prepared in a 1:1 volume ratio mixture of ethylene glycol/water are uniformly dispersed with an average size of ∼3 nm. The optimized carbon nanotube-supported Pt electrocatalyst exhibits excellent methanol oxidation and oxygen reduction activities. This work demonstrates the potential use of mixed solvents as an approach in materials synthesis.
Multicomponent Oxide Systems for Corrosion Protection.
1980-11-15
hydroxides on film growth. New types of mixed oxide coatings deposited from nonaqueous solutions of organometallic compounds were developed. Titanium -aluminum...mixed oxide coatings, deposited from solutions of titanium alkoxides in isopropanol, served as a prototype system for much of this work. It was found...45 13. Coating Steps and Analysis... ...................... 50 14. Auger Depth Profiles of Titanium -Aluminum Mixed Oxide *Coatings Deposited
Guibelin, E
2004-01-01
Different treatment routes have been studied for a mixed sludge: the conventional agricultural use is compared with the thermal oxidation processes, including incineration (in gaseous phase) and wet air oxidation (in liquid phase). The interest of a sludge digestion prior to the final treatment has been also considered according to the two major criteria, which are the fossil energy utilisation and the greenhouse effect gases (CO2, CH4, N2O) release. Thermal energy has to be recovered on thermal processes to make these processes environmentally friendly, otherwise their main interest is to extract or destroy micropollutants and pathogens from the carbon cycle. In case of continuous energy recovery, incineration can produce more energy than it consumes. Digestion is especially interesting for agriculture: according to these two schemes, the energy final balance can also be in excess. As to wet air oxidation, it is probably one of the best ways to minimize greenhouse effect gases emission.
NASA Astrophysics Data System (ADS)
Taylor, Nathan John
In the liquid-feed flame spray pyrolysis (LF-FSP) process, alcohol solutions of metalloorganic precursors are aerosolized by O2 and combusted. The metal oxide combustion products are rapidly quenched (< 10 ms) from flame temperatures of 1500°C to temperatures < 400° C, limiting particle growth. The resulting nanopowders are typically agglomerated but unaggregated. Here, we demonstrate two processing approaches to dense materials: nanopowders with the exact composition, and mixed single metal oxide nanopowders. The effect of the initial degree of phase separation on the final microstructures was determined by sintering studies. Our first studies included the production of yttrium aluminum garnet, Y3Al5O12 (YAG), tubes which we extruded from a thermoplastic/ceramic blend. At equivalent final densities, we found finer grain sizes in the from the mixed Y2O3 and Al2 O3 nanopowders, which was attributed to densification occurring before full transformation to the YAG phase. The enhanced densification in production of pure YAG from the reactive sintering process led us to produce composites in the YAG/alpha-Al 2O3 system. Finally, a third Y2O3 stabilized ZrO2 (YSZ) phase was added to further refine grain sizes using the same two processing approaches. In a separate study, single-phase metastable Al2O3 rich spinels with the composition MO•3Al 2O3 where M = Mg, Ni, and Co were sintered to produce dense MAl2O4/alpha-Al2O3 composites. All of these studies provide a test of the bottom-up approach; that is, how the initial length scale of mixing affects the final composite microstructure. Overall, the length scale of mixing is highly dependent upon the specific oxide composites studied. This work provides a processing framework to be adopted by other researchers to further refine microstructural size. LF-FSP flame temperatures were mapped using different alcohols with different heats of combustion: methanol, ethanol, 1-propanol, and n-butanol. The effect of different alcohols on particle size and phase was determined through studies on Al2O3, Y2O3 and TiO2 nanopowders. The final studies describe the morphology of composite nanopowders produced in the WO3-TiO2 and CuO-TiO2 systems. The composite nanopowders have novel morphology, and may offer novel electronic, optical, or catalytic properties.
Materials and methods for the separation of oxygen from air
MacKay, Richard; Schwartz, Michael; Sammells, Anthony F.
2003-07-15
Metal oxides particularly useful for the manufacture of catalytic membranes for gas-phase oxygen separation processes having the formula: O.sub.5+z where: x and x' are greater than 0; y and y' are greater than 0; x+x' is equal to 2; y+y' is less than or equal to 2; z is a number that makes the metal oxide charge neutral; A is an element selected from the lanthanide elements; A' is an element selected from Be, Mg, Ca, Sr, Ba and Ra; A" is an element selected from the f block lanthanides, Be, Mg, Ca, Sr, Ba and Ra; B is an element selected from the group consisting of Al, Ga, In or mixtures thereof and B" is Co or Mg, with the exception that when B" is Mg, A' and A" are not Mg. The metal oxides are useful for preparation of dense membranes which may be formed from dense thin films of the mixed metal oxide on a porous metal oxide element. The invention also provides methods and catalytic reactors for oxygen separation and oxygen enrichment of oxygen deficient gases which employ mixed conducting metal oxides of the above formula.
Lavrynenko, O M; Pavlenko, O Yu; Shchukin, Yu S
2016-12-01
The contact of a steel electrode with water dispersion medium in an open-air system leads to the development of various polymorphic iron oxides and oxyhydroxides on the steel surface. Whereas the usage of distilled water causes the obtaining of Fe(II)-Fe(III) layered double hydroxides (green rust) as a primary mineral phase, but in the presence of inorganic 3d-metal water salt solutions, mixed layered double hydroxides (LDHs) together with non-stoichiometric spinel ferrite nanoparticles are formed on the steel surface. Mixed LDHs keep stability against further oxidation and complicate the obtaining of spinel ferrite nanoparticles. Thermal treatment of mixed LDHs among other mineral phases formed via the rotation-corrosion dispergation process at certain temperatures permits to obtain homogenous nanoparticles of spinel ferrites as well as maghemite or hematite doped by 3d-metal cations.
NASA Astrophysics Data System (ADS)
Lavrynenko, O. M.; Pavlenko, O. Yu; Shchukin, Yu S.
2016-02-01
The contact of a steel electrode with water dispersion medium in an open-air system leads to the development of various polymorphic iron oxides and oxyhydroxides on the steel surface. Whereas the usage of distilled water causes the obtaining of Fe(II)-Fe(III) layered double hydroxides (green rust) as a primary mineral phase, but in the presence of inorganic 3d-metal water salt solutions, mixed layered double hydroxides (LDHs) together with non-stoichiometric spinel ferrite nanoparticles are formed on the steel surface. Mixed LDHs keep stability against further oxidation and complicate the obtaining of spinel ferrite nanoparticles. Thermal treatment of mixed LDHs among other mineral phases formed via the rotation-corrosion dispergation process at certain temperatures permits to obtain homogenous nanoparticles of spinel ferrites as well as maghemite or hematite doped by 3d-metal cations.
DOT National Transportation Integrated Search
2017-01-01
The chemical process of oxidative age-hardening in asphalt pavements is one of the major distresses leading to hot mix asphalt (HMA) pavement failure as evidenced by fatigue and thermal (low temperature) cracking.
Thermodynamic calculations of oxygen self-diffusion in mixed-oxide nuclear fuels
Parfitt, David C.; Cooper, Michael William; Rushton, Michael J.D.; ...
2016-07-29
Mixed-oxide fuels containing uranium with thorium and/or plutonium may play an important part in future nuclear fuel cycles. There are, however, significantly less data available for these materials than conventional uranium dioxide fuel. In the present study, we employ molecular dynamics calculations to simulate the elastic properties and thermal expansivity of a range of mixed oxide compositions. These are then used to support equations of state and oxygen self-diffusion models to provide a self-consistent prediction of the behaviour of these mixed oxide fuels at arbitrary compositions.
Impact of potassium bromate and potassium iodate in a pound cake system.
Wilderjans, Edith; Lagrain, Bert; Brijs, Kristof; Delcour, Jan A
2010-05-26
This study investigates the impact of the oxidants potassium bromate and potassium iodate (8, 16, 32, 64, and 128 micromol/g dry matter of egg white protein) on pound cake making. The impact of the oxidants on egg white characteristics was studied in a model system. Differential scanning calorimetry showed that the oxidants caused egg white to denature later. During heating in a rapid visco analyzer, the oxidants caused the free sulfhydryl (SH) group levels to decrease more intensively and over a smaller temperature range. The oxidants made the proteins more resistant to decreases in protein extractability in sodium dodecyl sulfate containing buffer during cake recipe mixing and less resistant to such decreases during cake baking. We assume that, during baking, the degree to which SH/disulfide exchange and SH oxidation can occur depends on the properties of the protein at the onset of the process. In our view, the prevention of extractability loss during mixing increased the availability of SH groups and caused more such loss during baking. During cooling, all cakes baked with added oxidants showed less collapse. On the basis of the presented data, we put forward that only those protein reactions that occur during baking contribute to the formation of a network that supports final cake structure and prevents collapse.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baroi, Chinmoy; Gaffney, Anne M.; Fushimi, Rebecca
Olefins or unsaturated hydrocarbons play a vital role as feedstock for many industrially significant processes. Ethylene is the simplest olefin and a key raw material for consumer products. Oxidative Dehydrogenation (ODH) is one of the most promising new routes for ethylene production that can offer a significant advantage in energy efficiency over the conventional steam pyrolysis process. This study is focused on the ODH chemistry using the mixed metal oxide MoVTeNbOx catalysts, generally referred to as M1 for the key phase known to be active for dehydrogenation. Using performance results from the patent literature a series of process simulations weremore » conducted to evaluate the effect of feed composition on operating costs, profitability and process safety. The key results of this study indicate that the ODH reaction can be made safer and more profitable without use of an inert diluent and furthermore by replacing O2 with CO2 as an oxidant. Modifications of the M1 catalyst composition in order to adopt these changes are discussed.« less
Preparation and Stoichiometry Effects on Microstructure and Properties of High Purity BaTiO3.
1986-03-27
oxalate , citrate) salt solutions, from mixed alkoxide precursors or from hydrothermal solutions. Typical starting materials and reaction sequences...decomposition and calcination reactions to form the BaTiO compound. Both the oxalate and 3 hydrothermal processes show commnercial promise and are briefly...thermal decomposition of oxalates and by hydrothermal synthesis. As-received lots of mixed oxide and oxalate -derived powders had Ba:TI ratios of 0.997 and
Evaporative oxidation treatability test report
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1995-04-01
In 1992, Congress passed the Federal Facilities Compliance Act that requires the U.S. Department of Energy (DOE) to treat and dispose of its mixed waste in accordance with the Resource Conservation and Recovery Act (RCRA) land disposal restrictions (LDRs). In response to the need for mixed-waste treatment capacity where available off-site commercial treatment facilities do not exist or cannot be used, the DOE Albuquerque Operations Office (DOE-AL) organized a Treatment Selection Team to match mixed wastes with treatment options and develop a strategy for treatment of its mixed wastes. DOE-AL manages operations at nine sites with mixed-waste inventories. The Treatmentmore » Selection Team determined a need to develop mobile treatment capacity to treat wastes at the sites where the wastes are generated. Treatment processes used for mixed waste not only must address the hazardous component (i.e., meet LDRs) but also must contain the radioactive component in a form that allows final disposal while protecting workers, the public, and the environment. On the basis of recommendations of the Treatment Selection Team, DOE-AL assigned projects to the sites to bring mixed-waste treatment capacity on-line. The three technologies assigned to the DOE Grand Junction Projects Office (GJPO) are evaporative oxidation, thermal desorption, and treated wastewater evaporation. Rust Geotech, the DOE-GJPO prime contractor, was assigned to design and fabricate mobile treatment units (MTUs) for these three technologies and to deliver the MTUs to selected DOE-AL sites. To conduct treatability tests at the GJPO, Rust leased a pilot-scale evaporative oxidation unit from the Clemson Technical Center (CTC), Anderson, South Carolina. The purpose of this report is to document the findings and results of tests performed using this equipment.« less
Modeling hyporheic zone processes
Runkel, Robert L.; McKnight, Diane M.; Rajaram, Harihar
2003-01-01
Stream biogeochemistry is influenced by the physical and chemical processes that occur in the surrounding watershed. These processes include the mass loading of solutes from terrestrial and atmospheric sources, the physical transport of solutes within the watershed, and the transformation of solutes due to biogeochemical reactions. Research over the last two decades has identified the hyporheic zone as an important part of the stream system in which these processes occur. The hyporheic zone may be loosely defined as the porous areas of the stream bed and stream bank in which stream water mixes with shallow groundwater. Exchange of water and solutes between the stream proper and the hyporheic zone has many biogeochemical implications, due to differences in the chemical composition of surface and groundwater. For example, surface waters are typically oxidized environments with relatively high dissolved oxygen concentrations. In contrast, reducing conditions are often present in groundwater systems leading to low dissolved oxygen concentrations. Further, microbial oxidation of organic materials in groundwater leads to supersaturated concentrations of dissolved carbon dioxide relative to the atmosphere. Differences in surface and groundwater pH and temperature are also common. The hyporheic zone is therefore a mixing zone in which there are gradients in the concentrations of dissolved gasses, the concentrations of oxidized and reduced species, pH, and temperature. These gradients lead to biogeochemical reactions that ultimately affect stream water quality. Due to the complexity of these natural systems, modeling techniques are frequently employed to quantify process dynamics.
Recovery of fissile materials from nuclear wastes
Forsberg, Charles W.
1999-01-01
A process for recovering fissile materials such as uranium, and plutonium, and rare earth elements, from complex waste feed material, and converting the remaining wastes into a waste glass suitable for storage or disposal. The waste feed is mixed with a dissolution glass formed of lead oxide and boron oxide resulting in oxidation, dehalogenation, and dissolution of metal oxides. Carbon is added to remove lead oxide, and a boron oxide fusion melt is produced. The fusion melt is essentially devoid of organic materials and halogens, and is easily and rapidly dissolved in nitric acid. After dissolution, uranium, plutonium and rare earth elements are separated from the acid and recovered by processes such as PUREX or ion exchange. The remaining acid waste stream is vitrified to produce a waste glass suitable for storage or disposal. Potential waste feed materials include plutonium scrap and residue, miscellaneous spent nuclear fuel, and uranium fissile wastes. The initial feed materials may contain mixtures of metals, ceramics, amorphous solids, halides, organic material and other carbon-containing material.
Evaluation of lignin as an antioxidant in asphalt binders and bituminous mixtures.
DOT National Transportation Integrated Search
2017-01-01
The chemical process of oxidative age-hardening in asphalt pavements is one of the major distresses : leading to hot mix asphalt (HMA) pavement failure as evidenced by fatigue and thermal (low temperature) : cracking. : Research investigations at the...
Thermal and chemical remediation of mixed wastes
Nelson, P.A.; Swift, W.M.
1997-12-16
A process is described for treating organic waste materials without venting gaseous emissions to the atmosphere which includes oxidizing the organic waste materials at an elevated temperature not less than about 500 C with a gas having an oxygen content in the range of from about 20% to about 70% to produce an oxidation product containing CO{sub 2} gas. The gas is then filtered to remove particulates, and then contacted with an aqueous absorbent solution of alkali metal carbonates or alkanolamines to absorb a portion of the CO{sub 2} gas from the particulate-free oxidation product. The CO{sub 2} absorbent is thereafter separated for further processing. A process and system are also disclosed in which the waste materials are contacted with a reactive medium such as lime and product treatment as described. 8 figs.
NASA Astrophysics Data System (ADS)
André, Laurie; Abanades, Stéphane; Cassayre, Laurent
2017-06-01
Metal oxides are potential materials for thermochemical heat storage, and among them, cobalt oxide and manganese oxide are attracting attention. Furthermore, studies on mixed oxides are ongoing, as the synthesis of mixed oxides could be a way to answer the drawbacks of pure metal oxides, such as slow reaction kinetics, loss-in-capacity over cycles or sintering, selected for thermochemical heat storage application. The addition of iron oxide is under investigation and the obtained results are presented. This work proposes a comparison of thermodynamic modelling with experimental data in order to identify the impact of iron oxide addition to cobalt oxide and manganese oxide. Fe addition decreased the redox activity and energy storage capacity of Co3O4, whereas the cycling stability of Mn2O3 was significantly improved with added Fe amounts above 20 mol% while the energy storage capacity was unchanged. The thermodynamic modelling method to predict the behavior of the Mn-Fe-O and Co-Fe-O systems was validated, and the possibility to identify other mixed oxides becomes conceivable, by enabling the selection of transition metals additives for metal oxides destined for thermochemical energy storage applications.
Metallic oxide switches using thick film technology
NASA Technical Reports Server (NTRS)
Patel, D. N.; Williams, L., Jr.
1974-01-01
Metallic oxide thick film switches were processed on alumina substrates using thick film technology. Vanadium pentoxide in powder form was mixed with other oxides e.g., barium, strontium copper and glass frit, ground to a fine powder. Pastes and screen printable inks were made using commercial conductive vehicles and appropriate thinners. Some switching devices were processed by conventional screen printing and firing of the inks and commercial cermet conductor terminals on 96% alumina substrates while others were made by applying small beads or dots of the pastes between platinum wires. Static, and dynamic volt-ampere, and pulse tests indicate that the switching and self-oscillatory characteristics of these devices could make them useful in memory element, oscillator, and automatic control applications.
Processing of Mixed Oxide Superconductors,
1987-11-01
cinm strontium copper oxide to the stoichiometry (:::) The cylinders were cooled in liquid nitrogen and ex-posed to a magnetic field for about half a...results reported at the MRS meeting in Boston. A copy of the paper is enclosed. The most important conclusion was that the barriers preventing useful super...particle passes through a magnetic toroid. We have used the superconductor’s magnetisation curve to make calculations of the force at all positions on the
NASA Technical Reports Server (NTRS)
Heywood, J. B.; Fay, J. A.; Chigier, N. A.
1979-01-01
A series of fundamental problems related to jet engine air pollution and combustion were examined. These include soot formation and oxidation, nitric oxide and carbon monoxide emissions mechanisms, pollutant dispension, flow and combustion characteristics of the NASA swirl can combustor, fuel atomization and fuel-air mixing processes, fuel spray drop velocity and size measurement, ignition and blowout. A summary of this work, and a bibliography of 41 theses and publications which describe this work, with abstracts, is included.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goldsmith, Zachary K.; Harshan, Aparna K.; Gerken, James B.
2017-03-06
NiFe oxyhydroxide materials are highly active electrocatalysts for the oxygen evolution reaction (OER), an important process for carbon-neutral energy storage. Recent spectroscopic and computational studies increasingly support iron as the site of catalytic activity but differ with respect to the relevant iron redox state. A combination of hybrid periodic density functional theory calculations and spectroelectrochemical experiments elucidate the electronic structure and redox thermodynamics of Ni-only and mixed NiFe oxyhydroxide thin-film electrocatalysts. The UV/visible light absorbance of the Ni-only catalyst depends on the applied potential as metal ions in the film are oxidized before the onset of OER activity. In contrast,more » absorbance changes are negligible in a 25% Fe-doped catalyst up to the onset of OER activity. First-principles calculations of proton-coupled redox potentials and magnetizations reveal that the Ni-only system features oxidation of Ni2+ to Ni3+, followed by oxidation to a mixed Ni3+/4+ state at a potential coincident with the onset of OER activity. Calculations on the 25% Fedoped system show the catalyst is redox inert before the onset of catalysis, which coincides with the formation of Fe4+ and mixed Ni oxidation states. The calculations indicate that introduction of Fe dopants changes the character of the conduction band minimum from Ni-oxide in the Ni-only to predominantly Fe-oxide in the NiFe electrocatalyst. These findings provide a unified experimental and theoretical description of the electrochemical and optical properties of Ni and NiFe oxyhydroxide electrocatalysts and serve as an important benchmark for computational characterization of mixedmetal oxidation states in heterogeneous catalysts.« less
Aluminum phosphate ceramics for waste storage
Wagh, Arun; Maloney, Martin D
2014-06-03
The present disclosure describes solid waste forms and methods of processing waste. In one particular implementation, the invention provides a method of processing waste that may be particularly suitable for processing hazardous waste. In this method, a waste component is combined with an aluminum oxide and an acidic phosphate component in a slurry. A molar ratio of aluminum to phosphorus in the slurry is greater than one. Water in the slurry may be evaporated while mixing the slurry at a temperature of about 140-200.degree. C. The mixed slurry may be allowed to cure into a solid waste form. This solid waste form includes an anhydrous aluminum phosphate with at least a residual portion of the waste component bound therein.
Acetic Acid Bacteria and the Production and Quality of Wine Vinegar
Torija, María Jesús; García-Parrilla, María del Carmen; Troncoso, Ana María
2014-01-01
The production of vinegar depends on an oxidation process that is mainly performed by acetic acid bacteria. Despite the different methods of vinegar production (more or less designated as either “fast” or “traditional”), the use of pure starter cultures remains far from being a reality. Uncontrolled mixed cultures are normally used, but this review proposes the use of controlled mixed cultures. The acetic acid bacteria species determine the quality of vinegar, although the final quality is a combined result of technological process, wood contact, and aging. This discussion centers on wine vinegar and evaluates the effects of these different processes on its chemical and sensory properties. PMID:24574887
Synthesis and characterization of binary titania-silica mixed oxides
NASA Astrophysics Data System (ADS)
Budhi, Sridhar
A series of binary titania-silica mixed oxides were synthesized by the sol-gel method at room temperature. The mixed oxides were prepared that involved the hydrolysis of titanium isopropoxide and tetraethylorthosilicate (TEOS) by co-solvent induced gelation usually in acidic media. The resulting gels were dried, calcined and then characterized by powder X-ray diffractometric studies, nitrogen sorption studies (at 77K), diffuse reflectance spectroscopy, Raman microscopy and transmission electron microscopic studies. The nitrogen sorption studies indicate that the specific surface areas, pore volume, pore diameter and pore size distribution of the mixed oxides were substantially enhanced when non-polar solvents such as toluene, p-xylene or mesitylene were added as co-solvents to the synthesis gel. Transmission electron microscopic (TEM) studies confirm the results obtained from the nitrogen sorption studies. Our results indicate that we can obtain binary metal oxides possessing high surface area and large pore volumes with tunable pore size distribution at room temperature. Photocatalytic evaluation of the mixed oxides is currently in progress.
Start-up and stabilization of an Anammox process from a non-acclimatized sludge in CSTR.
Bagchi, Samik; Biswas, Rima; Nandy, Tapas
2010-09-01
Development of an Anammox (anaerobic ammonium oxidation) process using non-acclimatized sludge requires a long start-up period owing to the very slow growth rate of Anammox bacteria. This article addresses the issue of achieving a shorter start-up period for Anammox activity in a well-mixed continuously stirred tank reactor (CSTR) using non-acclimatized anaerobic sludge. Proper selection of enrichment conditions and low stirring speed of 30 +/- 5 rpm resulted in a shorter start-up period (82 days). Activity tests revealed the microbial community structure of Anammox micro-granules. Ammonia-oxidizing bacteria (AOB) were found on the surface and on the outer most layers of granules while nitrite-oxidizing bacteria (NOB) and Anammox bacteria were present inside. Fine-tuning of influent NO2(-)/NH4+ ratio allowed Anammox activity to be maintained when mixed microbial populations were present. The maximum nitrogen removal rate achieved in the system was 0.216 kg N/(m(3) day) with a maximum specific nitrogen removal rate of 0.434 g N/(g VSS day). During the study period, Anammox activity was not inhibited by pH changes and free ammonia toxicity.
In the past two decades, several investigations have been carried out using microwave radiation for performing chemical transformations. These transformations have been largely performed in conventional batch reactors with limited mixing and heat transfer capabilities. The reacti...
Zhou, Lan; Suram, Santosh K.; Becerra-Stasiewicz, Natalie; ...
2015-05-27
Recent efforts have demonstrated enhanced tailoring of material functionality with mixed-anion materials, yet exploratory research with mixed-anion chemistries is limited by the sensitivity of these materials to synthesis conditions. In order to synthesize a particular metal oxynitride compound by traditional reactive annealing we require specific, limited ranges of both oxygen and nitrogen chemical potentials in order to establish equilibrium between the solid-state material and a reactive atmosphere. While using Ta-O-N as an example system, we describe a combination of reactive sputter deposition and rapid thermal processing for synthesis of mixed-anion inorganic materials. Heuristic optimization of reactive gas pressures to attainmore » a desired anion stoichiometry is discussed, and the ability of rapid thermal processing to enable amorphous to crystalline transitions without preferential anion loss is demonstrated through the controlled synthesis of nitride, oxide and oxynitride phases.« less
Madhuvilakku, Rajesh; Piraman, Shakkthivel
2013-12-01
Biodiesel is a promising alternating environmentally benign fuel to mineral diesel. For the development of easier transesterification process, stable and active heterogeneous mixed metal oxide of TiO2-ZnO and ZnO nanocatalysts were synthesized and exploited for the palm oil transesterification process. The synthesized catalysts were characterized by XRD, FT-IR, and FE-SEM studies for their structural and morphological characteristics. It was found that TiO2-ZnO nanocatalyst exhibits good catalytic activity and the catalytic performance was greatly depends on (i) catalyst concentration (ii) methanol to oil molar ratio (iii) reaction temperature and (iv) reaction time. A highest 98% of conversion was obtained at the optimum reaction parameters with 200 mg of catalyst loading and the biodiesel was analyzed by TLC and (1)H NMR techniques. The TiO2-ZnO nanocatalyst shows good catalytic performance over the ZnO catalyst, which could be a potential candidate for the large-scale biodiesel production from palm oil at the reduced temperature and time. Copyright © 2013. Published by Elsevier Ltd.
The effect of B 2O 3 addition on the crystallization of amorphous TiO 2-ZrO 2 mixed oxide
NASA Astrophysics Data System (ADS)
Mao, Dongsen; Lu, Guanzhong
2007-02-01
The effect of B 2O 3 addition on the crystallization of amorphous TiO 2-ZrO 2 mixed oxide was investigated by X-ray diffraction (XRD), thermogravimetric and differential thermal analysis (TG/DTA). TiO 2-ZrO 2 mixed oxide was prepared by co-precipitation method with aqueous ammonia as the precipitation reagent. Boric acid was used as a source of boria, and boria contents varied from 2 to 20 wt%. The results indicate that the addition of small amount of boria (<8 wt%) hinders the crystallization of amorphous TiO 2-ZrO 2 into a crystalline ZrTiO 4 compound, while a larger amount of boria (⩾8 wt%) promotes the crystallization process. FT-IR spectroscopy and 11B MAS NMR results show that tetrahedral borate species predominate at low boria loading, and trigonal borate species increase with increasing boria loading. Thus it is concluded that highly dispersed tetrahedral BO 4 units delay, while a build-up of trigonal BO 3 promote, the crystallization of amorphous TiO 2-ZrO 2 to form ZrTiO 4 crystals.
Development studies for a novel wet oxidation process. Phase 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1994-07-01
DETOX{sup SM} is a catalyzed wet oxidation process which destroys organic materials in an acidic water solution of iron at 373 to 473 K. The solution can be used repeatedly to destroy great amounts of organic materials. Since the process is conducted in a contained vessel, air emissions from the process can be well controlled. The solution is also capable of dissolving and concentrating many heavy and radioactive metals for eventual stabilization and disposal. The Phase 2 effort for this project is site selection and engineering design for a DETOX demonstration unit. Site selection was made using a set ofmore » site selection criteria and evaluation factors. A survey of mixed wastes at DOE sites was conducted using the Interim Mixed Waste Inventory Report. Sites with likely suitable waste types were identified. Potential demonstration sites were ranked based on waste types, interest, regulatory needs, scheduling, ability to provide support, and available facilities. Engineering design for the demonstration unit is in progress and is being performed by Jacobs Applied Technology. The engineering design proceeded through preliminary process flow diagrams (PFDs), calculation of mass and energy balances for representative waste types, process and instrumentation diagrams (P and IDs), preparation of component specifications, and a firm cost estimate for fabrication of the demonstration unit.« less
Topotactic Metal-Insulator Transition in Epitaxial SrFeO x Thin Films
Khare, Amit; Shin, Dongwon; Yoo, Tae Sup; ...
2017-07-31
Multivalent transition metal oxides provide fascinating and rich physics related to oxygen stoichiometry. In particular, the adoptability of various valence states of transition metals enables perovskite oxides to display mixed (oxygen) ionic and electronic conduction and catalytic activity useful in many practical applications, including solid-oxide fuel cells (SOFCs), rechargeable batteries, gas sensors, and memristive devices. For proper realization of the ionic conduction and catalytic activity, it is essential to understand the reversible oxidation and reduction process, which is governed by oxygen storage/release steps in oxides. Topotactic phase transformation facilitates the redox process in perovskites with specific oxygen vacancy ordering bymore » largely varying the oxygen concentration of a material without losing the lattice framework. The concentration and diffusion of oxide ions (O 2–), the valence state of the transition metal cations, and the thermodynamic structural integrity together provide fundamental understanding and ways to explicitly control the redox reaction.[6] In addition, it offers an attractive route for tuning the emergent physical properties of transition metal oxides, via strong coupling between the crystal lattice and electronic structure.« less
2013-01-01
We propose a transparent conductive oxide electrode scheme of gallium oxide nanoparticle mixed with a single-walled carbon nanotube (Ga2O3 NP/SWNT) layer for deep ultraviolet light-emitting diodes using spin and dipping methods. We investigated the electrical, optical and morphological properties of the Ga2O3 NP/SWNT layers by increasing the thickness of SWNTs via multiple dipping processes. Compared with the undoped Ga2O3 films (current level 9.9 × 10-9 A @ 1 V, transmittance 68% @ 280 nm), the current level flowing in the Ga2O3 NP/SWNT increased by approximately 4 × 105 times and the transmittance improved by 9% after 15 times dip-coating (current level 4 × 10-4 A at 1 V; transmittance 77.0% at 280 nm). These improvements result from both native high transparency of Ga2O3 NPs and high conductivity and effective current spreading of SWNTs. PMID:24295342
Development and Validation of a 3-Dimensional CFB Furnace Model
NASA Astrophysics Data System (ADS)
Vepsäläinen, Arl; Myöhänen, Karl; Hyppäneni, Timo; Leino, Timo; Tourunen, Antti
At Foster Wheeler, a three-dimensional CFB furnace model is essential part of knowledge development of CFB furnace process regarding solid mixing, combustion, emission formation and heat transfer. Results of laboratory and pilot scale phenomenon research are utilized in development of sub-models. Analyses of field-test results in industrial-scale CFB boilers including furnace profile measurements are simultaneously carried out with development of 3-dimensional process modeling, which provides a chain of knowledge that is utilized as feedback for phenomenon research. Knowledge gathered by model validation studies and up-to-date parameter databases are utilized in performance prediction and design development of CFB boiler furnaces. This paper reports recent development steps related to modeling of combustion and formation of char and volatiles of various fuel types in CFB conditions. Also a new model for predicting the formation of nitrogen oxides is presented. Validation of mixing and combustion parameters for solids and gases are based on test balances at several large-scale CFB boilers combusting coal, peat and bio-fuels. Field-tests including lateral and vertical furnace profile measurements and characterization of solid materials provides a window for characterization of fuel specific mixing and combustion behavior in CFB furnace at different loads and operation conditions. Measured horizontal gas profiles are projection of balance between fuel mixing and reactions at lower part of furnace and are used together with both lateral temperature profiles at bed and upper parts of furnace for determination of solid mixing and combustion model parameters. Modeling of char and volatile based formation of NO profiles is followed by analysis of oxidizing and reducing regions formed due lower furnace design and mixing characteristics of fuel and combustion airs effecting to formation ofNO furnace profile by reduction and volatile-nitrogen reactions. This paper presents CFB process analysis focused on combustion and NO profiles in pilot and industrial scale bituminous coal combustion.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prasankumar, T.; Jose, Sujin P., E-mail: sujamystica@yahoo.com; Ilangovan, R.
Nanostructured Mn/Ni mixed metal oxide was synthesized at ambient temperature by facile microwave irradiation technique. The crystal structure and surface morphology were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively. X-ray diffraction analysis confirmed the formation of Mn/Ni mixed oxide in rhombohedral phase and the grain size calculated was found to be 87 nm. The irregular spherical morphology of the prepared sample was exhibited by the SEM images. The characteristic peaks of FTIR at about 630 cm{sup −1} and 749 cm{sup −1} were attributed to the Mn-O and Ni-O stretching vibrations respectively. The presence of both Mn and Ni inmore » the prepared sample was validated by the EDS spectra which in turn confirmed the formation of mixed oxide. Cyclic voltammetry and galvanostatic chargedischarge measurements were employed to investigate the electrochemical performance of the mixed oxide. The cyclic voltammetry curves demonstrated good capacitive performance of the sample in the potential window −0.2V to 0.9V. The charge discharge study revealed the suitability of the prepared mixed oxide for the fabrication of supercapacitor electrode.« less
Arsenic Removal and Its Chemistry in Batch Electrocoagulation Studies.
Sharma, Anshul; Adapureddy, Sri Malini; Goel, Sudha
2014-04-01
The aim of this study was to evaluate the impact of different oxidizing agents like light, aeration (by mixing) and electrocoagulation (EC) on the oxidation of As (III) and its subsequent removal in an EC batch reactor. Arsenic solutions prepared using distilled water and groundwater were evaluated. Optimum pH and the effect of varying initial pH on As removal efficiency were also evaluated. MaximumAs (III) removal efficiency with EC, light and aeration was 97% from distilled water and 71% from groundwater. Other results show that EC alone resulted in 90% As removal efficiency in the absence of light and mixing from distilled water and 53.6% from groundwater. Removal with light and mixing but without EC resulted in only 26% As removal from distilled water and 29% from groundwater proving that electro-oxidation and coagulation were more effective in removing arsenic compared to the other oxidizing agents examined. Initial pH was varied from 5 to 10 in distilled water and from 3 to 12 in groundwater for evaluating arsenic removal efficiency by EC. The optimum initial pH for arsenic removal was 7 for distilled water and groundwater. For all initial pHs tested between 5 and 10 in distilled water, the final pH ranged between 7 and 8 indicating that the EC process tends towards near neutral pH under the conditions examined in this study.
Evaluation of alternative nonflame technologies for destruction of hazardous organic waste
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schwinkendorf, W.E.; Musgrave, B.C.; Drake, R.N.
1997-04-01
The US Department of Energy`s Mixed Waste Focus Area (MWFA) commissioned an evaluation of mixed waste treatment technologies that are alternatives to incineration for destruction of hazardous organic wastes. The purpose of this effort is to evaluate technologies that are alternatives to open-flame, free-oxygen combustion (as exemplified by incinerators), and recommend to the Waste Type Managers and the MWFA which technologies should be considered for further development. Alternative technologies were defined as those that have the potential to: destroy organic material without use of open-flame reactions with free gas-phase oxygen as the reaction mechanism; reduce the offgas volume and associatedmore » contaminants (metals, radionuclides, and particulates) emitted under normal operating conditions; eliminate or reduce the production of dioxins and furans; and reduce the potential for excursions in the process that can lead to accidental release of harmful levels of chemical or radioactive materials. Twenty-three technologies were identified that have the potential for meeting these requirements. These technologies were rated against the categories of performance, readiness for deployment, and environment safety, and health. The top ten technologies that resulted from this evaluation are Steam Reforming, Electron Beam, UV Photo-Oxidation, Ultrasonics, Eco Logic reduction process, Supercritical Water oxidation, Cerium Mediated Electrochemical Oxidation, DETOX{sup SM}, Direct Chemical Oxidation (peroxydisulfate), and Neutralization/Hydrolysis.« less
High-Temperature Oxidation of Plutonium Surrogate Metals and Alloys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sparks, Joshua C.; Krantz, Kelsie E.; Christian, Jonathan H.
The Plutonium Management and Disposition Agreement (PMDA) is a nuclear non-proliferation agreement designed to remove 34 tons of weapons-grade plutonium from Russia and the United States. While several removal options have been proposed since the agreement was first signed in 2000, processing the weapons-grade plutonium to mixed-oxide (MOX) fuel has remained the leading candidate for achieving the goals of the PMDA. However, the MOX program has received its share of criticisms, which causes its future to be uncertain. One alternative pathway for plutonium disposition would involve oxidizing the metal followed by impurity down blending and burial in the Waste Isolationmore » Pilot Plant (WIPP) in Carlsbad, New Mexico. This pathway was investigated by use of a hybrid microwave and a muffle furnace with Fe and Al as surrogate materials. Oxidation occurred similarly in the microwave and muffle furnace; however, the microwave process time was significantly faster.« less
Fabrication of solid oxide fuel cell by electrochemical vapor deposition
Brian, Riley; Szreders, Bernard E.
1989-01-01
In a high temperature solid oxide fuel cell (SOFC), the deposition of an impervious high density thin layer of electrically conductive interconnector material, such as magnesium doped lanthanum chromite, and of an electrolyte material, such as yttria stabilized zirconia, onto a porous support/air electrode substrate surface is carried out at high temperatures (approximately 1100.degree.-1300.degree. C.) by a process of electrochemical vapor deposition. In this process, the mixed chlorides of the specific metals involved react in the gaseous state with water vapor resulting in the deposit of an impervious thin oxide layer on the support tube/air electrode substrate of between 20-50 microns in thickness. An internal heater, such as a heat pipe, is placed within the support tube/air electrode substrate and induces a uniform temperature profile therein so as to afford precise and uniform oxide deposition kinetics in an arrangement which is particularly adapted for large scale, commercial fabrication of SOFCs.
KCMP Minnesota Tall Tower Nitrous Oxide Inverse Modeling Dataset 2010-2015
Griffis, Timothy J. [University of Minnesota; Baker, John; Millet, Dylan; Chen, Zichong; Wood, Jeff; Erickson, Matt; Lee, Xuhui
2017-01-01
This dataset contains nitrous oxide mixing ratios and supporting information measured at a tall tower (KCMP, 244 m) site near St. Paul, Minnesot, USA. The data include nitrous oxide and carbon dioxide mixing ratios measured at the 100 m level. Turbulence and wind data were measured using a sonic anemometer at the 185 m level. Also included in this dataset are estimates of the "background" nitrous oxide mixing ratios and monthly concentration source footprints derived from WRF-STILT modeling.
Mixed-signal 0.18μm CMOS and SiGe BiCMOS foundry technologies for ROIC applications
NASA Astrophysics Data System (ADS)
Kar-Roy, Arjun; Howard, David; Racanelli, Marco; Scott, Mike; Hurwitz, Paul; Zwingman, Robert; Chaudhry, Samir; Jordan, Scott
2010-10-01
Today's readout integrated-circuits (ROICs) require a high level of integration of high performance analog and low power digital logic. TowerJazz offers a commercial 0.18μm CMOS technology platform for mixed-signal, RF, and high performance analog applications which can be used for ROIC applications. The commercial CA18HD dual gate oxide 1.8V/3.3V and CA18HA dual gate oxide 1.8V/5V RF/mixed signal processes, consisting of six layers of metallization, have high density stacked linear MIM capacitors, high-value resistors, triple-well isolation and thick top aluminum metal. The CA18HA process also has scalable drain extended LDMOS devices, up to 40V Vds, for high-voltage sensor applications, and high-performance bipolars for low noise requirements in ROICs. Also discussed are the available features of the commercial SBC18 SiGe BiCMOS platform with SiGe NPNs operating up to 200/200GHz (fT/fMAX frequencies in manufacturing and demonstrated to 270 GHz fT, for reduced noise and integrated RF capabilities which could be used in ROICs. Implementation of these technologies in a thick film SOI process for integrated RF switch and power management and the availability of high fT vertical PNPs to enable complementary BiCMOS (CBiCMOS), for RF enabled ROICs, are also described in this paper.
LITERATURE REVIEW FOR OXALATE OXIDATION PROCESSES AND PLUTONIUM OXALATE SOLUBILITY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nash, C.
2012-02-03
A literature review of oxalate oxidation processes finds that manganese(II)-catalyzed nitric acid oxidation of oxalate in precipitate filtrate is a viable and well-documented process. The process has been operated on the large scale at Savannah River in the past, including oxidation of 20 tons of oxalic acid in F-Canyon. Research data under a variety of conditions show the process to be robust. This process is recommended for oxalate destruction in H-Canyon in the upcoming program to produce feed for the MOX facility. Prevention of plutonium oxalate precipitation in filtrate can be achieved by concentrated nitric acid/ferric nitrate sequestration of oxalate.more » Organic complexants do not appear practical to sequester plutonium. Testing is proposed to confirm the literature and calculation findings of this review at projected operating conditions for the upcoming campaign. H Canyon plans to commence conversion of plutonium metal to low-fired plutonium oxide in 2012 for eventual use in the Mixed Oxide Fuel (MOX) Facility. The flowsheet includes sequential operations of metal dissolution, ion exchange, elution, oxalate precipitation, filtration, and calcination. All processes beyond dissolution will occur in HB-Line. The filtration step produces an aqueous filtrate that may have as much as 4 M nitric acid and 0.15 M oxalate. The oxalate needs to be removed from the stream to prevent possible downstream precipitation of residual plutonium when the solution is processed in H Canyon. In addition, sending the oxalate to the waste tank farm is undesirable. This report addresses the processing options for destroying the oxalate in existing H Canyon equipment.« less
Fuel-rich, catalytic reaction experimental results
NASA Technical Reports Server (NTRS)
Rollbuhler, R. James
1991-01-01
Future aeropropulsion gas turbine combustion requirements call for operating at very high inlet temperatures, pressures, and large temperature rises. At the same time, the combustion process is to have minimum pollution effects on the environment. Aircraft gas turbine engines utilize liquid hydrocarbon fuels which are difficult to uniformly atomize and mix with combustion air. An approach for minimizing fuel related problems is to transform the liquid fuel into gaseous form prior to the completion of the combustion process. Experimentally obtained results are presented for vaporizing and partially oxidizing a liquid hydrocarbon fuel into burnable gaseous components. The presented experimental data show that 1200 to 1300 K reaction product gas, rich in hydrogen, carbon monoxide, and light-end hydrocarbons, is formed when flowing 0.3 to 0.6 fuel to air mixes through a catalyst reactor. The reaction temperatures are kept low enough that nitrogen oxides and carbon particles (soot) do not form. Results are reported for tests using different catalyst types and configurations, mass flowrates, input temperatures, and fuel to air ratios.
Murphy, Ryan P; Kelley, Elizabeth G; Rogers, Simon A; Sullivan, Millicent O; Epps, Thomas H
2014-11-18
Chain exchange between block polymer micelles in highly selective solvents, such as water, is well-known to be arrested under quiescent conditions, yet this work demonstrates that simple agitation methods can induce rapid chain exchange in these solvents. Aqueous solutions containing either pure poly(butadiene- b -ethylene oxide) or pure poly(butadiene- b -ethylene oxide- d 4 ) micelles were combined and then subjected to agitation by vortex mixing, concentric cylinder Couette flow, or nitrogen gas sparging. Subsequently, the extent of chain exchange between micelles was quantified using small angle neutron scattering. Rapid vortex mixing induced chain exchange within minutes, as evidenced by a monotonic decrease in scattered intensity, whereas Couette flow and sparging did not lead to measurable chain exchange over the examined time scale of hours. The linear kinetics with respect to agitation time suggested a surface-limited exchange process at the air-water interface. These findings demonstrate the strong influence of processing conditions on block polymer solution assemblies.
Combining micelle-clay sorption to solar photo-Fenton processes for domestic wastewater treatment.
Brienza, Monica; Nir, Shlomo; Plantard, Gael; Goetz, Vincent; Chiron, Serge
2018-06-08
A tertiary treatment of effluent from a biological domestic wastewater treatment plant was tested by combining filtration and solar photocatalysis. Adsorption was carried out by a sequence of two column filters, the first one filled with granular activated carbon (GAC) and the second one with granulated nano-composite of micelle-montmorillonite mixed with sand (20:100, w/w). The applied solar advanced oxidation process was homogeneous photo-Fenton photocatalysis using peroxymonosulfate (PMS) as oxidant agent. This combination of simple, robust, and low-cost technologies aimed to ensure water disinfection and emerging contaminants (ECs, mainly pharmaceuticals) removal. The filtration step showed good performances in removing dissolved organic matter and practically removing all bacteria such as Escherichia coli and Enterococcus faecalis from the secondary treated water. Solar advanced oxidation processes were efficient in elimination of trace levels of ECs. The final effluent presented an improved sanitary level with acceptable chemical and biological characteristics for irrigation.
Smeraglio, Anne C.; Kennedy, Emily K.; Horgan, Angela; Purnell, Jonathan Q.; Gillingham, Melanie B.
2013-01-01
Oral fructose decreases fat oxidation and increases carbohydrate (CHO) oxidation in obese subjects, but the metabolic response to fructose in lean individuals is less well understood. The purpose of this study was to assess the effects of a single fructose-rich mixed meal on substrate oxidation in young healthy non-obese males. We hypothesized that a decrease in fat oxidation and an increase in carbohydrate oxidation would be observed following a fructose-rich mixed meal compared to a glucose-rich mixed meal. Twelve healthy males, normal to overweight and age 23–31 years old, participated in a double-blind, cross-over study. Each participant completed two study visits, eating a mixed meal containing 30% of the calories from either fructose or glucose. Blood samples for glucose, insulin, triglycerides, and leptin as well as gas exchange by indirect calorimetry were measured intermittently for 7 hours. Serum insulin was higher after a fructose mixed meal but plasma glucose, plasma leptin and serum triglycerides were not different. Mean postprandial respiratory quotient and estimated fat oxidation did not differ between the fructose and glucose meals. The change in fat oxidation between the fructose and glucose rich meals negatively correlated with BMI (r=−0.59, P=0.04 and r=−0.59, P=0.04 at the 4 and 7 hour time points, respectively). In healthy non-obese males, BMI correlates with altered postprandial fat oxidation after a high-fructose mixed meal. The metabolic response to a high fructose meal may be modulated by BMI. PMID:23746558
High strength particulate ceramics
Liles, Kenneth J.; Hoyer, Jesse L.; Mlynarski, Kenneth W.
1991-01-01
This invention relates to new and useful hard, dense, composite materials made from metallic nitrides such as titanium nitride when combined with aluminum oxide and aluminum nitride and a process comprising the steps of: (1) mixing constituent materials using kerosene as a mixing medium; (2) screening, settling, filtering, and washing the mixture in acetone; (3) filling and sealing said materials in a latex mold; (4) isostatically pressing the material into a compacted powder; and (5) sintering the compacted powder in a gas atmosphere at 1,850.degree. C. for two hours.
Theoretical modeling of the uranium 4f XPS for U(VI) and U(IV) oxides
NASA Astrophysics Data System (ADS)
Bagus, Paul S.; Nelin, Connie J.; Ilton, Eugene S.
