A Modular Set of Mixed Reality Simulators for Blind and Guided Procedures
2016-08-01
AWARD NUMBER: W81XWH-14-1-0113 TITLE: A Modular Set of Mixed Reality Simulators for “blind” and Guided Procedures PRINCIPAL INVESTIGATOR...2015 – 07/31/2016 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER A Modular Set of Mixed Reality Simulators for “Blind” and Guided Procedures 5b...editor developed to facilitate creation by non-technical educators of ITs for the set of modular simulators, (c) a curriculum for self-study and self
Transduction between worlds: using virtual and mixed reality for earth and planetary science
NASA Astrophysics Data System (ADS)
Hedley, N.; Lochhead, I.; Aagesen, S.; Lonergan, C. D.; Benoy, N.
2017-12-01
Virtual reality (VR) and augmented reality (AR) have the potential to transform the way we visualize multidimensional geospatial datasets in support of geoscience research, exploration and analysis. The beauty of virtual environments is that they can be built at any scale, users can view them at many levels of abstraction, move through them in unconventional ways, and experience spatial phenomena as if they had superpowers. Similarly, augmented reality allows you to bring the power of virtual 3D data visualizations into everyday spaces. Spliced together, these interface technologies hold incredible potential to support 21st-century geoscience. In my ongoing research, my team and I have made significant advances to connect data and virtual simulations with real geographic spaces, using virtual environments, geospatial augmented reality and mixed reality. These research efforts have yielded new capabilities to connect users with spatial data and phenomena. These innovations include: geospatial x-ray vision; flexible mixed reality; augmented 3D GIS; situated augmented reality 3D simulations of tsunamis and other phenomena interacting with real geomorphology; augmented visual analytics; and immersive GIS. These new modalities redefine the ways in which we can connect digital spaces of spatial analysis, simulation and geovisualization, with geographic spaces of data collection, fieldwork, interpretation and communication. In a way, we are talking about transduction between real and virtual worlds. Taking a mixed reality approach to this, we can link real and virtual worlds. This paper presents a selection of our 3D geovisual interface projects in terrestrial, coastal, underwater and other environments. Using rigorous applied geoscience data, analyses and simulations, our research aims to transform the novelty of virtual and augmented reality interface technologies into game-changing mixed reality geoscience.
Mixed virtual reality simulation--taking endoscopic simulation one step further.
Courteille, O; Felländer-Tsai, L; Hedman, L; Kjellin, A; Enochsson, L; Lindgren, G; Fors, U
2011-01-01
This pilot study aimed to assess medical students' appraisals of a "mixed" virtual reality simulation for endoscopic surgery (with a virtual patient case in addition to a virtual colonoscopy) as well as the impact of this simulation set-up on students' performance. Findings indicate that virtual patients can enhance contextualization of simulated endoscopy and thus facilitate an authentic learning environment, which is important in order to increase motivation.
Mixed reality temporal bone surgical dissector: mechanical design.
Hochman, Jordan Brent; Sepehri, Nariman; Rampersad, Vivek; Kraut, Jay; Khazraee, Milad; Pisa, Justyn; Unger, Bertram
2014-08-08
The Development of a Novel Mixed Reality (MR) Simulation. An evolving training environment emphasizes the importance of simulation. Current haptic temporal bone simulators have difficulty representing realistic contact forces and while 3D printed models convincingly represent vibrational properties of bone, they cannot reproduce soft tissue. This paper introduces a mixed reality model, where the effective elements of both simulations are combined; haptic rendering of soft tissue directly interacts with a printed bone model. This paper addresses one aspect in a series of challenges, specifically the mechanical merger of a haptic device with an otic drill. This further necessitates gravity cancelation of the work assembly gripper mechanism. In this system, the haptic end-effector is replaced by a high-speed drill and the virtual contact forces need to be repositioned to the drill tip from the mid wand. Previous publications detail generation of both the requisite printed and haptic simulations. Custom software was developed to reposition the haptic interaction point to the drill tip. A custom fitting, to hold the otic drill, was developed and its weight was offset using the haptic device. The robustness of the system to disturbances and its stable performance during drilling were tested. The experiments were performed on a mixed reality model consisting of two drillable rapid-prototyped layers separated by a free-space. Within the free-space, a linear virtual force model is applied to simulate drill contact with soft tissue. Testing illustrated the effectiveness of gravity cancellation. Additionally, the system exhibited excellent performance given random inputs and during the drill's passage between real and virtual components of the model. No issues with registration at model boundaries were encountered. These tests provide a proof of concept for the initial stages in the development of a novel mixed-reality temporal bone simulator.
Innovative application of virtual display technique in virtual museum
NASA Astrophysics Data System (ADS)
Zhang, Jiankang
2017-09-01
Virtual museum refers to display and simulate the functions of real museum on the Internet in the form of 3 Dimensions virtual reality by applying interactive programs. Based on Virtual Reality Modeling Language, virtual museum building and its effective interaction with the offline museum lie in making full use of 3 Dimensions panorama technique, virtual reality technique and augmented reality technique, and innovatively taking advantages of dynamic environment modeling technique, real-time 3 Dimensions graphics generating technique, system integration technique and other key virtual reality techniques to make sure the overall design of virtual museum.3 Dimensions panorama technique, also known as panoramic photography or virtual reality, is a technique based on static images of the reality. Virtual reality technique is a kind of computer simulation system which can create and experience the interactive 3 Dimensions dynamic visual world. Augmented reality, also known as mixed reality, is a technique which simulates and mixes the information (visual, sound, taste, touch, etc.) that is difficult for human to experience in reality. These technologies make virtual museum come true. It will not only bring better experience and convenience to the public, but also be conducive to improve the influence and cultural functions of the real museum.
Mixed reality temporal bone surgical dissector: mechanical design
2014-01-01
Objective The Development of a Novel Mixed Reality (MR) Simulation. An evolving training environment emphasizes the importance of simulation. Current haptic temporal bone simulators have difficulty representing realistic contact forces and while 3D printed models convincingly represent vibrational properties of bone, they cannot reproduce soft tissue. This paper introduces a mixed reality model, where the effective elements of both simulations are combined; haptic rendering of soft tissue directly interacts with a printed bone model. This paper addresses one aspect in a series of challenges, specifically the mechanical merger of a haptic device with an otic drill. This further necessitates gravity cancelation of the work assembly gripper mechanism. In this system, the haptic end-effector is replaced by a high-speed drill and the virtual contact forces need to be repositioned to the drill tip from the mid wand. Previous publications detail generation of both the requisite printed and haptic simulations. Method Custom software was developed to reposition the haptic interaction point to the drill tip. A custom fitting, to hold the otic drill, was developed and its weight was offset using the haptic device. The robustness of the system to disturbances and its stable performance during drilling were tested. The experiments were performed on a mixed reality model consisting of two drillable rapid-prototyped layers separated by a free-space. Within the free-space, a linear virtual force model is applied to simulate drill contact with soft tissue. Results Testing illustrated the effectiveness of gravity cancellation. Additionally, the system exhibited excellent performance given random inputs and during the drill’s passage between real and virtual components of the model. No issues with registration at model boundaries were encountered. Conclusion These tests provide a proof of concept for the initial stages in the development of a novel mixed-reality temporal bone simulator. PMID:25927300
Mixed reality ventriculostomy simulation: experience in neurosurgical residency.
Hooten, Kristopher G; Lister, J Richard; Lombard, Gwen; Lizdas, David E; Lampotang, Samsun; Rajon, Didier A; Bova, Frank; Murad, Gregory J A
2014-12-01
Medicine and surgery are turning toward simulation to improve on limited patient interaction during residency training. Many simulators today use virtual reality with augmented haptic feedback with little to no physical elements. In a collaborative effort, the University of Florida Department of Neurosurgery and the Center for Safety, Simulation & Advanced Learning Technologies created a novel "mixed" physical and virtual simulator to mimic the ventriculostomy procedure. The simulator contains all the physical components encountered for the procedure with superimposed 3-D virtual elements for the neuroanatomical structures. To introduce the ventriculostomy simulator and its validation as a necessary training tool in neurosurgical residency. We tested the simulator in more than 260 residents. An algorithm combining time and accuracy was used to grade performance. Voluntary postperformance surveys were used to evaluate the experience. Results demonstrate that more experienced residents have statistically significant better scores and completed the procedure in less time than inexperienced residents. Survey results revealed that most residents agreed that practice on the simulator would help with future ventriculostomies. This mixed reality simulator provides a real-life experience, and will be an instrumental tool in training the next generation of neurosurgeons. We have now implemented a standard where incoming residents must prove efficiency and skill on the simulator before their first interaction with a patient.
Pas, Elise T; Johnson, Stacy R; Larson, Kristine E; Brandenburg, Linda; Church, Robin; Bradshaw, Catherine P
2016-12-01
Most approaches aiming to reduce behavior problems among youth with Autism Spectrum Disorder (ASD) focus on individual students; however, school personnel also need professional development to better support students. This study targeted teachers' skill development to promote positive outcomes for students with ASD. The sample included 19 teachers in two non-public special education settings serving students with moderate to severe ASD. Participating teachers received professional development and coaching in classroom management, with guided practice in a mixed-reality simulator. Repeated-measures ANOVAs examining externally-conducted classroom observations revealed statistically significant improvements in teacher management and student behavior over time. Findings suggest that coaching and guided practice in a mixed-reality simulator is perceived as acceptable and may reduce behavior problems among students with ASD.
A mixed reality simulator for feline abdominal palpation training in veterinary medicine.
Parkes, Rebecca; Forrest, Neil; Baillie, Sarah
2009-01-01
The opportunities for veterinary students to practice feline abdominal palpation are limited as cats have a low tolerance to being examined. Therefore, a mixed reality simulator was developed to complement clinical training. Two PHANToM premium haptic devices were positioned either side of a modified toy cat. Virtual models of the chest and some abdominal contents were superimposed on the physical model. The haptic properties of the virtual models were set by seven veterinarians; values were adjusted while the simulation was being palpated until the representation was satisfactory. Feedback from the veterinarians was encouraging suggesting that the simulator has a potential role in student training.
A Modular Set of Mixed Reality Simulators for blind and Guided Procedures
2015-08-01
W81XWH-14-1-0113 – Year 1 Report University of Florida Page 1 of 12 AWARD NUMBER: W81XWH-14-1-0113 TITLE: A Modular Set of Mixed Reality...Simulators for “blind” and Guided Procedures PRINCIPAL INVESTIGATOR: Samsun Lampotang CONTRACTING ORGANIZATION: University of Florida Gainesville, FL...designated by other documentation. W81XWH-14-1-0113 – Year 1 Report University of Florida Page 2 of 12 REPORT DOCUMENTATION PAGE Form Approved OMB No
A radiation-free mixed-reality training environment and assessment concept for C-arm-based surgery.
Stefan, Philipp; Habert, Séverine; Winkler, Alexander; Lazarovici, Marc; Fürmetz, Julian; Eck, Ulrich; Navab, Nassir
2018-06-25
The discrepancy of continuously decreasing opportunities for clinical training and assessment and the increasing complexity of interventions in surgery has led to the development of different training and assessment options like anatomical models, computer-based simulators or cadaver trainings. However, trainees, following training, assessment and ultimately performing patient treatment, still face a steep learning curve. To address this problem for C-arm-based surgery, we introduce a realistic radiation-free simulation system that combines patient-based 3D printed anatomy and simulated X-ray imaging using a physical C-arm. To explore the fidelity and usefulness of the proposed mixed-reality system for training and assessment, we conducted a user study with six surgical experts performing a facet joint injection on the simulator. In a technical evaluation, we show that our system simulates X-ray images accurately with an RMSE of 1.85 mm compared to real X-ray imaging. The participants expressed agreement with the overall realism of the simulation, the usefulness of the system for assessment and strong agreement with the usefulness of such a mixed-reality system for training of novices and experts. In a quantitative analysis, we furthermore evaluated the suitability of the system for the assessment of surgical skills and gather preliminary evidence for validity. The proposed mixed-reality simulation system facilitates a transition to C-arm-based surgery and has the potential to complement or even replace large parts of cadaver training, to provide a safe assessment environment and to reduce the risk for errors when proceeding to patient treatment. We propose an assessment concept and outline the steps necessary to expand the system into a test instrument that provides reliable and justified assessments scores indicative of surgical proficiency with sufficient evidence for validity.
Emboldened by Embodiment: Six Precepts for Research on Embodied Learning and Mixed Reality
ERIC Educational Resources Information Center
Lindgren, Robb; Johnson-Glenberg, Mina
2013-01-01
The authors describe an emerging paradigm of educational research that pairs theories of embodied learning with a class of immersive technologies referred to as "mixed reality" (MR). MR environments merge the digital with the physical, where, for example, students can use their bodies to simulate an orbit around a virtual planet. Recent…
Communication Architecture in Mixed-Reality Simulations of Unmanned Systems
2018-01-01
Verification of the correct functionality of multi-vehicle systems in high-fidelity scenarios is required before any deployment of such a complex system, e.g., in missions of remote sensing or in mobile sensor networks. Mixed-reality simulations where both virtual and physical entities can coexist and interact have been shown to be beneficial for development, testing, and verification of such systems. This paper deals with the problems of designing a certain communication subsystem for such highly desirable realistic simulations. Requirements of this communication subsystem, including proper addressing, transparent routing, visibility modeling, or message management, are specified prior to designing an appropriate solution. Then, a suitable architecture of this communication subsystem is proposed together with solutions to the challenges that arise when simultaneous virtual and physical message transmissions occur. The proposed architecture can be utilized as a high-fidelity network simulator for vehicular systems with implicit mobility models that are given by real trajectories of the vehicles. The architecture has been utilized within multiple projects dealing with the development and practical deployment of multi-UAV systems, which support the architecture’s viability and advantages. The provided experimental results show the achieved similarity of the communication characteristics of the fully deployed hardware setup to the setup utilizing the proposed mixed-reality architecture. PMID:29538290
Communication Architecture in Mixed-Reality Simulations of Unmanned Systems.
Selecký, Martin; Faigl, Jan; Rollo, Milan
2018-03-14
Verification of the correct functionality of multi-vehicle systems in high-fidelity scenarios is required before any deployment of such a complex system, e.g., in missions of remote sensing or in mobile sensor networks. Mixed-reality simulations where both virtual and physical entities can coexist and interact have been shown to be beneficial for development, testing, and verification of such systems. This paper deals with the problems of designing a certain communication subsystem for such highly desirable realistic simulations. Requirements of this communication subsystem, including proper addressing, transparent routing, visibility modeling, or message management, are specified prior to designing an appropriate solution. Then, a suitable architecture of this communication subsystem is proposed together with solutions to the challenges that arise when simultaneous virtual and physical message transmissions occur. The proposed architecture can be utilized as a high-fidelity network simulator for vehicular systems with implicit mobility models that are given by real trajectories of the vehicles. The architecture has been utilized within multiple projects dealing with the development and practical deployment of multi-UAV systems, which support the architecture's viability and advantages. The provided experimental results show the achieved similarity of the communication characteristics of the fully deployed hardware setup to the setup utilizing the proposed mixed-reality architecture.
Teaching and Learning in the Mixed-Reality Science Classroom
NASA Astrophysics Data System (ADS)
Tolentino, Lisa; Birchfield, David; Megowan-Romanowicz, Colleen; Johnson-Glenberg, Mina C.; Kelliher, Aisling; Martinez, Christopher
2009-12-01
As emerging technologies become increasingly inexpensive and robust, there is an exciting opportunity to move beyond general purpose computing platforms to realize a new generation of K-12 technology-based learning environments. Mixed-reality technologies integrate real world components with interactive digital media to offer new potential to combine best practices in traditional science learning with the powerful affordances of audio/visual simulations. This paper introduces the realization of a learning environment called SMALLab, the Situated Multimedia Arts Learning Laboratory. We present a recent teaching experiment for high school chemistry students. A mix of qualitative and quantitative research documents the efficacy of this approach for students and teachers. We conclude that mixed-reality learning is viable in mainstream high school classrooms and that students can achieve significant learning gains when this technology is co-designed with educators.
Garretson, Justin R [Albuquerque, NM; Parker, Eric P [Albuquerque, NM; Gladwell, T Scott [Albuquerque, NM; Rigdon, J Brian [Edgewood, NM; Oppel, III, Fred J.
2012-05-29
Apparatus and methods for modifying the operation of a robotic vehicle in a real environment to emulate the operation of the robotic vehicle in a mixed reality environment include a vehicle sensing system having a communications module attached to the robotic vehicle for communicating operating parameters related to the robotic vehicle in a real environment to a simulation controller for simulating the operation of the robotic vehicle in a mixed (live, virtual and constructive) environment wherein the affects of virtual and constructive entities on the operation of the robotic vehicle (and vice versa) are simulated. These effects are communicated to the vehicle sensing system which generates a modified control command for the robotic vehicle including the effects of virtual and constructive entities, causing the robot in the real environment to behave as if virtual and constructive entities existed in the real environment.
Yu, Xunyi; Ganz, Aura
2011-01-01
In this paper we introduce a Mixed Reality Triage and Evacuation game, MiRTE, that is used in the development, testing and training of Mass Casualty Incident (MCI) information systems for first responders. Using the Source game engine from Valve software, MiRTE creates immersive virtual environments to simulate various incident scenarios, and enables interactions between multiple players/first responders. What distinguishes it from a pure computer simulation game is that it can interface with external mass casualty incident management systems, such as DIORAMA. The game will enable system developers to specify technical requirements of underlying technology, and test different alternatives of design. After the information system hardware and software are completed, the game can simulate various algorithms such as localization technologies, and interface with an actual user interface on PCs and Smartphones. We implemented and tested the game with the DIORAMA system.
A New Design for Airway Management Training with Mixed Reality and High Fidelity Modeling.
Shen, Yunhe; Hananel, David; Zhao, Zichen; Burke, Daniel; Ballas, Crist; Norfleet, Jack; Reihsen, Troy; Sweet, Robert
2016-01-01
Restoring airway function is a vital task in many medical scenarios. Although various simulation tools have been available for learning such skills, recent research indicated that fidelity in simulating airway management deserves further improvements. In this study, we designed and implemented a new prototype for practicing relevant tasks including laryngoscopy, intubation and cricothyrotomy. A large amount of anatomical details or landmarks were meticulously selected and reconstructed from medical scans, and 3D-printed or molded to the airway intervention model. This training model was augmented by virtually and physically presented interactive modules, which are interoperable with motion tracking and sensor data feedback. Implementation results showed that this design is a feasible approach to develop higher fidelity airway models that can be integrated with mixed reality interfaces.
Mixed reality framework for collective motion patterns of swarms with delay coupling
NASA Astrophysics Data System (ADS)
Szwaykowska, Klementyna; Schwartz, Ira
The formation of coherent patterns in swarms of interacting self-propelled autonomous agents is an important subject for many applications within the field of distributed robotic systems. However, there are significant logistical challenges associated with testing fully distributed systems in real-world settings. In this paper, we provide a rigorous theoretical justification for the use of mixed-reality experiments as a stepping stone to fully physical testing of distributed robotic systems. We also model and experimentally realize a mixed-reality large-scale swarm of delay-coupled agents. Our analyses, assuming agents communicating over an Erdos-Renyi network, demonstrate the existence of stable coherent patterns that can be achieved only with delay coupling and that are robust to decreasing network connectivity and heterogeneity in agent dynamics. We show how the bifurcation structure for emergence of different patterns changes with heterogeneity in agent acceleration capabilities and limited connectivity in the network as a function of coupling strength and delay. Our results are verified through simulation as well as preliminary experimental results of delay-induced pattern formation in a mixed-reality swarm. K. S. was a National Research Council postdoctoral fellow. I.B.S was supported by the U.S. Naval Research Laboratory funding (N0001414WX00023) and office of Naval Research (N0001414WX20610).
A mixed-reality part-task trainer for subclavian venous access.
Robinson, Albert R; Gravenstein, Nikolaus; Cooper, Lou Ann; Lizdas, David; Luria, Isaac; Lampotang, Samsun
2014-02-01
Mixed-reality (MR) procedural simulators combine virtual and physical components and visualization software that can be used for debriefing and offer an alternative to learn subclavian central venous access (SCVA). We present a SCVA MR simulator, a part-task trainer, which can assist in the training of medical personnel. Sixty-five participants were involved in the following: (1) a simulation trial 1; (2) a teaching intervention followed by trial 2 (with the simulator's visualization software); and (3) trial 3, a final simulation assessment. The main test parameters were time to complete SCVA and the SCVA score, a composite of efficiency and safety metrics generated by the simulator's scoring algorithm. Residents and faculty completed questionnaires presimulation and postsimulation that assessed their confidence in obtaining access and learner satisfaction questions, for example, realism of the simulator. The average SCVA score was improved by 24.5 (n=65). Repeated-measures analysis of variance showed significant reductions in average time (F=31.94, P<0.0001), number of attempts (F=10.56, P<0.0001), and score (F=18.59, P<0.0001). After the teaching intervention and practice with the MR simulator, the results no longer showed a difference in performance between the faculty and residents. On a 5-point scale (5=strongly agree), participants agreed that the SCVA simulator was realistic (M=4.3) and strongly agreed that it should be used as an educational tool (M=4.9). An SCVA mixed simulator offers a realistic representation of subclavian central venous access and offers new debriefing capabilities.
Learning from avatars: Learning assistants practice physics pedagogy in a classroom simulator
NASA Astrophysics Data System (ADS)
Chini, Jacquelyn J.; Straub, Carrie L.; Thomas, Kevin H.
2016-06-01
[This paper is part of the Focused Collection on Preparing and Supporting University Physics Educators.] Undergraduate students are increasingly being used to support course transformations that incorporate research-based instructional strategies. While such students are typically selected based on strong content knowledge and possible interest in teaching, they often do not have previous pedagogical training. The current training models make use of real students or classmates role playing as students as the test subjects. We present a new environment for facilitating the practice of physics pedagogy skills, a highly immersive mixed-reality classroom simulator, and assess its effectiveness for undergraduate physics learning assistants (LAs). LAs prepared, taught, and reflected on a lesson about motion graphs for five highly interactive computer generated student avatars in the mixed-reality classroom simulator. To assess the effectiveness of the simulator for this population, we analyzed the pedagogical skills LAs intended to practice and exhibited during their lessons and explored LAs' descriptions of their experiences with the simulator. Our results indicate that the classroom simulator created a safe, effective environment for LAs to practice a variety of skills, such as questioning styles and wait time. Additionally, our analysis revealed areas for improvement in our preparation of LAs and use of the simulator. We conclude with a summary of research questions this environment could facilitate.
A Modular Set of Mixed Reality Simulators for Blind and Guided Procedures
2017-08-01
Form Factor, Modular, DoD CVA Sim: Learning Outcome Study This between-groups study will compare performance scores on the CVA simulator to determine...simulation.health.ufl.edu/research/ra_sim.wmv. Preliminary data from a new study of the CVA simulator indicates that an integrated tutor may be non-inferior to a human...instructor, opening the possibility of self- study and self-debriefing which in turn facilitate competency-based, instead of time-based simulation
Chuah, Joon Hao; Lok, Benjamin; Black, Erik
2013-04-01
Health sciences students often practice and are evaluated on interview and exam skills by working with standardized patients (people that role play having a disease or condition). However, standardized patients do not exist for certain vulnerable populations such as children and the intellectually disabled. As a result, students receive little to no exposure to vulnerable populations before becoming working professionals. To address this problem and thereby increase exposure to vulnerable populations, we propose using virtual humans to simulate members of vulnerable populations. We created a mixed reality pediatric patient that allowed students to practice pediatric developmental exams. Practicing several exams is necessary for students to understand how to properly interact with and correctly assess a variety of children. Practice also increases a student's confidence in performing the exam. Effective practice requires students to treat the virtual child realistically. Treating the child realistically might be affected by how the student and virtual child physically interact, so we created two object interaction interfaces - a natural interface and a mouse-based interface. We tested the complete mixed reality exam and also compared the two object interaction interfaces in a within-subjects user study with 22 participants. Our results showed that the participants accepted the virtual child as a child and treated it realistically. Participants also preferred the natural interface, but the interface did not affect how realistically participants treated the virtual child.
Improving Paramedic Distance Education through Mobile Mixed Reality Simulation
ERIC Educational Resources Information Center
Birt, James; Moore, Emma; Cowling, Michael
2017-01-01
There is growing evidence that the use of simulation in teaching is a key means of improving learning, skills, and outcomes, particularly for practical skills. In the health sciences, the use of high-fidelity task trainers has been shown to be ideal for reducing cognitive load and leading to enhanced learning outcomes. However, how do we make…
Authoring Immersive Mixed Reality Experiences
NASA Astrophysics Data System (ADS)
Misker, Jan M. V.; van der Ster, Jelle
Creating a mixed reality experience is a complicated endeavour. From our practice as a media lab in the artistic domain we found that engineering is “only” a first step in creating a mixed reality experience. Designing the appearance and directing the user experience are equally important for creating an engaging, immersive experience. We found that mixed reality artworks provide a very good test bed for studying these topics. This chapter details three steps required for authoring mixed reality experiences: engineering, designing and directing. We will describe a platform (VGE) for creating mixed reality environments that incorporates these steps. A case study (EI4) is presented in which this platform was used to not only engineer the system, but in which an artist was given the freedom to explore the artistic merits of mixed reality as an artistic medium, which involved areas such as the look and feel, multimodal experience and interaction, immersion as a subjective emotion and game play scenarios.
Mixed Reality with HoloLens: Where Virtual Reality Meets Augmented Reality in the Operating Room.
Tepper, Oren M; Rudy, Hayeem L; Lefkowitz, Aaron; Weimer, Katie A; Marks, Shelby M; Stern, Carrie S; Garfein, Evan S
2017-11-01
Virtual reality and augmented reality devices have recently been described in the surgical literature. The authors have previously explored various iterations of these devices, and although they show promise, it has become clear that virtual reality and/or augmented reality devices alone do not adequately meet the demands of surgeons. The solution may lie in a hybrid technology known as mixed reality, which merges many virtual reality and augmented realty features. Microsoft's HoloLens, the first commercially available mixed reality device, provides surgeons intraoperative hands-free access to complex data, the real environment, and bidirectional communication. This report describes the use of HoloLens in the operating room to improve decision-making and surgical workflow. The pace of mixed reality-related technological development will undoubtedly be rapid in the coming years, and plastic surgeons are ideally suited to both lead and benefit from this advance.
Productive confusions: learning from simulations of pandemic virus outbreaks in Second Life
NASA Astrophysics Data System (ADS)
Cárdenas, Micha; Greci, Laura S.; Hurst, Samantha; Garman, Karen; Hoffman, Helene; Huang, Ricky; Gates, Michael; Kho, Kristen; Mehrmand, Elle; Porteous, Todd; Calvitti, Alan; Higginbotham, Erin; Agha, Zia
2011-03-01
Users of immersive virtual reality environments have reported a wide variety of side and after effects including the confusion of characteristics of the real and virtual worlds. Perhaps this side effect of confusing the virtual and real can be turned around to explore the possibilities for immersion with minimal technological support in virtual world group training simulations. This paper will describe observations from my time working as an artist/researcher with the UCSD School of Medicine (SoM) and Veterans Administration San Diego Healthcare System (VASDHS) to develop trainings for nurses, doctors and Hospital Incident Command staff that simulate pandemic virus outbreaks. By examining moments of slippage between realities, both into and out of the virtual environment, moments of the confusion of boundaries between real and virtual, we can better understand methods for creating immersion. I will use the mixing of realities as a transversal line of inquiry, borrowing from virtual reality studies, game studies, and anthropological studies to better understand the mechanisms of immersion in virtual worlds. Focusing on drills conducted in Second Life, I will examine moments of training to learn the software interface, moments within the drill and interviews after the drill.
LVC interaction within a mixed-reality training system
NASA Astrophysics Data System (ADS)
Pollock, Brice; Winer, Eliot; Gilbert, Stephen; de la Cruz, Julio
2012-03-01
The United States military is increasingly pursuing advanced live, virtual, and constructive (LVC) training systems for reduced cost, greater training flexibility, and decreased training times. Combining the advantages of realistic training environments and virtual worlds, mixed reality LVC training systems can enable live and virtual trainee interaction as if co-located. However, LVC interaction in these systems often requires constructing immersive environments, developing hardware for live-virtual interaction, tracking in occluded environments, and an architecture that supports real-time transfer of entity information across many systems. This paper discusses a system that overcomes these challenges to empower LVC interaction in a reconfigurable, mixed reality environment. This system was developed and tested in an immersive, reconfigurable, and mixed reality LVC training system for the dismounted warfighter at ISU, known as the Veldt, to overcome LVC interaction challenges and as a test bed for cuttingedge technology to meet future U.S. Army battlefield requirements. Trainees interact physically in the Veldt and virtually through commercial and developed game engines. Evaluation involving military trained personnel found this system to be effective, immersive, and useful for developing the critical decision-making skills necessary for the battlefield. Procedural terrain modeling, model-matching database techniques, and a central communication server process all live and virtual entity data from system components to create a cohesive virtual world across all distributed simulators and game engines in real-time. This system achieves rare LVC interaction within multiple physical and virtual immersive environments for training in real-time across many distributed systems.
Halic, Tansel; Kockara, Sinan; Bayrak, Coskun; Rowe, Richard
2010-10-07
Until quite recently spinal disorder problems in the U.S. have been operated by fusing cervical vertebrae instead of replacement of the cervical disc with an artificial disc. Cervical disc replacement is a recently approved procedure in the U.S. It is one of the most challenging surgical procedures in the medical field due to the deficiencies in available diagnostic tools and insufficient number of surgical practices For physicians and surgical instrument developers, it is critical to understand how to successfully deploy the new artificial disc replacement systems. Without proper understanding and practice of the deployment procedure, it is possible to injure the vertebral body. Mixed reality (MR) and virtual reality (VR) surgical simulators are becoming an indispensable part of physicians' training, since they offer a risk free training environment. In this study, MR simulation framework and intricacies involved in the development of a MR simulator for the rasping procedure in artificial cervical disc replacement (ACDR) surgery are investigated. The major components that make up the MR surgical simulator with motion tracking system are addressed. A mixed reality surgical simulator that targets rasping procedure in the artificial cervical disc replacement surgery with a VICON motion tracking system was developed. There were several challenges in the development of MR surgical simulator. First, the assembly of different hardware components for surgical simulation development that involves knowledge and application of interdisciplinary fields such as signal processing, computer vision and graphics, along with the design and placements of sensors etc . Second challenge was the creation of a physically correct model of the rasping procedure in order to attain critical forces. This challenge was handled with finite element modeling. The third challenge was minimization of error in mapping movements of an actor in real model to a virtual model in a process called registration. This issue was overcome by a two-way (virtual object to real domain and real domain to virtual object) semi-automatic registration method. The applicability of the VICON MR setting for the ACDR surgical simulator is demonstrated. The main stream problems encountered in MR surgical simulator development are addressed. First, an effective environment for MR surgical development is constructed. Second, the strain and the stress intensities and critical forces are simulated under the various rasp instrument loadings with impacts that are applied on intervertebral surfaces of the anterior vertebrae throughout the rasping procedure. Third, two approaches are introduced to solve the registration problem in MR setting. Results show that our system creates an effective environment for surgical simulation development and solves tedious and time-consuming registration problems caused by misalignments. Further, the MR ACDR surgery simulator was tested by 5 different physicians who found that the MR simulator is effective enough to teach the anatomical details of cervical discs and to grasp the basics of the ACDR surgery and rasping procedure.
Mixed reality simulation of rasping procedure in artificial cervical disc replacement (ACDR) surgery
2010-01-01
Background Until quite recently spinal disorder problems in the U.S. have been operated by fusing cervical vertebrae instead of replacement of the cervical disc with an artificial disc. Cervical disc replacement is a recently approved procedure in the U.S. It is one of the most challenging surgical procedures in the medical field due to the deficiencies in available diagnostic tools and insufficient number of surgical practices For physicians and surgical instrument developers, it is critical to understand how to successfully deploy the new artificial disc replacement systems. Without proper understanding and practice of the deployment procedure, it is possible to injure the vertebral body. Mixed reality (MR) and virtual reality (VR) surgical simulators are becoming an indispensable part of physicians’ training, since they offer a risk free training environment. In this study, MR simulation framework and intricacies involved in the development of a MR simulator for the rasping procedure in artificial cervical disc replacement (ACDR) surgery are investigated. The major components that make up the MR surgical simulator with motion tracking system are addressed. Findings A mixed reality surgical simulator that targets rasping procedure in the artificial cervical disc replacement surgery with a VICON motion tracking system was developed. There were several challenges in the development of MR surgical simulator. First, the assembly of different hardware components for surgical simulation development that involves knowledge and application of interdisciplinary fields such as signal processing, computer vision and graphics, along with the design and placements of sensors etc . Second challenge was the creation of a physically correct model of the rasping procedure in order to attain critical forces. This challenge was handled with finite element modeling. The third challenge was minimization of error in mapping movements of an actor in real model to a virtual model in a process called registration. This issue was overcome by a two-way (virtual object to real domain and real domain to virtual object) semi-automatic registration method. Conclusions The applicability of the VICON MR setting for the ACDR surgical simulator is demonstrated. The main stream problems encountered in MR surgical simulator development are addressed. First, an effective environment for MR surgical development is constructed. Second, the strain and the stress intensities and critical forces are simulated under the various rasp instrument loadings with impacts that are applied on intervertebral surfaces of the anterior vertebrae throughout the rasping procedure. Third, two approaches are introduced to solve the registration problem in MR setting. Results show that our system creates an effective environment for surgical simulation development and solves tedious and time-consuming registration problems caused by misalignments. Further, the MR ACDR surgery simulator was tested by 5 different physicians who found that the MR simulator is effective enough to teach the anatomical details of cervical discs and to grasp the basics of the ACDR surgery and rasping procedure PMID:20946594
Reality Check: Basics of Augmented, Virtual, and Mixed Reality.
Brigham, Tara J
2017-01-01
Augmented, virtual, and mixed reality applications all aim to enhance a user's current experience or reality. While variations of this technology are not new, within the last few years there has been a significant increase in the number of artificial reality devices or applications available to the general public. This column will explain the difference between augmented, virtual, and mixed reality and how each application might be useful in libraries. It will also provide an overview of the concerns surrounding these different reality applications and describe how and where they are currently being used.
ERIC Educational Resources Information Center
Taçgin, Zeynep; Arslan, Ahmet
2017-01-01
The purpose of this study is to determine perception of postgraduate Computer Education and Instructional Technologies (CEIT) students regarding the concepts of Augmented Reality (AR), Virtual Reality (VR), Mixed Reality (MR), Augmented Virtuality (AV) and Mirror Reality; and to offer a table that includes differences and similarities between…
Mixed reality ultrasound guidance system: a case study in system development and a cautionary tale.
Ameri, Golafsoun; Baxter, John S H; Bainbridge, Daniel; Peters, Terry M; Chen, Elvis C S
2018-04-01
Real-time ultrasound has become a crucial aspect of several image-guided interventions. One of the main constraints of such an approach is the difficulty in interpretability of the limited field of view of the image, a problem that has recently been addressed using mixed reality, such as augmented reality and augmented virtuality. The growing popularity and maturity of mixed reality has led to a series of informal guidelines to direct development of new systems and to facilitate regulatory approval. However, the goals of mixed reality image guidance systems and the guidelines for their development have not been thoroughly discussed. The purpose of this paper is to identify and critically examine development guidelines in the context of a mixed reality ultrasound guidance system through a case study. A mixed reality ultrasound guidance system tailored to central line insertions was developed in close collaboration with an expert user. This system outperformed ultrasound-only guidance in a novice user study and has obtained clearance for clinical use in humans. A phantom study with 25 experienced physicians was carried out to compare the performance of the mixed reality ultrasound system against conventional ultrasound-only guidance. Despite the previous promising results, there was no statistically significant difference between the two systems. Guidelines for developing mixed reality image guidance systems cannot be applied indiscriminately. Each design decision, no matter how well justified, should be the subject of scientific and technical investigation. Iterative and small-scale evaluation can readily unearth issues and previously unknown or implicit system requirements. We recommend a wary eye in development of mixed reality ultrasound image guidance systems emphasizing small-scale iterative evaluation alongside system development. Ultimately, we recommend that the image-guided intervention community furthers and deepens this discussion into best practices in developing image-guided interventions.
Samosky, Joseph T; Allen, Pete; Boronyak, Steve; Branstetter, Barton; Hein, Steven; Juhas, Mark; Nelson, Douglas A; Orebaugh, Steven; Pinto, Rohan; Smelko, Adam; Thompson, Mitch; Weaver, Robert A
2011-01-01
We are developing a simulator of peripheral nerve block utilizing a mixed-reality approach: the combination of a physical model, an MRI-derived virtual model, mechatronics and spatial tracking. Our design uses tangible (physical) interfaces to simulate surface anatomy, haptic feedback during needle insertion, mechatronic display of muscle twitch corresponding to the specific nerve stimulated, and visual and haptic feedback for the injection syringe. The twitch response is calculated incorporating the sensed output of a real neurostimulator. The virtual model is isomorphic with the physical model and is derived from segmented MRI data. This model provides the subsurface anatomy and, combined with electromagnetic tracking of a sham ultrasound probe and a standard nerve block needle, supports simulated ultrasound display and measurement of needle location and proximity to nerves and vessels. The needle tracking and virtual model also support objective performance metrics of needle targeting technique.
Stefan, P; Pfandler, M; Wucherer, P; Habert, S; Fürmetz, J; Weidert, S; Euler, E; Eck, U; Lazarovici, M; Weigl, M; Navab, N
2018-04-01
Surgical simulators are being increasingly used as an attractive alternative to clinical training in addition to conventional animal models and human specimens. Typically, surgical simulation technology is designed for the purpose of teaching technical surgical skills (so-called task trainers). Simulator training in surgery is therefore in general limited to the individual training of the surgeon and disregards the participation of the rest of the surgical team. The objective of the project Assessment and Training of Medical Experts based on Objective Standards (ATMEOS) is to develop an immersive simulated operating room environment that enables the training and assessment of multidisciplinary surgical teams under various conditions. Using a mixed reality approach, a synthetic patient model, real surgical instruments and radiation-free virtual X‑ray imaging are combined into a simulation of spinal surgery. In previous research studies, the concept was evaluated in terms of realism, plausibility and immersiveness. In the current research, assessment measurements for technical and non-technical skills are developed and evaluated. The aim is to observe multidisciplinary surgical teams in the simulated operating room during minimally invasive spinal surgery and objectively assess the performance of the individual team members and the entire team. Moreover, the effectiveness of training methods and surgical techniques or success critical factors, e. g. management of crisis situations, can be captured and objectively assessed in the controlled environment.
Measuring Visual Displays’ Effect on Novice Performance in Door Gunnery
2014-12-01
training in a mixed reality simulation. Specifically, we examined the effect that different visual displays had on novice soldier performance; qualified...there was a main effect of visual display on performance. However, both visual treatment groups experienced the same degree of presence and simulator... The purpose of this paper is to present the results of our recent experimentation involving a novice population performing aerial door gunnery
When Worlds Collide: An Augmented Reality Check
ERIC Educational Resources Information Center
Villano, Matt
2008-01-01
The technology is simple: Mobile technologies such as handheld computers and global positioning systems work in sync to create an alternate, hybrid world that mixes virtual characters with the actual physical environment. The result is a digital simulation that offers powerful game-playing opportunities and allows students to become more engaged…
The Impact of Simulated Interviews for Individuals with Intellectual Disability
ERIC Educational Resources Information Center
Walker, Zachary; Vasquez, Eleazar; Wienke, Wilfred
2016-01-01
The purpose of this research study was to explore the efficacy of role-playing and coaching in mixed-reality environments for the acquisition and generalization of social skills leading to successful job interview performance. Using a multiple baseline across participants design, five young adults with intellectual disability practiced…
Virtual reality and hallucination: a technoetic perspective
NASA Astrophysics Data System (ADS)
Slattery, Diana R.
2008-02-01
Virtual Reality (VR), especially in a technologically focused discourse, is defined by a class of hardware and software, among them head-mounted displays (HMDs), navigation and pointing devices; and stereoscopic imaging. This presentation examines the experiential aspect of VR. Putting "virtual" in front of "reality" modifies the ontological status of a class of experience-that of "reality." Reality has also been modified [by artists, new media theorists, technologists and philosophers] as augmented, mixed, simulated, artificial, layered, and enhanced. Modifications of reality are closely tied to modifications of perception. Media theorist Roy Ascott creates a model of three "VR's": Verifiable Reality, Virtual Reality, and Vegetal (entheogenically induced) Reality. The ways in which we shift our perceptual assumptions, create and verify illusions, and enter "the willing suspension of disbelief" that allows us entry into imaginal worlds is central to the experience of VR worlds, whether those worlds are explicitly representational (robotic manipulations by VR) or explicitly imaginal (VR artistic creations). The early rhetoric surrounding VR was interwoven with psychedelics, a perception amplified by Timothy Leary's presence on the historic SIGGRAPH panel, and the Wall Street Journal's tag of VR as "electronic LSD." This paper discusses the connections-philosophical, social-historical, and psychological-perceptual between these two domains.
Cohen, Jonathan; Cohen, Seth A; Vora, Kinjal C; Xue, Xiaonan; Burdick, J Steven; Bank, Simmy; Bini, Edmund J; Bodenheimer, Henry; Cerulli, Maurice; Gerdes, Hans; Greenwald, David; Gress, Frank; Grosman, Irwin; Hawes, Robert; Mullin, Gerard; Mullen, Gerard; Schnoll-Sussman, Felice; Starpoli, Anthony; Stevens, Peter; Tenner, Scott; Villanueva, Gerald
2006-09-01
The GI Mentor is a virtual reality simulator that uses force feedback technology to create a realistic training experience. To define the benefit of training on the GI Mentor on competency acquisition in colonoscopy. Randomized, controlled, blinded, multicenter trial. Academic medical centers with accredited gastroenterology training programs. First-year GI fellows. Subjects were randomized to receive 10 hours of unsupervised training on the GI Mentor or no simulator experience during the first 8 weeks of fellowship. After this period, both groups began performing real colonoscopies. The first 200 colonoscopies performed by each fellow were graded by proctors to measure technical and cognitive success, and patient comfort level during the procedure. A mixed-effects model comparison between the 2 groups of objective and subjective competency scores and patient discomfort in the performance of real colonoscopies over time. Forty-five fellows were randomized from 16 hospitals over 2 years. Fellows in the simulator group had significantly higher objective competency rates during the first 100 cases. A mixed-effects model demonstrated a higher objective competence overall in the simulator group (P < .0001), with the difference between groups being significantly greater during the first 80 cases performed. The median number of cases needed to reach 90% competency was 160 in both groups. The patient comfort level was similar. Fellows who underwent GI Mentor training performed significantly better during the early phase of real colonoscopy training.
Visualization Improves Supraclavicular Access to the Subclavian Vein in a Mixed Reality Simulator.
Sappenfield, Joshua Warren; Smith, William Brit; Cooper, Lou Ann; Lizdas, David; Gonsalves, Drew B; Gravenstein, Nikolaus; Lampotang, Samsun; Robinson, Albert R
2018-07-01
We investigated whether visual augmentation (3D, real-time, color visualization) of a procedural simulator improved performance during training in the supraclavicular approach to the subclavian vein, not as widely known or used as its infraclavicular counterpart. To train anesthesiology residents to access a central vein, a mixed reality simulator with emulated ultrasound imaging was created using an anatomically authentic, 3D-printed, physical mannequin based on a computed tomographic scan of an actual human. The simulator has a corresponding 3D virtual model of the neck and upper chest anatomy. Hand-held instruments such as a needle, an ultrasound probe, and a virtual camera controller are directly manipulated by the trainee and tracked and recorded with submillimeter resolution via miniature, 6 degrees of freedom magnetic sensors. After Institutional Review Board approval, 69 anesthesiology residents and faculty were enrolled and received scripted instructions on how to perform subclavian venous access using the supraclavicular approach based on anatomic landmarks. The volunteers were randomized into 2 cohorts. The first used real-time 3D visualization concurrently with trial 1, but not during trial 2. The second did not use real-time 3D visualization concurrently with trial 1 or 2. However, after trial 2, they observed a 3D visualization playback of trial 2 before performing trial 3 without visualization. An automated scoring system based on time, success, and errors/complications generated objective performance scores. Nonparametric statistical methods were used to compare the scores between subsequent trials, differences between groups (real-time visualization versus no visualization versus delayed visualization), and improvement in scores between trials within groups. Although the real-time visualization group demonstrated significantly better performance than the delayed visualization group on trial 1 (P = .01), there was no difference in gain scores, between performance on the first trial and performance on the final trial, that were dependent on group (P = .13). In the delayed visualization group, the difference in performance between trial 1 and trial 2 was not significant (P = .09); reviewing performance on trial 2 before trial 3 resulted in improved performance when compared to trial 1 (P < .0001). There was no significant difference in median scores (P = .13) between the real-time visualization and delayed visualization groups for the last trial after both groups had received visualization. Participants reported a significant improvement in confidence in performing supraclavicular access to the subclavian vein. Standard deviations of scores, a measure of performance variability, decreased in the delayed visualization group after viewing the visualization. Real-time visual augmentation (3D visualization) in the mixed reality simulator improved performance during supraclavicular access to the subclavian vein. No difference was seen in the final trial of the group that received real-time visualization compared to the group that had delayed visualization playback of their prior attempt. Training with the mixed reality simulator improved participant confidence in performing an unfamiliar technique.
Perform light and optic experiments in Augmented Reality
NASA Astrophysics Data System (ADS)
Wozniak, Peter; Vauderwange, Oliver; Curticapean, Dan; Javahiraly, Nicolas; Israel, Kai
2015-10-01
In many scientific studies lens experiments are part of the curriculum. The conducted experiments are meant to give the students a basic understanding for the laws of optics and its applications. Most of the experiments need special hardware like e.g. an optical bench, light sources, apertures and different lens types. Therefore it is not possible for the students to conduct any of the experiments outside of the university's laboratory. Simple optical software simulators enabling the students to virtually perform lens experiments already exist, but are mostly desktop or web browser based. Augmented Reality (AR) is a special case of mediated and mixed reality concepts, where computers are used to add, subtract or modify one's perception of reality. As a result of the success and widespread availability of handheld mobile devices, like e.g. tablet computers and smartphones, mobile augmented reality applications are easy to use. Augmented reality can be easily used to visualize a simulated optical bench. The students can interactively modify properties like e.g. lens type, lens curvature, lens diameter, lens refractive index and the positions of the instruments in space. Light rays can be visualized and promote an additional understanding of the laws of optics. An AR application like this is ideally suited to prepare the actual laboratory sessions and/or recap the teaching content. The authors will present their experience with handheld augmented reality applications and their possibilities for light and optic experiments without the needs for specialized optical hardware.
DVV: a taxonomy for mixed reality visualization in image guided surgery.
Kersten-Oertel, Marta; Jannin, Pierre; Collins, D Louis
2012-02-01
Mixed reality visualizations are increasingly studied for use in image guided surgery (IGS) systems, yet few mixed reality systems have been introduced for daily use into the operating room (OR). This may be the result of several factors: the systems are developed from a technical perspective, are rarely evaluated in the field, and/or lack consideration of the end user and the constraints of the OR. We introduce the Data, Visualization processing, View (DVV) taxonomy which defines each of the major components required to implement a mixed reality IGS system. We propose that these components be considered and used as validation criteria for introducing a mixed reality IGS system into the OR. A taxonomy of IGS visualization systems is a step toward developing a common language that will help developers and end users discuss and understand the constituents of a mixed reality visualization system, facilitating a greater presence of future systems in the OR. We evaluate the DVV taxonomy based on its goodness of fit and completeness. We demonstrate the utility of the DVV taxonomy by classifying 17 state-of-the-art research papers in the domain of mixed reality visualization IGS systems. Our classification shows that few IGS visualization systems' components have been validated and even fewer are evaluated.
NASA Astrophysics Data System (ADS)
Miranda, Mateus R.; Costa, Henrik; Oliveira, Luiz; Bernardes, Thiago; Aguiar, Carla; Miosso, Cristiano; Oliveira, Alessandro B. S.; Diniz, Alberto C. G. C.; Domingues, Diana Maria G.
2015-03-01
This paper aims at describing an experimental platform used to evaluate the performance of individuals at training immersive physiological games. The platform proposed is embedded in an immersive environment in a CAVE of Virtual Reality and consists on a base frame with actuators with three degrees of freedom, sensor array interface and physiological sensors. Physiological data of breathing, galvanic skin resistance (GSR) and pressure on the hand of the user and a subjective questionnaire were collected during the experiments. The theoretical background used in a project focused on Software Engineering, Biomedical Engineering in the field of Ergonomics and Creative Technologies in order to presents this case study, related of an evaluation of a vehicular simulator located inside the CAVE. The analysis of the simulator uses physiological data of the drivers obtained in a period of rest and after the experience, with and without movements at the simulator. Also images from the screen are captured through time at the embedded experience and data collected through physiological data visualization (average frequency and RMS graphics). They are empowered by the subjective questionnaire as strong lived experience provided by the technological apparatus. The performed immersion experience inside the CAVE allows to replicate behaviors from physical spaces inside data space enhanced by physiological properties. In this context, the biocybrid condition is expanded beyond art and entertainment, as it is applied to automotive engineering and biomedical engineering. In fact, the kinesthetic sensations amplified by synesthesia replicates the sensation of displacement in the interior of an automobile, as well as the sensations of vibration and vertical movements typical of a vehicle, different speeds, collisions, etc. The contribution of this work is the possibility to tracing a stress analysis protocol for drivers while operating a vehicle getting affective behaviors coming from physiological data, mixed to embedded simulation in Mixed Reality.
The Value of Team-Based Mixed-Reality (TBMR) Games in Higher Education
ERIC Educational Resources Information Center
Denholm, John A.; Protopsaltis, Aristidis; de Freitas, Sara
2013-01-01
This paper reports on a conducted study, measuring the perceptions of post-graduate students on the effectiveness of serious games in the classroom. Four games were used (Project Management Exercise, "Winning Margin" Business Simulation, Management of Change and Management of Product Design and Development) with scenarios ranging from…
ERIC Educational Resources Information Center
Kirkley, Sonny E.; Kirkley, Jamie R.
2005-01-01
In this article, the challenges and issues of designing next generation learning environments using current and emerging technologies are addressed. An overview of the issues is provided as well as design principles that support the design of instruction and the overall learning environment. Specific methods for creating cognitively complex,…
ERIC Educational Resources Information Center
Dieker, Lisa; Hynes, Michael; Hughes, Charles; Smith, Eileen
2008-01-01
As technology evolves, so does its impact on people's lives. These changes clearly affect people's daily activities, but how might they also impact education, teachers, and the lives of students with disabilities? This article focuses on technological innovations and their potential implications for students and teachers in schools. This article…
Collaborative Embodied Learning in Mixed Reality Motion-Capture Environments: Two Science Studies
ERIC Educational Resources Information Center
Johnson-Glenberg, Mina C.; Birchfield, David A.; Tolentino, Lisa; Koziupa, Tatyana
2014-01-01
These 2 studies investigate the extent to which an Embodied Mixed Reality Learning Environment (EMRELE) can enhance science learning compared to regular classroom instruction. Mixed reality means that physical tangible and digital components were present. The content for the EMRELE required that students map abstract concepts and relations onto…
Augmented reality visualization of deformable tubular structures for surgical simulation.
Ferrari, Vincenzo; Viglialoro, Rosanna Maria; Nicoli, Paola; Cutolo, Fabrizio; Condino, Sara; Carbone, Marina; Siesto, Mentore; Ferrari, Mauro
2016-06-01
Surgical simulation based on augmented reality (AR), mixing the benefits of physical and virtual simulation, represents a step forward in surgical training. However, available systems are unable to update the virtual anatomy following deformations impressed on actual anatomy. A proof-of-concept solution is described providing AR visualization of hidden deformable tubular structures using nitinol tubes sensorized with electromagnetic sensors. This system was tested in vitro on a setup comprised of sensorized cystic, left and right hepatic, and proper hepatic arteries. In the trial session, the surgeon deformed the tubular structures with surgical forceps in 10 positions. The mean, standard deviation, and maximum misalignment between virtual and real arteries were 0.35, 0.22, and 0.99 mm, respectively. The alignment accuracy obtained demonstrates the feasibility of the approach, which can be adopted in advanced AR simulations, in particular as an aid to the identification and isolation of tubular structures. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.
Mixed-reality simulation for neurosurgical procedures.
Bova, Frank J; Rajon, Didier A; Friedman, William A; Murad, Gregory J; Hoh, Daniel J; Jacob, R Patrick; Lampotang, Samsun; Lizdas, David E; Lombard, Gwen; Lister, J Richard
2013-10-01
Surgical education is moving rapidly to the use of simulation for technical training of residents and maintenance or upgrading of surgical skills in clinical practice. To optimize the learning exercise, it is essential that both visual and haptic cues are presented to best present a real-world experience. Many systems attempt to achieve this goal through a total virtual interface. To demonstrate that the most critical aspect in optimizing a simulation experience is to provide the visual and haptic cues, allowing the training to fully mimic the real-world environment. Our approach has been to create a mixed-reality system consisting of a physical and a virtual component. A physical model of the head or spine is created with a 3-dimensional printer using deidentified patient data. The model is linked to a virtual radiographic system or an image guidance platform. A variety of surgical challenges can be presented in which the trainee must use the same anatomic and radiographic references required during actual surgical procedures. Using the aforementioned techniques, we have created simulators for ventriculostomy, percutaneous stereotactic lesion procedure for trigeminal neuralgia, and spinal instrumentation. The design and implementation of these platforms are presented. The system has provided the residents an opportunity to understand and appreciate the complex 3-dimensional anatomy of the 3 neurosurgical procedures simulated. The systems have also provided an opportunity to break procedures down into critical segments, allowing the user to concentrate on specific areas of deficiency.
A mixed reality approach for stereo-tomographic quantification of lung nodules.
Chen, Mianyi; Kalra, Mannudeep K; Yun, Wenbing; Cong, Wenxiang; Yang, Qingsong; Nguyen, Terry; Wei, Biao; Wang, Ge
2016-05-25
To reduce the radiation dose and the equipment cost associated with lung CT screening, in this paper we propose a mixed reality based nodule measurement method with an active shutter stereo imaging system. Without involving hundreds of projection views and subsequent image reconstruction, we generated two projections of an iteratively placed ellipsoidal volume in the field of view and merging these synthetic projections with two original CT projections. We then demonstrated the feasibility of measuring the position and size of a nodule by observing whether projections of an ellipsoidal volume and the nodule are overlapped from a human observer's visual perception through the active shutter 3D vision glasses. The average errors of measured nodule parameters are less than 1 mm in the simulated experiment with 8 viewers. Hence, it could measure real nodules accurately in the experiments with physically measured projections.
Virtual reality simulators and training in laparoscopic surgery.
Yiannakopoulou, Eugenia; Nikiteas, Nikolaos; Perrea, Despina; Tsigris, Christos
2015-01-01
Virtual reality simulators provide basic skills training without supervision in a controlled environment, free of pressure of operating on patients. Skills obtained through virtual reality simulation training can be transferred on the operating room. However, relative evidence is limited with data available only for basic surgical skills and for laparoscopic cholecystectomy. No data exist on the effect of virtual reality simulation on performance on advanced surgical procedures. Evidence suggests that performance on virtual reality simulators reliably distinguishes experienced from novice surgeons Limited available data suggest that independent approach on virtual reality simulation training is not different from proctored approach. The effect of virtual reality simulators training on acquisition of basic surgical skills does not seem to be different from the effect the physical simulators. Limited data exist on the effect of virtual reality simulation training on the acquisition of visual spatial perception and stress coping skills. Undoubtedly, virtual reality simulation training provides an alternative means of improving performance in laparoscopic surgery. However, future research efforts should focus on the effect of virtual reality simulation on performance in the context of advanced surgical procedure, on standardization of training, on the possibility of synergistic effect of virtual reality simulation training combined with mental training, on personalized training. Copyright © 2014 Surgical Associates Ltd. Published by Elsevier Ltd. All rights reserved.
Virtual reality-based simulators for spine surgery: a systematic review.
Pfandler, Michael; Lazarovici, Marc; Stefan, Philipp; Wucherer, Patrick; Weigl, Matthias
2017-09-01
Virtual reality (VR)-based simulators offer numerous benefits and are very useful in assessing and training surgical skills. Virtual reality-based simulators are standard in some surgical subspecialties, but their actual use in spinal surgery remains unclear. Currently, only technical reviews of VR-based simulators are available for spinal surgery. Thus, we performed a systematic review that examined the existing research on VR-based simulators in spinal procedures. We also assessed the quality of current studies evaluating VR-based training in spinal surgery. Moreover, we wanted to provide a guide for future studies evaluating VR-based simulators in this field. This is a systematic review of the current scientific literature regarding VR-based simulation in spinal surgery. Five data sources were systematically searched to identify relevant peer-reviewed articles regarding virtual, mixed, or augmented reality-based simulators in spinal surgery. A qualitative data synthesis was performed with particular attention to evaluation approaches and outcomes. Additionally, all included studies were appraised for their quality using the Medical Education Research Study Quality Instrument (MERSQI) tool. The initial review identified 476 abstracts and 63 full texts were then assessed by two reviewers. Finally, 19 studies that examined simulators for the following procedures were selected: pedicle screw placement, vertebroplasty, posterior cervical laminectomy and foraminotomy, lumbar puncture, facet joint injection, and spinal needle insertion and placement. These studies had a low-to-medium methodological quality with a MERSQI mean score of 11.47 out of 18 (standard deviation=1.81). This review described the current state and applications of VR-based simulator training and assessment approaches in spinal procedures. Limitations, strengths, and future advancements of VR-based simulators for training and assessment in spinal surgery were explored. Higher-quality studies with patient-related outcome measures are needed. To establish further adaptation of VR-based simulators in spinal surgery, future evaluations need to improve the study quality, apply long-term study designs, and examine non-technical skills, as well as multidisciplinary team training. Copyright © 2017 Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
Bautista, Nazan Uludag; Boone, William J.
2015-01-01
The purpose of this study was to investigate the impact of a mixed-reality teaching environment, called TeachME™ Lab (TML), on early childhood education majors' science teaching self-efficacy beliefs. Sixty-two preservice early childhood teachers participated in the study. Analysis of the quantitative (STEBI-b) and qualitative (journal entries)…
Fisher, J Brian; Porter, Susan M
2002-01-01
This paper describes an application of a display approach which uses chromakey techniques to composite real and computer-generated images allowing a user to see his hands and medical instruments collocated with the display of virtual objects during a medical training simulation. Haptic feedback is provided through the use of a PHANTOM force feedback device in addition to tactile augmentation, which allows the user to touch virtual objects by introducing corresponding real objects in the workspace. A simplified catheter introducer insertion simulation was developed to demonstrate the capabilities of this approach.
Practical system for generating digital mixed reality video holograms.
Song, Joongseok; Kim, Changseob; Park, Hanhoon; Park, Jong-Il
2016-07-10
We propose a practical system that can effectively mix the depth data of real and virtual objects by using a Z buffer and can quickly generate digital mixed reality video holograms by using multiple graphic processing units (GPUs). In an experiment, we verify that real objects and virtual objects can be merged naturally in free viewing angles, and the occlusion problem is well handled. Furthermore, we demonstrate that the proposed system can generate mixed reality video holograms at 7.6 frames per second. Finally, the system performance is objectively verified by users' subjective evaluations.
The effectiveness of virtual reality distraction for pain reduction: a systematic review.
Malloy, Kevin M; Milling, Leonard S
2010-12-01
Virtual reality technology enables people to become immersed in a computer-simulated, three-dimensional environment. This article provides a comprehensive review of controlled research on the effectiveness of virtual reality (VR) distraction for reducing pain. To be included in the review, studies were required to use a between-subjects or mixed model design in which VR distraction was compared with a control condition or an alternative intervention in relieving pain. An exhaustive search identified 11 studies satisfying these criteria. VR distraction was shown to be effective for reducing experimental pain, as well as the discomfort associated with burn injury care. Studies of needle-related pain provided less consistent findings. Use of more sophisticated virtual reality technology capable of fully immersing the individual in a virtual environment was associated with greater relief. Overall, controlled research suggests that VR distraction may be a useful tool for clinicians who work with a variety of pain problems. Copyright © 2010 Elsevier Ltd. All rights reserved.
