Science.gov

Sample records for mixed sodium oxide-uranium

  1. Late-occurring pulmonary pathologies following inhalation of mixed oxide (uranium + plutonium oxide) aerosol in the rat.

    PubMed

    Griffiths, N M; Van der Meeren, A; Fritsch, P; Abram, M-C; Bernaudin, J-F; Poncy, J L

    2010-09-01

    Accidental exposure by inhalation to alpha-emitting particles from mixed oxide (MOX: uranium and plutonium oxide) fuels is a potential long-term health risk to workers in nuclear fuel fabrication plants. For MOX fuels, the risk of lung cancer development may be different from that assigned to individual components (plutonium, uranium) given different physico-chemical characteristics. The objective of this study was to investigate late effects in rat lungs following inhalation of MOX aerosols of similar particle size containing 2.5 or 7.1% plutonium. Conscious rats were exposed to MOX aerosols and kept for their entire lifespan. Different initial lung burdens (ILBs) were obtained using different amounts of MOX. Lung total alpha activity was determined by external counting and at autopsy for total lung dose calculation. Fixed lung tissue was used for anatomopathological, autoradiographical, and immunohistochemical analyses. Inhalation of MOX at ILBs ranging from 1-20 kBq resulted in lung pathologies (90% of rats) including fibrosis (70%) and malignant lung tumors (45%). High ILBs (4-20 kBq) resulted in reduced survival time (N = 102; p < 0.05) frequently associated with lung fibrosis. Malignant tumor incidence increased linearly with dose (up to 60 Gy) with a risk of 1-1.6% Gy for MOX, similar to results for industrial plutonium oxide alone (1.9% Gy). Staining with antibodies against Surfactant Protein-C, Thyroid Transcription Factor-1, or Oct-4 showed differential labeling of tumor types. In conclusion, late effects following MOX inhalation result in similar risk for development of lung tumors as compared with industrial plutonium oxide.

  2. Optimization of Low Sodium Salts Mix for Shoestring Potatoes.

    PubMed

    Pereira, Heverton Carrara; de Souza, Vanessa Rios; Azevedo, Natália Csizmar; Rodrigues, Daniela Maria; Nunes, Cleiton Antônio; Pinheiro, Ana Carla Marques

    2015-06-01

    Several studies have shown the close relationship between the sodium consumption and health problems such as hypertension and cardiovascular disease. Thus, the demand for products with reduced sodium content, but with sensory quality, is increasing every day. In this context, this study aimed to optimize a low sodium salts mix using sodium chloride, potassium chloride, and monosodium glutamate to the development of shoestring potatoes with low sodium content and high sensory quality, through mixture design and response surface methodology. The salts mix that promotes the same salting power and similar sensory acceptability that the shoestring potatoes with 1.6% sodium chloride (ideal concentration) and at the same time promotes the greatest possible reduction of sodium, about 65%, should provide the composition as follows: 0.48% of sodium chloride, 0.92% of potassium chloride, and 0.43% of monosodium glutamate.

  3. Uptake of ozone to mixed sodium bromide/ citric acid solutions

    NASA Astrophysics Data System (ADS)

    Lee, Ming-Tao; Steimle, Emilie; Bartels-Rausch, Thorsten; Kato, Shunsuke; Lampimäki, Markus; Brown, Matthew; van Bokhoven, Jeroen; Nolting, Frithjof; Kleibert, Armin; Türler, Andreas; Ammann, Markus

    2013-04-01

    Sea-salt solution - air interfaces play an important role in the chemistry of the marine boundary layer. The reaction of ozone (O3) with bromide is of interest in the context of formation of photolabile halogens (Br2, BrCl) in the marine boundary layer. Recent experiments have suggested that the bromide oxidation rate is related to the surface concentration of bromide [1] and inversely related to the gas phase concentration of O3, an indication for a precursor mediated reaction at the surface [2]. So far, the effect of organics (such as those occurring at the ocean surface or in marine aerosols) on the reaction of O3 with bromide aerosols has not been studied yet. In our study we investigate the uptake kinetics of O3 to a mixed solution of sodium bromide (NaBr) and citric acid (CA), which represents highly oxidized organic compounds present in the environment, with a well-established coated wall flow tube technique, which leads to exposure of the film to O3 allowing the heterogeneous reactions to take place and the loss of O3 being measured. The results indicate that the uptake of O3 to the films with the higher bromide concentrations (0.34M and 4M) is independent of the gas phase concentration and roughly consistent with uptake limited by reaction in the bulk. For the lower bromide concentration (84mM), however, we observe a trend of the uptake coefficient to decrease with increasing O3 concentration, indicating an increasing importance of a surface reaction. In an attempt to constrain the kinetic data, we employed X-ray photoelectron spectroscopy (XPS) to get insight into the surface composition of the aqueous solution - air interface. Previous XPS studies have shown that halide ion concentrations are enhanced at the aqueous solution air interface [3-4], which likely promotes the surface reactions of bromide or iodide with O3. A first XPS study of ternary solutions of KI with butanol indicated the importance of specific interactions of the cation with the alcohol

  4. Internal Structure, Hygroscopic and Reactive Properties of Mixed Sodium Methanesulfonate-Sodium Chloride Particles

    SciTech Connect

    Liu, Ying; Minofar, Babak; Desyaterik, Yury; Dames, E. E.; Zhu, Zihua; Cain, Jeremy P.; Hopkins, Rebecca J.; Gilles, Marry K.; Wang, Hai; Jungwirth, Pavel; Laskin, Alexander

    2011-01-01

    Internal structures, hygroscopic properties and heterogeneous reactivity of mixed CH3SO3Na/NaCl particles were investigated using a combination of computer modeling and experimental approaches. Surfactant properties of CH3SO3 ions and their surface accumulation in wet, deliquesced particles were assessed using molecular dynamics (MD) simulations and surface tension measurements. Internal structures of dry CH3SO3Na/NaCl particles were investigated using scanning electron microscopy (SEM) assisted with X-ray microanalysis mapping, and time-of-flight secondary ion mass spectrometry (TOF-SIMS). The combination of these techniques shows that dry CH3SO3Na/NaCl particles are composed of a NaCl core surrounded by a CH3SO3Na shell. Hygroscopic growth, deliquescence and efflorescence phase transitions of mixed CH3SO3Na/NaCl particles were determined and compared to those of pure NaCl particles. These results indicate that particles undergo a two step deliquescence transition: first at ~69% relative humidity (RH) the CH3SO3Na shell takes up water, and then at ~75% RH the NaCl core deliquesces. Reactive uptake coefficients for the particle HNO3 heterogeneous reaction were determined at different CH3SO3Na/NaCl mixing ratios and RH. The net reaction probability decreased notably with increasing CH3SO3Na and at lower RH.

  5. Internal structure, hygroscopic and reactive properties of mixed sodium methanesulfonate-sodium chloride particles.

    PubMed

    Liu, Y; Minofar, B; Desyaterik, Y; Dames, E; Zhu, Z; Cain, J P; Hopkins, R J; Gilles, M K; Wang, H; Jungwirth, P; Laskin, A

    2011-07-01

    Internal structures, hygroscopic properties and heterogeneous reactivity of mixed CH(3)SO(3)Na/NaCl particles were investigated using a combination of computer modeling and experimental approaches. Surfactant properties of CH(3)SO(3)(-) ions and their surface accumulation in wet, deliquesced particles were assessed using molecular dynamics (MD) simulations and surface tension measurements. Internal structures of dry CH(3)SO(3)Na/NaCl particles were investigated using scanning electron microscopy (SEM) assisted with X-ray microanalysis mapping, and time-of-flight secondary ion mass spectrometry (TOF-SIMS). The combination of these techniques shows that dry CH(3)SO(3)Na/NaCl particles are composed of a NaCl core surrounded by a CH(3)SO(3)Na shell. Hygroscopic growth, deliquescence and efflorescence phase transitions of mixed CH(3)SO(3)Na/NaCl particles were determined and compared to those of pure NaCl particles. These results indicate that particles undergo a two step deliquescence transition: first at ∼69% relative humidity (RH) the CH(3)SO(3)Na shell takes up water, and then at ∼75% RH the NaCl core deliquesces. Reactive uptake coefficients for the particle-HNO(3) heterogeneous reaction were determined at different CH(3)SO(3)Na/NaCl mixing ratios and RH. The net reaction probability decreased notably with increasing CH(3)SO(3)Na and at lower RH.

  6. Simply mixed commercial red phosphorus and carbon nanotube composite with exceptionally reversible sodium-ion storage.

    PubMed

    Li, Wei-Jie; Chou, Shu-Lei; Wang, Jia-Zhao; Liu, Hua-Kun; Dou, Shi-Xue

    2013-01-01

    Recently, sodium ion batteries (SIBs) have been given intense attention because they are the most promising alternative to lithium ion batteries for application in renewable power stations and smart grid, owing to their low cost, their abundant natural resources, and the similar chemistry of sodium and lithium. Elemental phosphorus (P) is the most promising anode materials for SIBs with the highest theoretical capacity of 2596 mA h g(-1), but the commercially available red phosphorus cannot react with Na reversibly. Here, we report that simply hand-grinding commercial microsized red phosphorus and carbon nanotubes (CNTs) can deliver a reversible capacity of 1675 mA h g(-1) for sodium ion batteries (SIBs), with capacity retention of 76.6% over 10 cycles. Our results suggest that the simply mixed commercial red phosphorus and CNTs would be a promising anode candidate for SIBs with a high capacity and low cost.

  7. Four Wave Mixing Characteristics Of Sodium Vapor Under High Reflectivity Conditions

    NASA Astrophysics Data System (ADS)

    Brock, J.; Fukumoto, J.; Patterson, F.; Carrion, W.; Holleman, G.; Marabella, L.

    1988-04-01

    Four wave mixing (FWM) performance of sodium vapor was investigated in the strong pump regime (I »I at) necessary to achieve good phase conjugate reflectivity, R. Reflectivities >230% were observed using narrowband CW pump powers less than 1 W. Degenerate FWM spectral response was measured with R as a parameter, and shown to depend on self-focusing effects at higher R. The field of view of the sodium FWM was determined under narrowband high R conditions and found to behave as expected, except for nearly collinear geometries. Faith-ful imaging through a severe optical aberration was demonstrated at moderate R, but experimental observations and analysis indicate potential fidelity problems at large R. Reflect-ivity and field of view were also measured for wideband (2 GHz) laser pumping.

  8. Influence of mixing and ultrasound frequency on antisolvent crystallisation of sodium chloride.

    PubMed

    Lee, Judy; Ashokkumar, Muthupandian; Kentish, Sandra E

    2014-01-01

    Ultrasound is known to promote nucleation of crystals and produce a narrower size distribution in a controlled and reproducible manner for the crystallisation process. Although there are various theories that suggest cavitation bubbles are responsible for sonocrystallisation, most studies use power ultrasonic horns that generate both intense shear and cavitation and this can mask the role that cavitation bubbles play. High frequency ultrasound from a plate transducer can be used to examine the effect of cavitation bubbles without the intense shear effect. This study reports the crystal size and morphology with various mixing speeds and ultrasound frequencies. The results show high frequency ultrasound produced sodium chloride crystals of similar size distribution as an ultrasonic horn. In addition, ultrasound generated sodium chloride crystals having a more symmetrical cubic structure compared to crystals produced by a high shear mixer.

  9. Influence of mixing and ultrasound frequency on antisolvent crystallisation of sodium chloride.

    PubMed

    Lee, Judy; Ashokkumar, Muthupandian; Kentish, Sandra E

    2014-01-01

    Ultrasound is known to promote nucleation of crystals and produce a narrower size distribution in a controlled and reproducible manner for the crystallisation process. Although there are various theories that suggest cavitation bubbles are responsible for sonocrystallisation, most studies use power ultrasonic horns that generate both intense shear and cavitation and this can mask the role that cavitation bubbles play. High frequency ultrasound from a plate transducer can be used to examine the effect of cavitation bubbles without the intense shear effect. This study reports the crystal size and morphology with various mixing speeds and ultrasound frequencies. The results show high frequency ultrasound produced sodium chloride crystals of similar size distribution as an ultrasonic horn. In addition, ultrasound generated sodium chloride crystals having a more symmetrical cubic structure compared to crystals produced by a high shear mixer. PMID:23948494

  10. Large eddy simulation of mixing between hot and cold sodium flows - comparison with experiments

    SciTech Connect

    Simoneau, J.P.; Noe, H.; Menant, B.

    1995-09-01

    The large eddy simulation is becoming a potential powerful tool for the calculation of turbulent flows. In nuclear liquid metal cooled fast reactors, the knowledge of the turbulence characteristics is of great interest for the prediction and the analysis of thermal stripping phenomena. The objective of this paper is to give a contribution in the evaluation of the large eddy simulation technique is an individual case. The problem chosen is the case of the mixing between hot and cold sodium flows. The computations are compared with available sodium tests. This study shows acceptable qualitative results but the simple model used is not able to predict the turbulence characteristics. More complex models including larger domains around the fluctuating zone and fluctuating boundary conditions could be necessary. Validation works are continuing.

  11. Study of sodium dodecyl sulfate-poly(propylene oxide) methacrylate mixed micelles.

    PubMed

    Bastiat, Guillaume; Grassl, Bruno; Khoukh, Abdel; François, Jeanne

    2004-07-01

    Sodium dodecyl sulfate (SDS)-poly(propylene oxide) methacrylate (PPOMA) (of molecular weight M(w) = 434 g x mol(-1)) mixtures have been studied using conductimetry, static light scattering, fluorescence spectroscopy, and 1H NMR. It has been shown that SDS and PPOMA form mixed micelles, and SDS and PPOMA aggregation numbers, N(ag SDS) and N(ag PPOMA), have been determined. Total aggregation numbers of the micelles (N(ag SDS) + N(ag PPOMA)) and those of SDS decrease upon increasing the weight ratio R = PPOMA/SDS. Localization of PPOMA inside the mixed micelles is considered (i) using 1H NMR to localize the methacrylate function at the hydrophobic core-water interface and (ii) by studying the SDS-PPO micellar system (whose M(w) = 400 g x mol(-1)). Both methods have indicated that the PPO chain of the macromonomer is localized at the SDS micelle surface. Models based on the theorical prediction of the critical micellar concentration of mixed micelles and structural model of swollen micelles are used to confirm the particular structure proposed for the SDS-PPOMA system, i.e., the micelle hydrophobic core is primarily composed of the C12 chains of the sodium dodecyl sulfate, the hydrophobic core-water interface is made up of the SDS polar heads as well as methacrylate functions of the PPOMA, the PPO chains of the macromonomer are adsorbed preferentially on the surface, i.e., on the polar heads of the SDS.

  12. Sodium

    MedlinePlus

    ... sodium. Doctors recommend you eat less than 2.4 grams per day. That equals about 1 teaspoon of table salt a day. Reading food labels can help you see how much sodium is in prepared foods. NIH: National Heart, Lung, and Blood Institute

  13. Water uptake properties of internally mixed sodium halide and succinic acid particles

    NASA Astrophysics Data System (ADS)

    Miñambres, Lorena; Méndez, Estíbaliz; Sánchez, María N.; Castaño, Fernando; Basterretxea, Francisco J.

    2011-10-01

    Sea salt aerosols include appreciable fractions of organic material, that can affect properties such as hygroscopicity, phase transition or chemical reactivity. Although sodium chloride is the major component of marine salt, bromide and iodide ions tend to accumulate onto particle surfaces and influence their behaviour. The hygroscopic properties of internally mixed submicrometric particles composed of succinic acid (SA) and NaX (where X = F, Cl, Br or I) have been studied by infrared absorption spectroscopy in an aerosol flow cell at ambient temperature for different relative succinic acid/NaX compositions. The results show that deliquescence relative humidities of SA/NaF and SA/NaCl are equal to those of the pure sodium halides. SA/NaBr particles, on the other hand, deliquesce at lower relative humidities than pure NaBr particles, the effect being more marked as the SA/NaBr mass ratio approaches unity. The SA/NaI system behaves as a non-deliquescent system, absorbing liquid water at all relative humidities, as in pure NaI. Succinic acid phase in the particles has been spectroscopically monitored at given values of both RH and SA/NaX solute mass ratio. The different hygroscopic properties as the halogen ion is changed can be rationalized in terms of simple thermodynamic arguments and can be attributed to the relative contributions of ion-molecule interactions in the solid particles. The observed behaviour is of interest for tropospheric sea salt aerosols mixed with organic acids.

  14. Enthalpies of Mixing in Sodium Silicate Glasses and Relevance to Adam-Gibbs Theory

    NASA Astrophysics Data System (ADS)

    Hovis, G.; Jarry, P.; Toplis, M.; Richet, P.

    2003-12-01

    Solution calorimetric measurements have been made in 20.1 wt % hydrofluoric acid at 50° C on binary Na2O-SiO2 glasses ranging in composition from 0 to 50 mol % Na2O. The initial calorimetric data for compositions between 20 and 50 mol % Na2O were highly variable, determined later to be due to the development of Na carbonate on the glass surfaces. However, additional measurements using minimally-ground specimens that had been remelted shortly before the calorimetric dissolutions produced highly reproducible results. After adjustment of the data for glass transition temperature (Richet et al., 1984, J. Amer. Ceram. Soc.), the results show nearly linear ("ideal") behavior of the heats of solution between 50 % Na2O and 30-35 % Na2O. However, positive enthalpies of mixing (Hex) are evident in the compositional region between 0 and 30-35 mol % Na2O, with maximum magnitudes of Hex on the order of 5 kJ/mol relative to 0 and 35 % Na2O end members. Within the framework of the Adam-Gibbs theory of structural relaxation, viscosity and heat capacity data may be combined to determine configurational entropies of silicate glasses. When applied to sodium silicate glasses (Toplis, 2001, Chemical Geology), positive entropies of mixing (Sex) are calculated for compositions between 0 and 30 mole % Na2O, a compositional region where liquid immiscibility also is known to occur (Haller et al., 1974, J. Amer. Ceram. Soc.) and where Gibbs free energies of mixing (Gex) therefore must be positive. Because positive entropies of mixing contribute negatively (-TSex) to Gex, the observed immiscibility requires positive enthalpies of mixing (Hex) in the silicic part of the compositional range. The present study confirms such positive enthalpies of mixing and supports the usefulness of Adam-Gibbs theory for the prediction of viscosity/entropy behavior of silicate glasses and liquids.

  15. Identifying predictors of high sodium excretion in patients with heart failure: A mixed effect analysis of longitudinal data

    PubMed Central

    Creber, Ruth Masterson; Topaz, Maxim; Lennie, Terry A.; Lee, Christopher S.; Puzantian, Houry; Riegel, Barbara

    2015-01-01

    Background A low-sodium diet is a core component of heart failure self-care but patients have difficulty following the diet. Aim The aim of this study was to identify predictors of higher than recommended sodium excretion among patients with heart failure. Methods The World Health Organization Five Dimensions of Adherence model was used to guide analysis of existing data collected from a prospective, longitudinal study of 280 community-dwelling adults with previously or currently symptomatic heart failure. Sodium excretion was measured objectively using 24-hour urine sodium measured at three time points over six months. A mixed effect logistic model identified predictors of higher than recommended sodium excretion. Results The adjusted odds of higher sodium excretion were 2.90, (95% confidence interval (CI): 1.15–4.25, p<0.001) for patients who were obese; 2.80 (95% CI: 1.33–5.89, p=0.007) for patients with diabetes; and 2.22 (95% CI: 1.09–4.53, p=0.028) for patients who were cognitively intact. Conclusion Three factors were associated with excess sodium excretion and two factors, obesity and diabetes, are modifiable by changing dietary food patterns. PMID:24366985

  16. Impact of mixing time and sodium stearoyl lactylate on gluten polymerization during baking of wheat flour dough.

    PubMed

    Van Steertegem, Bénédicte; Pareyt, Bram; Brijs, Kristof; Delcour, Jan A

    2013-12-15

    The impact of differences in dough transient gluten network on gluten cross-linking during baking is insufficiently understood. We varied dough mixing times and/or added sodium stearoyl lactylate (SSL; 1.0% on flour dry matter basis) to the recipe and studied the effect on subsequent gluten polymerization during heating. The level of proteins extractable in sodium dodecyl sulfate containing media was fitted using first order kinetics. The extent and rate of gluten polymerization were lower when mixing for 8 min than when mixing for 2 min. This effect was even more outspoken in the presence of SSL. The present observations were explained as resulting from less gliadin incorporation in the polymer gluten network and from interaction of SSL with the gluten proteins. Finally, a higher degree of gluten polymerization during baking increased the firmness of the baked products.

  17. Stability, interaction, size, and microenvironmental properties of mixed micelles of decanoyl-N-methylglucamide and sodium dodecyl sulfate.

    PubMed

    Hierrezuelo, J M; Aguiar, J; Ruiz, C Carnero

    2004-11-23

    The mixed micellization between the nonionic surfactant decanoyl-N-methylglucamide (MEGA-10) and the common sodium dodecyl sulfate (SDS) in aqueous solutions of 0.1 M NaCl was investigated by the fluorescence probe method. The critical micelle concentrations were determined by the pyrene 1:3 ratio method. The experimental data are discussed in light of two mixing thermodynamic models within the framework of the pseudophase separation model, including the conventional regular solution theory and a recent treatment proposed by Maeda (J. Phys. Chem. B 2004, 108, 6043). This last approach provides a more appropriate description of the mixed system, particularly in two aspects: the nature of the interactions responsible for the stability of the mixed micelle and the behavior of the excess free energy per monomer of the system. By using the static quenching method, the mean micellar aggregation numbers of mixed micelles in the whole range of compositions were obtained. It was found that the micellar aggregation number initially increases with the content of the ionic component, then remains roughly constant, and, finally, decreases slightly for high content of this component. This behavior was analyzed taking into account the effects produced by the presence of the charged headgroups of sodium dodecyl sulfate, as this component increases its participation in the mixed micelle. The micropolarity of the mixed micelles was studied by the pyrene 1:3 ratio index. It was observed that the increasing participation of the ionic component induces the formation of micelles with a more dehydrated structure. Data of micellar microviscosity were obtained by using different methods, including fluorescence intensity measurements of Auramine O and steady-state fluorescence anisotropy of rhodamine B and diphenylbutadiene. The results obtained from these experiments are in good agreement and suggest the formation of mixed micelles with a less ordered structure as the content of SDS

  18. Reuse of MSWI bottom ash mixed with natural sodium bentonite as landfill cover material.

    PubMed

    Puma, Sara; Marchese, Franco; Dominijanni, Andrea; Manassero, Mario

    2013-06-01

    The research described in this study had the aim of evaluating the reuse of incinerator slag, mixed with sodium bentonite, for landfill capping system components. A characterization was performed on pure bottom ash (BA) samples from an incinerator in the north of Italy. The results show that the BA samples had appropriate properties as covers. The compacted dry unit weight of the studied BA (16.2 kN m(-3)) was lower than the average value that characterizes most conventional fill materials and this can be considered advantageous for landfill cover systems, since the fill has to be placed on low bearing capacity ground or where long-term settlement is possible. Moreover, direct shear tests showed a friction angle of 43°, corresponding to excellent mechanical characteristics that can be considered an advantage against failure. The hydraulic conductivity tests indicated a steady-state value of 8 × 10(-10) m s(-1) for a mixture characterized by a bentonite content by weight of 10%, which was a factor 10 better than required by Italian legislation on landfill covers. The results from a swell index test indicated that fine bentonite swelled, even when divalent cations were released by the BA. The leaching behaviour of the mixture did not show any contamination issues and was far better than obtained for the pure BA. Thus, the BA-bentonite mixture qualified as a suitable material for landfill cover in Italy. Moreover, owing to the low release of toxic compounds, the proposed cover system would have no effect on the leachate quality in the landfill. PMID:23478909

  19. Modeling of thermo-mechanical and irradiation behavior of mixed oxide fuel for sodium fast reactors

    NASA Astrophysics Data System (ADS)

    Karahan, Aydın; Buongiorno, Jacopo

    2010-01-01

    An engineering code to model the irradiation behavior of UO2-PuO2 mixed oxide fuel pins in sodium-cooled fast reactors was developed. The code was named fuel engineering and structural analysis tool (FEAST-OXIDE). FEAST-OXIDE has several modules working in coupled form with an explicit numerical algorithm. These modules describe: (1) fission gas release and swelling, (2) fuel chemistry and restructuring, (3) temperature distribution, (4) fuel-clad chemical interaction and (5) fuel-clad mechanical analysis. Given the fuel pin geometry, composition and irradiation history, FEAST-OXIDE can analyze fuel and cladding thermo-mechanical behavior at both steady-state and design-basis transient scenarios. The code was written in FORTRAN-90 program language. The mechanical analysis module implements the LIFE algorithm. Fission gas release and swelling behavior is described by the OGRES and NEFIG models. However, the original OGRES model has been extended to include the effects of joint oxide gain (JOG) formation on fission gas release and swelling. A detailed fuel chemistry model has been included to describe the cesium radial migration and JOG formation, oxygen and plutonium radial distribution and the axial migration of cesium. The fuel restructuring model includes the effects of as-fabricated porosity migration, irradiation-induced fuel densification, grain growth, hot pressing and fuel cracking and relocation. Finally, a kinetics model is included to predict the clad wastage formation. FEAST-OXIDE predictions have been compared to the available FFTF, EBR-II and JOYO databases, as well as the LIFE-4 code predictions. The agreement was found to be satisfactory for steady-state and slow-ramp over-power accidents.

  20. Phase, morphology, and hygroscopicity of mixed oleic acid/sodium chloride/water aerosol particles before and after ozonolysis.

    PubMed

    Dennis-Smither, Benjamin J; Hanford, Kate L; Kwamena, Nana-Owusua A; Miles, Rachael E H; Reid, Jonathan P

    2012-06-21

    Aerosol optical tweezers are used to probe the phase, morphology, and hygroscopicity of single aerosol particles consisting of an inorganic component, sodium chloride, and a water insoluble organic component, oleic acid. Coagulation of oleic acid aerosol with an optically trapped aqueous sodium chloride droplet leads to formation of a phase-separated particle with two partially engulfed liquid phases. The dependence of the phase and morphology of the trapped particle with variation in relative humidity (RH) is investigated by cavity enhanced Raman spectroscopy over the RH range <5% to >95%. The efflorescence and deliquescence behavior of the inorganic component is shown to be unaffected by the presence of the organic phase. Whereas efflorescence occurs promptly (<1 s), the deliquescence process requires both dissolution of the inorganic component and the adoption of an equilibrium morphology for the resulting two phase particle, occurring on a time-scale of <20 s. Comparative measurements of the hygroscopicity of mixed aqueous sodium chloride/oleic acid droplets with undoped aqueous sodium chloride droplets show that the oleic acid does not impact on the equilibration partitioning of water between the inorganic component and the gas phase or the time response of evaporation/condensation. The oxidative aging of the particles through reaction with ozone is shown to increase the hygroscopicity of the organic component.

  1. A small-angle neutron scattering study of sodium dodecyl sulfate-poly(propylene oxide) methacrylate mixed micelles.

    PubMed

    Bastiat, Guillaume; Grassl, Bruno; Borisov, Oleg; Lapp, Alain; François, Jeanne

    2006-03-15

    Mixed micelle of protonated or deuterated sodium dodecyl sulfate (SDS and SDSd25, respectively) and poly(propylene oxide) methacrylate (PPOMA) are studied by small-angle neutron scattering (SANS). In all the cases the scattering curves exhibit a peak whose position changes with the composition of the system. The main parameters which characterize mixed micelles, i.e., aggregation numbers of SDS and PPOMA, geometrical dimensions of the micelles and degree of ionisation are evaluated from the analysis of the SANS curves. The position q(max) of the correlation peak can be related to the average aggregation numbers of SDS-PPOMA and SDSd25-PPOMA mixed micelles. It is found that the aggregation number of SDS decreases upon increasing the weight ratio PPOMA/SDS (or SDSd25). The isotopic combination, which uses the "contrast effect" between the two micellar systems, has allowed us to determine the mixed micelle composition. Finally, the SANS curves were adjusted using the RMSA for the structure factor S(q) of charged spherical particles and the form factor P(q) of spherical core-shell particle. This analysis confirms the particular core-shell structure of the SDS-PPOMA mixed micelle, i.e., a SDS "core" micelle surrounded by the shell formed by PPOMA macromonomers. The structural parameters of mixed micelles obtained from the analysis of the SANS data are in good agreement with those determined previously by conductimetry and fluorescence studies.

  2. Positive and Negative Mixed Glass Former Effects in Sodium Borosilicate and Borophosphate Glasses Studied by (23)Na NMR.

    PubMed

    Storek, Michael; Adjei-Acheamfour, Mischa; Christensen, Randilynn; Martin, Steve W; Böhmer, Roland

    2016-05-19

    Glasses with varying compositions of constituent network formers but constant mobile ion content can display minima or maxima in their ion transport which are known as the negative or the positive mixed glass former effect, MGFE, respectively. Various nuclear magnetic resonance (NMR) techniques are used to probe the ion hopping dynamics via the (23)Na nucleus on the microscopic level, and the results are compared with those from conductivity spectroscopy, which are more sensitive to the macroscopic charge carrier mobility. In this way, the current work examines two series of sodium borosilicate and sodium borophosphate glasses that display positive and negative MGFEs, respectively, in the composition dependence of their Na(+) ion conductivities at intermediate compositions of boron oxide substitution for silicon oxide and phosphorus oxide, respectively. A coherent theoretical analysis is performed for these glasses which jointly captures the results from measurements of spin relaxation and central-transition line shapes. On this basis and including new information from (11)B magic-angle spinning NMR regarding the speciation in the sodium borosilicate glasses, a comparison is carried out with predictions from theoretical approaches, notably from the network unit trap model. This comparison yields detailed insights into how a variation of the boron oxide content and thus of either the population of silicon or phosphorus containing network-forming units with different charge-trapping capabilities leads to nonlinear changes of the microscopic transport properties. PMID:27092392

  3. Volatility of NH3 from internally mixed sodium succinate-NH4SO4 particles

    NASA Astrophysics Data System (ADS)

    Wang, Na; Zhang, Yunhong

    2016-04-01

    Contributing the complicacy of atmospheric constituents, aerosol particles may undergo complicated heterogeneous reactions that have profound consequences on their hygroscopic properties and volatility. Ammonia (NH3) is a ubiquitous trace atmospheric gas in the troposphere and has negative effects on human health and climate forcing of ambient aerosols. In addition, atmospheric cycle of NH3 is complex in atmosphere, therefore it necessary to get insights to the complexity of gas-to-aerosol NH3 partitioning, which results in large uncertainties in the sources and distributions of NH3. By using in-situ Fourier transform infrared spectroscopy and attenuated total reflection (FTIR-ATR), we report here the volatility of NH3 from the laboratory generated sodium succinate with ammonium sulfate ((NH4)2SO4) at a 1:1 molar ratio as well as its effect on the hygroscopicity of the mixtures. The loss of the NH4+ peak at 1451cm-1 and the formation of peaks at 1718 and 1134 cm-1 due to C = O stretching asymmetric vibration of -COOH and ν3 (SO42-) stretching of sodium sulfate indicate that sodium succinate reacts with (NH4)2SO4, releasing NH3 and forming succinic acid and sodium sulfate on dehydration process. The formation of less hygroscopic succinic acid and volatility of NH3 in mixtures leads to a significant decrease in the total water content. To the best of our knowledge, this is the first report of the reaction between (NH4)2SO4 and dicarboxylate salts, which may represent an important particle-gas partitioning for ammonia and thus elucidate another underlying ammonia cycle in atmosphere. These results could be helpful to understand the mutual transformation process of dicarboxylic acids and dicarboxylate salts.

  4. Volatility of NH3 from internally mixed sodium succinate-NH4SO4 particles

    NASA Astrophysics Data System (ADS)

    Wang, Na; Zhang, Yunhong

    2016-04-01

    Contributing the complicacy of atmospheric constituents, aerosol particles may undergo complicated heterogeneous reactions that have profound consequences on their hygroscopic properties and volatility. Ammonia (NH3) is a ubiquitous trace atmospheric gas in the troposphere and has negative effects on human health and climate forcing of ambient aerosols. In addition, atmospheric cycle of NH3 is complex in atmosphere, therefore it necessary to get insights to the complexity of gas-to-aerosol NH3 partitioning, which results in large uncertainties in the sources and distributions of NH3. By using in-situ Fourier transform infrared spectroscopy and attenuated total reflection (FTIR-ATR), we report here the volatility of NH3 from the laboratory generated sodium succinate with ammonium sulfate ((NH4)2SO4) at a 1:1 molar ratio as well as its effect on the hygroscopicity of the mixtures. The loss of the NH4+ peak at 1451cm‑1 and the formation of peaks at 1718 and 1134 cm‑1 due to C = O stretching asymmetric vibration of -COOH and ν3 (SO42‑) stretching of sodium sulfate indicate that sodium succinate reacts with (NH4)2SO4, releasing NH3 and forming succinic acid and sodium sulfate on dehydration process. The formation of less hygroscopic succinic acid and volatility of NH3 in mixtures leads to a significant decrease in the total water content. To the best of our knowledge, this is the first report of the reaction between (NH4)2SO4 and dicarboxylate salts, which may represent an important particle-gas partitioning for ammonia and thus elucidate another underlying ammonia cycle in atmosphere. These results could be helpful to understand the mutual transformation process of dicarboxylic acids and dicarboxylate salts.

  5. Mixed layers of sodium caseinate + dextran sulfate: influence of order of addition to oil-water interface.

    PubMed

    Jourdain, Laureline S; Schmitt, Christophe; Leser, Martin E; Murray, Brent S; Dickinson, Eric

    2009-09-01

    We report on the interfacial properties of electrostatic complexes of protein (sodium caseinate) with a highly sulfated polysaccharide (dextran sulfate). Two routes were investigated for preparation of adsorbed layers at the n-tetradecane-water interface at pH = 6. Bilayers were made by the layer-by-layer deposition technique whereby polysaccharide was added to a previously established protein-stabilized interface. Mixed layers were made by the conventional one-step method in which soluble protein-polysaccharide complexes were adsorbed directly at the interface. Protein + polysaccharide systems gave a slower decay of interfacial tension and stronger dilatational viscoelastic properties than the protein alone, but there was no significant difference in dilatational properties between mixed layers and bilayers. Conversely, shear rheology experiments exhibited significant differences between the two kinds of interfacial layers, with the mixed system giving much stronger interfacial films than the bilayer system, i.e., shear viscosities and moduli at least an order of magnitude higher. The film shear viscoelasticity was further enhanced by acidification of the biopolymer mixture to pH = 2 prior to interface formation. Taken together, these measurements provide insight into the origin of previously reported differences in stability properties of oil-in-water emulsions made by the bilayer and mixed layer approaches. Addition of a proteolytic enzyme (trypsin) to both types of interfaces led to a significant increase in the elastic modulus of the film, suggesting that the enzyme was adsorbed at the interface via complexation with dextran sulfate. Overall, this study has confirmed the potential of shear rheology as a highly sensitive probe of associative electrostatic interactions and interfacial structure in mixed biopolymer layers. PMID:19459686

  6. Spontaneous Emulsification of Triolein Induced by Mixed Micellar Solutions of Sodium Polyoxyethylene Alkyl Ether Sulfate and Dodecyldimethyl Amine Oxide.

