MICROEMULSION OF MIXED CHLORINATED SOLVENTS USING FOOD GRADE (EDIBLE) SURFACTANTS
Ground water contamination frequently consists of mixed chlorinated solvents [e.g., tetrachloroethylene (PCE), trichloroethylene (TCE), and trans-1,2- dichloroethylene (DCE)]. In this research, mixtures of the food grade (edible) surfactants bis(2-ethylhexyl) sodium sulfosuccinat...
NASA Astrophysics Data System (ADS)
Ferdous, Sunzida; Liu, Feng; Russell, Thomas
2013-03-01
Solution processing of polymer semiconductors is widely used for fabrication of low cost organic solar cells. Recently, mixed solvent systems or additive based systems for fabricating polymer solar cells have proven to be beneficial for obtaining high performance devices with multi-length scale morphologies. To control the morphology during the processing step, one needs to understand the effect of solvent as it evaporates to form the final thin film structure. In this study, we used diketopyrrolopyrrole (DPP) based low band gap polymer and phenyl-C71-butyric acid methyl ester (PCBM) blend in a series of mixed solvent systems consisting of a good solvent for both of the active material components, as well as different solvents that are good solvents for PCBM, but poor solvents for the polymer. Different evaporation times of the poor solvents during the drying process, and different solubility of the polymer in these poor solvents as well as their interaction with the substrate play an important role in the final morphology. In-situ GIWAXS studies were performed to observe the evolution of the structure as the solvent evaporates. The final morphologies of the thin film devices were also characterized by AFM, TEM, and various x-ray scattering techniques to correlate the morphology with the obtained device performances.
Solubility of 3-Caffeoylquinic Acid in Different Solvents at 291-340 K
NASA Astrophysics Data System (ADS)
Wang, Y. T.; Zhang, C. L.; Cheng, X. L.; Zhao, J. H.; Wang, L. C.
2017-12-01
Using a laser monitoring observation technique the solubilities of 3-caffeoylquinic acid in pure solvents, water, methanol, ethanol, 1-propanol, 1-butanol, and two mixed solvents, methanol + water, ethanol + water have been determined at temperature range from 291-340 K. The experimental data were correlated by the modified Apelblat equation, λ h equation, and ideal model. The calculated solubilities were turned out very consistent with the experimental results, and the modified Apelblat equation shows the best agreement.
2012-02-28
dimethylsulfoxide ( DMSO ). When chloroform is dissolved in a mixed solvent consisting of acetone and DMSO , both types of hydrogen bonded complexes exist. The...transition (negative) in the 2D IR spectrum. Also, line shape distortions caused by solvent background absorption and finite pulse durations do not affect...conditions as = 7 1 ps. This is the first direct measurement of hydrogen bond exchange. b. Solute- Solvent Complex Switching Dynamics3 Hydrogen
2012-02-28
dimethylsulfoxide ( DMSO ). When chloroform is dissolved in a mixed solvent consisting of acetone and DMSO , both types of hydrogen bonded complexes exist. The...transition (negative) in the 2D IR spectrum. Also, line shape distortions caused by solvent background absorption and finite pulse durations do not affect...conditions as = 7 1 ps. This is the first direct measurement of hydrogen bond exchange. b. Solute- Solvent Complex Switching Dynamics3 Hydrogen
Schmieding, E.G.; Ruehle, A.E.
1961-04-11
A method is given for extracting metal values from an aqueous feed wherein the aqueous feed is passed countercurrent to an organic extractant through a plurality of decanting zones and a portion of the mixture contained in each decanting zone is recycled through a mixing zone associated therewith. The improvement consists of passing more solvent from the top of one decanting zone to the bottom of the preceding decanting zone than can rise to the top thereof and recycling that portion of the solvent that does not rise to the top back to the first named decanting zone through its associated mixing zone.
NASA Astrophysics Data System (ADS)
Puspitasari, Nurrisma; Nurul Amalia, Silviyanti S.; Yudoyono, Gatut; Endarko
2017-07-01
Dye Sensitized Solar Cell (DSSC) using natural dyes (chlorophyll, curcumin from turmeric extract, and anthocyanin from mangosteen extract) have been successfully fabricated for determining the effect of variation natural dyes, mixing dyes and acetonitrile in electrolyte toward characterization of DSSC. DSSC consists of five parts namely ITO (Indium Tin Oxide) as a substrate; TiO2 as semiconductor materials; natural dyes as an electron donor; electrolyte as electron transfer; and carbon as a catalyst that can convert light energy into electric energy. Two types of gel electrolyte based on PEG that mixed with liquid electrolyte have utilized for analyzing the lifetime of DSSC. Type I used distilled water as a solvent whilst type II used acetonitrile as a solvent with addition of concentration of KI and iodine. The main purpose of study was to investigate influence of solvent in electrolyte, variation of natural dyes and mixing dyes toward an efficiency that resulted by DSSC. The result showed that electrolyte type II is generally better than type I with efficiency 0,0556 and 0,0456 %, respectively. An efficiency values which resulted from a variation of mixed three natural dyes showed the greatest efficiency compared to mixed two natural dyes and one dye, with an efficiency value can be achieved at 0,0194 % for chlorophyll; 0,111 % for turmeric; 0,0105 % for mangosteen; 0,0244% (mangosteen and chlorophyll); 0,0117 % (turmeric and mangosteen); 0,0158 % (turmeric and chlorophyll); and 0.0566 % (mixed three natural dyes).
Extractant composition including crown ether and calixarene extractants
Meikrantz, David H.; Todd, Terry A.; Riddle, Catherine L.; Law, Jack D.; Peterman, Dean R.; Mincher, Bruce J.; McGrath, Christopher A.; Baker, John D.
2009-04-28
An extractant composition comprising a mixed extractant solvent consisting of calix[4] arene-bis-(tert-octylbenzo)-crown-6 ("BOBCalixC6"), 4',4',(5')-di-(t-butyldicyclo-hexano)-18-crown-6 ("DtBu18C6"), and at least one modifier dissolved in a diluent. The DtBu18C6 may be present at from approximately 0.01M to approximately 0.4M, such as at from approximately 0.086 M to approximately 0.108 M. The modifier may be 1-(2,2,3,3-tetrafluoropropoxy)-3-(4-sec-butylphenoxy)-2-propanol ("Cs-7SB") and may be present at from approximately 0.01M to approximately 0.8M. In one embodiment, the mixed extractant solvent includes approximately 0.15M DtBu18C6, approximately 0.007M BOBCalixC6, and approximately 0.75M Cs-7SB modifier dissolved in an isoparaffinic hydrocarbon diluent. The extractant composition further comprises an aqueous phase. The mixed extractant solvent may be used to remove cesium and strontium from the aqueous phase.
Control of Evaporation Behavior of an Inkjet-Printed Dielectric Layer Using a Mixed-Solvent System
NASA Astrophysics Data System (ADS)
Yang, Hak Soon; Kang, Byung Ju; Oh, Je Hoon
2016-01-01
In this study, the evaporation behavior and the resulting morphology of inkjet-printed dielectric layers were controlled using a mixed-solvent system to fabricate uniform poly-4-vinylphenol (PVP) dielectric layers without any pinholes. The mixed-solvent system consisted of two different organic solvents: 1-hexanol and ethanol. The effects of inkjet-printing variables such as overlap condition, substrate temperature, and different printing sequences (continuous and interlacing printing methods) on the inkjet-printed dielectric layer were also investigated. Increasing volume fraction of ethanol (VFE) is likely to reduce the evaporation rate gradient and the drying time of the inkjet-printed dielectric layer; this diminishes the coffee stain effect and thereby improves the uniformity of the inkjet-printed dielectric layer. However, the coffee stain effect becomes more severe with an increase in the substrate temperature due to the enhanced outward convective flow. The overlap condition has little effect on the evaporation behavior of the printed dielectric layer. In addition, the interlacing printing method results in either a stronger coffee stain effect or wavy structures of the dielectric layers depending on the VFE of the PVP solution. All-inkjet-printed capacitors without electrical short circuiting can be successfully fabricated using the optimized PVP solution (VFE = 0.6); this indicates that the mixed-solvent system is expected to play an important role in the fabrication of high-quality inkjet-printed dielectric layers in various printed electronics applications.
Ma, Ming-Guo; Zhu, Ying-Jie; Chang, Jiang
2006-07-27
Agglomerated nanorods of hydroxyapatite have been synthesized using monetite as a precursor in a NaOH solution. Monetite consisting of nanosheets has been successfully synthesized by a one-step microwave-assisted method using CaCl(2).2.5H(2)O, NaH(2)PO(4), and sodium dodecyl sulfate (SDS) in water/ethylene glycol (EG) mixed solvents. The effects of the molar ratio of water to EG and the reaction time on the products were investigated. The products were characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and Fourier transform infrared spectrometry (FTIR).
Nonhazardous solvent composition and method for cleaning metal surfaces
Googin, John M.; Simandl, Ronald F.; Thompson, Lisa M.
1993-01-01
A solvent composition for displacing greasy and oily contaminants as well as water and/or aqueous residue from metallic surfaces, especially surfaces of radioactive materials so that such surfaces can be wiped clean of the displaced contaminants, water and/or aqueous residue. The solvent composition consists essentially of a blend of nonpolar aliphatic hydrocarbon solvent having a minimum flash point of about 140.degree. F. and 2 to 25 volume percent of a polar solvent having a flash point sufficiently high so as to provide the solvent composition with a minimum flash point of at least 140.degree. F. The solvent composition is nonhazardous so that when it is used to clean the surfaces of radioactive materials the waste in the form of paper or cloth wipes, lab coats and the like used in the cleaning operation is not considered to be mixed waste composed of a hazardous solvent and a radioactive material.
Nonhazardous solvent composition and method for cleaning metal surfaces
Googin, J.M.; Simandl, R.F.; Thompson, L.M.
1993-05-04
A solvent composition for displacing greasy and oily contaminants as well as water and/or aqueous residue from metallic surfaces, especially surfaces of radioactive materials so that such surfaces can be wiped clean of the displaced contaminants, water and/or aqueous residue. The solvent composition consists essentially of a blend of nonpolar aliphatic hydrocarbon solvent having a minimum flash point of about 140 F and 2 to 25 volume percent of a polar solvent having a flash point sufficiently high so as to provide the solvent composition with a minimum flash point of at least 140 F. The solvent composition is nonhazardous so that when it is used to clean the surfaces of radioactive materials the waste in the form of paper or cloth wipes, lab coats and the like used in the cleaning operation is not considered to be mixed waste composed of a hazardous solvent and a radioactive material.
Production of al-si alloy feedstocks using the solvent hot mixing method
NASA Astrophysics Data System (ADS)
Ni, J. Q.; Han, K. Q.; Yu, M. H.
2018-05-01
Powder injection molding is a promising low-cost technique for net shape processing of metal and ceramic components. This study aimed to investigate a new method for preparing aluminium (Al) – silicon (Si) alloy feedstock using the solvent hot mixing process. For this purpose, micron-sized Al-Si (20 wt. %) alloy powder was mixed with a binder consisting of 55 wt. % carnauba wax, 45 wt. % high-density polyethylene, and 3 wt. % stearic acid in a hot xylene bath. The scanning electron microscopy technique, thermogravimetric analysis, density measurement and torque measurements were used to verify the homogeneity of the feedstock. Moreover, the feedstock was chosen to perform the molding, debinding cycle and sintering. An Al-Si (20 wt. %) alloy part was successfully produced using this new method.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alcaraz, A; Dougan, A
This procedure requires the binder and uncoated RDX be prepared in separate steps, see Figure 1: (1) The binder and dye are mixed by agitation with a water-insoluble organic solvent (e.g., toluene), I; (2) The RDX/PETN is agitated thoroughly with water, II; (3) The binder solution I is added to the RDX/water mixture at II with thorough mixing to form a slurry III; (4) In the next step the solvent is distilled off at IV leaving resulting granules; (5) The next step is followed by filtration at V, which may be done by vacuum; (6) The composition is then driedmore » at VI to a dough-like consistency.« less
NASA Astrophysics Data System (ADS)
Smirnov, V. I.; Badelin, V. G.
2018-01-01
The enthalpies of solution of 4-hydroxy-L-proline and L-phenylalanine in binary mixed aqueous solvents containing acetonitrile (AN), 1,4-dioxane (1,4-DO), or acetone (AC) at mole fractions of 0 to 0.25 are determined at T = 298.15 K via isothermal calorimetry. The standard enthalpies of solution (Δsol H°) and transfer (Δtr H°) of 4-hydroxy-L-proline and L-phenylalanine from water to mixed aqueous solvents are calculated using the experimental calorimetric data, as are the enthalpy coefficients of paired interactions ( h xy ) between the molecules of the investigated amino acids and the organic solvents. The effects the mixed aqueous solvent composition and the structure of the organic solvent molecules have on the enthalpies of solution and transfer for the investigated amino acids are considered. The correlation between the enthalpy of solution of the amino acids and the electron-donating properties of the organic solvents in the mixed aqueous solvent systems is established.
NASA Astrophysics Data System (ADS)
Farajtabar, Ali; Jaberi, Fatemeh; Gharib, Farrokh
2011-12-01
The solvatochromic properties of the free base and the protonated 5, 10, 15, 20-tetrakis(4-sulfonatophenyl)porphyrin (TPPS) were studied in pure water, methanol, ethanol (protic solvents), dimethylsulfoxide, DMSO, (non-protic solvent), and their corresponding aqueous-organic binary mixed solvents. The correlation of the empirical solvent polarity scale ( ET) values of TPPS with composition of the solvents was analyzed by the solvent exchange model of Bosch and Roses to clarify the preferential solvation of the probe dyes in the binary mixed solvents. The solvation shell composition and the synergistic effects in preferential solvation of the solute dyes were investigated in terms of both solvent-solvent and solute-solvent interactions and also, the local mole fraction of each solvent composition was calculated in cybotactic region of the probe. The effective mole fraction variation may provide significant physico-chemical insights in the microscopic and molecular level of interactions between TPPS species and the solvent components and therefore, can be used to interpret the solvent effect on kinetics and thermodynamics of TPPS. The obtained results from the preferential solvation and solvent-solvent interactions have been successfully applied to explain the variation of equilibrium behavior of protonation of TPPS occurring in aqueous organic mixed solvents of methanol, ethanol and DMSO.
Effects of solvation on partition and dimerization of benzoic acid in mixed solvent systems.
Yamada, H; Yajima, K; Wada, H; Nakagawa, G
1995-06-01
The partition of benzoic acid between 0.1M perchloric acid solution and two kinds of mixed solvents has been carried out at 25 degrees C. The partition and dimerization constants of benzoic acid have been determined in the 1-octanol-benzene and 2-octanone-benzene systems. In both the mixed solvent systems, with increasing content of 1-octanol and 2-octanone in each mixed solvent, the partition constant of benzoic acid has been found to increase, and the dimerization constant of benzoic acid in each organic phase to decrease. These phenomena are attributable to solvation of monomeric benzoic acid by 1-octanol and 2-octanone molecules in each mixed solvent.
Improving Protocols for Protein Mapping through Proper Comparison to Crystallography Data
Lexa, Katrina W.; Carlson, Heather A.
2013-01-01
Computational approaches to fragment-based drug design (FBDD) can complement experiments and facilitate the identification of potential hot spots along the protein surface. However, the evaluation of computational methods for mapping binding sites frequently focuses upon the ability to reproduce crystallographic coordinates to within a low RMSD threshold. This dependency on the deposited coordinate data overlooks the original electron density from the experiment, thus techniques may be developed based upon subjective - or even erroneous - atomic coordinates. This can become a significant drawback in applications to systems where the location of hot spots is unknown. Based on comparison to crystallographic density, we previously showed that mixed-solvent molecular dynamics (MixMD) accurately identifies the active site for HEWL, with acetonitrile as an organic solvent. Here, we concentrated on the influence of protic solvent on simulation and refined the optimal MixMD approach for extrapolation of the method to systems without established sites. Our results establish an accurate approach for comparing simulations to experiment. We have outlined the most efficient strategy for MixMD, based on simulation length and number of runs. The development outlined here makes MixMD a robust method which should prove useful across a broad range of target structures. Lastly, our results with MixMD match experimental data so well that consistency between simulations and density may be a useful way to aid the identification of probes vs waters during the refinement of future MSCS crystallographic structures. PMID:23327200
The Denaturation Transition of DNA in Mixed Solvents
Hammouda, Boualem; Worcester, David
2006-01-01
The helix-to-coil denaturation transition in DNA has been investigated in mixed solvents at high concentration using ultraviolet light absorption spectroscopy and small-angle neutron scattering. Two solvents have been used: water and ethylene glycol. The “melting” transition temperature was found to be 94°C for 4% mass fraction DNA/d-water and 38°C for 4% mass fraction DNA/d-ethylene glycol. The DNA melting transition temperature was found to vary linearly with the solvent fraction in the mixed solvents case. Deuterated solvents (d-water and d-ethylene glycol) were used to enhance the small-angle neutron scattering signal and 0.1M NaCl (or 0.0058 g/g mass fraction) salt concentration was added to screen charge interactions in all cases. DNA structural information was obtained by small-angle neutron scattering, including a correlation length characteristic of the inter-distance between the hydrogen-containing (desoxyribose sugar-amine base) groups. This correlation length was found to increase from 8.5 to 12.3 Å across the melting transition. Ethylene glycol and water mixed solvents were found to mix randomly in the solvation region in the helix phase, but nonideal solvent mixing was found in the melted coil phase. In the coil phase, solvent mixtures are more effective solvating agents than either of the individual solvents. Once melted, DNA coils behave like swollen water-soluble synthetic polymer chains. PMID:16815902
Experiment on the treatment of waste extraction solvent from the molybdenum-99 process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hsien-Ming Hsiao; Chang-Liang Hu; Kuang-Li Chien
2013-07-01
In the Mo-99 (Molybdenum-99) isotope extraction test process for radiopharmaceutical applications, organic solvent is used to extract Mo-99 from an irradiated UO{sub 2} dissolution. The extraction solvent was stored when the test work was stopped. A total of about 120 liters of waste solvent was stored at INER (Institute of Nuclear Energy Research, Taiwan). The extraction solvent consisted of 5% di-(2-ethylhexyl)-phosphoric acid (D2EHPA) and kerosene. The radionuclides found in the waste solvent include Cs-137, Am-241, Tc-99, and Sr-90, which give off gross alpha and beta radioactivity of 1898 and 471 Bq/ml, respectively. This study aims to remove radionuclides from themore » waste solvent using sodium carbonate and sodium hydroxide solutions in different concentrations. After mixing the waste solvent with the alkaline solution followed by settling, a third phase other than organic and aqueous phase appeared which is expected due to the saponification reaction. The experimental results showed that increasing the number of washing and the alkaline solution concentration could enhance the radionuclides removal rate. An optimal removal method was proposed using 2 M Na{sub 2}CO{sub 3} solution twice followed by 1 M NaOH solution one time for the third phase generated early in the mixing stages. The remaining gross alpha and beta radioactivity of the treated organic solvent was 2 and 3 Bq/ml, respectively. The treated solvent could be stabilized by ashing at 500 deg. C and then immobilized. The alkaline solution would be neutralized by hydrochloric or nitric acid and then treated using a variety of adsorbents or bone char via adsorption to remove nuclides to meet the wastewater discharge limitation. (authors)« less
Lear, Benjamin J; Glover, Starla D; Salsman, J Catherine; Londergan, Casey H; Kubiak, Clifford P
2007-10-24
We relate the solvent and temperature dependence of the rates of intramolecular electron transfer (ET) of mixed valence complexes of the type {[Ru3O(OAc)6(CO)(L)]2-BL}-1, where L = pyridyl ligand and BL = pyrazine. Complexes were reduced chemically or electrochemically to obtain the mixed valence anions in seven solvents: acetonitrile, methylene chloride, dimethylformamide, tetrahydrofuran, dimethylsulfoxide, chloroform, and hexamethylphosphoramide. Rate constants for intramolecular ET were estimated by simulating the observed degree of nu(CO) IR band shape coalescence in the mixed valence state. Correlations between rate constants for ET and solvent properties including static dielectric constant, optical dielectric constant, the quantity 1/epsilonop - 1/epsilonS, microscopic solvent polarity, viscosity, cardinal rotational moments of inertia, and solvent relaxation times were examined. In the temperature study, the complexes displayed a sharp increase in the ket as the freezing points of the solvents methylene chloride and acetonitrile were approached. The solvent phase transition causes a localized-to-delocalized transition in the mixed valence ions and an acceleration in the rate of ET. This is explained in terms of decoupling the slower solvent motions involved in the frequency factor nuN which increases the value of nuN. The observed solvent and temperature dependence of the ket for these complexes is used in order to formulate a new definition for Robin-Day class II-III mixed valence compounds. Specifically, it is proposed that class II-III compounds are those for which thermodynamic properties of the solvent exert no control over ket, but the dynamic properties of the solvent still influence ket.
All-alkoxide synthesis of strontium-containing metal oxides
Boyle, Timothy J.
2001-01-01
A method for making strontium-containing metal-oxide ceramic thin films from a precursor liquid by mixing a strontium neo-pentoxide dissolved in an amine solvent and at least one metal alkoxide dissolved in a solvent, said at least one metal alkoxide selected from the group consisting of alkoxides of calcium, barium, bismuth, cadmium, lead, titanium, tantalum, hafnium, tungsten, niobium, zirconium, yttrium, lanthanum, antimony, chromium and thallium, depositing a thin film of the precursor liquid on a substrate, and heating the thin film in the presence of oxygen at between 550 and 700.degree. C.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clark, Sue B.
2016-10-31
The goal of this project has been to define the extent of hydration the f-elements and other cations in mixed solvent electrolyte systems. Methanol-water and other mixed solvent systems have been studied, where the solvent dielectric constant was varied systematically. Thermodynamic and spectroscopic studies provide details concerning the energetics of complexation and other reactions of these cations. This information has also been used to advance new understanding of the behavior of these cations in a variety of systems, ranging from environmental studies, chromatographic approaches, and ionization processes for mass spectrometry.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deng, Xuchu; Hu, Mary Y.; Wei, Xiaoliang
Understanding the solvation structures of electrolytes should prove conducive for the development of nonaqueous redox flow batteries that hold considerable potential for future large scale energy storage systems. The utilization of an emerging ionic-derivatived ferrocene compound, ferrocenylmethyl dimethyl ethyl ammonium bis(trifluoromethanesulfonyl)imide (Fc1N112-TFSI), has recently overcome the issue of solubility in the supporting electrolyte. In this work, 13C, 1H and 17O NMR investigations were carried out using electrolyte solutions consisting of Fc1N112-TFSI as the solute and the mixed alkyl carbonate as the solvent. It was observed that the spectra of 13C experience changes of chemical shifts while those of 17O undergomore » linewidth broadening, indicating interactions between solute and solvent molecules. Quantum chemistry calculations of both molecular structures and chemical shifts (13C, 1H and 17O) are performed for interpreting experimental results and of understanding the detailed solvation structures and molecular dynamics. The results indicate that Fc1N112-TFSI is dissociated at varying degrees in mixed solvent depending on concentrations. Solvent molecules encircle Fc1N112 and TFSI respectively as solvation shells, rapidly exchanging with both bulk solvent and TFSI. Additionally, the solvent with high dielectric constant is more capable of dissociating Fc1N112-TFSI molecules compared with those with low dielectric constant. At saturated concentration, contact ion pairs are formed and the solvent molecules are interacting with the Fc rings rather than interacting with the ionic pendant arm of Fc1N112-TFSI. These studies will contribute to the development of nonaqueous electrolytes of storage systems.« less
Field trial of solvent-free emulsion in Oregon : appendices.
DOT National Transportation Integrated Search
2003-03-01
This final report summarizes construction, laboratory and performance information gathered by ODOT personnel from a single field trial of solvent-free emulsion mix constructed in June 2001. The solvent-free emulsion mix presented several placement pr...
Propellant Reuse/Recovery Technology
1988-08-31
viscosity of the nitrocellulose (NC) determine the solvent/solvent and solvent/propellant ratios required to properly resolvate the propellant. It was also...plasticization. An 11-min drying cycle was required to remove the excess solvent from the over-solvated propellant. To improve plasticization using...solvent, and (4) 15-min mix cycle. To eliminate the drying cycle and determine that a 15-min mix cycle will resolvate the propellart, an additional 1 h
Field trial of solvent-free emulsion in Oregon : final report.
DOT National Transportation Integrated Search
2003-03-01
This final report summarizes construction, laboratory and performance information gathered by ODOT personnel from a single field trial of solvent-free emulsion mix constructed in June 2001. The solvent-free emulsion mix presented several placement pr...
Investigations on the role of mixed-solvent for improved efficiency in perovskite solar cell
NASA Astrophysics Data System (ADS)
Singh, Ranbir; Suranagi, Sanjaykumar R.; Kumar, Manish; Shukla, Vivek Kumar
2017-12-01
The morphology of the spin-coated photoactive layer is one of the major factors affecting the performance of perovskite solar cells. In this work, we have employed a mixed-solvent strategy to obtain a high quality MAPbI3 (MA = CH3NH3) perovskite film, without pinholes and reduced grain boundaries. Perovskite films formed with single and mixed-solvents are systematically characterized for their optical, structural, and morphological properties using UV-vis absorption, photoluminescence (PL), X-ray diffraction (XRD), atomic force microscopy (AFM), and scanning electron microscopy (SEM) tools. The power conversion efficiency (PCE) of the devices fabricated using the mixed-solvent showed better performance than the devices made using the single solvent. The best-optimized mixed-solvent perovskite film exhibited a PCE of 15.2% with uniform film coverage on the substrate, better charge generation, and a high hole mobility of 1.16 × 10-4cm2/V s. The disparities in photovoltaic properties have been analyzed with the intensity dependent current density-voltage (J-V), transient photovoltage (TPV), and relationship between photocurrent (Jph) and effective voltage (Veff).
Preparation of membranes using solvent-less vapor deposition followed by in-situ polymerization
O'Brien, Kevin C [San Ramon, CA; Letts, Stephan A [San Ramon, CA; Spadaccini, Christopher M [Oakland, CA; Morse, Jeffrey C [Pleasant Hill, CA; Buckley, Steven R [Modesto, CA; Fischer, Larry E [Los Gatos, CA; Wilson, Keith B [San Ramon, CA
2012-01-24
A system of fabricating a composite membrane from a membrane substrate using solvent-less vapor deposition followed by in-situ polymerization. A first monomer and a second monomer are directed into a mixing chamber in a deposition chamber. The first monomer and the second monomer are mixed in the mixing chamber providing a mixed first monomer and second monomer. The mixed first monomer and second monomer are solvent-less vapor deposited onto the membrane substrate in the deposition chamber. The membrane substrate and the mixed first monomer and second monomer are heated to produce in-situ polymerization and provide the composite membrane.
Preparation of membranes using solvent-less vapor deposition followed by in-situ polymerization
O'Brien, Kevin C [San Ramon, CA; Letts, Stephan A [San Ramon, CA; Spadaccini, Christopher M [Oakland, CA; Morse, Jeffrey C [Pleasant Hill, CA; Buckley, Steven R [Modesto, CA; Fischer, Larry E [Los Gatos, CA; Wilson, Keith B [San Ramon, CA
2010-07-13
A system of fabricating a composite membrane from a membrane substrate using solvent-less vapor deposition followed by in-situ polymerization. A first monomer and a second monomer are directed into a mixing chamber in a deposition chamber. The first monomer and the second monomer are mixed in the mixing chamber providing a mixed first monomer and second monomer. The mixed first monomer and second monomer are solvent-less vapor deposited onto the membrane substrate in the deposition chamber. The membrane substrate and the mixed first monomer and second monomer are heated to produce in-situ polymerization and provide the composite membrane.
Predicting Displaceable Water Sites Using Mixed-Solvent Molecular Dynamics.
Graham, Sarah E; Smith, Richard D; Carlson, Heather A
2018-02-26
Water molecules are an important factor in protein-ligand binding. Upon binding of a ligand with a protein's surface, waters can either be displaced by the ligand or may be conserved and possibly bridge interactions between the protein and ligand. Depending on the specific interactions made by the ligand, displacing waters can yield a gain in binding affinity. The extent to which binding affinity may increase is difficult to predict, as the favorable displacement of a water molecule is dependent on the site-specific interactions made by the water and the potential ligand. Several methods have been developed to predict the location of water sites on a protein's surface, but the majority of methods are not able to take into account both protein dynamics and the interactions made by specific functional groups. Mixed-solvent molecular dynamics (MixMD) is a cosolvent simulation technique that explicitly accounts for the interaction of both water and small molecule probes with a protein's surface, allowing for their direct competition. This method has previously been shown to identify both active and allosteric sites on a protein's surface. Using a test set of eight systems, we have developed a method using MixMD to identify conserved and displaceable water sites. Conserved sites can be determined by an occupancy-based metric to identify sites which are consistently occupied by water even in the presence of probe molecules. Conversely, displaceable water sites can be found by considering the sites which preferentially bind probe molecules. Furthermore, the inclusion of six probe types allows the MixMD method to predict which functional groups are capable of displacing which water sites. The MixMD method consistently identifies sites which are likely to be nondisplaceable and predicts the favorable displacement of water sites that are known to be displaced upon ligand binding.
Felmy, Heather M.; Bennett, Kevin T.; Clark, Sue B.
2017-05-12
To gain insight on the role of mixed solvents on the thermodynamic driving forces for the complexation between trivalent f-elements and organic ligands, solution phase thermodynamic parameters were determined for Eu(III) complexation with 2-hydroxyisobutyric acid (HIBA) and 2-aminoisobutyric acid (AIBA) in mixed methanol (MeOH)-water and N,N-dimethylformamide (DMF)-water solvents. Included in this study were the determination of mixed solvent autoprotolysis constants (pK α) as well as the thermodynamic formation constants: log β, ΔG, ΔH, and ΔS, for ligand protonation and Eu(III)-ligand complexation utilizing potentiometry and calorimetry techniques. The results presented are conditional thermodynamic values determined at an ionic strength of 1.0more » M NaClO 4 and a temperature of 298 K. It was found that moving from an aqueous solution to a binary aqueous-organic solvent affected all solution equilibria to some degree and that the extent of change depended on both the type of mixed solvent and the ligand in each study. Here, the ability to understand and predict these changes in thermodynamic values as a function of solvent composition provides important information about the chemistry of the trivalent f-elements.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Felmy, Heather M.; Bennett, Kevin T.; Clark, Sue B.
To gain insight on the role of mixed solvents on the thermodynamic driving forces for the complexation between trivalent f-elements and organic ligands, solution phase thermodynamic parameters were determined for Eu(III) complexation with 2-hydroxyisobutyric acid (HIBA) and 2-aminoisobutyric acid (AIBA) in mixed methanol (MeOH)-water and N,N-dimethylformamide (DMF)-water solvents. Included in this study were the determination of mixed solvent autoprotolysis constants (pK α) as well as the thermodynamic formation constants: log β, ΔG, ΔH, and ΔS, for ligand protonation and Eu(III)-ligand complexation utilizing potentiometry and calorimetry techniques. The results presented are conditional thermodynamic values determined at an ionic strength of 1.0more » M NaClO 4 and a temperature of 298 K. It was found that moving from an aqueous solution to a binary aqueous-organic solvent affected all solution equilibria to some degree and that the extent of change depended on both the type of mixed solvent and the ligand in each study. Here, the ability to understand and predict these changes in thermodynamic values as a function of solvent composition provides important information about the chemistry of the trivalent f-elements.« less
D'Autry, Ward; Zheng, Chao; Wolfs, Kris; Yarramraju, Sitaramaraju; Hoogmartens, Jos; Van Schepdael, Ann; Adams, Erwin
2011-06-01
Static headspace (HS) sampling has been commonly used to test for volatile organic chemicals, usually referred to as residual solvents (RS) in pharmaceuticals. If the sample is not soluble in water, organic solvents are used. However, these seriously reduce the sensitivity in the determination of some RS. Here, mixed aqueous dilution media (a mixture of water and an organic solvent like dimethyl formamide, dimethyl sulfoxide or dimethyl acetamide) were studied as alternative media for static HS-gas chromatographic analysis. Although it has been known that mixed aqueous dilution media can often improve sensitivity for many RS, this study used a systematic approach to investigate phase volumes and the organic content in the HS sampling media. Reference solutions using 18 different class 1, 2 and 3 RS were evaluated. The effect of salt addition was also studied in this work. A significant increase in the peak area was observed for all RS using mixed aqueous dilution media, when compared with organic solvents alone. Matrix effects related to the mixed aqueous dilution media were also investigated and reported. Repeatability and linearity obtained with mixed aqueous dilution media were found to be similar to those observed with pure organic solvents. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Ebrahimpoor, Sonia; Khoshnood, Razieh Sanavi; Beyramabadi, S. Ali
2016-12-01
Complexation of the Cd2+ ion with N, N'-dipyridoxylidene(1,4-butanediamine) Schiff base was studied in pure solvents including acetonitrile (AN), ethanol (EtOH), methanol (MeOH), tetrahydrofuran (THF), dimethylformamide (DMF), water (H2O), and various binary solvent mixtures of acetonitrile-ethanol (AN-EtOH), acetonitrile-methanol (AN-MeOH), acetonitrile-tetrahydrofuran (AN-THF), acetonitrile-dimethylformamide (AN-DMF), and acetonitrile-water (AN-H2O) systems at different temperatures using the conductometric method. The conductance data show that the stoichiometry of complex is 1: 1 [ML] in all solvent systems. A non-linear behavior was observed for changes of log K f of [Cd( N, N'-dipyridoxylidene(1,4-butanediamine)] complex versus the composition of the binary mixed solvents, which was explained in terms of solvent-solvent interactions. The results show that the thermodynamics of complexation reaction is affected by the nature and composition of the mixed solvents.
Solvent tuning configurational conversion of lycopene aggregates in organic-aqueous mixing solvent
NASA Astrophysics Data System (ADS)
Dong, Jia; Zhang, Di; Wang, Xin-Yue; Wang, Peng
2018-06-01
In general cases, carotenoid aggregates are prepared in organic-water mixing solvent depending on its hydrophobic character. It is well-known that one of carotenoids, lycopene, is more likely to form typical H-aggregates. In this study, new type lycopene J-aggregates were prepared in DMSO-water mixing solvent with small amount of toluene, which was observed for the first time. We proposed a potential structure model combining with exciton model to interpret the mechanism of spectra changes. Our finding has provided new methods and novel ideas for controlling carotenoid aggregates formation.
Preparation of polyurethane foams using fractionated products in liquefied wood
Junming Xu; Jianchun Jiang; Chung-Yun Hse; Todd F. Shupe
2014-01-01
Liquefaction of sawdust was studied using glycerol and methanol as mix solvents. A new bio-polyol product consisting of high purity multi-hydroxy compounds was obtained by precipitation of the hydrophobic organics from the liquefied product in an aqueous solution. As identified by GC-MS, the dominate components in bio-polyol were glycerol, glycerol derivatives, and...
NASA Astrophysics Data System (ADS)
Deng, Xuchu; Hu, Mary; Wei, Xiaoliang; Wang, Wei; Mueller, Karl T.; Chen, Zhong; Hu, Jian Zhi
2016-03-01
Understanding the solvation structures of electrolytes is important for developing nonaqueous redox flow batteries that hold considerable potential for future large scale energy storage systems. The utilization of an emerging ionic-derivatived ferrocene compound, ferrocenylmethyl dimethyl ethyl ammonium bis(trifluoromethanesulfonyl)imide (Fc1N112-TFSI), has recently overcome the issue of solubility in the supporting electrolyte. In this work, 13C, 1H and 17O NMR investigations were carried out using electrolyte solutions consisting of Fc1N112-TFSI as the solute and the mixed alkyl carbonate as the solvent. It was observed that the spectra of 13C experience changes of chemical shifts while those of 17O undergo linewidth broadening, indicating interactions between solute and solvent molecules. Quantum chemistry calculations of both molecular structures and chemical shifts (13C, 1H and 17O) are performed for interpreting experimental results and for understanding the detailed solvation structures. The results indicate that Fc1N112-TFSI is dissociated at varying degrees in mixed solvent depending on concentrations. At dilute solute concentrations, most Fc1N112+ and TFSI- are fully disassociated with their own solvation shells formed by solvent molecules. At saturated concentration, Fc1N112+-TFSI- contact ion pairs are formed and the solvent molecules are preferentially interacting with the Fc rings rather than interacting with the ionic pendant arm of Fc1N112-TFSI.
Bhattarai, Ajaya; Chatterjee, Sujeet Kumar; Niraula, Tulasi Prasad
2013-01-01
The accurate measurements on density of the binary mixtures of cetyltrimethylammonium bromide and sodium dodecyl sulphate in pure water and in methanol(1) + water (2) mixed solvent media containing (0.10, 0.20, and 0.30) volume fractions of methanol at 308.15, 318.15, and 323.15 K are reported. The concentrations are varied from (0.03 to 0.12) mol.l(-1) of sodium dodecyl sulphate in presence of ~ 5.0×10(-4) mol.l(-1) cetyltrimethylammonium bromide. The results showed almost increase in the densities with increasing surfactant mixture concentration, also the densities are found to decrease with increasing temperature over the entire concentration range, investigated in a given mixed solvent medium and these values are found to decrease with increasing methanol content in the solvent composition. The concentration dependence of the apparent molar volumes appear to be negligible over the entire concentration range, investigated in a given mixed solvent medium and the apparent molar volumes increase with increasing temperature and are found to decrease with increasing methanol content in the solvent composition.
40 CFR 63.9520 - What procedures must I use to demonstrate initial compliance?
Code of Federal Regulations, 2013 CFR
2013-07-01
... must determine the percent of HAP solvent discharged to the atmosphere for each mix batch according to... to the atmosphere for each mix batch, percent; Srec = Weight of HAP solvent recovered for each mix... discharged to the atmosphere for that mix batch (Pb). (7) Determine the 7-day block average percent of HAP...
40 CFR 63.9520 - What procedures must I use to demonstrate initial compliance?
Code of Federal Regulations, 2011 CFR
2011-07-01
... must determine the percent of HAP solvent discharged to the atmosphere for each mix batch according to... to the atmosphere for each mix batch, percent; Srec = Weight of HAP solvent recovered for each mix... discharged to the atmosphere for that mix batch (Pb). (7) Determine the 7-day block average percent of HAP...