Adler, Adir; Ben-Ari, Adital
2018-01-01
Until recently, the literature that addressed the phenomenon of mixed-orientation relationships, in which the female partner is straight and the male partner is non-straight, has focused mainly on the men's perspective. Most of the studies have employed a pessimistic tone, underscoring the obstacles faced by each of the partners. This study was designed to understand how women of mixed-orientation relationships construct their reality within such a relationship, focusing on elements that assist them in maintaining those relationships. Based on the phenomenological paradigm, in-depth interviews with eight women in mixed-orientation relationships were conducted. The findings indicate that in order to adapt to their newly constructed reality, women reframe various individual, marital, and social aspects in their lives. Those reframing processes constituted a point of departure to developing a conceptual model, which outlines the journey to reality reconstruction among women in mixed-orientation relationships.
Mixed-Reality Prototypes to Support Early Creative Design
NASA Astrophysics Data System (ADS)
Safin, Stéphane; Delfosse, Vincent; Leclercq, Pierre
The domain we address is creative design, mainly architecture. Rooted in a multidisciplinary approach as well as a deep understanding of architecture and design, our method aims at proposing adapted mixed-reality solutions to support two crucial activities: sketch-based preliminary design and distant synchronous collaboration in design. This chapter provides a summary of our work on a mixed-reality device, based on a drawing table (the Virtual Desktop), designed specifically to address real-life/business-focused issues. We explain our methodology, describe the two supported activities and the related users’ needs, detail the technological solution we have developed, and present the main results of multiple evaluation sessions. We conclude with a discussion of the usefulness of a profession-centered methodology and the relevance of mixed reality to support creative design activities.
What is going on in augmented reality simulation in laparoscopic surgery?
Botden, Sanne M B I; Jakimowicz, Jack J
2009-08-01
To prevent unnecessary errors and adverse results of laparoscopic surgery, proper training is of paramount importance. A safe way to train surgeons for laparoscopic skills is simulation. For this purpose traditional box trainers are often used, however they lack objective assessment of performance. Virtual reality laparoscopic simulators assess performance, but lack realistic haptic feedback. Augmented reality (AR) combines a virtual reality (VR) setting with real physical materials, instruments, and feedback. This article presents the current developments in augmented reality laparoscopic simulation. Pubmed searches were performed to identify articles regarding surgical simulation and augmented reality. Identified companies manufacturing an AR laparoscopic simulator received the same questionnaire referring to the features of the simulator. Seven simulators that fitted the definition of augmented reality were identified during the literature search. Five of the approached manufacturers returned a completed questionnaire, of which one simulator appeared to be VR and was therefore not applicable for this review. Several augmented reality simulators have been developed over the past few years and they are improving rapidly. We recommend the development of AR laparoscopic simulators for component tasks of procedural training. AR simulators should be implemented in current laparoscopic training curricula, in particular for laparoscopic suturing training.
[VR and AR Applications in Medical Practice and Education].
Hsieh, Min-Chai; Lin, Yu-Hsuan
2017-12-01
As technology advances, mobile devices have gradually turned into wearable devices. Furthermore, virtual reality (VR), augmented reality (AR), and mixed reality (MR) are being increasingly applied in medical fields such as medical education and training, surgical simulation, neurological rehabilitation, psychotherapy, and telemedicine. Research results demonstrate the ability of VR, AR, and MR to ameliorate the inconveniences that are often associated with traditional medical care, reduce incidents of medical malpractice caused by unskilled operations, and reduce the cost of medical education and training. What is more, the application of these technologies has enhanced the effectiveness of medical education and training, raised the level of diagnosis and treatment, improved the doctor-patient relationship, and boosted the efficiency of medical execution. The present study introduces VR, AR, and MR applications in medical practice and education with the aim of helping health professionals better understand the applications and use these technologies to improve the quality of medical care.
Verifying the Simulation Hypothesis via Infinite Nested Universe Simulacrum Loops
NASA Astrophysics Data System (ADS)
Sharma, Vikrant
2017-01-01
The simulation hypothesis proposes that local reality exists as a simulacrum within a hypothetical computer's dimension. More specifically, Bostrom's trilemma proposes that the number of simulations an advanced 'posthuman' civilization could produce makes the proposition very likely. In this paper a hypothetical method to verify the simulation hypothesis is discussed using infinite regression applied to a new type of infinite loop. Assign dimension n to any computer in our present reality, where dimension signifies the hierarchical level in nested simulations our reality exists in. A computer simulating known reality would be dimension (n-1), and likewise a computer simulating an artificial reality, such as a video game, would be dimension (n +1). In this method, among others, four key assumptions are made about the nature of the original computer dimension n. Summations show that regressing such a reality infinitely will create convergence, implying that the verification of whether local reality is a grand simulation is feasible to detect with adequate compute capability. The action of reaching said convergence point halts the simulation of local reality. Sensitivities to the four assumptions and implications are discussed.
Enhancing Health-Care Services with Mixed Reality Systems
NASA Astrophysics Data System (ADS)
Stantchev, Vladimir
This work presents a development approach for mixed reality systems in health care. Although health-care service costs account for 5-15% of GDP in developed countries the sector has been remarkably resistant to the introduction of technology-supported optimizations. Digitalization of data storing and processing in the form of electronic patient records (EPR) and hospital information systems (HIS) is a first necessary step. Contrary to typical business functions (e.g., accounting or CRM) a health-care service is characterized by a knowledge intensive decision process and usage of specialized devices ranging from stethoscopes to complex surgical systems. Mixed reality systems can help fill the gap between highly patient-specific health-care services that need a variety of technical resources on the one side and the streamlined process flow that typical process supporting information systems expect on the other side. To achieve this task, we present a development approach that includes an evaluation of existing tasks and processes within the health-care service and the information systems that currently support the service, as well as identification of decision paths and actions that can benefit from mixed reality systems. The result is a mixed reality system that allows a clinician to monitor the elements of the physical world and to blend them with virtual information provided by the systems. He or she can also plan and schedule treatments and operations in the digital world depending on status information from this mixed reality.
A Virtual Reality-Based Simulation of Abdominal Surgery
1994-06-30
415) 591-7881 In! IhNiI 1 SHORT TITLE: A Virtual Reality -Based Simulation of Abdominal Surgery REPORTING PERIOD: October 31, 1993-June 30, 1994 The...Report - A Virtual Reality -Based Simulation Of Abdominal Surgery Page 2 June 21, 1994 TECHNICAL REPORT SUMMARY Virtual Reality is a marriage between...applications of this technology. Virtual reality systems can be used to teach surgical anatomy, diagnose surgical problems, plan operations. simulate and
Collective motion patterns of swarms with delay coupling: Theory and experiment.
Szwaykowska, Klementyna; Schwartz, Ira B; Mier-Y-Teran Romero, Luis; Heckman, Christoffer R; Mox, Dan; Hsieh, M Ani
2016-03-01
The formation of coherent patterns in swarms of interacting self-propelled autonomous agents is a subject of great interest in a wide range of application areas, ranging from engineering and physics to biology. In this paper, we model and experimentally realize a mixed-reality large-scale swarm of delay-coupled agents. The coupling term is modeled as a delayed communication relay of position. Our analyses, assuming agents communicating over an Erdös-Renyi network, demonstrate the existence of stable coherent patterns that can be achieved only with delay coupling and that are robust to decreasing network connectivity and heterogeneity in agent dynamics. We also show how the bifurcation structure for emergence of different patterns changes with heterogeneity in agent acceleration capabilities and limited connectivity in the network as a function of coupling strength and delay. Our results are verified through simulation as well as preliminary experimental results of delay-induced pattern formation in a mixed-reality swarm.
Collective motion patterns of swarms with delay coupling: Theory and experiment
NASA Astrophysics Data System (ADS)
Szwaykowska, Klementyna; Schwartz, Ira B.; Mier-y-Teran Romero, Luis; Heckman, Christoffer R.; Mox, Dan; Hsieh, M. Ani
2016-03-01
The formation of coherent patterns in swarms of interacting self-propelled autonomous agents is a subject of great interest in a wide range of application areas, ranging from engineering and physics to biology. In this paper, we model and experimentally realize a mixed-reality large-scale swarm of delay-coupled agents. The coupling term is modeled as a delayed communication relay of position. Our analyses, assuming agents communicating over an Erdös-Renyi network, demonstrate the existence of stable coherent patterns that can be achieved only with delay coupling and that are robust to decreasing network connectivity and heterogeneity in agent dynamics. We also show how the bifurcation structure for emergence of different patterns changes with heterogeneity in agent acceleration capabilities and limited connectivity in the network as a function of coupling strength and delay. Our results are verified through simulation as well as preliminary experimental results of delay-induced pattern formation in a mixed-reality swarm.
Tele-auscultation support system with mixed reality navigation.
Hori, Kenta; Uchida, Yusuke; Kan, Tsukasa; Minami, Maya; Naito, Chisako; Kuroda, Tomohiro; Takahashi, Hideya; Ando, Masahiko; Kawamura, Takashi; Kume, Naoto; Okamoto, Kazuya; Takemura, Tadamasa; Yoshihara, Hiroyuki
2013-01-01
The aim of this research is to develop an information support system for tele-auscultation. In auscultation, a doctor requires to understand condition of applying a stethoscope, in addition to auscultatory sounds. The proposed system includes intuitive navigation system of stethoscope operation, in addition to conventional audio streaming system of auscultatory sounds and conventional video conferencing system for telecommunication. Mixed reality technology is applied for intuitive navigation of the stethoscope. Information, such as position, contact condition and breath, is overlaid on a view of the patient's chest. The contact condition of the stethoscope is measured by e-textile contact sensors. The breath is measured by a band type breath sensor. In a simulated tele-auscultation experiment, the stethoscope with the contact sensors and the breath sensor were evaluated. The results show that the presentation of the contact condition was not understandable enough for navigating the stethoscope handling. The time series of the breath phases was usable for the remote doctor to understand the breath condition of the patient.
Calibration of RGBD camera and cone-beam CT for 3D intra-operative mixed reality visualization.
Lee, Sing Chun; Fuerst, Bernhard; Fotouhi, Javad; Fischer, Marius; Osgood, Greg; Navab, Nassir
2016-06-01
This work proposes a novel algorithm to register cone-beam computed tomography (CBCT) volumes and 3D optical (RGBD) camera views. The co-registered real-time RGBD camera and CBCT imaging enable a novel augmented reality solution for orthopedic surgeries, which allows arbitrary views using digitally reconstructed radiographs overlaid on the reconstructed patient's surface without the need to move the C-arm. An RGBD camera is rigidly mounted on the C-arm near the detector. We introduce a calibration method based on the simultaneous reconstruction of the surface and the CBCT scan of an object. The transformation between the two coordinate spaces is recovered using Fast Point Feature Histogram descriptors and the Iterative Closest Point algorithm. Several experiments are performed to assess the repeatability and the accuracy of this method. Target registration error is measured on multiple visual and radio-opaque landmarks to evaluate the accuracy of the registration. Mixed reality visualizations from arbitrary angles are also presented for simulated orthopedic surgeries. To the best of our knowledge, this is the first calibration method which uses only tomographic and RGBD reconstructions. This means that the method does not impose a particular shape of the phantom. We demonstrate a marker-less calibration of CBCT volumes and 3D depth cameras, achieving reasonable registration accuracy. This design requires a one-time factory calibration, is self-contained, and could be integrated into existing mobile C-arms to provide real-time augmented reality views from arbitrary angles.
Virtual reality simulation: using three-dimensional technology to teach nursing students.
Jenson, Carole E; Forsyth, Diane McNally
2012-06-01
The use of computerized technology is rapidly growing in the classroom and in healthcare. An emerging computer technology strategy for nursing education is the use of virtual reality simulation. This computer-based three-dimensional educational tool simulates real-life patient experiences in a risk-free environment, allows for repeated practice sessions, requires clinical decision making, exposes students to diverse patient conditions, provides immediate feedback, and is portable. The purpose of this article was to review the importance of virtual reality simulation as a computerized teaching strategy. In addition, a project to explore readiness of nursing faculty at one major Midwestern university for the use of virtual reality simulation as a computerized teaching strategy is described where faculty thought virtual reality simulation would increase students' knowledge of an intravenous line insertion procedure. Faculty who practiced intravenous catheter insertion via virtual reality simulation expressed a wide range of learning experiences from using virtual reality simulation that is congruent with the literature regarding the barriers to student learning. Innovative teaching strategies, such as virtual reality simulation, address barriers of increasing patient acuity, high student-to-faculty ratio, patient safety concerns from faculty, and student anxiety and can offer rapid feedback to students.
Kobayashi, Leo; Zhang, Xiao Chi; Collins, Scott A; Karim, Naz; Merck, Derek L
2018-01-01
Augmented reality (AR), mixed reality (MR), and virtual reality devices are enabling technologies that may facilitate effective communication in healthcare between those with information and knowledge (clinician/specialist; expert; educator) and those seeking understanding and insight (patient/family; non-expert; learner). Investigators initiated an exploratory program to enable the study of AR/MR use-cases in acute care clinical and instructional settings. Academic clinician educators, computer scientists, and diagnostic imaging specialists conducted a proof-of-concept project to 1) implement a core holoimaging pipeline infrastructure and open-access repository at the study institution, and 2) use novel AR/MR techniques on off-the-shelf devices with holoimages generated by the infrastructure to demonstrate their potential role in the instructive communication of complex medical information. The study team successfully developed a medical holoimaging infrastructure methodology to identify, retrieve, and manipulate real patients' de-identified computed tomography and magnetic resonance imagesets for rendering, packaging, transfer, and display of modular holoimages onto AR/MR headset devices and connected displays. Holoimages containing key segmentations of cervical and thoracic anatomic structures and pathology were overlaid and registered onto physical task trainers for simulation-based "blind insertion" invasive procedural training. During the session, learners experienced and used task-relevant anatomic holoimages for central venous catheter and tube thoracostomy insertion training with enhanced visual cues and haptic feedback. Direct instructor access into the learner's AR/MR headset view of the task trainer was achieved for visual-axis interactive instructional guidance. Investigators implemented a core holoimaging pipeline infrastructure and modular open-access repository to generate and enable access to modular holoimages during exploratory pilot stage applications for invasive procedure training that featured innovative AR/MR techniques on off-the-shelf headset devices.
Exploratory Application of Augmented Reality/Mixed Reality Devices for Acute Care Procedure Training
Kobayashi, Leo; Zhang, Xiao Chi; Collins, Scott A.; Karim, Naz; Merck, Derek L.
2018-01-01
Introduction Augmented reality (AR), mixed reality (MR), and virtual reality devices are enabling technologies that may facilitate effective communication in healthcare between those with information and knowledge (clinician/specialist; expert; educator) and those seeking understanding and insight (patient/family; non-expert; learner). Investigators initiated an exploratory program to enable the study of AR/MR use-cases in acute care clinical and instructional settings. Methods Academic clinician educators, computer scientists, and diagnostic imaging specialists conducted a proof-of-concept project to 1) implement a core holoimaging pipeline infrastructure and open-access repository at the study institution, and 2) use novel AR/MR techniques on off-the-shelf devices with holoimages generated by the infrastructure to demonstrate their potential role in the instructive communication of complex medical information. Results The study team successfully developed a medical holoimaging infrastructure methodology to identify, retrieve, and manipulate real patients’ de-identified computed tomography and magnetic resonance imagesets for rendering, packaging, transfer, and display of modular holoimages onto AR/MR headset devices and connected displays. Holoimages containing key segmentations of cervical and thoracic anatomic structures and pathology were overlaid and registered onto physical task trainers for simulation-based “blind insertion” invasive procedural training. During the session, learners experienced and used task-relevant anatomic holoimages for central venous catheter and tube thoracostomy insertion training with enhanced visual cues and haptic feedback. Direct instructor access into the learner’s AR/MR headset view of the task trainer was achieved for visual-axis interactive instructional guidance. Conclusion Investigators implemented a core holoimaging pipeline infrastructure and modular open-access repository to generate and enable access to modular holoimages during exploratory pilot stage applications for invasive procedure training that featured innovative AR/MR techniques on off-the-shelf headset devices. PMID:29383074
The need for virtual reality simulators in dental education: A review.
Roy, Elby; Bakr, Mahmoud M; George, Roy
2017-04-01
Virtual reality simulators are becoming an essential part of modern education. The benefits of Virtual reality in dentistry is constantly being assessed as a method or an adjunct to improve fine motor skills, hand-eye coordination in pre-clinical settings and overcome the monetary and intellectual challenges involved with such training. This article, while providing an overview of the virtual reality dental simulators, also looks at the link between virtual reality simulation and current pedagogical knowledge.
Generating classes of 3D virtual mandibles for AR-based medical simulation.
Hippalgaonkar, Neha R; Sider, Alexa D; Hamza-Lup, Felix G; Santhanam, Anand P; Jaganathan, Bala; Imielinska, Celina; Rolland, Jannick P
2008-01-01
Simulation and modeling represent promising tools for several application domains from engineering to forensic science and medicine. Advances in 3D imaging technology convey paradigms such as augmented reality (AR) and mixed reality inside promising simulation tools for the training industry. Motivated by the requirement for superimposing anatomically correct 3D models on a human patient simulator (HPS) and visualizing them in an AR environment, the purpose of this research effort was to develop and validate a method for scaling a source human mandible to a target human mandible within a 2 mm root mean square (RMS) error. Results show that, given a distance between 2 same landmarks on 2 different mandibles, a relative scaling factor may be computed. Using this scaling factor, results show that a 3D virtual mandible model can be made morphometrically equivalent to a real target-specific mandible within a 1.30 mm RMS error. The virtual mandible may be further used as a reference target for registering other anatomic models, such as the lungs, on the HPS. Such registration will be made possible by physical constraints among the mandible and the spinal column in the horizontal normal rest position.
Simulators and virtual reality in surgical education.
Chou, Betty; Handa, Victoria L
2006-06-01
This article explores the pros and cons of virtual reality simulators, their abilities to train and assess surgical skills, and their potential future applications. Computer-based virtual reality simulators and more conventional box trainers are compared and contrasted. The virtual reality simulator provides objective assessment of surgical skills and immediate feedback further to enhance training. With this ability to provide standardized, unbiased assessment of surgical skills, the virtual reality trainer has the potential to be a tool for selecting, instructing, certifying, and recertifying gynecologists.
Mixing realities at Ismar 2009: scary and wondrous.
Stapleton, Christopher; Rolland, Jannick
2010-01-01
The Eighth IEEE International Symposium on Mixed and Augmented Reality (Ismar 2009) combined a traditional science-and-technology track with an art, media, and humanities track to provide a nontraditional cross-disciplinary view of an increasingly important and growing research area.
Real-time 3D human capture system for mixed-reality art and entertainment.
Nguyen, Ta Huynh Duy; Qui, Tran Cong Thien; Xu, Ke; Cheok, Adrian David; Teo, Sze Lee; Zhou, ZhiYing; Mallawaarachchi, Asitha; Lee, Shang Ping; Liu, Wei; Teo, Hui Siang; Thang, Le Nam; Li, Yu; Kato, Hirokazu
2005-01-01
A real-time system for capturing humans in 3D and placing them into a mixed reality environment is presented in this paper. The subject is captured by nine cameras surrounding her. Looking through a head-mounted-display with a camera in front pointing at a marker, the user can see the 3D image of this subject overlaid onto a mixed reality scene. The 3D images of the subject viewed from this viewpoint are constructed using a robust and fast shape-from-silhouette algorithm. The paper also presents several techniques to produce good quality and speed up the whole system. The frame rate of our system is around 25 fps using only standard Intel processor-based personal computers. Besides a remote live 3D conferencing and collaborating system, we also describe an application of the system in art and entertainment, named Magic Land, which is a mixed reality environment where captured avatars of human and 3D computer generated virtual animations can form an interactive story and play with each other. This system demonstrates many technologies in human computer interaction: mixed reality, tangible interaction, and 3D communication. The result of the user study not only emphasizes the benefits, but also addresses some issues of these technologies.
Physical Models and Virtual Reality Simulators in Otolaryngology.
Javia, Luv; Sardesai, Maya G
2017-10-01
The increasing role of simulation in the medical education of future otolaryngologists has followed suit with other surgical disciplines. Simulators make it possible for the resident to explore and learn in a safe and less stressful environment. The various subspecialties in otolaryngology use physical simulators and virtual-reality simulators. Although physical simulators allow the operator to make direct contact with its components, virtual-reality simulators allow the operator to interact with an environment that is computer generated. This article gives an overview of the various types of physical simulators and virtual-reality simulators used in otolaryngology that have been reported in the literature. Copyright © 2017 Elsevier Inc. All rights reserved.
Role of virtual reality simulation in endoscopy training
Harpham-Lockyer, Louis; Laskaratos, Faidon-Marios; Berlingieri, Pasquale; Epstein, Owen
2015-01-01
Recent advancements in virtual reality graphics and models have allowed virtual reality simulators to be incorporated into a variety of endoscopic training programmes. Use of virtual reality simulators in training programmes is thought to improve skill acquisition amongst trainees which is reflected in improved patient comfort and safety. Several studies have already been carried out to ascertain the impact that usage of virtual reality simulators may have upon trainee learning curves and how this may translate to patient comfort. This article reviews the available literature in this area of medical education which is particularly relevant to all parties involved in endoscopy training and curriculum development. Assessment of the available evidence for an optimal exposure time with virtual reality simulators and the long-term benefits of their use are also discussed. PMID:26675895
Role of virtual reality simulation in endoscopy training.
Harpham-Lockyer, Louis; Laskaratos, Faidon-Marios; Berlingieri, Pasquale; Epstein, Owen
2015-12-10
Recent advancements in virtual reality graphics and models have allowed virtual reality simulators to be incorporated into a variety of endoscopic training programmes. Use of virtual reality simulators in training programmes is thought to improve skill acquisition amongst trainees which is reflected in improved patient comfort and safety. Several studies have already been carried out to ascertain the impact that usage of virtual reality simulators may have upon trainee learning curves and how this may translate to patient comfort. This article reviews the available literature in this area of medical education which is particularly relevant to all parties involved in endoscopy training and curriculum development. Assessment of the available evidence for an optimal exposure time with virtual reality simulators and the long-term benefits of their use are also discussed.
Mixed reality virtual pets to reduce childhood obesity.
Johnsen, Kyle; Ahn, Sun Joo; Moore, James; Brown, Scott; Robertson, Thomas P; Marable, Amanda; Basu, Aryabrata
2014-04-01
Novel approaches are needed to reduce the high rates of childhood obesity in the developed world. While multifactorial in cause, a major factor is an increasingly sedentary lifestyle of children. Our research shows that a mixed reality system that is of interest to children can be a powerful motivator of healthy activity. We designed and constructed a mixed reality system that allowed children to exercise, play with, and train a virtual pet using their own physical activity as input. The health, happiness, and intelligence of each virtual pet grew as its associated child owner exercised more, reached goals, and interacted with their pet. We report results of a research study involving 61 children from a local summer camp that shows a large increase in recorded and observed activity, alongside observational evidence that the virtual pet was responsible for that change. These results, and the ease at which the system integrated into the camp environment, demonstrate the practical potential to impact the exercise behaviors of children with mixed reality.
Heads up and camera down: a vision-based tracking modality for mobile mixed reality.
DiVerdi, Stephen; Höllerer, Tobias
2008-01-01
Anywhere Augmentation pursues the goal of lowering the initial investment of time and money necessary to participate in mixed reality work, bridging the gap between researchers in the field and regular computer users. Our paper contributes to this goal by introducing the GroundCam, a cheap tracking modality with no significant setup necessary. By itself, the GroundCam provides high frequency, high resolution relative position information similar to an inertial navigation system, but with significantly less drift. We present the design and implementation of the GroundCam, analyze the impact of several design and run-time factors on tracking accuracy, and consider the implications of extending our GroundCam to different hardware configurations. Motivated by the performance analysis, we developed a hybrid tracker that couples the GroundCam with a wide area tracking modality via a complementary Kalman filter, resulting in a powerful base for indoor and outdoor mobile mixed reality work. To conclude, the performance of the hybrid tracker and its utility within mixed reality applications is discussed.
A 'mixed reality' simulator concept for future Medical Emergency Response Team training.
Stone, Robert J; Guest, R; Mahoney, P; Lamb, D; Gibson, C
2017-08-01
The UK Defence Medical Service's Pre-Hospital Emergency Care (PHEC) capability includes rapid-deployment Medical Emergency Response Teams (MERTs) comprising tri-service trauma consultants, paramedics and specialised nurses, all of whom are qualified to administer emergency care under extreme conditions to improve the survival prospects of combat casualties. The pre-deployment training of MERT personnel is designed to foster individual knowledge, skills and abilities in PHEC and in small team performance and cohesion in 'mission-specific' contexts. Until now, the provision of airborne pre-deployment MERT training had been dependent on either the availability of an operational aircraft (eg, the CH-47 Chinook helicopter) or access to one of only two ground-based facsimiles of the Chinook 's rear cargo/passenger cabin. Although MERT training has high priority, there will always be competition with other military taskings for access to helicopter assets (and for other platforms in other branches of the Armed Forces). This paper describes the development of an inexpensive, reconfigurable and transportable MERT training concept based on 'mixed reality' technologies-in effect the 'blending' of real-world objects of training relevance with virtual reality reconstructions of operational contexts. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
Physical Scaffolding Accelerates the Evolution of Robot Behavior.
Buckingham, David; Bongard, Josh
2017-01-01
In some evolutionary robotics experiments, evolved robots are transferred from simulation to reality, while sensor/motor data flows back from reality to improve the next transferral. We envision a generalization of this approach: a simulation-to-reality pipeline. In this pipeline, increasingly embodied agents flow up through a sequence of increasingly physically realistic simulators, while data flows back down to improve the next transferral between neighboring simulators; physical reality is the last link in this chain. As a first proof of concept, we introduce a two-link chain: A fast yet low-fidelity ( lo-fi) simulator hosts minimally embodied agents, which gradually evolve controllers and morphologies to colonize a slow yet high-fidelity ( hi-fi) simulator. The agents are thus physically scaffolded. We show here that, given the same computational budget, these physically scaffolded robots reach higher performance in the hi-fi simulator than do robots that only evolve in the hi-fi simulator, but only for a sufficiently difficult task. These results suggest that a simulation-to-reality pipeline may strike a good balance between accelerating evolution in simulation while anchoring the results in reality, free the investigator from having to prespecify the robot's morphology, and pave the way to scalable, automated, robot-generating systems.
Evaluation of User Acceptance of Mixed Reality Technology
ERIC Educational Resources Information Center
Yusoff, Rasimah Che Mohd; Zaman, Halimah Badioze; Ahmad, Azlina
2011-01-01
This study investigates users' perception and acceptance of mixed reality (MR) technology. Acceptance of new information technologies has been important research area since 1990s. It is important to understand the reasons why people accept information technologies, as this can help to improve design, evaluation and prediction how users will…
Teaching and Learning in the Mixed-Reality Science Classroom
ERIC Educational Resources Information Center
Tolentino, Lisa; Birchfield, David; Megowan-Romanowicz, Colleen; Johnson-Glenberg, Mina C.; Kelliher, Aisling; Martinez, Christopher
2009-01-01
As emerging technologies become increasingly inexpensive and robust, there is an exciting opportunity to move beyond general purpose computing platforms to realize a new generation of K-12 technology-based learning environments. Mixed-reality technologies integrate real world components with interactive digital media to offer new potential to…
Incorporating Technology in Teaching Musical Instruments
ERIC Educational Resources Information Center
Prodan, Angelica
2017-01-01
After discussing some of the drawbacks of using Skype for long distance music lessons, Angelica Prodan describes three different types of Artificial Reality (Virtual Reality, Augmented Reality and Mixed or Merged Reality). She goes on to describe the beneficial applications of technology, with results otherwise impossible to achieve in areas such…
Yudkowsky, Rachel; Luciano, Cristian; Banerjee, Pat; Schwartz, Alan; Alaraj, Ali; Lemole, G Michael; Charbel, Fady; Smith, Kelly; Rizzi, Silvio; Byrne, Richard; Bendok, Bernard; Frim, David
2013-02-01
Ventriculostomy is a neurosurgical procedure for providing therapeutic cerebrospinal fluid drainage. Complications may arise during repeated attempts at placing the catheter in the ventricle. We studied the impact of simulation-based practice with a library of virtual brains on neurosurgery residents' performance in simulated and live surgical ventriculostomies. Using computed tomographic scans of actual patients, we developed a library of 15 virtual brains for the ImmersiveTouch system, a head- and hand-tracked augmented reality and haptic simulator. The virtual brains represent a range of anatomies including normal, shifted, and compressed ventricles. Neurosurgery residents participated in individual simulator practice on the library of brains including visualizing the 3-dimensional location of the catheter within the brain immediately after each insertion. Performance of participants on novel brains in the simulator and during actual surgery before and after intervention was analyzed using generalized linear mixed models. Simulator cannulation success rates increased after intervention, and live procedure outcomes showed improvement in the rate of successful cannulation on the first pass. However, the incidence of deeper, contralateral (simulator) and third-ventricle (live) placements increased after intervention. Residents reported that simulations were realistic and helpful in improving procedural skills such as aiming the probe, sensing the pressure change when entering the ventricle, and estimating how far the catheter should be advanced within the ventricle. Simulator practice with a library of virtual brains representing a range of anatomies and difficulty levels may improve performance, potentially decreasing complications due to inexpert technique.
Technology and medicine: the evolution of virtual reality simulation in laparoscopic training.
Bashir, Gareth
2010-01-01
Virtual reality (VR) simulation for laparoscopic surgical training is now a reality. There is increasing evidence that the use of VR simulation is a powerful adjunct to traditional surgical apprenticeship in the current climate of reduced time spent in training. This article reviews the early evidence supporting the case for VR simulation training in laparoscopic surgery. A standard literature search was conducted using the following phrases--'virtual reality in surgical training', 'surgical training', 'laparoscopic training' and 'simulation in surgical training'. This article outlines the early evidence which supports the use of VR simulation in laparoscopic training and the need for further research into this new training technique.
Virtual Reality: Toward Fundamental Improvements in Simulation-Based Training.
ERIC Educational Resources Information Center
Thurman, Richard A.; Mattoon, Joseph S.
1994-01-01
Considers the role and effectiveness of virtual reality in simulation-based training. The theoretical and practical implications of verity, integration, and natural versus artificial interface are discussed; a three-dimensional classification scheme for virtual reality is described; and the relationship between virtual reality and other…
A Cross-National Mixed-Method Study of Reality Pedagogy
ERIC Educational Resources Information Center
Sirrakos, George, Jr.; Fraser, Barry J.
2017-01-01
This mixed-methods cross-national study investigated the effectiveness of reality pedagogy (an approach in which teachers become part of students' activities, practices and rituals) in terms of changes in student perceptions of their learning environment and attitudes towards science. A questionnaire was administered to 142 students in grades 8-10…
Embedding Mixed-Reality Laboratories into E-Learning Systems for Engineering Education
ERIC Educational Resources Information Center
Al-Tikriti, Munther N.; Al-Aubidy, Kasim M.
2013-01-01
E-learning, virtual learning and mixed reality techniques are now a global integral part of the academic and educational systems. They provide easier access to educational opportunities to a very wide spectrum of individuals to pursue their educational and qualification objectives. These modern techniques have the potentials to improve the quality…
Earth Science Learning in SMALLab: A Design Experiment for Mixed Reality
ERIC Educational Resources Information Center
Birchfield, David; Megowan-Romanowicz, Colleen
2009-01-01
Conversational technologies such as email, chat rooms, and blogs have made the transition from novel communication technologies to powerful tools for learning. Currently virtual worlds are undergoing the same transition. We argue that the next wave of innovation is at the level of the computer interface, and that mixed-reality environments offer…
Strategies for Optimal Control Design of Normal Acceleration Command Following on the F-16
1992-12-01
Padd approximation. This approximation has a pole at -40, and introduces a nonminimum phase zero at +40. In deriving the equation for normal acceleration...input signal. The mean not being exactly zero will surface in some simulation plots, but does not alter the point of showing general trends. Also...closer to reality, I will ’know that my goal has been accomplished. My honest belief is that general mixed H2/H.. optimization is the methodology of
MetaTracker: integration and abstraction of 3D motion tracking data from multiple hardware systems
NASA Astrophysics Data System (ADS)
Kopecky, Ken; Winer, Eliot
2014-06-01
Motion tracking has long been one of the primary challenges in mixed reality (MR), augmented reality (AR), and virtual reality (VR). Military and defense training can provide particularly difficult challenges for motion tracking, such as in the case of Military Operations in Urban Terrain (MOUT) and other dismounted, close quarters simulations. These simulations can take place across multiple rooms, with many fast-moving objects that need to be tracked with a high degree of accuracy and low latency. Many tracking technologies exist, such as optical, inertial, ultrasonic, and magnetic. Some tracking systems even combine these technologies to complement each other. However, there are no systems that provide a high-resolution, flexible, wide-area solution that is resistant to occlusion. While frameworks exist that simplify the use of tracking systems and other input devices, none allow data from multiple tracking systems to be combined, as if from a single system. In this paper, we introduce a method for compensating for the weaknesses of individual tracking systems by combining data from multiple sources and presenting it as a single tracking system. Individual tracked objects are identified by name, and their data is provided to simulation applications through a server program. This allows tracked objects to transition seamlessly from the area of one tracking system to another. Furthermore, it abstracts away the individual drivers, APIs, and data formats for each system, providing a simplified API that can be used to receive data from any of the available tracking systems. Finally, when single-piece tracking systems are used, those systems can themselves be tracked, allowing for real-time adjustment of the trackable area. This allows simulation operators to leverage limited resources in more effective ways, improving the quality of training.
Virtual Reality for Pediatric Sedation: A Randomized Controlled Trial Using Simulation.
Zaveri, Pavan P; Davis, Aisha B; O'Connell, Karen J; Willner, Emily; Aronson Schinasi, Dana A; Ottolini, Mary
2016-02-09
Team training for procedural sedation for pediatric residents has traditionally consisted of didactic presentations and simulated scenarios using high-fidelity mannequins. We assessed the effectiveness of a virtual reality module in teaching preparation for and management of sedation for procedures. After developing a virtual reality environment in Second Life® (Linden Lab, San Francisco, CA) where providers perform and recover patients from procedural sedation, we conducted a randomized controlled trial to assess the effectiveness of the virtual reality module versus a traditional web-based educational module. A 20 question pre- and post-test was administered to assess knowledge change. All subjects participated in a simulated pediatric procedural sedation scenario that was video recorded for review and assessed using a 32-point checklist. A brief survey elicited feedback on the virtual reality module and the simulation scenario. The median score on the assessment checklist was 75% for the intervention group and 70% for the control group (P = 0.32). For the knowledge tests, there was no statistically significant difference between the groups (P = 0.14). Users had excellent reviews of the virtual reality module and reported that the module added to their education. Pediatric residents performed similarly in simulation and on a knowledge test after a virtual reality module compared with a traditional web-based module on procedural sedation. Although users enjoyed the virtual reality experience, these results question the value virtual reality adds in improving the performance of trainees. Further inquiry is needed into how virtual reality provides true value in simulation-based education.
Virtual Reality for Pediatric Sedation: A Randomized Controlled Trial Using Simulation
Davis, Aisha B; O'Connell, Karen J; Willner, Emily; Aronson Schinasi, Dana A; Ottolini, Mary
2016-01-01
Introduction: Team training for procedural sedation for pediatric residents has traditionally consisted of didactic presentations and simulated scenarios using high-fidelity mannequins. We assessed the effectiveness of a virtual reality module in teaching preparation for and management of sedation for procedures. Methods: After developing a virtual reality environment in Second Life® (Linden Lab, San Francisco, CA) where providers perform and recover patients from procedural sedation, we conducted a randomized controlled trial to assess the effectiveness of the virtual reality module versus a traditional web-based educational module. A 20 question pre- and post-test was administered to assess knowledge change. All subjects participated in a simulated pediatric procedural sedation scenario that was video recorded for review and assessed using a 32-point checklist. A brief survey elicited feedback on the virtual reality module and the simulation scenario. Results: The median score on the assessment checklist was 75% for the intervention group and 70% for the control group (P = 0.32). For the knowledge tests, there was no statistically significant difference between the groups (P = 0.14). Users had excellent reviews of the virtual reality module and reported that the module added to their education. Conclusions: Pediatric residents performed similarly in simulation and on a knowledge test after a virtual reality module compared with a traditional web-based module on procedural sedation. Although users enjoyed the virtual reality experience, these results question the value virtual reality adds in improving the performance of trainees. Further inquiry is needed into how virtual reality provides true value in simulation-based education. PMID:27014520
Fransson, Boel A; Chen, Chi-Ya; Noyes, Julie A; Ragle, Claude A
2016-11-01
To determine the construct and concurrent validity of instrument motion metrics for laparoscopic skills assessment in virtual reality and augmented reality simulators. Evaluation study. Veterinarian students (novice, n = 14) and veterinarians (experienced, n = 11) with no or variable laparoscopic experience. Participants' minimally invasive surgery (MIS) experience was determined by hospital records of MIS procedures performed in the Teaching Hospital. Basic laparoscopic skills were assessed by 5 tasks using a physical box trainer. Each participant completed 2 tasks for assessments in each type of simulator (virtual reality: bowel handling and cutting; augmented reality: object positioning and a pericardial window model). Motion metrics such as instrument path length, angle or drift, and economy of motion of each simulator were recorded. None of the motion metrics in a virtual reality simulator showed correlation with experience, or to the basic laparoscopic skills score. All metrics in augmented reality were significantly correlated with experience (time, instrument path, and economy of movement), except for the hand dominance metric. The basic laparoscopic skills score was correlated to all performance metrics in augmented reality. The augmented reality motion metrics differed between American College of Veterinary Surgeons diplomates and residents, whereas basic laparoscopic skills score and virtual reality metrics did not. Our results provide construct validity and concurrent validity for motion analysis metrics for an augmented reality system, whereas a virtual reality system was validated only for the time score. © Copyright 2016 by The American College of Veterinary Surgeons.
Nomura, Tsutomu; Mamada, Yasuhiro; Nakamura, Yoshiharu; Matsutani, Takeshi; Hagiwara, Nobutoshi; Fujita, Isturo; Mizuguchi, Yoshiaki; Fujikura, Terumichi; Miyashita, Masao; Uchida, Eiji
2015-11-01
Definitive assessment of laparoscopic skill improvement after virtual reality simulator training is best obtained during an actual operation. However, this is impossible in medical students. Therefore, we developed an alternative assessment technique using an augmented reality simulator. Nineteen medical students completed a 6-week training program using a virtual reality simulator (LapSim). The pretest and post-test were performed using an object-positioning module and cholecystectomy on an augmented reality simulator(ProMIS). The mean performance measures between pre- and post-training on the LapSim were compared with a paired t-test. In the object-positioning module, the execution time of the task (P < 0.001), left and right instrument path length (P = 0.001), and left and right instrument economy of movement (P < 0.001) were significantly shorter after than before the LapSim training. With respect to improvement in laparoscopic cholecystectomy using a gallbladder model, the execution time to identify, clip, and cut the cystic duct and cystic artery as well as the execution time to dissect the gallbladder away from the liver bed were both significantly shorter after than before the LapSim training (P = 0.01). Our training curriculum using a virtual reality simulator improved the operative skills of medical students as objectively evaluated by assessment using an augmented reality simulator instead of an actual operation. We hope that these findings help to establish an effective training program for medical students. © 2015 Japan Society for Endoscopic Surgery, Asia Endosurgery Task Force and Wiley Publishing Asia Pty Ltd.
Phé, Véronique; Cattarino, Susanna; Parra, Jérôme; Bitker, Marc-Olivier; Ambrogi, Vanina; Vaessen, Christophe; Rouprêt, Morgan
2017-06-01
The utility of the virtual-reality robotic simulator in training programmes has not been clearly evaluated. Our aim was to evaluate the impact of a virtual-reality robotic simulator-training programme on basic surgical skills. A simulator-training programme in robotic surgery, using the da Vinci Skills Simulator, was evaluated in a population including junior and seasoned surgeons, and non-physicians. Their performances on robotic dots and suturing-skin pod platforms before and after virtual-simulation training were rated anonymously by surgeons experienced in robotics. 39 participants were enrolled: 14 medical students and residents in surgery, 14 seasoned surgeons, 11 non-physicians. Junior and seasoned surgeons' performances on platforms were not significantly improved after virtual-reality robotic simulation in any of the skill domains, in contrast to non-physicians. The benefits of virtual-reality simulator training on several tasks to basic skills in robotic surgery were not obvious among surgeons in our initial and early experience with the simulator. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
ERIC Educational Resources Information Center
Jowsey, Susan; Aguayo, Claudio
2017-01-01
Mixed Reality learning environments can provide opportunities to educationally enhance previously isolated scientific concepts by using art and technology as mediums for understanding the world. Participatory experiences provide a kinetic means of comprehending often-abstract knowledge, creating the conditions for sensory learning that is…
An Assessment of a Mixed Reality Environment: Toward an Ethnomethodological Approach
ERIC Educational Resources Information Center
Dugdale, Julie; Pallamin, Nico; Pavard, Bernard
2006-01-01
Training firefighters is a difficult process in which emotions and nonverbal behaviors play an important role. The authors have developed a mixed reality environment for training a small group of firefighters, which takes into account these aspects. The assessment of the environment was made up of three phases: assessing the virtual agents to…
Visuo-Haptic Mixed Reality with Unobstructed Tool-Hand Integration.
Cosco, Francesco; Garre, Carlos; Bruno, Fabio; Muzzupappa, Maurizio; Otaduy, Miguel A
2013-01-01
Visuo-haptic mixed reality consists of adding to a real scene the ability to see and touch virtual objects. It requires the use of see-through display technology for visually mixing real and virtual objects, and haptic devices for adding haptic interaction with the virtual objects. Unfortunately, the use of commodity haptic devices poses obstruction and misalignment issues that complicate the correct integration of a virtual tool and the user's real hand in the mixed reality scene. In this work, we propose a novel mixed reality paradigm where it is possible to touch and see virtual objects in combination with a real scene, using commodity haptic devices, and with a visually consistent integration of the user's hand and the virtual tool. We discuss the visual obstruction and misalignment issues introduced by commodity haptic devices, and then propose a solution that relies on four simple technical steps: color-based segmentation of the hand, tracking-based segmentation of the haptic device, background repainting using image-based models, and misalignment-free compositing of the user's hand. We have developed a successful proof-of-concept implementation, where a user can touch virtual objects and interact with them in the context of a real scene, and we have evaluated the impact on user performance of obstruction and misalignment correction.
Man, mind, and machine: the past and future of virtual reality simulation in neurologic surgery.
Robison, R Aaron; Liu, Charles Y; Apuzzo, Michael L J
2011-11-01
To review virtual reality in neurosurgery, including the history of simulation and virtual reality and some of the current implementations; to examine some of the technical challenges involved; and to propose a potential paradigm for the development of virtual reality in neurosurgery going forward. A search was made on PubMed using key words surgical simulation, virtual reality, haptics, collision detection, and volumetric modeling to assess the current status of virtual reality in neurosurgery. Based on previous results, investigators extrapolated the possible integration of existing efforts and potential future directions. Simulation has a rich history in surgical training, and there are numerous currently existing applications and systems that involve virtual reality. All existing applications are limited to specific task-oriented functions and typically sacrifice visual realism for real-time interactivity or vice versa, owing to numerous technical challenges in rendering a virtual space in real time, including graphic and tissue modeling, collision detection, and direction of the haptic interface. With ongoing technical advancements in computer hardware and graphic and physical rendering, incremental or modular development of a fully immersive, multipurpose virtual reality neurosurgical simulator is feasible. The use of virtual reality in neurosurgery is predicted to change the nature of neurosurgical education, and to play an increased role in surgical rehearsal and the continuing education and credentialing of surgical practitioners. Copyright © 2011 Elsevier Inc. All rights reserved.
The Influences of the 2D Image-Based Augmented Reality and Virtual Reality on Student Learning
ERIC Educational Resources Information Center
Liou, Hsin-Hun; Yang, Stephen J. H.; Chen, Sherry Y.; Tarng, Wernhuar
2017-01-01
Virtual reality (VR) learning environments can provide students with concepts of the simulated phenomena, but users are not allowed to interact with real elements. Conversely, augmented reality (AR) learning environments blend real-world environments so AR could enhance the effects of computer simulation and promote students' realistic experience.…
[Display technologies for augmented reality in medical applications].
Eck, Ulrich; Winkler, Alexander
2018-04-01
One of the main challenges for modern surgery is the effective use of the many available imaging modalities and diagnostic methods. Augmented reality systems can be used in the future to blend patient and planning information into the view of surgeons, which can improve the efficiency and safety of interventions. In this article we present five visualization methods to integrate augmented reality displays into medical procedures and the advantages and disadvantages are explained. Based on an extensive literature review the various existing approaches for integration of augmented reality displays into medical procedures are divided into five categories and the most important research results for each approach are presented. A large number of mixed and augmented reality solutions for medical interventions have been developed as research prototypes; however, only very few systems have been tested on patients. In order to integrate mixed and augmented reality displays into medical practice, highly specialized solutions need to be developed. Such systems must comply with the requirements with respect to accuracy, fidelity, ergonomics and seamless integration into the surgical workflow.
Feasibility of Augmented Reality in Clinical Simulations: Using Google Glass With Manikins.
Chaballout, Basil; Molloy, Margory; Vaughn, Jacqueline; Brisson Iii, Raymond; Shaw, Ryan
2016-03-07
Studies show that students who use fidelity-based simulation technology perform better and have higher retention rates than peers who learn in traditional paper-based training. Augmented reality is increasingly being used as a teaching and learning tool in a continual effort to make simulations more realistic for students. The aim of this project was to assess the feasibility and acceptability of using augmented reality via Google Glass during clinical simulation scenarios for training health science students. Students performed a clinical simulation while watching a video through Google Glass of a patient actor simulating respiratory distress. Following participation in the scenarios students completed two surveys and were questioned if they would recommend continued use of this technology in clinical simulation experiences. We were able to have students watch a video in their field of vision of a patient who mimicked the simulated manikin. Students were overall positive about the implications for being able to view a patient during the simulations, and most students recommended using the technology in the future. Overall, students reported perceived realism with augmented reality using Google Glass. However, there were technical and usability challenges with the device. As newer portable and consumer-focused technologies become available, augmented reality is increasingly being used as a teaching and learning tool to make clinical simulations more realistic for health science students. We found Google Glass feasible and acceptable as a tool for augmented reality in clinical simulations.
ERIC Educational Resources Information Center
Sugimoto, Masanori
2011-01-01
This paper describes a system called GENTORO that uses a robot and a handheld projector for supporting children's storytelling activities. GENTORO differs from many existing systems in that children can make a robot play their own story in a physical space augmented by mixed-reality technologies. Pilot studies have been conducted to clarify the…
Multi-modal imaging, model-based tracking, and mixed reality visualisation for orthopaedic surgery
Fuerst, Bernhard; Tateno, Keisuke; Johnson, Alex; Fotouhi, Javad; Osgood, Greg; Tombari, Federico; Navab, Nassir
2017-01-01
Orthopaedic surgeons are still following the decades old workflow of using dozens of two-dimensional fluoroscopic images to drill through complex 3D structures, e.g. pelvis. This Letter presents a mixed reality support system, which incorporates multi-modal data fusion and model-based surgical tool tracking for creating a mixed reality environment supporting screw placement in orthopaedic surgery. A red–green–blue–depth camera is rigidly attached to a mobile C-arm and is calibrated to the cone-beam computed tomography (CBCT) imaging space via iterative closest point algorithm. This allows real-time automatic fusion of reconstructed surface and/or 3D point clouds and synthetic fluoroscopic images obtained through CBCT imaging. An adapted 3D model-based tracking algorithm with automatic tool segmentation allows for tracking of the surgical tools occluded by hand. This proposed interactive 3D mixed reality environment provides an intuitive understanding of the surgical site and supports surgeons in quickly localising the entry point and orienting the surgical tool during screw placement. The authors validate the augmentation by measuring target registration error and also evaluate the tracking accuracy in the presence of partial occlusion. PMID:29184659
2011-01-01
Background Although principles based in motor learning, rehabilitation, and human-computer interfaces can guide the design of effective interactive systems for rehabilitation, a unified approach that connects these key principles into an integrated design, and can form a methodology that can be generalized to interactive stroke rehabilitation, is presently unavailable. Results This paper integrates phenomenological approaches to interaction and embodied knowledge with rehabilitation practices and theories to achieve the basis for a methodology that can support effective adaptive, interactive rehabilitation. Our resulting methodology provides guidelines for the development of an action representation, quantification of action, and the design of interactive feedback. As Part I of a two-part series, this paper presents key principles of the unified approach. Part II then describes the application of this approach within the implementation of the Adaptive Mixed Reality Rehabilitation (AMRR) system for stroke rehabilitation. Conclusions The accompanying principles for composing novel mixed reality environments for stroke rehabilitation can advance the design and implementation of effective mixed reality systems for the clinical setting, and ultimately be adapted for home-based application. They furthermore can be applied to other rehabilitation needs beyond stroke. PMID:21875441
The mixed reality of things: emerging challenges for human-information interaction
NASA Astrophysics Data System (ADS)
Spicer, Ryan P.; Russell, Stephen M.; Rosenberg, Evan Suma
2017-05-01
Virtual and mixed reality technology has advanced tremendously over the past several years. This nascent medium has the potential to transform how people communicate over distance, train for unfamiliar tasks, operate in challenging environments, and how they visualize, interact, and make decisions based on complex data. At the same time, the marketplace has experienced a proliferation of network-connected devices and generalized sensors that are becoming increasingly accessible and ubiquitous. As the "Internet of Things" expands to encompass a predicted 50 billion connected devices by 2020, the volume and complexity of information generated in pervasive and virtualized environments will continue to grow exponentially. The convergence of these trends demands a theoretically grounded research agenda that can address emerging challenges for human-information interaction (HII). Virtual and mixed reality environments can provide controlled settings where HII phenomena can be observed and measured, new theories developed, and novel algorithms and interaction techniques evaluated. In this paper, we describe the intersection of pervasive computing with virtual and mixed reality, identify current research gaps and opportunities to advance the fundamental understanding of HII, and discuss implications for the design and development of cyber-human systems for both military and civilian use.
Location-Based Learning through Augmented Reality
ERIC Educational Resources Information Center
Chou, Te-Lien; Chanlin, Lih-Juan
2014-01-01
A context-aware and mixed-reality exploring tool cannot only effectively provide an information-rich environment to users, but also allows them to quickly utilize useful resources and enhance environment awareness. This study integrates Augmented Reality (AR) technology into smartphones to create a stimulating learning experience at a university…
NASA Astrophysics Data System (ADS)
Krum, David M.; Sadek, Ramy; Kohli, Luv; Olson, Logan; Bolas, Mark
2010-01-01
As part of the Institute for Creative Technologies and the School of Cinematic Arts at the University of Southern California, the Mixed Reality lab develops technologies and techniques for presenting realistic immersive training experiences. Such experiences typically place users within a complex ecology of social actors, physical objects, and collections of intents, motivations, relationships, and other psychological constructs. Currently, it remains infeasible to completely synthesize the interactivity and sensory signatures of such ecologies. For this reason, the lab advocates mixed reality methods for training and conducts experiments exploring such methods. Currently, the lab focuses on understanding and exploiting the elasticity of human perception with respect to representational differences between real and virtual environments. This paper presents an overview of three projects: techniques for redirected walking, displays for the representation of virtual humans, and audio processing to increase stress.
Virtual reality simulation: basic concepts and use in endoscopic neurosurgery training.
Cohen, Alan R; Lohani, Subash; Manjila, Sunil; Natsupakpong, Suriya; Brown, Nathan; Cavusoglu, M Cenk
2013-08-01
Virtual reality simulation is a promising alternative to training surgical residents outside the operating room. It is also a useful aide to anatomic study, residency training, surgical rehearsal, credentialing, and recertification. Surgical simulation is based on a virtual reality with varying degrees of immersion and realism. Simulators provide a no-risk environment for harmless and repeatable practice. Virtual reality has three main components of simulation: graphics/volume rendering, model behavior/tissue deformation, and haptic feedback. The challenge of accurately simulating the forces and tactile sensations experienced in neurosurgery limits the sophistication of a virtual simulator. The limited haptic feedback available in minimally invasive neurosurgery makes it a favorable subject for simulation. Virtual simulators with realistic graphics and force feedback have been developed for ventriculostomy, intraventricular surgery, and transsphenoidal pituitary surgery, thus allowing preoperative study of the individual anatomy and increasing the safety of the procedure. The authors also present experiences with their own virtual simulation of endoscopic third ventriculostomy.
The Next Wave: Humans, Computers, and Redefining Reality
NASA Technical Reports Server (NTRS)
Little, William
2018-01-01
The Augmented/Virtual Reality (AVR) Lab at KSC is dedicated to " exploration into the growing computer fields of Extended Reality and the Natural User Interface (it is) a proving ground for new technologies that can be integrated into future NASA projects and programs." The topics of Human Computer Interface, Human Computer Interaction, Augmented Reality, Virtual Reality, and Mixed Reality are defined; examples of work being done in these fields in the AVR Lab are given. Current new and future work in Computer Vision, Speech Recognition, and Artificial Intelligence are also outlined.
Southern Ocean bottom water characteristics in CMIP5 models
NASA Astrophysics Data System (ADS)
Heuzé, CéLine; Heywood, Karen J.; Stevens, David P.; Ridley, Jeff K.
2013-04-01
Southern Ocean deep water properties and formation processes in climate models are indicative of their capability to simulate future climate, heat and carbon uptake, and sea level rise. Southern Ocean temperature and density averaged over 1986-2005 from 15 CMIP5 (Coupled Model Intercomparison Project Phase 5) climate models are compared with an observed climatology, focusing on bottom water. Bottom properties are reasonably accurate for half the models. Ten models create dense water on the Antarctic shelf, but it mixes with lighter water and is not exported as bottom water as in reality. Instead, most models create deep water by open ocean deep convection, a process occurring rarely in reality. Models with extensive deep convection are those with strong seasonality in sea ice. Optimum bottom properties occur in models with deep convection in the Weddell and Ross Gyres. Bottom Water formation processes are poorly represented in ocean models and are a key challenge for improving climate predictions.
Luigi Ingrassia, Pier; Ragazzoni, Luca; Carenzo, Luca; Colombo, Davide; Ripoll Gallardo, Alba; Della Corte, Francesco
2015-04-01
This study tested the hypothesis that virtual reality simulation is equivalent to live simulation for testing naive medical students' abilities to perform mass casualty triage using the Simple Triage and Rapid Treatment (START) algorithm in a simulated disaster scenario and to detect the improvement in these skills after a teaching session. Fifty-six students in their last year of medical school were randomized into two groups (A and B). The same scenario, a car accident, was developed identically on the two simulation methodologies: virtual reality and live simulation. On day 1, group A was exposed to the live scenario and group B was exposed to the virtual reality scenario, aiming to triage 10 victims. On day 2, all students attended a 2-h lecture on mass casualty triage, specifically the START triage method. On day 3, groups A and B were crossed over. The groups' abilities to perform mass casualty triage in terms of triage accuracy, intervention correctness, and speed in the scenarios were assessed. Triage and lifesaving treatment scores were assessed equally by virtual reality and live simulation on day 1 and on day 3. Both simulation methodologies detected an improvement in triage accuracy and treatment correctness from day 1 to day 3 (P<0.001). The time to complete each scenario and its decrease from day 1 to day 3 were detected equally in the two groups (P<0.05). Virtual reality simulation proved to be a valuable tool, equivalent to live simulation, to test medical students' abilities to perform mass casualty triage and to detect improvement in such skills.
Integrated Eye Tracking and Neural Monitoring for Enhanced Assessment of Mild TBI
2015-04-01
virtual reality driving simulator data acquisition. Data collection for the pilot study is nearly complete and data analyses are currently under way...Training for primary study procedures including neuropsychological testing, eye- tracking, virtual reality driving simulator, and EEG data acquisition is...the virtual reality driving simulator. Participants are instructed to drive along a coastal highway while performing the target detection task
Cybersickness and Anxiety During Simulated Motion: Implications for VRET.
Bruck, Susan; Watters, Paul
2009-01-01
Some clinicians have suggested using virtual reality environments to deliver psychological interventions to treat anxiety disorders. However, given a significant body of work on cybersickness symptoms which may arise in virtual environments - especially those involving simulated motion - we tested (a) whether being exposed to a virtual reality environment alone causes anxiety to increase, and (b) whether exposure to simulated motion in a virtual reality environment increases anxiety. Using a repeated measures design, we used Kim's Anxiety Scale questionnaire to compare baseline anxiety, anxiety after virtual environment exposure, and anxiety after simulated motion. While there was no significant effect on anxiety for being in a virtual environment with no simulated motion, the introduction of simulated motion caused anxiety to significantly increase, but not to a severe or extreme level. The implications of this work for virtual reality exposure therapy (VRET) are discussed.
Jensen, Katrine; Ringsted, Charlotte; Hansen, Henrik Jessen; Petersen, René Horsleben; Konge, Lars
2014-06-01
Video-assisted thoracic surgery is gradually replacing conventional open thoracotomy as the method of choice for the treatment of early-stage non-small cell lung cancers, and thoracic surgical trainees must learn and master this technique. Simulation-based training could help trainees overcome the first part of the learning curve, but no virtual-reality simulators for thoracoscopy are commercially available. This study aimed to investigate whether training on a laparoscopic simulator enables trainees to perform a thoracoscopic lobectomy. Twenty-eight surgical residents were randomized to either virtual-reality training on a nephrectomy module or traditional black-box simulator training. After a retention period they performed a thoracoscopic lobectomy on a porcine model and their performance was scored using a previously validated assessment tool. The groups did not differ in age or gender. All participants were able to complete the lobectomy. The performance of the black-box group was significantly faster during the test scenario than the virtual-reality group: 26.6 min (SD 6.7 min) versus 32.7 min (SD 7.5 min). No difference existed between the two groups when comparing bleeding and anatomical and non-anatomical errors. Simulation-based training and targeted instructions enabled the trainees to perform a simulated thoracoscopic lobectomy. Traditional black-box training was more effective than virtual-reality laparoscopy training. Thus, a dedicated simulator for thoracoscopy should be available before establishing systematic virtual-reality training programs for trainees in thoracic surgery.
[Virtual reality simulation training in gynecology: review and perspectives].
Ricard-Gauthier, Dominique; Popescu, Silvia; Benmohamed, Naida; Petignat, Patrick; Dubuisson, Jean
2016-10-26
Laparoscopic simulation has rapidly become an important tool for learning and acquiring technical skills in surgery. It is based on two different complementary pedagogic tools : the box model trainer and the virtual reality simulator. The virtual reality simulator has shown its efficiency by improving surgical skills, decreasing operating time, improving economy of movements and improving self-confidence. The main objective of this tool is the opportunity to easily organize a regular, structured and uniformed training program enabling an automated individualized feedback.
Cognitive load in distributed and massed practice in virtual reality mastoidectomy simulation.
Andersen, Steven Arild Wuyts; Mikkelsen, Peter Trier; Konge, Lars; Cayé-Thomasen, Per; Sørensen, Mads Sølvsten
2016-02-01
Cognitive load theory states that working memory is limited. This has implications for learning and suggests that reducing cognitive load (CL) could promote learning and skills acquisition. This study aims to explore the effect of repeated practice and simulator-integrated tutoring on CL in virtual reality (VR) mastoidectomy simulation. Prospective trial. Forty novice medical students performed 12 repeated virtual mastoidectomy procedures in the Visible Ear Simulator: 21 completed distributed practice with practice blocks spaced in time and 19 participants completed massed practice (all practices performed in 1 day). Participants were randomized for tutoring with the simulator-integrated tutor function. Cognitive load was estimated by measuring reaction time in a secondary task. Data were analyzed using linear mixed models for repeated measurements. The mean reaction time increased by 37% during the procedure compared with baseline, demonstrating that the procedure placed substantial cognitive demands. Repeated practice significantly lowered CL in the distributed practice group but not in massed practice group. In addition, CL was found to be further increased by 10.3% in the later and more complex stages of the procedure. The simulator-integrated tutor function did not have an impact on CL. Distributed practice decreased CL in repeated VR mastoidectomy training more consistently than was seen in massed practice. This suggests a possible effect of skills and memory consolidation occurring over time. To optimize technical skills learning, training should be organized as time-distributed practice rather than as a massed block of practice, which is common in skills-training courses. N/A. © 2015 The American Laryngological, Rhinological and Otological Society, Inc.