    PubMed

    Endo, Chika; Ito, Yoshiko; Akabane, Chika; Kaneko, Yukihiro; Sakai, Hideki

    2015-01-01

    A new mechanism of spontaneous emulsification without any salts or co-solvents is described, and is related to the dilatational behavior. Spontaneous emulsification can reduce the time required to remove oily soils from hard surfaces and enhance the detergency, because this type of emulsification requires no external mechanical work. In this paper, we focused on triolein, the main component of food oils and human sebum soil, and tried to induce spontaneous emulsification by using mixed micellar solutions of sodium polyoxyethylene alkyl ether sulfate and N, N-dimethyldodecylamine oxide (AES/DDAO). We characterized the dilatation of the oil/water interface using dynamic interfacial tension and elasticity measurements. This study confirmed that the degree of spontaneous emulsification can be enhanced by controlling the molar ratio of DDAO to AES. This enhancement can be attributed to an increased rate of decrease in the dynamic interfacial tension (i.e., a decreased interface dilatational elasticity), allowing for much greater suppression of the Marangoni effect. Further, we determined that one of the reasons for the decrease in the interface dilatational elasticity is the increasing number of micelles near the oil drop interface, which results from a decrease in the electrostatic repulsion between the micelles and the drop interface. Therefore, controlling the molar ratio of a mixed anionic/amphoteric surfactant solution is an effective way to induce spontaneous emulsification in the absence of salts or co-solvents.

  7. Surface characterization of human serum albumin and sodium perfluorooctanoate mixed solutions by pendant drop tensiometry and circular dichroism.

    PubMed

    Messina, Paula; Prieto, Gerardo; Dodero, Verónica; Cabrerizo-Vílchez, M A; Maldonado-Valderrama, J; Ruso, Juan M; Sarmiento, Félix

    2006-06-15

    The interfacial behavior of mixed human serum albumin (HSA)/sodium perfluorooctanoate (C8FONa) solutions is examined by using two experimental techniques, pendant drop tensiometry and circular dichroism spectroscopy. Through the analysis of the surface tension of the mixed solutions, surface competitive adsorption at the air-water interface between C8FONa and HSA is detected. The dynamic adsorption curves exhibit the distinct regimes in their time-dependent surface tension. The nature of these regimes is further analyzed in terms of the variation of the molecules surface areas. As a consequence, a compact and dense structure was formed where protein molecules were interconnected and overlapped. Thus, a reduction of the area occupied per molecule from 100 to 0.2 nm(2) is interpreted as a gel-like structure at the surface. The presence of the surfactant seems to favor the formation of this interfacial structure. Finally, measurements of circular dichroism suggests a compaction of the protein due to the association with the surfactant given by an increase of alpha-helix structure in the complexes as compared to that of pure protein.

  8. The Icarus effect: the influence of diluent warming on dantrolene sodium mixing time.

    PubMed

    Baker, Kevin R; Landriscina, Donna; Kartchner, Heather; Mirkes, David M

    2007-04-01

    Prompt administration of intravenous (i.v.) dantrolene sodium (DS) is the primary determinant of successful treatment of malignant hyperthermia (MH) syndrome. Because DS has a long reconstitution time for use in treating an MH crisis, we evaluated an alternative technique for hastening the reconstitution. Simulating real-world conditions, with equipment common to the operating room environment, we conducted a randomized, controlled, single-blind study dividing 16 DS vials into 2 equal groups: warm (41 degrees C) and ambient temperature (22 degrees C). With an i.. fluid warmer at 41 degrees C, primed with a 1-L bag of preservative-free sterile water, attached to a 60-mL syringe via a 3-way stopcock, we aspirated and injected the diluent directly into each DS vial. The Icarus effect was clearly demonstrated: warmed diluent vs ambient temperature hastened the reconstitution time for DS. The mean time to particulate-free DS solution suitable for i.v. injection with the warm diluent was 58.88 seconds compared with 93.87 seconds for the ambient temperature group (P <.001). A practical method using a reliable and safe warming device readily available to anesthetists and ubiquitous to the operating room environment speeds the time to administration of DS ultimately reducing morbidity and mortality associated with MH.

  9. Effect of Vesicle-to-Micelle Transition on the Interactions of Phospholipid/Sodium Cholate Mixed Systems with Curcumin in Aqueous Solution.

    PubMed

    Zhang, Sha; Wang, Xiaoyong

    2016-08-01

    The role of vesicle-to-micelle transition has been investigated in the interactions of phospholipid vesicles, phospholipid/sodium cholate (NaC) mixed vesicles, and phospholipid/NaC mixed micelles with curcumin in aqueous solution. The addition of NaC causes phospholipid vesicles to transit into phospholipid/NaC mixed vesicles and phospholipid/NaC mixed micelles. Turbidity measurement reveals that the presence of curcumin increases the NaC concentration for the solubilization of phospholipid vesicles, which indicates that the bound curcumin tends to suppress the vesicle-to-micelle transition. The pyrene polarity index and curcumin fluorescence anisotropy measurements suggest that phospholipid/NaC mixed micelles have a more compact structure than that of phospholipid vesicles and phospholipid/NaC mixed vesicles. Curcumin associated with phospholipid vesicles, phospholipid/NaC mixed vesicles, and phospholipid/NaC mixed micelles often results in higher intensities of absorption and fluorescence than those of free curcumin. However, phospholipid/NaC mixed vesicles lead to the highest values of absorption and fluorescence intensities, binding constant, and radical-scavenging capacity with curcumin. The different structures in the phospholipid bilayer of phospholipid/NaC mixed vesicles and the hydrophobic part of phospholipid/NaC mixed micelles where curcumin located are discussed to explain the interaction behaviors of phospholipid/NaC mixed systems with curcumin.

  10. Butyric acid fermentation of sodium hydroxide pretreated rice straw with undefined mixed culture.

    PubMed

    Ai, Binling; Li, Jianzheng; Chi, Xue; Meng, Jia; Liu, Chong; Shi, En

    2014-05-01

    This study describes an alternative mixed culture fermentation technology to anaerobically convert lignocellulosic biomass into butyric acid, a valuable product with wide application, without supplementary cellulolytic enzymes. Rice straw was soaked in 1% NaOH solution to increase digestibility. Among the tested pretreatment conditions, soaking rice straw at 50°C for 72 h removed ~66% of the lignin, but retained ~84% of the cellulose and ~71% of the hemicellulose. By using an undefined cellulose-degrading butyrate-producing microbial community as butyric acid producer in batch fermentation, about 6 g/l of butyric acid was produced from the pretreated rice straw, which accounted for ~76% of the total volatile fatty acids. In the repeated-batch operation, the butyric acid production declined batch by batch, which was most possibly caused by the shift of microbial community structure monitored by denaturing gradient gel electrophoresis. In this study, batch operation was observed to be more suitable for butyric acid production.

  11. Influence of crosslinker and ionic comonomer concentration on glass transition and demixing/mixing transition of copolymers poly(N-isopropylacrylamide) and poly(sodium acrylate) hydrogels.

    PubMed

    Zarzyka, Iwona; Pyda, Marek; Di Lorenzo, Maria Laura

    2014-01-01

    Hydrogels based on N-isopropylacrylamide and sodium acrylate as ionic comonomer were synthesized by free radical polymerization in water using N,N'-methylenebisacrylamide as crosslinker and ammonium persulfate as initiator. The glass transition of dried copolymers poly(N-isopropylacrylamide) (PNIPA) and poly(sodium acrylate) (SA) gels and demixing/mixing transition of PNIPA-SA hydrogels swollen with increasing amounts of water were studied using conventional differential scanning calorimetry. In the crosslinked polymers, the glass transition linearly increases, and the transition range becomes broader, with increasing crosslinker content. Increasing content of ionic comonomer also produces an increase of glass transition temperature, which moves to higher temperatures with higher sodium acrylate fraction. The influence of chemical structure of PNIPA-SA hydrogels on the lower critical solution temperature (LCST) of PNIPA-SA/water mixtures during heating and cooling was quantified as function of the content of the crosslinker and the ionic comonomer, as well as water content of the hydrogel in the range from 95 to 70 wt%. At parity of water content, the LCST occurs at higher temperatures for gels containing higher amounts of sodium acrylate. Similarly, the introduction of N,N'-methylenebisacrylamide causes an increase of the LCST, which grows with increasing of crosslinking degree of the hydrogel. PMID:24511175

  12. Amphiphile behavior in mixed solvent media I: self-aggregation and ion association of sodium dodecylsulfate in 1,4-dioxane-water and methanol-water media.

    PubMed

    Pan, A; Naskar, B; Prameela, G K S; Kumar, B V N Phani; Mandal, A B; Bhattacharya, S C; Moulik, S P

    2012-10-01

    Mixed aquo-organic solvents are used in chemical, industrial, and pharmaceutical processes along with amphiphilic materials. Their fundamental studies with reference to bulk and interfacial phenomena are thus considered to be important, but such detailed studies are limited. In this work, the interfacial adsorption of sodium dodecylsulfate (SDS, C12H25SO4(-)Na(+)) in dioxane-water (Dn-W) and methanol-water (Ml-W) media in extensive mixing ratios along with its bulk behavior have been investigated. The solvent-composition-dependent properties have been identified, and their quantifications have been attempted. The SDS micellization has been assessed in terms of different solvent parameters, and the possible formation of an ion pair and triple ion of the colloidal electrolyte, C12H25SO4(-)Na(+) in the Dn-W medium has been correlated and quantified. In the Ml-W medium at a high volume percent of Ml, the SDS amphiphile formed special associated species instead of ion association. The formation of self-assembly and the energetics of SDS in the mixed solvent media have been determined and assessed using conductometry, calorimetry, tensiometry, viscometry, NMR, and DLS methods. The detailed study undertaken herein with respect to the behavior of SDS in the mixed aquo-organic solvent media (Dn-W and Ml-W) is a new kind of endeavor.

  13. Quantitative ion beam analysis of M-C-O systems: application to an oxidized uranium carbide sample

    NASA Astrophysics Data System (ADS)

    Martin, G.; Raveu, G.; Garcia, P.; Carlot, G.; Khodja, H.; Vickridge, I.; Barthe, M. F.; Sauvage, T.

    2014-04-01

    A large variety of materials contain both carbon and oxygen atoms, in particular oxidized carbides, carbon alloys (as ZrC, UC, steels, etc.), and oxycarbide compounds (SiCO glasses, TiCO, etc.). Here a new ion beam analysis methodology is described which enables quantification of elemental composition and oxygen concentration profile over a few microns. It is based on two procedures. The first, relative to the experimental configuration relies on a specific detection setup which is original in that it enables the separation of the carbon and oxygen NRA signals. The second concerns the data analysis procedure i.e. the method for deriving the elemental composition from the particle energy spectrum. It is a generic algorithm and is here successfully applied to characterize an oxidized uranium carbide sample, developed as a potential fuel for generation IV nuclear reactors. Furthermore, a micro-beam was used to simultaneously determine the local elemental composition and oxygen concentration profiles over the first microns below the sample surface. This method is adapted to the determination of the composition of M?C?O? compounds with a sensitivity on elemental atomic concentrations around 1000 ppm.

  14. Micellar copolymerization of associative polymers: study of the effect of acrylamide on sodium dodecyl sulfate-poly(propylene oxide) methacrylate mixed micelles.

    PubMed

    Bastiat, Guillaume; Grassl, Bruno; François, Jeanne

    2005-09-15

    Mixed micelles of sodium dodecyl sulfate (SDS) and poly(propylene oxide) methacrylate (PPOMA) have been studied in the presence of acrylamide using conductimetry, fluorescence spectroscopy, and small-angle neutron scattering (SANS) under the following conditions: (i) the SDS-acrylamide binary system in water; (ii) the SDS-acrylamide-PPOMA ternary system in water. The addition of acrylamide in SDS solutions perturbs the micellization of the surfactant by decreasing the aggregation number of the micelles and increasing their ionization degree. The variations of the various micellar parameters versus the weight ratio R=PPOMA/SDS are different in the presence of acrylamide or in pure water. These differences are much more pronounced for the lower than for the higher PPOMA concentrations. There is competition between acrylamide and PPOMA and at higher PPOMA concentration, acrylamide tends to be released from SDS micelles and is completely replaced by PPOMA.

  15. The mixed glass former effect in 0.35sodium oxide + 0.65[(x)boron trioxide + (1-x)phosphorus pentoxide] glasses

    NASA Astrophysics Data System (ADS)

    Christensen, Randilynn Beth

    Energy storage is a growing concern in an ever increasingly battery driven society. Development of safer, smaller, and longer lasting batteries is in demand. Ion conducting glasses are an important type of solid electrolyte that could be used to answer this need. Unfortunately, many known ion conducting glasses, such as binary lithium oxide glasses with conductivities in the 10-7--10-8 S/cm range, are not conductive enough for practical use. In order for ion conducting glasses to be used as a commercial solid electrolyte, a method of increasing the glasses' ionic conductivity must be found. While alkali mixed glass former glasses, such as Bi2O3+B2O3+LiO2 and Li2S+SiS2+GeS2, have shown increases in the alkali ion conductivity up to two orders of magnitude, the cause of this increase is unclear. This phenomena has become known as the Mixed Glass Former Effect (MGFE) and is defined by a non-linear, non-additive change in ionic conductivity. Although the MGFE has been observed in the literature, it has not been observed in all mixed glass former (MGF) glasses and has also been seen as a negative or positive effect. In this talk, I will review our comprehensive study of the physical properties, structure, and the effect of composition on MGF sodium borophosphate glasses. It is our hypothesis that changes in the short range order structures, caused by the mixing of the boron and phosphate networks, are responsible for the MGFE. I will show a strong correlation between physical properties and structural changes with changing glass former composition.

  16. Mixed hemimicelles solid-phase extraction based on sodium dodecyl sulfate (SDS)-coated nano-magnets for the spectrophotometric determination of Fingolomid in biological fluids.

    PubMed

    Azari, Zhila; Pourbasheer, Eslam; Beheshti, Abolghasem

    2016-01-15

    In this study, mixed hemimicelles solid-phase extraction (SPE) based on sodium dodecyl sulfate (SDS)-coated nano-magnets Fe3O4 was investigated as a novel method for the separation and determination of Fingolimod (FLM) in water, urine and plasma samples prior to spectrophotometeric determination. Due to the high surface area of these new sorbents and the excellent adsorption capacity after surface modification by SDS, satisfactory extraction recoveries can be produced. The main factors affecting the adsolubilization of analysts, such as pH, surfactant and adsorbent amounts, ionic strength, extraction time and desorption conditions were studied and optimized. Under the selected conditions, FLM has been quantitatively extracted. The accuracy of the method was evaluated by recovery measurements on spiked samples, and good recoveries of 96%, 95% and 88% were observed for water, urine and plasma respectively. Proper linear behaviors over the investigated concentration ranges of 2-26, 2-17 and 2-13 mg/L with good coefficients of determination, 0.998, 0.997 and 0.995 were achieved for water, urine and plasma samples, respectively. To the best of our knowledge, this is the first time that a mixed hemimicelles SPE method based on magnetic separation and nanoparticles has been used as a simple and sensitive method for monitoring of FLM in water and biological samples.

  17. Mixed hemimicelles solid-phase extraction based on sodium dodecyl sulfate (SDS)-coated nano-magnets for the spectrophotometric determination of Fingolomid in biological fluids

    NASA Astrophysics Data System (ADS)

    Azari, Zhila; Pourbasheer, Eslam; Beheshti, Abolghasem

    2016-01-01

    In this study, mixed hemimicelles solid-phase extraction (SPE) based on sodium dodecyl sulfate (SDS)-coated nano-magnets Fe3O4 was investigated as a novel method for the separation and determination of Fingolimod (FLM) in water, urine and plasma samples prior to spectrophotometeric determination. Due to the high surface area of these new sorbents and the excellent adsorption capacity after surface modification by SDS, satisfactory extraction recoveries can be produced. The main factors affecting the adsolubilization of analysts, such as pH, surfactant and adsorbent amounts, ionic strength, extraction time and desorption conditions were studied and optimized. Under the selected conditions, FLM has been quantitatively extracted. The accuracy of the method was evaluated by recovery measurements on spiked samples, and good recoveries of 96%, 95% and 88% were observed for water, urine and plasma respectively. Proper linear behaviors over the investigated concentration ranges of 2-26, 2-17 and 2-13 mg/L with good coefficients of determination, 0.998, 0.997 and 0.995 were achieved for water, urine and plasma samples, respectively. To the best of our knowledge, this is the first time that a mixed hemimicelles SPE method based on magnetic separation and nanoparticles has been used as a simple and sensitive method for monitoring of FLM in water and biological samples.

  18. Impacts of Venturi Turbulent Mixing on the Size Distribution of Sodium Chloride and Dioctyl-Phthalate Aerosols

    SciTech Connect

    Cheng, M.-D.; Wainman, T.; Storey, J.

    2000-08-01

    Internal combustion engines are a major source of airborne particulate matter (PM). The size of the engine PM is in the sub-micrometer range. The number of engine particles per unit volume is high, normally in the range of 10{sup 12} to 10{sup 14}. To measure the size distribution of the engine particles dilution of an aerosol sample is required. A diluter utilizing a venturi ejector mixing technique is commercially available and tested. The purpose of this investigation was to determine if turbulence created by the ejector in the mini-dilutor changes the size of particles passing through it.

  19. Aging related changes in mixed basal saliva concentration of sodium, potassium and chloride in healthy non medicated humans.

    PubMed

    De Oliveira, Rui; Navas, Eunice; Duran, Carolina; Pinto, Maria; Gutierrez, Jose; Eblen-Zajjur, Antonio

    2014-01-01

    It is well known that the salivary flow is reduced by aging but ionic composition changes associated to aging have been less evaluated. To measure salivary and plasmatic [Na(+)], [K(+)] and [Cl(-)] and to correlate with age in healthy, non-medicated subjects of any gender, 165 healthy participating subjects (over 15 years old) were asked to give sample of 5 mL mix basal saliva in a plastic vial without any stimulation technique, additionally, 5 mL of venous blood was collected. Samples [Na(+)] and [K(+)] were measured by flame photometry (Corning™ M-405) and [Cl(-)] by voltametric chlorometry (Corning™ M-920). Ionic concentrations were expressed as (X±DE; meq.L⁻¹). All three ionic concentrations progressively increased with age, with the lineal regression equation being: [Na(+)] mEq=17.76 + 0.26(Age); r=+0.42; F=31.5; P=0.00001; [K(+)] mEq=13.2+0.15(Age); r=+0.32; F=16.5; P=0.00001; [Cl(-)] mEq=9.05+0.18(Age); r=+0.35; F=7.8; P=0.0071. Age induced changes in salivary ionic concentrations were not associated to blood ionic changes. However, saliva and blood [Na(+)] and [K(+)] were correlated (r=+0.25; F=4.49; P=0.04 and r=+0.30; F=6.98; P=0.01, respectively). Significant association was found among salivary ions: [Na(+)] mEq=9.14+0.99[K(+)] (r=+0.79; F=95.2; P=0.000001); [Cl(-)] mEq=0.95+0.56[Na(+)] (r=0.79; F=106.6; P=0.000001) and [Cl(-)] mEq=3.45+0.69[K(+)] (r=0.73; F=72.5; P=0.000001). These results confirm and measure the impact of aging over the mixed and resting salivary secretion process and suggest that local changes are not related to blood ionic composition. PMID:25101709

  20. Impacts of Venturi Turbulent Mixing on the Size Distributions of Sodium Chloride and Dioctyl-Phthalate Aerosols

    SciTech Connect

    Cheng, M-D.

    2000-08-23

    Internal combustion engines are a major source of airborne particulate matter (PM). The size of the engine PM is in the sub-micrometer range. The number of engine particles per unit volume is high, normally in the range of 10{sup 12} to 10{sup 14}. To measure the size distribution of the engine particles dilution of an aerosol sample is required. A diluter utilizing a venturi ejector mixing technique is commercially available and tested. The purpose of this investigation was to determine if turbulence created by the ejector in the mini-dilutor changes the size of particles passing through it. The results of the NaCl aerosol experiments show no discernible difference in the geometric mean diameter and geometric standard deviation of particles passing through the ejector. Similar results were found for the DOP particles. The ratio of the total number concentrations before and after the ejector indicates that a dilution ratio of approximately 20 applies equally for DOP and NaCl particles. This indicates the dilution capability of the ejector is not affected by the particle composition. The statistical analysis results of the first and second moments of a distribution indicate that the ejector may not change the major parameters (e.g., the geometric mean diameter and geometric standard deviation) characterizing the size distributions of NaCl and DOP particles. However, when the skewness was examined, it indicates that the ejector modifies the particle size distribution significantly. The ejector could change the skewness of the distribution in an unpredictable and inconsistent manner. Furthermore, when the variability of particle counts in individual size ranges as a result of the ejector is examined, one finds that the variability is greater for DOP particles in the size range of 40-150 nm than for NaCl particles in the size range of 30 to 350 nm. The numbers or particle counts in this size region are high enough that the Poisson counting errors are small (<10

  1. Tunable quasi-cw two-micron lasing in diode-pumped crystals of mixed Tm{sup 3+}-doped sodium - lanthanum - gadolinium molybdates and tungstates

    SciTech Connect

    Bol'shchikov, F A; Ryabochkina, P A; Zharikov, Evgeny V; Lis, Denis A; Subbotin, Kirill A; Zakharov, N G; Antipov, Oleg L

    2010-12-09

    Two-micron lasing is obtained for the first time on the {sup 3}F{sub 4} {yields} {sup 3}H{sub 6} transition of Tm{sup 3+} ions in diode-pumped crystals of mixed sodium - lanthanum - gadolinium tungstate Tm:NaLa{sub 1/2}Gd{sub 1/2}(WO{sub 4}){sub 2} (C{sub Tm} = 3.6 at %) (3.6Tm : NLGW) and molybdate Tm:NaLa{sub 1/3}Gd{sub 2/3}(MoO{sub 4}){sub 2} (C{sub Tm} = 4.8 at %) (4.8Tm : NLGM). For the 3.6Tm : NLGW crystal, the quasi-cw laser output power exceeded 200 mW and the slope efficiency (with respect to absorbed pump power) for the {pi}- and {sigma}-polarisations at wavelengths of 1908 and 1918 nm was 34% and 30%, respectively. The laser wavelength of this crystal was continuously tuned within the spectral range of 1860 - 1935 nm. For the 4.8Tm : NLGM crystal, the slope efficiency for the {pi}- and {sigma}-polarisations at wavelengths of 1910 and 1918 nm was 27% and 23%, respectively, and the laser wavelength was tunable within the spectral range of 1870 - 1950 nm. (lasers)

  2. Composition and Concentration Gradient Induced Structural Transition from Micelles to Vesicles in the Mixed System of Ionic Liquid-Diclofenac Sodium.

    PubMed

    Singh, Onkar; Kaur, Rajwinder; Aswal, Vinod Kumar; Mahajan, Rakesh Kumar

    2016-07-01

    Catanionic surfactant-hydrotrope mixtures have proven to be a striking alternative to tune microstructures over a wide range of compositions and also to minimize precipitation that is normally observed in catanionic mixtures at an equimolar ratio. These mixtures are supposed to be of great relevance in biological systems when a hydrotrope is a "drug". Keeping this in view, here we report composition- and dilution-induced structural changes in a catanionic mixture comprising ionic liquids (ILs), such as 1-dodecyl-3-methylimidazolium bromide (C12mimBr)/1-tetradecyl-3-methylimidazolium bromide (C14mimBr), and a drug, diclofenac sodium (DFNa), in aqueous solution. The structural changes are probed by small-angle neutron scattering (SANS), dynamic light scattering (DLS), and zeta-potential measurements. SANS data and size distribution curves clearly depict the formation of low curvature structures on going from the cation-rich to anion-rich composition up to a 0.7 mole fraction of DFNa (XDFNa). The amphiphilic nature of DFNa is supposed to alter the surface charge density, which is provoked by its incorporation into resulting aggregates, as confirmed by modified zeta-potential values. The modification of the average packing parameter resulting from the IL and DFNa complexation equilibrium seems to play a vital role in bringing out structural transitions of mixed aggregates. We also focused our attention to study the effect of dilution in concentrations ranging from 100 to 25 mM. At XDFNa = 0.0 and 0.1, the size of prolate ellipsoids decreases on dilution, mimicking classic behavior, but an opposite trend is observed at other XDFNa values. Dilution-induced transformation to larger aggregates is thought to be driven by the release of DFNa molecules from the mixed micelles on account of the critical micelle concentration (cmc) (solubility) mismatch between the two components. The role of other interactions such as cation-π and π-π in stabilizing the mixed aggregates in

  3. A mixed iron-manganese based pyrophosphate cathode, Na2Fe0.5Mn0.5P2O7, for rechargeable sodium ion batteries.

    PubMed

    Shakoor, Rana A; Park, Chan Sun; Raja, Arsalan A; Shin, Jaeho; Kahraman, Ramazan

    2016-02-01

    The development of secondary batteries based on abundant and cheap elements is vital. Among various alternatives to conventional lithium-ion batteries, sodium-ion batteries (SIBs) are promising due to the abundant resources and low cost of sodium. While there are many challenges associated with the SIB system, cathode is an important factor in determining the electrochemical performance of this battery system. Accordingly, ongoing research in the field of SIBs is inclined towards the development of safe, cost effective cathode materials having improved performance. In particular, pyrophosphate cathodes have recently demonstrated decent electrochemical performance and thermal stability. Herein, we report the synthesis, electrochemical properties, and thermal behavior of a novel Na2Fe0.5Mn0.5P2O7 cathode for SIBs. The material was synthesized through a solid state process. The structural analysis reveals that the mixed substitution of manganese and iron has resulted in a triclinic crystal structure (P1[combining macron] space group). Galvanostatic charge/discharge measurements indicate that Na2Fe0.5Mn0.5P2O7 is electrochemically active with a reversible capacity of ∼80 mA h g(-1) at a C/20 rate with an average redox potential of 3.2 V. (vs. Na/Na(+)). It is noticed that 84% of initial capacity is preserved over 90 cycles showing promising cyclability. It is also noticed that the rate capability of Na2Fe0.5Mn0.5P2O7 is better than Na2MnP2O7. Ex situ and CV analyses indicate that Na2Fe0.5Mn0.5P2O7 undergoes a single phase reaction rather than a biphasic reaction due to different Na coordination environment and different Na site occupancy when compared to other pyrophosphate materials (Na2FeP2O7 and Na2MnP2O7). Thermogravimetric analysis (25-550 °C) confirms good thermal stability of Na2Fe0.5Mn0.5P2O7 with only 2% weight loss. Owing to promising electrochemical properties and decent thermal stability, Na2Fe0.5Mn0.5P2O7, can be an attractive cathode for SIBs.

  4. Sodium Bicarbonate

    MedlinePlus

    ... pregnant, plan to become pregnant, or are breast-feeding. If you become pregnant while taking sodium bicarbonate, call your doctor. ... your body. If you are on a sodium-restricted diet, check with your doctor before taking sodium bicarbonate.

  5. Effects of wortmannin, sodium nitroprusside, insulin, genistein, and guanosine triphosphate on chemotaxis and cell growth of Entodinium caudatum, Epidinium caudatum, and mixed ruminal protozoa.

    PubMed

    Diaz, H L; Knapp, J R; Karnati, S K R; Dehority, B A; Firkins, J L

    2014-01-01

    The mechanisms by which ruminal protozoa sense and migrate toward nutrients are not fully understood. Chemotaxis by many diverse eukaryotic cells is mediated by phosphatidylinositol-3-kinase, which is highly conserved in receptor tyrosine kinase (RTK) signaling pathways and consistently inhibited by wortmannin. In experiment 1a, increasing the concentration of wortmannin inhibited cell growth nonlinearly at 24h of a culture of the rumen protozoan Entodinium caudatum, but high variability prevented growth inhibition of Epidinium caudatum from reaching significance. In experiment 1b, increasing the insulin concentration recovered 24-h cell counts for both cultures, depending on wortmannin concentration. In experiment 2, addition of sodium nitroprusside (Snp; activator of protein kinase G for cilial beat reversal in nonrumen ciliate models) at 500µM or wortmannin at 200µM in beakers containing rumen fluid decreased random swimming by mixed entodiniomorphids into capillary tubes (inserted into beakers) containing saline. Both Snp and wortmannin increased chemotaxis into tubes containing glucose compared with the beaker control. For isotrichids, beaker treatments had no response. Glucose increased chemotaxis, but peptides decreased chemotaxis even when combined with glucose. In experiment 3, we assessed preincubation of genistein (a purported RTK blocker in nonrumen ciliate models) at 40 or 400µM in beakers and guanosine triphosphate (GTP; a universal chemorepellent in nonrumen ciliate models, perhaps mediated through an RTK) at 10 or 100µM combined with glucose in capillary tubes. Neither genistein nor GTP affected chemotaxis toward glucose for entodiniomorphids. However, GTP at 100µM reduced chemotaxis toward glucose for isotrichids. After the animal is fed, isotrichids that are depleted in glycogen migrate to the dorsal area of the rumen, and the rapid uptake of sugars is enhanced through strong chemotaxis but can be reversed by peptides or GTP. In contrast

  6. Sudden cardiac arrest due to a single sodium channel mutation producing a mixed phenotype of Brugada and Long QT3 syndromes.

    PubMed

    Lakshmanadoss, U; Mertens, A; Gallagher, M; Kutinsky, I; Williamson, B

    2016-01-01

    Inherited arrhythmia syndromes are a known, albeit rare, cause of sudden cardiac arrest which may present with characteristic electrocardiogram changes in patients with structurally normal heart. There are a variety of distinct arrhythmogenic syndromes that arise from mutations in voltage gated sodium channels, resulting in either gain or loss of function. We describe a patient with a primary inherited arrhythmia syndrome which presented as sudden cardiac arrest. Further workup revealed that her arrest was due to a combination of Brugada syndrome and Long QT3 syndrome secondary to a deleterious mutation of voltage-gated, sodium channel, type V alpha subunit (SCN5A Thr1709Met). PMID:27676163

  7. Sodium Test

    MedlinePlus

    ... be limited. Home Visit Global Sites Search Help? Sodium Share this page: Was this page helpful? Also known as: Na Formal name: Sodium Related tests: Chloride , Bicarbonate , Potassium , Electrolytes , Osmolality , Basic ...

  8. 21 CFR 186.1770 - Sodium oleate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Sodium oleate. 186.1770 Section 186.1770 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) INDIRECT FOOD.... Commercially, sodium oleate is made by mixing and heating flaked sodium hydroxide and oleic acid. (b)...

  9. Liquid sodium dip seal maintenance system

    DOEpatents

    Briggs, Richard L.; Meacham, Sterling A.

    1980-01-01

    A system for spraying liquid sodium onto impurities associated with liquid dip seals of nuclear reactors. The liquid sodium mixing with the impurities dissolves the impurities in the liquid sodium. The liquid sodium having dissolved and diluted the impurities carries the impurities away from the site thereby cleaning the liquid dip seal and surrounding area. The system also allows wetting of the metallic surfaces of the dip seal thereby reducing migration of radioactive particles across the wetted boundary.

  10. Study on the ternary mixed ligand complex of palladium(II)-aminophylline-fluorescein sodium by resonance Rayleigh scattering, second-order scattering and frequency doubling scattering spectrum and its analytical application.

    PubMed

    Chen, Peili; Liu, Shaopu; Liu, Zhongfang; Hu, Xiaoli

    2011-01-01

    The interaction between palladium(II)-aminophylline and fluorescein sodium was investigated by resonance Rayleigh scattering, second-order scattering and frequency doubling scattering spectrum. In pH 4.4 Britton-Robinson (BR) buffer medium, aminophylline (Ami) reacted with palladium(II) to form chelate cation([Pd(Ami)]2+), which further reacted with fluorescein sodium (FS) to form ternary mixed ligand complex [Pd(Ami)(FS)2]. As a result, resonance Rayleigh scattering (RRS), second-order scattering (SOS) and frequency doubling scattering spectrum (FDS) were enhanced. The maximum scattering wavelengths of [Pd(Ami)(FS)2] were located at 300 nm (RRS), 650 nm (SOS) and 304 nm (FDS). The scattering intensities were proportional to the Ami concentration in a certain range and the detection limits were 7.3 ng mL(-1) (RRS), 32.9 ng mL(-1) (SOS) and 79.1 ng mL(-1) (FDS), respectively. Based on it, the new simple, rapid, and sensitive scattering methods have been proposed to determine Ami in urine and serum samples. Moreover, the formation mechanism of [Pd(Ami)(FS)2] and the reasons for enhancement of RRS were fully discussed. PMID:21163688

  11. The mixed glass former effect in 0.5(Sodium Sulfide) + 0.5[x(Germanium Sulfide) + (1-x)PS5/2] glasses

    NASA Astrophysics Data System (ADS)

    Bischoff, Christian Michael

    The rapidly growing global energy demand, especially for energy from renewable sources, requires development of longer-lasting, safer, and smaller batteries. Ion-conducting glasses are of particular interest as candidates for solid electrolyte materials in next-generation batteries. Commercial solid-state electrolytes require an ionic conductivity of at least 10-3 S/cm. In order to meet this design constraint, development of new ion-conducting glasses is required. An increase or decrease in the ionic conductivity of glasses can be achieved by mixing two glass former cations at constant fraction of the mobile cation, known as the mixed glass former effect (MGFE). This enhancement or depression of the ionic conductivity is non-linear and non-additive, and its cause is currently unknown. The 0.5Na2S + 0.5[xGeS 2 + (1-x)PS5/2] glasses exhibit a negative MGFE in Na + ion conductivity. If the cause of this depression in the Na + ion conductivity is better understood, it may enable the design of mixed glass former systems that will exhibit enhancement of the ionic conductivity. We hypothesis that changes in short range order structures occur when the thio-phosphate and thio-germanate glass networks are mixed, causing the negative MGFE. Our comprehensive study of the glass structure and physical properties of the 0.5Na2S + 0.5[xGeS2 + (1-x)PS5/2] glasses shows that structural changes in the ternary glasses strongly correlate with the decrease in the ionic conductivity.

  12. Scaling approach and thermal-hydraulic analysis in the reactor cavity cooling system of a high temperature gas -cooled reactor and thermal-jet mixing in a sodium fast reactor

    NASA Astrophysics Data System (ADS)

    Omotowa, Olumuyiwa A.

    This dissertation develops and demonstrates the application of the top-down and bottom-up scaling methodologies to thermal-hydraulic flows in the reactor cavity cooling system (RCCS) of the high temperature gas reactor (HTGR) and upper plenum of the sodium fast reactor (SFR), respectively. The need to integrate scaled separate effects and integral tests was identified. Experimental studies and computational tools (CFD) have been integrated to guide the engineering design, analysis and assessment of this scaling methods under single and two-phase flow conditions. To test this methods, two applicable case studies are considered, and original contributions are noted. Case 1: "Experimental Study of RCCS for the HTGR". Contributions include validation of scaling analysis using the top-down approach as guide to a ¼-scale integral test facility. System code, RELAP5, was developed based on the derived scaling parameters. Tests performed included system sensitivity to decay heat load and heat sink inventory variations. System behavior under steady-state and transient scenarios were predicted. Results show that the system has the capacity to protect the cavity walls from over-heating during normal operations and provide a means for decay heat removal under accident scenarios. A full width half maximum statistical method was devised to characterize the thermal-hydraulics of the non-linear two-phase oscillatory behavior. This facilitated understanding of the thermal hydraulic coupling of the loop segments of the RCCS, the heat transfer, and the two-phase flashing flow phenomena; thus the impact of scaling overall. Case 2: "Computational Studies of Thermal Jet Mixing in SFR". In the pool-type SFR, susceptible regions to thermal striping are the upper instrumentation structure and the intermediate heat exchanger (IHX). We investigated the thermal mixing above the core to UIS and the potential impact due to poor mixing. The thermal mixing of dual-jet flows at different

  13. Mixed hemimicelles solid-phase extraction based on sodium dodecyl sulfate-coated nano-magnets for selective adsorption and enrichment of illegal cationic dyes in food matrices prior to high-performance liquid chromatography-diode array detection detection.