40 CFR 63.9520 - What procedures must I use to demonstrate initial compliance?
Code of Federal Regulations, 2012 CFR
2012-07-01
... must determine the percent of HAP solvent discharged to the atmosphere for each mix batch according to... to the atmosphere for each mix batch, percent; Srec = Weight of HAP solvent recovered for each mix... discharged to the atmosphere for that mix batch (Pb). (7) Determine the 7-day block average percent of HAP...
40 CFR 63.9520 - What procedures must I use to demonstrate initial compliance?
Code of Federal Regulations, 2014 CFR
2014-07-01
... must determine the percent of HAP solvent discharged to the atmosphere for each mix batch according to... to the atmosphere for each mix batch, percent; Srec = Weight of HAP solvent recovered for each mix... discharged to the atmosphere for that mix batch (Pb). (7) Determine the 7-day block average percent of HAP...
Xia, Dengning; Gan, Yong; Cui, Fude
2014-01-01
This review focuses on using precipitation (bottom-up) method to produce water-insoluble drug nanocrystals, and the stability issues of nanocrystals. The precipitation techniques for production of ultra-fine particles have been widely researched for last few decades. In these techniques, precipitation of solute is achieved by addition of a non-solvent for solute called anti-solvent to decrease the solvent power for the solute dissolved in a solution. The anti-solvent can be water, organic solvents or supercritical fluids. In this paper, efforts have been made to review the precipitation techniques involving the anti-solvent precipitation by simple mixing, impinging jet mixing, multi-inlet vortex mixing, the using of high-gravity, ultrasonic waves and supercritical fluids. The key to the success of yielding stable nanocrystals in these techniques is to control the nucleation kinetics and particle growth through mixing during precipitation based on crystallization theories. The stability issues of the nanocrystals, such as sedimentation, Ostwald ripening, agglomeration and cementing of crystals, change of crystalline state, and the approaches to stabilizing nanocrystals are also discussed in detail.
Synthesis of soluble conducting polymers by acoustic mixing
Kane, Marie C.
2016-09-13
A method including combining an aniline monomer, an oxidant, water and an organic solvent; subjecting the combination to acoustic mixing to form an emulsion; and recovering a polyaniliine from the combination. A method including combining a aniline monomer, an oxidant, water and an organic solvent; forming a polyaniline by acoustic mixing the combination; and recovering the polyaniliine from the combination. A method including forming a combination of an aniline monomer, an oxidant, water and an organic solvent in the absence of an emulsifier; acoustic mixing the combination for a time period to form a polyaniline; and recovering a polyaniliine from the combination.
Park, Min Soo; Joo, Wonchul; Kim, Jin Kon
2006-05-09
We investigate the effects of interfacial energy between water and solvent as well as polymer concentration on the formation of porous structures of polymer films prepared by spin coating of cellulose acetate butyrate (CAB) in mixed solvent of tetrahydrofuran (THF) and chloroform under humid condition. The interfacial energy between water and the solvent was gradually changed by the addition of chloroform to the solvent. At a high polymer concentration (0.15 g/cm3 in THF), porous structures were limited only at the top surfaces of CAB films, regardless of interfacial energies, due to the high viscosity of the solution. At a medium concentration (approximately 0.08 g/cm3 in THF), CAB film had relatively uniform pores at the top surface and very small pores inside the film because of the mixing of the water droplets with THF solution. When chloroform was added to THF, pores at the inner CAB film had a comparable size with those at the top surface because of the reduced degree of the mixing between the water droplets and the mixed solvent. A further decrease in polymer concentration (0.05 g/cm3 in THF) caused the final films to have a two-layer porous structure, and the size of pores at each layer was almost the same.
Attarchi, Mirsaeed; Golabadi, Majid; Labbafinejad, Yasser; Mohammadi, Saber
2013-02-01
Recent studies suggest that occupational exposures such as noise and organic solvents may affect blood pressure. The aim of this study was to investigate interaction of noise and mixed organic solvents on blood pressure. Four hundred seventy-one workers of a car manufacturing plant were divided into four groups: group one or G1 workers exposed to noise and mixed organic solvents in the permitted limit or control group, G3 exposed to noise only, G2 exposed to solvents only, and G4 workers exposed to noise and mixed organic solvents at higher than the permitted limit or co-exposure group. Biological interaction of two variables on hypertension was calculated using the synergistic index. The workers of co-exposure group (G4), noise only group (G3), and solvents only group (G2) had significantly higher mean values of SBP and DBP than workers of control group (G1) or office workers (P < 0.05). Also logistic regression analysis showed a significant association between hypertension and exposure to noise and mixture of organic solvents. Odds ratio for hypertension in the co-exposure group and the noise only and solvents only exposed groups was 14.22, 9.43, and 4.38, respectively, compared to control group. In this study, the estimated synergism index was 1.11. Our results indicate that exposure to noise or a mixture of organic solvents may be associated with the prevalence of hypertension in car manufacturing company workers and co-exposure to noise and a mixture of solvents has an additive effect in this regard. Therefore appropriate preventive programs in these workers recommended. Copyright © 2012 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Kuz'mina, I. A.; Volkova, M. A.; Sitnikova, K. A.; Sharnin, V. A.
2014-01-01
Heat effects of dissolution of piperidine (ppd) are measured by calorimetry at 298.15 K over the range of composition of acetonitrile-methanol (AN-MeOH) mixed solvents. Based on the Δsol H ○(ppd)AN-MeOH values obtained using the literature data on Δsol H ○ (ppd) in acetonitrile-dimethylsulfoxide (AN-DMSO) mixed solvents and the vaporization enthalpy of ppd, the enthalpies of solvation of amine in AN-MeOH and AN-DMSO binary mixtures are calculated. A rise in the exothermicity of solvation of piperidine is observed upon the transition from AN to DMSO and MeOH, due mainly to the enhanced solvation of the amino group of ppd as a result of changes in the acid-base properties of the mixed solvent.
Ultrafast fluxional exchange dynamics in electrolyte solvation sheath of lithium ion battery
Lee, Kyung-Koo; Park, Kwanghee; Lee, Hochan; Noh, Yohan; Kossowska, Dorota; Kwak, Kyungwon; Cho, Minhaeng
2017-01-01
Lithium cation is the charge carrier in lithium-ion battery. Electrolyte solution in lithium-ion battery is usually based on mixed solvents consisting of polar carbonates with different aliphatic chains. Despite various experimental evidences indicating that lithium ion forms a rigid and stable solvation sheath through electrostatic interactions with polar carbonates, both the lithium solvation structure and more importantly fluctuation dynamics and functional role of carbonate solvent molecules have not been fully elucidated yet with femtosecond vibrational spectroscopic methods. Here we investigate the ultrafast carbonate solvent exchange dynamics around lithium ions in electrolyte solutions with coherent two-dimensional infrared spectroscopy and find that the time constants of the formation and dissociation of lithium-ion···carbonate complex in solvation sheaths are on a picosecond timescale. We anticipate that such ultrafast microscopic fluxional processes in lithium-solvent complexes could provide an important clue to understanding macroscopic mobility of lithium cation in lithium-ion battery on a molecular level. PMID:28272396
Ultrafast fluxional exchange dynamics in electrolyte solvation sheath of lithium ion battery
NASA Astrophysics Data System (ADS)
Lee, Kyung-Koo; Park, Kwanghee; Lee, Hochan; Noh, Yohan; Kossowska, Dorota; Kwak, Kyungwon; Cho, Minhaeng
2017-03-01
Lithium cation is the charge carrier in lithium-ion battery. Electrolyte solution in lithium-ion battery is usually based on mixed solvents consisting of polar carbonates with different aliphatic chains. Despite various experimental evidences indicating that lithium ion forms a rigid and stable solvation sheath through electrostatic interactions with polar carbonates, both the lithium solvation structure and more importantly fluctuation dynamics and functional role of carbonate solvent molecules have not been fully elucidated yet with femtosecond vibrational spectroscopic methods. Here we investigate the ultrafast carbonate solvent exchange dynamics around lithium ions in electrolyte solutions with coherent two-dimensional infrared spectroscopy and find that the time constants of the formation and dissociation of lithium-ion...carbonate complex in solvation sheaths are on a picosecond timescale. We anticipate that such ultrafast microscopic fluxional processes in lithium-solvent complexes could provide an important clue to understanding macroscopic mobility of lithium cation in lithium-ion battery on a molecular level.
Ultrafast fluxional exchange dynamics in electrolyte solvation sheath of lithium ion battery.
Lee, Kyung-Koo; Park, Kwanghee; Lee, Hochan; Noh, Yohan; Kossowska, Dorota; Kwak, Kyungwon; Cho, Minhaeng
2017-03-08
Lithium cation is the charge carrier in lithium-ion battery. Electrolyte solution in lithium-ion battery is usually based on mixed solvents consisting of polar carbonates with different aliphatic chains. Despite various experimental evidences indicating that lithium ion forms a rigid and stable solvation sheath through electrostatic interactions with polar carbonates, both the lithium solvation structure and more importantly fluctuation dynamics and functional role of carbonate solvent molecules have not been fully elucidated yet with femtosecond vibrational spectroscopic methods. Here we investigate the ultrafast carbonate solvent exchange dynamics around lithium ions in electrolyte solutions with coherent two-dimensional infrared spectroscopy and find that the time constants of the formation and dissociation of lithium-ion···carbonate complex in solvation sheaths are on a picosecond timescale. We anticipate that such ultrafast microscopic fluxional processes in lithium-solvent complexes could provide an important clue to understanding macroscopic mobility of lithium cation in lithium-ion battery on a molecular level.
Mixed organic solvents induce renal injury in rats.
Qin, Weisong; Xu, Zhongxiu; Lu, Yizhou; Zeng, Caihong; Zheng, Chunxia; Wang, Shengyu; Liu, Zhihong
2012-01-01
To investigate the injury effects of organic solvents on kidney, an animal model of Sprague-Dawley (SD) rats treated with mixed organic solvents via inhalation was generated and characterized. The mixed organic solvents consisted of gasoline, dimethylbenzene and formaldehyde (GDF) in the ratio of 2:2:1, and were used at 12,000 PPM to treat the rats twice a day, each for 3 hours. Proteinuria appeared in the rats after exposure for 5-6 weeks. The incidences of proteinuria in male and female rats after exposure for 12 weeks were 43.8% (7/16) and 25% (4/16), respectively. Urinary N-Acetyl-β-(D)-Glucosaminidase (NAG) activity was increased significantly after exposure for 4 weeks. Histological examination revealed remarkable injuries in the proximal renal tubules, including tubular epithelial cell detachment, cloud swelling and vacuole formation in the proximal tubular cells, as well as proliferation of parietal epithelium and tubular reflux in glomeruli. Ultrastructural examination found that brush border and cytoplasm of tubular epithelial cell were dropped, that tubular epithelial cells were partially disintegrated, and that the mitochondria of tubular epithelial cells were degenerated and lost. In addition to tubular lesions, glomerular damages were also observed, including segmental foot process fusion and loss of foot process covering on glomerular basement membrane (GBM). Immunofluorescence staining indicated that the expression of nephrin and podocin were both decreased after exposure of GDF. In contrast, increased expression of desmin, a marker of podocyte injury, was found in some areas of a glomerulus. TUNEL staining showed that GDF induced apoptosis in tubular cells and glomerular cells. These studies demonstrate that GDF can induce both severe proximal tubular damage and podocyte injury in rats, and the tubular lesions appear earlier than that of glomeruli.
Mixed Organic Solvents Induce Renal Injury in Rats
Qin, Weisong; Xu, Zhongxiu; Lu, Yizhou; Zeng, Caihong; Zheng, Chunxia; Wang, Shengyu; Liu, Zhihong
2012-01-01
To investigate the injury effects of organic solvents on kidney, an animal model of Sprague-Dawley (SD) rats treated with mixed organic solvents via inhalation was generated and characterized. The mixed organic solvents consisted of gasoline, dimethylbenzene and formaldehyde (GDF) in the ratio of 2∶2:1, and were used at 12,000 PPM to treat the rats twice a day, each for 3 hours. Proteinuria appeared in the rats after exposure for 5–6 weeks. The incidences of proteinuria in male and female rats after exposure for 12 weeks were 43.8% (7/16) and 25% (4/16), respectively. Urinary N-Acetyl-β-(D)-Glucosaminidase (NAG) activity was increased significantly after exposure for 4 weeks. Histological examination revealed remarkable injuries in the proximal renal tubules, including tubular epithelial cell detachment, cloud swelling and vacuole formation in the proximal tubular cells, as well as proliferation of parietal epithelium and tubular reflux in glomeruli. Ultrastructural examination found that brush border and cytoplasm of tubular epithelial cell were dropped, that tubular epithelial cells were partially disintegrated, and that the mitochondria of tubular epithelial cells were degenerated and lost. In addition to tubular lesions, glomerular damages were also observed, including segmental foot process fusion and loss of foot process covering on glomerular basement membrane (GBM). Immunofluorescence staining indicated that the expression of nephrin and podocin were both decreased after exposure of GDF. In contrast, increased expression of desmin, a marker of podocyte injury, was found in some areas of a glomerulus. TUNEL staining showed that GDF induced apoptosis in tubular cells and glomerular cells. These studies demonstrate that GDF can induce both severe proximal tubular damage and podocyte injury in rats, and the tubular lesions appear earlier than that of glomeruli. PMID:23029287
Tsai, Yu Sheng; Chu, Wei-Ping; Tang, Rong-Ming; Juang, Fuh-Shyang; Chang, Ming-Hua; Liu, Mark O; Hsieh, Tsung-Eong
2008-10-01
The derivative of C60, i.e., PCBM, and P3HT (3-hexylthiophene) were dissolved in chloroform:dichlorobenzene mixed solvent, then spin-coated as the active layer for organic solar cells (OSC). The experimental parameters were studied carefully to obtain the optimum power conversion efficiency (PCE), including the solvent mixing ratio, spin-coating speed, annealing conditions for the active layer, etc. The OSC devices were packaged with glass and a newly developed UV-glue to improve the lifetime and PCE. Dichlorobenzene solvent has great effect upon the PCE. Changing the spin-coating speed and increasing the number of steps increased the PCE apparently to 1.4%.
NASA Astrophysics Data System (ADS)
Dolan, M. E.; Lim, H. K.; Semprini, L.; Giovanonni, S.; Vergin, K.; McCarty, P. L.; Hopkins, G. D.
2001-12-01
The goal of this project is the successful bioaugmentation of a mixed culture capable of aerobic cometabolism of chlorinated solvent mixtures into an aquifer test zone at Moffett Federal Airfield, CA (Moffett). The test zone consists of two parallel well legs both fed butane and oxygen. One leg will be bioaugmented and the other will serve as an indigenous control. Injection and extraction wells and six (3 per leg) intermediately placed groundwater monitoring points will be frequently monitored for chlorinated solvents, butane, dissolved oxygen, and pH. Groundwater will also be periodically analyzed for microbial content using terminal restriction fragment length polymorphism (T-RFLP) and fluorescence in-situ hybridization (FISH) analyses. In each well leg, two fully-penetrating wells containing solid media will be periodically analyzed for microbial colonization (T-RFLP). The mixed bioaugmentation culture originated from environmental samples taken from Hanford, WA. The culture was enriched on butane and tested for viability in Moffett groundwater and aquifer solids. A clone library was created from the 16S rDNA in the mixed culture and 86 clones were sorted based on RFLP patterns. Complete sequencing of the 16S rDNA gene from the three most prevalent clones revealed 45 clones similar to Acidovorax or Hydrogenophaga, gram negative proteobacterium, and 12 clones similar to Rhodococcus, a gram positive filamentous organism. Fluorescently-labeled rRNA probes were designed for FISH analyses and appropriate restriction enzymes were chosen for T-RFLP analyses based upon the sequence information. Microcosm tests were conducted prior to the initiation of the field study to evaluate butane, 1,1-dichloroethylene (1,1-DCE), and 1,1,1-trichloroethane (TCA) degradation kinetics and microbial community composition. Bioaugmented microcosms began butane utilization sooner than non-bioaugmented ones in the presence and absence of 1,1-DCE, and were able to degrade more 1,1-DCE (up to 500 Yg/L) faster than non-bioaugmented microcosms. T-RFLP analyses of triplicate bottles produced very consistent results. An organism(s) with a T-RFLP signature of 183 bp was found to dominate in bioaugmented microcosms and was consistently absent from non-bioaugmented microcosms. T-RFLP and FISH analyses of groundwater and solid media during the bioaugmentation field demonstration are expected to reveal the extent of transport and subsurface colonization of the bioaugmentation culture.
Meikrantz, David H.; Todd, Terry A.; Riddle, Catherine L.; Law, Jack D.; Peterman, Dean R.; Mincher, Bruce J.; McGrath, Christopher A.; Baker, John D.
2007-11-06
A mixed extractant solvent including calix[4]arene-bis-(tert-octylbenzo)-crown-6 ("BOBCalixC6"), 4',4',(5')-di-(t-butyldicyclo-hexano)-18-crown-6 ("DtBu18C6"), and at least one modifier dissolved in a diluent. The mixed extractant solvent may be used to remove cesium and strontium from an acidic solution. The DtBu18C6 may be present from approximately 0.01 M to approximately 0.4M, such as from approximately 0.086 M to approximately 0.108 M. The modifier may be 1-(2,2,3,3-tetrafluoropropoxy)-3-(4-sec-butylphenoxy)-2-propanol ("Cs-7SB") and may be present from approximately 0.01M to approximately 0.8M. In one embodiment, the mixed extractant solvent includes approximately 0.15M DtBu18C6, approximately 0.007M BOBCalixC6, and approximately 0.75M Cs-7SB modifier dissolved in an isoparaffinic hydrocarbon diluent. The mixed extractant solvent may form an organic phase in an extraction system that also includes an aqueous phase. Methods of extracting cesium and strontium as well as strontium alone are also disclosed.
NASA Astrophysics Data System (ADS)
Habibi, N.; Rounaghi, G. H.; Mohajeri, M.
2012-12-01
The complexation reaction of macrocyclic ligand (4'-nitrobenzo-15C5) with Y3+ cation was studied in acetonitrile-methanol (AN-MeOH), acetonitrile-ethanol (AN-EtOH), acetonitrile-dimethylformamide (AN-DMF) and ethylacetate-methanol (EtOAc-MeOH) binary mixtures at different temperatures using conductometry method. The conductivity data show that in all solvent systems, the stoichiometry of the complex formed between 4'-nitrobenzo-15C5 and Y3+ cation is 1: 1 (ML). The stability order of (4'-nitrobenzo-15C5). Y3+ complex in pure non-aqueous solvents at 25°C was found to be: EtOAc > EtOH > AN ≈ DMF > MeOH, and in the case of most compositions of the binary mixed solvents at 25°C it was: AN≈MeOH ≈ AN-EtOH > AN-DMF > EtOAc-MeOH. But the results indicate that the sequence of the stability of the complex in the binary mixed solutions changes with temperature. A non-linear behavior was observed for changes of log K f of (4'-nitrobenzo-15C5 · Y3+) complex versus the composition of the binary mixed solvents, which was explained in terms of solvent-solvent interactions and also the hetero-selective solvation of the species involved in the complexation reaction. The values of thermodynamic parameters (Δ H {c/ℴ} and Δ S {c/ℴ}) for formation of the complex were obtained from temperature dependent of the stability constant using the van't Hoff plots. The results represent that in most cases, the complex is both enthalpy and entropy stabilized and the values and also the sign of thermodynamic parameters are influenced by the nature and composition of the mixed solvents.
NASA Astrophysics Data System (ADS)
Carey, Christina; Cheng, Yuen-Kit; Rossky, Peter J.
2000-08-01
The concave substrate binding pocket of α-chymotrypsin binds specifically hydrophobic side chains. In order to understand the hydration structure present in the absence of substrate, and elucidate the character of the solvent displaced on binding, molecular dynamics computer simulation of the solvent in a fully hydrated protein has been carried out and analyzed. The pocket is found to be characterized in terms of a mixed polar and apolar macromolecular surface. It is shown that the simulated solvent structure within it is spatially consistent with that seen via crystallography. The solvent structure is energetically characterized by large losses in hydrogen bonding among solvent molecules except at the mouth of the pocket where exposure to bulk-like solvent is possible. The loss in hydrogen bonding is attributed to the highly constrained geometry available to the solvent, preventing formation of a hydrogen bonding network, with only partial compensation by interactions with the macromolecular surface. The solvent displacement concomitant with substrate binding will therefore be associated with a large enthalpic driving force. This result is at the extreme of a continuum of variable cases of "hydrophobic" hydration, which differ most basically in surface curvature. These range from convex solute surfaces, inducing clathrate-like structures, with negligible hydrogen bond loss, to flat surfaces with significant interfacial loss, to the present concave case with hydrogen bonding losses exceeding 50%.
1-Ethyl-1-methyl piperidinium bis(trifluoromethanesulfonyl)imide as a co-solvent in Li-ion batteries
NASA Astrophysics Data System (ADS)
Kim, Ketack; Cho, Young-Hyun; Shin, Heon-Cheol
2013-03-01
1-Ethyl-1-methyl piperidinium bis(trifluoromethanesulfonyl)imide (EMP-TFSI) is an ionic liquid with a melting temperature of 85 °C. Although it is a solid salt, it shows good miscibility with carbonate solvents, which allows EMP-TFSI to be used as a co-solvent in these systems. Ethylene carbonate is another solid co-solvent used in Li-ion batteries. Due to its smaller cationic size, EMP-TFSI provides better conductivity as a co-solvent than 1-methyl-1-propyl piperidinium bis(trifluoromethanesulfonyl)imide (MPP-TFSI), which is the smallest room-temperature piperidinium liquid salt known. In cells with 50 wt% IL and 50 wt% carbonate electrolyte, an EMP-TFSI mixed electrolyte performs better than an MPP-TFSI mixed electrolyte. Additionally, the discharge capacity values obtained from rate capability tests carried out with mixed EMP-TFSI are as good as those conducted with a pure carbonate electrolyte.
Method of carbon chain extension using novel aldol reaction
Silks, Louis A; Gordon, John C; Wu, Ruilan; Hanson, Susan Kloek
2013-07-30
Method of producing C.sub.8-C.sub.15 hydrocarbons. comprising providing a ketone starting material; providing an aldol starting material comprising chloromethylfurfural; mixing the ketone starting material and the aldol starting material in a reaction in the presence of a proline-containing catalyst selected from the group consisting of Zn(Pro).sub.2, Yb(Pro).sub.3, and combinations thereof, or a catalyst having one of the structures (I), (II) or (III), and in the presence of a solvent, wherein the solvent comprises water and is substantially free of organic solvents, where (I), (II) and (III) respectively are: ##STR00001## where R.sub.1 is a C.sub.1-C.sub.6 alkyl moiety, X=(OH) and n=2. ##STR00002## In (III), X may be CH.sub.2, sulfur or selenium, M may be Zn, Mg, or a lanthanide, and R.sub.1 and R.sub.2 each independently may be a methyl, ethyl, phenyl moiety.
Method of carbon chain extension using novel aldol reaction
Silks, Louis A; Gordon, John C; Wu, Ruilan; Hangson, Susan Kloek
2013-08-13
Method of producing C.sub.8-C.sub.15 hydrocarbons comprising providing a ketone starting material; providing an aldol starting material comprising hydroxymethylfurfural; mixing the ketone starting material and the aldol starting material in a reaction in the presence of a proline-containing catalyst selected from the group consisting of Zn(Pro).sub.2, Yb(Pro).sub.2, and combinations thereof, or a catalyst having one of the structures (I), (II) or (III), and in the presence of a solvent, wherein the solvent comprises water and is substantially free of organic solvents, where (I), (II) and (III) respectively are: ##STR00001## where R.sub.1 is a C.sub.1-C.sub.6 alkyl moiety, X=(OH) and n=2. ##STR00002## In (III), X may be CH.sub.2, sulfur or selenium, M may be Zn, Mg, or a lanthanide, and R.sub.1 and R.sub.2 each independently may be a methyl, ethyl, phenyl moiety.
Three dimensional ink-jet printing of biomaterials using ionic liquids and co-solvents.
Gunasekera, Deshani H A T; Kuek, SzeLee; Hasanaj, Denis; He, Yinfeng; Tuck, Christopher; Croft, Anna K; Wildman, Ricky D
2016-08-15
1-Ethyl-3-methylimidazolium acetate ([C2C1Im][OAc]) and 1-butyl-3-methylimidazolium acetate ([C4C1Im][OAc]) have been used as solvents for the dissolution and ink-jet printing of cellulose from 1.0 to 4.8 wt%, mixed with the co-solvents 1-butanol and DMSO. 1-Butanol and DMSO were used as rheological modifiers to ensure consistent printing, with DMSO in the range of 41-47 wt% producing samples within the printable range of a DIMATIX print-head used (printability parameter < 10) at 55 °C, whilst maintaining cellulose solubility. Regeneration of cellulose from printed samples using water was demonstrated, with the resulting structural changes to the cellulose sample assessed by scanning electron microscopy (SEM) and white light interferometry (WLI). These results indicate the potential of biorenewable materials to be used in the 3D additive manufacture process to generate single-component and composite materials.
Performance of Li-Ion Cells Under Battery Voltage Charge Control
NASA Technical Reports Server (NTRS)
Rao, Gopalakrishna M.; Vaidyanathan, Hari; Day, John H. (Technical Monitor)
2001-01-01
A study consisting of electrochemical characterization and Low-Earth-Orbit (LEO) cycling of Li-Ion cells from three vendors was initiated in 1999 to determine the cycling performance and to infuse the new technology in the future NASA missions. The 8-cell batteries included in this evaluation are prismatic cells manufactured by Mine Safety Appliances Company (MSA), cylindrical cells manufactured by SAFT and prismatic cells manufactured by Yardney Technical Products, Inc. (YTP). The three batteries were cycle tested in the LEO regime at 40% depth of discharge, and under a charge control technique that consists of battery voltage clamp with a current taper. The initial testing was conducted at 20 C; however, the batteries were cycled also intermittently at low temperatures. YTP 20 Ah cells consisted of mixed-oxide (Co and Ni) positive, graphitic carbon negative, LIPF6 salt mixed with organic carbonate solvents. The battery voltage clamp was 32 V. The low temperature cycling tests started after 4575 cycles at 20 C. The cells were not capable of cycling. at low temperature since the charge acceptance at battery level was poor. There was a cell in the battery that showed too high an end-of-charge (EOC) voltage thereby limiting the ability to charge the rest of the cells in the battery. The battery has completed 6714 cycles. SAFT 12 Ah cells consisted of mixed-oxide (Co and NO positive, graphitic carbon negative, LiPF6 salt mixed with organic carbonate solvents. The battery voltage clamp was for 30.8 V. The low temperature cycling tests started after 4594 cycles at 20 C. A cell that showed low end of discharge (EOD) and EOC voltages and three other cells that showed higher EOC voltages limited the charge acceptance at the selected voltage limit during charge. The cells were capable of cycling at 10 C and 0 C but the charge voltage limit had to be increased to 34.3 V (4.3 V per cell). The low temperature cycling may have induced poor chargeability since the voltage had to be increased to achieve the required charge input. The battery has completed 6226 cycles. MSA 10 Ah cells consisted of Co oxide positive, graphitic carbon negative, LiPF6 salt mixed with organic carbonate solvents. The battery voltage clamp was 30.8 V. The low temperature cycling tests were started after 2182 cycles at 20 C. The cells were capable of cycling at 10 C and 0 C. Like SAFT, the voltage limit on charge had to be increased to 36 V (4.5 V per cell). There was a cell (cell S/N 13) in the battery that showed poor performance features such as low EOD voltage and high EOC voltage. The battery has completed 3441 cycles. A reconditioning procedure that consisted of C15 charge to a taper current of C/100 and C/20 discharge improved the voltage behavior of SAFT and MSA cells with no significant effect on YTP cells. We have demonstrated that the charge operation with VT clamp at battery rather than at cell level is feasible for onboard Li-Ion battery operation.
Coal liquefaction process with enhanced process solvent
Givens, Edwin N.; Kang, Dohee
1984-01-01
In an improved coal liquefaction process, including a critical solvent deashing stage, high value product recovery is improved and enhanced process-derived solvent is provided by recycling second separator underflow in the critical solvent deashing stage to the coal slurry mix, for inclusion in the process solvent pool.
Alternative acceptance procedures for asphalt mixes.
DOT National Transportation Integrated Search
1992-01-01
By the year 2005, the use of chlorinated solvents is to be eliminated. Faced with this eventuality, VDOT formed a task force to look at alternatives for the acceptance of asphalt mixes. One alternative is to use biodegradable solvents in the extracti...
Evaluation of mixed solvent electrolytes for ambient temperature secondary lithium cells
NASA Technical Reports Server (NTRS)
Shen, D. H.; Subbarao, S.; Deligiannis, F.; Dawson, S.; Halpert, G.
1988-01-01
The ethylene carbonate/2-methyltetrahydrofuran (EC/2-MeTHF) mixed-solvent electrolyte has been experimentally found to possess many desirable electrolyte characteristics for ambient-temperature secondary Li-TiS2 cell applications. As many as 300 cycles have been demonstrated, and a cycling efficiency figure-of-merit of 38.5 percent, for 10-percent EC/90-percent MeTHF mixed-solvent electrolyte in experimental Li-TiS2 cells. The improved performance of this electrolyte is attributable to the formation of a beneficial passivating film on the Li electrode by interaction with the EC.
Fluid dynamics in biological active nematics
NASA Astrophysics Data System (ADS)
Tan, Amanda; Hirst, Linda
We use biological materials to form a self-mixing active system that consists of microtubules driven by kinesin clusters. Microtubules are rigid biopolymers that are a part of the cytoskeleton. Kinesin motors are molecular motors that walk along microtubules to transport cellular cargo. In this system, microtubules are bundled together, and as the kinesin clusters walk along the filaments, the microtubule bundles move relative to each other. As microtubules shear against each other, they extend, bend, buckle and fracture. When confined in a 2D water-oil interface, the system becomes an active nematic that self-mixes due to the buckling and fracturing. To quantify this self-mixing, we attached beads to the microtubules, and tracked their motion. We quantify the quality of mixing using the bead trajectories. This new active material has potential applications as a self-mixing solvent. CCBM NSF-CREST, UC Merced Health Science Research Institute.
Investigation of the mixing efficiency of a chaotic micromixer using thermal lens spectrometry.
Ghaleb, Khalil Abbas; Stephan, Khaled; Pittet, Patrick; Ferrigno, Rosaria; Georges, Joseph
2006-05-01
This work investigates the efficiency of a chaotic micromixer using thermal lens spectrometry. The outlet of the mixing device was connected to a thermal lens detection head integrating the probe beam optical fibers and the sample capillary. The chaotic micromixer consisted of a Y-shaped poly(dimethylsiloxane) (PDMS) microchip in which ribbed herringbone microstructures were etched on the floor of the main channel. Due to the solvent composition dependence of the thermal lens response, the photothermal method was shown to be highly sensitive to nonhomogeneous mixing compared to fluorescence detection. The apparatus was applied to the determination of Fe2+ with 1,10-phenanthroline using flow injection analysis; a limit of detection of 11 microg L(-1) of iron was obtained.
Assessment of Blend PVDF Membranes, and the Effect of Polymer Concentration and Blend Composition
Bamaga, Omar A.; Abdel-Aziz, M. H.
2018-01-01
In this work, PVDF homopolymer was blended with PVDF-co-HFP copolymer and studied in terms of morphology, porosity, pore size, hydrophobicity, permeability, and mechanical properties. Different solvents, namely N-Methyl-2 pyrrolidone (NMP), Tetrahydrofuran (THF), and Dimethylformamide (DMF) solvents, were used to fabricate blended PVDF flat sheet membranes without the introduction of any pore forming agent, through a non-solvent induced phase separation (NIPS) technique. Furthermore, the performance of the fabricated membranes was investigated for pressure and thermal driven applications. The porosity of the membranes was slightly increased with the increase in the overall content of PVDF and by the inclusion of PVDF copolymer. Total PVDF content, copolymer content, and mixed-solvent have a positive effect on mechanical properties. The addition of copolymer increased the hydrophobicity when the total PVDF content was 20%. At 25% and with the inclusion of mixed-solvent, the hydrophobicity was adversely affected. The permeability of the membranes increased with the increase in the overall content of PVDF. Mixed-solvents significantly improved permeability. PMID:29510555
40 CFR 63.9520 - What procedures must I use to demonstrate initial compliance?
Code of Federal Regulations, 2010 CFR
2010-07-01
... the emission limitations in § 63.9500(a) and (b). (1) Record the date and time of each mix batch. (2) Record the identity of each mix batch using a unique batch ID, as defined in § 63.9565. (3) Measure and record the weight of HAP solvent loaded into the solvent mixer for each mix batch. (4) Measure and record...
Kitaguchi, Koichi; Hanamura, Naoya; Murata, Masaharu; Hashimoto, Masahiko; Tsukagoshi, Kazuhiko
2014-01-01
A fluorocarbon and hydrocarbon organic solvent mixture is known as a temperature-induced phase-separation solution. When a mixed solution of tetradecafluorohexane as a fluorocarbon organic solvent and hexane as a hydrocarbon organic solvent (e.g., 71:29 volume ratio) was delivered in a capillary tube that was controlled at 10°C, the tube radial distribution phenomenon (TRDP) of the solvents was clearly observed through fluorescence images of the dye, perylene, dissolved in the mixed solution. The homogeneous mixed solution (single phase) changed to a heterogeneous solution (two phases) with inner tetradecafluorohexane and outer hexane phases in the tube under laminar flow conditions, generating the dynamic liquid-liquid interface. We also tried to apply TRDP to a separation technique for metal compounds. A model analyte mixture, copper(II) and hematin, was separated through the capillary tube, and detected with a chemiluminescence detector in this order within 4 min.
USDA-ARS?s Scientific Manuscript database
Homogeneous modification of cellulose with succinic anhydride was performed in tetrabutylammonium acetate (TBAA)/dimethyl sulfoxide (DMSO) mixed solvent. The molar ratio of succinic anhydride (SA) to free hydroxyl groups in the anhydroglucose units (AGU) and TBAA dosage were investigated as paramete...
Solvent engineering for high-quality perovskite solar cell with an efficiency approaching 20%
NASA Astrophysics Data System (ADS)
Wu, Tongyue; Wu, Jihuai; Tu, Yongguang; He, Xin; Lan, Zhang; Huang, Miaoliang; Lin, Jianming
2017-10-01
The perovskite layer is the most crucial factor for the high performance perovskite solar cells. Based on solvent engineering, we develop a ternary-mixed-solvent method for the growth of high-quality [Cs0.05(MA0.17FA0.83)0.95Pb(I0.83Br0.17)3] cation-anion-mixed perovskite films by introducing N-methyl-2-pyrrolidone (NMP) into the precursor mixed solution. By controlling rapid nucleation and retarding crystal growth via intermediate phase PbI2-NMP (Lewis acid-base adduct), a dense, large grain, pinhole-free and long charge carrier lifetime perovskite film is obtained. By optimizing the precursor solvent composition, the perovskite solar cell achieves an impressive power conversion efficiency of 19.61% under one-sun illumination. The research presented here provides a facile, low-cost and highly efficient way for the preparation of perovskite solar cells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fondeur, F. F.; Jones, D. H.
A trend summary of three Solvent Hold Tank (SHT) monthly samples; MCU-16-1488-1493 (December 2016), MCU-17-86-88 (January 2017), and MCU-17-119-121 (February 2017) are reported. Analyses indicate that the modifier (CS-7SB) and the extractant (MaxCalix) concentrations are at their nominal recommended levels (169,000 mg/L and 46,300 mg/L respectively). The suppressor (TiDG) level has decreased to a steady state level of 673 mg/L well above the minimum recommended level (479 mg/L). This analysis confirms the Isopar™ addition to the solvent in January 18, 2017. This analysis also indicates the solvent did not require further additions. Based on the current monthly sample, the levelsmore » of TiDG, Isopar™L, MaxCalix, and modifier are sufficient for continuing operation but are expected to decrease with time. Periodic characterization and trimming additions to the solvent are recommended. No impurities above the 1000 ppm level were found in this solvent by the Semi-Volatile Organic Analysis (SVOA). No impurities were observed in the Hydrogen Nuclear Magnetic Resonance (HNMR). Another impurity observed in the samples was mercury. Up to 38 ± 8 micrograms of mercury per mL of solvent was detected in these samples (the average of the CV-AA and XRF methods). The higher mercury concentration in the solvent (as determined in the last three monthly samples) is possibly due to the higher mercury concentration in Salt Batches 8 and 9 (Tank 49H) or mixing of previously undisturbed areas of high mercury concentration in Tank 49H. The gamma level (0.21E5 dpm/mL) measured in the February SHT sample was one order of magnitude lower than the gamma levels observed in the December and January SHT samples. The February gamma level is consistent with the solvent being idle (since January 10, 2017). The gamma levels observed in the December and January SHT samples were consistent with previous monthly measurements where the process operated normally. The laboratory will continue to monitor the quality of the solvent in particular for any new impurities or degradation of the solvent components.« less
NASA Astrophysics Data System (ADS)
Kasai, Yukako; Yoshida, Norio; Nakano, Haruyuki
2015-05-01
The co-solvent effect on the proton transfer reaction of glycine in a water-acetonitrile mixture was examined using the reference interaction-site model self-consistent field theory. The free energy profiles of the proton transfer reaction of glycine between the carboxyl oxygen and amino nitrogen were computed in a water-acetonitrile mixture solvent at various molar fractions. Two types of reactions, the intramolecular proton transfer and water-mediated proton transfer, were considered. In both types of the reactions, a similar tendency was observed. In the pure water solvent, the zwitterionic form, where the carboxyl oxygen is deprotonated while the amino nitrogen is protonated, is more stable than the neutral form. The reaction free energy is -10.6 kcal mol-1. On the other hand, in the pure acetonitrile solvent, glycine takes only the neutral form. The reaction free energy from the neutral to zwitterionic form gradually increases with increasing acetonitrile concentration, and in an equally mixed solvent, the zwitterionic and neutral forms are almost isoenergetic, with a difference of only 0.3 kcal mol-1. The free energy component analysis based on the thermodynamic cycle of the reaction also revealed that the free energy change of the neutral form is insensitive to the change of solvent environment but the zwitterionic form shows drastic changes. In particular, the excess chemical potential, one of the components of the solvation free energy, is dominant and contributes to the stabilization of the zwitterionic form.