Presence within a mixed reality environment.
van Schaik, Paul; Turnbull, Triece; van Wersch, Anna; Drummond, Sarah
2004-10-01
Mixed reality environments represent a new approach to creating technology-mediated experiences. However, there is a lack of empirical research investigating users' actual experience. The aim of the current exploratory, non-experimental study was to establish levels of and identify factors associated with presence, within the framework of Schubert et al.'s model of presence. Using questionnaire and interview methods, the experience of the final performance of the Desert Rain mixed reality environment was investigated. Levels of general and spatial presence were relatively high, but levels of involvement and realness were not. Overall, intrinsic motivation, confidence and intention to re-visit Desert Rain were high. However, age was negatively associated with both spatial presence and confidence to play. Furthermore, various problems in navigating the environment were identified. Results are discussed in terms of Schubert's model and other theoretical perspectives. Implications for system design are presented.
Virtual Reality and Simulation in Neurosurgical Training.
Bernardo, Antonio
2017-10-01
Recent biotechnological advances, including three-dimensional microscopy and endoscopy, virtual reality, surgical simulation, surgical robotics, and advanced neuroimaging, have continued to mold the surgeon-computer relationship. For developing neurosurgeons, such tools can reduce the learning curve, improve conceptual understanding of complex anatomy, and enhance visuospatial skills. We explore the current and future roles and application of virtual reality and simulation in neurosurgical training. Copyright © 2017 Elsevier Inc. All rights reserved.
Sensorimotor enhancement with a mixed reality system for balance and mobility rehabilitation.
Fung, Joyce; Perez, Claire F
2011-01-01
We have developed a mixed reality system incorporating virtual reality (VR), surface perturbations and light touch for gait rehabilitation. Haptic touch has emerged as a novel and efficient technique to improve postural control and dynamic stability. Our system combines visual display with the manipulation of physical environments and addition of haptic feedback to enhance balance and mobility post stroke. A research study involving 9 participants with stroke and 9 age-matched healthy individuals show that the haptic cue provided while walking is an effective means of improving gait stability in people post stroke, especially during challenging environmental conditions such as downslope walking.
Virtual reality simulation in neurosurgery: technologies and evolution.
Chan, Sonny; Conti, François; Salisbury, Kenneth; Blevins, Nikolas H
2013-01-01
Neurosurgeons are faced with the challenge of learning, planning, and performing increasingly complex surgical procedures in which there is little room for error. With improvements in computational power and advances in visual and haptic display technologies, virtual surgical environments can now offer potential benefits for surgical training, planning, and rehearsal in a safe, simulated setting. This article introduces the various classes of surgical simulators and their respective purposes through a brief survey of representative simulation systems in the context of neurosurgery. Many technical challenges currently limit the application of virtual surgical environments. Although we cannot yet expect a digital patient to be indistinguishable from reality, new developments in computational methods and related technology bring us closer every day. We recognize that the design and implementation of an immersive virtual reality surgical simulator require expert knowledge from many disciplines. This article highlights a selection of recent developments in research areas related to virtual reality simulation, including anatomic modeling, computer graphics and visualization, haptics, and physics simulation, and discusses their implication for the simulation of neurosurgery.
Fang, Te-Yung; Wang, Pa-Chun; Liu, Chih-Hsien; Su, Mu-Chun; Yeh, Shih-Ching
2014-02-01
Virtual reality simulation training may improve knowledge of anatomy and surgical skills. We evaluated a 3-dimensional, haptic, virtual reality temporal bone simulator for dissection training. The subjects were 7 otolaryngology residents (3 training sessions each) and 7 medical students (1 training session each). The virtual reality temporal bone simulation station included a computer with software that was linked to a force-feedback hand stylus, and the system recorded performance and collisions with vital anatomic structures. Subjects performed virtual reality dissections and completed questionnaires after the training sessions. Residents and students had favorable responses to most questions of the technology acceptance model (TAM) questionnaire. The average TAM scores were above neutral for residents and medical students in all domains, and the average TAM score for residents was significantly higher for the usefulness domain and lower for the playful domain than students. The average satisfaction questionnaire for residents showed that residents had greater overall satisfaction with cadaver temporal bone dissection training than training with the virtual reality simulator or plastic temporal bone. For medical students, the average comprehension score was significantly increased from before to after training for all anatomic structures. Medical students had significantly more collisions with the dura than residents. The residents had similar mean performance scores after the first and third training sessions for all dissection procedures. The virtual reality temporal bone simulator provided satisfactory training for otolaryngology residents and medical students. Copyright © 2013. Published by Elsevier Ireland Ltd.
Augmented Reality as a Telemedicine Platform for Remote Procedural Training.
Wang, Shiyao; Parsons, Michael; Stone-McLean, Jordan; Rogers, Peter; Boyd, Sarah; Hoover, Kristopher; Meruvia-Pastor, Oscar; Gong, Minglun; Smith, Andrew
2017-10-10
Traditionally, rural areas in many countries are limited by a lack of access to health care due to the inherent challenges associated with recruitment and retention of healthcare professionals. Telemedicine, which uses communication technology to deliver medical services over distance, is an economical and potentially effective way to address this problem. In this research, we develop a new telepresence application using an Augmented Reality (AR) system. We explore the use of the Microsoft HoloLens to facilitate and enhance remote medical training. Intrinsic advantages of AR systems enable remote learners to perform complex medical procedures such as Point of Care Ultrasound (PoCUS) without visual interference. This research uses the HoloLens to capture the first-person view of a simulated rural emergency room (ER) through mixed reality capture (MRC) and serves as a novel telemedicine platform with remote pointing capabilities. The mentor's hand gestures are captured using a Leap Motion and virtually displayed in the AR space of the HoloLens. To explore the feasibility of the developed platform, twelve novice medical trainees were guided by a mentor through a simulated ultrasound exploration in a trauma scenario, as part of a pilot user study. The study explores the utility of the system from the trainees, mentor, and objective observers' perspectives and compares the findings to that of a more traditional multi-camera telemedicine solution. The results obtained provide valuable insight and guidance for the development of an AR-supported telemedicine platform.
Augmented Reality as a Telemedicine Platform for Remote Procedural Training
Wang, Shiyao; Parsons, Michael; Stone-McLean, Jordan; Rogers, Peter; Boyd, Sarah; Hoover, Kristopher; Meruvia-Pastor, Oscar; Gong, Minglun; Smith, Andrew
2017-01-01
Traditionally, rural areas in many countries are limited by a lack of access to health care due to the inherent challenges associated with recruitment and retention of healthcare professionals. Telemedicine, which uses communication technology to deliver medical services over distance, is an economical and potentially effective way to address this problem. In this research, we develop a new telepresence application using an Augmented Reality (AR) system. We explore the use of the Microsoft HoloLens to facilitate and enhance remote medical training. Intrinsic advantages of AR systems enable remote learners to perform complex medical procedures such as Point of Care Ultrasound (PoCUS) without visual interference. This research uses the HoloLens to capture the first-person view of a simulated rural emergency room (ER) through mixed reality capture (MRC) and serves as a novel telemedicine platform with remote pointing capabilities. The mentor’s hand gestures are captured using a Leap Motion and virtually displayed in the AR space of the HoloLens. To explore the feasibility of the developed platform, twelve novice medical trainees were guided by a mentor through a simulated ultrasound exploration in a trauma scenario, as part of a pilot user study. The study explores the utility of the system from the trainees, mentor, and objective observers’ perspectives and compares the findings to that of a more traditional multi-camera telemedicine solution. The results obtained provide valuable insight and guidance for the development of an AR-supported telemedicine platform. PMID:28994720
Virtual reality for dermatologic surgery: virtually a reality in the 21st century.
Gladstone, H B; Raugi, G J; Berg, D; Berkley, J; Weghorst, S; Ganter, M
2000-01-01
In the 20th century, virtual reality has predominantly played a role in training pilots and in the entertainment industry. Despite much publicity, virtual reality did not live up to its perceived potential. During the past decade, it has also been applied for medical uses, particularly as training simulators, for minimally invasive surgery. Because of advances in computer technology, virtual reality is on the cusp of becoming an effective medical educational tool. At the University of Washington, we are developing a virtual reality soft tissue surgery simulator. Based on fast finite element modeling and using a personal computer, this device can simulate three-dimensional human skin deformations with real-time tactile feedback. Although there are many cutaneous biomechanical challenges to solve, it will eventually provide more realistic dermatologic surgery training for medical students and residents than the currently used models.
Development of a low-cost virtual reality workstation for training and education
NASA Technical Reports Server (NTRS)
Phillips, James A.
1996-01-01
Virtual Reality (VR) is a set of breakthrough technologies that allow a human being to enter and fully experience a 3-dimensional, computer simulated environment. A true virtual reality experience meets three criteria: (1) it involves 3-dimensional computer graphics; (2) it includes real-time feedback and response to user actions; and (3) it must provide a sense of immersion. Good examples of a virtual reality simulator are the flight simulators used by all branches of the military to train pilots for combat in high performance jet fighters. The fidelity of such simulators is extremely high -- but so is the price tag, typically millions of dollars. Virtual reality teaching and training methods are manifestly effective, but the high cost of VR technology has limited its practical application to fields with big budgets, such as military combat simulation, commercial pilot training, and certain projects within the space program. However, in the last year there has been a revolution in the cost of VR technology. The speed of inexpensive personal computers has increased dramatically, especially with the introduction of the Pentium processor and the PCI bus for IBM-compatibles, and the cost of high-quality virtual reality peripherals has plummeted. The result is that many public schools, colleges, and universities can afford a PC-based workstation capable of running immersive virtual reality applications. My goal this summer was to assemble and evaluate such a system.
On Location Learning: Authentic Applied Science with Networked Augmented Realities
ERIC Educational Resources Information Center
Rosenbaum, Eric; Klopfer, Eric; Perry, Judy
2007-01-01
The learning of science can be made more like the practice of science through authentic simulated experiences. We have created a networked handheld Augmented Reality environment that combines the authentic role-playing of Augmented Realities and the underlying models of Participatory Simulations. This game, known as Outbreak @ The Institute, is…
Visual Environment for Designing Interactive Learning Scenarios with Augmented Reality
ERIC Educational Resources Information Center
Mota, José Miguel; Ruiz-Rube, Iván; Dodero, Juan Manuel; Figueiredo, Mauro
2016-01-01
Augmented Reality (AR) technology allows the inclusion of virtual elements on a vision of actual physical environment for the creation of a mixed reality in real time. This kind of technology can be used in educational settings. However, the current AR authoring tools present several drawbacks, such as, the lack of a mechanism for tracking the…
Indoor vs. Outdoor Depth Perception for Mobile Augmented Reality
2009-03-01
International Symposium on Mixed and Augmented Reality, pages 77–86, Sept. 2008. [12] M. A. Livingston, J. E. Swan II, J. L. Gabbard , T. H. Höllerer, D. Hix...D. Brown, Y. Baillot, J. L. Gabbard , and D. Hix. A perceptual matching technique for depth judgments in optical, see-through augmented reality. In
Linte, Cristian A.; Davenport, Katherine P.; Cleary, Kevin; Peters, Craig; Vosburgh, Kirby G.; Navab, Nassir; Edwards, Philip “Eddie”; Jannin, Pierre; Peters, Terry M.; Holmes, David R.; Robb, Richard A.
2013-01-01
Mixed reality environments for medical applications have been explored and developed over the past three decades in an effort to enhance the clinician’s view of anatomy and facilitate the performance of minimally invasive procedures. These environments must faithfully represent the real surgical field and require seamless integration of pre- and intra-operative imaging, surgical instrument tracking, and display technology into a common framework centered around and registered to the patient. However, in spite of their reported benefits, few mixed reality environments have been successfully translated into clinical use. Several challenges that contribute to the difficulty in integrating such environments into clinical practice are presented here and discussed in terms of both technical and clinical limitations. This article should raise awareness among both developers and end-users toward facilitating a greater application of such environments in the surgical practice of the future. PMID:23632059
Virtual reality in ophthalmology training.
Khalifa, Yousuf M; Bogorad, David; Gibson, Vincent; Peifer, John; Nussbaum, Julian
2006-01-01
Current training models are limited by an unstructured curriculum, financial costs, human costs, and time constraints. With the newly mandated resident surgical competency, training programs are struggling to find viable methods of assessing and documenting the surgical skills of trainees. Virtual-reality technologies have been used for decades in flight simulation to train and assess competency, and there has been a recent push in surgical specialties to incorporate virtual-reality simulation into residency programs. These efforts have culminated in an FDA-approved carotid stenting simulator. What role virtual reality will play in the evolution of ophthalmology surgical curriculum is uncertain. The current apprentice system has served the art of surgery for over 100 years, and we foresee virtual reality working synergistically with our current curriculum modalities to streamline and enhance the resident's learning experience.
Mixed Reality Technology at NASA JPL
2016-05-16
NASA's JPL is a center of innovation in virtual and augmented reality, producing groundbreaking applications of these technologies to support a variety of missions. This video is a collection of unedited scenes released to the media.
Kin, Taichi; Nakatomi, Hirofumi; Shono, Naoyuki; Nomura, Seiji; Saito, Toki; Oyama, Hiroshi; Saito, Nobuhito
2017-10-15
Simulation and planning of surgery using a virtual reality model is becoming common with advances in computer technology. In this study, we conducted a literature search to find trends in virtual simulation of surgery for brain tumors. A MEDLINE search for "neurosurgery AND (simulation OR virtual reality)" retrieved a total of 1,298 articles published in the past 10 years. After eliminating studies designed solely for education and training purposes, 28 articles about the clinical application remained. The finding that the vast majority of the articles were about education and training rather than clinical applications suggests that several issues need be addressed for clinical application of surgical simulation. In addition, 10 of the 28 articles were from Japanese groups. In general, the 28 articles demonstrated clinical benefits of virtual surgical simulation. Simulation was particularly useful in better understanding complicated spatial relations of anatomical landmarks and in examining surgical approaches. In some studies, Virtual reality models were used on either surgical navigation system or augmented reality technology, which projects virtual reality images onto the operating field. Reported problems were difficulties in standardized, objective evaluation of surgical simulation systems; inability to respond to tissue deformation caused by surgical maneuvers; absence of the system functionality to reflect features of tissue (e.g., hardness and adhesion); and many problems with image processing. The amount of description about image processing tended to be insufficient, indicating that the level of evidence, risk of bias, precision, and reproducibility need to be addressed for further advances and ultimately for full clinical application.
Augmenting Your Own Reality: Student Authoring of Science-Based Augmented Reality Games
ERIC Educational Resources Information Center
Klopfer, Eric; Sheldon, Josh
2010-01-01
Augmented Reality (AR) simulations superimpose a virtual overlay of data and interactions onto a real-world context. The simulation engine at the heart of this technology is built to afford elements of game play that support explorations and learning in students' natural context--their own community and surroundings. In one of the more recent…
A haptic interface for virtual simulation of endoscopic surgery.
Rosenberg, L B; Stredney, D
1996-01-01
Virtual reality can be described as a convincingly realistic and naturally interactive simulation in which the user is given a first person illusion of being immersed within a computer generated environment While virtual reality systems offer great potential to reduce the cost and increase the quality of medical training, many technical challenges must be overcome before such simulation platforms offer effective alternatives to more traditional training means. A primary challenge in developing effective virtual reality systems is designing the human interface hardware which allows rich sensory information to be presented to users in natural ways. When simulating a given manual procedure, task specific human interface requirements dictate task specific human interface hardware. The following paper explores the design of human interface hardware that satisfies the task specific requirements of virtual reality simulation of Endoscopic surgical procedures. Design parameters were derived through direct cadaver studies and interviews with surgeons. Final hardware design is presented.
ERIC Educational Resources Information Center
Chang, Hsin-Yi; Wu, Hsin-Kai; Hsu, Ying-Shao
2013-01-01
virtual objects or information overlaying physical objects or environments, resulting in a mixed reality in which virtual objects and real environments coexist in a meaningful way to augment learning…
Augmenting the Thermal Flux Experiment: A Mixed Reality Approach with the HoloLens
ERIC Educational Resources Information Center
Strzys, M. P.; Kapp, S.; Thees, M.; Kuhn, J.; Lukowicz, P.; Knierim, P.; Schmidt, A.
2017-01-01
In the field of Virtual Reality (VR) and Augmented Reality (AR), technologies have made huge progress during the last years and also reached the field of education. The virtuality continuum, ranging from pure virtuality on one side to the real world on the other, has been successfully covered by the use of immersive technologies like head-mounted…
The RoboCup Mixed Reality League - A Case Study
NASA Astrophysics Data System (ADS)
Gerndt, Reinhard; Bohnen, Matthias; da Silva Guerra, Rodrigo; Asada, Minoru
In typical mixed reality systems there is only a one-way interaction from real to virtual. A human user or the physics of a real object may influence the behavior of virtual objects, but real objects usually cannot be influenced by the virtual world. By introducing real robots into the mixed reality system, we allow a true two-way interaction between virtual and real worlds. Our system has been used since 2007 to implement the RoboCup mixed reality soccer games and other applications for research and edutainment. Our framework system is freely programmable to generate any virtual environment, which may then be further supplemented with virtual and real objects. The system allows for control of any real object based on differential drive robots. The robots may be adapted for different applications, e.g., with markers for identification or with covers to change shape and appearance. They may also be “equipped” with virtual tools. In this chapter we present the hardware and software architecture of our system and some applications. The authors believe this can be seen as a first implementation of Ivan Sutherland’s 1965 idea of the ultimate display: “The ultimate display would, of course, be a room within which the computer can control the existence of matter …” (Sutherland, 1965, Proceedings of IFIPS Congress 2:506-508).
Does virtual reality simulation have a role in training trauma and orthopaedic surgeons?
Bartlett, J D; Lawrence, J E; Stewart, M E; Nakano, N; Khanduja, V
2018-05-01
Aims The aim of this study was to assess the current evidence relating to the benefits of virtual reality (VR) simulation in orthopaedic surgical training, and to identify areas of future research. Materials and Methods A literature search using the MEDLINE, Embase, and Google Scholar databases was performed. The results' titles, abstracts, and references were examined for relevance. Results A total of 31 articles published between 2004 and 2016 and relating to the objective validity and efficacy of specific virtual reality orthopaedic surgical simulators were identified. We found 18 studies demonstrating the construct validity of 16 different orthopaedic virtual reality simulators by comparing expert and novice performance. Eight studies have demonstrated skill acquisition on a simulator by showing improvements in performance with repeated use. A further five studies have demonstrated measurable improvements in operating theatre performance following a period of virtual reality simulator training. Conclusion The demonstration of 'real-world' benefits from the use of VR simulation in knee and shoulder arthroscopy is promising. However, evidence supporting its utility in other forms of orthopaedic surgery is lacking. Further studies of validity and utility should be combined with robust analyses of the cost efficiency of validated simulators to justify the financial investment required for their use in orthopaedic training. Cite this article: Bone Joint J 2018;100-B:559-65.
Tal, Aner; Wansink, Brian
2011-01-01
Virtual reality (VR) provides a potentially powerful tool for researchers seeking to investigate eating and physical activity. Some unique conditions are necessary to ensure that the psychological processes that influence real eating behavior also influence behavior in VR environments. Accounting for these conditions is critical if VR-assisted research is to accurately reflect real-world situations. The current work discusses key considerations VR researchers must take into account to ensure similar psychological functioning in virtual and actual reality and does so by focusing on the process of spontaneous mental simulation. Spontaneous mental simulation is prevalent under real-world conditions but may be absent under VR conditions, potentially leading to differences in judgment and behavior between virtual and actual reality. For simulation to occur, the virtual environment must be perceived as being available for action. A useful chart is supplied as a reference to help researchers to investigate eating and physical activity more effectively. PMID:21527088
Tal, Aner; Wansink, Brian
2011-03-01
Virtual reality (VR) provides a potentially powerful tool for researchers seeking to investigate eating and physical activity. Some unique conditions are necessary to ensure that the psychological processes that influence real eating behavior also influence behavior in VR environments. Accounting for these conditions is critical if VR-assisted research is to accurately reflect real-world situations. The current work discusses key considerations VR researchers must take into account to ensure similar psychological functioning in virtual and actual reality and does so by focusing on the process of spontaneous mental simulation. Spontaneous mental simulation is prevalent under real-world conditions but may be absent under VR conditions, potentially leading to differences in judgment and behavior between virtual and actual reality. For simulation to occur, the virtual environment must be perceived as being available for action. A useful chart is supplied as a reference to help researchers to investigate eating and physical activity more effectively. © 2011 Diabetes Technology Society.
ERIC Educational Resources Information Center
Cooper, Rory A.; Ding, Dan; Simpson, Richard; Fitzgerald, Shirley G.; Spaeth, Donald M.; Guo, Songfeng; Koontz, Alicia M.; Cooper, Rosemarie; Kim, Jongbae; Boninger, Michael L.
2005-01-01
Some aspects of assistive technology can be enhanced by the application of virtual reality. Although virtual simulation offers a range of new possibilities, learning to navigate in a virtual environment is not equivalent to learning to navigate in the real world. Therefore, virtual reality simulation is advocated as a useful preparation for…
Virtual reality simulator for vitreoretinal surgery using integrated OCT data.
Kozak, Igor; Banerjee, Pat; Luo, Jia; Luciano, Cristian
2014-01-01
Operative practice using surgical simulators has become a part of training in many surgical specialties, including ophthalmology. We introduce a virtual reality retina surgery simulator capable of integrating optical coherence tomography (OCT) scans from real patients for practicing vitreoretinal surgery using different pathologic scenarios.
A review of training research and virtual reality simulators for the da Vinci surgical system.
Liu, May; Curet, Myriam
2015-01-01
PHENOMENON: Virtual reality simulators are the subject of several recent studies of skills training for robot-assisted surgery. Yet no consensus exists regarding what a core skill set comprises or how to measure skill performance. Defining a core skill set and relevant metrics would help surgical educators evaluate different simulators. This review draws from published research to propose a core technical skill set for using the da Vinci surgeon console. Publications on three commercial simulators were used to evaluate the simulators' content addressing these skills and associated metrics. An analysis of published research suggests that a core technical skill set for operating the surgeon console includes bimanual wristed manipulation, camera control, master clutching to manage hand position, use of third instrument arm, activating energy sources, appropriate depth perception, and awareness of forces applied by instruments. Validity studies of three commercial virtual reality simulators for robot-assisted surgery suggest that all three have comparable content and metrics. However, none have comprehensive content and metrics for all core skills. INSIGHTS: Virtual reality simulation remains a promising tool to support skill training for robot-assisted surgery, yet existing commercial simulator content is inadequate for performing and assessing a comprehensive basic skill set. The results of this evaluation help identify opportunities and challenges that exist for future developments in virtual reality simulation for robot-assisted surgery. Specifically, the inclusion of educational experts in the development cycle alongside clinical and technological experts is recommended.
Augmenting the thermal flux experiment: A mixed reality approach with the HoloLens
NASA Astrophysics Data System (ADS)
Strzys, M. P.; Kapp, S.; Thees, M.; Kuhn, J.; Lukowicz, P.; Knierim, P.; Schmidt, A.
2017-09-01
In the field of Virtual Reality (VR) and Augmented Reality (AR), technologies have made huge progress during the last years and also reached the field of education. The virtuality continuum, ranging from pure virtuality on one side to the real world on the other, has been successfully covered by the use of immersive technologies like head-mounted displays, which allow one to embed virtual objects into the real surroundings, leading to a Mixed Reality (MR) experience. In such an environment, digital and real objects do not only coexist, but moreover are also able to interact with each other in real time. These concepts can be used to merge human perception of reality with digitally visualized sensor data, thereby making the invisible visible. As a first example, in this paper we introduce alongside the basic idea of this column an MR experiment in thermodynamics for a laboratory course for freshman students in physics or other science and engineering subjects that uses physical data from mobile devices for analyzing and displaying physical phenomena to students.
Vaccaro, Christine M; Crisp, Catrina C; Fellner, Angela N; Jackson, Christopher; Kleeman, Steven D; Pavelka, James
2013-01-01
The objective of this study was to compare the effect of virtual reality simulation training plus robotic orientation versus robotic orientation alone on performance of surgical tasks using an inanimate model. Surgical resident physicians were enrolled in this assessor-blinded randomized controlled trial. Residents were randomized to receive either (1) robotic virtual reality simulation training plus standard robotic orientation or (2) standard robotic orientation alone. Performance of surgical tasks was assessed at baseline and after the intervention. Nine of 33 modules from the da Vinci Skills Simulator were chosen. Experts in robotic surgery evaluated each resident's videotaped performance of the inanimate model using the Global Rating Scale (GRS) and Objective Structured Assessment of Technical Skills-modified for robotic-assisted surgery (rOSATS). Nine resident physicians were enrolled in the simulation group and 9 in the control group. As a whole, participants improved their total time, time to incision, and suture time from baseline to repeat testing on the inanimate model (P = 0.001, 0.003, <0.001, respectively). Both groups improved their GRS and rOSATS scores significantly (both P < 0.001); however, the GRS overall pass rate was higher in the simulation group compared with the control group (89% vs 44%, P = 0.066). Standard robotic orientation and/or robotic virtual reality simulation improve surgical skills on an inanimate model, although this may be a function of the initial "practice" on the inanimate model and repeat testing of a known task. However, robotic virtual reality simulation training increases GRS pass rates consistent with improved robotic technical skills learned in a virtual reality environment.
Virtual reality in surgery and medicine.
Chinnock, C
1994-01-01
This report documents the state of development of enhanced and virtual reality-based systems in medicine. Virtual reality systems seek to simulate a surgical procedure in a computer-generated world in order to improve training. Enhanced reality systems seek to augment or enhance reality by providing improved imaging alternatives for specific patient data. Virtual reality represents a paradigm shift in the way we teach and evaluate the skills of medical personnel. Driving the development of virtual reality-based simulators is laparoscopic abdominal surgery, where there is a perceived need for better training techniques; within a year, systems will be fielded for second-year residency students. Further refinements over perhaps the next five years should allow surgeons to evaluate and practice new techniques in a simulator before using them on patients. Technical developments are rapidly improving the realism of these machines to an amazing degree, as well as bringing the price down to affordable levels. In the next five years, many new anatomical models, procedures, and skills are likely to become available on simulators. Enhanced reality systems are generally being developed to improve visualization of specific patient data. Three-dimensional (3-D) stereovision systems for endoscopic applications, head-mounted displays, and stereotactic image navigation systems are being fielded now, with neurosurgery and laparoscopic surgery being major driving influences. Over perhaps the next five years, enhanced and virtual reality systems are likely to merge. This will permit patient-specific images to be used on virtual reality simulators or computer-generated landscapes to be input into surgical visualization instruments. Percolating all around these activities are developments in robotics and telesurgery. An advanced information infrastructure eventually will permit remote physicians to share video, audio, medical records, and imaging data with local physicians in real time. Surgical robots are likely to be deployed for specific tasks in the operating room (OR) and to support telesurgery applications. Technical developments in robotics and motion control are key components of many virtual reality systems. Since almost all of the virtual reality and enhanced reality systems will be digitally based, they are also capable of being put "on-line" for tele-training, consulting, and even surgery. Advancements in virtual and enhanced reality systems will be driven in part by consumer applications of this technology. Many of the companies that will supply systems for medical applications are also working on commercial products. A big consumer hit can benefit the entire industry by increasing volumes and bringing down costs.(ABSTRACT TRUNCATED AT 400 WORDS)
Hung, Andrew J; Shah, Swar H; Dalag, Leonard; Shin, Daniel; Gill, Inderbir S
2015-08-01
We developed a novel procedure specific simulation platform for robotic partial nephrectomy. In this study we prospectively evaluate its face, content, construct and concurrent validity. This hybrid platform features augmented reality and virtual reality. Augmented reality involves 3-dimensional robotic partial nephrectomy surgical videos overlaid with virtual instruments to teach surgical anatomy, technical skills and operative steps. Advanced technical skills are assessed with an embedded full virtual reality renorrhaphy task. Participants were classified as novice (no surgical training, 15), intermediate (less than 100 robotic cases, 13) or expert (100 or more robotic cases, 14) and prospectively assessed. Cohort performance was compared with the Kruskal-Wallis test (construct validity). Post-study questionnaire was used to assess the realism of simulation (face validity) and usefulness for training (content validity). Concurrent validity evaluated correlation between virtual reality renorrhaphy task and a live porcine robotic partial nephrectomy performance (Spearman's analysis). Experts rated the augmented reality content as realistic (median 8/10) and helpful for resident/fellow training (8.0-8.2/10). Experts rated the platform highly for teaching anatomy (9/10) and operative steps (8.5/10) but moderately for technical skills (7.5/10). Experts and intermediates outperformed novices (construct validity) in efficiency (p=0.0002) and accuracy (p=0.002). For virtual reality renorrhaphy, experts outperformed intermediates on GEARS metrics (p=0.002). Virtual reality renorrhaphy and in vivo porcine robotic partial nephrectomy performance correlated significantly (r=0.8, p <0.0001) (concurrent validity). This augmented reality simulation platform displayed face, content and construct validity. Performance in the procedure specific virtual reality task correlated highly with a porcine model (concurrent validity). Future efforts will integrate procedure specific virtual reality tasks and their global assessment. Copyright © 2015 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.
Application of Virtual, Augmented, and Mixed Reality to Urology.
Hamacher, Alaric; Kim, Su Jin; Cho, Sung Tae; Pardeshi, Sunil; Lee, Seung Hyun; Eun, Sung-Jong; Whangbo, Taeg Keun
2016-09-01
Recent developments in virtual, augmented, and mixed reality have introduced a considerable number of new devices into the consumer market. This momentum is also affecting the medical and health care sector. Although many of the theoretical and practical foundations of virtual reality (VR) were already researched and experienced in the 1980s, the vastly improved features of displays, sensors, interactivity, and computing power currently available in devices offer a new field of applications to the medical sector and also to urology in particular. The purpose of this review article is to review the extent to which VR technology has already influenced certain aspects of medicine, the applications that are currently in use in urology, and the future development trends that could be expected.
Application of Virtual, Augmented, and Mixed Reality to Urology
2016-01-01
Recent developments in virtual, augmented, and mixed reality have introduced a considerable number of new devices into the consumer market. This momentum is also affecting the medical and health care sector. Although many of the theoretical and practical foundations of virtual reality (VR) were already researched and experienced in the 1980s, the vastly improved features of displays, sensors, interactivity, and computing power currently available in devices offer a new field of applications to the medical sector and also to urology in particular. The purpose of this review article is to review the extent to which VR technology has already influenced certain aspects of medicine, the applications that are currently in use in urology, and the future development trends that could be expected. PMID:27706017
Surgical simulation: a urological perspective.
Wignall, Geoffrey R; Denstedt, John D; Preminger, Glenn M; Cadeddu, Jeffrey A; Pearle, Margaret S; Sweet, Robert M; McDougall, Elspeth M
2008-05-01
Surgical education is changing rapidly as several factors including budget constraints and medicolegal concerns limit opportunities for urological trainees. New methods of skills training such as low fidelity bench trainers and virtual reality simulators offer new avenues for surgical education. In addition, surgical simulation has the potential to allow practicing surgeons to develop new skills and maintain those they already possess. We provide a review of the background, current status and future directions of surgical simulators as they pertain to urology. We performed a literature review and an overview of surgical simulation in urology. Surgical simulators are in various stages of development and validation. Several simulators have undergone extensive validation studies and are in use in surgical curricula. While virtual reality simulators offer the potential to more closely mimic reality and present entire operations, low fidelity simulators remain useful in skills training, particularly for novices and junior trainees. Surgical simulation remains in its infancy. However, the potential to shorten learning curves for difficult techniques and practice surgery without risk to patients continues to drive the development of increasingly more advanced and realistic models. Surgical simulation is an exciting area of surgical education. The future is bright as advancements in computing and graphical capabilities offer new innovations in simulator technology. Simulators must continue to undergo rigorous validation studies to ensure that time spent by trainees on bench trainers and virtual reality simulators will translate into improved surgical skills in the operating room.
A review of virtual reality based training simulators for orthopaedic surgery.
Vaughan, Neil; Dubey, Venketesh N; Wainwright, Thomas W; Middleton, Robert G
2016-02-01
This review presents current virtual reality based training simulators for hip, knee and other orthopaedic surgery, including elective and trauma surgical procedures. There have not been any reviews focussing on hip and knee orthopaedic simulators. A comparison of existing simulator features is provided to identify what is missing and what is required to improve upon current simulators. In total 11 hip replacements pre-operative planning tools were analysed, plus 9 hip trauma fracture training simulators. Additionally 9 knee arthroscopy simulators and 8 other orthopaedic simulators were included for comparison. The findings are that for orthopaedic surgery simulators in general, there is increasing use of patient-specific virtual models which reduce the learning curve. Modelling is also being used for patient-specific implant design and manufacture. Simulators are being increasingly validated for assessment as well as training. There are very few training simulators available for hip replacement, yet more advanced virtual reality is being used for other procedures such as hip trauma and drilling. Training simulators for hip replacement and orthopaedic surgery in general lag behind other surgical procedures for which virtual reality has become more common. Further developments are required to bring hip replacement training simulation up to date with other procedures. This suggests there is a gap in the market for a new high fidelity hip replacement and resurfacing training simulator. Copyright © 2015 IPEM. Published by Elsevier Ltd. All rights reserved.
Surgery applications of virtual reality
NASA Technical Reports Server (NTRS)
Rosen, Joseph
1994-01-01
Virtual reality is a computer-generated technology which allows information to be displayed in a simulated, bus lifelike, environment. In this simulated 'world', users can move and interact as if they were actually a part of that world. This new technology will be useful in many different fields, including the field of surgery. Virtual reality systems can be used to teach surgical anatomy, diagnose surgical problems, plan operations, simulate and perform surgical procedures (telesurgery), and predict the outcomes of surgery. The authors of this paper describe the basic components of a virtual reality surgical system. These components include: the virtual world, the virtual tools, the anatomical model, the software platform, the host computer, the interface, and the head-coupled display. In the chapter they also review the progress towards using virtual reality for surgical training, planning, telesurgery, and predicting outcomes. Finally, the authors present a training system being developed for the practice of new procedures in abdominal surgery.
NASA Astrophysics Data System (ADS)
Demir, I.
2015-12-01
Recent developments in internet technologies make it possible to manage and visualize large data on the web. Novel visualization techniques and interactive user interfaces allow users to create realistic environments, and interact with data to gain insight from simulations and environmental observations. This presentation showcase information communication interfaces, games, and virtual and immersive reality applications for supporting teaching and learning of concepts in atmospheric and hydrological sciences. The information communication platforms utilizes latest web technologies and allow accessing and visualizing large scale data on the web. The simulation system is a web-based 3D interactive learning environment for teaching hydrological and atmospheric processes and concepts. The simulation systems provides a visually striking platform with realistic terrain and weather information, and water simulation. The web-based simulation system provides an environment for students to learn about the earth science processes, and effects of development and human activity on the terrain. Users can access the system in three visualization modes including virtual reality, augmented reality, and immersive reality using heads-up display. The system provides various scenarios customized to fit the age and education level of various users.
Reality Check: Are We Truly Preparing Our Students for Interprofessional Collaborative Practice?
Salfi, Jenn; Mohaupt, Jennifer; Patterson, Christine; Allen, Dianne
2015-06-01
Many academic settings offer interprofessional education (IPE) experiences that are of short duration and situated in safe, controlled environments such as classrooms or simulation labs. The purpose of this study was to examine the effects of a 10-week IPE strategy that was incorporated into the final clinical practicum of a BScN program. A mixed methods design was chosen, in the belief that qualitative data would help explain quantitative data from pre-test/post-test design (n = 268). Quantitative results revealed that participants disagreed more with statements on interprofessional collaboration (IPC) after completion of the strategy (p = 0.00). Qualitative findings reinforced these results, revealing a theme of common sense is not so common when it comes to IPC in the health-care setting. When student nurses are being prepared for IPC, IPE strategies should be as "real" as possible, with exposure to some of the realities of interprofessional team functioning. Copyright© by Ingram School of Nursing, McGill University.
ERIC Educational Resources Information Center
Wang, Hung-Yuan; Duh, Henry Been-Lirn; Li, Nai; Lin, Tzung-Jin; Tsai, Chin-Chung
2014-01-01
The purpose of this study is to investigate and compare students' collaborative inquiry learning behaviors and their behavior patterns in an augmented reality (AR) simulation system and a traditional 2D simulation system. Their inquiry and discussion processes were analyzed by content analysis and lag sequential analysis (LSA). Forty…
Understanding Mixed Code and Classroom Code-Switching: Myths and Realities
ERIC Educational Resources Information Center
Li, David C. S.
2008-01-01
Background: Cantonese-English mixed code is ubiquitous in Hong Kong society, and yet using mixed code is widely perceived as improper. This paper presents evidence of mixed code being socially constructed as bad language behavior. In the education domain, an EDB guideline bans mixed code in the classroom. Teachers are encouraged to stick to…
NASA Astrophysics Data System (ADS)
Bernardet, Ulysses; Bermúdez I Badia, Sergi; Duff, Armin; Inderbitzin, Martin; Le Groux, Sylvain; Manzolli, Jônatas; Mathews, Zenon; Mura, Anna; Väljamäe, Aleksander; Verschure, Paul F. M. J.
The eXperience Induction Machine (XIM) is one of the most advanced mixed-reality spaces available today. XIM is an immersive space that consists of physical sensors and effectors and which is conceptualized as a general-purpose infrastructure for research in the field of psychology and human-artifact interaction. In this chapter, we set out the epistemological rational behind XIM by putting the installation in the context of psychological research. The design and implementation of XIM are based on principles and technologies of neuromorphic control. We give a detailed description of the hardware infrastructure and software architecture, including the logic of the overall behavioral control. To illustrate the approach toward psychological experimentation, we discuss a number of practical applications of XIM. These include the so-called, persistent virtual community, the application in the research of the relationship between human experience and multi-modal stimulation, and an investigation of a mixed-reality social interaction paradigm.
Linte, Cristian A; Davenport, Katherine P; Cleary, Kevin; Peters, Craig; Vosburgh, Kirby G; Navab, Nassir; Edwards, Philip Eddie; Jannin, Pierre; Peters, Terry M; Holmes, David R; Robb, Richard A
2013-03-01
Mixed reality environments for medical applications have been explored and developed over the past three decades in an effort to enhance the clinician's view of anatomy and facilitate the performance of minimally invasive procedures. These environments must faithfully represent the real surgical field and require seamless integration of pre- and intra-operative imaging, surgical instrument tracking, and display technology into a common framework centered around and registered to the patient. However, in spite of their reported benefits, few mixed reality environments have been successfully translated into clinical use. Several challenges that contribute to the difficulty in integrating such environments into clinical practice are presented here and discussed in terms of both technical and clinical limitations. This article should raise awareness among both developers and end-users toward facilitating a greater application of such environments in the surgical practice of the future. Copyright © 2013 Elsevier Ltd. All rights reserved.
Higuera-Trujillo, Juan Luis; López-Tarruella Maldonado, Juan; Llinares Millán, Carmen
2017-11-01
Psychological research into human factors frequently uses simulations to study the relationship between human behaviour and the environment. Their validity depends on their similarity with the physical environments. This paper aims to validate three environmental-simulation display formats: photographs, 360° panoramas, and virtual reality. To do this we compared the psychological and physiological responses evoked by simulated environments set-ups to those from a physical environment setup; we also assessed the users' sense of presence. Analysis show that 360° panoramas offer the closest to reality results according to the participants' psychological responses, and virtual reality according to the physiological responses. Correlations between the feeling of presence and physiological and other psychological responses were also observed. These results may be of interest to researchers using environmental-simulation technologies currently available in order to replicate the experience of physical environments. Copyright © 2017 Elsevier Ltd. All rights reserved.
Capturing differences in dental training using a virtual reality simulator.
Mirghani, I; Mushtaq, F; Allsop, M J; Al-Saud, L M; Tickhill, N; Potter, C; Keeling, A; Mon-Williams, M A; Manogue, M
2018-02-01
Virtual reality simulators are becoming increasingly popular in dental schools across the world. But to what extent do these systems reflect actual dental ability? Addressing this question of construct validity is a fundamental step that is necessary before these systems can be fully integrated into a dental school's curriculum. In this study, we examined the sensitivity of the Simodont (a haptic virtual reality dental simulator) to differences in dental training experience. Two hundred and eighty-nine participants, with 1 (n = 92), 3 (n = 79), 4 (n = 57) and 5 (n = 61) years of dental training, performed a series of tasks upon their first exposure to the simulator. We found statistically significant differences between novice (Year 1) and experienced dental trainees (operationalised as 3 or more years of training), but no differences between performance of experienced trainees with varying levels of experience. This work represents a crucial first step in understanding the value of haptic virtual reality simulators in dental education. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Jensen, Katrine; Bjerrum, Flemming; Hansen, Henrik Jessen; Petersen, René Horsleben; Pedersen, Jesper Holst; Konge, Lars
2015-10-01
The aims of this study were to develop virtual reality simulation software for video-assisted thoracic surgery (VATS) lobectomy, to explore the opinions of thoracic surgeons concerning the VATS lobectomy simulator and to test the validity of the simulator metrics. Experienced VATS surgeons worked with computer specialists to develop a VATS lobectomy software for a virtual reality simulator. Thoracic surgeons with different degrees of experience in VATS were enrolled at the 22nd meeting of the European Society of Thoracic Surgeons (ESTS) held in Copenhagen in June 2014. The surgeons were divided according to the number of performed VATS lobectomies: novices (0 VATS lobectomies), intermediates (1-49 VATS lobectomies) and experienced (>50 VATS lobectomies). The participants all performed a lobectomy of a right upper lobe on the simulator and answered a questionnaire regarding content validity. Metrics were compared between the three groups. We succeeded in developing the first version of a virtual reality VATS lobectomy simulator. A total of 103 thoracic surgeons completed the simulated lobectomy and were distributed as follows: novices n = 32, intermediates n = 45 and experienced n = 26. All groups rated the overall user realism of the VATS lobectomy scenario to a median of 5 on a scale 1-7, with 7 being the best score. The experienced surgeons found the graphics and movements realistic and rated the scenario high in terms of usefulness as a training tool for novice and intermediate experienced thoracic surgeons, but not very useful as a training tool for experienced surgeons. The metric scores were not statistically significant between groups. This is the first study to describe a commercially available virtual reality simulator for a VATS lobectomy. More than 100 thoracic surgeons found the simulator realistic, and hence it showed good content validity. However, none of the built-in simulator metrics could significantly distinguish between novice, intermediate experienced and experienced surgeons, and further development of the simulator software is necessary to develop valid metrics. © The Author 2015. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.
Banaszek, Daniel; You, Daniel; Chang, Justues; Pickell, Michael; Hesse, Daniel; Hopman, Wilma M; Borschneck, Daniel; Bardana, Davide
2017-04-05
Work-hour restrictions as set forth by the Accreditation Council for Graduate Medical Education (ACGME) and other governing bodies have forced training programs to seek out new learning tools to accelerate acquisition of both medical skills and knowledge. As a result, competency-based training has become an important part of residency training. The purpose of this study was to directly compare arthroscopic skill acquisition in both high-fidelity and low-fidelity simulator models and to assess skill transfer from either modality to a cadaveric specimen, simulating intraoperative conditions. Forty surgical novices (pre-clerkship-level medical students) voluntarily participated in this trial. Baseline demographic data, as well as data on arthroscopic knowledge and skill, were collected prior to training. Subjects were randomized to 5-week independent training sessions on a high-fidelity virtual reality arthroscopic simulator or on a bench-top arthroscopic setup, or to an untrained control group. Post-training, subjects were asked to perform a diagnostic arthroscopy on both simulators and in a simulated intraoperative environment on a cadaveric knee. A more difficult surprise task was also incorporated to evaluate skill transfer. Subjects were evaluated using the Global Rating Scale (GRS), the 14-point arthroscopic checklist, and a timer to determine procedural efficiency (time per task). Secondary outcomes focused on objective measures of virtual reality simulator motion analysis. Trainees on both simulators demonstrated a significant improvement (p < 0.05) in arthroscopic skills compared with baseline scores and untrained controls, both in and ex vivo. The virtual reality simulation group consistently outperformed the bench-top model group in the diagnostic arthroscopy crossover tests and in the simulated cadaveric setup. Furthermore, the virtual reality group demonstrated superior skill transfer in the surprise skill transfer task. Both high-fidelity and low-fidelity simulation trainings were effective in arthroscopic skill acquisition. High-fidelity virtual reality simulation was superior to bench-top simulation in the acquisition of arthroscopic skills, both in the laboratory and in vivo. Further clinical investigation is needed to interpret the importance of these results.
Augmented Reality Simulations on Handheld Computers
ERIC Educational Resources Information Center
Squire, Kurt; Klopfer, Eric
2007-01-01
Advancements in handheld computing, particularly its portability, social interactivity, context sensitivity, connectivity, and individuality, open new opportunities for immersive learning environments. This article articulates the pedagogical potential of augmented reality simulations in environmental engineering education by immersing students in…
Intercepting real and simulated falling objects: what is the difference?
Baurès, Robin; Benguigui, Nicolas; Amorim, Michel-Ange; Hecht, Heiko
2009-10-30
The use of virtual reality is nowadays common in many studies in the field of human perception and movement control, particularly in interceptive actions. However, the ecological validity of the simulation is often taken for granted without having been formally established. If participants were to perceive the real situation and its virtual equivalent in a different fashion, the generalization of the results obtained in virtual reality to real life would be highly questionable. We tested the ecological validity of virtual reality in this context by comparing the timing of interceptive actions based upon actually falling objects and their simulated counterparts. The results show very limited differences as a function of whether participants were confronted with a real ball or a simulation thereof. And when present, such differences were limited to the first trial only. This result validates the use of virtual reality when studying interceptive actions of accelerated stimuli.
Virtual reality training in laparoscopic surgery: A systematic review & meta-analysis.
Alaker, Medhat; Wynn, Greg R; Arulampalam, Tan
2016-05-01
Laparoscopic surgery requires a different and sometimes more complex skill set than does open surgery. Shortened working hours, less training times, and patient safety issues necessitates that these skills need to be acquired outside the operating room. Virtual reality simulation in laparoscopic surgery is a growing field, and many studies have been published to determine its effectiveness. This systematic review and meta-analysis aims to evaluate virtual reality simulation in laparoscopic abdominal surgery in comparison to other simulation models and to no training. A systematic literature search was carried out until January 2014 in full adherence to PRISMA guidelines. All randomised controlled studies comparing virtual reality training to other models of training or to no training were included. Only studies utilizing objective and validated assessment tools were included. Thirty one randomised controlled trials that compare virtual reality training to other models of training or to no training were included. The results of the meta-analysis showed that virtual reality simulation is significantly more effective than video trainers, and at least as good as box trainers. The use of Proficiency-based VR training, under supervision with prompt instructions and feedback, and the use of haptic feedback, has proven to be the most effective way of delivering the virtual reality training. The incorporation of virtual reality training into surgical training curricula is now necessary. A unified platform of training needs to be established. Further studies to assess the impact on patient outcomes and on hospital costs are necessary. (PROSPERO Registration number: CRD42014010030). Copyright © 2016 IJS Publishing Group Ltd. Published by Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Keskitalo, Tuulikki
2012-01-01
Expectations for simulations in healthcare education are high; however, little is known about healthcare students' expectations of the learning process in virtual reality (VR) and simulation-based learning environments (SBLEs). This research aims to describe first-year healthcare students' (N=97) expectations regarding teaching, studying, and…
CAVE2: a hybrid reality environment for immersive simulation and information analysis
NASA Astrophysics Data System (ADS)
Febretti, Alessandro; Nishimoto, Arthur; Thigpen, Terrance; Talandis, Jonas; Long, Lance; Pirtle, J. D.; Peterka, Tom; Verlo, Alan; Brown, Maxine; Plepys, Dana; Sandin, Dan; Renambot, Luc; Johnson, Andrew; Leigh, Jason
2013-03-01
Hybrid Reality Environments represent a new kind of visualization spaces that blur the line between virtual environments and high resolution tiled display walls. This paper outlines the design and implementation of the CAVE2TM Hybrid Reality Environment. CAVE2 is the world's first near-seamless flat-panel-based, surround-screen immersive system. Unique to CAVE2 is that it will enable users to simultaneously view both 2D and 3D information, providing more flexibility for mixed media applications. CAVE2 is a cylindrical system of 24 feet in diameter and 8 feet tall, and consists of 72 near-seamless, off-axisoptimized passive stereo LCD panels, creating an approximately 320 degree panoramic environment for displaying information at 37 Megapixels (in stereoscopic 3D) or 74 Megapixels in 2D and at a horizontal visual acuity of 20/20. Custom LCD panels with shifted polarizers were built so the images in the top and bottom rows of LCDs are optimized for vertical off-center viewing- allowing viewers to come closer to the displays while minimizing ghosting. CAVE2 is designed to support multiple operating modes. In the Fully Immersive mode, the entire room can be dedicated to one virtual simulation. In 2D model, the room can operate like a traditional tiled display wall enabling users to work with large numbers of documents at the same time. In the Hybrid mode, a mixture of both 2D and 3D applications can be simultaneously supported. The ability to treat immersive work spaces in this Hybrid way has never been achieved before, and leverages the special abilities of CAVE2 to enable researchers to seamlessly interact with large collections of 2D and 3D data. To realize this hybrid ability, we merged the Scalable Adaptive Graphics Environment (SAGE) - a system for supporting 2D tiled displays, with Omegalib - a virtual reality middleware supporting OpenGL, OpenSceneGraph and Vtk applications.
A pilot study of surgical training using a virtual robotic surgery simulator.
Tergas, Ana I; Sheth, Sangini B; Green, Isabel C; Giuntoli, Robert L; Winder, Abigail D; Fader, Amanda N
2013-01-01
Our objectives were to compare the utility of learning a suturing task on the virtual reality da Vinci Skills Simulator versus the da Vinci Surgical System dry laboratory platform and to assess user satisfaction among novice robotic surgeons. Medical trainees were enrolled prospectively; one group trained on the virtual reality simulator, and the other group trained on the da Vinci dry laboratory platform. Trainees received pretesting and post-testing on the dry laboratory platform. Participants then completed an anonymous online user experience and satisfaction survey. We enrolled 20 participants. Mean pretest completion times did not significantly differ between the 2 groups. Training with either platform was associated with a similar decrease in mean time to completion (simulator platform group, 64.9 seconds [P = .04]; dry laboratory platform group, 63.9 seconds [P < .01]). Most participants (58%) preferred the virtual reality platform. The majority found the training "definitely useful" in improving robotic surgical skills (mean, 4.6) and would attend future training sessions (mean, 4.5). Training on the virtual reality robotic simulator or the dry laboratory robotic surgery platform resulted in significant improvements in time to completion and economy of motion for novice robotic surgeons. Although there was a perception that both simulators improved performance, there was a preference for the virtual reality simulator. Benefits unique to the simulator platform include autonomy of use, computerized performance feedback, and ease of setup. These features may facilitate more efficient and sophisticated simulation training above that of the conventional dry laboratory platform, without loss of efficacy.
Lemole, G Michael; Banerjee, P Pat; Luciano, Cristian; Neckrysh, Sergey; Charbel, Fady T
2007-07-01
Mastery of the neurosurgical skill set involves many hours of supervised intraoperative training. Convergence of political, economic, and social forces has limited neurosurgical resident operative exposure. There is need to develop realistic neurosurgical simulations that reproduce the operative experience, unrestricted by time and patient safety constraints. Computer-based, virtual reality platforms offer just such a possibility. The combination of virtual reality with dynamic, three-dimensional stereoscopic visualization, and haptic feedback technologies makes realistic procedural simulation possible. Most neurosurgical procedures can be conceptualized and segmented into critical task components, which can be simulated independently or in conjunction with other modules to recreate the experience of a complex neurosurgical procedure. We use the ImmersiveTouch (ImmersiveTouch, Inc., Chicago, IL) virtual reality platform, developed at the University of Illinois at Chicago, to simulate the task of ventriculostomy catheter placement as a proof-of-concept. Computed tomographic data are used to create a virtual anatomic volume. Haptic feedback offers simulated resistance and relaxation with passage of a virtual three-dimensional ventriculostomy catheter through the brain parenchyma into the ventricle. A dynamic three-dimensional graphical interface renders changing visual perspective as the user's head moves. The simulation platform was found to have realistic visual, tactile, and handling characteristics, as assessed by neurosurgical faculty, residents, and medical students. We have developed a realistic, haptics-based virtual reality simulator for neurosurgical education. Our first module recreates a critical component of the ventriculostomy placement task. This approach to task simulation can be assembled in a modular manner to reproduce entire neurosurgical procedures.
Immersive Education, an Annotated Webliography
ERIC Educational Resources Information Center
Pricer, Wayne F.
2011-01-01
In this second installment of a two-part feature on immersive education a webliography will provide resources discussing the use of various types of computer simulations including: (a) augmented reality, (b) virtual reality programs, (c) gaming resources for teaching with technology, (d) virtual reality lab resources, (e) virtual reality standards…
Virtual Reality in Schools: The Ultimate Educational Technology.
ERIC Educational Resources Information Center
Reid, Robert D.; Sykes, Wylmarie
1999-01-01
Discusses the use of virtual reality as an educational tool. Highlights include examples of virtual reality in public schools that lead to a more active learning process, simulated environments, integrating virtual reality into any curriculum, benefits to teachers and students, and overcoming barriers to implementation. (LRW)
Burden, Christy; Appleyard, Tracy-Louise; Angouri, Jo; Draycott, Timothy J; McDermott, Leanne; Fox, Robert
2013-10-01
Virtual-reality (VR) training has been demonstrated to improve laparoscopic surgical skills in the operating theatre. The incorporation of laparoscopic VR simulation into surgical training in gynaecology remains a significant educational challenge. We undertook a pilot study to assess the feasibility of the implementation of a laparoscopic VR simulation programme into a single unit. An observational study with qualitative analysis of semi-structured group interviews. Trainees in gynaecology (n=9) were scheduled to undertake a pre-validated structured training programme on a laparoscopic VR simulator (LapSim(®)) over six months. The main outcome measure was the trainees' progress through the training modules in six months. Trainees' perceptions of the feasibility and barriers to the implementation of laparoscopic VR training were assessed in focus groups after training. Sixty-six percent of participants completed six of ten modules. Overall, feedback from the focus groups was positive; trainees felt training improved their dexterity, hand-eye co-ordination and confidence in theatre. Negative aspects included lack of haptic feedback, and facility for laparoscopic port placement training. Time restriction emerged as the main barrier to training. Despite positive perceptions of training, no trainee completed more than two-thirds of the modules of a self-directed laparoscopic VR training programme. Suggested improvements to the integration of future laparoscopic VR training include an additional theoretical component with a fuller understanding of benefits of VR training, and scheduled supervision. Ultimately, the success of a laparoscopic VR simulation training programme might only be improved if it is a mandatory component of the curriculum, together with dedicated time for training. Future multi-centred implementation studies of validated laparoscopic VR curricula are required. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
A systematic review of phacoemulsification cataract surgery in virtual reality simulators.
Lam, Chee Kiang; Sundaraj, Kenneth; Sulaiman, Mohd Nazri
2013-01-01
The aim of this study was to review the capability of virtual reality simulators in the application of phacoemulsification cataract surgery training. Our review included the scientific publications on cataract surgery simulators that had been developed by different groups of researchers along with commercialized surgical training products, such as EYESI® and PhacoVision®. The review covers the simulation of the main cataract surgery procedures, i.e., corneal incision, capsulorrhexis, phacosculpting, and intraocular lens implantation in various virtual reality surgery simulators. Haptics realism and visual realism of the procedures are the main elements in imitating the actual surgical environment. The involvement of ophthalmology in research on virtual reality since the early 1990s has made a great impact on the development of surgical simulators. Most of the latest cataract surgery training systems are able to offer high fidelity in visual feedback and haptics feedback, but visual realism, such as the rotational movements of an eyeball with response to the force applied by surgical instruments, is still lacking in some of them. The assessment of the surgical tasks carried out on the simulators showed a significant difference in the performance before and after the training.
Habasaki, Junko; Ngai, Kia L
2007-09-07
When more than two kinds of mobile ions are mixed in ionic conducting glasses and crystals, there is a non-linear decrease of the transport coefficients of either type of ion. This phenomenon is known as the mixed mobile ion effect or Mixed Alkali Effect (MAE), and remains an unsolved problem. We use molecular dynamics simulation to study the complex ion dynamics in ionically conducting glasses including the MAE. In the mixed alkali lithium-potassium silicate glasses and related systems, a distinct part of the van Hove functions reveals that jumps from one kind of site to another are suppressed. Although, consensus for the existence of preferential jump paths for each kind of mobile ions seems to have been reached amongst researchers, the role of network formers and the number of unoccupied ion sites remain controversial in explaining the MAE. In principle, these factors when incorporated into a theory can generate the MAE, but in reality they are not essential for a viable explanation of the ion dynamics and the MAE. Instead, dynamical heterogeneity and "cooperativity blockage" originating from ion-ion interaction and correlation are fundamental for the observed ion dynamics and the MAE. Suppression of long range motion with increased back-correlated motions is shown to be a cause of the large decrease of the diffusivity especially in dilute foreign alkali regions. Support for our conclusion also comes from the fact that these features of ion dynamics are common to other ionic conductors, which have no glassy networks, and yet they all exhibit the MAE.
Virtual Reality: An Instructional Medium for Visual-Spatial Tasks.
ERIC Educational Resources Information Center
Regian, J. Wesley; And Others
1992-01-01
Describes an empirical exploration of the instructional potential of virtual reality as an interface for simulation-based training. Shows that subjects learned spatial-procedural and spatial-navigational skills in virtual reality. (SR)
NASA Astrophysics Data System (ADS)
Wozniak, Peter; Vauderwange, Oliver; Mandal, Avikarsha; Javahiraly, Nicolas; Curticapean, Dan
2016-09-01
Practical exercises are a crucial part of many curricula. Even simple exercises can improve the understanding of the underlying subject. Most experimental setups require special hardware. To carry out e. g. a lens experiments the students need access to an optical bench, various lenses, light sources, apertures and a screen. In our previous publication we demonstrated the use of augmented reality visualization techniques in order to let the students prepare with a simulated experimental setup. Within the context of our intended blended learning concept we want to utilize augmented or virtual reality techniques for stationary laboratory exercises. Unlike applications running on mobile devices, stationary setups can be extended more easily with additional interfaces and thus allow for more complex interactions and simulations in virtual reality (VR) and augmented reality (AR). The most significant difference is the possibility to allow interactions beyond touching a screen. The LEAP Motion controller is a small inexpensive device that allows for the tracking of the user's hands and fingers in three dimensions. It is conceivable to allow the user to interact with the simulation's virtual elements by the user's very hand position, movement and gesture. In this paper we evaluate possible applications of the LEAP Motion controller for simulated experiments in augmented and virtual reality. We pay particular attention to the devices strengths and weaknesses and want to point out useful and less useful application scenarios.
Djukic, Tijana; Mandic, Vesna; Filipovic, Nenad
2013-12-01
Medical education, training and preoperative diagnostics can be drastically improved with advanced technologies, such as virtual reality. The method proposed in this paper enables medical doctors and students to visualize and manipulate three-dimensional models created from CT or MRI scans, and also to analyze the results of fluid flow simulations. Simulation of fluid flow using the finite element method is performed, in order to compute the shear stress on the artery walls. The simulation of motion through the artery is also enabled. The virtual reality system proposed here could shorten the length of training programs and make the education process more effective. © 2013 Published by Elsevier Ltd.
Thomsen, Ann Sofia Skou; Bach-Holm, Daniella; Kjærbo, Hadi; Højgaard-Olsen, Klavs; Subhi, Yousif; Saleh, George M; Park, Yoon Soo; la Cour, Morten; Konge, Lars
2017-04-01
To investigate the effect of virtual reality proficiency-based training on actual cataract surgery performance. The secondary purpose of the study was to define which surgeons benefit from virtual reality training. Multicenter masked clinical trial. Eighteen cataract surgeons with different levels of experience. Cataract surgical training on a virtual reality simulator (EyeSi) until a proficiency-based test was passed. Technical performance in the operating room (OR) assessed by 3 independent, masked raters using a previously validated task-specific assessment tool for cataract surgery (Objective Structured Assessment of Cataract Surgical Skill). Three surgeries before and 3 surgeries after the virtual reality training were video-recorded, anonymized, and presented to the raters in random order. Novices (non-independently operating surgeons) and surgeons having performed fewer than 75 independent cataract surgeries showed significant improvements in the OR-32% and 38%, respectively-after virtual reality training (P = 0.008 and P = 0.018). More experienced cataract surgeons did not benefit from simulator training. The reliability of the assessments was high with a generalizability coefficient of 0.92 and 0.86 before and after the virtual reality training, respectively. Clinically relevant cataract surgical skills can be improved by proficiency-based training on a virtual reality simulator. Novices as well as surgeons with an intermediate level of experience showed improvement in OR performance score. Copyright © 2017 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
Lau, Kung Wong; Lee, Pui Yuen
2015-01-01
This paper discusses the roles of simulation in creativity education and how to apply immersive virtual environments to enhance students' learning experiences in university, through the provision of interactive simulations. An empirical study of a simulated virtual reality was carried out in order to investigate the effectiveness of providing…
2009-09-01
Environmental Medicine USN United States Navy VAE Virtual Air Environment VACP Visual, Auditory, Cognitive, Psychomotor (demand) VR Virtual Reality ...0 .5 m/s. Another useful approach to capturing leg, trunk, whole body, or movement tasks comes from virtual reality - based training research and...referred to as semi-automated forces (SAF). From: http://www.sedris.org/glossary.htm#C_grp. Constructive Models Abstractions from the reality to
NASA Technical Reports Server (NTRS)
1994-01-01
This symposium on measurement and control in robotics included sessions on: (1) rendering, including tactile perception and applied virtual reality; (2) applications in simulated medical procedures and telerobotics; (3) tracking sensors in a virtual environment; (4) displays for virtual reality applications; (5) sensory feedback including a virtual environment application with partial gravity simulation; and (6) applications in education, entertainment, technical writing, and animation.