    PubMed

    Qi, Ping; Liang, Zhi-an; Wang, Yu; Xiao, Jian; Liu, Jia; Zhou, Qing-qiong; Zheng, Chun-hao; Luo, Li-Ni; Lin, Zi-hao; Zhu, Fang; Zhang, Xue-wu

    2016-03-11

    In this study, mixed hemimicelles solid-phase extraction (MHSPE) based on sodium dodecyl sulfate (SDS) coated nano-magnets Fe3O4 was investigated as a novel method for the extraction and separation of four banned cationic dyes, Auramine O, Rhodamine B, Basic orange 21 and Basic orange 22, in condiments prior to HPLC detection. The main factors affecting the extraction of analysts, such as pH, surfactant and adsorbent concentrations and zeta potential were studied and optimized. Under optimized conditions, the proposed method was successful applied for the analysis of banned cationic dyes in food samples such as chili sauce, soybean paste and tomato sauce. Validation data showed the good recoveries in the range of 70.1-104.5%, with relative standard deviations less than 15%. The method limits of determination/quantification were in the range of 0.2-0.9 and 0.7-3μgkg(-1), respectively. The selective adsorption and enrichment of cationic dyes were achieved by the synergistic effects of hydrophobic interactions and electrostatic attraction between mixed hemimicelles and the cationic dyes, which also resulted in the removal of natural pigments interferences from sample extracts. When applied to real samples, RB was detected in several positive samples (chili powders) within the range from 0.042 to 0.177mgkg(-1). These results indicate that magnetic MHSPE is an efficient and selective sample preparation technique for the extraction of banned cationic dyes in a complex matrix. PMID:26877180

  14. Mixed lithium-sodium (LiNaCO3) and lithium-potassium (LiKCO3) carbonates for low temperature electrochemical applications: Structure, electronic properties and surface reconstruction from ab-initio calculations

    NASA Astrophysics Data System (ADS)

    Ricca, Chiara; Ringuedé, Armelle; Cassir, Michel; Adamo, Carlo; Labat, Frédéric

    2016-05-01

    The structural, electronic and surface properties of the mixed lithium-sodium (LiNaCO3) and lithium-potassium (LiKCO3) carbonates were studied through periodic calculations performed at the density functional theory (DFT) level, using three different exchange-correlation functionals. The hybrid functional PBE0 was found to be the best one to describe both geometric and electronic features of bulk LiNaCO3 and LiKCO3. Polar (001) and non-polar (110) low index surfaces were taken into account, the first one being found the most stable in both cases, after reconstruction. Both introduction of vacancies (R1) and octopolar terminations (R2) of (001), exposing Li ((001)Li) or Na ((001)Na) were described in detail. The computed stability order for the reconstructed surfaces in gas phase is: (001)R1Na > > (001)R1Li > (001)R2Na ≈ (001)R2Li. The obtained information, in particular regarding the electronic and surface properties, could be used in future to help understanding the role of mixed carbonates as component of oxide-carbonate electrolytes for low temperature solid oxide fuel cells (LT-SOFCs) applications, especially as reasonable starting points for dynamics calculations of liquid molten carbonates based systems.

  15. Mixed hemimicelles solid-phase extraction based on sodium dodecyl sulfate-coated nano-magnets for selective adsorption and enrichment of illegal cationic dyes in food matrices prior to high-performance liquid chromatography-diode array detection detection.

    PubMed

    Qi, Ping; Liang, Zhi-an; Wang, Yu; Xiao, Jian; Liu, Jia; Zhou, Qing-qiong; Zheng, Chun-hao; Luo, Li-Ni; Lin, Zi-hao; Zhu, Fang; Zhang, Xue-wu

    2016-03-11

    In this study, mixed hemimicelles solid-phase extraction (MHSPE) based on sodium dodecyl sulfate (SDS) coated nano-magnets Fe3O4 was investigated as a novel method for the extraction and separation of four banned cationic dyes, Auramine O, Rhodamine B, Basic orange 21 and Basic orange 22, in condiments prior to HPLC detection. The main factors affecting the extraction of analysts, such as pH, surfactant and adsorbent concentrations and zeta potential were studied and optimized. Under optimized conditions, the proposed method was successful applied for the analysis of banned cationic dyes in food samples such as chili sauce, soybean paste and tomato sauce. Validation data showed the good recoveries in the range of 70.1-104.5%, with relative standard deviations less than 15%. The method limits of determination/quantification were in the range of 0.2-0.9 and 0.7-3μgkg(-1), respectively. The selective adsorption and enrichment of cationic dyes were achieved by the synergistic effects of hydrophobic interactions and electrostatic attraction between mixed hemimicelles and the cationic dyes, which also resulted in the removal of natural pigments interferences from sample extracts. When applied to real samples, RB was detected in several positive samples (chili powders) within the range from 0.042 to 0.177mgkg(-1). These results indicate that magnetic MHSPE is an efficient and selective sample preparation technique for the extraction of banned cationic dyes in a complex matrix.

  16. Sodium Oxybate

    MedlinePlus

    ... used to prevent attacks of cataplexy (episodes of muscle weakness that begin suddenly and last for a ... of your body that you cannot control, sweating, muscle cramps, and fast heartbeat.Sodium oxybate may help ...

  17. Micellization and related behavior of sodium dodecylsulfate in mixed binary solvent media of tetrahydrofuran (Tf) and formamide (Fa) with water: a detailed physicochemical investigation.

    PubMed

    Pan, A; Naskar, B; Prameela, G K S; Kumar, B V N Phani; Aswal, V K; Bhattacharya, S C; Mandal, A B; Moulik, S P

    2014-08-21

    The detailed aggregation behavior of sodiumdodecyl sulfate (SDS) in tetrahydrofuran (Tf)-water (W) and formamide (Fa)-water (W) media at varied volume percent compositions has been investigated. Surface tension (ST), conductance (Cond), viscosity (Visc), isothermal titration calorimetry (ITC), nuclear magnetic resonance (NMR) and small angle neutron scattering (SANS) were used in this study. The presence of nonaqueous solvents affected the critical micelle concentration (CMC) of SDS, the counter-ion binding of the micelle, the energetics of the air/water interfacial adsorption and micellization of the amphiphiles in the bulk, the ion-association (ion-pair, triple-ion, quadruple, etc. between Na(+) and DS(-) ions) as well as the weakly soluble (aggregation less) amphiphile solution. Tf has been observed to produce a "dead zone" or "non-micelle formation zone" in the mixed Tf-W domain of 10-40 vol%. Fa influenced the SDS aggregation up to 70 vol%, at higher proportions (below the Krafft temperature (K(T))), instead of the micelle, "randomly arranged globular assembly" (RAGA) was formed. The correlation of the standard free energy of micellization (ΔG(m)(0)) with different solvent parameters (1) dielectric constant (ε), (2) viscosity (η0), (3) Reichardt parameter (E(T)(30)), (4) Gordon parameter (G), and (5) Hansen-Hildebrand hydrogen bonding parameter (δ(h)) has been attempted. It has been found that δ(h) produced a master correlation between ΔG(m)(0) and δ(h) for different binary mixtures such as Tf-W, Fa-W, Ml-W and Dn-W.

  18. New mixed ligand zinc(II) complexes based on the antiepileptic drug sodium valproate and bioactive nitrogen-donor ligands. Synthesis, structure and biological properties.

    PubMed

    Darawsheh, Mohanad; Abu Ali, Hijazi; Abuhijleh, A Latif; Rappocciolo, Emilia; Akkawi, Mutaz; Jaber, Suhair; Maloul, Salam; Hussein, Yasmeen

    2014-07-23

    Starting from the precursor [Zinc Valproate complex] (1), new mixed ligand zinc(II) complexes of valproic acid and nitrogen-based ligands, formulating as, [Zn(valp)22,9-dmphen] (2), [Zn2(valp)4(quin)2] (3), [Zn(valp)2(2-ampy)2] (4), and [Zn(valp)2(2-ampic)2] (5) (valp = valproate, 2,9-dmphen = 2,9-dimethyl-1,10-phenanthroline, quin = quinoline, 2-ampy = 2-aminopyridine, 2-ampic = 2-amino-6-picoline) were synthesized and characterized using IR, (1)H NMR, (13)C{(1)H} NMR and UV-Vis spectrometry. The crystal structures of complexes 2, 3 and 4 were determined using single-crystal X-ray diffraction. The complexes were also evaluated for their anti-bacterial activity using in-vitro agar diffusion method against three Gram-positive (Micrococcus luteus, Staphylococcus aureus, and Bacillus subtilis) and three Gram-negative (Escherichia coli, Klebsiella pneumoniae, and Proteus mirabilis) species. Complex 2 showed considerable activity against all tested microorganisms and the effect of complexation on the anti-bacterial activity of the parent ligand of 2 was also investigated. The anti-bacterial activity of 2,9-dmphen against Gram-negative bacteria was enhanced upon complexation with zinc valproate. On the other hand, complexes 1 and 3 showed weak inhibition activity against the tested species and complexes 4 and 5 didn't show any activity at all. Two methods were used for testing the inhibition of ferriprotoporphyrinIX bio-mineralization: a semi-quantitative micro-assay and a previously self-developed quantitative in-vitro method. Both were used to study the efficiency of these complexes in inhibiting the formation of the Malaria pigment which considered being the target of many known anti-malarial drugs such as Chloroquine and Amodiaquine. Results showed that the efficiency of complex 2 in preventing the formation of β-Hematin was 80%. The efficiency of Amodiaquine as a standard drug was reported to give 91%.

  19. Sodium diethyldithiocarbamate

    Integrated Risk Information System (IRIS)

    Sodium diethyldithiocarbamate ; CASRN 148 - 18 - 5 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Non

  20. Sodium fluoroacetate

    Integrated Risk Information System (IRIS)

    Sodium fluoroacetate ; CASRN 62 - 74 - 8 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogen

  1. Sodium azide

    Integrated Risk Information System (IRIS)

    Sodium azide ; CASRN 26628 - 22 - 8 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Ef

  2. Acifluorfen, sodium

    Integrated Risk Information System (IRIS)

    Acifluorfen , sodium ; CASRN 62476 - 59 - 9 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcino

  3. Sodium cyanide

    Integrated Risk Information System (IRIS)

    Jump to main content . Integrated Risk Information System Recent Additions | Contact Us Search : All EPA IRIS • You are here : EPA Home • Research • Environmental Assessment • IRIS • IRIS Summaries Redirect Page As of September 28 , 2010 , the assessment summary for sodium cyanide is included in the

  4. Test Your Sodium Smarts

    MedlinePlus

    ... You may be surprised to learn how much sodium is in many foods. Sodium, including sodium chloride ... foods with little or no salt. Test your sodium smarts by answering these 10 questions about which ...

  5. Low sodium diet (image)

    MedlinePlus

    ... for you. Look for these words on labels: low-sodium, sodium-free, no salt added, sodium-reduced, or ... for you. Look for these words on labels: low-sodium, sodium-free, no salt added, sodium-reduced, or ...

  6. The roles of electronic exchange and correlation in charge-transfer- to-solvent dynamics: Many-electron nonadiabatic mixed quantum/classical simulations of photoexcited sodium anions in the condensed phase

    SciTech Connect

    Glover, William J.; Larsen, Ross E.; Schwartz, Benjamin J.

    2008-10-28

    The charge-transfer-to-solvent (CTTS) reactions of solvated atomic anions serve as ideal models for studying the dynamics of electron transfer: The fact that atomic anions have no internal degrees of freedom provides one of the most direct routes to understanding how the motions of solvent molecules influence charge transfer, and the relative simplicity of atomic electronic structure allows for direct contact between theory and experiment. To date, molecular dynamics simulations of the CTTS process have relied on a single-electron description of the atomic anion--only the electron involved in the charge transfer has been treated quantum mechanically, and the electronic structure of the atomic solute has been treated via pseudopotentials. In this paper, we examine the severity of approximating the electronic structure of CTTS anions with a one-electron model and address the role of electronic exchange and correlation in both CTTS electronic structure and dynamics. To do this, we perform many-electron mixed quantum/classical molecular dynamics simulations of the ground- and excited-state properties of the aqueous sodium anion (sodide). We treat both of the sodide valence electrons quantum mechanically and solve the Schroedinger equation using configuration interaction with singles and doubles (CISD), which provides an exact solution for two electrons. We find that our multielectron simulations give excellent general agreement with experimental results on the CTTS spectroscopy and dynamics of sodide in related solvents. We also compare the results of our multielectron simulations to those from one-electron simulations on the same system [C. J. Smallwood et al., J. Chem. Phys. 119, 11263 (2003)] and find substantial differences in the equilibrium CTTS properties and the nonadiabatic relaxation dynamics of one- and two-electron aqueous sodide. For example, the one-electron model substantially underpredicts the size of sodide, which in turn results in a dramatically

  7. Low sodium level

    MedlinePlus

    Low sodium level is a condition in which the amount of sodium (salt) in the blood is lower than normal. The ... Sodium is found mostly in the body fluids outside the cells. It is very important for maintaining ...

  8. Danaparoid sodium.

    PubMed

    Acostamadiedo, J M; Iyer, U G; Owen, J

    2000-05-01

    Danaparoid sodium (Orgaran, Organon) is a heparinoid glycosamino-glycuronan antithrombotic agent approved for the prophylaxis of post-operative deep vein thrombosis (DVT), which may lead to pulmonary embolism (PE) in patients undergoing elective hip replacement surgery. Danaparoid is a low molecular weight heparinoid consisting of a mixture of heparan sulphate (84%), dermatan sulphate (12%) and small amounts of chondroitin sulphate (4%), whose antithrombotic activity has been well established. Its pharmacological effect is exerted primarily by inhibiting Factors Xa (FXa) and IIa (FIIa) at a ratio greater than heparin, with a minimal effect on platelet function. Danaparoid exhibits low cross-reactivity with heparin-induced antibodies when compared with heparin or low molecular weight heparins (LMWH), thereby making it an excellent choice for the management of heparin-induced thrombocytopenia (HIT). It has excellent bioavailability following s.c. injection. Danaparoid has little effect on routine coagulation tests (activated partial thromboplastin time [aPTT], prothrombin time [PT], and thrombin time [TT]). Patients with elevated serum creatinine should be monitored carefully. For its FDA approved indication (DVT prophylaxis during hip replacement surgery), its cost per day is approximately eight times more than LMWH. Even though monitoring is not routinely necessary according to the manufacturer for its approved indication, monitoring is frequently necessary when it is used in other clinical scenarios. Its higher cost than comparable therapies for DVT prophylaxis and the low availability of the FXa assay in most non-tertiary care hospitals has limited the widespread use of danaparoid. Danaparoid has been found to be effective in the treatment of HIT although this is an off label use, despite being the most frequent reason why danaparoid is used. PMID:11249517

  9. Nedocromil sodium (Tilade).

    PubMed

    Bartels, L A; Farrington, E

    1994-01-01

    Nedocromil sodium is a well-tolerated antiasthmatic agent for initial therapy in patients with mild or moderate asthma not well controlled with inhaled beta-2 agonists and/or where methylxanthines are indicated. Like cromolyn sodium, nedocromil sodium offers a potential alternative to inhaled corticosteroids as maintenance therapy in patients with mild or moderate asthma not adequately controlled by bronchodilators. Furthermore, cromolyn sodium and nedocromil sodium may also reduce the usage of corticosteroids and provide some additional symptom control in patients whose asthma is not suitably controlled by optimal doses of inhaled corticosteroids. Both nedocromil sodium and cromolyn sodium are more efficacious than placebo for controlling of asthma, however, few studies have compared the effectiveness of cromolyn versus nedocromil at this time. Further experience and comparison studies of nedocromil sodium with cromolyn sodium in children are required before the role of nedocromil sodium as maintenance treatment in young asthmatic patients can be defined.

  10. Docusate Sodium and Pregnancy

    MedlinePlus

    ... live chat Live Help Fact Sheets Share Docusate Sodium Friday, 01 April 2016 In every pregnancy, a ... This sheet talks about whether exposure to docusate sodium may increase the risk for birth defects over ...

  11. Diclofenac sodium overdose

    MedlinePlus

    ... page: //medlineplus.gov/ency/article/002630.htm Diclofenac sodium overdose To use the sharing features on this page, please enable JavaScript. Diclofenac sodium is a prescription medicine used to relieve pain ...

  12. Sodium Ferric Gluconate Injection

    MedlinePlus

    Sodium ferric gluconate injection is used to treat iron-deficiency anemia (a lower than normal number of ... are also receiving the medication epoetin (Epogen, Procrit). Sodium ferric gluconate injection is in a class of ...

  13. Fractional excretion of sodium

    MedlinePlus

    FE sodium; FENa ... to a lab. There, they are examined for salt (sodium) and creatinine levels. Creatinine is a chemical waste ... your normal foods with a normal amount of salt, unless otherwise instructed by your health care provider. ...

  14. Organic electrolytes for sodium batteries

    NASA Astrophysics Data System (ADS)

    Vestergaard, B.

    1992-09-01

    A summary of earlier given status reports in connection with the project on organic electrolytes for sodium batteries is presented. The aim of the investigations was to develop new room temperature molten salts electrolytes mainly with radical substituted heterocyclic organic chlorides mixed with aluminum chloride. The new electrolytes should have an ionic conductivity comparable with MEIC1:AlCl3 or better. A computer model program MOPAC (Molecular Orbital Package) was to be included to calculate theoretically reduction potentials for a variety of organic cations. Furthermore, MOPAC could be utilized to predict the electron densities, and then give a prediction of the stability of the organic cation.

  15. Modelling Cometary Sodium Tails

    NASA Astrophysics Data System (ADS)

    Birkett, K. S.; Jones, G. H.; Coates, A. J.

    2013-12-01

    Neutral sodium is readily observed in cometary spectra and can be seen to form its own distinct tail at high activity comets. Solar radiation pressure accelerates the sodium atoms antisunward and, as strong sodium absorption lines are present in the solar spectrum, the magnitude of this force is dependent upon the Doppler shift of the incident solar radiation. Therefore the heliocentric velocity of the sodium atom directly determines its acceleration. This can produce unique effects, such as a stagnation region. Sodium is relatively easy to detect and so can potentially be used to trace mechanisms in the coma that are otherwise difficult to observe. The source of neutral sodium in the tail currently remains unknown. We have therefore developed a new, three dimensional Monte-Carlo model of neutral cometary sodium in order to facilitate testing of different source production functions. It includes weightings due to neutral sodium lifetime, variation of cometary sodium emission due to Fraunhofer absorption lines and solar flux variation with heliocentric distance. The Swings and Greenstein effects, which can have particularly dramatic effects in near-Sun comets, are also considered comprehensively. Preliminary results from this model are presented, focusing on a comparison of predictions of the neutral sodium tail of Comet C/2012 S1 (ISON) with initial observations.

  16. Stability of Colistimethate Sodium in Aqueous Solution

    PubMed Central

    Gray, W.; Fuchs, E. J.; Griffiss, J. M.; Salata, R. A.; Blumer, J.

    2012-01-01

    Colistimethate sodium, increasingly used to treat multidrug-resistant Gram-negative infections, spontaneously hydrolyzes to form colistin A (polymyxin E1) and B (polymyxin E2/B) when mixed with water. High levels of these active breakdown products at the time of administration have been associated with nephrotoxicity and even death. In this study, reconstituted colistimethate sodium was shown to be stable (<1.0% colistin A/B formation) for up to 24 h when stored at 21, 0, −20, and −70°C. PMID:23070159

  17. Sodium remote from Io

    NASA Astrophysics Data System (ADS)

    Brown, R. A.; Schneider, N. M.

    1981-12-01

    Measurements of sodium emission lines originating in the middle Jupiter magnetosphere are measured, confirming the wide dispersal of neutral sodium in the Jovian system in at least two distinct manifestations. Candidate neutral transport processes in the context of the observed kinematical signatures are discussed. It is argued that the normal emission feature is produced by sodium atoms on bound elliptical orbits originating in the Io sodium cloud but with apojove in the field of view. Observations of the fast sodium feature indicate that atoms episodically acquire a broad range of line-of-sight velocities above the Jupiter gravitational escape speed and far above the speeds characteristic of surface-sputtered atoms. Three suggested reactions are distinguished according to (1) production rates based on estimated plasmaspheric properties, (2) kinematical signature, and (3) the timing of occurrences of the fast sodium feature.

  18. Miscibility of sodium chloride and sodium dodecyl sulfate in the adsorbed film and aggregate.

    PubMed

    Iyota, Hidemi; Krastev, Rumen

    2009-04-01

    The adsorption, micelle formation, and salting out of sodium dodecyl sulfate in the presence of sodium chloride were studied from the viewpoint of their mixed adsorption and aggregate formation. The surface tension of aqueous solutions of a sodium chloride-sodium dodecyl sulfate mixture was measured as a function of the total molality and composition of the mixture. Phase diagrams of adsorption and aggregate formation were obtained by applying thermodynamic equations to the surface tension. Judging from the phase diagrams, sodium chloride and sodium dodecyl sulfate are miscible in the adsorbed film at very large composition of sodium chloride and in the salted-out crystalline particle, while they are immiscible in the micelle. The miscibilities in the adsorbed film, micelle, and crystalline particle increase in the following order: particle > adsorbed film > micelle. The difference in miscibility among the oriented states was ascribed to the difference in geometry between the adsorbed film and micelle and to the interaction between bilayer surfaces in the particle.

  19. Method using lime slurry for regenerating sodium sulfite in double alkali flue gas desulfurization process

    SciTech Connect

    Dabbs, J.C.; Dauerman, L.; Delaney, B.; Rao, K.K.

    1981-05-12

    In the process of desulfurizing flue gases in which an alkaline solution of sodium, such as sodium sulfite or sodium hydroxide, is contacted with gases in a scrubber to produce a sodium bisulfite solution, an improved method is provided for substantially reducing the time and equipment required to regenerate the sodium solution. In the method, a lime slurry stream and a sodium bisulfite stream are conflowed into a bifurcated mixing nozzle having a pair of converging inlets and a common outlet. The confluence of the streams in the nozzle creates turbulence which causes the lime slurry to react substantially instantaneously with the sodium bisulfite solution to regenerate the sodium solution which is recycled to the scrubber and a calcium sulfite precipitate which is filtered from the sodium solution and discarded.

  20. Decode the Sodium Label Lingo

    MedlinePlus

    ... For Preschooler For Gradeschooler For Teen Decode the Sodium Label Lingo Published January 24, 2013 Print Email Reading food labels can help you slash sodium. Here's how to decipher them. "Sodium free" or " ...

  1. Mercury's sodium exosphere

    NASA Astrophysics Data System (ADS)

    Leblanc, F.; Johnson, R. E.

    2003-08-01

    Mercury's neutral sodium exosphere is simulated using a comprehensive 3D Monte Carlo model following sodium atoms ejected from Mercury's surface by thermal desorption, photon stimulated desorption, micro-meteoroid vaporization and solar wind sputtering. The evolution of the sodium surface density with respect to Mercury's rotation and its motion around the Sun is taken into account by considering enrichment processes due to surface trapping of neutrals and ions and depletion of the sodium available for ejection from the surfaces of grains. The change in the sodium exosphere is calculated during one Mercury year taking into account the variations in the solar radiation pressure, the photo-ionization frequency, the solar wind density, the photon and meteoroid flux intensities, and the surface temperature. Line-of-sight column densities at different phase angles, the supply rate of new sodium, average neutral and ion losses over a Mercury year, surface density distribution and the importance of the different processes of ejection are discussed in this paper. The sodium surface density distribution is found to become significantly nonuniform from day to night sides, from low to high latitudes and from morning to afternoon because of rapid depletion of sodium atoms in the surfaces of grains mainly driven by thermal depletion. The shape of the exosphere, as it would be seen from the Earth, changes drastically with respect to Mercury's heliocentric position. High latitude column density maxima are related to maxima in the sodium surface concentration at high latitudes in Mercury's surface and are not necessarily due to solar wind sputtering. The ratio between the sodium column density on the morning side of Mercury's exosphere and the sodium column density on the afternoon side is consistent with the conclusions of Sprague et al. (1997, Icarus 129, 506-527). The model, which has no fitting parameters, shows surprisingly good agreement with recent observations of Potter et

  2. METHOD FOR REMOVING SODIUM OXIDE FROM LIQUID SODIUM

    DOEpatents

    Bruggeman, W.H.; Voorhees, B.G.

    1957-12-01

    A method is described for removing sodium oxide from a fluent stream of liquid sodium by coldtrapping the sodium oxide. Apparatus utilizing this method is disclosed in United States Patent No. 2,745,552. Sodium will remain in a molten state at temperatures below that at which sodium oxide will crystallize out and form solid deposits, therefore, the contaminated stream of sodium is cooled to a temperature at which the solubility of sodium oxide in sodium is substantially decreased. Thereafter the stream of sodium is passed through a bed of stainless steel wool maintained at a temperature below that of the stream. The stream is kept in contact with the wool until the sodium oxide is removed by crystal growth on the wool, then the stream is reheated and returned to the system. This method is useful in purifying reactor coolants where the sodium oxide would otherwise deposit out on the walls and eventually plug the coolant tubes.

  3. Iron bioavailability from a lipid-based complementary food fortificant mixed with millet porridge can be optimized by adding phytase and ascorbic acid but not by using a mixture of ferrous sulfate and sodium iron EDTA.

    PubMed

    Cercamondi, Colin I; Egli, Ines M; Mitchikpe, Evariste; Tossou, Felicien; Hessou, Joamel; Zeder, Christophe; Hounhouigan, Joseph D; Hurrell, Richard F

    2013-08-01

    Home fortification with lipid-based nutrient supplements (LNSs) is a promising approach to improve bioavailable iron and energy intake of young children in developing countries. To optimize iron bioavailability from an LNS named complementary food fortificant (CFF), 3 stable isotope studies were conducted in 52 young Beninese children. Test meals consisted of millet porridge mixed with CFF and ascorbic acid (AA). Study 1 compared iron absorption from FeSO4-fortifed meals with meals fortified with a mixture of FeSO4 and NaFeEDTA. Study 2 compared iron absorption from FeSO4-fortifed meals without or with extra AA. Study 3 compared iron absorption from FeSO4-fortified meals with meals containing phytase added prior to consumption, once without or once with extra AA. Iron absorption was measured as erythrocyte incorporation of stable isotopes. In study 1, iron absorption from FeSO4 (8.4%) was higher than that from the mixture of NaFeEDTA and FeSO4 (5.9%; P < 0.05). In study 2, the extra AA increased absorption (11.6%) compared with the standard AA concentration (7.3%; P < 0.001). In study 3, absorption from meals containing phytase without or with extra AA (15.8 and 19.9%, respectively) increased compared with meals without phytase (8.0%; P < 0.001). The addition of extra AA to meals containing phytase increased absorption compared with the test meals containing phytase without extra AA (P < 0.05). These findings suggest that phytase and AA, and especially a combination of the two, but not a mixture of FeSO4 and NaFeEDTA would be useful strategies to increase iron bioavailability from a CFF mixed with cereal porridge.

  4. SODIUM DEUTERIUM REACTOR

    DOEpatents

    Oppenheimer, E.D.; Weisberg, R.A.

    1963-02-26

    This patent relates to a barrier system for a sodium heavy water reactor capable of insuring absolute separation of the metal and water. Relatively cold D/sub 2/O moderator and reflector is contained in a calandria into which is immersed the fuel containing tubes. The fuel elements are cooled by the sodium which flows within the tubes and surrounds the fuel elements. The fuel containing tubes are surrounded by concentric barrier tubes forming annular spaces through which pass inert gases at substantially atmospheric pressure. Header rooms above and below the calandria are provided for supplying and withdrawing the sodium and inert gases in the calandria region. (AEC)

  5. Submersible sodium pump

    DOEpatents

    Brynsvold, G.V.; Lopez, J.T.; Olich, E.E.; West, C.W.

    1989-11-21

    An electromagnetic submerged pump has an outer cylindrical stator with an inner cylindrical conductive core for the submerged pumping of sodium in the cylindrical interstitial volume defined between the stator and core. The cylindrical interstitial volume is typically vertically oriented, and defines an inlet at the bottom and an outlet at the top. The outer stator generates upwardly conveyed toroidal magnetic fields, which fields convey preferably from the bottom of the pump to the top of the pump liquid sodium in the cold leg of a sodium cooled nuclear reactor. The outer cylindrical stator has a vertically disposed duct surrounded by alternately stacked layers of coil units and laminates. 14 figs.

  6. Submersible sodium pump

    DOEpatents

    Brynsvold, Glen V.; Lopez, John T.; Olich, Eugene E.; West, Calvin W.

    1989-01-01

    An electromagnetic submerged pump has an outer cylindrical stator with an inner cylindrical conductive core for the submerged pumping of sodium in the cylindrical interstitial volume defined between the stator and core. The cylindrical interstitial volume is typically vertically oriented, and defines an inlet at the bottom and an outlet at the top. The outer stator generates upwardly conveyed toroidal magnetic fields, which fields convey preferably from the bottom of the pump to the top of the pump liquid sodium in the cold leg of a sodium cooled nuclear reactor. The outer cylindrical stator has a vertically disposed duct surrounded by alternately stacked layers of coil units and laminates.

  7. Sodium bisulfate poisoning

    MedlinePlus

    ... in large amounts. This article discusses poisoning from swallowing sodium bisulfate. This article is for information only. ... Symptoms from swallowing more than a tablespoon of this acid may include: Burning pain in the mouth Chest pain from burns ...

  8. Sodium Polystyrene Sulfonate

    MedlinePlus

    ... is used to treat hyperkalemia (increased amounts of potassium in the body). Sodium polystyrene sulfonate is in a class of medications called potassium-removing agents. It works by removing excess potassium ...

  9. MICROEMULSION OF MIXED CHLORINATED SOLVENTS USING FOOD GRADE (EDIBLE) SURFACTANTS

    EPA Science Inventory

    Ground water contamination frequently consists of mixed chlorinated solvents [e.g., tetrachloroethylene (PCE), trichloroethylene (TCE), and trans-1,2- dichloroethylene (DCE)]. In this research, mixtures of the food grade (edible) surfactants bis(2-ethylhexyl) sodium sulfosuccinat...

  10. Dietary sodium intake, airway responsiveness, and cellular sodium transport.

    PubMed

    Tribe, R M; Barton, J R; Poston, L; Burney, P G

    1994-06-01

    Both epidemiologic and experimental evidence suggest that a high dietary sodium intake may increase airway responsiveness, but no adequate explanation exists of how changes in sodium intake might lead to increased responsiveness. This investigation was carried out to study dietary sodium intake and airway response to methacholine in relation to cellular sodium transport in 52 young men. Airway response to methacholine was associated with urinary sodium excretion when subjects were on normal sodium intake. Airway responsiveness in patients with mild asthma correlated with the furosemide-insensitive influx of sodium into peripheral leukocytes stimulated by autologous serum, but there was no relation between this influx and 24-h urinary sodium excretion. In a separate investigation, serum from subjects with increased airway responsiveness caused an increase in the sodium influx and sodium content of leukocytes from nonatopic subjects. The magnitude of the furosemide-insensitive, serum stimulated influx was related to the degree of airway responsiveness of the serum donor, as was the increase in intracellular sodium content. Neither was related to the 24-h urinary sodium excretion of the donor. Patients with airway hyperresponsiveness have an increased sodium influx into cells stimulated by a serum-borne factor. This is independent of the effect of added dietary sodium on airway responsiveness.

  11. Mixed Dementia

    MedlinePlus

    ... bodies , What Is Alzheimer's? NIA-Funded Memory & Aging Project Reveals Mixed Dementia Common Data from the first ... disease. For example, in the Memory and Aging Project study involving long-term cognitive assessments followed by ...

  12. Sodium sulfur battery seal

    DOEpatents

    Mikkor, Mati

    1981-01-01

    This disclosure is directed to an improvement in a sodium sulfur battery construction in which a seal between various battery compartments is made by a structure in which a soft metal seal member is held in a sealing position by holding structure. A pressure applying structure is used to apply pressure on the soft metal seal member when it is being held in sealing relationship to a surface of a container member of the sodium sulfur battery by the holding structure. The improvement comprises including a thin, well-adhered, soft metal layer on the surface of the container member of the sodium sulfur battery to which the soft metal seal member is to be bonded.

  13. Development of a mesospheric sodium laser beacon for atmospheric adaptive optics. (Reannouncement with new availability information)

    SciTech Connect

    Jeys, T.H.

    1991-12-31

    The authors have developed laser sources of sodium-resonance radiation based on the sum-frequency mixing of Nd:YAG laser radiation. The sources are suitable for generating a fluorescence spot in the earth`s mesospheric sodium layer for use in adaptive optics compensation. Taking into account the sodium fluorescence lifetime, Doppler broadening, hyperfine structure, radiative saturation, optical pumping, and radiation pressure, we can optimize the intensity of the fluorescence by using spectral and temporal tailoring of the laser radiation.

  14. Sodium storage and injection system

    NASA Technical Reports Server (NTRS)

    Keeton, A. R. (Inventor)

    1979-01-01

    A sodium storage and injection system for delivering atomized liquid sodium to a chemical reactor employed in the production of solar grade silicon is disclosed. The system is adapted to accommodate start-up, shut-down, normal and emergency operations, and is characterized by (1) a jacketed injection nozzle adapted to atomize liquefied sodium and (2) a supply circuit connected to the nozzle for delivering the liquefied sodium. The supply circuit is comprised of a plurality of replaceable sodium containment vessels, a pump interposed between the vessels and the nozzle, and a pressurizing circuit including a source of inert gas connected with the vessels for maintaining the sodium under pressure.

  15. Dalapon, sodium salt

    Integrated Risk Information System (IRIS)

    Dalapon , sodium salt ; CASRN 75 - 99 - 0 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinoge

  16. Chlorite (sodium salt)

    Integrated Risk Information System (IRIS)

    Chlorite ( sodium salt ) ; CASRN 7758 - 19 - 2 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarc

  17. Decomposition of Sodium Tetraphenylborate

    SciTech Connect

    Barnes, M.J.

    1998-11-20

    The chemical decomposition of aqueous alkaline solutions of sodium tetraphenylborate (NaTPB) has been investigated. The focus of the investigation is on the determination of additives and/or variables which influence NaTBP decomposition. This document describes work aimed at providing better understanding into the relationship of copper (II), solution temperature, and solution pH to NaTPB stability.

  18. Sodium sulfur battery seal

    DOEpatents

    Topouzian, Armenag

    1980-01-01

    This invention is directed to a seal for a sodium sulfur battery in which a flexible diaphragm sealing elements respectively engage opposite sides of a ceramic component of the battery which separates an anode compartment from a cathode compartment of the battery.

  19. Process for making boron nitride using sodium cyanide and boron

    DOEpatents

    Bamberger, Carlos E.

    1990-01-01

    This a very simple process for making boron nitride by mixing sodium cyanide and boron phosphate and heating the mixture in an inert atmosphere until a reaction takes place. The product is a white powder of boron nitride that can be used in applications that require compounds that are stable at high temperatures and that exhibit high electrical resistance.

  20. Process for making boron nitride using sodium cyanide and boron

    DOEpatents

    Bamberger, Carlos E.

    1990-02-06

    This a very simple process for making boron nitride by mixing sodium cyanide and boron phosphate and heating the mixture in an inert atmosphere until a reaction takes place. The product is a white powder of boron nitride that can be used in applications that require compounds that are stable at high temperatures and that exhibit high electrical resistance.