2013-12-01
A rigorous study is presented of the physical processes related to X-Ray photoelectron spectroscopy, XPS, in the 4f level of U oxides, which, as well as being of physical interest in themselves, are representative of XPS in heavy metal oxides. In particular, we present compelling evidence for a new view of the screening of core-holes that extends prior understandings. Our analysis of the screening focuses on the covalent mixing of high lying U and O orbitals as opposed to the, more common, use of orbitals that are nominally pure U or pure O. It is shown that this covalent mixing is quite different for the initial and final, core-hole, configurations and that this difference is directly related to the XPS satellite intensity. Furthermore, we show that the high-lying U d orbitals as well as the U(5f) orbital may both contribute to the core-hole screening, in contrast with previous work that has only considered screening through the U(5f) shell. The role of modifying the U-O interaction by changing the U-O distance has been investigated and an unexpected correlation between U-O distance and XPS satellite intensity has been discovered. The role of flourite and octahedral crystal structures for U(IV) oxides has been examined and relationships established between XPS features and the covalent interactions in the different structures. The physical views of XPS satellites as arising from shake processes or as arising from ligand to metal charge transfers are contrasted; our analysis provides strong support that shake processes give a more fundamental physical understanding than charge transfer. Our theoretical studies are based on rigorous, strictly ab initio determinations of the electronic structure of embedded cluster models of U oxides with formal U(VI) and U(IV) oxidation states. Our results provide a foundation that makes it possible to establish quantitative relationships between features of the XPS spectra and materials properties.
NASA Astrophysics Data System (ADS)
Aslani, Alireza; Arefi, Mohammad Reza; Babapoor, Aziz; Amiri, Asghar; Beyki-Shuraki, Khalil
2011-03-01
ZnO-MgO and ZnO-NiO mixed oxides nanoparticles were produced from a solution containing Zinc acetate, Mg and Ni nitrate by Solvothermal method. The calcination process of the ZnO-MgO and ZnO-NiO composites nanoparticles brought forth polycrystalline two-phase ZnO-MgO and ZnO-NiO nanoparticles of 40-80 nm in diameters. ZnO, MgO and NiO were crystallized into würtzite and rock salt structures, respectively. The optical properties of ZnO-MgO and ZnO-NiO nanoparticles were obtained by solid state UV and solid state florescent. The XRD, SEM and Raman spectroscopies of these nanoparticles were analyzed.
Sugiyama, Kazuo; Suzuki, Katsunori; Kuwasima, Shusuke; Aoki, Yosuke; Yajima, Tatsuhiko
2009-01-01
The decomposition of a poly(amide-imide) thin film coated on a solid copper wire was attempted using atmospheric pressure non-equilibrium plasma. The plasma was produced by applying microwave power to an electrically conductive material in a gas mixture of argon, oxygen, and hydrogen. The poly(amide-imide) thin film was easily decomposed by argon-oxygen mixed gas plasma and an oxidized copper surface was obtained. The reduction of the oxidized surface with argon-hydrogen mixed gas plasma rapidly yielded a metallic copper surface. A continuous plasma heat-treatment process using a combination of both the argon-oxygen plasma and argon-hydrogen plasma was found to be suitable for the decomposition of the poly(amide-imide) thin film coated on the solid copper wire.
Investigation of Redox Metal Oxides for Carbonaceous Fuel Conversion and CO2 Capture
NASA Astrophysics Data System (ADS)
Galinsky, Nathan Lee
The chemical looping combustion (CLC) process uses metal oxides, also referred to as oxygen carriers, in a redox scheme for conversion of carbonaceous fuels into a concentrated stream of CO2 and steam while also producing heat and electricity. The unique redox scheme of CLC allows CO2 capture with minimal energy penalty. The CLC process performance greatly depends on the oxygen carrier that is chosen. To date, more than 1000 oxygen carriers have been developed for chemical-looping processes using metal oxides containing first-row transition metals. Oxygen carriers are typically mixed with an inert ceramic support to improve their overall mechanical stability and recyclability. This study focuses on design of (i) iron oxide oxygen carriers for conversion of gaseous carbonaceous fuels and (ii) development of perovskite CaMnO 3-d with improved stability and redox properties for conversion of solid fuels. Iron oxide is cheap and environmentally benign. However, it suffers from low activity with carbonaceous fuels due partially to the low ionic conductivity of iron oxides. In order to address the low activity of iron-oxide-based oxygen carriers, support addition has been shown to lower the energy barrier of oxygen anion transport within the oxygen carrier. This work adds a mixed-ionic-and-electronic-conductor (MIEC) support to iron oxide to help facilitate O2- transport inside the lattice of iron oxide. The MIEC-supported iron oxide is compared to commonly used supports including TiO2 and Al2O 3 and the pure ionic conductor support yttria-stabilized zirconia (YSZ) for conversion of different carbonaceous fuels and hydrogen. Results show that the MIEC-supported iron oxide exhibits up to 70 times higher activity than non-MIEC-supported iron oxides for methane conversion. The MIEC supported iron oxide also shows good recyclability with only minor agglomeration and carbon formation observed. The effect of support-iron oxide synergies is further investigated to understand other physical and chemical properties that lead to highly active and recyclable oxygen carriers. Perovskite and fluorite-structured MIEC supports are tested for conversion of methane. The perovskite supported iron oxides exhibit higher activity and stability resulting from the high mixed conductivity of the support. Fluorite-structured CeO2 oxygen carriers deactivated by 75% after 10 redox cycles. This deactivation was attributed to agglomeration of iron oxide. The agglomeration was determined to occur due to Fe x+ transport during the oxidation step leading to high content of Fe on the surface of the oxygen carrier. Besides the MIEC supports, inert MgAl2O4 supported iron oxide is observed to activate in methane. The activation is attributed to carbon formation causing physical degradation of the oxygen carrier and leading to higher surface area and porosity. To achieve high activity with solid fuels, chemical looping with oxygen uncoupling (CLOU) is commonly used. This process uses oxygen carriers with high PO2 that allows the oxygen carrier to release a portion of their lattice oxygen as gaseous oxygen. In turn, the gaseous oxygen can react with solid fuel particles at a higher rate than the lattice oxygen. CaMnO 3 perovskite oxygen carriers offer high potential for CLOU. However, pure CaMnO3 suffers from long-term recyclability and sulfur poisoning. Addition of A-site (Ba and Sr) and B-site (Fe, Ni, Co, Al, and V) dopants are used to improve the performance of the base CaMnO3 oxygen carrier. Sr (A-site) and Fe (B-site) exhibit high compatibility with the base perovskite structure. Both dopants observe oxygen uncoupling properties up to 200°C below that of pure CaMnO3. Additionally, the doped structures also exhibit higher stability at high temperatures (>1000°C) and during redox cycles. The doped oxygen carriers also demonstrate significantly improved activity for coal char conversion.
Bleckenwegner, Petra; Mardare, Cezarina Cela; Cobet, Christoph; Kollender, Jan Philipp; Hassel, Achim Walter; Mardare, Andrei Ionut
2017-02-13
Optical bandgap mapping of Nb-Ti mixed oxides anodically grown on a thin film parent metallic combinatorial library was performed via variable angle spectroscopic ellipsometry (VASE). A wide Nb-Ti compositional spread ranging from Nb-90 at.% Ti to Nb-15 at.% Ti deposited by cosputtering was used for this purpose. The Nb-Ti library was stepwise anodized at potentials up to 10 V SHE, and the anodic oxides optical properties were mapped along the Nb-Ti library with 2 at.% resolution. The surface dissimilarities along the Nb-Ti compositional gradient were minimized by tuning the deposition parameters, thus allowing a description of the mixed Nb-Ti oxides based on a single Tauc-Lorentz oscillator for data fitting. Mapping of the Nb-Ti oxides optical bandgap along the entire compositional spread showed a clear deviation from the linear model based on mixing individual Nb and Ti electronegativities proportional to their atomic fractions. This is attributed to the strong amorphization and an in-depth compositional gradient of the mixed oxides. A systematic optical bandgap decrease toward values as low as 2.0 eV was identified at approximately 50 at.% Nb. Mixing of Nb 2 O 5 and TiO 2 with both amorphous and crystalline phases is concluded, whereas the possibility of complex Nb a Ti b O y oxide formation during anodization is unlikely.
NASA Astrophysics Data System (ADS)
Ye, Zhuyun; Mao, Huiting; Lin, Che-Jen; Kim, Su Youn
2016-07-01
A box model incorporating a state-of-the-art chemical mechanism for atmospheric mercury (Hg) cycling was developed to investigate the oxidation of gaseous elemental mercury (GEM) at three locations in the northeastern United States: Appledore Island (AI; marine), Thompson Farm (TF; coastal, rural), and Pack Monadnock (PM; inland, rural, elevated). The chemical mechanism in this box model included the most up-to-date Hg and halogen chemistry. As a result, the box model was able to simulate reasonably the observed diurnal cycles of gaseous oxidized mercury (GOM) and chemical speciation bearing distinct differences between the three sites. In agreement with observations, simulated GOM diurnal cycles at AI and TF showed significant daytime peaks in the afternoon and nighttime minimums compared to flat GOM diurnal cycles at PM. Moreover, significant differences in the magnitude of GOM diurnal amplitude (AI > TF > PM) were captured in modeled results. At the coastal and inland sites, GEM oxidation was predominated by O3 and OH, contributing 80-99 % of total GOM production during daytime. H2O2-initiated GEM oxidation was significant (˜ 33 % of the total GOM) at the inland site during nighttime. In the marine boundary layer (MBL) atmosphere, Br and BrO became dominant GEM oxidants, with mixing ratios reaching 0.1 and 1 pptv, respectively, and contributing ˜ 70 % of the total GOM production during midday, while O3 dominated GEM oxidation (50-90 % of GOM production) over the remaining day when Br and BrO mixing ratios were diminished. The majority of HgBr produced from GEM+Br was oxidized by NO2 and HO2 to form brominated GOM species. Relative humidity and products of the CH3O2+BrO reaction possibly significantly affected the mixing ratios of Br or BrO radicals and subsequently GOM formation. Gas-particle partitioning could potentially be important in the production of GOM as well as Br and BrO at the marine site.
Pillewan, Pradnya; Mukherjee, Shrabanti; Bansiwal, Amit; Rayalu, Sadhana
2014-07-01
Adsorption of arsenic on bimetallic Mn and Fe mixed oxide was carried out using both field as well as simulated water. The material was synthesized using hydrothermal method and characterized using X-ray diffraction (XRD) and scanning electron microscopy (SEM). Langmuir and Freundlich adsorption isotherms were computed using batch adsorption studies to determine the adsorption capacity of Mn-Fe binary mixed oxide for arsenic. Adsorption capacity for MFBMO obtained from Freundlich model was found to be 2.048 mg/g for simulated water and 1.084 mg/g for field water. Mn-Fe binary mixed oxide was found to be effective adsorbent for removal of arsenic from water.
Method for preparing dielectric composite materials
Lauf, Robert J.; Anderson, Kimberly K.; Montgomery, Frederick C.; Collins, Jack L.; Felten, John J.
2004-11-23
The invention allows the fabrication of small, dense beads of dielectric materials with selected compositions, which are incorporated into a polymeric matrix for use in capacitors, filters, and the like. A porous, generally spherical bead of hydrous metal oxide containing titanium or zirconium is made by a sol-gel process to form a substantially rigid bead having a generally fine crystallite size and correspondingly finely distributed internal porosity. The resulting gel bead may be washed and hydrothermally reacted with a soluble alkaline earth salt (typically Ba or Sr) at elevated temperature and pressure to convert the bead into a mixed hydrous titanium- or zirconium-alkaline earth oxide while retaining the generally spherical shape. Alternatively, the gel bead may be made by coprecipitation. This mixed oxide bead is then washed, dried and calcined to produce the desired (BaTiO.sub.3, PbTiO.sub.3, SrZrO.sub.3) structure. The sintered beads are incorporated into a selected polymer matrix. The resulting dielectric composite material may be electrically "poled" if desired.
Dielectric composite materials and method for preparing
Lauf, Robert J.; Anderson, Kimberly K.; Montgomery, Frederick C.; Collins, Jack L.; Felten, John J.
2003-07-29
The invention allows the fabrication of small, dense beads of dielectric materials with selected compositions, which are incorporated into a polymeric matrix for use in capacitors, filters, and the like. A porous, generally spherical bead of hydrous metal oxide containing titanium or zirconium is made by a sol-gel process to form a substantially rigid bead having a generally fine crystallite size and correspondingly finely distributed internal porosity. The resulting gel bead may be washed and hydrothermally reacted with a soluble alkaline earth salt (typically Ba or Sr) at elevated temperature and pressure to convert the bead into a mixed hydrous titanium- or zirconium-alkaline earth oxide while retaining the generally spherical shape. Alternatively, the gel bead may be made by coprecipitation. This mixed oxide bead is then washed, dried and calcined to produce the desired (BaTiO.sub.3, PbTiO.sub.3, SrZrO.sub.3) structure. The sintered beads are incorporated into a selected polymer matrix. The resulting dielectric composite material may be electrically "poled" if desired.
Ide, Andreas; Drisko, Glenna L; Scales, Nicholas; Luca, Vittorio; Schiesser, Carl H; Caruso, Rachel A
2011-11-01
To take advantage of the full potential of functionalized transition metal oxides, a well-understood nonsilane based grafting technique is required. The functionalization of mixed titanium zirconium oxides was studied in detail using a bisphosphonic acid, featuring two phosphonic acid groups with high surface affinity. The bisphosphonic acid employed was coupled to a UV active benzamide moiety in order to track the progress of the surface functionalization in situ. Using different material compositions, altering the pH environment, and looking at various annealing conditions, key features of the functionalization process were identified that consequently will allow for intelligent material design. Loading with bisphosphonic acid was highest on supports calcined at 650 °C compared to lower calcination temperatures: A maximum capacity of 0.13 mmol g(-1) was obtained and the adsorption process could be modeled with a pseudo-second-order rate relationship. Heating at 650 °C resulted in a phase transition of the mixed binary oxide to a ternary oxide, titanium zirconium oxide in the srilankite phase. This phase transition was crucial in order to achieve high loading of the bisphosphonic acid and enhanced chemical stability in highly acidic solutions. Due to the inert nature of phosphorus-oxygen-metal bonds, materials functionalized by bisphosphonic acids showed increased chemical stability compared to their nonfunctionalized counterparts in harshly acidic solutions. Leaching studies showed that the acid stability of the functionalized material was improved with a partially crystalline srilankite phase. The materials were characterized using nitrogen sorption, X-ray powder diffraction, and UV-vis spectroscopy; X-ray photoelectron spectroscopy was used to study surface coverage with the bisphosphonic acid molecules.
Catalyst support of mixed cerium zirconium titanium oxide, including use and method of making
Willigan, Rhonda R [Manchester, CT; Vanderspurt, Thomas Henry [Glastonbury, CT; Tulyani, Sonia [Manchester, CT; Radhakrishnan, Rakesh [Vernon, CT; Opalka, Susanne Marie [Glastonbury, CT; Emerson, Sean C [Broad Brook, CT
2011-01-18
A durable catalyst support/catalyst is capable of extended water gas shift operation under conditions of high temperature, pressure, and sulfur levels. The support is a homogeneous, nanocrystalline, mixed metal oxide of at least three metals, the first being cerium, the second being Zr, and/or Hf, and the third importantly being Ti, the three metals comprising at least 80% of the metal constituents of the mixed metal oxide and the Ti being present in a range of 5% to 45% by metals-only atomic percent of the mixed metal oxide. The mixed metal oxide has an average crystallite size less than 6 nm and forms a skeletal structure with pores whose diameters are in the range of 4-9 nm and normally greater than the average crystallite size. The surface area of the skeletal structure per volume of the material of the structure is greater than about 240 m.sup.2/cm.sup.3. The method of making and use are also described.
NASA Astrophysics Data System (ADS)
Wang, Shunyao; Ye, Jianhuai; Soong, Ronald; Wu, Bing; Yu, Legeng; Simpson, André J.; Chan, Arthur W. H.
2018-03-01
Owing to the complex nature and dynamic behaviors of secondary organic aerosol (SOA), its ability to cause oxidative stress (known as oxidative potential, or OP) and adverse health outcomes remains poorly understood. In this work, we probed the linkages between the chemical composition of SOA and its OP, and investigated impacts from various SOA evolution pathways, including atmospheric oligomerization, heterogeneous oxidation, and mixing with metal. SOA formed from photooxidation of the two most common polycyclic aromatic hydrocarbons (naphthalene and phenanthrene) were studied as model systems. OP was evaluated using the dithiothreitol (DTT) assay. The oligomer-rich fraction separated by liquid chromatography dominates DTT activity in both SOA systems (52 ± 10 % for naphthalene SOA (NSOA), and 56 ± 5 % for phenanthrene SOA (PSOA)). Heterogeneous ozonolysis of NSOA was found to enhance its OP, which is consistent with the trend observed in selected individual oxidation products. DTT activities from redox-active organic compounds and metals were found to be not additive. When mixing with highly redox-active metal (Cu), OP of the mixture decreased significantly for 1,2-naphthoquinone (42 ± 7 %), 2,3-dihydroxynaphthalene (35 ± 1 %), NSOA (50 ± 6 %), and PSOA (43 ± 4 %). Evidence from proton nuclear magnetic resonance (1H NMR) spectroscopy illustrates that such OP reduction upon mixing can be ascribed to metal-organic binding interactions. Our results highlight the role of aerosol chemical composition under atmospheric aging processes in determining the OP of SOA, which is needed for more accurate and explicit prediction of the toxicological impacts from particulate matter.
Making MgO/SiO2 Glasses By The Sol-Gel Process
NASA Technical Reports Server (NTRS)
Bansal, Narottam P.
1989-01-01
Silicon dioxide glasses containing 15 mole percent magnesium oxide prepared by sol-gel process. Not made by conventional melting because ingredients immiscible liquids. Synthesis of MgO/SiO2 glass starts with mixing of magnesium nitrate hexahydrate with silicon tetraethoxide, both in alcohol. Water added, and transparent gel forms. Subsequent processing converts gel into glass. Besides producing glasses of new composition at lower processing temperatures, sol-gel method leads to improved homogeneity and higher purity.
Biogenic VOC Oxidation is Modulated by Anthropogenic Pollution in the South East US
NASA Astrophysics Data System (ADS)
Misztal, P. K.; Romer, P.; Duffey, K.; Cohen, R. C.; Kaser, L.; Seco, R.; Park, J.; Kim, S.; Guenther, A. B.; Goldstein, A. H.
2013-12-01
Biogenic volatile organic compounds (VOC) are known to play important roles for atmospheric chemistry, formation of secondary organic aerosol (SOA), and thus climate. However, the impacts of anthropogenic emissions on the BVOC oxidation mechanisms and SOA formation processes are not yet well understood. The SOAS summer 2013 campaign goals include looking holistically at physicochemical processes of BVOC emission, oxidation, and subsequent SOA formation and the role of anthropogenic emissions in those processes. Gas-phase composition changes of the broad range of VOCs were measured by PTR-ToF-MS at the Centreville SEARCH site located in a mixed deciduous forest near Brent, Alabama. The instrument sampled from the top of the tower at a high acquisition rate (10 Hz) using an inlet collocated with other measurements (wind, radicals, nitrogen oxides, etc.). Isoprene concentrations were extremely high, peaking at up to approximately 10 ppb during the hottest and sunniest days. Isoprene oxidation chemistry was clearly affected by anthropogenic influences. The rate of isoprene oxidation and the abundance of the first (MVK, MAC, etc.) and second (hydroxyacetone, etc.) order products were significantly different under cleaner conditions than under more polluted conditions. Isoprene oxidation likely is more dominated by the hydroperoxyl pathway under clean conditions while the NO pathway is more important under pollution conditions. Observations of the full range of detected isoprene oxidation products will be discussed and examined under relatively clean and polluted conditions. Both daytime and nighttime oxidation pathways will be examined, and comparison with airborne measurements will be shown to relate our ground based observations to more regional photochemical VOC processing.
Doped palladium containing oxidation catalysts
Mohajeri, Nahid
2014-02-18
A supported oxidation catalyst includes a support having a metal oxide or metal salt, and mixed metal particles thereon. The mixed metal particles include first particles including a palladium compound, and second particles including a precious metal group (PMG) metal or PMG metal compound, wherein the PMG metal is not palladium. The oxidation catalyst may also be used as a gas sensor.
Recycling metals from lithium ion battery by mechanical separation and vacuum metallurgy.
Xiao, Jiefeng; Li, Jia; Xu, Zhengming
2017-09-15
The large-batch application of lithium ion batteries leads to the mass production of spent batteries. So the enhancement of disposal ability of spent lithium ion batteries is becoming very urgent. This study proposes an integrated process to handle bulk spent lithium manganese (LiMn 2 O 4 ) batteries to in situ recycle high value-added products without any additives. By mechanical separation, the mixed electrode materials mainly including binder, graphite and LiMn 2 O 4 are firstly obtained from spent batteries. Then, the reaction characteristics for the oxygen-free roasting of mixed electrode materials are analyzed. And the results show that mixed electrode materials can be in situ converted into manganese oxide (MnO) and lithium carbonate (Li 2 CO 3 ) at 1073K for 45min. In this process, the binder is evaporated and decomposed into gaseous products which can be collected to avoid disposal cost. Finally, 91.30% of Li resource as Li 2 CO 3 is leached from roasted powders by water and then high value-added Li 2 CO 3 crystals are further gained by evaporating the filter liquid. The filter residues are burned in air to remove the graphite and the final residues as manganous-manganic oxide (Mn 3 O 4 ) is obtained. Copyright © 2017 Elsevier B.V. All rights reserved.
Aäritalo, Virpi; Areva, Sami; Jokinen, Mika; Lindén, Mika; Peltola, Timo
2007-09-01
A series of sol-gel derived TiO(2)-SiO(2) mixed oxide coatings were prepared by carefully controlling the process parameters to obtain silica-releasing coatings consisting of nanoparticles. These features are of paramount importance for enhanced cell adhesion and activation. To achieve both these goals the Ti-alkoxide and Si-alkoxide were first separately hydrolysed and the titania-silica mixed sol was further reacted before the dipping process to obtain the desired particle sizes resulting to the biologically favourable topographical features. Silica release was observed from all the prepared coatings and it was dependent on SiO(2) amount added to the sols, i.e., the higher the added amount the higher the release. In addition, calcium phosphate was able to nucleate on the coatings. From the obtained SiO(2) dissolution data, together with the detailed XPS peak analysis, the mixed oxide coatings are concluded to be chemically heterogeneous, consisting of TiO(2) and SiO(2) species most likely linked together by Ti-O-Si bonds. TiO(2) is chemically stable making long-term implant coating possible and the desired nanoscale dimensions were well preserved although the composition was changed as a consequence of SiO(2) dissolution under in vitro conditions.
Rafieerad, A R; Bushroa, A R; Nasiri-Tabrizi, B; Kaboli, S H A; Khanahmadi, S; Amiri, Ahmad; Vadivelu, J; Yusof, F; Basirun, W J; Wasa, K
2017-05-01
Recently, the robust optimization and prediction models have been highly noticed in district of surface engineering and coating techniques to obtain the highest possible output values through least trial and error experiments. Besides, due to necessity of finding the optimum value of dependent variables, the multi-objective metaheuristic models have been proposed to optimize various processes. Herein, oriented mixed oxide nanotubular arrays were grown on Ti-6Al-7Nb (Ti67) implant using physical vapor deposition magnetron sputtering (PVDMS) designed by Taguchi and following electrochemical anodization. The obtained adhesion strength and hardness of Ti67/Nb were modeled by particle swarm optimization (PSO) to predict the outputs performance. According to developed models, multi-objective PSO (MOPSO) run aimed at finding PVDMS inputs to maximize current outputs simultaneously. The provided sputtering parameters were applied as validation experiment and resulted in higher adhesion strength and hardness of interfaced layer with Ti67. The as-deposited Nb layer before and after optimization were anodized in fluoride-base electrolyte for 300min. To crystallize the coatings, the anodically grown mixed oxide TiO 2 -Nb 2 O 5 -Al 2 O 3 nanotubes were annealed at 440°C for 30min. From the FESEM observations, the optimized adhesive Nb interlayer led to further homogeneity of mixed nanotube arrays. As a result of this surface modification, the anodized sample after annealing showed the highest mechanical, tribological, corrosion resistant and in-vitro bioactivity properties, where a thick bone-like apatite layer was formed on the mixed oxide nanotubes surface within 10 days immersion in simulated body fluid (SBF) after applied MOPSO. The novel results of this study can be effective in optimizing a variety of the surface properties of the nanostructured implants. Copyright © 2016 Elsevier Ltd. All rights reserved.
Aerated Lagoons. Student Manual. Biological Treatment Process Control.
ERIC Educational Resources Information Center
Andersen, Lorri
This student manual contains the textual material for a unit which focuses on the structural and operationally unique features of aerated lagoons. Topic areas discussed include: (1) characteristics of completely mixed aerated lagoons; (2) facultative aerated lagoons; (3) aerated oxidation ponds; (4) effects of temperature on aerated lagoons; (5)…
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-21
...The U.S. Nuclear Regulatory Commission (NRC or Commission) is issuing a revision to regulatory guide (RG) 3.39, ``Standard Format and Content of License Applications for Mixed Oxide Fuel Fabrication Facilities.'' This guide endorses the standard format and content for license applications and integrated safety analysis (ISA) summaries described in the current version of NUREG-1718, ``Standard Review Plan for the Review of an Application for a Mixed Oxide (MOX) Fuel Fabrication Facility,'' as a method that the NRC staff finds acceptable for meeting the regulatory requirements of Title 10 of the Code of Federal Regulations (10 CFR) part 70, ``Domestic Licensing of Special Nuclear Material'' for mixed oxide fuel fabrication facilities.
Davis, Ryan D; Jacobs, Michael I; Houle, Frances A; Wilson, Kevin R
2017-11-21
In-depth investigations of the kinetics of aqueous chemistry occurring in microdroplet environments require experimental techniques that allow a reaction to be initiated at a well-defined point in time and space. Merging microdroplets of different reactants is one such approach. The mixing dynamics of unconfined (airborne) microdroplets have yet to be studied in detail, which is an essential step toward widespread use and application of merged droplet microreactors for monitoring chemical reactions. Here, we present an on-demand experimental approach for initiating chemical reactions in and characterizing the mixing dynamics of colliding airborne microdroplets (40 ± 5 μm diameter) using a streak-based fluorescence microscopy technique. The advantages of this approach include the ability to generate two well-controlled monodisperse microdroplet streams and collide (and thus mix) the microdroplets with high spatial and temporal control while consuming small amounts of sample (<0.1 μL/s). Mixing times are influenced not only by the velocity at which microdroplets collide but also the geometry of the collision (i.e., head-on vs off-center collision). For head-on collisions, we achieve submillisecond mixing times ranging from ∼900 μs at a collision velocity of 0.1 m/s to <200 μs at ∼6 m/s. For low-velocity (<1 m/s) off-center collisions, mixing times were consistent with the head-on cases. For high-velocity (i.e., > 1 m/s) off-center collisions, mixing times increased by as much as a factor of 6 (e.g., at ∼6 m/s, mixing times increased from <200 μs for head-on collisions to ∼1200 μs for highly off-center collisions). At collision velocities >7 m/s, droplet separation and fragmentation occurred, resulting in incomplete mixing. These results suggest a limited range of collision velocities over which complete and rapid mixing can be achieved when using airborne merged microdroplets to, e.g., study reaction kinetics when reaction times are short relative to typical bulk reactor mixing times. We benchmark our reactor using an aqueous-phase oxidation reaction: iron-catalyzed hydroxyl radical production from hydrogen peroxide (Fenton's reaction) and subsequent aqueous-phase oxidation of organic species in solution. Kinetic simulations of our measurements show that quantitative agreement can be obtained using known bulk-phase kinetics for bimolecular reactions in our colliding-droplet microreactor.
Davis, Ryan D.; Jacobs, Michael I.; Houle, Frances A.; ...
2017-10-30
In-depth investigations of the kinetics of aqueous chemistry occurring in microdroplet environments require experimental techniques that allow a reaction to be initiated at a well-defined point in time and space. Merging microdroplets of different reactants is one such approach. The mixing dynamics of unconfined (airborne) microdroplets have yet to be studied in detail, which is an essential step toward widespread use and application of merged droplet microreactors for monitoring chemical reactions. Here, we present an on-demand experimental approach for initiating chemical reactions in and characterizing the mixing dynamics of colliding airborne microdroplets (40 ± 5 μm diameter) using a streak-basedmore » fluorescence microscopy technique. The advantages of this approach include the ability to generate two well-controlled monodisperse microdroplet streams and collide (and thus mix) the microdroplets with high spatial and temporal control while consuming small amounts of sample (<0.1 μL/s). Mixing times are influenced not only by the velocity at which microdroplets collide but also the geometry of the collision (i.e., head-on vs off-center collision). For head-on collisions, we achieve submillisecond mixing times ranging from ~900 μs at a collision velocity of 0.1 m/s to <200 μs at ~6 m/s. For low-velocity (<1 m/s) off-center collisions, mixing times were consistent with the head-on cases. For high-velocity (i.e., > 1 m/s) off-center collisions, mixing times increased by as much as a factor of 6 (e.g., at ~6 m/s, mixing times increased from <200 μs for head-on collisions to ~1200 μs for highly off-center collisions). At collision velocities >7 m/s, droplet separation and fragmentation occurred, resulting in incomplete mixing. These results suggest a limited range of collision velocities over which complete and rapid mixing can be achieved when using airborne merged microdroplets to, e.g., study reaction kinetics when reaction times are short relative to typical bulk reactor mixing times. We benchmark our reactor using an aqueous-phase oxidation reaction: iron-catalyzed hydroxyl radical production from hydrogen peroxide (Fenton's reaction) and subsequent aqueous-phase oxidation of organic species in solution. In conclusion, kinetic simulations of our measurements show that quantitative agreement can be obtained using known bulk-phase kinetics for bimolecular reactions in our colliding-droplet microreactor.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davis, Ryan D.; Jacobs, Michael I.; Houle, Frances A.
In-depth investigations of the kinetics of aqueous chemistry occurring in microdroplet environments require experimental techniques that allow a reaction to be initiated at a well-defined point in time and space. Merging microdroplets of different reactants is one such approach. The mixing dynamics of unconfined (airborne) microdroplets have yet to be studied in detail, which is an essential step toward widespread use and application of merged droplet microreactors for monitoring chemical reactions. Here, we present an on-demand experimental approach for initiating chemical reactions in and characterizing the mixing dynamics of colliding airborne microdroplets (40 ± 5 μm diameter) using a streak-basedmore » fluorescence microscopy technique. The advantages of this approach include the ability to generate two well-controlled monodisperse microdroplet streams and collide (and thus mix) the microdroplets with high spatial and temporal control while consuming small amounts of sample (<0.1 μL/s). Mixing times are influenced not only by the velocity at which microdroplets collide but also the geometry of the collision (i.e., head-on vs off-center collision). For head-on collisions, we achieve submillisecond mixing times ranging from ~900 μs at a collision velocity of 0.1 m/s to <200 μs at ~6 m/s. For low-velocity (<1 m/s) off-center collisions, mixing times were consistent with the head-on cases. For high-velocity (i.e., > 1 m/s) off-center collisions, mixing times increased by as much as a factor of 6 (e.g., at ~6 m/s, mixing times increased from <200 μs for head-on collisions to ~1200 μs for highly off-center collisions). At collision velocities >7 m/s, droplet separation and fragmentation occurred, resulting in incomplete mixing. These results suggest a limited range of collision velocities over which complete and rapid mixing can be achieved when using airborne merged microdroplets to, e.g., study reaction kinetics when reaction times are short relative to typical bulk reactor mixing times. We benchmark our reactor using an aqueous-phase oxidation reaction: iron-catalyzed hydroxyl radical production from hydrogen peroxide (Fenton's reaction) and subsequent aqueous-phase oxidation of organic species in solution. In conclusion, kinetic simulations of our measurements show that quantitative agreement can be obtained using known bulk-phase kinetics for bimolecular reactions in our colliding-droplet microreactor.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Aiyong; Lin, Bo; Zhang, Hanlei
2017-01-01
Three series of Cr-based mixed oxides (Cr-Co, Cr-Fe, and Cr-Ni oxides) with high specific surface areas and amorphous textures were synthesized using a novel sol-gel method. These mixed oxides, in comparison to their pure metal oxide (CrOx, Co3O4, FeOx and NiO) counterparts, display enhanced performance for catalytic oxidation of low-concentration NO at room temperature. The best performing catalysts achieve 100% NO conversion for ~30 h of operation at a high space velocity of 45,000 ml g-1 h-1. The amorphous structure was found to be critical for these catalysts to maintain high activity and durability. Control of Cr/M (M=Co, Fe andmore » Ni) molar ratio, nitrate precursor decomposition temperature and catalyst calcination temperature was key to the synthesis of these highly active catalysts.« less
Mixed monofunctional extractants for trivalent actinide/lanthanide separations: TALSPEAK-MME
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Aaron T.; Nash, Kenneth L.
The basic features of an f-element extraction process based on a solvent composed of equimolar mixtures of Cyanex-923 (a mixed trialkyl phosphine oxide) and 2-ethylhexylphosphonic acid mono-2-ethylhexyl ester (HEH[EHP]) extractants in n-dodecane are investigated in this report. This system, which combines features of the TRPO and TALSPEAK processes, is based on co-extraction of trivalent lanthanides and actinides from 0.1 to 1.0 M HNO 3 followed by application of a buffered aminopolycarboxylate solution strip to accomplish a Reverse TALSPEAK selective removal of actinides. This mixed-extractant medium could enable a simplified approach to selective trivalent f-element extraction and actinide partitioning in amore » single process. As compared with other combined process applications in development for more compact actinide partitioning processes (DIAMEX-SANEX, GANEX, TRUSPEAK, ALSEP), this combination features only monofunctional extractants with high solubility limits and comparatively low molar mass. Selective actinide stripping from the loaded extractant phase is done using a glycine-buffered solution containing N-(2-hydroxyethyl)ethylenediaminetriacetic acid (HEDTA) or triethylenetetramine-N,N,N',N'',N''',N'''-hexaacetic acid (TTHA). Lastly, the results reported provide evidence for simplified interactions between the two extractants and demonstrate a pathway toward using mixed monofunctional extractants to separate trivalent actinides (An) from fission product lanthanides (Ln).« less
Mixed monofunctional extractants for trivalent actinide/lanthanide separations: TALSPEAK-MME
Johnson, Aaron T.; Nash, Kenneth L.
2015-08-20
The basic features of an f-element extraction process based on a solvent composed of equimolar mixtures of Cyanex-923 (a mixed trialkyl phosphine oxide) and 2-ethylhexylphosphonic acid mono-2-ethylhexyl ester (HEH[EHP]) extractants in n-dodecane are investigated in this report. This system, which combines features of the TRPO and TALSPEAK processes, is based on co-extraction of trivalent lanthanides and actinides from 0.1 to 1.0 M HNO 3 followed by application of a buffered aminopolycarboxylate solution strip to accomplish a Reverse TALSPEAK selective removal of actinides. This mixed-extractant medium could enable a simplified approach to selective trivalent f-element extraction and actinide partitioning in amore » single process. As compared with other combined process applications in development for more compact actinide partitioning processes (DIAMEX-SANEX, GANEX, TRUSPEAK, ALSEP), this combination features only monofunctional extractants with high solubility limits and comparatively low molar mass. Selective actinide stripping from the loaded extractant phase is done using a glycine-buffered solution containing N-(2-hydroxyethyl)ethylenediaminetriacetic acid (HEDTA) or triethylenetetramine-N,N,N',N'',N''',N'''-hexaacetic acid (TTHA). Lastly, the results reported provide evidence for simplified interactions between the two extractants and demonstrate a pathway toward using mixed monofunctional extractants to separate trivalent actinides (An) from fission product lanthanides (Ln).« less
Syamsuddin, Y; Murat, M N; Hameed, B H
2016-08-01
The synthesis of fatty acid methyl ester (FAME) from the high- and low-acid-content feedstock of crude palm oil (CPO) and karanj oil (KO) was conducted over CaO-La2O3-Al2O3 mixed-oxide catalyst. Various reaction parameters were investigated using a batch reactor to identify the best reaction condition that results in the highest FAME yield for each type of oil. The transesterification of CPO resulted in a 97.81% FAME yield with the process conditions of 170°C reaction temperature, 15:1 DMC-to-CPO molar ratio, 180min reaction time, and 10wt.% catalyst loading. The transesterification of KO resulted in a 96.77% FAME yield with the conditions of 150°C reaction temperature, 9:1 DMC-to-KO molar ratio, 180min reaction time, and 5wt.% catalyst loading. The properties of both products met the ASTM D6751 and EN 14214 standard requirements. The above results showed that the CaO-La2O3-Al2O3 mixed-oxide catalyst was suitable for high- and low-acid-content vegetable oil. Copyright © 2016 Elsevier Ltd. All rights reserved.
Planar ceramic membrane assembly and oxidation reactor system
Carolan, Michael Francis; Dyer, legal representative, Kathryn Beverly; Wilson, Merrill Anderson; Ohm, Ted R.; Kneidel, Kurt E.; Peterson, David; Chen, Christopher M.; Rackers, Keith Gerard; Dyer, deceased, Paul Nigel
2007-10-09
Planar ceramic membrane assembly comprising a dense layer of mixed-conducting multi-component metal oxide material, wherein the dense layer has a first side and a second side, a porous layer of mixed-conducting multi-component metal oxide material in contact with the first side of the dense layer, and a ceramic channeled support layer in contact with the second side of the dense layer. The planar ceramic membrane assembly can be used in a ceramic wafer assembly comprising a planar ceramic channeled support layer having a first side and a second side; a first dense layer of mixed-conducting multi-component metal oxide material having an inner side and an outer side, wherein the inner side is in contact with the first side of the ceramic channeled support layer; a first outer support layer comprising porous mixed-conducting multi-component metal oxide material and having an inner side and an outer side, wherein the inner side is in contact with the outer side of the first dense layer; a second dense layer of mixed-conducting multi-component metal oxide material having an inner side and an outer side, wherein the inner side is in contact with the second side of the ceramic channeled layer; and a second outer support layer comprising porous mixed-conducting multi-component metal oxide material and having an inner side and an outer side, wherein the inner side is in contact with the outer side of the second dense layer.
Planar ceramic membrane assembly and oxidation reactor system
Carolan, Michael Francis; Dyer, legal representative, Kathryn Beverly; Wilson, Merrill Anderson; Ohrn, Ted R.; Kneidel, Kurt E.; Peterson, David; Chen, Christopher M.; Rackers, Keith Gerard; Dyer, Paul Nigel
2009-04-07
Planar ceramic membrane assembly comprising a dense layer of mixed-conducting multi-component metal oxide material, wherein the dense layer has a first side and a second side, a porous layer of mixed-conducting multi-component metal oxide material in contact with the first side of the dense layer, and a ceramic channeled support layer in contact with the second side of the dense layer. The planar ceramic membrane assembly can be used in a ceramic wafer assembly comprising a planar ceramic channeled support layer having a first side and a second side; a first dense layer of mixed-conducting multi-component metal oxide material having an inner side and an outer side, wherein the inner side is in contact with the first side of the ceramic channeled support layer; a first outer support layer comprising porous mixed-conducting multi-component metal oxide material and having an inner side and an outer side, wherein the inner side is in contact with the outer side of the first dense layer; a second dense layer of mixed-conducting multi-component metal oxide material having an inner side and an outer side, wherein the inner side is in contact with the second side of the ceramic channeled layer; and a second outer support layer comprising porous mixed-conducting multi-component metal oxide material and having an inner side and an outer side, wherein the inner side is in contact with the outer side of the second dense layer.
Fuel combustion exhibiting low NO{sub x} and CO levels
Keller, J.O.; Bramlette, T.T.; Barr, P.K.
1996-07-30
Method and apparatus are disclosed for safely combusting a fuel in such a manner that very low levels of NO{sub x} and CO are produced. The apparatus comprises an inlet line containing a fuel and an inlet line containing an oxidant. Coupled to the fuel line and to the oxidant line is a mixing means for thoroughly mixing the fuel and the oxidant without combusting them. Coupled to the mixing means is a means for injecting the mixed fuel and oxidant, in the form of a large-scale fluid dynamic structure, into a combustion region. Coupled to the combustion region is a means for producing a periodic flow field within the combustion region to mix the fuel and the oxidant with ambient gases in order to lower the temperature of combustion. The means for producing a periodic flow field can be a pulse combustor, a rotating band, or a rotating cylinder within an acoustic chamber positioned upstream or downstream of the region of combustion. The mixing means can be a one-way flapper valve; a rotating cylinder; a rotating band having slots that expose open ends of said fuel inlet line and said oxidant inlet line simultaneously; or a set of coaxial fuel annuli and oxidizer annuli. The means for producing a periodic flow field may or may not be in communication with an acoustic resonance. When employed, the acoustic resonance may be upstream or downstream of the region of combustion. 14 figs.
NASA Astrophysics Data System (ADS)
Wang, Guanqin; Wen, Zhongsheng; Du, Lulu; Yang, Yan-E.; Li, Song; Sun, Juncai; Ji, Shijun
2017-11-01
Titanium/niobium oxides have drawn wide attention due to their attractive high lithium-intercalation voltage avoiding the formation of solid electrochemical interface. However, their poor electronic conductivity hinders the commercial applications because of the low electrochemical kinetics in lithiating and de-lithiating process. In the study, new approach to improving the low conductivity of the conventional oxides in micrometers are tactically proposed via the synergic effect of highly mixed multiphase oxide nanocrystals. Ti-Nb oxide composite microspheres with hierarchical microstructure are fabricated successfully via a very facile method combined solvothermal process and calcination. Interconnected crystalline nanoparticles of TiO2, Nb2O5 and TiNb2O7 nanocrystals are involved in the obtained Ti-Nb oxides, demonstrating high structure stability during electrochemical reaction. Meanwhile, the ionic/electronic conductivity is remarkably enhanced by the defects of O2- vacancies and Ti3+/Nb4+ ions. The remained specific capacity of the multiphase Ti-Nb oxides is up to 185.3 mAh g-1 at 5 C with very weak capacity fade of 5.3% after 1800 cycles, showing a very long cycling stability.
Vauchy, Romain; Belin, Renaud C; Robisson, Anne-Charlotte; Lebreton, Florent; Aufore, Laurence; Scheinost, Andreas C; Martin, Philippe M
2016-03-07
Innovative americium-bearing uranium-plutonium mixed oxides U1-yPuyO2-x are envisioned as nuclear fuel for sodium-cooled fast neutron reactors (SFRs). The oxygen-to-metal (O/M) ratio, directly related to the oxidation state of cations, affects many of the fuel properties. Thus, a thorough knowledge of its variation with the sintering conditions is essential. The aim of this work is to follow the oxidation state of uranium, plutonium, and americium, and so the O/M ratio, in U0.750Pu0.246Am0.004O2-x samples sintered for 4 h at 2023 K in various Ar + 5% H2 + z vpm H2O (z = ∼ 15, ∼ 90, and ∼ 200) gas mixtures. The O/M ratios were determined by gravimetry, XAS, and XRD and evidenced a partial oxidation of the samples at room temperature. Finally, by comparing XANES and EXAFS results to that of a previous study, we demonstrate that the presence of uranium does not influence the interactions between americium and plutonium and that the differences in the O/M ratio between the investigated conditions is controlled by the reduction of plutonium. We also discuss the role of the homogeneity of cation distribution, as determined by EPMA, on the mechanisms involved in the reduction process.
Synthesis of soluble conducting polymers by acoustic mixing
Kane, Marie C.
2016-09-13
A method including combining an aniline monomer, an oxidant, water and an organic solvent; subjecting the combination to acoustic mixing to form an emulsion; and recovering a polyaniliine from the combination. A method including combining a aniline monomer, an oxidant, water and an organic solvent; forming a polyaniline by acoustic mixing the combination; and recovering the polyaniliine from the combination. A method including forming a combination of an aniline monomer, an oxidant, water and an organic solvent in the absence of an emulsifier; acoustic mixing the combination for a time period to form a polyaniline; and recovering a polyaniliine from the combination.
Structural characterization of nano-oxide layers in PtMn based specular spin valves
NASA Astrophysics Data System (ADS)
Zhou, Min; Chen, Lifan; Diao, Zhitao; Park, Chang-Man; Huai, Yiming
2005-05-01
A systematic structure characterization of nano-oxide layers (NOLs) and specular spin valves using x-ray diffraction and high-resolution transmission electron microscopy (HRTEM) has been studied. High-angle x-ray diffraction data show almost identical fcc textures for both natural and plasma NOL spin-valves. Low-angle x-ray reflectivity spectrum shows more deteriorated Kiessig fringes at high incident angles for natural oxide sample, indicating rougher interfaces in natural oxidation than in plasma oxidation. Oxygen exposure plays an important role in NOLs process. Fabricating NOLs without any crystal structure degradation is critical to obtain high MR ratio. HRTEM reveals that oxide clusters mixing with insufficiently oxidized CoFe layers prevailed in natural NOL, and the natural oxidation was inhomogeneous. In contrast, plasma NOL has a thinner, more homogeneously oxidized CoFe layers with sharp interfaces. In plasma NOLs, the structures still maintain CoFe crystal structure. The structures and magnetic correlation of the NOL specular spin valves are discussed.
NASA Astrophysics Data System (ADS)
André, Laurie; Abanades, Stéphane; Cassayre, Laurent
2017-09-01
Metal oxides are potential materials for thermochemical heat storage via reversible endothermal/exothermal redox reactions, and among them, cobalt oxide and manganese oxide are attracting attention. The synthesis of mixed oxides is considered as a way to answer the drawbacks of pure metal oxides, such as slow reaction kinetics, loss-in-capacity over cycles or sintering issues, and the materials potential for thermochemical heat storage application needs to be assessed. This work proposes a study combining thermodynamic calculations and experimental measurements by simultaneous thermogravimetric analysis and calorimetry, in order to identify the impact of iron oxide addition to Co and Mn-based oxides. Fe addition decreased the redox activity and energy storage capacity of Co3O4/CoO, whereas the reaction rate, reversibility and cycling stability of Mn2O3/Mn3O4 was significantly enhanced with added Fe amounts above 15 mol%, and the energy storage capacity was slightly improved. The formation of a reactive cubic spinel explained the improved re-oxidation yield of Mn-based oxides that could be cycled between bixbyite and cubic spinel phases, whereas a low reactive tetragonal spinel phase showing poor re-oxidation was formed below 15 mol% Fe. Thermodynamic equilibrium calculations predict accurately the behavior of both systems. The possibility to identify other suitable mixed oxides becomes conceivable, by enabling the selection of transition metal additives for tuning the redox properties of mixed metal oxides destined for thermochemical energy storage applications.