NASA Astrophysics Data System (ADS)
Demir, I.
2014-12-01
Recent developments in internet technologies make it possible to manage and visualize large data on the web. Novel visualization techniques and interactive user interfaces allow users to create realistic environments, and interact with data to gain insight from simulations and environmental observations. The hydrological simulation system is a web-based 3D interactive learning environment for teaching hydrological processes and concepts. The simulation systems provides a visually striking platform with realistic terrain information, and water simulation. Students can create or load predefined scenarios, control environmental parameters, and evaluate environmental mitigation alternatives. The web-based simulation system provides an environment for students to learn about the hydrological processes (e.g. flooding and flood damage), and effects of development and human activity in the floodplain. The system utilizes latest web technologies and graphics processing unit (GPU) for water simulation and object collisions on the terrain. Users can access the system in three visualization modes including virtual reality, augmented reality, and immersive reality using heads-up display. The system provides various scenarios customized to fit the age and education level of various users. This presentation provides an overview of the web-based flood simulation system, and demonstrates the capabilities of the system for various visualization and interaction modes.
Dunnington, Renee M
2014-01-01
Simulation technology is increasingly being used in nursing education. Previously used primarily for teaching procedural, instrumental, or critical incident types of skills, simulation is now being applied to training related to more dynamic, complex, and interpersonal human contexts. While high fidelity human patient simulators have significantly increased in authenticity, human responses have greater complexity and are qualitatively different than current technology represents. This paper examines the texture of representation by simulation. Through a tracing of historical and contemporary philosophical perspectives on simulation, the nature and limits of the reality of human health responses represented by high fidelity human patient simulation (HF-HPS) are explored. Issues concerning nursing education are raised around the nature of reality represented in HF-HPS. Drawing on Waks, a framework for guiding pedagogical considerations around simulation in nursing education is presented for the ultimate purpose of promoting an educative experience with simulation. © 2013 John Wiley & Sons Ltd.
Ultimate Realities: Deterministic and Evolutionary
Moxley, Roy A
2007-01-01
References to ultimate reality commonly turn up in the behavioral literature as references to determinism. However, this determinism is often difficult to interpret. There are different kinds of determinisms as well as different kinds of ultimate realities for a behaviorist to consider. To clarify some of the issues involved, the views of ultimate realities are treated as falling along a continuum, with extreme views of complete indeterminism and complete determinism at either end and various mixes in between. Doing so brings into play evolutionary realities and the movement from indeterminism to determinism, as in Peirce's evolutionary cosmology. In addition, this framework helps to show how the views of determinism by B. F. Skinner and other behaviorists have shifted over time. PMID:22478489
Challenges to the development of complex virtual reality surgical simulations.
Seymour, N E; Røtnes, J S
2006-11-01
Virtual reality simulation in surgical training has become more widely used and intensely investigated in an effort to develop safer, more efficient, measurable training processes. The development of virtual reality simulation of surgical procedures has begun, but well-described technical obstacles must be overcome to permit varied training in a clinically realistic computer-generated environment. These challenges include development of realistic surgical interfaces and physical objects within the computer-generated environment, modeling of realistic interactions between objects, rendering of the surgical field, and development of signal processing for complex events associated with surgery. Of these, the realistic modeling of tissue objects that are fully responsive to surgical manipulations is the most challenging. Threats to early success include relatively limited resources for development and procurement, as well as smaller potential for return on investment than in other simulation industries that face similar problems. Despite these difficulties, steady progress continues to be made in these areas. If executed properly, virtual reality offers inherent advantages over other training systems in creating a realistic surgical environment and facilitating measurement of surgeon performance. Once developed, complex new virtual reality training devices must be validated for their usefulness in formative training and assessment of skill to be established.
Education about Hallucinations Using an Internet Virtual Reality System: A Qualitative Survey
ERIC Educational Resources Information Center
Yellowlees, Peter M.; Cook, James N.
2006-01-01
Objective: The authors evaluate an Internet virtual reality technology as an education tool about the hallucinations of psychosis. Method: This is a pilot project using Second Life, an Internet-based virtual reality system, in which a virtual reality environment was constructed to simulate the auditory and visual hallucinations of two patients…
D3D augmented reality imaging system: proof of concept in mammography.
Douglas, David B; Petricoin, Emanuel F; Liotta, Lance; Wilson, Eugene
2016-01-01
The purpose of this article is to present images from simulated breast microcalcifications and assess the pattern of the microcalcifications with a technical development called "depth 3-dimensional (D3D) augmented reality". A computer, head display unit, joystick, D3D augmented reality software, and an in-house script of simulated data of breast microcalcifications in a ductal distribution were used. No patient data was used and no statistical analysis was performed. The D3D augmented reality system demonstrated stereoscopic depth perception by presenting a unique image to each eye, focal point convergence, head position tracking, 3D cursor, and joystick fly-through. The D3D augmented reality imaging system offers image viewing with depth perception and focal point convergence. The D3D augmented reality system should be tested to determine its utility in clinical practice.
[Equipment and technology in robotics].
Murphy, Declan; Challacombe, Ben; Nedas, Tim; Elhage, Oussama; Althoefer, Kaspar; Seneviratne, Lakmal; Dasgupta, Prokar
2007-05-01
We review the evolution and current status of robotic equipment and technology in urology. We also describe future developments in the key areas of virtual reality simulation, mechatronics and nanorobotics. The history of robotic technology is reviewed and put into the context of current systems. Experts in the associated fields of nanorobotics, mechatronics and virtual reality simulation simulation review the important future developments in these areas.
Decentralized real-time simulation of forest machines
NASA Astrophysics Data System (ADS)
Freund, Eckhard; Adam, Frank; Hoffmann, Katharina; Rossmann, Juergen; Kraemer, Michael; Schluse, Michael
2000-10-01
To develop realistic forest machine simulators is a demanding task. A useful simulator has to provide a close- to-reality simulation of the forest environment as well as the simulation of the physics of the vehicle. Customers demand a highly realistic three dimensional forestry landscape and the realistic simulation of the complex motion of the vehicle even in rough terrain in order to be able to use the simulator for operator training under close-to- reality conditions. The realistic simulation of the vehicle, especially with the driver's seat mounted on a motion platform, greatly improves the effect of immersion into the virtual reality of a simulated forest and the achievable level of education of the driver. Thus, the connection of the real control devices of forest machines to the simulation system has to be supported, i.e. the real control devices like the joysticks or the board computer system to control the crane, the aggregate etc. Beyond, the fusion of the board computer system and the simulation system is realized by means of sensors, i.e. digital and analog signals. The decentralized system structure allows several virtual reality systems to evaluate and visualize the information of the control devices and the sensors. So, while the driver is practicing, the instructor can immerse into the same virtual forest to monitor the session from his own viewpoint. In this paper, we are describing the realized structure as well as the necessary software and hardware components and application experiences.
Preliminary development of augmented reality systems for spinal surgery
NASA Astrophysics Data System (ADS)
Nguyen, Nhu Q.; Ramjist, Joel M.; Jivraj, Jamil; Jakubovic, Raphael; Deorajh, Ryan; Yang, Victor X. D.
2017-02-01
Surgical navigation has been more actively deployed in open spinal surgeries due to the need for improved precision during procedures. This is increasingly difficult in minimally invasive surgeries due to the lack of visual cues caused by smaller exposure sites, and increases a surgeon's dependence on their knowledge of anatomical landmarks as well as the CT or MRI images. The use of augmented reality (AR) systems and registration technologies in spinal surgeries could allow for improvements to techniques by overlaying a 3D reconstruction of patient anatomy in the surgeon's field of view, creating a mixed reality visualization. The AR system will be capable of projecting the 3D reconstruction onto a field and preliminary object tracking on a phantom. Dimensional accuracy of the mixed media will also be quantified to account for distortions in tracking.
Conversational Simulation in Computer-Assisted Language Learning: Potential and Reality.
ERIC Educational Resources Information Center
Coleman, D. Wells
1988-01-01
Addresses the potential of conversational simulations for computer-assisted language learning (CALL) and reasons why this potential is largely untapped. Topics discussed include artificial intelligence; microworlds; parsing; realism versus reality in computer software; intelligent tutoring systems; and criteria to clarify what kinds of CALL…
A 3-D mixed-reality system for stereoscopic visualization of medical dataset.
Ferrari, Vincenzo; Megali, Giuseppe; Troia, Elena; Pietrabissa, Andrea; Mosca, Franco
2009-11-01
We developed a simple, light, and cheap 3-D visualization device based on mixed reality that can be used by physicians to see preoperative radiological exams in a natural way. The system allows the user to see stereoscopic "augmented images," which are created by mixing 3-D virtual models of anatomies obtained by processing preoperative volumetric radiological images (computed tomography or MRI) with real patient live images, grabbed by means of cameras. The interface of the system consists of a head-mounted display equipped with two high-definition cameras. Cameras are mounted in correspondence of the user's eyes and allow one to grab live images of the patient with the same point of view of the user. The system does not use any external tracker to detect movements of the user or the patient. The movements of the user's head and the alignment of virtual patient with the real one are done using machine vision methods applied on pairs of live images. Experimental results, concerning frame rate and alignment precision between virtual and real patient, demonstrate that machine vision methods used for localization are appropriate for the specific application and that systems based on stereoscopic mixed reality are feasible and can be proficiently adopted in clinical practice.
Virtual reality simulator training for laparoscopic colectomy: what metrics have construct validity?
Shanmugan, Skandan; Leblanc, Fabien; Senagore, Anthony J; Ellis, C Neal; Stein, Sharon L; Khan, Sadaf; Delaney, Conor P; Champagne, Bradley J
2014-02-01
Virtual reality simulation for laparoscopic colectomy has been used for training of surgical residents and has been considered as a model for technical skills assessment of board-eligible colorectal surgeons. However, construct validity (the ability to distinguish between skill levels) must be confirmed before widespread implementation. This study was designed to specifically determine which metrics for laparoscopic sigmoid colectomy have evidence of construct validity. General surgeons that had performed fewer than 30 laparoscopic colon resections and laparoscopic colorectal experts (>200 laparoscopic colon resections) performed laparoscopic sigmoid colectomy on the LAP Mentor model. All participants received a 15-minute instructional warm-up and had never used the simulator before the study. Performance was then compared between each group for 21 metrics (procedural, 14; intraoperative errors, 7) to determine specifically which measurements demonstrate construct validity. Performance was compared with the Mann-Whitney U-test (p < 0.05 was significant). Fifty-three surgeons; 29 general surgeons, and 24 colorectal surgeons enrolled in the study. The virtual reality simulators for laparoscopic sigmoid colectomy demonstrated construct validity for 8 of 14 procedural metrics by distinguishing levels of surgical experience (p < 0.05). The most discriminatory procedural metrics (p < 0.01) favoring experts were reduced instrument path length, accuracy of the peritoneal/medial mobilization, and dissection of the inferior mesenteric artery. Intraoperative errors were not discriminatory for most metrics and favored general surgeons for colonic wall injury (general surgeons, 0.7; colorectal surgeons, 3.5; p = 0.045). Individual variability within the general surgeon and colorectal surgeon groups was not accounted for. The virtual reality simulators for laparoscopic sigmoid colectomy demonstrated construct validity for 8 procedure-specific metrics. However, using virtual reality simulator metrics to detect intraoperative errors did not discriminate between groups. If the virtual reality simulator continues to be used for the technical assessment of trainees and board-eligible surgeons, the evaluation of performance should be limited to procedural metrics.
Virtual reality cerebral aneurysm clipping simulation with real-time haptic feedback.
Alaraj, Ali; Luciano, Cristian J; Bailey, Daniel P; Elsenousi, Abdussalam; Roitberg, Ben Z; Bernardo, Antonio; Banerjee, P Pat; Charbel, Fady T
2015-03-01
With the decrease in the number of cerebral aneurysms treated surgically and the increase of complexity of those treated surgically, there is a need for simulation-based tools to teach future neurosurgeons the operative techniques of aneurysm clipping. To develop and evaluate the usefulness of a new haptic-based virtual reality simulator in the training of neurosurgical residents. A real-time sensory haptic feedback virtual reality aneurysm clipping simulator was developed using the ImmersiveTouch platform. A prototype middle cerebral artery aneurysm simulation was created from a computed tomographic angiogram. Aneurysm and vessel volume deformation and haptic feedback are provided in a 3-dimensional immersive virtual reality environment. Intraoperative aneurysm rupture was also simulated. Seventeen neurosurgery residents from 3 residency programs tested the simulator and provided feedback on its usefulness and resemblance to real aneurysm clipping surgery. Residents thought that the simulation would be useful in preparing for real-life surgery. About two-thirds of the residents thought that the 3-dimensional immersive anatomic details provided a close resemblance to real operative anatomy and accurate guidance for deciding surgical approaches. They thought the simulation was useful for preoperative surgical rehearsal and neurosurgical training. A third of the residents thought that the technology in its current form provided realistic haptic feedback for aneurysm surgery. Neurosurgical residents thought that the novel immersive VR simulator is helpful in their training, especially because they do not get a chance to perform aneurysm clippings until late in their residency programs.
Surviving sepsis--a 3D integrative educational simulator.
Ježek, Filip; Tribula, Martin; Kulhánek, Tomáš; Mateják, Marek; Privitzer, Pavol; Šilar, Jan; Kofránek, Jiří; Lhotská, Lenka
2015-08-01
Computer technology offers greater educational possibilities, notably simulation and virtual reality. This paper presents a technology which serves to integrate multiple modalities, namely 3D virtual reality, node-based simulator, Physiomodel explorer and explanatory physiological simulators employing Modelica language and Unity3D platform. This emerging tool chain should allow the authors to concentrate more on educational content instead of application development. The technology is demonstrated through Surviving sepsis educational scenario, targeted on Microsoft Windows Store platform.
Scarlata, Simone; Palermo, Patrizio; Candoli, Piero; Tofani, Ariela; Petitti, Tommasangelo; Corbetta, Lorenzo
2017-04-01
Linear endobronchial ultrasound transbronchial needle aspiration (EBUS-TBNA) represents a pivotal innovation in interventional pulmonology; determining the best approach to guarantee systematic and efficient training is expected to become a main issue in the forthcoming years. Virtual reality simulators have been proposed as potential EBUS-TBNA training instruments, to avoid unskilled beginners practicing directly in real-life settings. A validated and perfected simulation program could be used before allowing beginners to practice on patients. Our goal was to test the reliability of the EBUS-Skills and Task Assessment Tool (STAT) and its subscores for measuring the competence of experienced bronchoscopists approaching EBUS-guided TBNA, using only the virtual reality simulator as both a training and an assessment tool. Fifteen experienced bronchoscopists, with poor or no experience in EBUS-TBNA, participated in this study. They were all administered the Italian version of the EBUS-STAT evaluation tool, during a high-fidelity virtual reality simulation. This was followed by a single 7-hour theoretical and practical (on simulators) session on EBUS-TBNA, at the end of which their skills were reassessed by EBUS-STAT. An overall, significant improvement in EBUS-TBNA skills was observed, thereby confirming that (a) virtual reality simulation can facilitate practical learning among practitioners, and (b) EBUS-STAT is capable of detecting these improvements. The test's overall ability to detect differences was negatively influenced by the minimal variation of the scores relating to items 1 and 2, was not influenced by the training, and improved significantly when the 2 items were not considered. Apart from these 2 items, all the remaining subscores were equally capable of revealing improvements in the learner. Lastly, we found that trainees with presimulation EBUS-STAT scores above 79 did not show any significant improvement after virtual reality training, suggesting that this score represents a cutoff value capable of predicting the likelihood that simulation can be beneficial. Virtual reality simulation is capable of providing a practical learning tool for practitioners with previous experience in flexible bronchoscopy, and the EBUS-STAT questionnaire is capable of detecting these changes. A pretraining EBUS-STAT score below 79 is a good indicator of those candidates who will benefit from the simulation training. Further studies are needed to verify whether a modified version of the questionnaire would be capable of improving its performance among experienced bronchoscopists.
78 FR 74057 - Disapproval of State Implementation Plan Revisions; Clark County, Nevada
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-10
... technology-based standards should account for the practical realities of technology supports EPA's view that... section 110(a)(2)(A) through (M). In developing SIPs, states have broad authority to develop the mix of... a SIP must be met on a ``continuous'' basis, practical realities or circumstances may create...
Virtual Reality: Teaching Tool of the Twenty-First Century?
ERIC Educational Resources Information Center
Hoffman, Helene; Vu, Dzung
1997-01-01
Virtual reality-based procedural and surgical simulations promise to revolutionize medical training. A wide range of simulations representing diverse content areas and varied implementation strategies are under development or in early use. The new systems will make broad-based training experiences available for students at all levels without risks…
Telemedicine, virtual reality, and surgery
NASA Technical Reports Server (NTRS)
Mccormack, Percival D.; Charles, Steve
1994-01-01
Two types of synthetic experience are covered: virtual reality (VR) and surgery, and telemedicine. The topics are presented in viewgraph form and include the following: geometric models; physiological sensors; surgical applications; virtual cadaver; VR surgical simulation; telesurgery; VR Surgical Trainer; abdominal surgery pilot study; advanced abdominal simulator; examples of telemedicine; and telemedicine spacebridge.
Kamel Boulos, Maged N; Lu, Zhihan; Guerrero, Paul; Jennett, Charlene; Steed, Anthony
2017-02-20
The latest generation of virtual and mixed reality hardware has rekindled interest in virtual reality GIS (VRGIS) and augmented reality GIS (ARGIS) applications in health, and opened up new and exciting opportunities and possibilities for using these technologies in the personal and public health arenas. From smart urban planning and emergency training to Pokémon Go, this article offers a snapshot of some of the most remarkable VRGIS and ARGIS solutions for tackling public and environmental health problems, and bringing about safer and healthier living options to individuals and communities. The article also covers the main technical foundations and issues underpinning these solutions.
Mixed Methods for Mixed Reality: Understanding Users' Avatar Activities in Virtual Worlds
ERIC Educational Resources Information Center
Feldon, David F.; Kafai, Yasmin B.
2008-01-01
This paper examines the use of mixed methods for analyzing users' avatar-related activities in a virtual world. Server logs recorded keystroke-level activity for 595 participants over a six-month period in Whyville.net, an informal science website. Participants also completed surveys and participated in interviews regarding their experiences.…
Virtual reality-assisted robotic surgery simulation.
Albani, Justin M; Lee, David I
2007-03-01
For more than a decade, advancing computer technologies have allowed incorporation of virtual reality (VR) into surgical training. This has become especially important in training for laparoscopic procedures, which often are complex and leave little room for error. With the advent of robotic surgery and the development and prevalence of a commercial surgical system (da Vinci robot; Intuitive Surgical, Sunnyvale, CA), a valid VR-assisted robotic surgery simulator could minimize the steep learning curve associated with many of these complex procedures and thus enable better outcomes. To date, such simulation does not exist; however, several agencies and corporations are involved in making this dream a reality. We review the history and progress of VR simulation in surgical training, its promising applications in robotic-assisted surgery, and the remaining challenges to implementation.
Vidal, Victoria L; Ohaeri, Beatrice M; John, Pamela; Helen, Delles
2013-01-01
This quasi-experimental study, with a control group and experimental group, compares the effectiveness of virtual reality simulators on developing phlebotomy skills of nursing students with the effectiveness of traditional methods of teaching. Performance of actual phlebotomy on a live client was assessed after training, using a standardized form. Findings showed that students who were exposed to the virtual reality simulator performed better in the following performance metrics: pain factor, hematoma formation, and number of reinsertions. This study confirms that the use of the virtual reality-based system to supplement the traditional method may be the optimal program for training.
Immersive virtual reality simulations in nursing education.
Kilmon, Carol A; Brown, Leonard; Ghosh, Sumit; Mikitiuk, Artur
2010-01-01
This article explores immersive virtual reality as a potential educational strategy for nursing education and describes an immersive learning experience now being developed for nurses. This pioneering project is a virtual reality application targeting speed and accuracy of nurse response in emergency situations requiring cardiopulmonary resuscitation. Other potential uses and implications for the development of virtual reality learning programs are discussed.
Simulation and augmented reality in endovascular neurosurgery: lessons from aviation.
Mitha, Alim P; Almekhlafi, Mohammed A; Janjua, Major Jameel J; Albuquerque, Felipe C; McDougall, Cameron G
2013-01-01
Endovascular neurosurgery is a discipline strongly dependent on imaging. Therefore, technology that improves how much useful information we can garner from a single image has the potential to dramatically assist decision making during endovascular procedures. Furthermore, education in an image-enhanced environment, especially with the incorporation of simulation, can improve the safety of the procedures and give interventionalists and trainees the opportunity to study or perform simulated procedures before the intervention, much like what is practiced in the field of aviation. Here, we examine the use of simulators in the training of fighter pilots and discuss how similar benefits can compensate for current deficiencies in endovascular training. We describe the types of simulation used for endovascular procedures, including virtual reality, and discuss the relevant data on its utility in training. Finally, the benefit of augmented reality during endovascular procedures is discussed, along with future computerized image enhancement techniques.
von Dadelszen, Peter; Allaire, Catherine
2011-01-01
Background: Concern regarding the quality of surgical training in obstetrics and gynecology residency programs is focusing attention on competency based education. Because open surgical skills cannot necessarily be translated into laparoscopic skills and with minimally invasive surgery becoming standard in operative gynecology, the discrepancy in training between obstetrics and gynecology will widen. Training on surgical simulators with virtual reality may improve surgical skills. However, before incorporation into training programs for gynecology residents the validity of such instruments needs to first be established. We sought to prove the construct validity of a virtual reality laparoscopic simulator, the SurgicalSimTM, by showing its ability to distinguish between surgeons with different laparoscopic experience. Methods: Eleven gynecologic surgeons (experts) and 11 perinatologists (controls) completed 3 tasks on the simulator, and 10 performance parameters were compared. Results: The experts performed faster, more efficiently, and with fewer errors, proving the construct validity of the SurgicalSim. Conclusions: Laparoscopic virtual reality simulators can measure relevant surgical skills and so distinguish between subjects having different skill levels. Hence, these simulators could be integrated into gynecology resident endoscopic training and utilized for objective assessment. Second, the skills required for competency in obstetrics cannot necessarily be utilized for better performance in laparoscopic gynecology. PMID:21985726
Mixed reality for robotic treatment of a splenic artery aneurysm.
Pietrabissa, Andrea; Morelli, Luca; Ferrari, Mauro; Peri, Andrea; Ferrari, Vincenzo; Moglia, Andrea; Pugliese, Luigi; Guarracino, Fabio; Mosca, Franco
2010-05-01
Techniques of mixed reality can successfully be used in preoperative planning of laparoscopic and robotic procedures and to guide surgical dissection and enhance its accuracy. A computer-generated three-dimensional (3D) model of the vascular anatomy of the spleen was obtained from the computed tomography (CT) dataset of a patient with a 3-cm splenic artery aneurysm. Using an environmental infrared localizer and a stereoscopic helmet, the surgeon can see the patient's anatomy in transparency (augmented or mixed reality). This arrangement simplifies correct positioning of trocars and locates surgical dissection directly on top of the aneurysm. In this way the surgeon limits unnecessary dissection, leaving intact the blood supply from the short gastric vessels and other collaterals. Based on preoperative planning, we were able to anticipate that the vascular exclusion of the aneurysm would result in partial splenic ischemia. To re-establish the flow to the spleen, end-to-end robotic anastomosis of the splenic artery with the Da Vinci surgical system was then performed. Finally, the aneurysm was fenestrated to exclude arterial refilling. The postoperative course was uneventful. A control CT scan 4 weeks after surgery showed a well-perfused and homogeneous splenic parenchyma. The final 3D model showed the fenestrated calcified aneurysm and patency of the re-anastomosed splenic artery. The described technique of robotic vascular exclusion of a splenic artery aneurysm, followed by re-anastomosis of the vessel, clearly demonstrates how this technology can reduce the invasiveness of the procedure, obviating an otherwise necessary splenectomy. Also, the use of intraoperative mixed-reality technology proved very useful in this case and is expected to play an increasing role in the operating room of the future.
ERIC Educational Resources Information Center
Gunn, Therese; Jones, Lee; Bridge, Pete; Rowntree, Pam; Nissen, Lisa
2018-01-01
In recent years, simulation has increasingly underpinned the acquisition of pre-clinical skills by undergraduate medical imaging (diagnostic radiography) students. This project aimed to evaluate the impact of an innovative virtual reality (VR) learning environment on the development of technical proficiency by students. The study assessed the…
Get Real: Augmented Reality for the Classroom
ERIC Educational Resources Information Center
Mitchell, Rebecca; DeBay, Dennis
2012-01-01
Kids love augmented reality (AR) simulations because they are like real-life video games. AR simulations allow students to learn content while collaborating face to face and interacting with a multimedia-enhanced version of the world around them. Although the technology may seem advanced, AR software makes it easy to develop content-based…
ERIC Educational Resources Information Center
Bressler, D. M.; Bodzin, A. M.
2013-01-01
Current studies have reported that secondary students are highly engaged while playing mobile augmented reality (AR) learning games. Some researchers have posited that players' engagement may indicate a flow experience, but no research results have confirmed this hypothesis with vision-based AR learning games. This study investigated factors…
Cai, Jian-liang; Zhang, Yi; Sun, Guo-feng; Li, Ning-chen; Zhang, Xiang-hua; Na, Yan-qun
2012-12-01
To investigate the value of laparoscopic virtual reality simulator in laparoscopic suture ability training of catechumen. After finishing the virtual reality training of basic laparoscopic skills, 26 catechumen were divided randomly into 2 groups, one group undertook advanced laparoscopic skill (suture technique) training with laparoscopic virtual reality simulator (virtual group), another used laparoscopic box trainer (box group). Using our homemade simulations, before grouping and after training, every trainee performed nephropyeloureterostomy under laparoscopy, the running time, anastomosis quality and proficiency were recorded and assessed. For virtual group, the running time, anastomosis quality and proficiency scores before grouping were (98 ± 11) minutes, 3.20 ± 0.41, 3.47 ± 0.64, respectively, after training were (53 ± 8) minutes, 6.87 ± 0.74, 6.33 ± 0.82, respectively, all the differences were statistically significant (all P < 0.01). In box group, before grouping were (98 ± 10) minutes, 3.17 ± 0.39, 3.42 ± 0.67, respectively, after training were (52 ± 9) minutes, 6.08 ± 0.90, 6.33 ± 0.78, respectively, all the differences also were statistically significant (all P < 0.01). After training, the running time and proficiency scores of virtual group were similar to box group (all P > 0.05), however, anstomosis quality scores in virtual group were higher than in box group (P = 0.02). The laparoscopic virtual reality simulator is better than traditional box trainer in advanced laparoscopic suture ability training of catechumen.
Varshney, Rickul; Frenkiel, Saul; Nguyen, Lily H P; Young, Meredith; Del Maestro, Rolando; Zeitouni, Anthony; Tewfik, Marc A
2014-01-01
The technical challenges of endoscopic sinus surgery (ESS) and the high risk of complications support the development of alternative modalities to train residents in these procedures. Virtual reality simulation is becoming a useful tool for training the skills necessary for minimally invasive surgery; however, there are currently no ESS virtual reality simulators available with valid evidence supporting their use in resident education. Our aim was to develop a new rhinology simulator, as well as to define potential performance metrics for trainee assessment. The McGill simulator for endoscopic sinus surgery (MSESS), a new sinus surgery virtual reality simulator with haptic feedback, was developed (a collaboration between the McGill University Department of Otolaryngology-Head and Neck Surgery, the Montreal Neurologic Institute Simulation Lab, and the National Research Council of Canada). A panel of experts in education, performance assessment, rhinology, and skull base surgery convened to identify core technical abilities that would need to be taught by the simulator, as well as performance metrics to be developed and captured. The MSESS allows the user to perform basic sinus surgery skills, such as an ethmoidectomy and sphenoidotomy, through the use of endoscopic tools in a virtual nasal model. The performance metrics were developed by an expert panel and include measurements of safety, quality, and efficiency of the procedure. The MSESS incorporates novel technological advancements to create a realistic platform for trainees. To our knowledge, this is the first simulator to combine novel tools such as the endonasal wash and elaborate anatomic deformity with advanced performance metrics for ESS.
Virtual reality simulation training for health professions trainees in gastrointestinal endoscopy.
Walsh, Catharine M; Sherlock, Mary E; Ling, Simon C; Carnahan, Heather
2012-06-13
Traditionally, training in gastrointestinal endoscopy has been based upon an apprenticeship model, with novice endoscopists learning basic skills under the supervision of experienced preceptors in the clinical setting. Over the last two decades, however, the growing awareness of the need for patient safety has brought the issue of simulation-based training to the forefront. While the use of simulation-based training may have important educational and societal advantages, the effectiveness of virtual reality gastrointestinal endoscopy simulators has yet to be clearly demonstrated. To determine whether virtual reality simulation training can supplement and/or replace early conventional endoscopy training (apprenticeship model) in diagnostic oesophagogastroduodenoscopy, colonoscopy and/or sigmoidoscopy for health professions trainees with limited or no prior endoscopic experience. Health professions, educational and computer databases were searched until November 2011 including The Cochrane Central Register of Controlled Trials, MEDLINE, EMBASE, Scopus, Web of Science, Biosis Previews, CINAHL, Allied and Complementary Medicine Database, ERIC, Education Full Text, CBCA Education, Career and Technical Education @ Scholars Portal, Education Abstracts @ Scholars Portal, Expanded Academic ASAP @ Scholars Portal, ACM Digital Library, IEEE Xplore, Abstracts in New Technologies and Engineering and Computer & Information Systems Abstracts. The grey literature until November 2011 was also searched. Randomised and quasi-randomised clinical trials comparing virtual reality endoscopy (oesophagogastroduodenoscopy, colonoscopy and sigmoidoscopy) simulation training versus any other method of endoscopy training including conventional patient-based training, in-job training, training using another form of endoscopy simulation (e.g. low-fidelity simulator), or no training (however defined by authors) were included. Trials comparing one method of virtual reality training versus another method of virtual reality training (e.g. comparison of two different virtual reality simulators) were also included. Only trials measuring outcomes on humans in the clinical setting (as opposed to animals or simulators) were included. Two authors (CMS, MES) independently assessed the eligibility and methodological quality of trials, and extracted data on the trial characteristics and outcomes. Due to significant clinical and methodological heterogeneity it was not possible to pool study data in order to perform a meta-analysis. Where data were available for each continuous outcome we calculated standardized mean difference with 95% confidence intervals based on intention-to-treat analysis. Where data were available for dichotomous outcomes we calculated relative risk with 95% confidence intervals based on intention-to-treat-analysis. Thirteen trials, with 278 participants, met the inclusion criteria. Four trials compared simulation-based training with conventional patient-based endoscopy training (apprenticeship model) whereas nine trials compared simulation-based training with no training. Only three trials were at low risk of bias. Simulation-based training, as compared with no training, generally appears to provide participants with some advantage over their untrained peers as measured by composite score of competency, independent procedure completion, performance time, independent insertion depth, overall rating of performance or competency error rate and mucosal visualization. Alternatively, there was no conclusive evidence that simulation-based training was superior to conventional patient-based training, although data were limited. The results of this systematic review indicate that virtual reality endoscopy training can be used to effectively supplement early conventional endoscopy training (apprenticeship model) in diagnostic oesophagogastroduodenoscopy, colonoscopy and/or sigmoidoscopy for health professions trainees with limited or no prior endoscopic experience. However, there remains insufficient evidence to advise for or against the use of virtual reality simulation-based training as a replacement for early conventional endoscopy training (apprenticeship model) for health professions trainees with limited or no prior endoscopic experience. There is a great need for the development of a reliable and valid measure of endoscopic performance prior to the completion of further randomised clinical trials with high methodological quality.
Virtual Reality Simulation of the International Space Welding Experiment
NASA Technical Reports Server (NTRS)
Phillips, James A.
1996-01-01
Virtual Reality (VR) is a set of breakthrough technologies that allow a human being to enter and fully experience a 3-dimensional, computer simulated environment. A true virtual reality experience meets three criteria: (1) It involves 3-dimensional computer graphics; (2) It includes real-time feedback and response to user actions; and (3) It must provide a sense of immersion. Good examples of a virtual reality simulator are the flight simulators used by all branches of the military to train pilots for combat in high performance jet fighters. The fidelity of such simulators is extremely high -- but so is the price tag, typically millions of dollars. Virtual reality teaching and training methods are manifestly effective, and we have therefore implemented a VR trainer for the International Space Welding Experiment. My role in the development of the ISWE trainer consisted of the following: (1) created texture-mapped models of the ISWE's rotating sample drum, technology block, tool stowage assembly, sliding foot restraint, and control panel; (2) developed C code for control panel button selection and rotation of the sample drum; (3) In collaboration with Tim Clark (Antares Virtual Reality Systems), developed a serial interface box for the PC and the SGI Indigo so that external control devices, similar to ones actually used on the ISWE, could be used to control virtual objects in the ISWE simulation; (4) In collaboration with Peter Wang (SFFP) and Mark Blasingame (Boeing), established the interference characteristics of the VIM 1000 head-mounted-display and tested software filters to correct the problem; (5) In collaboration with Peter Wang and Mark Blasingame, established software and procedures for interfacing the VPL DataGlove and the Polhemus 6DOF position sensors to the SGI Indigo serial ports. The majority of the ISWE modeling effort was conducted on a PC-based VR Workstation, described below.
Current status of robotic simulators in acquisition of robotic surgical skills.
Kumar, Anup; Smith, Roger; Patel, Vipul R
2015-03-01
This article provides an overview of the current status of simulator systems in robotic surgery training curriculum, focusing on available simulators for training, their comparison, new technologies introduced in simulation focusing on concepts of training along with existing challenges and future perspectives of simulator training in robotic surgery. The different virtual reality simulators available in the market like dVSS, dVT, RoSS, ProMIS and SEP have shown face, content and construct validity in robotic skills training for novices outside the operating room. Recently, augmented reality simulators like HoST, Maestro AR and RobotiX Mentor have been introduced in robotic training providing a more realistic operating environment, emphasizing more on procedure-specific robotic training . Further, the Xperience Team Trainer, which provides training to console surgeon and bed-side assistant simultaneously, has been recently introduced to emphasize the importance of teamwork and proper coordination. Simulator training holds an important place in current robotic training curriculum of future robotic surgeons. There is a need for more procedure-specific augmented reality simulator training, utilizing advancements in computing and graphical capabilities for new innovations in simulator technology. Further studies are required to establish its cost-benefit ratio along with concurrent and predictive validity.
NASA Technical Reports Server (NTRS)
Dumas, Joseph D., II
1998-01-01
Several virtual reality I/O peripherals were successfully configured and integrated as part of the author's 1997 Summer Faculty Fellowship work. These devices, which were not supported by the developers of VR software packages, use new software drivers and configuration files developed by the author to allow them to be used with simulations developed using those software packages. The successful integration of these devices has added significant capability to the ANVIL lab at MSFC. In addition, the author was able to complete the integration of a networked virtual reality simulation of the Space Shuttle Remote Manipulator System docking Space Station modules which was begun as part of his 1996 Fellowship. The successful integration of this simulation demonstrates the feasibility of using VR technology for ground-based training as well as on-orbit operations.
[Virtual reality in neurosurgery].
Tronnier, V M; Staubert, A; Bonsanto, M M; Wirtz, C R; Kunze, S
2000-03-01
Virtual reality enables users to immerse themselves in a virtual three-dimensional world and to interact in this world. The simulation is different from the kind in computer games, in which the viewer is active but acts in a nonrealistic world, or on the TV screen, where we are passively driven in an active world. In virtual reality elements look realistic, they change their characteristics and have almost real-world unpredictability. Virtual reality is not only implemented in gambling dens and the entertainment industry but also in manufacturing processes (cars, furniture etc.), military applications and medicine. Especially the last two areas are strongly correlated, because telemedicine or telesurgery was originated for military reasons to operate on war victims from a secure distance or to perform surgery on astronauts in an orbiting space station. In medicine and especially neurosurgery virtual-reality methods are used for education, surgical planning and simulation on a virtual patient.
Destination Mars Grand Opening
2016-09-18
Apollo 11 astronaut Buzz Aldrin, left and Erisa Hines of NASA’s Jet Propulsion Laboratory (JPL) in Pasadena, California, try out Microsoft HoloLens mixed reality headset during a preview of the new Destination: Mars experience at the Kennedy Space Center Visitor Complex. Destination: Mars gives guests an opportunity to “visit” several sites on Mars using real imagery from NASA’s Curiosity Mars Rover. Based on OnSight, a tool created by NASA’s Jet Propulsion Laboratory in Pasadena, California, the experience brings guests together with a holographic version of Aldrin and Curiosity rover driver Hines as they are guided to Mars using Microsoft HoloLens mixed reality headset. Photo credit: NASA/Charles Babir
Utilizing media arts principles for developing effective interactive neurorehabilitation systems.
Rikakis, Thanassis
2011-01-01
This paper discusses how interactive neurorehabilitation systems can increase their effectiveness through systematic integration of media arts principles and practice. Media arts expertise can foster the development of complex yet intuitive extrinsic feedback displays that match the inherent complexity and intuitive nature of motor learning. Abstract, arts-based feedback displays can be powerful metaphors that provide re-contextualization, engagement and appropriate reward mechanisms for mature adults. Such virtual feedback displays must be seamlessly integrated with physical components to produce mixed reality training environments that promote active, generalizable learning. The proposed approaches are illustrated through examples from mixed reality rehabilitation systems developed by our team.
Designing a Virtual-Reality-Based, Gamelike Math Learning Environment
ERIC Educational Resources Information Center
Xu, Xinhao; Ke, Fengfeng
2016-01-01
This exploratory study examined the design issues related to a virtual-reality-based, gamelike learning environment (VRGLE) developed via OpenSimulator, an open-source virtual reality server. The researchers collected qualitative data to examine the VRGLE's usability, playability, and content integration for math learning. They found it important…
Virtual Reality: Emerging Applications and Future Directions
ERIC Educational Resources Information Center
Ludlow, Barbara L.
2015-01-01
Virtual reality is an emerging technology that has resulted in rapid expansion in the development of virtual immersive environments for use as educational simulations in schools, colleges and universities. This article presents an overview of virtual reality, describes a number of applications currently being used by special educators for…
Sweaty Palms! Virtual Reality Applied to Training.
ERIC Educational Resources Information Center
Treiber, Karin
A qualitative case study approach was used to identify the psychosocial effects of the high-fidelity, virtual reality simulation provided in the college-level air traffic control (ATC) training program offered at the Minnesota Air Traffic Control Training Center and to evaluate the applicability of virtual reality to academic/training situations.…
Virtual Reality: A Dream Come True or a Nightmare.
ERIC Educational Resources Information Center
Cornell, Richard; Bailey, Dan
Virtual Reality (VR) is a new medium which allows total stimulation of one's senses through human/computer interfaces. VR has applications in training simulators, nano-science, medicine, entertainment, electronic technology, and manufacturing. This paper focuses on some current and potential problems of virtual reality and virtual environments…
Wei, Gaofeng; Tang, Gang; Fu, Zengliang; Sun, Qiuming; Tian, Feng
2010-10-01
The China Mechanical Virtual Human (CMVH) is a human musculoskeletal biomechanical simulation platform based on China Visible Human slice images; it has great realistic application significance. In this paper is introduced the construction method of CMVH 3D models. Then a simulation system solution based on Creator/Vega is put forward for the complex and gigantic data characteristics of the 3D models. At last, combined with MFC technology, the CMVH simulation system is developed and a running simulation scene is given. This paper provides a new way for the virtual reality application of CMVH.
ERIC Educational Resources Information Center
Keskitalo, Tuulikki
2011-01-01
This research article focuses on virtual reality (VR) and simulation-based training, with a special focus on the pedagogical use of the Virtual Centre of Wellness Campus known as ENVI (Rovaniemi, Finland). In order to clearly understand how teachers perceive teaching and learning in such environments, this research examines the concepts of…
Augmented Reality-Based Simulators as Discovery Learning Tools: An Empirical Study
ERIC Educational Resources Information Center
Ibáñez, María-Blanca; Di-Serio, Ángela; Villarán-Molina, Diego; Delgado-Kloos, Carlos
2015-01-01
This paper reports empirical evidence on having students use AR-SaBEr, a simulation tool based on augmented reality (AR), to discover the basic principles of electricity through a series of experiments. AR-SaBEr was enhanced with knowledge-based support and inquiry-based scaffolding mechanisms, which proved useful for discovery learning in…
ERIC Educational Resources Information Center
Oh, Seungjae; So, Hyo-Jeong; Gaydos, Matthew
2018-01-01
The goal for this research is to articulate and test a new hybrid Augmented Reality (AR) environment for conceptual understanding. From the theoretical lens of embodied interaction, we have designed a multi-user participatory simulation called ARfract where visitors in a science museum can learn about complex scientific concepts on the refraction…
ERIC Educational Resources Information Center
William, Abeer; Vidal, Victoria L.; John, Pamela
2016-01-01
This quasi-experimental study compared differences in phlebotomy performance on a live client, between a control group taught through the traditional method and an experimental group using virtual reality simulation. The study showed both groups had performed successfully, using the following metrics: number of reinsertions, pain factor, hematoma…
ERIC Educational Resources Information Center
Dunleavy, Matt; Dede, Chris; Mitchell, Rebecca
2009-01-01
The purpose of this study was to document how teachers and students describe and comprehend the ways in which participating in an augmented reality (AR) simulation aids or hinders teaching and learning. Like the multi-user virtual environment (MUVE) interface that underlies Internet games, AR is a good medium for immersive collaborative…
An augmented reality haptic training simulator for spinal needle procedures.
Sutherland, Colin; Hashtrudi-Zaad, Keyvan; Sellens, Rick; Abolmaesumi, Purang; Mousavi, Parvin
2013-11-01
This paper presents the prototype for an augmented reality haptic simulation system with potential for spinal needle insertion training. The proposed system is composed of a torso mannequin, a MicronTracker2 optical tracking system, a PHANToM haptic device, and a graphical user interface to provide visual feedback. The system allows users to perform simulated needle insertions on a physical mannequin overlaid with an augmented reality cutaway of patient anatomy. A tissue model based on a finite-element model provides force during the insertion. The system allows for training without the need for the presence of a trained clinician or access to live patients or cadavers. A pilot user study demonstrates the potential and functionality of the system.
Air Force Medical Modeling and Simulation: Bringing Virtual Reality to Reality
2011-01-26
OMB control number. 1. REPORT DATE 26 JAN 2011 2. REPORT TYPE 3. DATES COVERED 00-00-2011 to 00-00-2011 4 . TITLE AND SUBTITLE Air Force...7 Over $ 4 billion added to Medicare health care cost! 2011 MHS Conference One Decade Later… 8 •10% increase inpatient deaths from medication errors in...Conference “Hub & Spoke” Simulation Network Facilities grouped into 4 -tiered system based on training requirements and simulation capability Category
Fostering Learning Through Interprofessional Virtual Reality Simulation Development.
Nicely, Stephanie; Farra, Sharon
2015-01-01
This article presents a unique strategy for improving didactic learning and clinical skill while simultaneously fostering interprofessional collaboration and communication. Senior-level nursing students collaborated with students enrolled in the Department of Interactive Media Studies to design a virtual reality simulation based upon disaster management and triage techniques. Collaborative creation of the simulation proved to be a strategy for enhancing students' knowledge of and skill in disaster management and triage while impacting attitudes about interprofessional communication and teamwork.
NASA Technical Reports Server (NTRS)
Lindsey, Patricia F.
1993-01-01
In its search for higher level computer interfaces and more realistic electronic simulations for measurement and spatial analysis in human factors design, NASA at MSFC is evaluating the functionality of virtual reality (VR) technology. Virtual reality simulation generates a three dimensional environment in which the participant appears to be enveloped. It is a type of interactive simulation in which humans are not only involved, but included. Virtual reality technology is still in the experimental phase, but it appears to be the next logical step after computer aided three-dimensional animation in transferring the viewer from a passive to an active role in experiencing and evaluating an environment. There is great potential for using this new technology when designing environments for more successful interaction, both with the environment and with another participant in a remote location. At the University of North Carolina, a VR simulation of a the planned Sitterson Hall, revealed a flaw in the building's design that had not been observed during examination of the more traditional building plan simulation methods on paper and on computer aided design (CAD) work station. The virtual environment enables multiple participants in remote locations to come together and interact with one another and with the environment. Each participant is capable of seeing herself and the other participants and of interacting with them within the simulated environment.
Achieving Presence through Evoked Reality
Pillai, Jayesh S.; Schmidt, Colin; Richir, Simon
2013-01-01
The sense of “Presence” (evolving from “telepresence”) has always been associated with virtual reality research and is still an exceptionally mystifying constituent. Now the study of presence clearly spans over various disciplines associated with cognition. This paper attempts to put forth a concept that argues that it’s an experience of an “Evoked Reality (ER)” (illusion of reality) that triggers an “Evoked Presence (EP)” (sense of presence) in our minds. A Three Pole Reality Model is proposed to explain this phenomenon. The poles range from Dream Reality to Simulated Reality with Primary (Physical) Reality at the center. To demonstrate the relationship between ER and EP, a Reality-Presence Map is developed. We believe that this concept of ER and the proposed model may have significant applications in the study of presence, and in exploring the possibilities of not just virtual reality but also what we call “reality.” PMID:23550234
New Visions of Reality: Multimedia and Education.
ERIC Educational Resources Information Center
Ambron, Sueann
1986-01-01
Multimedia is a powerful tool that will change both the way we look at knowledge and our vision of reality, as well as our educational system and the business world. Multimedia as used here refers to the innovation of mixing text, audio, and video through the use of a computer. Not only will there be new products emerging from multimedia uses, but…
van Dongen, Koen W; Ahlberg, Gunnar; Bonavina, Luigi; Carter, Fiona J; Grantcharov, Teodor P; Hyltander, Anders; Schijven, Marlies P; Stefani, Alessandro; van der Zee, David C; Broeders, Ivo A M J
2011-01-01
Virtual reality (VR) simulators have been demonstrated to improve basic psychomotor skills in endoscopic surgery. The exercise configuration settings used for validation in studies published so far are default settings or are based on the personal choice of the tutors. The purpose of this study was to establish consensus on exercise configurations and on a validated training program for a virtual reality simulator, based on the experience of international experts to set criterion levels to construct a proficiency-based training program. A consensus meeting was held with eight European teams, all extensively experienced in using the VR simulator. Construct validity of the training program was tested by 20 experts and 60 novices. The data were analyzed by using the t test for equality of means. Consensus was achieved on training designs, exercise configuration, and examination. Almost all exercises (7/8) showed construct validity. In total, 50 of 94 parameters (53%) showed significant difference. A European, multicenter, validated, training program was constructed according to the general consensus of a large international team with extended experience in virtual reality simulation. Therefore, a proficiency-based training program can be offered to training centers that use this simulator for training in basic psychomotor skills in endoscopic surgery.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hayes, Birchard P; Michel, Kelly D; Few, Douglas A
From stereophonic, positional sound to high-definition imagery that is crisp and clean, high fidelity computer graphics enhance our view, insight, and intuition regarding our environments and conditions. Contemporary 3-D modeling tools offer an open architecture framework that enables integration with other technologically innovative arenas. One innovation of great interest is Augmented Reality, the merging of virtual, digital environments with physical, real-world environments creating a mixed reality where relevant data and information augments the real or actual experience in real-time by spatial or semantic context. Pairing 3-D virtual immersive models with a dynamic platform such as semi-autonomous robotics or personnel odometrymore » systems to create a mixed reality offers a new and innovative design information verification inspection capability, evaluation accuracy, and information gathering capability for nuclear facilities. Our paper discusses the integration of two innovative technologies, 3-D visualizations with inertial positioning systems, and the resulting augmented reality offered to the human inspector. The discussion in the paper includes an exploration of human and non-human (surrogate) inspections of a nuclear facility, integrated safeguards knowledge within a synchronized virtual model operated, or worn, by a human inspector, and the anticipated benefits to safeguards evaluations of facility operations.« less
Chao, Coline; Chalouhi, Gihad E; Bouhanna, Philippe; Ville, Yves; Dommergues, Marc
2015-09-01
To compare the impact of virtual reality simulation training and theoretical teaching on the ability of inexperienced trainees to produce adequate virtual transvaginal ultrasound images. We conducted a randomized controlled trial with parallel groups. Participants included inexperienced residents starting a training program in Paris. The intervention consisted of 40 minutes of virtual reality simulation training using a haptic transvaginal simulator versus 40 minutes of conventional teaching including a conference with slides and videos and answers to the students' questions. The outcome was a 19-point image quality score calculated from a set of 4 images (sagittal and coronal views of the uterus and left and right ovaries) produced by trainees immediately after the intervention, using the same simulator on which a new virtual patient had been uploaded. Experts assessed the outcome on stored images, presented in a random order, 2 months after the trial was completed. They were blinded to group assignment. The hypothesis was an improved outcome in the intervention group. Randomization was 1 to 1. The mean score was significantly greater in the simulation group (n = 16; mean score, 12; SEM, 0.8) than the control group (n = 18; mean score, 9; SEM, 1.0; P= .0302). The quality of virtual vaginal images produced by inexperienced trainees was greater immediately after a single virtual reality simulation training session than after a single theoretical teaching session. © 2015 by the American Institute of Ultrasound in Medicine.
Validation of a virtual reality-based simulator for shoulder arthroscopy.
Rahm, Stefan; Germann, Marco; Hingsammer, Andreas; Wieser, Karl; Gerber, Christian
2016-05-01
This study was to determine face and construct validity of a new virtual reality-based shoulder arthroscopy simulator which uses passive haptic feedback. Fifty-one participants including 25 novices (<20 shoulder arthroscopies) and 26 experts (>100 shoulder arthroscopies) completed two tests: for assessment of face validity, a questionnaire was filled out concerning quality of simulated reality and training potential using a 7-point Likert scale (range 1-7). Construct validity was tested by comparing simulator metrics (operation time in seconds, camera and grasper pathway in centimetre and grasper openings) between novices and experts test results. Overall simulated reality was rated high with a median value of 5.5 (range 2.8-7) points. Training capacity scored a median value of 5.8 (range 3-7) points. Experts were significantly faster in the diagnostic test with a median of 91 (range 37-208) s than novices with 1177 (range 81-383) s (p < 0.0001) and in the therapeutic test 102 (range 58-283) s versus 229 (range 114-399) s (p < 0.0001). Similar results were seen in the other metric values except in the camera pathway in the therapeutic test. The tested simulator achieved high scores in terms of realism and training capability. It reliably discriminated between novices and experts. Further improvements of the simulator, especially in the field of therapeutic arthroscopy, might improve its value as training and assessment tool for shoulder arthroscopy skills. II.
Virtual reality to simulate large lighting with high efficiency LEDs
NASA Astrophysics Data System (ADS)
Blandet, Thierry; Coutelier, Gilles; Meyrueis, Patrick
2011-05-01
When a city or a local authority wishes to emphasize its historical heritage, for the lighting of its streets, setting up lights during the festive season, they call upon the skills of a lighting designer. The lighting designer proposes concepts, ideas, lighting, and to be able to present them, he makes use of simulation. On the other hand lighting technologies are evolving very rapidly and new lighting systems offer features that lighting designers are now integrating their projects. The street lights consume lot of energy; light projects are now taking into account the energy saving aspect. Lighting systems based on LEDs today provide good lighting needs, taking into account sustainable development issues while enabling new creative dimension. The lighting simulation can handle these parameters. Images or video simulation are no longer sufficient: stereoscopy and virtual reality techniques allow better communication and better understanding of projects. Virtual reality offers new possibilities of interaction, the freedom of movement in a scene, the presentation of variants or interactive simulations.
Virtual reality applications in robotic simulations
NASA Technical Reports Server (NTRS)
Homan, David J.; Gott, Charles J.; Goza, S. Michael
1994-01-01
Virtual reality (VR) provides a means to practice integrated extravehicular activities (EVA)/remote manipulator system (RMS) operations in the on-orbit configuration with no discomfort or risk to crewmembers. VR afforded the STS-61 crew the luxury of practicing the integrated EVA/RMS operations in an on-orbit configuration prior to the actual flight. The VR simulation was developed by the Automation and Robotics Division's Telepresence/Virtual Reality Lab and Integrated Graphics, Operations, and Analysis Lab (IGOAL) at JSC. The RMS Part Task Trainer (PTT) was developed by the IGOAL for RMS training in 1988 as a fully functional, kinematic simulation of the shuttle RMS and served as the RMS portion of the integrated VR simulation. Because the EVA crewmember could get a realistic view of the shuttle and payload bay in the VR simulation, he/she could explore different positions and views to determine the best method for performing a specific task, thus greatly increasing the efficiency of use of the neutral buoyancy facilities.
ERIC Educational Resources Information Center
Martín Gutiérrez, Jorge; Meneses Fernández, María Dolores
2014-01-01
This paper explores educational and professional uses of augmented learning environment concerned with issues of training and entertainment. We analyze the state-of-art research of some scenarios based on augmented reality. Some examples for the purpose of education and simulation are described. These applications show that augmented reality can…
Oestergaard, Jeanett; Bjerrum, Flemming; Maagaard, Mathilde; Winkel, Per; Larsen, Christian Rifbjerg; Ringsted, Charlotte; Gluud, Christian; Grantcharov, Teodor; Ottesen, Bent; Soerensen, Jette Led
2012-02-28
Several studies have found a positive effect on the learning curve as well as the improvement of basic psychomotor skills in the operating room after virtual reality training. Despite this, the majority of surgical and gynecological departments encounter hurdles when implementing this form of training. This is mainly due to lack of knowledge concerning the time and human resources needed to train novice surgeons to an adequate level. The purpose of this trial is to investigate the impact of instructor feedback regarding time, repetitions and self-perception when training complex operational tasks on a virtual reality simulator. The study population consists of medical students on their 4th to 6th year without prior laparoscopic experience. The study is conducted in a skills laboratory at a centralized university hospital. Based on a sample size estimation 98 participants will be randomized to an intervention group or a control group. Both groups have to achieve a predefined proficiency level when conducting a laparoscopic salpingectomy using a surgical virtual reality simulator. The intervention group receives standardized instructor feedback of 10 to 12 min a maximum of three times. The control group receives no instructor feedback. Both groups receive the automated feedback generated by the virtual reality simulator. The study follows the CONSORT Statement for randomized trials. Main outcome measures are time and repetitions to reach the predefined proficiency level on the simulator. We include focus on potential sex differences, computer gaming experience and self-perception. The findings will contribute to a better understanding of optimal training methods in surgical education. NCT01497782.
Piromchai, Patorn; Avery, Alex; Laopaiboon, Malinee; Kennedy, Gregor; O'Leary, Stephen
2015-09-09
Virtual reality simulation uses computer-generated imagery to present a simulated training environment for learners. This review seeks to examine whether there is evidence to support the introduction of virtual reality surgical simulation into ear, nose and throat surgical training programmes. 1. To assess whether surgeons undertaking virtual reality simulation-based training achieve surgical ('patient') outcomes that are at least as good as, or better than, those achieved through conventional training methods.2. To assess whether there is evidence from either the operating theatre, or from controlled (simulation centre-based) environments, that virtual reality-based surgical training leads to surgical skills that are comparable to, or better than, those achieved through conventional training. The Cochrane Ear, Nose and Throat Disorders Group (CENTDG) Trials Search Co-ordinator searched the CENTDG Trials Register; Central Register of Controlled Trials (CENTRAL 2015, Issue 6); PubMed; EMBASE; ERIC; CINAHL; Web of Science; ClinicalTrials.gov; ICTRP and additional sources for published and unpublished trials. The date of the search was 27 July 2015. We included all randomised controlled trials and controlled trials comparing virtual reality training and any other method of training in ear, nose or throat surgery. We used the standard methodological procedures expected by The Cochrane Collaboration. We evaluated both technical and non-technical aspects of skill competency. We included nine studies involving 210 participants. Out of these, four studies (involving 61 residents) assessed technical skills in the operating theatre (primary outcomes). Five studies (comprising 149 residents and medical students) assessed technical skills in controlled environments (secondary outcomes). The majority of the trials were at high risk of bias. We assessed the GRADE quality of evidence for most outcomes across studies as 'low'. Operating theatre environment (primary outcomes) In the operating theatre, there were no studies that examined two of three primary outcomes: real world patient outcomes and acquisition of non-technical skills. The third primary outcome (technical skills in the operating theatre) was evaluated in two studies comparing virtual reality endoscopic sinus surgery training with conventional training. In one study, psychomotor skill (which relates to operative technique or the physical co-ordination associated with instrument handling) was assessed on a 10-point scale. A second study evaluated the procedural outcome of time-on-task. The virtual reality group performance was significantly better, with a better psychomotor score (mean difference (MD) 1.66, 95% CI 0.52 to 2.81; 10-point scale) and a shorter time taken to complete the operation (MD -5.50 minutes, 95% CI -9.97 to -1.03). Controlled training environments (secondary outcomes) In a controlled environment five studies evaluated the technical skills of surgical trainees (one study) and medical students (three studies). One study was excluded from the analysis. Surgical trainees: One study (80 participants) evaluated the technical performance of surgical trainees during temporal bone surgery, where the outcome was the quality of the final dissection. There was no difference in the end-product scores between virtual reality and cadaveric temporal bone training. Medical students: Two other studies (40 participants) evaluated technical skills achieved by medical students in the temporal bone laboratory. Learners' knowledge of the flow of the operative procedure (procedural score) was better after virtual reality than conventional training (SMD 1.11, 95% CI 0.44 to 1.79). There was also a significant difference in end-product score between the virtual reality and conventional training groups (SMD 2.60, 95% CI 1.71 to 3.49). One study (17 participants) revealed that medical students acquired anatomical knowledge (on a scale of 0 to 10) better during virtual reality than during conventional training (MD 4.3, 95% CI 2.05 to 6.55). No studies in a controlled training environment assessed non-technical skills. There is limited evidence to support the inclusion of virtual reality surgical simulation into surgical training programmes, on the basis that it can allow trainees to develop technical skills that are at least as good as those achieved through conventional training. Further investigations are required to determine whether virtual reality training is associated with better real world outcomes for patients and the development of non-technical skills. Virtual reality simulation may be considered as an additional learning tool for medical students.
ERIC Educational Resources Information Center
Chang, Hsin-Yi; Hsu, Ying-Shao; Wu, Hsin-Kai
2016-01-01
We investigated the impact of an augmented reality (AR) versus interactive simulation (IS) activity incorporated in a computer learning environment to facilitate students' learning of a socio-scientific issue (SSI) on nuclear power plants and radiation pollution. We employed a quasi-experimental research design. Two classes (a total of 45…
Virtual reality in laparoscopic surgery.
Uranüs, Selman; Yanik, Mustafa; Bretthauer, Georg
2004-01-01
Although the many advantages of laparoscopic surgery have made it an established technique, training in laparoscopic surgery posed problems not encountered in conventional surgical training. Virtual reality simulators open up new perspectives for training in laparoscopic surgery. Under realistic conditions in real time, trainees can tailor their sessions with the VR simulator to suit their needs and goals, and can repeat exercises as often as they wish. VR simulators reduce the number of experimental animals needed for training purposes and are suited to the pursuit of research in laparoscopic surgery.