COSOLVENCY AND SOPRTION OF HYDROPHOBIC ORGANIC CHEMICALS
Sorption of hydrophobic organic chemicals (HOCs) by two soils was measured from mixed solvents containing water plus completely miscible organic solvents (CMOSs) and partially miscible organic solvents (PMOSs). The utility of the log-linear cosolvency model for predicting HOC sor...
Synthesis and characterization of binary titania-silica mixed oxides
NASA Astrophysics Data System (ADS)
Budhi, Sridhar
A series of binary titania-silica mixed oxides were synthesized by the sol-gel method at room temperature. The mixed oxides were prepared that involved the hydrolysis of titanium isopropoxide and tetraethylorthosilicate (TEOS) by co-solvent induced gelation usually in acidic media. The resulting gels were dried, calcined and then characterized by powder X-ray diffractometric studies, nitrogen sorption studies (at 77K), diffuse reflectance spectroscopy, Raman microscopy and transmission electron microscopic studies. The nitrogen sorption studies indicate that the specific surface areas, pore volume, pore diameter and pore size distribution of the mixed oxides were substantially enhanced when non-polar solvents such as toluene, p-xylene or mesitylene were added as co-solvents to the synthesis gel. Transmission electron microscopic (TEM) studies confirm the results obtained from the nitrogen sorption studies. Our results indicate that we can obtain binary metal oxides possessing high surface area and large pore volumes with tunable pore size distribution at room temperature. Photocatalytic evaluation of the mixed oxides is currently in progress.
Photophysical processes of some benzimidazole derivatives
NASA Astrophysics Data System (ADS)
Chen, Zhaobin; Zhang, Caihong; Feng, Liheng
2005-11-01
The photophysical properties of N-(α-naphthyl)-benzimidazole (α-NABI), N-(β-naphthyl)-benzimidazole (β-NABI) and N-(α-pyridyl)-benzimidazole (α-PYBI) were studied and α-NYBI exhibit intramolecular charge transfer fluorescence in polar solvents. The fluorescence of benzimidazoles can be quenched by acetic acid and the existence of exciplexes was observed between the benzimidazole derivatives and acetic acid. Particularly, the maximum emission peak of solution of α-PYBI in mixed solvent, ether and acetic acid, presents obvious red-shift with the increase of concentration of acetic acid in the mixed solvent.
NASA Astrophysics Data System (ADS)
Fu, Yanan; Xie, Honglan; Deng, Biao; Du, Guohao; Xiao, Tiqiao
2017-06-01
The floatage self-assembly method was introduced with mixed solvent as the medium of polystyrene sphere suspension to fabricate the colloidal crystal. The three dimensional (3D) void system of the colloidal crystal was noninvasively characterized by synchrotron radiation phase-contrast computed tomography, and the quantitative image analysis was implemented aiming to the polystyrene sphere colloidal crystal. Comparing with gravity sedimentation method, the three samples fabricated from floatage self-assembly with mixed solvents have the lowest porosity, and when ethylene glycol and water were mixed with ratio of 1:1, the lowest porosity of 27.49% could be achieved, that has been very close to the minimum porosity of ordered 3D monodisperse sphere array (26%). In single slices, the porosities and fractal dimension for the voids were calculated. The results showed that two factors would significantly influence the porosity of the whole colloidal crystal: the first deposited sphere layer's orderliness and the sedimentation speed of the spheres. The floatage self-assembly could induce a stable close-packing process, resulted from the powerful nucleation force-lateral capillary force coupled with the mixed solvent to regulate the floating upward speed for purpose of matching the assembly rate.
Machine for applying a two component resin to a roadway surface
Huszagh, Donald W.
1985-01-01
A portable machine for spraying two component resins onto a roadway, the machine having a pneumatic control system, including apparatus for purging the machine of mixed resin with air and then removing remaining resin with solvent. Interlocks prevent contamination of solvent and resin, and mixed resin can be purged in the event of a power failure.
Machine for applying a two component resin to a roadway surface
Huszagh, D.W.
1984-01-01
A portable machine for spraying two component resins onto a roadway, the machine having a pneumatic control system, including means for purging the machine of mixed resin with air and then removing remaining resin with solvent. Interlocks prevent contamination of solvent and resin, and mixed resin can be purged in the event of a power failure.
Ping-Ping Xin; Yao-Bing Huang; Chung-Yun Hse; Huai N. Cheng; Chaobo Huang; Hui Pan
2017-01-01
Homogeneous modification of cellulose with succinic anhydride was performed using tetrabutylammonium acetate (TBAA)/dimethyl sulfoxide (DMSO) mixed solvent. The molar ratio of succinic anhydride (SA) to free hydroxyl groups in the anhydroglucose units (AGU), TBAA dosage, reaction temperature, and reaction time were investigated. The highest degree of substitution (DS)...
Use of normal propyl bromide solvents for extraction and recovery of asphalt cements
DOT National Transportation Integrated Search
2000-11-01
Four normal propyl bromide (nPB) solvents were evaluated for use as chlorinated solvent replacements in typical hot mix asphalt (HMA) extraction and recovery processes. The experimental design included one method of extraction (centrifuge), one metho...
NASA Astrophysics Data System (ADS)
Bouillot, Baptiste; Spyriouni, Theodora; Teychené, Sébastien; Biscans, Béatrice
2017-04-01
The solubility of seven pharmaceutical compounds (paracetamol, benzoic acid, 4-aminobenzoic acid, salicylic acid, ibuprofen, naproxen and temazepam) in pure and mixed solvents as a function of temperature is calculated with SciPharma, a semi-empirical approach based on PC-SAFT, and the NRTL-SAC model. To conduct a fair comparison between the approaches, the parameters of the compounds were regressed against the same solubility data, chosen to account for hydrophilic, polar and hydrophobic interactions. Only these solubility data were used by both models for predicting solubility in other pure and mixed solvents for which experimental data were available for comparison. A total of 386 pure solvent data points were used for the comparison comprising one or more temperatures per solvent. SciPharma is found to be more accurate than NRTL-SAC on the pure solvent data used especially in the description of the temperature dependence. This is due to the appropriate parameterization of the pharmaceuticals and the temperature-dependent description of the activity coefficient in PC-SAFT. The solubility in mixed solvents is predicted satisfactorily with SciPharma. NRTL-SAC tends to overestimate the solubility in aqueous solutions of alcohols or shows invariable solubility with composition in other cases.
Molten carbonate fuel cell cathode with mixed oxide coating
Hilmi, Abdelkader; Yuh, Chao-Yi
2013-05-07
A molten carbonate fuel cell cathode having a cathode body and a coating of a mixed oxygen ion conductor materials. The mixed oxygen ion conductor materials are formed from ceria or doped ceria, such as gadolinium doped ceria or yttrium doped ceria. The coating is deposited on the cathode body using a sol-gel process, which utilizes as precursors organometallic compounds, organic and inorganic salts, hydroxides or alkoxides and which uses as the solvent water, organic solvent or a mixture of same.
Assessment of central auditory processing in a group of workers exposed to solvents.
Fuente, Adrian; McPherson, Bradley; Muñoz, Verónica; Pablo Espina, Juan
2006-12-01
Despite having normal hearing thresholds and speech recognition thresholds, results for central auditory tests were abnormal in a group of workers exposed to solvents. Workers exposed to solvents may have difficulties in everyday listening situations that are not related to a decrement in hearing thresholds. A central auditory processing disorder may underlie these difficulties. To study central auditory processing abilities in a group of workers occupationally exposed to a mix of organic solvents. Ten workers exposed to a mix of organic solvents and 10 matched non-exposed workers were studied. The test battery comprised pure-tone audiometry, tympanometry, acoustic reflex measurement, acoustic reflex decay, dichotic digit, pitch pattern sequence, masking level difference, filtered speech, random gap detection and hearing-in-noise tests. All the workers presented normal hearing thresholds and no signs of middle ear abnormalities. Workers exposed to solvents had lower results in comparison with the control group and previously reported normative data, in the majority of the tests.
Equilibrium disorders in workers exposed to mixed solvents.
Giorgianni, Concetto; Tanzariello, Mariagiuseppina; De Pasquale, Domenico; Brecciaroli, Renato; Spatari, Giovanna
2018-02-06
Organic solvents cause diseases of the vestibular system. However, little is known regarding the correlation between vestibular damage and exposure to organic solvents below threshold limit values. The best measure by which to evaluate vestibular disorders is static and dynamic posturography. The aim of this study was to evaluate equilibrium disorders via static and dynamic posturography in workers without clear symptoms and exposed to low doses of mixed solvents. 200 subjects were selected. Using an Otometrics device (Madsen, Denmark), all subjects endured static and dynamic posturography testing with both eyes-open and eyes-closed conditions. Results were compared with a control group of unexposed individuals. Based on the obtained data, the following results can be drawn: (a) subjects exposed to mixtures of solvents show highly significant differences regarding all static and dynamic posturography parameters in comparison to the control group; (b) posturography testing has proven to be a valid means by which to detect subliminal equilibrium disorders in subjects exposed to solvents. We can confirm that refinery workers exposed to mixtures of solvents can present subliminal equilibrium disorders. Early diagnosis of the latter is made possible by static and dynamic posturography.
Zhou, N.; Wu, J.; Yu, Z.; Neuman, R.D.; Wang, D.; Xu, G.
1997-01-01
Three acidic extractants (I) di(2-ethylhexyl) phosphoric acid (HDEHP), (II) 2-ethylhexyl phosphonic acid mono-2-ethylhexyl ester (HEHPEHE) and (III) naphthenic acid were employed in preparing the samples for the characterization of the coordination structure of lanthanide-extractant complexes and the physicochemical nature of aggregates formed in the organic diluent of the solvent extraction systems. Photo correlation spectroscopy (PCS) results on the aggregates formed by the partially saponified HDEHP in n-heptane showed that the hydrodynamic radius of the aggregates was comparable to the molecular dimensions of HDEHP. The addition of 2-octanol into the diluent, by which the mixed solvent was formed, increased the dimensions of the corresponding aggregates. Aggregates formed from the lanthanide ions and HDEHP in the organic phase of the extraction systems were found very unstable. In the case of naphthenic acid, PCS data showed the formation of w/o microemulsion from the saponified naphthenic acid in the mixed solvent. The extraction of lanthanides by the saponified naphthenic acid in the mixed solvent under the given experimental conditions was a process of destruction of the w/o microemulsion. A possible mechanism of the breakdown of the w/o microemulsion droplets is discussed.
Skinner, Ronald W.; Tao, John C.; Znaimer, Samuel
1985-01-01
This invention relates to an improved process for the production of liquid carbonaceous fuels and solvents from carbonaceous solid fuels, especially coal. The claimed improved process includes the hydrocracking of the light SRC mixed with a suitable hydrocracker solvent. The recycle of the resulting hydrocracked product, after separation and distillation, is used to produce a solvent for the hydrocracking of the light solvent refined coal.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kasai, Yukako; Yoshida, Norio, E-mail: noriwo@chem.kyushu-univ.jp; Nakano, Haruyuki
2015-05-28
The co-solvent effect on the proton transfer reaction of glycine in a water–acetonitrile mixture was examined using the reference interaction-site model self-consistent field theory. The free energy profiles of the proton transfer reaction of glycine between the carboxyl oxygen and amino nitrogen were computed in a water–acetonitrile mixture solvent at various molar fractions. Two types of reactions, the intramolecular proton transfer and water-mediated proton transfer, were considered. In both types of the reactions, a similar tendency was observed. In the pure water solvent, the zwitterionic form, where the carboxyl oxygen is deprotonated while the amino nitrogen is protonated, is moremore » stable than the neutral form. The reaction free energy is −10.6 kcal mol{sup −1}. On the other hand, in the pure acetonitrile solvent, glycine takes only the neutral form. The reaction free energy from the neutral to zwitterionic form gradually increases with increasing acetonitrile concentration, and in an equally mixed solvent, the zwitterionic and neutral forms are almost isoenergetic, with a difference of only 0.3 kcal mol{sup −1}. The free energy component analysis based on the thermodynamic cycle of the reaction also revealed that the free energy change of the neutral form is insensitive to the change of solvent environment but the zwitterionic form shows drastic changes. In particular, the excess chemical potential, one of the components of the solvation free energy, is dominant and contributes to the stabilization of the zwitterionic form.« less
High pressure liquid chromatographic gradient mixer
Daughton, Christian G.; Sakaji, Richard H.
1985-01-01
A gradient mixer which effects the continuous mixing of any two miscible solvents without excessive decay or dispersion of the resultant isocratic effluent or of a linear or exponential gradient. The two solvents are fed under low or high pressure by means of two high performance liquid chromatographic pumps. The mixer comprises a series of ultra-low dead volume stainless steel tubes and low dead volume chambers. The two solvent streams impinge head-on at high fluxes. This initial nonhomogeneous mixture is then passed through a chamber packed with spirally-wound wires which cause turbulent mixing thereby homogenizing the mixture with minimum "band-broadening".
High-pressure liquid chromatographic gradient mixer
Daughton, C.G.; Sakaji, R.H.
1982-09-08
A gradient mixer effects the continuous mixing of any two miscible solvents without excessive decay or dispersion of the resultant isocratic effluent or of a linear or exponential gradient. The two solvents are fed under low or high pressure by means of two high performance liquid chromatographic pumps. The mixer comprises a series of ultra-low dead volume stainless steel tubes and low dead volume chambers. The two solvent streams impinge head-on at high fluxes. This initial nonhomogeneous mixture is then passed through a chamber packed with spirally-wound wires which cause turbulent mixing thereby homogenizing the mixture with minimum band-broadening.
NASA Technical Reports Server (NTRS)
Moser, B. G.; Landel, R. F. (Inventor)
1972-01-01
Filled polymer compositions are made by dissolving the polymer binder in a suitable sublimable solvent, mixing the filler material with the polymer and its solvent, freezing the resultant mixture, and subliming the frozen solvent from the mixture from which it is then removed. The remaining composition is suitable for conventional processing such as compression molding or extruding. A particular feature of the method of manufacture is pouring the mixed solution slowly in a continuous stream into a cryogenic bath wherein frozen particles of the mixture result. The frozen individual particles are then subjected to the sublimation.
Control of Chemical Equilibrium by Solvent: A Basis for Teaching Physical Chemistry of Solutions
ERIC Educational Resources Information Center
Prezhdo, Oleg V.; Craig, Colleen F.; Fialkov, Yuriy; Prezhdo, Victor V.
2007-01-01
The study demonstrates that the solvent present in a system can highly alter and control the chemical equilibrium of a system. The results show that the dipole moment and polarizibility of a system can be highly altered by using different mixed solvents.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Yijie; Lim, Hyun-Kyung; de Almeida, Valmor F
2012-06-01
This progress report describes the development of a front tracking method for the solution of the governing equations of motion for two-phase micromixing of incompressible, viscous, liquid-liquid solvent extraction processes. The ability to compute the detailed local interfacial structure of the mixture allows characterization of the statistical properties of the two-phase mixture in terms of droplets, filaments, and other structures which emerge as a dispersed phase embedded into a continuous phase. Such a statistical picture provides the information needed for building a consistent coarsened model applicable to the entire mixing device. Coarsening is an undertaking for a future mathematical developmentmore » and is outside the scope of the present work. We present here a method for accurate simulation of the micromixing dynamics of an aqueous and an organic phase exposed to intense centrifugal force and shearing stress. The onset of mixing is the result of the combination of the classical Rayleigh- Taylor and Kelvin-Helmholtz instabilities. A mixing environment that emulates a sector of the annular mixing zone of a centrifugal contactor is used for the mathematical domain. The domain is small enough to allow for resolution of the individual interfacial structures and large enough to allow for an analysis of their statistical distribution of sizes and shapes. A set of accurate algorithms for this application requires an advanced front tracking approach constrained by the incompressibility condition. This research is aimed at designing and implementing these algorithms. We demonstrate verification and convergence results for one-phase and unmixed, two-phase flows. In addition we report on preliminary results for mixed, two-phase flow for realistic operating flow parameters.« less
NASA Astrophysics Data System (ADS)
Usacheva, T. R.; Kuzmina, I. A.; Sharnin, V. A.; Chernov, I. V.; Matteoli, E.
2012-07-01
Standard thermodynamic parameters (log K o, Δr H o, TΔr S o) of complexing 18-crown-6 ether (18C6) with D,L-alanine (Ala) in mixed water-dimethysulfoxide (H2O-DMSO) solvents are calculated on the basis of calorimetric titration results. A rise in the DMSO concentration in mixed solvent is found to increase stability and increase the exothermicity of the formation of [Ala-18C6] molecular complex. Changes in the reaction energetic are shown to be determined by changes in the solvation state of 18C6 that is the characteristic of the reactions of molecular complex formation between 18C6 and D,L-alanine or glycine in water-organic solvents.
Tunable and rapid self-assembly of block copolymers using mixed solvent vapors.
Park, Woon Ik; Tong, Sheng; Liu, Yuzi; Jung, Il Woong; Roelofs, Andreas; Hong, Seungbum
2014-12-21
Pattern generation of well-controlled block copolymers (BCPs) with a high Flory-Huggins interaction parameter (χ) is important for applications in sub-20 nm nanolithography. We used mixed solvents of dimethylformamide (DMF) and toluene to control the morphology as well as the time to achieve the targeted morphology via self-assembly of BCPs. By precisely controlling the volume ratio of DMF and toluene, well-ordered line, honeycomb, circular hole, and lamellar nanostructures were obtained from a cylinder-forming poly(styrene-b-2-vinylpyridine) (PS-b-P2VP) BCP with high χ. Furthermore, a well-aligned 12 nm line pattern was successfully achieved in the guiding template within one minute using the mixed solvents. This practical method may also be applicable to self-assembly of other BCPs, providing more opportunities for the next-generation sub-10 nm lithography applications.
Behavior of soluble and immobilized acid phosphatase in hydro-organic media.
Wan, H; Horvath, C
1975-11-20
The hydrolysis of p-nitrophenyl phosphate by wheat germ acid phosphatase (orthophosphoric monoester phosphohydrolase, EC 3.1.3.2) has been investigated in mixtures of aqueous buffers with acetone, dioxane and acetonitrile. The enzyme was either in free solution or immobilized on a pellicular support which consisted of a porous carbonaceous layer on solid glass beads. The highest enzyme activity was obtained in acetone and acetonitrile mixed with citrate buffer over a wide range of organic solvent concentration. In 50% (v/v) acetone both V and Km of the immobilized enzyme were about half of the values in the neat aqueous buffer, but the Ki for inorganic phosphate was unchanged. In 50% (v/v) mixtures of various solvents and citrate buffers of different pH, the enzymic activity was found to depend on the pH of the aqueous buffer component rather than the pH of the hydro-organic mixture as measured with the glass-calomel electrode. The relatively high rates of p-nitrophenol liberation in the presence of glucose even at high organic solvent concentrations suggest that transphosphorylation is facilitated at low water activity.
NASA Astrophysics Data System (ADS)
Zheng, Yuying; Dou, Zhengjie; Fang, Yanxiong; Li, Muwu; Wu, Xin; Zeng, Jianhuang; Hou, Zhaohui; Liao, Shijun
2016-02-01
Polyol approach is commonly used in synthesizing Pt nanoparticles in polymer electrolyte membrane fuel cells. However, the application of this process consumes a great deal of time and energy, as the reduction of precursors requires elevated temperatures and several hours. Moreover, the ethylene glycol and its oxidizing products bound to Pt are difficult to remove. In this work, we utilize the advantages of ethylene glycol and prepare Pt nanoparticles through a room-temperature hydrogen gas reduction in an ethylene glycol/water mixed solvent, which is followed by subsequent harvesting by carbon nanotubes as electrocatalysts. This method is simple, facile, and time-efficient, as the entire room-temperature reduction process is completed in a few minutes. As the solvent changes from water to an ethylene glycol/water mix, the size of Pt nanoparticles varies from 10 to 3 nm and their shape transitions from polyhedral to spherical. Pt nanoparticles prepared in a 1:1 volume ratio mixture of ethylene glycol/water are uniformly dispersed with an average size of ∼3 nm. The optimized carbon nanotube-supported Pt electrocatalyst exhibits excellent methanol oxidation and oxygen reduction activities. This work demonstrates the potential use of mixed solvents as an approach in materials synthesis.
Li, Feng; Chen, Yan; Liu, Shubo; Qi, Jian; Wang, Weiying; Wang, Chenhua; Zhong, Ruiyue; Chen, Zhijun; Li, Xiaoming; Guan, Yuanzhou; Kong, Wei; Zhang, Yong
2017-01-01
Zein-based nano/microparticles have been demonstrated to be promising carrier systems for both the food industry and biomedical applications. However, the fabrication of size-controlled zein particles has been a challenging issue. In this study, a modified anti-solvent precipitation method was developed, and the effects of various factors, such as mixing method, solvent/anti-solvent ratio, temperature, zein concentrations and the presence of sodium caseinate (SC) on properties of zein particles were investigated. Evidence is presented that, among the previously mentioned factors, the mixing method, especially mixing rate, could be used as an effective parameter to control the size of zein particles without changing other parameters. Moreover, through fine-tuning the mixing rate together with zein concentration, particles with sizes ranging from nanometers to micrometers and low polydispersity index values could be easily obtained. Based on the size-controlled fabrication method, SC-coated zein nanoparticles could also be obtained in a size-controlled manner by incubation of the coating material with the already-formed zein particles. The resultant nanoparticles showed better performance in both drug loading and controlled release, compared with zein/SC hybrid nanoparticles fabricated by adding aqueous ethanol solution to SC solution. The possible mechanisms of the nanoprecipitation process and self-assembly formation of these nanoparticles are discussed. PMID:29184408
Li, Feng; Chen, Yan; Liu, Shubo; Qi, Jian; Wang, Weiying; Wang, Chenhua; Zhong, Ruiyue; Chen, Zhijun; Li, Xiaoming; Guan, Yuanzhou; Kong, Wei; Zhang, Yong
2017-01-01
Zein-based nano/microparticles have been demonstrated to be promising carrier systems for both the food industry and biomedical applications. However, the fabrication of size-controlled zein particles has been a challenging issue. In this study, a modified anti-solvent precipitation method was developed, and the effects of various factors, such as mixing method, solvent/anti-solvent ratio, temperature, zein concentrations and the presence of sodium caseinate (SC) on properties of zein particles were investigated. Evidence is presented that, among the previously mentioned factors, the mixing method, especially mixing rate, could be used as an effective parameter to control the size of zein particles without changing other parameters. Moreover, through fine-tuning the mixing rate together with zein concentration, particles with sizes ranging from nanometers to micrometers and low polydispersity index values could be easily obtained. Based on the size-controlled fabrication method, SC-coated zein nanoparticles could also be obtained in a size-controlled manner by incubation of the coating material with the already-formed zein particles. The resultant nanoparticles showed better performance in both drug loading and controlled release, compared with zein/SC hybrid nanoparticles fabricated by adding aqueous ethanol solution to SC solution. The possible mechanisms of the nanoprecipitation process and self-assembly formation of these nanoparticles are discussed.
Liquid eutectic GaIn as an alternative electrode for PTB7:PCBM organic solar cells
NASA Astrophysics Data System (ADS)
Thanh Hau Pham, Viet; Kieu Trinh, Thanh; Tam Nguyen Truong, Nguyen; Park, Chinho
2017-04-01
Conventional vacuum deposition process of aluminum (Al) is costly, time-consuming and difficult to apply to the large-scale production of organic photovoltaic devices (OPV). This paper reports a vacuum-free fabrication process of poly[[4,8-bis(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b‧]dithiophene-2,6-diyl][3-fluoro-2-[(2-ethylhexyl)carbonyl]thienophenediyl]:[6,6]-phenyl C71 butyric acid methyl ester (PTB7:PCBM) bulk heterojunction organic solar cell with liquid eutectic gallium-indium (EGaIn) electrode as an alternative to the common Al electrode. The insertion of a thin poly(ethylene oxide) (PEO) layer after depositing organic photoactive layer could help prevent the diffusion of liquid EGaIn into the active layer and allow the deposition of the EGaIn electrode. The PEO interfacial layer was formed by spin-coating from a mixed solvent of alcohol and water. Among different alcohol+water (methanol, ethanol, ethylene glycol, n-propanol, isopropanol, and isobutanol) mixed solvent tested, the n-propanol+water mixed solvent showed the greatest enhancement to the performance of OPVs. The improved device performance was attributed to the reactivity of mixed solvent n-propanol+water toward the surface of PTB7:PCBM active layer, which could help optimize surface morphology.
Sol-gel type synthesis of Bi.sub.2 (Sr,Ta.sub.2)O.sub.9 using an acetate based system
Boyle, Timothy J.
1997-01-01
A method of forming a layered-perovskite bismuth-strontium-tantalum oxide (SBT) ferroelectric material is performed by dissolving a bismuth compound in a first solvent to form a first solution, mixing a strontium compound and a tantalum compound to form a binary mixture, dissolving the binary mixture in a second solvent to form a second solution, mixing the first solution with the second solution to form a SBT precursor solution, evaporating the first and second solvents to form a SBT precursor material and subsequently sintering said SBT precursor material in the presence of oxygen.
Sol-gel type synthesis of Bi{sub 2}(Sr,Ta{sub 2})O{sub 9} using an acetate based system
Boyle, T.J.
1997-11-04
A method of forming a layered-perovskite bismuth-strontium-tantalum oxide (SBT) ferroelectric material is performed by dissolving a bismuth compound in a first solvent to form a first solution, mixing a strontium compound and a tantalum compound to form a binary mixture, dissolving the binary mixture in a second solvent to form a second solution, mixing the first solution with the second solution to form a SBT precursor solution, evaporating the first and second solvents to form a SBT precursor material and subsequently sintering said SBT precursor material in the presence of oxygen. 6 figs.
Porous fiber formation in polymer-solvent system undergoing solvent evaporation
NASA Astrophysics Data System (ADS)
Dayal, Pratyush; Kyu, Thein
2006-08-01
Temporal evolution of the fiber morphology during dry spinning has been investigated in the framework of Cahn-Hilliard equation [J. Chem. Phys. 28, 258 (1958)] pertaining to the concentration order parameter or volume fraction given by the Flory-Huggins free energy of mixing [P. J. Flory, Principles of Polymer Chemistry (Cornell University Press, Ithaca, NY, 1953), p. 672] in conjunction with the solvent evaporation rate. To guide the solvent evaporation induced phase separation, equilibrium phase diagram of the starting polymer solution was established on the basis of the Flory-Huggins free energy of mixing. The quasi-steady-state approximation has been adopted to account for the nonconserved nature of the concentration field caused by the solvent loss. The process of solvent evaporation across the fiber skin-air interface was treated in accordance with the classical Fick's law [R. B. Bird et al., Transport Phenomena (J. Wiley, New York, 1960), p. 780]. The simulated morphologies include gradient type, hollow fiber type, bicontinuous type, and host-guest type. The development of these diverse fiber morphologies is explicable in terms of the phase diagram of the polymer solution in a manner dependent on the competition between the phase separation dynamics and rate of solvent evaporation.
NASA Astrophysics Data System (ADS)
Rounaghi, G. H.; Dolatshahi, S.; Tarahomi, S.
2014-12-01
The stoichiometry, stability and the thermodynamic parameters of complex formation between cerium(III) cation and cryptand 222 (4,7,13,16,21,24-hexaoxa-1,10-diazabycyclo[8.8.8]-hexacosane) were studied by conductometric titration method in some binary solvent mixtures of dimethylformamide (DMF), 1,2-dichloroethane (DCE), ethyl acetate (EtOAc) and methyl acetate (MeOAc) with methanol (MeOH), at 288, 298, 308, and 318 K. A model based on 1: 1 stoichiometry has been used to analyze the conductivity data. The data have been fitted according to a non-linear least-squares analysis that provide the stability constant, K f, for the cation-ligand inclusion complex. The results revealed that the stability order of [Ce(cryptand 222)]3+ complex changes with the nature and composition of the solvent system. A non-linear relationship was observed between the stability constant (log K f) of [Ce(cryptand 222)]3+ complex versus the composition of the binary mixed solvent. Standard thermodynamic values were obtained from temperature dependence of the stability constant of the complex, show that the studied complexation process is mainly entropy governed and are influenced by the nature and composition of the binary mixed solvent solutions.
A mixed solvent system for preparation of spherically agglomerated crystals of ascorbic acid.
Ren, Fuzheng; Zhou, Yaru; Liu, Yan; Fu, Jinping; Jing, Qiufang; Ren, Guobin
2017-09-01
The objective of this research was to develop a novel solvent system to prepare spherically agglomerated crystals (SAC) of ascorbic acid with improved flowability for direct compression. A spherical agglomeration method was developed by selecting the mixed solvents (n-butyl and ethyl acetate) as a poor solvent and the process was further optimized by using triangular phase diagram and particle vision measurement. Physiochemical properties of SAC were characterized and compared with original drug crystals. It showed that amount of poor solvent, ratio of solvent mixture, and drug concentration are critical for preparation of SAC with desirable properties. The solid state of SAC was same as original crystals according to DSC, XRD, and FT-IR results. There was no significant difference in solubility and dissolution rate of drug between SAC and original crystals. The flowability and packability of SAC as well as the tensile strength and elastic recovery of tablets made from SAC were all significantly improved when compared with original crystals and tablets from crystals. It is concluded that the present method was suitable to prepare SAC of ascorbic acid for direct compression.
40 CFR Table 6 to Subpart Vvvv of... - Default Organic HAP Contents of Petroleum Solvent Groups
Code of Federal Regulations, 2010 CFR
2010-07-01
... Spirits 150 EC, Naphtha, Mixed Hydrocarbon, Aliphatic Hydrocarbon, Aliphatic Naptha, Naphthol Spirits... Aromatic Naphtha, Light Aromatic Hydrocarbons, Aromatic Hydrocarbons, Light Aromatic Solvent.) 6 4% Xylene...
Enthalpy characteristics of L-proline dissolution in certain water-organic mixtures at 298.15 K
NASA Astrophysics Data System (ADS)
Badelin, V. G.; Smirnov, V. I.
2017-01-01
A thermochemical study of the processes of L-proline dissolution in aqueous solutions of acetonitrile, 1,4-dioxane, acetone, dimethyl sulfoxide, nitromethane and tetrahydrofuran at T = 298.15 K in the range of organic solvent concentrations x2 = 0-0.25 mole fractions is performed. Standard values of the enthalpies of solution and transfer of L-proline from water to mixed solvent, and the enthalpy coefficients of pairwise interactions between L-proline and molecules of organic solvents, are calculated. The effect the composition of a water-organic mixture and the structure of organic solvents have on the enthalpy characteristics of L-proline dissolution and transfer is examined. The effect the energy properties of intermolecular interactions between components of a mixed solvent has on the intermolecular interactions between L-proline and molecules of cosolvent is estimated. The correlation between the enthalpy characteristics of L-proline dissolution and electron-donor properties of organic cosolvent in aqueous solutions is determined.
Method for low temperature preparation of a noble metal alloy
Even, Jr., William R.
2002-01-01
A method for producing fine, essentially contamination free, noble metal alloys is disclosed. The alloys comprise particles in a size range of 5 to 500 nm. The method comprises 1. A method for preparing a noble metal alloy at low temperature, the method comprising the steps of forming solution of organometallic compounds by dissolving the compounds into a quantity of a compatible solvent medium capable of solvating the organometallic, mixing a portion of each solution to provide a desired molarity ratio of ions in the mixed solution, adding a support material, rapidly quenching droplets of the mixed solution to initiate a solute-solvent phase separation as the solvent freezes, removing said liquid cryogen, collecting and freezing drying the frozen droplets to produce a dry powder, and finally reducing the powder to a metal by flowing dry hydrogen over the powder while warming the powder to a temperature of about 150.degree. C.
NASA Astrophysics Data System (ADS)
Al-Alwani, Mahmoud A. M.; Mohamad, Abu Bakar; Kadhum, Abd. Amir H.; Ludin, Norasikin A.
2015-03-01
Nine solvents, namely, n-hexane, ethanol, acetonitrile, chloroform, ethyl-ether, ethyl-acetate, petroleum ether, n-butyl alcohol, and methanol were used to extract natural dyes from Cordyline fruticosa, Pandannus amaryllifolius and Hylocereus polyrhizus. To improve the adsorption of dyes onto the TiO2 particles, betalain and chlorophyll dyes were mixed with methanol or ethanol and water at various ratios. The adsorption of the dyes mixed with titanium dioxide (TiO2) was also observed. The highest adsorption of the C.fruticosa dye mixed with TiO2 was achieved at ratio 3:1 of methanol: water. The highest adsorption of P.amaryllifolius dye mixed with TiO2 was observed at 2:1 of ethanol: water. H.polyrhizus dye extracted by water and mixed with TiO2 demonstrated the highest adsorption among the solvents. All extracted dye was adsorbed onto the surface of TiO2 based on Fourier Transform Infrared Spectroscopy (FTIR) analysis. The inhibition of crystallinity of TiO2 was likewise investigated by X-ray analysis. The morphological properties and composition of dyes were analyzed via SEM and EDX.
Method of making monodisperse nanoparticles
Fan, Hongyon; Sun, Zaicheng
2012-10-16
A method of making particles of either spherical or cylindrical geometry with a characteristic diameter less than 50 nanometers by mixing at least one structure directing agent dissolved in a solvent with at least one amphiphilic block copolymer dissolved in a solvent to make a solution containing particles, where the particles can be subsequently separated and dispersed in a solvent of choice.
Itoh, Toshio; Uchida, Toshio; Izu, Noriya; Shin, Woosuck
2017-01-01
We investigated the preparation of well-dispersed core-shell ceria-poly(vinylpyrrolidone) (PVP) nanoparticles with an average particle size of around 20 nm which were used to produce a hybrid film with a polymer coating of dipentaerythritol hexaacrylate (DPHA). We obtained good dispersion of the nanoparticles in a mixed solvent of 48% 1-methoxy-2-propanol (MP), 32% 3-methoxy-3-methyl-1-butanol (MMB), and 20% methyl i-butyl ketone (MIBK). An ink of the polymer coating consisting of 68.7 wt% nanoparticles and 31.3 wt% DPHA with a polymerization initiator was prepared using this solvent mixture. The surface of the hybrid film showed low roughness and the nanoparticles formed a densely packed structure in the DPHA matrix. The resulting coating possessed excellent transparency and a high refractive index of 1.69. PMID:28773070
Blumberg, Leonid M; Desmet, Gert
2016-12-09
The mixing rate (R ϕ ) is the temporal rate of increase in the solvent strength in gradient LC. The optimal R ϕ (R ϕ ,Opt ) is the one at which a required peak capacity of gradient LC analysis is obtained in the shortest time. The balanced mixing program is a one where, for better separation of early eluting solutes, the mixing ramp is preceded by a balanced isocratic hold of the duration depending on R ϕ . The improvement in the separation of the earlier eluites due to the balanced programming has been evaluated. The value of R ϕ ,Opt depends on the solvent composition range covered by the mixing ramp and on the column pressure conditions. The R ϕ ,Opt for a column operating at maximum instrumental pressure is different from R ϕ ,Opt for a column operating below the instrumental pressure limit. On the other hand, it has been shown that the difference in the R ϕ ,Opt values under different conditions is not very large so that a single default R ϕ previously recommended for gradient analyses without the isocratic hold also yields a good approximation to the shortest analysis time for all conditions in the balanced analyses. With or without the initial balance isocratic hold, the recommended default R ϕ is about 5%/t 0 (5% increase in the solvent strength per each t 0 -long increment in time) for small-molecule samples, and about an order of magnitude slower (0.5%/t 0 ) for protein samples. A discussion illustrating the use of the optimization criteria employed here for the techniques other than LSS gradient LC is included. Copyright © 2016 Elsevier B.V. All rights reserved.
Watching the Solvation of Atoms in Liquids One Solvent Molecule at a Time
NASA Astrophysics Data System (ADS)
Bragg, Arthur E.; Glover, William J.; Schwartz, Benjamin J.
2010-06-01
We use mixed quantum-classical molecular dynamics simulations and ultrafast transient hole-burning spectroscopy to build a molecular-level picture of the motions of solvent molecules around Na atoms in liquid tetrahydrofuran. We find that even at room temperature, the solvation of Na atoms occurs in discrete steps, with the number of solvent molecules nearest the atom changing one at a time. This explains why the rate of solvent relaxation differs for different initial nonequilibrium states, and reveals how the solvent helps determine the identity of atomic species in liquids.
Coating and Impregnation of Carbon-Carbon Composites with Ceramics by Electrophoretic Deposition
1989-04-01
electroosmotic effect 33 4.1.4 Electrophoretic impregnation of a porous substrate with ceramic particles 53 4.1.5 Morphology of induced Si02 60 4.1.6...particles acquire the charge spontaneously when mixed with the solvent. Further, this charge may be reversed upon addition of ionic compounds. According...spontaneously when mixed with the solvent. Further this charge may be reversed upon addition of ions. 2.2 ELECTHOPHORESIS IN POROUS STRUCTURES i In
REDISTRIBUTOR FOR LIQUID-LIQUID EXTRACTION COLUMNS
Bradley, J.G.
1957-10-29
An improved baffle plate construction to intimately mix immiscible liquid solvents for solvent extraction processes in a liquid-liquid pulse column is described. To prevent the light and heavy liquids from forming separate continuous homogeneous vertical channels through sections of the column, a baffle having radially placed rectangular louvers with deflection plates opening upon alternate sides of the baffle is placed in the column, normal to the axis. This improvement substantially completely reduces strippiig losses due to poor mixing.
Solvent extraction of diatomite
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williams, W.
1984-07-24
There is provided a method of extracting hydrocarbons from a diatomite ore. The particle size of the ore is first reduced to form a processed ore. The processed ore is then mixed with a substantially irregular granular material to form an unstratified ore mixture having increased permeability to an extracting solvent. The unstratified ore mixture is then permeated with an extracting solvent to obtain a hydrocarbon-solvent stream from which hydrocarbons are subsequently separated. The irregular granular material may be sand.
Deciphering Cryptic Binding Sites on Proteins by Mixed-Solvent Molecular Dynamics.