Operation of mixed conducting metal oxide membrane systems under transient conditions
Carolan, Michael Francis [Allentown, PA
2008-12-23
Method of operating an oxygen-permeable mixed conducting membrane having an oxidant feed side, an oxidant feed surface, a permeate side, and a permeate surface, which method comprises controlling the differential strain between the permeate surface and the oxidant feed surface at a value below a selected maximum value by varying the oxygen partial pressure on either or both of the oxidant feed side and the permeate side of the membrane.
Zhang, Zhenchao
2017-12-01
In this study, a combined process was developed that included micro-electrolysis, Fenton oxidation and coagulation to treat oilfield fracturing wastewater. Micro-electrolysis and Fenton oxidation were applied to reduce chemical oxygen demand (COD) organic load and to enhance organic components gradability, respectively. Orthogonal experiment were employed to investigate the influence factors of micro-electrolysis and Fenton oxidation on COD removal efficiency. For micro-electrolysis, the optimum conditions were: pH, 3; iron-carbon dosage, 50 mg/L; mass ratio of iron-carbon, 2:3; reaction time, 60 min. For Fenton oxidation, a total reaction time of 90 min, a H 2 O 2 dosage of 12 mg/L, with a H 2 O 2 /Fe 2+ mole ratio of 30, pH of 3 were selected to achieve optimum oxidation. The optimum conditions in coagulation process: pH, cationic polyacrylamide dosage, mixing speed and time is 4.3, 2 mg/L, 150 rpm and 30 s, respectively. In the continuous treatment process under optimized conditions, the COD of oily wastewater fell 56.95%, 46.23%, 30.67%, respectively, from last stage and the total COD removal efficiency reached 83.94% (from 4,314 to 693 mg/L). In the overall treatment process under optimized conditions, the COD of oily wastewater was reduced from 4,314 to 637 mg/L, and the COD removal efficiency reached 85.23%. The contribution of each stage is 68.45% (micro-electrolysis), 24.07% (Fenton oxidation), 7.48% (coagulation), respectively. Micro-electrolysis is the uppermost influencing process on COD removal. Compared with the COD removal efficiency of three processes on raw wastewater under optimized conditions: the COD removal efficiency of single micro-electrolysis, single Fenton oxidation, single coagulation is 58.34%, 44.88% and 39.72%, respectively. Experiments proved the effect of combined process is marvelous and the overall water quality of the final effluent could meet the class III national wastewater discharge standard of petrochemical industry of China (GB8978-1996).
Nano and micro U1-xThxO2 solid solutions: From powders to pellets
NASA Astrophysics Data System (ADS)
Balice, Luca; Bouëxière, Daniel; Cologna, Marco; Cambriani, Andrea; Vigier, Jean-François; De Bona, Emanuele; Sorarù, Gian Domenico; Kübel, Christian; Walter, Olaf; Popa, Karin
2018-01-01
Nuclear fuels production, structural materials, separation techniques, and waste management, all may benefit from an extensive knowledge in the nano-nuclear technology. In this line, we present here the production of U1-xThxO2 (x = 0 to 1) mixed oxides nanocrystals (NC's) through the hydrothermal decomposition of the oxalates in hot compressed water at 250 °C. Particles of spherical shape and size of about 5.5-6 nm are obtained during the hydrothermal decomposition process. The powdery nanocrystalline products were consolidated by spark plasma sintering into homogeneous mixed oxides pellets with grain sizes in the 0.4 to 5.5 μm range. Grain growth and mechanical properties were studied as a function of composition and size. No grain size effect was observed on the hardness or elastic modulus.
2001-08-30
Body with Thermo-Chemical destribution of Heat-Protected System . In: Physical and Gasdynamic Phenomena in Supersonic Flows Over Bodies. Edit. By...Final Report on ISTC Contract # 1809p Parametric Study of Advanced Mixing of Fuel/Oxidant System in High Speed Gaseous Flows and Experimental...of Advanced Mixing of Fuel/Oxidant System in High Speed Gaseous Flows and Experimental Validation Planning 5c. PROGRAM ELEMENT NUMBER 5d. PROJECT
NASA Astrophysics Data System (ADS)
Chuklina, S. G.; Maslenkova, S. A.; Pylinina, A. I.; Podzorova, L. I.; Ilyicheva, A. A.
2017-02-01
In the present study, we investigated the effect of preparation method, phase composition and calcination temperature of the (Ce-TZP) - Al2O3 mixed oxides on their structural features and catalytic performance in ethanol conversion. Ceria-zirconia-alumina mixed oxides with different (Ce+Zr)/Al atomic ratios were prepared via sol-gel method. Catalytic activity and selectivity were investigated for ethanol conversion to acetaldehyde, ethylene and diethyl ether.
Zhao, Fang; Xie, Dinghai; Zhang, Guangzhao; Pispas, Stergios
2008-05-22
Poly(isoprene)-block-poly(ethylene oxide) (PI-b-PEO) diblock copolymers form micelles in water. The introduction of poly(ethylene oxide)-block-poly(propylene oxide)-block-poly(ethylene oxide) (PEO-b-PPO-b-PEO) triblock copolymer leads to the formation of mixed micelles through hydrophobic interaction. The dimension of the mixed micelles varies with the weight ratio (r) of PEO-b-PPO-b-PEO to PI-b-PEO. By use of laser light scattering, we have investigated the temperature dependence of the structural evolution of the micelles at different r. At r<10, the size of the mixed micelles decreases with temperature. At r>10, due to the excessive PEO-b-PPO-b-PEO chains in solution, as temperature increases, the mixed micelles aggregate into larger micelle clusters.
Ushakov, Dmitry B; Plutschack, Matthew B; Gilmore, Kerry; Seeberger, Peter H
2015-04-20
Aerobic amine oxidation is an attractive and elegant process for the α functionalization of amines. However, there are still several mechanistic uncertainties, particularly the factors governing the regioselectivity of the oxidation of asymmetric secondary amines and the oxidation rates of mixed primary amines. Herein, it is reported that singlet-oxygen-mediated oxidation of 1° and 2° amines is sensitive to the strength of the α-C-H bond and steric factors. Estimation of the relative bond dissociation energy by natural bond order analysis or by means of one-bond C-H coupling constants allowed the regioselectivity of secondary amine oxidations to be explained and predicted. In addition, the findings were utilized to synthesize highly regioselective substrates and perform selective amine cross-couplings to produce imines. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakano, Jinichiro; Bennett, James P.; Nakano, Anna
Embodiments relate to systems and methods for regenerating and recirculating a CO, H.sub.2 or combinations thereof utilized for metal oxide reduction in a reduction furnace. The reduction furnace receives the reducing agent, reduces the metal oxide, and generates an exhaust of the oxidized product. The oxidized product is transferred to a mixing vessel, where the oxidized product, a calcium oxide, and a vanadium oxide interact to regenerate the reducing agent from the oxidized product. The regenerated reducing agent is transferred back to the reduction furnace for continued metal oxide reductions.
METHOD OF MAKING REFRACTORY BODIES
Andersen, J.C.
1960-05-31
A method is given for the manufacture of silicon carbide bodies that are characterized by high density, high purity, and superior resistance to oxidative deterioration. Dense silicon bodies are obtained by a process in which granular silicon carbide, a carbonizable material, and a carbonaceous material are mixed together, the mixture is shaped as desired, and then the shape is fired in the presence of more than the stoichiometric amount of silicon. The carbonizable material preferably includes a temporary binder that is set before the firing step to hold the mix in shape for firing.
Simulations of heterogeneous detonations and post-detonation turbulent mixing and afterburning
NASA Astrophysics Data System (ADS)
Gottiparthi, Kalyana Chakravarthi; Menon, Suresh
2012-03-01
We conduct three-dimensional numerical simulations of the propagation of blast waves resulting from detonation of a nitromethane charge of radius 5.9 cm loaded with aluminum particles and analyze the afterburn process as well as the generation of multiple scales ofmixing in the post detonation flow field. In the current study, the particle combustion is observed to be dependent on particle dispersal and mixing of gases in the flow where particle dispersal spreads aluminum within the flow and mixing provides the necessary oxidizer. Thus, 5 μm aluminum particles are burnt more effectively in comparison to 10 μm particles for a fixed initial mass of particles. Also, for a fixed initial particle size, increase in the initial mass of aluminum particles resulted in greater mixing.
NASA Astrophysics Data System (ADS)
Kim, Daeik D.; Thomas, Mikkel A.; Brooke, Martin A.; Jokerst, Nan M.
2004-06-01
Arrays of embedded bipolar junction transistor (BJT) photo detectors (PD) and a parallel mixed-signal processing system were fabricated as a silicon complementary metal oxide semiconductor (Si-CMOS) circuit for the integration optical sensors on the surface of the chip. The circuit was fabricated with AMI 1.5um n-well CMOS process and the embedded PNP BJT PD has a pixel size of 8um by 8um. BJT PD was chosen to take advantage of its higher gain amplification of photo current than that of PiN type detectors since the target application is a low-speed and high-sensitivity sensor. The photo current generated by BJT PD is manipulated by mixed-signal processing system, which consists of parallel first order low-pass delta-sigma oversampling analog-to-digital converters (ADC). There are 8 parallel ADCs on the chip and a group of 8 BJT PDs are selected with CMOS switches. An array of PD is composed of three or six groups of PDs depending on the number of rows.
Fabrication of solid oxide fuel cell by electrochemical vapor deposition
Riley, B.; Szreders, B.E.
1988-04-26
In a high temperature solid oxide fuel cell (SOFC), the deposition of an impervious high density thin layer of electrically conductive interconnector material, such as magnesium doped lanthanum chromite, and of an electrolyte material, such as yttria stabilized zirconia, onto a porous support/air electrode substrate surface is carried out at high temperatures (/approximately/1100/degree/ /minus/ 1300/degree/C) by a process of electrochemical vapor deposition. In this process, the mixed chlorides of the specific metals involved react in the gaseous state with water vapor resulting in the deposit of an impervious thin oxide layer on the support tube/air electrode substrate of between 20--50 microns in thickness. An internal heater, such as a heat pipe, is placed within the support tube/air electrode substrate and induces a uniform temperature profile therein so as to afford precise and uniform oxide deposition kinetics in an arrangement which is particularly adapted for large scale, commercial fabrication of SOFCs.
Kim, Seong Hee; Lee, Sang Woo; Lee, Gye Min; Lee, Byung-Tae; Yun, Seong-Taek; Kim, Soon-Oh
2016-01-01
A photo-oxidation process using UV-LEDs and TiO2 was studied for removal of cyanide contained in mine wastewater and leachates. This study focused on monitoring of a TiO2-catalyzed LED photo-oxidation process, particularly emphasizing the effects of TiO2 form and light source on the efficiency of cyanide removal. The generation of hydroxyl radicals was also examined during the process to evaluate the mechanism of the photo-catalytic process. The apparent removal efficiency of UV-LEDs was lower than that achieved using a UV-lamp, but cyanide removal in response to irradiation as well as consumption of electrical energy was observed to be higher for UV-LEDs than for UV-lamps. The Degussa P25 TiO2 showed the highest performance of the TiO2 photo-catalysts tested. The experimental results indicate that hydroxyl radicals oxidize cyanide to OCN(-), NO2(-), NO3(-), HCO3(-), and CO3(2-), which have lower toxicity than cyanide. In addition, the overall efficacy of the process appeared to be significantly affected by diverse operational parameters, such as the mixing ratio of anatase and rutile, the type of gas injected, and the number of UV-LEDs used. Copyright © 2015 Elsevier Ltd. All rights reserved.
Porous metal oxide microspheres from ion exchange resin
NASA Astrophysics Data System (ADS)
Picart, S.; Parant, P.; Caisso, M.; Remy, E.; Mokhtari, H.; Jobelin, I.; Bayle, J. P.; Martin, C. L.; Blanchart, P.; Ayral, A.; Delahaye, T.
2015-07-01
This study is devoted to the synthesis and the characterization of porous metal oxide microsphere from metal loaded ion exchange resin. Their application concerns the fabrication of uranium-americium oxide pellets using the powder-free process called Calcined Resin Microsphere Pelletization (CRMP). Those mixed oxide ceramics are one of the materials envisaged for americium transmutation in sodium fast neutron reactors. The advantage of such microsphere precursor compared to classical oxide powder is the diminution of the risk of fine dissemination which can be critical for the handling of highly radioactive powders such as americium based oxides and the improvement of flowability for the filling of compaction chamber. Those millimetric oxide microspheres incorporating uranium and americium were synthesized and characterizations showed a very porous microstructure very brittle in nature which occurred to be adapted to shaping by compaction. Studies allowed to determine an optimal heat treatment with calcination temperature comprised between 700-800 °C and temperature rate lower than 2 °C/min. Oxide Precursors were die-pressed into pellets and then sintered under air to form regular ceramic pellets of 95% of theoretical density (TD) and of homogeneous microstructure. This study validated thus the scientific feasibility of the CRMP process to prepare bearing americium target in a powder free manner.
Henry, S M; Grbić-Galić, D
1991-01-01
Trichloroethylene (TCE)-transforming aquifer methanotrophs were evaluated for the influence of TCE oxidation toxicity and the effect of reductant availability on TCE transformation rates during methane starvation. TCE oxidation at relatively low (6 mg liter-1) TCE concentrations significantly reduced subsequent methane utilization in mixed and pure cultures tested and reduced the number of viable cells in the pure culture Methylomonas sp. strain MM2 by an order of magnitude. Perchloroethylene, tested at the same concentration, had no effect on the cultures. Neither the TCE itself nor the aqueous intermediates were responsible for the toxic effect, and it is suggested that TCE oxidation toxicity may have resulted from reactive intermediates that attacked cellular macromolecules. During starvation, all methanotrophs tested exhibited a decline in TCE transformation rates, and this decline followed exponential decay. Formate, provided as an exogenous electron donor, increased TCE transformation rates in Methylomonas sp. strain MM2, but not in mixed culture MM1 or unidentified isolate, CSC-1. Mixed culture MM2 did not transform TCE after 15 h of starvation, but mixed cultures MM1 and MM3 did. The methanotrophs in mixed cultures MM1 and MM3, and the unidentified isolate CSC-1 that was isolated from mixed culture MM1 contained lipid inclusions, whereas the methanotrophs of mixed culture MM2 and Methylomonas sp. strain MM2 did not. It is proposed that lipid storage granules serve as an endogenous source of electrons for TCE oxidation during methane starvation. Images PMID:2036010
Kim, Manhoe; DiMaggio, Craig; Salley, Steven O; Simon Ng, K Y
2012-08-01
A new class of zirconia supported mixed metal oxides (ZnO-TiO(2)-Nd(2)O(3)/ZrO(2) and ZnO-SiO(2)-Yb(2)O(3)/ZrO(2)) has demonstrated the ability to convert low quality, high free fatty acid (FFA) bio-oils into biodiesel. Pelletized catalysts of ZrO(2) supported metal oxides were prepared via a sol-gel process and tested in continuous flow packed bed reactors for up to 6 months. In a single pass, while operating at mild to moderate reaction conditions, 195 °C and 300 psi, these catalysts can perform simultaneous esterification and transesterification reactions on feedstock of 33% FFA and 67% soybean oil to achieve FAME yields higher than 90%. Catalytic activity of the ZrO(2) supported metal oxide catalysts was highly dependent on the metal oxide composition. These heterogeneous catalysts will enable biodiesel manufacturers to avoid problems inherent in homogeneous processes, such as separation and washing, corrosive conditions, and excessive methanol usage. Copyright © 2012 Elsevier Ltd. All rights reserved.
Enhanced thermal diffusivity of copperbased composites using copper-RGO sheets
NASA Astrophysics Data System (ADS)
Kim, Sangwoo; Kwon, Hyouk-Chon; Lee, Dohyung; Lee, Hyo-Soo
2017-11-01
The synthesis of copper-reduced graphene oxide (RGO) sheets was investigated in order to control the agglutination of interfaces and develop a manufacturing process for copper-based composite materials based on spark plasma sintering. To this end, copper-GO (graphene oxide) composites were synthesized using a hydrothermal method, while the copper-reduced graphene oxide composites were made by hydrogen reduction. Graphene oxide-copper oxide was hydrothermally synthesized at 80 °C for 5 h, and then annealed at 800 °C for 5 h in argon and hydrazine rate 9:1 to obtain copper-RGO flakes. The morphology and structure of these copper-RGO sheets were characterized using scanning electron microscopy, transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy and Raman spectroscopy. After vibratory mixing of the synthesized copper-RGO composites (0-2 wt%) with copper powder, they were sintered at 600 °C for 5 min under100 MPa of pressure by spark plasma sintering process. The thermal diffusivity of the resulting sintered composite was characterized by the laser flash method at 150 °C.
Composite mixed oxide ionic and electronic conductors for hydrogen separation
Gopalan, Srikanth [Westborough, MA; Pal, Uday B [Dover, MA; Karthikeyan, Annamalai [Quincy, MA; Hengdong, Cui [Allston, MA
2009-09-15
A mixed ionic and electronic conducting membrane includes a two-phase solid state ceramic composite, wherein the first phase comprises an oxygen ion conductor and the second phase comprises an n-type electronically conductive oxide, wherein the electronically conductive oxide is stable at an oxygen partial pressure as low as 10.sup.-20 atm and has an electronic conductivity of at least 1 S/cm. A hydrogen separation system and related methods using the mixed ionic and electronic conducting membrane are described.
Mixed oxide nanoparticles and method of making
Lauf, Robert J.; Phelps, Tommy J.; Zhang, Chuanlun; Roh, Yul
2002-09-03
Methods and apparatus for producing mixed oxide nanoparticulates are disclosed. Selected thermophilic bacteria cultured with suitable reducible metals in the presence of an electron donor may be cultured under conditions that reduce at least one metal to form a doped crystal or mixed oxide composition. The bacteria will form nanoparticles outside the cell, allowing easy recovery. Selection of metals depends on the redox potentials of the reducing agents added to the culture. Typically hydrogen or glucose are used as electron donors.
Voigt, J.A.; Sipola, D.L.; Tuttle, B.A.; Anderson, M.T.
1999-06-01
A process is disclosed for producing powders of perovskite-type compounds which comprises mixing a metal alkoxide solution with a lead acetate solution to form a homogeneous, clear metal solution, adding an oxalic acid/n-propanol solution to this metal solution to form an easily filterable, free-flowing precursor powder and then calcining this powder. This process provides fine perovskite-phase powders with ferroelectric properties which are particularly useful in a variety of electronic applications. 4 figs.
Voigt, James A.; Sipola, Diana L.; Tuttle, Bruce A.; Anderson, Mark T.
1999-01-01
A process for producing powders of perovskite-type compounds which comprises mixing a metal alkoxide solution with a lead acetate solution to form a homogeneous, clear metal solution, adding an oxalic acid/n-propanol solution to this metal solution to form an easily filterable, free-flowing precursor powder and then calcining this powder. This process provides fine perovskite-phase powders with ferroelectric properties which are particularly useful in a variety of electronic applications.
Preparation of .alpha., .beta.-unsaturated carboxylic acids and anhydrides
Spivey, James Jerry; Gogate, Makarand Ratnakav; Zoeller, Joseph Robert; Tustin, Gerald Charles
1998-01-01
Disclosed is a process for the preparation of .alpha.,.beta.-unsaturated carboxylic acids and anhydrides thereof which comprises contacting formaldehyde or a source of formaldehyde with a carboxylic anhydride in the presence of a catalyst comprising mixed oxides of vanadium, phosphorus and, optionally, a third component selected from titanium, aluminum or, preferably silicon.
Preparation of {alpha}, {beta}-unsaturated carboxylic acids and anhydrides
Spivey, J.J.; Gogate, M.R.; Zoeller, J.R.; Tustin, G.C.
1998-01-20
Disclosed is a process for the preparation of {alpha},{beta}-unsaturated carboxylic acids and anhydrides thereof which comprises contacting formaldehyde or a source of formaldehyde with a carboxylic anhydride in the presence of a catalyst comprising mixed oxides of vanadium, phosphorus and, optionally, a third component selected from titanium, aluminum or, preferably silicon.
Air pollution from aircraft. [jet exhaust - aircraft fuels/combustion efficiency
NASA Technical Reports Server (NTRS)
Heywood, J. B.; Chigier, N. A.
1975-01-01
A model which predicts nitric oxide and carbon monoxide emissions from a swirl can modular combustor is discussed. A detailed analysis of the turbulent fuel-air mixing process in the swirl can module wake region is reviewed. Hot wire anemometry was employed, and gas sampling analysis of fuel combustion emissions were performed.
NASA Astrophysics Data System (ADS)
Benoved, Nir; Kesler, O.
Air plasma spraying has been used to produce porous composite anodes based on Ce 0.8Sm 0.2O 1.9 (SDC) and Cu for use in solid oxide fuel cells (SOFCs). Preliminarily, a range of plasma conditions has been examined for the production of composite coatings from pre-mixed SDC and CuO powders. Plasma gas compositions were varied to obtain a range of plasma temperatures. After reduction in H 2, coatings were characterized for composition and microstructure using EDX and SEM. As a result of these tests, symmetrical sintered electrolyte-supported anode-anode cells were fabricated by air plasma spraying of the anodes, followed by in situ reduction of the CuO to Cu. Full cells deposited on SS430 porous substrates were then produced in one integrated process. Fine CuO and SDC powders have been used to produce homogeneously mixed anode coatings with higher surface area microstructures, resulting in area-specific polarization resistances of 4.8 Ω cm 2 in impedance tests in hydrogen at 712 °C.
NASA Astrophysics Data System (ADS)
Behin, J.; Farhadian, N.
2017-10-01
Degradation of trifluralin, as a wide used pesticide, was investigated by advance oxidation process comprising O3/UV/H2O2 in a concentric tube airlift photoreactor. Main and interactive effects of three independent factors including pH (5-9), superficial gas velocity (0.05-0.15 cm/s) and time (20-60 min) on the removal efficiency were assessed using central composite face-centered design and response surface method (RSM). The RSM allows to solve multivariable equations and to estimate simultaneously the relative importance of several contributing parameters even in the presence of complex interaction. Airlift photoreactor imposed a synergistic effect combining good mixing intensity merit with high ozone transfer rate. Mixing in the airlift photoreactor enhanced the UV light usage efficiency and its availability. Complete degradation of trifluralin was achieved under optimum conditions of pH 9 and superficial gas velocity 0.15 cm/s after 60 min of reaction time. Under these conditions, degradation of trifluralin was performed in a bubble column photoreactor of similar volume and a lower efficiency was observed.
Carbothermic reduction and prereduced charge for producing aluminum-silicon alloys
Stevenson, David T.; Troup, Robert L.
1985-01-01
Disclosed is a method for the carbothermic reduction of aluminum oxide to form an aluminum alloy including producing silicon carbide by heating a first mix of carbon and silicon oxide in a combustion reactor to an elevated temperature sufficient to produce silicon carbide at an accelerated rate, the heating being provided by an in situ combustion with oxygen gas, and then admixing the silicon carbide with carbon and aluminum oxide to form a second mix and heating the second mix in a second reactor to an elevated metal-forming temperature sufficient to produce aluminum-silicon alloy. The prereduction step includes holding aluminum oxide substantially absent from the combustion reactor. The metal-forming step includes feeding silicon oxide in a preferred ratio with silicon carbide.
1994-06-10
RPeport PROPERTY CONTROL OF ( PERFLUORINATED IONOMER)/(INORGANIC OXIDE) COMPOSITES BY TAILORING THE NANOSCALE MORPHOLOGY Kenneth A. Mauritz and Robert...Concept ......................................... 45 B. [Si0 2 -TiO2 (mixed)]/Nafion Nanocomposites: Sorption of Pre-Mixed Alkoxides...Nanocomposites: Sorption of Pre- Mixed Alkoxides ......................................... 49 A. Experimental Procedure ............................. 49 B
Optical and electrical studies of cerium mixed oxides
NASA Astrophysics Data System (ADS)
Sherly, T. R.; Raveendran, R.
2014-10-01
The fast development in nanotechnology makes enthusiastic interest in developing nanomaterials having tailor made properties. Cerium mixed oxide materials have received great attention due to their UV absorption property, high reactivity, stability at high temperature, good electrical property etc and these materials find wide applications in solid oxide fuel cells, solar control films, cosmetics, display units, gas sensors etc. In this study cerium mixed oxide compounds were prepared by co-precipitation method. All the samples were doped with Zn (II) and Fe (II). Preliminary characterizations such as XRD, SEM / EDS, TEM were done. UV - Vis, Diffuse reflectance, PL, FT-IR, Raman and ac conductivity studies of the samples were performed.
Carbothermic reduction with parallel heat sources
Troup, Robert L.; Stevenson, David T.
1984-12-04
Disclosed are apparatus and method of carbothermic direct reduction for producing an aluminum alloy from a raw material mix including aluminum oxide, silicon oxide, and carbon wherein parallel heat sources are provided by a combustion heat source and by an electrical heat source at essentially the same position in the reactor, e.g., such as at the same horizontal level in the path of a gravity-fed moving bed in a vertical reactor. The present invention includes providing at least 79% of the heat energy required in the process by the electrical heat source.
Lagrangian Approach to Jet Mixing and Optimization of the Reactor for Production of Carbon Nanotubes
NASA Technical Reports Server (NTRS)
Povitsky, Alex; Salas, Manuel D.
2001-01-01
This study was motivated by an attempt to optimize the High Pressure carbon oxide (HiPco) process for the production of carbon nanotubes from gaseous carbon oxide, The goal is to achieve rapid and uniform heating of catalyst particles by an optimal arrangement of jets. A mixed Eulerian and Lagrangian approach is implemented to track the temperature of catalyst particles along their trajectories as a function of time. The FLUENT CFD software with second-order upwind approximation of convective terms and an algebraic multigrid-based solver is used. The poor performance of the original reactor configuration is explained in terms of features of particle trajectories. The trajectories most exposed to the hot jets appear to be the most problematic for heating because they either bend towards the cold jet interior or rotate upwind of the mixing zone. To reduce undesirable slow and/or oscillatory heating of catalyst particles, a reactor configuration with three central jets is proposed and the optimal location of the central and peripheral nozzles is determined.
Huang, Chih-Chia; Hwu, Jih Ru; Su, Wu-Chou; Shieh, Dar-Bin; Tzeng, Yonhua; Yeh, Chen-Sheng
2006-05-03
We have demonstrated a simple fabrication of hollow nanoparticles by halide-induced corrosion oxidation with the aid of surfactants. Cuprous oxide Cu2O nanoshells can be generated by simply mixing Cu nanoparticles with alkyltrimethylammonium halides at 55 degrees C for 16 min. The hollowing mechanism proposed is that absorption of surfactants onto the Cu surface facilitates the formation of the void interior through an oxidative etching process. Upon extending the reaction up to 4 h, fragmentation, oxidation, and self-assembly were observed and the CuO ellipsoidal structures were formed. The headgroup lengths of the surfactants influenced the degree of CuO ellipsoidal formation, whereby longer surfactants favored the generation of ellipsoids. Optical absorption measured by UV-visible spectroscopy was used to monitor both oxidation courses of Cu-->Cu2O and Cu2O-->CuO and to determine the band-gap energies as 2.4 eV for Cu2O nanoshells and 1.89 eV for CuO ellipsoids. For the contact-angle measurements, the wettability changed from hydrophilicity (18 degrees) to hydrophobicity (140 degrees) as the Cu2O nanoshells shifted to CuO ellipsoids.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mishra, Amit; Li, Fanxing; Santiso, Erik
Energy and global climate change are two grand challenges to the modern society. An urgent need exists for development of clean and efficient energy conversion processes. The chemical looping strategy, which utilizes regenerable oxygen carriers (OCs) to indirectly convert carbonaceous fuels via redox reactions, is considered to be one of the more promising approaches for CO2 capture by the U.S. Department of Energy (USDOE). To date, most long-term chemical looping operations were conducted using gaseous fuels, even though direct conversion of coal is more desirable from both economics and CO2 capture viewpoints. The main challenges for direct coal conversion residemore » in the stringent requirements on oxygen carrier performances. In addition, coal char and volatile compounds are more challenging to convert than gaseous fuels. A promising approach for direct conversion of coal is the so called chemical looping with oxygen uncoupling (CLOU) technique. In the CLOU process, a metal oxide that decomposes at the looping temperature, and releases oxygen to the gas phase is used as the OC. The overarching objective of this project was to discover the fundamental principles for rational design and optimization of oxygen carriers (OC) in coal chemical looping combustion (CLC) processes. It directly addresses Topic Area B of the funding opportunity announcement (FOA) in terms of “predictive description of the phase behavior and mechanical properties” of “mixed metal oxide” based OCs and rational development of new OC materials with superior functionality. This was achieved through studies exploring i) iron-containing mixed-oxide composites as oxygen carriers for CLOU, ii) Ca1-xAxMnO3-δ (A = Sr and Ba) as oxygen carriers for CLOU, iii) CaMn1-xBxO3-δ (B=Al, V, Fe, Co, and Ni) as oxygen carrier for CLOU and iv) vacancy creation energy in Mn-containing perovskites as an indicator chemical looping with oxygen uncoupling.« less
NASA Technical Reports Server (NTRS)
Rosfjord, T. J.; Padget, F. C.; Tacina, Robert R. (Technical Monitor)
2001-01-01
In support of Pratt & Whitney efforts to define the Rich burn/Quick mix/Lean burn (RQL) combustor for the High Speed Civil Transport (HSCT) aircraft engine, UTRC conducted a flametube-scale study of the RQL concept. Extensive combustor testing was performed at the Supersonic Cruise (SSC) condition of a HSCT engine cycle, Data obtained from probe traverses near the exit of the mixing section confirmed that the mixing section was the critical component in controlling combustor emissions. Circular-hole configurations, which produced rapidly-, highly-penetrating jets, were most effective in limiting NOx. The spatial profiles of NOx and CO at the mixer exit were not directly interpretable using a simple flow model based on jet penetration, and a greater understanding of the flow and chemical processes in this section are required to optimize it. Neither the rich-combustor equivalence ratio nor its residence time was a direct contributor to the exit NOx. Based on this study, it was also concluded that (1) While NOx formation in both the mixing section and the lean combustor contribute to the overall emission, the NOx formation in the mixing section dominates. The gas composition exiting the rich combustor can be reasonably represented by the equilibrium composition corresponding to the rich combustor operating condition. Negligible NOx exits the rich combustor. (2) At the SSC condition, the oxidation processes occurring in the mixing section consume 99 percent of the CO exiting the rich combustor. Soot formed in the rich combustor is also highly oxidized, with combustor exit SAE Smoke Number <3. (3) Mixing section configurations which demonstrated enhanced emissions control at SSC also performed better at part-power conditions. Data from mixer exit traverses reflected the expected mixing behavior for off-design jet to crossflow momentum-flux ratios. (4) Low power operating conditions require that the RQL combustor operate as a lean-lean combustor to achieve low CO and high efficiency. (5) A RQL combustor can achieve the emissions goal of EINOX = 5 at the Supersonic Cruise operating condition for a HSCT engine.
NASA Technical Reports Server (NTRS)
Tacina, Robert R. (Technical Monitor); Rosfjord, T. J.; Padget, F. C.
2001-01-01
In support of Pratt & Whitney efforts to define the Rich burn/Quick mix/Lean burn (RQL) combustor for the High Speed Civil Transport (HSCT) aircraft engine, UTRC conducted a flametube-scale study of the RQL concept. Extensive combustor testing was performed at the Supersonic Cruise (SSC) condition of an HSCT engine cycle. Data obtained from probe traverses near the exit of the mixing section confirmed that the mixing section was the critical component in controlling combustor emissions. Circular-hole configurations, which produced rapidly-, highly-penetrating jets, were most effective in limiting NO(x). The spatial profiles of NO(x) and CO at the mixer exit were not directly interpretable using a simple flow model based on jet penetration, and a greater understanding of the flow and chemical processes in this section are required to optimize it. Neither the rich-combustor equivalence ratio nor its residence time was a direct contributor to the exit NO(x). Based on this study, it was also concluded that: (1) While NO(x) formation in both the mixing section and the lean combustor contribute to the overall emission, the NOx formation in the mixing section dominates. The gas composition exiting the rich combustor can be reasonably represented by the equilibrium composition corresponding to the rich combustor operating condition. Negligible NO(x) exits the rich combustor. (2) At the SSC condition, the oxidation processes occurring in the mixing section consume 99 percent of the CO exiting the rich combustor. Soot formed in the rich combustor is also highly oxidized, with combustor exit SAE Smoke Number <3. (3) Mixing section configurations which demonstrated enhanced emissions control at SSC also performed better at part-power conditions. Data from mixer exit traverses reflected the expected mixing behavior for off-design jet to crossflow momentum-flux ratios. (4) Low power operating conditions require that the RQL combustor operate as a lean-lean combustor to achieve low CO and high efficiency. (5) An RQL combustor can achieve the emissions goal of EINO(x) = 5 at the Supersonic Cruise operating condition for an HSCT engine.
Method for preparing spherical ferrite beads and use thereof
Lauf, Robert J.; Anderson, Kimberly K.; Montgomery, Frederick C.; Collins, Jack L.
2002-01-01
The invention allows the fabrication of small, dense, highly polished spherical beads of hexagonal ferrites with selected compositions for use in nonreciprocal microwave and mm-wave devices as well as in microwave absorbent or reflective coatings, composites, and the like. A porous, generally spherical bead of hydrous iron oxide is made by a sol-gel process to form a substantially rigid bead having a generally fine crystallite size and correspondingly finely distributed internal porosity. The resulting gel bead is washed and hydrothermally reacted with a soluble alkaline earth salt (typically Ba or Sr) under conditions of elevated temperature and pressure to convert the bead into a mixed hydrous iron-alkaline earth oxide while retaining the generally spherical shape. This mixed oxide bead is then washed, dried, and calcined to produce the desired (BaFe.sub.12 O.sub.19 or SrFe.sub.12 O.sub.19) crystal structure. The calcined bead is then sintered to form a dense bead of the BaFe.sub.12 O.sub.19 and SrFe.sub.12 O.sub.19 phase suitable for polishing and incorporation into various microwave devices and components.
Excitons in Cuprous Oxide: Photoionization and Other Multiphoton Processes
NASA Astrophysics Data System (ADS)
Frazer, Nicholas Laszlo
In cuprous oxide (Cu2O), momentum from the absorption of two infrared photons to make an orthoexciton is conserved and detected through the photon component of a resulting mixed exciton/photon (quadrupole exciton polariton) state. I demonstrated that this process, which actually makes the photon momentum more precisely defined, is disrupted by photoionization of excitons. Some processes are known to affect exciton propagation in both the pump and exciton stages, such as phonon emission, exciton-exciton (Auger) scattering, and third harmonic generation. These processes alone were not able to explain all observed losses of excitons or all detected scattering products, which lead me to design an optical pump-probe experiment to measure the exciton photoionization cross section, which is (3.9+/-0.2) x 10-22 m2. This dissertation describes the synthesis of cuprous oxide crystals using oxidation of copper, crystallization from melt with the optical floating zone method, and annealing. The cuprous oxide crystals were characterized using time and space resolved luminescence, leading to the discovery of new defect properties. Selection rules and overall efficiency of third harmonic generation in these crystals were characterized. Exciton photoionization was demonstrated through the depletion of polariton luminescence by an optical probe, the production of phonon linked luminescence as a scattering product, temporal delay of the probe, and time resolved luminescence. The results are integrated with the traditional dynamical model of exciton densities. An additional investigation of copper/cuprous oxide/gold photovoltaic devices is appended.
In situ remediation process using divalent metal cations
Brady, Patrick V.; Khandaker, Nadim R.; Krumhansl, James L.; Teter, David M.
2004-12-14
An in situ process for treating ambient solid materials (e.g., soils, aquifer solids, sludges) by adding one or more divalent metal cations to the ambient solid material. The added divalent metal cations, such as Cu.sup.2+ or Zn.sup.2+, combine with metal oxide/hydroxides (e.g., ferric oxide/hydroxide or aluminum oxide/hydroxide) already present in the ambient solid material to form an effective sorbent material having a large number of positively-charged surface complexes that binds and immobilizes anionic contaminant species (e.g., arsenic or chromate). Divalent metal cations can be added, for example, by injecting an aqueous solution of CuSO.sub.4 into an aquifer contaminated with arsenic or chromate. Also, sludges can be stabilized against leaching of anionic contaminants through the addition of divalent metal cations. Also, an inexpensive sorbent material can be easily formed by mixing divalent metal cations with soil that has been removed from the ground.
NASA Astrophysics Data System (ADS)
Hajimammadov, Rashad; Csendes, Zita; Ojakoski, Juha-Matti; Lorite, Gabriela Simone; Mohl, Melinda; Kordas, Krisztian
2017-09-01
Electrical transport properties of individual nanowires (both in axial and transversal directions) and their random networks suggest rapid oxidation when Cu is exposed to ambient conditions. The oxidation process is elucidated by thorough XRD, XPS and Raman analyzes conducted for a period of 30 days. Based on the obtained experimental data, we may conclude that first, cuprous oxide and copper hydroxide form that finally transform to cupric oxide. In electrical applications, oxidation of copper is not a true problem as long as thin films or bulk metal is concerned. However, as highlighted in our work, this is not the case for nanowires, since the oxidized surface plays quite important role in the contact formation and also in the conduction of percolated nanowire networks. On the other hand, by taking advantage of the mixed surface oxide states present on the nanowires along with their large specific surface area, we tested and found excellent catalytic activity of the oxidized nanowires in phenol oxidation, which suggests further applications of these materials in catalysis.
Banger, Kulbinder K; Peterson, Rebecca L; Mori, Kiyotaka; Yamashita, Yoshihisa; Leedham, Timothy; Sirringhaus, Henning
2014-01-28
Amorphous mixed metal oxides are emerging as high performance semiconductors for thin film transistor (TFT) applications, with indium gallium zinc oxide, InGaZnO (IGZO), being one of the most widely studied and best performing systems. Here, we investigate alkaline earth (barium or strontium) doped InBa(Sr)ZnO as alternative, semiconducting channel layers and compare their performance of the electrical stress stability with IGZO. In films fabricated by solution-processing from metal alkoxide precursors and annealed to 450 °C we achieve high field-effect electron mobility up to 26 cm 2 V -1 s -1 . We show that it is possible to solution-process these materials at low process temperature (225-200 °C yielding mobilities up to 4.4 cm 2 V -1 s -1 ) and demonstrate a facile "ink-on-demand" process for these materials which utilizes the alcoholysis reaction of alkyl metal precursors to negate the need for complex synthesis and purification protocols. Electrical bias stress measurements which can serve as a figure of merit for performance stability for a TFT device reveal Sr- and Ba-doped semiconductors to exhibit enhanced electrical stability and reduced threshold voltage shift compared to IGZO irrespective of the process temperature and preparation method. This enhancement in stability can be attributed to the higher Gibbs energy of oxidation of barium and strontium compared to gallium.
2013-01-01
Amorphous mixed metal oxides are emerging as high performance semiconductors for thin film transistor (TFT) applications, with indium gallium zinc oxide, InGaZnO (IGZO), being one of the most widely studied and best performing systems. Here, we investigate alkaline earth (barium or strontium) doped InBa(Sr)ZnO as alternative, semiconducting channel layers and compare their performance of the electrical stress stability with IGZO. In films fabricated by solution-processing from metal alkoxide precursors and annealed to 450 °C we achieve high field-effect electron mobility up to 26 cm2 V–1 s–1. We show that it is possible to solution-process these materials at low process temperature (225–200 °C yielding mobilities up to 4.4 cm2 V–1 s–1) and demonstrate a facile “ink-on-demand” process for these materials which utilizes the alcoholysis reaction of alkyl metal precursors to negate the need for complex synthesis and purification protocols. Electrical bias stress measurements which can serve as a figure of merit for performance stability for a TFT device reveal Sr- and Ba-doped semiconductors to exhibit enhanced electrical stability and reduced threshold voltage shift compared to IGZO irrespective of the process temperature and preparation method. This enhancement in stability can be attributed to the higher Gibbs energy of oxidation of barium and strontium compared to gallium. PMID:24511184
Carolan, Michael Francis [Allentown, PA; Bernhart, John Charles [Fleetwood, PA
2012-08-21
Method for processing an article comprising mixed conducting metal oxide material. The method comprises contacting the article with an oxygen-containing gas and either reducing the temperature of the oxygen-containing gas during a cooling period or increasing the temperature of the oxygen-containing gas during a heating period; during the cooling period, reducing the oxygen activity in the oxygen-containing gas during at least a portion of the cooling period and increasing the rate at which the temperature of the oxygen-containing gas is reduced during at least a portion of the cooling period; and during the heating period, increasing the oxygen activity in the oxygen-containing gas during at least a portion of the heating period and decreasing the rate at which the temperature of the oxygen-containing gas is increased during at least a portion of the heating period.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kwon, K.C.; Crowe, E.R.; Gangwal, S.K.
1997-01-01
Hot-gas desulfurization for the integrated gasification combined cycle (IGCC) process has been investigated to effectively remove hydrogen sulfide with various metal oxide sorbents at high temperatures and pressures. Metal oxide sorbents such as zinc titanate oxide, zinc ferrite oxide, copper oxide, manganese oxide and calcium oxide were found to be promising sorbents in comparison with other removal methods such as membrane separation and reactive membrane separation. The removal reaction of H{sub 2}S from coal gas mixtures with zinc titanate oxide sorbents was conducted in a batch reactor. The main objectives of this research are to formulate promising metal oxide sorbentsmore » for removal of hydrogen sulfide from coal gas mixtures, to compare reactivity of a formulated sorbent with a sorbent supplied by the Research Triangle Institute at high temperatures and pressures, and to determine effects of concentrations of moisture contained in coal gas mixtures on equilibrium absorption of H{sub 2}S into metal oxide sorbents. Promising durable metal oxide sorbents with high-sulfur-absorbing capacity were formulated by mixing active metal oxide powders with inert metal oxide powders and calcining these powder mixtures.« less
Vitrification of organics-containing wastes
Bickford, D.F.
1995-01-01
A process for stabilizing organics-containing waste materials and recovery metals therefrom, and a waste glass product made according to the process are described. Vitrification of wastes such as organic ion exchange resins, electronic components and the like can be accomplished by mixing at least one transition metal oxide with the wastes, and, if needed, glass formers to compensate for a shortage of silicates or other glass formers in the wastes. The transition metal oxide increases the rate of oxidation of organic materials in the wastes to improve the composition of the glass-forming mixture: at low temperatures, the oxide catalyzes oxidation of a portion of the organics in the waste; at higher temperatures, the oxide dissolves and the resulting oxygen ions oxidize more of the organics; and at vitrification temperatures, the metal ions conduct oxygen into the melt to oxidize the remaining organics. In addition, the transition metal oxide buffers the redox potential of the glass melt so that metals such as Au, Pt, Ag, and Cu separate form the melt in the metallic state and can be recovered. After the metals are recovered, the remainder of the melt is allowed to cool and may subsequently be disposed of. The product has good leaching resistance and can be disposed of in an ordinary landfill, or, alternatively, used as a filler in materials such as concrete, asphalt, brick and tile.
Vitrification of organics-containing wastes
Bickford, Dennis F.
1997-01-01
A process for stabilizing organics-containing waste materials and recovering metals therefrom, and a waste glass product made according to the process. Vitrification of wastes such as organic ion exchange resins, electronic components and the like can be accomplished by mixing at least one transition metal oxide with the wastes, and, if needed, glass formers to compensate for a shortage of silicates or other glass formers in the wastes. The transition metal oxide increases the rate of oxidation of organic materials in the wastes to improve the composition of the glass-forming mixture: at low temperatures, the oxide catalyzes oxidation of a portion of the organics in the waste; at higher temperatures, the oxide dissolves and the resulting oxygen ions oxidize more of the organics; and at vitrification temperatures, the metal ions conduct oxygen into the melt to oxidize the remaining organics. In addition, the transition metal oxide buffers the redox potential of the glass melt so that metals such as Au, Pt, Ag, and Cu separate from the melt in the metallic state and can be recovered. After the metals are recovered, the remainder of the melt is allowed to cool and may subsequently be disposed of. The product has good leaching resistance and can be disposed of in an ordinary landfill, or, alternatively, used as a filler in materials such as concrete, asphalt, brick and tile.
Vitrification of organics-containing wastes
Bickford, D.F.
1997-09-02
A process is described for stabilizing organics-containing waste materials and recovering metals therefrom, and a waste glass product made according to the process is also disclosed. Vitrification of wastes such as organic ion exchange resins, electronic components and the like can be accomplished by mixing at least one transition metal oxide with the wastes, and, if needed, glass formers to compensate for a shortage of silicates or other glass formers in the wastes. The transition metal oxide increases the rate of oxidation of organic materials in the wastes to improve the composition of the glass-forming mixture: at low temperatures, the oxide catalyzes oxidation of a portion of the organics in the waste; at higher temperatures, the oxide dissolves and the resulting oxygen ions oxidize more of the organics; and at vitrification temperatures, the metal ions conduct oxygen into the melt to oxidize the remaining organics. In addition, the transition metal oxide buffers the redox potential of the glass melt so that metals such as Au, Pt, Ag, and Cu separate from the melt in the metallic state and can be recovered. After the metals are recovered, the remainder of the melt is allowed to cool and may subsequently be disposed of. The product has good leaching resistance and can be disposed of in an ordinary landfill, or, alternatively, used as a filler in materials such as concrete, asphalt, brick and tile. 1 fig.
Carbothermic reduction and prereduced charge for producing aluminum-silicon alloys
Stevenson, D.T.; Troup, R.L.
1985-01-01
Disclosed is a method for the carbothermic reduction of aluminum oxide to form an aluminum alloy including producing silicon carbide by heating a first mix of carbon and silicon oxide in a combustion reactor to an elevated temperature sufficient to produce silicon carbide at an accelerated rate, the heating being provided by an in situ combustion with oxygen gas, and then admixing the silicon carbide with carbon and aluminum oxide to form a second mix and heating the second mix in a second reactor to an elevated metal-forming temperature sufficient to produce aluminum-silicon alloy. The prereduction step includes holding aluminum oxide substantially absent from the combustion reactor. The metal-forming step includes feeding silicon oxide in a preferred ratio with silicon carbide. 1 fig.