Gal, Gilad Ben; Weiss, Ervin I; Gafni, Naomi; Ziv, Amitai
2011-04-01
Virtual reality force feedback simulators provide a haptic (sense of touch) feedback through the device being held by the user. The simulator's goal is to provide a learning experience resembling reality. A newly developed haptic simulator (IDEA Dental, Las Vegas, NV, USA) was assessed in this study. Our objectives were to assess the simulator's ability to serve as a tool for dental instruction, self-practice, and student evaluation, as well as to evaluate the sensation it provides. A total of thirty-three evaluators were divided into two groups. The first group consisted of twenty-one experienced dental educators; the second consisted of twelve fifth-year dental students. Each participant performed drilling tasks using the simulator and filled out a questionnaire regarding the simulator and potential ways of using it in dental education. The results show that experienced dental faculty members as well as advanced dental students found that the simulator could provide significant potential benefits in the teaching and self-learning of manual dental skills. Development of the simulator's tactile sensation is needed to attune it to genuine sensation. Further studies relating to aspects of the simulator's structure and its predictive validity, its scoring system, and the nature of the performed tasks should be conducted.
Creation of a virtual triage exercise: an interprofessional communication strategy.
Farra, Sharon; Nicely, Stephanie; Hodgson, Eric
2014-10-01
Virtual reality simulation as a teaching method is gaining increased acceptance and presence in institutions of higher learning. This study presents an innovative strategy using the interdisciplinary development of a nonimmersive virtual reality simulation to facilitate interprofessional communication. The purpose of this pilot project was to describe nursing students' attitudes related to interprofessional communication following the collaborative development of a disaster triage virtual reality simulation. Collaboration between and among professionals is integral in enhancing patient outcomes. In addition, ineffective communication is linked to detrimental patient outcomes, especially during times of high stress. Poor communication has been identified as the root cause of the majority of negative sentinel events occurring in hospitals. The simulation-development teaching model proved useful in fostering interprofessional communication and mastering course content. Mean scores on the KidSIM Attitudes Towards Teamwork in Training Undergoing Designed Educational Simulation survey demonstrated that nursing students, after simulation experience,had agreement to strong agreement inall areas surveyed including interprofessional education, communication, roles and responsibilities of team members, and situational awareness. The findings indicate that students value interprofessional teamwork and the opportunity to work with other disciplines.
Virtual reality simulator: demonstrated use in neurosurgical oncology.
Clarke, David B; D'Arcy, Ryan C N; Delorme, Sebastien; Laroche, Denis; Godin, Guy; Hajra, Sujoy Ghosh; Brooks, Rupert; DiRaddo, Robert
2013-04-01
The overriding importance of patient safety, the complexity of surgical techniques, and the challenges associated with teaching surgical trainees in the operating room are all factors driving the need for innovative surgical simulation technologies. Despite these issues, widespread use of virtual reality simulation technology in surgery has not been fully implemented, largely because of the technical complexities in developing clinically relevant and useful models. This article describes the successful use of the NeuroTouch neurosurgical simulator in the resection of a left frontal meningioma. The widespread application of surgical simulation technology has the potential to decrease surgical risk, improve operating room efficiency, and fundamentally change surgical training.
Initial validation of a virtual-reality robotic simulator.
Lendvay, Thomas S; Casale, Pasquale; Sweet, Robert; Peters, Craig
2008-09-01
Robotic surgery is an accepted adjunct to minimally invasive surgery, but training is restricted to console time. Virtual-reality (VR) simulation has been shown to be effective for laparoscopic training and so we seek to validate a novel VR robotic simulator. The American Urological Association (AUA) Office of Education approved this study. Subjects enrolled in a robotics training course at the 2007 AUA annual meeting underwent skills training in a da Vinci dry-lab module and a virtual-reality robotics module which included a three-dimensional (3D) VR robotic simulator. Demographic and acceptability data were obtained, and performance metrics from the simulator were compared between experienced and nonexperienced roboticists for a ring transfer task. Fifteen subjects-four with previous robotic surgery experience and 11 without-participated. Nine subjects were still in urology training and nearly half of the group had reported playing video games. Overall performance of the da Vinci system and the simulator were deemed acceptable by a Likert scale (0-6) rating of 5.23 versus 4.69, respectively. Experienced subjects outperformed nonexperienced subjects on the simulator on three metrics: total task time (96 s versus 159 s, P < 0.02), economy of motion (1,301 mm versus 2,095 mm, P < 0.04), and time the telemanipulators spent outside of the center of the platform's workspace (4 s versus 35 s, P < 0.02). This is the first demonstration of face and construct validity of a virtual-reality robotic simulator. Further studies assessing predictive validity are ultimately required to support incorporation of VR robotic simulation into training curricula.
Augmented Reality for Close Quarters Combat
None
2018-01-16
Sandia National Laboratories has developed a state-of-the-art augmented reality training system for close-quarters combat (CQB). This system uses a wearable augmented reality system to place the user in a real environment while engaging enemy combatants in virtual space (Boston Dynamics DI-Guy). Umbra modeling and simulation environment is used to integrate and control the AR system.
Assistant Principals and Reform: A Socialization Paradox?
ERIC Educational Resources Information Center
Best, Marguerita L.
2013-01-01
Framed in the critical race theory of structuration (CRTS), this sequential explanatory mixed methods study seeks to identify the socialization practices by examining the realities of practices of assistant principals and the ways in which they impact the disciplinary actions of assistant principals at middle and high schools. The mixed methods…
Andersen, Steven Arild Wuyts; Foghsgaard, Søren; Konge, Lars; Cayé-Thomasen, Per; Sørensen, Mads Sølvsten
2016-08-01
To establish the effect of self-directed virtual reality (VR) simulation training on cadaveric dissection training performance in mastoidectomy and the transferability of skills acquired in VR simulation training to the cadaveric dissection training setting. Prospective study. Two cohorts of 20 novice otorhinolaryngology residents received either self-directed VR simulation training before cadaveric dissection training or vice versa. Cadaveric and VR simulation performances were assessed using final-product analysis with three blinded expert raters. The group receiving VR simulation training before cadaveric dissection had a mean final-product score of 14.9 (95 % confidence interval [CI] [12.9-16.9]) compared with 9.8 (95% CI [8.4-11.1]) in the group not receiving VR simulation training before cadaveric dissection. This 52% increase in performance was statistically significantly (P < 0.0001). A single dissection mastoidectomy did not increase VR simulation performance (P = 0.22). Two hours of self-directed VR simulation training was effective in increasing cadaveric dissection mastoidectomy performance and suggests that mastoidectomy skills are transferable from VR simulation to the traditional dissection setting. Virtual reality simulation training can therefore be employed to optimize training, and can spare the use of donated material and instructional resources for more advanced training after basic competencies have been acquired in the VR simulation environment. NA. Laryngoscope, 126:1883-1888, 2016. © 2015 The American Laryngological, Rhinological and Otological Society, Inc.
Bassil, Alfred; Rubod, Chrystèle; Borghesi, Yves; Kerbage, Yohan; Schreiber, Elie Servan; Azaïs, Henri; Garabedian, Charles
2017-04-01
Hysteroscopy is one of the most common gynaecological procedure. Training for diagnostic and operative hysteroscopy can be achieved through numerous previously described models like animal models or virtual reality simulation. We present our novel combined model associating virtual reality and bovine uteruses and bladders. End year residents in obstetrics and gynaecology attended a full day workshop. The workshop was divided in theoretical courses from senior surgeons and hands-on training in operative hysteroscopy and virtual reality Essure ® procedures using the EssureSim™ and Pelvicsim™ simulators with multiple scenarios. Theoretical and operative knowledge was evaluated before and after the workshop and General Points Averages (GPAs) were calculated and compared using a Student's T test. GPAs were significantly higher after the workshop was completed. The biggest difference was observed in operative knowledge (0,28 GPA before workshop versus 0,55 after workshop, p<0,05). All of the 25 residents having completed the workshop applauded the realism an efficiency of this type of training. The force feedback allowed by the cattle uteruses gives the residents the possibility to manage thickness of resection as in real time surgery. Furthermore, the two-horned bovine uteruses allowed to reproduce septa resection in conditions close to human surgery CONCLUSION: Teaching operative and diagnostic hysteroscopy is essential. Managing this training through a full day workshop using a combined animal model and virtual reality simulation is an efficient model not described before. Copyright © 2017 Elsevier B.V. All rights reserved.
Simulation-Based Training for Colonoscopy
Preisler, Louise; Svendsen, Morten Bo Søndergaard; Nerup, Nikolaj; Svendsen, Lars Bo; Konge, Lars
2015-01-01
Abstract The aim of this study was to create simulation-based tests with credible pass/fail standards for 2 different fidelities of colonoscopy models. Only competent practitioners should perform colonoscopy. Reliable and valid simulation-based tests could be used to establish basic competency in colonoscopy before practicing on patients. Twenty-five physicians (10 consultants with endoscopic experience and 15 fellows with very little endoscopic experience) were tested on 2 different simulator models: a virtual-reality simulator and a physical model. Tests were repeated twice on each simulator model. Metrics with discriminatory ability were identified for both modalities and reliability was determined. The contrasting-groups method was used to create pass/fail standards and the consequences of these were explored. The consultants significantly performed faster and scored higher than the fellows on both the models (P < 0.001). Reliability analysis showed Cronbach α = 0.80 and 0.87 for the virtual-reality and the physical model, respectively. The established pass/fail standards failed one of the consultants (virtual-reality simulator) and allowed one fellow to pass (physical model). The 2 tested simulations-based modalities provided reliable and valid assessments of competence in colonoscopy and credible pass/fail standards were established for both the tests. We propose to use these standards in simulation-based training programs before proceeding to supervised training on patients. PMID:25634177
LeBlanc, Fabien; Champagne, Bradley J; Augestad, Knut M; Neary, Paul C; Senagore, Anthony J; Ellis, Clyde N; Delaney, Conor P
2010-08-01
The aim of this study was to compare the human cadaver model with an augmented reality simulator for straight laparoscopic colorectal skills acquisition. Thirty-five sigmoid colectomies were performed on a cadaver (n = 7) or an augmented reality simulator (n = 28) during a laparoscopic training course. Prior laparoscopic colorectal experience was assessed. Objective structured technical skills assessment forms were completed by trainers and trainees independently. Groups were compared according to technical skills and events scores and satisfaction with training model. Prior laparoscopic experience was similar in both groups. For trainers and trainees, technical skills scores were considerably better on the simulator than on the cadaver. For trainers, generic events score was also considerably better on the simulator than on the cadaver. The main generic event occurring on both models was errors in the use of retraction. The main specific event occurring on both models was bowel perforation. Global satisfaction was better for the cadaver than for the simulator model (p < 0.001). The human cadaver model was more difficult but better appreciated than the simulator for laparoscopic sigmoid colectomy training. Simulator training followed by cadaver training can appropriately integrate simulators into the learning curve and maintain the benefits of both training methodologies. Published by Elsevier Inc.
ERIC Educational Resources Information Center
Fagan, Mary; Kilmon, Carol; Pandey, Vivek
2012-01-01
Purpose: This study aims to explore students' perceptions of a virtual reality simulation that enable nursing students to learn how to use a medical emergency crash cart. Design/methodology/approach: The study was designed to explore how students' perceptions of ease of use and perceived usefulness from the technology acceptance model and the…
ERIC Educational Resources Information Center
Cox, Daniel J.; Brown, Timothy; Ross, Veerle; Moncrief, Matthew; Schmitt, Rose; Gaffney, Gary; Reeve, Ron
2017-01-01
Investigate how novice drivers with autism spectrum disorder (ASD) differ from experienced drivers and whether virtual reality driving simulation training (VRDST) improves ASD driving performance. 51 novice ASD drivers (mean age 17.96 years, 78% male) were randomized to routine training (RT) or one of three types of VRDST (8-12 sessions). All…
Lui, Justin T; Hoy, Monica Y
2017-06-01
Background The increasing prevalence of virtual reality simulation in temporal bone surgery warrants an investigation to assess training effectiveness. Objectives To determine if temporal bone simulator use improves mastoidectomy performance. Data Sources Ovid Medline, Embase, and PubMed databases were systematically searched per the PRISMA guidelines. Review Methods Inclusion criteria were peer-reviewed publications that utilized quantitative data of mastoidectomy performance following the use of a temporal bone simulator. The search was restricted to human studies published in English. Studies were excluded if they were in non-peer-reviewed format, were descriptive in nature, or failed to provide surgical performance outcomes. Meta-analysis calculations were then performed. Results A meta-analysis based on the random-effects model revealed an improvement in overall mastoidectomy performance following training on the temporal bone simulator. A standardized mean difference of 0.87 (95% CI, 0.38-1.35) was generated in the setting of a heterogeneous study population ( I 2 = 64.3%, P < .006). Conclusion In the context of a diverse population of virtual reality simulation temporal bone surgery studies, meta-analysis calculations demonstrate an improvement in trainee mastoidectomy performance with virtual simulation training.
Poeschl, Sandra; Doering, Nicola
2015-01-01
Virtual reality exposure therapy (VRET) applications use high levels of fidelity in order to produce high levels of presence and thereby elicit an emotional response for the user (like fear for phobia treatment). State of research shows mixed results for the correlation between anxiety and presence in virtual reality exposure, with differing results depending on specific anxiety disorders. A positive correlation for anxiety and presence for social anxiety disorder is not proven up to now. One reason might be that plausibility of the simulation, namely including key triggers for social anxiety (for example verbal and non-verbal behavior of virtual agents that reflects potentially negative human evaluation) might not be acknowledged in current presence questionnaires. A German scale for measuring co-presence and social presence for virtual reality (VR) fear of public speaking scenarios was developed based on a translation and adaption of existing co-presence and social presence questionnaires. A sample of N = 151 students rated co-presence and social presence after using a fear of public speaking application. Four correlated factors were derived by item- and principle axis factor analysis (Promax rotation), representing the presenter's reaction to virtual agents, the reactions of the virtual agents as perceived by the presenter, impression of interaction possibilities, and (co-)presence of other people in the virtual environment. The scale developed can be used as a starting point for future research and test construction for VR applications with a social context.
Chen, T N; Yin, X T; Li, X G; Zhao, J; Wang, L; Mu, N; Ma, K; Huo, K; Liu, D; Gao, B Y; Feng, H; Li, F
2018-05-08
Objective: To explore the clinical and teaching application value of virtual reality technology in preoperative planning and intraoperative guide of glioma located in central sulcus region. Method: Ten patients with glioma in the central sulcus region were proposed to surgical treatment. The neuro-imaging data, including CT, CTA, DSA, MRI, fMRI were input to 3dgo sczhry workstation for image fusion and 3D reconstruction. Spatial relationships between the lesions and the surrounding structures on the virtual reality image were obtained. These images were applied to the operative approach design, operation process simulation, intraoperative auxiliary decision and the training of specialist physician. Results: Intraoperative founding of 10 patients were highly consistent with preoperative simulation with virtual reality technology. Preoperative 3D reconstruction virtual reality images improved the feasibility of operation planning and operation accuracy. This technology had not only shown the advantages for neurological function protection and lesion resection during surgery, but also improved the training efficiency and effectiveness of dedicated physician by turning the abstract comprehension to virtual reality. Conclusion: Image fusion and 3D reconstruction based virtual reality technology in glioma resection is helpful for formulating the operation plan, improving the operation safety, increasing the total resection rate, and facilitating the teaching and training of the specialist physician.
Kang, Xianbiao; Zhang, Rong-Hua; Gao, Chuan; Zhu, Jieshun
2017-12-07
The El Niño-Southern oscillation (ENSO) simulated in the Community Earth System Model of the National Center for Atmospheric Research (NCAR CESM) is much stronger than in reality. Here, satellite data are used to derive a statistical relationship between interannual variations in oceanic chlorophyll (CHL) and sea surface temperature (SST), which is then incorporated into the CESM to represent oceanic chlorophyll -induced climate feedback in the tropical Pacific. Numerical runs with and without the feedback (referred to as feedback and non-feedback runs) are performed and compared with each other. The ENSO amplitude simulated in the feedback run is more accurate than that in the non-feedback run; quantitatively, the Niño3 SST index is reduced by 35% when the feedback is included. The underlying processes are analyzed and the results show that interannual CHL anomalies exert a systematic modulating effect on the solar radiation penetrating into the subsurface layers, which induces differential heating in the upper ocean that affects vertical mixing and thus SST. The statistical modeling approach proposed in this work offers an effective and economical way for improving climate simulations.
Virtual reality welder training
NASA Astrophysics Data System (ADS)
White, Steven A.; Reiners, Dirk; Prachyabrued, Mores; Borst, Christoph W.; Chambers, Terrence L.
2010-01-01
This document describes the Virtual Reality Simulated MIG Lab (sMIG), a system for Virtual Reality welder training. It is designed to reproduce the experience of metal inert gas (MIG) welding faithfully enough to be used as a teaching tool for beginning welding students. To make the experience as realistic as possible it employs physically accurate and tracked input devices, a real-time welding simulation, real-time sound generation and a 3D display for output. Thanks to being a fully digital system it can go beyond providing just a realistic welding experience by giving interactive and immediate feedback to the student to avoid learning wrong movements from day 1.
[Tools for laparoscopic skill development - available trainers and simulators].
Jaksa, László; Haidegger, Tamás; Galambos, Péter; Kiss, Rita
2017-10-01
The laparoscopic minimally invasive surgical technique is widely employed on a global scale. However, the efficient and ethical teaching of this technique requires equipment for surgical simulation. These educational devices are present on the market in the form of box trainers and virtual reality simulators, or some combination of those. In this article, we present a systematic overview of commercially available surgical simulators describing the most important features of each product. Our overview elaborates on box trainers and virtual reality simulators, and also touches on surgical robotics simulators, together with operating room workflow simulators, for the sake of completeness. Apart from presenting educational tools, we evaluated the literature of laparoscopic surgical education and simulation, to provide a complete picture of the unfolding trends in this field. Orv Hetil. 2017; 158(40): 1570-1576.
Marescaux, J; Clément, J M; Nord, M; Russier, Y; Tassetti, V; Mutter, D; Cotin, S; Ayache, N
1997-11-01
Surgical simulation increasingly appears to be an essential aspect of tomorrow's surgery. The development of a hepatic surgery simulator is an advanced concept calling for a new writing system which will transform the medical world: virtual reality. Virtual reality extends the perception of our five senses by representing more than the real state of things by the means of computer sciences and robotics. It consists of three concepts: immersion, navigation and interaction. Three reasons have led us to develop this simulator: the first is to provide the surgeon with a comprehensive visualisation of the organ. The second reason is to allow for planning and surgical simulation that could be compared with the detailed flight-plan for a commercial jet pilot. The third lies in the fact that virtual reality is an integrated part of the concept of computer assisted surgical procedure. The project consists of a sophisticated simulator which has to include five requirements: visual fidelity, interactivity, physical properties, physiological properties, sensory input and output. In this report we will describe how to get a realistic 3D model of the liver from bi-dimensional 2D medical images for anatomical and surgical training. The introduction of a tumor and the consequent planning and virtual resection is also described, as are force feedback and real-time interaction.
2012-01-01
Abstract Background Several studies have found a positive effect on the learning curve as well as the improvement of basic psychomotor skills in the operating room after virtual reality training. Despite this, the majority of surgical and gynecological departments encounter hurdles when implementing this form of training. This is mainly due to lack of knowledge concerning the time and human resources needed to train novice surgeons to an adequate level. The purpose of this trial is to investigate the impact of instructor feedback regarding time, repetitions and self-perception when training complex operational tasks on a virtual reality simulator. Methods/Design The study population consists of medical students on their 4th to 6th year without prior laparoscopic experience. The study is conducted in a skills laboratory at a centralized university hospital. Based on a sample size estimation 98 participants will be randomized to an intervention group or a control group. Both groups have to achieve a predefined proficiency level when conducting a laparoscopic salpingectomy using a surgical virtual reality simulator. The intervention group receives standardized instructor feedback of 10 to 12 min a maximum of three times. The control group receives no instructor feedback. Both groups receive the automated feedback generated by the virtual reality simulator. The study follows the CONSORT Statement for randomized trials. Main outcome measures are time and repetitions to reach the predefined proficiency level on the simulator. We include focus on potential sex differences, computer gaming experience and self-perception. Discussion The findings will contribute to a better understanding of optimal training methods in surgical education. Trial Registration NCT01497782 PMID:22373062
Krasovsky, Tal; Weiss, Patrice L; Kizony, Rachel
2018-04-06
Texting while walking (TeWW) has become common among people of all ages, and mobile phone use during gait is increasingly associated with pedestrian injury. Although dual-task walking performance is known to decline with age, data regarding the effect of age on dual-task performance in ecological settings are limited. The objective of this study was to evaluate the effect of age, environment (indoors/outdoors), and mixed reality (merging of real and virtual environments) on TeWW performance. A cross-sectional design was used. Young (N = 30; 27.8 ± 4.4 years) and older (N = 20; 68.9 ± 3.9 years) adults performed single and dual-task texting and walking indoors and outdoors, with and without a mixed reality display. Participants also completed evaluations of visual scanning and cognitive flexibility (Trail Making Test) and functional mobility (Timed Up and Go). Indoors, similar interference to walking and texting occurred for both groups, but only older adults' gait variability increased under dual task conditions. Outdoors, TeWW was associated with larger age-related differences in gait variability, texting accuracy, and gait dual-task costs. Young adults with better visual scanning and cognitive flexibility performed TeWW with lower gait costs (r = 0.52 to r = 0.65). The mixed reality display was unhelpful and did not modify walking or texting. Older adults tested in this study were relatively high-functioning. Gaze of participants was not directly monitored. Although young and older adults possess the resources necessary for TeWW, older adults pay an additional "price" when dual-tasking, especially outdoors. TeWW may have potential as an ecologically-valid assessment and/or an intervention paradigm for dual task performance among older adults as well as for clinical populations.
Surgical virtual reality - highlights in developing a high performance surgical haptic device.
Custură-Crăciun, D; Cochior, D; Constantinoiu, S; Neagu, C
2013-01-01
Just like simulators are a standard in aviation and aerospace sciences, we expect for surgical simulators to soon become a standard in medical applications. These will correctly instruct future doctors in surgical techniques without there being a need for hands on patient instruction. Using virtual reality by digitally transposing surgical procedures changes surgery in are volutionary manner by offering possibilities for implementing new, much more efficient, learning methods, by allowing the practice of new surgical techniques and by improving surgeon abilities and skills. Perfecting haptic devices has opened the door to a series of opportunities in the fields of research,industry, nuclear science and medicine. Concepts purely theoretical at first, such as telerobotics, telepresence or telerepresentation,have become a practical reality as calculus techniques, telecommunications and haptic devices evolved,virtual reality taking a new leap. In the field of surgery barrier sand controversies still remain, regarding implementation and generalization of surgical virtual simulators. These obstacles remain connected to the high costs of this yet fully sufficiently developed technology, especially in the domain of haptic devices. Celsius.
Virtual reality disaster training: translation to practice.
Farra, Sharon L; Miller, Elaine T; Hodgson, Eric
2015-01-01
Disaster training is crucial to the mitigation of both mortality and morbidity associated with disasters. Just as clinical practice needs to be grounded in evidence, effective disaster education is dependent upon the development and use of andragogic and pedagogic evidence. Educational research findings must be transformed into useable education strategies. Virtual reality simulation is a teaching methodology that has the potential to be a powerful educational tool. The purpose of this article is to translate research findings related to the use of virtual reality simulation in disaster training into education practice. The Ace Star Model serves as a valuable framework to translate the VRS teaching methodology and improve disaster training of healthcare professionals. Using the Ace Star Model as a framework to put evidence into practice, strategies for implementing a virtual reality simulation are addressed. Practice guidelines, implementation recommendations, integration to practice and evaluation are discussed. It is imperative that health educators provide more exemplars of how research evidence can be moved through the various stages of the model to advance practice and sustain learning outcomes. Copyright © 2013 Elsevier Ltd. All rights reserved.
Exercise/recreation facility for a Lunar or Mars analog
NASA Technical Reports Server (NTRS)
1991-01-01
Discussed here is a project to design an exercise/recreation station for an earth based simulator of a lunar or Martian habitat. Specifically, researchers designed a stationary bicycle that will help people keep fit and prevent muscular atrophy while stationed in space. To help with motivation and provide an element of recreation during the workout, the bicycle is enhanced by a virtual reality system. The system will simulate various riding situations and the choice of mountain bike or road bike. The bike employs a magnetic brake that provides continuously changing tension to simulate actual riding conditions. This braking system will be interfaced directly with the virtual reality system. Also integrated into the virtual reality system will be a monitoring system that regulates heart rate, work rate, and other functions during the course of the session.
ERIC Educational Resources Information Center
Huang, Hsiu-Mei; Liaw, Shu-Sheng; Lai, Chung-Min
2016-01-01
Advanced technologies have been widely applied in medical education, including human-patient simulators, immersive virtual reality Cave Automatic Virtual Environment systems, and video conferencing. Evaluating learner acceptance of such virtual reality (VR) learning environments is a critical issue for ensuring that such technologies are used to…
Raque, Jessica; Goble, Adam; Jones, Veronica M; Waldman, Lindsey E; Sutton, Erica
2015-07-01
With the introduction of Fundamentals of Endoscopic Surgery, training methods in flexible endoscopy are being augmented with simulation-based curricula. The investment for virtual reality simulators warrants further research into its training advantage. Trainees were randomized into bedside or simulator training groups (BED vs SIM). SIM participated in a proficiency-based virtual reality curriculum. Trainees' endoscopic skills were rated using the Global Assessment of Gastrointestinal Endoscopic Skills (GAGES) in the patient care setting. The number of cases to reach 90 per cent of the maximum GAGES score and calculated costs of training were compared. Nineteen residents participated in the study. There was no difference in the average number of cases required to achieve 90 per cent of the maximum GAGES score for esophagogastroduodenoscopy, 13 (SIM) versus11 (BED) (P = 0.63), or colonoscopy 21 (SIM) versus 4 (BED) (P = 0.34). The average per case cost of training for esophagogastroduodenoscopy was $35.98 (SIM) versus $39.71 (BED) (P = 0.50), not including the depreciation costs associated with the simulator ($715.00 per resident over six years). Use of a simulator appeared to increase the cost of training without accelerating the learning curve or decreasing faculty time spent in instruction. The importance of simulation in endoscopy training will be predicated on more cost-effective simulators.
Visualization of reservoir simulation data with an immersive virtual reality system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williams, B.K.
1996-10-01
This paper discusses an investigation into the use of an immersive virtual reality (VR) system to visualize reservoir simulation output data. The hardware and software configurations of the test-immersive VR system are described and compared to a nonimmersive VR system and to an existing workstation screen-based visualization system. The structure of 3D reservoir simulation data and the actions to be performed on the data within the VR system are discussed. The subjective results of the investigation are then presented, followed by a discussion of possible future work.
ProMIS augmented reality training of laparoscopic procedures face validity.
Botden, Sanne M B I; Buzink, Sonja N; Schijven, Marlies P; Jakimowicz, Jack J
2008-01-01
Conventional video trainers lack the ability to assess the trainee objectively, but offer modalities that are often missing in virtual reality simulation, such as realistic haptic feedback. The ProMIS augmented reality laparoscopic simulator retains the benefit of a traditional box trainer, by using original laparoscopic instruments and tactile tasks, but additionally generates objective measures of performance. Fifty-five participants performed a "basic skills" and "suturing and knot-tying" task on ProMIS, after which they filled out a questionnaire regarding realism, haptics, and didactic value of the simulator, on a 5-point-Likert scale. The participants were allotted to 2 experience groups: "experienced" (>50 procedures and >5 sutures; N = 27), and "moderately experienced" (<50 procedures and <5 sutures; N = 28). General consensus among all participants, particularly the experienced, was that ProMIS is a useful tool for training (mean: 4.67, SD: 0.48). It was considered very realistic (mean: 4.44, SD: 0.66), with good haptics (mean: 4.10, SD: 0.97) and didactic value (mean 4.10, SD: 0.65). This study established the face validity of the ProMIS augmented reality simulator for "basic skills" and "suturing and knot-tying" tasks. ProMIS was considered a good tool for training in laparoscopic skills for surgical residents and surgeons.
Korayem, Moharam Habibnejad; Hoshiar, Ali Kafash; Ghofrani, Maedeh
2017-08-01
With the expansion of nanotechnology, robots based on atomic force microscope (AFM) have been widely used as effective tools for displacing nanoparticles and constructing nanostructures. One of the most limiting factors in AFM-based manipulation procedures is the inability of simultaneously observing the controlled pushing and displacing of nanoparticles while performing the operation. To deal with this limitation, a virtual reality environment has been used in this paper for observing the manipulation operation. In the simulations performed in this paper, first, the images acquired by the atomic force microscope have been processed and the positions and dimensions of nanoparticles have been determined. Then, by dynamically modelling the transfer of nanoparticles and simulating the critical force-time diagrams, a controlled displacement of nanoparticles has been accomplished. The simulations have been further developed for the use of rectangular, V-shape and dagger-shape cantilevers. The established virtual reality environment has made it possible to simulate the manipulation of biological particles in a liquid medium. Copyright © 2017 Elsevier Inc. All rights reserved.
Secoli, R; Zondervan, D; Reinkensmeyer, D
2012-01-01
For children with a severe disability, such as can arise from cerebral palsy, becoming independent in mobility is a critical goal. Currently, however, driver's training for powered wheelchair use is labor intensive, requiring hand-over-hand assistance from a skilled therapist to keep the trainee safe. This paper describes the design of a mixed reality environment for semi-autonomous training of wheelchair driving skills. In this system, the wheelchair is used as the gaming input device, and users train driving skills by maneuvering through floor-projected games created with a multi-projector system and a multi-camera tracking system. A force feedback joystick assists in steering and enhances safety.
Camp, Christopher L
2018-05-01
Although we have come a long way, the rapidly expanding field of virtual reality simulation for arthroscopic surgical skills acquisition is supported by only a limited amount of evidence. That said, the good news is that the evidence suggests that simulator experience translates into improved performance in the operating room. If proving this relation is our ultimate goal, more work is certainly needed. In this commentary, a "Task List" is proposed for surgeons and educators interested in using simulators and better defining their role in resident education. Copyright © 2018 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.
Ahn, Woojin; Dargar, Saurabh; Halic, Tansel; Lee, Jason; Li, Baichun; Pan, Junjun; Sankaranarayanan, Ganesh; Roberts, Kurt; De, Suvranu
2014-01-01
The first virtual-reality-based simulator for Natural Orifice Translumenal Endoscopic Surgery (NOTES) is developed called the Virtual Translumenal Endoscopic Surgery Trainer (VTESTTM). VTESTTM aims to simulate hybrid NOTES cholecystectomy procedure using a rigid scope inserted through the vaginal port. The hardware interface is designed for accurate motion tracking of the scope and laparoscopic instruments to reproduce the unique hand-eye coordination. The haptic-enabled multimodal interactive simulation includes exposing the Calot's triangle and detaching the gall bladder while performing electrosurgery. The developed VTESTTM was demonstrated and validated at NOSCAR 2013.
Research on Collaborative Technology in Distributed Virtual Reality System
NASA Astrophysics Data System (ADS)
Lei, ZhenJiang; Huang, JiJie; Li, Zhao; Wang, Lei; Cui, JiSheng; Tang, Zhi
2018-01-01
Distributed virtual reality technology applied to the joint training simulation needs the CSCW (Computer Supported Cooperative Work) terminal multicast technology to display and the HLA (high-level architecture) technology to ensure the temporal and spatial consistency of the simulation, in order to achieve collaborative display and collaborative computing. In this paper, the CSCW’s terminal multicast technology has been used to modify and expand the implementation framework of HLA. During the simulation initialization period, this paper has used the HLA statement and object management service interface to establish and manage the CSCW network topology, and used the HLA data filtering mechanism for each federal member to establish the corresponding Mesh tree. During the simulation running period, this paper has added a new thread for the RTI and the CSCW real-time multicast interactive technology into the RTI, so that the RTI can also use the window message mechanism to notify the application update the display screen. Through many applications of submerged simulation training in substation under the operation of large power grid, it is shown that this paper has achieved satisfactory training effect on the collaborative technology used in distributed virtual reality simulation.
Fire training in a virtual-reality environment
NASA Astrophysics Data System (ADS)
Freund, Eckhard; Rossmann, Jurgen; Bucken, Arno
2005-03-01
Although fire is very common in our daily environment - as a source of energy at home or as a tool in industry - most people cannot estimate the danger of a conflagration. Therefore it is important to train people in combating fire. Beneath training with propane simulators or real fires and real extinguishers, fire training can be performed in virtual reality, which means a pollution-free and fast way of training. In this paper we describe how to enhance a virtual-reality environment with a real-time fire simulation and visualisation in order to establish a realistic emergency-training system. The presented approach supports extinguishing of the virtual fire including recordable performance data as needed in teletraining environments. We will show how to get realistic impressions of fire using advanced particle-simulation and how to use the advantages of particles to trigger states in a modified cellular automata used for the simulation of fire-behaviour. Using particle systems that interact with cellular automata it is possible to simulate a developing, spreading fire and its reaction on different extinguishing agents like water, CO2 or oxygen. The methods proposed in this paper have been implemented and successfully tested on Cosimir, a commercial robot-and VR-simulation-system.
Computer Vision Assisted Virtual Reality Calibration
NASA Technical Reports Server (NTRS)
Kim, W.
1999-01-01
A computer vision assisted semi-automatic virtual reality (VR) calibration technology has been developed that can accurately match a virtual environment of graphically simulated three-dimensional (3-D) models to the video images of the real task environment.
Cognitive evaluation by tasks in a virtual reality environment in multiple sclerosis.
Lamargue-Hamel, Delphine; Deloire, Mathilde; Saubusse, Aurore; Ruet, Aurélie; Taillard, Jacques; Philip, Pierre; Brochet, Bruno
2015-12-15
The assessment of cognitive impairment in multiple sclerosis (MS) requires large neuropsychological batteries that assess numerous domains. The relevance of these assessments to daily cognitive functioning is not well established. Cognitive ecological evaluation has not been frequently studied in MS. The aim of this study was to determine the interest of cognitive evaluation in a virtual reality environment in a sample of persons with MS with cognitive deficits. Thirty persons with MS with at least moderate cognitive impairment were assessed with two ecological evaluations, an in-house developed task in a virtual reality environment (Urban DailyCog®) and a divided attention task in a driving simulator. Classical neuropsychological testing was also used. Fifty-two percent of the persons with MS failed the driving simulator task and 80% failed the Urban DailyCog®. Virtual reality assessments are promising in identifying cognitive impairment in MS. Copyright © 2015 Elsevier B.V. All rights reserved.
Kiryu, Tohru; So, Richard H Y
2007-09-25
Around three years ago, in the special issue on augmented and virtual reality in rehabilitation, the topics of simulator sickness was briefly discussed in relation to vestibular rehabilitation. Simulator sickness with virtual reality applications have also been referred to as visually induced motion sickness or cybersickness. Recently, study on cybersickness has been reported in entertainment, training, game, and medical environment in several journals. Virtual stimuli can enlarge sensation of presence, but they sometimes also evoke unpleasant sensation. In order to safely apply augmented and virtual reality for long-term rehabilitation treatment, sensation of presence and cybersickness should be appropriately controlled. This issue presents the results of five studies conducted to evaluate visually-induced effects and speculate influences of virtual rehabilitation. In particular, the influence of visual and vestibular stimuli on cardiovascular responses are reported in terms of academic contribution.
Kiryu, Tohru; So, Richard HY
2007-01-01
Around three years ago, in the special issue on augmented and virtual reality in rehabilitation, the topics of simulator sickness was briefly discussed in relation to vestibular rehabilitation. Simulator sickness with virtual reality applications have also been referred to as visually induced motion sickness or cybersickness. Recently, study on cybersickness has been reported in entertainment, training, game, and medical environment in several journals. Virtual stimuli can enlarge sensation of presence, but they sometimes also evoke unpleasant sensation. In order to safely apply augmented and virtual reality for long-term rehabilitation treatment, sensation of presence and cybersickness should be appropriately controlled. This issue presents the results of five studies conducted to evaluate visually-induced effects and speculate influences of virtual rehabilitation. In particular, the influence of visual and vestibular stimuli on cardiovascular responses are reported in terms of academic contribution. PMID:17894857
Fleming, Michael; Olsen, Dale; Stathes, Hilary; Boteler, Laura; Grossberg, Paul; Pfeifer, Judie; Schiro, Stephanie; Banning, Jane; Skochelak, Susan
2009-01-01
Educating physicians and other health care professionals about the identification and treatment of patients who drink more than recommended limits is an ongoing challenge. An educational randomized controlled trial was conducted to test the ability of a stand-alone training simulation to improve the clinical skills of health care professionals in alcohol screening and intervention. The "virtual reality simulation" combined video, voice recognition, and nonbranching logic to create an interactive environment that allowed trainees to encounter complex social cues and realistic interpersonal exchanges. The simulation included 707 questions and statements and 1207 simulated patient responses. A sample of 102 health care professionals (10 physicians; 30 physician assistants or nurse practitioners; 36 medical students; 26 pharmacy, physican assistant, or nurse practitioner students) were randomly assigned to a no training group (n = 51) or a computer-based virtual reality intervention (n = 51). Professionals in both groups had similar pretest standardized patient alcohol screening skill scores: 53.2 (experimental) vs 54.4 (controls), 52.2 vs 53.7 alcohol brief intervention skills, and 42.9 vs 43.5 alcohol referral skills. After repeated practice with the simulation there were significant increases in the scores of the experimental group at 6 months after randomization compared with the control group for the screening (67.7 vs 58.1; P < .001) and brief intervention (58.3 vs 51.6; P < .04) scenarios. The technology tested in this trial is the first virtual reality simulation to demonstrate an increase in the alcohol screening and brief intervention skills of health care professionals.
Psychological benefits of virtual reality for patients in rehabilitation therapy.
Chen, Chih-Hung; Jeng, Ming-Chang; Fung, Chin-Ping; Doong, Ji-Liang; Chuang, Tien-Yow
2009-05-01
Whether virtual rehabilitation is beneficial has not been determined. To investigate the psychological benefits of virtual reality in rehabilitation. An experimental group underwent therapy with a virtual-reality-based exercise bike, and a control group underwent the therapy without virtual-reality equipment. Hospital laboratory. 30 patients suffering from spinal-cord injury. A designed rehabilitation therapy. Endurance, Borg's rating-of-perceived-exertion scale, the Activation-Deactivation Adjective Check List (AD-ACL), and the Simulator Sickness Questionnaire. The differences between the experimental and control groups were significant for AD-ACL calmness and tension. A virtual-reality-based rehabilitation program can ease patients' tension and induce calm.
Training for percutaneous renal access on a virtual reality simulator.
Zhang, Yi; Yu, Cheng-fan; Liu, Jin-shun; Wang, Gang; Zhu, He; Na, Yan-qun
2013-01-01
The need to develop new methods of surgical training combined with advances in computing has led to the development of virtual reality surgical simulators. The PERC Mentor(TM) is designed to train the user in percutaneous renal collecting system access puncture. This study aimed to validate the use of this kind of simulator, in percutaneous renal access training. Twenty-one urologists were enrolled as trainees to learn a fluoroscopy-guided percutaneous renal accessing technique. An assigned percutaneous renal access procedure was immediately performed on the PERC Mentor(TM) after watching instruction video and an analog operation. Objective parameters were recorded by the simulator and subjective global rating scale (GRS) score were determined. Simulation training followed and consisted of 2 hours daily training sessions for 2 consecutive days. Twenty-four hours after the training session, trainees were evaluated performing the same procedure. The post-training evaluation was compared to the evaluation of the initial attempt. During the initial attempt, none of the trainees could complete the appointed procedure due to the lack of experience in fluoroscopy-guided percutaneous renal access. After the short-term training, all trainees were able to independently complete the procedure. Of the 21 trainees, 10 had primitive experience in ultrasound-guided percutaneous nephrolithotomy. Trainees were thus categorized into the group of primitive experience and inexperience. The total operating time and amount of contrast material used were significantly lower in the group of primitive experience versus the inexperience group (P = 0.03 and 0.02, respectively). The training on the virtual reality simulator, PERC Mentor(TM), can help trainees with no previous experience of fluoroscopy-guided percutaneous renal access to complete the virtual manipulation of the procedure independently. This virtual reality simulator may become an important training and evaluation tool in teaching fluoroscopy-guided percutaneous renal access.
Differentiating levels of surgical experience on a virtual reality temporal bone simulator.
Zhao, Yi C; Kennedy, Gregor; Hall, Richard; O'Leary, Stephen
2010-11-01
Virtual reality simulation is increasingly being incorporated into surgical training and may have a role in temporal bone surgical education. Here we test whether metrics generated by a virtual reality surgical simulation can differentiate between three levels of experience, namely novices, otolaryngology residents, and experienced qualified surgeons. Cohort study. Royal Victorian Eye and Ear Hospital. Twenty-seven participants were recruited. There were 12 experts, six residents, and nine novices. After orientation, participants were asked to perform a modified radical mastoidectomy on the simulator. Comparisons of time taken, injury to structures, and forces exerted were made between the groups to determine which specific metrics would discriminate experience levels. Experts completed the simulated task in significantly shorter time than the other two groups (experts 22 minutes, residents 36 minutes, and novices 46 minutes; P = 0.001). Novices exerted significantly higher average forces when dissecting close to vital structures compared with experts (0.24 Newton [N] vs 0.13 N, P = 0.002). Novices were also more likely to injure structures such as dura compared to experts (23 injuries vs 3 injuries, P = 0.001). Compared with residents, the experts modulated their force between initial cortex dissection and dissection close to vital structures. Using the combination of these metrics, we were able to correctly classify the participants' level of experience 90 percent of the time. This preliminary study shows that measurements of performance obtained from within a virtual reality simulator can differentiate between levels of users' experience. These results suggest that simulator training may have a role in temporal bone training beyond foundational training. Copyright © 2010 American Academy of Otolaryngology–Head and Neck Surgery Foundation. Published by Mosby, Inc. All rights reserved.
Virtual reality as a tool for cross-cultural communication: an example from military team training
NASA Astrophysics Data System (ADS)
Downes-Martin, Stephen; Long, Mark; Alexander, Joanna R.
1992-06-01
A major problem with communication across cultures, whether professional or national, is that simple language translation if often insufficient to communicate the concepts. This is especially true when the communicators come from highly specialized fields of knowledge or from national cultures with long histories of divergence. This problem becomes critical when the goal of the communication is national negotiation dealing with such high risk items as arms negotiation or trade wars. Virtual Reality technology has considerable potential for facilitating communication across cultures, by immersing the communicators within multiple visual representations of the concepts, and providing control over those representations. Military distributed team training provides a model for virtual reality suitable for cross cultural communication such as negotiation. In both team training and negotiation, the participants must cooperate, agree on a set of goals, and achieve mastery over the concepts being negotiated. Team training technologies suitable for supporting cross cultural negotiation exist (branch wargaming, computer image generation and visualization, distributed simulation), and have developed along different lines than traditional virtual reality technology. Team training de-emphasizes the realism of physiological interfaces between the human and the virtual reality, and emphasizes the interaction of humans with each other and with intelligent simulated agents within the virtual reality. This approach to virtual reality is suggested as being more fruitful for future work.
HTC Vive MeVisLab integration via OpenVR for medical applications
Egger, Jan; Gall, Markus; Wallner, Jürgen; Boechat, Pedro; Hann, Alexander; Li, Xing; Chen, Xiaojun; Schmalstieg, Dieter
2017-01-01
Virtual Reality, an immersive technology that replicates an environment via computer-simulated reality, gets a lot of attention in the entertainment industry. However, VR has also great potential in other areas, like the medical domain, Examples are intervention planning, training and simulation. This is especially of use in medical operations, where an aesthetic outcome is important, like for facial surgeries. Alas, importing medical data into Virtual Reality devices is not necessarily trivial, in particular, when a direct connection to a proprietary application is desired. Moreover, most researcher do not build their medical applications from scratch, but rather leverage platforms like MeVisLab, MITK, OsiriX or 3D Slicer. These platforms have in common that they use libraries like ITK and VTK, and provide a convenient graphical interface. However, ITK and VTK do not support Virtual Reality directly. In this study, the usage of a Virtual Reality device for medical data under the MeVisLab platform is presented. The OpenVR library is integrated into the MeVisLab platform, allowing a direct and uncomplicated usage of the head mounted display HTC Vive inside the MeVisLab platform. Medical data coming from other MeVisLab modules can directly be connected per drag-and-drop to the Virtual Reality module, rendering the data inside the HTC Vive for immersive virtual reality inspection. PMID:28323840
HTC Vive MeVisLab integration via OpenVR for medical applications.
Egger, Jan; Gall, Markus; Wallner, Jürgen; Boechat, Pedro; Hann, Alexander; Li, Xing; Chen, Xiaojun; Schmalstieg, Dieter
2017-01-01
Virtual Reality, an immersive technology that replicates an environment via computer-simulated reality, gets a lot of attention in the entertainment industry. However, VR has also great potential in other areas, like the medical domain, Examples are intervention planning, training and simulation. This is especially of use in medical operations, where an aesthetic outcome is important, like for facial surgeries. Alas, importing medical data into Virtual Reality devices is not necessarily trivial, in particular, when a direct connection to a proprietary application is desired. Moreover, most researcher do not build their medical applications from scratch, but rather leverage platforms like MeVisLab, MITK, OsiriX or 3D Slicer. These platforms have in common that they use libraries like ITK and VTK, and provide a convenient graphical interface. However, ITK and VTK do not support Virtual Reality directly. In this study, the usage of a Virtual Reality device for medical data under the MeVisLab platform is presented. The OpenVR library is integrated into the MeVisLab platform, allowing a direct and uncomplicated usage of the head mounted display HTC Vive inside the MeVisLab platform. Medical data coming from other MeVisLab modules can directly be connected per drag-and-drop to the Virtual Reality module, rendering the data inside the HTC Vive for immersive virtual reality inspection.
Endotracheal intubation: application of virtual reality to emergency medical services education.
Mayrose, James; Myers, Jeffrey W
2007-01-01
Virtual reality simulation has been identified as an emerging educational tool with significant potential to enhance teaching of residents and students in emergency clinical encounters and procedures. Endotracheal intubation represents a critical procedure for emergency care providers. Current methods of training include working with cadavers and mannequins, which have limitations in their representation of reality, ethical concerns, and overall availability with access, cost, and location of models. This paper will present a human airway simulation model designed for tracheal intubation and discuss the aspects that lend itself to use as an educational tool. This realistic and dynamic model is used to teach routine intubations, while future models will include more difficult airway management scenarios. This work provides a solid foundation for future versions of the intubation simulator, which will incorporate two haptic devices to allow for simultaneous control of the laryngoscope blade and endotracheal tube.
Exercise/recreation facility for a lunar or Mars analog
NASA Technical Reports Server (NTRS)
1991-01-01
The University of Idaho, NASA/USRA project for the 1990-91 school year is an exercise/recreation station for an Earth-based simulator of a lunar or martian habitat. Specifically, a stationary bicycle that will help people keep fit and prevent muscular atrophy while stationed in space was designed. To help with motivation and provide an element of recreation during the workout, the bicycle is to be enhanced by a virtual reality system. The system simulates various riding situations, including the choice of a mountain bike or a road bike. The bike employs a magnetic brake that provides continuously changing tension to simulate actual riding conditions. This braking system is interfaced directly with the virtual reality system. Also, integrated into the virtual reality display will be a monitoring system that regulates heart rate, work rate, and other functions during the course of the session.
Salimi, Zohreh; Ferguson-Pell, Martin
2018-06-01
Although wheelchair ergometers provide a safe and controlled environment for studying or training wheelchair users, until recently they had a major disadvantage in only being capable of simulating straight-line wheelchair propulsion. Virtual reality has helped overcome this problem and broaden the usability of wheelchair ergometers. However, for a wheelchair ergometer to be validly used in research studies, it needs to be able to simulate the biomechanics of real world wheelchair propulsion. In this paper, three versions of a wheelchair simulator were developed. They provide a sophisticated wheelchair ergometer in an immersive virtual reality environment. They are intended for manual wheelchair propulsion and all are able to simulate simple translational inertia. In addition, each of the systems reported uses a different approach to simulate wheelchair rotation and accommodate rotational inertial effects. The first system does not provide extra resistance against rotation and relies on merely linear inertia, hypothesizing that it can provide acceptable replication of biomechanics of wheelchair maneuvers. The second and third systems, however, are designed to simulate rotational inertia. System II uses mechanical compensation, and System III uses visual compensation simulating the influence that rotational inertia has on the visual perception of wheelchair movement in response to rotation at different speeds.
Rosenthal, R; Gantert, W A; Scheidegger, D; Oertli, D
2006-08-01
A number of studies have investigated several aspects of feasibility and validity of performance assessments with virtual reality surgical simulators. However, the validity of performance assessments is limited by the reliability of such measurements, and some issues of reliability still need to be addressed. This study aimed to evaluate the hypothesis that test subjects show logarithmic performance curves on repetitive trials for a component task of laparoscopic cholecystectomy on a virtual reality simulator, and that interindividual differences in performance after considerable training are significant. According to kinesiologic theory, logarithmic performance curves are expected and an individual's learning capacity for a specific task can be extrapolated, allowing quantification of a person's innate ability to develop task-specific skills. In this study, 20 medical students at the University of Basel Medical School performed five trials of a standardized task on the LS 500 virtual reality simulator for laparoscopic surgery. Task completion time, number of errors, economy of instrument movements, and maximum speed of instrument movements were measured. The hypothesis was confirmed by the fact that the performance curves for some of the simulator measurements were very close to logarithmic curves, and there were significant interindividual differences in performance at the end of the repetitive trials. Assessment of perceptual motor skills and the innate ability of an individual with no prior experience in laparoscopic surgery to develop such skills using the LS 500 VR surgical simulator is feasible and reliable.
Laparoscopic skills acquisition: a study of simulation and traditional training.
Marlow, Nicholas; Altree, Meryl; Babidge, Wendy; Field, John; Hewett, Peter; Maddern, Guy J
2014-12-01
Training in basic laparoscopic skills can be undertaken using traditional methods, where trainees are educated by experienced surgeons through a process of graduated responsibility or by simulation-based training. This study aimed to assess whether simulation trained individuals reach the same level of proficiency in basic laparoscopic skills as traditional trained participants when assessed in a simulated environment. A prospective study was undertaken. Participants were allocated to one of two cohorts according to surgical experience. Participants from the inexperienced cohort were randomized to receive training in basic laparoscopic skills on either a box trainer or a virtual reality simulator. They were then assessed on the simulator on which they did not receive training. Participants from the experienced cohort, considered to have received traditional training in basic laparoscopic skills, did not receive simulation training and were randomized to either the box trainer or virtual reality simulator for skills assessment. The assessment scores from different cohorts on either simulator were then compared. A total of 138 participants completed the assessment session, 101 in the inexperienced simulation-trained cohort and 37 on the experienced traditionally trained cohort. There was no statistically significant difference between the training outcomes of simulation and traditionally trained participants, irrespective of the simulator type used. The results demonstrated that participants trained on either a box trainer or virtual reality simulator achieved a level of basic laparoscopic skills assessed in a simulated environment that was not significantly different from participants who had been traditionally trained in basic laparoscopic skills. © 2013 Royal Australasian College of Surgeons.
Multi-degree of freedom joystick for virtual reality simulation.
Head, M J; Nelson, C A; Siu, K C
2013-11-01
A modular control interface and simulated virtual reality environment were designed and created in order to determine how the kinematic architecture of a control interface affects minimally invasive surgery training. A user is able to selectively determine the kinematic configuration of an input device (number, type and location of degrees of freedom) for a specific surgical simulation through the use of modular joints and constraint components. Furthermore, passive locking was designed and implemented through the use of inflated latex tubing around rotational joints in order to allow a user to step away from a simulation without unwanted tool motion. It is believed that these features will facilitate improved simulation of a variety of surgical procedures and, thus, improve surgical skills training.
Jensen, Katrine; Bjerrum, Flemming; Hansen, Henrik Jessen; Petersen, René Horsleben; Pedersen, Jesper Holst; Konge, Lars
2017-06-01
The societies of thoracic surgery are working to incorporate simulation and competency-based assessment into specialty training. One challenge is the development of a simulation-based test, which can be used as an assessment tool. The study objective was to establish validity evidence for a virtual reality simulator test of a video-assisted thoracoscopic surgery (VATS) lobectomy of a right upper lobe. Participants with varying experience in VATS lobectomy were included. They were familiarized with a virtual reality simulator (LapSim ® ) and introduced to the steps of the procedure for a VATS right upper lobe lobectomy. The participants performed two VATS lobectomies on the simulator with a 5-min break between attempts. Nineteen pre-defined simulator metrics were recorded. Fifty-three participants from nine different countries were included. High internal consistency was found for the metrics with Cronbach's alpha coefficient for standardized items of 0.91. Significant test-retest reliability was found for 15 of the metrics (p-values <0.05). Significant correlations between the metrics and the participants VATS lobectomy experience were identified for seven metrics (p-values <0.001), and 10 metrics showed significant differences between novices (0 VATS lobectomies performed) and experienced surgeons (>50 VATS lobectomies performed). A pass/fail level defined as approximately one standard deviation from the mean metric scores for experienced surgeons passed none of the novices (0 % false positives) and failed four of the experienced surgeons (29 % false negatives). This study is the first to establish validity evidence for a VATS right upper lobe lobectomy virtual reality simulator test. Several simulator metrics demonstrated significant differences between novices and experienced surgeons and pass/fail criteria for the test were set with acceptable consequences. This test can be used as a first step in assessing thoracic surgery trainees' VATS lobectomy competency.
Virtual reality training in neurosurgery: Review of current status and future applications
Alaraj, Ali; Lemole, Michael G.; Finkle, Joshua H.; Yudkowsky, Rachel; Wallace, Adam; Luciano, Cristian; Banerjee, P. Pat; Rizzi, Silvio H.; Charbel, Fady T.
2011-01-01
Background: Over years, surgical training is changing and years of tradition are being challenged by legal and ethical concerns for patient safety, work hour restrictions, and the cost of operating room time. Surgical simulation and skill training offer an opportunity to teach and practice advanced techniques before attempting them on patients. Simulation training can be as straightforward as using real instruments and video equipment to manipulate simulated “tissue” in a box trainer. More advanced virtual reality (VR) simulators are now available and ready for widespread use. Early systems have demonstrated their effectiveness and discriminative ability. Newer systems enable the development of comprehensive curricula and full procedural simulations. Methods: A PubMed review of the literature was performed for the MESH words “Virtual reality, “Augmented Reality”, “Simulation”, “Training”, and “Neurosurgery”. Relevant articles were retrieved and reviewed. A review of the literature was performed for the history, current status of VR simulation in neurosurgery. Results: Surgical organizations are calling for methods to ensure the maintenance of skills, advance surgical training, and credential surgeons as technically competent. The number of published literature discussing the application of VR simulation in neurosurgery training has evolved over the last decade from data visualization, including stereoscopic evaluation to more complex augmented reality models. With the revolution of computational analysis abilities, fully immersive VR models are currently available in neurosurgery training. Ventriculostomy catheters insertion, endoscopic and endovascular simulations are used in neurosurgical residency training centers across the world. Recent studies have shown the coloration of proficiency with those simulators and levels of experience in the real world. Conclusion: Fully immersive technology is starting to be applied to the practice of neurosurgery. In the near future, detailed VR neurosurgical modules will evolve to be an essential part of the curriculum of the training of neurosurgeons. PMID:21697968
Virtual Reality: Ready or Not!
ERIC Educational Resources Information Center
Lewis, Joan E.
1994-01-01
Describes the development and current status of virtual reality (VR) and VR research. Market potentials for VR are discussed, including the entertainment industry, health care and medical training, flight and other simulators, and educational possibilities. A glossary of VR-related terms is included. (LRW)
Human Robotic Study at Houghton Crater - virtual reality study from NASA Ames (FFC) Future Fight
NASA Technical Reports Server (NTRS)
2002-01-01
Human Robotic Study at Houghton Crater - virtual reality study from NASA Ames (FFC) Future Fight Central simulator tower L-R: Dr Geoffrey Briggs; Jen Jasper (seated); Dr Jan Akins and Mr. Tony Gross, Ames
Truck driver fatigue assessment using a virtual reality system.
DOT National Transportation Integrated Search
2016-10-17
In this study, a fully immersive Virtual Reality (VR) based driving simulator was developed to serve : as a proof-of-concept that VR can be utilized to assess the level of fatigue (or drowsiness) truck : drivers typically experience during real...
Telemanipulation, telepresence, and virtual reality for surgery in the year 2000
NASA Astrophysics Data System (ADS)
Satava, Richard M.
1995-12-01
The new technologic revolution in medicine is based upon information technologies, and telemanipulation, telepresence and virtual reality are essential components. Telepresence surgery returns the look and feel of `open surgery' to the surgeon and promises enhancement of physical capabilities above normal human performance. Virtual reality provides basic medical education, simulation of surgical procedures, medical forces and disaster medicine practice, and virtual prototyping of medical equipment.
Kanumuri, Prathima; Ganai, Sabha; Wohaibi, Eyad M.; Bush, Ronald W.; Grow, Daniel R.
2008-01-01
Background: The study aim was to compare the effectiveness of virtual reality and computer-enhanced video-scopic training devices for training novice surgeons in complex laparoscopic skills. Methods: Third-year medical students received instruction on laparoscopic intracorporeal suturing and knot tying and then underwent a pretraining assessment of the task using a live porcine model. Students were then randomized to objectives-based training on either the virtual reality (n=8) or computer-enhanced (n=8) training devices for 4 weeks, after which the assessment was repeated. Results: Posttraining performance had improved compared with pretraining performance in both task completion rate (94% versus 18%; P<0.001*) and time [181±58 (SD) versus 292±24*]. Performance of the 2 groups was comparable before and after training. Of the subjects, 88% thought that haptic cues were important in simulators. Both groups agreed that their respective training systems were effective teaching tools, but computer-enhanced device trainees were more likely to rate their training as representative of reality (P<0.01). Conclusions: Training on virtual reality and computer-enhanced devices had equivalent effects on skills improvement in novices. Despite the perception that haptic feedback is important in laparoscopic simulation training, its absence in the virtual reality device did not impede acquisition of skill. PMID:18765042
Virtual Reality Simulator Systems in Robotic Surgical Training.
Mangano, Alberto; Gheza, Federico; Giulianotti, Pier Cristoforo
2018-06-01
The number of robotic surgical procedures has been increasing worldwide. It is important to maximize the cost-effectiveness of robotic surgical training and safely reduce the time needed for trainees to reach proficiency. The use of preliminary lab training in robotic skills is a good strategy for the rapid acquisition of further, standardized robotic skills. Such training can be done either by using a simulator or by exercises in a dry or wet lab. While the use of an actual robotic surgical system for training may be problematic (high cost, lack of availability), virtual reality (VR) simulators can overcome many of these obstacles. However, there is still a lack of standardization. Although VR training systems have improved, they cannot yet replace experience in a wet lab. In particular, simulated scenarios are not yet close enough to a real operative experience. Indeed, there is a difference between technical skills (i.e., mechanical ability to perform a simulated task) and surgical competence (i.e., ability to perform a real surgical operation). Thus, while a VR simulator can replace a dry lab, it cannot yet replace training in a wet lab or operative training in actual patients. However, in the near future, it is expected that VR surgical simulators will be able to provide total reality simulation and replace training in a wet lab. More research is needed to produce more wide-ranging, trans-specialty robotic curricula.
A review of the use of simulation in dental education.
Perry, Suzanne; Bridges, Susan Margaret; Burrow, Michael Francis
2015-02-01
In line with the advances in technology and communication, medical simulations are being developed to support the acquisition of requisite psychomotor skills before real-life clinical applications. This review article aimed to give a general overview of simulation in a cognate field, clinical dental education. Simulations in dentistry are not a new phenomenon; however, recent developments in virtual-reality technology using computer-generated medical simulations of 3-dimensional images or environments are providing more optimal practice conditions to smooth the transition from the traditional model-based simulation laboratory to the clinic. Evidence as to the positive aspects of virtual reality include increased effectiveness in comparison with traditional simulation teaching techniques, more efficient learning, objective and reproducible feedback, unlimited training hours, and enhanced cost-effectiveness for teaching establishments. Negative aspects have been indicated as initial setup costs, faculty training, and the lack of a variety of content and current educational simulation programs.
[Lack of correlation between performances in a simulator and in reality].