Kimura, S Roy; Hu, Hai Peng; Ruvinsky, Anatoly M; Sherman, Woody; Favia, Angelo D
2017-06-26
In recent years, molecular dynamics simulations of proteins in explicit mixed solvents have been applied to various problems in protein biophysics and drug discovery, including protein folding, protein surface characterization, fragment screening, allostery, and druggability assessment. In this study, we perform a systematic study on how mixtures of organic solvent probes in water can reveal cryptic ligand binding pockets that are not evident in crystal structures of apo proteins. We examine a diverse set of eight PDB proteins that show pocket opening induced by ligand binding and investigate whether solvent MD simulations on the apo structures can induce the binding site observed in the holo structures. The cosolvent simulations were found to induce conformational changes on the protein surface, which were characterized and compared with the holo structures. Analyses of the biological systems, choice of probes and concentrations, druggability of the resulting induced pockets, and application to drug discovery are discussed here.
Mesoscale Polymer Dissolution Probed by Raman Spectroscopy and Molecular Simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, Tsun-Mei; Xantheas, Sotiris S.; Vasdekis, Andreas E.
2016-10-13
The diffusion of various solvents into a polystyrene (PS) matrix was probed experimentally by monitoring the temporal profiles of the Raman spectra and theoretically from molecular dynamics (MD) simulations of the binary system. The simulation results assist in providing a fundamental, molecular level connection between the mixing/dissolution processes and the difference = solvent – PS in the values of the Hildebrand parameter () between the two components of the binary systems: solvents having similar values of with PS (small ) exhibit fast diffusion into the polymer matrix, whereas the diffusion slows down considerably when the ’s are different (large ).more » To this end, the Hildebrand parameter was identified as a useful descriptor that governs the process of mixing in polymer – solvent binary systems. The experiments also provide insight into further refinements of the models specific to non-Fickian diffusion phenomena that need to be used in the simulations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Idem, R.; Wilson, M.; Tontiwachwuthikul, P.
2006-04-12
Evaluations of the benefits of using a mixed MEA/MDEA solvent for CO{sub 2} capture in terms of the heat requirement for solvent regeneration, lean and rich loadings, CO{sub 2} production, and solvent stability were performed by comparing the performance of aqueous 5 kmol/m{sup 3} MEA with that of an aqueous 4:1 molar ratio MEA/MDEA blend of 5 kmol/ml total amine concentration as a function of the operating time. The tests were performed using two pilot CO{sub 2} capture plants of the International Test Centre for CO{sub 2} Capture (ITC), which provided two different sources and compositions of flue gas. Themore » University of Regina CO{sub 2} plant (UR unit) processes flue gas from the combustion of natural gas while the Boundary Dam CO{sub 2} plant (BD unit) processes flue gas from a coal-fired electric power station. The results show that a huge heat-duty reduction can be achieved by using a mixed MEA/MDEA solution instead of a single MEA solution in an industrial environment of a CO{sub 2} capture plant. However, this benefit is dependent on whether the chemical stability of the solvent can be maintained.« less
NASA Astrophysics Data System (ADS)
Ghazali, Q.; Yasin, N. H. M.
2016-06-01
The effect of three different organic solvent, temperature and mixing time on the production of oil from M.oleifera seeds were studied to evaluate the effectiveness in obtaining the high oil yield based on the percentage of oil production. The modified version of Soxhlet extraction method was carried out to extract the oil from M.oleifera seeds by using hexane, heptane and ethanol as the organic solvent. Among the three solvents, it is found that heptane yield higher oil from M.oleifera seeds with maximum oil yield of 36.37% was obtained followed by hexane and ethanol with 33.89% and 18.46%, respectively. By using heptane as a solvent, the temperature (60oC, 70oC, 80oC) and mixing time (6 h, 7 h, and 8 h) were investigated to ensure the high oil yield over the experimental ranges employed and high oil yield was obtained at 600C for 6 h with percentage oil yield of 36.37%. The fatty acid compositions of M.oleifera seeds oil were analyzed using Gas Chromatography/Mass Spectrometry (GC-MS). The main components of fatty acid contained in the oil extracted from M.oleifera seeds was oleic acid, followed by palmitic acid and arachidic acid, and small amount of behenic acid and margaric acid.
Hughes, Laura; Wyatt, Mark F; Stein, Bridget K; Brenton, A Gareth
2009-01-15
An investigation of various solvent-free matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS) sample preparation methods for the characterization of organometallic and coordination compounds is described. Such methods are desirable for insoluble materials, compounds that are only soluble in disadvantageous solvents, or complexes that dissociate in solution, all of which present a major "difficulty" to most mass spectrometry techniques. First-row transition metal acetylacetonate complexes, which have been characterized previously by solution preparation MALDI-TOFMS, were used to evaluate the various solvent-free procedures. These procedures comprise two distinct steps: the first being the efficient "solids mixing" (the mixing of sample and matrix), and the second being the effective transfer of the sample/matrix mixture to the MALDI target plate. This investigation shows that vortex mixing is the most efficient first step and that smearing using a microspatula is the most effective second step. In addition, the second step is shown to be much more critical than the first step in obtaining high-quality data. Case studies of truly insoluble materials highlight the importance of these techniques for the wider chemistry community.
Kan, Hyo; Tsukagoshi, Kazuhiko
2017-07-01
Protein mixtures were separated using tube radial distribution chromatography (TRDC) in a polytetrafluoroethylene (PTFE) capillary (internal diameter=100µm) separation tube. Separation by TRDC is based on the annular flow in phase separation multiphase flow and features an open-tube capillary without the use of specific packing agents or application of high voltages. Preliminary experiments were conducted to examine the effects of pH and salt concentration on the phase diagram of the ternary mixed solvent solution of water-acetonitrile-ethyl acetate (8:2:1 volume ratio) and on the TRDC system using the ternary mixed solvent solution. A model protein mixture containing peroxidase, lysozyme, and bovine serum albumin was analyzed via TRDC with the ternary mixed solvent solution at various pH values, i.e., buffer-acetonitrile-ethyl acetate (8:2:1 volume ratio). Protein was separated on the chromatograms by the TRDC system, where the elution order was determined by the relation between the isoelectric points of protein and the pH values of the solvent solution. Copyright © 2017 Elsevier B.V. All rights reserved.
Numata, Youhei; Kogo, Atsushi; Udagawa, Yosuke; Kunugita, Hideyuki; Ema, Kazuhiro; Sanehira, Yoshitaka; Miyasaka, Tsutomu
2017-06-07
We developed a new and simple solvent vapor-assisted thermal annealing (VA) procedure which can reduce grain boundaries in a perovskite film for fabricating highly efficient perovskite solar cells (PSCs). By recycling of solvent molecules evaporated from an as-prepared perovskite film as a VA vapor source, named the pot-roast VA (PR-VA) method, finely controlled and reproducible device fabrication was achieved for formamidinium (FA) and methylammonium (MA) mixed cation-halide perovskite (FAPbI 3 ) 0.85 (MAPbBr 3 ) 0.15 . The mixed perovskite was crystallized on a low-temperature prepared brookite TiO 2 mesoporous scaffold. When exposed to very dilute solvent vapor, small grains in the perovskite film gradually unified into large grains, resulting in grain boundaries which were highly reduced and improvement of photovoltaic performance in PSC. PR-VA-treated large grain perovskite absorbers exhibited stable photocurrent-voltage performance with high fill factor and suppressed hysteresis, achieving the best conversion efficiency of 18.5% for a 5 × 5 mm 2 device and 15.2% for a 1.0 × 1.0 cm 2 device.
Molecular Dynamics Analysis of Lysozyme Protein in Ethanol- Water Mixed Solvent
2012-01-01
molecular dynamics simulations of solvent effect on lysozyme protein, using water, ethanol, and different concentrations of water-ethanol mixtures as...understood. This work focuses on detailed molecular dynamics simulations of solvent effect on lysozyme protein, using water, ethanol, and different...using GROMACS molecular dynamics simulation (MD) code. Compared to water environment, the lysozyme structure showed remarkable changes in water
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mukherji, Debashish; Stuehn, Torsten; Kremer, Kurt
Smart polymers are a modern class of polymeric materials that often exhibit unpredictable behavior in mixtures of solvents. One such phenomenon is co-non-solvency. Co-non-solvency occurs when two (perfectly) miscible and competing good solvents, for a given polymer, are mixed together. As a result, the same polymer collapses into a compact globule within intermediate mixing ratios. More interestingly, polymer collapses when the solvent quality remains good and even gets increasingly better by the addition of the better cosolvent. This is a puzzling phenomenon that is driven by strong local concentration fluctuations. Because of the discrete particle based nature of the interactions,more » Flory-Huggins type mean field arguments become unsuitable. In this work, we extend the analysis of the co-non-solvency effect presented earlier [D. Mukherji et al., Nat. Commun. 5, 4882 (2014)]. We explain why co-non-solvency is a generic phenomenon, which can only be understood by the thermodynamic treatment of the competitive displacement of (co)solvent components. This competition can result in a polymer collapse upon improvement of the solvent quality. Specific chemical details are not required to understand these complex conformational transitions. Therefore, a broad range of polymers are expected to exhibit similar reentrant coil-globule-coil transitions in competing good solvents.« less
Jain, Rohit; Wu, Zimei; Bork, Olaf; Tucker, Ian G
2012-01-01
Penethamate (PNT) is a diethylaminoethyl ester prodrug of benzylpenicillin used to treat bovine mastitis via the intramuscular route. Because of its instability, PNT products must be reconstituted before administration and the reconstituted injection has a short shelf life (7 days at 2-8°C). The purpose of this paper was to investigate whether the stability of PNT can be improved in order to achieve a chemically stable ready-to-use aqueous-based PNT formulation or at least to extend the shelf life of the reconstituted suspension. A chemical stability study of PNT in aqueous-based solutions as a function of pH, buffer strength, solvent mixtures and temperature, supported by studies of its solubility in mixed solvents, allowed predictions of the shelf life of PNT solution and suspension formulations. PNT degraded in aqueous solutions by several pathways over the pH range 2.0-9.3 with a V-shaped pH-rate profile and a minimum pH of around 4.5. The stability of PNT solutions in mixed solvents was greater than in aqueous solutions. For example, in propylene glycol:citrate buffer (60:40, v/v, pH 4.5), the half-life of PNT was 4.3 days compared with 1.8 days in aqueous buffer. However, solubility of PNT in the mixed solvent was higher than that in aqueous solution and this had an adverse effect on the stability of suspensions. By judicious choosing of pH and mixed solvent, it is possible to achieve a storage life of a PNT suspension of 5.5 months at 5°C, not sufficient for a ready-to-use product but a dramatic improvement in the storage life of the reconstituted product.
Solvent effects in time-dependent self-consistent field methods. I. Optical response calculations
Bjorgaard, J. A.; Kuzmenko, V.; Velizhanin, K. A.; ...
2015-01-22
In this study, we implement and examine three excited state solvent models in time-dependent self-consistent field methods using a consistent formalism which unambiguously shows their relationship. These are the linear response, state specific, and vertical excitation solvent models. Their effects on energies calculated with the equivalent of COSMO/CIS/AM1 are given for a set of test molecules with varying excited state charge transfer character. The resulting solvent effects are explained qualitatively using a dipole approximation. It is shown that the fundamental differences between these solvent models are reflected by the character of the calculated excitations.
Ghorab, Mohamed K; Adeyeye, Moji Christianah
2007-10-19
The aims of the study were to evaluate the effect of high shear mixer (HSM) granulation process parameters and scale-up on wet mass consistency and granulation characteristics. A mixer torque rheometer (MTR) was employed to evaluate the granulating solvents used (water, isopropanol, and 1:1 vol/vol mixture of both) based on the wet mass consistency. Gral 25 and mini-HSM were used for the granulation. The MTR study showed that the water significantly enhanced the beta-cyclodextrin (beta CD) binding tendency and the strength of liquid bridges formed between the particles, whereas the isopropanol/water mixture yielded more suitable agglomerates. Mini-HSM granulation with the isopropanol/water mixture (1:1 vol/vol) showed a reduction in the extent of torque value rise by increasing the impeller speed as a result of more breakdown of agglomerates than coalescence. In contrast, increasing the impeller speed of the Gral 25 resulted in higher torque readings, larger granule size, and consequently, slower dissolution. This was due to a remarkable rise in temperature during Gral granulation that reduced the isopropanol/water ratio in the granulating solvent as a result of evaporation and consequently increased the beta CD binding strength. In general, the HSM granulation retarded ibuprofen dissolution compared with the physical mixture because of densification and agglomeration. However, a successful HSM granulation scale-up was not achieved due to the difference in the solvent mixture's effect from 1 scale to the other.
Noh, Ye Ji; Joh, Han-Ik; Yu, Jaesang; Hwang, Soon Hyoun; Lee, Sungho; Lee, Cheol Ho; Kim, Seong Yun; Youn, Jae Ryoun
2015-01-01
The drying process of graphene-polymer composites fabricated by solution-processing for excellent dispersion is time consuming and suffers from a restacking problem. Here, we have developed an innovative method to fabricate polymer composites with well dispersed graphene particles in the matrix resin by using solvent free powder mixing and in-situ polymerization of a low viscosity oligomer resin. We also prepared composites filled with up to 20 wt% of graphene particles by the solvent free process while maintaining a high degree of dispersion. The electrical conductivity of the composite, one of the most significant properties affected by the dispersion, was consistent with the theoretically obtained effective electrical conductivity based on the mean field micromechanical analysis with the Mori-Tanaka model assuming ideal dispersion. It can be confirmed by looking at the statistical results of the filler-to-filler distance obtained from the digital processing of the fracture surface images that the various oxygenated functional groups of graphene oxide can help improve the dispersion of the filler and that the introduction of large phenyl groups to the graphene basal plane has a positive effect on the dispersion. PMID:25771823
BIOVENTING OF CHLORINATED SOLVENTS FOR GROUND-WATER CLEANUP THROUGH BIOREMEDIATION
Chlorinated solvents such as tetrachloroethylene, trichloroethylene, carbon tetrachloride, chloroform, 1,2-dichloroethane, and dichloromethane (methylene chloride) can exist in contaminated subsurface material as (1) the neat oil, (2) a component of a mixed oily waste, (3) a solu...
Separation of Trivalent Actinides from Lanthanides Using a Capillary Electrophoresis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mori, Tomotaka; Ishii, Yasuo; Hayashi, Kazunori
2007-07-01
A separation of {sup 241}Am(III) from {sup 152,154}Eu(III) was carried out using a capillary electrophoresis technique in a mixed solvent (CH{sub 3}OH/H{sub 2}O) system containing thiocyanate ion. First, the formation constants ({beta}{sub n}) between thiocyanate ion and Eu(III) or Am(III) were investigated in the mixed solvent solutions by a back-extraction technique using bis (2-ethylhexyl) hydrogen phosphate-toluene. The mean charges calculated on the basis of the data of {beta}{sub n} for Eu(III) were comparatively higher than those for Am(III). Based on the differences between the mean charges of Eu(III) and Am(III), separations for Am(III)/Eu(III) by means of capillary electrophoresis technique weremore » tried in the (H{sup +}, Na{sup +})(SCN{sup -}, ClO{sub 4}{sup -}) mixed solvent solutions. It was proved that Am(III) was completely separated from Eu(III). (authors)« less
Althagafi, Talal M; Algarni, Saud A; Al Naim, Abdullah; Mazher, Javed; Grell, Martin
2015-12-14
We significantly improved the performance of precursor-route semiconducting zinc oxide (ZnO) films in electrolyte-gated thin film transistors (TFTs). We find that the organic precursor to ZnO, zinc acetate (ZnAc), dissolves more readily in a 1 : 1 mixture of ethanol (EtOH) and acetone than in pure EtOH, pure acetone, or pure isopropanol. XPS and SEM characterisation show improved morphology of ZnO films converted from a mixed solvent cast ZnAc precursor compared to the EtOH cast precursor. When gated with a biocompatible electrolyte, phosphate buffered saline (PBS), ZnO thin film transistors (TFTs) derived from mixed solvent cast ZnAc give 4 times larger field effect current than similar films derived from ZnAc cast from pure EtOH. The sheet resistance at VG = VD = 1 V is 30 kΩ □(-1), lower than for any organic TFT, and lower than for any electrolyte-gated ZnO TFT reported to date.
Preparation and performance study of a novel liquid scintillator with mixed solvent as the matrix
NASA Astrophysics Data System (ADS)
Zheng, Zhanlong; Zhu, Jiayi; Luo, Xuan; Xu, Yewei; Zhang, Qianfeng; Zhang, Xing; Bi, Yutie; Zhang, Lin
2017-04-01
A novel liquid scintillator with the mixed solvent as the matrix was prepared for obtaining a good comprehensive performance. In this ternary liquid scintillator, the combination of 20% pseudocumene (PC) and 80% linear-alkyl benzene (LAB) by volume was chosen as the mixed solvent, and 2,5-diphenyloxazole (PPO) and 1,4-bis(2-Methylstyryl) benzene (bis-MSB) were as the primary fluor and wavelength shifter, respectively. The optimum prescription was obtained with regard to the light yield. Some characterizations based on the optimal formulation were conducted. The fluorescence emission spectra and wavelength-dependent optical attenuation length of the sample were measured by the fluorescence spectrophotometer and an UV-Vis spectrometer, respectively. The light yield was characterized by adopting the home-made optical platform device. The decay time was tested by adopting the time-correlated single photon counting (TCSPC) technique featured in high dynamic range of several orders of magnitude in light intensity. The experimental test results showed that the sample had a fairly good comprehensive performance.
FISSION PRODUCT REMOVAL FROM ORGANIC SOLUTIONS
Moore, R.H.
1960-05-10
The decontamination of organic solvents from fission products and in particular the treatment of solvents that were used for the extraction of uranium and/or plutonium from aqueous acid solutions of neutron-irradiated uranium are treated. The process broadly comprises heating manganese carbonate in air to a temperature of between 300 and 500 deg C whereby manganese dioxide is formed; mixing the manganese dioxide with the fission product-containing organic solvent to be treated whereby the fission products are precipitated on the manganese dioxide; and separating the fission product-containing manganese dioxide from the solvent.
NASA Astrophysics Data System (ADS)
Isaeva, V. A.; Sharnin, V. A.
2018-02-01
Enthalpies of the protonation of glycine in water‒dimethylsulfoxide (DMSO) mixed solvents are determined calorimetrically in the range of DMSO mole fractions of 0.0 to 0.9, at T = 298.15 K and an ionic strength μ = 0.3 (NaClO4). It is established that the protonation of glycine becomes more exothermic with an increasing mole fraction of DMSO, and the enthalpies of resolvation of glycine and glycinium ions in water‒DMSO solvent mixtures are calculated. It is shown that the small changes in the enthalpy of protonation observed at low mole fractions of DMSO are caused by the contributions from the solvation of proton and protonated glycine cancelling each other out. The enthalpy term of the Gibbs energy of the reaction leading to the formation of glycinium ion is estimated along with the enthalpy of resolvation of the reacting species in the water‒DMSO mixed solvent.
Jubin, Robert T.; Randolph, John D.
1991-01-01
The invention is directed to a centrifugal contactor for solvent extraction systems. The centrifugal contactor is provided with an annular vertically oriented mixing chamber between the rotor housing and the rotor for mixing process liquids such as the aqueous and organic phases of the solvent extraction process used for nuclear fuel reprocessing. A set of stationary helically disposed vanes carried by the housing is in the lower region of the mixing chamber at a location below the process-liquid inlets for the purpose of urging the liquids in an upward direction toward the inlets and enhancing the mixing of the liquids and mass transfer between the liquids. The upper region of the mixing vessel above the inlets for the process liquids is also provided with a set helically disposed vanes carried by the housing for urging the process liquids in a downward direction when the liquid flow rates through the inlets are relatively high and the liquids contact the vane set in the upper region. The use of these opposing vane sets in the mixing zone maintains the liquid in the mixing zone at suitable levels.
Self-Assembled Pyridine-Dipyrrolate Cages.
Zhang, Huacheng; Lee, Juhoon; Lammer, Aaron D; Chi, Xiaodong; Brewster, James T; Lynch, Vincent M; Li, Hao; Zhang, Zhan; Sessler, Jonathan L
2016-04-06
An inherently nonlinear pyridine dipyrrolate ligand, namely 2,6-bis(3,4-diethyl-5-carboxy-1H-pyrrol-2yl)pyridine (compound 1), is able to distinguish between different zinc(II) cation sources, namely Zn(acac)2 and Zn(OAc)2, respectively. This differentiation is manifest both in terms of the observed fluorescent behavior in mixed organic media and the reaction chemistry. Treatment of 1 with Zn(acac)2 gives rise to a cage dimer, cage-1, wherein two molecules of compound 1 act as double bridging units to connect two individual cage subunits. As inferred from X-ray crystallographic studies, this cage system consists of discrete zinc dimers with hydroxide bridges that, with the assistance of bound DMF solvent molecules, serve to fix the geometry and orientation of the pyridine dipyrrolate building blocks. When a different zinc source, Zn(OAc)2, is used to carry out an ostensibly similar complexation reaction with compound 1, an acetate-bridged 1D abacus-like cage polymer is obtained as inferred from X-ray diffraction analysis. This extended solid state structure, cage-2, contains individual zinc dimer cage submits and appears stabilized by solvent molecules (DMF) and the counteranion (acetate). Rod-like assemblies are also observed by DLS and SEM. This construct, in contrast to cage-1, proved fluorescent in mixed organic media. The structure of the ligand itself (i.e., in the absence of Zn(II)) was confirmed by X-ray crystallographic analysis and was found to assemble into a supramolecular polymer. Conversion to a dimer form was seen upon the addition of TBAOAc. On the basis of the metric parameters, the structures seen in the solid state are stabilized via hydrogen bonding interactions involving solvent molecules.
NASA Astrophysics Data System (ADS)
Achary, B. Shivaprasad; Ramya, A. R.; Trivedi, Rajiv; Bangal, P. R.; Giribabu, L.
We report here the design and synthesis of corrole-metallocene dyads consisting of a metallocene (either ferrocene (Dyad 1) or mixed sandwich η5-[C5H4(COOH)]Co(η4-C4Ph4) (Dyad 2)) connected via an ester linkage at meso phenyl position. Both the dyads were characterized by 1H NMR, MALDI-TOF, UV-visible, fluorescence spectroscopies (steady-state, picosecond time-resolved), femtosecond transient absorption spectroscopy (fs-TA) and electrochemical methods. The absorption spectra of these dyads showed slight broadening and splitting of the Soret band that indicates a weak ground state interaction between the corrole macrocycle and metallocene part of the present donor-acceptor (D-A) system. However, in both the dyad systems, fluorescence emission of the corrole was quenched in polar solvents as compared to its parent compound 10-(4-hydroxyphenyl)-5,15-bis-(pentafluorophenyl ) corrole (Ph-Corr). The quenching was more pronounced in ferrocene derivatives than in cobaltocenyl derivatives. Transient absorption studies confirm the absence of photoinduced electron transfer from metallocene to correl for these dyad systems and the quenching of singlet state of corrole is found to enhance intersystem crossing due to heavy atom effect. Corrole-ferrocene and corrole-mixed sandwich η5-[C5H4(COOH)]Co(η4-C4Ph4) dyads have been designed, synthesized and characterized by various spectroscopic techniques. Emission intensitiy of both dyads were quenched in polar solvents whereas transient absorption studies indicates that the quenching coule be due to the heavy atom effect.
Application of liquid-liquid interactions with single-walled carbon nanotubes
NASA Astrophysics Data System (ADS)
Wang, Randy Kai-Wei
This study covers three important research topics related to the application of liquid-liquid interaction with single-walled carbon nanotubes (SWNTs). The first topic describes the removal of SWNT bundles from liquid suspensions of nanotubes. The key to this work includes the use of liquid-liquid interfaces to trap the SWNT bundles due to the free energy change of the system during the process. SWNTs pack into crystalline ropes that form bundles due to strong van der Waals attraction. Bundling diminishes mechanical and electronic properties because it could interrupt the electronic structure of the nanotubes. Also, the electronic devices based on as-grown nanotubes, which contains a mixture of individual nanotubes and nanotube bundles, make the electrical response unpredictable. We developed a new simple process to remove bundles by liquid-liquid interaction. SWNTs bundles are trapped at the interface because bundles stabilize the emulsions. Eliminating the use of ultracentrifugation to remove SWNT bundles enables large-scale production with reduced production costs and time savings. The second topic presented the swelling effect of the surfactant layer surrounding SWNTs with nonpolar solvents. Solvatochromic shifts in the absorbance and fluorescence spectra are observed when surfactant-stabilized aqueous SWNT suspensions are mixed with immiscible organic solvents. When aqueous surfactant-suspended SWNTs are mixed with certain solvents, the spectra closely match the peaks for SWNTs dispersed in only that solvent. These spectral changes suggest the hydrophobic region of the micelle surrounding SWNTs swells with the organic solvent when mixed. The solvatochromic shifts of the aqueous SWNT suspensions are reversible once the solvent evaporates. However, some surfactant-solvent systems show permanent changes to the fluorescence emission intensity after exposure to the organic solvent. The intensity of some large diameter SWNT (n, m) types increase by more than 175%. These differences are attributed to surfactant reorganization, which can improve nanotube coverage, resulting in decreased exposure to quenching mechanisms from the aqueous phase. The third topic describes the further study of the solvatochromism of the SWNTs. Since SWNTs are encapsulated with microenvironments of nonpolar solvents, it provides a new method to measure the photophysical properties of nanotubes in environments with known properties. Fluorescence and absorbance spectra of SWNTs show solvatochromic shifts in 16 nonpolar solvents, which are proportional to the solvent induction polarization. The photophysical properties of SWNTs were used to determine the relationship between the longitudinal polarizability and other nanotube properties, alpha11,|| ∝ 1/(R2E11 3). (Full text of this dissertation may be available via the University of Florida Libraries web site. Please check http://www.uflib.ufl.edu/etd.html)
Simulation of macromolecule self-assembly in solution: A multiscale approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lavino, Alessio D., E-mail: alessiodomenico.lavino@studenti.polito.it; Barresi, Antonello A., E-mail: antonello.barresi@polito.it; Marchisio, Daniele L., E-mail: daniele.marchisio@polito.it
2015-12-17
One of the most common processes to produce polymer nanoparticles is to induce self-assembly by using the solvent-displacement method, in which the polymer is dissolved in a “good” solvent and the solution is then mixed with an “anti-solvent”. The polymer ability to self-assemble in solution is therefore determined by its structural and transport properties in solutions of the pure solvents and at the intermediate compositions. In this work, we focus on poly-ε-caprolactone (PCL) which is a biocompatible polymer that finds widespread application in the pharmaceutical and biomedical fields, performing simulation at three different scales using three different computational tools: fullmore » atomistic molecular dynamics (MD), population balance modeling (PBM) and computational fluid dynamics (CFD). Simulations consider PCL chains of different molecular weight in solution of pure acetone (good solvent), of pure water (anti-solvent) and their mixtures, and mixing at different rates and initial concentrations in a confined impinging jets mixer (CIJM). Our MD simulations reveal that the nano-structuring of one of the solvents in the mixture leads to an unexpected identical polymer structure irrespectively of the concentration of the two solvents. In particular, although in pure solvents the behavior of the polymer is, as expected, very different, at intermediate compositions, the PCL chain shows properties very similar to those found in pure acetone as a result of the clustering of the acetone molecules in the vicinity of the polymer chain. We derive an analytical expression to predict the polymer structural properties in solution at different solvent compositions and use it to formulate an aggregation kernel to describe the self-assembly in the CIJM via PBM and CFD. Simulations are eventually validated against experiments.« less
Interaction-component analysis of the hydration and urea effects on cytochrome c
NASA Astrophysics Data System (ADS)
Yamamori, Yu; Ishizuka, Ryosuke; Karino, Yasuhito; Sakuraba, Shun; Matubayasi, Nobuyuki
2016-02-01
Energetics was analyzed for cytochrome c in pure-water solvent and in a urea-water mixed solvent to elucidate the solvation effect in the structural variation of the protein. The solvation free energy was computed through all-atom molecular dynamics simulation combined with the solution theory in the energy representation, and its correlations were examined over sets of protein structures against the electrostatic and van der Waals components in the average interaction energy of the protein with the solvent and the excluded-volume component in the solvation free energy. It was observed in pure-water solvent that the solvation free energy varies in parallel to the electrostatic component with minor roles played by the van der Waals and excluded-volume components. The effect of urea on protein structure was then investigated in terms of the free-energy change upon transfer of the protein solute from pure-water solvent to the urea-water mixed solvent. The decomposition of the transfer free energy into the contributions from urea and water showed that the urea contribution is partially canceled by the water contribution and governs the total free energy of transfer. When correlated against the change in the solute-solvent interaction energy upon transfer and the corresponding changes in the electrostatic, van der Waals, and excluded-volume components, the transfer free energy exhibited strong correlations with the total change in the solute-solvent energy and its van der Waals component. The solute-solvent energy was decomposed into the contributions from the protein backbone and side chain, furthermore, and neither of the contributions was seen to be decisive in the correlation to the transfer free energy.
Novel electrolytes for use in new and improved batteries: An NMR study
NASA Astrophysics Data System (ADS)
Berman, Marc B.
This thesis focuses on the use of nuclear magnetic resonance (NMR) spectroscopy in order to study materials for use as electrolytes in batteries. The details of four projects are described in this thesis as well as a brief theoretical background of NMR. Structural and dynamics properties were determined using several NMR techniques such as static, MAS, PFG diffusion, and relaxation to understand microscopic and macroscopic properties of the materials described within. Nuclei investigate were 1H, 2H, 7Li, 13C, 19F, 23Na, and 27Al. The first project focuses on an exciting new material to be used as a solid electrolyte membrane. T. The second project focuses on the dynamics of ionic liquid-solvent mixtures and their comparison to molecular dynamics computer simulations. The third project involves a solvent-free film containing NaTFSI salt mixed in to PEO for use in sodium-ion batteries. This final project focuses on a composite electrolyte consisting of a ceramic and solid: LiI:PEO:LiAlO2.
Catalytic dehydrogenation of amine borane complexes
NASA Technical Reports Server (NTRS)
Mohajeri, Nahid (Inventor); Tabatabaie-Raissi, Ali (Inventor)
2007-01-01
A method of generating hydrogen includes the steps of providing an amine borane (AB) complex, at least one hydrogen generation catalyst, and a solvent, and mixing these components. Hydrogen is generated. The hydrogen produced is high purity hydrogen suitable for PEM fuel cells. A hydrolytic in-situ hydrogen generator includes a first compartment that contains an amine borane (AB) complex, a second container including at least one hydrogen generation catalyst, wherein the first or second compartment includes water or other hydroxyl group containing solvent. A connecting network permits mixing contents in the first compartment with contents in the second compartment, wherein high purity hydrogen is generated upon mixing. At least one flow controller is provided for controlling a flow rate of the catalyst or AB complex.
Catalytic dehydrogenation of amine borane complexes
NASA Technical Reports Server (NTRS)
Tabatabaie-Raissi, Ali (Inventor); Mohajeri, Nahid (Inventor); Bokerman, Gary (Inventor)
2009-01-01
A method of generating hydrogen includes the steps of providing an amine borane (AB) complex, at least one hydrogen generation catalyst, and a solvent, and mixing these components Hydrogen is generated. The hydrogen produced is high purity hydrogen suitable for PEM fuel cells. A hydrolytic in-situ hydrogen generator includes a first compartment that contains an amine borane (AB) complex, a second container including at least one hydrogen generation catalyst, wherein the first or second compartment includes water or other hydroxyl group containing solvent. A connecting network permits mixing contents in the first compartment with contents in the second compartment, wherein high purity hydrogen is generated upon mixing. At least one flow controller is provided for controlling a flow rate of the catalyst or AB complex.
Attarchi, Mir Saeed; Ashouri, Monir; Labbafinejad, Yasser; Mohammadi, Saber
2012-04-01
Due to increasing usage of chemicals in various industries, occupational exposure of women with these materials is unavoidable. Nowadays, some studies indicate adverse effects of exposure to these chemicals, especially organic solvents on the reproductive system of females. This study aimed to assess the relationship between spontaneous abortion and occupational exposure to organic solvents mixture in pharmaceutical industry. This study was carried out in a pharmaceutical factory located in the suburb of Tehran in 2010. During the study, married women who were working in the factory laboratory units and had exposure to mixed organic solvents were compared with married women who were working in the packing units of the factory without occupational exposure to organic solvents in terms of spontaneous abortion frequency and duration of pregnancy using statistical methods. In this study, the frequency of spontaneous abortion in employees with and without exposure to organic solvents mixture was 10.7 and 2.9% respectively. This study showed that even after adjustment for confounding factors, there was a significant correlation between spontaneous abortion and occupational exposure to organic solvents mixture and this correlation increased with increasing levels of exposure to organic solvents. Also, a significant correlation was observed between occupational exposure to mixed organic solvents and waiting time to become pregnant (TTP). Furthermore, this study showed that even after adjustment for confounding variables, shift workers were significantly more affected by spontaneous abortion compared to daytime workers (P < 0.001). Also, in our study, synergistic effect between shift working and occupational exposure to organic solvents mixture on spontaneous abortion was seen. According to the results of this study, since there is probability of spontaneous abortion resulting from occupational exposure to various chemicals including organic solvents, recommendation to review the status of occupational exposure of workers can be helpful in improving fertility consultations and reproductive health.
Solvent-Free Synthesis of Chalcones
ERIC Educational Resources Information Center
Palleros, Daniel R.
2004-01-01
The synthesis of twenty different chalcones in the absence of solvent is presented. The results indicated that out of the twenty different chalcones investigated seventeen can be obtained in a matter of minutes by mixing the corresponding benzaldehyde and acetophenone in the presence of solid NaOH in a mortar with pestle.
Preparation of prepreg graphite tape with insoluble polymer
NASA Technical Reports Server (NTRS)
Yates, C. I.
1973-01-01
Powdered polymer is finely ground. Second polymer, soluble, is mixed with appropriate solvent. Milled polymer and graphite filaments are added to soluble polymer-solvent solution to create slurry. Slurry is dried, and when ready for processing, the soluble, binder-polymer is removed by heat during precure or cure cycle.
Solvent-free mechanochemical methods that involve the use of hypervalent iodine reagents at room temperature are described for the synthesis of heterocyclic entities and conversion of ketones into -keto sulfones in high yields. A solvent-free approach that involves microwave (MW...
Multiple Solvent Extraction System with Flow Injection Technology.
1981-09-30
encounters a back extraction step where the direction of the extraction is from organic to aqueous solvent. Thus it is advantageous to incorporate both...stainless steel ( Alltech Associates, Arlington Heights, IQ) and prepared from a single section of 180 cmn in length. The Section 2 mixing and extraction
Hu, Michael Z.
2006-05-23
Disclosed is a method for making amorphous spherical particles of zirconium titanate and crystalline spherical particles of zirconium titanate comprising the steps of mixing an aqueous solution of zirconium salt and an aqueous solution of titanium salt into a mixed solution having equal moles of zirconium and titanium and having a total salt concentration in the range from 0.01 M to about 0.5 M. A stearic dispersant and an organic solvent is added to the mixed salt solution, subjecting the zirconium salt and the titanium salt in the mixed solution to a coprecipitation reaction forming a solution containing amorphous spherical particles of zirconium titanate wherein the volume ratio of the organic solvent to aqueous part is in the range from 1 to 5. The solution of amorphous spherical particles is incubated in an oven at a temperature .ltoreq.100.degree. C. for a period of time .ltoreq.24 hours converting the amorphous particles to fine or ultrafine crystalline spherical particles of zirconium titanate.
Enhanced removal of lead from contaminated soil by polyol-based deep eutectic solvents and saponin
NASA Astrophysics Data System (ADS)
Mukhopadhyay, Soumyadeep; Mukherjee, Sumona; Hayyan, Adeeb; Hayyan, Maan; Hashim, Mohd Ali; Sen Gupta, Bhaskar
2016-11-01
Deep eutectic solvents (DESs) are a class of green solvents analogous to ionic liquids, but less costly and easier to prepare. The objective of this study is to remove lead (Pb) from a contaminated soil by using polyol based DESs mixed with a natural surfactant saponin for the first time. The DESs used in this study were prepared by mixing a quaternary ammonium salt choline chloride with polyols e.g. glycerol and ethylene glycol. A natural surfactant saponin obtained from soapnut fruit pericarp, was mixed with DESs to boost their efficiency. The DESs on their own did not perform satisfactory due to higher pH; however, they improved the performance of soapnut by up to 100%. Pb removal from contaminated soil using mixture of 40% DES-Gly and 1% saponin and mixture of 10% DES-Gly and 2% saponin were above 72% XRD and SEM studies did not detect any major corrosion in the soil texture. The environmental friendliness of both DESs and saponin and their affordable costs merit thorough investigation of their potential as soil washing agents.
Liu, Yang-Yi; Liu, Lei; Chen, Si-Ming; Chang, Fu-Jia; Mao, Li-Bo; Gao, Huai-Ling; Ma, Tao; Yu, Shu-Hong
2018-05-22
Bio-inspired mineralization is an effective way for fabricating complex inorganic materials, which inspires us to develop new methods to synthesize materials with fascinating properties. In this article, we report that the charged tellurium nanowires (TeNWs) can be used as biomacromolecule analogues to direct the formation of amorphous calcium carbonate (ACC) nanosheets (ACCNs) in a mixed solvent. The effects of surface charges and the concentration of the TeNWs on the formation of ACCNs have been investigated. Particularly, the produced ACCNs can be functionalized by Fe 3 O 4 nanoparticles to produce magnetic ACC/Fe 3 O 4 hybrid nanosheets that can be used to construct ACC/Fe 3 O 4 composite films through a self-evaporation process. Moreover, sodium alginate-ACC nanocomposite films with remarkable toughness and good transmittance can also be fabricated by using such ACCNs as nanoscale building blocks. This mineralization approach in a mixed solvent using charged TeNWs as biomacromolecule analogues provides a new way for the synthesis of ACCNs, which can be used as nanoscale building blocks for the fabrication of biomimetic composite films.