  1. Increased dietary sodium is independently associated with greater mortality among prevalent hemodialysis patients.

    PubMed

    Mc Causland, Finnian R; Waikar, Sushrut S; Brunelli, Steven M

    2012-07-01

    Dietary sodium is thought to play a major role in the pathogenesis of hypertension, hypervolemia, and mortality in hemodialysis patients; hence, sodium restriction is almost universally recommended. Since the evidence upon which to base these assumptions is limited, we undertook a post-hoc analysis of 1770 patients in the Hemodialysis Study with available dietary, clinical, and laboratory information. Within this cohort, 772 were men, 1113 black, and 786 diabetic, with a mean age of 58 years and a median dietary sodium intake of 2080 mg/day. After case-mix adjustment, linear regression modeling found that higher dietary sodium was associated with a greater ultrafiltration requirement, caloric and protein intake; sodium to calorie intake ratio was associated with a greater ultrafiltration requirement; and sodium to potassium ratio was associated with higher serum sodium. No indices were associated with the pre-dialysis systolic blood pressure. Cox regression modeling found that higher baseline dietary sodium and the ratio of sodium to calorie or potassium were each independently associated with greater all-cause mortality. No association between a prescribed dietary sodium restriction and mortality were found. Thus, higher reported dietary sodium intake is independently associated with greater mortality among prevalent hemodialysis patients. Randomized trials will be necessary to determine whether dietary sodium restriction improves survival.

  2. Clinical overview of nedocromil sodium.

    PubMed

    König, P

    1995-01-01

    Nedocromil sodium is a novel anti-inflammatory agent that has been demonstrated to significantly improve pulmonary function and decrease bronchial hyperreactivity in asthmatic patients. Currently available only as an inhaled drug, nedocromil sodium has an excellent safety profile, the only adverse effect being a slightly unpleasant taste. Nedocromil sodium has been used as a replacement for sustained-release theophylline therapy; the overall efficacy of nedocromil sodium is at least equivalent to that of theophylline, with less adverse effects occurring in those patients treated with nedocromil sodium rather than with theophylline. Nedocromil sodium also appears to be equal in efficacy to low doses of beclomethasone when employed in patients with mild to moderate asthma. Addition of nedocromil sodium to an ongoing regimen of beclomethasone may also allow for reduction in the dosage of inhaled corticosteroid. The overall safety of therapy with nedocromil sodium suggests that it be considered as initial therapy for those patients having mild to moderate asthma.

  3. Effective shelf-life of prepared sodium hypochlorite solution.

    PubMed

    Johnson, B R; Remeikis, N A

    1993-01-01

    Although the tissue solvent and bactericidal properties of sodium hypochlorite are well known, the effective shelf-life of prepared sodium hypochlorite solutions is not known. The stability of sodium hypochlorite is adversely affected by exposure to high temperature, light, air, and the presence of organic and inorganic contaminants. The purpose of this study was to investigate the variables of storage conditions and time on the tissue-dissolving capacity of three different concentrations of sodium hypochlorite. Fresh frozen human umbilical cord was used as the tissue sample for this experiment. Tissue samples were dissolved at time intervals ranging from 1 day to 10 wk in 5.25%, 2.62%, and 1.0% solutions of sodium hypochlorite. The tissue-dissolving ability of 5.25% sodium hypochlorite remains stable for at least 10 wk. The tissue-dissolving ability of 2.62% and 1.0% sodium hypochlorite remains relatively stable for 1 wk after mixing, then exhibits a significant decrease in tissue-dissolving ability at 2 wk and beyond.

  4. Cast Stone Formulation At Higher Sodium Concentrations

    SciTech Connect

    Fox, K. M.; Edwards, T. A.; Roberts, K. B.

    2013-10-02

    A low temperature waste form known as Cast Stone is being considered to provide supplemental Low Activity Waste (LAW) immobilization capacity for the Hanford site. Formulation of Cast Stone at high sodium concentrations is of interest since a significant reduction in the necessary volume of Cast Stone and subsequent disposal costs could be achieved if an acceptable waste form can be produced with a high sodium molarity salt solution combined with a high water to premix (or dry blend) ratio. The objectives of this study were to evaluate the factors involved with increasing the sodium concentration in Cast Stone, including production and performance properties and the retention and release of specific components of interest. Three factors were identified for the experimental matrix: the concentration of sodium in the simulated salt solution, the water to premix ratio, and the blast furnace slag portion of the premix. The salt solution simulants used in this study were formulated to represent the overall average waste composition. The cement, blast furnace slag, and fly ash were sourced from a supplier in the Hanford area in order to be representative. The test mixes were prepared in the laboratory and fresh properties were measured. Fresh density increased with increasing sodium molarity and with decreasing water to premix ratio, as expected given the individual densities of these components. Rheology measurements showed that all of the test mixes produced very fluid slurries. The fresh density and rheology data are of potential value in designing a future Cast Stone production facility. Standing water and density gradient testing showed that settling is not of particular concern for the high sodium compositions studied. Heat of hydration measurements may provide some insight into the reactions that occur within the test mixes, which may in turn be related to the properties and performance of the waste form. These measurements showed that increased sodium

  5. Cast Stone Formulation At Higher Sodium Concentrations

    SciTech Connect

    Fox, K. M.; Roberts, K. A.; Edwards, T. B.

    2014-02-28

    A low temperature waste form known as Cast Stone is being considered to provide supplemental Low Activity Waste (LAW) immobilization capacity for the Hanford site. Formulation of Cast Stone at high sodium concentrations is of interest since a significant reduction in the necessary volume of Cast Stone and subsequent disposal costs could be achieved if an acceptable waste form can be produced with a high sodium molarity salt solution combined with a high water to premix (or dry blend) ratio. The objectives of this study were to evaluate the factors involved with increasing the sodium concentration in Cast Stone, including production and performance properties and the retention and release of specific components of interest. Three factors were identified for the experimental matrix: the concentration of sodium in the simulated salt solution, the water to premix ratio, and the blast furnace slag portion of the premix. The salt solution simulants used in this study were formulated to represent the overall average waste composition. The cement, blast furnace slag, and fly ash were sourced from a supplier in the Hanford area in order to be representative. The test mixes were prepared in the laboratory and fresh properties were measured. Fresh density increased with increasing sodium molarity and with decreasing water to premix ratio, as expected given the individual densities of these components. Rheology measurements showed that all of the test mixes produced very fluid slurries. The fresh density and rheology data are of potential value in designing a future Cast Stone production facility. Standing water and density gradient testing showed that settling is not of particular concern for the high sodium compositions studied. Heat of hydration measurements may provide some insight into the reactions that occur within the test mixes, which may in turn be related to the properties and performance of the waste form. These measurements showed that increased sodium

  6. Cast Stone Formulation At Higher Sodium Concentrations

    SciTech Connect

    Fox, K. M.; Roberts, K. A.; Edwards, T. B.

    2013-09-17

    A low temperature waste form known as Cast Stone is being considered to provide supplemental Low Activity Waste (LAW) immobilization capacity for the Hanford site. Formulation of Cast Stone at high sodium concentrations is of interest since a significant reduction in the necessary volume of Cast Stone and subsequent disposal costs could be achieved if an acceptable waste form can be produced with a high sodium molarity salt solution combined with a high water to premix (or dry blend) ratio. The objectives of this study were to evaluate the factors involved with increasing the sodium concentration in Cast Stone, including production and performance properties and the retention and release of specific components of interest. Three factors were identified for the experimental matrix: the concentration of sodium in the simulated salt solution, the water to premix ratio, and the blast furnace slag portion of the premix. The salt solution simulants used in this study were formulated to represent the overall average waste composition. The cement, blast furnace slag, and fly ash were sourced from a supplier in the Hanford area in order to be representative. The test mixes were prepared in the laboratory and fresh properties were measured. Fresh density increased with increasing sodium molarity and with decreasing water to premix ratio, as expected given the individual densities of these components. Rheology measurements showed that all of the test mixes produced very fluid slurries. The fresh density and rheology data are of potential value in designing a future Cast Stone production facility. Standing water and density gradient testing showed that settling is not of particular concern for the high sodium compositions studied. Heat of hydration measurements may provide some insight into the reactions that occur within the test mixes, which may in turn be related to the properties and performance of the waste form. These measurements showed that increased sodium

  7. 21 CFR 184.1736 - Sodium bicarbonate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Sodium bicarbonate. 184.1736 Section 184.1736 Food... Specific Substances Affirmed as GRAS § 184.1736 Sodium bicarbonate. (a) Sodium bicarbonate (NaHCO3, CAS Reg. No. 144-55-8) is prepared by treating a sodium carbonate or a sodium carbonate and sodium...

  8. 21 CFR 184.1736 - Sodium bicarbonate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Sodium bicarbonate. 184.1736 Section 184.1736 Food... Specific Substances Affirmed as GRAS § 184.1736 Sodium bicarbonate. (a) Sodium bicarbonate (NaHCO3, CAS Reg. No. 144-55-8) is prepared by treating a sodium carbonate or a sodium carbonate and sodium...

  9. 21 CFR 184.1736 - Sodium bicarbonate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Sodium bicarbonate. 184.1736 Section 184.1736 Food... Specific Substances Affirmed as GRAS § 184.1736 Sodium bicarbonate. (a) Sodium bicarbonate (NaHCO3, CAS Reg. No. 144-55-8) is prepared by treating a sodium carbonate or a sodium carbonate and sodium...

  10. 21 CFR 184.1733 - Sodium benzoate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... GRAS § 184.1733 Sodium benzoate. (a) Sodium benzoate is the chemical benzoate of soda (C7H5NaO2), produced by the neutralization of benzoic acid with sodium bicarbonate, sodium carbonate, or sodium... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Sodium benzoate. 184.1733 Section 184.1733...

  11. 21 CFR 184.1736 - Sodium bicarbonate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Sodium bicarbonate. 184.1736 Section 184.1736 Food... Specific Substances Affirmed as GRAS § 184.1736 Sodium bicarbonate. (a) Sodium bicarbonate (NaHCO3, CAS Reg. No. 144-55-8) is prepared by treating a sodium carbonate or a sodium carbonate and sodium...

  12. 21 CFR 184.1736 - Sodium bicarbonate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Sodium bicarbonate. 184.1736 Section 184.1736 Food... GRAS § 184.1736 Sodium bicarbonate. (a) Sodium bicarbonate (NaHCO3, CAS Reg. No. 144-55-8) is prepared by treating a sodium carbonate or a sodium carbonate and sodium bicarbonate solution with...

  13. Sodium intake and cardiovascular health.

    PubMed

    O'Donnell, Martin; Mente, Andrew; Yusuf, Salim

    2015-03-13

    Sodium is an essential nutrient. Increasing sodium intake is associated with increasing blood pressure, whereas low sodium intake results in increased renin and aldosterone levels. Randomized controlled trials have reported reductions in blood pressure with reductions in sodium intake, to levels of sodium intake <1.5 g/d, and form the evidentiary basis for current population-wide guidelines recommending low sodium intake. Although low sodium intake (<2.0 g/d) has been achieved in short-term feeding clinical trials, sustained low sodium intake has not been achieved by any of the longer term clinical trials (>6-month duration). It is assumed that the blood pressure-lowering effects of reducing sodium intake to low levels will result in large reductions in cardiovascular disease globally. However, current evidence from prospective cohort studies suggests a J-shaped association between sodium intake and cardiovascular events, based on studies from >300 000 people, and suggests that the lowest risk of cardiovascular events and death occurs in populations consuming an average sodium intake range (3-5 g/d). The increased risk of cardiovascular events associated with higher sodium intake (>5 g/d) is most prominent in those with hypertension. A major deficit in the field is the absence of large randomized controlled trials to provide definitive evidence on optimal sodium intake for preventing cardiovascular events. Pending such trials, current evidence would suggest a recommendation for moderate sodium intake in the general population (3-5 g/d), with targeting the lower end of the moderate range among those with hypertension.

  14. [Mixed cryoglobulinemia].

    PubMed

    Roque, R; Ramiro, S; Vinagre, F; Cordeiro, A; Godinho, F; Santos, Maria José; Gonçalves, P; Canas da Silva, J

    2011-01-01

    The authors describe two clinical cases of cryoglobulinemia. A 70 years old woman, having skin ulcers on lower limbs, arthralgias, paresthesias and constitutional symptoms, for about 10 months. Exams revealed mild anemia, elevation of the biological parameters of inflammation and aminotransferases, positive cryoglobulin and rheumatoid factor in serum, and a severe reduction in C4 complement fraction. Hepatitis C virus (HCV) serology was negative. Idiopathic mixed cryoglobulinemia was diagnosed and corticosteroid therapy started. Given the lack of response, cyclophosphamide and plasmapheresis were added. Two weeks later the patient died in septic shock. The second case refers to a 41 years old female, with untreated hepatitis C who developed over a 6 month period petechiae and livedoid lesions on the lower limbs, peripheral neuropathy, and constitutional symptoms and was admitted with intestinal necrosis. Exams were consistent with the diagnosis of mixed cryoglobulinemia associated, with HCV. She started therapy with ribavirin and pegylated interferon-alpha, with improvement. PMID:22113605

  15. Destabilization of yttria-stabilized zirconia induced by molten sodium vanadate-sodium sulfate melts

    NASA Technical Reports Server (NTRS)

    Nagelberg, A. S.; Hamilton, J. C.

    1985-01-01

    The extent of surface destabilization of ZrO2 - 8 wt percent Y2O3 ceramic disks was determined after exposure to molten salt mixtures of sodium sulfate containing up to 15 mole percent sodium metavanadate (NaVO3) at 1173 K. The ceramic surface was observed to transform from the cubic/tetragonal to monoclinic phase, concurrent with chemical changes in the molten salt layer in contact with the ceramic. Significant attack rates were observed in both pure sulfate and metavanadate sulfate melts. The rate of attack was found to be quite sensitive to the mole fraction of vanadate in the molten salt solution and the partial pressure of sulfur trioxide in equilibrium with the salt melt. The observed parabolic rate of attack is interpreted to be caused by a reaction controlled by diffusion in the salt that penetrates into the porous layer formed by the destabilization. The parabolic rate constant in mixed sodium metavanadate - sodium sulfate melts was found to be proportional to the SO3 partial pressure and the square of the metavanadate concentration. In-situ Raman spectroscopic measurements allowed simultaneous observations of the ceramic phases and salt chemistry during the attack process.

  16. Sodium channels and pain.

    PubMed

    Habib, Abdella M; Wood, John N; Cox, James J

    2015-01-01

    Human and mouse genetic studies have led to significant advances in our understanding of the role of voltage-gated sodium channels in pain pathways. In this chapter, we focus on Nav1.7, Nav1.8, Nav1.9 and Nav1.3 and describe the insights gained from the detailed analyses of global and conditional transgenic Nav knockout mice in terms of pain behaviour. The spectrum of human disorders caused by mutations in these channels is also outlined, concluding with a summary of recent progress in the development of selective Nav1.7 inhibitors for the treatment of pain. PMID:25846613

  17. Magnetometry with mesospheric sodium

    PubMed Central

    Higbie, James M.; Rochester, Simon M.; Patton, Brian; Holzlöhner, Ronald; Bonaccini Calia, Domenico; Budker, Dmitry

    2011-01-01

    Measurement of magnetic fields on the few 100-km length scale is significant for many geophysical applications including mapping of crustal magnetism and ocean circulation measurements, yet available techniques for such measurements are very expensive or of limited accuracy. We propose a method for remote detection of magnetic fields using the naturally occurring atomic sodium-rich layer in the mesosphere and existing high-power lasers developed for laser guide star applications. The proposed method offers a dramatic reduction in cost and opens the way to large-scale, parallel magnetic mapping and monitoring for atmospheric science, navigation, and geophysics. PMID:21321235

  18. Mixed Conducting Electrodes for Better AMTEC Cells

    NASA Technical Reports Server (NTRS)

    Ryan, Margaret; Williams, Roger; Homer, Margie; Lara. Liana

    2003-01-01

    Electrode materials that exhibit mixed conductivity (that is, both electronic and ionic conductivity) have been investigated in a continuing effort to improve the performance of the alkali metal thermal-to-electric converter (AMTEC). These electrode materials are intended primarily for use on the cathode side of the sodium-ion-conducting solid electrolyte of a sodium-based AMTEC cell. They may also prove useful in sodium-sulfur batteries, which are under study for use in electric vehicles. An understanding of the roles played by the two types of conduction in the cathode of a sodium-based AMTEC cell is prerequisite to understanding the advantages afforded by these materials. In a sodium-based AMTEC cell, the anode face of an anode/solid-electrolyte/cathode sandwich is exposed to Na vapor at a suitable pressure. Upon making contact with the solid electrolyte on the anode side, Na atoms oxidize to form Na+ ions and electrons. Na+ ions then travel through the electrolyte to the cathode. Na+ ions leave the electrolyte at the cathode/electrolyte interface and are reduced by electrons that have been conducted through an external electrical load from the anode to the cathode. Once the Na+ ions have been reduced to Na atoms, they travel through the cathode to vaporize into a volume where the Na vapor pressure is much lower than it is on the anode side. Thus, the cathode design is subject to competing requirements to be thin enough to allow transport of sodium to the low-pressure side, yet thick enough to afford adequate electronic conductivity. The concept underlying the development of the present mixed conducting electrode materials is the following: The constraint on the thickness of the cathode can be eased by incorporating Na+ -ionconducting material to facilitate transport of sodium through the cathode in ionic form. At the same time, by virtue of the electronically conducting material mixed with the ionically conducting material, reduction of Na+ ions to Na atoms can

  19. Sodium bicarbonate in chemical flooding: Part 1: Topical report. [Sodium bicarbonate and sodium carbonate

    SciTech Connect

    Peru, D.A.; Lorenz, P.B.

    1987-07-01

    To compare oil recovery and alkali consumption in alkaline flooding using sodium bicarbonate with other alkaline agents, coreflooding experiments were performed in turn with viscosified sodium bicarbonate and viscosified sodium carbonate solutions. Oil recovery was monitored, and the effluent brine from these corefloods was analyzed for silicon, aluminum, pH, and total inorganic carbon. The results indicate that viscosified sodium bicarbonate recovered more of the asphaltic Cerro-Negro crude than of the less asphaltic Wilmington crude oil. The recovery efficiency using the viscosified sodium carbonate was similar for the two crudes. For both crudes, the percent oil recovery using viscosified sodium carbonate was slightly higher than that using the viscosified sodium bicarbonate. Mineral dissolution and decrease in pH were found to be greater in corefloods using viscosified sodium carbonate. Total inorganic carbon recovery can be obtained in corefloods with either agent, provided that a sufficient water drive follows the chemical slug. Long-term experiments were performed by recirculating alkaline solutions through oil-free, unfired Berea sandstone to monitor the rock/alkali interactions. The experimental results indicate an eight-fold decrease in quartz dissolution by sodium bicarbonate compared with sodium carbonate. Moderate magnesium solubility was observed at the pH of the bicarbonate solution. Low solubility of magnesium and aluminum at the pH of the carbonate indicates the possible formation of precipitates. In these experiments 13% of the carbonate was converted to bicarbonate. Total alkalinity was not significantly decreased with either agent. 18 refs., 5 tabs.

  20. Europa Sodium Cloud: orbital variability and Sodium recycling

    NASA Astrophysics Data System (ADS)

    Cipriani, F.; Leblanc, F.; Witasse, O.

    2007-08-01

    Discovery and further observations of Europa's thin atmosphere of sodium have been carried out by M.E. Brown (Brown and Hill 1996, Brown 2001, Brown 2004) and A.E. Potter and co-workers (Leblanc et al, 2005). The resonant scattering emission of sodium around Europa has been successfully modelled and compared to the compilation of such observations by Leblanc at al 2002; Leblanc et al 2005). Such an analysis confirmed that the cloud morphology is dominated by the production of Na from the trailing hemisphere. The influence of Europa's centrifugal latitude as well as the contribution of Io's sodium source at Europa orbit were also estimated. These studies concluded that the observed sodium atmosphere should be largely endogenic to Europa. However, significant variations of the total emission intensity along Europa's orbit around Jupiter were reported that were difficult to explain without adhoc assumptions on the variability of the sodium ejecta rate with respect to Europa position in Jupiter magnetosphere. In the present study, we investigate the redistribution of the ejected sodium atoms on the surface of the moon during its orbit around Jupiter following the suggestion by Leblanc et al (2005). In our model, the redistribution of sodium atoms at Europa's surface occurs from a set of ejection and absorption of the sodium atoms. Ejection processes are sputtering induced by energetic jovian particles, as well as photo-stimulated and thermal desorptions from the surface. Absorption mainly depends on the surface temperature and porosity. We will present comparisons of the newly calculated sodium emission with the observations, as well as density distributions of sodium at Europa's surface. Consequences of those calculations on the sodium cloud morphology will also be discussed.

  1. Sodium MRI in Multiple Sclerosis is Compatible with Intracellular Sodium Accumulation and Inflammation-Induced Hyper-Cellularity of Acute Brain Lesions

    PubMed Central

    Biller, Armin; Pflugmann, Isabella; Badde, Stephanie; Diem, Ricarda; Wildemann, Brigitte; Nagel, Armin M.; Jordan, J.; Benkhedah, Nadia; Kleesiek, Jens

    2016-01-01

    The cascade of inflammatory pathogenetic mechanisms in multiple sclerosis (MS) has no specific conventional MRI correlates. Clinicians therefore stipulate improved imaging specificity to define the pathological substrates of MS in vivo including mapping of intracellular sodium accumulation. Based upon preclinical findings and results of previous sodium MRI studies in MS patients we hypothesized that the fluid-attenuated sodium signal differs between acute and chronic lesions. We acquired brain sodium and proton MRI data of N = 29 MS patients; lesion type was defined by the presence or absence of contrast enhancement. N = 302 MS brain lesions were detected, and generalized linear mixed models were applied to predict lesion type based on sodium signals; thereby controlling for varying numbers of lesions among patients and confounding variables such as age and medication. Hierarchical model comparisons revealed that both sodium signals average tissue (χ2(1) = 27.89, p < 0.001) and fluid-attenuated (χ2(1) = 5.76, p = 0.016) improved lesion type classification. Sodium MRI signals were significantly elevated in acute compared to chronic lesions compatible with intracellular sodium accumulation in acute MS lesions. If confirmed in further studies, sodium MRI could serve as biomarker for diagnostic assessment of MS, and as readout parameter in clinical trials promoting attenuation of chronic inflammation. PMID:27507776

  2. Sodium MRI in Multiple Sclerosis is Compatible with Intracellular Sodium Accumulation and Inflammation-Induced Hyper-Cellularity of Acute Brain Lesions.

    PubMed

    Biller, Armin; Pflugmann, Isabella; Badde, Stephanie; Diem, Ricarda; Wildemann, Brigitte; Nagel, Armin M; Jordan, J; Benkhedah, Nadia; Kleesiek, Jens

    2016-01-01

    The cascade of inflammatory pathogenetic mechanisms in multiple sclerosis (MS) has no specific conventional MRI correlates. Clinicians therefore stipulate improved imaging specificity to define the pathological substrates of MS in vivo including mapping of intracellular sodium accumulation. Based upon preclinical findings and results of previous sodium MRI studies in MS patients we hypothesized that the fluid-attenuated sodium signal differs between acute and chronic lesions. We acquired brain sodium and proton MRI data of N = 29 MS patients; lesion type was defined by the presence or absence of contrast enhancement. N = 302 MS brain lesions were detected, and generalized linear mixed models were applied to predict lesion type based on sodium signals; thereby controlling for varying numbers of lesions among patients and confounding variables such as age and medication. Hierarchical model comparisons revealed that both sodium signals average tissue (χ(2)(1) = 27.89, p < 0.001) and fluid-attenuated (χ(2)(1) = 5.76, p = 0.016) improved lesion type classification. Sodium MRI signals were significantly elevated in acute compared to chronic lesions compatible with intracellular sodium accumulation in acute MS lesions. If confirmed in further studies, sodium MRI could serve as biomarker for diagnostic assessment of MS, and as readout parameter in clinical trials promoting attenuation of chronic inflammation. PMID:27507776

  3. Influence of sodium borate on the early age hydration of calcium sulfoaluminate cement

    SciTech Connect

    Champenois, Jean-Baptiste; Dhoury, Mélanie; Cau Dit Coumes, Céline; Mercier, Cyrille; Revel, Bertrand; Le Bescop, Patrick; Damidot, Denis

    2015-04-15

    Calcium sulfoaluminate (CSA) cements are potential candidates for the conditioning of radioactive wastes with high sodium borate concentrations. This work thus investigates early age hydration of two CSA cements with different gypsum contents (0 to 20%) as a function of the mixing solution composition (borate and NaOH concentrations). Gypsum plays a key role in controlling the reactivity of cement. When the mixing solution is pure water, increasing the gypsum concentration accelerates cement hydration. However, the reverse is observed when the mixing solution contains sodium borate. Until gypsum exhaustion, the pore solution pH remains constant at ~ 10.8, and a poorly crystallized borate compound (ulexite) precipitates. A correlation is established between this transient precipitation and the hydration delay. Decreasing the gypsum content in the binder, or increasing the sodium content in the mixing solution, are two ways of reducing the stability of ulexite, thus decreasing the hydration delay.

  4. A Simple Quantitative Synthesis: Sodium Chloride from Sodium Carbonate.

    ERIC Educational Resources Information Center

    Gold, Marvin

    1988-01-01

    Describes a simple laboratory procedure for changing sodium carbonate into sodium chloride by adding concentrated HCl to cause the reaction and then evaporating the water. Claims a good stoichiometric yield can be obtained in one three-hour lab period. Suggests using fume hood for the reaction. (ML)

  5. GENOTOXICITY STUDIES OF SODIUM DICHLOROACETATE AND SODIUM TRICHLOROACETATE

    EPA Science Inventory

    The genotoxic properties of sodium dichloroacetate (DCA) and sodium trichloroacetate (TCA)were evaluated in several short-term in vitro and in vivo assays. Neither compound was mutagenic in tester strain TA102 in the Salmonella mutagenicity assay. Both DCA and TCA were weak induc...

  6. Final report on the safety assessment of Sodium Metaphosphate, Sodium Trimetaphosphate, and Sodium Hexametaphosphate.

    PubMed

    Lanigan, R S

    2001-01-01

    These inorganic polyphosphate salts all function as chelating agents in cosmetic formulations. In addition, Sodium Metaphosphate functions as an oral care agent, Sodium Trimetaphosphate as a buffering agent, and Sodium Hexametaphosphate as a corrosion inhibitor. Only Sodium Hexametaphosphate is currently reported to be used. Although the typical concentrations historically have been less than 1%, higher concentrations have been used in products such as bath oils, which are diluted during normal use. Sodium Metaphosphate is the general term for any polyphosphate salt with four or more phosphate units. The four-phosphate unit version is cyclic, others are straight chains. The hexametaphosphate is the specific six-chain length form. The trimetaphosphate structure is cyclic. Rats fed 10% Sodium Trimetaphosphate for a month exhibited transient tubular necrosis; rats given 10% Sodium Metaphosphate had retarded growth and those fed 10% Sodium Hexametaphosphate had pale and swollen kidneys. In chronic studies using animals, growth inhibition, increased kidney weights (with calcium deposition and desquamation), bone decalcification, parathyroid hypertrophy and hyperplasia, inorganic phosphaturia, hepatic focal necrosis, and muscle fiber size alterations. Sodium Hexametaphosphate was a severe skin irritant in rabbits, whereas a 0.2% solution was only mildly irritating. A similar pattern was seen with ocular toxicity. These ingredients were not genotoxic in bacterial systems nor were they carcinogenic in rats. No reproductive or developmental toxicity was seen in studies using rats exposed to Sodium Hexametaphosphate or Sodium Trimetaphosphate. In clinical testing, irritation is seen as a function of concentration; concentrations as high as 1% produced no irritation in contact allergy patients. Because of the corrosive nature of Sodium Hexametaphosphate, it was concluded that these ingredients could be used safely if each formulation was prepared to avoid skin irritation; for

  7. Influence of stimulated Raman scattering on the conversion efficiency in four wave mixing

    SciTech Connect

    Wunderlich, R.; Moore, M.A.; Garrett, W.R.; Payne, M.G.

    1988-01-01

    Secondary nonlinear optical effects following parametric four wave mixing in sodium vapor are investigated. The generated ultraviolet radiation induces stimulated Raman scattering and other four wave mixing process. Population transfer due to Raman transitions strongly influences the phase matching conditions for the primary mixing process. Pulse shortening and a reduction in conversion efficiency are observed. 8 refs., 3 figs.

  8. Structure and polymer form of poly-3-hydroxyalkanoates produced by Pseudomonas oleovorans grown with mixture of sodium octanoate/undecylenic acid and sodium octanoate/5-phenylvaleric acid.

    PubMed

    Ho, I-Ching; Yang, Sheng-Pin; Chiu, Wen-Yen; Huang, Shih-Yow

    2007-01-30

    PHAs (poly-3-hydroxyalkanoates) obtained by Pseudomonas oleovorans grown with mixed carbon sources were investigated. Mixed carbon sources were sodium octanoate/undecylenic acid and sodium octanoate/5-phenylvaleric acid. Effect of carbon source in pre-culture on PHAs structure was investigated. Main fermentation was conducted with mixture of sodium octanoate/undecylenic acid, and PHA contained both saturated and unsaturated units. When more undecylenic acid was used in the medium, the ratio of unsaturated unit increased and the T(g) of the products also changed. The PHA grown with mixture of sodium octanoate and undecylenic acid was a random copolymer, which was determined by DSC analysis. Using mixed carbon sources of sodium octanoate and 5-phenylvaleric acid, highest dry cell weight and PHA concentration were obtained when 0.02g or 0.04g of 5-phenylvaleric acid were added in 50mL medium. Cultured with sodium octanoate and 5-phenylvaleric acid, PHA containing HO (3-hydroxyoctanoate) unit and HPV (3-hydroxy-5-phenylvalerate) unit was produced. T(g) of the products fell between those of pure PHO and pure PHPV. By means of DSC analysis and fractionation method, the PHA obtained was regarded as a random copolymer. PMID:16919325

  9. 21 CFR 184.1724 - Sodium alginate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Sodium alginate. 184.1724 Section 184.1724 Food... GRAS § 184.1724 Sodium alginate. (a) Sodium alginate (CAS Reg. No. 9005-38-3) is the sodium salt of alginic acid, a natural polyuronide constituent of certain brown algae. Sodium alginate is prepared by...

  10. 21 CFR 184.1724 - Sodium alginate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Sodium alginate. 184.1724 Section 184.1724 Food and... Substances Affirmed as GRAS § 184.1724 Sodium alginate. (a) Sodium alginate (CAS Reg. No. 9005-38-3) is the sodium salt of alginic acid, a natural polyuronide constituent of certain brown algae. Sodium alginate...

  11. 21 CFR 186.1756 - Sodium formate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ....1756 Sodium formate. (a) Sodium formate (CHNaO2, CAS Reg. No. 141-53-7) is the sodium salt of formic acid. It is produced by the reaction of carbon monoxide with sodium hydroxide. (b) The ingredient is... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Sodium formate. 186.1756 Section 186.1756 Food...

  12. 21 CFR 201.64 - Sodium labeling.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... contains sodium bicarbonate, sodium phosphate, or sodium biphosphate as an active ingredient for oral... 21 Food and Drugs 4 2011-04-01 2011-04-01 false Sodium labeling. 201.64 Section 201.64 Food and... LABELING Labeling Requirements for Over-the-Counter Drugs § 201.64 Sodium labeling. (a) The labeling...

  13. 21 CFR 184.1733 - Sodium benzoate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... Specific Substances Affirmed as GRAS § 184.1733 Sodium benzoate. (a) Sodium benzoate is the chemical benzoate of soda (C7H5NaO2), produced by the neutralization of benzoic acid with sodium bicarbonate, sodium... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Sodium benzoate. 184.1733 Section 184.1733...

  14. 21 CFR 201.64 - Sodium labeling.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... contains sodium bicarbonate, sodium phosphate, or sodium biphosphate as an active ingredient for oral... 21 Food and Drugs 4 2012-04-01 2012-04-01 false Sodium labeling. 201.64 Section 201.64 Food and... LABELING Labeling Requirements for Over-the-Counter Drugs § 201.64 Sodium labeling. (a) The labeling...

  15. 21 CFR 184.1733 - Sodium benzoate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... Specific Substances Affirmed as GRAS § 184.1733 Sodium benzoate. (a) Sodium benzoate is the chemical benzoate of soda (C7H5NaO2), produced by the neutralization of benzoic acid with sodium bicarbonate, sodium... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Sodium benzoate. 184.1733 Section 184.1733...

  16. 21 CFR 201.64 - Sodium labeling.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... contains sodium bicarbonate, sodium phosphate, or sodium biphosphate as an active ingredient for oral... 21 Food and Drugs 4 2013-04-01 2013-04-01 false Sodium labeling. 201.64 Section 201.64 Food and... LABELING Labeling Requirements for Over-the-Counter Drugs § 201.64 Sodium labeling. (a) The labeling...

  17. 21 CFR 184.1733 - Sodium benzoate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Substances Affirmed as GRAS § 184.1733 Sodium benzoate. (a) Sodium benzoate is the chemical benzoate of soda (C7H5NaO2), produced by the neutralization of benzoic acid with sodium bicarbonate, sodium carbonate, or... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Sodium benzoate. 184.1733 Section 184.1733 Food...

  18. 21 CFR 201.64 - Sodium labeling.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... contains sodium bicarbonate, sodium phosphate, or sodium biphosphate as an active ingredient for oral... 21 Food and Drugs 4 2014-04-01 2014-04-01 false Sodium labeling. 201.64 Section 201.64 Food and... LABELING Labeling Requirements for Over-the-Counter Drugs § 201.64 Sodium labeling. (a) The labeling...

  19. 21 CFR 201.64 - Sodium labeling.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... contains sodium bicarbonate, sodium phosphate, or sodium biphosphate as an active ingredient for oral... 21 Food and Drugs 4 2010-04-01 2010-04-01 false Sodium labeling. 201.64 Section 201.64 Food and... LABELING Labeling Requirements for Over-the-Counter Drugs § 201.64 Sodium labeling. (a) The labeling...

  20. 21 CFR 184.1733 - Sodium benzoate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... Specific Substances Affirmed as GRAS § 184.1733 Sodium benzoate. (a) Sodium benzoate is the chemical benzoate of soda (C7H5NaO2), produced by the neutralization of benzoic acid with sodium bicarbonate, sodium... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Sodium benzoate. 184.1733 Section 184.1733...