Konge, Lars; Bitsch, Mikael
2010-12-13
Simulation-based training provides obvious benefits for patients and doctors in education. Frequently, virtual reality simulators are expensive and evidence for their efficacy is poor, particularly as a result of studies with poor methodology and few test participants. In medical simulated training- and evaluation programmes it is always a question of transfer to the real clinical world. To illustrate this problem a study comparing the test performance of persons on a bowling simulator with their performance in a real bowling alley was conducted. Twenty-five test subjects played two rounds of bowling on a Nintendo Wii and 25 days later on a real bowling alley. Correlations of the scores in the first and second round (test-retest-reliability) and of the scores on the simulator and in reality (criterion validation) were studied and there was tested for any difference between female and male performance. The intraclass correlation coefficient equalled 0.76, i.e. the simulator fairly accurately measured participant performance. In contrast to this there was absolutely no correlation between participants' real bowling abilities and their scores on the simulator (Pearson's r = 0.06). There was no significant difference between female and male abilities. Simulation-based testing and training must be based on evidence. More studies are needed to include an adequate number of subjects. Bowling competence should not be based on Nintendo Wii measurements. Simulated training- and evaluation programmes should be validated before introduction, to ensure consistency with the real world.
Schuster-Amft, Corina; Eng, Kynan; Lehmann, Isabelle; Schmid, Ludwig; Kobashi, Nagisa; Thaler, Irène; Verra, Martin L; Henneke, Andrea; Signer, Sandra; McCaskey, Michael; Kiper, Daniel
2014-09-06
In recent years, virtual reality has been introduced to neurorehabilitation, in particular with the intention of improving upper-limb training options and facilitating motor function recovery. The proposed study incorporates a quantitative part and a qualitative part, termed a mixed-methods approach: (1) a quantitative investigation of the efficacy of virtual reality training compared to conventional therapy in upper-limb motor function are investigated, (2a) a qualitative investigation of patients' experiences and expectations of virtual reality training and (2b) a qualitative investigation of therapists' experiences using the virtual reality training system in the therapy setting. At three participating clinics, 60 patients at least 6 months after stroke onset will be randomly allocated to an experimental virtual reality group (EG) or to a control group that will receive conventional physiotherapy or occupational therapy (16 sessions, 45 minutes each, over the course of 4 weeks). Using custom data gloves, patients' finger and arm movements will be displayed in real time on a monitor, and they will move and manipulate objects in various virtual environments. A blinded assessor will test patients' motor and cognitive performance twice before, once during, and twice after the 4-week intervention. The primary outcome measure is the Box and Block Test. Secondary outcome measures are the Chedoke-McMaster Stroke Assessments (hand, arm and shoulder pain subscales), the Chedoke-McMaster Arm and Hand Activity Inventory, the Line Bisection Test, the Stroke Impact Scale, the MiniMentalState Examination and the Extended Barthel Index. Semistructured face-to-face interviews will be conducted with patients in the EG after intervention finalization with a focus on the patients' expectations and experiences regarding the virtual reality training. Therapists' perspectives on virtual reality training will be reviewed in three focus groups comprising four to six occupational therapists and physiotherapists. The interviews will help to gain a deeper understanding of the phenomena under investigation to provide sound recommendations for the implementation of the virtual reality training system for routine use in neurorehabilitation complementing the quantitative clinical assessments. Cliniclatrials.gov Identifier: NCT01774669 (15 January 2013).
Virtual reality based surgery simulation for endoscopic gynaecology.
Székely, G; Bajka, M; Brechbühler, C; Dual, J; Enzler, R; Haller, U; Hug, J; Hutter, R; Ironmonger, N; Kauer, M; Meier, V; Niederer, P; Rhomberg, A; Schmid, P; Schweitzer, G; Thaler, M; Vuskovic, V; Tröster, G
1999-01-01
Virtual reality (VR) based surgical simulator systems offer very elegant possibilities to both enrich and enhance traditional education in endoscopic surgery. However, while a wide range of VR simulator systems have been proposed and realized in the past few years, most of these systems are far from able to provide a reasonably realistic surgical environment. We explore the basic approaches to the current limits of realism and ultimately seek to extend these based on our description and analysis of the most important components of a VR-based endoscopic simulator. The feasibility of the proposed techniques is demonstrated on a first modular prototype system implementing the basic algorithms for VR-training in gynaecologic laparoscopy.
Development and evaluation of a trauma decision-making simulator in Oculus virtual reality.
Harrington, Cuan M; Kavanagh, Dara O; Quinlan, John F; Ryan, Donncha; Dicker, Patrick; O'Keeffe, Dara; Traynor, Oscar; Tierney, Sean
2018-01-01
Consumer-available virtual-reality technology was launched in 2016 with strong foundations in the entertainment-industry. We developed an innovative medical-training simulator on the Oculus™ Gear-VR platform. This novel application was developed utilising internationally recognised Advanced Trauma Life Support (ATLS) principles, requiring decision-making skills for critically-injured virtual-patients. Participants were recruited in June, 2016 at a single-centre trauma-course (ATLS, Leinster, Ireland) and trialled the platform. Simulator performances were correlated with individual expertise and course-performance measures. A post-intervention questionnaire relating to validity-aspects was completed. Eighteen(81.8%) eligible-candidates and eleven(84.6%) course-instructors voluntarily participated. The survey-responders mean-age was 38.9(±11.0) years with 80.8% male predominance. The instructor-group caused significantly less fatal-errors (p < 0.050) and proportions of incorrect-decisions (p < 0.050). The VR-hardware and trauma-application's mean ratings were 5.09 and 5.04 out of 7 respectively. Participants reported it was an enjoyable method of learning (median-6.0), the learning platform of choice (median-5.0) and a cost-effective training tool (median-5.0). Our research has demonstrated evidence of validity-criteria for a concept application on virtual-reality headsets. We believe that virtual-reality technology is a viable platform for medical-simulation into the future. Copyright © 2017 Elsevier Inc. All rights reserved.
Developing Mixed Reality Educational Applications: The Virtual Touch Toolkit.
Mateu, Juan; Lasala, María José; Alamán, Xavier
2015-08-31
In this paper, we present Virtual Touch, a toolkit that allows the development of educational activities through a mixed reality environment such that, using various tangible elements, the interconnection of a virtual world with the real world is enabled. The main goal of Virtual Touch is to facilitate the installation, configuration and programming of different types of technologies, abstracting the creator of educational applications from the technical details involving the use of tangible interfaces and virtual worlds. Therefore, it is specially designed to enable teachers to themselves create educational activities for their students in a simple way, taking into account that teachers generally lack advanced knowledge in computer programming and electronics. The toolkit has been used to develop various educational applications that have been tested in two secondary education high schools in Spain.
Kawaguchi, Koji; Egi, Hiroyuki; Hattori, Minoru; Sawada, Hiroyuki; Suzuki, Takahisa; Ohdan, Hideki
2014-10-01
Virtual reality surgical simulators are becoming popular as a means of providing trainees with an opportunity to practice laparoscopic skills. The Lap-X (Epona Medical, Rotterdam, the Netherlands) is a novel VR simulator for training basic skills in laparoscopic surgery. The objective of this study was to validate the LAP-X laparoscopic virtual reality simulator by assessing the face and construct validity in order to determine whether the simulator is adequate for basic skills training. The face and content validity were evaluated using a structured questionnaire. To assess the construct validity, the participants, nine expert surgeons (median age: 40 (32-45)) (>100 laparoscopic procedures) and 11 novices performed three basic laparoscopic tasks using the Lap-X. The participants reported a high level of content validity. No significant differences were found between the expert surgeons and the novices (Ps > 0.246). The performance of the expert surgeons on the three tasks was significantly better than that of the novices in all parameters (Ps < 0.05). This study demonstrated the face, content and construct validity of the Lap-X. The Lap-X holds real potential as a home and hospital training device.
Effect of computer game playing on baseline laparoscopic simulator skills.
Halvorsen, Fredrik H; Cvancarova, Milada; Fosse, Erik; Mjåland, Odd
2013-08-01
Studies examining the possible association between computer game playing and laparoscopic performance in general have yielded conflicting results and neither has a relationship between computer game playing and baseline performance on laparoscopic simulators been established. The aim of this study was to examine the possible association between previous and present computer game playing and baseline performance on a virtual reality laparoscopic performance in a sample of potential future medical students. The participating students completed a questionnaire covering the weekly amount and type of computer game playing activity during the previous year and 3 years ago. They then performed 2 repetitions of 2 tasks ("gallbladder dissection" and "traverse tube") on a virtual reality laparoscopic simulator. Performance on the simulator were then analyzed for association to their computer game experience. Local high school, Norway. Forty-eight students from 2 high school classes volunteered to participate in the study. No association between prior and present computer game playing and baseline performance was found. The results were similar both for prior and present action game playing and prior and present computer game playing in general. Our results indicate that prior and present computer game playing may not affect baseline performance in a virtual reality simulator.
Alaraj, Ali; Charbel, Fady T; Birk, Daniel; Tobin, Matthew; Tobin, Mathew; Luciano, Cristian; Banerjee, Pat P; Rizzi, Silvio; Sorenson, Jeff; Foley, Kevin; Slavin, Konstantin; Roitberg, Ben
2013-01-01
Recent studies have shown that mental script-based rehearsal and simulation-based training improve the transfer of surgical skills in various medical disciplines. Despite significant advances in technology and intraoperative techniques over the last several decades, surgical skills training on neurosurgical operations still carries significant risk of serious morbidity or mortality. Potentially avoidable technical errors are well recognized as contributing to poor surgical outcome. Surgical education is undergoing overwhelming change, as a result of the reduction of work hours and current trends focusing on patient safety and linking reimbursement with clinical outcomes. Thus, there is a need for adjunctive means for neurosurgical training, which is a recent advancement in simulation technology. ImmersiveTouch is an augmented reality system that integrates a haptic device and a high-resolution stereoscopic display. This simulation platform uses multiple sensory modalities, re-creating many of the environmental cues experienced during an actual procedure. Modules available include ventriculostomy, bone drilling, percutaneous trigeminal rhizotomy, and simulated spinal modules such as pedicle screw placement, vertebroplasty, and lumbar puncture. We present our experience with the development of such augmented reality neurosurgical modules and the feedback from neurosurgical residents.
Teaching binocular indirect ophthalmoscopy to novice residents using an augmented reality simulator.
Rai, Amandeep S; Rai, Amrit S; Mavrikakis, Emmanouil; Lam, Wai Ching
2017-10-01
To compare the traditional teaching approach of binocular indirect ophthalmoscopy (BIO) to the EyeSI augmented reality (AR) BIO simulator. Prospective randomized control trial. 28 post-graduate year one (PGY1) ophthalmology residents. Residents were recruited at the 2012 Toronto Ophthalmology Residents Introductory Course (TORIC). 15 were randomized to conventional teaching (Group 1), and 13 to augmented reality simulator training (Group 2). 3 vitreoretinal fellows were enrolled to serve as experts. Evaluations were completed on the simulator, with 3 tasks, and outcome measures were total raw score, total time elapsed, and performance. Following conventional training, Group 1 residents were outperformed by vitreoretinal fellows with respect to all 3 outcome measures. Following AR training, Group 2 residents demonstrated superior total scores and performance compared to Group 1 residents. Once the Group 1 residents also completed the AR BIO training, there was a significant improvement compared to their baseline scores, and were now on par with Group 2 residents. This study provides construct validity for the EyeSI AR BIO simulator and demonstrates that it may be superior to conventional BIO teaching for novice ophthalmology residents. Copyright © 2017 Canadian Ophthalmological Society. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Lang, Jun
2015-03-01
In this paper, we propose a novel color image encryption method by using Color Blend (CB) and Chaos Permutation (CP) operations in the reality-preserving multiple-parameter fractional Fourier transform (RPMPFRFT) domain. The original color image is first exchanged and mixed randomly from the standard red-green-blue (RGB) color space to R‧G‧B‧ color space by rotating the color cube with a random angle matrix. Then RPMPFRFT is employed for changing the pixel values of color image, three components of the scrambled RGB color space are converted by RPMPFRFT with three different transform pairs, respectively. Comparing to the complex output transform, the RPMPFRFT transform ensures that the output is real which can save storage space of image and convenient for transmission in practical applications. To further enhance the security of the encryption system, the output of the former steps is scrambled by juxtaposition of sections of the image in the reality-preserving multiple-parameter fractional Fourier domains and the alignment of sections is determined by two coupled chaotic logistic maps. The parameters in the Color Blend, Chaos Permutation and the RPMPFRFT transform are regarded as the key in the encryption algorithm. The proposed color image encryption can also be applied to encrypt three gray images by transforming the gray images into three RGB color components of a specially constructed color image. Numerical simulations are performed to demonstrate that the proposed algorithm is feasible, secure, sensitive to keys and robust to noise attack and data loss.
A method of minimum volume simplex analysis constrained unmixing for hyperspectral image
NASA Astrophysics Data System (ADS)
Zou, Jinlin; Lan, Jinhui; Zeng, Yiliang; Wu, Hongtao
2017-07-01
The signal recorded by a low resolution hyperspectral remote sensor from a given pixel, letting alone the effects of the complex terrain, is a mixture of substances. To improve the accuracy of classification and sub-pixel object detection, hyperspectral unmixing(HU) is a frontier-line in remote sensing area. Unmixing algorithm based on geometric has become popular since the hyperspectral image possesses abundant spectral information and the mixed model is easy to understand. However, most of the algorithms are based on pure pixel assumption, and since the non-linear mixed model is complex, it is hard to obtain the optimal endmembers especially under a highly mixed spectral data. To provide a simple but accurate method, we propose a minimum volume simplex analysis constrained (MVSAC) unmixing algorithm. The proposed approach combines the algebraic constraints that are inherent to the convex minimum volume with abundance soft constraint. While considering abundance fraction, we can obtain the pure endmember set and abundance fraction correspondingly, and the final unmixing result is closer to reality and has better accuracy. We illustrate the performance of the proposed algorithm in unmixing simulated data and real hyperspectral data, and the result indicates that the proposed method can obtain the distinct signatures correctly without redundant endmember and yields much better performance than the pure pixel based algorithm.
Augmented reality in neurosurgery
Tagaytayan, Raniel; Kelemen, Arpad
2016-01-01
Neurosurgery is a medical specialty that relies heavily on imaging. The use of computed tomography and magnetic resonance images during preoperative planning and intraoperative surgical navigation is vital to the success of the surgery and positive patient outcome. Augmented reality application in neurosurgery has the potential to revolutionize and change the way neurosurgeons plan and perform surgical procedures in the future. Augmented reality technology is currently commercially available for neurosurgery for simulation and training. However, the use of augmented reality in the clinical setting is still in its infancy. Researchers are now testing augmented reality system prototypes to determine and address the barriers and limitations of the technology before it can be widely accepted and used in the clinical setting. PMID:29765445
Augmented reality in neurosurgery.
Tagaytayan, Raniel; Kelemen, Arpad; Sik-Lanyi, Cecilia
2018-04-01
Neurosurgery is a medical specialty that relies heavily on imaging. The use of computed tomography and magnetic resonance images during preoperative planning and intraoperative surgical navigation is vital to the success of the surgery and positive patient outcome. Augmented reality application in neurosurgery has the potential to revolutionize and change the way neurosurgeons plan and perform surgical procedures in the future. Augmented reality technology is currently commercially available for neurosurgery for simulation and training. However, the use of augmented reality in the clinical setting is still in its infancy. Researchers are now testing augmented reality system prototypes to determine and address the barriers and limitations of the technology before it can be widely accepted and used in the clinical setting.
Virtual reality in surgical training.
Lange, T; Indelicato, D J; Rosen, J M
2000-01-01
Virtual reality in surgery and, more specifically, in surgical training, faces a number of challenges in the future. These challenges are building realistic models of the human body, creating interface tools to view, hear, touch, feel, and manipulate these human body models, and integrating virtual reality systems into medical education and treatment. A final system would encompass simulators specifically for surgery, performance machines, telemedicine, and telesurgery. Each of these areas will need significant improvement for virtual reality to impact medicine successfully in the next century. This article gives an overview of, and the challenges faced by, current systems in the fast-changing field of virtual reality technology, and provides a set of specific milestones for a truly realistic virtual human body.
Muralha, Nuno; Oliveira, Manuel; Ferreira, Maria Amélia; Costa-Maia, José
2017-05-31
Virtual reality simulation is a topic of discussion as a complementary tool to traditional laparoscopic surgical training in the operating room. However, it is unclear whether virtual reality training can have an impact on the surgical performance of advanced laparoscopic procedures. Our objective was to assess the ability of the virtual reality simulator LAP Mentor to identify and quantify changes in surgical performance indicators, after LAP Mentor training for digestive anastomosis. Twelve surgeons from Centro Hospitalar de São João in Porto (Portugal) performed two sessions of advanced task 5: anastomosis in LAP Mentor, before and after completing the tutorial, and were evaluated on 34 surgical performance indicators. The results show that six surgical performance indicators significantly changed after LAP Mentor training. The surgeons performed the task significantly faster as the median 'total time' significantly reduced (p < 0.05) from 759.5 to 523.5 seconds. Significant decreases (p < 0.05) were also found in median 'total needle loading time' (303.3 to 107.8 seconds), 'average needle loading time' (38.5 to 31.0 seconds), 'number of passages in which the needle passed precisely through the entrance dots' (2.5 to 1.0), 'time the needle was held outside the visible field' (20.9 to 2.4 seconds), and 'total time the needle-holders' ends are kept outside the predefined operative field' (88.2 to 49.6 seconds). This study raises the possibility of using virtual reality training simulation as a benchmark tool to assess the surgical performance of Portuguese surgeons. LAP Mentor is able to identify variations in surgical performance indicators of digestive anastomosis.
Chalil Madathil, Kapil; Greenstein, Joel S
2017-11-01
Collaborative virtual reality-based systems have integrated high fidelity voice-based communication, immersive audio and screen-sharing tools into virtual environments. Such three-dimensional collaborative virtual environments can mirror the collaboration among usability test participants and facilitators when they are physically collocated, potentially enabling moderated usability tests to be conducted effectively when the facilitator and participant are located in different places. We developed a virtual collaborative three-dimensional remote moderated usability testing laboratory and employed it in a controlled study to evaluate the effectiveness of moderated usability testing in a collaborative virtual reality-based environment with two other moderated usability testing methods: the traditional lab approach and Cisco WebEx, a web-based conferencing and screen sharing approach. Using a mixed methods experimental design, 36 test participants and 12 test facilitators were asked to complete representative tasks on a simulated online shopping website. The dependent variables included the time taken to complete the tasks; the usability defects identified and their severity; and the subjective ratings on the workload index, presence and satisfaction questionnaires. Remote moderated usability testing methodology using a collaborative virtual reality system performed similarly in terms of the total number of defects identified, the number of high severity defects identified and the time taken to complete the tasks with the other two methodologies. The overall workload experienced by the test participants and facilitators was the least with the traditional lab condition. No significant differences were identified for the workload experienced with the virtual reality and the WebEx conditions. However, test participants experienced greater involvement and a more immersive experience in the virtual environment than in the WebEx condition. The ratings for the virtual environment condition were not significantly different from those for the traditional lab condition. The results of this study suggest that participants were productive and enjoyed the virtual lab condition, indicating the potential of a virtual world based approach as an alternative to conventional approaches for synchronous usability testing. Copyright © 2017 Elsevier Ltd. All rights reserved.
Validation of a novel virtual reality simulator for robotic surgery.
Schreuder, Henk W R; Persson, Jan E U; Wolswijk, Richard G H; Ihse, Ingmar; Schijven, Marlies P; Verheijen, René H M
2014-01-01
With the increase in robotic-assisted laparoscopic surgery there is a concomitant rising demand for training methods. The objective was to establish face and construct validity of a novel virtual reality simulator (dV-Trainer, Mimic Technologies, Seattle, WA) for the use in training of robot-assisted surgery. A comparative cohort study was performed. Participants (n = 42) were divided into three groups according to their robotic experience. To determine construct validity, participants performed three different exercises twice. Performance parameters were measured. To determine face validity, participants filled in a questionnaire after completion of the exercises. Experts outperformed novices in most of the measured parameters. The most discriminative parameters were "time to complete" and "economy of motion" (P < 0.001). The training capacity of the simulator was rated 4.6 ± 0.5 SD on a 5-point Likert scale. The realism of the simulator in general, visual graphics, movements of instruments, interaction with objects, and the depth perception were all rated as being realistic. The simulator is considered to be a very useful training tool for residents and medical specialist starting with robotic surgery. Face and construct validity for the dV-Trainer could be established. The virtual reality simulator is a useful tool for training robotic surgery.
Validation of a Novel Virtual Reality Simulator for Robotic Surgery
Schreuder, Henk W. R.; Persson, Jan E. U.; Wolswijk, Richard G. H.; Ihse, Ingmar; Schijven, Marlies P.; Verheijen, René H. M.
2014-01-01
Objective. With the increase in robotic-assisted laparoscopic surgery there is a concomitant rising demand for training methods. The objective was to establish face and construct validity of a novel virtual reality simulator (dV-Trainer, Mimic Technologies, Seattle, WA) for the use in training of robot-assisted surgery. Methods. A comparative cohort study was performed. Participants (n = 42) were divided into three groups according to their robotic experience. To determine construct validity, participants performed three different exercises twice. Performance parameters were measured. To determine face validity, participants filled in a questionnaire after completion of the exercises. Results. Experts outperformed novices in most of the measured parameters. The most discriminative parameters were “time to complete” and “economy of motion” (P < 0.001). The training capacity of the simulator was rated 4.6 ± 0.5 SD on a 5-point Likert scale. The realism of the simulator in general, visual graphics, movements of instruments, interaction with objects, and the depth perception were all rated as being realistic. The simulator is considered to be a very useful training tool for residents and medical specialist starting with robotic surgery. Conclusions. Face and construct validity for the dV-Trainer could be established. The virtual reality simulator is a useful tool for training robotic surgery. PMID:24600328
Kim, Hyun K; Park, Jaehyun; Choi, Yeongcheol; Choe, Mungyeong
2018-05-01
This study aims to develop a motion sickness measurement index in a virtual reality (VR) environment. The VR market is in an early stage of market formation and technological development, and thus, research on the side effects of VR devices such as simulator motion sickness is lacking. In this study, we used the simulator sickness questionnaire (SSQ), which has been traditionally used for simulator motion sickness measurement. To measure the motion sickness in a VR environment, 24 users performed target selection tasks using a VR device. The SSQ was administered immediately after each task, and the order of work was determined using the Latin square design. The existing SSQ was revised to develop a VR sickness questionnaire, which is used as the measurement index in a VR environment. In addition, the target selection method and button size were found to be significant factors that affect motion sickness in a VR environment. The results of this study are expected to be used for measuring and designing simulator sickness using VR devices in future studies. Copyright © 2018 Elsevier Ltd. All rights reserved.
An efficient and scalable deformable model for virtual reality-based medical applications.
Choi, Kup-Sze; Sun, Hanqiu; Heng, Pheng-Ann
2004-09-01
Modeling of tissue deformation is of great importance to virtual reality (VR)-based medical simulations. Considerable effort has been dedicated to the development of interactively deformable virtual tissues. In this paper, an efficient and scalable deformable model is presented for virtual-reality-based medical applications. It considers deformation as a localized force transmittal process which is governed by algorithms based on breadth-first search (BFS). The computational speed is scalable to facilitate real-time interaction by adjusting the penetration depth. Simulated annealing (SA) algorithms are developed to optimize the model parameters by using the reference data generated with the linear static finite element method (FEM). The mechanical behavior and timing performance of the model have been evaluated. The model has been applied to simulate the typical behavior of living tissues and anisotropic materials. Integration with a haptic device has also been achieved on a generic personal computer (PC) platform. The proposed technique provides a feasible solution for VR-based medical simulations and has the potential for multi-user collaborative work in virtual environment.
NASA Technical Reports Server (NTRS)
Saha, Hrishikesh; Palmer, Timothy A.
1996-01-01
Virtual Reality Lab Assistant (VRLA) demonstration model is aligned for engineering and material science experiments to be performed by undergraduate and graduate students in the course as a pre-lab simulation experience. This will help students to get a preview of how to use the lab equipment and run experiments without using the lab hardware/software equipment. The quality of the time available for laboratory experiments can be significantly improved through the use of virtual reality technology.
Fully Three-Dimensional Virtual-Reality System
NASA Technical Reports Server (NTRS)
Beckman, Brian C.
1994-01-01
Proposed virtual-reality system presents visual displays to simulate free flight in three-dimensional space. System, virtual space pod, is testbed for control and navigation schemes. Unlike most virtual-reality systems, virtual space pod would not depend for orientation on ground plane, which hinders free flight in three dimensions. Space pod provides comfortable seating, convenient controls, and dynamic virtual-space images for virtual traveler. Controls include buttons plus joysticks with six degrees of freedom.
Abstract to Action: Targeted Learning System Theory Applied to Adaptive Flight Training
2018-04-18
complete the VRLE trained task in the real world confirming a good transfer of spatial knowledge from VR to reality.39 A VRLE was also used in a...opportunities if the technology was customized to produce the necessary datasets for the required education or training outcomes. The TLST maximizes...the simulator staging area to confirm your Virtual Reality training times. Good Luck! ` 92 Pre-Virtual Reality (VR) Instructions You are
NASA Technical Reports Server (NTRS)
Lunsford, Myrtis Leigh
1998-01-01
The Army-NASA Virtual Innovations Laboratory (ANVIL) was recently created to provide virtual reality tools for performing Human Engineering and operations analysis for both NASA and the Army. The author's summer research project consisted of developing and refining these tools for NASA's Reusable Launch Vehicle (RLV) program. Several general simulations were developed for use by the ANVIL for the evaluation of the X34 Engine Changeout procedure. These simulations were developed with the software tool dVISE 4.0.0 produced by Division Inc. All software was run on an SGI Indigo2 High Impact. This paper describes the simulations, various problems encountered with the simulations, other summer activities, and possible work for the future. We first begin with a brief description of virtual reality systems.
Current state of virtual reality simulation in robotic surgery training: a review.
Bric, Justin D; Lumbard, Derek C; Frelich, Matthew J; Gould, Jon C
2016-06-01
Worldwide, the annual number of robotic surgical procedures continues to increase. Robotic surgical skills are unique from those used in either open or laparoscopic surgery. The acquisition of a basic robotic surgical skill set may be best accomplished in the simulation laboratory. We sought to review the current literature pertaining to the use of virtual reality (VR) simulation in the acquisition of robotic surgical skills on the da Vinci Surgical System. A PubMed search was conducted between December 2014 and January 2015 utilizing the following keywords: virtual reality, robotic surgery, da Vinci, da Vinci skills simulator, SimSurgery Educational Platform, Mimic dV-Trainer, and Robotic Surgery Simulator. Articles were included if they were published between 2007 and 2015, utilized VR simulation for the da Vinci Surgical System, and utilized a commercially available VR platform. The initial search criteria returned 227 published articles. After all inclusion and exclusion criteria were applied, a total of 47 peer-reviewed manuscripts were included in the final review. There are many benefits to utilizing VR simulation for robotic skills acquisition. Four commercially available simulators have been demonstrated to be capable of assessing robotic skill. Three of the four simulators demonstrate the ability of a VR training curriculum to improve basic robotic skills, with proficiency-based training being the most effective training style. The skills obtained on a VR training curriculum are comparable with those obtained on dry laboratory simulation. The future of VR simulation includes utilization in assessment for re-credentialing purposes, advanced procedural-based training, and as a warm-up tool prior to surgery.
ERIC Educational Resources Information Center
Smith, Thomas M.; Cannata, Marisa; Haynes, Katherine Taylor
2016-01-01
Background/Context: Mixed methods research conveys multiple advantages to the study of complex phenomena and large organizations or systems. The benefits are derived from drawing on the strengths of qualitative methods to answer questions about how and why a phenomenon occurs and those of quantitative methods to examine how often a phenomenon…
ERIC Educational Resources Information Center
Henderson, Joyce Herod
2013-01-01
Our schools are considered a place of safety for learning, however, the unfortunate reality is that schools may face crises and violence. Leadership styles vary among school leaders and provide the framework for handling daily challenges. This mixed-methods research design was used to investigate the individual leadership styles of public school…
Reality check: Shedding new light on the restoration needs of mixed-conifer forests
Marie Oliver; Thomas Spies; Andrew. Merschel
2014-01-01
Until recently, scientific understanding of the history and ecology of the Pacific Northwest's mixed-conifer forests east of the Cascade Range was minimal. As a result, forest managers have had limited ability to restore the health of publicly owned forests that show signs of acute stress caused by insects, disease, grazing, logging, and wildfire. A...
Strandbygaard, Jeanett; Bjerrum, Flemming; Maagaard, Mathilde; Winkel, Per; Larsen, Christian Rifbjerg; Ringsted, Charlotte; Gluud, Christian; Grantcharov, Teodor; Ottesen, Bent; Sorensen, Jette Led
2013-05-01
To investigate the impact of instructor feedback versus no instructor feedback when training a complex operational task on a laparoscopic virtual reality simulator. : Simulators are now widely accepted as a training tool, but there is insufficient knowledge about how much feedback is necessary, which is useful for sustainable implementation. A randomized trial complying with CONSORT Statement. All participants had to reach a predefined proficiency level for a complex operational task on a virtual reality simulator. The intervention group received standardized instructor feedback a maximum of 3 times. The control group did not receive instructor feedback. Participants were senior medical students without prior laparoscopic experience (n = 99). Outcome measures were time, repetitions, and performance score to reach a predefined proficiency level. Furthermore, influence of sex and perception of own surgical skills were examined. Time (in minutes) and repetitions were reduced in the intervention group (162 vs 342 minutes; P < 0.005) and (29 vs 65 repetitions; P < 0.005). The control group achieved a higher performance score than the intervention group (57% vs 49%; P = 0.004). Men used less time (in minutes) than women (P = 0.037), but no sex difference was observed for repetitions (P = 0.20). Participants in the intervention group had higher self-perception regarding surgical skills after the trial (P = 0.011). Instructor feedback increases the efficiency when training a complex operational task on a virtual reality simulator; time and repetitions used to achieve a predefined proficiency level were significantly reduced in the group that received instructor feedback compared with the control group. NCT01497782.
Fleming, Michael; Olsen, Dale; Stathes, Hilary; Boteler, Laura; Grossberg, Paul; Pfeifer, Judie; Schiro, Stephanie; Banning, Jane; Skochelak, Susan
2009-01-01
Background Educating physicians and other health care professionals to identify and treat patients who drink above recommended limits is an ongoing challenge. Methods An educational Randomized Control Trial (RCT) was conducted to test the ability of a stand alone training simulation to improve the clinical skills of health care professionals in alcohol screening and intervention. The “virtual reality simulation” combines video, voice recognition and non branching logic to create an interactive environment that allows trainees to encounter complex social cues and realistic interpersonal exchanges. The simulation includes 707 questions and statements and 1207 simulated patient responses. Results A sample of 102 health care professionals (10 physicians; 30 physician assistants [PAs] or nurse practitioners [NPs]; 36 medical students; 26 pharmacy, PA or NP students) were randomly assigned to no training (n=51) or a computer based virtual reality intervention (n=51). Subjects in both groups had similar pre-test standardized patient alcohol screening skill scores – 53.2 (experimental) vs. 54.4 (controls), 52.2 vs. 53.7 alcohol brief intervention skills, and 42.9 vs. 43.5 alcohol referral skills. Following repeated practice with the simulation there were significant increases in the scores of the experimental group at 6 months post-randomization compared to the control group for the screening (67.7 vs. 58.1, p<.001) and brief intervention (58.3 vs. 51.6, p<.04) scenarios. Conclusions The technology tested in this trial is the first virtual reality simulation to demonstrate an increase in the alcohol screening and brief intervention skills of health care professionals. PMID:19587253
Effect of virtual reality training on laparoscopic surgery: randomised controlled trial
Soerensen, Jette L; Grantcharov, Teodor P; Dalsgaard, Torur; Schouenborg, Lars; Ottosen, Christian; Schroeder, Torben V; Ottesen, Bent S
2009-01-01
Objective To assess the effect of virtual reality training on an actual laparoscopic operation. Design Prospective randomised controlled and blinded trial. Setting Seven gynaecological departments in the Zeeland region of Denmark. Participants 24 first and second year registrars specialising in gynaecology and obstetrics. Interventions Proficiency based virtual reality simulator training in laparoscopic salpingectomy and standard clinical education (controls). Main outcome measure The main outcome measure was technical performance assessed by two independent observers blinded to trainee and training status using a previously validated general and task specific rating scale. The secondary outcome measure was operation time in minutes. Results The simulator trained group (n=11) reached a median total score of 33 points (interquartile range 32-36 points), equivalent to the experience gained after 20-50 laparoscopic procedures, whereas the control group (n=10) reached a median total score of 23 (22-27) points, equivalent to the experience gained from fewer than five procedures (P<0.001). The median total operation time in the simulator trained group was 12 minutes (interquartile range 10-14 minutes) and in the control group was 24 (20-29) minutes (P<0.001). The observers’ inter-rater agreement was 0.79. Conclusion Skills in laparoscopic surgery can be increased in a clinically relevant manner using proficiency based virtual reality simulator training. The performance level of novices was increased to that of intermediately experienced laparoscopists and operation time was halved. Simulator training should be considered before trainees carry out laparoscopic procedures. Trial registration ClinicalTrials.gov NCT00311792. PMID:19443914
Simulation of eye disease in virtual reality.
Jin, Bei; Ai, Zhuming; Rasmussen, Mary
2005-01-01
It is difficult to understand verbal descriptions of visual phenomenon if one has no such experience. Virtual Reality offers a unique opportunity to "experience" diminished vision and the problems it causes in daily life. We have developed an application to simulate age-related macular degeneration, glaucoma, protanopia, and diabetic retinopathy in a familiar setting. The application also includes the introduction of eye anatomy representing both normal and pathologic states. It is designed for patient education, health care practitioner training, and eye care specialist education.
Virtual Reality Calibration for Telerobotic Servicing
NASA Technical Reports Server (NTRS)
Kim, W.
1994-01-01
A virtual reality calibration technique of matching a virtual environment of simulated graphics models in 3-D geometry and perspective with actual camera views of the remote site task environment has been developed to enable high-fidelity preview/predictive displays with calibrated graphics overlay on live video.
Virtual Reality: A New Learning Environment.
ERIC Educational Resources Information Center
Ferrington, Gary; Loge, Kenneth
1992-01-01
Discusses virtual reality (VR) technology and its possible uses in military training, medical education, industrial design and development, the media industry, and education. Three primary applications of VR in the learning process--visualization, simulation, and construction of virtual worlds--are described, and pedagogical and moral issues are…
Virtual reality for intelligent and interactive operating, training, and visualization systems
NASA Astrophysics Data System (ADS)
Freund, Eckhard; Rossmann, Juergen; Schluse, Michael
2000-10-01
Virtual Reality Methods allow a new and intuitive way of communication between man and machine. The basic idea of Virtual Reality (VR) is the generation of artificial computer simulated worlds, which the user not only can look at but also can interact with actively using data glove and data helmet. The main emphasis for the use of such techniques at the IRF is the development of a new generation of operator interfaces for the control of robots and other automation components and for intelligent training systems for complex tasks. The basic idea of the methods developed at the IRF for the realization of Projective Virtual Reality is to let the user work in the virtual world as he would act in reality. The user actions are recognized by the Virtual reality System and by means of new and intelligent control software projected onto the automation components like robots which afterwards perform the necessary actions in reality to execute the users task. In this operation mode the user no longer has to be a robot expert to generate tasks for robots or to program them, because intelligent control software recognizes the users intention and generated automatically the commands for nearly every automation component. Now, Virtual Reality Methods are ideally suited for universal man-machine-interfaces for the control and supervision of a big class of automation components, interactive training and visualization systems. The Virtual Reality System of the IRF-COSIMIR/VR- forms the basis for different projects starting with the control of space automation systems in the projects CIROS, VITAL and GETEX, the realization of a comprehensive development tool for the International Space Station and last but not least with the realistic simulation fire extinguishing, forest machines and excavators which will be presented in the final paper in addition to the key ideas of this Virtual Reality System.
NASA Astrophysics Data System (ADS)
Ribeiro, Allan; Santos, Helen
With the advent of new information and communication technologies (ICTs), the communicative interaction changes the way of being and acting of people, at the same time that changes the way of work activities related to education. In this range of possibilities provided by the advancement of computational resources include virtual reality (VR) and augmented reality (AR), are highlighted as new forms of information visualization in computer applications. While the RV allows user interaction with a virtual environment totally computer generated; in RA the virtual images are inserted in real environment, but both create new opportunities to support teaching and learning in formal and informal contexts. Such technologies are able to express representations of reality or of the imagination, as systems in nanoscale and low dimensionality, being imperative to explore, in the most diverse areas of knowledge, the potential offered by ICT and emerging technologies. In this sense, this work presents computer applications of virtual and augmented reality developed with the use of modeling and simulation in computational approaches to topics related to nanoscience and nanotechnology, and articulated with innovative pedagogical practices.
Augmented versus Virtual Reality Laparoscopic Simulation: What Is the Difference?
Botden, Sanne M.B.I.; Buzink, Sonja N.; Schijven, Marlies P.
2007-01-01
Background Virtual reality (VR) is an emerging new modality for laparoscopic skills training; however, most simulators lack realistic haptic feedback. Augmented reality (AR) is a new laparoscopic simulation system offering a combination of physical objects and VR simulation. Laparoscopic instruments are used within an hybrid mannequin on tissue or objects while using video tracking. This study was designed to assess the difference in realism, haptic feedback, and didactic value between AR and VR laparoscopic simulation. Methods The ProMIS AR and LapSim VR simulators were used in this study. The participants performed a basic skills task and a suturing task on both simulators, after which they filled out a questionnaire about their demographics and their opinion of both simulators scored on a 5-point Likert scale. The participants were allotted to 3 groups depending on their experience: experts, intermediates and novices. Significant differences were calculated with the paired t-test. Results There was general consensus in all groups that the ProMIS AR laparoscopic simulator is more realistic than the LapSim VR laparoscopic simulator in both the basic skills task (mean 4.22 resp. 2.18, P < 0.000) as well as the suturing task (mean 4.15 resp. 1.85, P < 0.000). The ProMIS is regarded as having better haptic feedback (mean 3.92 resp. 1.92, P < 0.000) and as being more useful for training surgical residents (mean 4.51 resp. 2.94, P < 0.000). Conclusions In comparison with the VR simulator, the AR laparoscopic simulator was regarded by all participants as a better simulator for laparoscopic skills training on all tested features. PMID:17361356
Virtual Reality Cerebral Aneurysm Clipping Simulation With Real-time Haptic Feedback
Alaraj, Ali; Luciano, Cristian J.; Bailey, Daniel P.; Elsenousi, Abdussalam; Roitberg, Ben Z.; Bernardo, Antonio; Banerjee, P. Pat; Charbel, Fady T.
2014-01-01
Background With the decrease in the number of cerebral aneurysms treated surgically and the increase of complexity of those treated surgically, there is a need for simulation-based tools to teach future neurosurgeons the operative techniques of aneurysm clipping. Objective To develop and evaluate the usefulness of a new haptic-based virtual reality (VR) simulator in the training of neurosurgical residents. Methods A real-time sensory haptic feedback virtual reality aneurysm clipping simulator was developed using the Immersive Touch platform. A prototype middle cerebral artery aneurysm simulation was created from a computed tomography angiogram. Aneurysm and vessel volume deformation and haptic feedback are provided in a 3-D immersive VR environment. Intraoperative aneurysm rupture was also simulated. Seventeen neurosurgery residents from three residency programs tested the simulator and provided feedback on its usefulness and resemblance to real aneurysm clipping surgery. Results Residents felt that the simulation would be useful in preparing for real-life surgery. About two thirds of the residents felt that the 3-D immersive anatomical details provided a very close resemblance to real operative anatomy and accurate guidance for deciding surgical approaches. They believed the simulation is useful for preoperative surgical rehearsal and neurosurgical training. One third of the residents felt that the technology in its current form provided very realistic haptic feedback for aneurysm surgery. Conclusion Neurosurgical residents felt that the novel immersive VR simulator is helpful in their training especially since they do not get a chance to perform aneurysm clippings until very late in their residency programs. PMID:25599200
Shono, Naoyuki; Kin, Taichi; Nomura, Seiji; Miyawaki, Satoru; Saito, Toki; Imai, Hideaki; Nakatomi, Hirofumi; Oyama, Hiroshi; Saito, Nobuhito
2018-05-01
A virtual reality simulator for aneurysmal clipping surgery is an attractive research target for neurosurgeons. Brain deformation is one of the most important functionalities necessary for an accurate clipping simulator and is vastly affected by the status of the supporting tissue, such as the arachnoid membrane. However, no virtual reality simulator implementing the supporting tissue of the brain has yet been developed. To develop a virtual reality clipping simulator possessing interactive brain deforming capability closely dependent on arachnoid dissection and apply it to clinical cases. Three-dimensional computer graphics models of cerebral tissue and surrounding structures were extracted from medical images. We developed a new method for modifiable cerebral tissue complex deformation by incorporating a nonmedical image-derived virtual arachnoid/trabecula in a process called multitissue integrated interactive deformation (MTIID). MTIID made it possible for cerebral tissue complexes to selectively deform at the site of dissection. Simulations for 8 cases of actual clipping surgery were performed before surgery and evaluated for their usefulness in surgical approach planning. Preoperatively, each operative field was precisely reproduced and visualized with the virtual brain retraction defined by users. The clear visualization of the optimal approach to treating the aneurysm via an appropriate arachnoid incision was possible with MTIID. A virtual clipping simulator mainly focusing on supporting tissues and less on physical properties seemed to be useful in the surgical simulation of cerebral aneurysm clipping. To our knowledge, this article is the first to report brain deformation based on supporting tissues.
Concept Development and Experimentation Policy and Process: How Analysis Provides Rigour
2010-04-01
modelling and simulation techniques, but in reality the main tool in use is common sense and logic. The main goal of OA analyst is to bring forward those...doing so she should distinguish between the ideal and the intended or desired models to approach the reality as much as possible. Subsequently, the...and collection of measurements to be conducted. In doing so the analyst must ensure to distinguish between the actual and the perceived reality . From
Virtual reality in surgical skills training.
Palter, Vanessa N; Grantcharov, Teodor P
2010-06-01
With recent concerns regarding patient safety, and legislation regarding resident work hours, it is accepted that a certain amount of surgical skills training will transition to the surgical skills laboratory. Virtual reality offers enormous potential to enhance technical and non-technical skills training outside the operating room. Virtual-reality systems range from basic low-fidelity devices to highly complex virtual environments. These systems can act as training and assessment tools, with the learned skills effectively transferring to an analogous clinical situation. Recent developments include expanding the role of virtual reality to allow for holistic, multidisciplinary team training in simulated operating rooms, and focusing on the role of virtual reality in evidence-based surgical curriculum design. Copyright 2010 Elsevier Inc. All rights reserved.
Milella, Ferdinando; Pinto, Carlo; Cant, Iain; White, Mark; Meyer, Georg
2018-01-01
Objective and subjective measures of performance in virtual reality environments increase as more sensory cues are delivered and as simulation fidelity increases. Some cues (colour or sound) are easier to present than others (object weight, vestibular cues) so that substitute cues can be used to enhance informational content in a simulation at the expense of simulation fidelity. This study evaluates how substituting cues in one modality by alternative cues in another modality affects subjective and objective performance measures in a highly immersive virtual reality environment. Participants performed a wheel change in a virtual reality (VR) environment. Auditory, haptic and visual cues, signalling critical events in the simulation, were manipulated in a factorial design. Subjective ratings were recorded via questionnaires. The time taken to complete the task was used as an objective performance measure. The results show that participants performed best and felt an increased sense of immersion and involvement, collectively referred to as ‘presence’, when substitute multimodal sensory feedback was provided. Significant main effects of audio and tactile cues on task performance and on participants' subjective ratings were found. A significant negative relationship was found between the objective (overall completion times) and subjective (ratings of presence) performance measures. We conclude that increasing informational content, even if it disrupts fidelity, enhances performance and user’s overall experience. On this basis we advocate the use of substitute cues in VR environments as an efficient method to enhance performance and user experience. PMID:29390023
Cooper, Natalia; Milella, Ferdinando; Pinto, Carlo; Cant, Iain; White, Mark; Meyer, Georg
2018-01-01
Objective and subjective measures of performance in virtual reality environments increase as more sensory cues are delivered and as simulation fidelity increases. Some cues (colour or sound) are easier to present than others (object weight, vestibular cues) so that substitute cues can be used to enhance informational content in a simulation at the expense of simulation fidelity. This study evaluates how substituting cues in one modality by alternative cues in another modality affects subjective and objective performance measures in a highly immersive virtual reality environment. Participants performed a wheel change in a virtual reality (VR) environment. Auditory, haptic and visual cues, signalling critical events in the simulation, were manipulated in a factorial design. Subjective ratings were recorded via questionnaires. The time taken to complete the task was used as an objective performance measure. The results show that participants performed best and felt an increased sense of immersion and involvement, collectively referred to as 'presence', when substitute multimodal sensory feedback was provided. Significant main effects of audio and tactile cues on task performance and on participants' subjective ratings were found. A significant negative relationship was found between the objective (overall completion times) and subjective (ratings of presence) performance measures. We conclude that increasing informational content, even if it disrupts fidelity, enhances performance and user's overall experience. On this basis we advocate the use of substitute cues in VR environments as an efficient method to enhance performance and user experience.
Developing Mixed Reality Educational Applications: The Virtual Touch Toolkit
Mateu, Juan; Lasala, María José; Alamán, Xavier
2015-01-01
In this paper, we present Virtual Touch, a toolkit that allows the development of educational activities through a mixed reality environment such that, using various tangible elements, the interconnection of a virtual world with the real world is enabled. The main goal of Virtual Touch is to facilitate the installation, configuration and programming of different types of technologies, abstracting the creator of educational applications from the technical details involving the use of tangible interfaces and virtual worlds. Therefore, it is specially designed to enable teachers to themselves create educational activities for their students in a simple way, taking into account that teachers generally lack advanced knowledge in computer programming and electronics. The toolkit has been used to develop various educational applications that have been tested in two secondary education high schools in Spain. PMID:26334275
Fast mental states decoding in mixed reality.
De Massari, Daniele; Pacheco, Daniel; Malekshahi, Rahim; Betella, Alberto; Verschure, Paul F M J; Birbaumer, Niels; Caria, Andrea
2014-01-01
The combination of Brain-Computer Interface (BCI) technology, allowing online monitoring and decoding of brain activity, with virtual and mixed reality (MR) systems may help to shape and guide implicit and explicit learning using ecological scenarios. Real-time information of ongoing brain states acquired through BCI might be exploited for controlling data presentation in virtual environments. Brain states discrimination during mixed reality experience is thus critical for adapting specific data features to contingent brain activity. In this study we recorded electroencephalographic (EEG) data while participants experienced MR scenarios implemented through the eXperience Induction Machine (XIM). The XIM is a novel framework modeling the integration of a sensing system that evaluates and measures physiological and psychological states with a number of actuators and effectors that coherently reacts to the user's actions. We then assessed continuous EEG-based discrimination of spatial navigation, reading and calculation performed in MR, using linear discriminant analysis (LDA) and support vector machine (SVM) classifiers. Dynamic single trial classification showed high accuracy of LDA and SVM classifiers in detecting multiple brain states as well as in differentiating between high and low mental workload, using a 5 s time-window shifting every 200 ms. Our results indicate overall better performance of LDA with respect to SVM and suggest applicability of our approach in a BCI-controlled MR scenario. Ultimately, successful prediction of brain states might be used to drive adaptation of data representation in order to boost information processing in MR.
Fast mental states decoding in mixed reality
De Massari, Daniele; Pacheco, Daniel; Malekshahi, Rahim; Betella, Alberto; Verschure, Paul F. M. J.; Birbaumer, Niels; Caria, Andrea
2014-01-01
The combination of Brain-Computer Interface (BCI) technology, allowing online monitoring and decoding of brain activity, with virtual and mixed reality (MR) systems may help to shape and guide implicit and explicit learning using ecological scenarios. Real-time information of ongoing brain states acquired through BCI might be exploited for controlling data presentation in virtual environments. Brain states discrimination during mixed reality experience is thus critical for adapting specific data features to contingent brain activity. In this study we recorded electroencephalographic (EEG) data while participants experienced MR scenarios implemented through the eXperience Induction Machine (XIM). The XIM is a novel framework modeling the integration of a sensing system that evaluates and measures physiological and psychological states with a number of actuators and effectors that coherently reacts to the user's actions. We then assessed continuous EEG-based discrimination of spatial navigation, reading and calculation performed in MR, using linear discriminant analysis (LDA) and support vector machine (SVM) classifiers. Dynamic single trial classification showed high accuracy of LDA and SVM classifiers in detecting multiple brain states as well as in differentiating between high and low mental workload, using a 5 s time-window shifting every 200 ms. Our results indicate overall better performance of LDA with respect to SVM and suggest applicability of our approach in a BCI-controlled MR scenario. Ultimately, successful prediction of brain states might be used to drive adaptation of data representation in order to boost information processing in MR. PMID:25505878
The use of virtual reality simulation of head trauma in a surgical boot camp.
Vergara, Victor M; Panaiotis; Kingsley, Darra; Alverson, Dale C; Godsmith, Timothy; Xia, Shan; Caudell, Thomas P
2009-01-01
Surgical "boot camps" provide excellent opportunities to enhance orientation, learning, and preparation of new surgery interns as they enter the clinical arena. This paper describes the utilization of an interactive virtual reality (VR) simulation and associated virtual patient (VP) as an additional tool for surgical boot camps. Complementing other forms of simulation, virtual patients (VPs) require less specialized equipment and can also provide a wide variety of medical scenarios. In this paper we discuss a study that measured the learning effectiveness of a real-world VP simulation used by a class of new surgery interns who operated it with a standard computer interface. The usability of the simulator as a learning tool has been demonstrated and measured. This study brings the use of VR simulation with VPs closer to wider application and integration into a training curriculum, such as a surgery intern boot camp.
Virtual environments simulation in research reactor
NASA Astrophysics Data System (ADS)
Muhamad, Shalina Bt. Sheik; Bahrin, Muhammad Hannan Bin
2017-01-01
Virtual reality based simulations are interactive and engaging. It has the useful potential in improving safety training. Virtual reality technology can be used to train workers who are unfamiliar with the physical layout of an area. In this study, a simulation program based on the virtual environment at research reactor was developed. The platform used for virtual simulation is 3DVia software for which it's rendering capabilities, physics for movement and collision and interactive navigation features have been taken advantage of. A real research reactor was virtually modelled and simulated with the model of avatars adopted to simulate walking. Collision detection algorithms were developed for various parts of the 3D building and avatars to restrain the avatars to certain regions of the virtual environment. A user can control the avatar to move around inside the virtual environment. Thus, this work can assist in the training of personnel, as in evaluating the radiological safety of the research reactor facility.
Validation of a Novel Laparoscopic Adjustable Gastric Band Simulator
Sankaranarayanan, Ganesh; Adair, James D.; Halic, Tansel; Gromski, Mark A.; Lu, Zhonghua; Ahn, Woojin; Jones, Daniel B.; De, Suvranu
2011-01-01
Background Morbid obesity accounts for more than 90,000 deaths per year in the United States. Laparoscopic adjustable gastric banding (LAGB) is the second most common weight loss procedure performed in the US and the most common in Europe and Australia. Simulation in surgical training is a rapidly advancing field that has been adopted by many to prepare surgeons for surgical techniques and procedures. Study Aim The aim of our study was to determine face, construct and content validity for a novel virtual reality laparoscopic adjustable gastric band simulator. Methods Twenty-eight subjects were categorized into two groups (Expert and Novice), determined by their skill level in laparoscopic surgery. Experts consisted of subjects who had at least four years of laparoscopic training and operative experience. Novices consisted of subjects with medical training, but with less than four years of laparoscopic training. The subjects performed the virtual reality laparoscopic adjustable band surgery simulator. They were automatically scored, according to various tasks. The subjects then completed a questionnaire to evaluate face and content validity. Results On a 5-point Likert scale (1 – lowest score, 5 – highest score), the mean score for visual realism was 4.00 ± 0.67 and the mean score for realism of the interface and tool movements was 4.07 ± 0.77 [Face Validity]. There were significant differences in the performance of the two subject groups (Expert and Novice), based on total scores (p<0.001) [Construct Validity]. Mean scores for utility of the simulator, as addressed by the Expert group, was 4.50 ± 0.71 [Content Validity]. Conclusion We created a virtual reality laparoscopic adjustable gastric band simulator. Our initial results demonstrate excellent face, construct and content validity findings. To our knowledge, this is the first virtual reality simulator with haptic feedback for training residents and surgeons in the laparoscopic adjustable gastric banding procedure. PMID:20734069
Validation of a novel laparoscopic adjustable gastric band simulator.
Sankaranarayanan, Ganesh; Adair, James D; Halic, Tansel; Gromski, Mark A; Lu, Zhonghua; Ahn, Woojin; Jones, Daniel B; De, Suvranu
2011-04-01
Morbid obesity accounts for more than 90,000 deaths per year in the United States. Laparoscopic adjustable gastric banding (LAGB) is the second most common weight loss procedure performed in the US and the most common in Europe and Australia. Simulation in surgical training is a rapidly advancing field that has been adopted by many to prepare surgeons for surgical techniques and procedures. The aim of our study was to determine face, construct, and content validity for a novel virtual reality laparoscopic adjustable gastric band simulator. Twenty-eight subjects were categorized into two groups (expert and novice), determined by their skill level in laparoscopic surgery. Experts consisted of subjects who had at least 4 years of laparoscopic training and operative experience. Novices consisted of subjects with medical training but with less than 4 years of laparoscopic training. The subjects used the virtual reality laparoscopic adjustable band surgery simulator. They were automatically scored according to various tasks. The subjects then completed a questionnaire to evaluate face and content validity. On a 5-point Likert scale (1 = lowest score, 5 = highest score), the mean score for visual realism was 4.00 ± 0.67 and the mean score for realism of the interface and tool movements was 4.07 ± 0.77 (face validity). There were significant differences in the performances of the two subject groups (expert and novice) based on total scores (p < 0.001) (construct validity). Mean score for utility of the simulator, as addressed by the expert group, was 4.50 ± 0.71 (content validity). We created a virtual reality laparoscopic adjustable gastric band simulator. Our initial results demonstrate excellent face, construct, and content validity findings. To our knowledge, this is the first virtual reality simulator with haptic feedback for training residents and surgeons in the laparoscopic adjustable gastric banding procedure.
Facial Emotion Recognition: A Survey and Real-World User Experiences in Mixed Reality
Mehta, Dhwani; Siddiqui, Mohammad Faridul Haque
2018-01-01
Extensive possibilities of applications have made emotion recognition ineluctable and challenging in the field of computer science. The use of non-verbal cues such as gestures, body movement, and facial expressions convey the feeling and the feedback to the user. This discipline of Human–Computer Interaction places reliance on the algorithmic robustness and the sensitivity of the sensor to ameliorate the recognition. Sensors play a significant role in accurate detection by providing a very high-quality input, hence increasing the efficiency and the reliability of the system. Automatic recognition of human emotions would help in teaching social intelligence in the machines. This paper presents a brief study of the various approaches and the techniques of emotion recognition. The survey covers a succinct review of the databases that are considered as data sets for algorithms detecting the emotions by facial expressions. Later, mixed reality device Microsoft HoloLens (MHL) is introduced for observing emotion recognition in Augmented Reality (AR). A brief introduction of its sensors, their application in emotion recognition and some preliminary results of emotion recognition using MHL are presented. The paper then concludes by comparing results of emotion recognition by the MHL and a regular webcam. PMID:29389845
Facial Emotion Recognition: A Survey and Real-World User Experiences in Mixed Reality.
Mehta, Dhwani; Siddiqui, Mohammad Faridul Haque; Javaid, Ahmad Y
2018-02-01
Extensive possibilities of applications have made emotion recognition ineluctable and challenging in the field of computer science. The use of non-verbal cues such as gestures, body movement, and facial expressions convey the feeling and the feedback to the user. This discipline of Human-Computer Interaction places reliance on the algorithmic robustness and the sensitivity of the sensor to ameliorate the recognition. Sensors play a significant role in accurate detection by providing a very high-quality input, hence increasing the efficiency and the reliability of the system. Automatic recognition of human emotions would help in teaching social intelligence in the machines. This paper presents a brief study of the various approaches and the techniques of emotion recognition. The survey covers a succinct review of the databases that are considered as data sets for algorithms detecting the emotions by facial expressions. Later, mixed reality device Microsoft HoloLens (MHL) is introduced for observing emotion recognition in Augmented Reality (AR). A brief introduction of its sensors, their application in emotion recognition and some preliminary results of emotion recognition using MHL are presented. The paper then concludes by comparing results of emotion recognition by the MHL and a regular webcam.
Using Immersive Virtual Reality for Electrical Substation Training
ERIC Educational Resources Information Center
Tanaka, Eduardo H.; Paludo, Juliana A.; Cordeiro, Carlúcio S.; Domingues, Leonardo R.; Gadbem, Edgar V.; Euflausino, Adriana
2015-01-01
Usually, distribution electricians are called upon to solve technical problems found in electrical substations. In this project, we apply problem-based learning to a training program for electricians, with the help of a virtual reality environment that simulates a real substation. Using this virtual substation, users may safely practice maneuvers…
Applications of Augmented Reality-Based Natural Interactive Learning in Magnetic Field Instruction
ERIC Educational Resources Information Center
Cai, Su; Chiang, Feng-Kuang; Sun, Yuchen; Lin, Chenglong; Lee, Joey J.
2017-01-01
Educators must address several challenges inherent to the instruction of scientific disciplines such as physics -- expensive or insufficient laboratory equipment, equipment error, difficulty in simulating certain experimental conditions. Augmented reality (AR) can be a promising approach to address these challenges. In this paper, we discuss the…
Application of Virtual Reality Technology in Biology Education.
ERIC Educational Resources Information Center
Shim, Kew-Cheol; Park, Jong-Seok; Kim, Hyun-Sup; Kim, Jae-Hyun; Park, Young-Chul; Ryu, Hai-Il
2003-01-01
Reports on the findings of a study designed to develop three-dimensional virtual reality technology (VRT) learning programs for middle school students and evaluate the program's educational value. Focuses on the topic of structure and function of the eye. Concludes that VRT simulations allow comfortable interaction with computers and increase the…
Virtual environment application with partial gravity simulation
NASA Technical Reports Server (NTRS)
Ray, David M.; Vanchau, Michael N.
1994-01-01
To support manned missions to the surface of Mars and missions requiring manipulation of payloads and locomotion in space, a training facility is required to simulate the conditions of both partial and microgravity. A partial gravity simulator (Pogo) which uses pneumatic suspension is being studied for use in virtual reality training. Pogo maintains a constant partial gravity simulation with a variation of simulated body force between 2.2 and 10 percent, depending on the type of locomotion inputs. this paper is based on the concept and application of a virtual environment system with Pogo including a head-mounted display and glove. The reality engine consists of a high end SGI workstation and PC's which drive Pogo's sensors and data acquisition hardware used for tracking and control. The tracking system is a hybrid of magnetic and optical trackers integrated for this application.
Nataraja, R M; Webb, N; Lopez, P J
2018-04-01
Surgical training has changed radically in the last few decades. The traditional Halstedian model of time-bound apprenticeship has been replaced with competency-based training. In our previous article, we presented an overview of learning theory relevant to clinical teaching; a summary for the busy paediatric surgeon and urologist. We introduced the concepts underpinning current changes in surgical education and training. In this next article, we give an overview of the various modalities of surgical simulation, the educational principles that underlie them, and potential applications in clinical practice. These modalities include; open surgical models and trainers, laparoscopic bench trainers, virtual reality trainers, simulated patients and role-play, hybrid simulation, scenario-based simulation, distributed simulation, virtual reality, and online simulation. Specific examples of technology that may be used for these modalities are included but this is not a comprehensive review of all available products. Copyright © 2018 Journal of Pediatric Urology Company. Published by Elsevier Ltd. All rights reserved.
Ioannou, Ioanna; Kazmierczak, Edmund; Stern, Linda
2015-01-01
The use of virtual reality (VR) simulation for surgical training has gathered much interest in recent years. Despite increasing popularity and usage, limited work has been carried out in the use of automated objective measures to quantify the extent to which performance in a simulator resembles performance in the operating theatre, and the effects of simulator training on real world performance. To this end, we present a study exploring the effects of VR training on the performance of dentistry students learning a novel oral surgery task. We compare the performance of trainees in a VR simulator and in a physical setting involving ovine jaws, using a range of automated metrics derived by motion analysis. Our results suggest that simulator training improved the motion economy of trainees without adverse effects on task outcome. Comparison of surgical technique on the simulator with the ovine setting indicates that simulator technique is similar, but not identical to real world technique.