Volatility of methylglyoxal cloud SOA formed through OH radical oxidation and droplet evaporation
NASA Astrophysics Data System (ADS)
Ortiz-Montalvo, Diana L.; Schwier, Allison N.; Lim, Yong B.; McNeill, V. Faye; Turpin, Barbara J.
2016-04-01
The volatility of secondary organic aerosol (SOA) formed through cloud processing (aqueous hydroxyl radical (radOH) oxidation and droplet evaporation) of methylglyoxal (MGly) was studied. Effective vapor pressure and effective enthalpy of vaporization (ΔHvap,eff) were determined using 1) droplets containing MGly and its oxidation products, 2) a Vibrating Orifice Aerosol Generator (VOAG) system, and 3) Temperature Programmed Desorption Aerosol-Chemical Ionization Mass Spectrometry (TPD Aerosol-CIMS). Simulated in-cloud MGly oxidation (for 10-30 min) produces an organic mixture of higher and lower volatility components with an overall effective vapor pressure of (4 ± 7) × 10-7 atm at pH 3. The effective vapor pressure decreases by a factor of 2 with addition of ammonium hydroxide (pH 7). The fraction of organic material remaining in the particle-phase after drying was smaller than for similar experiments with glycolaldehyde and glyoxal SOA. The ΔHvap,eff of pyruvic acid and oxalic acid + methylglyoxal in the mixture (from TPD Aerosol-CIMS) were smaller than the theoretical enthalpies of the pure compounds and smaller than that estimated for the entire precursor/product mix after droplet evaporation. After 10-30 min of aqueous oxidation (one cloud cycle) the majority of the MGly + radOH precursor/product mix (even neutralized) will volatilize during droplet evaporation; neutralization and at least 80 min of oxidation at 10-12 M radOH (or >12 h at 10-14 M) is needed before low volatility ammonium oxalate exceeds pyruvate.
Metals and lipid oxidation. Contemporary issues.
Schaich, K M
1992-03-01
Lipid oxidation is now recognized to be a critically important reaction in physiological and toxicological processes as well as in food products. This provides compelling reasons to understand what causes lipid oxidation in order to be able to prevent or control the reactions. Redox-active metals are major factors catalyzing lipid oxidation in biological systems. Classical mechanisms of direct electron transfer to double bonds by higher valence metals and of reduction of hydroperoxides by lower valence metals do not always account for patterns of metal catalysis of lipid oxidation in multiphasic or compartmentalized biological systems. To explain why oxidation kinetics, mechanisms, and products in molecular environments which are both chemically and physically complex often do not follow classical patterns predicted by model system studies, increased consideration must be given to five contemporary issues regarding metal catalysis of lipid oxidation: hypervalent non-heme iron or iron-oxygen complexes, heme catalysis mechanism(s), compartmentalization of reactions and lipid phase reactions of metals, effects of metals on product mixes, and factors affecting the mode of metal catalytic action.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Innocenzi, V., E-mail: valentina.innocenzi1@univaq.it; De Michelis, I.; Ferella, F.
2013-11-15
Highlights: • Fluorescent powder of lamps. • Fluorescent powder of cathode ray rubes. • Recovery of yttrium from fluorescent powders. • Economic simulation for the processes to recover yttrium from WEEE. - Abstract: In this paper, yttrium recovery from fluorescent powder of lamps and cathode ray tubes (CRTs) is described. The process for treating these materials includes the following: (a) acid leaching, (b) purification of the leach liquors using sodium hydroxide and sodium sulfide, (c) precipitation of yttrium using oxalic acid, and (d) calcinations of oxalates for production of yttrium oxides. Experimental results have shown that process conditions necessary tomore » purify the solutions and recover yttrium strongly depend on composition of the leach liquor, in other words, whether the powder comes from treatment of CRTs or lamp. In the optimal experimental conditions, the recoveries of yttrium oxide are about 95%, 55%, and 65% for CRT, lamps, and CRT/lamp mixture (called MIX) powders, respectively. The lower yields obtained during treatments of MIX and lamp powders are probably due to the co-precipitation of yttrium together with other metals contained in the lamps powder only. Yttrium loss can be reduced to minimum changing the experimental conditions with respect to the case of the CRT process. In any case, the purity of final products from CRT, lamps, and MIX is greater than 95%. Moreover, the possibility to treat simultaneously both CRT and lamp powders is very important and interesting from an industrial point of view since it could be possible to run a single plant treating fluorescent powder coming from two different electronic wastes.« less
On a new ironmaking process to produce hydrogen and reduce energy consumption
NASA Astrophysics Data System (ADS)
Corbari, Rodrigo
The primary purpose of the present work is to compute the volume and composition of the products of a theoretical charring unit for high volatile coals. In particular, the compositions of volatile gas and char and the hydrogen yield of the process. The volume of oxygen necessary to supply the energy for the process was also calculated. The model consists of materials and energy balance equations and local thermodynamic equilibrium. The model was combined with experimental results relating the effect of temperature on the extent of devolatilization and chemistry evolution of coal. Results of the model indicated that temperature plays a major role defining the quantities and composition of charring products. The H2 concentration of the volatile gas increased from about 16vol% at 700°C to 47vol% at 900°C, leveling off at approximately 52vol% at 1100°C. The hydrogen yield of the process increased from 7 to 60 percent at 700°C and 1100°C respectively. For a typical high volatile coal considered, the volume of gas generated varied from about 210 to 780 liters/kg-coal(STP) according to temperature and fraction of solids combusted. The char becomes enriched in carbon and depleted in hydrogen as temperature is increased. As much as 97 percent of the hydrogen in coal is removed at 1100°C. In the second part of this study, the kinetics of reduction of iron oxide fines with simulated smelter gas was experimentally studied by thermogravimetry. An equimolar CO/CO2 mixture was selected to simulate the off-gas of a smelter operating with char at 50 percent post combustion. Reduction temperatures ranged from 590°C to 1000°C. Under these conditions, reduction was limited to wustite. Results indicated that the reduction kinetics and dominating reaction mechanism varied with temperature, extent of reduction and type of iron oxide employed. Reduction from hematite to wustite proceeded in two consecutive reaction steps with magnetite as an intermediate oxide. The first reduction step, hematite to magnetite, was fast and controlled by external gas mass transfer independently of type of iron oxide and temperature employed in this work. The second reduction step, magnetite to wustite, was the overall reaction controlling step. The reduction mechanism varied with temperature and type of iron oxide. For moderately porous oxide fines (VALE and Taconite ores), the magnetite to wustite reduction followed a uniform internal reaction regime, where the chemical reaction at the gas-solid surface is the slowest step. For highly porous oxide (PAH), the magnetite to wustite reduction step was controlled by external gas mass transfer above 700°C. Below that, a mixed regime involving external gas mass transfer and limited mixed control, which comprises pore diffusion and chemical reaction, took place. The rate equations for this mixed control reaction mechanism were developed and the limited mixed control rate constant (klm) was computed. For denser oxides under uniform internal reaction, the product of the rate constant and pore surface area (k·S) was calculated. The final part of this research focused on the study of the mechanisms contributing for the distribution of sulfur in the smelter process. A methodology was developed for this purpose, which computes the sulfur concentration and distribution between the metal, slag and gas phases of the smelter for selected case scenarios. The model assumed the smelter as an ideal continuous stirred reactor under steady state conditions. Sulfur in the gas phase resulted from slag desulfurization by reaction with gas and the direct transfer of sulfur from coal or char. In general, it was found that a large fraction of sulfur leaves the smelter with the gas when coal or char is the only sulfur input to the process. However, the predominant mechanism for transfer of sulfur into the gas depended on process operating conditions. The effect of recycling sulfur back into the smelter was also evaluated. This is important when sulfur leaving with the smelter gas is captured by pre-reduced iron oxide or by dust particles and re-introduced in the process. In general, the more sulfur is recycled into the smelter, the higher the metal and slag sulfur concentration. However, the increasing sulfur content of metal and slag when sulfur is recycled may be partially counter-balanced by the use of char in place of coal. (Abstract shortened by UMI.)
Fuel combustion exhibiting low NO.sub.x and CO levels
Keller, Jay O.; Bramlette, T. Tazwell; Barr, Pamela K.
1996-01-01
Method and apparatus for safely combusting a fuel in such manner that very low levels of NO.sub.x and CO are produced. The apparatus comprises an inlet line (12) containing a fuel and an inlet line (18) containing an oxidant. Coupled to the fuel line (12) and to the oxidant line (18) is a mixing means (11,29,33,40) for thoroughly mixing the fuel and the oxidant without combusting them. Coupled to the mixing means (11,29,33,40) is a means for injecting the mixed fuel and oxidant, in the form of a large-scale fluid dynamic structure (8), into a combustion region (2). Coupled to the combustion region (2) is a means (1,29,33) for producing a periodic flow field within the combustion region (2) to mix the fuel and the oxidant with ambient gases in order to lower the temperature of combustion. The means for producing a periodic flow field can be a pulse combustor (1), a rotating band (29), or a rotating cylinder (33) within an acoustic chamber (32) positioned upstream or downstream of the region (2) of combustion. The mixing means can be a one-way flapper valve (11); a rotating cylinder (33); a rotating band (29) having slots (31) that expose open ends (20,21) of said fuel inlet line (12) and said oxidant inlet line (18) simultaneously; or a set of coaxial fuel annuli (43) and oxidizer annuli (42,44). The means for producing a periodic flow field (1, 29, 33) may or may not be in communication with an acoustic resonance. When employed, the acoustic resonance may be upstream or downstream of the region of combustion (2).
NASA Astrophysics Data System (ADS)
Brown, Steven S.; Dubé, William P.; Karamchandani, Prakash; Yarwood, Greg; Peischl, Jeff; Ryerson, Thomas B.; Neuman, J. Andrew; Nowak, John B.; Holloway, John S.; Washenfelder, Rebecca A.; Brock, Charles A.; Frost, Gregory J.; Trainer, Michael; Parrish, David D.; Fehsenfeld, Frederick C.; Ravishankara, A. R.
2012-04-01
Coal-fired electric power plants produce a large fraction of total U.S. NOx emissions, but NOx from this sector has been declining in the last decade owing to installation of control technology. Nighttime aircraft intercepts of plumes from two different Texas power plants (Oklaunion near Wichita Falls and W. A. Parish near Houston) with different control technologies demonstrate the effect of these reductions on nighttime NOxoxidation rates. The analysis shows that the spatial extent of nighttime-emitted plumes to be quite limited and that mixing of highly concentrated plume NOx with ambient ozone is a determining factor for its nighttime oxidation. The plume from the uncontrolled plant had full titration of ozone through 74 km/2.4 h of downwind transport that suppressed nighttime oxidation of NO2 to higher oxides of nitrogen across the majority of the plume. The plume from the controlled plant did not have sufficient NOx to titrate background ozone, which led to rapid nighttime oxidation of NO2 during downwind transport. A plume model that includes horizontal mixing and nighttime chemistry reproduces the observed structures of the nitrogen species in the plumes from the two plants. The model shows that NOx controls not only reduce the emissions directly but also lead to an additional overnight NOx loss of 36-44% on average. The maximum reduction for 12 h of transport in darkness was 73%. The results imply that power plant NOxemissions controls may produce a larger than linear reduction in next-day, downwind ozone production following nighttime transport.
NASA Technical Reports Server (NTRS)
Mickelsen, William R
1957-01-01
Vapor fuel-oxidant mixing is analyzed for standing transverse acoustic fields simulating those existing in screeching or screaming combustors. The additional mixing due to the acoustic field is shown to be a function of sound pressure and frequency, stream velocity, and turbulence. The effects of these parameters are shown graphically for a realistic range of combustor conditions. The fuel-oxidant ratio at various combustor stations is shown to have a cyclic fluctuation which is in phase with the pressure fluctuations. Possible mechanisms contributing to screech and scream are discussed.
Gold-Copper Nanoparticles: Nanostructural Evolution and Bifunctional Catalytic Sites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yin, Jun; Shan, Shiyao; Yang, Lefu
2012-12-12
Understanding of the atomic-scale structure is essential for exploiting the unique catalytic properties of any nanoalloy catalyst. This report describes novel findings of an investigation of the nanoscale alloying of gold-copper (AuCu) nanoparticles and its impact on the surface catalytic functions. Two pathways have been explored for the formation of AuCu nanoparticles of different compositons, including wet chemical synthesis from mixed Au- and Cu-precursor molecules, and nanoscale alloying via an evolution of mixed Au- and Cu-precursor nanoparticles near the nanoscale melting temperatures. For the evolution of mixed precursor nanoparticles, synchrotron x-ray based in-situ real time XRD was used to monitormore » the structural changes, revealing nanoscale alloying and reshaping towards an fcc-type nanoalloy (particle or cube) via a partial melting–resolidification mechanism. The nanoalloys supported on carbon or silica were characterized by in-situ high-energy XRD/PDFs, revealing an intriguing lattice "expanding-shrinking" phenomenon depending on whether the catalyst is thermochemically processed under oxidative or reductive atmosphere. This type of controllable structural changes is found to play an important role in determining the catalytic activity of the catalysts for carbon monoxide oxidation reaction. The tunable catalytic activities of the nanoalloys under thermochemically oxidative and reductive atmospheres are also discussed in terms of the bifunctional sites and the surface oxygenated metal species for carbon monoxide and oxygen activation.« less
NASA Astrophysics Data System (ADS)
Molnar, I. L.; O'Carroll, D. M.; Gerhard, J.; Willson, C. S.
2014-12-01
The recent success in using Synchrotron X-ray Computed Microtomography (SXCMT) for the quantification of nanoparticle concentrations within real, three-dimensional pore networks [1] has opened up new opportunities for collecting experimental data of pore-scale flow and transport processes. One opportunity is coupling SXCMT with nanoparticle/soil transport experiments to provide unique insights into how pore-scale processes influence transport at larger scales. Understanding these processes is a key step in accurately upscaling micron-scale phenomena to the continuum-scale. Upscaling phenomena from the micron-scale to the continuum-scale typically involves the assumption that the pore space is well mixed. Using this 'well mixed assumption' it is implicitly assumed that the distribution of nanoparticles within the pore does not affect its retention by soil grains. This assumption enables the use of volume-averaged parameters in calculating transport and retention rates. However, in some scenarios, the well mixed assumption will likely be violated by processes such as deposition and diffusion. These processes can alter the distribution of the nanoparticles in the pore space and impact retention behaviour, leading to discrepancies between theoretical predictions and experimental observations. This work investigates the well mixed assumption by employing SXCMT to experimentally examine pore-scale mixing of silver nanoparticles during transport through sand packed columns. Silver nanoparticles were flushed through three different sands to examine the impact of grain distribution and nanoparticle retention rates on mixing: uniform silica (low retention), well graded silica sand (low retention) and uniform iron oxide coated silica sand (high retention). The SXCMT data identified diffusion-limited retention as responsible for violations of the well mixed assumption. A mathematical description of the diffusion-limited retention process was created and compared to the experimental data at the pore and column-scale. The mathematical description accurately predicted trends observed within the SXCMT-datasets such as concentration gradients away from grain surfaces and also accurately predicted total retention of nanoparticles at the column scale. 1. ES&T 2014, 48, (2), 1114-1122.
Laassiri, Said; Bion, Nicolas; Duprez, Daniel; Royer, Sébastien; Alamdari, Houshang
2014-03-07
Microstructural properties of mixed oxides play essential roles in their oxygen mobility and consequently in their catalytic performances. Two families of mixed oxides (perovskite and hexaaluminate) with different microstructural features, such as crystal size and specific surface area, were prepared using the activated reactive synthesis (ARS) method. It was shown that ARS is a flexible route to synthesize both mixed oxides with nano-scale crystal size and high specific surface area. Redox properties and oxygen mobility were found to be strongly affected by the material microstructure. Catalytic activities of hexaaluminate and perovskite materials for methane oxidation were discussed in the light of structural, redox and oxygen mobility properties.
Multiscale model of metal alloy oxidation at grain boundaries
NASA Astrophysics Data System (ADS)
Sushko, Maria L.; Alexandrov, Vitaly; Schreiber, Daniel K.; Rosso, Kevin M.; Bruemmer, Stephen M.
2015-06-01
High temperature intergranular oxidation and corrosion of metal alloys is one of the primary causes of materials degradation in nuclear systems. In order to gain insights into grain boundary oxidation processes, a mesoscale metal alloy oxidation model is established by combining quantum Density Functional Theory (DFT) and mesoscopic Poisson-Nernst-Planck/classical DFT with predictions focused on Ni alloyed with either Cr or Al. Analysis of species and fluxes at steady-state conditions indicates that the oxidation process involves vacancy-mediated transport of Ni and the minor alloying element to the oxidation front and the formation of stable metal oxides. The simulations further demonstrate that the mechanism of oxidation for Ni-5Cr and Ni-4Al is qualitatively different. Intergranular oxidation of Ni-5Cr involves the selective oxidation of the minor element and not matrix Ni, due to slower diffusion of Ni relative to Cr in the alloy and due to the significantly smaller energy gain upon the formation of nickel oxide compared to that of Cr2O3. This essentially one-component oxidation process results in continuous oxide formation and a monotonic Cr vacancy distribution ahead of the oxidation front, peaking at alloy/oxide interface. In contrast, Ni and Al are both oxidized in Ni-4Al forming a mixed spinel NiAl2O4. Different diffusivities of Ni and Al give rise to a complex elemental distribution in the vicinity of the oxidation front. Slower diffusing Ni accumulates in the oxide and metal within 3 nm of the interface, while Al penetrates deeper into the oxide phase. Ni and Al are both depleted from the region 3-10 nm ahead of the oxidation front creating voids. The oxide microstructure is also different. Cr2O3 has a plate-like structure with 1.2-1.7 nm wide pores running along the grain boundary, while NiAl2O4 has 1.5 nm wide pores in the direction parallel to the grain boundary and 0.6 nm pores in the perpendicular direction providing an additional pathway for oxygen diffusion through the oxide. The proposed theoretical methodology provides a framework for modeling metal alloy oxidation processes from first principles and on the experimentally relevant length scales.
Multiscale model of metal alloy oxidation at grain boundaries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sushko, Maria L., E-mail: maria.sushko@pnnl.gov; Alexandrov, Vitaly; Schreiber, Daniel K.
2015-06-07
High temperature intergranular oxidation and corrosion of metal alloys is one of the primary causes of materials degradation in nuclear systems. In order to gain insights into grain boundary oxidation processes, a mesoscale metal alloy oxidation model is established by combining quantum Density Functional Theory (DFT) and mesoscopic Poisson-Nernst-Planck/classical DFT with predictions focused on Ni alloyed with either Cr or Al. Analysis of species and fluxes at steady-state conditions indicates that the oxidation process involves vacancy-mediated transport of Ni and the minor alloying element to the oxidation front and the formation of stable metal oxides. The simulations further demonstrate thatmore » the mechanism of oxidation for Ni-5Cr and Ni-4Al is qualitatively different. Intergranular oxidation of Ni-5Cr involves the selective oxidation of the minor element and not matrix Ni, due to slower diffusion of Ni relative to Cr in the alloy and due to the significantly smaller energy gain upon the formation of nickel oxide compared to that of Cr{sub 2}O{sub 3}. This essentially one-component oxidation process results in continuous oxide formation and a monotonic Cr vacancy distribution ahead of the oxidation front, peaking at alloy/oxide interface. In contrast, Ni and Al are both oxidized in Ni-4Al forming a mixed spinel NiAl{sub 2}O{sub 4}. Different diffusivities of Ni and Al give rise to a complex elemental distribution in the vicinity of the oxidation front. Slower diffusing Ni accumulates in the oxide and metal within 3 nm of the interface, while Al penetrates deeper into the oxide phase. Ni and Al are both depleted from the region 3–10 nm ahead of the oxidation front creating voids. The oxide microstructure is also different. Cr{sub 2}O{sub 3} has a plate-like structure with 1.2–1.7 nm wide pores running along the grain boundary, while NiAl{sub 2}O{sub 4} has 1.5 nm wide pores in the direction parallel to the grain boundary and 0.6 nm pores in the perpendicular direction providing an additional pathway for oxygen diffusion through the oxide. The proposed theoretical methodology provides a framework for modeling metal alloy oxidation processes from first principles and on the experimentally relevant length scales.« less
On the equilibrium isotopic composition of the thorium-uranium-plutonium fuel cycle
NASA Astrophysics Data System (ADS)
Marshalkin, V. Ye.; Povyshev, V. M.
2016-12-01
The equilibrium isotopic compositions and the times to equilibrium in the process of thorium-uranium-plutonium oxide fuel recycling in VVER-type reactors using heavy water mixed with light water are estimated. It is demonstrated thEhfat such reactors have a capacity to operate with self-reproduction of active isotopes in the equilibrium mode.
On the equilibrium isotopic composition of the thorium–uranium–plutonium fuel cycle
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marshalkin, V. Ye., E-mail: marshalkin@vniief.ru; Povyshev, V. M.
2016-12-15
The equilibrium isotopic compositions and the times to equilibrium in the process of thorium–uranium–plutonium oxide fuel recycling in VVER-type reactors using heavy water mixed with light water are estimated. It is demonstrated thEhfat such reactors have a capacity to operate with self-reproduction of active isotopes in the equilibrium mode.
Method of CO and/or CO.sub.2 hydrogenation to higher hydrocarbons using doped mixed-metal oxides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shekhawat, Dushyant; Berry, David A.; Haynes, Daniel J.
2017-03-21
A method of hydrogenation utilizing a reactant gas mixture comprising a carbon oxide and a hydrogen agent, and a hydrogenation catalyst comprising a mixed-metal oxide containing metal sites supported and/or incorporated into the lattice. The mixed-metal oxide comprises a pyrochlore, a brownmillerite, or mixtures thereof doped at the A-site or the B-site. The metal site may comprise a deposited metal, where the deposited metal is a transition metal, an alkali metal, an alkaline earth metal, or mixtures thereof. Contact between the carbon oxide, hydrogen agent, and hydrogenation catalyst under appropriate conditions of temperature, pressure and gas flow rate generate amore » hydrogenation reaction and produce a hydrogenated product made up of carbon from the carbon oxide and some portion of the hydrogen agent. The carbon oxide may be CO, CO.sub.2, or mixtures thereof and the hydrogen agent may be H.sub.2. In a particular embodiment, the hydrogenated product comprises olefins, paraffins, or mixtures thereof.« less
Numerical modelling of emissions of nitrogen oxides in solid fuel combustion.
Bešenić, Tibor; Mikulčić, Hrvoje; Vujanović, Milan; Duić, Neven
2018-06-01
Among the combustion products, nitrogen oxides are one of the main contributors to a negative impact on the environment, participating in harmful processes such as tropospheric ozone and acid rains production. The main source of emissions of nitrogen oxides is the human combustion of fossil fuels. Their formation models are investigated and implemented with the goal of obtaining a tool for studying the nitrogen-containing pollutant production. In this work, numerical simulation of solid fuel combustion was carried out on a three-dimensional model of a drop tube furnace by using the commercial software FIRE. It was used for simulating turbulent fluid flow and temperature field, concentrations of the reactants and products, as well as the fluid-particles interaction by numerically solving the integro-differential equations describing these processes. Chemical reactions mechanisms for the formation of nitrogen oxides were implemented by the user functions. To achieve reasonable calculation times for running the simulations, as well as efficient coupling with the turbulent mixing process, the nitrogen scheme is limited to sufficiently few homogeneous reactions and species. Turbulent fluctuations that affect the reaction rates of nitrogen oxides' concentration are modelled by probability density function approach. Results of the implemented model for nitrogen oxides' formation from coal and biomass are compared to the experimental data. Temperature, burnout and nitrogen oxides' concentration profiles are compared, showing satisfactory agreement. The new model allows the simulation of pollutant formation in the real-world applications. Copyright © 2018 Elsevier Ltd. All rights reserved.
Tuning Ferritin’s band gap through mixed metal oxide nanoparticle formation
NASA Astrophysics Data System (ADS)
Olsen, Cameron R.; Embley, Jacob S.; Hansen, Kameron R.; Henrichsen, Andrew M.; Peterson, J. Ryan; Colton, John S.; Watt, Richard K.
2017-05-01
This study uses the formation of a mixed metal oxide inside ferritin to tune the band gap energy of the ferritin mineral. The mixed metal oxide is composed of both Co and Mn, and is formed by reacting aqueous Co2+ with {{{{MnO}}}4}- in the presence of apoferritin. Altering the ratio between the two reactants allowed for controlled tuning of the band gap energies. All minerals formed were indirect band gap materials, with indirect band gap energies ranging from 0.52 to 1.30 eV. The direct transitions were also measured, with energy values ranging from 2.71 to 3.11 eV. Tuning the band gap energies of these samples changes the wavelengths absorbed by each mineral, increasing ferritin’s potential in solar-energy harvesting. Additionally, the success of using {{{{MnO}}}4}- in ferritin mineral formation opens the possibility for new mixed metal oxide cores inside ferritin.
Enhancement of arsenite removal using manganese oxide coupled with iron (III) trimesic
NASA Astrophysics Data System (ADS)
Phanthasri, Jakkapop; Khamdahsag, Pummarin; Jutaporn, Panitan; Sorachoti, Kwannapat; Wantala, Kitirote; Tanboonchuy, Visanu
2018-01-01
A simultaneous removal of As(III) was investigated on a mixture of manganese oxide based octahedral molecular sieves (K-OMS2) and iron-benzenetricarboxylate (Fe-BTC). As(III) removal was stimulated by an oxidation cooperated with adsorption process. K-OMS2 and Fe-BTC were separately synthesized and characterized by X-ray diffraction (XRD), Transmission Electron Microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). K-OMS2 showed characters of pure cryptomelane phase, nanorod structure, and a mixed-valent manganese framework with the coexistence of Mn(IV) and Mn(III). As(III) was successfully oxidized to As(V) by K-OMS2 in a temperature range of 303-333 K. An intermediate adsorption of As(V) was carried out with Fe-BTC in the same batch. A maximum adsorption capacity, described by Langmuir isotherm model, was observed at 76.34 mg/g. With an As(III) initial concentration of 5 mg/L, when K-OMS2 and Fe-BTC were simultaneously introduced into the solution, the As(III) removal process was completed within 60 min. Thus, it shortened the process time compared to the case where K-OMS2 was added first, followed by the addition of Fe-BTC.
Yao, Zhitong; Li, Jinhui; Zhao, Xiangyang
2011-08-01
Molten salt oxidation (MSO), a robust thermal but non-flame process, has the inherent capability of destroying organic constituents in wastes, while retaining inorganic and radioactive materials in situ. It has been considered as an alternative to incineration and may be a solution to many waste disposal problems. The present review first describes the history and development of MSO, as well as design and engineering details, and then focuses on reaction mechanisms and its potential applications in various wastes, including hazardous wastes, medical wastes, mixed wastes, and energetic materials. Finally, the current status of and prospects for the MSO process and directions for future research are considered. Copyright © 2011 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bayal, Nisha; Jeevanandam, P., E-mail: jeevafcy@iitr.ernet.in
2013-10-15
Graphical abstract: - Highlights: • A simple sol–gel method for the synthesis of SnO{sub 2}–MgO nanoparticles is reported. • Band gap of SnO{sub 2} can be tuned by varying the magnesium content in SnO{sub 2}–MgO. • SnO{sub 2}–MgO shows good photocatalytic activity towards degradation of methylene blue. - Abstract: SnO{sub 2}–MgO mixed metal oxide nanoparticles were prepared by a simple sol–gel method. The nanoparticles were characterized by power X-ray diffraction, scanning electron microscopy coupled with energy dispersive X-ray analysis, transmission electron microscopy and UV–vis diffuse reflectance spectroscopy. The XRD results indicate the formation of mixed metal oxide nanoparticles and alsomore » a decrease of SnO{sub 2} crystallite size in the mixed metal oxide nanoparticles with increasing magnesium oxide content. The reflectance spectroscopy results show a blue shift of the band gap of SnO{sub 2} in the mixed metal oxide nanoparticles. The photocatalytic activity of the SnO{sub 2}–MgO nanoparticles was tested using the photodegradation of aqueous methylene blue in the presence of sunlight. The results indicate that the mixed metal oxide nanoparticles possess higher efficiency for the photodegradation of methylene blue compared to pure SnO{sub 2} nanoparticles.« less
Duplančić, Marina; Tomašić, Vesna; Gomzi, Zoran
2017-07-05
This paper is focused on development of the metal monolithic structure for total oxidation of toluene at low temperature. The well-adhered catalyst, based on the mixed oxides of manganese and nickel, is washcoated on the Al/Al 2 O 3 plates as metallic support. For the comparison purposes, results observed for the manganese-nickel mixed oxide supported on the metallic monolith are compared with those obtained using powder type of the same catalyst. Prepared manganese-nickel mixed oxides in both configurations show remarkable low-temperature activity for the toluene oxidation. The reaction temperature T 50 corresponding to 50% of the toluene conversion is observed at temperatures of ca. 400-430 K for the powder catalyst and at ca. 450-490 K for the monolith configuration. The appropriate mathematical models, such as one-dimensional (1D) pseudo-homogeneous model of the fixed bed reactor and the 1D heterogeneous model of the metal monolith reactor, are applied to describe and compare catalytic performances of both reactors. Validation of the applied models is performed by comparing experimental data with theoretical predictions. The obtained results confirmed that the reaction over the monolithic structure is kinetically controlled, while in the case of the powder catalyst the reaction rate is influenced by the intraphase diffusion.
Xin, Baoping; Zhang, Di; Zhang, Xian; Xia, Yunting; Wu, Feng; Chen, Shi; Li, Li
2009-12-01
The bioleaching mechanism of Co and Li from spent lithium-ion batteries by mixed culture of sulfur-oxidizing and iron-oxidizing bacteria was investigated. It was found that the highest release of Li occurred at the lowest pH of 1.54 with elemental sulfur as an energy source, the lowest occurred at the highest pH of 1.69 with FeS(2). In contrast, the highest release of Co occurred at higher pH and varied ORP with S + FeS(2), the lowest occurred at almost unchanged ORP with S. It is suggested that acid dissolution is the main mechanism for Li bioleaching independent of energy matters types, however, apart from acid dissolution, Fe(2+) catalyzed reduction takes part in the bioleaching process as well. Co(2+) was released by acid dissolution after insoluble Co(3+) was reduced into soluble Co(2+) by Fe(2+) in both FeS(2) and FeS(2) + S systems. The proposed bioleaching mechanism mentioned above was confirmed by the further results obtained from the experiments of bioprocess-stimulated chemical leaching and from the changes in structure and component of bioleaching residues characterized by XPS, SEM and EDX.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Albanna, Muna, E-mail: muna.albanna@gju.edu.j; Warith, Mostafa; Fernandes, Leta
2010-02-15
In this experimental program, the effects of non-methane organic compounds (NMOCs) on the biological methane (CH{sub 4}) oxidation process were examined. The investigation was performed on compost experiments incubated with CH{sub 4} and selected NMOCs under different environmental conditions. The selected NMOCs had different concentrations and their effects were tested as single compounds and mixtures of compounds. The results from all experimental sets showed a decrease in CH{sub 4} oxidation capacity of the landfill bio-cover with the increase in NMOCs concentrations. For example, in the experiment using compost with 100% moisture content at 35 deg. C without any NMOCs themore » V{sub max} value was 35.0 mug CH{sub 4}h{sup -1}g{sub wetwt}{sup -1}. This value was reduced to 19.1 mug CH{sub 4}h{sup -1}g{sub wetwt}{sup -1} when mixed NMOCs were present in the batch reactors under the same environmental conditions. The experimental oxidation rates of CH{sub 4} in the presence of single and mixed NMOCs were modeled using the uncompetitive inhibition model and kinetic parameters, including the dissociation constants, were obtained. Additionally, the degradation rates of the NMOCs and co-metabolic abilities of methanotrophic bacteria were estimated.« less
The mechanisms of pyrite oxidation and leaching: A fundamental perspective
NASA Astrophysics Data System (ADS)
Chandra, A. P.; Gerson, A. R.
2010-09-01
Pyrite is the earth's most abundant sulfide mineral. Its frequent undesirable association with minerals of economic value such as sphalerite, chalcopyrite and galena, and precious metals such as gold necessitates costly separation processes such as leaching and flotation. Additionally pyrite oxidation is a major contributor to the environmental problem of acid rock drainage. The surface oxidation reactions of pyrite are therefore important both economically and environmentally. Significant variations in electrical properties resulting from lattice substitution of minor and trace elements into the lattice structure exist between pyrite from different geographical locations. Furthermore the presence of low coordination surface sites as a result of conchoidal fracture causes a reduction in the band gap at the surface compared to the bulk thus adding further electrochemical variability. Given the now general acceptance after decades of research that electrochemistry dominates the oxidation process, the geographical location, elemental composition and semi-conductor type (n or p) of pyrite are important considerations. Aqueous pyrite oxidation results in the production of sulfate and ferrous iron. However other products such as elemental sulfur, polysulfides, hydrogen sulfide, ferric hydroxide, iron oxide and iron(III) oxyhydroxide may also form. Intermediate species such as thiosulfate, sulfite and polythionates are also proposed to occur. Oxidation and leach rates are generally influenced by solution Eh, pH, oxidant type and concentration, hydrodynamics, grain size and surface area in relation to solution volume, temperature and pressure. Of these, solution Eh is most critical as expected for an electrochemically controlled process, and directly correlates with surface area normalised rates. Studies using mixed mineral systems further indicate the importance of electrochemical processes during the oxidation process. Spatially resolved surface characterisation of fresh and reacted pyrite surfaces is needed to identify site specific chemical processes. Scanning photoelectron microscopy (SPEM) and photoemission electron microscopy (PEEM) are two synchrotron based surface spectromicroscopic and microspectroscopic techniques that use XPS- and XANES-imaging to correlate chemistry with topography at a submicron scale. Recent data collected with these two techniques suggests that species are heterogeneously distributed on the surface and oxidation to be highly site specific.
Kim, Manhoe; Salley, Steven O.; Ng, K. Y. Simon
2016-09-06
Mixed metal oxide catalysts (ZnO, CeO, La2O3, NiO, Al203, SiO2, TiO2, Nd2O3, Yb2O3, or any combination of these) supported on zirconia (ZrO2) or hydrous zirconia are provided. These mixed metal oxide catalysts can be prepared via coprecipitation, impregnation, or sol-gel methods from metal salt precursors with/without a Zirconium salt precursor. Metal oxides/ZrO2 catalyzes both esterification and transesterification of oil containing free fatty acids in one batch or in single stage. In particular, these mixed metal oxides supported or added on zirconium oxide exhibit good activity and selectivity for esterification and transesterification. The low acid strength of this catalyst can avoid undesirable side reaction such as alcohol dehydration or cracking of fatty acids. Metal oxides/ZrO2 catalysts are not sensitive to any water generated from esterification. Thus, esterification does not require a water free condition or the presence of excess methanol to occur when using the mixed metal oxide catalyst. The FAME yield obtained with metal oxides/ZrO2 is higher than that obtained with homogeneous sulfuric acid catalyst. Metal oxides/ZrO2 catalasts can be prepared as strong pellets and in various shapes for use directly in a flow reactor. Furthermore, the pellet has a strong resistance toward dissolution to aqueous or oil phases.
Multiscale model of metal alloy oxidation at grain boundaries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sushko, Maria L.; Alexandrov, Vitali Y.; Schreiber, Daniel K.
2015-06-07
High temperature intergranular oxidation and corrosion of metal alloys is one of the primary causes of materials degradation in nuclear systems. In order to gain insights into grain boundary oxidation processes, a mesoscale metal alloy oxidation model at experimentally relevant length scales is established by combining quantum Density Functional Theory (DFT) and mesoscopic Poisson-Nernst-Planck/classical DFT with predictions focused on Ni alloyed with either Cr or Al. Analysis of species and fluxes at steady-state conditions indicates that the oxidation process involves vacancy-mediated transport of Ni and the minor alloying element to the oxidation front and the formation of stable metal oxides.more » The simulations further demonstrate that the mechanism of oxidation for Ni-5Cr and Ni-4Al is qualitatively different. Intergranular oxidation of Ni-5Cr involves the selective oxidation of the minor element and not matrix Ni, due to slower diffusion of Ni relative to Cr in the alloy and due to the significantly smaller energy gain upon the formation of nickel oxide compared to that of Cr2O3. This essentially one-component oxidation process results in continuous oxide formation and a monotonic Cr vacancy distribution ahead of the oxidation front, peaking at alloy/oxide interface. In contrast, Ni and Al are both oxidized in Ni-4Al forming a mixed spinel NiAl2O4. Different diffusivities of Ni and Al give rise to a complex elemental distribution in the vicinity of the oxidation front. Slower diffusing Ni accumulates in the oxide and metal within 3 nm of the interface, while Al penetrates deeper into the oxide phase. Ni and Al are both depleted from the region 3–10 nm ahead of the oxidation front creating voids. The oxide microstructure is also different. Cr2O3 has a plate-like structure with 1.2 - 1.7 nm wide pores running along the grain boundary, while NiAl2O4 has 1.5 nm wide pores in the direction parallel to the grain boundary and 0.6 nm pores in the perpendicular direction providing an additional pathway for oxygen diffusion through the oxide.« less
On the preparation of TiAl alloy by direct reduction of the oxide mixtures in calcium chloride melt
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prabhat K. Tripathy; Derek J. Fray
2011-11-01
In recent years, TiAl-based intermetallic alloys are being increasingly considered for application in areas such as (i) automobile/transport sector (passenger cars, trucks and ships) (ii) aerospace industry (jet engines and High Speed Civil Transport propulsion system) and (iii) industrial gas turbines. These materials offer excellent (i) high temperature properties (at higher than 6000C) (ii) mechanical strength and (iii) resistance to corrosion and as a result have raised renewed interest. The combination of these properties make them possible replacement materials for traditional nickel-based super-alloys, which are nearly as twice as dense (than TiAl based alloys). Since the microstructures of these intermetallicmore » alloys affect, to a significant extent, their ultimate performance, further improvements (by way of alteration/modification of these microstructures), have been the subject matter of intense research investigations. It has now been established that the presence of alloy additives, such as niobium, tantalum, manganese, boron, chromium, silicon, nickel and yttrium etc, in specific quantities, impart marked improvement to the properties, viz. fatigue strength, fracture toughness, oxidation resistance and room temperature ductility, of these alloys. From a number of possible alloy compositions, {gamma}-TiAl and Ti-Al-Nb-Cr have, of late, emerged as two promising engineering alloys/materials. . The conventional fabrication process of these alloys include steps such as melting, forging and heat treatment/annealing of the alloy compositions. However, an electrochemical process offers an attractive proposition to prepare these alloys, directly from the mixture of the respective oxides, in just one step. The experimental approach, in this new process, was, therefore, to try to electrochemically reduce the (mixed) oxide pellet to an alloy phase. The removal of oxygen, from the (mixed) oxide pellet, was effected by polarizing the oxide pellet against a graphite electrode in a pool of molten calcium chloride at a temperature of 9000C. The dominant mechanism of the oxygen removal was the ionization of oxygen followed by its subsequent discharge, as CO2/CO, at the anode surface. The removal of oxygen from the oxide mixture helped form the alloy in situ. The presentation shall cover the detailed experimental results pertaining to the preparation, evaluation and characterization of Ti-47Al-2Nb-2Cr (atom%) alloy.« less
NASA Technical Reports Server (NTRS)
Staszak, Paul Russell; Wirtz, G. P.; Berg, M.; Brown, S. D.
1988-01-01
A study of the effects of titania on selected properties of hafnia-rich mixed oxides in the system hafnia-zirconia-titania (HZT) was made in the region 5 to 20 mol percent titania. The studied properties included electrical conductivity, thermal expansion, and fracture strength and toughness. The effects of titania on the properties were studied for the reduced state as well as the oxidized state of the sintered mixed oxides. X-ray analysis showed that the materials were not always single phase. The oxidized compositions went from being monoclinic solid solutions at low titania additions to having three phases (two monoclinic and a titanate phase) at high additions of titania. The reduced compositions showed an increasing cubic phase presence mixed with the monoclinic phase as titania was added. The electrical conductivity increased with temperature at approximately 0.1 mhos/cm at 1700 C for all compositions. The thermal expansion coefficient decreased with increasing titania as did the monoclinic to tetragonal transformation temperature. The fracture strength of the oxidized bars tended to decrease with the addition of titania owing to the presence of the second phase titania. The fracture strength of the reduced bars exhibited a minimum corresponding to a two-phase region of monoclinic and cubic phases. When the second phases were suppressed, the titania tended to increase the fracture strength slightly in both the oxidized and reduced states. The fracture toughness followed similar trends.
NASA Astrophysics Data System (ADS)
Svintsitskiy, Dmitry A.; Kardash, Tatyana Yu.; Slavinskaya, Elena M.; Stonkus, Olga A.; Koscheev, Sergei V.; Boronin, Andrei I.
2018-01-01
The mixed silver-copper oxide Ag2Cu2O3 with a paramelaconite crystal structure is a promising material for catalytic applications. The as-prepared sample of Ag2Cu2O3 consisted of brick-like particles extended along the [001] direction. A combination of physicochemical techniques such as TEM, XPS and XRD was applied to investigate the structural features of this mixed silver-copper oxide. The thermal stability of Ag2Cu2O3 was investigated using in situ XRD under different reaction conditions, including a catalytic CO + O2 mixture. The first step of Ag2Cu2O3 decomposition was accompanied by the appearance of ensembles consisting of silver nanoparticles with sizes of 5-15 nm. Silver nanoparticles were strongly oriented to each other and to the surface of the initial Ag2Cu2O3 bricks. Based on the XRD data, it was shown that the release of silver occurred along the a and b axes of the paramelaconite structure. Partial decomposition of Ag2Cu2O3 accompanied by the formation of silver nanoparticles was observed during prolonged air storage under ambient conditions. The high reactivity is discussed as a reason for spontaneous decomposition during Ag2Cu2O3 storage. The full decomposition of the mixed oxide into metallic silver and copper (II) oxide took place at temperatures higher than 300 °C regardless of the nature of the reaction medium (helium, air, CO + O2). Catalytic properties of partially and fully decomposed samples of mixed silver-copper oxide were measured in low-temperature CO oxidation and C2H4 epoxidation reactions.
Band gap tuning of amorphous Al oxides by Zr alloying
DOE Office of Scientific and Technical Information (OSTI.GOV)
Canulescu, S., E-mail: stec@fotonik.dtu.dk; Schou, J.; Jones, N. C.
2016-08-29
The optical band gap and electronic structure of amorphous Al-Zr mixed oxides with Zr content ranging from 4.8 to 21.9% were determined using vacuum ultraviolet and X-ray absorption spectroscopy. The light scattering by the nano-porous structure of alumina at low wavelengths was estimated based on the Mie scattering theory. The dependence of the optical band gap of the Al-Zr mixed oxides on the Zr content deviates from linearity and decreases from 7.3 eV for pure anodized Al{sub 2}O{sub 3} to 6.45 eV for Al-Zr mixed oxides with a Zr content of 21.9%. With increasing Zr content, the conduction band minimum changes non-linearlymore » as well. Fitting of the energy band gap values resulted in a bowing parameter of ∼2 eV. The band gap bowing of the mixed oxides is assigned to the presence of the Zr d-electron states localized below the conduction band minimum of anodized Al{sub 2}O{sub 3}.« less
NASA Astrophysics Data System (ADS)
Hu, Zengrong; Li, Yue; Fan, Xueliang; Chen, Feng; Xu, Jiale
2018-04-01
Single layer grapheme oxide Nano sheets and Nano titanium powder were dispersed in deionized water by ultrasonic dispersion. Then the mixed solution was pre-coating on AISI4140 substrate. Using laser sintering process to fabricated grapheme oxide and Ti composite coating. Microstructures and composition of the composite coating was studied by Scanning Electron Microscopy (SEM), x-ray diffract meter (XRD) and Raman spectroscopy. Raman spectrum, XRD pattern and SEM results proved that grapheme oxide sheets were dispersed in the composite coating. The composite coating had much higher average Vickers hardness values than that of pure Ti coating. The tribological performance of the composite coatings became better while the suitable GO content was selected. For the 2.5wt. % GO content coating, the friction coefficient was reduced to near 0.1.
Corrosion study of the graphene oxide and reduced graphene oxide-based epoxy coatings
NASA Astrophysics Data System (ADS)
Ghauri, Faizan Ali; Raza, Mohsin Ali; Saad Baig, Muhammad; Ibrahim, Shoaib
2017-12-01
This work aims to determine the effect of graphene oxide (GO) and reduced graphene oxide (rGO) incorporation as filler on the corrosion protection ability of epoxy coatings in saline media. GO was derived from graphite powder following modified Hummers’ method, whereas rGO was obtained after reduction of GO with hydrazine solution. About 1 wt.% of GO or rGO were incorporated in epoxy resin by solution mixing process followed by ball milling. GO and rGO-based epoxy composite coatings were coated on mild steel substrates using film coater. The coated samples were characterized by electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization tests after 1 and 24 h immersion in 3.5% NaCl. The results suggested that GO-based epoxy composite coatings showed high impedance and low corrosion rate.
NASA Astrophysics Data System (ADS)
Chinh, Vu Duc; Broggi, Alessandra; Di Palma, Luca; Scarsella, Marco; Speranza, Giorgio; Vilardi, Giorgio; Thang, Pham Nam
2018-04-01
TiO2-SiO2 mixed oxides have been prepared by the sol-gel technique from tetrabutyl orthotitanate and tetraethyl orthosilicate. The prepared materials were characterized by x-ray diffraction, scanning electron microscopy, energy dispersive x-ray spectroscopy, nitrogen physisorption, Fourier-transform infrared spectroscopy (FT-IR) and x-ray photoelectron spectroscopy (XPS). The results indicate that the TiO2-SiO2 mixed oxides have a large surface area and a nanoscale size. FT-IR spectra show that Ti atoms are bonded to silica by oxygen bridging atoms in Ti-O-Si bonds. The titanium valence states in TiO2-SiO2 mixed oxides were investigated by XPS, and their spectra report the presence of Ti2+ and Ti3+ cations for high silica concentration, suggesting the formation of oxygen vacancies. The photocatalytic activity of the prepared materials has been evaluated for the photodegradation of methylene blue (MB). The mixed oxides were activated by means of a UV light source, and the concentration of MB was monitored by UV-Vis spectroscopy. The synthesized TiO2-SiO2 shows significantly higher MB removal efficiency in comparison with that of the commercial TiO2 Degussa, P25.