Xin, Ping-Ping; Huang, Yao-Bing; Hse, Chung-Yun; Cheng, Huai N.; Huang, Chaobo; Pan, Hui
2017-01-01
Homogeneous modification of cellulose with succinic anhydride was performed using tetrabutylammonium acetate (TBAA)/dimethyl sulfoxide (DMSO) mixed solvent. The molar ratio of succinic anhydride (SA) to free hydroxyl groups in the anhydroglucose units (AGU), TBAA dosage, reaction temperature, and reaction time were investigated. The highest degree of substitution (DS) value of 1.191 was obtained in a 10 wt% TBAA/DMSO mixed solvent at 60 °C for 60 min, and the molar ratio of SA/AGU was 6/1. The molar ratio of SA/AGU and the TBAA dosage showed a significant influence on the reaction. The succinoylated cellulose was characterized by ATR-FTIR, TGA, XRD, solid state CP/MAS 13C NMR spectroscopy (CP/MAS 13C NMR), and SEM. Moreover, the modified cellulose was applied for the adsorption of Cu2+ and Cd2+, and both the DS values of modified cellulose and pH of the heavy metal ion solutions affected the adsorption capacity of succinylated cellulose. The highest capacity for Cu2+ and Cd2+ adsorption was 42.05 mg/g and 49.0 mg/g, respectively. PMID:28772885
Xin, Ping-Ping; Huang, Yao-Bing; Hse, Chung-Yun; Cheng, Huai N; Huang, Chaobo; Pan, Hui
2017-05-12
Homogeneous modification of cellulose with succinic anhydride was performed using tetrabutylammonium acetate (TBAA)/dimethyl sulfoxide (DMSO) mixed solvent. The molar ratio of succinic anhydride (SA) to free hydroxyl groups in the anhydroglucose units (AGU), TBAA dosage, reaction temperature, and reaction time were investigated. The highest degree of substitution (DS) value of 1.191 was obtained in a 10 wt% TBAA/DMSO mixed solvent at 60 °C for 60 min, and the molar ratio of SA/AGU was 6/1. The molar ratio of SA/AGU and the TBAA dosage showed a significant influence on the reaction. The succinoylated cellulose was characterized by ATR-FTIR, TGA, XRD, solid state CP/MAS 13 C NMR spectroscopy (CP/MAS 13 C NMR), and SEM. Moreover, the modified cellulose was applied for the adsorption of Cu 2+ and Cd 2+ , and both the DS values of modified cellulose and pH of the heavy metal ion solutions affected the adsorption capacity of succinylated cellulose. The highest capacity for Cu 2+ and Cd 2+ adsorption was 42.05 mg/g and 49.0 mg/g, respectively.
de Oliveira, Heitor Fernando Nunes; Rinaldi, Roberto
2015-05-11
In this report, the interactions between fifteen selected ionic liquids (ILs) and cellobiose (CB) are examined by high-precision solution microcalorimetry. The heat of mixing (Δmix H) of CB and ILs, or CB and IL/molecular solvent (MS) solutions, provides the first ever-published measure of the affinity of CB with ILs. Most importantly, we found that there is a very good correlation between the nature of the results found for Δmix H(CB) and the solubility behavior of cellulose. This correlation suggests that Δmix H(CB) offers a good estimate of the enthalpy of dissolution of cellulose even in solvents in which cellulose is insoluble. Therefore, the current findings open up new horizons for unravelling the intricacies of the thermodynamic factors accounting for the spontaneity of cellulose dissolution in ILs or IL/MS solutions. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Micromixer-based time-resolved NMR: applications to ubiquitin protein conformation.
Kakuta, Masaya; Jayawickrama, Dimuthu A; Wolters, Andrew M; Manz, Andreas; Sweedler, Jonathan V
2003-02-15
Time-resolved NMR spectroscopy is used to studychanges in protein conformation based on the elapsed time after a change in the solvent composition of a protein solution. The use of a micromixer and a continuous-flow method is described where the contents of two capillary flows are mixed rapidly, and then the NMR spectra of the combined flow are recorded at precise time points. The distance after mixing the two fluids and flow rates define the solvent-protein interaction time; this method allows the measurement of NMR spectra at precise mixing time points independent of spectral acquisition time. Integration of a micromixer and a microcoil NMR probe enables low-microliter volumes to be used without losing significant sensitivity in the NMR measurement. Ubiquitin, the model compound, changes its conformation from native to A-state at low pH and in 40% or higher methanol/water solvents. Proton NMR resonances of the His-68 and the Tyr-59 of ubiquitin are used to probe the conformational changes. Mixing ubiquitin and methanol solutions under low pH at microliter per minute flow rates yields both native and A-states. As the flow rate decreases, yielding longer reaction times, the population of the A-state increases. The micromixer-NMR system can probe reaction kinetics on a time scale of seconds.
Occupational Neurotoxic Diseases in Taiwan
Liu, Chi-Hung; Huang, Chu-Yun
2012-01-01
Occupational neurotoxic diseases have become increasingly common in Taiwan due to industrialization. Over the past 40 years, Taiwan has transformed from an agricultural society to an industrial society. The most common neurotoxic diseases also changed from organophosphate poisoning to heavy metal intoxication, and then to organic solvent and semiconductor agent poisoning. The nervous system is particularly vulnerable to toxic agents because of its high metabolic rate. Neurological manifestations may be transient or permanent, and may range from cognitive dysfunction, cerebellar ataxia, Parkinsonism, sensorimotor neuropathy and autonomic dysfunction to neuromuscular junction disorders. This study attempts to provide a review of the major outbreaks of occupational neurotoxins from 1968 to 2012. A total of 16 occupational neurotoxins, including organophosphates, toxic gases, heavy metals, organic solvents, and other toxic chemicals, were reviewed. Peer-reviewed articles related to the electrophysiology, neuroimaging, treatment and long-term follow up of these neurotoxic diseases were also obtained. The heavy metals involved consisted of lead, manganese, organic tin, mercury, arsenic, and thallium. The organic solvents included n-hexane, toluene, mixed solvents and carbon disulfide. Toxic gases such as carbon monoxide, and hydrogen sulfide were also included, along with toxic chemicals including polychlorinated biphenyls, tetramethylammonium hydroxide, organophosphates, and dimethylamine borane. In addition we attempted to correlate these events to the timeline of industrial development in Taiwan. By researching this topic, the hope is that it may help other developing countries to improve industrial hygiene and promote occupational safety and health care during the process of industrialization. PMID:23251841
Application of a mixed metal oxide catalyst to a metallic substrate
NASA Technical Reports Server (NTRS)
Sevener, Kathleen M. (Inventor); Lohner, Kevin A. (Inventor); Mays, Jeffrey A. (Inventor); Wisner, Daniel L. (Inventor)
2009-01-01
A method for applying a mixed metal oxide catalyst to a metallic substrate for the creation of a robust, high temperature catalyst system for use in decomposing propellants, particularly hydrogen peroxide propellants, for use in propulsion systems. The method begins by forming a prepared substrate material consisting of a metallic inner substrate and a bound layer of a noble metal intermediate. Alternatively, a bound ceramic coating, or frit, may be introduced between the metallic inner substrate and noble metal intermediate when the metallic substrate is oxidation resistant. A high-activity catalyst slurry is applied to the surface of the prepared substrate and dried to remove the organic solvent. The catalyst layer is then heat treated to bind the catalyst layer to the surface. The bound catalyst layer is then activated using an activation treatment and calcinations to form the high-activity catalyst system.
Synthesis, stabilization, and characterization of metal nanoparticles
NASA Astrophysics Data System (ADS)
White, Gregory Von, II
Wet chemical synthesis techniques offer the ability to control various nanoparticle characteristics including size, shape, dispersibility in both aqueous and organic solvents, and tailored surface chemistries appropriate for different applications. Large quantities of stabilizing ligands or surfactants are often required during synthesis to achieve these nanoparticle characteristics. Unfortunately, excess reaction byproducts, surfactants, and ligands remaining in solution after nanoparticle synthesis can impede application, and therefore post-synthesis purification must be employed. A liquid-liquid solvent/antisolvent pair (typically ethanol/toluene or ethanol/hexane for gold nanoparticles, GNPs) can be used to both purify and size-selectively fractionate hydrophobically modified nanoparticles. Alternatively, carbon dioxide may be used in place of a liquid antisolvent, a "green" approach, enabling both nanoparticle purification and size-selective fractionation while simultaneously eliminating mixed solvent waste and allowing solvent recycle. We have used small-angle neutron scattering (SANS) to investigate the ligand structure and composition response of alkanethiol modified gold and silver nanoparticles at varying anti-solvent conditions (CO2 or ethanol). The ligand lengths and ligand solvation for alkanethiol gold and silver NPs were found to decrease with increased antisolvent concentrations directly impacting their dispersibility in solution. Calculated Flory-Huggins interaction parameters support our SANS study for dodecanethiol dispersibility in the mixed organic solvents. This research has led to a greater understanding of the liquid-liquid precipitation process for metal nanoparticles, and provides critical results for future interaction energy modeling.
Chen, Raymond; Ilasi, Nicholas; Sekulic, Sonja S
2011-12-05
Molecular weight distribution is an important quality attribute for hypromellose acetate succinate (HPMCAS), a pharmaceutical excipient used in spray-dried dispersions. Our previous study showed that neither relative nor universal calibration method of size exclusion chromatography (SEC) works for HPMCAS polymers. We here report our effort to develop a SEC method using a mass sensitive multi angle laser light scattering detector (MALLS) to determine molecular weight distributions of HPMCAS polymers. A solvent screen study reveals that a mixed solvent (60:40%, v/v 50mM NaH(2)PO(4) with 0.1M NaNO(3) buffer: acetonitrile, pH* 8.0) is the best for HPMCAS-LF and MF sub-classes. Use of a mixed solvent creates a challenging condition for the method that uses refractive index detector. Therefore, we thoroughly evaluated the method performance and robustness. The mean weight average molecular weight of a polyethylene oxide standard has a 95% confidence interval of (28,443-28,793) g/mol vs. 28,700g/mol from the Certificate of Analysis. The relative standard deviations of average molecular weights for all polymers are 3-6%. These results and the Design of Experiments study demonstrate that the method is accurate and robust. Copyright © 2011 Elsevier B.V. All rights reserved.
Domain growth of carbon nanotubes assisted by dewetting of thin catalyst precursor films
NASA Astrophysics Data System (ADS)
Srivastava, Alok Kumar; Sachan, Priyanka; Samanta, Chandan; Mukhopadhyay, Kingsuk; Sharma, Ashutosh
2014-01-01
We explore self-organized dewetting of ultrathin films of a novel metal complex as a one step surface patterning method to create nanoislands of iron, using which spatially separated carbon nanostructures were synthesized. Dewetting of ultrathin metal complex films was induced by two different methods: liquid solvent exposure and thermal annealing to engender surface patterning. For thermal dewetting, thin films of the iron oleate complex were dewetted at high temperature. In the case of liquid solvent assisted dewetting, the metal complex, mixed with a sacrificial polymer (polystyrene) was spin coated as thin films (<40 nm) and then dewetted under an optimal solution mixture consisting of methyl ethyl ketone, acetone and water. The carrier polymer was then selectively removed to produce the iron metal islands. These metal islands were used for selective growth of discrete patches of multiwall CNTs and CNFs by a chemical vapor deposition (CVD) process. Solvent induced dewetting showed clear advantages over thermal dewetting owing to reduced size of catalyst domains formed by dewetting, an improved control over CNT growth as well as in its ability to immobilize the seed particles. The generic solution mediated dewetting and pattern generation in thin films of various catalytic precursors can thus be a powerful method for selective domain growth of a variety of functional nanomaterials.
Task 3 - Pyrolysis of Plastic Waste. Semiannual report, November 1, 1996--March 31, 1997
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ness, Robert O.; Aulich, Ted R.
1997-12-31
Over the last 50 years, the U.S. Department of Energy (DOE) has produced a wide variety of radioactive wastes from activities associated with nuclear defense and nuclear power generation. These wastes include low-level radioactive solid wastes, mixed wastes, and transuranic (TRU) wastes. A portion of these wastes consists of high- organic-content materials, such as resins, plastics, and other polymers; synthetic and natural rubbers; cellulosic-based materials; and oils, organic solvents, and chlorinated organic solvents. Many of these wastes contain hazardous and/or pyrophoric materials in addition to radioactive species. Physical forms of the waste include ion-exchange resins used to remove radioactive elementsmore » from nuclear reactor cooling water, lab equipment and tools (e.g., measurement and containment vessels, hoses, wrappings, equipment coverings and components, and countertops), oil products (e.g., vacuum pump and lubrication oils), bags and other storage containers (for liquids, solids, and gases), solvents, gloves, lab coats and anti-contamination clothing, and other items. Major polymer and chemical groups found in high-organic-content radioactive wastes include polyvinyl chloride (PVC), low-density polyethylene (LDPE), polypropylene (PP), Teflon(TM), polystyrene (PS), nylon, latex, polyethylene terephthalate (PET), vinyl, high-density polyethylene (HDPE), polycarbonate, nitriles, Tygon(R), butyl, and Tyvec(R).« less
Solvent extraction of Cu, Mo, V, and U from leach solutions of copper ore and flotation tailings.
Smolinski, Tomasz; Wawszczak, Danuta; Deptula, Andrzej; Lada, Wieslawa; Olczak, Tadeusz; Rogowski, Marcin; Pyszynska, Marta; Chmielewski, Andrzej Grzegorz
2017-01-01
Flotation tailings from copper production are deposits of copper and other valuable metals, such as Mo, V and U. New hydrometallurgical technologies are more economical and open up new possibilities for metal recovery. This work presents results of the study on the extraction of copper by mixed extractant consisting p -toluidine dissolved in toluene. The possibility of simultaneous liquid-liquid extraction of molybdenum and vanadium was examined. D2EHPA solutions was used as extractant, and recovery of individual elements compared for the representative samples of ore and copper flotation tailings. Radiometric methods were applied for process optimization.
Apparatus and methods for regeneration of precipitating solvent
Liu, Guohai; Vimalchand, Pannalal; Peng, Wan Wang; Bonsu, Alexander
2015-08-25
A regenerator that can handle rich loaded chemical solvent containing precipitated absorption reaction products is disclosed. The invention is particularly suitable for separating CO.sub.2 from large gas streams that are typical of power plant processes. The internally circulating liquid stream in the regenerator (ICLS regenerator) rapidly heats-up the in-coming rich solvent stream in a downcomer standpipe as well as decreases the overall concentration of CO.sub.2 in the mixed stream. Both these actions lead to dissolution of precipitates. Any remaining precipitate further dissolves as heat is transferred to the mixed solution with an inverted bayonet tube heat exchanger in the riser portion of the regenerator. The evolving CO.sub.2 bubbles in the riser portion of the regenerator lead to substantial gas hold-up and the large density difference between the solutions in the downcomer standpipe and riser portions promotes internal circulation of the liquid stream in the regenerator. As minor amounts of solvent components present in the exit gas stream are condensed and returned back to the regenerator, pure CO.sub.2 gas stream exits the disclosed regenerator and condenser system.
Gao, Song; Rupp, Erik; Bell, Suzanne; Willinger, Martin; Foley, Theresa; Barbaris, Brian; Sáez, A. Eduardo; Arnold, Robert G.; Betterton, Eric
2010-01-01
A new thermocatalytic method to destroy chlorinated solvents has been developed in the laboratory and tested in a pilot field study. The method employs a conventional Pt/Rh catalyst on a ceramic honeycomb. Reactions proceed at moderate temperatures in the simultaneous presence of oxygen and a reductant (mixed redox conditions) to minimize catalyst deactivation. In the laboratory, stable operation with high conversions (above 90% at residence times shorter than 1 s) for perchloroethylene (PCE) is achieved using hydrogen as the reductant. A molar ratio of H2/O2 = 2 yields maximum conversions; the temperature required to produce maximum conversions is sensitive to influent PCE concentration. When a homologous series of aliphatic alkanes is used to replace hydrogen as the reductant, the resultant mixed redox conditions also produce high PCE conversions. It appears that the dissociation energy of the C–H bond in the respective alkane molecule is a strong determinant of the activation energy, and therefore the reaction rate, for PCE conversion. This new method was employed in a pilot field study in Tucson, Arizona. The mixed redox system was operated semicontinuously for 240 days with no degradation of catalyst performance and complete destruction of PCE and trichloroethylene in a soil vapor extraction gas stream. Use of propane as the reductant significantly reduced operating costs. Mixed redox destruction of chlorinated solvents provides a potentially viable alternative to current soil and groundwater remediation technologies. PMID:18991945
A physiologically-based pharmacokinetic (PBPK) model incorporating mixed enzyme inhibition was used to determine mechanism of the metabolic interactions occurring during simultaneous inhalation exposures to the organic solvents chloroform and trichloroethylene (TCE).
V...
A physiologically-based pharmacokinetic (PBPK) model incorporating mixed enzyme inhibition was used to determine the mechanism of metabolic interactions occurring during simultaneous exposures to the organic solvents chloroform and trichloroethylene (TCE). Visualization-based se...
Synthesis of High-Impact Polystyrene Fibers using Electrospinning
NASA Astrophysics Data System (ADS)
Zulfi, A.; Fauzi, A.; Edikresnha, D.; Munir, M. M.; Khairurrijal
2017-05-01
Synthesis of fibers from waste high-impact polystyrene (HIPS) have been successfully done using electrospinning method. The HIPS solutions were made with a single solvent (DMF or d-limonene), a mixed solvent (d-limonene/DMF), and with the addition of acetone to the previously stated solvents. The effects of HIPS concentration, a mix of solvent, and the addition of acetone on the morphology and the diameter of fibers were observed. The morphological change from particles to fibers took place along with the increasing concentration of HIPS in d-limonene. For other precursor solutions using DMF solvent, bead free fibers could be obtained even at low levels. The average diameter of fibers increased along with the increase of the HIPS concentration in DMF. At the concentrations of 15, 20, 25, 30, and 35 wt.%, the average diameters were 1.85, 2.09, 2.66, 3.59, and 7.38 μm, respectively. For the precursor solutions with the combination of different solvents (HIPS/DMF), the existence of beads was influenced by the ratio of solvents. When the ratio of d-limonene/DMF was 75:25, the obtained beaded fibers had a relatively large amount of beads. At the ratio of 50:50, fewer beads were found. Bead-free fibers were finally reached when the ratio of HIPS / DMF was 25:75. The addition of acetone reduced the diameter of the produced fibers. However, too much addition of acetone caused the fibers to be wet. Additionally, the diameter became larger if the addition of acetone surpassed a certain amount of volume.
Nguyen, Nam-Trung; Huang, Xiaoyang
2006-06-01
Effective and fast mixing is important for many microfluidic applications. In many cases, mixing is limited by molecular diffusion due to constrains of the laminar flow in the microscale regime. According to scaling law, decreasing the mixing path can shorten the mixing time and enhance mixing quality. One of the techniques for reducing mixing path is sequential segmentation. This technique divides solvent and solute into segments in axial direction. The so-called Taylor-Aris dispersion can improve axial transport by three orders of magnitudes. The mixing path can be controlled by the switching frequency and the mean velocity of the flow. Mixing ratio can be controlled by pulse width modulation of the switching signal. This paper first presents a simple time-dependent one-dimensional analytical model for sequential segmentation. The model considers an arbitrary mixing ratio between solute and solvent as well as the axial Taylor-Aris dispersion. Next, a micromixer was designed and fabricated based on polymeric micromachining. The micromixer was formed by laminating four polymer layers. The layers are micro machined by a CO(2) laser. Switching of the fluid flows was realized by two piezoelectric valves. Mixing experiments were evaluated optically. The concentration profile along the mixing channel agrees qualitatively well with the analytical model. Furthermore, mixing results at different switching frequencies were investigated. Due to the dynamic behavior of the valves and the fluidic system, mixing quality decreases with increasing switching frequency.
Spectroscopic studies on Solvatochromism of mixed-chelate copper(II) complexes using MLR technique
NASA Astrophysics Data System (ADS)
Golchoubian, Hamid; Moayyedi, Golasa; Fazilati, Hakimeh
2012-01-01
Mixed-chelate copper(II) complexes with a general formula [Cu(acac)(diamine)]X where acac = acetylacetonate ion, diamine = N,N-dimethyl,N'-benzyl-1,2-diaminoethane and X = BPh 4-, PF 6-, ClO 4- and BF 4- have been prepared. The complexes were characterized on the basis of elemental analysis, molar conductance, UV-vis and IR spectroscopies. The complexes are solvatochromic and their solvatochromism were investigated by visible spectroscopy. All complexes demonstrated the positive solvatochromism and among the complexes [Cu(acac)(diamine)]BPh 4·H 2O showed the highest Δ νmax value. To explore the mechanism of interaction between solvent molecules and the complexes, different solvent parameters such as DN, AN, α and β using multiple linear regression (MLR) method were employed. The statistical results suggested that the DN parameter of the solvent plays a dominate contribution to the shift of the d-d absorption band of the complexes.
Reactivities of Precision Cleaning Solvents with Hypergolic Propellants
NASA Technical Reports Server (NTRS)
Davis, Dennis D.; Delgado, Rafael H.; Williams, James H.
1999-01-01
The reactivities of several selected halogenated precision cleaning solvents with hypergolic propellants has been determined by analysis of the rates of formation of halide ion decomposition products. The solvents were Asahiklin AK 225, Asahiklin AK 225 AES, HFE 7100, HFE 7100 DE, Vertrel XF, Vertrel MCA, Vertrel MCA Plus, 1,1,2-trichloro-1,2,2-trifluoroethane (CFC-113), and trans-1,2-dichloroethylene (DCE). The propellants were hydrazine (HZ), monomethylhydrazine (MMH), and mixed oxides of nitrogen (MON-3). The Vertrel solvents showed significant reactivity with HZ. All of the solvents except DCE exhibited significant reactivity with MMH, particularly HFE 7100 DE and CFC-113. HFE 7100 DE, Vertrel MCA, and Vertrel MCA Plus also showed significant reactivity with MON-3 oxidizer.
Kinetic Studies that Evaluate the Solvolytic Mechanisms of Allyl and Vinyl Chloroformate Esters
D’Souza, Malcolm J.; Givens, Aaron F.; Lorchak, Peter A.; Greenwood, Abigail E.; Gottschall, Stacey L.; Carter, Shannon E.; Kevill, Dennis N.
2013-01-01
At 25.0 °C the specific rates of solvolysis for allyl and vinyl chloroformates have been determined in a wide mix of pure and aqueous organic mixtures. In all the solvents studied, vinyl chloroformate was found to react significantly faster than allyl chloroformate. Multiple correlation analyses of these rates are completed using the extended (two-term) Grunwald-Winstein equation with incorporation of literature values for solvent nucleophilicity (NT) and solvent ionizing power (YCl). Both substrates were found to solvolyze by similar dual bimolecular carbonyl-addition and unimolecular ionization channels, each heavily dependent upon the solvents nucleophilicity and ionizing ability. PMID:23549265
Development of a non-solvent based test method for evaluating reclaimed asphalt pavement mixes.
DOT National Transportation Integrated Search
2004-09-01
The percent of reclaimed asphalt pavement (RAP) used in hot mix asphalt (HMA) is currently established either by arbitrarily setting maximum percent limits, or alternatively, by evaluating both the virgin and recovered binder properties. The first ap...
Communication: Cosolvency and cononsolvency explained in terms of a Flory-Huggins type theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dudowicz, Jacek, E-mail: dudowicz@jfi.uchicago.edu; Freed, Karl F.; Douglas, Jack F.
2015-10-07
Standard Flory-Huggins (FH) theory is utilized to describe the enigmatic cosolvency and cononsolvency phenomena for systems of polymers dissolved in mixed solvents. In particular, phase boundaries (specifically upper critical solution temperature spinodals) are calculated for solutions of homopolymers B in pure solvents and in binary mixtures of small molecule liquids A and C. The miscibility (or immiscibility) patterns for the ternary systems are classified in terms of the FH binary interaction parameters (χ{sub αβ}) and the ratio r = ϕ{sub A}/ϕ{sub C} of the concentrations ϕ{sub A} and ϕ{sub C} of the two solvents. The trends in miscibility are comparedmore » to those observed for blends of random copolymers (A{sub x}C{sub 1−x}) with homopolymers (B) and to those deduced for A/B/C solutions of polymers B in liquid mixtures of small molecules A and C that associate into polymeric clusters (A{sub p}C{sub q}){sub i}, (i = 1, 2, …, ∞). Although the classic FH theory is able to explain cosolvency and cononsolvency phenomena, the theory does not include a consideration of the mutual association of the solvent molecules and the competitive association between the solvent molecules and the polymer. These interactions can be incorporated in refinements of the FH theory, and the present paper provides a foundation for such extensions for modeling the rich thermodynamics of polymers in mixed solvents.« less
NASA Astrophysics Data System (ADS)
Kojima, H.; Yamada, A.; Okazaki, S.
2015-05-01
The intramolecular proton transfer reaction of malonaldehyde in neon solvent has been investigated by mixed quantum-classical molecular dynamics (QCMD) calculations and fully classical molecular dynamics (FCMD) calculations. Comparing these calculated results with those for malonaldehyde in water reported in Part I [A. Yamada, H. Kojima, and S. Okazaki, J. Chem. Phys. 141, 084509 (2014)], the solvent dependence of the reaction rate, the reaction mechanism involved, and the quantum effect therein have been investigated. With FCMD, the reaction rate in weakly interacting neon is lower than that in strongly interacting water. However, with QCMD, the order of the reaction rates is reversed. To investigate the mechanisms in detail, the reactions were categorized into three mechanisms: tunneling, thermal activation, and barrier vanishing. Then, the quantum and solvent effects were analyzed from the viewpoint of the reaction mechanism focusing on the shape of potential energy curve and its fluctuations. The higher reaction rate that was found for neon in QCMD compared with that found for water solvent arises from the tunneling reactions because of the nearly symmetric double-well shape of the potential curve in neon. The thermal activation and barrier vanishing reactions were also accelerated by the zero-point energy. The number of reactions based on these two mechanisms in water was greater than that in neon in both QCMD and FCMD because these reactions are dominated by the strength of solute-solvent interactions.
The continuing problem of youthful solvent abuse in New York State.
Frank, B; Marel, R; Schmeidler, J
1988-01-01
The major finding in the comparison of surveys of New York State secondary school students is the increasing use of solvents in this population over time. What in 1974-75 seemed to be limited use, by 1983 was found to be of widespread use. Very much like the survey of 1974-75 and the findings in the literature, age of first use together with the recentness of use appears to cluster in the preteens or the early teen years and tapers off during the teen years. Of interest is the fact that, along with the general upward rate of use over the surveys, those 18 years or older also show an upward trend. Some evidence in the recent literature indicates that adults, too, are found to have a problem with inhalants. Similar to the 1974-75 survey, but unlike findings in the literature, males and females continue to show similar rates of solvent use. Although males do generally surpass females in these use rates, the differences are usually not significant. In light of the literature on solvent abuse among Hispanic youth, the 1978 and 1983 surveys indicated mixed findings. Hispanic students in New York City consistently showed intermediate levels of solvent use; whereas, in 1983, Hispanic students residing in areas of the state outside of New York City showed excessive rates of solvent use. To the extent that the problem of acculturation among poor Hispanic youth may contribute to solvent abuse, an explanation may be found in the contrasts between living in New York City and living in the rest of the State. In New York City, which has an extremely large Hispanic population (about 20 percent of the population), feelings of isolation and cultural distance may not be so profound. In the rest of the state, where the proportion of Hispanics is quite small (about 2 percent of the population), these cultural problems may be more of a factor. Reasons, however, for the extraordinary increase in solvent use among those Hispanic youth, specifically between 1978 and 1983, are difficult to offer. Again, very similar to the 1974-75 findings, the 1978 and 1983 surveys found a strong relationship between solvent use and poor academic performance. Furthermore, the early findings relating to solvent use to a lack of family cohesion was supported by the 1978 survey where comparable information was gathered. The pattern of drug-using or polydrug use found among solvent users in the 1974-75 survey was underscored by the findings in the subsequent surveys.(ABSTRACT TRUNCATED AT 400 WORDS)
Enhanced removal of lead from contaminated soil by polyol-based deep eutectic solvents and saponin.
Mukhopadhyay, Soumyadeep; Mukherjee, Sumona; Hayyan, Adeeb; Hayyan, Maan; Hashim, Mohd Ali; Sen Gupta, Bhaskar
2016-11-01
Deep eutectic solvents (DESs) are a class of green solvents analogous to ionic liquids, but less costly and easier to prepare. The objective of this study is to remove lead (Pb) from a contaminated soil by using polyol based DESs mixed with a natural surfactant saponin for the first time. The DESs used in this study were prepared by mixing a quaternary ammonium salt choline chloride with polyols e.g. glycerol and ethylene glycol. A natural surfactant saponin obtained from soapnut fruit pericarp, was mixed with DESs to boost their efficiency. The DESs on their own did not perform satisfactory due to higher pH; however, they improved the performance of soapnut by up to 100%. Pb removal from contaminated soil using mixture of 40% DES-Gly and 1% saponin and mixture of 10% DES-Gly and 2% saponin were above 72% XRD and SEM studies did not detect any major corrosion in the soil texture. The environmental friendliness of both DESs and saponin and their affordable costs merit thorough investigation of their potential as soil washing agents. Copyright © 2016 Elsevier B.V. All rights reserved.
Code of Federal Regulations, 2010 CFR
2010-07-01
... gaseous HAP emitted from each solvent storage tank, piece of mix preparation equipment, coating operation..., piece of mix preparation equipment, coating operation, waste handling device, and condenser vent in... of this method is sufficient to meet the requirements of paragraph (c)(1) or (2) of this section. (4...
NASA Astrophysics Data System (ADS)
Singh, T. Sanjoy; Moyon, N. S.; Mitra, Sivaprasad
2009-08-01
Intramolecular charge transfer (ICT) behavior of trans-ethyl p-(dimethylamino) cinamate (EDAC) and 4-(dimethylamino) cinnamic acid (DMACA) were studied by steady state absorption and emission, picosecond time-resolved fluorescence experiments in various pure and mixed solvent systems. The large fluorescence spectral shift in more polar solvents indicates an efficient charge transfer from the donor site to the acceptor moiety in the excited state compared to the ground state. The energy for 0,0 transition ( ν0,0) for EDAC shows very good linear correlation with static solvent dielectric property; however, fluorescence emission maximum, stokes shift and fluorescence quantum yield show significant deviation from linearity in polar protic solvents, indicating a large contribution of solvent hydrogen bonding on the excited state relaxation mechanism. A quantitative estimation of contribution from different solvatochromic parameters was made using linear free energy relationship based on Kamlet-Taft equation.
Water-induced nanochannel networks in self-assembled block ionomers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mineart, Kenneth P.; Al-Mohsin, Heba A.; Lee, Byeongdu
2016-03-07
Block ionomers cast from solution exhibit solvent-templated morphologies that can be altered by solvent-vapor annealing. When cast from a mixed solvent, a midblock-sulfonated pentablock ion- omer self-assembles into spherical ionic microdomains that are loosely connected. Upon exposure to liquid water, nanoscale channels irreversibly develop between the microdomains due to swelling and form a continuous mesoscale network. We use electron tomography and real-time X-ray scat- tering to follow this transformation and show that the resultant morphology provides a highly effec- tive diffusive pathway.
Fingering dynamics on the adsorbed solute with influence of less viscous and strong sample solvent.
Rana, Chinar; Mishra, Manoranjan
2014-12-07
Viscous fingering is a hydrodynamic instability that sets in when a low viscous fluid displaces a high viscous fluid and creates complex patterns in porous media flows. Fundamental facets of the displacement process, such as the solute concentration distribution, spreading length, and the solute mixing, depend strongly on the type of pattern created by the unstable interface of the underlying fluids. In the present study, the frontal interface of the sample shows viscous fingering and the strong solvent causes the retention of the solute to depend on the solvent concentration. This work presents a computational investigation to explore the effect of the underlying physico-chemical phenomena, (i.e., the combined effects of solvent strength, retention, and viscous fingering) on the dynamics of the adsorbed solute. A linear adsorption isotherm has been assumed between the mobile and stationary phases of the solute. We carried out the numerical simulations by considering a rectangular Hele-Shaw cell as an analog to 2D-porous media containing a three component system (displacing fluid, sample solvent, solute) to map out the evolution of the solute concentration. We observed that viscous fingering at the frontal interface of the strong sample solvent intensifies the band broadening of the solute zone. Also notable increase in the spreading dynamics of the solute has been observed for less viscous and strong sample solvent as compared to the high viscous sample slices or in the pure dispersive case. On the contrary, the solute gets intensively mixed at early times for more viscous sample in comparison to less viscous one. The results of the simulations are in qualitative agreement with the behavior observed in the liquid chromatography column experiments.
Concurrent changes in aggregation and swelling of coal particles in solvents
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nishioka, M.
1995-12-31
A new method of coal swelling has been developed tinder the condition of low coal concentrations with continuous mixing of coal and solvent. The change in particle size distributions by a laser scattering procedure was used for the evaluation of coal swelling. Particle size distributions in good and poor solvents were nearly equal, but reversibly changed in good solvents from time to time. The effects of solubles and coal concentrations on the distributions were small. It was concluded that aggregate d coal particles disaggregate in good solvents, and that an increase in the particle size distribution due to swelling inmore » good solvents are compensated by a decrease in the particle size due to disaggregation. Therefore, the behavior of coal particles in solvents is controlled by aggregation in addition to coal swelling. This implies that an increase in the particle size due to coal swelling in actual processes is not so large as expected by the results obtained from the conventional coal swelling methods.« less
Several newer strategies, such as solvent-free (dry media), solid-supported with and without microwave (MW) irradiation, and mechanochemical mixing (grinding); and the use of room temperature ionic liquids, supercritical carbon dioxide, and water as reaction media that can be com...
Complexation and phase evolution at dimethylformamide-Ag(111) interfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song, Wentao; Leung, Kevin; Shao, Qian
The interaction of solvent molecules with metallic surfaces impacts many interfacial chemical processes. We investigate the chemical and structure evolution that follows adsorption of the polar solvent dimethylformamide (DMF) on Ag(111). An Ag(DMF) 2 coordination complex forms spontaneously by DMF etching of Ag(111), yielding mixed films of the complexes and DMF. Utilizing ultrahigh vacuum scanning tunneling microscopy (UHV-STM), in combination with X-ray photoelectron spectroscopy (XPS) and density functional theory (DFT) computations, we map monolayer phases from the 2-D gas regime, consisting of a binary mixture of DMF and Ag(DMF) 2, through the saturation monolayer limit, in which these two chemicalmore » species phase separate into ordered islands. Structural models for the near-square DMF phase and the chain-like Ag(DMF) 2 phase are presented and supported by DFT computation. Interface evolution is summarized in a surface pressure-composition phase diagram, which allows structure prediction over arbitrary experimental conditions. In conclusion, this work reveals new surface coordination chemistry for an important electrolyte-electrode system, and illustrates how surface pressure can be used to tune monolayer phases.« less
Complexation and phase evolution at dimethylformamide-Ag(111) interfaces
Song, Wentao; Leung, Kevin; Shao, Qian; ...
2016-09-15
The interaction of solvent molecules with metallic surfaces impacts many interfacial chemical processes. We investigate the chemical and structure evolution that follows adsorption of the polar solvent dimethylformamide (DMF) on Ag(111). An Ag(DMF) 2 coordination complex forms spontaneously by DMF etching of Ag(111), yielding mixed films of the complexes and DMF. Utilizing ultrahigh vacuum scanning tunneling microscopy (UHV-STM), in combination with X-ray photoelectron spectroscopy (XPS) and density functional theory (DFT) computations, we map monolayer phases from the 2-D gas regime, consisting of a binary mixture of DMF and Ag(DMF) 2, through the saturation monolayer limit, in which these two chemicalmore » species phase separate into ordered islands. Structural models for the near-square DMF phase and the chain-like Ag(DMF) 2 phase are presented and supported by DFT computation. Interface evolution is summarized in a surface pressure-composition phase diagram, which allows structure prediction over arbitrary experimental conditions. In conclusion, this work reveals new surface coordination chemistry for an important electrolyte-electrode system, and illustrates how surface pressure can be used to tune monolayer phases.« less
Ruiz, Cristóbal Carnero; Molina-Bolívar, José Antonio; Hierrezuelo, José Manuel; Liger, Esperanza
2013-01-01
The effect of the addition of ethylene glycol (EG) on the interfacial adsorption and micellar properties of the alkylglucoside surfactant n-octyl-β-d-thioglucopyranoside (OTG) has been investigated. Critical micelle concentrations (cmc) upon EG addition were obtained by both surface tension measurements and the pyrene 1:3 ratio method. A systematic increase in the cmc induced by the presence of the co-solvent was observed. This behavior was attributed to a reduction in the cohesive energy of the mixed solvent with respect to pure water, which favors an increase in the solubility of the surfactant with EG content. Static light scattering measurements revealed a decrease in the mean aggregation number of the OTG micelles with EG addition. Moreover, dynamic light scattering data showed that the effect of the surfactant concentration on micellar size is also controlled by the content of the co-solvent in the system. Finally, the effect of EG addition on the microstructure of OTG micelles was investigated using the hydrophobic probe Coumarin 153 (C153). Time-resolved fluorescence anisotropy decay curves of the probe solubilized in micelles were analyzed using the two-step model. The results indicate a slight reduction of the average reorientation time of the probe molecule with increasing EG in the mixed solvent system, thereby suggesting a lesser compactness induced by the presence of the co-solvent. PMID:23385232
Ruiz, Cristóbal Carnero; Molina-Bolívar, José Antonio; Hierrezuelo, José Manuel; Liger, Esperanza
2013-02-05
The effect of the addition of ethylene glycol (EG) on the interfacial adsorption and micellar properties of the alkylglucoside surfactant n-octyl-β-D-thioglucopyranoside (OTG) has been investigated. Critical micelle concentrations (cmc) upon EG addition were obtained by both surface tension measurements and the pyrene 1:3 ratio method. A systematic increase in the cmc induced by the presence of the co-solvent was observed. This behavior was attributed to a reduction in the cohesive energy of the mixed solvent with respect to pure water, which favors an increase in the solubility of the surfactant with EG content. Static light scattering measurements revealed a decrease in the mean aggregation number of the OTG micelles with EG addition. Moreover, dynamic light scattering data showed that the effect of the surfactant concentration on micellar size is also controlled by the content of the co-solvent in the system. Finally, the effect of EG addition on the microstructure of OTG micelles was investigated using the hydrophobic probe Coumarin 153 (C153). Time-resolved fluorescence anisotropy decay curves of the probe solubilized in micelles were analyzed using the two-step model. The results indicate a slight reduction of the average reorientation time of the probe molecule with increasing EG in the mixed solvent system, thereby suggesting a lesser compactness induced by the presence of the co-solvent.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hazen, T.C.; Looney, B.B.; Fliermans, C.B.