Wen, Tingxi; Medveczky, David; Wu, Jackie; Wu, Jianhuang
2018-01-25
Colonoscopy plays an important role in the clinical screening and management of colorectal cancer. The traditional 'see one, do one, teach one' training style for such invasive procedure is resource intensive and ineffective. Given that colonoscopy is difficult, and time-consuming to master, the use of virtual reality simulators to train gastroenterologists in colonoscopy operations offers a promising alternative. In this paper, a realistic and real-time interactive simulator for training colonoscopy procedure is presented, which can even include polypectomy simulation. Our approach models the colonoscopy as thick flexible elastic rods with different resolutions which are dynamically adaptive to the curvature of the colon. More material characteristics of this deformable material are integrated into our discrete model to realistically simulate the behavior of the colonoscope. We present a simulator for training colonoscopy procedure. In addition, we propose a set of key aspects of our simulator that give fast, high fidelity feedback to trainees. We also conducted an initial validation of this colonoscopic simulator to determine its clinical utility and efficacy.
Nifakos, Sokratis; Zary, Nabil
2014-01-01
The research community has called for the development of effective educational interventions for addressing prescription behaviour since antimicrobial resistance remains a global health issue. Examining the potential to displace the educational process from Personal Computers to Mobile devices, in this paper we investigated a new method of integration of Virtual Patients into Mobile devices with augmented reality technology, enriching the practitioner's education in prescription behavior. Moreover, we also explored which information are critical during the prescription behavior education and we visualized these information on real context with augmented reality technology, simultaneously with a running Virtual Patient's scenario. Following this process, we set the educational frame of experiential knowledge to a mixed (virtual and real) environment.
Augmenting breath regulation using a mobile driven virtual reality therapy framework.
Abushakra, Ahmad; Faezipour, Miad
2014-05-01
This paper presents a conceptual framework of a virtual reality therapy to assist individuals, especially lung cancer patients or those with breathing disorders to regulate their breath through real-time analysis of respiration movements using a smartphone. Virtual reality technology is an attractive means for medical simulations and treatment, particularly for patients with cancer. The theories, methodologies and approaches, and real-world dynamic contents for all the components of this virtual reality therapy (VRT) via a conceptual framework using the smartphone will be discussed. The architecture and technical aspects of the offshore platform of the virtual environment will also be presented.
NASA Astrophysics Data System (ADS)
De Mauro, Alessandro; Ardanza, Aitor; Monge, Esther; Molina Rueda, Francisco
2013-03-01
Several studies have shown that both virtual and augmented reality are technologies suitable for rehabilitation therapy due to the inherent ability of simulating real daily life activities while improving patient motivation. In this paper we will first present the state of the art in the use of virtual and augmented reality applications for rehabilitation of motor disorders and second we will focus on the analysis of the results of our project. In particular, requirements of patients with cerebrovascular accidents, spinal cord injuries and cerebral palsy to the use of virtual and augmented reality systems will be detailed.
Using a virtual reality temporal bone simulator to assess otolaryngology trainees.
Zirkle, Molly; Roberson, David W; Leuwer, Rudolf; Dubrowski, Adam
2007-02-01
The objective of this study is to determine the feasibility of computerized evaluation of resident performance using hand motion analysis on a virtual reality temporal bone (VR TB) simulator. We hypothesized that both computerized analysis and expert ratings would discriminate the performance of novices from experienced trainees. We also hypothesized that performance on the virtual reality temporal bone simulator (VR TB) would differentiate based on previous drilling experience. The authors conducted a randomized, blind assessment study. Nineteen volunteers from the Otolaryngology-Head and Neck Surgery training program at the University of Toronto drilled both a cadaveric TB and a simulated VR TB. Expert reviewers were asked to assess operative readiness of the trainee based on a blind video review of their performance. Computerized hand motion analysis of each participant's performance was conducted. Expert raters were able to discriminate novices from experienced trainees (P < .05) on cadaveric temporal bones, and there was a trend toward discrimination on VR TB performance. Hand motion analysis showed that experienced trainees had better movement economy than novices (P < .05) on the VR TB. Performance, as measured by hand motion analysis on the VR TB simulator, reflects trainees' previous drilling experience. This study suggests that otolaryngology trainees could accomplish initial temporal bone training on a VR TB simulator, which can provide feedback to the trainee, and may reduce the need for constant faculty supervision and evaluation.
Aggarwal, Rajesh; Balasundaram, Indran; Darzi, Ara
2008-03-01
Within the past decade, there has been increasing interest in simulation-based devices for training and assessment of technical skills, especially for minimally invasive techniques such as laparoscopy. The aim of this study was to investigate the perceptions of senior and junior surgeons to virtual reality simulation within the context of current training opportunities for basic laparoscopic procedures. A postal questionnaire was sent to 245 consultants and their corresponding specialist registrar (SpR), detailing laparoscopic surgical practice and their knowledge and use of virtual reality (VR) surgical simulators. One hundred ninety-one (78%) consultants and 103(42%) SpRs returned questionnaires; 16%(10/61) of junior SpRs (year 1-4) had performed more than 50 laparoscopic cholecystectomies to date compared with 76% (32/42) of senior SpRs (year 5-6) (P < 0.001); 90% (55/61) of junior SpRs and 67% (28/42) of senior SpRs were keen to augment their training with VR (P = 0.007); 81% (238/294) of all surgeons agreed that VR has a useful role in the laparoscopic surgical training curriculum. There is a lack of experience in index laparoscopic cases of junior SpRs, and laparoscopic VR simulation is recognized as a useful mode of practice to acquire technical skills. This should encourage surgical program directors to drive the integration of simulation-based training into the surgical curriculum.
Laparoscopic skills maintenance: a randomized trial of virtual reality and box trainer simulators.
Khan, Montaha W; Lin, Diwei; Marlow, Nicholas; Altree, Meryl; Babidge, Wendy; Field, John; Hewett, Peter; Maddern, Guy
2014-01-01
A number of simulators have been developed to teach surgical trainees the basic skills required to effectively perform laparoscopic surgery; however, consideration needs to be given to how well the skills taught by these simulators are maintained over time. This study compared the maintenance of laparoscopic skills learned using box trainer and virtual reality simulators. Participants were randomly allocated to be trained and assessed using either the Society of American Gastrointestinal Endoscopic Surgeons Fundamentals of Laparoscopic Surgery (FLS) simulator or the Surgical Science virtual reality simulator. Once participants achieved a predetermined level of proficiency, they were assessed 1, 3, and 6 months later. At each assessment, participants were given 2 practice attempts and assessed on their third attempt. The study was conducted through the Simulated Surgical Skills Program that was held at the Royal Australasian College of Surgeons, Adelaide, Australia. Overall, 26 participants (13 per group) completed the training and all follow-up assessments. There were no significant differences between simulation-trained cohorts for age, gender, training level, and the number of surgeries previously performed, observed, or assisted. Scores for the FLS-trained participants did not significantly change over the follow-up period. Scores for LapSim-trained participants significantly deteriorated at the first 2 follow-up points (1 and 3 months) (p < 0.050), but returned to be near initial levels by the final follow-up (6 months). This research showed that basic laparoscopic skills learned using the FLS simulator were maintained more consistently than those learned on the LapSim simulator. However, by the final follow-up, both simulator-trained cohorts had skill levels that were not significantly different to those at proficiency after the initial training period. Copyright © 2014 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.
The role of simulation in neurosurgery.
Rehder, Roberta; Abd-El-Barr, Muhammad; Hooten, Kristopher; Weinstock, Peter; Madsen, Joseph R; Cohen, Alan R
2016-01-01
In an era of residency duty-hour restrictions, there has been a recent effort to implement simulation-based training methods in neurosurgery teaching institutions. Several surgical simulators have been developed, ranging from physical models to sophisticated virtual reality systems. To date, there is a paucity of information describing the clinical benefits of existing simulators and the assessment strategies to help implement them into neurosurgical curricula. Here, we present a systematic review of the current models of simulation and discuss the state-of-the-art and future directions for simulation in neurosurgery. Retrospective literature review. Multiple simulators have been developed for neurosurgical training, including those for minimally invasive procedures, vascular, skull base, pediatric, tumor resection, functional neurosurgery, and spine surgery. The pros and cons of existing systems are reviewed. Advances in imaging and computer technology have led to the development of different simulation models to complement traditional surgical training. Sophisticated virtual reality (VR) simulators with haptic feedback and impressive imaging technology have provided novel options for training in neurosurgery. Breakthrough training simulation using 3D printing technology holds promise for future simulation practice, proving high-fidelity patient-specific models to complement residency surgical learning.
Effectiveness of a Virtual Reality Forest on People With Dementia: A Mixed Methods Pilot Study.
Moyle, Wendy; Jones, Cindy; Dwan, Toni; Petrovich, Tanya
2018-05-08
To measure and describe the effectiveness of a Virtual Reality Forest (VRF) on engagement, apathy, and mood states of people with dementia, and explore the experiences of staff, people with dementia and their families. A mixed-methods study conducted between February and May 2016. Ten residents with dementia, 10 family members, and 9 care staff were recruited from 2 residential aged care facilities, operated by one care provider, located in Victoria, Australia. Residents participated in one facilitated VRF session. Residents' mood, apathy, and engagement were measured by the Observed Emotion Rating Scale, Person-Environment Apathy Rating Scale, and Types of Engagement. All participants were interviewed. Overall, the VRF was perceived by residents, family members, and staff to have a positive effect. During the VRF experience, residents experienced more pleasure (p = .008) and a greater level of alertness (p < .001). They also experienced a greater level of fear/anxiety during the forest experience than the comparative normative sample (p = .016). This initial, small-scale study represents the first to introduce the VRF activity and describe the impact on people with dementia. The VRF was perceived to have a positive effect on people with dementia, although, compared to the normative sample, a greater level of fear/anxiety during the VRF was experienced. This study suggests virtual reality may have the potential to improve quality of life, and the outcomes can be used to inform the development of future Virtual Reality activities for people with dementia.
STS-118 Astronaut Dave Williams Trains Using Virtual Reality Hardware
NASA Technical Reports Server (NTRS)
2007-01-01
STS-118 astronaut and mission specialist Dafydd R. 'Dave' Williams, representing the Canadian Space Agency, uses Virtual Reality Hardware in the Space Vehicle Mock Up Facility at the Johnson Space Center to rehearse some of his duties for the upcoming mission. This type of virtual reality training allows the astronauts to wear special gloves and other gear while looking at a computer that displays simulating actual movements around the various locations on the station hardware which with they will be working.
Virtual reality training improves balance function.
Mao, Yurong; Chen, Peiming; Li, Le; Huang, Dongfeng
2014-09-01
Virtual reality is a new technology that simulates a three-dimensional virtual world on a computer and enables the generation of visual, audio, and haptic feedback for the full immersion of users. Users can interact with and observe objects in three-dimensional visual space without limitation. At present, virtual reality training has been widely used in rehabilitation therapy for balance dysfunction. This paper summarizes related articles and other articles suggesting that virtual reality training can improve balance dysfunction in patients after neurological diseases. When patients perform virtual reality training, the prefrontal, parietal cortical areas and other motor cortical networks are activated. These activations may be involved in the reconstruction of neurons in the cerebral cortex. Growing evidence from clinical studies reveals that virtual reality training improves the neurological function of patients with spinal cord injury, cerebral palsy and other neurological impairments. These findings suggest that virtual reality training can activate the cerebral cortex and improve the spatial orientation capacity of patients, thus facilitating the cortex to control balance and increase motion function.
Virtual reality training improves balance function
Mao, Yurong; Chen, Peiming; Li, Le; Huang, Dongfeng
2014-01-01
Virtual reality is a new technology that simulates a three-dimensional virtual world on a computer and enables the generation of visual, audio, and haptic feedback for the full immersion of users. Users can interact with and observe objects in three-dimensional visual space without limitation. At present, virtual reality training has been widely used in rehabilitation therapy for balance dysfunction. This paper summarizes related articles and other articles suggesting that virtual reality training can improve balance dysfunction in patients after neurological diseases. When patients perform virtual reality training, the prefrontal, parietal cortical areas and other motor cortical networks are activated. These activations may be involved in the reconstruction of neurons in the cerebral cortex. Growing evidence from clinical studies reveals that virtual reality training improves the neurological function of patients with spinal cord injury, cerebral palsy and other neurological impairments. These findings suggest that virtual reality training can activate the cerebral cortex and improve the spatial orientation capacity of patients, thus facilitating the cortex to control balance and increase motion function. PMID:25368651
Hogg, Melissa E; Tam, Vernissia; Zenati, Mazen; Novak, Stephanie; Miller, Jennifer; Zureikat, Amer H; Zeh, Herbert J
Hepatobiliary surgery is a highly complex, low-volume specialty with long learning curves necessary to achieve optimal outcomes. This creates significant challenges in both training and measuring surgical proficiency. We hypothesize that a virtual reality curriculum with mastery-based simulation is a valid tool to train fellows toward operative proficiency. This study evaluates the content and predictive validity of robotic simulation curriculum as a first step toward developing a comprehensive, proficiency-based pathway. A mastery-based simulation curriculum was performed in a virtual reality environment. A pretest/posttest experimental design used both virtual reality and inanimate environments to evaluate improvement. Participants self-reported previous robotic experience and assessed the curriculum by rating modules based on difficulty and utility. This study was conducted at the University of Pittsburgh Medical Center (Pittsburgh, PA), a tertiary care academic teaching hospital. A total of 17 surgical oncology fellows enrolled in the curriculum, 16 (94%) completed. Of 16 fellows who completed the curriculum, 4 fellows (25%) achieved mastery on all 24 modules; on average, fellows mastered 86% of the modules. Following curriculum completion, individual test scores improved (p < 0.0001). An average of 2.4 attempts was necessary to master each module (range: 1-17). Median time spent completing the curriculum was 4.2 hours (range: 1.1-6.6). Total 8 (50%) fellows continued practicing modules beyond mastery. Survey results show that "needle driving" and "endowrist 2" modules were perceived as most difficult although "needle driving" modules were most useful. Overall, 15 (94%) fellows perceived improvement in robotic skills after completing the curriculum. In a cohort of board-certified general surgeons who are novices in robotic surgery, a mastery-based simulation curriculum demonstrated internal validity with overall score improvement. Time to complete the curriculum was manageable. Published by Elsevier Inc.
Hysteroscopic resection on virtual reality simulator: What do we measure?
Panel, P; Neveu, M-E; Villain, C; Debras, F; Fernandez, H; Debras, E
2018-06-01
The objective was to compare results of two groups of population (novices and experts) on a virtual reality simulator of hysteroscopy resection for different metrics and for a multimetric score to assess its construct validity. Nineteen gynecologist who had at least 5 years of experience with hysteroscopy and self-evaluated their expertise at 4/5 or 5/5 were included as expert population. Twenty first-year gynecology residents in Paris were included as novice population. A standardized set of 4 hysteroscopy resection cases (polypectomy, myomectomy, roller ball endometrial ablation and septum resection) was performed on a virtual reality simulator (HystSim™) by the group of novices and experts. Results obtained on the simulator for overall score and for the parameters were compared by applying the Mann-Whitney test. Overall score of novices and experts were significantly different for three resection cases (polypectomy P<0.001, myomectomy P<0.001, roller ball endometrial ablation <0.001). The overall score was not different in the septum resection (P=0.456). For the four cases, the economy score (included cumulative path length, procedure time and camera alignment) were statistically different between novices and experts (polypectomy P<0.001, myomectomy P=0.001, roller ball endometrial ablation P<0.001, septum resection P<0.001). The overall score on HystSim™ was able to discriminate novices between experts on polypectomy, myomectomy and roller ball endometrial ablation cases but not on septum resection. The economy score was the more reliable to reflect the surgeon experience. It could be used to evaluate and to train students on hysteroscopic resection on a virtual reality simulator. Copyright © 2018 Elsevier Masson SAS. All rights reserved.
A Population Synthesis Study of Terrestrial Gamma-ray Flashes
NASA Astrophysics Data System (ADS)
Cramer, E. S.; Briggs, M. S.; Stanbro, M.; Dwyer, J. R.; Mailyan, B. G.; Roberts, O.
2017-12-01
In astrophysics, population synthesis models are tools used to determine what mix of stars could be consistent with the observations, e.g. how the intrinsic mass-to-light ratio changes by the measurement process. A similar technique could be used to understand the production of TGFs. The models used for this type of population study probe the conditions of electron acceleration inside the high electric field regions of thunderstorms, i.e. acceleration length, electric field strength, and beaming angles. In this work, we use a Monte Carlo code to generate bremsstrahlung photons from relativistic electrons that are accelerated by a large-scale RREA thunderstorm electric field. The code simulates the propagation of photons through the atmosphere at various source altitudes, where they interact with air via Compton scattering, pair production, and photoelectric absorption. We then show the differences in the hardness ratio at spacecraft altitude between these different simulations and compare them with TGF data from Fermi-GBM. Such comparisons can lead to constraints that can be applied to popular TGF beaming models, and help determine whether the population presented in this study is consistent or not with reality.
The role of virtual reality in surgical training in otorhinolaryngology.
Fried, Marvin P; Uribe, José I; Sadoughi, Babak
2007-06-01
This article reviews the rationale, current status and future directions for the development and implementation of virtual reality surgical simulators as training tools. The complexity of modern surgical techniques, which utilize advanced technology, presents a dilemma for surgical training. Hands-on patient experience - the traditional apprenticeship method for teaching operations - may not apply because of the learning curve for skill acquisition and patient safety expectation. The paranasal sinuses and temporal bone have intricate anatomy with a significant amount of vital structures either within the surgical field or in close proximity. The current standard of surgical care in these areas involves the use of endoscopes, cameras and microscopes, requiring additional hand-eye coordination, an accurate command of fine motor skills, and a thorough knowledge of the anatomy under magnified vision. A surgeon's disorientation or loss of perspective can lead to complications, often catastrophic and occasionally lethal. These considerations define the ideal environment for surgical simulation; not surprisingly, significant research and validation of simulators in these areas have occurred. Virtual reality simulators are demonstrating validity as training and skills assessment tools. Future prototypes will find application for routine use in teaching, surgical planning and the development of new instruments and computer-assisted devices.
Fused Reality for Enhanced Flight Test Capabilities
NASA Technical Reports Server (NTRS)
Bachelder, Ed; Klyde, David
2011-01-01
The feasibility of using Fused Reality-based simulation technology to enhance flight test capabilities has been investigated. In terms of relevancy to piloted evaluation, there remains no substitute for actual flight tests, even when considering the fidelity and effectiveness of modern ground-based simulators. In addition to real-world cueing (vestibular, visual, aural, environmental, etc.), flight tests provide subtle but key intangibles that cannot be duplicated in a ground-based simulator. There is, however, a cost to be paid for the benefits of flight in terms of budget, mission complexity, and safety, including the need for ground and control-room personnel, additional aircraft, etc. A Fused Reality(tm) (FR) Flight system was developed that allows a virtual environment to be integrated with the test aircraft so that tasks such as aerial refueling, formation flying, or approach and landing can be accomplished without additional aircraft resources or the risk of operating in close proximity to the ground or other aircraft. Furthermore, the dynamic motions of the simulated objects can be directly correlated with the responses of the test aircraft. The FR Flight system will allow real-time observation of, and manual interaction with, the cockpit environment that serves as a frame for the virtual out-the-window scene.
Development of excavator training simulator using leap motion controller
NASA Astrophysics Data System (ADS)
Fahmi, F.; Nainggolan, F.; Andayani, U.; Siregar, B.
2018-03-01
Excavator is a heavy machinery that is used for many industries purposes. Controlling the excavator is not easy. Its operator has to be trained well in many skills to make sure it is safe, effective, and efficient while using the excavator. In this research, we proposed a virtual reality excavator simulator supported by a device called Leap Motion Controller that supports finger and hand motions as an input. This prototype will be developed than in the virtual reality environment to give a more real sensing to the user.
Doppler Lidar Vector Retrievals and Atmospheric Data Visualization in Mixed/Augmented Reality
NASA Astrophysics Data System (ADS)
Cherukuru, Nihanth Wagmi
Environmental remote sensing has seen rapid growth in the recent years and Doppler wind lidars have gained popularity primarily due to their non-intrusive, high spatial and temporal measurement capabilities. While lidar applications early on, relied on the radial velocity measurements alone, most of the practical applications in wind farm control and short term wind prediction require knowledge of the vector wind field. Over the past couple of years, multiple works on lidars have explored three primary methods of retrieving wind vectors viz., using homogeneous windfield assumption, computationally extensive variational methods and the use of multiple Doppler lidars. Building on prior research, the current three-part study, first demonstrates the capabilities of single and dual Doppler lidar retrievals in capturing downslope windstorm-type flows occurring at Arizona's Barringer Meteor Crater as a part of the METCRAX II field experiment. Next, to address the need for a reliable and computationally efficient vector retrieval for adaptive wind farm control applications, a novel 2D vector retrieval based on a variational formulation was developed and applied on lidar scans from an offshore wind farm and validated with data from a cup and vane anemometer installed on a nearby research platform. Finally, a novel data visualization technique using Mixed Reality (MR)/ Augmented Reality (AR) technology is presented to visualize data from atmospheric sensors. MR is an environment in which the user's visual perception of the real world is enhanced with live, interactive, computer generated sensory input (in this case, data from atmospheric sensors like Doppler lidars). A methodology using modern game development platforms is presented and demonstrated with lidar retrieved wind fields. In the current study, the possibility of using this technology to visualize data from atmospheric sensors in mixed reality is explored and demonstrated with lidar retrieved wind fields as well as a few earth science datasets for education and outreach activities.
Percutaneous spinal fixation simulation with virtual reality and haptics.
Luciano, Cristian J; Banerjee, P Pat; Sorenson, Jeffery M; Foley, Kevin T; Ansari, Sameer A; Rizzi, Silvio; Germanwala, Anand V; Kranzler, Leonard; Chittiboina, Prashant; Roitberg, Ben Z
2013-01-01
In this study, we evaluated the use of a part-task simulator with 3-dimensional and haptic feedback as a training tool for percutaneous spinal needle placement. To evaluate the learning effectiveness in terms of entry point/target point accuracy of percutaneous spinal needle placement on a high-performance augmented-reality and haptic technology workstation with the ability to control the duration of computer-simulated fluoroscopic exposure, thereby simulating an actual situation. Sixty-three fellows and residents performed needle placement on the simulator. A virtual needle was percutaneously inserted into a virtual patient's thoracic spine derived from an actual patient computed tomography data set. Ten of 126 needle placement attempts by 63 participants ended in failure for a failure rate of 7.93%. From all 126 needle insertions, the average error (15.69 vs 13.91), average fluoroscopy exposure (4.6 vs 3.92), and average individual performance score (32.39 vs 30.71) improved from the first to the second attempt. Performance accuracy yielded P = .04 from a 2-sample t test in which the rejected null hypothesis assumes no improvement in performance accuracy from the first to second attempt in the test session. The experiments showed evidence (P = .04) of performance accuracy improvement from the first to the second percutaneous needle placement attempt. This result, combined with previous learning retention and/or face validity results of using the simulator for open thoracic pedicle screw placement and ventriculostomy catheter placement, supports the efficacy of augmented reality and haptics simulation as a learning tool.
Validation of virtual-reality-based simulations for endoscopic sinus surgery.
Dharmawardana, N; Ruthenbeck, G; Woods, C; Elmiyeh, B; Diment, L; Ooi, E H; Reynolds, K; Carney, A S
2015-12-01
Virtual reality (VR) simulators provide an alternative to real patients for practicing surgical skills but require validation to ensure accuracy. Here, we validate the use of a virtual reality sinus surgery simulator with haptic feedback for training in Otorhinolaryngology - Head & Neck Surgery (OHNS). Participants were recruited from final-year medical students, interns, resident medical officers (RMOs), OHNS registrars and consultants. All participants completed an online questionnaire after performing four separate simulation tasks. These were then used to assess face, content and construct validity. anova with post hoc correlation was used for statistical analysis. The following groups were compared: (i) medical students/interns, (ii) RMOs, (iii) registrars and (iv) consultants. Face validity results had a statistically significant (P < 0.05) difference between the consultant group and others, while there was no significant difference between medical student/intern and RMOs. Variability within groups was not significant. Content validity results based on consultant scoring and comments indicated that the simulations need further development in several areas to be effective for registrar-level teaching. However, students, interns and RMOs indicated that the simulations provide a useful tool for learning OHNS-related anatomy and as an introduction to ENT-specific procedures. The VR simulations have been validated for teaching sinus anatomy and nasendoscopy to medical students, interns and RMOs. However, they require further development before they can be regarded as a valid tool for more advanced surgical training. © 2015 John Wiley & Sons Ltd.
Advanced helmet mounted display (AHMD)
NASA Astrophysics Data System (ADS)
Sisodia, Ashok; Bayer, Michael; Townley-Smith, Paul; Nash, Brian; Little, Jay; Cassarly, William; Gupta, Anurag
2007-04-01
Due to significantly increased U.S. military involvement in deterrent, observer, security, peacekeeping and combat roles around the world, the military expects significant future growth in the demand for deployable virtual reality trainers with networked simulation capability of the battle space visualization process. The use of HMD technology in simulated virtual environments has been initiated by the demand for more effective training tools. The AHMD overlays computer-generated data (symbology, synthetic imagery, enhanced imagery) augmented with actual and simulated visible environment. The AHMD can be used to support deployable reconfigurable training solutions as well as traditional simulation requirements, UAV augmented reality, air traffic control and Command, Control, Communications, Computers, Intelligence, Surveillance, and Reconnaissance (C4ISR) applications. This paper will describe the design improvements implemented for production of the AHMD System.
The use of virtual reality tools in surgical education.
Smith, Andrew
2010-03-01
Advances in computing, specifically those used for simulation and games technology has allowed for exciting developments in dental and surgical education. At the same time concerns are being raised that students with relatively little training, practise to improve their skill on patients with all of the inherent risks that may occur. Simulation in dentistry has been practised for many years and so the concept is not new to the profession. New tools have been developed that both enhance teaching and learning and are also useful for assessment of students and trainees. The challenge of virtual and simulated reality tools is to have the required fidelity to improve teaching and learning outcomes over the currently utilized methodology.
Application of the Environmental Sensation Learning Vehicle Simulation Platform in Virtual Reality
ERIC Educational Resources Information Center
Hsu, Kuei-Shu; Jiang, Jinn-Feng; Wei, Hung-Yuan; Lee, Tsung-Han
2016-01-01
The use of simulation technologies in learning has received considerable attention in recent years, but few studies to date have focused on vehicle driving simulation systems. In this study, a vehicle driving simulation system was developed to support novice drivers in practicing their skills. Specifically, the vehicle driving simulation system…
Liu, Kaijun; Fang, Binji; Wu, Yi; Li, Ying; Jin, Jun; Tan, Liwen; Zhang, Shaoxiang
2013-09-01
Anatomical knowledge of the larynx region is critical for understanding laryngeal disease and performing required interventions. Virtual reality is a useful method for surgical education and simulation. Here, we assembled segmented cross-section slices of the larynx region from the Chinese Visible Human dataset. The laryngeal structures were precisely segmented manually as 2D images, then reconstructed and displayed as 3D images in the virtual reality Dextrobeam system. Using visualization and interaction with the virtual reality modeling language model, a digital laryngeal anatomy instruction was constructed using HTML and JavaScript languages. The volume larynx models can thus display an arbitrary section of the model and provide a virtual dissection function. This networked teaching system of the digital laryngeal anatomy can be read remotely, displayed locally, and manipulated interactively.
An Interactive Logistics Centre Information Integration System Using Virtual Reality
NASA Astrophysics Data System (ADS)
Hong, S.; Mao, B.
2018-04-01
The logistics industry plays a very important role in the operation of modern cities. Meanwhile, the development of logistics industry has derived various problems that are urgent to be solved, such as the safety of logistics products. This paper combines the study of logistics industry traceability and logistics centre environment safety supervision with virtual reality technology, creates an interactive logistics centre information integration system. The proposed system utilizes the immerse characteristic of virtual reality, to simulate the real logistics centre scene distinctly, which can make operation staff conduct safety supervision training at any time without regional restrictions. On the one hand, a large number of sensor data can be used to simulate a variety of disaster emergency situations. On the other hand, collecting personnel operation data, to analyse the improper operation, which can improve the training efficiency greatly.
Lee, Gyusung I; Lee, Mija R
2018-01-01
While it is often claimed that virtual reality (VR) training system can offer self-directed and mentor-free skill learning using the system's performance metrics (PM), no studies have yet provided evidence-based confirmation. This experimental study investigated what extent to which trainees achieved their self-learning with a current VR simulator and whether additional mentoring improved skill learning, skill transfer and cognitive workloads in robotic surgery simulation training. Thirty-two surgical trainees were randomly assigned to either the Control-Group (CG) or Experiment-Group (EG). While the CG participants reviewed the PM at their discretion, the EG participants had explanations about PM and instructions on how to improve scores. Each subject completed a 5-week training using four simulation tasks. Pre- and post-training data were collected using both a simulator and robot. Peri-training data were collected after each session. Skill learning, time spent on PM (TPM), and cognitive workloads were compared between groups. After the simulation training, CG showed substantially lower simulation task scores (82.9 ± 6.0) compared with EG (93.2 ± 4.8). Both groups demonstrated improved physical model tasks performance with the actual robot, but the EG had a greater improvement in two tasks. The EG exhibited lower global mental workload/distress, higher engagement, and a better understanding regarding using PM to improve performance. The EG's TPM was initially long but substantially shortened as the group became familiar with PM. Our study demonstrated that the current VR simulator offered limited self-skill learning and additional mentoring still played an important role in improving the robotic surgery simulation training.
The Myths and Realities of Simulations in Performance Technology.
ERIC Educational Resources Information Center
Thiagarajan, Sivasailam
1998-01-01
Examines misconceptions about simulations for performance technology concerning what they reflect, varieties, uses (instruction, awareness, performance assessment, team building, transfer, research, therapy), levels of fidelity, design approaches, formats (graphic models; card, race, and cyclical games; interactive fiction; production simulations;…
VR Simulation Testbed: Improving Surface Telerobotics for the Deep Space Gateway
NASA Astrophysics Data System (ADS)
Walker, M. E.; Burns, J. O.; Szafir, D. J.
2018-02-01
Design of a virtual reality simulation testbed for prototyping surface telerobotics. The goal is to create a framework with robust physics and kinematics to allow simulated teleoperation and supervised control of lunar rovers and rapid UI prototyping.
Innovative simulation strategies in education.
Aebersold, Michelle; Tschannen, Dana; Bathish, Melissa
2012-01-01
The use of simulation in the undergraduate nursing curriculum is gaining popularity and is becoming a foundation of many nursing programs. The purpose of this paper is to highlight a new simulation teaching strategy, virtual reality (VR) simulation, which capitalizes on the technological skills of the new generation student. This small-scale pilot study focused on improving interpersonal skills in senior level nursing students using VR simulation. In this study, a repeated-measure design was used to evaluate the effectiveness of VR simulation on improving student's performance over a series of two VR scenarios. Using the Emergency Medicine Crisis Resource Management (EMCRM) tool, student performance was evaluated. Overall, the total EMCRM score improved but not significantly. The subscale areas of communication (P = .047, 95% CI: - 1.06, -.007) and professional behavior (P = .003, 95% CI: - 1.12, -.303) did show a significant improvement between the two scenario exposures. Findings from this study show the potential for virtual reality simulations to have an impact on nursing student performance.
Using Virtual Reality To Bring Your Instruction to Life.
ERIC Educational Resources Information Center
Gaddis, Tony
Prepared by the manager of a virtual reality (VR) laboratory at North Carolina's Haywood Community College, the three papers collected in this document are designed to help instructors incorporate VR into their classes. The first paper reviews the characteristics of VR, defining it as a computer-generated simulation of a three-dimensional…
ERIC Educational Resources Information Center
Quero, Soledad; Pérez-Ara, M. Ángeles; Bretón-López, Juana; García-Palacios, Azucena; Baños, Rosa M.; Botella, Cristina
2014-01-01
Interoceptive exposure (IE) is a standard component of cognitive-behavioural therapy (CBT) for panic disorder and agoraphobia. The virtual reality (VR) program "Panic-Agoraphobia" has several virtual scenarios designed for applying exposure to agoraphobic situations; it can also simulate physical sensations. This work examines patients'…
Vicher: A Virtual Reality Based Educational Module for Chemical Reaction Engineering.
ERIC Educational Resources Information Center
Bell, John T.; Fogler, H. Scott
1996-01-01
A virtual reality application for undergraduate chemical kinetics and reactor design education, Vicher (Virtual Chemical Reaction Model) was originally designed to simulate a portion of a modern chemical plant. Vicher now consists of two programs: Vicher I that models catalyst deactivation and Vicher II that models nonisothermal effects in…
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
Sandia National Laboratories has developed a state-of-the-art augmented reality training system for close-quarters combat (CQB). This system uses a wearable augmented reality system to place the user in a real environment while engaging enemy combatants in virtual space (Boston Dynamics DI-Guy). Umbra modeling and simulation environment is used to integrate and control the AR system.
Immersive Training Systems: Virtual Reality and Education and Training.
ERIC Educational Resources Information Center
Psotka, Joseph
1995-01-01
Describes virtual reality (VR) technology and VR research on education and training. Focuses on immersion as the key added value of VR, analyzes cognitive variables connected to immersion, how it is generated in synthetic environments and its benefits. Discusses value of tracked, immersive visual displays over nonimmersive simulations. Contains 78…
Physics Education in Virtual Reality: An Example
ERIC Educational Resources Information Center
Kaufmann, Hannes; Meyer, Bernd
2009-01-01
We present an immersive virtual reality (VR) application for physics education. It utilizes a recent physics engine developed for the PC gaming market to simulate physical experiments correctly and accurately. Students are enabled to actively build their own experiments and study them. A variety of tools are provided to analyze forces, mass, paths…
Levy
1996-08-01
New interactive computer technologies are having a significant influence on medical education, training, and practice. The newest innovation in computer technology, virtual reality, allows an individual to be immersed in a dynamic computer-generated, three-dimensional environment and can provide realistic simulations of surgical procedures. A new virtual reality hysteroscope passes through a sensing device that synchronizes movements with a three-dimensional model of a uterus. Force feedback is incorporated into this model, so the user actually experiences the collision of an instrument against the uterine wall or the sensation of the resistance or drag of a resectoscope as it cuts through a myoma in a virtual environment. A variety of intrauterine pathologies and procedures are simulated, including hyperplasia, cancer, resection of a uterine septum, polyp, or myoma, and endometrial ablation. This technology will be incorporated into comprehensive training programs that will objectively assess hand-eye coordination and procedural skills. It is possible that by incorporating virtual reality into hysteroscopic training programs, a decrease in the learning curve and the number of complications presently associated with the procedures may be realized. Prospective studies are required to assess these potential benefits.
Quick realization of a ship steering training simulation system by virtual reality
NASA Astrophysics Data System (ADS)
Sun, Jifeng; Zhi, Pinghua; Nie, Weiguo
2003-09-01
This paper addresses two problems of a ship handling simulator. Firstly, 360 scene generation, especially 3D dynamic sea wave modeling, is described. Secondly, a multi-computer complementation of ship handling simulator. This paper also gives the experimental results of the proposed ship handling simulator.
A Virtual Reality Simulator Prototype for Learning and Assessing Phaco-sculpting Skills
NASA Astrophysics Data System (ADS)
Choi, Kup-Sze
This paper presents a virtual reality based simulator prototype for learning phacoemulsification in cataract surgery, with focus on the skills required for making a cross-shape trench in cataractous lens by an ultrasound probe during the phaco-sculpting procedure. An immersive virtual environment is created with 3D models of the lens and surgical tools. Haptic device is also used as 3D user interface. Phaco-sculpting is simulated by interactively deleting the constituting tetrahedrons of the lens model. Collisions between the virtual probe and the lens are effectively identified by partitioning the space containing the lens hierarchically with an octree. The simulator can be programmed to collect real-time quantitative user data for reviewing and assessing trainee's performance in an objective manner. A game-based learning environment can be created on top of the simulator by incorporating gaming elements based on the quantifiable performance metrics.
A review of haptic simulator for oral and maxillofacial surgery based on virtual reality.
Chen, Xiaojun; Hu, Junlei
2018-06-01
Traditional medical training in oral and maxillofacial surgery (OMFS) may be limited by its low efficiency and high price due to the shortage of cadaver resources. With the combination of visual rendering and feedback force, surgery simulators become increasingly popular in hospitals and medical schools as an alternative to the traditional training. Areas covered: The major goal of this review is to provide a comprehensive reference source of current and future developments of haptic OMFS simulators based on virtual reality (VR) for relevant researchers. Expert commentary: Visual rendering, haptic rendering, tissue deformation, and evaluation are key components of haptic surgery simulator based on VR. Compared with traditional medical training, virtual and tactical fusion of virtual environment in surgery simulator enables considerably vivid sensation, and the operators have more opportunities to practice surgical skills and receive objective evaluation as reference.
Disorder in Complex Human System
NASA Astrophysics Data System (ADS)
Akdeniz, K. Gediz
2011-11-01
Since the world of human and whose life becomes more and more complex every day because of the digital technology and under the storm of knowledge (media, internet, governmental and non-governmental organizations, etc...) the simulation is rapidly growing in the social systems and in human behaviors. The formation of the body and mutual interactions are left to digital technological, communication mechanisms and coding the techno genetics of the body. Deconstruction begins everywhere. The linear simulation mechanism with modern realities are replaced by the disorder simulation of human behaviors with awareness realities. In this paper I would like to introduce simulation theory of "Disorder Sensitive Human Behaviors". I recently proposed this theory to critique the role of disorder human behaviors in social systems. In this theory the principle of realty is the chaotic awareness of the complexity of human systems inside of principle of modern thinking in Baudrillard's simulation theory. Proper examples will be also considered to investigate the theory.
van Duren, B H; Sugand, K; Wescott, R; Carrington, R; Hart, A
2018-05-01
Hip fractures contribute to a significant clinical burden globally with over 1.6 million cases per annum and up to 30% mortality rate within the first year. Insertion of a dynamic hip screw (DHS) is a frequently performed procedure to treat extracapsular neck of femur fractures. Poorly performed DHS fixation of extracapsular neck of femur fractures can result in poor mobilisation, chronic pain, and increased cut-out rate requiring revision surgery. A realistic, affordable, and portable fluoroscopic simulation system can improve performance metrics in trainees, including the tip-apex distance (the only clinically validated outcome), and improve outcomes. We developed a digital fluoroscopic imaging simulator using orthogonal cameras to track coloured markers attached to the guide-wire which created a virtual overlay on fluoroscopic images of the hip. To test the accuracy with which the augmented reality system could track a guide-wire, a standard workshop femur was used to calibrate the system with a positional marker fixed to indicate the apex; this allowed for comparison between guide-wire tip-apex distance (TAD) calculated by the system to be compared to that physically measured. Tests were undertaken to determine: (1) how well the apex could be targeted; (2) the accuracy of the calculated TAD. (3) The number of iterations through the algorithm giving the optimal accuracy-time relationship. The calculated TAD was found to have an average root mean square error of 4.2 mm. The accuracy of the algorithm was shown to increase with the number of iterations up to 20 beyond which the error asymptotically converged to an error of 2 mm. This work demonstrates a novel augmented reality simulation of guide-wire insertion in DHS surgery. To our knowledge this has not been previously achieved. In contrast to virtual reality, augmented reality is able to simulate fluoroscopy while allowing the trainee to interact with real instrumentation and performing the procedure on workshop bone models. Copyright © 2018 IPEM. Published by Elsevier Ltd. All rights reserved.
Optical architecture of HoloLens mixed reality headset
NASA Astrophysics Data System (ADS)
Kress, Bernard C.; Cummings, William J.
2017-06-01
HoloLens by Microsoft Corp. is the world's first untethered Mixed Reality (MR) Head Mounted Display (HMD) system, released to developers in March 2016 as a Development Kit. We review in this paper the various display requirements and subsequent optical hardware choices we made for HoloLens. Its main achievements go along performance and comfort for the user: it is the first fully untethered MR headset, with the highest angular resolution and the industry's largest eyebox. It has the first inside-out global sensor fusion system including precise head tracking and 3D mapping all controlled by a fully custom on-board GPU. Based on such achievements, HoloLens came out as the most advanced MR system today. Additional features may be implemented in next generations MR headsets, leading to the ultimate experience for the user, and securing the upcoming fabulous AR/MR market predicted by most analysts.
Kotranza, Aaron; Lind, D Scott; Lok, Benjamin
2012-07-01
We investigate the efficacy of incorporating real-time feedback of user performance within mixed-reality environments (MREs) for training real-world tasks with tightly coupled cognitive and psychomotor components. This paper presents an approach to providing real-time evaluation and visual feedback of learner performance in an MRE for training clinical breast examination (CBE). In a user study of experienced and novice CBE practitioners (n = 69), novices receiving real-time feedback performed equivalently or better than more experienced practitioners in the completeness and correctness of the exam. A second user study (n = 8) followed novices through repeated practice of CBE in the MRE. Results indicate that skills improvement in the MRE transfers to the real-world task of CBE of human patients. This initial case study demonstrates the efficacy of MREs incorporating real-time feedback for training real-world cognitive-psychomotor tasks.
Design of a home-based adaptive mixed reality rehabilitation system for stroke survivors.
Baran, Michael; Lehrer, Nicole; Siwiak, Diana; Chen, Yinpeng; Duff, Margaret; Ingalls, Todd; Rikakis, Thanassis
2011-01-01
This paper presents the design of a home-based adaptive mixed reality system (HAMRR) for upper extremity stroke rehabilitation. The goal of HAMRR is to help restore motor function to chronic stroke survivors by providing an engaging long-term reaching task therapy at home. The system uses an intelligent adaptation scheme to create a continuously challenging and unique multi-year therapy experience. The therapy is overseen by a physical therapist, but day-to-day use of the system can be independently set up and completed by a stroke survivor. The HAMMR system tracks movement of the wrist and torso and provides real-time, post-trial, and post-set feedback to encourage the stroke survivor to self-assess his or her movement and engage in active learning of new movement strategies. The HAMRR system consists of a custom table, chair, and media center, and is designed to easily integrate into any home.
Rahm, Stefan; Wieser, Karl; Bauer, David E; Waibel, Felix Wa; Meyer, Dominik C; Gerber, Christian; Fucentese, Sandro F
2018-05-16
Most studies demonstrated, that training on a virtual reality based arthroscopy simulator leads to an improvement of technical skills in orthopaedic surgery. However, how long and what kind of training is optimal for young residents is unknown. In this study we tested the efficacy of a standardized, competency based training protocol on a validated virtual reality based knee- and shoulder arthroscopy simulator. Twenty residents and five experts in arthroscopy were included. All participants performed a test including knee -and shoulder arthroscopy tasks on a virtual reality knee- and shoulder arthroscopy simulator. The residents had to complete a competency based training program. Thereafter, the previously completed test was retaken. We evaluated the metric data of the simulator using a z-score and the Arthroscopic Surgery Skill Evaluation Tool (ASSET) to assess training effects in residents and performance levels in experts. The residents significantly improved from pre- to post training in the overall z-score: - 9.82 (range, - 20.35 to - 1.64) to - 2.61 (range, - 6.25 to 1.5); p < 0.001. The overall ASSET score improved from 55 (27 to 84) percent to 75 (48 to 92) percent; p < 0.001. The experts, however, achieved a significantly higher z-score in the shoulder tasks (p < 0.001 and a statistically insignificantly higher z-score in the knee tasks with a p = 0.921. The experts mean overall ASSET score (knee and shoulder) was significantly higher in the therapeutic tasks (p < 0.001) compared to the residents post training result. The use of a competency based simulator training with this specific device for 3-5 h is an effective tool to advance basic arthroscopic skills of resident in training from 0 to 5 years based on simulator measures and simulator based ASSET testing. Therefore, we conclude that this sort of training method appears useful to learn the handling of the camera, basic anatomy and the triangulation with instruments.
Virtual Reality Simulation for the Operating Room
Gallagher, Anthony G.; Ritter, E Matt; Champion, Howard; Higgins, Gerald; Fried, Marvin P.; Moses, Gerald; Smith, C Daniel; Satava, Richard M.
2005-01-01
Summary Background Data: To inform surgeons about the practical issues to be considered for successful integration of virtual reality simulation into a surgical training program. The learning and practice of minimally invasive surgery (MIS) makes unique demands on surgical training programs. A decade ago Satava proposed virtual reality (VR) surgical simulation as a solution for this problem. Only recently have robust scientific studies supported that vision Methods: A review of the surgical education, human-factor, and psychology literature to identify important factors which will impinge on the successful integration of VR training into a surgical training program. Results: VR is more likely to be successful if it is systematically integrated into a well-thought-out education and training program which objectively assesses technical skills improvement proximate to the learning experience. Validated performance metrics should be relevant to the surgical task being trained but in general will require trainees to reach an objectively determined proficiency criterion, based on tightly defined metrics and perform at this level consistently. VR training is more likely to be successful if the training schedule takes place on an interval basis rather than massed into a short period of extensive practice. High-fidelity VR simulations will confer the greatest skills transfer to the in vivo surgical situation, but less expensive VR trainers will also lead to considerably improved skills generalizations. Conclusions: VR for improved performance of MIS is now a reality. However, VR is only a training tool that must be thoughtfully introduced into a surgical training curriculum for it to successfully improve surgical technical skills. PMID:15650649
Progress in virtual reality simulators for surgical training and certification.
de Visser, Hans; Watson, Marcus O; Salvado, Olivier; Passenger, Joshua D
2011-02-21
There is increasing evidence that educating trainee surgeons by simulation is preferable to traditional operating-room training methods with actual patients. Apart from reducing costs and risks to patients, training by simulation can provide some unique benefits, such as greater control over the training procedure and more easily defined metrics for assessing proficiency. Virtual reality (VR) simulators are now playing an increasing role in surgical training. However, currently available VR simulators lack the fidelity to teach trainees past the novice-to-intermediate skills level. Recent technological developments in other industries using simulation, such as the games and entertainment and aviation industries, suggest that the next generation of VR simulators should be suitable for training, maintenance and certification of advanced surgical skills. To be effective as an advanced surgical training and assessment tool, VR simulation needs to provide adequate and relevant levels of physical realism, case complexity and performance assessment. Proper validation of VR simulators and an increased appreciation of their value by the medical profession are crucial for them to be accepted into surgical training curricula.
Testing the Construct Validity of a Virtual Reality Hip Arthroscopy Simulator.
Khanduja, Vikas; Lawrence, John E; Audenaert, Emmanuel
2017-03-01
To test the construct validity of the hip diagnostics module of a virtual reality hip arthroscopy simulator. Nineteen orthopaedic surgeons performed a simulated arthroscopic examination of a healthy hip joint using a 70° arthroscope in the supine position. Surgeons were categorized as either expert (those who had performed 250 hip arthroscopies or more) or novice (those who had performed fewer than this). Twenty-one specific targets were visualized within the central and peripheral compartments; 9 via the anterior portal, 9 via the anterolateral portal, and 3 via the posterolateral portal. This was immediately followed by a task testing basic probe examination of the joint in which a series of 8 targets were probed via the anterolateral portal. During the tasks, the surgeon's performance was evaluated by the simulator using a set of predefined metrics including task duration, number of soft tissue and bone collisions, and distance travelled by instruments. No repeat attempts at the tasks were permitted. Construct validity was then evaluated by comparing novice and expert group performance metrics over the 2 tasks using the Mann-Whitney test, with a P value of less than .05 considered significant. On the visualization task, the expert group outperformed the novice group on time taken (P = .0003), number of collisions with soft tissue (P = .001), number of collisions with bone (P = .002), and distance travelled by the arthroscope (P = .02). On the probe examination, the 2 groups differed only in the time taken to complete the task (P = .025) with no significant difference in other metrics. Increased experience in hip arthroscopy was reflected by significantly better performance on the virtual reality simulator across 2 tasks, supporting its construct validity. This study validates a virtual reality hip arthroscopy simulator and supports its potential for developing basic arthroscopic skills. Level III. Copyright © 2016 Arthroscopy Association of North America. All rights reserved.
Transferability of laparoscopic skills using the virtual reality simulator.
Yang, Cui; Kalinitschenko, Uljana; Helmert, Jens R; Weitz, Juergen; Reissfelder, Christoph; Mees, Soeren Torge
2018-03-30
Skill transfer represents an important issue in surgical education, and is not well understood. The aim of this randomized study is to assess the transferability of surgical skills between two laparoscopic abdominal procedures using the virtual reality simulator in surgical novices. From September 2016 to July 2017, 44 surgical novices were randomized into two groups and underwent a proficiency-based basic training consisting of five selected simulated laparoscopic tasks. In group 1, participants performed an appendectomy training on the virtual reality simulator until they reached a defined proficiency. They moved on to the tutorial procedural tasks of laparoscopic cholecystectomy. Participants in group 2 started with the tutorial procedural tasks of laparoscopic cholecystectomy directly. Finishing the training, participants of both groups were required to perform a complete cholecystectomy on the simulator. Time, safety and economy parameters were analysed. Significant differences in the demographic characteristics and previous computer games experience between the two groups were not noted. Both groups took similar time to complete the proficiency-based basic training. Participants in group 1 needed significantly less movements (388.6 ± 98.6 vs. 446.4 ± 81.6; P < 0.05) as well as shorter path length (810.2 ± 159.5 vs. 945.5 ± 187.8 cm; P < 0.05) to complete the cholecystectomy compared to group 2. Time and safety parameters did not differ significantly between both groups. The data demonstrate a positive transfer of motor skills between laparoscopic appendectomy and cholecystectomy on the virtual reality simulator; however, the transfer of cognitive skills is limited. Separate training curricula seem to be necessary for each procedure for trainees to practise task-specific cognitive skills effectively. Mentoring could help trainees to get a deeper understanding of the procedures, thereby increasing the chance for the transfer of acquired skills.
Regression Analysis of Mixed Panel Count Data with Dependent Terminal Events
Yu, Guanglei; Zhu, Liang; Li, Yang; Sun, Jianguo; Robison, Leslie L.
2017-01-01
Event history studies are commonly conducted in many fields and a great deal of literature has been established for the analysis of the two types of data commonly arising from these studies: recurrent event data and panel count data. The former arises if all study subjects are followed continuously, while the latter means that each study subject is observed only at discrete time points. In reality, a third type of data, a mixture of the two types of the data above, may occur and furthermore, as with the first two types of the data, there may exist a dependent terminal event, which may preclude the occurrences of recurrent events of interest. This paper discusses regression analysis of mixed recurrent event and panel count data in the presence of a terminal event and an estimating equation-based approach is proposed for estimation of regression parameters of interest. In addition, the asymptotic properties of the proposed estimator are established and a simulation study conducted to assess the finite-sample performance of the proposed method suggests that it works well in practical situations. Finally the methodology is applied to a childhood cancer study that motivated this study. PMID:28098397
Virtual reality enhanced mannequin (VREM) that is well received by resuscitation experts.
Semeraro, Federico; Frisoli, Antonio; Bergamasco, Massimo; Cerchiari, Erga L
2009-04-01
The objective of this study was to test acceptance of, and interest in, a newly developed prototype of virtual reality enhanced mannequin (VREM) on a sample of congress attendees who volunteered to participate in the evaluation session and to respond to a specifically designed questionnaire. A commercial Laerdal HeartSim 4000 mannequin was developed to integrate virtual reality (VR) technologies with specially developed virtual reality software to increase the immersive perception of emergency scenarios. To evaluate the acceptance of a virtual reality enhanced mannequin (VREM), we presented it to a sample of 39 possible users. Each evaluation session involved one trainee and two instructors with a standardized procedure and scenario: the operator was invited by the instructor to wear the data-gloves and the head mounted display and was briefly introduced to the scope of the simulation. The instructor helped the operator familiarize himself with the environment. After the patient's collapse, the operator was asked to check the patient's clinical conditions and start CPR. Finally, the patient started to recover signs of circulation and the evaluation session was concluded. Each participant was then asked to respond to a questionnaire designed to explore the trainee's perception in the areas of user-friendliness, realism, and interaction/immersion. Overall, the evaluation of the system was very positive, as was the feeling of immersion and realism of the environment and simulation. Overall, 84.6% of the participants judged the virtual reality experience as interesting and believed that its development could be very useful for healthcare training. The prototype of the virtual reality enhanced mannequin was well-liked, without interfence by interaction devices, and deserves full technological development and validation in emergency medical training.
Evaluation of a virtual-reality-based simulator using passive haptic feedback for knee arthroscopy.
Fucentese, Sandro F; Rahm, Stefan; Wieser, Karl; Spillmann, Jonas; Harders, Matthias; Koch, Peter P
2015-04-01
The aim of this work is to determine face validity and construct validity of a new virtual-reality-based simulator for diagnostic and therapeutic knee arthroscopy. The study tests a novel arthroscopic simulator based on passive haptics. Sixty-eight participants were grouped into novices, intermediates, and experts. All participants completed two exercises. In order to establish face validity, all participants filled out a questionnaire concerning different aspects of simulator realism, training capacity, and different statements using a seven-point Likert scale (range 1-7). Construct validity was tested by comparing various simulator metric values between novices and experts. Face validity could be established: overall realism was rated with a mean value of 5.5 points. Global training capacity scored a mean value of 5.9. Participants considered the simulator as useful for procedural training of diagnostic and therapeutic arthroscopy. In the foreign body removal exercise, experts were overall significantly faster in the whole procedure (6 min 24 s vs. 8 min 24 s, p < 0.001), took less time to complete the diagnostic tour (2 min 49 s vs. 3 min 32 s, p = 0.027), and had a shorter camera path length (186 vs. 246 cm, p = 0.006). The simulator achieved high scores in terms of realism. It was regarded as a useful training tool, which is also capable of differentiating between varying levels of arthroscopic experience. Nevertheless, further improvements of the simulator especially in the field of therapeutic arthroscopy are desirable. In general, the findings support that virtual-reality-based simulation using passive haptics has the potential to complement conventional training of knee arthroscopy skills. II.
Azarnoush, Hamed; Siar, Samaneh; Sawaya, Robin; Zhrani, Gmaan Al; Winkler-Schwartz, Alexander; Alotaibi, Fahad Eid; Bugdadi, Abdulgadir; Bajunaid, Khalid; Marwa, Ibrahim; Sabbagh, Abdulrahman Jafar; Del Maestro, Rolando F
2017-07-01
OBJECTIVE Virtual reality simulators allow development of novel methods to analyze neurosurgical performance. The concept of a force pyramid is introduced as a Tier 3 metric with the ability to provide visual and spatial analysis of 3D force application by any instrument used during simulated tumor resection. This study was designed to answer 3 questions: 1) Do study groups have distinct force pyramids? 2) Do handedness and ergonomics influence force pyramid structure? 3) Are force pyramids dependent on the visual and haptic characteristics of simulated tumors? METHODS Using a virtual reality simulator, NeuroVR (formerly NeuroTouch), ultrasonic aspirator force application was continually assessed during resection of simulated brain tumors by neurosurgeons, residents, and medical students. The participants performed simulated resections of 18 simulated brain tumors with different visual and haptic characteristics. The raw data, namely, coordinates of the instrument tip as well as contact force values, were collected by the simulator. To provide a visual and qualitative spatial analysis of forces, the authors created a graph, called a force pyramid, representing force sum along the z-coordinate for different xy coordinates of the tool tip. RESULTS Sixteen neurosurgeons, 15 residents, and 84 medical students participated in the study. Neurosurgeon, resident and medical student groups displayed easily distinguishable 3D "force pyramid fingerprints." Neurosurgeons had the lowest force pyramids, indicating application of the lowest forces, followed by resident and medical student groups. Handedness, ergonomics, and visual and haptic tumor characteristics resulted in distinct well-defined 3D force pyramid patterns. CONCLUSIONS Force pyramid fingerprints provide 3D spatial assessment displays of instrument force application during simulated tumor resection. Neurosurgeon force utilization and ergonomic data form a basis for understanding and modulating resident force application and improving patient safety during tumor resection.
Leblanc, Fabien; Senagore, Anthony J; Ellis, Clyde N; Champagne, Bradley J; Augestad, Knut M; Neary, Paul C; Delaney, Conor P
2010-01-01
The aim of this study was to compare a simulator with the human cadaver model for hand-assisted laparoscopic colorectal skills acquisition training. An observational prospective comparative study was conducted to compare the laparoscopic surgery training models. The study took place during the laparoscopic colectomy training course performed at the annual scientific meeting of the American Society of Colon and Rectal Surgeons. Thirty four practicing surgeons performed hand-assisted laparoscopic sigmoid colectomy on human cadavers (n = 7) and on an augmented reality simulator (n = 27). Prior laparoscopic colorectal experience was assessed. Trainers and trainees completed independently objective structured assessment forms. Training models were compared by trainees' technical skills scores, events scores, and satisfaction. Prior laparoscopic experience was similar in both surgeon groups. Generic and specific skills scores were similar on both training models. Generic events scores were significantly better on the cadaver model. The 2 most frequent generic events occurring on the simulator were poor hand-eye coordination and inefficient use of retraction. Specific events were scored better on the simulator and reached the significance limit (p = 0.051) for trainers. The specific events occurring on the cadaver were intestinal perforation and left ureter identification difficulties. Overall satisfaction was better for the cadaver than for the simulator model (p = 0.009). With regard to skills scores, the augmented reality simulator had adequate qualities for the hand-assisted laparoscopic colectomy training. Nevertheless, events scores highlighted weaknesses of the anatomical replication on the simulator. Although improvements likely will be required to incorporate the simulator more routinely into the colorectal training, it may be useful in its current form for more junior trainees or those early on their learning curve. Copyright 2010 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.
Virtual reality and telepresence for military medicine.
Satava, R M
1995-03-01
The profound changes brought about by technology in the past few decades are leading to a total revolution in medicine. The advanced technologies of telepresence and virtual reality are but two of the manifestations emerging from our new information age; now all of medicine can be empowered because of this digital technology. The leading edge is on the digital battlefield, where an entire new concept in military medicine is evolving. Using remote sensors, intelligent systems, telepresence surgery and virtual reality surgical simulations, combat casualty care is prepared for the 21st century.
High correlation between performance on a virtual-reality simulator and real-life cataract surgery.
Thomsen, Ann Sofia Skou; Smith, Phillip; Subhi, Yousif; Cour, Morten la; Tang, Lilian; Saleh, George M; Konge, Lars
2017-05-01
To investigate the correlation in performance of cataract surgery between a virtual-reality simulator and real-life surgery using two objective assessment tools with evidence of validity. Cataract surgeons with varying levels of experience were included in the study. All participants performed and videorecorded three standard cataract surgeries before completing a proficiency-based test on the EyeSi virtual-reality simulator. Standard cataract surgeries were defined as: (1) surgery performed under local anaesthesia, (2) patient age >60 years, and (3) visual acuity >1/60 preoperatively. A motion-tracking score was calculated by multiplying average path length and average number of movements from the three real-life surgical videos of full procedures. The EyeSi test consisted of five abstract and two procedural modules: intracapsular navigation, antitremor training, intracapsular antitremor training, forceps training, bimanual training, capsulorhexis and phaco divide and conquer. Eleven surgeons were enrolled. After a designated warm-up period, the proficiency-based test on the EyeSi simulator was strongly correlated to real-life performance measured by motion-tracking software of cataract surgical videos with a Pearson correlation coefficient of -0.70 (p = 0.017). Performance on the EyeSi simulator is significantly and highly correlated to real-life surgical performance. However, it is recommended that performance assessments are made using multiple data sources. © 2016 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.
ERIC Educational Resources Information Center
Srinivasan, Srilekha; Perez, Lance C.; Palmer, Robert D.; Brooks, David W.; Wilson, Kathleen; Fowler, David
2006-01-01
A systematic study of the implementation of simulation hardware (TIMS) replacing software (MATLAB) was undertaken for advanced undergraduate and early graduate courses in electrical engineering. One outcome of the qualitative component of the study was remarkable: most students interviewed (4/4 and 6/9) perceived the software simulations as…
Simulation and Gaming: Directions, Issues, Ponderables.
ERIC Educational Resources Information Center
Uretsky, Michael
1995-01-01
Discusses the current use of simulation and gaming in a variety of settings. Describes advances in technology that facilitate the use of simulation and gaming, including computer power, computer networks, software, object-oriented programming, video, multimedia, virtual reality, and artificial intelligence. Considers the future use of simulation…
Effect of a mixed reality-based intervention on arm, hand, and finger function on chronic stroke.