Method of forming supported doped palladium containing oxidation catalysts
Mohajeri, Nahid
2014-04-22
A method of forming a supported oxidation catalyst includes providing a support comprising a metal oxide or a metal salt, and depositing first palladium compound particles and second precious metal group (PMG) metal particles on the support while in a liquid phase including at least one solvent to form mixed metal comprising particles on the support. The PMG metal is not palladium. The mixed metal particles on the support are separated from the liquid phase to provide the supported oxidation catalyst.
Control of differential strain during heating and cooling of mixed conducting metal oxide membranes
Carolan, Michael Francis
2007-12-25
Method of operating an oxygen-permeable mixed conducting membrane having an oxidant feed side and a permeate side, which method comprises controlling the differential strain between the oxidant feed side and the permeate side by varying either or both of the oxygen partial pressure and the total gas pressure on either or both of the oxidant feed side and the permeate side of the membrane while changing the temperature of the membrane from a first temperature to a second temperature.
Regenerable sorbents for CO.sub.2 capture from moderate and high temperature gas streams
Siriwardane, Ranjani V [Morgantown, WV
2008-01-01
A process for making a granular sorbent to capture carbon dioxide from gas streams comprising homogeneously mixing an alkali metal oxide, alkali metal hydroxide, alkaline earth metal oxide, alkaline earth metal hydroxide, alkali titanate, alkali zirconate, alkali silicate and combinations thereof with a binder selected from the group consisting of sodium ortho silicate, calcium sulfate dihydrate (CaSO.sub.4.2H.sub.2O), alkali silicates, calcium aluminate, bentonite, inorganic clays and organic clays and combinations thereof and water; drying the mixture and placing the sorbent in a container permeable to a gas stream.
Mailian, E S; Bruavkova, L B; Kokoreva, L V
1982-01-01
The respiration of mitochondria isolated from mixed skeletal muscles of hindlimbs of rats flown for 18.5 days on Cosmos-936 was investigated polarographically. At R + 10 hours the rate of mitochondrial respiration in different metabolic states during the oxidation of succinic acid and NAD-dependent substrates declined. The enzyme activity of mitochondrial cytochrome oxidase and cytosol lactate dehydrogenase diminished. At R + 25 days both aerobic and anaerobic oxidative processes increased, thus leading to the recovery of the parameters (sometimes they not only returned to the norm but exceeded it).
Anaerobic ammonia removal in presence of organic matter: a novel route.
Sabumon, P C
2007-10-01
This study describes the feasibility of anaerobic ammonia removal process in presence of organic matter. Different sources of biomass collected from diverse eco-systems containing ammonia and organic matter (OM) were screened for potential anaerobic ammonia removal. Sequential batch studies confirmed the possibility of anaerobic ammonia removal in presence of OM, but ammonia was oxidized anoxically to nitrate (at oxidation reduction potential; ORP=-248+/-25 mV) by an unknown mechanism unlike in the reported anammox process. The oxygen required for oxidation of ammonia might have been generated through catalase enzymatic activity of facultative anaerobes in mixed culture. The oxygen generation possibility by catalase enzyme route was demonstrated. Among the inorganic electron acceptors (NO(2)(-), NO(3)(-) and SO(4)(2-)) studied, NO(2)(-) was found to be most effective in total nitrogen removal. Denitrification by the developed culture was much effective and faster compared to ammonia oxidation. The results of this study show that anaerobic ammonia removal is feasible in presence of OM. The novel nitrogen removal route is hypothesized as enzymatic anoxic oxidation of NH(4)(+) to NO(3)(-), followed by denitrification via autotrophic and/or heterotrophic routes. The results of batch study were confirmed in continuous reactor operation.
NASA Astrophysics Data System (ADS)
Dudziak, T.; Boron, L.; Homa, M.; Nowak, R.; Horton, N.; Sheppard, R.; Purgert, R. M.; Siewiorek, A.; Sobczak, N.; Sobczak, J. J.
2017-01-01
This work presents results observed after the first 5 h of oxidation of Haynes® 282® alloy. The steam oxidation tests have been carried out in pure water at 760 °C for 1, 2 and 5 h, respectively, using an accurate thermogravimetric balance technique. The alloy used for comparison in this work was fabricated using three different methods. The initial steam oxidation performance of the commercially wrought alloy Haynes® 282® was compared with a fabricated cast alloy and a HIP/PM alloy. The results show that in terms of corrosion resistance, fabrication techniques appear to have little impact on steam oxidation performance and behavior. The exposed Ni-based alloys all developed the oxide scales consisting mainly of Cr2O3 phase mixed with some TiO2, while internal Al and Ti precipitations along the grain boundaries were observed both in Haynes® 282® wrought and HIP/PM alloy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goretta, K.C.; Brandel, B.P.; Lanagan, M.T.
Nanophase TiO{sub 2} and Al{sub 2}O{sub 3} powders were synthesized by a vapor-phase process and mechanically mixed with stoichiometric YBa{sub 2}Cu{sub 3}O{sub x} and TlBa{sub 2}Ca{sub 2}Cu{sub 3}O{sub x} powders in 20 mole % concentrations. Pellets produced from powders with and without nanophase oxides were heated in air or O{sub 2} above the peritectic melt temperature and slow-cooled. At 4.2 K, the intragranular critical current density (J{sub c}) increased dramatically with the oxide additions. At 35--50 K, effects of the oxide additions were positive, but less pronounced. At 77 K, the additions decreased J{sub c}, probably because of inducing amore » depresion of the transition temperature.« less
Tetrathionate and Elemental Sulfur Shape the Isotope Composition of Sulfate in Acid Mine Drainage
Balci, Nurgul; Brunner, Benjamin; Turchyn, Alexandra V.
2017-01-01
Sulfur compounds in intermediate valence states, for example elemental sulfur, thiosulfate, and tetrathionate, are important players in the biogeochemical sulfur cycle. However, key understanding about the pathways of oxidation involving mixed-valance state sulfur species is still missing. Here we report the sulfur and oxygen isotope fractionation effects during the oxidation of tetrathionate (S4O62−) and elemental sulfur (S°) to sulfate in bacterial cultures in acidic conditions. Oxidation of tetrathionate by Acidithiobacillus thiooxidans produced thiosulfate, elemental sulfur and sulfate. Up to 34% of the tetrathionate consumed by the bacteria could not be accounted for in sulfate or other intermediate-valence state sulfur species over the experiments. The oxidation of tetrathionate yielded sulfate that was initially enriched in 34S (ε34SSO4−S4O6) by +7.9‰, followed by a decrease to +1.4‰ over the experiment duration, with an average ε34SSO4−S4O6 of +3.5 ± 0.2‰ after a month of incubation. We attribute this significant sulfur isotope fractionation to enzymatic disproportionation reactions occurring during tetrathionate decomposition, and to the incomplete transformation of tetrathionate into sulfate. The oxygen isotope composition of sulfate (δ18OSO4) from the tetrathionate oxidation experiments indicate that 62% of the oxygen in the formed sulfate was derived from water. The remaining 38% of the oxygen was either inherited from the supplied tetrathionate, or supplied from dissolved atmospheric oxygen (O2). During the oxidation of elemental sulfur, the product sulfate became depleted in 34S between −1.8 and 0‰ relative to the elemental sulfur with an average for ε34SSO4−S0 of −0.9 ± 0.2‰ and all the oxygen atoms in the sulfate derived from water with an average normal oxygen isotope fractionation (ε18OSO4−H2O) of −4.4‰. The differences observed in δ18OSO4 and the sulfur isotope composition of sulfate (δ34SSO4), acid production, and mixed valence state sulfur species generated by the oxidation of the two different substrates suggests a metabolic flexibility in response to sulfur substrate availability. Our results demonstrate that microbial processing of mixed-valence-state sulfur species generates a significant sulfur isotope fractionation in acidic environments and oxidation of mixed-valence state sulfur species may produce sulfate with characteristic sulfur and oxygen isotope signatures. Elemental sulfur and tetrathionate are not only intermediate-valence state sulfur compounds that play a central role in sulfur oxidation pathways, but also key factors in shaping these isotope patterns. PMID:28861071
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jantzen, C.; Johnson, F.
2012-06-05
During melting of HLW glass, the REDOX of the melt pool cannot be measured. Therefore, the Fe{sup +2}/{Sigma}Fe ratio in the glass poured from the melter must be related to melter feed organic and oxidant concentrations to ensure production of a high quality glass without impacting production rate (e.g., foaming) or melter life (e.g., metal formation and accumulation). A production facility such as the Defense Waste Processing Facility (DWPF) cannot wait until the melt or waste glass has been made to assess its acceptability, since by then no further changes to the glass composition and acceptability are possible. therefore, themore » acceptability decision is made on the upstream process, rather than on the downstream melt or glass product. That is, it is based on 'feed foward' statistical process control (SPC) rather than statistical quality control (SQC). In SPC, the feed composition to the melter is controlled prior to vitrification. Use of the DWPF REDOX model has controlled the balanjce of feed reductants and oxidants in the Sludge Receipt and Adjustment Tank (SRAT). Once the alkali/alkaline earth salts (both reduced and oxidized) are formed during reflux in the SRAT, the REDOX can only change if (1) additional reductants or oxidants are added to the SRAT, the Slurry Mix Evaporator (SME), or the Melter Feed Tank (MFT) or (2) if the melt pool is bubble dwith an oxidizing gas or sparging gas that imposes a different REDOX target than the chemical balance set during reflux in the SRAT.« less
Copper(II) catalysis in cyanide conversion into ethyl carbamate in spirits and relevant reactions.
Aresta, M; Boscolo, M; Franco, D W
2001-06-01
The role of copper(II) species in the oxidation of inorganic cyanide to cyanate and in the conversion of cyanate or urea into ethyl carbamate was investigated. The oxidation process has been shown to be independent from the dissolved oxygen. Elemental analysis and infrared spectroscopy have shown the formation of a mixed copper carbonate/hydroxide in the process of oxidation of cyanide to cyanate in water/ethanol. The complexation to Cu(II) of cyanate formed upon cyanide oxidation makes the former more susceptible to nucleophilic attack from ethanol, with conversion into ethyl carbamate. Comparatively, urea has a minor role with respect to cyanide in the formation of ethyl carbamate. Therefore, the urea present in some samples of Brazilian sugar cane spirit (cachaça) has been shown to have almost no influence on the ethyl carbamate content of cachaças, which comes essentially from cyanide. Fe(II,III) affords results similar to those found with Cu(II). Some suggestions are presented to avoid ethyl carbamate formation in spirits during distillation.
Apparatus and process for the electrolytic reduction of uranium and plutonium oxides
Poa, David S.; Burris, Leslie; Steunenberg, Robert K.; Tomczuk, Zygmunt
1991-01-01
An apparatus and process for reducing uranium and/or plutonium oxides to produce a solid, high-purity metal. The apparatus is an electrolyte cell consisting of a first container, and a smaller second container within the first container. An electrolyte fills both containers, the level of the electrolyte in the first container being above the top of the second container so that the electrolyte can be circulated between the containers. The anode is positioned in the first container while the cathode is located in the second container. Means are provided for passing an inert gas into the electrolyte near the lower end of the anode to sparge the electrolyte and to remove gases which form on the anode during the reduction operation. Means are also provided for mixing and stirring the electrolyte in the first container to solubilize the metal oxide in the electrolyte and to transport the electrolyte containing dissolved oxide into contact with the cathode in the second container. The cell is operated at a temperature below the melting temperature of the metal product so that the metal forms as a solid on the cathode.
Reforming of fuel inside fuel cell generator
Grimble, Ralph E.
1988-01-01
Disclosed is an improved method of reforming a gaseous reformable fuel within a solid oxide fuel cell generator, wherein the solid oxide fuel cell generator has a plurality of individual fuel cells in a refractory container, the fuel cells generating a partially spent fuel stream and a partially spent oxidant stream. The partially spent fuel stream is divided into two streams, spent fuel stream I and spent fuel stream II. Spent fuel stream I is burned with the partially spent oxidant stream inside the refractory container to produce an exhaust stream. The exhaust stream is divided into two streams, exhaust stream I and exhaust stream II, and exhaust stream I is vented. Exhaust stream II is mixed with spent fuel stream II to form a recycle stream. The recycle stream is mixed with the gaseous reformable fuel within the refractory container to form a fuel stream which is supplied to the fuel cells. Also disclosed is an improved apparatus which permits the reforming of a reformable gaseous fuel within such a solid oxide fuel cell generator. The apparatus comprises a mixing chamber within the refractory container, means for diverting a portion of the partially spent fuel stream to the mixing chamber, means for diverting a portion of exhaust gas to the mixing chamber where it is mixed with the portion of the partially spent fuel stream to form a recycle stream, means for injecting the reformable gaseous fuel into the recycle stream, and means for circulating the recycle stream back to the fuel cells.
Reforming of fuel inside fuel cell generator
Grimble, R.E.
1988-03-08
Disclosed is an improved method of reforming a gaseous reformable fuel within a solid oxide fuel cell generator, wherein the solid oxide fuel cell generator has a plurality of individual fuel cells in a refractory container, the fuel cells generating a partially spent fuel stream and a partially spent oxidant stream. The partially spent fuel stream is divided into two streams, spent fuel stream 1 and spent fuel stream 2. Spent fuel stream 1 is burned with the partially spent oxidant stream inside the refractory container to produce an exhaust stream. The exhaust stream is divided into two streams, exhaust stream 1 and exhaust stream 2, and exhaust stream 1 is vented. Exhaust stream 2 is mixed with spent fuel stream 2 to form a recycle stream. The recycle stream is mixed with the gaseous reformable fuel within the refractory container to form a fuel stream which is supplied to the fuel cells. Also disclosed is an improved apparatus which permits the reforming of a reformable gaseous fuel within such a solid oxide fuel cell generator. The apparatus comprises a mixing chamber within the refractory container, means for diverting a portion of the partially spent fuel stream to the mixing chamber, means for diverting a portion of exhaust gas to the mixing chamber where it is mixed with the portion of the partially spent fuel stream to form a recycle stream, means for injecting the reformable gaseous fuel into the recycle stream, and means for circulating the recycle stream back to the fuel cells. 1 fig.
2011-10-06
composites were prepared with varying metal to oxidizer (M/O) ratios ranging from 0.782 to 3.165 (see Table 7). The performance was measured by the...and the Army was expecting to begin their processing efforts in the near future. The Army purchased primer metal parts and was prepared to perform...43 Table 19 – Samples Prepared Using Different Mix Times and Amplitudes
Electrically conducting ternary amorphous fully oxidized materials and their application
NASA Technical Reports Server (NTRS)
Giauque, Pierre (Inventor); Nicolet, Marc (Inventor); Gasser, Stefan M. (Inventor); Kolawa, Elzbieta A. (Inventor); Cherry, Hillary (Inventor)
2004-01-01
Electrically active devices are formed using a special conducting material of the form Tm--Ox mixed with SiO2 where the materials are immiscible. The immiscible materials are forced together by using high energy process to form an amorphous phase of the two materials. The amorphous combination of the two materials is electrically conducting but forms an effective barrier.
2015-04-03
films were deposited within a stainless steel high vacuum chamber evacuated to a pressure of 5.3 105 Pa (4 107 Torr). A 3 mm thick, 50 mm diameter...G.E. Jellison, Thin Solid Films 234 (1993) 416 –422. [34] J.I. Pankove, Absorption, in: Optical Processes in Semiconductors, Dover Publications, New
DOE Office of Scientific and Technical Information (OSTI.GOV)
Štengl, Václav, E-mail: stengl@iic.cas.cz; Henych, Jiří; Grygar, Tomáš
Nanostructured TiO{sub 2} and mixed oxides of Ti and Fe, Hf, In, Mn or Zr -were prepared by homogeneous hydrolysis of aqueous solution of metal sulphates with urea. The oxides were characterised by X-ray powder diffraction (XRD), scanning electron microscopy, particle size distribution, surface area and porosity. The oxide materials consists of a few nanometre primary crystals (mainly anatase) arranged in a few micrometre regular spherical agglomerates with specific surface area 133–511 m{sup 2} g{sup −1}. The FTIR diffuse spectroscopy was used for monitoring chemical degradation of trimethylphosphate (TMP) as a surrogate for organo-phosphorus pesticides under ambient and higher temperatures.more » Undoped TiO{sub 2} and Ti,Mn-mixed oxide were most active in cleavage (hydrolysis) of CH{sub 3}O from TMP at room temperature and 100 °C. Cleavage of CH{sub 3}O in the other studied mixed oxides was not complete until temperature exceeds the boiling point of TMP.« less
Abzazou, Tarik; Araujo, Rosa M; Auset, María; Salvadó, Humbert
2016-01-15
A moving bead biofilm reactor (MBBR) pilot plant was implemented as a partial nitrification process for pre-treatment of ammonium-rich liquors (676 ± 195 mg L(-1)), and studied for 479 days under variations in hydraulic retention time. The main purpose of this work, was the study of dynamics abundance of total bacteria and single-cells nitrifying bacteria belonging to ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB) in biofilms and mixed liquor of the plant. The microbial monitoring was successfully achieved using fluorescence in situ hybridization combined with flocs disaggregation protocol as a useful microbial monitoring tool. A partial nitrification process with a N-NH4(+) removal rate of about 38.6 ± 14.8% was successfully achieved at 211 days after start-up, with a clear dominance of AOB, which accounted for 11.3 ± 17.0% of total bacterial cells compared with only 2.1 ± 4.0% of NOB. The effluent obtained was subsequently supplied to an Anammox reactor for complete ammonium treatment. Copyright © 2015 Elsevier B.V. All rights reserved.
Process for making silicon carbide reinforced silicon carbide composite
NASA Technical Reports Server (NTRS)
Lau, Sai-Kwing (Inventor); Calandra, Salavatore J. (Inventor); Ohnsorg, Roger W. (Inventor)
1998-01-01
A process comprising the steps of: a) providing a fiber preform comprising a non-oxide ceramic fiber with at least one coating, the coating comprising a coating element selected from the group consisting of carbon, nitrogen, aluminum and titanium, and the fiber having a degradation temperature of between 1400.degree. C. and 1450.degree. C., b) impregnating the preform with a slurry comprising silicon carbide particles and between 0.1 wt % and 3 wt % added carbon c) providing a cover mix comprising: i) an alloy comprising a metallic infiltrant and the coating element, and ii) a resin, d) placing the cover mix on at least a portion of the surface of the porous silicon carbide body, e) heating the cover mix to a temperature between 1410.degree. C. and 1450.degree. C. to melt the alloy, and f) infiltrating the fiber preform with the melted alloy for a time period of between 15 minutes and 240 minutes, to produce a ceramic fiber reinforced ceramic composite.
NASA Astrophysics Data System (ADS)
Baksi, Arnab; Cocke, David L.; Gomes, Andrew; Gossage, John; Riggs, Mark; Beall, Gary; McWhinney, Hylton
Complex multi-metal catalysts require several stages in their preparation. These are: co-mixing, co-precipitation, milling and sol-gel, drying, dehydroxylation, and calcination and sometimes regeneration of the hydroxide by rehydration. These processes require thermal analysis (DTA, TGA, DSC) and accompanying off gas analysis, plus one or more of these: XRD, XPS, SEMEDS, FTIR and UV-VIS. In this study, hydrotalcite, hopcalite and mixed systems were prepared and guided by the above characterization techniques. The systems were initiated by mixing the chlorides or nitrates followed by hydrothermal treatments to produce the hydroxides which were further treated by washing, drying, and calcination. The thermal analysis was critical to guide the preparation through these stages and when combined with structural determination methods considerable understanding of their chemical and physical changes was obtained. The correlations between preparation and characterization will be discussed.
Mixing of Pure Air Jets with a Reacting Fuel-Rich Crossflow
NASA Technical Reports Server (NTRS)
Leong, M. Y.; Samuelsen, G. S.; Holdeman, J. D.
1997-01-01
Jets in a crossflow play an integral role in practical combustion systems such as can and annular gas turbine combustors in conventional systems, and the Rich-burn/Quick-mix/Lean-burn (RQL) combustor utilized in stationary applications and proposed for advanced subsonic and supersonic transports. The success of the RQL combustor rests with the performance of the quick-mixing section that bridges the rich and lean zones. The mixing of jet air with a rich crossflow to bring the reaction to completion in the lean zone must be performed rapidly and thoroughly in order to decrease the extent of near-stoichiometric fluid pocket formation. Fluid pockets at near-stoichiometric equivalence ratios are undesirable because the high temperatures attained accelerate pollutant formation kinetics associated with nitric oxide (NO). The present study develops a model experiment designed to reveal the processes that occur when jet air is introduced into hot effluent emanating from a fuel-rich reaction zone.
Synthesis of Mixed Cu/Ce Oxide Nanoparticles by the Oil-in-Water Microemulsion Reaction Method.
Pemartin-Biernath, Kelly; Vela-González, Andrea V; Moreno-Trejo, Maira B; Leyva-Porras, César; Castañeda-Reyna, Iván E; Juárez-Ramírez, Isaías; Solans, Conxita; Sánchez-Domínguez, Margarita
2016-06-16
Cerium oxide and mixed Cu/Ce oxide nanoparticles were prepared by the oil-in-water (O/W) microemulsion reaction method in mild conditions. The Cu/Ce molar ratio was varied between 0/100 and 50/50. According to X-ray diffraction (XRD), below 30/70 Cu/Ce molar ratio, the materials presented a single phase consistent with cubic fluorite CeO₂. However, above Cu/Ce molar ratio 30/70, an excess monoclinic CuO phase in coexistence with the predominant Cu/Ce mixed oxide was detected by XRD and High-Resolution Transmission Electron Microscopy (HRTEM). Raman spectroscopy showed that oxygen vacancies increased significantly as the Cu content was increased. Band gap ( E g ) was investigated as a function of the Cu/Ce molar ratio, resulting in values from 2.91 eV for CeO₂ to 2.32 eV for the mixed oxide with 30/70 Cu/Ce molar ratio. These results indicate that below 30/70 Cu/Ce molar ratio, Cu 2+ is at least partially incorporated into the ceria lattice and very well dispersed in general. In addition, the photodegradation of Indigo Carmine dye under visible light irradiation was explored for selected samples; it was shown that these materials can remove such contaminants, either by adsorption and/or photodegradation. The results obtained will encourage investigation into the optical and photocatalytic properties of these mixed oxides, for widening their potential applications.
Synthesis of Mixed Cu/Ce Oxide Nanoparticles by the Oil-in-Water Microemulsion Reaction Method
Pemartin-Biernath, Kelly; Vela-González, Andrea V.; Moreno-Trejo, Maira B.; Leyva-Porras, César; Castañeda-Reyna, Iván E.; Juárez-Ramírez, Isaías; Solans, Conxita; Sánchez-Domínguez, Margarita
2016-01-01
Cerium oxide and mixed Cu/Ce oxide nanoparticles were prepared by the oil-in-water (O/W) microemulsion reaction method in mild conditions. The Cu/Ce molar ratio was varied between 0/100 and 50/50. According to X-ray diffraction (XRD), below 30/70 Cu/Ce molar ratio, the materials presented a single phase consistent with cubic fluorite CeO2. However, above Cu/Ce molar ratio 30/70, an excess monoclinic CuO phase in coexistence with the predominant Cu/Ce mixed oxide was detected by XRD and High-Resolution Transmission Electron Microscopy (HRTEM). Raman spectroscopy showed that oxygen vacancies increased significantly as the Cu content was increased. Band gap (Eg) was investigated as a function of the Cu/Ce molar ratio, resulting in values from 2.91 eV for CeO2 to 2.32 eV for the mixed oxide with 30/70 Cu/Ce molar ratio. These results indicate that below 30/70 Cu/Ce molar ratio, Cu2+ is at least partially incorporated into the ceria lattice and very well dispersed in general. In addition, the photodegradation of Indigo Carmine dye under visible light irradiation was explored for selected samples; it was shown that these materials can remove such contaminants, either by adsorption and/or photodegradation. The results obtained will encourage investigation into the optical and photocatalytic properties of these mixed oxides, for widening their potential applications. PMID:28773602
NASA Astrophysics Data System (ADS)
Kirner, S. V.; Slachciak, N.; Elert, A. M.; Griepentrog, M.; Fischer, D.; Hertwig, A.; Sahre, M.; Dörfel, I.; Sturm, H.; Pentzien, S.; Koter, R.; Spaltmann, D.; Krüger, J.; Bonse, J.
2018-04-01
Commercial grade-1 titanium samples (Ti, 99.6%) were treated using three alternative methods, (i) femtosecond laser processing, (ii) thermal heat treatment, and (iii) electrochemical anodization, respectively, resulting in the formation of differently conditioned superficial titanium oxide layers. The laser processing (i) was carried out by a Ti:sapphire laser (pulse duration 30 fs, central wavelength 790 nm, pulse repetition rate 1 kHz) in a regime of generating laser-induced periodic surface structures (LIPSS). The experimental conditions (laser fluence, spatial spot overlap) were optimized in a sample-scanning setup for the processing of several square-millimeters large surface areas covered homogeneously by these nanostructures. The differently oxidized titanium surfaces were characterized by optical microscopy, micro Raman spectroscopy, variable angle spectroscopic ellipsometry, and instrumented indentation testing. The tribological performance was characterized in the regime of mixed friction by reciprocating sliding tests against a sphere of hardened steel in fully formulated engine oil as lubricant. The specific tribological performance of the differently treated surfaces is discussed with respect to possible physical and chemical mechanisms.
Thin film superconductors and process for making same
Nigrey, P.J.
1988-01-21
A process for the preparation of oxide superconductors from high-viscosity non-aqueous solution is described. Solutions of lanthanide nitrates, alkaline earth nitrates and copper nitrates in a 1:2:3 stoichiometric ratio, when added to ethylene glycol containing citric acid solutions, have been used to prepare highly viscous non-aqueous solutions of metal mixed nitrates-citrates. Thin films of these compositions are produced when a layer of the viscous solution is formed on a substrate and subjected to thermal decomposition.
Nogueira, Bruno L; Pérez, Julio; van Loosdrecht, Mark C M; Secchi, Argimiro R; Dezotti, Márcia; Biscaia, Evaristo C
2015-09-01
In moving bed biofilm reactors (MBBR), the removal of pollutants from wastewater is due to the substrate consumption by bacteria attached on suspended carriers. As a biofilm process, the substrates are transported from the bulk phase to the biofilm passing through a mass transfer resistance layer. This study proposes a methodology to determine the external mass transfer coefficient and identify the influence of the mixing intensity on the conversion process in-situ in MBBR systems. The method allows the determination of the external mass transfer coefficient in the reactor, which is a major advantage when compared to the previous methods that require mimicking hydrodynamics of the reactor in a flow chamber or in a separate vessel. The proposed methodology was evaluated in an aerobic lab-scale system operating with COD removal and nitrification. The impact of the mixing intensity on the conversion rates for ammonium and COD was tested individually. When comparing the effect of mixing intensity on the removal rates of COD and ammonium, a higher apparent external mass transfer resistance was found for ammonium. For the used aeration intensities, the external mass transfer coefficient for ammonium oxidation was ranging from 0.68 to 13.50 m d(-1) and for COD removal 2.9 to 22.4 m d(-1). The lower coefficient range for ammonium oxidation is likely related to the location of nitrifiers deeper in the biofilm. The measurement of external mass transfer rates in MBBR will help in better design and evaluation of MBBR system-based technologies. Copyright © 2015 Elsevier Ltd. All rights reserved.
Method of CO and/or CO.sub.2 hydrogenation using doped mixed-metal oxides
Shekhawat, Dushyant; Berry, David A.; Haynes, Daniel J.; Abdelsayed, Victor; Smith, Mark W.; Spivey, James J.
2015-10-06
A method of hydrogenation utilizing a reactant gas mixture comprising a carbon oxide and a hydrogen agent, and a hydrogenation catalyst comprising a mixed-metal oxide containing metal sites supported and/or incorporated into the lattice. The mixed-metal oxide comprises a perovskite, a pyrochlore, a fluorite, a brownmillerite, or mixtures thereof doped at the A-site or the B-site. The metal site may comprise a deposited metal, where the deposited metal is a transition metal, an alkali metal, an alkaline earth metal, or mixtures thereof. Contact between the carbon oxide, hydrogen agent, and hydrogenation catalyst under appropriate conditions of temperature, pressure and gas flow rate generate a hydrogenation reaction and produce a hydrogenated product made up of carbon from the carbon oxide and some portion of the hydrogen agent. The carbon oxide may be CO, CO.sub.2, or mixtures thereof and the hydrogen agent may be H.sub.2. In a particular embodiment, the hydrogenated product comprises an alcohol, an olefin, an aldehyde, a ketone, an ester, an oxo-product, or mixtures thereof.
Srirodpai, Onruthai; Wootthikanokkhan, Jatuphorn; Nawalertpanya, Saiwan; Yuwawech, Kitti; Meeyoo, Vissanu
2017-01-01
Thermochromic films based on vanadium dioxide (VO2)/ethylene vinyl acetate copolymer (EVA) composite were developed. The monoclinic VO2 particles was firstly prepared via hydrothermal and calcination processes. The effects of hydrothermal time and tungsten doping agent on crystal structure and morphology of the calcined metal oxides were reported. After that, 1 wt % of the prepared VO2 powder was mixed with EVA compound, using two different mixing processes. It was found that mechanical properties of the EVA/VO2 films prepared by the melt process were superior to those of which prepared by the solution process. On the other hand, percentage visible light transmittance of the solution casted EVA/VO2 film was greater than that of the melt processed composite film. This was related to the different gel content of EVA rubber and state of dispersion and distribution of VO2 within the polymer matrix phase. Thermochromic behaviors and heat reflectance of the EVA/VO2 film were also verified. In overall, this study demonstrated that it was possible to develop a thermochromic film using the polymer composite approach. In this regard, the mixing condition was found to be one of the most important factors affecting morphology and thermo-mechanical properties of the films. PMID:28772413
Liapis, Ioannis; Papayianni, Ioanna
2015-01-01
Slags are recognised as a highly efficient, cost effective tool in the metal processing industry, by minimising heat losses, reducing metal oxidation through contact with air, removing metal impurities and protecting refractories and graphite electrodes. When compared to natural aggregates for use in the construction industry, slags have higher specific weight that acts as an economic deterrent. A method of altering the specific weight of EAFC slag by hot stage processing and mineral mixing, during steel production is presented in this article. The method has minimal interference with the production process of steel, even by limited additions of appropriate minerals at high temperatures. Five minerals are examined, namely perlite, ladle furnace slag, bauxite, diatomite and olivine. Measurements of specific weight are accompanied by X-ray diffraction (XRD) and fluorescence (XRF) analysis and scanning electron microscopy spectral images. It is also shown how altering the chemical composition is expected to affect the furnace refractory lining. Additionally, the process has been repeated for the most suitable mix in gas furnace and physical properties (FI, SI, LA, PSV, AAV, volume stability) examined. Alteration of the specific weight can result in tailoring slag properties for specific applications in the construction sector. Copyright © 2014 Elsevier B.V. All rights reserved.
Srirodpai, Onruthai; Wootthikanokkhan, Jatuphorn; Nawalertpanya, Saiwan; Yuwawech, Kitti; Meeyoo, Vissanu
2017-01-11
Thermochromic films based on vanadium dioxide (VO₂)/ethylene vinyl acetate copolymer (EVA) composite were developed. The monoclinic VO₂ particles was firstly prepared via hydrothermal and calcination processes. The effects of hydrothermal time and tungsten doping agent on crystal structure and morphology of the calcined metal oxides were reported. After that, 1 wt % of the prepared VO₂ powder was mixed with EVA compound, using two different mixing processes. It was found that mechanical properties of the EVA/VO₂ films prepared by the melt process were superior to those of which prepared by the solution process. On the other hand, percentage visible light transmittance of the solution casted EVA/VO₂ film was greater than that of the melt processed composite film. This was related to the different gel content of EVA rubber and state of dispersion and distribution of VO₂ within the polymer matrix phase. Thermochromic behaviors and heat reflectance of the EVA/VO₂ film were also verified. In overall, this study demonstrated that it was possible to develop a thermochromic film using the polymer composite approach. In this regard, the mixing condition was found to be one of the most important factors affecting morphology and thermo-mechanical properties of the films.
40 CFR 721.10006 - Mixed metal oxide (generic).
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Mixed metal oxide (generic). 721.10006 Section 721.10006 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES...) of this section. (2) The significant new uses are: (i) Industrial, commercial, and consumer...
40 CFR 721.5315 - Nickel, cobalt mixed metal oxide (generic).
Code of Federal Regulations, 2010 CFR
2010-07-01
...) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.5315 Nickel, cobalt mixed metal oxide (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as...
Method for forming solar cell materials from particulars
Eberspacher, Chris; Pauls, Karen Lea
2001-01-01
Materials in bulk and film forms are prepared from fine particulate precursors such as single-phase, mixed-metal oxides; multi-phase, mixed-metal particles comprising a metal oxide; multinary metal particles; mixtures of such particles with other particles; and particulate materials intercalated with other materials.
Roques, Clément; Aquilina, Luc; Boisson, Alexandre; Vergnaud-Ayraud, Virginie; Labasque, Thierry; Longuevergne, Laurent; Laurencelle, Marc; Dufresne, Alexis; de Dreuzy, Jean-Raynald; Pauwels, Hélène; Bour, Olivier
2018-04-01
We investigated the mixing and dynamic of denitrification processes induced by long-term pumping in the crystalline aquifer of Ploemeur (Brittany, France). Hydrological and geochemical parameters have been continuously recorded over 15 boreholes in 5km 2 on a 25-year period. This extensive spatial and temporal monitoring of conservative as well as reactive compounds is a key opportunity to identify aquifer-scale transport and reactive processes in crystalline aquifers. Time series analysis of the conservative elements recorded at the pumped well were used to determine mixing fractions from different compartments of the aquifer on the basis of a Principal Component Analysis approach coupled with an end-member mixing analysis. We could reveal that pumping thus induces a thorough reorganization of fluxes known as capture, favoring infiltration and vertical fluxes in the recharge zone, and upwelling of deep and distant water at long-term time scales. These mixing fractions were then used to quantify the extent of denitrification linked to pumping. Based on the results from batch experiments described in a companion paper, our computations revealed that i) autotrophic denitrification processes are dominant in this context where carbon sources are limited, that ii) nitrate reduction does not only come from the oxidation of pyrite as classically described in previous studies analyzing denitrification processes in similar contexts, and that iii) biotite plays a critical role in sustaining the nitrate reduction process. Both nitrate reduction, sulfate production as well as fluor release ratios support the hypothesis that biotite plays a key role of electron donor in this context. The batch-to-site similarities support biotite availability and the role by bacterial communities as key controls of nitrate removal in such crystalline aquifers. However, the long term data monitoring also indicates that mixing and reactive processes evolve extremely slowly at the scale of the decade. Copyright © 2017 Elsevier B.V. All rights reserved.
Bar-Or, Itay; Elvert, Marcus; Eckert, Werner; Kushmaro, Ariel; Vigderovich, Hanni; Zhu, Qingzeng; Ben-Dov, Eitan; Sivan, Orit
2017-11-07
Anaerobic oxidation of methane (AOM) was shown to reduce methane emissions by over 50% in freshwater systems, its main natural contributor to the atmosphere. In these environments iron oxides can become main agents for AOM, but the underlying mechanism for this process has remained enigmatic. By conducting anoxic slurry incubations with lake sediments amended with 13 C-labeled methane and naturally abundant iron oxides the process was evidenced by significant 13 C-enrichment of the dissolved inorganic carbon pool and most pronounced when poorly reactive iron minerals such as magnetite and hematite were applied. Methane incorporation into biomass was apparent by strong uptake of 13 C into fatty acids indicative of methanotrophic bacteria, associated with increasing copy numbers of the functional methane monooxygenase pmoA gene. Archaea were not directly involved in full methane oxidation, but their crucial participation, likely being mediators in electron transfer, was indicated by specific inhibition of their activity that fully stopped iron-coupled AOM. By contrast, inhibition of sulfur cycling increased 13 C-methane turnover, pointing to sulfur species involvement in a competing process. Our findings suggest that the mechanism of iron-coupled AOM is accomplished by a complex microbe-mineral reaction network, being likely representative of many similar but hidden interactions sustaining life under highly reducing low energy conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mount, M E; O'Connell, W J
2005-06-03
Lawrence Livermore National Laboratory (LLNL) uses the LLNL passive-active neutron drum (PAN) shuffler (Canberra Model JCC-92) for accountability measurement of highly enriched uranium (HEU) oxide and HEU in mixed uranium-plutonium (U-Pu) oxide. In June 2002, at the 43rd Annual Meeting of the Institute of Nuclear Material Management, LLNL reported on an extensive effort to calibrate this shuffler, based on standards measurements and extensive simulations, for HEU oxides and mixed U-Pu oxides in thin-walled primary and secondary containers. In August 2002, LLNL began to also use DOE-STD-3013-2000 containers for HEU oxide and mixed U-Pu oxide. These DOE-STD-3013-2000 containers are comprised ofmore » a stainless steel convenience can enclosed in welded stainless steel primary and secondary containers. Compared to the double thin-walled containers, the DOE-STD-3013-2000 containers have substantially thicker walls, and the density of materials in these containers was found to extend over a greater range (1.35 g/cm{sup 3} to 4.62 g/cm{sup 3}) than foreseen for the double thin-walled containers. Further, the DOE-STD-3013-2000 Standard allows for oxides containing at least 30 wt% Pu plus U whereas the calibration algorithms for thin-walled containers were derived for virtually pure HEU or mixed U-Pu oxides. An initial series of Monte Carlo simulations of the PAN shuffler response to given quantities of HEU oxide and mixed U-Pu oxide in DOE-STD-3013-2000 containers was generated and compared with the response predicted by the calibration algorithms for thin-walled containers. Results showed a decrease on the order of 10% in the count rate, and hence a decrease in the calculated U mass for measured unknowns, with some varying trends versus U mass. Therefore a decision was made to develop a calibration algorithm for the PAN shuffler unique to the DOE-STD-3013-2000 container. This paper describes that effort and selected unknown item measurement results.« less
Investigating co-combustion characteristics of bamboo and wood.
Liang, Fang; Wang, Ruijuan; Jiang, Changle; Yang, Xiaomeng; Zhang, Tao; Hu, Wanhe; Mi, Bingbing; Liu, Zhijia
2017-11-01
To investigate co-combustion characteristics of bamboo and wood, moso bamboo and masson pine were torrefied and mixed with different blend ratios. The combustion process was examined by thermogravimetric analyzer (TGA). The results showed the combustion process of samples included volatile emission and oxidation combustion as well as char combustion. The main mass loss of biomass blends occurred at volatile emission and oxidation combustion stage, while that of torrefied biomass occurred at char combustion stage. With the increase of bamboo content, characteristic temperatures decreased. Compared with untreated biomass, torrefied biomass had a higher initial and burnout temperature. With the increase of heating rates, combustion process of samples shifted to higher temperatures. Compared with non-isothermal models, activation energy obtained from isothermal model was lower. The result is helpful to promote development of co-combustion of bamboo and masson pine wastes. Copyright © 2017 Elsevier Ltd. All rights reserved.
Detailed mechanism of toluene oxidation and comparison with benzene
NASA Technical Reports Server (NTRS)
Bittker, David A.
1988-01-01
A detailed mechanism for the oxidation of toluene in both argon and nitrogen dilutents is presented. The mechanism was used to compute experimentally ignition delay times for shock-heated toluene-oxygen-argon mixtures with resonably good success over a wide range of initial temperatures and pressures. Attempts to compute experimentally measured concentration profiles for toluene oxidation in a turbulent reactor were partially successful. An extensive sensitivity analysis was performed to determine the reactions which control the ignition process and the rates of formation and destruction of various species. The most important step was found to be the reaction of toluene with molecular oxygen, followed by the reactions of hydroperoxyl and atomic oxygen with benzyl radicals. These findings contrast with the benzene oxidation, where the benzene-molecular oxygen reaction is quite unimportant and the reaction of phenyl with molecular oxygen dominates. In the toluene mechanism the corresponding reaction of benzyl radicals with oxygen is unimportant. Two reactions which are important in the oxidation of benzene also influence the oxidation of toluene for several conditions. These are the oxidations of phenyl and cyclopentadienyl radicals by molecular oxygen. The mechanism presented successfully computes the decrease of toluene concentration with time in the nitrogen diluted turbulent reactor. This fact, in addition to the good prediction of ignition delay times, shows that this mechanism can be used for modeling the ignition and combustion process in practical, well-mixed combustion systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Madier, Y.; Descorme, C.; Govic, A.M. Le
Cerium-zirconium mixed oxides (Ce{sub x}Zr{sub 1{minus}x}O{sub 2}), precalcined at 900 C in dry air, were supplied by Rhodia Terres Rares as monophasic solid solutions. Introduction of some zirconium atoms in the ceria lattice by isomorphous substitution clearly influences the final properties of these materials as long as the cubic structure of ceria is maintained. Modifications in oxygen storage capacity (OSC measurements), redox properties (CO TPR), and oxygen exchange processes (TPIE) were studied. Ce{sub 0.63}Zr{sub 0.37}O{sub 2} was shown to have the most promising properties with the largest OSC at 400 C and the highest reactivity in O{sub 2} exchange. Allmore » mixed oxides are able to exchange very large amounts of oxygen compared to ceria, implying the participation of bulk oxygen. Furthermore, on Ce{sub x}Zr{sub (1{minus}x)}O{sub 2} samples, oxygen is predominantly exchanged via a multiple heteroexchange mechanism involving surface dioxygen species as superoxides or peroxides.« less
NASA Astrophysics Data System (ADS)
Serena, S.; Caballero, A.; Turrillas, X.; Martin, D.; Sainz, M. A.
2009-05-01
Calcium zirconate-magnesium oxide material was obtained by solid-state reaction from mixed dolomite (CaMg(CO3)2) and zirconia (m-ZrO2) nanopowders. The nanopowders were obtained by high-energy milling, which produced an increase of the superficial free energy of the particles. The role of nanoparticles in the reaction process of monoclinic-zirconia and dolomite was analysed for the first time using neutron thermodiffraction and differential thermal analysis-thermogravimetric techniques. The neutron thermodiffraction of this mixture provides a clear description in situ of the different decomposition and reaction processes that occur in the nanopowders mixture. The results make it possible to analyze the effect of the nanoparticles on the reaction behaviour of these materials.
Li, Shiue-Lin; Nealson, Kenneth H.
2015-01-01
Sulfide is a common product of marine anaerobic respiration, and a potent reactant biologically and geochemically. Here we demonstrate the impact on microbial communities with the removal of sulfide via electrochemical methods. The use of differential pulse voltammetry revealed that the oxidation of soluble sulfide was seen at +30 mV (vs. SHE) at all pH ranges tested (from pH = 4 to 8), while non-ionized sulfide, which dominated at pH = 4 was poorly oxidized via this process. Two mixed cultures (CAT and LA) were enriched from two different marine sediments (from Catalina Island, CAT; from the Port of Los Angeles, LA) in serum bottles using a seawater medium supplemented with lactate, sulfate, and yeast extract, to obtain abundant biomass. Both CAT and LA cultures were inoculated in electrochemical cells (using yeast-extract-free seawater medium as an electrolyte) equipped with carbon-felt electrodes. In both cases, when potentials of +630 or +130 mV (vs. SHE) were applied, currents were consistently higher at +630 then at +130 mV, indicating more sulfide being oxidized at the higher potential. In addition, higher organic-acid and sulfate conversion rates were found at +630 mV with CAT, while no significant differences were found with LA at different potentials. The results of microbial-community analyses revealed a decrease in diversity for both CAT and LA after electrochemical incubation. In addition, some bacteria (e.g., Clostridium and Arcobacter) not well-known to be capable of extracellular electron transfer, were found to be dominant in the electrochemical cells. Thus, even though the different mixed cultures have different tolerances for sulfide, electrochemical-sulfide removal can lead to major population changes. PMID:25741331
Effect of nanocomposite synthesis on the combustion performance of a ternary thermite.
Prentice, Daniel; Pantoya, Michelle L; Clapsaddle, Brady J
2005-11-03
Nanocomposite thermites are attractive materials for their diverse applications from metallurgy to ordnance technologies. While there are a plethora of combinations of fuel and oxidizers, this work shows that the composite's overall performance is intimately tied to how the fuel and oxidizer are prepared and combined. Comparison of the combustion velocities of two separate ternary mixtures of Al-Fe(2)O(3)-SiO(2), one prepared in situ using sol-gel processing and the other prepared by physically mixing discrete nanoscale particles, demonstrated different burning behaviors as a result of preparation technique. The stoichiometry of the two sets of thermite was varied to examine the influence of SiO(2) on combustion velocity as a means to control the reaction behavior. For pure Fe(2)O(3) + Al reactions, results show that the sol-gel synthesized materials (40 m/s) exhibit increased velocities over the physically mixed materials (9 m/s) by approximately 4 times. This trend is not observed, however, upon addition of SiO(2) to the thermite mixture; ternary thermites with 40 wt % SiO(2) showed decreased burn velocities of 0.02 m/s for sol-gel prepared thermites compared to 0.2 m/s for their physically mixed counterparts. The observed trends are believed to be caused by the unique mixing between the Fe(2)O(3) and SiO(2) phases resulting from the two synthesis techniques.
Hot-isostatically pressed wasteforms for Magnox sludge immobilisation
NASA Astrophysics Data System (ADS)
Heath, Paul G.; Stewart, Martin W. A.; Moricca, Sam; Hyatt, Neil C.
2018-02-01
Thermal treatment technologies offer many potential benefits for the treatment of radioactive wastes including the passivation of reactive species and significant waste volume reductions. This paper presents a study investigating the production of wasteforms using Hot-isostatic pressing technology for the immobilisation of Magnox sludges from the UK's Sellafield Site. Simulants considered physically representative of these sludges were used to determine possible processing parameters and to determine the phase assemblages and morphologies produced during processing. The study showed hot-isostatic pressing is capable of processing Magnox sludges at up to 60 wt% (oxide basis) into dense, mixed ceramic wasteforms. The wasteforms produced are a glass-bonded ceramic of mixed magnesium titanates, encapsulating localised grains of periclase. The ability to co-process Magnox sludges with SIXEP sand/clinoptilolite slurries has also been demonstrated. The importance of these results is presented through a comparison of volume reduction data, which shows HIPing may provide a 20-fold volume reduction over the current cementitious baseline and double the volume reduction attainable for vitrification technologies.