1994-06-01
The US Department of Energy, Office of Technology Development, has been sponsoring full-scale environmental restoration technology demonstrations for the past 4 years. The Savannah River Site Integrated Demonstration focuses on ``Clean-up of Soils ad Groundwater Contaminated with Chlorinated VOCs.`` Several laboratories including our own had demonstrated the ability of methanotrophic bacteria to completely degrade or mineralize chlorinated solvents, and these bacteria were naturally found in soil and aquifer material. Thus the test consisted of injection of methane mixed with air into the contaminated aquifer via a horizontal well and extraction from the vadose zone via a parallel horizontal well.
SCINTILLATOR COMPOSITION FOR COUNTERS AND METHOD OF MAKING
Buck, W.L.; Swank, R.K.
1958-02-25
This patent deals with a new composition for plastic scintillators and the method of making them. This is accomplished by mixing a solvent, selected from the group consisting of styrene, methylstyrene where the methyl group is attached to the ring, and p-vinylbiphenyl with p-terphenyl as a primary fluor. Marked improvement in the fluorescent properties of this scintillator composition is obtained by incorporating as a second fluor, a small amount of a highly conjugated hydrocarbon having four phenyl groups such as quaterphenyl or 1,1,4,4- tetraphenyl-1,3-butadiene. It is advisable to use very pure monomers in this composition, and to carry out its preparation in the absence of air.
Freitas, S; Walz, A; Merkle, H P; Gander, B
2003-01-01
The potential of a static micromixer for the production of protein-loaded biodegradable polymeric microspheres by a modified solvent extraction process was examined. The mixer consists of an array of microchannels and features a simple set-up, consumes only very small space, lacks moving parts and offers simple control of the microsphere size. Scale-up from lab bench to industrial production is easily feasible through parallel installation of a sufficient number of micromixers ('number-up'). Poly(lactic-co-glycolic acid) microspheres loaded with a model protein, bovine serum albumin (BSA), were prepared. The influence of various process and formulation parameters on the characteristics of the microspheres was examined with special focus on particle size distribution. Microspheres with monomodal size distributions having mean diameters of 5-30 micro m were produced with excellent reproducibility. Particle size distributions were largely unaffected by polymer solution concentration, polymer type and nominal BSA load, but depended on the polymer solvent. Moreover, particle mean diameters could be varied in a considerable range by modulating the flow rates of the mixed fluids. BSA encapsulation efficiencies were mostly in the region of 75-85% and product yields ranged from 90-100%. Because of its simple set-up and its suitability for continuous production, static micromixing is suggested for the automated and aseptic production of protein-loaded microspheres.
Towards a comprehensive model for the electronic and vibrational structure of the Creutz-Taube ion.
Reimers, Jeffrey R; Wallace, Brett B; Hush, Noel S
2008-01-13
Since the synthesis of the Creutz-Taube ion, the nature of its charge localization has been of immense scientific interest, this molecule providing a model system for the understanding of the operation of biological photosynthetic and electron-transfer processes. However, recent work has shown that its nature remains an open question. Many systems of this type, including photosynthetic reaction centres, are of current research interest, and thereby the Creutz-Taube ion provides an important chemical paradigm: the key point of interest is the details of how such molecules behave. We lay the groundwork for the construction of a comprehensive model for its chemical and spectroscopic properties. Advances are described in some of the required areas including: simulation of electronic absorption spectra; quantitative depiction of the large interaction of the ion's electronic description with solvent motions; and the physics of Ru-NH3 spectator-mode vibrations. We show that details of the solvent electron-phonon coupling are critical in the interpretation of the spectator-mode vibrations, as these strongly mix with solvent motions when 0.75<2J/lambda<1. In this regime, a double-well potential exists which does not support localized zero-point vibration, and many observed properties of the Creutz-Taube ion are shown to be consistent with the hypothesis that the ion has this character.
Microporous plastic member such as a battery separator and process for making same
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sundberg, E.G.; Campbell, G.A.; Doucette, E.I.
A process for producing a microporous plastic member useful as a battery separator comprises the following operations: forming a coherent dough by mixing a vinyl chloride resin with a plasticizing amount of a first solvent and with finely divided particles of a filler which contains volatilizable releasable constituent by heating and which shrinks substantially and irreversibly upon release of the volatilizable constituent, an example of which is hydrated silica; forming the solvent-containing dough into a shaped member; extracting the first solvent from the member before any substantial evaporation of solvent occurs by contacting it with a second solvent in amore » liquid bath at a temperature substantially below the boiling point of any liquid present, the second solvent being one which is capable of dissolving the first solvent without dissolving the resin and the filler, thereby deplasticizing the member by extractively removing the first solvent from the member; and thereafter heating the member at an elevated temperature but below the softening point of the resin until the filler is shrunk within the member by release of its volatilizable content. 10 claims.« less
Duaij, Omar K; Alghamdi, Ali; Al-Saigh, Zeki Y
2013-05-24
Inverse gas chromatography, IGC, was applied to characterize conducting polypyrrole chloride (PPyCl) using twenty three solvents. IGC is able to reveal the change in the morphology, the strength of solvent-PPyCl interactions, thermodynamics parameters (χ12, Ω1(∞)), solvent and polymer solubility parameters, and molar heats of sorption, mixing and evaporation (ΔH1(s), ΔH1(∞), ΔH1(v)). The following solvents showed stronger interactions than others; yet, none of these solvents are good solvents for PPyCl: dodecane among the alkane family, tetrahydrofuran and methyl ethyl ketone among the oxy and keto group, dichloromethane among the chlorinated group up to 120°C and chloroform at 180°C, and toluene among the cyclic and aromatic group. Overall, the groups showed higher affinities to PPyCl are: acetates, oxy and cyclic, and chlorinated groups. Comprehensive solvents and PPyCl solubility parameters are obtained. The latter showed that PPyCl is not soluble in any solvent used. Copyright © 2013 Elsevier B.V. All rights reserved.
Comparison Pore Aggregate Levels After Extraction With Solvents Pertamax Plus And Gasoline
NASA Astrophysics Data System (ADS)
Anggraini, Muthia
2017-12-01
Loss of asphalt content extraction results become problems in Field Work For implementing parties. The use of solvents with high octane (pertamax plus) for the extraction, dissolving the asphalt more than gasoline. By comparing the levels of aggregate pores after using solvent extraction pertamax plus compared to gasoline could answer that pertamax plus more solvent dissolves the bitumen compared to gasoline. This study aims to obtain comparative levels of porous aggregate mix AC-WC after using solvent extraction pertamax plus compared to gasoline. This study uses the aggregate that has been extracted from the production of asphalt mixtures, when finisher and after compaction field. The method used is the assay of coarse and fine aggregate pores, extraction of bitumen content to separate the aggregate with bitumen. Results of testing the total absorption after extraction using a solvent preta max plus in the production of asphalt mixtures 0.80%, while gasoline solvent 0.67% deviation occurs 0.13%. In the finisher after the solvent extraction preta max plus 0.77%, while 0.67% gasoline solvent occurs deviation of 0.1%. At the core after extraction and solvent pertamax plus 0.71%, while gasoline solvent 0.60% 0.11% deviation occurs. The total water absorption after extraction using a solvent pertamax plus greater than gasoline. This proves that the solvent dissolves pertamax plus more asphalt than gasoline.
Bevilaqua, Tharly; da Silva, Domingas C; Machado, Vanderlei G
2004-03-01
The ET polarity values of 4-[(1-methyl-4(1H)-pyridinylidene)-ethylidene]-2,5-cyclohexadien-1-one (Brooker's merocyanine) were collected in mixed-solvent systems comprising a formamide [N,N-dimethylformamide (DMF), N-methylformamide (NMF) or formamide (FA)] and a hydroxylic (water, methanol, ethanol, propan-2-ol or butan-1-ol) solvent. Binary mixtures involving DMF and the other formamides (NMF and FA) as well as NMF and FA were also studied. These data were employed in the investigation of the preferential solvation (PS) of the probe. Each solvent system was analyzed in terms of both solute-solvent and solvent-solvent interactions. These latter interactions were responsible for the synergism observed in many binary mixtures. This synergistic behaviour was observed for DMF-propan-2-ol, DMF-butan-1-ol, FA-methanol, FA-ethanol and for the mixtures of the alcohols with NMF. All data were successfully fitted to a model based on solvent-exchange equilibria, which allowed the separation of the different contributions of the solvent species in the solvation shell of the dye. The results suggest that both hydrogen bonding and solvophobic interactions contribute to the formation of the solvent complexes responsible for the observed synergistic effects in the PS of the dye.
Kwak, Kyungwon; Rosenfeld, Daniel E; Chung, Jean K; Fayer, Michael D
2008-11-06
Hydrogen bonds formed between C-H and various hydrogen bond acceptors play important roles in the structure of proteins and organic crystals, and the mechanisms of C-H bond cleavage reactions. Chloroform, a C-H hydrogen bond donor, can form weak hydrogen-bonded complexes with acetone and with dimethylsulfoxide (DMSO). When chloroform is dissolved in a mixed solvent consisting of acetone and DMSO, both types of hydrogen-bonded complexes exist. The two complexes, chloroform-acetone and chloroform-DMSO, are in equilibrium, and they rapidly interconvert by chloroform exchanging hydrogen bond acceptors. This fast hydrogen bond acceptor substitution reaction is probed using ultrafast two-dimensional infrared (2D-IR) vibrational echo chemical exchange spectroscopy. Deuterated chloroform is used in the experiments, and the 2D-IR spectrum of the C-D stretching mode is measured. The chemical exchange of the chloroform hydrogen bonding partners is tracked by observing the time-dependent growth of off-diagonal peaks in the 2D-IR spectra. The measured substitution rate is 1/30 ps for an acetone molecule to replace a DMSO molecule in a chloroform-DMSO complex and 1/45 ps for a DMSO molecule to replace an acetone molecule in a chloroform-acetone complex. Free chloroform exists in the mixed solvent, and it acts as a reactive intermediate in the substitution reaction, analogous to a SN1 type reaction. From the measured rates and the equilibrium concentrations of acetone and DMSO, the dissociation rates for the chloroform-DMSO and chloroform-acetone complexes are found to be 1/24 ps and 1/5.5 ps, respectively. The difference between the measured rate for the complete substitution reaction and the rate for complex dissociation corresponds to the diffusion limited rate. The estimated diffusion limited rate agrees well with the result from a Smoluchowski treatment of diffusive reactions.
Optimization Review: Lockwood Operable Unit 1 - Beall Source Area, Billings, Montana
The Lockwood Solvent Groundwater Plume Site (LSGPS) consists of two operable units (OUs) and is located on the outskirts of Billings, Montana in EPA Region 8. OU1 consists of contaminated soils and a chlorinated solvent groundwater plume associated with...
Liquid-Phase Epitaxial Growth of ZnS, ZnSe and Their Mixed Compounds Using Te as Solvent
NASA Astrophysics Data System (ADS)
Nakamura, Hiroshi; Aoki, Masaharu
1981-01-01
Epitaxial layers of ZnS, ZnSe and their mixed compounds were grown on ZnS substrates by the liquid-phase epitaxial growth (LPE) method using Te as the solvent. The open-tube slide-boat technique was used, and a suitable starting temperature for growth was found to be 850°C for ZnS and 700-800°C for ZnSe. The ZnS epitaxial layers grown on {111}A and {111}B oriented ZnS substrates were thin (˜1 μm) and smooth, had low, uniform Te concentrations (˜0.1 at.%) and were highly luminescent. The ZnSe epitaxial layers were relatively thick (10-30 μm) and had fairly high Te concentrations (a few at.%). Various mixed compound ZnS1-xSex were also grown on ZnS substrates.
Ultrasmooth Perovskite Film via Mixed Anti-Solvent Strategy with Improved Efficiency.
Yu, Yu; Yang, Songwang; Lei, Lei; Cao, Qipeng; Shao, Jun; Zhang, Sheng; Liu, Yan
2017-02-01
Most antisolvents employed in previous research were miscible with perovskite precursor solution. They always led to fast formation of perovskite even if the intermediate stage existed, which was not beneficial to obtain high quality perovskite films and made the formation process less controllable. In this work, a novel ethyl ether/n-hexane mixed antisolvent (MAS) was used to achieve high nucleation density and slow down the formation process of perovskite, producing films with improved orientation of grains and ultrasmooth surfaces. These high quality films exhibited efficient charge transport at the interface of perovskite/hole transport material and perovskite solar cells based on these films showed greatly improved performance with the best power conversion efficiency of 17.08%. This work also proposed a selection principle of MAS and showed that solvent engineering by designing the mixed antisolvent system can lead to the fabrication of high-performance perovskite solar cells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kojima, H.; Yamada, A.; Okazaki, S., E-mail: okazaki@apchem.nagoya-u.ac.jp
2015-05-07
The intramolecular proton transfer reaction of malonaldehyde in neon solvent has been investigated by mixed quantum–classical molecular dynamics (QCMD) calculations and fully classical molecular dynamics (FCMD) calculations. Comparing these calculated results with those for malonaldehyde in water reported in Part I [A. Yamada, H. Kojima, and S. Okazaki, J. Chem. Phys. 141, 084509 (2014)], the solvent dependence of the reaction rate, the reaction mechanism involved, and the quantum effect therein have been investigated. With FCMD, the reaction rate in weakly interacting neon is lower than that in strongly interacting water. However, with QCMD, the order of the reaction rates ismore » reversed. To investigate the mechanisms in detail, the reactions were categorized into three mechanisms: tunneling, thermal activation, and barrier vanishing. Then, the quantum and solvent effects were analyzed from the viewpoint of the reaction mechanism focusing on the shape of potential energy curve and its fluctuations. The higher reaction rate that was found for neon in QCMD compared with that found for water solvent arises from the tunneling reactions because of the nearly symmetric double-well shape of the potential curve in neon. The thermal activation and barrier vanishing reactions were also accelerated by the zero-point energy. The number of reactions based on these two mechanisms in water was greater than that in neon in both QCMD and FCMD because these reactions are dominated by the strength of solute–solvent interactions.« less
Competitive lithium solvation of linear and cyclic carbonates from quantum chemistry
Kent, Paul R. C.; Ganesh, Panchapakesan; Borodin, Oleg; ...
2015-11-17
The composition of the lithium cation (Li+) solvation shell in mixed linear and cyclic carbonate-based electrolytes has been re-examined using Born–Oppenheimer molecular dynamics (BOMD) as a function of salt concentration and cluster calculations with ethylene carbonate:dimethyl carbonate (EC:DMC)–LiPF 6 as a model system. A coordination preference for EC over DMC to a Li+ was found at low salt concentrations, while a slightly higher preference for DMC over EC was found at high salt concentrations. Analysis of the relative binding energies of the (EC) n(DMC) m–Li+ and (EC) n(DMC) m–LiPF 6 solvates in the gas-phase and for an implicit solvent (asmore » a function of the solvent dielectric constant) indicated that the DMC-containing Li+ solvates were stabilized relative to (EC 4)–Li+ and (EC) 3–LiPF 6 by immersing them in the implicit solvent. Such stabilization was more pronounced in the implicit solvents with a high dielectric constant. Results from previous Raman and IR experiments were reanalyzed and reconciled by correcting them for changes of the Raman activities, IR intensities and band shifts for the solvents which occur upon Li+ coordination. After these correction factors were applied to the results of BOMD simulations, the composition of the Li+ solvation shell from the BOMD simulations was found to agree well with the solvation numbers extracted from Raman experiments. Finally, the mechanism of the Li+ diffusion in the dilute (EC:DMC)LiPF 6 mixed solvent electrolyte was studied using the BOMD simulations.« less
First-principles study of solvent-solute mixed dumbbells in body-centered-cubic tungsten crystals
NASA Astrophysics Data System (ADS)
Suzudo, Tomoaki; Tsuru, Tomohito; Hasegawa, Akira
2018-07-01
Tungsten (W) is considered as a promising candidate for plasma-facing materials for future nuclear fusion devices, and selecting optimal alloying constituents is a critical issue to improve radiation resistance of the W alloys as well as to improve their mechanical properties. We conducted in the current study a series of first-principles calculations for investigating solvent-solute mixed dumbbells in W crystals. The results suggested that titanium (Ti), vanadium (V), and chromium (Cr) are favorable as solutes for W alloys from irradiation-effect perspectives because these elements are expected to promote vacancy-interstitial recombination without causing radiation-induced precipitation that reduces ductility of irradiated materials.
Method for efficient recovery of high-purity polycarbonates from electronic waste.
Weeden, George S; Soepriatna, Nicholas H; Wang, Nien-Hwa Linda
2015-02-17
More than one million tons of polycarbonates from waste electrical and electronic equipment are consigned to landfills at an increasing rate of 3-5% per year. Recycling the polymer waste should have a major environmental impact. Pure solvents cannot be used to selectively extract polycarbonates from mixtures of polymers with similar properties. In this study, selective mixed solvents are found using guidelines from Hansen solubility parameters, gradient polymer elution chromatography, and solubility tests. A room-temperature sequential extraction process using two mixed solvents is developed to recover polycarbonates with high yield (>95%) and a similar purity and molecular weight distribution as virgin polycarbonates. The estimated cost of recovery is less than 30% of the cost of producing virgin polycarbonates from petroleum. This method would potentially reduce raw materials from petroleum, use 84% less energy, reduce emission by 1-6 tons of CO2 per ton of polycarbonates, and reduce polymer accumulation in landfills and associated environmental hazards.
Why does high pressure destroy co-non-solvency of PNIPAm in aqueous methanol?
de Oliveira, Tiago E; Netz, Paulo A; Mukherji, Debashish; Kremer, Kurt
2015-11-28
It is well known that poly(N-isopropylacrylamide) (PNIPAm) exhibits an interesting, yet puzzling, phenomenon of co-non-solvency. Co-non-solvency occurs when two competing good solvents for PNIPAm, such as water and alcohol, are mixed together. As a result, the same PNIPAm collapses within intermediate mixing ratios. This complex conformational transition is driven by preferential binding of methanol with PNIPAm. Interestingly, co-non-solvency can be destroyed when applying high hydrostatic pressures. In this work, using a large scale molecular dynamics simulation employing high pressures, we propose a microscopic picture behind the suppression of the co-non-solvency phenomenon. Based on thermodynamic and structural analysis, our results suggest that the preferential binding of methanol with PNIPAm gets partially lost at high pressures, making the background fluid reasonably homogeneous for the polymer. This is consistent with the hypothesis that the co-non-solvency phenomenon is driven by preferential binding and is not based on depletion effects.
Tailoring the morphology of electrodeposited ZnO and its photoluminescence properties
NASA Astrophysics Data System (ADS)
Cui, H.; Mollar, M.; Marí, B.
2011-01-01
High density ZnO columnar films with well-aligned and well-perpendicular to the surface of film were electrodeposited on ITO substrates by using an electrolyte consisting of a mix of water and organic solvent namely dimethylsulfoxide (DMSO). The effect of mixing ratio of water and DMSO on the growth of film has been examined critically. SEM images have shown that well-oriented ZnO quasi-nano columns were formed perpendicular to the substrate. At the same time we found there are three kinds of competitions for growth of ZnO crystalmorphology i.e. column, rod and needle like. The needle like morphology has high density with well-aligned structure. The reasons for the growth of films of different morphology and their photoluminescence (PL) properties have been presented and discussed. It has been found that the three-dimensional (3D) ordered ZnO structure exhibits high intensity PL band which may shift their position and intensity with the varying conditions of depositions.
Role of oxygen adsorption in modification of optical and surface electronic properties of MoS2
NASA Astrophysics Data System (ADS)
Shakya, Jyoti; Kumar, Sanjeev; Mohanty, Tanuja
2018-04-01
In this work, the effect of surface oxidation of molybdenum disulfide (MoS2) nanosheets induced by hydrogen peroxide (H2O2) on the work function and bandgap of MoS2 has been investigated for tuning its optical and electronic properties. Transmission electron microscopy studies reveal the existence of varying morphologies of few layers of MoS2 as well as quantum dots due to the different absorbing effects of two mixed solvents on MoS2. The X-ray diffraction, electron paramagnetic resonance, and Raman studies indicate the presence of physical as well as chemical adsorption of oxygen atoms in MoS2. The photoluminescence spectra show the tuning of bandgap arising from the passivation of trapping centers leading to radiative recombination of excitons. The value of work function obtained from scanning Kelvin probe microscopy of MoS2 in mixed solvents of H2O2 and N-methyl-2-pyrrolidone increases with an increase in the concentration of H2O2. A linear relationship could be established between H2O2 content in mixed solvent and measured values of work function. This work gives the alternative route towards the commercial use of defect engineered transition metal dichalcogenide materials in diverse fields.
NASA Astrophysics Data System (ADS)
de Azevedo Jacqueline, Resende; Fabienne, Espitalier; Jean-Jacques, Letourneau; Inês, Ré Maria
2017-08-01
LASSBio-294 (3,4-methylenedioxybenzoyl-2-thienylhydrazon) is a poorly soluble drug which has been proposed to have major advantages over other cardiotonic drugs. Poorly water soluble drugs present limited bioavailability due to their low solubility and dissolution rate. An antisolvent crystallization processing can improve the dissolution rate by decreasing the crystals particle size. However, LASSBio-294 is also poorly soluble in organic solvents and this operation is limited. In order to open new perspectives to improve dissolution rate, this work has investigated LASSBio-294 in terms of its antisolvent crystallization in 1-ethyl-3-methylimidazolium methyl phosphonate [emim][CH3O(H)PO2] as solvent and water as antisolvent. Two modes of mixing are tested in stirred vessel with different pre-mixers (Roughton or T-mixers) in order to investigate the mixing effect on the crystal properties (crystalline structure, particle size distribution, residual solvent and in vitro dissolution rate). Smaller drug particles with unchanged crystalline structure were obtained. Despite the decrease of the elementary particles size, the recrystallized particles did not achieve a better dissolution profile. However, this study was able to highlight a certain number of findings such as the impact of the hydrodynamic conditions on the crystals formation and the presence of a gel phase limiting the dissolution rate.
Biodiesel production by direct transesterification of microalgal biomass with co-solvent.
Zhang, Yan; Li, Ya; Zhang, Xu; Tan, Tianwei
2015-11-01
In this study, a direct transesterification process using 75% ethanol and co-solvent was studied to reduce the energy consumption of lipid extraction process and improve the conversion yield of the microalgae biodiesel. The addition of a certain amount of co-solvent (n-hexane is most preferable) was required for the direct transesterification of microalgae biomass. With the optimal reaction condition of n-hexane to 75% ethanol volume ratio 1:2, mixed solvent dosage 6.0mL, reaction temperature 90°C, reaction time 2.0h and catalyst volume 0.6mL, the direct transesterification process of microalgal biomass resulted in a high conversion yield up to 90.02±0.55wt.%. Copyright © 2015 Elsevier Ltd. All rights reserved.
Mn(II)-coordinated Fluorescent Carbon Dots: Preparation and Discrimination of Organic Solvents
NASA Astrophysics Data System (ADS)
Wang, Yuru; Wang, Tianren; Chen, Xi; Xu, Yang; Li, Huanrong
2018-04-01
Herein, we prepared a Mn(II)-coordinated carbon dots (CDs) with fluorescence and MRI (magnetic resonance imaging) bimodal properties by a one-pot solvothermal method and separated via silica column chromatography. The quantum yield of the CDs increased greatly from 2.27% to 6.75% with increase of Mn(II) doping, meanwhile the CDs exhibited a higher MR activity (7.28 mM-1s-1) than that of commercial Gd-DTPA (4.63 mM-1s-1). In addition, white light emitting CDs were obtained by mixing the different types of CDs. Notably, these CDs exhibited different fluorescence emissions in different organic solvents and could be used to discriminate organic solvents based on the polarity and protonation of the solvents.
Ultrasonic degradation of butadiene, styrene and their copolymers.
Sathiskumar, P S; Madras, Giridhar
2012-05-01
Ultrasonic degradation of commercially important polymers, styrene-butadiene (SBR) rubber, acrylonitrile-butadiene (NBR) rubber, styrene-acrylonitrile (SAN), polybutadiene rubber and polystyrene were investigated. The molecular weight distributions were measured using gel permeation chromatography (GPC). A model based on continuous distribution kinetics approach was used to study the time evolution of molecular weight distribution for these polymers during degradation. The effect of solvent properties and ultrasound intensity on the degradation of SBR rubber was investigated using different pure solvents and mixed solvents of varying volatility and different ultrasonic intensities. Copyright © 2011 Elsevier B.V. All rights reserved.
Nancy L. Rappaport; Renè G. Pieper
1982-01-01
Natural pyrethrins and nonhalogenated synthetic pyrethroids are highly active and safe insecticides but are not photostable. A stabilized formulation was developed based on 1% of mixed diarly-p-phenylenediamines in an aromatic solvent. The synthetic pyrethroids bioethanomethrin and resmethrin as well as natural pyrethrins were protected from degradation when exposed...
NASA Astrophysics Data System (ADS)
Stanculescu, A.; Rasoga, O.; Socol, M.; Vacareanu, L.; Grigoras, M.; Socol, G.; Stanculescu, F.; Breazu, C.; Matei, E.; Preda, N.; Girtan, M.
2017-09-01
Mixed layers of azomethine oligomers containing 2,5-diamino-3,4-dicyanothiophene as central unit and triphenylamine (LV5) or carbazol (LV4) at both ends as donor and fullerene derivative, [6,6]-phenyl-C61 butyric acid butyl ester ([C60]PCB-C4) as acceptor, have been prepared by Matrix Assisted Pulsed Laser Evaporation (MAPLE) on glass/ITO and Si substrates. The effect of weight ratio between donor and acceptor (1:1; 1:2) and solvent type (chloroform, dimethylsulphoxide) on the optical (UV-vis transmission/absorption, photoluminescence) and morphological properties of LV4 (LV5): [C60]PCB-C4 mixed layers has been evidenced. Dark and under illumination I-V characteristics of the heterostructures realized with these mixed layers sandwiched between ITO and Al electrodes have revealed a solar cell behavior for the heterostructures prepared with both LV4 and LV5 using chloroform as matrix solvent. The solar cell structure realized with oligomer LV5, glass/ITO/LV5: [C60]PCB-C4 (1:1) has shown the best parameters.
Zarejousheghani, Mashaalah; Fiedler, Petra; Möder, Monika; Borsdorf, Helko
2014-11-01
A novel approach for the selective extraction of organic target compounds from water samples has been developed using a mixed-bed solid phase extraction (mixed-bed SPE) technique. The molecularly imprinted polymer (MIP) particles are embedded in a network of silica gel to form a stable uniform porous bed. The capabilities of this method are demonstrated using atrazine as a model compound. In comparison to conventional molecularly imprinted-solid phase extraction (MISPE), the proposed mixed-bed MISPE method in combination with gas chromatography-mass spectrometry (GC-MS) analysis enables more reproducible and efficient extraction performance. After optimization of operational parameters (polymerization conditions, bed matrix ingredients, polymer to silica gel ratio, pH of the sample solution, breakthrough volume plus washing and elution conditions), improved LODs (1.34 µg L(-1) in comparison to 2.25 µg L(-1) obtained using MISPE) and limits of quantification (4.5 µg L(-1) for mixed-bed MISPE and 7.5 µg L(-1) for MISPE) were observed for the analysis of atrazine. Furthermore, the relative standard deviations (RSDs) for atrazine at concentrations between 5 and 200 µg L(-1) ranged between 1.8% and 6.3% compared to MISPE (3.5-12.1%). Additionally, the column-to-column reproducibility for the mixed-bed MISPE was significantly improved to 16.1%, compared with 53% that was observed for MISPE. Due to the reduced bed-mass sorbent and at optimized conditions, the total amount of organic solvents required for conditioning, washing and elution steps reduced from more than 25 mL for conventional MISPE to less than 2 mL for mixed-bed MISPE. Besides reduced organic solvent consumption, total sample preparation time of the mixed-bed MISPE method relative to the conventional MISPE was reduced from more than 20 min to less than 10 min. The amount of organic solvent required for complete elution diminished from 3 mL (conventional MISPE) to less than 0.4 mL with the mixed-bed technique shows its inherent potential for online operation with an analytical instrument. In order to evaluate the selectivity and matrix effects of the developed mixed-bed MISPE method, it was applied as an extraction technique for atrazine from environmental wastewater and river water samples. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Sajedi-Moghaddam, Ali; Saievar-Iranizad, Esmaiel
2018-01-01
Developing high-throughput, reliable, and facile approaches for producing atomically thin sheets of transition metal dichalcogenides is of great importance to pave the way for their use in real applications. Here, we report a highly promising route for exfoliating two-dimensional tungsten disulphide sheets by using binary combination of low-boiling-point solvents. Experimental results show significant dependence of exfoliation yield on the type of solvents as well as relative volume fraction of each solvent. The highest yield was found for appropriate combination of isopropanol/water (20 vol% isopropanol and 80 vol% water) which is approximately 7 times higher than that in pure isopropanol and 4 times higher than that in pure water. The dramatic increase in exfoliation yield can be attributed to perfect match between the surface tension of tungsten disulphide and binary solvent system. Furthermore, solvent molecular size also has a profound impact on the exfoliation efficiency, due to the steric repulsion.
Cellulosic ethanol production from green solvent-pretreated rice straw
USDA-ARS?s Scientific Manuscript database
Natural deep eutectic solvents (NADES) are recently developed “green solvents” consisted of bio-based ionic liquids and deep eutectic solvents mainly from plant based metabolites. NADES are biodegradable, non-toxic and environment-friendly. Conventional chemically synthesized ionic liquids have be...
Method for removing hydrocarbon contaminants from solid materials
Bala, Gregory A.; Thomas, Charles P.
1995-01-01
A system for removing hydrocarbons from solid materials. Contaminated solids are combined with a solvent (preferably terpene based) to produce a mixture. The mixture is washed with water to generate a purified solid product (which is removed from the system) and a drainage product. The drainage product is separated into a first fraction (consisting mostly of contaminated solvent) and a second fraction (containing solids and water). The first fraction is separated into a third fraction (consisting mostly of contaminated solvent) and a fourth fraction (containing residual solids and water). The fourth fraction is combined with the second fraction to produce a sludge which is separated into a fifth fraction (containing water which is ultimately reused) and a sixth fraction (containing solids). The third fraction is then separated into a seventh fraction (consisting of recovered solvent which is ultimately reused) and an eighth fraction (containing hydrocarbon waste).
Method for removing hydrocarbon contaminants from solid materials
Bala, G.A.; Thomas, C.P.
1995-10-03
A system is described for removing hydrocarbons from solid materials. Contaminated solids are combined with a solvent (preferably terpene based) to produce a mixture. The mixture is washed with water to generate a purified solid product (which is removed from the system) and a drainage product. The drainage product is separated into a first fraction (consisting mostly of contaminated solvent) and a second fraction (containing solids and water). The first fraction is separated into a third fraction (consisting mostly of contaminated solvent) and a fourth fraction (containing residual solids and water). The fourth fraction is combined with the second fraction to produce a sludge which is separated into a fifth fraction (containing water which is ultimately reused) and a sixth fraction (containing solids). The third fraction is then separated into a seventh fraction (consisting of recovered solvent which is ultimately reused) and an eighth fraction (containing hydrocarbon waste). 4 figs.
Apparatus for removing hydrocarbon contaminants from solid materials
Bala, G.A.; Thomas, C.P.
1996-02-13
A system is described for removing hydrocarbons from solid materials. Contaminated solids are combined with a solvent (preferably terpene based) to produce a mixture. The mixture is washed with water to generate a purified solid product (which is removed from the system) and a drainage product. The drainage product is separated into a first fraction (consisting mostly of contaminated solvent) and a second fraction (containing solids and water). The first fraction is separated into a third fraction (consisting mostly of contaminated solvent) and a fourth fraction (containing residual solids and water). The fourth fraction is combined with the second fraction to produce a sludge which is separated into a fifth fraction (containing water which is ultimately reused) and a sixth fraction (containing solids). The third fraction is then separated into a seventh fraction (consisting of recovered solvent which is ultimately reused) and an eighth fraction (containing hydrocarbon waste). 4 figs.
Apparatus for removing hydrocarbon contaminants from solid materials
Bala, Gregory A.; Thomas, Charles P.
1996-01-01
A system for removing hydrocarbons from solid materials. Contaminated solids are combined with a solvent (preferably terpene based) to produce a mixture. The mixture is washed with water to generate a purified solid product (which is removed from the system) and a drainage product. The drainage product is separated into a first fraction (consisting mostly of contaminated solvent) and a second fraction (containing solids and water). The first fraction is separated into a third fraction (consisting mostly of contaminated solvent) and a fourth fraction (containing residual solids and water). The fourth fraction is combined with the second fraction to produce a sludge which is separated into a fifth fraction (containing water which is ultimately reused) and a sixth fraction (containing solids). The third fraction is then separated into a seventh fraction (consisting of recovered solvent which is ultimately reused) and an eighth fraction (containing hydrocarbon waste).
CO{sub 2}-philic oligomers as novel solvents for CO{sub 2} absorption
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, Matthew B; Luebke, David R; Enick, Robert M
2010-01-01
Desirable properties for an oligomeric CO{sub 2}-capture solvent in an integrated gasification combined cycle (IGCC) plant include high selectivity for CO{sub 2} over H{sub 2} and water, low viscosity, low vapor pressure, low cost, and minimal environmental, health, and safety impacts. The neat solvent viscosity and solubility of CO{sub 2}, measured via bubble-point loci and presented on a pressure−composition diagram (weight basis), and water miscibility in CO{sub 2}-philic solvents have been determined and compared to results obtained with Selexol, a commercial oligomeric CO{sub 2} solvent. The solvents tested include polyethyleneglycol dimethylether (PEGDME), polypropyleneglycol dimethylether (PPGDME), polypropyleneglycol diacetate (PPGDAc), polybutyleneglycol diacetatemore » (PBGDAc), polytetramethyleneetherglycol diacetate (PTMEGDAc), glyceryl triacetate (GTA), polydimethyl siloxane (PDMS), and perfluorpolyether (PFPE) that has a perfluorinated propyleneglycol monomer unit. Overall, PDMS and PPGDME are the best oligomeric solvents tested and exhibit properties that make them very promising alternatives for the selective absorption of CO{sub 2} from a mixed gas stream, especially if the absorption of water is undesirable.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Zhao-Hao; Xue, Li-Ping, E-mail: lpxue@163.com; Miao, Shao-Bin
2016-08-15
The reaction of Cd(NO{sub 3}){sub 2}·4H{sub 2}O, 2,5-thiophenedicarboxylic acid (H{sub 2}tdc) and 1,2-bis(imidazol-1′-yl)methane (bimm) by modulating solvent systems yielded three highly connected pseudo-polymorphic coordination polymers based on different dinuclear [Cd{sub 2}(CO{sub 2}){sub 2}] subunits bridged by carboxylate groups. Single crystal structural analyses reveal structural variation from 4-connected 2D sql layer, 6-connected 2-fold interpenetrated 3D pcu to 8-connected 3D bcu-type network in compounds 1–3. The structural dissimilarity in the structures dependent on the coordination environments of Cd(II) ions and linking modes of mixed ligand influenced by different solvent systems during the synthesis process. Moreover, thermogravimetric and photoluminescence behaviors of 1–3 weremore » also investigated for the first time, and all the complexes emit blue luminescence in the solid state. - Graphical abstract: Key Topic. Different solvent systems modulated three Cd(II) pseudo-polymorphic coordination polymers based on thiophene-2,5-dicarboxylate and 1,2-bis(imidazol-1′-yl)methane mixed ligands. Display Omitted - Highlights: • Three solvent-dependent Cd(II) pseudo-polymorphic coordination polymers have been synthesized. • Structural variation from 4-connected 2D layer, 6-connected 2-fold interpenetrated 3D net to 8-connected 3D net. • All complexes emit blue luminescence.« less
Enthalpy characteristics of the dissolution of L-valine in water/formamide mixtures at 298.15 K
NASA Astrophysics Data System (ADS)
Smirnov, V. I.; Badelin, V. G.
2016-11-01
The thermochemical dissolution of L-valine in solvent mixtures H2O + (formamide, N-methylformamide, and N, N-dimethylformamide) is studied at an organic component concentration of x 2 = 0-0.35 molar fractions and a temperature of 298.15 K. The experimental data are used to calculate standard enthalpies of dissolution, the transferring of L-valine from water to a mixed solvent, and the enthalpy coefficients of pairwise interactions ( h xy ) with organic solvent molecules. The correlation between the enthalpy characteristics of the dissolution of L-valine with the composition of aqueous organic mixtures and the nature of the organic solvent (its physicochemical properties) is determined. A comparative analysis of the values of h xy of a number of aliphatic L-amino acids in similar solvent mixtures with the hydrophobicity parameters of their side chains is performed.
NASA Astrophysics Data System (ADS)
Mukherji, Debashish; Marques, Carlos M.; Kremer, Kurt
2018-01-01
In this work we discuss two mirror but distinct phenomena of polymer paradoxical properties in mixed solvents: co-non-solvency and co-solvency. When a polymer collapses in a mixture of two miscible good solvents the phenomenon is known as co-non-solvency, while co-solvency is a phenomenon that is associated with the swelling of a polymer in poor solvent mixtures. A typical example of co-non-solvency is provided by poly(N-isopropylacrylamide) in aqueous alcohol, while poly(methyl methacrylate) in aqueous alcohol shows co-solvency. We discuss these two phenomena to compare their microscopic origins and show that both can be understood within generic universal concepts. A broad range of polymers is therefore expected to exhibit these phenomena where specific chemical details play a lesser role than the appropriate combination of interactions between the trio of molecular components.