  1. Antimicrobial and antioxidant effects of sodium acetate, sodium lactate, and sodium citrate in refrigerated sliced salmon

    PubMed Central

    Sallam, Khalid Ibrahim

    2007-01-01

    This study was carried out to evaluate the microbiological quality and lipid oxidation of fresh salmon slices treated by dipping in 2.5% (w/v) aqueous solution of sodium acetate (NaA), sodium lactate (NaL), or sodium citrate (NaC) and stored at 1 °C. The results revealed that these salts were efficient (P < 0.05) against the proliferation of various categories of spoilage microorganisms; including aerobic and psychrotrophic populations, Pseudomonas spp., H2S-producing bacteria, lactic acid bacteria, and Enterobacteriaceae. The general order of antibacterial activity of the different organic salts used was; sodium acetate > sodium lactate > sodium citrate. Lipid oxidation, as expressed by peroxide value (PV) and thiobarbituric acid (TBA) value, was significantly (P < 0.05) delayed in NaA- and NaC-treated samples. The antioxidant activity followed the order: NaC > NaA > NaL. The shelf life of the treated products was extended by 4–7 days more than that of the control. Therefore, sodium acetate, sodium lactate, and sodium citrate can be utilized as safe organic preservatives for fish under refrigerated storage. PMID:17471315

  2. Immunopharmacologic profile of nedocromil sodium.

    PubMed

    Wasserman, S I

    1995-01-01

    Nedocromil sodium, a pyranoquinolone, was specifically designed as an agent to suppress allergic inflammation. Nedocromil sodium significantly affects not only the early-phase of allergen-induced responses, but also expression of late-phase inflammation, even when administered after the onset of early-phase responses. Nedocromil sodium also limits bronchoconstriction induced by nonallergic factors, including cold air and sulfur dioxide at dosages lower than required with cromolyn sodium. Nedocromil sodium is more potent than cromolyn sodium in preventing mast cell degranulation in selective animal models. In addition, nedocromil sodium limits leukotriene C4 production by calcium ionophore-stimulated eosinophils and also limits the activity of platelet activating factor to induce neutrophil generation of superoxides. Diurnal variation of peak flow rates in asthmatics and requirement for both beta 2-agonists and inhaled beclomethasone have been noted to be reduced in several trials employing nedocromil sodium, suggesting that its in vivo activity parallels its in vitro activity as an anti-inflammatory agent.

  3. Partial sodium replacement in tilapia steak without loss of acceptability.

    PubMed

    Monteiro, Maria Lúcia G; Mársico, Eliane T; Canto, Anna Carolina V C S; Costa-Lima, Bruno R C; Lázaro, César A; Cruz, Adriano G; Conte-Júnior, Carlos A

    2015-06-01

    The aim of this study was to evaluate physical and sensory characteristics of low-sodium tilapia steaks restructured with microbial transglutaminase. Polyphosphate (0.4%), condiment mixes-onion powder and garlic powder (2.5%), water (10.0%), transglutaminase (1.0%), and different types of salts (1.5%) were mixed with non-commercial sized fillets. Substitution of NaCl by KCl or MgCl2 (at 50% each) affected quality attributes and decreased (P < 0.05) consumer acceptability. The tri-salt steaks (KCl, MgCl2, and NaCl at 1:1:2 ratio) improved some attributes and increased (P < 0.05) acceptability and purchase intention. We conclude that potassium and magnesium chlorides are possible replacers of salt (NaCl) in restructured tilapia steaks and potentially decrease the risk factor for heart failure associated with high sodium consumption. PMID:24831644

  4. Partial sodium replacement in tilapia steak without loss of acceptability.

    PubMed

    Monteiro, Maria Lúcia G; Mársico, Eliane T; Canto, Anna Carolina V C S; Costa-Lima, Bruno R C; Lázaro, César A; Cruz, Adriano G; Conte-Júnior, Carlos A

    2015-06-01

    The aim of this study was to evaluate physical and sensory characteristics of low-sodium tilapia steaks restructured with microbial transglutaminase. Polyphosphate (0.4%), condiment mixes-onion powder and garlic powder (2.5%), water (10.0%), transglutaminase (1.0%), and different types of salts (1.5%) were mixed with non-commercial sized fillets. Substitution of NaCl by KCl or MgCl2 (at 50% each) affected quality attributes and decreased (P < 0.05) consumer acceptability. The tri-salt steaks (KCl, MgCl2, and NaCl at 1:1:2 ratio) improved some attributes and increased (P < 0.05) acceptability and purchase intention. We conclude that potassium and magnesium chlorides are possible replacers of salt (NaCl) in restructured tilapia steaks and potentially decrease the risk factor for heart failure associated with high sodium consumption.

  5. 40 CFR 415.170 - Applicability; description of the sodium dichromate and sodium sulfate production subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... sodium dichromate and sodium sulfate production subcategory. 415.170 Section 415.170 Protection of... MANUFACTURING POINT SOURCE CATEGORY Sodium Dichromate and Sodium Sulfate Production Subcategory § 415.170 Applicability; description of the sodium dichromate and sodium sulfate production subcategory. The provisions...

  6. Sodium fire testing: structural evaluation of sodium fire suppression system

    SciTech Connect

    1984-08-01

    This report describes the development and the lessons learned from the Clinch River Breeder Reactor Sodium Fire Testing Program (DRS 26.03). The purpose of this program was to evaluate the behavior of the Sodium Fire Suppression System and validate the analytical techniques used in the calculation of the effects of sodium fires in air-filled cells. This report focuses on the fire suppression capability and the structural integrity of the Fire Suppression System. System features are discussed; the test facility is described and the key results are provided. Modifications to the fire suppression system and the plant made as a result of test experience are also discussed.

  7. Inhibition of Listeria monocytogenes in full- and low-sodium frankfurters at 4, 7, or 10°C using spray-dried mixtures of organic acid salts.

    PubMed

    Sansawat, Thanikarn; Zhang, Lei; Jeong, Jong Y; Xu, Yanyang; Hessell, Gerald W; Ryser, Elliot T; Harte, Janice B; Tempelman, Robert; Kang, Iksoon

    2013-09-01

    In meat processing, powdered ingredients are preferred to liquids because of ease of handling, mixing, and storing. This study was conducted to assess Listeria monocytogenes inhibition and the physicochemical and organoleptic characteristics of frankfurters that were prepared with organic acid salts as spray-dried powders (sodium lactate-sodium acetate, sodium lactate-sodium acetate-sodium diacetate, and potassium acetate-potassium diacetate) or liquids (sodium lactate, sodium lactate-sodium diacetate, potassium lactate, and potassium lactate-sodium diacetate). Full-sodium (1.8% salt) and low-sodium (1.0% salt) frankfurters were prepared according to 10 and 5 different formulations (n = 3), respectively, and were dip inoculated with a six-strain cocktail of L. monocytogenes (∼4 log CFU/g). Populations of Listeria and mesophilic aerobic bacteria were quantified during storage at 4, 7, and 10°C for up to 90 days. Four powder and two liquid full-sodium formulations and one powder low-sodium formulation, all of which contained diacetate except for 1% sodium lactate-sodium acetate powder, completely inhibited Listeria growth at 4°C. However, Listeria grew in full-sodium formulations at 10°C and in low-sodium formulations at 7 and 10°C except for the formulation containing 0.8% potassium acetate-0.2% potassium diacetate powder. All formulations were similar in terms of water activity, cooking yield, moisture, and protein content. Sodium content and pH were affected by the concentrations of sodium and diacetate, respectively. Frankfurter appearance, texture, flavor, and overall acceptability were similar (P > 0.05) regardless of the formulation, except for flavor and overall acceptability of the low-sodium formulation containing potassium acetate-potassium diacetate. Based on these findings, cosprayed powders appear to be a viable alternative to current liquid inhibitors for control of Listeria in processed meats.

  8. Abnormal membrane sodium transport in Liddle's syndrome.

    PubMed

    Gardner, J D; Lapey, A; Simopoulos, P; Bravo, E L

    1971-11-01

    We have documented the presence of abnormal sodium transport in Liddle's syndrome by measuring sodium concentration, sodium influx, and fractional sodium outflux in vitro in erythrocytes from normal subjects, two patients with Liddle's syndrome, and one patient with primary hyperaldosteronism. Sodium influx and fractional sodium outflux, but not sodium concentration, were significantly increased in patients with Liddle's syndrome. Sodium outflux in a patient with primary hyperaldosteronism did not differ significantly from normal. These alterations of sodium transport in erythrocytes from patients with Liddle's syndrome were not attributable to circulating levels of aldosterone, renin, angiotensin, or serum potassium. Furthermore, changes in aldosterone secretory rate and levels of circulating renin produced by varying dietary sodium intake, did not alter sodium influx or fractional sodium outflux in either patients with Liddle's syndrome or normal subjects. The response of fractional sodium outflux and sodium influx to ouabain, ethacrynic acid, and to changes in the cation composition of the incubation medium suggests that the increased sodium fluxes in Liddle's syndrome do not result solely from a quantitative increase in those components of sodium transport which occur in normal human erythrocytes. Instead, at least a portion of the increased erythrocyte sodium transport in Liddle's syndrome represents a component of sodium transport which does not occur in normal human erythrocytes.

  9. Susceptibility of Clostridium difficile to the food preservatives sodium nitrite, sodium nitrate and sodium metabisulphite.

    PubMed

    Lim, Su-Chen; Foster, Niki F; Riley, Thomas V

    2016-02-01

    Clostridium difficile is an important enteric pathogen of humans and food animals. Recently it has been isolated from retail foods with prevalences up to 42%, prompting concern that contaminated foods may be one of the reasons for increased community-acquired C. difficile infection (CA-CDI). A number of studies have examined the prevalence of C. difficile in raw meats and fresh vegetables; however, fewer studies have examined the prevalence of C. difficile in ready-to-eat meat. The aim of this study was to investigate the in vitro susceptibility of 11 C. difficile isolates of food animal and retail food origins to food preservatives commonly used in ready-to-eat meats. The broth microdilution method was used to determine the minimum inhibitory concentrations (MIC) and minimum bactericidal concentrations (MBC) for sodium nitrite, sodium nitrate and sodium metabisulphite against C. difficile. Checkerboard assays were used to investigate the combined effect of sodium nitrite and sodium nitrate, commonly used in combination in meats. Modal MIC values for sodium nitrite, sodium nitrate and sodium metabisulphite were 250 μg/ml, >4000 μg/ml and 1000 μg/ml, respectively. No bactericidal activity was observed for all three food preservatives. The checkerboard assays showed indifferent interaction between sodium nitrite and sodium nitrate. This study demonstrated that C. difficile can survive in the presence of food preservatives at concentrations higher than the current maximum permitted levels allowed in ready-to-eat meats. The possibility of retail ready-to-eat meats contaminated with C. difficile acting as a source of CDI needs to be investigated. PMID:26700884

  10. Susceptibility of Clostridium difficile to the food preservatives sodium nitrite, sodium nitrate and sodium metabisulphite.

    PubMed

    Lim, Su-Chen; Foster, Niki F; Riley, Thomas V

    2016-02-01

    Clostridium difficile is an important enteric pathogen of humans and food animals. Recently it has been isolated from retail foods with prevalences up to 42%, prompting concern that contaminated foods may be one of the reasons for increased community-acquired C. difficile infection (CA-CDI). A number of studies have examined the prevalence of C. difficile in raw meats and fresh vegetables; however, fewer studies have examined the prevalence of C. difficile in ready-to-eat meat. The aim of this study was to investigate the in vitro susceptibility of 11 C. difficile isolates of food animal and retail food origins to food preservatives commonly used in ready-to-eat meats. The broth microdilution method was used to determine the minimum inhibitory concentrations (MIC) and minimum bactericidal concentrations (MBC) for sodium nitrite, sodium nitrate and sodium metabisulphite against C. difficile. Checkerboard assays were used to investigate the combined effect of sodium nitrite and sodium nitrate, commonly used in combination in meats. Modal MIC values for sodium nitrite, sodium nitrate and sodium metabisulphite were 250 μg/ml, >4000 μg/ml and 1000 μg/ml, respectively. No bactericidal activity was observed for all three food preservatives. The checkerboard assays showed indifferent interaction between sodium nitrite and sodium nitrate. This study demonstrated that C. difficile can survive in the presence of food preservatives at concentrations higher than the current maximum permitted levels allowed in ready-to-eat meats. The possibility of retail ready-to-eat meats contaminated with C. difficile acting as a source of CDI needs to be investigated.

  11. Activity coefficient of aqueous sodium bicarbonate

    SciTech Connect

    Pitzer, Kenneth S.; Peiper, J. Christopher

    1980-09-01

    The determination of the activity coefficient and related properties of sodium bicarbonate presents special problems because of the appreciable vapor pressure of CO2 above such solutions. With the development of reliable equations for the thermodynamic properties of mixed electrolytes, it is possible to determine the parameters for NaHCO3 from cell measurements or NaCl-NaHCO3 mixtures. Literature data are analyzed to illustrate the method and provide interim values, hoever it is noted that further measurements over a wider range of concentrations would yield more definitive results. Lastly, an estimate is also given for the activity coefficient of KHCO3.

  12. Sodium MRI: Methods and applications

    PubMed Central

    Madelin, Guillaume; Lee, Jae-Seung; Regatte, Ravinder R.; Jerschow, Alexej

    2014-01-01

    Sodium NMR spectroscopy and MRI have become popular in recent years through the increased availability of high-field MRI scanners, advanced scanner hardware and improved methodology. Sodium MRI is being evaluated for stroke and tumor detection, for breast cancer studies, and for the assessment of osteoarthritis and muscle and kidney functions, to name just a few. In this article, we aim to present an up-to-date review of the theoretical background, the methodology, the challenges and limitations, and current and potential new applications of sodium MRI. PMID:24815363

  13. Teratogenicity of sodium valproate.

    PubMed

    Alsdorf, Rachel; Wyszynski, Diego F

    2005-03-01

    The teratogenicity of the widely popular antiepileptic drug (AED) and mood stabiliser sodium valproate (also known as valproate, VPA) has been evidenced by previous research; however, these findings have often been limited by a small population sample of exposed women and a retrospective study design. Many factors contribute to the teratogenicity of VPA. These include the number of drugs that are co-administered, drug dosage, differences in maternal and/or infant metabolism, the gestational age of the fetus at exposure, and hereditary susceptibility. VPA has been associated with a variety of major and minor malformations, including a 20-fold increase in neural tube defects, cleft lip and palate, cardiovascular abnormalities, genitourinary defects, developmental delay, endocrinological disorders, limb defects, and autism. It has been suggested that polytherapy treatment in epileptic pregnant women increases the risk of teratogenicity in offspring. Furthermore, there is an established relationship between VPA dose and adverse outcome. Large single doses of VPA potentially cause high peak levels in the fetal serum resulting in deleterious effects. Currently there is an increase in the number of national and international pregnancy registries being formed in an effort to better identify the teratogenic effects of AEDs. These efforts hope to enhance our understanding of AEDs and their associated risks by addressing past study limitations.

  14. Solid-state sodium batteries using polymer electrolytes and sodium intercalation electrode materials

    SciTech Connect

    Ma, Y. |

    1996-08-01

    Solid-state sodium cells using polymer electrolytes (polyethylene oxide mixed with sodium trifluoromethanesulfonate: PEO{sub n}NaCF{sub 3}SO{sub 3}) and sodium cobalt oxide positive electrodes are characterized in terms of discharge and charge characteristics, rate capability, cycle life, and energy and power densities. The P2 phase Na{sub x}CoO{sub 2} can reversibly intercalate sodium in the range of x = 0.3 to 0.9, giving a theoretical specific energy of 440 Wh/kg and energy density of 1,600 Wh/l. Over one hundred cycles to 60% depth of discharge have been obtained at 0.5 mA/cm{sup 2}. Experiments show that the electrolyte/Na interface is stable and is not the limiting factor to cell cycle life. Na{sub 0.7}CoO{sub 2} composite electrodes containing various amounts of carbon black additive are investigated. The transport properties of polymer electrolytes are the critical factors for performance. These properties (the ionic conductivity, salt diffusion coefficient, and ion transference number) are measured for the PEO{sub n}NaCF{sub 3}SO{sub 3} system over a wide range of concentrations at 85 C. All the three transport properties are very salt-concentration dependent. The ionic conductivity exhibits a maximum at about n = 20. The transference number, diffusion coefficient, and thermodynamic factor all vary with salt concentration in a similar fashion, decreasing as the concentration increases, except for a local maximum. These results verify that polymer electrolytes cannot be treated as ideal solutions. The measured transport-property values are used to analyze and optimize the electrolytes by computer simulation and also cell testing. Salt precipitation is believed to be the rate limiting process for cells using highly concentrated solutions, as a result of lower values of these properties, while salt depletion is the limiting factor when a dilute solution is used.

  15. CALANDRIA TYPE SODIUM GRAPHITE REACTOR

    DOEpatents

    Peterson, R.M.; Mahlmeister, J.E.; Vaughn, N.E.; Sanders, W.J.; Williams, A.C.

    1964-02-11

    A sodium graphite power reactor in which the unclad graphite moderator and fuel elements are contained within a core tank is described. The core tank is submersed in sodium within the reactor vessel. Extending longitudinally through the core thnk are process tubes with fuel elements positioned therein. A bellows sealing means allows axial expansion and construction of the tubes. Within the core tank, a leakage plenum is located below the graphite, and above the graphite is a gas space. A vent line regulates the gas pressure in the space, and another line removes sodium from the plenum. The sodium coolant flows from the lower reactor vessel through the annular space between the fuel elements and process tubes and out into the reactor vessel space above the core tank. From there, the heated coolant is drawn off through an outlet line and sent to the heat exchange. (AEC)

  16. Catalyst for sodium chlorate decomposition

    NASA Technical Reports Server (NTRS)

    Wydeven, T.

    1972-01-01

    Production of oxygen by rapid decomposition of cobalt oxide and sodium chlorate mixture is discussed. Cobalt oxide serves as catalyst to accelerate reaction. Temperature conditions and chemical processes involved are described.

  17. Stability of Ampicillin Sodium, Nafcillin Sodium, And Oxacillin Sodium in AutoDose Infusion System Bags.

    PubMed

    Zhang, Yanping; Trissel, Lawrence A

    2002-01-01

    The objective of this study was to evaluate the physical and chemical stability of ampicillin sodium 1g/100mL, nafcillin sodium 1g/100mL, and oxacillin sodium 1g/100mL, each of which was admixed in 0.9% sodium chloride injection and packaged in an AutoDose Infusion System bag. Triplicate test samples were prepared by reconstituting the penicillin antibiotics and bringing the required amount of each drug to a final volume of 100 mL with 0.9% sodium chloride injection. The test solutions were packaged in AutoDose Bags, which are ethylene vinyl acetate plastic containers designed for use in the AutoDose Infusion System. Samples were stored protected from light and were evaluated at appropriate intervals for up to 7 days at 23 deg C and up to 30 days at 4 deg C. Physical stability was assessed by means of a multistep evaluation procedure that included both turbidimetric and particulate measurement as well as visual inspection. Chemical stability was assesed with stability-indicating high-perofrmance liquid chromatographic (HPLC) analytical techniques based on the determination of drug concentrations initially and at appropriate intervals over the study periods. All the penicillin admixtures were initially clear when viewed in normal fluorescent room light. When the admixtures were viewed with a Tyndall beam, a trace haze was observed with the ampicillin sodium and nafcillin sodium mixtures but not with the oxacillin sodium mixture. Measured turbidity and particulate content were low and exhibited little change in the ampicillin sodium and oxacillin sodium samples throughout the study. The nafcillin sodium samples stored at room temperature remained clear, but a microprecipitate developed in the refrigerated samples between 14 and 21 days of storage. All samples were essentially colorless throughout the study. HPLC analysis indicated some decomposition in the samples. Ampicillin sodium, which was the least stable, exhibited a 10% loss after 24 hours at 23 deg C. In the

  18. The effect of sage, sodium erythorbate and a mixture of sage and sodium erythorbate on the quality of turkey meatballs stored under vacuum and modified atmosphere conditions.

    PubMed

    Karpińska-Tymoszczyk, M

    2010-12-01

    1. The combined effect of sage (S), sodium erythorbate (SE), a mixture of sage and sodium erythorbate (MIX) and vacuum packaging (VP) and modified atmosphere packaging (MAP) on the quality of cooked turkey meatballs stored at 4°C was investigated. The physicochemical properties (colour, MDA, AV, pH, water activity), microbiological quality characteristics (counts of mesophilic and psychrotrophic bacteria, fungi, coliforms and Clostridium sp.) and flavour attributes of meatballs were determined. 2. The values of the colour parameters L*, a* and b* were affected by the additives and packaging method. The colour of meatballs was better protected by sodium erythorbate than by sage or a mixture of sage and sodium erythorbate. The additives effectively stabilised lipids against oxidation and slowed down hydrolytic changes in turkey meatballs. Sage and a mixture of sage and sodium erythorbate showed stronger antioxidant properties than sodium erythorbate added alone. Products with additives were characterised by better sensory quality than control samples. Sage and MIX prevented the growth of mesophilic and psychrotrophic bacteria. All additives inhibited the growth of coliforms. 3. MAP was more effective than VP in maintaining the microbial and sensory quality stability of cooked turkey meatballs. However, VP appears to be a better method as regards the maintaining of lipid stability in turkey meatballs. PMID:21161781

  19. The effect of sage, sodium erythorbate and a mixture of sage and sodium erythorbate on the quality of turkey meatballs stored under vacuum and modified atmosphere conditions.

    PubMed

    Karpińska-Tymoszczyk, M

    2010-12-01

    1. The combined effect of sage (S), sodium erythorbate (SE), a mixture of sage and sodium erythorbate (MIX) and vacuum packaging (VP) and modified atmosphere packaging (MAP) on the quality of cooked turkey meatballs stored at 4°C was investigated. The physicochemical properties (colour, MDA, AV, pH, water activity), microbiological quality characteristics (counts of mesophilic and psychrotrophic bacteria, fungi, coliforms and Clostridium sp.) and flavour attributes of meatballs were determined. 2. The values of the colour parameters L*, a* and b* were affected by the additives and packaging method. The colour of meatballs was better protected by sodium erythorbate than by sage or a mixture of sage and sodium erythorbate. The additives effectively stabilised lipids against oxidation and slowed down hydrolytic changes in turkey meatballs. Sage and a mixture of sage and sodium erythorbate showed stronger antioxidant properties than sodium erythorbate added alone. Products with additives were characterised by better sensory quality than control samples. Sage and MIX prevented the growth of mesophilic and psychrotrophic bacteria. All additives inhibited the growth of coliforms. 3. MAP was more effective than VP in maintaining the microbial and sensory quality stability of cooked turkey meatballs. However, VP appears to be a better method as regards the maintaining of lipid stability in turkey meatballs.

  20. Dietary sodium and cardiovascular disease.

    PubMed

    Smyth, Andrew; O'Donnell, Martin; Mente, Andrew; Yusuf, Salim

    2015-06-01

    Although an essential nutrient, higher sodium intake is associated with increasing blood pressure (BP), forming the basis for current population-wide sodium restriction guidelines. While short-term clinical trials have achieved low intake (<2.0 g/day), this has not been reproduced in long-term trials (>6 months). Guidelines assume that low sodium intake will reduce BP and reduce cardiovascular disease (CVD), compared to moderate intake. However, current observational evidence suggests a J-shaped association between sodium intake and CVD; the lowest risks observed with 3-5 g/day but higher risk with <3 g/day. Importantly, these observational data also confirm the association between higher intake (>5 g/day) and increased risk of CVD. Although lower intake may reduce BP, this may be offset by marked increases in neurohormones and other adverse effects which may paradoxically be adverse. Large randomised clinical trials with sufficient follow-up are required to provide robust data on the long-term effects of sodium reduction on CVD incidence. Until such trials are completed, current evidence suggests that moderate sodium intake for the general population (3-5 g/day) is likely the optimum range for CVD prevention.

  1. Crystallization of Local Anesthetics When Mixed With Corticosteroid Solutions

    PubMed Central

    Hwang, Hyeoncheol; Park, Jihong; Lee, Won Kyung; Lee, Woo Hyung; Leigh, Ja-Ho; Lee, Jin Joo; Chung, Sun G.; Lim, Chaiyoung; Park, Sang Jun

    2016-01-01

    Objective To evaluate at which pH level various local anesthetics precipitate, and to confirm which combination of corticosteroid and local anesthetic crystallizes. Methods Each of ropivacaine-HCl, bupivacaine-HCl, and lidocaine-HCl was mixed with 4 different concentrations of NaOH solutions. Also, each of the three local anesthetics was mixed with the same volume of 3 corticosteroid solutions (triamcinolone acetonide, dexamethasone sodium phosphate, and betamethasone sodium phosphate). Precipitation of the local anesthetics (or not) was observed, by the naked eye and by microscope. The pH of each solution and the size of the precipitated crystal were measured. Results Alkalinized with NaOH to a certain value of pH, local anesthetics precipitated (ropivacaine pH 6.9, bupivacaine pH 7.7, and lidocaine pH 12.9). Precipitation was observed as a cloudy appearance by the naked eye and as the aggregation of small particles (<10 µm) by microscope. The amount of particles and aggregation increased with increased pH. Mixed with betamethasone sodium phosphate, ropivacaine was precipitated in the form of numerous large crystals (>300 µm, pH 7.5). Ropivacaine with dexamethasone sodium phosphate also precipitated, but it was only observable by microscope (a few crystals of 10–100 µm, pH 7.0). Bupivacaine with betamethasone sodium phosphate formed precipitates of non-aggregated smaller particles (<10 µm, pH 7.7). Lidocaine mixed with corticosteroids did not precipitate. Conclusion Ropivacaine and bupivacaine can precipitate by alkalinization at a physiological pH, and therefore also produce crystals at a physiological pH when they are mixed with betamethasone sodium phosphate. Thus, the potential risk should be noted for their use in interventions, such as epidural steroid injections. PMID:26949665

  2. Integrating sodium reduction strategies in the procurement process and contracting of food venues in the County of Los Angeles government, 2010-2012.

    PubMed

    Cummings, Patricia L; Kuo, Tony; Gase, Lauren N; Mugavero, Kristy

    2014-01-01

    Since sodium is ubiquitous in the food supply, recent approaches to sodium reduction have focused on increasing the availability of lower-sodium products through system-level and environmental changes. This article reviews integrated efforts by the Los Angeles County Sodium Reduction Initiative to implement these strategies at food venues in the County of Los Angeles government. The review used mixed methods, including a scan of the literature, key informant interviews, and lessons learned during 2010-2012 to assess program progress. Leveraging technical expertise and shared resources, the initiative strategically incorporated sodium reduction strategies into the overall work plan of a multipartnership food procurement program in Los Angeles County. To date, 3 County departments have incorporated new or updated nutrition requirements that included sodium limits and other strategies. The strategic coupling of sodium reduction to food procurement and general health promotion allowed for simultaneous advancement and acceleration of the County's sodium reduction agenda.

  3. Housing Mix, School Mix: Barriers to Success

    ERIC Educational Resources Information Center

    Camina, M. M.; Iannone, P.

    2014-01-01

    Recent UK policy has emphasised both the development of socially mixed communities and the creation of balanced school intakes. In this paper, we use a case study of an area of mixed tenure in eastern England to explore policy in practice and the extent to which mechanisms of segregation impact on both the creation of socially mixed neighbourhoods…

  4. 21 CFR 182.2727 - Sodium aluminosilicate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Sodium aluminosilicate. 182.2727 Section 182.2727 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD... Sodium aluminosilicate. (a) Product. Sodium aluminosilicate (sodium silicoaluminate). (b) Tolerance....

  5. 21 CFR 582.2727 - Sodium aluminosilicate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Sodium aluminosilicate. 582.2727 Section 582.2727 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Sodium aluminosilicate. (a) Product. Sodium aluminosilicate (sodium silicoaluminate). (b) Tolerance....

  6. 21 CFR 182.2727 - Sodium aluminosilicate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Sodium aluminosilicate. 182.2727 Section 182.2727 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD... Sodium aluminosilicate. (a) Product. Sodium aluminosilicate (sodium silicoaluminate). (b) Tolerance....

  7. 21 CFR 582.2727 - Sodium aluminosilicate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Sodium aluminosilicate. 582.2727 Section 582.2727 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Sodium aluminosilicate. (a) Product. Sodium aluminosilicate (sodium silicoaluminate). (b) Tolerance....

  8. 21 CFR 582.1745 - Sodium carboxymethylcellulose.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Sodium carboxymethylcellulose. 582.1745 Section... Food Additives § 582.1745 Sodium carboxymethylcellulose. (a) Product. Sodium carboxymethyl- cellulose is the sodium salt of carboxymethylcellulose not less than 99.5 percent on a dry-weight basis,...

  9. 21 CFR 184.1724 - Sodium alginate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Sodium alginate. 184.1724 Section 184.1724 Food... Specific Substances Affirmed as GRAS § 184.1724 Sodium alginate. (a) Sodium alginate (CAS Reg. No. 9005-38-3) is the sodium salt of alginic acid, a natural polyuronide constituent of certain brown...

  10. 21 CFR 582.1745 - Sodium carboxymethylcellulose.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Sodium carboxymethylcellulose. 582.1745 Section... Food Additives § 582.1745 Sodium carboxymethylcellulose. (a) Product. Sodium carboxymethyl- cellulose is the sodium salt of carboxymethylcellulose not less than 99.5 percent on a dry-weight basis,...

  11. 21 CFR 582.1745 - Sodium carboxymethylcellulose.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Sodium carboxymethylcellulose. 582.1745 Section... Food Additives § 582.1745 Sodium carboxymethylcellulose. (a) Product. Sodium carboxymethyl- cellulose is the sodium salt of carboxymethylcellulose not less than 99.5 percent on a dry-weight basis,...

  12. 21 CFR 184.1724 - Sodium alginate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Sodium alginate. 184.1724 Section 184.1724 Food... Specific Substances Affirmed as GRAS § 184.1724 Sodium alginate. (a) Sodium alginate (CAS Reg. No. 9005-38-3) is the sodium salt of alginic acid, a natural polyuronide constituent of certain brown...

  13. 21 CFR 582.2727 - Sodium aluminosilicate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Sodium aluminosilicate. 582.2727 Section 582.2727 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Sodium aluminosilicate. (a) Product. Sodium aluminosilicate (sodium silicoaluminate). (b) Tolerance....

  14. 21 CFR 182.2727 - Sodium aluminosilicate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Sodium aluminosilicate. 182.2727 Section 182.2727 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD... Sodium aluminosilicate. (a) Product. Sodium aluminosilicate (sodium silicoaluminate). (b) Tolerance....

  15. 21 CFR 582.1745 - Sodium carboxymethylcellulose.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Sodium carboxymethylcellulose. 582.1745 Section... Food Additives § 582.1745 Sodium carboxymethylcellulose. (a) Product. Sodium carboxymethyl- cellulose is the sodium salt of carboxymethylcellulose not less than 99.5 percent on a dry-weight basis,...

  16. 21 CFR 182.2727 - Sodium aluminosilicate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Sodium aluminosilicate. 182.2727 Section 182.2727...) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Anticaking Agents § 182.2727 Sodium aluminosilicate. (a) Product. Sodium aluminosilicate (sodium silicoaluminate). (b) Tolerance. This substance is generally recognized...

  17. 21 CFR 178.3900 - Sodium pentachlorophenate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Sodium pentachlorophenate. 178.3900 Section 178... § 178.3900 Sodium pentachlorophenate. Sodium pentachlorophenate may be safely used as a preservative for... temperature. The quantity of sodium pentachlorophenate used shall not exceed 0.5 percent by weight of...

  18. 21 CFR 182.2727 - Sodium aluminosilicate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Sodium aluminosilicate. 182.2727 Section 182.2727 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD... Sodium aluminosilicate. (a) Product. Sodium aluminosilicate (sodium silicoaluminate). (b) Tolerance....

  19. 21 CFR 582.2727 - Sodium aluminosilicate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Sodium aluminosilicate. 582.2727 Section 582.2727 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Sodium aluminosilicate. (a) Product. Sodium aluminosilicate (sodium silicoaluminate). (b) Tolerance....

  20. 21 CFR 582.1745 - Sodium carboxymethylcellulose.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Sodium carboxymethylcellulose. 582.1745 Section... Food Additives § 582.1745 Sodium carboxymethylcellulose. (a) Product. Sodium carboxymethyl- cellulose is the sodium salt of carboxymethylcellulose not less than 99.5 percent on a dry-weight basis,...

  1. 21 CFR 184.1724 - Sodium alginate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Sodium alginate. 184.1724 Section 184.1724 Food... Specific Substances Affirmed as GRAS § 184.1724 Sodium alginate. (a) Sodium alginate (CAS Reg. No. 9005-38-3) is the sodium salt of alginic acid, a natural polyuronide constituent of certain brown...

  2. 21 CFR 582.2727 - Sodium aluminosilicate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Sodium aluminosilicate. 582.2727 Section 582.2727 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Sodium aluminosilicate. (a) Product. Sodium aluminosilicate (sodium silicoaluminate). (b) Tolerance....

  3. Are Reductions in Population Sodium Intake Achievable?

    PubMed Central

    Levings, Jessica L.; Cogswell, Mary E.; Gunn, Janelle Peralez

    2014-01-01

    The vast majority of Americans consume too much sodium, primarily from packaged and restaurant foods. The evidence linking sodium intake with direct health outcomes indicates a positive relationship between higher levels of sodium intake and cardiovascular disease risk, consistent with the relationship between sodium intake and blood pressure. Despite communication and educational efforts focused on lowering sodium intake over the last three decades data suggest average US sodium intake has remained remarkably elevated, leading some to argue that current sodium guidelines are unattainable. The IOM in 2010 recommended gradual reductions in the sodium content of packaged and restaurant foods as a primary strategy to reduce US sodium intake, and research since that time suggests gradual, downward shifts in mean population sodium intake are achievable and can move the population toward current sodium intake guidelines. The current paper reviews recent evidence indicating: (1) significant reductions in mean population sodium intake can be achieved with gradual sodium reduction in the food supply, (2) gradual sodium reduction in certain cases can be achieved without a noticeable change in taste or consumption of specific products, and (3) lowering mean population sodium intake can move us toward meeting the current individual guidelines for sodium intake. PMID:25325254

  4. 21 CFR 186.1797 - Sodium sulfate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... crystalline powder. It is prepared by the neutralization of sulfuric acid with sodium hydroxide. (b) The... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Sodium sulfate. 186.1797 Section 186.1797 Food and... Substances Affirmed as GRAS § 186.1797 Sodium sulfate. (a) Sodium sulfate (Na2SO4, CAS Reg. No....

  5. 21 CFR 186.1797 - Sodium sulfate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... crystalline powder. It is prepared by the neutralization of sulfuric acid with sodium hydroxide. (b) The... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Sodium sulfate. 186.1797 Section 186.1797 Food and... Substances Affirmed as GRAS § 186.1797 Sodium sulfate. (a) Sodium sulfate (Na2SO4, CAS Reg. No....

  6. 21 CFR 184.1784 - Sodium propionate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    .... It is prepared by neutralizing propionic acid with sodium hydroxide. (b) The ingredients meets the... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Sodium propionate. 184.1784 Section 184.1784 Food... Specific Substances Affirmed as GRAS § 184.1784 Sodium propionate. (a) Sodium propionate (C3H5NaO2, CAS...

  7. 21 CFR 184.1784 - Sodium propionate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    .... It is prepared by neutralizing propionic acid with sodium hydroxide. (b) The ingredients meets the... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Sodium propionate. 184.1784 Section 184.1784 Food... Specific Substances Affirmed as GRAS § 184.1784 Sodium propionate. (a) Sodium propionate (C3H5NaO2, CAS...

  8. 21 CFR 186.1750 - Sodium chlorite.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... passing chlorine dioxide into a solution of sodium hydroxide and hydrogen peroxide. (b) the ingredient is... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Sodium chlorite. 186.1750 Section 186.1750 Food... of Specific Substances Affirmed as GRAS § 186.1750 Sodium chlorite. (a) Sodium chlorite (NaCLO2,...

  9. 21 CFR 186.1750 - Sodium chlorite.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... into a solution of sodium hydroxide and hydrogen peroxide. (b) the ingredient is used at levels from... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Sodium chlorite. 186.1750 Section 186.1750 Food and... Substances Affirmed as GRAS § 186.1750 Sodium chlorite. (a) Sodium chlorite (NaCLO2, CAS Reg. No....