Perovskite nanocomposites as effective CO2-splitting agents in a cyclic redox scheme
Zhang, Junshe; Haribal, Vasudev; Li, Fanxing
2017-01-01
We report iron-containing mixed-oxide nanocomposites as highly effective redox materials for thermochemical CO2 splitting and methane partial oxidation in a cyclic redox scheme, where methane was introduced as an oxygen “sink” to promote the reduction of the redox materials followed by reoxidation through CO2 splitting. Up to 96% syngas selectivity in the methane partial oxidation step and close to complete conversion of CO2 to CO in the CO2-splitting step were achieved at 900° to 980°C with good redox stability. The productivity and production rate of CO in the CO2-splitting step were about seven times higher than those in state-of-the-art solar-thermal CO2-splitting processes, which are carried out at significantly higher temperatures. The proposed approach can potentially be applied for acetic acid synthesis with up to 84% reduction in CO2 emission when compared to state-of-the-art processes. PMID:28875171
Chemical stability of levoglucosan: An isotopic perspective
NASA Astrophysics Data System (ADS)
Sang, X. F.; Gensch, I.; Kammer, B.; Khan, A.; Kleist, E.; Laumer, W.; Schlag, P.; Schmitt, S. H.; Wildt, J.; Zhao, R.; Mungall, E. L.; Abbatt, J. P. D.; Kiendler-Scharr, A.
2016-05-01
The chemical stability of levoglucosan was studied by exploring its isotopic fractionation during the oxidation by hydroxyl radicals. Aqueous solutions as well as mixed (NH4)2SO4-levoglucosan particles were exposed to OH. In both cases, samples experiencing different extents of processing were isotopically analyzed by Thermal Desorption-Gas Chromatography-Isotope Ratio Mass Spectrometry (TD-GC-IRMS). From the dependence of levoglucosan δ13C and concentration on the reaction extent, the kinetic isotope effect (KIE) of the OH oxidation reactions was determined to be 1.00187±0.00027 and 1.00229±0.00018, respectively. Both show good agreement within the uncertainty range. For the heterogeneous oxidation of particulate levoglucosan by gas-phase OH, a reaction rate constant of (2.67±0.03)·10-12 cm3 molecule-1S-1 was derived. The laboratory kinetic data, together with isotopic source and ambient observations, give information on the extent of aerosol chemical processing in the atmosphere.
Ni, Bing-Jie; Ruscalleda, Maël; Pellicer-Nàcher, Carles; Smets, Barth F
2011-09-15
Nitrous oxide (N(2)O) can be formed during biological nitrogen (N) removal processes. In this work, a mathematical model is developed that describes N(2)O production and consumption during activated sludge nitrification and denitrification. The well-known ASM process models are extended to capture N(2)O dynamics during both nitrification and denitrification in biological N removal. Six additional processes and three additional reactants, all involved in known biochemical reactions, have been added. The validity and applicability of the model is demonstrated by comparing simulations with experimental data on N(2)O production from four different mixed culture nitrification and denitrification reactor study reports. Modeling results confirm that hydroxylamine oxidation by ammonium oxidizers (AOB) occurs 10 times slower when NO(2)(-) participates as final electron acceptor compared to the oxic pathway. Among the four denitrification steps, the last one (N(2)O reduction to N(2)) seems to be inhibited first when O(2) is present. Overall, N(2)O production can account for 0.1-25% of the consumed N in different nitrification and denitrification systems, which can be well simulated by the proposed model. In conclusion, we provide a modeling structure, which adequately captures N(2)O dynamics in autotrophic nitrification and heterotrophic denitrification driven biological N removal processes and which can form the basis for ongoing refinements.
Single element injector cold flow testing for STME swirl coaxial injector element design
NASA Technical Reports Server (NTRS)
Hulka, J.; Schneider, J. A.
1993-01-01
An oxidizer-swirled coaxial element injector is being investigated for application in the Space Transportation Main Engine (STME). Single element cold flow experiments were conducted to provide characterization of the STME injector element for future analysis, design, and optimization. All tests were conducted to quiescent, ambient backpressure conditions. Spray angle, circumferential spray uniformity, dropsize, and dropsize distribution were measured in water-only and water/nitrogen flows. Rupe mixing efficiency was measured using water/sucrose solution flows with a large grid patternator for simple comparative evaluation of mixing. Factorial designs of experiment were used for statistical evaluation of injector geometrical design features and propellant flow conditions on mixing and atomization. Increasing the free swirl angle of the liquid oxidizer had the greatest influence on increasing the mixing efficiency. The addition of gas assistance had the most significant effect on reducing oxidizer droplet size parameters and increasing droplet size distribution. Increasing the oxidizer injection velocity had the greatest influence for reducing oxidizer droplet size parameters and increasing size distribution for non-gas assisted flows. Single element and multi-element subscale hot fire testing are recommended to verify optimized designs before committing to the STME design.
NASA Technical Reports Server (NTRS)
Olivas, J. D.; Wright, M. C.; Christoffersen, R.; Cone, D. M.; McDanels, S. J.
2009-01-01
Analyzing the remains of Space Shuttle Columbia has proven technically beneficial years after the vehicle breakup. This investigation focused on charred deposits on fragments of Columbia overhead windowpanes. Results were unexpected relative to the engineering understanding of material performance in a reentry environment. The TEM analysis demonstrated that the oxides of aluminum and titanium mixed with silicon oxides to preserve a history of thermal conditions to which portions of the vehicle were exposed. The presence of Ti during the beginning of the deposition process, along with the thermodynamic phase precipitation upon cool down, indicate that temperatures well above the Ti melt point were experienced. The stratified observations implied that additional exothermic reaction, expectedly metal combustion of a Ti structure, had to be present for oxide formation. Results are significant for aerospace vehicles where thermal protection system (TPS) breaches cause substructures to be in direct path with the reentry plasma. 1
An Insidious Mode of Oxidative Degradation in a SiC-SiC Composite
NASA Technical Reports Server (NTRS)
Ogbuji, Linus U. J. T.
1997-01-01
The oxidative durability of a SiC-SiC composite with Hi-Nicalon fiber and BN interphase was investigated at 800 C (where pesting is known to occur in SiC-SiC composites) for exposure durations of up to 500 hours and in a variety of oxidant mixes and flow rates, ranging from quasi-stagnant room air, through slow flowing O2 containing 30-90% H2O, to the high-velocity flame of a burner rig. Degradation of the composite was determined from residual strength and fracture strain in post-exposure mechanical tests and correlated with microstructural evidence of damage to fiber and interphase. The severest degradation of composite behavior was found to occur in the bumer rig, and is shown to be connected with the high oxidant velocity and substantial moisture content, as well as a thin sublayer of carbon indicated to form between fiber and interphase during composite processing.
The oxidation of phenol by ferrate(VI) and ferrate(V). A pulse radiolysis and stopped-flow study.
Rush, J D; Cyr, J E; Zhao, Z; Bielski, B H
1995-04-01
Potassium ferrate, K2FeO4, is found to oxidize phenol in aqueous solution (5.5 < or = pH < or = 10) by a process which is second order in both reactants; -d[FeVI]/dt=k1[FeVI][phenol], k1 = 10(7)M-1s-1. Product analysis by HPLC showed a mixture of hydroxylated products, principally paraquinone, and biphenols that indicate that oxidation of phenol occurs by both one-electron and two-electron pathways. The two-electron oxidant, producing both para- and ortho-hydroxylated phenols is considered to be ferrate(V) which is itself produced by the initial one-electron reduction of ferrate(VI). The rate of ferrate(V) reaction with phenol was determined by pre-mix stopped flow pulse-radiolysis and found to be k7 = (3.8 +/- 0.4) x 10(5)M-1s-1.
Lee, Seungwon; Lee, Jisuk; Nam, Kyusuk; Shin, Weon Gyu; Sohn, Youngku
2016-12-20
Performing diverse application tests on synthesized metal oxides is critical for identifying suitable application areas based on the material performances. In the present study, Ni-oxide@TiO₂ core-shell materials were synthesized and applied to photocatalytic mixed dye (methyl orange + rhodamine + methylene blue) degradation under ultraviolet (UV) and visible lights, CO oxidation, and supercapacitors. Their physicochemical properties were examined by field-emission scanning electron microscopy, X-ray diffraction analysis, Fourier-transform infrared spectroscopy, and UV-visible absorption spectroscopy. It was shown that their performances were highly dependent on the morphology, thermal treatment procedure, and TiO₂ overlayer coating.
Janikowski, Stuart K.
2000-01-01
A waste destruction method using a reactor vessel to combust and destroy organic and combustible waste, including the steps of introducing a supply of waste into the reactor vessel, introducing a supply of an oxidant into the reactor vessel to mix with the waste forming a waste and oxidant mixture, introducing a supply of water into the reactor vessel to mix with the waste and oxidant mixture forming a waste, water and oxidant mixture, reciprocatingly compressing the waste, water and oxidant mixture forming a compressed mixture, igniting the compressed mixture forming a exhaust gas, and venting the exhaust gas into the surrounding atmosphere.
Esmaeili, Atefeh; Pourbabaee, Ahmad Ali; Alikhani, Hossein Ali; Shabani, Farzin; Esmaeili, Ensieh
2013-01-01
In this study, two strains of Aspergillus sp. and Lysinibacillus sp. with remarkable abilities to degrade low-density polyethylene (LDPE) were isolated from landfill soils in Tehran using enrichment culture and screening procedures. The biodegradation process was performed for 126 days in soil using UV- and non-UV-irradiated pure LDPE films without pro-oxidant additives in the presence and absence of mixed cultures of selected microorganisms. The process was monitored by measuring the microbial population, the biomass carbon, pH and respiration in the soil, and the mechanical properties of the films. The carbon dioxide measurements in the soil showed that the biodegradation in the un-inoculated treatments were slow and were about 7.6% and 8.6% of the mineralisation measured for the non-UV-irradiated and UV-irradiated LDPE, respectively, after 126 days. In contrast, in the presence of the selected microorganisms, biodegradation was much more efficient and the percentages of biodegradation were 29.5% and 15.8% for the UV-irradiated and non-UV-irradiated films, respectively. The percentage decrease in the carbonyl index was higher for the UV-irradiated LDPE when the biodegradation was performed in soil inoculated with the selected microorganisms. The percentage elongation of the films decreased during the biodegradation process. The Fourier transform infra-red (FT-IR), x-ray diffraction (XRD) and scanning electron microscopy (SEM) were used to determine structural, morphological and surface changes on polyethylene. These analyses showed that the selected microorganisms could modify and colonise both types of polyethylene. This study also confirmed the ability of these isolates to utilise virgin polyethylene without pro-oxidant additives and oxidation pretreatment, as the carbon source. PMID:24086254
Esmaeili, Atefeh; Pourbabaee, Ahmad Ali; Alikhani, Hossein Ali; Shabani, Farzin; Esmaeili, Ensieh
2013-01-01
In this study, two strains of Aspergillus sp. and Lysinibacillus sp. with remarkable abilities to degrade low-density polyethylene (LDPE) were isolated from landfill soils in Tehran using enrichment culture and screening procedures. The biodegradation process was performed for 126 days in soil using UV- and non-UV-irradiated pure LDPE films without pro-oxidant additives in the presence and absence of mixed cultures of selected microorganisms. The process was monitored by measuring the microbial population, the biomass carbon, pH and respiration in the soil, and the mechanical properties of the films. The carbon dioxide measurements in the soil showed that the biodegradation in the un-inoculated treatments were slow and were about 7.6% and 8.6% of the mineralisation measured for the non-UV-irradiated and UV-irradiated LDPE, respectively, after 126 days. In contrast, in the presence of the selected microorganisms, biodegradation was much more efficient and the percentages of biodegradation were 29.5% and 15.8% for the UV-irradiated and non-UV-irradiated films, respectively. The percentage decrease in the carbonyl index was higher for the UV-irradiated LDPE when the biodegradation was performed in soil inoculated with the selected microorganisms. The percentage elongation of the films decreased during the biodegradation process. The Fourier transform infra-red (FT-IR), x-ray diffraction (XRD) and scanning electron microscopy (SEM) were used to determine structural, morphological and surface changes on polyethylene. These analyses showed that the selected microorganisms could modify and colonise both types of polyethylene. This study also confirmed the ability of these isolates to utilise virgin polyethylene without pro-oxidant additives and oxidation pretreatment, as the carbon source.
NASA Astrophysics Data System (ADS)
Wan, Z.; Fatimah, S.; Shahar, S.; Noor, A. C.
2017-09-01
Mixed oxides chromium based catalysts were synthesized via sol-gel method for the esterification of palm fatty acid distillate (PFAD) to produce fatty acid methyl ester (FAME). The reactions were conducted in a batch reactor at reaction temperature of 160 °C for 4 h and methanol to PFAD molar ratio of 3:1. The effects of catalyst preparation conditions which are the mixed metal ratio and calcination temperature were studied. The various metal ratio of Cr:Mn (1:0, 0:1, 1:1, 1:2 and 2:1) and Cr:Ti (0:1, 1:1, 1:2 and 2:1) resulted in FAME density ranges from 1.041 g/cm3 to 0.853 g/cm3 and 1.107 g/cm3 to 0.836 g/cm3, respectively. The best condition catalyst was found to be Cr:Ti metal ratio of 1:2 and Cr:Mn metal ratio of 1:1. The calcination temperature of the mixed oxides between 300 °C to 700°C shows effect on the FAME density obtained in the reaction. The calcination at 500°C gave the lowest FAME density of 0.836 g/cm3 and 0.853 g/cm3 for Cr:Ti and Cr:Mn mixed oxides, respectively. The density of FAME is within the value range of the biodiesel fuel property. Thus, mixed oxides of Cr-Ti and Cr-Mn have good potentials as heterogeneous catalyst for FAME synthesis from high acid value oils such as PFAD.
Yu, Yingjian; Chen, Zhulei; Guo, Zhiyuan; Liao, Zhuwei; Yang, Lie; Wang, Jia; Chen, Zhuqi
2015-04-28
Municipal solid waste (MSW) leachate contains various refractory pollutants that pose potential threats to both surface water and groundwater. This paper established a novel catalytic oxidation process for leachate treatment, in which OH is generated in situ by pumping both H2 and O2 in the presence of Pd catalyst and Fe(2+). Volatile fatty acids in the leachate were removed almost completely by aeration and/or mechanical mixing. In this approach, a maximum COD removal of 56.7% can be achieved after 4h when 200mg/L Fe(2+) and 1250mg/L Pd/Al2O3 (pH 3.0) are used as catalysts. After oxidation, the BOD/COD ratio in the proposed process increased from 0.03 to 0.25, indicating that the biodegradability of the leachate was improved. By comparing the efficiency on COD removal and economical aspect of the proposed Pd-based in-situ process with traditional Fenton, electro-Fenton and UV-Fenton for leachate treatments, the proposed Pd-based in-situ process has potential economic advantages over other advanced oxidation processes while the COD removal efficiency was maintained. Copyright © 2015 Elsevier B.V. All rights reserved.
Gan, Sinyee; Zakaria, Sarani; Syed Jaafar, Sharifah Nabihah
2017-09-15
Cellulose carbamate (CC) was synthesized via hydrothermal process and mixed with graphene oxide (GO) to form a homogeneous cellulose matrix nanocomposite films. The properties of CC/GO nanocomposite films fabricated using simple solution-mixing method with different GO loadings were studied. Transmission electron microscope analysis showed the exfoliation of self-synthesized GO nanosheets within the CC matrix. X-ray diffraction results confirmed the crystalline structure of CC/GO films as the CC/GO mass ratio increased from 100/0 to 100/4. The mechanical properties of CC/GO film were significantly improved as compared to neat CC film. From thermogravimetric analysis result, the introduction of GO enhanced the thermal stability and carbon yields. The 3D homogeneous porous structures of the CC/GO films were observed under Field emission scanning electron microscope. These improvements in nanocomposite film properties could be confirmed by Fourier transform infrared spectroscopy due to the strong and good interactions between CC and GO. Copyright © 2017 Elsevier Ltd. All rights reserved.
Biodiesel production from indigenous microalgae grown in wastewater.
Komolafe, Oladapo; Velasquez Orta, Sharon B; Monje-Ramirez, Ignacio; Yáñez Noguez, Isaura; Harvey, Adam P; Orta Ledesma, María T
2014-02-01
This paper describes a process for producing biodiesel sustainably from microalgae grown in wastewater, whilst significantly reducing the wastewater's nutrients and total coliform. Furthermore, ozone-flotation harvesting of the resultant biomass was investigated, shown to be viable, and resulted in FAMEs of greater oxidation stability. Desmodesmus sp. and two mixed cultures were successfully grown on wastewater. Desmodesmus sp. grew rapidly, to a higher maximum biomass concentration of 0.58 g/L. A native mixed culture dominated by Oscillatoria and Arthrospira, reached 0.45 g/L and exhibited the highest lipid and FAME yield. The FAME obtained from ozone-flotation exhibited the greatest oxidative stability, as the degree of saturation was high. In principle ozone could therefore be used as a combined method of harvesting and reducing FAME unsaturation. During microalgae treatment, the total nitrogen in wastewater was reduced by 55.4-83.9%. More importantly, total coliform removal was as high as 99.8%. Copyright © 2013 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gauntt, Randall O.; Ross, Kyle W.; Smith, James Dean
2010-04-01
The Oak Ridge National Laboratory computer code, ORIGEN2.2 (CCC-371, 2002), was used to obtain the elemental composition of irradiated low-enriched uranium (LEU)/mixed-oxide (MOX) pressurized-water reactor fuel assemblies. Described in this report are the input parameters for the ORIGEN2.2 calculations. The rationale for performing the ORIGEN2.2 calculation was to generate inventories to be used to populate MELCOR radionuclide classes. Therefore the ORIGEN2.2 output was subsequently manipulated. The procedures performed in this data reduction process are also described herein. A listing of the ORIGEN2.2 input deck for two-cycle MOX is provided in the appendix. The final output from this data reduction processmore » was three tables containing the radionuclide inventories for LEU/MOX in elemental form. Masses, thermal powers, and activities were reported for each category.« less
Modeling microbial reaction rates in a submarine hydrothermal vent chimney wall
NASA Astrophysics Data System (ADS)
LaRowe, Douglas E.; Dale, Andrew W.; Aguilera, David R.; L'Heureux, Ivan; Amend, Jan P.; Regnier, Pierre
2014-01-01
The fluids emanating from active submarine hydrothermal vent chimneys provide a window into subseafloor processes and, through mixing with seawater, are responsible for steep thermal and compositional gradients that provide the energetic basis for diverse biological communities. Although several models have been developed to better understand the dynamic interplay of seawater, hydrothermal fluid, minerals and microorganisms inside chimney walls, none provide a fully integrated approach to quantifying the biogeochemistry of these hydrothermal systems. In an effort to remedy this, a fully coupled biogeochemical reaction-transport model of a hydrothermal vent chimney has been developed that explicitly quantifies the rates of microbial catalysis while taking into account geochemical processes such as fluid flow, solute transport and oxidation-reduction reactions associated with fluid mixing as a function of temperature. The metabolisms included in the reaction network are methanogenesis, aerobic oxidation of hydrogen, sulfide and methane and sulfate reduction by hydrogen and methane. Model results indicate that microbial catalysis is generally fastest in the hottest habitable portion of the vent chimney (77-102 °C), and methane and sulfide oxidation peak near the seawater-side of the chimney. The fastest metabolisms are aerobic oxidation of H2 and sulfide and reduction of sulfate by H2 with maximum rates of 140, 900 and 800 pmol cm-3 d-1, respectively. The maximum rate of hydrogenotrophic methanogenesis is just under 0.03 pmol cm-3 d-1, the slowest of the metabolisms considered. Due to thermodynamic inhibition, there is no anaerobic oxidation of methane by sulfate (AOM). These simulations are consistent with vent chimney metabolic activity inferred from phylogenetic data reported in the literature. The model developed here provides a quantitative approach to describing the rates of biogeochemical transformations in hydrothermal systems and can be used to constrain the role of microbial activity in the deep subsurface.
Process for treating fission waste
Rohrmann, Charles A.; Wick, Oswald J.
1983-01-01
A method is described for the treatment of fission waste. A glass forming agent, a metal oxide, and a reducing agent are mixed with the fission waste and the mixture is heated. After melting, the mixture separates into a glass phase and a metal phase. The glass phase may be used to safely store the fission waste, while the metal phase contains noble metals recovered from the fission waste.
Processing of Mixed Oxide Superconductors
1990-07-01
rapid changes world wide a major research centre on high Tc superconductors was awarded to Cambridge which involved moving the work and people to a...reports and paper is in the appendices. Separation Ceramic superconductors tend to be mixtures of phases, especially when first discovered. It would...properties of the superconducting state will in principle allow superconducting material to be levitated from the non superconductor and several designs
The role of moisture on combustion of pyrolysis gases in wildland fires
Selina C. Ferguson; Ambarish Dahale; Babak Shotorban; S. Mahalingam; David R. Weise
2013-01-01
The role of water vapor, originated from the moisture content in vegetation, on the combustion process was investigated via simulating an opposed diffusion flame and a laminar premixed flame with pyrolysis gases as the fuel and air as the oxidizer. The fuel was mixed with water vapor, and the simulation was repeated for various water mole fractions. In both of the...
NASA Astrophysics Data System (ADS)
Pyo, Youngjun; Choi, Dahyun; Son, Yeon-Ho; Kang, Suhee; Yoon, Eric H.; Jung, Seung-Boo; Kim, Yongil; Sunyong Lee, Caroline
2016-05-01
A novel method of carbonaceous coating on the surface of copper particles was developed through a chemical vapor deposition (CVD) process to prevent the oxidation of copper nanoparticles (CNPs). The types of poly(vinyl pyrrolidone) (PVP) used were K-12 (M W 3,500) and K-30 (M W 45,000). The amounts of PVP used ranged from 10 to 50 wt %. Additionally, processing temperatures of 900 and 875 °C were tested and compared. The optimum CVD process conditions for the carbonaceous coating were as follows: 875 °C processing temperature, 50 wt % K12 PVP solution, and gas conditions of \\text{Ar}:\\text{H}2 = 1:1. The resistivity change in the fabricated copper pattern was confirmed that the initial resistivity value of the ink with a mixing ratio of carbonaceous-coated CNPs to 1-octanethiol-coated CNPs of 4:6 (w/w) maintained its initial resistivity value of 2.93 × 10-7 Ω·m for more than 210 days.
NASA Astrophysics Data System (ADS)
Wen, Bing; Zhou, Aiguo; Zhou, Jianwei; Liu, Cunfu; Huang, Yuliu; Li, Ligang
2018-02-01
The Xikuangshan(XKS) mine, the world's largest antimony mine, was chosen for a detailed arsenic hydrogeochemical study because of the elevated arsenic in bedrock aquifers used by local residents. Hydrochemical data, δ34S values of dissolved SO42- and 87Sr/86Sr ratios have been analyzed to identify the predominant geochemical processes that control the arsenic mobilization within the aquifers. Groundwater samples can be divided into three major types: low arsenic groundwater (0-50 μg/L), high arsenic groundwater (50-1000 μg/L) and anomalous high arsenic groundwater (>1000 μg/L). Arsenic occurs under oxidizing conditions at the XKS Sb mine as the HAsO42- anion. The Ca/Na ratio correlates significantly with HCO3-/Na and Sr/Na ratios, indicating that carbonate dissolution and silicate weathering are the dominant processes controlling groundwater hydrochemistry. The δ34S values of the groundwater indicate that dissolved SO42- in groundwater is mainly sourced from the oxidation of sulfide minerals, and elevated As concentrations in groundwater are influenced by the mixing of mine water and surface water. Furthermore, the δ34S values are not correlated with dissolved As concentrations and Fe concentrations, suggesting that the reduction dissolution of Fe(III) hydroxides is not the dominant process controlling As mobilization. The 87Sr/86Sr ratios imply that elevated As concentrations in groundwater are primarily derived from the interaction with the stibnite and silicified limestone. More specifically, the excess-Na ion, the feature of Ca/Na ratio, and the spatial association of elevated As concentrations in groundwater collectively suggest that high and anomalous high arsenic groundwater are associated with smelting slags and, in particular, the arsenic alkali residue. In general, the hydrochemistry analysis, especially the S and Sr isotope evidences elucidate that elevated As concentrations and As mobilization are influenced by several geochemical processes, including: (1) bedrock weathering; (2) oxidation of arsenopyrite and the dominant sulfides in the ores; (3) mixing of mine drainage and surface water; (4) leaching of the arsenic alkali residue; and (5) sorption-desorption from Fe/Mn oxides/hydroxides.
Plasma assisted facile synthesis of vanadium oxide (V3O7) nanostructured thin films
NASA Astrophysics Data System (ADS)
Singh, Megha; Saini, Sujit K.; Kumar, Prabhat; Sharma, Rabindar K.; Reddy, G. B.
2018-05-01
Vanadium oxides nanostructured thin films are synthesized using plasma assisted sublimation process. The effect of temperatures on growth of V2O5 and V3O7 thin films is studied. Scanning electron micrographs shows different morphologies are obtained at different temperatures i.e. at 450 °C nano cubes-like structures are obtained, whereas at 550 °C and 650 °C nanorods are obtained. Sample deposited at 450 °C is entirely composed of V2O5 and sample at higher temperatures are composed of mixed phase of vanadium oxides i.e. V2O5 and V3O7. As temperature increased, so the content of V3O7 in the sample is increased as confirmed by XRD and Raman analyses.
Development of seal ring carbon-graphite materials (tasks 8, 9, and 10)
NASA Technical Reports Server (NTRS)
Fechter, N. J.; Petrunich, P. S.
1973-01-01
A screening study was conducted to develop improved carbon-graphite materials for use in self-acting seals at air temperatures to 1300 F (704 C). Property measurements on materials prepared during this study have shown that: (1) The mechanical properties of a carbon-graphite material were significantly improved by using a fine milled artificial graphite filler material and including intensive mixing, warm molding, and pitch impregnation in the processing; and (2) the oxidation resistance of a carbon-graphite material was improved by including fine milled boron carbide as an oxidation-inhibiting additive. These techniques were employed to develop a material that has 10 times more oxidation resistance than that of a widely used commercial grade and mechanical properties that approach those of the commercial grade.
Willcox, Jon A L; Kim, Hyung J
2017-02-28
A molecular dynamics graphene oxide model is used to shed light on commonly overlooked features of graphene oxide membranes. The model features both perpendicular and parallel water flow across multiple sheets of pristine and/or oxidized graphene to simulate "brick-and-mortar" microstructures. Additionally, regions of pristine/oxidized graphene overlap that have thus far been overlooked in the literature are explored. Differences in orientational and hydrogen-bonding features between adjacent layers of water in this mixed region are found to be even more prominent than differences between pristine and oxidized channels. This region also shows lateral water flow in equilibrium simulations and orthogonal flow in non-equilibrium simulations significantly greater than those in the oxidized region, suggesting it may play a non-negligible role in the mechanism of water flow across graphene oxide membranes.
Su, Guijin; Liu, Yexuan; Huang, Linyan; Shi, Yali; Zhang, Aiqian; Zhang, Lixia; Liu, Wenbin; Gao, Lirong; Zheng, Minghui
2013-01-01
The degradation of hexachlorobenzene (HCB) was carried out over physical mixtures of a series of alkaline earth metal oxides (MO: M=Mg, Ca, Sr, Ba) and iron oxides with different crystal types (Fe(x)O(y):Fe(2)O(3) or Fe(3)O(4)) at 300°C. These physical mixtures all showed a synergetic effect toward the degradation of HCB. A range of degradation products were identified by various methods, including tri- to penta-chlorobenzenes by gas chromatography/mass spectrometry (GC-MS), tri- to penta-chlorophenols, tetrachlorocatechol (TCC) and tetrachlorohydroquinone (TCHQ) by GC-MS after derivatization, and formic and acetic acids by ion chromatography. Two degradation pathways, hydrodechlorination and oxidative degradation, appear to occur competitively. However, more sequential chlorinated benzene and phenol congeners were formed over mixed MO/Fe(3)O(4) than over mixed MO/Fe(2)O(3) under the same conditions. The oxidative reaction dominated over mixed MO/Fe(2)O(3) and was promoted as the major reaction by the synergetic effect, while both the oxidative and hydrodechlorination reactions were important over mixed MO/Fe(3)O(4), and both pathways are remarkably promoted by the synergetic effect. The enhanced hydrodechlorination may be attributed to free electrons generated by the transformation of Fe(3)O(4) into Fe(2)O(3), and hydrogen provided by water adsorbed on the MO. Copyright © 2012 Elsevier Ltd. All rights reserved.
Yu, Chan-Wei; Li, Wen-Hsuan; Hsu, Fu-Lan; Yen, Pei-Ling; Chang, Shang-Tzen; Liao, Vivian Hsiu-Chuan
2014-07-02
Cinnamomum osmophloeum Kaneh. is an indigenous tree species in Taiwan. The present study investigates phytochemical characteristics, antioxidant activities, and longevity of the essential oils from the leaves of the mixed-type C. osmophloeum tree. We demonstrate that the essential oils from leaves of mixed-type C. osmophloeum exerted in vivo antioxidant activities on Caenorhabditis elegans. In addition, minor (alloaromadendrene, 5.0%) but not major chemical components from the leaves of mixed-type C. osmophloeum have a key role against juglone-induced oxidative stress in C. elegans. Additionally, alloaromadendrene not only acts protective against oxidative stress but also prolongs the lifespan of C. elegans. Moreover, mechanistic studies show that DAF-16 is required for alloaromadendrene-mediated oxidative stress resistance and longevity in C. elegans. The results in the present study indicate that the leaves of mixed-type C. osmophloeum and essential oil alloaromadendrene have the potential for use as a source for antioxidants or treatments to delay aging.
Process to Produce Iron Nanoparticle Lunar Dust Simulant Composite
NASA Technical Reports Server (NTRS)
Hung, Ching-cheh; McNatt, Jeremiah
2010-01-01
A document discusses a method for producing nanophase iron lunar dust composite simulant by heating a mixture of carbon black and current lunar simulant types (mixed oxide including iron oxide) at a high temperature to reduce ionic iron into elemental iron. The product is a chemically modified lunar simulant that can be attracted by a magnet, and has a surface layer with an iron concentration that is increased during the reaction. The iron was found to be -iron and Fe3O4 nanoparticles. The simulant produced with this method contains iron nanoparticles not available previously, and they are stable in ambient air. These nanoparticles can be mass-produced simply.
Monolithic Gyroidal Mesoporous Mixed Titanium–Niobium Nitrides
2015-01-01
Mesoporous transition metal nitrides are interesting materials for energy conversion and storage applications due to their conductivity and durability. We present ordered mixed titanium–niobium (8:2, 1:1) nitrides with gyroidal network structures synthesized from triblock terpolymer structure-directed mixed oxides. The materials retain both macroscopic integrity and mesoscale ordering despite heat treatment up to 600 °C, without a rigid carbon framework as a support. Furthermore, the gyroidal lattice parameters were varied by changing polymer molar mass. This synthesis strategy may prove useful in generating a variety of monolithic ordered mesoporous mixed oxides and nitrides for electrode and catalyst materials. PMID:25122534
NASA Astrophysics Data System (ADS)
Rutkowska, Iwona A.; Wadas, Anna; Kulesza, Pawel J.
2016-12-01
Nanostructured mixed metal (W, Zr) oxide matrices (in a form of layered intercalated films of WO3 and ZrO2) are considered here for supporting and activating catalytic platinum nanoparticles toward electrooxidation of ethanol. Remarkable increases of electrocatalytic (voltammetric, chronoamperometric) currents measured in 0.5 mol dm-3 H2SO4 (containing 0.5 mol dm-3 ethanol) have been observed. Comparison has been made to the behavior of methanol and acetaldehyde under analogous conditions. The enhancement effects are interpreted in terms of specific interactions between platinum nanoparticles and the metal oxide species, high acidity of the mixed oxide sites, as well as high population of surface hydroxyl groups and high mobility of protons existing in close vicinity of Pt catalytic sites. The metal oxide nanostructures are expected to interact competitively (via the surface hydroxyl groups) with adsorbates of the undesirable reaction intermediates, including CO, facilitating their desorption ("third body effect"), or even oxidative removal (e.g., of CO to CO2). The fact that the partially reduced tungsten oxide (HxWO3) component is characterized by fast electron transfers coupled to proton displacements tends to improve the overall charge propagation at the electrocatalytic interface.
NASA Astrophysics Data System (ADS)
Liu, Jianqiang; Qin, Yaowei; Zhang, Liangji; Xiao, Hongdi; Song, Jianye; Liu, Dehe; Leng, Mingzhe; Hou, Wanguo; Du, Na
2013-12-01
Mixed metal oxides (MMO) are always obtained from layered double hydroxide (LDH) by thermal decomposition. In the present work, a zinc titanium LDH with the zinc titanium molar ratio of 4.25 was prepared by urea method and ZnO-based mixed oxides were obtained by calcining at or over 500°C. The MMO was used as electrodes for dye sensitized solar cell (DSSC). The cells constructed by films of prepared composite materials using a N719 as dye were prepared. The efficiency values of these cells are 0.691%, 0.572% and 0.302% with MMO prepared at 500, 600 and 700°C, respectively.
Positive electrode for a lithium battery
Park, Sang-Ho; Amine, Khalil
2015-04-07
A method for producing a lithium alkali transition metal oxide for use as a positive electrode material for lithium secondary batteries by a precipitation method. The positive electrode material is a lithium alkali transition metal composite oxide and is prepared by mixing a solid state mixed with alkali and transition metal carbonate and a lithium source. The mixture is thermally treated to obtain a small amount of alkali metal residual in the lithium transition metal composite oxide cathode material.
Napruszewska, Bogna D; Michalik-Zym, Alicja; Rogowska, Melania; Bielańska, Elżbieta; Rojek, Wojciech; Gaweł, Adam; Wójcik-Bania, Monika; Bahranowski, Krzysztof; Serwicka, Ewa M
2017-11-19
A novel design of combustion catalysts is proposed, in which clay/TiO₂/MnAl-mixed oxide composites are formed by intermixing exfoliated organo-montmorillonite with oxide precursors (hydrotalcite-like in the case of Mn-Al oxide) obtained by an inverse microemulsion method. In order to assess the catalysts' thermal stability, two calcination temperatures were employed: 450 and 600 °C. The composites were characterized with XRF (X-ray fluorescence), XRD (X-ray diffraction), HR SEM (high resolution scanning electron microscopy, N₂ adsorption/desorption at -196 °C, and H₂ TPR (temperature programmed reduction). Profound differences in structural, textural and redox properties of the materials were observed, depending on the presence of the TiO₂ component, the type of neutralization agent used in the titania nanoparticles preparation (NaOH or NH₃ (aq)), and the temperature of calcination. Catalytic tests of toluene combustion revealed that the clay/TiO₂/MnAl-mixed oxide composites prepared with the use of ammonia showed excellent activity, the composites obtained from MnAl hydrotalcite nanoparticles trapped between the organoclay layers were less active, but displayed spectacular thermal stability, while the clay/TiO₂/MnAl-mixed oxide materials obtained with the aid of NaOH were least active. The observed patterns of catalytic activity bear a direct relation to the materials' composition and their structural, textural, and redox properties.
Tang, Céline; Giaume, Domitille; Guerlou-Demourgues, Liliane; Lefèvre, Grégory; Barboux, Philippe
2018-05-30
To design novel layered materials, bottom-up strategy is very promising. It consists of (1) synthesizing various layered oxides, (2) exfoliating them, then (3) restacking them in a controlled way. The last step is based on electrostatic interactions between different layered oxides and is difficult to control. The aim of this study is to facilitate this step by predicting the isoelectric point (IEP) of exfoliated materials. The Multisite Complexation model (MUSIC) was used for this objective and was shown to be able to predict IEP from the mean oxidation state of the metal in the (hydr)oxides, as the main parameter. Moreover, the effect of exfoliation on IEP has also been calculated. Starting from platelets with a high basal surface area over total surface area, we show that the exfoliation process has no impact on calculated IEP value, as verified with experiments. Moreover, the restacked materials containing different monometallic (hydr)oxide layers also have an IEP consistent with values calculated with the model. This study proves that MUSIC model is a useful tool to predict IEP of various complex metal oxides and hydroxides.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Junnan, E-mail: junnanli1991@163.com, E-mail: rzhgong@hust.edu.cn; Wang, Xian; Xu, Xiaojun
Fe-6.5%Si alloy powders coated with manganese oxides using an innovative in situ process were investigated. The in-situ coating of the insulating oxides was realized with a KMnO{sub 4} solution by a chemical process. The insulating manganese oxides with mixed valance state were verified by X-ray photoelectron spectroscopy analysis. The thickness of the insulating layer on alloy particles was determined to be in a range of 20–210 nm, depending upon the KMnO{sub 4} concentration. The powder core loss and the change in permeability under a DC-bias field were measured at frequencies ranging from 50 to 100 kHz. The experiments indicated that themore » Fe-6.5%Si powder cores with a 210 nm-thick manganese oxide layer not only showed a low core loss of 459 mW/cm{sup 3} at 100 kHz but also showed a small reduction in permeability (μ(H)/μ(0) = 85% for μ = 42) at a DC-bias field of 80 Oe. This work has defined a novel pathway to realizing low core loss and field-insensitive permeability for Fe-Si powder cores.« less
NASA Astrophysics Data System (ADS)
Yuan, Jikang
Direct architecture of complex nanostructures is desirable and still remains a challenge in areas of materials science. Due to their size-, shape-dependent electronic and optical properties, much effort has been made to control morphologies of transition metal oxide nanoparticles and to organize them into complicated 3D structures using templates. In particular, manganese oxides have attracted much attention because they have extensive applications in many chemical processes due to their porous structures, acidity, ionexchange, separation, catalysis, and energy storage in secondary batteries. Using organic templates such as trimethylamine (TMA), manganese oxides have been successfully organized into macroscopic rings and helices via sol-gel processes. However, the methods mentioned above all need further purification, so impurities will be avoided. Subsequent procedures are needed to obtain pure products. Thus facile and template-free methods are highly desired for synthesis of manganese oxide nanaoparticles with complex 3D structures. Manganese oxide octahedral molecular sieves (OMS) are a class of microporous transition metallic oxides with various kinds of tunnel structures that can be synthesized via controlling synthetic conditions such as temperature, concentration, pH, and cations. Manganese oxide molecular sieves are semiconducting mixed-valence catalysts that utilize electron transport to catalyze reactions such as selective oxidation of alcohols. OMS has distinct advantages over aluminosilicate molecular sieve materials for applications in catalysis due to the mixed valence character. The synthesis of manganese oxide OMS materials will be much more complicated than those of main group metallic oxides because of different coordination numbers and oxidation states. OMS-type materials with desirable morphologies formed under mild synthetic conditions are highly desirable. Herein, we report a template-free, low temperature preparation of porous cryptomelane-type manganese oxide (OMS-2) 3D nanostructures. The objectives of this research include exploration of new methods to oxidize Mn2+ in aqueous solution either under low-temperature reflux or hydrothermal conditions. Various oxidants were used with precisely controlled synthetic parameters such as temperature, concentrations of starting materials, pH, and kinds of templates. A variety of techniques including powder X-ray diffraction and transmission electron microscopy (TEM) scanning electron microscopy are used to investigate the structures of synthesized materials. Atomic force microscopy (AFM) and scanning electron microscopy are utilized to studying the morphology and topography. The surface areas of the materials is measured by the BET method. Inductively coupled argon plasma atomic emission spectrometer (ICP-AES) are utilized to investigate the chemical composition of the materials. Thermal-stability of the materials is investigated by thermal gravimetric analysis (TGA). The objectives of this research includes exploring new synthetic approach such as oxidation of Mn2+ in aqueous solution by selecting suitable oxidants so as to control redox potential, varying pH of reaction systems, and controlling tunnel structures using hard templates (cations) under hydrothermal conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Finneran, Kevin; Werth, Charles; Strathmann, Timothy
2015-01-10
In situ bioremediation of U(VI) involves amending groundwater with an appropriate electron donor and limiting nutrients to promote biological reduction to the less soluble and mobile U(IV) oxidation state. Groundwater flow is laminar; mixing is controlled by hydrodynamic dispersion. Recent studies indicate that transverse dispersion along plume margins can limit mixing of the amended electron donor and accepter (such as U(VI) in remediation applications). As a result, microbial growth, and subsequently contaminant reaction, may be limited to these transverse mixing zones during bioremediation. The primary objective of this work was to characterize the combined effects of hydrology, geochemistry, and biologymore » on the (bio)remediation of U(VI). Our underlying hypothesis was that U(VI) reaction in groundwater is controlled by transverse mixing with an electron donor along plume margins, and that iron bioavailability in these zones affects U(VI) reduction kinetics and U(IV) re-oxidation. Our specific objectives were to a) quantify reaction kinetics mediated by biological versus geochemical reactions leading to U(VI) reduction and U(IV) re-oxidation, b) understand the influence of bioavailable iron on U(VI) reduction and U(IV) re-oxidation along the transverse mixing zones, c) determine how transverse mixing limitations and the presence of biomass in pores affects these reactions, and d) identify how microbial populations that develop along transverse mixing zones are influenced by the presence of iron and the concentration of electron donor. In the completed work, transverse mixing zones along plume margins were re-created in microfluidic pore networks, referred to as micromodels. We conducted a series of experiments that allowed us to distinguish among the hydraulic, biological, and geochemical mechanisms that contribute to U(VI) reduction, U(IV) re-oxidation, and U(VI) abiotic reaction with the limiting biological nutrient HP042-. This systematic approach may lead to a better understanding of U(VI) remediation, and better strategies for groundwater amendments to maximize remediation efficiency.« less
Application of mixing-controlled combustion models to gas turbine combustors
NASA Technical Reports Server (NTRS)
Nguyen, Hung Lee
1990-01-01
Gas emissions were studied from a staged Rich Burn/Quick-Quench Mix/Lean Burn combustor were studied under test conditions encountered in High Speed Research engines. The combustor was modeled at conditions corresponding to different engine power settings, and the effect of primary dilution airflow split on emissions, flow field, flame size and shape, and combustion intensity, as well as mixing, was investigated. A mathematical model was developed from a two-equation model of turbulence, a quasi-global kinetics mechanism for the oxidation of propane, and the Zeldovich mechanism for nitric oxide formation. A mixing-controlled combustion model was used to account for turbulent mixing effects on the chemical reaction rate. This model assumes that the chemical reaction rate is much faster than the turbulent mixing rate.
Development studies for a novel wet oxidation process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dhooge, P.M.; Hakim, L.B.
1994-01-01
A catalytic wet oxidation process (DETOX), which uses an acidic iron solution to oxidize organic compounds to carbon dioxide, water, and other simple products, was investigated as a potential method for the treatment of multicomponent hazardous and mixed wastes. The organic compounds picric acid, poly(vinyl chloride), tetrachlorothiophene, pentachloropyridine, Aroclor 1260 (a polychlorinated biphenyl), and hexachlorobenzene were oxidized in 125 ml reaction vessels. The metals arsenic, barium, beryllium, cadmium, cerium (as a surrogate for plutonium), chromium, lead, mercury, neodymium (as a surrogate for uranium), nickel, and vanadium were tested in the DETOX solution. Barium, beryllium, cerium, chromium, mercury, neodymium, nickel, andmore » vanadium were all found to be very soluble (>100 g/l) in the DETOX chloride-based solution. Arsenic, barium, cadmium, and lead solubilities were lower. Lead could be selectively precipitated from the DETOX solution. Chromium(VI) was reduced to relatively non-toxic chromium(III) by the solution. Six soils were contaminated with arsenic, barium, beryllium, chromium, lead, and neodymium oxides at approximately 0.1% by weight, and benzene, trichloroethene, mineral oil, and Aroclor 1260 at approximately 5% by weight total, and 5.g amounts treated with the DETOX solution in unstirred 125. ml reaction bombs. It is felt that soil treatment in a properly designed system is entirely possible despite incomplete oxidation of the less volatile organic materials in these unstirred tests.« less
Zhong, Jian; Cai, Xiao-Ming; Bloss, William James
2017-05-01
A large eddy simulation (LES) model coupled with O 3 -NO x -VOC chemistry is implemented to simulate the coupled effects of emissions, mixing and chemical pre-processing within an idealised deep (aspect ratio = 2) urban street canyon under a weak wind condition. Reactive pollutants exhibit significant spatial variations in the presence of two vertically aligned unsteady vortices formed in the canyon. Comparison of the LES results from two chemical schemes (simple NO x -O 3 chemistry and a more comprehensive Reduced Chemical Scheme (RCS) chemical mechanism) shows that the concentrations of NO 2 and O x inside the street canyon are enhanced by approximately 30-40% via OH/HO 2 chemistry. NO, NO x , O 3 , OH and HO 2 are chemically consumed, while NO 2 and O x (total oxidant) are chemically produced within the canyon environment. Within-canyon pre-processing increases oxidant fluxes from the canyon to the overlying boundary layer, and this effect is greater for deeper street canyons (as found in many traditional European urban centres) than shallower (lower aspect ratio) streets. There is clear evidence of distinct behaviours for emitted chemical species and entrained chemical species, and positive (or negative) values of intensities of segregations are found between pairs of species with similar (or opposite) behaviour. The simplified two-box model underestimated NO and O 3 levels, but overestimated NO 2 levels for both the lower and upper canyon compared with the more realistic LES-chemistry model. This suggests that the segregation effect due to incomplete mixing reduces the chemical conversion rate of NO to NO 2 . This study reveals the impacts of nonlinear O 3 -NO x -VOC photochemical processes in the incomplete mixing environment and provides a better understanding of the pre-processing of emissions within canyons, prior to their release to the urban boundary layer, through the coupling of street canyon dynamics and chemistry. Copyright © 2017 Elsevier Ltd. All rights reserved.