Group extraction of organic compounds present in liquid samples
NASA Technical Reports Server (NTRS)
Jahnsen, Vilhelm J. (Inventor)
1976-01-01
An extraction device is disclosed comprising a tube containing a substantially inert, chemically non-reactive packing material with a large surface area to volume ratio. A sample which consists of organic compounds dissolved in a liquid, is introduced into the tube. As the sample passes through the packing material it spreads over the material's large surface area to form a thin liquid film which is held on the packing material in a stationary state. A particular group or family of compounds is extractable from the sample by passing a particular solvent system consisting of a solvent and selected reagents through the packing material. The reagents cause optimum conditions to exist for the compounds of the particular family to pass through the phase boundary between the sample liquid and the solvent of the solvent system. Thus, the compounds of the particular family are separated from the sample liquid and become dissolved in the solvent of the solvent system. The particular family of compounds dissolved in the solvent, representing an extract, exits the tube together with the solvent through the tube's nozzle, while the rest of the sample remains on the packing material in a stationary state. Subsequently, a different solvent system may be passed through the packing material to extract another family of compounds from the remaining sample on the packing material.
Improved optics for an ultracentrifuge
NASA Technical Reports Server (NTRS)
Miller, C. G.; Stephens, J. B.
1980-01-01
Ultracentrifuge is important tool in study of polymers, biomolecules, and cell structures. In typical ultracentrifuge rotor supports pair of optically matched vials; one contains sample mixed in solvent, and other is reference that contains only solvent. Doubleslit optical system, transverse to rotor, creates interference pattern on photographic plate each time vials pass through optics. Medium in sample vial displaces interference maximums such that shift gives measurement of density distribution along length of sample.
NASA Astrophysics Data System (ADS)
Kuroki, Nahoko; Mori, Hirotoshi
2018-02-01
Effective fragment potential version 2 - molecular dynamics (EFP2-MD) simulations, where the EFP2 is a polarizable force field based on ab initio electronic structure calculations were applied to water-methanol binary mixture. Comparing EFP2s defined with (aug-)cc-pVXZ (X = D,T) basis sets, it was found that large sets are necessary to generate sufficiently accurate EFP2 for predicting mixture properties. It was shown that EFP2-MD could predict the excess molar volume. Since the computational cost of EFP2-MD are far less than ab initio MD, the results presented herein demonstrate that EFP2-MD is promising for predicting physicochemical properties of novel mixed solvents.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-10
... Measures for Industrial Solvent Cleaning for Northwest Indiana AGENCY: Environmental Protection Agency (EPA...) submitted revisions to its volatile organic compound (VOC) industrial solvent cleaning rule for...). These revisions are approvable because they are consistent with EPA's Industrial Solvent Cleaning...
RECOVERY OF METAL VALUES FROM AQUEOUS SOLUTIONS BY SOLVENT EXTRACTION
Moore, R.L.
1959-09-01
An organic solvent mixure is described for extracting actinides from aqueous solutions; the solvent mixture consists of from 10 to 25% by volume of tributyl phosphate and the remainder a chlorine-fluorine-substituted saturated hydrocarbon having two carbon atoms in the molecule.
Uzma, Nazia; Salar, B M Khaja Mohinuddin; Kumar, B Santhosh; Aziz, Nusrat; David, M Anthony; Reddy, V Devender
2008-09-01
Long term exposure to solvents and air pollutants can lead to deleterious effects on respiratory, haematological and thyroid functioning. The aim of this study was to investigate whether chronic exposure to solvents like benzene and pollutants like carbon monoxide in petrol filling workers had adverse effect on blood parameters, thyroid and respiratory functions. The study group consisted of 42 healthy, non-smoker petrol filling workers, aged 20-50 years with work (exposure) duration from 2-15 years while 36 healthy subjects of the same age group served as controls. Physical examination and measurement of pulmonary functions by portable electronic spirometer were performed. Complete blood pictures (CBP) were determined by normal haematology lab procedure and hormones by Chemiluminescence immunoassay (CLIA) light absorption techniques. There was a significant decrease in the lung volumes and capacities; the restrictive pattern was more prevalent in the workers when compared with the control groups. But in the workers exposed for long period (more than 10 years) the restrictive pattern was changed to mixed pattern. A significant increase in haemoglobin (Hb) (>16 mg %) and red blood cells (RBC) (5.4 million cells/mm3) were observed in workers with longer period of exposure when compared with the control subjects (14.483 mg% and 4.83 million cells/mm3 for Hb and RBC respectively). White blood cell count except eosinophils and platelets were significantly lower in workers compared to controls. Marked increase in the tetra iodothyroinine (T4), free thyroxine (T4F) level and significant decrease in thyroid stimulating hormones (TSH), and tri-iodothyronine (T3) were observed between long term exposed and non-exposed groups. Till now researchers focused only on the effect of solvents in workers professionally exposed to solvents without considering the effect of concomittant air pollution. The result obtained from present study indicates that there is a significant toxic effect of solvents and air pollutants on workers exposed for longer duration. Improved detection and prevention technologies are needed to answer environmentally related health questions for petrol filling workers.
PROCESS OF SEPARATING URANIUM FROM AQUEOUS SOLUTION BY SOLVENT EXTRACTION
Warf, J.C.
1958-08-19
A process is described for separating uranium values from aqueous uranyl nitrate solutions. The process consists in contacting the uramium bearing solution with an organic solvent, tributyl phosphate, preferably diluted with a less viscous organic liquida whereby the uranyl nitrate is extracted into the organic solvent phase. The uranvl nitrate may be recovered from the solvent phase bv back extracting with an aqueous mediuin.
Development and characterization of clay facial mask containing turmeric extract solid dispersion.
Pan-On, Suchiwa; Rujivipat, Soravoot; Ounaroon, Anan; Tiyaboonchai, Waree
2018-04-01
To develop clay facial mask containing turmeric extract solid dispersion (TESD) for enhancing curcumin water solubility and permeability and to determine suitable clay based facial mask. The TESD were prepared by solvent and melting solvent method with various TE to polyvinylpyrrolidone (PVP) K30 mass ratios. The physicochemical properties, water solubility, and permeability were examined. The effects of clay types on physical stability of TESD, water adsorption, and curcumin adsorption capacity were evaluated. The TESD prepared by solvent method with a TE to PVP K30 mass ratio of 1:2 showed physically stable, dry powders, when mixed with clay. When TESD was dissolved in water, the obtained TESD micelles showed spherical shape with mean size of ∼100 nm resulting in a substantial enhancement of curcumin water solubility, ∼5 mg/ml. Bentonite (Bent) and mica (M) showed the highest water adsorption capacity. The TESD's color was altered when mixed with Bent, titanium dioxide (TiO 2 ) and zinc oxide (ZnO) indicating curcumin instability. Talcum (Talc) showed the greatest curcumin adsorption followed by M and kaolin (K), respectively. Consequently, in vitro permeation studies of the TESD mixed with Talc showed lowest curcumin permeation, while TESD mixed with M or K showed similar permeation profile as free TESD solutions. The developed TESD-based clay facial mask showed lower curcumin permeation as compared to those formulations with Tween 80. The water solubility and permeability of curcumin in clay based facial mask could be improved using solid dispersion technique and suitable clay base composed of K, M, and Talc.
27 CFR 21.54 - Formula No. 27-B.
Code of Federal Regulations, 2013 CFR
2013-04-01
... concentrate containing 25 percent water to 100 gallons of alcohol and, after mixing, by adding thereto 33.5 pounds of water and again mixing. (b) Authorized uses. (1) As a solvent: 141.Shampoos. 210.External pharmaceuticals, not U.S.P. or N.F. 243.Liniments, U.S.P. or N.F. 410.Disinfectants insecticides, fungicides, and...
27 CFR 21.54 - Formula No. 27-B.
Code of Federal Regulations, 2014 CFR
2014-04-01
... concentrate containing 25 percent water to 100 gallons of alcohol and, after mixing, by adding thereto 33.5 pounds of water and again mixing. (b) Authorized uses. (1) As a solvent: 141.Shampoos. 210.External pharmaceuticals, not U.S.P. or N.F. 243.Liniments, U.S.P. or N.F. 410.Disinfectants insecticides, fungicides, and...
Pogliani, Lionello
2010-01-30
Twelve properties of a highly heterogeneous class of organic solvents have been modeled with a graph-theoretical molecular connectivity modified (MC) method, which allows to encode the core electrons and the hydrogen atoms. The graph-theoretical method uses the concepts of simple, general, and complete graphs, where these last types of graphs are used to encode the core electrons. The hydrogen atoms have been encoded by the aid of a graph-theoretical perturbation parameter, which contributes to the definition of the valence delta, delta(v), a key parameter in molecular connectivity studies. The model of the twelve properties done with a stepwise search algorithm is always satisfactory, and it allows to check the influence of the hydrogen content of the solvent molecules on the choice of the type of descriptor. A similar argument holds for the influence of the halogen atoms on the type of core electron representation. In some cases the molar mass, and in a minor way, special "ad hoc" parameters have been used to improve the model. A very good model of the surface tension could be obtained by the aid of five experimental parameters. A mixed model method based on experimental parameters plus molecular connectivity indices achieved, instead, to consistently improve the model quality of five properties. To underline is the importance of the boiling point temperatures as descriptors in these last two model methodologies. Copyright 2009 Wiley Periodicals, Inc.
Electrophoretic and Electrolytic Deposition of Ceramic Particles on Porous Substrates
1990-08-30
hydrodynamic drag force exerted on the particle due to the electroosmotic flow of the solvent inside the pore, the electrophoretic force exerted on the...8217 - electrophoretic velocity UN - electroosmotic velocity b - pore mean radius D - diffusion coefficient k - local deposition rate Large Peclet numbers and small...experimentally as the charge is acquired spontaneously on mixing the particles with the solvent and it may be reversed upon addition ot ionic compounds. The
Hazardous Waste Cleanup: Pride Solvents and Chemicals Incorporated in West Babylon, New York
Pride Solvents and Chemicals, Inc. (Pride Solvents) is located at 78 and 88 Lamar Street within the West Babylon Industrial Area of Suffolk County, New York. The site consists of two buildings, adjacent parking lots, and a loading dock on a 1.38 acre
Continuous nanoparticle production by microfluidic-based emulsion, mixing and crystallization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Su, Y.-F.; Kim, H.; Kovenklioglu, S.
2007-09-15
BaSO{sub 4} and 2,2'-dipyridylamine (DPA) nanoparticles were synthesized as reactive crystallization and anti-solvent recrystallization examples, respectively, of using the microfluidic-based emulsion and mixing approach as a new avenue of continuously producing inorganic and organic nanoparticles. BaSO{sub 4} nanoparticles in the size range of 15-100 nm were reactively precipitated within the confinement of an aqueous droplet which was coalesced from two separate aqueous droplets containing BaCl{sub 2} and (NH{sub 4}){sub 2}SO{sub 4} using a three T-junction micromixer configuration constructed with commercially available simple tubing and fitting supplies. Also, DPA nanoparticles of about 200 nm were crystallized by combining DPA+ethanol and watermore » droplets using the same micromixer configuration. - Graphical abstract: BaSO{sub 4} and 2,2'-dipyridylamine (DPA) nanoparticles were synthesized as reactive crystallization and anti-solvent recrystallization examples, respectively, of using the microfluidic-based emulsion and mixing approach as a new avenue of continuously producing inorganic and organic nanoparticles.« less
Stimulus sensitive gel with radioisotope and methods of making
Weller, Richard E.; Lind, Michael A.; Fisher, Darrell R.; Gutowska, Anna; Campbell, Allison A.
2005-03-22
The present invention is a thermally reversible stimulus-sensitive gel or gelling copolymer radioisotope carrier that is a linear random copolymer of an [meth-]acrylamide derivative and a hydrophilic comonomer, wherein the linear random copolymer is in the form of a plurality of linear chains having a plurality of molecular weights greater than or equal to a minimum gelling molecular weight cutoff. Addition of a biodegradable backbone and/or a therapeutic agent imparts further utility. The method of the present invention for making a thermally reversible stimulus-sensitive gelling copolymer radionuclcide carrier has the steps of: (a) mixing a stimulus-sensitive reversible gelling copolymer with an aqueous solvent as a stimulus-sensitive reversible gelling solution; and (b) mixing a radioisotope with said stimulus-sensitive reversible gelling solution as said radioisotope carrier. The gel is enhanced by either combining it with a biodegradable backbone and/or a therapeutic agent in a gelling solution made by mixing the copolymer with an aqueous solvent.
Stimulus sensitive gel with radioisotope and methods of making
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weller, Richard E; Lind, Michael A; Fisher, Darrell R
2001-10-02
The present invention is a thermally reversible stimulus-sensitive gel or gelling copolymer radioisotope carrier that is a linear random copolymer of an [meth]acrylamide derivative and a hydrophilic comonomer, wherein the linear random copolymer is in the form of a plurality of linear chains having a plurality of molecular weights greater than or equal to a minimum gelling molecular weight cutoff. Addition of a biodegradable backbone and/or a therapeutic agent imparts further utility. The method of the present invention for making a thermally reversible stimulus-sensitive gelling copolymer radionuclcide carrier has the steps of: (a) mixing a stimulus-sensitive reversible gelling copolymer withmore » an aqueous solvent as a stimulus-sensitive reversible gelling solution; and (b) mixing a radioisotope with said stimulus-sensitive reversible gelling solution as said radioisotope carrier. The gel is enhanced by either combining it with a biodegradable backbone and/or a therapeutic agent in a gelling solution made by mixing the copolymer with an aqueous solvent.« less
Yu, Yue; Wang, Changlei; Grice, Corey R.; ...
2017-04-26
Here, we show that the cooperation of lead thiocyanate additive and a solvent annealing process can effectively increase the grain size of mixed-cation lead mixed-halide perovskite thin films while avoiding excess lead iodide formation. As a result, the average grain size of the wide-bandgap mixed-cation lead perovskite thin films increases from 66 ± 24 to 1036 ± 111 nm, and the mean carrier lifetime shows a more than 3-fold increase, from 330 ns to over 1000 ns. Consequently, the average open-circuit voltage of wide-bandgap perovskite solar cells increases by 80 (70) mV, and the average power conversion efficiency (PCE) increasesmore » from 13.44 ± 0.48 (11.75 ± 0.34) to 17.68 ± 0.36 (15.58 ± 0.55)% when measured under reverse (forward) voltage scans. The best-performing wide-bandgap perovskite solar cell, with a bandgap of 1.75 eV, achieves a stabilized PCE of 17.18%.« less
NASA Astrophysics Data System (ADS)
Moine, Edouard; Privat, Romain; Sirjean, Baptiste; Jaubert, Jean-Noël
2017-09-01
The Gibbs energy of solvation measures the affinity of a solute for its solvent and is thus a key property for the selection of an appropriate solvent for a chemical synthesis or a separation process. More fundamentally, Gibbs energies of solvation are choice data for developing and benchmarking molecular models predicting solvation effects. The Comprehensive Solvation—CompSol—database was developed with the ambition to propose very large sets of new experimental solvation chemical-potential, solvation entropy, and solvation enthalpy data of pure and mixed components, covering extended temperature ranges. For mixed compounds, the solvation quantities were generated in infinite-dilution conditions by combining experimental values of pure-component and binary-mixture thermodynamic properties. Three types of binary-mixture properties were considered: partition coefficients, activity coefficients at infinite dilution, and Henry's-law constants. A rigorous methodology was implemented with the aim to select data at appropriate conditions of temperature, pressure, and concentration for the estimation of solvation data. Finally, our comprehensive CompSol database contains 21 671 data associated with 1969 pure species and 70 062 data associated with 14 102 binary mixtures (including 760 solvation data related to the ionic-liquid class of solvents). On the basis of the very large amount of experimental data contained in the CompSol database, it is finally discussed how solvation energies are influenced by hydrogen-bonding association effects.
Tunable Pickering Emulsions with Environmentally Responsive Hairy Silica Nanoparticles.
Liu, Min; Chen, Xiaoli; Yang, Zongpeng; Xu, Zhou; Hong, Liangzhi; Ngai, To
2016-11-30
Surface modification of the nanoparticles using surface anchoring of amphiphilic polymers offers considerable scope for the design of a wide range of brush-coated hybrid nanoparticles with tunable surface wettability that may serve as new class of efficient Pickering emulsifiers. In the present study, we prepared mixed polymer brush-coated nanoparticles by grafting ABC miktoarm star terpolymers consisting of poly(ethylene glycol), polystyrene, and poly[(3-triisopropyloxysilyl)propyl methacrylate] (μ-PEG-b-PS-b-PIPSMA) on the surface of silica nanoparticles. The wettability of the as-prepared nanoparticles can be precisely tuned by a change of solvent or host-guest complexation. 1 H NMR result confirmed that such wettability change is due to the reorganization of the polymer chain at the grafted layer. We show that this behavior can be used for stabilization and switching between water-in-oil (W/O) and oil-in-water (O/W) emulsions. For hairy particles initially dispersed in oil, W/O emulsions were always obtained with collapsed PEG chains and mobile PS chains at the grafted layer. However, initially dispersing the hairy particles in water resulted in O/W emulsions with collapsed PS chains and mobile PEG chains. When a good solvent for both PS and PEG blocks such as toluene was used, W/O emulsions were always obtained no matter where the hairy particles were dispersed. The wettability of the mixed polymer brush-coated silica particles can also be tuned by host-guest complexation between PEG block and α-CD. More importantly, our result showed that surprisingly the resultant mixed brush-coated hairy nanoparticles can be employed for the one-step production of O/W/O multiple emulsions that are not attainable from conventional Pickering emulsifiers. The functionalized hairy silica nanoparticles at the oil-water interface can be further linked together utilizing poly(acrylic acid) as the reversible linker to form supramolecular colloidosomes, which show pH-dependent release of cargo.
Kazarian, Artaches A; Taylor, Mark R; Haddad, Paul R; Nesterenko, Pavel N; Paull, Brett
2013-12-01
The comprehensive separation and detection of hydrophobic and hydrophilic active pharmaceutical ingredients (APIs), their counter-ions (organic, inorganic) and excipients, using a single mixed-mode chromatographic column, and a dual injection approach is presented. Using a mixed-mode Thermo Fisher Acclaim Trinity P1 column, APIs, their counter-ions and possible degradants were first separated using a combination of anion-exchange, cation-exchange and hydrophobic interactions, using a mobile phase consisting of a dual organic modifier/salt concentration gradient. A complementary method was also developed using the same column for the separation of hydrophilic bulk excipients, using hydrophilic interaction liquid chromatography (HILIC) under high organic solvent mobile phase conditions. These two methods were then combined within a single gradient run using dual sample injection, with the first injection at the start of the applied gradient (mixed-mode retention of solutes), followed by a second sample injection at the end of the gradient (HILIC retention of solutes). Detection using both ultraviolet absorbance and refractive index enabled the sensitive detection of APIs and UV-absorbing counter-ions, together with quantitative determination of bulk excipients. The developed approach was applied successfully to the analysis of a dry powder inhalers (Flixotide(®), Spiriva(®)), enabling comprehensive quantification of all APIs and excipients in the sample. Copyright © 2013 Elsevier B.V. All rights reserved.
F-T Jet Fuel Reverse Mutation Assay and Chromosome Aberration Test
2010-11-01
Assay The test item was dissolved in ethanol and diluted prior to treatment. The solvent was compatible with the survival of the bacteria and the S9...demonstrated the effective performance of the test. Negative solvent controls, consisting of solvent or vehicle alone as well as untreated controls...without Metabolic Activation S. typhimurium Strain Control Supplier Purity Solvent Concentration Without metabolic activation TA 100, TA 1535
Murray, Ian; Walker, Glenn; Bereman, Michael S
2016-06-20
Two paper-based microfluidic techniques, photolithography and wax patterning, were investigated for their potential to improve upon the sensitivity, reproducibility, and versatility of paper spray mass spectrometry. The main limitation of photolithography was the significant signal (approximately three orders of magnitude) above background which was attributed to the chemicals used in the photoresist process. Hydrophobic barriers created via wax patterning were discovered to have approximately 2 orders of magnitude less background signal compared to analogous barriers created using photolithography. A minimum printed wax barrier thickness of approximately 0.3 mm was necessary to consistently retain commonly used paper spray solvents (1 : 1 water : acetonitrile/methanol) and avoid leakage. Constricting capillary flow via wax-printed channels yielded both a significant increase in signal and detection time for detection of model analytes. This signal increase, which was attributed to restricting the radial flow of analyte/solvent on paper (i.e., a concentrating effect), afforded a significant increase in sensitivity (p ≪ 0.05) for the detection of pesticides spiked into residential tap water using a five-point calibration curve. Finally, unique mixing designs using wax patterning can be envisioned to perform on-paper analyte derivatization.
Mixed solvent electrolytes for ambient temperature secondary lithium cells
NASA Technical Reports Server (NTRS)
Shen, David H. (Inventor); Surampudi, Subbarao (Inventor); Deligiannis, Fotios (Inventor); Halpert, Gerald (Inventor)
1991-01-01
The present invention comprises an improved electrolyte for secondary lithium-based cells as well as batteries fabricated using this electrolyte. The electrolyte is a lithium containing salt dissolved in a non-aqueous solvent, which is made from a mixture of ethylene carbonate, ethylene propylene diene terpolymer, 2-methylfuran, and 2-methyltetrahydrofuran. This improved, mixed solvent electrolyte is more conductive than prior electrolytes and much less corrosive to lithium anodes. Batteries constructed with this improved electrolyte utilize lithium or lithium alloy anodes and cathodes made of metal chalcogenides or oxides, such as TiS.sub.2, NbSe.sub.3, V.sub.6 O.sub.13, V.sub.2 O.sub.5, MoS.sub.2, MoS.sub.3, CoO.sub.2, or CrO.sub.2, dissolved in a supporting polymer matrix, like EPDM. The preferred non-aqueous solvent mixture comprises approximately 5 to 30 volume percent ethylene carbonate, approximately 0.01 to 0.1 weight percent ethylene propylene diene terpolymer, and approximately 0.2 to 2 percent 2-methylfuran, with the balance being 2-methyltetrahydrofuran. The most preferred solvent comprises approximately 10 to 20 volume percent ethylene carbonate, about 0.05 weight percent ethylene propylene diene terpolymer, and about 1.0 percent 2-methylfuran, with the balance being 2-methyltetrahydrofuran. The concentration of lithium arsenic hexafluoride can range from about 1.0 to 1.8 M; a concentration 1.5 M is most preferred. Secondary batteries made with the improved electrolyte of this invention have lower internal impedance, longer cycle life, higher energy density, low self-discharge, and longer shelf life.
Occupational solvent exposure and brain function: an fMRI study.
Tang, Cheuk Ying; Carpenter, David M; Eaves, Emily L; Ng, Johnny; Ganeshalingam, Nimalya; Weisel, Clifford; Qian, Hua; Lange, Gudrun; Fiedler, Nancy L
2011-07-01
Deficits in cognitive function have been demonstrated among workers chronically exposed to solvents, but the neural basis for these deficits has not been shown. We used functional magnetic resonance imaging (fMRI) to compare pathophysiological changes in brain function between solvent-exposed and control workers. Painters, drywall tapers, and carpenters were recruited from the International Union of Painters and Allied Trades, District Council 9 in New York City and District Council 21 in Philadelphia, Pennsylvania, and from the Carpenters Union in New Jersey. Twenty-seven solvent-exposed and 27 control subjects of similar age, education, and occupational status completed the N-Back working memory test during fMRI. After controlling for confounders (age; lifetime marijuana, cocaine, and alcohol use; blood lead; symptoms of depression; verbal intelligence), voxelwise group analysis and regional activation levels were compared and then correlated with an index of lifetime solvent exposure. Solvent-exposed workers' performance on the N-Back was significantly worse than that of controls. Activation of the anterior cingulate, prefrontal, and parietal cortices--areas serving working memory function and attention--was also significantly lower for solvent-exposed workers relative to controls. After controlling for confounders, we observed a negative correlation between lifetime solvent exposure and activation in these same regions among the solvent-exposed workers. This study is one of the few to document neural structures affected by exposure to solvents. Our findings provide a biological mechanism for the neurobehavioral deficits in working memory and attention that have previously been reported by other groups studying the effects of chronic exposure to solvents. These imaging markers, which are consistent with the neurobehavioral measures in our subject population, are consistent with altered brain pathology caused by prolonged exposure to solvent mixtures during construction work.
Occupational Solvent Exposure and Brain Function: An fMRI Study
Carpenter, David M.; Eaves, Emily L.; Ng, Johnny; Ganeshalingam, Nimalya; Weisel, Clifford; Qian, Hua; Lange, Gudrun; Fiedler, Nancy L.
2011-01-01
Background: Deficits in cognitive function have been demonstrated among workers chronically exposed to solvents, but the neural basis for these deficits has not been shown. Objectives: We used functional magnetic resonance imaging (fMRI) to compare pathophysiological changes in brain function between solvent-exposed and control workers. Methods: Painters, drywall tapers, and carpenters were recruited from the International Union of Painters and Allied Trades, District Council 9 in New York City and District Council 21 in Philadelphia, Pennsylvania, and from the Carpenters Union in New Jersey. Twenty-seven solvent-exposed and 27 control subjects of similar age, education, and occupational status completed the N-Back working memory test during fMRI. After controlling for confounders (age; lifetime marijuana, cocaine, and alcohol use; blood lead; symptoms of depression; verbal intelligence), voxelwise group analysis and regional activation levels were compared and then correlated with an index of lifetime solvent exposure. Results: Solvent-exposed workers’ performance on the N-Back was significantly worse than that of controls. Activation of the anterior cingulate, prefrontal, and parietal cortices—areas serving working memory function and attention—was also significantly lower for solvent-exposed workers relative to controls. After controlling for confounders, we observed a negative correlation between lifetime solvent exposure and activation in these same regions among the solvent-exposed workers. Conclusions: This study is one of the few to document neural structures affected by exposure to solvents. Our findings provide a biological mechanism for the neurobehavioral deficits in working memory and attention that have previously been reported by other groups studying the effects of chronic exposure to solvents. These imaging markers, which are consistent with the neurobehavioral measures in our subject population, are consistent with altered brain pathology caused by prolonged exposure to solvent mixtures during construction work. PMID:21296712
Enzymatic synthesis of esculin ester in ionic liquids buffered with organic solvents.
Hu, Yifan; Guo, Zheng; Lue, Bena-Marie; Xu, Xuebing
2009-05-13
The enzymatic esterification of esculin catalyzed by Candida antarctica lipase B (Novozym 435) was carried out in ionic liquid (IL)-organic solvent mixed systems in comparison with individual systems. The reaction behaviors in IL-organic solvents were systemically evaluated using acetone as a model solvent. With organic solvents as media, the esterification rates of esculin depended mainly on its solubility in solvents; for the reactions in ILs, the reaction rates were generally low, and the anion part of the IL played a critical role in enzyme activity. Therefore, the esterification of esculin in IL-acetone mixtures made it possible to improve the solubility of esculin while the effects of ILs on lipase activity were minimized. Following the benignity of ILs to lipase activity, the anions of ILs were ranked in the order as [Tf(2)N](-) > [PF(6)](-) > [BF(4)](-) > [CF(3)SO(3)](-) > [C(4)F(9)SO(3)](-) > [TAF](-) > [MDEGSO(4)](-) > [OctSO(4)](-) > [ES](-) = [DMP](-) = [OTs](- )= Cl(-). The reaction behaviors differed in different systems and largely depended on the properties of the ILs and organic solvents. In general, improvements were observed in terms of both solubility and reaction efficiency. The knowledge acquired in this work gives a better understanding of multiple interactions in IL-organic solvent systems, which provide guidance for system design and optimization.
Hou, Qidong; Li, Weizun; Ju, Meiting; Liu, Le; Chen, Yu; Yang, Qian; Wang, Jingyu
2015-11-20
A solvent system consisting of 1,3-dimethyl-2-imidazolidinone (DMI), and ionic liquid 1-butyl-3-methylimidazolium acetate (BMIMOAc) was used to separate polysaccharides from rice husk and wheat bran. The effects of the DMI/BMIMOAc ratios, temperature, and time on the dissolution of rice husk and wheat bran were investigated, and the influence of anti-solvents on the regeneration of polysaccharides-rich material was evaluated. We found that the solvent system is more powerful to dissolve rice husk and wheat bran than pure BMIMOAc, and that polysaccharides-rich material can be effectively separated from the biomass solution. The polysaccharides content of regenerated material from wheat bran can reach as high as 94.4% when ethanol was used as anti-solvents. Under optimized conditions, the extraction rate of polysaccharides for wheat bran can reach as high as 71.8% at merely 50°C. The recycled solvent system exhibited constant ability to separate polysaccharides from rice husk and wheat bran. Copyright © 2015 Elsevier Ltd. All rights reserved.
How does the trans-cis photoisomerization of azobenzene take place in organic solvents?
Tiberio, Giustiniano; Muccioli, Luca; Berardi, Roberto; Zannoni, Claudio
2010-04-06
The trans-cis photoisomerization of azobenzene-containing materials is key to a number of photomechanical applications, but the actual conversion mechanism in condensed phases is still largely unknown. Herein, we study the n, pi* isomerization in a vacuum and in various solvents via a modified molecular dynamics simulation adopting an ab initio torsion-inversion force field in the ground and excited states, while allowing for electronic transitions and a stochastic decay to the fundamental state. We determine the trans-cis photoisomerization quantum yield and decay times in various solvents (n-hexane, anisole, toluene, ethanol, and ethylene glycol), and obtain results comparable with experimental ones where available. A profound difference between the isomerization mechanism in vacuum and in solution is found, with the often neglected mixed torsional-inversion pathway being the most important in solvents.
NASA Astrophysics Data System (ADS)
Cui, Honggang
2007-12-01
Amphiphilic block copolymers, consisting of at least two types of monomers with different affinity to the dissolving solvent(s), have been recognized as a molecular building unit for their chemical tunability and design flexibility. Amphiphilic block copolymers with a chargeable block have structural features of polyelectrolytes, block copolymers and surfactants. The combination of these different features offers great flexibility for developing novel assembled morphologies at the nanoscale and outstanding ability to control and manipulate those morphologies. The nanostructures, formed from the spontaneous association of amphiphilic block copolymer in selective solvents, show promise for applications in nanotechnology and pharmaceuticals, including drug delivery, tissue engineering and bio-imaging. A basic knowledge of their modes of self-assembly and their correspondence to application-related properties is just now being developed and poses a considerable scientific challenge. The goal of this dissertation is to investigate the associative behavior of charged, amphiphilic block copolymers in solvent mixtures while in the presence of organic counterions. Self-assembly of poly (acrylic acid)- block-poly (methyl acrylate)-block-polystyrene (PAA- b-PMA-b-PS) triblock copolymers produces nanodomains in THF/water solution specifically through the interaction with organic counterions (polyamines). These assembled structures can include classic micelles (spheres, cylinders and vesicles), but, more importantly, include non-classic micelles (disks, toroids, branched micelles and segmented micelles). Each micelle structure is stable and reproducible at different assembly conditions. The assembled micellar structures depend on not only solution components (thermodynamics) but also mixing procedure and consequent self-assembly pathway (kinetics). The key factors that determine the thermodynamic interactions that partially define the assembled structures and the kinetic assembly process include THF/water ratio, PS block length, the type and amount of organic counterions, and the mixing pathway. Their formation mechanism has been investigated from three aspects: (i) the chain structure of organic counterions, including spacer length, chain hydrophobicity between ionizable groups and the number of ionizable groups (amine group); (ii) molecular structure of the triblock copolymer, including block length of polystyrene and chain architecture; (iii) relative variation of the components, such as different ratios of THF to water and the different ratios of amine groups to acid groups. The first example of a novel micelle formed was the toroidal micelle. The toroidal micelle morphology, which is theoretically predicted but rarely observed, has been produced by the self assembly of PAA99- b-PMA73-b-PS66 in combination with 2,2-(ethylenedioxy)diethylamine (EDDA) and mixed THF/H2O solvent. It was found that toroids can be constructed by two mechanisms: elimination of energetically unfavored cylindrical micelle endcaps or perforation of disk-like micelles. Three-fold junctions were formed as intermediate structures to facilitate toroidal formation from cylindrical micelles. In order to construct toroids from cylindrical micelles, three requirements must be met: lower bending modulus (flexibility of cylinders), selfattraction between cylinders, and extra endcapping energy originating from chain packing frustration. Extremely high energy spheres can also fuse into toroids. Disk-like micelles can transform into a toroidal morphology when cylindrical packing geometry was initiated along the rims of disk-like micelles via solvent mixing that eventually perforated the disk center. The toroidal morphology can be kinetically trapped by either ridding the system of organic solvent or chemically crosslinking the PAA corona with EDDA via addition of 1-[3-(dimethylamino)propyl]-3-ethylcarbodiimide methiodide (DPEM). The interaction of positively-charged, multivalent organic amines with the negatively-charged PAA corona plays a decisive role in the formation of these micelles. Inter-chain binding from the interaction of the two amine end groups of diamines with acid groups from different PAA corona blocks governs the final assembled structures. Diamines with hydrophilic spacers induced the formation of micelles with larger interfacial curvature as the spacer length increased. Disk-like micelles, cylindrical micelles or spherical micelles were observed with the gradual increase of hydrophilic spacer length. Diamines with variable hydrophobic spacers showed a similar effect when the spacer length was less than six methylene units. Application of longer hydrophobic diamines had a reverse effect on the interfacial curvature. This effect was attributed to the interaction of hydrophobic diamine hydrocarbon linking chains with the PMA-b-PS hydrophobic core. These findings indicate an easy method to tune micelle structure with multivalent organic counterions. (Abstract shortened by UMI.)
Elastomer toughened polyimide adhesives
NASA Technical Reports Server (NTRS)
St.clair, A. K.; St.clair, T. L. (Inventor)
1983-01-01
A rubber-toughened addition-type polyimide composition is disclosed which has excellent high temperature bonding characteristics in the fully cured state, and improved peel strength and adhesive fracture resistance physical property characteristics. The process for making the improved adhesive involves preparing the rubber containing amic acid prepolymer by chemically reacting an amine-terminated elastomer and an aromatic diamine with an aromatic dianhydride with which a reactive chain stopper anhydride was mixed, and utilizing solvent or mixture of solvents for the reaction.
Wet in situ transesterification of microalgae using ethyl acetate as a co-solvent and reactant.
Park, Jeongseok; Kim, Bora; Chang, Yong Keun; Lee, Jae W
2017-04-01
This study addresses wet in situ transesterification of microalgae for the production of biodiesel by introducing ethyl acetate as both reactant and co-solvent. Ethyl acetate and acid catalyst are mixed with wet microalgae in one pot and the mixture is heated for simultaneous lipid extraction and transesterification. As a single reactant and co-solvent, ethyl acetate can provide higher FAEE yield and more saccharification of carbohydrates than the case of binary ethanol and chloroform as a reactant and a co-solvent. The optimal yield was 97.8wt% at 114°C and 4.06M catalyst with 6.67mlEtOAC/g dried algae based on experimental results and response surface methodology (RSM). This wet in situ transesterification of microalgae using ethyl acetate doesn't require an additional co-solvent and it also promises more economic benefit as combining extraction and transesterification in a single process. Copyright © 2017 Elsevier Ltd. All rights reserved.
Zhang, S F; Zhang, L L; Luo, K; Sun, Z X; Mei, X X
2014-04-01
The separation properties of the aluminium-plastic laminates in postconsumer Tetra Pak structure were studied in this present work. The organic solvent blend of benzene-ethyl alcohol-water was used as the separation reagent. Then triangle coordinate figure analysis was taken to optimize the volume proportion of various components in the separating agent and separation process. And the separation temperature of aluminium-plastic laminates was determined by the separation time, efficiency, and total mass loss of products. The results show that cost-efficient separations perform best with low usage of solvents at certain temperatures, for certain times, and within a certain range of volume proportions of the three components in the solvent agent. It is also found that similar solubility parameters of solvents and polyethylene adhesives (range 26.06-34.85) are a key factor for the separation of the aluminium-plastic laminates. Such multisolvent processes based on the combined-system concept will be vital to applications in the recycling industry.
Computational and experimental analysis of the flow in an annular centrifugal contactor
NASA Astrophysics Data System (ADS)
Wardle, Kent E.
The annular centrifugal contactor has been developed for solvent extraction processes for recycling used nuclear fuel. The compact size and high efficiency of these contactors have made them the choice for advanced reprocessing schemes and a key equipment for a proposed future advanced fuel cycle facility. While a sufficient base of experience exists to facilitate successful operation of current contactor technology, a more complete understanding of the fluid flow within the contactor would enable further advancements in design and operation of future units and greater confidence for use of such contactors in a variety of other solvent extraction applications. This research effort has coupled computational fluid dynamics modeling with a variety of experimental measurements and observations to provide a valid detailed analysis of the flow within the centrifugal contactor. CFD modeling of the free surface flow in the annular mixing zone using the Volume of Fluid (VOF) volume tracking method combined with Large Eddy Simulation (LES) of turbulence was found to have very good agreement with the experimental measurements and observations. A detailed study of the flow and mixing for different housing vane geometries was performed and it was found that the four straight mixing vane geometry had greater mixing for the flow rate simulated and more predictable operation over a range of low to moderate flow rates. The separation zone was also modeled providing a useful description of the flow in this region and identifying critical design features. It is anticipated that this work will form a foundation for additional efforts at improving the design and operation of centrifugal contactors and provide a framework for progress towards simulation of solvent extraction processes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yamada, Atsushi; Kojima, Hidekazu; Okazaki, Susumu, E-mail: okazaki@apchem.nagoya-u.ac.jp
2014-08-28
In order to investigate proton transfer reaction in solution, mixed quantum-classical molecular dynamics calculations have been carried out based on our previously proposed quantum equation of motion for the reacting system [A. Yamada and S. Okazaki, J. Chem. Phys. 128, 044507 (2008)]. Surface hopping method was applied to describe forces acting on the solvent classical degrees of freedom. In a series of our studies, quantum and solvent effects on the reaction dynamics in solutions have been analysed in detail. Here, we report our mixed quantum-classical molecular dynamics calculations for intramolecular proton transfer of malonaldehyde in water. Thermally activated proton transfermore » process, i.e., vibrational excitation in the reactant state followed by transition to the product state and vibrational relaxation in the product state, as well as tunneling reaction can be described by solving the equation of motion. Zero point energy is, of course, included, too. The quantum simulation in water has been compared with the fully classical one and the wave packet calculation in vacuum. The calculated quantum reaction rate in water was 0.70 ps{sup −1}, which is about 2.5 times faster than that in vacuum, 0.27 ps{sup −1}. This indicates that the solvent water accelerates the reaction. Further, the quantum calculation resulted in the reaction rate about 2 times faster than the fully classical calculation, which indicates that quantum effect enhances the reaction rate, too. Contribution from three reaction mechanisms, i.e., tunneling, thermal activation, and barrier vanishing reactions, is 33:46:21 in the mixed quantum-classical calculations. This clearly shows that the tunneling effect is important in the reaction.« less
Assessment of the impact of the next generation solvent on DWPF melter off-gas flammability
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daniel, W. E.