  10. 21 CFR 186.1750 - Sodium chlorite.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... solution of sodium hydroxide and hydrogen peroxide. (b) the ingredient is used at levels from 125 to 250... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Sodium chlorite. 186.1750 Section 186.1750 Food... GRAS § 186.1750 Sodium chlorite. (a) Sodium chlorite (NaCLO2, CAS Reg. No. 7758-19-2) exists...

  11. 21 CFR 184.1784 - Sodium propionate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    .... It is prepared by neutralizing propionic acid with sodium hydroxide. (b) The ingredients meets the... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Sodium propionate. 184.1784 Section 184.1784 Food... Specific Substances Affirmed as GRAS § 184.1784 Sodium propionate. (a) Sodium propionate (C3H5NaO2, CAS...

  12. 21 CFR 186.1750 - Sodium chlorite.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... passing chlorine dioxide into a solution of sodium hydroxide and hydrogen peroxide. (b) the ingredient is... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Sodium chlorite. 186.1750 Section 186.1750 Food... of Specific Substances Affirmed as GRAS § 186.1750 Sodium chlorite. (a) Sodium chlorite (NaCLO2,...

  13. 21 CFR 184.1784 - Sodium propionate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    .... It is prepared by neutralizing propionic acid with sodium hydroxide. (b) The ingredients meets the... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Sodium propionate. 184.1784 Section 184.1784 Food... Specific Substances Affirmed as GRAS § 184.1784 Sodium propionate. (a) Sodium propionate (C3H5NaO2, CAS...

  14. 21 CFR 186.1750 - Sodium chlorite.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... passing chlorine dioxide into a solution of sodium hydroxide and hydrogen peroxide. (b) the ingredient is... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Sodium chlorite. 186.1750 Section 186.1750 Food... of Specific Substances Affirmed as GRAS § 186.1750 Sodium chlorite. (a) Sodium chlorite (NaCLO2,...

  15. 21 CFR 186.1797 - Sodium sulfate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... crystalline powder. It is prepared by the neutralization of sulfuric acid with sodium hydroxide. (b) The... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Sodium sulfate. 186.1797 Section 186.1797 Food and... Substances Affirmed as GRAS § 186.1797 Sodium sulfate. (a) Sodium sulfate (Na2SO4, CAS Reg. No....

  16. 21 CFR 186.1797 - Sodium sulfate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... crystalline powder. It is prepared by the neutralization of sulfuric acid with sodium hydroxide. (b) The... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Sodium sulfate. 186.1797 Section 186.1797 Food and... Substances Affirmed as GRAS § 186.1797 Sodium sulfate. (a) Sodium sulfate (Na2SO4, CAS Reg. No....

  17. 21 CFR 186.1797 - Sodium sulfate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... by the neutralization of sulfuric acid with sodium hydroxide. (b) The ingredient is used as a... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Sodium sulfate. 186.1797 Section 186.1797 Food and....1797 Sodium sulfate. (a) Sodium sulfate (Na2SO4, CAS Reg. No. 7757-82-6), also known as Glauber's...

  18. 21 CFR 184.1763 - Sodium hydroxide.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Specific Substances Affirmed as GRAS § 184.1763 Sodium hydroxide. (a) Sodium hydroxide (NaOH, CAS Reg. No... empirical formula is NaOH. Sodium hydroxide is prepared commercially by the electrolysis of sodium chloride... following current good manufacturing practice conditions of use: (1) The ingredient is used as a pH...

  19. 21 CFR 184.1763 - Sodium hydroxide.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... Specific Substances Affirmed as GRAS § 184.1763 Sodium hydroxide. (a) Sodium hydroxide (NaOH, CAS Reg. No... empirical formula is NaOH. Sodium hydroxide is prepared commercially by the electrolysis of sodium chloride... following current good manufacturing practice conditions of use: (1) The ingredient is used as a pH...

  20. 21 CFR 184.1763 - Sodium hydroxide.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... Specific Substances Affirmed as GRAS § 184.1763 Sodium hydroxide. (a) Sodium hydroxide (NaOH, CAS Reg. No... empirical formula is NaOH. Sodium hydroxide is prepared commercially by the electrolysis of sodium chloride... following current good manufacturing practice conditions of use: (1) The ingredient is used as a pH...

  1. 21 CFR 184.1763 - Sodium hydroxide.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... Specific Substances Affirmed as GRAS § 184.1763 Sodium hydroxide. (a) Sodium hydroxide (NaOH, CAS Reg. No... empirical formula is NaOH. Sodium hydroxide is prepared commercially by the electrolysis of sodium chloride... following current good manufacturing practice conditions of use: (1) The ingredient is used as a pH...

  2. 21 CFR 184.1763 - Sodium hydroxide.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... GRAS § 184.1763 Sodium hydroxide. (a) Sodium hydroxide (NaOH, CAS Reg. No. 1310-73-2) is also known as sodium hydrate, soda lye, caustic soda, white caustic, and lye. The empirical formula is NaOH. Sodium... manufacturing practice conditions of use: (1) The ingredient is used as a pH control agent as defined in §...

  3. 21 CFR 172.170 - Sodium nitrate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Sodium nitrate. 172.170 Section 172.170 Food and... Preservatives § 172.170 Sodium nitrate. The food additive sodium nitrate may be safely used in or on specified... sablefish, smoked, cured salmon, and smoked, cured shad, so that the level of sodium nitrate does not...

  4. 21 CFR 172.170 - Sodium nitrate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Sodium nitrate. 172.170 Section 172.170 Food and... Preservatives § 172.170 Sodium nitrate. The food additive sodium nitrate may be safely used in or on specified... sablefish, smoked, cured salmon, and smoked, cured shad, so that the level of sodium nitrate does not...

  5. 21 CFR 172.175 - Sodium nitrite.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... sodium nitrate, in smoked, cured sablefish, smoked, cured salmon, and smoked, cured shad so that the level of sodium nitrite does not exceed 200 parts per million and the level of sodium nitrate does not... sodium nitrate, in meat-curing preparations for the home curing of meat and meat products...

  6. 21 CFR 172.170 - Sodium nitrate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Sodium nitrate. 172.170 Section 172.170 Food and... Preservatives § 172.170 Sodium nitrate. The food additive sodium nitrate may be safely used in or on specified... sablefish, smoked, cured salmon, and smoked, cured shad, so that the level of sodium nitrate does not...

  7. 21 CFR 172.170 - Sodium nitrate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Sodium nitrate. 172.170 Section 172.170 Food and... Preservatives § 172.170 Sodium nitrate. The food additive sodium nitrate may be safely used in or on specified... sablefish, smoked, cured salmon, and smoked, cured shad, so that the level of sodium nitrate does not...

  8. Mixing and Transport.

    PubMed

    Chang, Chein-Chi; Chapman, Tom; Siverts-Wong, Elena; Wei, Li; Mei, Ying

    2016-10-01

    This section covers research published during the calendar year 2015 on mixing and transport processes. The review covers mixing of anaerobic digesters, mixing of heat transfer, and environmental fate and transport. PMID:27620101

  9. Insect sodium channels and insecticide resistance

    PubMed Central

    2011-01-01

    Voltage-gated sodium channels are essential for the generation and propagation of action potentials (i.e., electrical impulses) in excitable cells. Although most of our knowledge about sodium channels is derived from decades of studies of mammalian isoforms, research on insect sodium channels is revealing both common and unique aspects of sodium channel biology. In particular, our understanding of the molecular dynamics and pharmacology of insect sodium channels has advanced greatly in recent years, thanks to successful functional expression of insect sodium channels in Xenopus oocytes and intensive efforts to elucidate the molecular basis of insect resistance to insecticides that target sodium channels. In this review, I discuss recent literature on insect sodium channels with emphases on the prominent role of alternative splicing and RNA editing in the generation of functionally diverse sodium channels in insects and the current understanding of the interactions between insect sodium channels and insecticides. PMID:17206406

  10. 21 CFR 522.2444b - Sodium thiopental, sodium pentobarbital for injection.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Sodium thiopental, sodium pentobarbital for... FORM NEW ANIMAL DRUGS § 522.2444b Sodium thiopental, sodium pentobarbital for injection. (a) Specifications. Each gram of the drug contains 750 milligrams of sodium thiopental and 250 milligrams of...

  11. 21 CFR 522.2444b - Sodium thiopental, sodium pentobarbital for injection.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Sodium thiopental, sodium pentobarbital for... FORM NEW ANIMAL DRUGS § 522.2444b Sodium thiopental, sodium pentobarbital for injection. (a) Specifications. Each gram of the drug contains 750 milligrams of sodium thiopental and 250 milligrams of...

  12. 49 CFR 173.189 - Batteries containing sodium or cells containing sodium.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 2 2013-10-01 2013-10-01 false Batteries containing sodium or cells containing... Than Class 1 and Class 7 § 173.189 Batteries containing sodium or cells containing sodium. (a) Batteries and cells may not contain any hazardous material other than sodium, sulfur or sodium compounds...

  13. 49 CFR 173.189 - Batteries containing sodium or cells containing sodium.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 2 2012-10-01 2012-10-01 false Batteries containing sodium or cells containing... Than Class 1 and Class 7 § 173.189 Batteries containing sodium or cells containing sodium. (a) Batteries and cells may not contain any hazardous material other than sodium, sulfur or sodium compounds...

  14. 49 CFR 173.189 - Batteries containing sodium or cells containing sodium.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 2 2014-10-01 2014-10-01 false Batteries containing sodium or cells containing... Than Class 1 and Class 7 § 173.189 Batteries containing sodium or cells containing sodium. (a) Batteries and cells may not contain any hazardous material other than sodium, sulfur or sodium compounds...

  15. 49 CFR 173.189 - Batteries containing sodium or cells containing sodium.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false Batteries containing sodium or cells containing... Than Class 1 and Class 7 § 173.189 Batteries containing sodium or cells containing sodium. (a) Batteries and cells may not contain any hazardous material other than sodium, sulfur or sodium compounds...

  16. 21 CFR 184.1768 - Sodium lactate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ....1768 Sodium lactate. (a) Sodium lactate (C3H5O3Na, CAS Reg. No. 72-17-3) is the sodium salt of lactic acid. It is prepared commercially by the neutralization of lactic acid with sodium hydroxide. (b) The... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Sodium lactate. 184.1768 Section 184.1768 Food...

  17. 21 CFR 184.1721 - Sodium acetate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... sodium sulfate and sodium bicarbonate. (b) The ingredient meets the specifications of the Food Chemicals... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Sodium acetate. 184.1721 Section 184.1721 Food and... Substances Affirmed as GRAS § 184.1721 Sodium acetate. (a) Sodium acetate (C2H3O2Na, CAS Reg. No. 127-09-3...

  18. 21 CFR 184.1721 - Sodium acetate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... sodium sulfate and sodium bicarbonate. (b) The ingredient meets the specifications of the Food Chemicals... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Sodium acetate. 184.1721 Section 184.1721 Food and... Substances Affirmed as GRAS § 184.1721 Sodium acetate. (a) Sodium acetate (C2H3O2Na, CAS Reg. No. 127-09-3...

  19. 21 CFR 184.1721 - Sodium acetate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... sodium sulfate and sodium bicarbonate. (b) The ingredient meets the specifications of the Food Chemicals... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Sodium acetate. 184.1721 Section 184.1721 Food and... Substances Affirmed as GRAS § 184.1721 Sodium acetate. (a) Sodium acetate (C2H3O2Na, CAS Reg. No. 127-09-3...

  20. 21 CFR 184.1721 - Sodium acetate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... sodium sulfate and sodium bicarbonate. (b) The ingredient meets the specifications of the Food Chemicals... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Sodium acetate. 184.1721 Section 184.1721 Food and... Substances Affirmed as GRAS § 184.1721 Sodium acetate. (a) Sodium acetate (C2H3O2Na, CAS Reg. No. 127-09-3...

  1. Sodium Velocity Maps on Mercury

    NASA Technical Reports Server (NTRS)

    Potter, A. E.; Killen, R. M.

    2011-01-01

    The objective of the current work was to measure two-dimensional maps of sodium velocities on the Mercury surface and examine the maps for evidence of sources or sinks of sodium on the surface. The McMath-Pierce Solar Telescope and the Stellar Spectrograph were used to measure Mercury spectra that were sampled at 7 milliAngstrom intervals. Observations were made each day during the period October 5-9, 2010. The dawn terminator was in view during that time. The velocity shift of the centroid of the Mercury emission line was measured relative to the solar sodium Fraunhofer line corrected for radial velocity of the Earth. The difference between the observed and calculated velocity shift was taken to be the velocity vector of the sodium relative to Earth. For each position of the spectrograph slit, a line of velocities across the planet was measured. Then, the spectrograph slit was stepped over the surface of Mercury at 1 arc second intervals. The position of Mercury was stabilized by an adaptive optics system. The collection of lines were assembled into an images of surface reflection, sodium emission intensities, and Earthward velocities over the surface of Mercury. The velocity map shows patches of higher velocity in the southern hemisphere, suggesting the existence of sodium sources there. The peak earthward velocity occurs in the equatorial region, and extends to the terminator. Since this was a dawn terminator, this might be an indication of dawn evaporation of sodium. Leblanc et al. (2008) have published a velocity map that is similar.

  2. Insights about serum sodium behavior after 24 hours of continuous renal replacement therapy

    PubMed Central

    Romano, Thiago Gomes; Martins, Cassia Pimenta Barufi; Mendes, Pedro Vitale; Besen, Bruno Adler Maccagnan Pinheiro; Zampieri, Fernando Godinho; Park, Marcelo

    2016-01-01

    Objective The aim of this study was to investigate the clinical and laboratorial factors associated with serum sodium variation during continuous renal replacement therapy and to assess whether the perfect admixture formula could predict 24-hour sodium variation. Methods Thirty-six continuous renal replacement therapy sessions of 33 patients, in which the affluent prescription was unchanged during the first 24 hours, were retrieved from a prospective collected database and then analyzed. A mixed linear model was performed to investigate the factors associated with large serum sodium variations (≥ 8mEq/L), and a Bland-Altman plot was generated to assess the agreement between the predicted and observed variations. Results In continuous renal replacement therapy 24-hour sessions, SAPS 3 (p = 0.022) and baseline hypernatremia (p = 0.023) were statistically significant predictors of serum sodium variations ≥ 8mEq/L in univariate analysis, but only hypernatremia demonstrated an independent association (β = 0.429, p < 0.001). The perfect admixture formula for sodium prediction at 24 hours demonstrated poor agreement with the observed values. Conclusions Hypernatremia at the time of continuous renal replacement therapy initiation is an important factor associated with clinically significant serum sodium variation. The use of 4% citrate or acid citrate dextrose - formula A 2.2% as anticoagulants was not associated with higher serum sodium variations. A mathematical prediction for the serum sodium concentration after 24 hours was not feasible. PMID:27410407

  3. No sodium in the vapour plumes of Enceladus.

    PubMed

    Schneider, Nicholas M; Burger, Matthew H; Schaller, Emily L; Brown, Michael E; Johnson, Robert E; Kargel, Jeffrey S; Dougherty, Michele K; Achilleos, Nicholas A

    2009-06-25

    The discovery of water vapour and ice particles erupting from Saturn's moon Enceladus fuelled speculation that an internal ocean was the source. Alternatively, the source might be ice warmed, melted or crushed by tectonic motions. Sodium chloride (that is, salt) is expected to be present in a long-lived ocean in contact with a rocky core. Here we report a ground-based spectroscopic search for atomic sodium near Enceladus that places an upper limit on the mixing ratio in the vapour plumes orders of magnitude below the expected ocean salinity. The low sodium content of escaping vapour, together with the small fraction of salt-bearing particles, argues against a situation in which a near-surface geyser is fuelled by a salty ocean through cracks in the crust. The lack of observable sodium in the vapour is consistent with a wide variety of alternative eruption sources, including a deep ocean, a freshwater reservoir, or ice. The existing data may be insufficient to distinguish between these hypotheses.

  4. No sodium in the vapour plumes of Enceladus.

    PubMed

    Schneider, Nicholas M; Burger, Matthew H; Schaller, Emily L; Brown, Michael E; Johnson, Robert E; Kargel, Jeffrey S; Dougherty, Michele K; Achilleos, Nicholas A

    2009-06-25

    The discovery of water vapour and ice particles erupting from Saturn's moon Enceladus fuelled speculation that an internal ocean was the source. Alternatively, the source might be ice warmed, melted or crushed by tectonic motions. Sodium chloride (that is, salt) is expected to be present in a long-lived ocean in contact with a rocky core. Here we report a ground-based spectroscopic search for atomic sodium near Enceladus that places an upper limit on the mixing ratio in the vapour plumes orders of magnitude below the expected ocean salinity. The low sodium content of escaping vapour, together with the small fraction of salt-bearing particles, argues against a situation in which a near-surface geyser is fuelled by a salty ocean through cracks in the crust. The lack of observable sodium in the vapour is consistent with a wide variety of alternative eruption sources, including a deep ocean, a freshwater reservoir, or ice. The existing data may be insufficient to distinguish between these hypotheses. PMID:19553993

  5. Development of Mesospheric Sodium Laser Beacon for Atmospheric Adaptive Optics

    NASA Technical Reports Server (NTRS)

    Jeys, T. H.

    1992-01-01

    A solid-state source of long pulse length, sodium-resonance radiation was developed for the purpose of generating an artificial star in the earth's mesospheric sodium layer. This radiation is generated by sum-frequency mixing the output of a 1.064 micron Nd:YAG laser with the output of a 1.319-micron Nd:YAG laser. By operating these lasers at wavelengths very close to the peak of their tuning curves, it is possible to match the wavelength of the sum-frequency radiation to that of the sodium D2 adsorption wavelength. Two pulsed laser systems were constructed, one producing as much as 0.6 J of sodium resonance radiation at a 10-Hz repetition rate and another producing as much as 24 mJ at a 840-Hz repetition rate. In both laser systems, the 1.06-micron and 1.32-micron Nd:YAG lasers are configured as mode-locked master oscillators followed by power amplifiers. Other aspects of this project are presented.

  6. Hydrogen Generation Via Sodium Borohydride

    NASA Astrophysics Data System (ADS)

    Mohring, Richard M.; Wu, Ying

    2003-07-01

    Along with the technological challenges associated with developing fuel cells and hydrogen burning engines, a major issue that must be addressed to ensure the ultimate success of a hydrogen economy is the ability to store and transport hydrogen effectively. Millennium Cell has developed and patented a proprietary system for storing and generating hydrogen gas called Hydrogen on Demand™. The system releases the hydrogen stored in fuel solutions of sodium borohydride as needed through an easily controllable catalytic process. The fuel itself is water-based, rich in hydrogen content, and non-flammable. It can be stored in plastic containers under no pressure. After the hydrogen from the fuel is consumed, the remaining product, sodium metaborate (chemically similar to borax), can be recycled back into fresh fuel. In this paper, an overview of the Hydrogen on Demand™ technology is presented along with data showing the performance characteristics of practical hydrogen generation systems. A brief discussion of sodium borohydride regeneration chemistry is also provided.

  7. Voltage-Gated Sodium Channels

    NASA Astrophysics Data System (ADS)

    Hanck, Dorothy A.; Fozzard, Harry A.

    Voltage-gated sodium channels subserve regenerative excitation throughout the nervous system, as well as in skeletal and cardiac muscle. This excitation results from a voltage-dependent mechanism that increases regeneratively and selectively the sodium conductance of the channel e-fold for a 4-7 mV depolarization of the membrane with time constants in the range of tens of microseconds. Entry of Na+ into the cell without a companion anion depolarizes the cell. This depolarization, called the action potential, is propagated at rates of 1-20 meters/sec. In nerve it subserves rapid transmission of information and, in muscle cells, coordinates the trigger for contraction. Sodium-dependent action potentials depolarize the membrane to inside positive values of about 30-40 mV (approaching the electrochemical potential for the transmembrane sodium gradient). Repolarization to the resting potential (usually between -60 and -90 mV) occurs because of inactivation (closure) of sodium channels, which is assisted in different tissues by variable amounts of activation of voltage-gated potassium channels. This sequence results in all-or-nothing action potentials in nerve and fast skeletal muscle of 1-2 ms duration, and in heart muscle of 100-300 ms duration. Recovery of regenerative excitation, i.e., recovery of the ability of sodium channels to open, occurs after restoration of the resting potential with time constants of a few to several hundreds of milliseconds, depending on the channel isoform, and this rate controls the minimum interval for repetitive action potentials (refractory period).

  8. Tremor due to sodium valproate.

    PubMed

    Hyman, N M; Dennis, P D; Sinclair, K G

    1979-08-01

    Four patients developed postural tremor after ingestion of sodium valproate. The tremor was recorded by a variable-capacitance transducer and was of the "benign essential" type. The dosages of sodium valproate varied between 1000 mg and 2000 mg daily and serum levels were between 34.9 microgram per milliliter and 154.3 microgram per milliliter. Tremor was ameliorated in two cases when the dosage was reduced. In only one case was the serum level in the toxic range for our laboratory. The pharmacology of essential tremor is unknown; production of a similar tremor by a drug could serve as a biochemical model. PMID:379690

  9. In situ Microscopic Observation of Sodium Deposition/Dissolution on Sodium Electrode

    PubMed Central

    Yui, Yuhki; Hayashi, Masahiko; Nakamura, Jiro

    2016-01-01

    Electrochemical sodium deposition/dissolution behaviors in propylene carbonate-based electrolyte solution were observed by means of in situ light microscopy. First, granular sodium was deposited at pits in a sodium electrode in the cathodic process. Then, the sodium particles grew linearly from the electrode surface, becoming needle-like in shape. In the subsequent anodic process, the sodium dissolved near the base of the needles on the sodium electrode and the so-called “dead sodium” broke away from the electrode. The mechanisms of electrochemical sodium deposition and dissolution on a copper electrode were similar to those on the sodium electrode. PMID:26925554

  10. SIMPLIFIED SODIUM GRAPHITE REACTOR SYSTEM

    DOEpatents

    Dickinson, R.W.

    1963-03-01

    This patent relates to a nuclear power reactor comprising a reactor vessel, shielding means positioned at the top of said vessel, means sealing said reactor vessel to said shielding means, said vessel containing a quantity of sodium, a core tank, unclad graphite moderator disposed in said tank, means including a plurality of process tubes traversing said tank for isolating said graphite from said sodium, fuel elements positioned in said process tubes, said core tank being supported in spaced relation to the walls and bottom of said reactor vessel and below the level of said sodium, neutron shielding means positioned adjacent said core tank between said core tank and the walls of said vessel, said neutron shielding means defining an annuiar volume adjacent the inside wall of said reactor vessel, inlet plenum means below said core tank for providing a passage between said annular volume and said process tubes, heat exchanger means removably supported from the first-named shielding means and positioned in said annular volume, and means for circulating said sodium over said neutron shielding means down through said heat exchanger, across said inlet plenum and upward through said process tubes, said last-named means including electromagnetic pumps located outside said vessel and supported on said vessel wall between said heat exchanger means and said inlet plenum means. (AEC)

  11. Borocaptate sodium (BSH) toxicity issues

    SciTech Connect

    LaHann, T.

    1995-11-01

    ISU`s Center for Toxicology Research has been conducting toxicity testing of borocaptate sodium (BSH) to aid in assessing if proposed human studies of BSH are likely to be acceptably safe. This report describes BSH interactions with other biological agents.

  12. Seal for sodium sulfur battery

    DOEpatents

    Topouzian, Armenag; Minck, Robert W.; Williams, William J.

    1980-01-01

    This invention is directed to a seal for a sodium sulfur battery in which the sealing is accomplished by a radial compression seal made on a ceramic component of the battery which separates an anode compartment from a cathode compartment of the battery.

  13. Volume efficient sodium sulfur battery

    DOEpatents

    Mikkor, Mati

    1980-01-01

    In accordance with the teachings of this specification, a sodium sulfur battery is formed as follows. A plurality of box shaped sulfur electrodes are provided, the outer surfaces of which are defined by an electrolyte material. Each of the electrodes have length and width dimensions substantially greater than the thicknesses thereof as well as upwardly facing surface and a downwardly facing surface. An electrode structure is contained in each of the sulfur electrodes. A holding structure is provided for holding the plurality of sulfur electrodes in a stacked condition with the upwardly facing surface of one sulfur electrode in facing relationship to the downwardly facing surface of another sulfur electrode thereabove. A small thickness dimension separates each of the stacked electrodes thereby defining between each pair of sulfur electrodes a volume which receives the sodium reactant. A reservoir is provided for containing sodium. A manifold structure interconnects the volumes between the sulfur electrodes and the reservoir. A metering structure controls the flow of sodium between the reservoir and the manifold structure.

  14. 21 CFR 582.5772 - Sodium pantothenate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5772 Sodium pantothenate. (a) Product. Sodium pantothenate. (b) Conditions of use....

  15. 21 CFR 582.5778 - Sodium phosphate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5778 Sodium phosphate. (a) Product. Sodium phosphate (mono-, di-, and tribasic)....

  16. 21 CFR 582.5772 - Sodium pantothenate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5772 Sodium pantothenate. (a) Product. Sodium pantothenate. (b) Conditions of use....

  17. 21 CFR 582.5778 - Sodium phosphate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5778 Sodium phosphate. (a) Product. Sodium phosphate (mono-, di-, and tribasic)....

  18. 21 CFR 582.5772 - Sodium pantothenate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5772 Sodium pantothenate. (a) Product. Sodium pantothenate. (b) Conditions of use....

  19. 21 CFR 582.5778 - Sodium phosphate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5778 Sodium phosphate. (a) Product. Sodium phosphate (mono-, di-, and tribasic)....

  20. 21 CFR 582.3766 - Sodium metabisulfite.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ....3766 Sodium metabisulfite. (a) Product. Sodium metabisulfite. (b) (c) Limitations, restrictions, or... feeding practice, except that it is not used in meats or in food recognized as source of vitamin B1....

  1. 21 CFR 582.3739 - Sodium bisulfite.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ....3739 Sodium bisulfite. (a) Product. Sodium bisulfite. (b) (c) Limitations, restrictions, or explanation... feeding practice, except that it is not used in meats or in food recognized as source of vitamin B1....

  2. 21 CFR 582.3798 - Sodium sulfite.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... Sodium sulfite. (a) Product. Sodium sulfite. (b) (c) Limitations, restrictions, or explanation. This... practice, except that it is not used in meats or in food recognized as source of vitamin B1....

  3. 21 CFR 184.1754 - Sodium diacetate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Sodium diacetate. 184.1754 Section 184.1754 Food... Specific Substances Affirmed as GRAS § 184.1754 Sodium diacetate. (a) Sodium diacetate (C4H7O4Na·xH2O, CAS Reg. No. 126-96-5) is a molecular compound of acetic acid, sodium acetate, and water of hydration....

  4. 21 CFR 184.1754 - Sodium diacetate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Sodium diacetate. 184.1754 Section 184.1754 Food... Specific Substances Affirmed as GRAS § 184.1754 Sodium diacetate. (a) Sodium diacetate (C4H7O4Na·xH2O, CAS Reg. No. 126-96-5) is a molecular compound of acetic acid, sodium acetate, and water of hydration....

  5. 21 CFR 184.1754 - Sodium diacetate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Sodium diacetate. 184.1754 Section 184.1754 Food... Specific Substances Affirmed as GRAS § 184.1754 Sodium diacetate. (a) Sodium diacetate (C4H7O4Na·xH2O, CAS Reg. No. 126-96-5) is a molecular compound of acetic acid, sodium acetate, and water of hydration....

  6. 21 CFR 184.1754 - Sodium diacetate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Sodium diacetate. 184.1754 Section 184.1754 Food... GRAS § 184.1754 Sodium diacetate. (a) Sodium diacetate (C4H7O4Na·xH2O, CAS Reg. No. 126-96-5) is a molecular compound of acetic acid, sodium acetate, and water of hydration. The technical grade is...

  7. 21 CFR 184.1751 - Sodium citrate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Sodium citrate. 184.1751 Section 184.1751 Food and... Substances Affirmed as GRAS § 184.1751 Sodium citrate. (a) Sodium citrate (C6H5Na3O7·2H2O, CAS Reg. No. 68... may be prepared in an anhydrous state or may contain two moles of water per mole of sodium citrate....

  8. 21 CFR 186.1756 - Sodium formate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Sodium formate. 186.1756 Section 186.1756 Food and... Substances Affirmed as GRAS § 186.1756 Sodium formate. (a) Sodium formate (CHNaO2, CAS Reg. No. 141-53-7) is the sodium salt of formic acid. It is produced by the reaction of carbon monoxide with...

  9. 21 CFR 184.1768 - Sodium lactate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... sodium hydroxide. (b) The ingredient must be of a purity suitable for its intended use. (c) In accordance... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Sodium lactate. 184.1768 Section 184.1768 Food and... Substances Affirmed as GRAS § 184.1768 Sodium lactate. (a) Sodium lactate (C3H5O3Na, CAS Reg. No. 72-17-3)...

  10. 21 CFR 184.1751 - Sodium citrate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... hydroxide or sodium carbonate. The product occurs as colorless crystals or a white crystalline powder. It... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Sodium citrate. 184.1751 Section 184.1751 Food and... Substances Affirmed as GRAS § 184.1751 Sodium citrate. (a) Sodium citrate (C6H5Na3O7·2H2O, CAS Reg. No....

  11. 21 CFR 186.1770 - Sodium oleate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Sodium oleate. 186.1770 Section 186.1770 Food and... Substances Affirmed as GRAS § 186.1770 Sodium oleate. (a) Sodium oleate (C18H33O2Na, CAS Reg. No. 143-19-1) is the sodium salt of oleic acid (cis-9-octadecenoic acid). It exists as a white to yellowish...

  12. 21 CFR 186.1756 - Sodium formate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Sodium formate. 186.1756 Section 186.1756 Food and... Substances Affirmed as GRAS § 186.1756 Sodium formate. (a) Sodium formate (CHNaO2, CAS Reg. No. 141-53-7) is the sodium salt of formic acid. It is produced by the reaction of carbon monoxide with...

  13. 21 CFR 184.1768 - Sodium lactate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... sodium hydroxide. (b) The ingredient must be of a purity suitable for its intended use. (c) In accordance... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Sodium lactate. 184.1768 Section 184.1768 Food and... Substances Affirmed as GRAS § 184.1768 Sodium lactate. (a) Sodium lactate (C3H5O3Na, CAS Reg. No. 72-17-3)...

  14. 21 CFR 184.1768 - Sodium lactate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... sodium hydroxide. (b) The ingredient must be of a purity suitable for its intended use. (c) In accordance... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Sodium lactate. 184.1768 Section 184.1768 Food and... Substances Affirmed as GRAS § 184.1768 Sodium lactate. (a) Sodium lactate (C3H5O3Na, CAS Reg. No. 72-17-3)...

  15. 21 CFR 184.1768 - Sodium lactate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... sodium hydroxide. (b) The ingredient must be of a purity suitable for its intended use. (c) In accordance... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Sodium lactate. 184.1768 Section 184.1768 Food and... Substances Affirmed as GRAS § 184.1768 Sodium lactate. (a) Sodium lactate (C3H5O3Na, CAS Reg. No. 72-17-3)...

  16. 21 CFR 184.1784 - Sodium propionate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... neutralizing propionic acid with sodium hydroxide. (b) The ingredients meets the specifications of the Food... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Sodium propionate. 184.1784 Section 184.1784 Food... GRAS § 184.1784 Sodium propionate. (a) Sodium propionate (C3H5NaO2, CAS Reg. No. 137-40-6) is...

  17. 21 CFR 186.1756 - Sodium formate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Sodium formate. 186.1756 Section 186.1756 Food and... Substances Affirmed as GRAS § 186.1756 Sodium formate. (a) Sodium formate (CHNaO2, CAS Reg. No. 141-53-7) is the sodium salt of formic acid. It is produced by the reaction of carbon monoxide with...

  18. 21 CFR 186.1756 - Sodium formate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Sodium formate. 186.1756 Section 186.1756 Food and... Substances Affirmed as GRAS § 186.1756 Sodium formate. (a) Sodium formate (CHNaO2, CAS Reg. No. 141-53-7) is the sodium salt of formic acid. It is produced by the reaction of carbon monoxide with...

  19. 21 CFR 184.1721 - Sodium acetate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Sodium acetate. 184.1721 Section 184.1721 Food and....1721 Sodium acetate. (a) Sodium acetate (C2H3O2Na, CAS Reg. No. 127-09-3 or C2H3O2Na·3H2O, CAS Reg. No. 6131-90-4) is the sodium salt of acetic acid and occurs naturally in plant and animal tissues....

  20. 21 CFR 582.3766 - Sodium metabisulfite.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Sodium metabisulfite. 582.3766 Section 582.3766 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL....3766 Sodium metabisulfite. (a) Product. Sodium metabisulfite. (b) (c) Limitations, restrictions,...

  1. 21 CFR 182.6760 - Sodium hexametaphosphate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Sodium hexametaphosphate. 182.6760 Section 182.6760 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED....6760 Sodium hexametaphosphate. (a) Product. Sodium hexametaphosphate. (b) Conditions of use....

  2. 21 CFR 582.1751 - Sodium citrate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Sodium citrate. 582.1751 Section 582.1751 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS....1751 Sodium citrate. (a) Product. Sodium citrate. (b) Conditions of use. This substance is...

  3. 21 CFR 582.1751 - Sodium citrate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Sodium citrate. 582.1751 Section 582.1751 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS....1751 Sodium citrate. (a) Product. Sodium citrate. (b) Conditions of use. This substance is...

  4. 21 CFR 582.1792 - Sodium sesquicarbonate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Sodium sesquicarbonate. 582.1792 Section 582.1792 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1792 Sodium sesquicarbonate. (a) Product. Sodium sesquicarbonate. (b) Conditions of...

  5. 21 CFR 556.620 - Sulfabromomethazine sodium.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Sulfabromomethazine sodium. 556.620 Section 556... Tolerances for Residues of New Animal Drugs § 556.620 Sulfabromomethazine sodium. Tolerances for residues of sulfabromomethazine sodium in food are established as follows: (a) In the uncooked edible tissues of cattle at...

  6. 21 CFR 582.3795 - Sodium sorbate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Sodium sorbate. 582.3795 Section 582.3795 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS... Sodium sorbate. (a) Product. Sodium sorbate. (b) Conditions of use. This substance is...

  7. 21 CFR 582.1751 - Sodium citrate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Sodium citrate. 582.1751 Section 582.1751 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS....1751 Sodium citrate. (a) Product. Sodium citrate. (b) Conditions of use. This substance is...

  8. 21 CFR 582.3739 - Sodium bisulfite.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Sodium bisulfite. 582.3739 Section 582.3739 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL....3739 Sodium bisulfite. (a) Product. Sodium bisulfite. (b) (c) Limitations, restrictions, or...

  9. 21 CFR 582.6757 - Sodium gluconate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Sodium gluconate. 582.6757 Section 582.6757 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Sodium gluconate. (a) Product. Sodium gluconate. (b) Conditions of use. This substance is...

  10. 21 CFR 182.6810 - Sodium tripolyphosphate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Sodium tripolyphosphate. 182.6810 Section 182.6810 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD... Sodium tripolyphosphate. (a) Product. Sodium tripolyphosphate. (b) Conditions of use. This substance...

  11. 21 CFR 582.1778 - Sodium phosphate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Sodium phosphate. 582.1778 Section 582.1778 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1778 Sodium phosphate. (a) Product. Sodium phosphate (mono-, di-, and tribasic)....

  12. 21 CFR 182.3798 - Sodium sulfite.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Sodium sulfite. 182.3798 Section 182.3798 Food and... CONSUMPTION (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Chemical Preservatives § 182.3798 Sodium sulfite. (a) Product. Sodium sulfite. (b) (c) Limitations, restrictions, or explanation. This substance...