Lee, Seungwon; Lee, Jisuk; Nam, Kyusuk; Shin, Weon Gyu; Sohn, Youngku
2016-01-01
Performing diverse application tests on synthesized metal oxides is critical for identifying suitable application areas based on the material performances. In the present study, Ni-oxide@TiO2 core-shell materials were synthesized and applied to photocatalytic mixed dye (methyl orange + rhodamine + methylene blue) degradation under ultraviolet (UV) and visible lights, CO oxidation, and supercapacitors. Their physicochemical properties were examined by field-emission scanning electron microscopy, X-ray diffraction analysis, Fourier-transform infrared spectroscopy, and UV-visible absorption spectroscopy. It was shown that their performances were highly dependent on the morphology, thermal treatment procedure, and TiO2 overlayer coating. PMID:28774145
2011-01-01
Highly dispersed cobalt-silicon mixed oxide [Co-SiO2] nanosphere was successfully prepared with a modified reverse-phase microemulsion method. This material was characterized in detail by X-ray diffraction, transmission electron microscopy, Fourier transform infrared, ultraviolet-visible diffuse reflectance spectra, X-ray absorption spectroscopy near-edge structure, and N2 adsorption-desorption measurements. High valence state cobalt could be easily obtained without calcination, which is fascinating for the catalytic application for its strong oxidation ability. In the selective oxidation of cyclohexane, Co-SiO2 acted as an efficient catalyst, and good activity could be obtained under mild conditions. PMID:22067075
Olguín-Lora, P; Le Borgne, S; Castorena-Cortés, G; Roldán-Carrillo, T; Zapata-Peñasco, I; Reyes-Avila, J; Alcántara-Pérez, S
2011-02-01
Haloalkaliphilic sulfur-oxidizing mixed cultures for the treatment of alkaline-saline effluents containing sulfide were characterized and evaluated. The mixed cultures (IMP-PB, IMP-XO and IMP-TL) were obtained from Mexican alkaline soils collected in Puebla (PB), Xochimilco (XO) and Tlahuac (TL), respectively. The Ribosomal Intergenic Spacer Analysis (RISA) revealed bacteria related to Thioalkalibacterium and Thioalkalivibrio in IMP-XO and IMP-PB mixed cultures. Halomonas strains were detected in IMP-XO and IMP-TL. In addition, an uncultured Bacteroides bacterium was present in IMP-TL. Mixed cultures were evaluated at different pH and NaCl concentrations at 30°C. IMP-PB and IMP-TL expressed thiosulfate-oxidizing activity in the 7.5-10.5 pH range, whereas IMP-XO presented its maximal activity with 19.0 mg O₂ g (protein)⁻¹ min⁻¹, at pH 10.6; it was not affected by NaCl concentrations up to 1.7 M. In continuous culture, IMP-XO showed a growth rate of 15 day⁻¹, productivity of 433.4 mg(protein) l⁻¹ day⁻¹ and haloalkaliphilic sulfur-oxidizing activity was also detected up to 170 mM by means of N-methyl-diethanolamine (MDEA). Saline-alkaline soil samples are potential sources of haloalkaliphilic sulfur-oxidizing bacteria and the mixed cultures could be applied in the treatment of inorganic sulfur compounds in petroleum industry effluents under alkaline-saline conditions.
Computational analysis of liquid hypergolic propellant rocket engines
NASA Technical Reports Server (NTRS)
Krishnan, A.; Przekwas, A. J.; Gross, K. W.
1992-01-01
The combustion process in liquid rocket engines depends on a number of complex phenomena such as atomization, vaporization, spray dynamics, mixing, and reaction mechanisms. A computational tool to study their mutual interactions is developed to help analyze these processes with a view of improving existing designs and optimizing future designs of the thrust chamber. The focus of the article is on the analysis of the Variable Thrust Engine for the Orbit Maneuvering Vehicle. This engine uses a hypergolic liquid bipropellant combination of monomethyl hydrazine as fuel and nitrogen tetroxide as oxidizer.
Kondrachova, Lilia; Hahn, Benjamin P; Vijayaraghavan, Ganesh; Williams, Ryan D; Stevenson, Keith J
2006-12-05
Mixed molybdenum tungsten trioxide films of varying stoichiometry (MoxW1 - xO3, 0 < x < 1) were prepared by cathodic electrodeposition on indium tin oxide (ITO)-coated glass substrates from aqueous peroxo-polymolybdotungstate solutions. Electrochemical quartz crystal microbalance (EQCM), cyclic voltammetry, and chronocoulometry were used to gain insight into the electrodeposition mechanism. The compositional and structural properties were characterized for MoxW1 - xO3 films deposited at intermediate potentials (-0.35 V vs Ag/AgCl) and sintered at 250 degrees C using energy-dispersive spectroscopy, X-ray diffraction, and Raman spectroscopy. These studies reveal that films consist of homogeneously mixed MoxW1 - xO3, with an enriched Mo content ranging in composition from 0.4 < x < 0.7 depending upon the mol % Mo present in the deposition solution. Chronoamperometry and spectroelectrochemical measurements were conducted to estimate lithium ion diffusion coefficients and coloration efficiencies for the mixed metal oxide films in 1 M LiClO4/propylene carbonate. The subtle interplay between structural and compositional properties due to the uniform mixing of Mo and W oxide components shows that electrochromic and lithium ion transport properties are moderately enhanced relative to those of single-component WO3 and MoO3 and demonstrate improved structural stability over pure MoO3 polymorphs during electrochemical cycling.
Deuterium Enrichment in Stratospheric Molecular Hydrogen
NASA Astrophysics Data System (ADS)
Rahn, T.; Eiler, J.; McCarthy, M. C.; Boering, K. A.; Wennberg, P.; Atlas, E.; Donnelly, S.; Schauffler, S.
2002-12-01
Molecular hydrogen (H2) is the second most abundant reduced gas in the atmosphere (after methane) with a globally averaged mixing ratio of ~ 530 ppbv. Its largest source is believed to be photochemical oxidation of methane (C H4) and non-methane hydrocarbons (NMHCs); other recognized sources include biomass burning, fossil fuel burning, nitrogen fixation, and ocean degassing. As with other atmospheric trace gases, the stable isotopic content of H2 has the potential to help quantify various aspects of its production and destruction. The average deuterium content of H2 (expressed as δDH2) is enriched by ~110 ‰ relative to Vienna Standard Mean Ocean Water while CH4 in the troposphere, the precursor for photochemical H2 production, is depleted by ~ 90 ‰ relative to V-SMOW and similar values are expected for NMHCs. Both natural and anthropogenic combustion sources of H2 have been shown to be depleted in deuterium by 200 to 300 ‰ (Gerst and Quay, 2001; Rahn et al., 2002), and the ocean and N2 fixation sources are expected to be in near thermodynamic equilibrium with local H2O and should have deuterium levels of ~-700 ‰ (Rahn et al., 2002). In order to offset these deuterium depleted sources and account for the observed tropospheric δDH2, the balancing loss processes must discriminate against reaction with HD and/or the total fractionation associated with CH4 oxidation and the subsequent reactions leading to H2 must favor production of deuterated H2. We have analyzed a suite of stratospheric air samples in order to investigate the photochemical processes influencing the deuterium content of H2. While the mixing ratio of H2 is nearly constant, the deuterium content increases such that δD=440 ‰ in samples with a stratospheric mean age of ~6 years. The constant mixing ratio results from the fact that production due to CH4 oxidation and loss due to H2 oxidation are approximately equal. The observed trend in δD of stratospheric H2 can only be accounted for by an enrichment in the ratio of D to H of H2 relative to that in precursor CH4 in addition to the enrichment due to the slower oxidation of deuterated H2. We calculate the fractionation associated with this enrichment to be αTotal=1.54. As with other trace gases, in situ photochemical processes and the return flux of air from the stratosphere must be accounted for to explain tropospheric observations. Gerst, S., and P. Quay, J. Geophys. Res., 106, 5021-5031, 2001. Rahn, T., N. Kitchen, and J. M. Eiler, Geochim. Cosmochim. Acta, 66, 2475-2481, 2002.
Effect of cooling rate on achieving thermodynamic equilibrium in uranium-plutonium mixed oxides
NASA Astrophysics Data System (ADS)
Vauchy, Romain; Belin, Renaud C.; Robisson, Anne-Charlotte; Hodaj, Fiqiri
2016-02-01
In situ X-ray diffraction was used to study the structural changes occurring in uranium-plutonium mixed oxides U1-yPuyO2-x with y = 0.15; 0.28 and 0.45 during cooling from 1773 K to room-temperature under He + 5% H2 atmosphere. We compare the fastest and slowest cooling rates allowed by our apparatus i.e. 2 K s-1 and 0.005 K s-1, respectively. The promptly cooled samples evidenced a phase separation whereas samples cooled slowly did not due to their complete oxidation in contact with the atmosphere during cooling. Besides the composition of the annealing gas mixture, the cooling rate plays a major role on the control of the Oxygen/Metal ratio (O/M) and then on the crystallographic properties of the U1-yPuyO2-x uranium-plutonium mixed oxides.
The Chemical Capacitance as a Fingerprint of Defect Chemistry in Mixed Conducting Oxides.
Fleig, Juergen; Schmid, Alexander; Rupp, Ghislain M; Slouka, Christoph; Navickas, Edvinas; Andrejs, Lukas; Hutter, Herbert; Volgger, Lukas; Nenning, Andreas
2016-01-01
The oxygen stoichiometry of mixed conducting oxides depends on the oxygen chemical potential and thus on the oxygen partial pressure in the gas phase. Also voltages may change the local oxygen stoichiometry and the amount to which such changes take place is quantified by the chemical capacitance of the sample. Impedance spectroscopy can be used to probe this chemical capacitance. Impedance measurements on different oxides ((La,Sr)FeO3-δ = LSF, Sr(Ti,Fe)O3-δ = STF, and Pb(Zr,Ti)O3 = PZT) are presented, and demonstrate how the chemical capacitance may affect impedance spectra in different types of electrochemical cells. A quantitative analysis of the spectra is based on generalized equivalent circuits developed for mixed conducting oxides by J. Jamnik and J. Maier. It is discussed how defect chemical information can be deduced from the chemical capacitance.
Conversion of ethanol to 1,3-butadiene over Na doped ZnxZryOz mixed metal oxides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baylon, Rebecca A.; Sun, Junming; Wang, Yong
2016-01-01
Despite numerous studies on different oxide catalysts for the ethanol to 1,3-butadiene reaction, few have identified active sites (i.e., type of acidity) correlated to the catalytic performances. In this work, the type of acidity needed for ethanol to 1,3-butadiene conversion has been studied over Zn/Zr mixed oxide catalysts. Specifically, synthesis method, Zn/Zr ratio, and Na doping have been used to control the surface acid-base properties, as confirmed by characterizations such as NH3-TPD and IR-Py techniques. The 2000 ppm Na doped Zn1Zr10Oz-H with balanced base and weak Bronsted acid sites was found to give not only high selectivity to 1,3-butadiene (47%)more » at near complete ethanol conversion (97%), but also exhibited a much higher 1,3-butadiene productivity than other mixed oxides studied.« less
Layered Li-Mn-M-oxides as cathodes for Li-ion batteries:. Recent trends
NASA Astrophysics Data System (ADS)
Shaju, K. M.; Subba Rao, G. V.; Chowdari, B. V. R.
2002-12-01
There is an increasing demand for manganese (Mn) based mixed oxides which can effectively replace the presently used LiCoO2 as cathode in Li-ion batteries (LIB). The well-studied spinel, LiMn2O4 and its doped derivatives give a capacity of 100-120 mAh/g, but show capacity-fading on cycling especially above 55°C. The layered LiMnO2, isostructural to LiCoO2 (so called O3-structure) can be a viable cathode. However, studies have shown that it undergoes conversion to spinel structure on cycling and thus gives capacity-fading. Other alternative systems recently studied are: O2-structured layered Li-M-Mn-oxides with the general formula Li(2/3)+x(MyMn1-y)O2, M = Li, Ni, Co; x ≤ 0.33 and y = 0.1-0.67, O3-Li(Ni1/2Mn1/2)O2, Li(NixCo1-2xMnx)O2, and M'-substituted Li2MnO3 (M' = Ni, Co, Cr). Some of them are shown to have stable cycling performance, good rate-capability and structural stability over charge-discharge cycling in the 2.5-4.6 V region. Further, the electrochemical processes in the above mixed oxides have been shown to involve Ni2+/4+ or Cr3+/6+ redox couple, thus invoking novel ideas to develop new cathode materials. A brief review of the work done on the above O2- and O3-layered Li-Mn-M-oxides (M = metal) as cathodes for LIB is presented.
Process for treating fission waste. [Patent application
Rohrmann, C.A.; Wick, O.J.
1981-11-17
A method is described for the treatment of fission waste. A glass forming agent, a metal oxide, and a reducing agent are mixed with the fission waste and the mixture is heated. After melting, the mixture separates into a glass phase and a metal phase. The glass phase may be used to safely store the fission waste, while the metal phase contains noble metals recovered from the fission waste.
METHOD OF MAKING ALLOYS OF SECOND RARE EARTH SERIES METALS
Baker, R.D.; Hayward, B.R.
1963-01-01
>This invention relates to a process for alloying the second rare earth series metals with Mo, Nb, or Zr. A halide of the rare earth metal is mixed with about 1 to 20 at.% of an oxide of Mo, Nb, or Zr. Iodine and an alkali or alkaline earth metal are added, and the resulting mixture is heated in an inert atmosphere to 350 deg C. (AEC)
NASA Astrophysics Data System (ADS)
Cai, Zun; Liu, Xiao; Gong, Cheng; Sun, Mingbo; Wang, Zhenguo; Bai, Xue-Song
2016-09-01
Large Eddy Simulation (LES) was employed to investigate the fuel/oxidizer mixing process in an ethylene fueled scramjet combustor with a rearwall-expansion cavity. The numerical solver was first validated for an experimental flow, the DLR strut-based scramjet combustor case. Shock wave structures and wall-pressure distribution from the numerical simulations were compared with experimental data and the numerical results were shown in good agreement with the available experimental data. Effects of the injection location on the flow and mixing process were then studied. It was found that with a long injection distance upstream the cavity, the fuel is transported much further into the main flow and a smaller subsonic zone is formed inside the cavity. Conversely, with a short injection distance, the fuel is entrained more into the cavity and a larger subsonic zone is formed inside the cavity, which is favorable for ignition in the cavity. For the rearwall-expansion cavity, it is suggested that the optimized ignition location with a long upstream injection distance should be in the bottom wall in the middle part of the cavity, while the optimized ignition location with a short upstream injection distance should be in the bottom wall in the front side of the cavity. By employing a cavity direct injection on the rear wall, the fuel mass fraction inside the cavity and the local turbulent intensity will both be increased due to this fueling, and it will also enhance the mixing process which will also lead to increased mixing efficiency. For the rearwall-expansion cavity, the combined injection scheme is expected to be an optimized injection scheme.
Dogan, Bugce; Kerestecioglu, Merih; Yetis, Ulku
2010-01-01
In the present study, several water recovery and end-of-pipe wastewater treatment alternatives were evaluated towards the evaluation of Best Available Techniques (BATs) for the management of wastewaters from a denim textile mill in accordance with the European Union's Integrated Pollution Prevention and Control (IPPC) Directive. For this purpose, an assessment that translates the key environmental aspects into a quantitative measure of environmental performance and also financial analysis was performed for each of the alternatives. The alternatives considered for water recovery from dyeing wastewaters were nanofiltration (NF) with coagulation and/or microfiltration (MF) pre-treatment, ozonation or peroxone and Fenton oxidation. On the other hand, for the end-of-pipe treatment of the mill's mixed wastewater, ozonation, Fenton oxidation, membrane bioreactor (MBR) and activated sludge (AS) process followed by membrane filtration technologies were evaluated. The results have indicated that membrane filtration process with the least environmental impacts is the BAT for water recovery. On the other side, MBR technology has appeared as the BAT for the end-of-pipe treatment of the mill's mixed wastewater. A technical and financial comparison of these two BAT alternatives revealed that water recovery via membrane filtration from dyeing wastewaters is selected as the BAT for the water and wastewater management in the mill.
Properties of mixed molybdenum oxide iridium oxide thin films synthesized by spray pyrolysis
NASA Astrophysics Data System (ADS)
Patil, P. S.; Kawar, R. K.; Sadale, S. B.; Inamdar, A. I.; Deshmukh, H. P.
2006-09-01
Molybdenum-doped iridium oxide thin films have been deposited onto corning glass- and fluorine-doped tin oxide coated corning glass substrates at 350 °C by using a pneumatic spray pyrolysis technique. An aqueous solution of 0.01 M ammonium molybdate was mixed with 0.01 M iridium trichloride solution in different volume proportions and the resultant solution was used as a precursor solution for spraying. The as-deposited samples were annealed at 600 °C in air medium for 1 h. The structural, electrical and optical properties of as-deposited and annealed Mo-doped iridium oxide were studied and values of room temperature electrical resistivity, and thermoelectric power were estimated. The as-deposited samples with 2% Mo doping exhibit more pronounced electrochromism than other samples, including pristine Ir oxide.
An, Ying; Zhou, Zhen; Yao, Jie; Niu, Tianhao; Qiu, Zhan; Ruan, Danian; Wei, Haijuan
2017-12-01
An anaerobic/anoxic/oxic (AAO) wastewater treatment system combining with a potassium ferrate (K 2 FeO 4 ) oxidation side-stream reactor (SSR) was proposed for sludge reduction. Batch experiments showed that optimal K 2 FeO 4 dosage and reaction time for sludge disintegration was 100mg/g suspended solids (SS) and 24h, respectively. Subsequently, an AAO-SSR and a conventional AAO were operated in parallel to investigate effects of K 2 FeO 4 oxidation on process performance, sludge characteristics and microbial community structures. The AAO-SSR process operated under the optimized condition achieved efficient COD and NH 4 + -N removal, and reduced sludge by 47.5% with observed yield coefficient of 0.21gSS/g COD. K 2 FeO 4 addition broke sludge particles, increased dissolved organic matters in the mixed liquor, and improved sludge dewaterability. Illumina-MiSeq sequencing results showed that K 2 FeO 4 oxidation in the AAO-SSR decreased microbial richness and diversity, enriched slow growers (Dechloromonas), anaerobic fermentative bacteria (Azospira) and Fe(III)-reducing bacteria (Ferribacterium), but limited the growth of phosphate-accumulating organisms. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Kimura, T.
2015-12-01
A recently developed reticular type porous structure, which can be fabricated as the film through the soft colloidal block copolymer (e.g., PS-b-PEO) templating, is very promising as the porous platform showing high-performance based on its high surface area as well as high diffusivity of targeted organic molecules and effective accommodation of bulky molecules, but the compositional design of oxide frameworks has not been developed so enough to date. Here, I report reliable synthetic methods of the reticular type porous structure toward simple compositional variations. Due to the reproducibility of reticular type porous titania films from titanium alkoxide (e.g., TTIP; titanium tetraisopropoxide), a titania-silica film having similar porous structure was obtained by mixing silicon alkoxide (e.g., tetraethoxysilane) and TTIP followed by their pre-hydrolysis, and the mixing ratio of Ti to Si composition was easily reached to 1.0. For further compositional design, a concept of surface coating was widely applicable; the reticular type porous titania surfaces can be coated with other oxides such as silica. Here, a silica coating was successfully achieved by the simple chemical vapor deposition of silicon alkoxide (e.g., tetramethoxysilane) without water (with water at the humidity level), which was also utilized for pore filling with silica by the similar process with water.
Autoignition of hydrogen in shear flows
NASA Astrophysics Data System (ADS)
Kalbhor, Abhijit; Chaudhuri, Swetaprovo; Chitilappilly, Lazar
2018-05-01
In this paper, we compare the autoignition characteristics of laminar, nitrogen-diluted hydrogen jets in two different oxidizer flow configurations: (a) co-flowing heated air and (b) wake of heated air, using two-dimensional numerical simulations coupled with detailed chemical kinetics. In both cases, autoignition is observed to initiate at locations with low scalar dissipation rates and high HO2 depletion rates. It is found that the induction stage prior to autoignition is primarily dominated by chemical kinetics and diffusion while the improved scalar mixing imparted by the large-scale flow structures controls the ignition progress in later stages. We further investigate the ignition transience and its connection with mixing by varying the initial wake conditions and fuel jet to oxidizer velocity ratios. These studies reveal that the autoignition delay times are independent of initial wake flow conditions. However, with increased jet velocity ratios, the later stages of ignition are accelerated, mainly due to enhanced mixing facilitated by the higher scalar dissipation rates. Furthermore, the sensitivity studies for the jet in wake configuration show a significant reduction in ignition delay even for about 0.14% (by volume) hydrogen dilution in the oxidizer. In addition, the detailed autoignition chemistry and the relative roles of certain radical species in the initiation of the autoignition process in these non-premixed jets are investigated by tracking the evolution of important chain reactions using a Lagrangian particle tracking approach. The reaction H2 + O2 ↔ HO2 + H is recognized to be the dominant chain initiation reaction that provides H radicals essential for the progress of subsequent elementary reactions during the pre-ignition stage.
Silver(II) Oxide or Silver(I,III) Oxide?
ERIC Educational Resources Information Center
Tudela, David
2008-01-01
The often called silver peroxide and silver(II) oxide, AgO or Ag[subscript 2]O[subscript 2], is actually a mixed oxidation state silver(I,III) oxide. A thermochemical cycle, with lattice energies calculated within the "volume-based" thermodynamic approach, explain why the silver(I,III) oxide is more stable than the hypothetical silver(II) oxide.…
Choi, Seung Ho; Kang, Yun Chan
2015-11-11
Mixed metal sulfide composite microspheres with a yolk-shell structure for sodium-ion batteries are studied. Tin-molybdenum oxide yolk-shell microspheres prepared by a one-pot spray pyrolysis process transform into yolk-shell SnS-MoS2 composite microspheres. The discharge capacities of the yolk-shell and dense-structured SnS-MoS2 composite microspheres for the 100th cycle are 396 and 207 mA h g(-1), and their capacity retentions measured from the second cycle are 89 and 47%, respectively. The yolk-shell SnS-MoS2 composite microspheres with high structural stability during repeated sodium insertion and desertion processes have low charge-transfer resistance even after long-term cycling. The synergetic effect of the yolk-shell structure and uniform mixing of the SnS and MoS2 nanocrystals result in the excellent sodium-ion storage properties of the yolk-shell SnS-MoS2 composite microspheres by improving their structural stability during cycling.
Method of forming particulate materials for thin-film solar cells
Eberspacher, Chris; Pauls, Karen Lea
2004-11-23
A method for preparing particulate materials useful in fabricating thin-film solar cells is disclosed. Particulate materials is prepared by the method include for example materials comprising copper and indium and/or gallium in the form of single-phase, mixed-metal oxide particulates; multi-phase, mixed-metal particulates comprising a metal oxide; and multinary metal particulates.
NASA Astrophysics Data System (ADS)
Navarro, M. V.; López, J. M.; García, T.; Grasa, G.; Murillo, R.
2017-09-01
The operational limits of a commercial nickel-based catalyst under the conditions of a sorption-enhanced steam-methane reforming process coupled to a Ca/Cu chemical loop are investigated for high-purity H2 production in a cyclic operation. The performance of the reforming catalyst is tested by means of a high number of oxidation-reduction-reforming cycles. After 100 oxidation-reduction cycles, this catalyst retains its exceptional reforming activity. The methane conversion values are close to the thermodynamic equilibrium under very demanding conditions: temperature between 500 °C - 700 °C and mass hourly space velocity of 8.8 kgCH4 h-1 kgcat-1. After 200 cycles, the sample shows reduction in its reforming activity in line with a lower dispersion of the Ni species. Sintering of Ni nanocrystals is evidenced during the oxidation-reduction multi-cycles. The performance of the catalyst after 200 oxidation-reduction cycles mixed with a CaO-based CO2 sorbent is studied under optimal conditions calculated for the sorption-enhanced reforming process coupled to a Ca/Cu cycle (temperature of 650 °C, steam/methane ratio of 4, sorbent/catalyst ratio of 4 and space velocity of 0.75 kgCH4 h-1 kgcat-1). Remarkably, an equilibrium value over 92 vol.% H2 concentration is achieved, highlighting this catalyst as a promising candidate for the next steps of the process development.
Rahimi, Masoud; Shahhosseini, Shahrokh; Movahedirad, Salman
2017-11-01
A new continuous-flow ultrasound assisted oxidative desulfurization (UAOD) process was developed in order to decrease energy and aqueous phase consumption. In this process the aqueous phase is injected below the horn tip leading to enhanced mixing of the phases. Diesel fuel as the oil phase with sulfur content of 1550ppmw and an appropriate mixture of hydrogen peroxide and formic acid as the aqueous phase were used. At the first step, the optimized condition for the sulfur removal has been obtained in the batch mode operation. Hence, the effect of more important oxidation parameters; oxidant-to-sulfur molar ratio, acid-to-sulfur molar ratio and sonication time were investigated. Then the optimized conditions were obtained using Response Surface Methodology (RSM) technique. Afterwards, some experiments corresponding to the best batch condition and also with objective of minimizing the residence time and aqueous phase to fuel volume ratio have been conducted in a newly designed double-compartment reactor with injection of the aqueous phase to evaluate the process in a continuous flow operation. In addition, the effect of nozzle diameter has been examined. Significant improvement on the sulfur removal was observed specially in lower sonication time in the case of dispersion method in comparison with the conventional contact between two phases. Ultimately, the flow pattern induced by ultrasonic device, and also injection of the aqueous phase were analyzed quantitatively and qualitatively by capturing the sequential images. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Anibas, Christian; Possemiers, Mathias; Huysmans, Marijke
2016-04-01
In an evolving energy system it is important that urbanized areas contribute to their own energy demands. To reduce greenhouse gas emissions sustainable energy systems with a high efficiency are required, e.g. using urban aquifers as an ecosystem service. Here the potential of seasonal aquifer thermal energy storage and recovery (ATES) for the Brussels-Capital Region, Belgium is investigated. An important shallow geologic formation in the Brussels Capital Region is the Brussels Sand formation, a 20-60 m thick phreatic aquifer. The Brussels Sand Formation is known for its potential for ATES systems, but also for its varying redox and hydraulic conditions. Important limiting factors for ATES systems in the Brussels Sand Formation therefore are the hydraulic conductivity and the geochemical composition of the groundwater. Near the redox boundary iron hydroxide precipitation can negatively influence ATES well performance due to clogging. The interactions between physical processes (e.g. particle transport and clogging in the wider proximity of the ATES well) and chemical processes (e.g. influence of the operation temperatures on precipitation processes) during ATES operation are complex but not well understood. Therefore we constructed numerical groundwater flow models in MODFLOW to estimate maximum pumping and injection rates of different hydraulic conditions and competing water uses in the Brussels Sand Formation. In further steps the thermal potential for ATES was quantified using MT3DMS and the reactive transport model PHT3D was applied to assess the effects of operating ATES systems near the redox boundary. Results show that initial mixing plays an important role in the development of iron(hydr)oxide precipitation around the ATES wells, with the highest concentrations around the cold wells. This behavior is enhanced by the temperature effect; temperature differences of ΔT≈10°C already influence the iron (hydr)oxide concentration. The initial injection into the warm well causes both the initial mixing and temperature effects to counteract each other, so that the iron(hydr)oxide concentration at the cold well is lower and closer to those of the warm well. Avoiding the mixing of oxygen/nitrate rich water with iron rich water remains the best strategy to prevent well clogging. Subsurface planning and feasibility studies for ATES should therefore carefully investigate the vertical distribution of water quality variations and hydraulic conductivity, and use this information to optimize filter screen settings.
Nitric oxide in the upper stratosphere - Measurements and geophysical interpretation
NASA Technical Reports Server (NTRS)
Harvath, J. J.; Frederick, J. E.; Orsini, N.; Douglass, A. R.
1983-01-01
A rocket-borne parachute-deployed chemiluminescence instrument has obtained seven new measurements of atmospheric nitric oxide for altitudes between 30 and 50 km at mid-latitudes. These results, when combined with profiles measured by an earlier version of the instrument, cover all four seasons and provide a more comprehensive picture of upper stratospheric nitric oxide than has been available previously. At the highest altitudes studied, the vertical gradient in mixing ratio displays positive and negative values during different observations, with the largest values tending to appear at the greatest heights in summer. Examination of the differences among the profiles, which exceed a factor of 3 near the stratopause, suggests that they arise from the action of transport processes which carry air into the mid-latitude upper stratosphere from regions of the atmosphere that contain widely different odd-nitrogen abundances.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barnett, Scott; Poeppelmeier, Ken; Mason, Tom
This project addresses fundamental materials challenges in solid oxide electrochemical cells, devices that have a broad range of important energy applications. Although nano-scale mixed ionically and electronically conducting (MIEC) materials provide an important opportunity to improve performance and reduce device operating temperature, durability issues threaten to limit their utility and have remained largely unexplored. Our work has focused on both (1) understanding the fundamental processes related to oxygen transport and surface-vapor reactions in nano-scale MIEC materials, and (2) determining and understanding the key factors that control their long-term stability. Furthermore, materials stability has been explored under the “extreme” conditions encounteredmore » in many solid oxide cell applications, i.e, very high or very low effective oxygen pressures, and high current density.« less
NASA Astrophysics Data System (ADS)
Hu, Zheng; Lei, Xianqi; Wang, Yang; Zhang, Kun
2018-03-01
The oxidation behaviors of as-cast, pre-deformed, and crystallized Zr47.9Ti0.3Ni3.1Cu39.3Al9.4 metallic glasses (MGs) were studied near the glass transition point. The oxidation kinetics of the crystallized MGs followed a parabolic-rate law, and the as-cast and pre-deformed MGs exerted a typical two-stage behavior above the glass transition temperature (T g). Most interesting, pre-deformed treatment can significantly improve the oxidation rate of MGs, as the initial oxidation appeared earlier than for the as-cast MGs, and was accompanied by much thicker oxide scale. The EDS and XPS results showed that the metal Al acted as the preferred scavenger that absorbed intrinsic oxygen in the near-surface region of as-cast MGs. However, a homogeneous mixed layer without Al was observed in the pre-deformed MGs. We speculated the accelerated diffusion of other elements in the MGs was due to the local increase in the free volume and significant shear-induced dilation of the local structure. The results from this study demonstrate that MGs exhibit controllable atomic diffusion during the oxidation process, which can facilitate use in super-cooled liquid region applications.
Nowack, Lea; Grolimund, Daniel; Samson, Vallerie; Marone, Federica; Wood, Vanessa
2016-02-24
Since the commercialization of lithium ion batteries (LIBs), layered transition metal oxides (LiMO2, where M = Co, Mn, Ni, or mixtures thereof) have been materials of choice for LIB cathodes. During cycling, the transition metals change their oxidation states, an effect that can be tracked by detecting energy shifts in the X-ray absorption near edge structure (XANES) spectrum. X-ray absorption spectroscopy (XAS) can therefore be used to visualize and quantify lithiation kinetics in transition metal oxide cathodes; however, in-situ measurements are often constrained by temporal resolution and X-ray dose, necessitating compromises in the electrochemistry cycling conditions used or the materials examined. We report a combined approach to reduce measurement time and X-ray exposure for operando XAS studies of lithium ion batteries. A highly discretized energy resolution coupled with advanced post-processing enables rapid yet reliable identification of the oxidation state. A full-field microscopy setup provides sub-particle resolution over a large area of battery electrode, enabling the oxidation state within many transition metal oxide particles to be tracked simultaneously. Here, we apply this approach to gain insights into the lithiation kinetics of a commercial, mixed-metal oxide cathode material, nickel cobalt aluminium oxide (NCA), during (dis)charge and its degradation during overcharge.
Nowack, Lea; Grolimund, Daniel; Samson, Vallerie; Marone, Federica; Wood, Vanessa
2016-01-01
Since the commercialization of lithium ion batteries (LIBs), layered transition metal oxides (LiMO2, where M = Co, Mn, Ni, or mixtures thereof) have been materials of choice for LIB cathodes. During cycling, the transition metals change their oxidation states, an effect that can be tracked by detecting energy shifts in the X-ray absorption near edge structure (XANES) spectrum. X-ray absorption spectroscopy (XAS) can therefore be used to visualize and quantify lithiation kinetics in transition metal oxide cathodes; however, in-situ measurements are often constrained by temporal resolution and X-ray dose, necessitating compromises in the electrochemistry cycling conditions used or the materials examined. We report a combined approach to reduce measurement time and X-ray exposure for operando XAS studies of lithium ion batteries. A highly discretized energy resolution coupled with advanced post-processing enables rapid yet reliable identification of the oxidation state. A full-field microscopy setup provides sub-particle resolution over a large area of battery electrode, enabling the oxidation state within many transition metal oxide particles to be tracked simultaneously. Here, we apply this approach to gain insights into the lithiation kinetics of a commercial, mixed-metal oxide cathode material, nickel cobalt aluminium oxide (NCA), during (dis)charge and its degradation during overcharge. PMID:26908198
NASA Astrophysics Data System (ADS)
Nowack, Lea; Grolimund, Daniel; Samson, Vallerie; Marone, Federica; Wood, Vanessa
2016-02-01
Since the commercialization of lithium ion batteries (LIBs), layered transition metal oxides (LiMO2, where M = Co, Mn, Ni, or mixtures thereof) have been materials of choice for LIB cathodes. During cycling, the transition metals change their oxidation states, an effect that can be tracked by detecting energy shifts in the X-ray absorption near edge structure (XANES) spectrum. X-ray absorption spectroscopy (XAS) can therefore be used to visualize and quantify lithiation kinetics in transition metal oxide cathodes; however, in-situ measurements are often constrained by temporal resolution and X-ray dose, necessitating compromises in the electrochemistry cycling conditions used or the materials examined. We report a combined approach to reduce measurement time and X-ray exposure for operando XAS studies of lithium ion batteries. A highly discretized energy resolution coupled with advanced post-processing enables rapid yet reliable identification of the oxidation state. A full-field microscopy setup provides sub-particle resolution over a large area of battery electrode, enabling the oxidation state within many transition metal oxide particles to be tracked simultaneously. Here, we apply this approach to gain insights into the lithiation kinetics of a commercial, mixed-metal oxide cathode material, nickel cobalt aluminium oxide (NCA), during (dis)charge and its degradation during overcharge.
Effects of Transition-Metal Mixing on Na Ordering and Kinetics in Layered P 2 Oxides
NASA Astrophysics Data System (ADS)
Zheng, Chen; Radhakrishnan, Balachandran; Chu, Iek-Heng; Wang, Zhenbin; Ong, Shyue Ping
2017-06-01
Layered P 2 oxides are promising cathode materials for rechargeable sodium-ion batteries. In this work, we systematically investigate the effects of transition-metal (TM) mixing on Na ordering and kinetics in the NaxCo1 -yMnyO2 model system using density-functional-theory (DFT) calculations. The DFT-predicted 0-K stability diagrams indicate that Co-Mn mixing reduces the energetic differences between Na orderings, which may account for the reduction of the number of phase transformations observed during the cycling of mixed-TM P 2 layered oxides compared to a single TM. Using ab initio molecular-dynamics simulations and nudged elastic-band calculations, we show that the TM composition at the Na(1) (face-sharing) site has a strong influence on the Na site energies, which in turn impacts the kinetics of Na diffusion towards the end of the charge. By employing a site-percolation model, we establish theoretical upper and lower bounds for TM concentrations based on their effect on Na(1) site energies, providing a framework to rationally tune mixed-TM compositions for optimal Na diffusion.
Preparation and Characterization of TiO2-Based Photocatalysts by Chemical Vapour Deposition
NASA Astrophysics Data System (ADS)
Nacevski, Goran; Marinkovski, Mirko; Tomovska, Radmila; Fajgar, Radek
In the present work, a novel technique for the preparation of TiO2-based photocatalysts modified with SiO2 is presented, using a pulsed ArF laser to induce a chemical vapor deposition process. The irradiated gas mixture was composed of TiCl4/SiCl4 precursors in excess of oxygen. Laser irradiation at 193 nm with a repetition frequency of 10 Hz induced the deposition of thin nano-sized mixed oxide films. In order to improve the photocatalytic activity of the catalysts and to expand the activity from the UV to the visible part of the spectrum, doping of the catalysts with chromium oxides was performed. For that aim, the same technique of catalyst preparation was used, irradiating the same gas mixture with the addition of chromyl chloride as Cr precursor. The thin films prepared were annealed up to 500°C in order to remove crystal defects, which could be responsible for poor photocatalytic activity. The dependence of structure and properties on reaction process and irradiation conditions (laser energy and fluence, precursors pressure) were examined. The main aim was to find the best conditions for the production of highly photoactive catalysts and to decrease deactivation processes during the photo-oxidation. The composition, structure and morphology of the oxide catalysts prepared were studied by various spectroscopies, electron microscopy and diffraction techniques.
Synthesis of fine-grained .alpha.-silicon nitride by a combustion process
Holt, J. Birch; Kingman, Donald D.; Bianchini, Gregory M.
1990-01-01
A combustion synthesis process for the preparation of .alpha.-silicon nitride and composites thereof is disclosed. Preparation of the .alpha.-silicon nitride comprises the steps of dry mixing silicon powder with an alkali metal azide, such as sodium azide, cold-pressing the mixture into any desired shape, or loading the mixture into a fused, quartz crucible, loading the crucible into a combustion chamber, pressurizing the chamber with nitrogen and igniting the mixture using an igniter pellet. The method for the preparation of the composites comprises dry mixing silicon powder (Si) or SiO.sub.2, with a metal or metal oxide, adding a small amount of an alkali metal azide such as sodium azide, introducing the mixture into a suitable combustion chamber, pressurizing the combustion chamber with nitrogen, igniting the mixture within the combustion chamber, and isolating the .alpha.-silicon nitride formed as a reaction product.
NASA Astrophysics Data System (ADS)
Atribak, Idriss; Guillén-Hurtado, Noelia; Bueno-López, Agustín; García-García, Avelina
2010-10-01
Commercial and home-made Ce-Zr catalysts prepared by co-precipitation were characterised by XRD, Raman spectroscopy, N 2 adsorption at -196 °C and XPS, and were tested for NO oxidation to NO 2. Among the different physico-chemical properties characterised, the surface composition seems to be the most relevant one in order to explain the NO oxidation capacity of these Ce-Zr catalysts. As a general trend, Ce-Zr catalysts with a cerium-rich surface, that is, high XPS-measured Ce/Zr atomic surface ratios, are more active than those with a Zr-enriched surface. The decrease in catalytic activity of the Ce-Zr mixed oxided upon calcinations at 800 °C with regard to 500 °C is mainly attributed to the decrease in Ce/Zr surface ratio, that is, to the surface segregation of Zr. The phase composition (cubic or t'' for Ce-rich compositions) seems not to be a direct effect on the catalytic activity for NO oxidation in the range of compositions tested. However, the formation of a proper solid solution prevents important surface segregation of Zr upon calcinations at high temperature. The effect of the BET surface area in the catalytic activity for NO oxidation of Ce-Zr mixed oxides is minor in comparison with the effect of the Ce/Zr surface ratio.
The thermal stability and catalytic application of manganese oxide-zirconium oxide powders
NASA Astrophysics Data System (ADS)
Zhao, Qiang
MnOx-ZrO2 mixed oxide is an active catalyst for combustion, oxidation, and oxygen storage applications. MnOx-ZrO 2 mixture also has large reversible adsorption capability for NO x, which makes it a promising candidate for NOx abatement in automobile emission control. However, MnOx-ZrO 2 mixed oxide has not been used extensively because the processing and the thermal stability of resulting powders have not been studied systematically. It is critical to have thermally stable catalytic material because the application temperature can reach as high as 1000°C during service. In this study, we focused on improving the thermal stability of oxide powders, such as MnO x, ZrO2, and MnOx-ZrO2, by controlling the processing methods and parameters. For pure MnOx made from the precipitation method using Mn(NO3)2 aqueous solution and ammonium hydroxide, we found that lower concentration of Mn(NO3) 2 solution and larger amount of ammonium hydroxide resulted in higher surface area powders. For pure ZrO2, we found curing hydrous zirconia in the mother liquid produced ZrO2 powders with larger pore volume and pore size. The specific surface area was also significantly enhanced by curing for the synthesized powders before calcination or after low temperature calcinations, and this improvement could be preserved to high temperatures if SiO2 was doped in ZrO2. A Monte Carlo simulation model examining the effect of primary particle packing on the specific surface area was used to explain the curing result. MnOx-ZrO2 mixtures had higher surface area than the single component oxide at 500 and 700°C because composite powders sintered less. The sintering behavior of composite powders at 900°C was opposite to that at 500°C and the specific surface area of MnOx-ZrO2 decreased drastically at 900°C. Curing ZrO2 first or using La dopant could significantly enhance the specific surface area of MnOx-ZrO2 at 900°C. Through the tests of the redox property and NO storage capability we found a close relationship between the enhanced thermal stability and better catalytic performance.
Sulmonetti, Taylor P.; Hu, Bo; Lee, Sungsik; ...
2017-08-08
In this study, the ring-opening of furfuryl alcohol to diol products, including 1,2-pentanediol and 1,5- pentanediol, is investigated over reduced Cu-Co-Al mixed metal oxides in a liquid phase batch reactor under H 2 pressure. These catalysts are synthesized through the calcination of layered double hydroxides (LDH) to yield well-dispersed, porous mixed metal oxides, which upon reduction displayed activity towards diols, mainly the valuable monomer 1,5-pentanediol. The addition of Cu facilitated the reduction of Co oxide species at lower temperatures, and under optimized conditions a yield towards 1,5-pentanediol of 44% (total diol yield of 62%) was achieved. Various characterization techniques includingmore » TPR, XPS, and XAS are employed to elucidate the structure of the catalysts, suggesting the formation of both metallic (Co and Cu) and oxide (CoO) species after reduction and passivation. Finally, this study demonstrates the promising characteristics that non-precious multi-metal catalysts have for the conversion of biomass derived platform molecules to plastic precursors« less
Iron-phosphate ceramics for solidification of mixed low-level waste
Aloy, Albert S.; Kovarskaya, Elena N.; Koltsova, Tatiana I.; Macheret, Yevgeny; Medvedev, Pavel G.; Todd, Terry
2000-01-01
A method of immobilizing mixed low-level waste is provided which uses low cost materials and has a relatively long hardening period. The method includes: forming a mixture of iron oxide powders having ratios, in mass %, of FeO:Fe.sub.2 O.sub.3 :Fe.sub.3 O.sub.4 equal to 25-40:40-10:35-50, or weighing a definite amount of magnetite powder. Metallurgical cinder can also be used as the source of iron oxides. A solution of the orthophosphoric acid, or a solution of the orthophosphoric acid and ferric oxide, is formed and a powder phase of low-level waste and the mixture of iron oxide powders or cinder (or magnetite powder) is also formed. The acid solution is mixed with the powder phase to form a slurry with the ratio of components (mass %) of waste:iron oxide powders or magnetite:acid solution=30-60:15-10:55-30. The slurry is blended to form a homogeneous mixture which is cured at room temperature to form the final product.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sulmonetti, Taylor P.; Hu, Bo; Lee, Sungsik
In this study, the ring-opening of furfuryl alcohol to diol products, including 1,2-pentanediol and 1,5- pentanediol, is investigated over reduced Cu-Co-Al mixed metal oxides in a liquid phase batch reactor under H 2 pressure. These catalysts are synthesized through the calcination of layered double hydroxides (LDH) to yield well-dispersed, porous mixed metal oxides, which upon reduction displayed activity towards diols, mainly the valuable monomer 1,5-pentanediol. The addition of Cu facilitated the reduction of Co oxide species at lower temperatures, and under optimized conditions a yield towards 1,5-pentanediol of 44% (total diol yield of 62%) was achieved. Various characterization techniques includingmore » TPR, XPS, and XAS are employed to elucidate the structure of the catalysts, suggesting the formation of both metallic (Co and Cu) and oxide (CoO) species after reduction and passivation. Finally, this study demonstrates the promising characteristics that non-precious multi-metal catalysts have for the conversion of biomass derived platform molecules to plastic precursors« less
Magnesium-Aluminum-Zirconium Oxide Amorphous Ternary Composite: A Dense and Stable Optical Coating
NASA Technical Reports Server (NTRS)
Sahoo, N. K.; Shapiro, A. P.
1998-01-01
In the present work, the process parameter dependent optical and structural properties of MgO-Al(2)O(3)-ZrO(2) ternary mixed-composite material have been investigated. Optical properties were derived from spectrophotometric measurements. The surface morphology, grain size distributions, crystallographic phases and process dependent material composition of films have been investigated through the use of Atomic Force Microscopy (AFM), X-ray diffraction analysis and Energy Dispersive X- ray (EDX) analysis. EDX analysis made evident the correlation between the optical constants and the process dependent compositions in the films. It is possible to achieve environmentally stable amorphous films with high packing density under certain optimized process conditions.
Thickness-dependent resistance switching in Cr-doped SrTiO3
NASA Astrophysics Data System (ADS)
Kim, TaeKwang; Du, Hyewon; Kim, Minchang; Seo, Sunae; Hwang, Inrok; Kim, Yeonsoo; Jeon, Jihoon; Lee, Sangik; Park, Baeho
2012-09-01
The thickness-dependent bipolar resistance-switching behavior was investigated for epitaxiallygrown Cr-doped SrTiO3 (Cr-STO). All the pristine devices of different thickness showed polarity-independent symmetric current-voltage characteristic and the same space-charge-limited conduction mechanism. However, after a forming process, the resultant conduction and switching phenomena were significantly different depending on the thickness of Cr-STO. The forming process itself was highly influenced by resistance value of each pristine device. Based on our results, we suggest that the resistance-switching mechanism in Cr-STO depends not only on the insulating material's composition or the contact metal as previously reported but also on the initial resistance level determined by the geometry and the quality of the insulating material. The bipolar resistance-switching behaviors in oxide materials of different thicknesses exhibit mixed bulk and interface switching. This indicates that efforts in resistance-based memory research should be focused on scalability or process method to control a given oxide material in addition to material type and device structure.
Fuel cells with doped lanthanum gallate electrolyte
NASA Astrophysics Data System (ADS)
Feng, Man; Goodenough, John B.; Huang, Keqin; Milliken, Christopher
Single cells with doped lanthanum gallate electrolyte material were constructed and tested from 600 to 800°C. Both ceria and the electrolyte material were mixed with NiO powder respectively to form composite anodes. Doped lanthanum cobaltite was used exclusively as the cathode material. While high power density from the solid oxide fuel cells at 800°C was achieved. our results clearly indicate that anode overpotential is the dominant factor in the power loss of the cells. Better anode materials and anode processing methods need to be found to fully utilize the high ionic conductivity of the doped lanthanum galiate and achieve higher power density at 800°C from solid oxide fuel cells.