Colomer, Carolina; Llorens, Roberto; Noé, Enrique; Alcañiz, Mariano
2016-05-11
Virtual and mixed reality systems have been suggested to promote motor recovery after stroke. Basing on the existing evidence on motor learning, we have developed a portable and low-cost mixed reality tabletop system that transforms a conventional table in a virtual environment for upper limb rehabilitation. The system allows intensive and customized training of a wide range of arm, hand, and finger movements and enables interaction with tangible objects, while providing audiovisual feedback of the participants' performance in gamified tasks. This study evaluates the clinical effectiveness and the acceptance of an experimental intervention with the system in chronic stroke survivors. Thirty individuals with stroke were included in a reversal (A-B-A) study. Phase A consisted of 30 sessions of conventional physical therapy. Phase B consisted of 30 training sessions with the experimental system. Both interventions involved flexion and extension of the elbow, wrist, and fingers, and grasping of different objects. Sessions were 45-min long and were administered three to five days a week. The body structures (Modified Ashworth Scale), functions (Motricity Index, Fugl-Meyer Assessment Scale), activities (Manual Function Test, Wolf Motor Function Test, Box and Blocks Test, Nine Hole Peg Test), and participation (Motor Activity Log) were assessed before and after each phase. Acceptance of the system was also assessed after phase B (System Usability Scale, Intrinsic Motivation Inventory). Significant improvement was detected after the intervention with the system in the activity, both in arm function measured by the Wolf Motor Function Test (p < 0.01) and finger dexterity measured by the Box and Blocks Test (p < 0.01) and the Nine Hole Peg Test (p < 0.01); and participation (p < 0.01), which was maintained to the end of the study. The experimental system was reported as highly usable, enjoyable, and motivating. Our results support the clinical effectiveness of mixed reality interventions that satisfy the motor learning principles for upper limb rehabilitation in chronic stroke survivors. This characteristic, together with the low cost of the system, its portability, and its acceptance could promote the integration of these systems in the clinical practice as an alternative to more expensive systems, such as robotic instruments.
A teleoperation training simulator with visual and kinesthetic force virtual reality
NASA Technical Reports Server (NTRS)
Kim, Won S.; Schenker, Paul
1992-01-01
A force-reflecting teleoperation training simulator with a high-fidelity real-time graphics display has been developed for operator training. A novel feature of this simulator is that it enables the operator to feel contact forces and torques through a force-reflecting controller during the execution of the simulated peg-in-hole task, providing the operator with the feel of visual and kinesthetic force virtual reality. A peg-in-hole task is used in our simulated teleoperation trainer as a generic teleoperation task. A quasi-static analysis of a two-dimensional peg-in-hole task model has been extended to a three-dimensional model analysis to compute contact forces and torques for a virtual realization of kinesthetic force feedback. The simulator allows the user to specify force reflection gains and stiffness (compliance) values of the manipulator hand for both the three translational and the three rotational axes in Cartesian space. Three viewing modes are provided for graphics display: single view, two split views, and stereoscopic view.
Schmitt, Paul J; Agarwal, Nitin; Prestigiacomo, Charles J
2012-01-01
Military explorations of the practical role of simulators have served as a driving force for much of the virtual reality technology that we have today. The evolution of 3-dimensional and virtual environments from the early flight simulators used during World War II to the sophisticated training simulators in the modern military followed a path that virtual surgical and neurosurgical devices have already begun to parallel. By understanding the evolution of military simulators as well as comparing and contrasting that evolution with current and future surgical simulators, it may be possible to expedite the development of appropriate devices and establish their validity as effective training tools. As such, this article presents a historical perspective examining the progression of neurosurgical simulators, the establishment of effective and appropriate curricula for using them, and the contributions that the military has made during the ongoing maturation of this exciting treatment and training modality. Copyright © 2012. Published by Elsevier Inc.
Virtual Reality Job Interview Training in Adults with Autism Spectrum Disorder
ERIC Educational Resources Information Center
Smith, Matthew J.; Ginger, Emily J.; Wright, Katherine; Wright, Michael A.; Taylor, Julie Lounds; Humm, Laura Boteler; Olsen, Dale E.; Bell, Morris D.; Fleming, Michael F.
2014-01-01
The feasibility and efficacy of virtual reality job interview training (VR-JIT) was assessed in a single-blinded randomized controlled trial. Adults with autism spectrum disorder were randomized to VR-JIT (n = 16) or treatment-as-usual (TAU) (n = 10) groups. VR-JIT consisted of simulated job interviews with a virtual character and didactic…
ERIC Educational Resources Information Center
Huang, Hsiu-Mei; Rauch, Ulrich; Liaw, Shu-Sheng
2010-01-01
The use of animation and multimedia for learning is now further extended by the provision of entire Virtual Reality Learning Environments (VRLE). This highlights a shift in Web-based learning from a conventional multimedia to a more immersive, interactive, intuitive and exciting VR learning environment. VRLEs simulate the real world through the…
ERIC Educational Resources Information Center
Sabalic, Maja; Schoener, Jason D.
2017-01-01
Virtual reality-based technologies have been used in dentistry for almost two decades. Dental simulators, planning software and CAD/CAM (computer-aided design/computer-aided manufacturing) systems have significantly developed over the years and changed both dental education and clinical practice. This study aimed to assess the knowledge, attitudes…
ERIC Educational Resources Information Center
Fominykh, Mikhail; Prasolova-Førland, Ekaterina; Stiles, Tore C.; Krogh, Anne Berit; Linde, Mattias
2018-01-01
This paper presents a concept for designing low-cost therapeutic training with biofeedback and virtual reality. We completed the first evaluation of a prototype--a mobile learning application for relaxation training, primarily for adolescents suffering from tension-type headaches. The system delivers visual experience on a head-mounted display. A…
ERIC Educational Resources Information Center
Ausburn, Lynna J.; Ausburn, Floyd B.
2004-01-01
Virtual Reality has been defined in many different ways and now means different things in various contexts. VR can range from simple environments presented on a desktop computer to fully immersive multisensory environments experienced through complex headgear and bodysuits. In all of its manifestations, VR is basically a way of simulating or…
ERIC Educational Resources Information Center
Muhlberger, Andreas; Bulthoff, Heinrich H.; Wiedemann, Georg; Pauli, Paul
2007-01-01
An overall assessment of phobic fear requires not only a verbal self-report of fear but also an assessment of behavioral and physiological responses. Virtual reality can be used to simulate realistic (phobic) situations and therefore should be useful for inducing emotions in a controlled, standardized way. Verbal and physiological fear reactions…
NASA Technical Reports Server (NTRS)
2002-01-01
Ames Research Center granted Reality Capture Technologies (RCT), Inc., a license to further develop NASA's Mars Map software platform. The company incorporated NASA#s innovation into software that uses the Virtual Plant Model (VPM)(TM) to structure, modify, and implement the construction sites of industrial facilities, as well as develop, validate, and train operators on procedures. The VPM orchestrates the exchange of information between engineering, production, and business transaction systems. This enables users to simulate, control, and optimize work processes while increasing the reliability of critical business decisions. Engineers can complete the construction process and test various aspects of it in virtual reality before building the actual structure. With virtual access to and simulation of the construction site, project personnel can manage, access control, and respond to changes on complex constructions more effectively. Engineers can also create operating procedures, training, and documentation. Virtual Plant Model(TM) is a trademark of Reality Capture Technologies, Inc.
Augmented Reality in a Simulated Tower Environment: Effect of Field of View on Aircraft Detection
NASA Technical Reports Server (NTRS)
Ellis, Stephen R.; Adelstein, Bernard D.; Reisman, Ronald J.; Schmidt-Ott, Joelle R.; Gips, Jonathan; Krozel, Jimmy; Cohen, Malcolm (Technical Monitor)
2002-01-01
An optical see-through, augmented reality display was used to study subjects' ability to detect aircraft maneuvering and landing at the Dallas Ft. Worth International airport in an ATC Tower simulation. Subjects monitored the traffic patterns as if from the airport's western control tower. Three binocular fields of view (14 deg, 28 deg and 47 deg) were studied in an independent groups' design to measure the degradation in detection performance associated with the visual field restrictions. In a second experiment the 14 deg and 28 deg fields were presented either with 46% binocular overlap or 100% overlap for separate groups. The near asymptotic results of the first experiment suggest that binocular fields of view much greater than 47% are unlikely to dramatically improve performance; and those of the second experiment suggest that partial binocular overlap is feasible for augmented reality displays such as may be used for ATC tower applications.
ERIC Educational Resources Information Center
Ross, Jennifer Gunberg
2011-01-01
Simulation is a teaching method that closely replicates reality by integrating all three learning domains: cognitive, affective, and psychomotor. Despite the widespread use of simulation in nursing education today, there is a dearth of empirical evidence supporting the use of simulation to teach psychomotor skills. Furthermore, there is no…
Virtual reality robotic telesurgery simulations using MEMICA haptic system
NASA Technical Reports Server (NTRS)
Bar-Cohen, Yoseph; Mavroidis, Constantinos; Bouzit, Mourad; Dolgin, Benjamin; Harm, Deborah L.; Kopchok, George E.; White, Rodney
2001-01-01
The authors conceived a haptic mechanism called MEMICA (Remote Mechanical Mirroring using Controlled stiffness and Actuators) that can enable the design of high dexterity, rapid response, and large workspace haptic system. The development of a novel MEMICA gloves and virtual reality models are being explored to allow simulation of telesurgery and other applications. The MEMICA gloves are being designed to provide intuitive mirroring of the conditions at a virtual site where a robot simulates the presence of a human operator. The key components of MEMICA are miniature electrically controlled stiffness (ECS) elements and electrically controlled force and stiffness (ECFS) actuators that are based on the use of Electro-Rheological Fluids (ERF. In this paper the design of the MEMICA system and initial experimental results are presented.
The Student Experience With Varying Immersion Levels of Virtual Reality Simulation.
Farra, Sharon L; Smith, Sherrill J; Ulrich, Deborah L
With increasing use of virtual reality simulation (VRS) in nursing education and given the vast array of technologies available, a variety of levels of immersion and experiences can be provided to students. This study explored two different levels of immersive VRS capability. Study participants included baccalaureate nursing students from three universities across four campuses. Students were trained in the skill of decontamination using traditional methods or with VRS options of mouse and keyboard or head-mounted display technology. Results of focus group interviews reflect the student experience and satisfaction with two different immersive levels of VRS.
Application of virtual reality technology in clinical medicine
Li, Lan; Yu, Fei; Shi, Dongquan; Shi, Jianping; Tian, Zongjun; Yang, Jiquan; Wang, Xingsong; Jiang, Qing
2017-01-01
The present review discusses the application of virtual reality (VR) technology in clinical medicine, especially in surgical training, pain management and therapeutic treatment of mental illness. We introduce the common types of VR simulators and their operational principles in aforementioned fields. The clinical effects are also discussed. In almost every study that dealt with VR simulators, researchers have arrived at the same conclusion that both doctors and patients could benefit from this novel technology. Moreover, advantages and disadvantages of the utilization of VR technology in each field were discussed, and the future research directions were proposed. PMID:28979666
Application of virtual reality technology in clinical medicine.
Li, Lan; Yu, Fei; Shi, Dongquan; Shi, Jianping; Tian, Zongjun; Yang, Jiquan; Wang, Xingsong; Jiang, Qing
2017-01-01
The present review discusses the application of virtual reality (VR) technology in clinical medicine, especially in surgical training, pain management and therapeutic treatment of mental illness. We introduce the common types of VR simulators and their operational principles in aforementioned fields. The clinical effects are also discussed. In almost every study that dealt with VR simulators, researchers have arrived at the same conclusion that both doctors and patients could benefit from this novel technology. Moreover, advantages and disadvantages of the utilization of VR technology in each field were discussed, and the future research directions were proposed.
Virtual reality and simulation: training the future emergency physician.
Reznek, Martin; Harter, Phillip; Krummel, Thomas
2002-01-01
The traditional system of clinical education in emergency medicine relies on practicing diagnostic, therapeutic, and procedural skills on live patients. The ethical, financial, and practical weaknesses of this system are well recognized, but the alternatives that have been explored to date have shown even greater flaws. However, ongoing progress in the area of virtual reality and computer-enhanced simulation is now providing educational applications that show tremendous promise in overcoming most of the deficiencies associated with live-patient training. It will be important for academic emergency physicians to become more involved with this technology to ensure that our educational system benefits optimally.
Huang, Cynthia Y; Thomas, Jonathan B; Alismail, Abdullah; Cohen, Avi; Almutairi, Waleed; Daher, Noha S; Terry, Michael H; Tan, Laren D
2018-01-01
The aim of this study was to investigate the feasibility of using augmented reality (AR) glasses in central line simulation by novice operators and compare its efficacy to standard central line simulation/teaching. This was a prospective randomized controlled study enrolling 32 novice operators. Subjects were randomized on a 1:1 basis to either simulation using the augmented virtual reality glasses or simulation using conventional instruction. The study was conducted in tertiary-care urban teaching hospital. A total of 32 adult novice central line operators with no visual or auditory impairments were enrolled. Medical doctors, respiratory therapists, and sleep technicians were recruited from the medical field. The mean time for AR placement in the AR group was 71±43 s, and the time to internal jugular (IJ) cannulation was 316±112 s. There was no significant difference in median (minimum, maximum) time (seconds) to IJ cannulation for those who were in the AR group and those who were not (339 [130, 550] vs 287 [35, 475], p =0.09), respectively. There was also no significant difference between the two groups in median total procedure time (524 [329, 792] vs 469 [198, 781], p =0.29), respectively. There was a significant difference in the adherence level between the two groups favoring the AR group ( p =0.003). AR simulation of central venous catheters in manikins is feasible and efficacious in novice operators as an educational tool. Future studies are recommended in this area as it is a promising area of medical education.
The benefits of virtual reality simulator training for laparoscopic surgery.
Hart, Roger; Karthigasu, Krishnan
2007-08-01
Virtual reality is a computer-generated system that provides a representation of an environment. This review will analyse the literature with regard to any benefit to be derived from training with virtual reality equipment and to describe the current equipment available. Virtual reality systems are not currently realistic of the live operating environment because they lack tactile sensation, and do not represent a complete operation. The literature suggests that virtual reality training is a valuable learning tool for gynaecologists in training, particularly those in the early stages of their careers. Furthermore, it may be of benefit for the ongoing audit of surgical skills and for the early identification of a surgeon's deficiencies before operative incidents occur. It is only a matter of time before realistic virtual reality models of most complete gynaecological operations are available, with improved haptics as a result of improved computer technology. It is inevitable that in the modern climate of litigation virtual reality training will become an essential part of clinical training, as evidence for its effectiveness as a training tool exists, and in many countries training by operating on live animals is not possible.
Machine learning-based augmented reality for improved surgical scene understanding.
Pauly, Olivier; Diotte, Benoit; Fallavollita, Pascal; Weidert, Simon; Euler, Ekkehard; Navab, Nassir
2015-04-01
In orthopedic and trauma surgery, AR technology can support surgeons in the challenging task of understanding the spatial relationships between the anatomy, the implants and their tools. In this context, we propose a novel augmented visualization of the surgical scene that mixes intelligently the different sources of information provided by a mobile C-arm combined with a Kinect RGB-Depth sensor. Therefore, we introduce a learning-based paradigm that aims at (1) identifying the relevant objects or anatomy in both Kinect and X-ray data, and (2) creating an object-specific pixel-wise alpha map that permits relevance-based fusion of the video and the X-ray images within one single view. In 12 simulated surgeries, we show very promising results aiming at providing for surgeons a better surgical scene understanding as well as an improved depth perception. Copyright © 2014 Elsevier Ltd. All rights reserved.
IntellWheels: modular development platform for intelligent wheelchairs.
Braga, Rodrigo Antonio Marques; Petry, Marcelo; Reis, Luis Paulo; Moreira, António Paulo
2011-01-01
Intelligent wheelchairs (IWs) can become an important solution to the challenge of assisting individuals who have disabilities and are thus unable to perform their daily activities using classic powered wheelchairs. This article describes the concept and design of IntellWheels, a modular platform to facilitate the development of IWs through a multiagent system paradigm. In fact, modularity is achieved not only in the software perspective, but also through a generic hardware framework that was designed to fit, in a straightforward manner, almost any commercial powered wheelchair. Experimental results demonstrate the successful integration of all modules in the platform, providing safe motion to the IW. Furthermore, the results achieved with a prototype running in autonomous mode in simulated and mixed-reality environments also demonstrate the potential of our approach. Although some future research is still necessary to fully accomplish our objectives, preliminary tests have shown that IntellWheels will effectively reduce users' limitations, offering them a much more independent life.
Nakajima, Sawako; Ino, Shuichi; Ifukube, Tohru
2007-01-01
Mixed Reality (MR) technologies have recently been explored in many areas of Human-Machine Interface (HMI) such as medicine, manufacturing, entertainment and education. However MR sickness, a kind of motion sickness is caused by sensory conflicts between the real world and virtual world. The purpose of this paper is to find out a new evaluation method of motion and MR sickness. This paper investigates a relationship between the whole-body vibration related to MR technologies and the motion aftereffect (MAE) phenomenon in the human visual system. This MR environment is modeled after advanced driver assistance systems in near-future vehicles. The seated subjects in the MR simulator were shaken in the pitch direction ranging from 0.1 to 2.0 Hz. Results show that MAE is useful for evaluation of MR sickness incidence. In addition, a method to reduce the MR sickness by auditory stimulation is proposed.
NASA Astrophysics Data System (ADS)
Chao, Jie; Chiu, Jennifer L.; DeJaegher, Crystal J.; Pan, Edward A.
2016-02-01
Deep learning of science involves integration of existing knowledge and normative science concepts. Past research demonstrates that combining physical and virtual labs sequentially or side by side can take advantage of the unique affordances each provides for helping students learn science concepts. However, providing simultaneously connected physical and virtual experiences has the potential to promote connections among ideas. This paper explores the effect of augmenting a virtual lab with physical controls on high school chemistry students' understanding of gas laws. We compared students using the augmented virtual lab to students using a similar sensor-based physical lab with teacher-led discussions. Results demonstrate that students in the augmented virtual lab condition made significant gains from pretest and posttest and outperformed traditional students on some but not all concepts. Results provide insight into incorporating mixed-reality technologies into authentic classroom settings.
Effect of ski simulator training on kinematic and muscle activation of the lower extremities
Moon, Jeheon; Koo, Dohoon; Kim, Kitae; Shin, Insik; Kim, Hyeyoung; Kim, Jinhae
2015-01-01
[Purpose] This study aimed to verify the effectiveness of an augmented reality-based ski simulator through analyzing the changes in movement patterns as well as the engagement of major muscles of the lower body. [Subjects] Seven subjects participated in the study. All were national team-level athletes studying at “K” Sports University in Korea who exhibited comparable performance levels and had no record of injuries in the preceding 6 months (Age 23.4 ± 3.8 years; Height 172.6 ± 12.1 cm; Weight 72.3 ± 16.2 kg; Experience 12.3 ± 4.8 years). [Methods] A reality-based ski simulator developed by a Korean manufacturer was used for the study. Three digital video cameras and a wireless electromyography system were used to perform 3-dimensional motion analysis and measure muscle activation level. [Results] Left hip angulation was found to increase as the frequency of the turns increased. Electromyography data revealed that the activation level of the quadriceps group’s extension muscles and the biceps femoris group’s flexing muscles had a crossing pattern. [Conclusion] Sustained training using an augmented reality-based ski simulator resulted in movements that extended the lower body joints, which is thought to contribute to increasing muscle fatigue. PMID:26357449
Training Surgical Residents With a Haptic Robotic Central Venous Catheterization Simulator.
Pepley, David F; Gordon, Adam B; Yovanoff, Mary A; Mirkin, Katelin A; Miller, Scarlett R; Han, David C; Moore, Jason Z
Ultrasound guided central venous catheterization (CVC) is a common surgical procedure with complication rates ranging from 5 to 21 percent. Training is typically performed using manikins that do not simulate anatomical variations such as obesity and abnormal vessel positioning. The goal of this study was to develop and validate the effectiveness of a new virtual reality and force haptic based simulation platform for CVC of the right internal jugular vein. A CVC simulation platform was developed using a haptic robotic arm, 3D position tracker, and computer visualization. The haptic robotic arm simulated needle insertion force that was based on cadaver experiments. The 3D position tracker was used as a mock ultrasound device with realistic visualization on a computer screen. Upon completion of a practice simulation, performance feedback is given to the user through a graphical user interface including scoring factors based on good CVC practice. The effectiveness of the system was evaluated by training 13 first year surgical residents using the virtual reality haptic based training system over a 3 month period. The participants' performance increased from 52% to 96% on the baseline training scenario, approaching the average score of an expert surgeon: 98%. This also resulted in improvement in positive CVC practices including a 61% decrease between final needle tip position and vein center, a decrease in mean insertion attempts from 1.92 to 1.23, and a 12% increase in time spent aspirating the syringe throughout the procedure. A virtual reality haptic robotic simulator for CVC was successfully developed. Surgical residents training on the simulation improved to near expert levels after three robotic training sessions. This suggests that this system could act as an effective training device for CVC. Copyright © 2017 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.
White, Ian; Buchberg, Brian; Tsikitis, V Liana; Herzig, Daniel O; Vetto, John T; Lu, Kim C
2014-06-01
Colorectal cancer is the second most common cause of death in the USA. The need for screening colonoscopies, and thus adequately trained endoscopists, particularly in rural areas, is on the rise. Recent increases in required endoscopic cases for surgical resident graduation by the Surgery Residency Review Committee (RRC) further emphasize the need for more effective endoscopic training during residency to determine if a virtual reality colonoscopy simulator enhances surgical resident endoscopic education by detecting improvement in colonoscopy skills before and after 6 weeks of formal clinical endoscopic training. We conducted a retrospective review of prospectively collected surgery resident data on an endoscopy simulator. Residents performed four different clinical scenarios on the endoscopic simulator before and after a 6-week endoscopic training course. Data were collected over a 5-year period from 94 different residents performing a total of 795 colonoscopic simulation scenarios. Main outcome measures included time to cecal intubation, "red out" time, and severity of simulated patient discomfort (mild, moderate, severe, extreme) during colonoscopy scenarios. Average time to intubation of the cecum was 6.8 min for those residents who had not undergone endoscopic training versus 4.4 min for those who had undergone endoscopic training (p < 0.001). Residents who could be compared against themselves (pre vs. post-training), cecal intubation times decreased from 7.1 to 4.3 min (p < 0.001). Post-endoscopy rotation residents caused less severe discomfort during simulated colonoscopy than pre-endoscopy rotation residents (4 vs. 10%; p = 0.004). Virtual reality endoscopic simulation is an effective tool for both augmenting surgical resident endoscopy cancer education and measuring improvement in resident performance after formal clinical endoscopic training.
Lack of transfer of skills after virtual reality simulator training with haptic feedback.
Våpenstad, Cecilie; Hofstad, Erlend Fagertun; Bø, Lars Eirik; Kuhry, Esther; Johnsen, Gjermund; Mårvik, Ronald; Langø, Thomas; Hernes, Toril Nagelhus
2017-12-01
Virtual reality (VR) simulators enrich surgical training and offer training possibilities outside of the operating room (OR). In this study, we created a criterion-based training program on a VR simulator with haptic feedback and tested it by comparing the performances of a simulator group against a control group. Medical students with no experience in laparoscopy were randomly assigned to a simulator group or a control group. In the simulator group, the candidates trained until they reached predefined criteria on the LapSim ® VR simulator (Surgical Science AB, Göteborg, Sweden) with haptic feedback (Xitact TM IHP, Mentice AB, Göteborg, Sweden). All candidates performed a cholecystectomy on a porcine organ model in a box trainer (the clinical setting). The performances were video rated by two surgeons blinded to subject training status. In total, 30 students performed the cholecystectomy and had their videos rated (N = 16 simulator group, N = 14 control group). The control group achieved better video rating scores than the simulator group (p < .05). The criterion-based training program did not transfer skills to the clinical setting. Poor mechanical performance of the simulated haptic feedback is believed to have resulted in a negative training effect.
Rosenthal, Rachel; Hamel, Christian; Oertli, Daniel; Demartines, Nicolas; Gantert, Walter A
2010-08-01
The aim of the present study was to investigate whether trainees' performance on a virtual reality angled laparoscope navigation task correlates with scores obtained on a validated conventional test of spatial ability. 56 participants of a surgery workshop performed an angled laparoscope navigation task on the Xitact LS 500 virtual reality Simulator. Performance parameters were correlated with the score of a validated paper-and-pencil test of spatial ability. Performance at the conventional spatial ability test significantly correlated with performance at the virtual reality task for overall task score (p < 0.001), task completion time (p < 0.001) and economy of movement (p = 0.035), not for endoscope travel speed (p = 0.947). In conclusion, trainees' performance in a standardized virtual reality camera navigation task correlates with their innate spatial ability. This VR session holds potential to serve as an assessment tool for trainees.
Augmented reality (AR) and virtual reality (VR) applied in dentistry.
Huang, Ta-Ko; Yang, Chi-Hsun; Hsieh, Yu-Hsin; Wang, Jen-Chyan; Hung, Chun-Cheng
2018-04-01
The OSCE is a reliable evaluation method to estimate the preclinical examination of dental students. The most ideal assessment for OSCE is used the augmented reality simulator to evaluate. This literature review investigated a recently developed in virtual reality (VR) and augmented reality (AR) starting of the dental history to the progress of the dental skill. As result of the lacking of technology, it needs to depend on other device increasing the success rate and decreasing the risk of the surgery. The development of tracking unit changed the surgical and educational way. Clinical surgery is based on mature education. VR and AR simultaneously affected the skill of the training lesson and navigation system. Widely, the VR and AR not only applied in the dental training lesson and surgery, but also improved all field in our life. Copyright © 2018. Published by Elsevier Taiwan.
[Real patients in virtual reality: the link between phantom heads and clinical dentistry].
Serrano, C M; Wesselink, P R; Vervoorn, J M
2018-05-01
Preclinical training in phantom heads has until now been considered the 'gold standard' for restorative dental education, but the transition from preclinic to the treatment of real patients has remained a challenge. With the introduction of the latest generation of virtual reality simulators, students and dental practitioners can make digital impressions of their patients in virtual reality models and practice procedures in virtual reality before clinically performing them. In this way, clinical decisions can be investigated and practiced prior to actual treatment, enhancing the safety of the treatment and the self-confidence to perform it. With the 3M™ True Definition Scanner and the Moog Simodont Dental Trainer, 3 masters students and a general dental practitioner practiced their procedures in virtual reality prior to performing them on real patients. They were very satisfied with this preparation and the result of the treatment.
Andersen, Steven Arild Wuyts; Mikkelsen, Peter Trier; Konge, Lars; Cayé-Thomasen, Per; Sørensen, Mads Sølvsten
2016-01-01
Cognitive overload can inhibit learning, and cognitive load theory-based instructional design principles can be used to optimize learning situations. This study aims to investigate the effect of implementing cognitive load theory-based design principles in virtual reality simulation training of mastoidectomy. Eighteen novice medical students received 1 h of self-directed virtual reality simulation training of the mastoidectomy procedure randomized for standard instructions (control) or cognitive load theory-based instructions with a worked example followed by a problem completion exercise (intervention). Participants then completed two post-training virtual procedures for assessment and comparison. Cognitive load during the post-training procedures was estimated by reaction time testing on an integrated secondary task. Final-product analysis by two blinded expert raters was used to assess the virtual mastoidectomy performances. Participants in the intervention group had a significantly increased cognitive load during the post-training procedures compared with the control group (52 vs. 41 %, p = 0.02). This was also reflected in the final-product performance: the intervention group had a significantly lower final-product score than the control group (13.0 vs. 15.4, p < 0.005). Initial instruction using worked examples followed by a problem completion exercise did not reduce the cognitive load or improve the performance of the following procedures in novices. Increased cognitive load when part tasks needed to be integrated in the post-training procedures could be a possible explanation for this. Other instructional designs and methods are needed to lower the cognitive load and improve the performance in virtual reality surgical simulation training of novices.
Virtual reality simulation for the optimization of endovascular procedures: current perspectives.
Rudarakanchana, Nung; Van Herzeele, Isabelle; Desender, Liesbeth; Cheshire, Nicholas J W
2015-01-01
Endovascular technologies are rapidly evolving, often requiring coordination and cooperation between clinicians and technicians from diverse specialties. These multidisciplinary interactions lead to challenges that are reflected in the high rate of errors occurring during endovascular procedures. Endovascular virtual reality (VR) simulation has evolved from simple benchtop devices to full physic simulators with advanced haptics and dynamic imaging and physiological controls. The latest developments in this field include the use of fully immersive simulated hybrid angiosuites to train whole endovascular teams in crisis resource management and novel technologies that enable practitioners to build VR simulations based on patient-specific anatomy. As our understanding of the skills, both technical and nontechnical, required for optimal endovascular performance improves, the requisite tools for objective assessment of these skills are being developed and will further enable the use of VR simulation in the training and assessment of endovascular interventionalists and their entire teams. Simulation training that allows deliberate practice without danger to patients may be key to bridging the gap between new endovascular technology and improved patient outcomes.
ERIC Educational Resources Information Center
Trelease, Robert B.; Nieder, Gary L.
2013-01-01
Web deployable anatomical simulations or "virtual reality learning objects" can easily be produced with QuickTime VR software, but their use for online and mobile learning is being limited by the declining support for web browser plug-ins for personal computers and unavailability on popular mobile devices like Apple iPad and Android…
State-of-the-Art of Virtual Reality Technologies for Children on the Autism Spectrum
ERIC Educational Resources Information Center
Parsons, Sarah; Cobb, Sue
2011-01-01
In the past decade there has been a rapid advance in the use of virtual reality (VR) technologies for leisure, training and education. VR is argued to offer particular benefits for children on the autism spectrum, chiefly because it can offer simulations of authentic real-world situations in a carefully controlled and safe environment. Given the…
ERIC Educational Resources Information Center
Ke, Fengfeng; Lee, Sungwoong
2016-01-01
This exploratory case study examined the process and potential impact of collaborative architectural design and construction in an OpenSimulator-based virtual reality (VR) on the social skills development of children with high-functioning autism (HFA). Two children with a formal medical diagnosis of HFA and one typically developing peer, aged…
ERIC Educational Resources Information Center
Hsiao, Hsien-Sheng; Chang, Cheng-Sian; Lin, Chien-Yu; Wang, Yau-Zng
2016-01-01
This study focused on how to enhance the interactivity and usefulness of augmented reality (AR) by integrating manipulative interactive tools with a real-world environment. A manipulative AR (MAR) system, which included 3D interactive models and manipulative aids, was designed and developed to teach the unit "Understanding Weather" in a…
Human Activity Modeling and Simulation with High Biofidelity
2013-01-01
Human activity Modeling and Simulation (M&S) plays an important role in simulation-based training and Virtual Reality (VR). However, human activity M...kinematics and motion mapping/creation; and (e) creation and replication of human activity in 3-D space with true shape and motion. A brief review is
A qualitative and quantitative assessment for a bone marrow harvest simulator.
Machado, Liliane S; Moraes, Ronei M
2009-01-01
Several approaches to perform assessment in training simulators based on virtual reality have been proposed. There are two kinds of assessment methods: offline and online. The main requirements related to online training assessment methodologies applied to virtual reality systems are the low computational complexity and the high accuracy. In the literature it can be found several approaches for general cases which can satisfy such requirements. An inconvenient about those approaches is related to an unsatisfactory solution for specific cases, as in some medical procedures, where there are quantitative and qualitative information available to perform the assessment. In this paper, we present an approach to online training assessment based on a Modified Naive Bayes which can manipulate qualitative and quantitative variables simultaneously. A special medical case was simulated in a bone marrow harvest simulator. The results obtained were satisfactory and evidenced the applicability of the method.
NASA Astrophysics Data System (ADS)
Chittaro, Luca; Zangrando, Nicola
Although virtual reality (VR) is a powerful simulation tool that can allow users to experience the effects of their actions in vivid and memorable ways, explorations of VR as a persuasive technology are rare. In this paper, we focus on different ways of providing negative feedback for persuasive purposes through simulated experiences in VR. The persuasive goal we consider concerns awareness of personal fire safety issues and the experiment we describe focuses on attitudes towards smoke in evacuating buildings. We test two techniques: the first technique simulates the damaging effects of smoke on the user through a visualization that should not evoke strong emotions, while the second is aimed at partially reproducing the anxiety of an emergency situation. The results of the study show that the second technique is able to increase user's anxiety as well as producing better results in attitude change.
Evaluation of robotic cardiac surgery simulation training: A randomized controlled trial.
Valdis, Matthew; Chu, Michael W A; Schlachta, Christopher; Kiaii, Bob
2016-06-01
To compare the currently available simulation training modalities used to teach robotic surgery. Forty surgical trainees completed a standardized robotic 10-cm dissection of the internal thoracic artery and placed 3 sutures of a mitral valve annuloplasty in porcine models and were then randomized to a wet lab, a dry lab, a virtual reality lab, or a control group that received no additional training. All groups trained to a level of proficiency determined by 2 expert robotic cardiac surgeons. All assessments were evaluated using the Global Evaluative Assessment of Robotic Skills in a blinded fashion. Wet lab trainees showed the greatest improvement in time-based scoring and the objective scoring tool compared with the experts (mean, 24.9 ± 1.7 vs 24.9 ± 2.6; P = .704). The virtual reality lab improved their scores and met the level of proficiency set by our experts for all primary outcomes (mean, 24.9 ± 1.7 vs 22.8 ± 3.7; P = .103). Only the control group trainees were not able to meet the expert level of proficiency for both time-based scores and the objective scoring tool (mean, 24.9 ± 1.7 vs 11.0 ± 4.5; P < .001). The average duration of training was shortest for the dry lab and longest for the virtual reality simulation (1.6 hours vs 9.3 hours; P < .001). We have completed the first randomized controlled trial to objectively compare the different training modalities of robotic surgery. Our data demonstrate the significant benefits of wet lab and virtual reality robotic simulation training and highlight key differences in current training methods. This study can help guide training programs in investing resources in cost-effective, high-yield simulation exercises. Copyright © 2016 The American Association for Thoracic Surgery. All rights reserved.
Virtual reality laparoscopic simulator for assessment in gynaecology.
Gor, Mounna; McCloy, Rory; Stone, Robert; Smith, Anthony
2003-02-01
A validated virtual reality laparoscopic simulator minimally invasive surgical trainer (MIST) 2 was used to assess the psychomotor skills of 21 gynaecologists (2 consultants, 8 registrars and 11 senior house officers). Nine gynaecologists failed to complete the VR tasks at the first attempt and were excluded for sequential evaluation. Each of the remaining 12 gynaecologists were tested on MIST 2 on four occasions within four weeks. The MIST 2 simulator provided quantitative data on time to complete tasks, errors, economy of movement and economy of diathermy use--for both right and left hand performance. The results show a significant early learning curve for the majority of tasks which plateaued by the third session. This suggests a high quality surgeon-computer interface. MIST 2 provides objective assessment of laparoscopic skills in gynaecologists.
Virtual reality simulation for construction safety promotion.
Zhao, Dong; Lucas, Jason
2015-01-01
Safety is a critical issue for the construction industry. Literature argues that human error contributes to more than half of occupational incidents and could be directly impacted by effective training programs. This paper reviews the current safety training status in the US construction industry. Results from the review evidence the gap between the status and industry expectation on safety. To narrow this gap, this paper demonstrates the development and utilisation of a training program that is based on virtual reality (VR) simulation. The VR-based safety training program can offer a safe working environment where users can effectively rehearse tasks with electrical hazards and ultimately promote their abilities for electrical hazard cognition and intervention. Its visualisation and simulation can also remove the training barriers caused by electricity's features of invisibility and dangerousness.
Mentally simulated movements in virtual reality: does Fitts's law hold in motor imagery?
Decety, J; Jeannerod, M
1995-12-14
This study was designed to investigate mentally simulated actions in a virtual reality environment. Naive human subjects (n = 15) were instructed to imagine themselves walking in a three-dimensional virtual environment toward gates of different apparent widths placed at three different apparent distances. Each subject performed nine blocks of six trials in a randomised order. The response time (reaction time and mental walking time) was measured as the duration between an acoustic go signal and a motor signal produced by the subject. There was a combined effect on response time of both gate width and distance. Response time increased for decreasing apparent gate widths when the gate was placed at different distances. These results support the notion that mentally simulated actions are governed by central motor rules.
STS-133 crew during MSS/EVAA TEAM training in Virtual Reality Lab
2010-10-01
JSC2010-E-170885 (1 Oct. 2010) --- NASA astronauts Alvin Drew (left) and Tim Kopra, both STS-133 mission specialists, use virtual reality hardware in the Space Vehicle Mock-up Facility at NASA's Johnson Space Center to rehearse some of their duties on the upcoming mission to the International Space Station. This type of virtual reality training allows the astronauts to wear a helmet and special gloves while looking at computer displays simulating actual movements around the various locations on the station hardware with which they will be working. Photo credit: NASA or National Aeronautics and Space Administration
STS-133 crew during MSS/EVAA TEAM training in Virtual Reality Lab
2010-10-01
JSC2010-E-170892 (1 Oct. 2010) --- NASA astronaut Alvin Drew, STS-133 mission specialist, uses virtual reality hardware in the Space Vehicle Mock-up Facility at NASA's Johnson Space Center to rehearse some of his duties on the upcoming mission to the International Space Station. This type of virtual reality training allows the astronauts to wear a helmet and special gloves while looking at computer displays simulating actual movements around the various locations on the station hardware with which they will be working. Photo credit: NASA or National Aeronautics and Space Administration
STS-133 crew during MSS/EVAA TEAM training in Virtual Reality Lab
2010-10-01
JSC2010-E-170871 (1 Oct. 2010) --- NASA astronaut Tim Kopra, STS-133 mission specialist, uses virtual reality hardware in the Space Vehicle Mock-up Facility at NASA's Johnson Space Center to rehearse some of his duties on the upcoming mission to the International Space Station. This type of virtual reality training allows the astronauts to wear a helmet and special gloves while looking at computer displays simulating actual movements around the various locations on the station hardware with which they will be working. Crew trainer David Homan assisted Kopra. Photo credit: NASA or National Aeronautics and Space Administration
STS-133 crew during MSS/EVAA TEAM training in Virtual Reality Lab
2010-10-01
JSC2010-E-170897 (1 Oct. 2010) --- NASA astronaut Tim Kopra, STS-133 mission specialist, uses virtual reality hardware in the Space Vehicle Mock-up Facility at NASA's Johnson Space Center to rehearse some of his duties on the upcoming mission to the International Space Station. This type of virtual reality training allows the astronauts to wear a helmet and special gloves while looking at computer displays simulating actual movements around the various locations on the station hardware with which they will be working. Photo credit: NASA or National Aeronautics and Space Administration
STS-133 crew during MSS/EVAA TEAM training in Virtual Reality Lab
2010-10-01
JSC2010-E-170873 (1 Oct. 2010) --- NASA astronaut Tim Kopra, STS-133 mission specialist, uses virtual reality hardware in the Space Vehicle Mock-up Facility at NASA's Johnson Space Center to rehearse some of his duties on the upcoming mission to the International Space Station. This type of virtual reality training allows the astronauts to wear a helmet and special gloves while looking at computer displays simulating actual movements around the various locations on the station hardware with which they will be working. Crew trainer David Homan assisted Kopra. Photo credit: NASA or National Aeronautics and Space Administration
STS-134 crew in Virtual Reality Lab during their MSS/EVAA SUPT2 Team training
2010-08-27
JSC2010-E-121053 (27 Aug. 2010) --- NASA astronaut Greg Chamitoff, STS-134 mission specialist, uses virtual reality hardware in the Space Vehicle Mock-up Facility at NASA's Johnson Space Center to rehearse some of his duties on the upcoming mission to the International Space Station. This type of virtual reality training allows the astronauts to wear a helmet and special gloves while looking at computer displays simulating actual movements around the various locations on the station hardware with which they will be working. Photo credit: NASA or National Aeronautics and Space Administration
Integration of laparoscopic virtual-reality simulation into gynaecology training.
Burden, C; Oestergaard, J; Larsen, C R
2011-11-01
Surgery carries the risk of serious harm, as well as benefit, to patients. For healthcare organisations, theatre time is an expensive commodity and litigation costs for surgical specialities are very high. Advanced laparoscopic surgery, now widely used in gynaecology for improved outcomes and reduced length of stay, involves longer operation times and a higher rate of complications for surgeons in training. Virtual-reality (VR) simulation is a relatively new training method that has the potential to promote surgical skill development before advancing to surgery on patients themselves. VR simulators have now been on the market for more than 10 years and, yet, few countries in the world have fully integrated VR simulation training into their gynaecology surgical training programmes. In this review, we aim to summarise the VR simulators currently available together with evidence of their effectiveness in gynaecology, to understand their limitations and to discuss their incorporation into national training curricula. © 2011 The Authors BJOG An International Journal of Obstetrics and Gynaecology © 2011 RCOG.
Villard, Caroline; Soler, Luc; Gangi, Afshin
2005-08-01
For radiofrequency ablation (RFA) of liver tumors, evaluation of vascular architecture, post-RFA necrosis prediction, and the choice of a suitable needle placement strategy using conventional radiological techniques remain difficult. In an attempt to enhance the safety of RFA, a 3D simulator, treatment planning, and training tool, that simulates the insertion of the needle, the necrosis of the treated area, and proposes an optimal needle placement, has been developed. The 3D scenes are automatically reconstructed from enhanced spiral CT scans. The simulator takes into account the cooling effect of local vessels greater than 3 mm in diameter, making necrosis shapes more realistic. Optimal needle positioning can be automatically generated by the software to produce complete destruction of the tumor, with maximum respect of the healthy liver and of all major structures to avoid. We also studied how the use of virtual reality and haptic devices are valuable to make simulation and training realistic and effective.
A 3D virtual reality simulator for training of minimally invasive surgery.
Mi, Shao-Hua; Hou, Zeng-Gunag; Yang, Fan; Xie, Xiao-Liang; Bian, Gui-Bin
2014-01-01
For the last decade, remarkable progress has been made in the field of cardiovascular disease treatment. However, these complex medical procedures require a combination of rich experience and technical skills. In this paper, a 3D virtual reality simulator for core skills training in minimally invasive surgery is presented. The system can generate realistic 3D vascular models segmented from patient datasets, including a beating heart, and provide a real-time computation of force and force feedback module for surgical simulation. Instruments, such as a catheter or guide wire, are represented by a multi-body mass-spring model. In addition, a realistic user interface with multiple windows and real-time 3D views are developed. Moreover, the simulator is also provided with a human-machine interaction module that gives doctors the sense of touch during the surgery training, enables them to control the motion of a virtual catheter/guide wire inside a complex vascular model. Experimental results show that the simulator is suitable for minimally invasive surgery training.
Dwisaptarini, A P; Suebnukarn, S; Rhienmora, P; Haddawy, P; Koontongkaew, S
This work presents the multilayered caries model with a visuo-tactile virtual reality simulator and a randomized controlled trial protocol to determine the effectiveness of the simulator in training for minimally invasive caries removal. A three-dimensional, multilayered caries model was reconstructed from 10 micro-computed tomography (CT) images of deeply carious extracted human teeth before and after caries removal. The full grey scale 0-255 yielded a median grey scale value of 0-9, 10-18, 19-25, 26-52, and 53-80 regarding dental pulp, infected carious dentin, affected carious dentin, normal dentin, and normal enamel, respectively. The simulator was connected to two haptic devices for a handpiece and mouth mirror. The visuo-tactile feedback during the operation varied depending on the grey scale. Sixth-year dental students underwent a pretraining assessment of caries removal on extracted teeth. The students were then randomly assigned to train on either the simulator (n=16) or conventional extracted teeth (n=16) for 3 days, after which the assessment was repeated. The posttraining performance of caries removal improved compared with pretraining in both groups (Wilcoxon, p<0.05). The equivalence test for proportional differences (two 1-sided t-tests) with a 0.2 margin confirmed that the participants in both groups had identical posttraining performance scores (95% CI=0.92, 1; p=0.00). In conclusion, training on the micro-CT multilayered caries model with the visuo-tactile virtual reality simulator and conventional extracted tooth had equivalent effects on improving performance of minimally invasive caries removal.
Huber, Tobias; Paschold, Markus; Hansen, Christian; Wunderling, Tom; Lang, Hauke; Kneist, Werner
2017-11-01
Virtual reality (VR) and head mount displays (HMDs) have been advanced for multimedia and information technologies but have scarcely been used in surgical training. Motion sickness and individual psychological changes have been associated with VR. The goal was to observe first experiences and performance scores using a new combined highly immersive virtual reality (IVR) laparoscopy setup. During the study, 10 members of the surgical department performed three tasks (fine dissection, peg transfer, and cholecystectomy) on a VR simulator. We then combined a VR HMD with the VR laparoscopic simulator and displayed the simulation on a 360° video of a laparoscopic operation to create an IVR laparoscopic simulation. The tasks were then repeated. Validated questionnaires on immersion and motion sickness were used for the study. Participants' times for fine dissection were significantly longer during the IVR session (regular: 86.51 s [62.57 s; 119.62 s] vs. IVR: 112.35 s [82.08 s; 179.40 s]; p = 0.022). The cholecystectomy task had higher error rates during IVR. Motion sickness did not occur at any time for any participant. Participants experienced a high level of exhilaration, rarely thought about others in the room, and had a high impression of presence in the generated IVR world. This is the first clinical and technical feasibility study using the full IVR laparoscopy setup combined with the latest laparoscopic simulator in a 360° surrounding. Participants were exhilarated by the high level of immersion. The setup enables a completely new generation of surgical training.
Simulating video-assisted thoracoscopic lobectomy: a virtual reality cognitive task simulation.
Solomon, Brian; Bizekis, Costas; Dellis, Sophia L; Donington, Jessica S; Oliker, Aaron; Balsam, Leora B; Zervos, Michael; Galloway, Aubrey C; Pass, Harvey; Grossi, Eugene A
2011-01-01
Current video-assisted thoracoscopic surgery training models rely on animals or mannequins to teach procedural skills. These approaches lack inherent teaching/testing capability and are limited by cost, anatomic variations, and single use. In response, we hypothesized that video-assisted thoracoscopic surgery right upper lobe resection could be simulated in a virtual reality environment with commercial software. An anatomy explorer (Maya [Autodesk Inc, San Rafael, Calif] models of the chest and hilar structures) and simulation engine were adapted. Design goals included freedom of port placement, incorporation of well-known anatomic variants, teaching and testing modes, haptic feedback for the dissection, ability to perform the anatomic divisions, and a portable platform. Preexisting commercial models did not provide sufficient surgical detail, and extensive modeling modifications were required. Video-assisted thoracoscopic surgery right upper lobe resection simulation is initiated with a random vein and artery variation. The trainee proceeds in a teaching or testing mode. A knowledge database currently includes 13 anatomic identifications and 20 high-yield lung cancer learning points. The "patient" is presented in the left lateral decubitus position. After initial camera port placement, the endoscopic view is displayed and the thoracoscope is manipulated via the haptic device. The thoracoscope port can be relocated; additional ports are placed using an external "operating room" view. Unrestricted endoscopic exploration of the thorax is allowed. An endo-dissector tool allows for hilar dissection, and a virtual stapling device divides structures. The trainee's performance is reported. A virtual reality cognitive task simulation can overcome the deficiencies of existing training models. Performance scoring is being validated as we assess this simulator for cognitive and technical surgical education. Copyright © 2011. Published by Mosby, Inc.
Huang, Cynthia Y; Thomas, Jonathan B; Alismail, Abdullah; Cohen, Avi; Almutairi, Waleed; Daher, Noha S; Terry, Michael H; Tan, Laren D
2018-01-01
Objective The aim of this study was to investigate the feasibility of using augmented reality (AR) glasses in central line simulation by novice operators and compare its efficacy to standard central line simulation/teaching. Design This was a prospective randomized controlled study enrolling 32 novice operators. Subjects were randomized on a 1:1 basis to either simulation using the augmented virtual reality glasses or simulation using conventional instruction. Setting The study was conducted in tertiary-care urban teaching hospital. Subjects A total of 32 adult novice central line operators with no visual or auditory impairments were enrolled. Medical doctors, respiratory therapists, and sleep technicians were recruited from the medical field. Measurements and main results The mean time for AR placement in the AR group was 71±43 s, and the time to internal jugular (IJ) cannulation was 316±112 s. There was no significant difference in median (minimum, maximum) time (seconds) to IJ cannulation for those who were in the AR group and those who were not (339 [130, 550] vs 287 [35, 475], p=0.09), respectively. There was also no significant difference between the two groups in median total procedure time (524 [329, 792] vs 469 [198, 781], p=0.29), respectively. There was a significant difference in the adherence level between the two groups favoring the AR group (p=0.003). Conclusion AR simulation of central venous catheters in manikins is feasible and efficacious in novice operators as an educational tool. Future studies are recommended in this area as it is a promising area of medical education. PMID:29785148
A novel augmented reality simulator for skills assessment in minimal invasive surgery.
Lahanas, Vasileios; Loukas, Constantinos; Smailis, Nikolaos; Georgiou, Evangelos
2015-08-01
Over the past decade, simulation-based training has come to the foreground as an efficient method for training and assessment of surgical skills in minimal invasive surgery. Box-trainers and virtual reality (VR) simulators have been introduced in the teaching curricula and have substituted to some extent the traditional model of training based on animals or cadavers. Augmented reality (AR) is a new technology that allows blending of VR elements and real objects within a real-world scene. In this paper, we present a novel AR simulator for assessment of basic laparoscopic skills. The components of the proposed system include: a box-trainer, a camera and a set of laparoscopic tools equipped with custom-made sensors that allow interaction with VR training elements. Three AR tasks were developed, focusing on basic skills such as perception of depth of field, hand-eye coordination and bimanual operation. The construct validity of the system was evaluated via a comparison between two experience groups: novices with no experience in laparoscopic surgery and experienced surgeons. The observed metrics included task execution time, tool pathlength and two task-specific errors. The study also included a feedback questionnaire requiring participants to evaluate the face-validity of the system. Between-group comparison demonstrated highly significant differences (<0.01) in all performance metrics and tasks denoting the simulator's construct validity. Qualitative analysis on the instruments' trajectories highlighted differences between novices and experts regarding smoothness and economy of motion. Subjects' ratings on the feedback questionnaire highlighted the face-validity of the training system. The results highlight the potential of the proposed simulator to discriminate groups with different expertise providing a proof of concept for the potential use of AR as a core technology for laparoscopic simulation training.
Winkler, Daniel; Zischg, Jonatan; Rauch, Wolfgang
2018-01-01
For communicating urban flood risk to authorities and the public, a realistic three-dimensional visual display is frequently more suitable than detailed flood maps. Virtual reality could also serve to plan short-term flooding interventions. We introduce here an alternative approach for simulating three-dimensional flooding dynamics in large- and small-scale urban scenes by reaching out to computer graphics. This approach, denoted 'particle in cell', is a particle-based CFD method that is used to predict physically plausible results instead of accurate flow dynamics. We exemplify the approach for the real flooding event in July 2016 in Innsbruck.
Spatial perception predicts laparoscopic skills on virtual reality laparoscopy simulator.
Hassan, I; Gerdes, B; Koller, M; Dick, B; Hellwig, D; Rothmund, M; Zielke, A
2007-06-01
This study evaluates the influence of visual-spatial perception on laparoscopic performance of novices with a virtual reality simulator (LapSim(R)). Twenty-four novices completed standardized tests of visual-spatial perception (Lameris Toegepaste Natuurwetenschappelijk Onderzoek [TNO] Test(R) and Stumpf-Fay Cube Perspectives Test(R)) and laparoscopic skills were assessed objectively, while performing 1-h practice sessions on the LapSim(R), comprising of coordination, cutting, and clip application tasks. Outcome variables included time to complete the tasks, economy of motion as well as total error scores, respectively. The degree of visual-spatial perception correlated significantly with laparoscopic performance on the LapSim(R) scores. Participants with a high degree of spatial perception (Group A) performed the tasks faster than those (Group B) who had a low degree of spatial perception (p = 0.001). Individuals with a high degree of spatial perception also scored better for economy of motion (p = 0.021), tissue damage (p = 0.009), and total error (p = 0.007). Among novices, visual-spatial perception is associated with manual skills performed on a virtual reality simulator. This result may be important for educators to develop adequate training programs that can be individually adapted.
Transforming an educational virtual reality simulation into a work of fine art.
Panaiotis; Addison, Laura; Vergara, Víctor M; Hakamata, Takeshi; Alverson, Dale C; Saiki, Stanley M; Caudell, Thomas Preston
2008-01-01
This paper outlines user interface and interaction issues, technical considerations, and problems encountered in transforming an educational VR simulation of a reified kidney nephron into an interactive artwork appropriate for a fine arts museum.
Sauer, Igor M; Queisner, Moritz; Tang, Peter; Moosburner, Simon; Hoepfner, Ole; Horner, Rosa; Lohmann, Rudiger; Pratschke, Johann
2017-11-01
The paper evaluates the application of a mixed reality (MR) headmounted display (HMD) for the visualization of anatomical structures in complex visceral-surgical interventions. A workflow was developed and technical feasibility was evaluated. Medical images are still not seamlessly integrated into surgical interventions and, thus, remain separated from the surgical procedure.Surgeons need to cognitively relate 2-dimensional sectional images to the 3-dimensional (3D) during the actual intervention. MR applications simulate 3D images and reduce the offset between working space and visualization allowing for improved spatial-visual approximation of patient and image. The surgeon's field of vision was superimposed with a 3D-model of the patient's relevant liver structures displayed on a MR-HMD. This set-up was evaluated during open hepatic surgery. A suitable workflow for segmenting image masks and texture mapping of tumors, hepatic artery, portal vein, and the hepatic veins was developed. The 3D model was positioned above the surgical site. Anatomical reassurance was possible simply by looking up. Positioning in the room was stable without drift and minimal jittering. Users reported satisfactory comfort wearing the device without significant impairment of movement. MR technology has a high potential to improve the surgeon's action and perception in open visceral surgery by displaying 3D anatomical models close to the surgical site. Superimposing anatomical structures directly onto the organs within the surgical site remains challenging, as the abdominal organs undergo major deformations due to manipulation, respiratory motion, and the interaction with the surgical instruments during the intervention. A further application scenario would be intraoperative ultrasound examination displaying the image directly next to the transducer. Displays and sensor-technologies as well as biomechanical modeling and object-recognition algorithms will facilitate the application of MR-HMD in surgery in the near future.
Lang, Alon; Melzer, Ehud; Bar-Meir, Simon; Eliakim, Rami; Ziv, Amitai
2006-11-01
The continuing development in computer-based medical simulators provides an ideal platform for simulator-assisted training programs for medical trainees. Computer-based endoscopic simulators provide a virtual reality environment for training endoscopic procedures. This study illustrates the use of a comprehensive training model combining the use of endoscopic simulators with simulated (actor) patients (SP). To evaluate the effectiveness of a comprehensive simulation workshop from the trainee perspective. Four case studies were developed with emphasis on communication skills. Three workshops with 10 fellows in each were conducted. During each workshop the trainees spent half of the time in SP case studies and the remaining half working with computerized endoscopic simulators with continuous guidance by an expert endoscopist. Questionnaires were completed by the fellows at the end of the workshop. Seventy percent of the fellows felt that the endoscopic simulator was close or very close to reality for gastroscopy and 63% for colonoscopy. Eighty eight percent thought the close guidance was important for the learning process with the simulator. Eighty percent felt that the case studies were an important learning experience for risk management. Further evaluation of multi-modality simulation workshops in gastroenterologist training is needed to identify how best to incorporate this form of instruction into training for gastroenterologists.
NASA Technical Reports Server (NTRS)
Rainbolt, Phillip
2016-01-01
For the duration of my internship here at JSC for the summer 2016 session, the main project that I worked on dealt with hybrid reality simulations of the ISS. As an ER6 intern for the spacecraft software division, the main project that I worked alongside others was with regards to the Holodeck Virtual Reality Project, specifically with the ISS experience, with the use of the HTC Vive and controllers.
Realistic Reflections for Marine Environments in Augmented Reality Training Systems
2009-09-01
Static Backgrounds. Top: Agua Background. Bottom: Blue Background.............48 Figure 27. Ship Textures Used to Generate Reflections. In Order from...Like virtual simulations, augmented reality trainers can be configured to meet specific training needs and can be restarted and reused to train...Wave Distortion, Blurring and Shadow Many of the same methods outlined in Full Reflection shader were reused for the Physics shader. The same
ERIC Educational Resources Information Center
Elford, Martha Denton
2013-01-01
This study analyzes the effects of real-time feedback on teacher behavior in an augmented reality simulation environment. Real-time feedback prompts teachers to deliver behavior-specific praise to students in the TeachLivE KU Lab as an evidence-based practice known to decrease disruptive behavior in inclusive classrooms. All educators face the…
ERIC Educational Resources Information Center
Bidarra, José; Rothschild, Meagan; Squire, Kurt; Figueiredo, Mauro
2013-01-01
Smartphones and other mobile devices like the iPhone, Android, Kindle Fire, and iPad have boosted educators' interest in using mobile media for education. Applications from games to augmented reality are thriving in research settings, and in some cases schools and universities, but relatively little is known about how such devices may be used for…
Reality Imagined: The Choice to Use a Real-World Case in a Simulation
ERIC Educational Resources Information Center
Langfield, Danielle
2016-01-01
The use of a real-world case in a classroom simulation--in contrast to invented or disguised cases--is not widely recognized as a "combination" of two common active-learning strategies in political science: teaching with a case study and conducting a simulation. I argue that using such a simulation therefore can provide the benefits of…
Validation and learning in the Procedicus KSA virtual reality surgical simulator.
Ström, P; Kjellin, A; Hedman, L; Johnson, E; Wredmark, T; Felländer-Tsai, L
2003-02-01
Advanced simulator training within medicine is a rapidly growing field. Virtual reality simulators are being introduced as cost-saving educational tools, which also lead to increased patient safety. Fifteen medical students were included in the study. For 10 medical students performance was monitored, before and after 1 h of training, in two endoscopic simulators (the Procedicus KSA with haptic feedback and anatomical graphics and the established MIST simulator without this haptic feedback and graphics). Five medical students performed 50 tests in the Procedicus KSA in order to analyze learning curves. One of these five medical students performed multiple training sessions during 2 weeks and performed more than 300 tests. There was a significant improvement after 1 h of training regarding time, movement economy, and total score. The results in the two simulators were highly correlated. Our results show that the use of surgical simulators as a pedagogical tool in medical student training is encouraging. It shows rapid learning curves and our suggestion is to introduce endoscopic simulator training in undergraduate medical education during the course in surgery when motivation is high and before the development of "negative stereotypes" and incorrect practices.
NASA Technical Reports Server (NTRS)
Ellis, Stephen R.
2006-01-01
The visual requirements for augmented reality or virtual environments displays that might be used in real or virtual towers are reviewed with respect to similar displays already used in aircraft. As an example of the type of human performance studies needed to determine the useful specifications of augmented reality displays, an optical see-through display was used in an ATC Tower simulation. Three different binocular fields of view (14deg, 28deg, and 47deg) were examined to determine their effect on subjects ability to detect aircraft maneuvering and landing. The results suggest that binocular fields of view much greater than 47deg are unlikely to dramatically improve search performance and that partial binocular overlap is a feasible display technique for augmented reality Tower applications.
Adaptive space warping to enhance passive haptics in an arthroscopy surgical simulator.
Spillmann, Jonas; Tuchschmid, Stefan; Harders, Matthias
2013-04-01
Passive haptics, also known as tactile augmentation, denotes the use of a physical counterpart to a virtual environment to provide tactile feedback. Employing passive haptics can result in more realistic touch sensations than those from active force feedback, especially for rigid contacts. However, changes in the virtual environment would necessitate modifications of the physical counterparts. In recent work space warping has been proposed as one solution to overcome this limitation. In this technique virtual space is distorted such that a variety of virtual models can be mapped onto one single physical object. In this paper, we propose as an extension adaptive space warping; we show how this technique can be employed in a mixed-reality surgical training simulator in order to map different virtual patients onto one physical anatomical model. We developed methods to warp different organ geometries onto one physical mock-up, to handle different mechanical behaviors of the virtual patients, and to allow interactive modifications of the virtual structures, while the physical counterparts remain unchanged. Various practical examples underline the wide applicability of our approach. To the best of our knowledge this is the first practical usage of such a technique in the specific context of interactive medical training.
ERIC Educational Resources Information Center
Brown, Abbie Howard
1999-01-01
Describes and discusses how simulation activities can be used in teacher education to augment the traditional field-experience approach, focusing on artificial intelligence, virtual reality, and intelligent tutoring systems. Includes an overview of simulation as a teaching and learning strategy and specific examples of high-technology simulations…
ERIC Educational Resources Information Center
Shlechter, Theodore M.; And Others
1992-01-01
Examines the effectiveness of SIMNET (Simulation Networking), a virtual reality training simulation system, combined with a program of role-playing activities for helping Army classes to master the conditional knowledge needed for successful field performance. The value of active forms of learning for promoting higher order cognitive thinking is…