  13. 21 CFR 182.3766 - Sodium metabisulfite.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Sodium metabisulfite. 182.3766 Section 182.3766...) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Chemical Preservatives § 182.3766 Sodium metabisulfite. (a) Product. Sodium metabisulfite. (b) (c) Limitations, restrictions, or explanation. This substance is...

  14. 21 CFR 582.6760 - Sodium hexametaphosphate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Sodium hexametaphosphate. 582.6760 Section 582.6760 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED....6760 Sodium hexametaphosphate. (a) Product. Sodium hexametaphosphate. (b) Conditions of use....

  15. 21 CFR 182.6810 - Sodium tripolyphosphate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Sodium tripolyphosphate. 182.6810 Section 182.6810 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD... Sodium tripolyphosphate. (a) Product. Sodium tripolyphosphate. (b) Conditions of use. This substance...

  16. 21 CFR 582.6754 - Sodium diacetate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Sodium diacetate. 582.6754 Section 582.6754 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Sodium diacetate. (a) Product. Sodium diacetate. (b) Conditions of use. This substance is...

  17. 21 CFR 556.620 - Sulfabromomethazine sodium.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Sulfabromomethazine sodium. 556.620 Section 556... Tolerances for Residues of New Animal Drugs § 556.620 Sulfabromomethazine sodium. Tolerances for residues of sulfabromomethazine sodium in food are established as follows: (a) In the uncooked edible tissues of cattle at...

  18. 21 CFR 582.3731 - Sodium ascorbate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Sodium ascorbate. 582.3731 Section 582.3731 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL....3731 Sodium ascorbate. (a) Product. Sodium ascorbate. (b) Conditions of use. This substance...

  19. 21 CFR 182.6778 - Sodium phosphate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Sodium phosphate. 182.6778 Section 182.6778 Food... HUMAN CONSUMPTION (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Sequestrants 1 § 182.6778 Sodium phosphate. (a) Product. Sodium phosphate (mono-, di-, and tribasic). (b) Conditions of use. This...

  20. 21 CFR 182.8778 - Sodium phosphate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Sodium phosphate. 182.8778 Section 182.8778 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients § 182.8778 Sodium phosphate. (a) Product. Sodium phosphate (mono-,...

  1. 40 CFR 721.9526 - Sodium perthiocarbonate.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Sodium perthiocarbonate. 721.9526... Substances § 721.9526 Sodium perthiocarbonate. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as sodium perthiocarbonate (PMN P-94-2166) is subject...

  2. 21 CFR 182.6757 - Sodium gluconate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Sodium gluconate. 182.6757 Section 182.6757 Food... HUMAN CONSUMPTION (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Sequestrants 1 § 182.6757 Sodium gluconate. (a) Product. Sodium gluconate. (b) Conditions of use. This substance is generally recognized...

  3. 21 CFR 582.6769 - Sodium metaphosphate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Sodium metaphosphate. 582.6769 Section 582.6769 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Sodium metaphosphate. (a) Product. Sodium metaphosphate. (b) Conditions of use. This substance...

  4. 21 CFR 582.1810 - Sodium tripolyphosphate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Sodium tripolyphosphate. 582.1810 Section 582.1810 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1810 Sodium tripolyphosphate. (a) Product. Sodium tripolyphosphate. (b) Conditions of...

  5. 21 CFR 582.6787 - Sodium pyrophosphate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Sodium pyrophosphate. 582.6787 Section 582.6787 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Sodium pyrophosphate. (a) Product. Sodium pyrophosphate. (b) Condition of use. This substance...

  6. 21 CFR 522.1610 - Oleate sodium.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Oleate sodium. 522.1610 Section 522.1610 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS... sodium. (a) Specifications. Each milliliter of solution contains 50 milligrams (mg) of sodium oleate....

  7. 21 CFR 182.1748 - Sodium caseinate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Sodium caseinate. 182.1748 Section 182.1748 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Substances § 182.1748 Sodium caseinate. (a) Product. Sodium caseinate. (b) Conditions of use. This...

  8. 21 CFR 182.1810 - Sodium tripolyphosphate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Sodium tripolyphosphate. 182.1810 Section 182.1810 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD... Substances § 182.1810 Sodium tripolyphosphate. (a) Product. Sodium tripolyphosphate. (b) Conditions of...

  9. 21 CFR 582.3784 - Sodium propionate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Sodium propionate. 582.3784 Section 582.3784 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL....3784 Sodium propionate. (a) Product. Sodium propionate. (b) Conditions of use. This substance...

  10. 21 CFR 582.1742 - Sodium carbonate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Sodium carbonate. 582.1742 Section 582.1742 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1742 Sodium carbonate. (a) Product. Sodium carbonate. (b) Conditions of use. This...

  11. 21 CFR 582.1775 - Sodium pectinate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Sodium pectinate. 582.1775 Section 582.1775 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1775 Sodium pectinate. (a) Product. Sodium pectinate. (b) Conditions of use. This...

  12. 21 CFR 582.6801 - Sodium tartrate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Sodium tartrate. 582.6801 Section 582.6801 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Sodium tartrate. (a) Product. Sodium tartrate. (b) Conditions of use. This substance is...

  13. 21 CFR 182.3795 - Sodium sorbate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Sodium sorbate. 182.3795 Section 182.3795 Food and... CONSUMPTION (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Chemical Preservatives § 182.3795 Sodium sorbate. (a) Product. Sodium sorbate. (b) Conditions of use. This substance is generally recognized...

  14. 21 CFR 582.6778 - Sodium phosphate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Sodium phosphate. 582.6778 Section 582.6778 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Sodium phosphate. (a) Product. Sodium phosphate (mono-, di-, and tribasic). (b) Conditions of use....

  15. 21 CFR 582.6807 - Sodium thiosulfate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Sodium thiosulfate. 582.6807 Section 582.6807 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Sodium thiosulfate. (a) Product. Sodium thiosulfate. (b) Tolerance. 0.1 percent. (c)...

  16. 21 CFR 173.405 - Sodium dodecylbenzenesulfonate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Sodium dodecylbenzenesulfonate. 173.405 Section 173.405 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... § 173.405 Sodium dodecylbenzenesulfonate. Sodium dodecylbenzenesulfonate (CAS No. 25155-30-0) may...

  17. 21 CFR 182.6760 - Sodium hexametaphosphate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Sodium hexametaphosphate. 182.6760 Section 182.6760 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED....6760 Sodium hexametaphosphate. (a) Product. Sodium hexametaphosphate. (b) Conditions of use....

  18. 21 CFR 182.6787 - Sodium pyrophosphate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Sodium pyrophosphate. 182.6787 Section 182.6787 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD... Sodium pyrophosphate. (a) Product. Sodium pyrophosphate. (b) Conditions of use. This substance...

  19. 21 CFR 582.6801 - Sodium tartrate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Sodium tartrate. 582.6801 Section 582.6801 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Sodium tartrate. (a) Product. Sodium tartrate. (b) Conditions of use. This substance is...

  20. 21 CFR 178.3900 - Sodium pentachlorophenate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Sodium pentachlorophenate. 178.3900 Section 178... SANITIZERS Certain Adjuvants and Production Aids § 178.3900 Sodium pentachlorophenate. Sodium... that contact food at temperatures not to exceed room temperature. The quantity of...

  1. 21 CFR 582.6757 - Sodium gluconate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Sodium gluconate. 582.6757 Section 582.6757 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Sodium gluconate. (a) Product. Sodium gluconate. (b) Conditions of use. This substance is...

  2. 21 CFR 582.6754 - Sodium diacetate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Sodium diacetate. 582.6754 Section 582.6754 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Sodium diacetate. (a) Product. Sodium diacetate. (b) Conditions of use. This substance is...

  3. 21 CFR 182.6769 - Sodium metaphosphate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Sodium metaphosphate. 182.6769 Section 182.6769 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD... Sodium metaphosphate. (a) Product. Sodium metaphosphate. (b) Conditions of use. This substance...

  4. 21 CFR 582.6787 - Sodium pyrophosphate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Sodium pyrophosphate. 582.6787 Section 582.6787 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Sodium pyrophosphate. (a) Product. Sodium pyrophosphate. (b) Condition of use. This substance...

  5. 21 CFR 582.1742 - Sodium carbonate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Sodium carbonate. 582.1742 Section 582.1742 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1742 Sodium carbonate. (a) Product. Sodium carbonate. (b) Conditions of use. This...

  6. 21 CFR 582.5772 - Sodium pantothenate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Sodium pantothenate. 582.5772 Section 582.5772 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5772 Sodium pantothenate. (a) Product. Sodium pantothenate. (b) Conditions of use....

  7. 21 CFR 182.3731 - Sodium ascorbate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Sodium ascorbate. 182.3731 Section 182.3731 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Sodium ascorbate. (a) Product. Sodium ascorbate. (b) Conditions of use. This substance is...

  8. 40 CFR 721.9526 - Sodium perthiocarbonate.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Sodium perthiocarbonate. 721.9526... Substances § 721.9526 Sodium perthiocarbonate. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as sodium perthiocarbonate (PMN P-94-2166) is subject...

  9. 21 CFR 582.1742 - Sodium carbonate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Sodium carbonate. 582.1742 Section 582.1742 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1742 Sodium carbonate. (a) Product. Sodium carbonate. (b) Conditions of use. This...

  10. 21 CFR 182.6760 - Sodium hexametaphosphate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Sodium hexametaphosphate. 182.6760 Section 182...) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Sequestrants 1 § 182.6760 Sodium hexametaphosphate. (a) Product. Sodium hexametaphosphate. (b) Conditions of use. This substance is generally recognized as safe when...

  11. 21 CFR 182.8778 - Sodium phosphate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Sodium phosphate. 182.8778 Section 182.8778 Food... HUMAN CONSUMPTION (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients § 182.8778 Sodium phosphate. (a) Product. Sodium phosphate (mono-, di-, and tribasic). (b) Conditions of use. This...

  12. 21 CFR 182.6778 - Sodium phosphate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Sodium phosphate. 182.6778 Section 182.6778 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Sequestrants 1 § 182.6778 Sodium phosphate. (a) Product. Sodium phosphate...

  13. 21 CFR 582.3733 - Sodium benzoate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Sodium benzoate. 582.3733 Section 582.3733 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL....3733 Sodium benzoate. (a) Product. Sodium benzoate. (b) Tolerance. This substance is...

  14. 21 CFR 582.1778 - Sodium phosphate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Sodium phosphate. 582.1778 Section 582.1778 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1778 Sodium phosphate. (a) Product. Sodium phosphate (mono-, di-, and tribasic)....

  15. 21 CFR 182.3731 - Sodium ascorbate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Sodium ascorbate. 182.3731 Section 182.3731 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Sodium ascorbate. (a) Product. Sodium ascorbate. (b) Conditions of use. This substance is...

  16. 21 CFR 582.3798 - Sodium sulfite.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Sodium sulfite. 582.3798 Section 582.3798 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS... Sodium sulfite. (a) Product. Sodium sulfite. (b) (c) Limitations, restrictions, or explanation....

  17. 21 CFR 182.3798 - Sodium sulfite.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Sodium sulfite. 182.3798 Section 182.3798 Food and... CONSUMPTION (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Chemical Preservatives § 182.3798 Sodium sulfite. (a) Product. Sodium sulfite. (b) (c) Limitations, restrictions, or explanation. This substance...

  18. 21 CFR 182.8778 - Sodium phosphate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Sodium phosphate. 182.8778 Section 182.8778 Food... HUMAN CONSUMPTION (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients § 182.8778 Sodium phosphate. (a) Product. Sodium phosphate (mono-, di-, and tribasic). (b) Conditions of use. This...

  19. 21 CFR 182.3731 - Sodium ascorbate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Sodium ascorbate. 182.3731 Section 182.3731 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Sodium ascorbate. (a) Product. Sodium ascorbate. (b) Conditions of use. This substance is...

  20. 21 CFR 582.6810 - Sodium tripolyphosphate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Sodium tripolyphosphate. 582.6810 Section 582.6810 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Sodium tripolyphosphate. (a) Product. Sodium tripolyphosphate. (b) Conditions of use. This substance...

  1. 21 CFR 182.3795 - Sodium sorbate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Sodium sorbate. 182.3795 Section 182.3795 Food and... CONSUMPTION (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Chemical Preservatives § 182.3795 Sodium sorbate. (a) Product. Sodium sorbate. (b) Conditions of use. This substance is generally recognized...

  2. 21 CFR 182.1810 - Sodium tripolyphosphate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Sodium tripolyphosphate. 182.1810 Section 182.1810 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD... Substances § 182.1810 Sodium tripolyphosphate. (a) Product. Sodium tripolyphosphate. (b) Conditions of...

  3. 21 CFR 582.1748 - Sodium caseinate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Sodium caseinate. 582.1748 Section 582.1748 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1748 Sodium caseinate. (a) Product. Sodium caseinate. (b) Conditions of use. This...

  4. 21 CFR 582.1778 - Sodium phosphate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Sodium phosphate. 582.1778 Section 582.1778 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1778 Sodium phosphate. (a) Product. Sodium phosphate (mono-, di-, and tribasic)....

  5. 21 CFR 582.6778 - Sodium phosphate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Sodium phosphate. 582.6778 Section 582.6778 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Sodium phosphate. (a) Product. Sodium phosphate (mono-, di-, and tribasic). (b) Conditions of use....

  6. 21 CFR 582.6810 - Sodium tripolyphosphate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Sodium tripolyphosphate. 582.6810 Section 582.6810 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Sodium tripolyphosphate. (a) Product. Sodium tripolyphosphate. (b) Conditions of use. This substance...

  7. 21 CFR 582.1792 - Sodium sesquicarbonate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Sodium sesquicarbonate. 582.1792 Section 582.1792 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1792 Sodium sesquicarbonate. (a) Product. Sodium sesquicarbonate. (b) Conditions of...

  8. 21 CFR 182.1748 - Sodium caseinate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Sodium caseinate. 182.1748 Section 182.1748 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Substances § 182.1748 Sodium caseinate. (a) Product. Sodium caseinate. (b) Conditions of use. This...

  9. 21 CFR 582.6751 - Sodium citrate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Sodium citrate. 582.6751 Section 582.6751 Food and..., FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Sequestrants 2 § 582.6751 Sodium citrate. (a) Product. Sodium citrate. (b) Conditions of use. This substance is generally recognized...

  10. 21 CFR 582.3731 - Sodium ascorbate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Sodium ascorbate. 582.3731 Section 582.3731 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL....3731 Sodium ascorbate. (a) Product. Sodium ascorbate. (b) Conditions of use. This substance...

  11. 21 CFR 182.3798 - Sodium sulfite.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Sodium sulfite. 182.3798 Section 182.3798 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Chemical Preservatives § 182.3798 Sodium sulfite. (a) Product. Sodium...

  12. 21 CFR 182.6757 - Sodium gluconate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Sodium gluconate. 182.6757 Section 182.6757 Food... HUMAN CONSUMPTION (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Sequestrants 1 § 182.6757 Sodium gluconate. (a) Product. Sodium gluconate. (b) Conditions of use. This substance is generally recognized...

  13. 21 CFR 582.6757 - Sodium gluconate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Sodium gluconate. 582.6757 Section 582.6757 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Sodium gluconate. (a) Product. Sodium gluconate. (b) Conditions of use. This substance is...

  14. 21 CFR 582.6751 - Sodium citrate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Sodium citrate. 582.6751 Section 582.6751 Food and..., FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Sequestrants 2 § 582.6751 Sodium citrate. (a) Product. Sodium citrate. (b) Conditions of use. This substance is generally recognized...

  15. 21 CFR 582.6754 - Sodium diacetate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Sodium diacetate. 582.6754 Section 582.6754 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Sodium diacetate. (a) Product. Sodium diacetate. (b) Conditions of use. This substance is...

  16. 21 CFR 182.6778 - Sodium phosphate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Sodium phosphate. 182.6778 Section 182.6778 Food... HUMAN CONSUMPTION (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Sequestrants 1 § 182.6778 Sodium phosphate. (a) Product. Sodium phosphate (mono-, di-, and tribasic). (b) Conditions of use. This...

  17. 21 CFR 582.5772 - Sodium pantothenate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Sodium pantothenate. 582.5772 Section 582.5772 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5772 Sodium pantothenate. (a) Product. Sodium pantothenate. (b) Conditions of use....

  18. 21 CFR 582.3731 - Sodium ascorbate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Sodium ascorbate. 582.3731 Section 582.3731 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL....3731 Sodium ascorbate. (a) Product. Sodium ascorbate. (b) Conditions of use. This substance...

  19. 21 CFR 582.1792 - Sodium sesquicarbonate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Sodium sesquicarbonate. 582.1792 Section 582.1792 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1792 Sodium sesquicarbonate. (a) Product. Sodium sesquicarbonate. (b) Conditions of...

  20. 21 CFR 582.6801 - Sodium tartrate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Sodium tartrate. 582.6801 Section 582.6801 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Sodium tartrate. (a) Product. Sodium tartrate. (b) Conditions of use. This substance is...

  1. 21 CFR 582.1810 - Sodium tripolyphosphate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Sodium tripolyphosphate. 582.1810 Section 582.1810 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1810 Sodium tripolyphosphate. (a) Product. Sodium tripolyphosphate. (b) Conditions of...

  2. 21 CFR 182.1810 - Sodium tripolyphosphate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Sodium tripolyphosphate. 182.1810 Section 182.1810...) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Multiple Purpose GRAS Food Substances § 182.1810 Sodium tripolyphosphate. (a) Product. Sodium tripolyphosphate. (b) Conditions of use. This substance is...

  3. 21 CFR 182.3739 - Sodium bisulfite.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Sodium bisulfite. 182.3739 Section 182.3739 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Sodium bisulfite. (a) Product. Sodium bisulfite. (b) (c) Limitations, restrictions, or explanation....

  4. 21 CFR 582.1810 - Sodium tripolyphosphate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Sodium tripolyphosphate. 582.1810 Section 582.1810 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1810 Sodium tripolyphosphate. (a) Product. Sodium tripolyphosphate. (b) Conditions of...

  5. 21 CFR 582.6754 - Sodium diacetate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Sodium diacetate. 582.6754 Section 582.6754 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Sodium diacetate. (a) Product. Sodium diacetate. (b) Conditions of use. This substance is...

  6. 21 CFR 582.6751 - Sodium citrate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Sodium citrate. 582.6751 Section 582.6751 Food and..., FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Sequestrants 2 § 582.6751 Sodium citrate. (a) Product. Sodium citrate. (b) Conditions of use. This substance is generally recognized...

  7. 21 CFR 556.620 - Sulfabromomethazine sodium.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Sulfabromomethazine sodium. 556.620 Section 556... Tolerances for Residues of New Animal Drugs § 556.620 Sulfabromomethazine sodium. Tolerances for residues of sulfabromomethazine sodium in food are established as follows: (a) In the uncooked edible tissues of cattle at...

  8. 21 CFR 582.6769 - Sodium metaphosphate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Sodium metaphosphate. 582.6769 Section 582.6769 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Sodium metaphosphate. (a) Product. Sodium metaphosphate. (b) Conditions of use. This substance...

  9. 21 CFR 582.1751 - Sodium citrate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Sodium citrate. 582.1751 Section 582.1751 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS....1751 Sodium citrate. (a) Product. Sodium citrate. (b) Conditions of use. This substance is...

  10. 21 CFR 182.3798 - Sodium sulfite.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Sodium sulfite. 182.3798 Section 182.3798 Food and... CONSUMPTION (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Chemical Preservatives § 182.3798 Sodium sulfite. (a) Product. Sodium sulfite. (b) (c) Limitations, restrictions, or explanation. This substance...

  11. 21 CFR 182.3795 - Sodium sorbate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Sodium sorbate. 182.3795 Section 182.3795 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Chemical Preservatives § 182.3795 Sodium sorbate. (a) Product. Sodium...

  12. 21 CFR 582.6807 - Sodium thiosulfate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Sodium thiosulfate. 582.6807 Section 582.6807 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Sodium thiosulfate. (a) Product. Sodium thiosulfate. (b) Tolerance. 0.1 percent. (c)...

  13. 21 CFR 182.6810 - Sodium tripolyphosphate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Sodium tripolyphosphate. 182.6810 Section 182.6810...) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Sequestrants 1 § 182.6810 Sodium tripolyphosphate. (a) Product. Sodium tripolyphosphate. (b) Conditions of use. This substance is generally recognized as safe when...

  14. 21 CFR 582.1778 - Sodium phosphate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Sodium phosphate. 582.1778 Section 582.1778 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1778 Sodium phosphate. (a) Product. Sodium phosphate (mono-, di-, and tribasic)....

  15. 21 CFR 582.3739 - Sodium bisulfite.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Sodium bisulfite. 582.3739 Section 582.3739 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL....3739 Sodium bisulfite. (a) Product. Sodium bisulfite. (b) (c) Limitations, restrictions, or...

  16. 21 CFR 582.6787 - Sodium pyrophosphate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Sodium pyrophosphate. 582.6787 Section 582.6787 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Sodium pyrophosphate. (a) Product. Sodium pyrophosphate. (b) Condition of use. This substance...

  17. 21 CFR 182.6757 - Sodium gluconate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Sodium gluconate. 182.6757 Section 182.6757 Food... HUMAN CONSUMPTION (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Sequestrants 1 § 182.6757 Sodium gluconate. (a) Product. Sodium gluconate. (b) Conditions of use. This substance is generally recognized...

  18. 21 CFR 182.1778 - Sodium phosphate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Sodium phosphate. 182.1778 Section 182.1778 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Substances § 182.1778 Sodium phosphate. (a) Product. Sodium phosphate (mono-, di-, and tribasic)....

  19. 21 CFR 182.3766 - Sodium metabisulfite.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Sodium metabisulfite. 182.3766 Section 182.3766 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD....3766 Sodium metabisulfite. (a) Product. Sodium metabisulfite. (b) (c) Limitations, restrictions,...

  20. 21 CFR 582.3766 - Sodium metabisulfite.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Sodium metabisulfite. 582.3766 Section 582.3766 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL....3766 Sodium metabisulfite. (a) Product. Sodium metabisulfite. (b) (c) Limitations, restrictions,...

  1. 21 CFR 182.1810 - Sodium tripolyphosphate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Sodium tripolyphosphate. 182.1810 Section 182.1810 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD... Substances § 182.1810 Sodium tripolyphosphate. (a) Product. Sodium tripolyphosphate. (b) Conditions of...

  2. 21 CFR 182.1778 - Sodium phosphate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Sodium phosphate. 182.1778 Section 182.1778 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Substances § 182.1778 Sodium phosphate. (a) Product. Sodium phosphate (mono-, di-, and tribasic)....

  3. 21 CFR 182.8778 - Sodium phosphate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Sodium phosphate. 182.8778 Section 182.8778 Food... HUMAN CONSUMPTION (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients § 182.8778 Sodium phosphate. (a) Product. Sodium phosphate (mono-, di-, and tribasic). (b) Conditions of use. This...

  4. 21 CFR 582.3798 - Sodium sulfite.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Sodium sulfite. 582.3798 Section 582.3798 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS... Sodium sulfite. (a) Product. Sodium sulfite. (b) (c) Limitations, restrictions, or explanation....

  5. 21 CFR 182.1778 - Sodium phosphate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Sodium phosphate. 182.1778 Section 182.1778 Food... GENERALLY RECOGNIZED AS SAFE Multiple Purpose GRAS Food Substances § 182.1778 Sodium phosphate. (a) Product. Sodium phosphate (mono-, di-, and tribasic). (b) Conditions of use. This substance is...

  6. 21 CFR 582.3795 - Sodium sorbate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Sodium sorbate. 582.3795 Section 582.3795 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS... Sodium sorbate. (a) Product. Sodium sorbate. (b) Conditions of use. This substance is...

  7. 21 CFR 182.6810 - Sodium tripolyphosphate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Sodium tripolyphosphate. 182.6810 Section 182.6810 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD... Sodium tripolyphosphate. (a) Product. Sodium tripolyphosphate. (b) Conditions of use. This substance...

  8. 21 CFR 582.3795 - Sodium sorbate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Sodium sorbate. 582.3795 Section 582.3795 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS... Sodium sorbate. (a) Product. Sodium sorbate. (b) Conditions of use. This substance is...

  9. 40 CFR 721.9526 - Sodium perthiocarbonate.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Sodium perthiocarbonate. 721.9526... Substances § 721.9526 Sodium perthiocarbonate. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as sodium perthiocarbonate (PMN P-94-2166) is subject...

  10. 21 CFR 182.1748 - Sodium caseinate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Sodium caseinate. 182.1748 Section 182.1748 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Substances § 182.1748 Sodium caseinate. (a) Product. Sodium caseinate. (b) Conditions of use. This...

  11. 21 CFR 582.6787 - Sodium pyrophosphate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Sodium pyrophosphate. 582.6787 Section 582.6787 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Sodium pyrophosphate. (a) Product. Sodium pyrophosphate. (b) Condition of use. This substance...

  12. 21 CFR 182.6778 - Sodium phosphate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Sodium phosphate. 182.6778 Section 182.6778 Food... HUMAN CONSUMPTION (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Sequestrants 1 § 182.6778 Sodium phosphate. (a) Product. Sodium phosphate (mono-, di-, and tribasic). (b) Conditions of use. This...

  13. 21 CFR 582.6778 - Sodium phosphate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Sodium phosphate. 582.6778 Section 582.6778 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Sodium phosphate. (a) Product. Sodium phosphate (mono-, di-, and tribasic). (b) Conditions of use....

  14. 21 CFR 582.6757 - Sodium gluconate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Sodium gluconate. 582.6757 Section 582.6757 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Sodium gluconate. (a) Product. Sodium gluconate. (b) Conditions of use. This substance is...

  15. 21 CFR 582.1792 - Sodium sesquicarbonate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Sodium sesquicarbonate. 582.1792 Section 582.1792 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1792 Sodium sesquicarbonate. (a) Product. Sodium sesquicarbonate. (b) Conditions of...

  16. 21 CFR 182.6787 - Sodium pyrophosphate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Sodium pyrophosphate. 182.6787 Section 182.6787 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD... Sodium pyrophosphate. (a) Product. Sodium pyrophosphate. (b) Conditions of use. This substance...

  17. 21 CFR 184.1742 - Sodium carbonate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Sodium carbonate. 184.1742 Section 184.1742 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) DIRECT... GRAS § 184.1742 Sodium carbonate. (a) Sodium carbonate (Na2CO3, CAS Reg. No. 497-19-8) is produced...

  18. 21 CFR 582.1792 - Sodium sesquicarbonate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Sodium sesquicarbonate. 582.1792 Section 582.1792 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1792 Sodium sesquicarbonate. (a) Product. Sodium sesquicarbonate. (b) Conditions of...

  19. 21 CFR 582.1721 - Sodium acetate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Sodium acetate. 582.1721 Section 582.1721 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS....1721 Sodium acetate. (a) Product. Sodium acetate. (b) Conditions of use. This substance is...

  20. 21 CFR 582.3795 - Sodium sorbate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Sodium sorbate. 582.3795 Section 582.3795 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS... Sodium sorbate. (a) Product. Sodium sorbate. (b) Conditions of use. This substance is...

  1. 21 CFR 582.5778 - Sodium phosphate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Sodium phosphate. 582.5778 Section 582.5778 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5778 Sodium phosphate. (a) Product. Sodium phosphate (mono-, di-, and tribasic)....

  2. 21 CFR 582.3784 - Sodium propionate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Sodium propionate. 582.3784 Section 582.3784 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL....3784 Sodium propionate. (a) Product. Sodium propionate. (b) Conditions of use. This substance...

  3. 21 CFR 182.1778 - Sodium phosphate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Sodium phosphate. 182.1778 Section 182.1778 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Substances § 182.1778 Sodium phosphate. (a) Product. Sodium phosphate (mono-, di-, and tribasic)....

  4. 21 CFR 582.1721 - Sodium acetate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Sodium acetate. 582.1721 Section 582.1721 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS....1721 Sodium acetate. (a) Product. Sodium acetate. (b) Conditions of use. This substance is...

  5. 21 CFR 582.1721 - Sodium acetate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Sodium acetate. 582.1721 Section 582.1721 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS....1721 Sodium acetate. (a) Product. Sodium acetate. (b) Conditions of use. This substance is...

  6. 21 CFR 582.3733 - Sodium benzoate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Sodium benzoate. 582.3733 Section 582.3733 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL....3733 Sodium benzoate. (a) Product. Sodium benzoate. (b) Tolerance. This substance is...

  7. 21 CFR 182.6769 - Sodium metaphosphate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Sodium metaphosphate. 182.6769 Section 182.6769 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD... Sodium metaphosphate. (a) Product. Sodium metaphosphate. (b) Conditions of use. This substance...

  8. 21 CFR 182.1748 - Sodium caseinate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Sodium caseinate. 182.1748 Section 182.1748 Food... GENERALLY RECOGNIZED AS SAFE Multiple Purpose GRAS Food Substances § 182.1748 Sodium caseinate. (a) Product. Sodium caseinate. (b) Conditions of use. This substance is generally recognized as safe when used...

  9. 40 CFR 721.9526 - Sodium perthiocarbonate.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Sodium perthiocarbonate. 721.9526... Substances § 721.9526 Sodium perthiocarbonate. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as sodium perthiocarbonate (PMN P-94-2166) is subject...

  10. 21 CFR 182.3766 - Sodium metabisulfite.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Sodium metabisulfite. 182.3766 Section 182.3766 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD....3766 Sodium metabisulfite. (a) Product. Sodium metabisulfite. (b) (c) Limitations, restrictions,...

  11. 21 CFR 582.1721 - Sodium acetate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Sodium acetate. 582.1721 Section 582.1721 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS....1721 Sodium acetate. (a) Product. Sodium acetate. (b) Conditions of use. This substance is...

  12. 21 CFR 582.6810 - Sodium tripolyphosphate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Sodium tripolyphosphate. 582.6810 Section 582.6810 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Sodium tripolyphosphate. (a) Product. Sodium tripolyphosphate. (b) Conditions of use. This substance...

  13. 21 CFR 178.3900 - Sodium pentachlorophenate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Sodium pentachlorophenate. 178.3900 Section 178... SANITIZERS Certain Adjuvants and Production Aids § 178.3900 Sodium pentachlorophenate. Sodium... that contact food at temperatures not to exceed room temperature. The quantity of...

  14. 21 CFR 582.7724 - Sodium alginate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Sodium alginate. 582.7724 Section 582.7724 Food... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Stabilizers § 582.7724 Sodium alginate. (a) Product. Sodium alginate. (b) Conditions of use. This substance is generally recognized...

  15. 21 CFR 182.6769 - Sodium metaphosphate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Sodium metaphosphate. 182.6769 Section 182.6769 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD... Sodium metaphosphate. (a) Product. Sodium metaphosphate. (b) Conditions of use. This substance...

  16. 21 CFR 582.3739 - Sodium bisulfite.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Sodium bisulfite. 582.3739 Section 582.3739 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL....3739 Sodium bisulfite. (a) Product. Sodium bisulfite. (b) (c) Limitations, restrictions, or...

  17. 21 CFR 582.1742 - Sodium carbonate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Sodium carbonate. 582.1742 Section 582.1742 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1742 Sodium carbonate. (a) Product. Sodium carbonate. (b) Conditions of use. This...

  18. 21 CFR 582.6760 - Sodium hexametaphosphate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Sodium hexametaphosphate. 582.6760 Section 582.6760 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED....6760 Sodium hexametaphosphate. (a) Product. Sodium hexametaphosphate. (b) Conditions of use....

  19. 21 CFR 582.6807 - Sodium thiosulfate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Sodium thiosulfate. 582.6807 Section 582.6807 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Sodium thiosulfate. (a) Product. Sodium thiosulfate. (b) Tolerance. 0.1 percent. (c)...

  20. 21 CFR 556.620 - Sulfabromomethazine sodium.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Sulfabromomethazine sodium. 556.620 Section 556... Tolerances for Residues of New Animal Drugs § 556.620 Sulfabromomethazine sodium. Tolerances for residues of sulfabromomethazine sodium in food are established as follows: (a) In the uncooked edible tissues of cattle at...

  1. 21 CFR 582.1810 - Sodium tripolyphosphate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Sodium tripolyphosphate. 582.1810 Section 582.1810 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1810 Sodium tripolyphosphate. (a) Product. Sodium tripolyphosphate. (b) Conditions of...

  2. 21 CFR 582.1810 - Sodium tripolyphosphate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Sodium tripolyphosphate. 582.1810 Section 582.1810 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1810 Sodium tripolyphosphate. (a) Product. Sodium tripolyphosphate. (b) Conditions of...

  3. 21 CFR 582.6751 - Sodium citrate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Sodium citrate. 582.6751 Section 582.6751 Food and..., FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Sequestrants 2 § 582.6751 Sodium citrate. (a) Product. Sodium citrate. (b) Conditions of use. This substance is generally recognized...

  4. 21 CFR 582.3784 - Sodium propionate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Sodium propionate. 582.3784 Section 582.3784 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL....3784 Sodium propionate. (a) Product. Sodium propionate. (b) Conditions of use. This substance...

  5. 21 CFR 582.6757 - Sodium gluconate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Sodium gluconate. 582.6757 Section 582.6757 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Sodium gluconate. (a) Product. Sodium gluconate. (b) Conditions of use. This substance is...

  6. 21 CFR 582.1775 - Sodium pectinate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Sodium pectinate. 582.1775 Section 582.1775 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1775 Sodium pectinate. (a) Product. Sodium pectinate. (b) Conditions of use. This...

  7. 21 CFR 582.7724 - Sodium alginate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Sodium alginate. 582.7724 Section 582.7724 Food... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Stabilizers § 582.7724 Sodium alginate. (a) Product. Sodium alginate. (b) Conditions of use. This substance is generally recognized...

  8. 21 CFR 582.1721 - Sodium acetate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Sodium acetate. 582.1721 Section 582.1721 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS....1721 Sodium acetate. (a) Product. Sodium acetate. (b) Conditions of use. This substance is...

  9. 21 CFR 582.7724 - Sodium alginate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Sodium alginate. 582.7724 Section 582.7724 Food... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Stabilizers § 582.7724 Sodium alginate. (a) Product. Sodium alginate. (b) Conditions of use. This substance is generally recognized...

  10. 21 CFR 182.3739 - Sodium bisulfite.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Sodium bisulfite. 182.3739 Section 182.3739 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Sodium bisulfite. (a) Product. Sodium bisulfite. (b) (c) Limitations, restrictions, or explanation....

  11. 21 CFR 582.3784 - Sodium propionate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Sodium propionate. 582.3784 Section 582.3784 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL....3784 Sodium propionate. (a) Product. Sodium propionate. (b) Conditions of use. This substance...

  12. 21 CFR 582.1748 - Sodium caseinate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Sodium caseinate. 582.1748 Section 582.1748 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1748 Sodium caseinate. (a) Product. Sodium caseinate. (b) Conditions of use. This...

  13. 21 CFR 582.3733 - Sodium benzoate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Sodium benzoate. 582.3733 Section 582.3733 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL....3733 Sodium benzoate. (a) Product. Sodium benzoate. (b) Tolerance. This substance is...

  14. 21 CFR 582.6769 - Sodium metaphosphate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Sodium metaphosphate. 582.6769 Section 582.6769 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Sodium metaphosphate. (a) Product. Sodium metaphosphate. (b) Conditions of use. This substance...

  15. 21 CFR 582.6760 - Sodium hexametaphosphate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Sodium hexametaphosphate. 582.6760 Section 582.6760 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED....6760 Sodium hexametaphosphate. (a) Product. Sodium hexametaphosphate. (b) Conditions of use....