This study reports improved catalytic activities and stabilities for the oxidation of dimethyl sulfide (DMS), a major pollutant of pulp and paper mills. Ozone was used as an oxidant and activities of Cu, Mo, Cr and Mn oxides, and mixed metal oxides supported on -alumina, were tes...
This study reports improved catalytic activities and stabilities for the oxidation of dimethyl sulfide (DMS), a major pollutant of pulp and paper mills. Ozone was used as an oxidant and Cu, Mo, V, Cr and Mn metal oxides, and mixed metal oxides support on y-alumina as catalysts ov...
Onnis-Hayden, Annalisa; Majed, Nehreen; Schramm, Andreas; Gu, April Z
2011-07-01
This study investigated the abundance and distribution of key functional microbial populations and their activities in a full-scale integrated fixed film activated sludge-enhanced biological phosphorus removal (IFAS-EBPR) process. Polyphosphate accumulating organisms (PAOs) including Accumulibacter and EBPR activities were predominately associated with the mixed liquor (>90%) whereas nitrifying populations and nitrification activity resided mostly (>70%) on the carrier media. Ammonia oxidizer bacteria (AOB) were members of the Nitrosomonas europaea/eutropha/halophila and the Nitrosomonas oligotropha lineages, while nitrite oxidizer bacteria (NOB) belonged to the Nitrospira genus. Addition of the carrier media in the hybrid activated sludge system increased the nitrification capacity and stability; this effect was much greater in the first IFAS stage than in the second one where the residual ammonia concentration becomes limiting. Our results show that IFAS-EBPR systems enable decoupling of solid residence time (SRT) control for nitrifiers and PAOs that require or prefer conflicting SRT values (e.g. >15 days required for nitrifiers and <5 days preferred for PAOs). Allowing the slow-growing nitrifiers to attach to the carrier media and the faster-growing phosphorus (P)-removing organisms (and other heterotrophs, e.g. denitrifiers) to be in the suspended mixed liquor (ML), the EBPR-IFAS system facilitates separate SRT controls and overall optimization for both N and P removal processes. Copyright © 2011 Elsevier Ltd. All rights reserved.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-11-23
... MOX Services (Mixed Oxide Fuel Fabrication Facility); Notice of Atomic Safety and Licensing Board Reconstitution Pursuant to 10 CFR 2.313(c) and 2.321(b), the Atomic Safety and Licensing Board (Board) in the... Rockville, Maryland this 16th day of November 2012. E. Roy Hawkens, Chief Administrative Judge, Atomic...
Liquid eutectic GaIn as an alternative electrode for PTB7:PCBM organic solar cells
NASA Astrophysics Data System (ADS)
Thanh Hau Pham, Viet; Kieu Trinh, Thanh; Tam Nguyen Truong, Nguyen; Park, Chinho
2017-04-01
Conventional vacuum deposition process of aluminum (Al) is costly, time-consuming and difficult to apply to the large-scale production of organic photovoltaic devices (OPV). This paper reports a vacuum-free fabrication process of poly[[4,8-bis(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b‧]dithiophene-2,6-diyl][3-fluoro-2-[(2-ethylhexyl)carbonyl]thienophenediyl]:[6,6]-phenyl C71 butyric acid methyl ester (PTB7:PCBM) bulk heterojunction organic solar cell with liquid eutectic gallium-indium (EGaIn) electrode as an alternative to the common Al electrode. The insertion of a thin poly(ethylene oxide) (PEO) layer after depositing organic photoactive layer could help prevent the diffusion of liquid EGaIn into the active layer and allow the deposition of the EGaIn electrode. The PEO interfacial layer was formed by spin-coating from a mixed solvent of alcohol and water. Among different alcohol+water (methanol, ethanol, ethylene glycol, n-propanol, isopropanol, and isobutanol) mixed solvent tested, the n-propanol+water mixed solvent showed the greatest enhancement to the performance of OPVs. The improved device performance was attributed to the reactivity of mixed solvent n-propanol+water toward the surface of PTB7:PCBM active layer, which could help optimize surface morphology.
DetOx: a program for determining anomalous scattering factors of mixed-oxidation-state species.
Sutton, Karim J; Barnett, Sarah A; Christensen, Kirsten E; Nowell, Harriott; Thompson, Amber L; Allan, David R; Cooper, Richard I
2013-01-01
Overlapping absorption edges will occur when an element is present in multiple oxidation states within a material. DetOx is a program for partitioning overlapping X-ray absorption spectra into contributions from individual atomic species and computing the dependence of the anomalous scattering factors on X-ray energy. It is demonstrated how these results can be used in combination with X-ray diffraction data to determine the oxidation state of ions at specific sites in a mixed-valance material, GaCl(2).
NASA Astrophysics Data System (ADS)
Xue, Qin; Liu, Shouyin; Zhang, Shiming; Chen, Ping; Zhao, Yi; Liu, Shiyong
2013-01-01
We fabricated organic light-emitting devices (OLEDs) employing 2-methyl-9,10-di(2-naphthyl)-anthracene (MADN) as hole-transport material (HTM) instead of commonly used N,N'-bis-(1-naphthyl)-N,N'-diphenyl,1,1'-biphenyl-4,4'-diamine (NPB). After inserting a 0.9 nm thick molybdenum oxide (MoOx) layer at the indium tin oxide (ITO)/MADN interface and a 5 nm thick mixed layer at the organic/organic heterojunction interface, the power conversion efficiency of the device can be increased by 4-fold.
Effect of processing conditions on microstructural features in Mn–Si sintered steels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oro, Raquel, E-mail: raqueld@chalmers.se; Hryha, Eduard, E-mail: hryha@chalmers.se; Campos, Mónica, E-mail: campos@ing.uc3m.es
2014-09-15
Sintering of steels containing oxidation sensitive elements is possible if such elements are alloyed with others which present lower affinity for oxygen. In this work, a master alloy powder containing Fe–Mn–Si–C, specifically designed to create a liquid phase during sintering, has been used for such purpose. The effect of processing conditions such as sintering temperature and atmosphere was studied with the aim of describing the microstructural evolution as well as the morphology and distribution of oxides in the sintered material, evaluating the potential detrimental effect of such oxides on mechanical properties. Chemical analyses, metallography and fractography studies combined with X-raymore » photoelectron spectroscopy analyses on the fracture surfaces were used to reveal the main mechanism of fracture and their correlation with the chemical composition of the different fracture surfaces. The results indicate that the main mechanism of failure in these steels is brittle fracture in the surrounding of the original master alloy particles due to degradation of grain boundaries by the presence of oxide inclusions. Mn–Si oxide inclusions were observed on intergranular decohesive facets. The use of reducing atmospheres and high sintering temperatures reduces the amount and size of such oxide inclusions. Besides, high heating and cooling rates reduce significantly the final oxygen content in the sintered material. A model for microstructure development and oxide evolution during different stages of sintering is proposed, considering the fact that when the master alloy melts, the liquid formed can dissolve some of the oxides as well as the surface of the surrounding iron base particles. - Highlights: • Oxide distribution in steels containing oxidation-sensitive elements • Mn, Si introduced in a master alloy powder, mixed with a base iron powder • Selective oxidation of Mn and Si on iron grain boundaries • Decohesive fracture caused by degradation of grain boundaries by oxide inclusions • Reducing agents efficient at low temperatures critical for avoiding oxide inclusions.« less
Fossil fuel combined cycle power generation method
Labinov, Solomon D [Knoxville, TN; Armstrong, Timothy R [Clinton, TN; Judkins, Roddie R [Knoxville, TN
2008-10-21
A method for converting fuel energy to electricity includes the steps of converting a higher molecular weight gas into at least one mixed gas stream of lower average molecular weight including at least a first lower molecular weight gas and a second gas, the first and second gases being different gases, wherein the first lower molecular weight gas comprises H.sub.2 and the second gas comprises CO. The mixed gas is supplied to at least one turbine to produce electricity. The mixed gas stream is divided after the turbine into a first gas stream mainly comprising H.sub.2 and a second gas stream mainly comprising CO. The first and second gas streams are then electrochemically oxidized in separate fuel cells to produce electricity. A nuclear reactor can be used to supply at least a portion of the heat the required for the chemical conversion process.
Effects of anodic oxidation parameters on a modified titanium surface.
Park, Il Song; Lee, Min Ho; Bae, Tae Sung; Seol, Kyeong Won
2008-02-01
Anodic oxidation is an electrochemical treatment that can be used to control the thickness of an oxide layer formed on a titanium surface. This procedure has the advantage of allowing the ions contained in an electrolyte to deposit onto the oxide layer. The characteristics of a layer treated with anodic oxidation can vary according to the type and concentration of the electrolytes as well as the processing variables used during anodic oxidation. In this study, the constant electrolyte for anodic oxidation was a mixed solution containing 0.02 M DL-alpha-glycerophosphate disodium salt and 0.2M calcium acetate. Anodic oxidation was carried out at different voltages, current densities, and duration of anodic oxidation. The results showed that the current density and variation in the duration of anodic oxidation did not have a large effect on the change in the characteristics of the layer. On the other hand, the size of the micropores was increased with increasing voltage of anodic oxidation, and anatase and rutile phases were found to co-exist in the porous titanium dioxide layer. In addition, the thickness of the oxide layer on titanium and the characteristic of corrosion resistance increased with increasing voltage. The MTT test showed that the cell viability was increased considerably as a result of anodic oxidation. The anodizing voltage is an important parameter that determines the characteristics of the anodic oxide layer of titanium. (c) 2007 Wiley Periodicals, Inc.
Rocket Research at Georgia Tech.
1981-11-01
samples were prepared by dry pressing 30% Valley Met H- 30 aluminum, 7% carnauba wax , and 63% 100 P AP. One sample was prepared using as received H-30, a...Al, and Carnauba wax powders. Sandwiches with aluminum in the binder lamina. Both pre-oxidation and pre-stretching treatments of aluminum particles...two different processes. 1. Dry-pressing powder mixtures in which polymeric binder is replaced by carnauba wax powder. 2. Hand mixing small samples of
High-surface-area, dual-function oxygen electrocatalysts for space power applications
NASA Technical Reports Server (NTRS)
Ham, David O.; Moniz, Gary; Taylor, E. Jennings
1987-01-01
The processes of hydration/dehydration and carbonation/decarbonation are investigated as an approach to provide higher surface area mixed metal oxides that are more active electrochemically. These materials are candidates for use as electrocatalysts and electrocatalyst supports for alkaline electrolyzers and fuel cells. For the case of the perovskite, LaCoO3 , higher surface areas were achieved with no change in structure and a more active oxygen electrocatalyst.
Method of waste stabilization via chemically bonded phosphate ceramics
Wagh, Arun S.; Singh, Dileep; Jeong, Seung-Young
1998-01-01
A method for regulating the reaction temperature of a ceramic formulation process is provided comprising supplying a solution containing a monovalent alkali metal; mixing said solution with an oxide powder to create a binder; contacting said binder with bulk material to form a slurry; and allowing the slurry to cure. A highly crystalline waste form is also provided consisting of a binder containing potassium and waste substrate encapsulated by the binder.
Method of waste stabilization via chemically bonded phosphate ceramics
Wagh, A.S.; Singh, D.; Jeong, S.Y.
1998-11-03
A method for regulating the reaction temperature of a ceramic formulation process is provided comprising supplying a solution containing a monovalent alkali metal; mixing said solution with an oxide powder to create a binder; contacting said binder with bulk material to form a slurry; and allowing the slurry to cure. A highly crystalline waste form is also provided consisting of a binder containing potassium and waste substrate encapsulated by the binder. 3 figs.
Secondary battery material and synthesis method
Liu, Hongjian; Kepler, Keith Douglas; Wang, Yu
2013-10-22
A composite Li.sub.1+xMn.sub.2-x-yM.sub.yO.sub.4 cathode material stabilized by treatment with a second transition metal oxide phase that is highly suitable for use in high power and energy density Li-ion cells and batteries. A method for treating a Li.sub.1+xMn.sub.2-x-yM.sub.yO.sub.4 cathode material utilizing a dry mixing and firing process.
NASA Technical Reports Server (NTRS)
Heywood, J. B.; Fay, J. A.; Chigier, N. A.
1979-01-01
Forty-one annotated abstracts of reports generated at MIT and the University of Sheffield are presented along with summaries of the technical projects undertaken. Work completed includes: (1) an analysis of the soot formation and oxidation rates in gas turbine combustors, (2) modelling the nitric oxide formation process in gas turbine combustors, (3) a study of the mechanisms causing high carbon monoxide emissions from gas turbines at low power, (4) an analysis of the dispersion of pollutants from aircraft both around large airports and from the wakes of subsonic and supersonic aircraft, (5) a study of the combustion and flow characteristics of the swirl can modular combustor and the development and verification of NO sub x and CO emissions models, (6) an analysis of the influence of fuel atomizer characteristics on the fuel-air mixing process in liquid fuel spray flames, and (7) the development of models which predict the stability limits of fully and partially premixed fuel-air mixtures.
Kim, Kyung-Jo; Jang, Am
2017-10-01
The adsorption characteristics of three types of standard natural organic matter (NOM) on iron-aluminum (Fe-Al) binary oxide (FAO) and heated aluminum oxide (HAO) under natural surface water condition were investigated using various adsorption isotherms and kinetic models. FAO was synthesized by Fe oxide and Al oxide, mixed using the sol-gel hydrothermal method, and aluminum sulfate was used to make HAO. The amount of adsorbed NOM was increased to 79.6 mg g -1 for humic acid (HA), 101.1 mg g -1 for sodium alginate (SA) in the FAO, but the maximum adsorption capacity of bovine serum albumin (BSA) (461.3 mg g -1 ) was identified on the HAO. The adsorption of HA, BSA, and SA dramatically increased (>70%) on FAO in 5 min and HA was significantly removed (90%) among the three NOM. Mutual interaction among the adsorbed NOM (BSA) occurred on the HAO surface during adsorption due to formation of monolayer by protein molecules at neutral pH. The pseudo second order clearly represented the adsorption kinetics for both adsorbents. The equilibrium isotherm data of FAO was better exhibited by the Langmuir isotherm model than by the Freundlich isotherm, but HAO was a slightly non-linear Langmuir type. Also, the free energy, enthalpy, and entropy of adsorption were determined from the thermodynamic experiments. Adsorption on FAO was spontaneous and an exothermic process. Fluorescence excitation-emission matrix (FEEM) spectra were used to elucidate the variation in organic components. The results obtained suggests that the significant changes in the surface property of the adsorbent (large surface area, increased crystalline intensity, and fine particle size) were effectively determined by the Fe-synthesized Al oxide mixed using the sol-gel hydrothermal method. The results also suggest that the changes enhanced the adsorption capacity, whereby three NOM were notably removed on FAO regardless of NOM characteristics (hydrophobic and hydrophilic). Copyright © 2017 Elsevier Ltd. All rights reserved.
Partially Premixed Flame (PPF) Research for Fire Safety
NASA Technical Reports Server (NTRS)
Puri, Ishwar K.; Aggarwal, Suresh K.; Lock, Andrew J.; Hegde, Uday
2004-01-01
Incipient fires typically occur after the partial premixing of fuel and oxidizer. The mixing of product species into the fuel/oxidizer mixture influences flame stabilization and fire spread. Therefore, it is important to characterize the impact of different levels of fuel/oxidizer/product mixing on flame stabilization, liftoff and extinguishment under different gravity conditions. With regard to fire protection, the agent concentration required to achieve flame suppression is an important consideration. The initial stage of an unwanted fire in a microgravity environment will depend on the level of partial premixing and the local conditions such as air currents generated by the fire itself and any forced ventilation (that influence agent and product mixing into the fire). The motivation of our investigation is to characterize these impacts in a systematic and fundamental manner.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yao, Kevin; Xu, Paul; Loo, Walter
2013-07-01
Large quantities of organic chemical such as VOCs, SVOCs and POPs were found in the soil of land at an abandoned Chemical Plant. Technology of super oxidation was applied to the soil for cleanup. Fenton process was utilized to treat soil contaminated heavily by BHC, benzene, chlorobenzene, dichlorobenzene, hexachlorobenzene, dichloroethane, dichloropropane, trichlorobenzene and dichloroether, etc. Super oxidation was coupled with method of stabilization for this case to enhance the remediation effect, which proved to be successful. Concentration of concerned pollutants was brought down below the national regulation level by approximately 8 folds. To make the treated soil strong and effectivemore » layer preventing pollutants breaking through, Iron powder was mixed in the soil, forming PBR (Permeable Barrier Reactor), to lower the risk to human health. The site after enhanced super oxidation above was totally safe to be developed into a residential community and/or commercial area. (authors)« less
Ozone response to emission reductions in the southeastern United States
NASA Astrophysics Data System (ADS)
Blanchard, Charles L.; Hidy, George M.
2018-06-01
Ozone (O3) formation in the southeastern US is studied in relation to nitrogen oxide (NOx) emissions using long-term (1990s-2015) surface measurements of the Southeastern Aerosol Research and Characterization (SEARCH) network, U.S. Environmental Protection Agency (EPA) O3 measurements, and EPA Clean Air Status and Trends Network (CASTNET) nitrate deposition data. Annual fourth-highest daily peak 8 h O3 mixing ratios at EPA monitoring sites in Georgia, Alabama, and Mississippi exhibit statistically significant (p < 0.0001) linear correlations with annual NOx emissions in those states between 1996 and 2015. The annual fourth-highest daily peak 8 h O3 mixing ratios declined toward values of ˜ 45-50 ppbv and monthly O3 maxima decreased at rates averaging ˜ 1-1.5 ppbv yr-1. Mean annual total oxidized nitrogen (NOy) mixing ratios at SEARCH sites declined in proportion to NOx emission reductions. CASTNET data show declining wet and dry nitrate deposition since the late 1990s, with total (wet plus dry) nitrate deposition fluxes decreasing linearly in proportion to reductions of NOx emissions by ˜ 60 % in Alabama and Georgia. Annual nitrate deposition rates at Georgia and Alabama CASTNET sites correspond to 30 % of Georgia emission rates and 36 % of Alabama emission rates, respectively. The fraction of NOx emissions lost to deposition has not changed. SEARCH and CASTNET sites exhibit downward trends in mean annual nitric acid (HNO3) concentrations. Observed relationships of O3 to NOz (NOy-NOx) support past model predictions of increases in cycling of NO and increasing responsiveness of O3 to NOx. The study data provide a long-term record that can be used to examine the accuracy of process relationships embedded in modeling efforts. Quantifying observed O3 trends and relating them to reductions in ambient NOy species concentrations offers key insights into processes of general relevance to air quality management and provides important information supporting strategies for reducing O3 mixing ratios.
Ordered Fe(II)Ti(IV)O3 Mixed Monolayer Oxide on Rutile TiO2(011).
Halpegamage, Sandamali; Ding, Pan; Gong, Xue-Qing; Batzill, Matthias
2015-08-25
Oxide monolayers supported or intermixed with an oxide support are potential nanocatalysts whose properties are determined by the interplay with the support. For fundamental studies of monolayer oxides on metal oxide supports, well-defined systems are needed, but so far, the synthesis of monolayer oxides with long-range order on single-crystal oxide surfaces is rare. Here, we show by a combination of scanning tunneling microscopy, photoemission spectroscopy, and density functional theory (DFT)-based computational analysis that the rutile TiO2(011) surface supports the formation of an ordered mixed FeTiO3 monolayer. Deposition of iron in a slightly oxidizing atmosphere (10(-8) Torr O2) and annealing to 300 °C results in a well-ordered surface structure with Fe in a 2+ charge state and Ti in a 4+ charge states. Low-energy ion scattering suggests that the cation surface composition is close to half Fe and half Ti. This surface is stable in ultrahigh vacuum to annealing temperatures of 300 °C before the iron is reduced. DFT simulations confirm that a surface structure with coverage of 50% FeO units is stable and forms an ordered structure. Although distinct from known bulk phases of the iron-titanium oxide systems, the FeTiO3 monolayer exhibits some resemblance to the ilmenite structure, which may suggest that a variety of different mixed oxide phases (of systems that exist in a bulk ilmenite phase) may be synthesized in this way on the rutile TiO2(011) substrate.
NASA Astrophysics Data System (ADS)
Elmaleh, A.; Bourdelle, F.; Benzerara, K.; Caste, F.; Leroux, H.; Devouard, B.
2014-12-01
Carbonaceous chondrites of the CM and CI groups contain large amounts of water bound in minerals, attesting to early water-rock interactions on their parent bodies. In CM2 chondrites such as the Murray meteorite the alteration assemblages mostly consist of serpentines with variable chemical compositions. Even though chondritic serpentines formed from anoxic fluids, they contain significant amounts of ferric iron. In order to evaluate mass transfers and redox processes during alteration, we performed a study of a heavily altered calcium-aluminium-rich inclusion (CAI), at the nanometer scale (Transmission Electron Microscopy and Soft x-Ray Scanning Transmission Spectro-Microscopy, on ultra-thin sections prepared by Focused Ion Beam - FIB - milling). Using x-ray absorption spectroscopy at the Fe L2,3-edges, and based on literature references and on measurements of crystallographically oriented FIB foils of cronstedtite (the mixed-valence Fe endmember of serpentine) we estimated over 50% Fe3+ in alteration assemblages. We measured higher ferric iron proportions in mixed Fe,Mg,Al-serpentine/hydroxide disordered phases than in well-crystallized Al,Mg-bearing cronstedtite. We suggest that aqueous Fe2+ was transported to the initially Fe-depleted CAI. There, local changes in pH conditions and / or mineral catalysis would have promoted the partial oxidation of Fe. Later input of Al- and Mg-rich solutions might then have destabilized the initial serpentine, yielding assemblages un-equilibrated from the structural, chemical and redox point of views, similar to the polysomatic assemblages observed in terrestrial hydrothermal systems. Here, we illustrate the usefulness of such a combined study for better understanding the processes of hydration on the parent body of carbonaceous chondrites. Interestingly, as the reactions proposed for the oxidation of Fe generate hydrogen, reduction reactions - involving carbon species, for instance - are expected to follow the ones described here. Alternatively, given the high rate of diffusion of hydrogen some degree of H2 escape may be expected too, which would have induced increasingly oxidizing conditions during aqueous alteration.
Gas-assisted electron-beam-induced nanopatterning of high-quality titanium oxide.
Riazanova, A V; Costanzi, B N; Aristov, A I; Rikers, Y G M; Mulders, J J L; Kabashin, A V; Dahlberg, E Dan; Belova, L M
2016-03-18
Electron-beam-induced deposition of titanium oxide nanopatterns is described. The precursor is titanium tetra-isopropoxide, delivered to the deposition point through a needle and mixed with oxygen at the same point via a flow through a separate needle. The depositions are free of residual carbon and have an EDX determined stoichiometry of TiO2.2. High resolution transmission electron microscopy and Raman spectroscopy studies reveal an amorphous structure of the fabricated titanium oxide. Ellipsometric characterization of the deposited material reveals a refractive index of 2.2-2.4 RIU in the spectral range of 500-1700 nm and a very low extinction coefficient (lower than 10(-6) in the range of 400-1700 nm), which is consistent with high quality titanium oxide. The electrical resistivity of the titanium oxide patterned with this new process is in the range of 10-40 GΩ cm and the measured breakdown field is in the range of 10-70 V μm(-1). The fabricated nanopatterns are important for a variety of applications, including field-effect transistors, memory devices, MEMS, waveguide structures, bio- and chemical sensors.
Gas-assisted electron-beam-induced nanopatterning of high-quality titanium oxide
NASA Astrophysics Data System (ADS)
Riazanova, A. V.; Costanzi, B. N.; Aristov, A. I.; Rikers, Y. G. M.; Mulders, J. J. L.; Kabashin, A. V.; Dahlberg, E. Dan; Belova, L. M.
2016-03-01
Electron-beam-induced deposition of titanium oxide nanopatterns is described. The precursor is titanium tetra-isopropoxide, delivered to the deposition point through a needle and mixed with oxygen at the same point via a flow through a separate needle. The depositions are free of residual carbon and have an EDX determined stoichiometry of TiO2.2. High resolution transmission electron microscopy and Raman spectroscopy studies reveal an amorphous structure of the fabricated titanium oxide. Ellipsometric characterization of the deposited material reveals a refractive index of 2.2-2.4 RIU in the spectral range of 500-1700 nm and a very low extinction coefficient (lower than 10-6 in the range of 400-1700 nm), which is consistent with high quality titanium oxide. The electrical resistivity of the titanium oxide patterned with this new process is in the range of 10-40 GΩ cm and the measured breakdown field is in the range of 10-70 V μm-1. The fabricated nanopatterns are important for a variety of applications, including field-effect transistors, memory devices, MEMS, waveguide structures, bio- and chemical sensors.
NASA Astrophysics Data System (ADS)
Khan, A. A.; Mohiuddin, A. K. M.; Latif, M. A. A.
2018-01-01
This paper discusses the effect of aluminium oxide (Al203) addition to dielectric fluid during electrical discharge machining (EDM). Aluminium oxide was added to the dielectric used in the EDM process to improve its performance when machining the stainless steel AISI 304, while copper was used as the electrode. Effect of the concentration of Al203 (0.3 mg/L) in dielectric fluid was compared with EDM without any addition of Al203. Surface quality of stainless steel and the material removal rate were investigated. Design of the experiment (DOE) was used for the experimental plan. Statistical analysis was done using ANOVA and then appropriate model was designated. The experimental results show that with dispersing of aluminium oxide in dielectric fluid surface roughness was improved while the material removal rate (MRR) was increased to some extent. These indicate the improvement of EDM performance using aluminium oxide in dielectric fluid. It was also found that with increase in pulse on time both MRR and surface roughness increase sharply.
NASA Astrophysics Data System (ADS)
Jambagi, Sudhakar C.; Agarwal, Anish; Sarkar, Nilmoni; Bandyopadhyay, P. P.
2018-05-01
Properties of plasma-sprayed ceramic coatings can be improved significantly by reinforcing such coatings with carbon nanotube (CNT). However, it is difficult to disperse CNT in the plasma spray feedstock owing to its tendency to form agglomerate. A colloidal processing technique, namely heterocoagulation, is effective in bringing about unbundling of CNT, followed by its homogeneous dispersion in the ceramic powder. This report deals with the mixing of micro-sized crushed titania and agglomerated alumina powders with CNT using the heterocoagulation technique. Heterocoagulation of titania was attempted with both cationic and anionic surfactants, and the latter was found to be more effective. Mixing of the oxides and carbon nanotube was also accomplished in a ball mill either in a dry condition or in alcohol, and powders thus obtained were compared with the heterocoagulated powder. The heterocoagulated powder has shown a more homogeneous dispersion of CNT in the oxide. The coatings produced from the heterocoagulated powder demonstrated improvement in hardness, porosity, indentation fracture toughness and elastic modulus. This is attributed to CNT reinforcement.
NASA Astrophysics Data System (ADS)
Gaillard, T.; Davidenko, D.; Dupoirieux, F.
2015-06-01
The paper presents the methodology and the results of a numerical study, which is aimed at the investigation and optimisation of different means of fuel and oxidizer injection adapted to rocket engines operating in the rotating detonation mode. As the simulations are achieved at the local scale of a single injection element, only one periodic pattern of the whole geometry can be calculated so that the travelling detonation waves and the associated chemical reactions can not be taken into account. Here, separate injection of fuel and oxidizer is considered because premixed injection is handicapped by the risk of upstream propagation of the detonation wave. Different associations of geometrical periodicity and symmetry are investigated for the injection elements distributed over the injector head. To analyse the injection and mixing processes, a nonreacting 3D flow is simulated using the LES approach. Performance of the studied configurations is analysed using the results on instantaneous and mean flowfields as well as by comparing the mixing efficiency and the total pressure recovery evaluated for different configurations.
Thermodynamic and experimental study of UC powders ignition
NASA Astrophysics Data System (ADS)
Le Guyadec, F.; Rado, C.; Joffre, S.; Coullomb, S.; Chatillon, C.; Blanquet, E.
2009-09-01
Mixed plutonium and uranium carbide (UPuC) is considered as a possible fuel material for future nuclear reactors. However, UPuC is pyrophoric and fine powders of UPuC are subject to temperature increase due to oxidation with air and possible ignition during conditioning and handling. In a first approach and to allow easier experimental conditions, this study was undertaken on uranium monocarbide (UC) with the aim to determine safe handling conditions for the production and reprocessing of uranium carbide fuels. The reactivity of uranium monocarbide in oxidizing atmosphere was studied in order to analyze the ignition process. Experimental thermogravimetric analysis (TGA) and differential thermal analysis (DTA) revealed that UC powder obtained by arc melting and milling is highly reactive in air at about 200 °C. The phases formed at the various observed stages of the oxidation process were analyzed by X-ray diffraction. At the same time, ignition was analyzed thermodynamically along isothermal sections of the U-C-O ternary diagram and the pressure of the gas produced by the UC + O 2 reaction was calculated. Two possible oxidation schemes were identified on the U-C-O phase diagram and assumptions are proposed concerning the overall oxidation and ignition paths. It is particularly important to understand the mechanisms involved since temperatures as high as 2500 °C could be reached, leading to CO(g) production and possibly to a blast effect.
Process for treating alkaline wastes for vitrification
Hsu, Chia-lin W.
1995-01-01
A process for treating alkaline wastes for vitrification. The process involves acidifying the wastes with an oxidizing agent such as nitric acid, then adding formic acid as a reducing agent, and then mixing with glass formers to produce a melter feed. The nitric acid contributes nitrates that act as an oxidant to balance the redox of the melter feed, prevent reduction of certain species to produce conducting metals, and lower the pH of the wastes to a suitable level for melter operation. The formic acid reduces mercury compounds to elemental mercury for removal by steam stripping, and MnO.sub.2 to the Mn(II) ion to prevent foaming of the glass melt. The optimum amounts of nitric acid and formic acid are determined in relation to the composition of the wastes, including the concentrations of mercury (II) and MnO.sub.2, noble metal compounds, nitrates, formates and so forth. The process minimizes the amount of hydrogen generated during treatment, while producing a redox-balanced feed for effective melter operation and a quality glass product.
Process for treating alkaline wastes for vitrification
Hsu, C.L.W.
1995-07-25
A process is described for treating alkaline wastes for vitrification. The process involves acidifying the wastes with an oxidizing agent such as nitric acid, then adding formic acid as a reducing agent, and then mixing with glass formers to produce a melter feed. The nitric acid contributes nitrates that act as an oxidant to balance the redox of the melter feed, prevent reduction of certain species to produce conducting metals, and lower the pH of the wastes to a suitable level for melter operation. The formic acid reduces mercury compounds to elemental mercury for removal by steam stripping, and MnO{sub 2} to the Mn(II) ion to prevent foaming of the glass melt. The optimum amounts of nitric acid and formic acid are determined in relation to the composition of the wastes, including the concentrations of mercury (II) and MnO{sub 2}, noble metal compounds, nitrates, formates and so forth. The process minimizes the amount of hydrogen generated during treatment, while producing a redox-balanced feed for effective melter operation and a quality glass product. 4 figs.
Kikhtyanin, Oleg; Čapek, Libor; Tišler, Zdeněk; Velvarská, Romana; Panasewicz, Adriana; Diblíková, Petra; Kubička, David
2018-01-01
MgGa layered double hydroxides (Mg/Ga = 2–4) were synthesized and used for the preparation of MgGa mixed oxides and reconstructed hydrotalcites. The properties of the prepared materials were examined by physico-chemical methods (XRD, TGA, NH3-TPD, CO2-TPD, SEM, and DRIFT) and tested in aldol condensation of furfural and acetone. The as-prepared phase-pure MgGa samples possessed hydrotalcite structure, and their calcination resulted in mixed oxides with MgO structure with a small admixture phase characterized by a reflection at 2θ ≈ 36.0°. The interaction of MgGa mixed oxides with pure water resulted in reconstruction of the HTC structure already after 15 s of the rehydration with maximum crystallinity achieved after 60 s. TGA-MS experiments proved a substantial decrease in carbonates in all rehydrated samples compared with their as-prepared counterparts. This allowed suggesting presence of interlayer hydroxyls in the samples. Acido-basic properties of MgGa mixed oxides determined by TPD technique did not correlate with Mg/Ga ratio which was explained by the specific distribution of Ga atoms on the external surface of the samples. CO2-TPD method was also used to evaluate the basic properties of the reconstructed MgGa samples. In these experiments, an intensive peak at T = 450°C on CO2-TPD curve was attributed to the decomposition of carbonates newly formed by CO2 interaction with interlayer carbonates rather than to CO2 desorption from basic sites. Accordingly, CO2-TPD method quantitatively characterized the interlayer hydroxyls only indirectly. Furfural conversion on reconstructed MgGa materials was much larger compared with MgGa mixed oxides confirming that Brønsted basic sites in MgGa catalysts, like MgAl catalysts, were active in the reaction. Mg/Ga ratio in mixed oxides influenced product selectivity which was explained by the difference in textural properties of the samples. In contrast, Mg/Ga ratio in reconstructed catalysts had practically no effect on the composition of reaction products suggesting that the basic sites in these catalysts acted similarly in aldol condensation of acetone with furfural. It was concluded that the properties of MgGa samples resembled in a great extent those of MgAl hydrotalcite-based materials and demonstrated their potential as catalysts for base-catalyzed reactions. PMID:29881721
Kikhtyanin, Oleg; Čapek, Libor; Tišler, Zdeněk; Velvarská, Romana; Panasewicz, Adriana; Diblíková, Petra; Kubička, David
2018-01-01
MgGa layered double hydroxides (Mg/Ga = 2-4) were synthesized and used for the preparation of MgGa mixed oxides and reconstructed hydrotalcites. The properties of the prepared materials were examined by physico-chemical methods (XRD, TGA, NH 3 -TPD, CO 2 -TPD, SEM, and DRIFT) and tested in aldol condensation of furfural and acetone. The as-prepared phase-pure MgGa samples possessed hydrotalcite structure, and their calcination resulted in mixed oxides with MgO structure with a small admixture phase characterized by a reflection at 2θ ≈ 36.0°. The interaction of MgGa mixed oxides with pure water resulted in reconstruction of the HTC structure already after 15 s of the rehydration with maximum crystallinity achieved after 60 s. TGA-MS experiments proved a substantial decrease in carbonates in all rehydrated samples compared with their as-prepared counterparts. This allowed suggesting presence of interlayer hydroxyls in the samples. Acido-basic properties of MgGa mixed oxides determined by TPD technique did not correlate with Mg/Ga ratio which was explained by the specific distribution of Ga atoms on the external surface of the samples. CO 2 -TPD method was also used to evaluate the basic properties of the reconstructed MgGa samples. In these experiments, an intensive peak at T = 450°C on CO 2 -TPD curve was attributed to the decomposition of carbonates newly formed by CO 2 interaction with interlayer carbonates rather than to CO 2 desorption from basic sites. Accordingly, CO 2 -TPD method quantitatively characterized the interlayer hydroxyls only indirectly. Furfural conversion on reconstructed MgGa materials was much larger compared with MgGa mixed oxides confirming that Brønsted basic sites in MgGa catalysts, like MgAl catalysts, were active in the reaction. Mg/Ga ratio in mixed oxides influenced product selectivity which was explained by the difference in textural properties of the samples. In contrast, Mg/Ga ratio in reconstructed catalysts had practically no effect on the composition of reaction products suggesting that the basic sites in these catalysts acted similarly in aldol condensation of acetone with furfural. It was concluded that the properties of MgGa samples resembled in a great extent those of MgAl hydrotalcite-based materials and demonstrated their potential as catalysts for base-catalyzed reactions.
NASA Astrophysics Data System (ADS)
Kikhtyanin, Oleg; Čapek, Libor; Tišler, Zdeněk; Velvarská, Romana; Panasewicz, Adriana; Diblíková, Petra; Kubička, David
2018-05-01
MgGa layered double hydroxides (Mg/Ga=2-4) were synthesized and used for the preparation of MgGa mixed oxides and reconstructed hydrotalcites. The properties of the prepared materials were examined by physico-chemical methods (XRD, TGA, NH3-TPD, CO2-TPD, SEM and DRIFT) and tested in aldol condensation of furfural and acetone. The as-prepared phase-pure MgGa samples possessed hydrotalcite structure, and their calcination resulted in mixed oxides with MgO structure with a small admixture phase characterized by a reflection at 2θ ≈ 36.0°. The interaction of MgGa mixed oxides with pure water resulted in reconstruction of the HTC structure already after 15 s of the rehydration with maximum crystallinity achieved after 60 s. TGA-MS experiments proved a substantial decrease in carbonates in all rehydrated samples compared with their as-prepared counterparts. This allowed suggesting presence of interlayer hydroxyls in the samples. Acido-basic properties of MgGa mixed oxides determined by TPD technique did not correlate with Mg/Ga ratio which was explained by the specific distribution of Ga atoms on the external surface of the samples. CO2-TPD method was also used to evaluate the basic properties of the reconstructed MgGa samples. In these experiments, an intensive peak at T=450 °C on CO2-TPD curve was attributed to the decomposition of carbonates newly formed by CO2 interaction with interlayer carbonates rather than to CO2 desorption from basic sites. Accordingly, CO2-TPD method quantitatively characterized the interlayer hydroxyls only indirectly. Furfural conversion on reconstructed MgGa materials was much larger compared with MgGa mixed oxides confirming that Brønsted basic sites in MgGa catalysts, like MgAl catalysts, were active in the reaction. Mg/Ga ratio in mixed oxides influenced product selectivity which was explained by the difference in textural properties of the samples. In contrast, Mg/Ga ratio in reconstructed catalysts had practically no effect on the composition of reaction products suggesting that the basic sites in these catalysts acted similarly in aldol condensation of acetone with furfural. It was concluded that the properties of MgGa samples resembled in a great extent those of MgAl hydrotalcite-based materials and demonstrated their potential as catalysts for base-catalyzed reactions.
Method and system for low-NO.sub.x dual-fuel combustion of liquid and/or gaseous fuels
Gard, Vincent; Chojnacki, Dennis A; Rabovitser, Ioseph K
2014-12-02
A method and apparatus for combustion in which a pressurized preheated liquid fuel is atomized and a portion thereof flash vaporized, creating a mixture of fuel vapor and liquid droplets. The mixture is mixed with primary combustion oxidant, producing a fuel/primary oxidant mixture which is then injected into a primary combustion chamber in which the fuel/primary oxidant mixture is partially combusted, producing a secondary gaseous fuel containing hydrogen and carbon oxides. The secondary gaseous fuel is mixed with a secondary combustion oxidant and injected into the second combustion chamber wherein complete combustion of the secondary gaseous fuel is carried out. The resulting second stage flue gas containing very low amounts of NO.sub.x is then vented from the second combustion chamber.
Hydrotalcite-based CeNiAl mixed oxides for SO2 adsorption and oxidation.
Zhao, Ling; Kang, Qi; Guan, Xiongfei; Martyniuk, Christopher J
2018-06-05
The impact of Ce on SO 2 adsoption and oxidation was studied over a series of flower-like hydrotalcite-based CeNiAl mixed oxides. Combined with XRD, BET, pyridine chemisorption, CO 2 -TPD, XPS and H 2 -TPR results, it revealed that introduction of Ce into NiAlO generates new centers for oxygen storage and release, promotes the enhancement of Lewis acid strength, increases weakly and strongly alkaline sites, and increases ability for SO 2 adsorption and oxidation. Furthermore, in situ Fourier transform infrared spectroscopy revealed that adsorbed SO 2 molecules formed surface bidentate binuclear sulfate. Taken together, we propose that the addition of Ce 4+ to NiAlO acts to improve this compound as major adsorbent for SO 2 .
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mahdavi, Vahid, E-mail: v-mahdavi@araku.ac.ir; Soleimani, Shima
2014-03-01
Graphical abstract: Oxidation of various alcohols is studied in the liquid phase over new composite mixed oxide (V{sub 2}O{sub 5}/OMS-2) catalyst using tert-butyl hydroperoxide (TBHP). The activity of V{sub 2}O{sub 5}/OMS-2 samples was considerably increased with respect to OMS-2 catalyst and these samples are found to be suitable for the selective oxidation of alcohols. - Highlights: • V{sub 2}O{sub 5}/K-OMS-2 with different V/Mn molar ratios prepared by the impregnation method. • Oxidation of alcohols was studied in the liquid phase over V{sub 2}O{sub 5}/K-OMS-2 catalyst. • V{sub 2}O{sub 5}/K-OMS-2 catalyst had excellent activity for alcohol oxidation. • Benzyl alcohol oxidationmore » using excess TBHP followed a pseudo-first order kinetic. • The selected catalyst was reused without significant loss of activity. - Abstract: This work reports the synthesis and characterization of mixed oxide vanadium–manganese V{sub 2}O{sub 5}/K-OMS-2 at various V/Mn molar ratios and prepared by the impregnation method. Characterization of these new composite materials was made by elemental analysis, BET, XRD, FT-IR, SEM and TEM techniques. Results of these analyses showed that vanadium impregnated samples contained mixed phases of cryptomelane and crystalline V{sub 2}O{sub 5} species. Oxidation of various alcohols was studied in the liquid phase over the V{sub 2}O{sub 5}/K-OMS-2 catalyst using tert-butyl hydroperoxide (TBHP) and H{sub 2}O{sub 2} as the oxidant. Activity of the V{sub 2}O{sub 5}/K-OMS-2 samples was increased considerably with respect to K-OMS-2 catalyst due to the interaction of manganese oxide and V{sub 2}O{sub 5}. The kinetic of benzyl alcohol oxidation using excess TBHP over V{sub 2}O{sub 5}/K-OMS-2 catalyst was investigated at different temperatures and a pseudo-first order reaction was determined with respect to benzyl alcohol. The effects of reaction time, oxidant/alcohol molar ratio, reaction temperature, solvents, catalyst recycling potential and leaching were investigated.« less
Code of Federal Regulations, 2011 CFR
2011-04-01
...) The term mixed oxides means the sum of the quantities of aluminum, iron, calcium, and magnesium (in whatever combination they may exist in a coal-tar color) calculated as aluminum trioxide, ferric oxide, calcium oxide, and magnesium oxide. (k)-(m) [Reserved] (n) The term externally applied drugs and cosmetics...
Code of Federal Regulations, 2010 CFR
2010-04-01
...) The term mixed oxides means the sum of the quantities of aluminum, iron, calcium, and magnesium (in whatever combination they may exist in a coal-tar color) calculated as aluminum trioxide, ferric oxide, calcium oxide, and magnesium oxide. (k)-(m) [Reserved] (n) The term externally applied drugs and cosmetics...
Formaldehyde Production From Isoprene Oxidation Across NOx Regimes
NASA Technical Reports Server (NTRS)
Wolfe, G. M.; Kaiser, J.; Hanisco, T. F.; Keutsch, F. N.; de Gouw, J. A.; Gilman, J. B.; Graus, M.; Hatch, C. D.; Holloway, J.; Horowitz, L. W.;
2016-01-01
The chemical link between isoprene and formaldehyde (HCHO) is a strong, non-linear function of NOx (= NO + NO2). This relationship is a linchpin for top-down isoprene emission inventory verification from orbital HCHO column observations. It is also a benchmark for overall photochemical mechanism performance with regard to VOC oxidation. Using a comprehensive suite of airborne in situ observations over the southeast US, we quantify HCHO production across the urban-rural spectrum. Analysis of isoprene and its major first-generation oxidation products allows us to define both a prompt yield of HCHO (molecules of HCHO produced per molecule of freshly emitted isoprene) and the background HCHO mixing ratio (from oxidation of longer-lived hydrocarbons). Over the range of observed NOx values (roughly 0.1 - 2 ppbv), the prompt yield increases by a factor of 3 (from 0.3 to 0.9 ppbv ppbv(exp. -10), while background HCHO increases by a factor of 2 (from 1.6 to 3.3 ppbv). We apply the same method to evaluate the performance of both a global chemical transport model (AM3) and a measurement-constrained 0-D steady-state box model. Both models reproduce the NOx dependence of the prompt HCHO yield, illustrating that models with updated isoprene oxidation mechanisms can adequately capture the link between HCHO and recent isoprene emissions. On the other hand, both models underestimate background HCHO mixing ratios, suggesting missing HCHO precursors, inadequate representation of later-generation isoprene degradation and/or underestimated hydroxyl radical concentrations. Detailed process rates from the box model simulation demonstrate a 3-fold increase in HCHO production across the range of observed NOx values, driven by a 100% increase in OH and a 40% increase in branching of organic peroxy radical reactions to produce HCHO.
Erickson, Nathan R; Holstrom, Cole D; Rhoda, Hannah M; Rohde, Gregory T; Zatsikha, Yuriy V; Galloni, Pierluca; Nemykin, Victor N
2017-04-17
Metal-free (1) and zinc (2) 5,10,15,20-tetra(1'-hexanoylferrocenyl)porphyrins were prepared using an acid-catalyzed tetramerization reaction between pyrrole and 1'-(1-hexanoyl)ferrocencarboxaldehyde. New organometallic compounds were characterized by combination of 1 H, 13 C, and variable-temperature NMR, UV-vis, magnetic circular dichroism, and high-resolution electrospray ionization mass spectrometry methods. The redox properties of 1 and 2 were probed by electrochemical (cyclic voltammetry and differential pulse voltammetry), spectroelectrochemical, and chemical oxidation approaches coupled with UV-vis-near-IR and Mössbauer spectroscopy. Electrochemical data recorded in the dichloromethane/TBA[B(C 6 F 5 ) 4 ] system (TBA[B(C 6 F 5 ) 4 ] is a weakly coordinating tetrabutylammonium tetrakis(pentafluorophenyl)borate electrolyte) are suggestive of "1e - + 1e - + 2e - " oxidation sequence for four ferrocene groups in 1 and 2, which followed by oxidation process centered at the porphyrin core. The separation between all ferrocene-centered oxidation electrochemical waves is very large (510-660 mV). The nature of mixed-valence [1] n+ and [2] n+ (n = 1 or 2) complexes was probed by the spectroelectrochemical and chemical oxidation methods. Analysis of the intervalence charge-transfer band in [1] + and [2] + is suggestive of the Class II (in Robin-Day classification) behavior of all mixed-valence species, which correlate well with Mössbauer data. Density functional theory-polarized continuum model (DFT-PCM) and time-dependent (TD) DFT-PCM methods were applied to correlate redox and optical properties of organometallic complexes 1 and 2 with their electronic structures.