  16. 21 CFR 182.6787 - Sodium pyrophosphate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Sodium pyrophosphate. 182.6787 Section 182.6787 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD... Sodium pyrophosphate. (a) Product. Sodium pyrophosphate. (b) Conditions of use. This substance...

  17. 21 CFR 582.1748 - Sodium caseinate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Sodium caseinate. 582.1748 Section 582.1748 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1748 Sodium caseinate. (a) Product. Sodium caseinate. (b) Conditions of use. This...

  18. 21 CFR 582.6760 - Sodium hexametaphosphate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Sodium hexametaphosphate. 582.6760 Section 582.6760 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED....6760 Sodium hexametaphosphate. (a) Product. Sodium hexametaphosphate. (b) Conditions of use....

  19. 21 CFR 582.1742 - Sodium carbonate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Sodium carbonate. 582.1742 Section 582.1742 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1742 Sodium carbonate. (a) Product. Sodium carbonate. (b) Conditions of use. This...

  20. 21 CFR 582.3798 - Sodium sulfite.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Sodium sulfite. 582.3798 Section 582.3798 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS... Sodium sulfite. (a) Product. Sodium sulfite. (b) (c) Limitations, restrictions, or explanation....

  1. 21 CFR 556.620 - Sulfabromomethazine sodium.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Sulfabromomethazine sodium. 556.620 Section 556... Tolerances for Residues of New Animal Drugs § 556.620 Sulfabromomethazine sodium. Tolerances for residues of sulfabromomethazine sodium in food are established as follows: (a) In the uncooked edible tissues of cattle at...

  2. 21 CFR 182.6787 - Sodium pyrophosphate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Sodium pyrophosphate. 182.6787 Section 182.6787 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD... Sodium pyrophosphate. (a) Product. Sodium pyrophosphate. (b) Conditions of use. This substance...

  3. 21 CFR 582.6778 - Sodium phosphate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Sodium phosphate. 582.6778 Section 582.6778 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Sodium phosphate. (a) Product. Sodium phosphate (mono-, di-, and tribasic). (b) Conditions of use....

  4. 40 CFR 721.9526 - Sodium perthiocarbonate.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Sodium perthiocarbonate. 721.9526... Substances § 721.9526 Sodium perthiocarbonate. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as sodium perthiocarbonate (PMN P-94-2166) is subject...

  5. 21 CFR 582.6810 - Sodium tripolyphosphate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Sodium tripolyphosphate. 582.6810 Section 582.6810 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Sodium tripolyphosphate. (a) Product. Sodium tripolyphosphate. (b) Conditions of use. This substance...

  6. 21 CFR 582.6801 - Sodium tartrate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Sodium tartrate. 582.6801 Section 582.6801 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Sodium tartrate. (a) Product. Sodium tartrate. (b) Conditions of use. This substance is...

  7. 21 CFR 182.6757 - Sodium gluconate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Sodium gluconate. 182.6757 Section 182.6757 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Sequestrants 1 § 182.6757 Sodium gluconate. (a) Product. Sodium gluconate....

  8. 21 CFR 182.1810 - Sodium tripolyphosphate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Sodium tripolyphosphate. 182.1810 Section 182.1810 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD... Substances § 182.1810 Sodium tripolyphosphate. (a) Product. Sodium tripolyphosphate. (b) Conditions of...

  9. 21 CFR 582.6801 - Sodium tartrate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Sodium tartrate. 582.6801 Section 582.6801 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Sodium tartrate. (a) Product. Sodium tartrate. (b) Conditions of use. This substance is...

  10. 21 CFR 182.6778 - Sodium phosphate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Sodium phosphate. 182.6778 Section 182.6778 Food... HUMAN CONSUMPTION (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Sequestrants 1 § 182.6778 Sodium phosphate. (a) Product. Sodium phosphate (mono-, di-, and tribasic). (b) Conditions of use. This...

  11. 21 CFR 582.6769 - Sodium metaphosphate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Sodium metaphosphate. 582.6769 Section 582.6769 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Sodium metaphosphate. (a) Product. Sodium metaphosphate. (b) Conditions of use. This substance...

  12. 21 CFR 182.1778 - Sodium phosphate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Sodium phosphate. 182.1778 Section 182.1778 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Substances § 182.1778 Sodium phosphate. (a) Product. Sodium phosphate (mono-, di-, and tribasic)....

  13. 21 CFR 582.6760 - Sodium hexametaphosphate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Sodium hexametaphosphate. 582.6760 Section 582.6760 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED....6760 Sodium hexametaphosphate. (a) Product. Sodium hexametaphosphate. (b) Conditions of use....

  14. 21 CFR 182.6769 - Sodium metaphosphate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Sodium metaphosphate. 182.6769 Section 182.6769 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD... Sodium metaphosphate. (a) Product. Sodium metaphosphate. (b) Conditions of use. This substance...

  15. 21 CFR 582.3731 - Sodium ascorbate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Sodium ascorbate. 582.3731 Section 582.3731 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL....3731 Sodium ascorbate. (a) Product. Sodium ascorbate. (b) Conditions of use. This substance...

  16. 21 CFR 182.6810 - Sodium tripolyphosphate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Sodium tripolyphosphate. 182.6810 Section 182.6810 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD... Sodium tripolyphosphate. (a) Product. Sodium tripolyphos- phate. (b) Conditions of use. This substance...

  17. 21 CFR 182.1748 - Sodium caseinate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Sodium caseinate. 182.1748 Section 182.1748 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Substances § 182.1748 Sodium caseinate. (a) Product. Sodium caseinate. (b) Conditions of use. This...

  18. 21 CFR 582.3766 - Sodium metabisulfite.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Sodium metabisulfite. 582.3766 Section 582.3766 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL....3766 Sodium metabisulfite. (a) Product. Sodium metabisulfite. (b) (c) Limitations, restrictions,...

  19. 21 CFR 582.6807 - Sodium thiosulfate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Sodium thiosulfate. 582.6807 Section 582.6807 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Sodium thiosulfate. (a) Product. Sodium thiosulfate. (b) Tolerance. 0.1 percent. (c)...

  20. 21 CFR 582.6810 - Sodium tripolyphosphate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Sodium tripolyphosphate. 582.6810 Section 582.6810 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Sodium tripolyphosphate. (a) Product. Sodium tripolyphosphate. (b) Conditions of use. This substance...

  1. 21 CFR 582.3733 - Sodium benzoate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Sodium benzoate. 582.3733 Section 582.3733 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL....3733 Sodium benzoate. (a) Product. Sodium benzoate. (b) Tolerance. This substance is...

  2. 21 CFR 582.7724 - Sodium alginate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Sodium alginate. 582.7724 Section 582.7724 Food... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Stabilizers § 582.7724 Sodium alginate. (a) Product. Sodium alginate. (b) Conditions of use. This substance is generally recognized...

  3. 21 CFR 582.1748 - Sodium caseinate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Sodium caseinate. 582.1748 Section 582.1748 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1748 Sodium caseinate. (a) Product. Sodium caseinate. (b) Conditions of use. This...

  4. 21 CFR 582.6769 - Sodium metaphosphate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Sodium metaphosphate. 582.6769 Section 582.6769 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Sodium metaphosphate. (a) Product. Sodium metaphosphate. (b) Conditions of use. This substance...

  5. 21 CFR 582.1775 - Sodium pectinate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Sodium pectinate. 582.1775 Section 582.1775 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1775 Sodium pectinate. (a) Product. Sodium pectinate. (b) Conditions of use. This...

  6. 21 CFR 582.1775 - Sodium pectinate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Sodium pectinate. 582.1775 Section 582.1775 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1775 Sodium pectinate. (a) Product. Sodium pectinate. (b) Conditions of use. This...

  7. 21 CFR 582.6787 - Sodium pyrophosphate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Sodium pyrophosphate. 582.6787 Section 582.6787 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Sodium pyrophosphate. (a) Product. Sodium pyrophosphate. (b) Condition of use. This substance...

  8. 21 CFR 178.3900 - Sodium pentachlorophenate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Sodium pentachlorophenate. 178.3900 Section 178... SANITIZERS Certain Adjuvants and Production Aids § 178.3900 Sodium pentachlorophenate. Sodium... that contact food at temperatures not to exceed room temperature. The quantity of...

  9. 21 CFR 582.5778 - Sodium phosphate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Sodium phosphate. 582.5778 Section 582.5778 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5778 Sodium phosphate. (a) Product. Sodium phosphate (mono-, di-, and tribasic)....

  10. 21 CFR 582.7724 - Sodium alginate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Sodium alginate. 582.7724 Section 582.7724 Food... DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Stabilizers § 582.7724 Sodium alginate. (a) Product. Sodium alginate. (b) Conditions of use. This substance is generally recognized...

  11. 21 CFR 526.365 - Cephapirin sodium.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Cephapirin sodium. 526.365 Section 526.365 Food... DRUGS, FEEDS, AND RELATED PRODUCTS INTRAMAMMARY DOSAGE FORMS § 526.365 Cephapirin sodium. (a) Specifications. Each 10-milliliter dose contains 200 milligrams of cephapirin sodium activity in a peanut-oil...

  12. 21 CFR 582.1748 - Sodium caseinate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Sodium caseinate. 582.1748 Section 582.1748 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1748 Sodium caseinate. (a) Product. Sodium caseinate. (b) Conditions of use. This...

  13. 21 CFR 182.3795 - Sodium sorbate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Sodium sorbate. 182.3795 Section 182.3795 Food and... CONSUMPTION (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Chemical Preservatives § 182.3795 Sodium sorbate. (a) Product. Sodium sorbate. (b) Conditions of use. This substance is generally recognized...

  14. 21 CFR 582.6754 - Sodium diacetate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Sodium diacetate. 582.6754 Section 582.6754 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Sodium diacetate. (a) Product. Sodium diacetate. (b) Conditions of use. This substance is...

  15. 21 CFR 182.8778 - Sodium phosphate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Sodium phosphate. 182.8778 Section 182.8778 Food... HUMAN CONSUMPTION (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients § 182.8778 Sodium phosphate. (a) Product. Sodium phosphate (mono-, di-, and tribasic). (b) Conditions of use. This...

  16. 21 CFR 582.6807 - Sodium thiosulfate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Sodium thiosulfate. 582.6807 Section 582.6807 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Sodium thiosulfate. (a) Product. Sodium thiosulfate. (b) Tolerance. 0.1 percent. (c)...

  17. 21 CFR 582.1778 - Sodium phosphate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Sodium phosphate. 582.1778 Section 582.1778 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1778 Sodium phosphate. (a) Product. Sodium phosphate (mono-, di-, and tribasic)....

  18. 21 CFR 582.1775 - Sodium pectinate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Sodium pectinate. 582.1775 Section 582.1775 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1775 Sodium pectinate. (a) Product. Sodium pectinate. (b) Conditions of use. This...

  19. 21 CFR 582.6778 - Sodium phosphate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Sodium phosphate. 582.6778 Section 582.6778 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Sodium phosphate. (a) Product. Sodium phosphate (mono-, di-, and tribasic). (b) Conditions of use....

  20. 21 CFR 182.6757 - Sodium gluconate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Sodium gluconate. 182.6757 Section 182.6757 Food... HUMAN CONSUMPTION (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Sequestrants 1 § 182.6757 Sodium gluconate. (a) Product. Sodium gluconate. (b) Conditions of use. This substance is generally recognized...

  1. 21 CFR 182.6760 - Sodium hexametaphosphate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Sodium hexametaphosphate. 182.6760 Section 182.6760 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD... Sodium hexametaphosphate. (a) Product. Sodium hexametaphosphate. (b) Conditions of use. This substance...

  2. Protective tubes for sodium heated water tubes

    DOEpatents

    Essebaggers, Jan

    1979-01-01

    A heat exchanger in which water tubes are heated by liquid sodium which minimizes the results of accidental contact between the water and the sodium caused by failure of one or more of the water tubes. A cylindrical protective tube envelopes each water tube and the sodium flows axially in the annular spaces between the protective tubes and the water tubes.

  3. Eagle-Picher Industries Sodium Sulfur Program

    NASA Technical Reports Server (NTRS)

    Silvey, Ronald L.

    1993-01-01

    Viewgraphs of the sodium sulfur program are presented. Sodium sulfur low earth orbit (LEO) cells are described. Topics covered include cell sizes, areas of improvement, and NaS cell testing. Sodium sulfur cell and battery designs continue to evolve with significant improvement demonstrated in resistance, rechargeability, cycle life, energy density, and electrolyte characterization.

  4. 21 CFR 573.700 - Sodium nitrite.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Sodium nitrite. 573.700 Section 573.700 Food and... Listing § 573.700 Sodium nitrite. Sodium nitrite may be safely used in canned pet food containing meat and... as a preservative and color fixative in canned pet food containing fish, meat, and fish and...

  5. 21 CFR 184.1754 - Sodium diacetate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Reg. No. 126-96-5) is a molecular compound of acetic acid, sodium acetate, and water of hydration. The technical grade is prepared synthetically by reacting sodium carbonate with acetic acid. Special grades are produced by reacting anhydrous sodium acetate and acetic acid. (b) The ingredient meets the...

  6. 21 CFR 582.6751 - Sodium citrate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Sodium citrate. 582.6751 Section 582.6751 Food and..., FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Sequestrants 2 § 582.6751 Sodium citrate. (a) Product. Sodium citrate. (b) Conditions of use. This substance is generally recognized...

  7. 21 CFR 582.1751 - Sodium citrate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Sodium citrate. 582.1751 Section 582.1751 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS....1751 Sodium citrate. (a) Product. Sodium citrate. (b) Conditions of use. This substance is...

  8. 21 CFR 582.1763 - Sodium hydroxide.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Sodium hydroxide. 582.1763 Section 582.1763 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1763 Sodium hydroxide. (a) Product. Sodium hydroxide. (b) Conditions of use. This...

  9. 21 CFR 582.1763 - Sodium hydroxide.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Sodium hydroxide. 582.1763 Section 582.1763 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1763 Sodium hydroxide. (a) Product. Sodium hydroxide. (b) Conditions of use. This...

  10. Polymorphism of Metallic Sodium under Nanoconfinement.

    PubMed

    Uskov, A V; Nefedov, D Yu; Charnaya, E V; Haase, J; Michel, D; Kumzerov, Yu A; Fokin, A V; Bugaev, A S

    2016-01-13

    (23)Na NMR studies of sodium nanoparticles confined to porous glass with the 3.5 nm mean pore size were carried out. The emergence of the second component of the NMR line was observed below 240 K that evidences the occurrence of another modification of metallic sodium. The phase transition temperature is much higher than the martensite transformation temperature in bulk sodium.

  11. 21 CFR 582.1763 - Sodium hydroxide.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Sodium hydroxide. 582.1763 Section 582.1763 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1763 Sodium hydroxide. (a) Product. Sodium hydroxide. (b) Conditions of use. This...

  12. 21 CFR 582.1763 - Sodium hydroxide.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Sodium hydroxide. 582.1763 Section 582.1763 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1763 Sodium hydroxide. (a) Product. Sodium hydroxide. (b) Conditions of use. This...

  13. 21 CFR 173.73 - Sodium polyacrylate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... the polyacrylic acid with an aqueous sodium hydroxide solution. As determined by a method entitled... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Sodium polyacrylate. 173.73 Section 173.73 Food... Polymer Substances and Polymer Adjuvants for Food Treatment § 173.73 Sodium polyacrylate....

  14. 21 CFR 582.1763 - Sodium hydroxide.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Sodium hydroxide. 582.1763 Section 582.1763 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1763 Sodium hydroxide. (a) Product. Sodium hydroxide. (b) Conditions of use. This...

  15. 21 CFR 582.1736 - Sodium bicarbonate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Sodium bicarbonate. 582.1736 Section 582.1736 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1736 Sodium bicarbonate. (a) Product. Sodium bicarbonate. (b) Conditions of use....

  16. 21 CFR 582.1736 - Sodium bicarbonate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Sodium bicarbonate. 582.1736 Section 582.1736 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1736 Sodium bicarbonate. (a) Product. Sodium bicarbonate. (b) Conditions of use....

  17. 21 CFR 582.1736 - Sodium bicarbonate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Sodium bicarbonate. 582.1736 Section 582.1736 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1736 Sodium bicarbonate. (a) Product. Sodium bicarbonate. (b) Conditions of use....

  18. 21 CFR 582.1736 - Sodium bicarbonate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Sodium bicarbonate. 582.1736 Section 582.1736 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1736 Sodium bicarbonate. (a) Product. Sodium bicarbonate. (b) Conditions of use....

  19. 21 CFR 582.1736 - Sodium bicarbonate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Sodium bicarbonate. 582.1736 Section 582.1736 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1736 Sodium bicarbonate. (a) Product. Sodium bicarbonate. (b) Conditions of use....

  20. 21 CFR 172.175 - Sodium nitrite.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... color fixative, with or without sodium nitrate, in smoked, cured sablefish, smoked, cured salmon, and... level of sodium nitrate does not exceed 500 parts per million in the finished product. (3) As a preservative and color fixative, with sodium nitrate, in meat-curing preparations for the home curing of...

  1. 21 CFR 172.175 - Sodium nitrite.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... color fixative, with or without sodium nitrate, in smoked, cured sablefish, smoked, cured salmon, and... level of sodium nitrate does not exceed 500 parts per million in the finished product. (3) As a preservative and color fixative, with sodium nitrate, in meat-curing preparations for the home curing of...

  2. 21 CFR 172.170 - Sodium nitrate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Sodium nitrate. 172.170 Section 172.170 Food and... PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION Food Preservatives § 172.170 Sodium nitrate. The food additive sodium nitrate may be safely used in or on specified foods in accordance with...

  3. 21 CFR 172.175 - Sodium nitrite.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... color fixative, with or without sodium nitrate, in smoked, cured sablefish, smoked, cured salmon, and... level of sodium nitrate does not exceed 500 parts per million in the finished product. (3) As a preservative and color fixative, with sodium nitrate, in meat-curing preparations for the home curing of...

  4. 21 CFR 172.175 - Sodium nitrite.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... color fixative, with or without sodium nitrate, in smoked, cured sablefish, smoked, cured salmon, and... level of sodium nitrate does not exceed 500 parts per million in the finished product. (3) As a preservative and color fixative, with sodium nitrate, in meat-curing preparations for the home curing of...

  5. Pilot plant processing of sodium bifluoride to sodium fluoride pellets

    SciTech Connect

    Leone, S.M.

    1985-01-25

    Sodium fluoride (NaF) traps in the PGDP purge cascade presently use NaF pellets to remove residual UF{sub 6} from the gas stream. These pellets are procured from ORGDP which converts sodium bifluoride pellets to NaF by thermal decomposition. Discussions of the possibility of no longer producing pellets at ORGDP, due to oven corrosion problems, led to a pilot plant test at PGDP. This test was designed to examine the feasibility of producing the NaF pellets at PGDP in the event that an alternative source of supply became necessary. Satisfactory pellets were produced without difficulty; however, it was determined that the conversion process could not be readily carried out in the existing NaF traps. Construction of a separate facility with provisions to handle the large quantities of hydrogen fluoride (HF) released during the process would be required to produce pellets at the rate needed. 1 fig., 2 tabs.

  6. 49 CFR 173.189 - Batteries containing sodium or cells containing sodium.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Batteries containing sodium or cells containing... Than Class 1 and Class 7 § 173.189 Batteries containing sodium or cells containing sodium. (a) Batteries and cells may not contain any hazardous material other than sodium, sulfur or polysulfides....

  7. The influence of moderate reduction in dietary sodium on human salivary sodium concentration.

    PubMed

    Christensen, C M; Bertino, M; Beauchamp, G K; Navazesh, M; Engelman, K

    1986-01-01

    Twenty-four healthy subjects were placed for 12-13 weeks on diets that reduced average sodium intake from 145 to 74 m-equiv. Na+/day as determined by multiple 24-h urine collections before and during the diet. Whole-mouth resting and stimulated saliva was collected and analysed for flow rate and sodium concentration several times before and during the low-sodium period. Sodium restriction did not influence salivary flow rates but salivary sodium levels fell 25 per cent for resting and 17 per cent for stimulated saliva. Thus moderate reductions in sodium intake are accompanied by significantly lower salivary sodium levels.

  8. Mixing in explosions

    SciTech Connect

    Kuhl, A.L.

    1993-12-01

    Explosions always contain embedded turbulent mixing regions, for example: boundary layers, shear layers, wall jets, and unstable interfaces. Described here is one particular example of the latter, namely, the turbulent mixing occurring in the fireball of an HE-driven blast wave. The evolution of the turbulent mixing was studied via two-dimensional numerical simulations of the convective mixing processes on an adaptive mesh. Vorticity was generated on the fireball interface by baroclinic effects. The interface was unstable, and rapidly evolved into a turbulent mixing layer. Four phases of mixing were observed: (1) a strong blast wave phase; (2) and implosion phase; (3) a reshocking phase; and (4) an asymptotic mixing phase. The flowfield was azimuthally averaged to evaluate the mean and r.m.s. fluctuation profiles across the mixing layer. The vorticity decayed due to a cascade process. This caused the corresponding enstrophy parameter to increase linearly with time -- in agreement with homogeneous turbulence calculations of G.K. Batchelor.

  9. Mixing in astrophysics

    SciTech Connect

    Fryer, Christopher Lee

    2011-01-07

    Turbulent mixing plays a vital role in many fields in astronomy. Here I review a few of these sites, discuss the importance of this turbulent mixing and the techniques used by astrophysicists to solve these problems.

  10. Chloride substitution in sodium borohydride

    SciTech Connect

    Ravnsbaek, Dorthe B.; Rude, Line H.; Jensen, Torben R.

    2011-07-15

    The dissolution of sodium chloride and sodium borohydride into each other resulting in formation of solid solutions of composition Na(BH{sub 4}){sub 1-x}Cl{sub x} is studied. The dissolution reaction is facilitated by two methods: ball milling or combination of ball milling and annealing at 300 deg. C for three days of NaBH{sub 4}-NaCl samples in molar ratios of 0.5:0.5 and 0.75:0.25. The degree of dissolution is studied by Rietveld refinement of synchrotron radiation powder X-ray diffraction (SR-PXD) data. The results show that dissolution of 10 mol% NaCl into NaBH{sub 4}, forming Na(BH{sub 4}){sub 0.9}Cl{sub 0.1}, takes place during ball milling. A higher degree of dissolution of NaCl in NaBH{sub 4} is obtained by annealing resulting in solid solutions containing up to 57 mol% NaCl, i.e. Na(BH{sub 4}){sub 0.43}Cl{sub 0.57}. In addition, annealing results in dissolution of 10-20 mol% NaBH{sub 4} into NaCl. The mechanism of the dissolution during annealing and the decomposition pathway of the solid solutions are studied by in situ SR-PXD. Furthermore, the stability upon hydrogen release and uptake were studied by Sieverts measurements. - Graphical Abstract: Dissolution of sodium chloride and sodium borohydride into each other resulting in formation of solid solutions of composition Na(BH{sub 4}){sub 1-x}Cl{sub x} is studied. Dissolution is facilitated by two methods: ball milling or annealing at 300 deg. C for three days of NaBH{sub 4}-NaCl samples. Sample compositions and dissolution mechanism are studied by Rietveld refinement of synchrotron radiation powder X-ray diffraction data. Highlights: > Studies of dissolution of sodium chloride and sodium borohydride into each other. > Solid state diffusion facilitated by mechanical and thermal treatments. > Dissolution is more efficiently induced by heating than by mechanical treatment. > Mechanism for dissolution studied by Rietveld refinement of in situ SR-PXD data.

  11. Oxidative treatment of fentanyl compounds in water by sodium bromate combined with sodium sulphite.

    PubMed

    Xu, Lin; Ren, Lijun; Wang, Zhihua; Tian, Xingtao; Qi, Lihong; Fan, Qiping; Xiang, Yulian

    2015-01-01

    As narcotic analgesics, fentanyl compounds have been commonly produced and widely used during surgical procedures. The residual and waste of fentanyl compounds have potential harmful impacts on the environment and human health. The oxidative degradation of fentanyl compounds by sodium bromate mixed systems was studied. Factors influencing the oxidation reaction, including molar ratio of NaBrO3/H(+)/SO3(2-), molar ratio of NaBrO3/fentanyl and pH, were investigated. Fentanyl, carfentanil and 3-methylfentanyl were able to be completely degraded in 30 minutes by a NaBrO3 mixed system under optimum conditions, the molar ratio of NaBrO3/H(+)/SO3(2-) equal to 20:3:10, the molar ratio of NaBrO3:fentanyl compounds 50:1 and pH = 4. Sufentanil was only able to be degraded by 74% under the same conditions. The degradation products of the fentanyl compounds detected and identified by gas chromatography/mass spectrometry suggested several possible degradation pathways. PMID:26114269

  12. Solubility enhancement studies on lurasidone hydrochloride using mixed hydrotropy

    PubMed Central

    Madan, Jyotsana R.; Pawar, Kiran T.; Dua, Kamal

    2015-01-01

    Low aqueous solubility is a major problem faced during formulation development of new drug molecules. Lurasidone HCl (LRD) is an antipsychotic agent specially used in the treatments of schizophrenia and is a good example of the problems associated with low aqueous solubility. Lurasidone is practically insoluble in water, has poor bioavailability and slow onset of action and therefore cannot be given in emergency clinical situations like schizophrenia. Hence, purpose of this research was to provide a fast dissolving oral dosage form of Lurasidone. This dosage form can provide quick onset of action by using the concept of mixed hydrotropy. Initially, solubility of LRD was determined individually in nicotinamide, sodium citrate, urea and sodium benzoate at concentration of 10, 20, 30 and 40% w/v solutions using purified water as a solvent. Highest solubility was obtained in 40% sodium benzoate solution. In order to decrease the individual hydrotrope concentration mixed hydrotropic agents were used. Highest solubility was obtained in 15:20:5 ratio of Nicotinamide + sodium benzoate + sodium citrate. This optimized combination was utilized in the preparation of solid dispersions by using distilled water as a solvent. Solid dispersions were evaluated for X-ray diffraction, differential scanning calorimetry and Fourier-transform infrared to show no drug-hydrotropes interaction has occurred. This solid dispersion was compressed to form fast dissolving tablets. Dissolution studies of prepared tablets were done using USP Type II apparatus. The batch L3 tablets show 88% cumulative drug release within 14 min and in vitro dispersion time was 32 min. It was concluded that the concept of mixed hydrotropic solid dispersion is novel, safe and cost-effective technique for enhancing the bioavailability of poorly water-soluble drugs. The miraculous enhancement in solubility and bioavailability of Lurasidone is clear indication of the potential of mixed hydrotropy to be used in future

  13. Separation of sodium-22 from irradiated targets

    DOEpatents

    Taylor, Wayne A.; Jamriska, David

    1996-01-01

    A process for selective separation of sodium-22 from an irradiated target including dissolving an irradiated target to form a first solution, contacting the first solution with hydrated antimony pentoxide to selectively separate sodium-22 from the first solution, separating the hydrated antimony pentoxide including the separated sodium-22 from the first solution, dissolving the hydrated antimony pentoxide including the separated sodium-22 in a mineral acid to form a second solution, and, separating the antimony from the sodium-22 in the second solution.

  14. Sodium-metal chloride batteries

    NASA Technical Reports Server (NTRS)

    Ratnakumar, B. V.; Attia, A. I.; Halpert, G.

    1992-01-01

    It was concluded that rapid development in the technology of sodium metal chloride batteries has been achieved in the last decade mainly due to the: expertise available with sodium sulfur system; safety; and flexibility in design and fabrication. Long cycle lives of over 1000 and high energy densities of approx. 100 Wh/kg have been demonstrated in both Na/FeCl2 and Na/NiCl2 cells. Optimization of porous cathode and solid electrolyte geometries are essential for further enhancing the battery performance. Fundamental studies confirm the capabilities of these systems. Nickel dichloride emerges as the candidate cathode material for high power density applications such as electric vehicle and space.

  15. Fire suppressing apparatus. [sodium fires

    DOEpatents

    Buttrey, K.E.

    1980-12-19

    Apparatus for smothering a liquid sodium fire comprises a pan, a perforated cover on the pan, and tubed depending from the cover and providing communication between the interior of the pan and the ambient atmosphere through the perforations in the cover. Liquid caught in the pan rises above the lower ends of the tubes and thus serves as a barrier which limits the amount of air entering the pan.

  16. Deranged sodium to sudden death

    PubMed Central

    Clancy, Colleen E; Chen-Izu, Ye; Bers, Donald M; Belardinelli, Luiz; Boyden, Penelope A; Csernoch, Laszlo; Despa, Sanda; Fermini, Bernard; Hool, Livia C; Izu, Leighton; Kass, Robert S; Lederer, W Jonathan; Louch, William E; Maack, Christoph; Matiazzi, Alicia; Qu, Zhilin; Rajamani, Sridharan; Rippinger, Crystal M; Sejersted, Ole M; O'Rourke, Brian; Weiss, James N; Varró, András; Zaza, Antonio

    2015-01-01

    In February 2014, a group of scientists convened as part of the University of California Davis Cardiovascular Symposium to bring together experimental and mathematical modelling perspectives and discuss points of consensus and controversy on the topic of sodium in the heart. This paper summarizes the topics of presentation and discussion from the symposium, with a focus on the role of aberrant sodium channels and abnormal sodium homeostasis in cardiac arrhythmias and pharmacotherapy from the subcellular scale to the whole heart. Two following papers focus on Na+ channel structure, function and regulation, and Na+/Ca2+ exchange and Na+/K+ ATPase. The UC Davis Cardiovascular Symposium is a biannual event that aims to bring together leading experts in subfields of cardiovascular biomedicine to focus on topics of importance to the field. The focus on Na+ in the 2014 symposium stemmed from the multitude of recent studies that point to the importance of maintaining Na+ homeostasis in the heart, as disruption of homeostatic processes are increasingly identified in cardiac disease states. Understanding how disruption in cardiac Na+-based processes leads to derangement in multiple cardiac components at the level of the cell and to then connect these perturbations to emergent behaviour in the heart to cause disease is a critical area of research. The ubiquity of disruption of Na+ channels and Na+ homeostasis in cardiac disorders of excitability and mechanics emphasizes the importance of a fundamental understanding of the associated mechanisms and disease processes to ultimately reveal new targets for human therapy. PMID:25772289

  17. [Sodium determination in biological fluids].

    PubMed

    Cristol, J-P; Balint, B; Canaud, B; Daurés, M-F

    2007-09-01

    Electrolyte disorders are frequently observed in nephrology and intensive care unit department and Na determination is routinely performed in biochemistry laboratories. Three methods are currently available. Flame photometry remains the reference method. With this method the serum sample is diluted before the actual measurement is obtained. Results are expressed as molarity (per Liter of plasma). Potentiometric methods have an increasing importance due to the advances in ion sensitive (selective) electrodes (ISE). Whereas the instruments for routine chemical analysis typically use indirect potentiometry (involving te dilution of samples) to measure sodium levels, the equipment for measuring arterial blood gases use direct potentiometry without any dilution. Thus, results obtained with indirect potentiometry are expressed in molarity (per liter of plasma) while results obtained with direct potentiometry are initially given in morality (per kg of plasma water) then converted in molarity. Analytical performances are in all cases satisfactory and therefore all the methods could be used in both normal and pathological ranges. Methods involving sample dilution such as flame photometry or indirect potentiometry, the serum sodium value would be expected to be low in case of decrease plasma water (pseudohyponatremia). By contrast, with direct potentiometry where no sample dilution takes place, no interference would be expected since the activity of sodium in the water phase only is being measured. Thus, the classical pseudohyponatremia observed with hyperlipemia or paraproteinemia are not further observed with direct potentiometry. These differences in methodology should be taken into account to explain discrepancies between results obtained with classical biochemistry analyser and with blood gas apparatus.

  18. Sodium bicarbonate improves swimming performance.

    PubMed

    Lindh, A M; Peyrebrune, M C; Ingham, S A; Bailey, D M; Folland, J P

    2008-06-01

    Sodium bicarbonate ingestion has been shown to improve performance in single-bout, high intensity events, probably due to an increase in buffering capacity, but its influence on single-bout swimming performance has not been investigated. The effects of sodium bicarbonate supplementation on 200 m freestyle swimming performance were investigated in elite male competitors. Following a randomised, double blind counterbalanced design, 9 swimmers completed maximal effort swims on 3 separate occasions: a control trial (C); after ingestion of sodium bicarbonate (SB: NaHCO3 300 mg . kg (-1) body mass); and after ingestion of a placebo (P: CaCO3 200 mg . kg (-1) body mass). The SB and P agents were packed in gelatine capsules and ingested 90 - 60 min prior to each 200 m swim. Mean 200 m performance times were significantly faster for SB than C or P (1 : 52.2 +/- 4.7; 1 : 53.7 +/- 3.8; 1 : 54.0 +/- 3.6 min : ss; p < 0.05). Base excess, pH and blood bicarbonate were all elevated pre-exercise in the SB compared to C and P trials (p < 0.05). Post-200 m blood lactate concentrations were significantly higher following the SB trial compared with P and C (p < 0.05). It was concluded that SB supplementation can improve 200 m freestyle performance time in elite male competitors, most likely by increasing buffering capacity.

  19. The Distant Sodium Tail of Mercury

    NASA Technical Reports Server (NTRS)

    Potter, A. E.; Killen, R. M.; Morgan, T. H.

    2001-01-01

    Models of the sodium atmosphere of Mercury predict the possible existence of a cornet-like sodium tail. Detection and mapping of the predicted sodium tail would provide quantitative data on the energy of the process that produces sodium atoms from the planetary surface. Previous efforts to detect the sodium tail by means of observations done during daylight hours have been only partially successful because scattered sunlight obscured the weak sodium emissions in the tail. However, at greatest eastern elongation around the March equinox in the northern hemisphere, Mercury can be seen as an evening star in astronomical twilight. At this time, the intensity of scattered sunlight is low enough that sodium emissions as low as 500 Rayleighs can be detected. Additional information is contained in the original extended abstract.

  20. A novel method of non-violent dissolution of sodium metal in a concentrated aqueous solution of Epsom salt

    NASA Astrophysics Data System (ADS)

    Lakshmanan, A. R.; Prasad, M. V. R.; Ponraju, D.; Krishnan, H.

    2004-10-01

    A new technique of non-violent and fast dissolution of sodium metal in a concentrated aqueous solution of Epsom salt (MgSO4.7H2O) at room temperature (RT) has been developed. The dissolution process is mildly exothermic but could be carried out even in a glass beaker in air under swift stirring condition. The reaction products consist of mixed salts of MgSO4 and Na2SO4 as well as Mg(OH)2 which are only mildly alkaline and hence are non-corrosive and non-hazardous unlike NaOH. A 50 mL solution having Epsom salt concentration of 2 M was found to give the optimal composition for disposal of 1 g of sodium. Supersaturated (>2.7 M), as well as dilute (<1.1 M) solutions, however, cause violent reactions and hence should be avoided. Repeated sodium dissolution in Epsom solution produced a solid waste of 4.7 g per g of sodium dissolved which is comparable with the waste (4 g) produced in 8 M NaOH solution. A 1.4 M Epsom solution sprayed with a high-pressure jet cleaner at RT in air easily removed the sodium blocked inside a metal pipe made of mild steel. The above jet also dissolved peacefully residual sodium collected on the metal tray after a sodium fire experiment. No sodium fire or explosion was observed during this campaign. The Epsom solution spray effectively neutralized the minor quantity of sodium aerosol produced during this campaign. This novel technique would hence be quite useful for draining sodium from fast breeder reactor components and bulk processing of sodium as well as for sodium fire fighting.