2013-02-13
An assessment has been made to evaluate the impact on the DWPF melter off-gas flammability of replacing the current solvent used in the Modular Caustic-Side Solvent Extraction Process Unit (MCU) process with the Next Generation Solvent (NGS-MCU) and blended solvent. The results of this study showed that the concentrations of nonvolatile carbon and hydrogen of the current solvent in the Slurry Mix Evaporator (SME) product would both be about 29% higher than their counterparts of the NGS-MCU and blended solvent in the absence of guanidine partitioning. When 6 ppm of guanidine (TiDG) was added to the effluent transfer to DWPFmore » to simulate partitioning for the NGS-MCU and blended solvent cases and the concentration of Isopar{reg_sign} L in the effluent transfer was controlled below 87 ppm, the concentrations of nonvolatile carbon and hydrogen of the NGS-MCU and blended solvent were still about 12% and 4% lower, respectively, than those of the current solvent. It is, therefore, concluded that as long as the volume of MCU effluent transfer to DWPF is limited to 15,000 gallons per Sludge Receipt and Adjustment Tank (SRAT)/SME cycle and the concentration of Isopar{reg_sign} L in the effluent transfer is controlled below 87 ppm, using the current solvent assumption of 105 ppm Isopar{reg_sign} L or 150 ppm solvent in lieu of NGS-MCU or blended solvent in the DWPF melter off-gas flammability assessment is conservative for up to an additional 6 ppm of TiDG in the effluent due to guanidine partitioning. This report documents the calculations performed to reach this conclusion.« less
Mead, Judith W.; Montoya, Orelio J.; Rand, Peter B.; Willan, Vernon O.
1984-01-01
Access to a space is impeded by generation of a sticky foam from a silicone polymer and a low boiling solvent such as a halogenated hydrocarbon. In a preferred aspect, the formulation is polydimethylsiloxane gel mixed with F502 Freon as a solvent and blowing agent, and pressurized with CO.sub.2 in a vessel to about 250 PSI, whereby when the vessel is opened, a sticky and solvent resistant foam is deployed. The foam is deployable, over a wide range of temperatures, adhering to wet surfaces as well as dry, is stable over long periods of time and does not propagate flame or lose adhesive properties during an externally supported burn.
RECOVERY OF PROTACTINIUM FROM AQUEOUS SOLUTIONS
Elson, R.E.
1959-07-14
The recovery of fluoride complexed protactinium from aqueous acidic solutions by solvent extraction is described. Generally the prccess of the invention com rises mixing an aqueous solution containing protactinium in a complexed form with an organic solvent which is specific for protactinium, such as diisopropyl carbinol, then decomposing the protactinium complex by adjusting the acidity of the aqueous solution to between 0-3 to 0-9 M in hydrogen ion concentration, and introducing a source of aluminum ions in sufficient quantity to establish a concentration of 0.5 to 1.2 M aluminum ion, whereupon decomposition of the protactinium fluoride complex takes place and the protactinium ion is taken up by the organic solvent phase.
NASA Astrophysics Data System (ADS)
Zhao, W.; Cheng, H.; Jiang, X.; Wu, M. L.; Li, G.
2018-03-01
Changes in the atomic structure and mechanical properties of rare earth-based metallic glasses caused by destined high-pressure torsion (HPT) were studied by X-ray diffraction synchrotron radiation and nanoindentation. Results showed that destined HPT improved nanohardness and wear resistance, which indicated the significant contributions of this technique. The diffraction patterns showed that the contents of pairs between solvent and solute atoms with a large negative mixing enthalpy increased, whereas those of pairs between solvent atoms and between solute atoms decreased after destined HPT. Thus, the process was improved by increasing the proportion of high-intensity pairs between solvent and solute atoms.
SOLVENT EXTRACTION OF URANIUM VALUES
Feder, H.M.; Ader, M.; Ross, L.E.
1959-02-01
A process is presented for extracting uranium salt from aqueous acidic solutions by organic solvent extraction. It consists in contacting the uranium bearing solution with a water immiscible dialkylacetamide having at least 8 carbon atoms in the molecule. Mentioned as a preferred extractant is dibutylacetamide. The organic solvent is usually used with a diluent such as kerosene or CCl/sub 4/.
Non-aqueous liquid compositions comprising ion exchange polymers
Kim, Yu Seung; Lee, Kwan-Soo; Rockward, Tommy Q. T.
2013-03-12
Compositions, and methods of making thereof, comprising from about 1% to about 5% of a perfluorinated sulfonic acid ionomer or a hydrocarbon-based ionomer; and from about 95% to about 99% of a solvent, said solvent consisting essentially of a polyol; wherein said composition is substantially free of water and wherein said ionomer is uniformly dispersed in said solvent.
Non-aqueous liquid compositions comprising ion exchange polymers
Kim, Yu Seung [Los Alamos, NM; Lee, Kwan-Soo [Blacksburg, VA; Rockward, Tommy Q. T. [Rio Rancho, NM
2011-07-19
Compositions, and methods of making thereof, comprising from about 1% to about 5% of a perfluorinated sulfonic acid ionomer or a hydrocarbon-based ionomer; and from about 95% to about 99% of a solvent, said solvent consisting essentially of a polyol; wherein said composition is substantially free of water and wherein said ionomer is uniformly dispersed in said solvent.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perry, D.D.; Bolcar, J.P.
1990-04-01
A study has been conducted to determine the effects of commercial degreasing solvents on the conductivity of an EPDM separable connector shield and two types of cable shields based on EPR and XLPE, respectively. Solvents tested included a chlorinated solvent based on 1,1,1-trichloroethane and several so-called citrus solvents consisting of the natural terpene, limonene, or blends of limonene with other hydrocarbons. All the solvents significantly degraded the conductivity of the EPR and EPDM materials, but had little effect on the XLPE cable shield. The solvents differed, however, in the extent of their effects, the rate of recovery of conductivity aftermore » removal of the solvent, and the degree to which the original conductivity of the material was restored. The consequences of these results in terms of appropriate field use of these types of solvents by utility personnel are discussed.« less
NASA Astrophysics Data System (ADS)
Wu, Hua; Briscoe, Wuge H.
2018-04-01
We report polycrystalline residual patterns with dendritic micromorphologies upon fast evaporation of a mixed-solvent sessile drop containing reactive ZnO nanoparticles. The molecular and particulate species generated in situ upon evaporative drying collude with and modify the Marangoni solvent flows and Bénard-Marangoni instabilities, as they undergo self-assembly and self-organization under conditions far from equilibrium, leading to the ultimate hierarchical central cellular patterns surrounded by a peripheral coffee ring upon drying.
Method of forming catalyst layer by single step infiltration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gerdes, Kirk; Lee, Shiwoo; Dowd, Regis
Provided herein is a method for electrocatalyst infiltration of a porous substrate, of particular use for preparation of a cathode for a solid oxide fuel cell. The method generally comprises preparing an electrocatalyst infiltrate solution comprising an electrocatalyst, surfactant, chelating agent, and a solvent; pretreating a porous mixed ionic-electric conductive substrate; and applying the electrocatalyst infiltration solution to the porous mixed ionic-electric conductive substrate.
Task 1.6 - mixed waste. Topical report, April 1, 1994--September 30, 1995
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
For fifty years, the United States was involved in a nuclear arms race of immense proportions. During the majority of this period, the push was always to design new weapons, produce more weapons, and increase the size of the arsenal, maintaining an advantage over the opposition in order to protect U.S. interests. Now that the {open_quotes}Cold War{close_quotes} is over, we are faced with the imposing tasks of dismantling, cleaning up, and remediating the wide variety of problems created by this arms race. An overview of the current status of the total remediation effort within the DOE is presented in themore » DOE publication {open_quotes}ENVIRONMENTAL MANAGEMENT 1995{close_quotes} (EM 1995). Not all radioactive waste is the same though; therefore, a system was devised to categorize the different types of radioactive waste. These categories are as follows: spent fuel; high-level waste; transuranic waste; low-level waste; mixed waste; and uranium-mill tailings. Mixed waste is defined to be material contaminated with any of these categories of radioactive material plus an organic or heavy metal component. However, for this discussion, {open_quotes}mixed waste{close_quote} will pertain only to low-level mixed waste which consists of low-level radioactive waste mixed with organic solvents and or heavy metals. The area of {open_quotes}mixed-waste characterization, treatment, and disposal{close_quotes} is listed on page 6 of the EM 1995 publication as one of five focus areas for technological development, and while no more important than the others, it has become an area of critical concern for DOE. Lacking adequate technologies for treatment and disposal, the DOE stockpiled large quantities of mixed waste during the 1970s and 1980s. Legislative changes and the need for regulatory compliance have now made it expedient to develop methods of achieving final disposition for this stockpiled mixed waste.« less
Direct use of methane in coal liquefaction
Sundaram, Muthu S.; Steinberg, Meyer
1987-01-01
This invention relates to a process for converting solid carbonaceous material, such as coal, to liquid and gaseous hydrocarbons utilizing methane, generally at a residence time of about 20-120 minutes at a temperature of 250.degree.-750.degree. C., preferably 350.degree.-450.degree. C., pressurized up to 6000 psi, and preferably in the 1000-2500 psi range, preferably directly utilizing methane 50-100% by volume in a mix of methane and hydrogen. A hydrogen donor solvent or liquid vehicle such as tetralin, tetrahydroquinoline, piperidine, and pyrolidine may be used in a slurry mix where the solvent feed is 0-100% by weight of the coal or carbonaceous feed. Carbonaceous feed material can either be natural, such as coal, wood, oil shale, petroleum, tar sands, etc., or man-made residual oils, tars, and heavy hydrocarbon residues from other processing systems.
NASA Astrophysics Data System (ADS)
Kim, Sehee; Char, Kookheon; Sohn, Byeong-Hyeok
2010-03-01
Diblock copolymers consisting of two immiscible polymer blocks covalently bonded together form various self-assembled nanostructures such as spheres, cylinders, and lamellae in bulk phase. In a selective solvent, however, they assemble into micelles with soluble corona brushes and immiscible cores. Both polystyrene-poly(4-vinylpyridine) (PS-b-P4VP) and polystyrene-poly(2-vinylpyridine) (PS-b-P2VP) diblock copolymers form micelles with PS coronas and P4VP or P2VP cores in a PS selective solvent (toluene). By varying the mixture ratio between PS-b-P4VP and PS-b-P2VP, composite films based on the micellar mixtures of PS-b-P4VP and PS-b-P2VP were obtained by spin-coating, followed by the solvent annealing with tetrahydrofuran (THF) vapor. Since THF is a solvent for both PS and P2VP blocks and, at the same time, a non-solvent for the P4VP block, PS-P2VP micelles transformed to lamellar multilayers while PS-P4VP micelles remained intact during the THF annealing. The spontaneous evolution of nanostructure in composite films consisting of lamellae layers with BCP micelles were investigated in detail by cross-sectional TEM and AFM.
Aissaoui, Tayeb; AlNashef, Inas M; Hayyan, Maan; Hashim, Mohd Ali
2015-10-05
Deep eutectic solvents (DESs) are novel solvent media that are currently under investigation as an alternative to ionic liquids and conventional solvents. The physical properties of DESs as well as their mild environmental footprint and potentially critical industrial application necessitate understanding the interaction of functional groups on both the salt and hydrogen bond donor (HBD). In this study, four DESs were prepared by mixing triethylenglycol, diethylenglycol, ethylenglycol, and glycerol as HBDs with methyltriphenylphosphonium bromide as a salt at a molar ratio of 1:4. Fourier transform infrared spectroscopy was conducted to highlight the chemical structure and mechanism of the combination of the four DESs. New spectra illustrating the combination of the functional groups of the HBDs and salt were observed and interpreted. This study is the first to investigate the properties of neoteric phosphonium-based DESs. Copyright © 2015 Elsevier B.V. All rights reserved.
Zheng, Junrong; Fayer, Michael D.
2008-01-01
Weak π hydrogen bonded solute-solvent complexes are studied with ultrafast two dimensional infrared (2D-IR) vibrational echo chemical exchange spectroscopy, temperature dependent IR absorption spectroscopy, and density functional theory calculations. Eight solute-solvent complexes composed of a number of phenol derivatives and various benzene derivatives are investigated. The complexes are formed between the phenol derivative (solute) in a mixed solvent of the benzene derivative and CCl4. The time dependence of the 2D-IR vibrational echo spectra of the phenol hydroxyl stretch is used to directly determine the dissociation and formation rates of the hydrogen bonded complexes. The dissociation rates of the weak hydrogen bonds are found to be strongly correlated with their formation enthalpies. The correlation can be described with an equation similar to the Arrhenius equation. The results are discussed in terms of transition state theory. PMID:17373792
The solvation of L-serine in mixtures of water with some aprotic solvents at 298.15 K
NASA Astrophysics Data System (ADS)
Mezhevoi, I. N.; Badelin, V. G.
2009-03-01
The integral enthalpies of solution Δsol H m of L-serine in mixtures of water with acetonitrile, 1,4-dioxane, dimethylsulfoxide (DMSO), and acetone were measured by solution calorimetry at organic component concentrations up to 0.31 mole fractions. The standard enthalpies of solution (Δsol H°), transfer (Δtr H°), and solvation (Δsolv H°) of L-serine from water into mixed solvents were calculated. The dependences of Δsol H°, Δsolv H°, and Δtr H° on the composition of aqueous-organic solvents contained extrema. The calculated enthalpy coefficients of pair interactions of the amino acid with cosolvent molecules were positive and increased in the series acetonitrile, 1,4-dioxane, DMSO, acetone. The results obtained were interpreted from the point of view of various types of interactions in solutions and the influence of the nature of organic solvents on the thermochemical characteristics of solutions.
Balancing size exclusion and adsorption of polymers in nanopores
NASA Astrophysics Data System (ADS)
Kim, Won; Ryu, Chang Y.
2006-03-01
The liquid chromatography at critical condition (LCCC) presents the condition, at which the size exclusion and adsorption of polymer chains are balanced upon interactions with nanoporous substrates. In this study, we investigate how the polymer interactions with nanopores are affected by the solvent quality and nanopore size. Specifically, we measure the retention times of monodisperse polystyrenes in C18-bonded nanoporous silica column as a function of molecular weight, when a mixed solvent of methylene chloride and acetonitrile are used as elutent. C18-bonded silica particles with 70, 100, and 250 A pore size are used as a stationary phase to study how the transition from SEC-like to IC-like retention behavior depends on the condition of temperature and solvent composition. To locate the LCCC at various nanopore sizes, the temperature and solvent composition have been varied from 0 to 60 C and from 51 to 62 v/v% of methylene chloride, respectively.
Cruz, Gustavo N; Lima, Filipe S; Dias, Luís G; El Seoud, Omar A; Horinek, Dominik; Chaimovich, Hernan; Cuccovia, Iolanda M
2015-09-04
The dediazoniation of aryldiazonium salts in mixed solvents proceeds by a borderline SN1 and SN2 pathway, and product distribution should be proportional to the composition of the solvation shell of the carbon attached to the -N2 group (ipso carbon). The rates of dediazoniation of 2,4,6-trimethylbenzenediazonium in water, methanol, ethanol, propanol, and acetonitrile were similar, but measured product distributions were noticeably dependent on the nature of the water/cosolvent mixture. Here we demonstrated that solvent distribution in the first solvation shell of the ipso carbon, calculated from classical molecular dynamics simulations, is equal to the measured product distribution. Furthermore, we showed that regardless of the charge distribution of the initial state, i.e., whether the positive charge is smeared over the molecule or localized on phenyl moiety, the solvent distribution around the reaction center is nearly the same.
Martínez-Fernández, L; Pepino, A J; Segarra-Martí, J; Banyasz, A; Garavelli, M; Improta, R
2016-09-13
The optical spectra of 5-methylcytidine in three different solvents (tetrahydrofuran, acetonitrile, and water) is measured, showing that both the absorption and the emission maximum in water are significantly blue-shifted (0.08 eV). The absorption spectra are simulated based on CAM-B3LYP/TD-DFT calculations but including solvent effects with three different approaches: (i) a hybrid implicit/explicit full quantum mechanical approach, (ii) a mixed QM/MM static approach, and (iii) a QM/MM method exploiting the structures issuing from molecular dynamics classical simulations. Ab-initio Molecular dynamics simulations based on CAM-B3LYP functionals have also been performed. The adopted approaches all reproduce the main features of the experimental spectra, giving insights on the chemical-physical effects responsible for the solvent shifts in the spectra of 5-methylcytidine and providing the basis for discussing advantages and limitations of the adopted solvation models.
NASA Astrophysics Data System (ADS)
Cao, Qianqian; Tian, Xiu; You, Hao
2018-04-01
We examine the electrohydrodynamics in mixed polymer brush-coated nanochannels and the conformational dynamics of grafted polymers using molecular dynamics simulations. Charged (A) and neutral polymers (B) are alternately grafted on the channel surfaces. The effects of the electric field strength and solvent quality are addressed in detail. The dependence of electroosmotic flow characteristics and polymer conformational behavior on the solvent quality is influenced due to the change of the electric field strength. The enhanced electric field induces a collapse of the neutral polymer chains which adopt a highly extended conformation along the flow direction. However, the thickness of the charged polymer layer is affected weakly by the electric field, and even a slight swelling is identified for the A-B attraction case, implying the conformational coupling between two polymer species. Furthermore, the charged polymer chains incline entirely towards the electric field direction oppositely to the flow direction. More importantly, unlike the neutral polymer chains, the shape factor of the charged polymer chains, which is used to describe the overall shape of polymer chains, is reduced significantly with increasing the electric field strength, corresponding to a more coiled structure.
Jindal, Anil B; Devarajan, Padma V
2015-07-15
Asymmetric lipid polymer nanostructures (LIPOMER) comprising glyceryl monostearate (GMS) as lipid and Gantrez AN 119 (Gantrez) as polymer, revealed enhanced splenic accumulation. In the present paper, we attempt to explain the formation of asymmetric GMS LIPOMER using real time imaging. Particles were prepared by precipitation under static conditions using different non-solvent phase compositions. The process was video recorded and the videos converted to time elapsed images using the FFmpeg 0.10.2 software at 25 frames/sec. Non-solvent compositions comprising >30% of IPA/Acetone revealed significant stranding of the solvent phase and slower onset of precipitation(2-6s). At lower concentrations of IPA and acetone, and in non-solvent compositions comprising ethanol/water the stranding phenomenon was not evident. Further, rapid precipitation(<1 s) was evident. Nanoprecipitation based on the Marangoni effect is a result of diffusion stranding, interfacial turbulence, and mass transfer of solvent and non-solvent resulting in solute precipitation. Enhanced diffusion stranding favored by high interaction of GMS and Gantrez(low ΔPol), and the low solubility parameter(Δδtotal) and high mixing enthalpy(ΔHM) of GMS in IPA resulted in droplets with random shapes analogous to an amoeba with pseudopodia, which on precipitation formed asymmetric particles. Asymmetric particles could be readily designed through appropriate selection of solutes and non-solvent phase by modified nanoprecipitation. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Cheng, Shengfeng; Wen, Chengyuan; Egorov, Sergei
2015-03-01
Molecular dynamics simulations and self-consistent field theory calculations are employed to study the interactions between a nanoparticle and a polymer brush at various densities of chains grafted to a plane. Simulations with both implicit and explicit solvent are performed. In either case the nanoparticle is loaded to the brush at a constant velocity. Then a series of simulations are performed to compute the force exerted on the nanoparticle that is fixed at various distances from the grafting plane. The potential of mean force is calculated and compared to the prediction based on a self-consistent field theory. Our simulations show that the explicit solvent leads to effects that are not captured in simulations with implicit solvent, indicating the importance of including explicit solvent in molecular simulations of such systems. Our results also demonstrate an interesting correlation between the force on the nanoparticle and the density profile of the brush. We gratefully acknowledge the support of NVIDIA Corporation with the donation of the Tesla K40 GPU used for this research.
Sato, Ayaka; Ikeda, Yuya; Yamaguchi, Koichi; Vohra, Varun
2018-03-16
Facile detection and the identification of hazardous organic solvents are essential for ensuring global safety and avoiding harm to the environment caused by industrial wastes. Here, we present a simple method for the fabrication of silver-coated monodisperse polystyrene nanoparticle photonic structures that are embedded into a polydimethylsiloxane (PDMS) matrix. These hybrid materials exhibit a strong green iridescence with a reflectance peak at 550 nm that originates from the close-packed arrangement of the nanoparticles. This reflectance peak measured under Wulff-Bragg conditions displays a 20 to 50 nm red shift when the photonic sensors are exposed to five commonly employed and highly hazardous organic solvents. These red-shifts correlate well with PDMS swelling ratios using the various solvents, which suggests that the observable color variations result from an increase in the photonic crystal lattice parameter with a similar mechanism to the color modulation of the chameleon skin. Dynamic reflectance measurements enable the possibility of clearly identifying each of the tested solvents. Furthermore, as small amounts of hazardous solvents such as tetrahydrofuran can be detected even when mixed with water, the nanostructured solvent sensors we introduce here could have a major impact on global safety measures as innovative photonic technology for easily visualizing and identifying the presence of contaminants in water.
Wenger, Whitney Nowak; Bates, Frank S; Aydil, Eray S
2017-08-22
Semiconductor quantum dots synthesized using rapid mixing of precursors by injection into a hot solution of solvents and surfactants have surface ligands that sterically stabilize the dispersions in nonpolar solvents. Often, these ligands are exchanged to disperse the quantum dots in polar solvents, but quantitative studies of quantum dot surfaces before and after ligand exchange are scarce. We studied exchanging trioctylphosphine (TOP) and trioctylphosphine oxide (TOPO) ligands on as-synthesized CdSe quantum dots dispersed in hexane with a 2000 g/mol thiolated poly(ethylene glycol) (PEG) polymer. Using infrared spectroscopy we quantify the absolute surface concentration of TOP/TOPO and PEG ligands per unit area before and after ligand exchange. While 50-85% of the TOP/TOPO ligands are removed upon ligand exchange, only a few are replaced with PEG. Surprisingly, the remaining TOP/TOPO ligands outnumber the PEG ligands, but these few PEG ligands are sufficient to disperse the quantum dots in polar solvents such as chloroform, tetrahydrofuran, and water. Moreover, as-synthesized quantum dots once easily dispersed in hexane are no longer dispersible in nonpolar solvents after ligand exchange. A subtle coverage-dependent balance between attractive PEG-solvent interactions and repulsive TOP/TOPO-solvent interactions determines the dispersion stability.
Non-aqueous liquid compositions comprising ion exchange polymers reference to related application
Kim,; Yu Seung, Lee [Los Alamos, NM; Kwan-Soo, Rockward [Los Alamos, NM; T, Tommy Q [Rio Rancho, NM
2012-08-07
Compositions, and methods of making thereof, comprising from about 1% to about 5% of a perfluorinated sulfonic acid ionomer or a hydrocarbon-based ionomer; and from about 95% to about 99% of a solvent, said solvent consisting essentially of a polyol; wherein said composition is substantially free of water and wherein said ionomer is uniformly dispersed in said solvent.
Alternative Solvents/Technologies for Paint Stripping: Phase 1.
1994-03-01
processes . Three phases of study are defined: Phase I, identify alternate solvents/strippers and screen them; Phase II, field test solvent/ strippers...Section Title Page 1 Metal Refinishing Process - Immersion Method ............... 8 2 Phase Summary Chart ........................ 12 3 The...of the following: (a) nontoxic chemical formulations, (b) new process development, and (c) new coating reformulations. This program consists of three
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chern, Yann-Cherng; Wu, Hung-Ruei; Chen, Yen-Chu
2015-08-15
A solvent soaking and rinsing method, in which the solvent was allowed to soak all over the surface followed by a spinning for solvent draining, was found to produce perovskite layers with high uniformity on a centimeter scale and with much improved reliability. Besides the enhanced crystallinity and surface morphology due to the rinsing induced surface precipitation that constrains the grain growth underneath in the precursor films, large-area uniformity with film thickness determined exclusively by the rotational speed of rinsing spinning for solvent draining was observed. With chloroform as rinsing solvent, highly uniform and mirror-like perovskite layers of area asmore » large as 8 cm × 8 cm were produced and highly uniform planar perovskite solar cells with power conversion efficiency of 10.6 ± 0.2% as well as much prolonged lifetime were obtained. The high uniformity and reliability observed with this solvent soaking and rinsing method were ascribed to the low viscosity of chloroform as well as its feasibility of mixing with the solvent used in the precursor solution. Moreover, since the surface precipitation forms before the solvent draining, this solvent soaking and rinsing method may be adapted to spinless process and be compatible with large-area and continuous production. With the large-area uniformity and reliability for the resultant perovskite layers, this chloroform soaking and rinsing approach may thus be promising for the mass production and commercialization of large-area perovskite solar cells.« less
A hydro/organo/hybrid gelator: a peptide lipid with turning aspartame head groups.
Mukai, Masaru; Minamikawa, Hiroyuki; Aoyagi, Masaru; Asakawa, Masumi; Shimizu, Toshimi; Kogiso, Masaki
2013-04-01
This work presents a novel bola-type peptide lipid which can gelate water, organic solvents, and water/organic-solvent mixtures. In its molecular structure, an amphiphilic dipeptide aspartame (L-α-aspartyl-L-phenylalanine methyl ester) is connected at both ends of an alkylene linker. The different morphologies in the hydrogel (helical nanotapes) and the organogel (tape-like nanostructures) were visualized by energy-filtering transmission electron microscopy (EF-TEM) and energy-filtering scanning electron microscopy (FE-SEM), and the molecular arrangement was examined using X-ray diffraction (XRD), infrared (IR) spectroscopy, and circular dichroism (CD) spectroscopy. Possessing a hydrophilic aspartic acid group and a (relatively) hydrophobic phenylalanine methyl ester group, the dipeptide head group can turn about in response to solvent polarity. As a consequence, the solvent condition changed the molecular packing of the gelator and affected the overall supramolecular structure of the gel. It is noted that the peptide lipid gelated mixed solvents of water and organic solvents such as dichloromethane, liquid-paraffin, olive-oil, silicone-oils, and so on. The present hybrid gel can simultaneously hold hydrophilic and hydrophobic functional materials. Copyright © 2013 Elsevier Inc. All rights reserved.
Characterizing Fullerene Nanoparticles in Aqueous Suspensions
Studies have indicated that fullerenes can form stable colloidal suspensions in water when introduced to the aqueous phase through solvent exchange, sonication, or extended mixing. The colloidal suspensions created using these techniques have effective aqueous phase concentratio...
Separation of Gadolinium (Gd) using Synergic Solvent Mixed Topo-D2EHPA with Extraction Method.
NASA Astrophysics Data System (ADS)
Effendy, N.; Basuki, K. T.; Biyantoro, D.; Perwira, N. K.
2018-04-01
The main problem to obtain Gd with high purity is the similarity of chemical properties and physical properties with the other rare earth elements (REE) such as Y and Dy, it is necessary to do separation by the extraction process. The purpose of this research to determine the best solvent type, amount of solvent, feed and solvent ratio in the Gd extraction process, to determine the rate order and the value of the rate constant of Gd concentration based on experimental data of aqueous phase concentration as a function of time and to know the effect of temperature on the reaction speed constant. This research was conducted on variation of solvent, amount of solvent, feed and solvent ratio in the extraction process of Gd separation, extraction time to determine the order value and the rate constant of Gd concentration in extraction process based on the aqueous phase concentration data as a function of time, to the rate constant of decreasing concentration of Gd. Based on the calculation results, the solvent composition was obtained with the best feed to separate the rare earth elements Gd in the extraction process is 1 : 4 with 15% concentration of TOPO and 10% concentration of D2EHPA. The separation process of Gd using extraction method by solvent TOPO-D2EHPA 2 : 1 comparison is better than single solvent D2EHPA / TOPO because of the synergistic effect. The rate order of separation process of Gd follows order 1. The Arrhenius Gd equation becomes k = 1.46 x 10-7 exp (-6.96 kcal / mol / RT).
Chen, Minglei; Dong, Chuchuan; Penfold, Jeff; Thomas, Robert K; Smyth, Thomas J P; Perfumo, Amedea; Marchant, Roger; Banat, Ibrahim M; Stevenson, Paul; Parry, Alyn; Tucker, Ian; Campbell, Richard A
2011-07-19
The adsorption of the lactonic (LS) and acidic (AS) forms of sophorolipid and their mixtures with the anionic surfactant sodium dodecyl benzene sulfonate (LAS) has been measured at the air/water interface by neutron reflectivity, NR. The AS and LS sophorolipids adsorb with Langmuir-like adsorption isotherms. The more hydrophobic LS is more surface active than the AS, with a lower critical micellar concentration, CMC, and stronger surface adsorption, with an area/molecule ∼70 Å(2) compared with 85 Å(2) for the AS. The acidic sophorolipid shows a maximum in its adsorption at the CMC which appears to be associated with a mixture of different isomeric forms. The binary LS/AS and LS/LAS mixtures show a strong surface partitioning in favor of the more surface active and hydrophobic LS component but are nevertheless consistent with ideal mixing at the interface. In contrast, the surface composition of the AS/LAS mixture is much closer to the solution composition, but the surface mixing is nonideal and can be accounted for by regular solution theory, RST. In the AS/LS/LAS ternary mixtures, the surface adsorption is dominated by the sophorolipid, and especially the LS component, in a way that is not consistent with the observations for the binary mixtures. The extreme partitioning in favor of the sophorolipid for the LAS/LS/AS (1:2) mixtures is attributed to a reduction in the packing constraints at the surface due to the AS component. Measurements of the surface structure reveal a compact monolayer for LS and a narrow solvent region for LS, LS/AS, and LS/LAS mixtures, consistent with the more hydrophobic nature of the LS component. The results highlight the importance of the relative packing constraints on the adsorption of multicomponent mixtures, and the impact of the lactonic form of the sophorolipid on the adsorption of the sophorolipid/LAS mixtures.
Dielectric Studies on Binary Mixtures of Diethyl Ether (DEE) in Polar Solvents
NASA Astrophysics Data System (ADS)
Pradhan, S. K.; Dash, S. K.; Swain, M. D.; Swain, B. B.
2011-11-01
Dielectric constant (ɛ) of diethylether (DEE) in binary mixtures with four polar solvents such as n-butanl, i-butanol, t-butanol and tolune has been measured at 455 kHz and at a temperature 303.15 K. The refractive indices were measured at a regulated temperature by Pulfrich refractometer at sodium D-line. The data is used to evaluate mutual correlation factor gab, excess molar polarization and excess free energy of mixing ΔGab by using Winkelmann-Quitzsch equation for binary mixtures to asses the suitability of the polar solvents as modifiers. The trend of variation for these parameters exhibit marked dependence on the nature of alcohols. Diethylether is one of the solvent extractant used for the extraction and separation of zirconium and hafnium in reactor technology. The extractant is blended with appropriate polar modifiers for greater dispersal and more rapid phase disengagement. This facilitates in the elimination of the third organo-aqueous phase containing some of the metal ions. As such the study of molecular interaction among the component molecules has been undertaken in these binary mixtures using the dielectric route. The interaction parameters such as mutual correlation factor gab is found to be less than one in all alcohols, while it is negative in toluene upto 0.7 DEE molefraction and thereafter becoming positive. The nature of variation of the excess miolar polarization ΔP and excess free energy of mixing Gab tends to support the assessment of gab to choose a suitable polar modifier.
Mead, J.W.; Montoya, O.J.; Rand, P.B.; Willan, V.O.
1983-12-21
Access to a space is impeded by generation of a sticky foam from a silicone polymer and a low boiling solvent such as a halogenated hydrocarbon. In a preferred aspect, the formulation is polydimethylsiloxane gel mixed with F502 Freon as a solvent and blowing agent, and pressurized with CO/sub 2/ in a vessel to about 250 PSI, whereby when the vessel is opened, a sticky and solvent resistant foam is deployed. The foam is deployable, over a wide range of temperatures, adhering to wet surfaces as well as dry, is stable over long periods of time and does not propagate flame or lose adhesive properties during an externally supported burn.
Self-assembly of nanocomposite materials
Brinker, C. Jeffrey; Sellinger, Alan; Lu, Yunfeng
2001-01-01
A method of making a nanocomposite self-assembly is provided where at least one hydrophilic compound, at least one hydrophobic compound, and at least one amphiphilic surfactant are mixed in an aqueous solvent with the solvent subsequently evaporated to form a self-assembled liquid crystalline mesophase material. Upon polymerization of the hydrophilic and hydrophobic compounds, a robust nanocomposite self-assembled material is formed. Importantly, in the reaction mixture, the amphiphilic surfactant has an initial concentration below the critical micelle concentration to allow formation of the liquid-phase micellar mesophase material. A variety of nanocomposite structures can be formed, depending upon the solvent evaporazation process, including layered mesophases, tubular mesophases, and a hierarchical composite coating composed of an isotropic worm-like micellar overlayer bonded to an oriented, nanolaminated underlayer.
Advanced Double Layer Capacitor
1989-07-01
Membrane and Electrode Assemblies The Nafion electrolyte was introduced into the electrode by two different methods: 1) mixing of the Nafion solution with... electroosmotic transport of water, allows some liquid electrolyte to permeate into the structure, which causes partial flooding. On the basis of these...solution of Nafion 117) was mixed with the RuO x powder. The solvent was then allowed to evaporate and the resulting composite powder was crushed and
Production of Caproic Acid from Mixed Organic Waste: An Environmental Life Cycle Perspective
2017-01-01
Caproic acid is an emerging platform chemical with diverse applications. Recently, a novel biorefinery process, that is, chain elongation, was developed to convert mixed organic waste and ethanol into renewable caproic acids. In the coming years, this process may become commercialized, and continuing to improve on the basis of numerous ongoing technological and microbiological studies. This study aims to analyze the environmental performance of caproic acid production from mixed organic waste via chain elongation at this current, early stage of technological development. To this end, a life cycle assessment (LCA) was performed to evaluate the environmental impact of producing 1 kg caproic acid from organic waste via chain elongation, in both a lab-scale and a pilot-scale system. Two mixed organic waste were used as substrates: the organic fraction of municipal solid waste (OFMSW) and supermarket food waste (SFW). Ethanol use was found to be the dominant cause of environmental impact over the life cycle. Extraction solvent recovery was found to be a crucial uncertainty that may have a substantial influence on the life-cycle impacts. We recommend that future research and industrial producers focus on the reduction of ethanol use in chain elongation and improve the recovery efficiency of the extraction solvent. PMID:28513150
Bioprocessing of a stored mixed liquid waste
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wolfram, J.H.; Rogers, R.D.; Finney, R.
1995-12-31
This paper describes the development and results of a demonstration for a continuous bioprocess for mixed waste treatment. A key element of the process is an unique microbial strain which tolerates high levels of aromatic solvents and surfactants. This microorganism is the biocatalysis of the continuous flow system designed for the processing of stored liquid scintillation wastes. During the past year a process demonstration has been conducted on commercial formulation of liquid scintillation cocktails (LSC). Based on data obtained from this demonstration, the Ohio EPA granted the Mound Applied Technologies Lab a treatability permit allowing the limited processing of actualmore » mixed waste. Since August 1994, the system has been successfully processing stored, {open_quotes}hot{close_quotes} LSC waste. The initial LSC waste fed into the system contained 11% pseudocumene and detectable quantities of plutonium. Another treated waste stream contained pseudocumene and tritium. Data from this initial work shows that the hazardous organic solvent, and pseudocumene have been removed due to processing, leaving the aqueous low level radioactive waste. Results to date have shown that living cells are not affected by the dissolved plutonium and that 95% of the plutonium was sorbed to the biomass. This paper discusses the bioprocess, rates of processing, effluent, and the implications of bioprocessing for mixed waste management.« less
Feasibility study for a secondary Na/S battery
NASA Technical Reports Server (NTRS)
Abraham, K. M.; Schiff, R.; Brummer, S. B.
1979-01-01
The feasibility of a moderate temperature Na battery was studied. This battery is to operate at a temperature in the range of 100-150 C. Two kinds of cathode were investigated: (1) a soluble S cathode consisting of a solution of Na2Sn in an organic solvent and (2) an insoluble S cathode consisting of a transition metal dichalcogenide in contact with a Na(+)ion conducting electrolyte. Four amide solvents, dimethyl acetamide, diethyl acetamide, N-methyl acetamide and acetamide, were investigated as possible solvents for the soluble S cathode. Results of stability and electrochemical studies using these solvents are presented. The dialkyl substituted amides were found to be superior. Although the alcohol 1,3-cyclohexanediol was found to be stable in the presence of Na2Sn at 130 C, its Na2Sn solutions did not appear to have suitable electrochemical properties.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fukuda, Ryoichi, E-mail: fukuda@ims.ac.jp; Ehara, Masahiro; Elements Strategy Initiative for Catalysts and Batteries
2015-12-31
The effects from solvent environment are specific to the electronic states; therefore, a computational scheme for solvent effects consistent with the electronic states is necessary to discuss electronic excitation of molecules in solution. The PCM (polarizable continuum model) SAC (symmetry-adapted cluster) and SAC-CI (configuration interaction) methods are developed for such purposes. The PCM SAC-CI adopts the state-specific (SS) solvation scheme where solvent effects are self-consistently considered for every ground and excited states. For efficient computations of many excited states, we develop a perturbative approximation for the PCM SAC-CI method, which is called corrected linear response (cLR) scheme. Our test calculationsmore » show that the cLR PCM SAC-CI is a very good approximation of the SS PCM SAC-CI method for polar and nonpolar solvents.« less
Droplet-Based Production of Liposomes
NASA Technical Reports Server (NTRS)
Ackley, Donald E.; Forster, Anita
2009-01-01
A process for making monodisperse liposomes having lipid bilayer membranes involves fewer, simpler process steps than do related prior methods. First, a microfluidic, cross junction droplet generator is used to produce vesicles comprising aqueous solution droplets contained in single layer lipid membranes. The vesicles are collected in a lipid-solvent mix that is at most partially soluble in water and is less dense than is water. A layer of water is dispensed on top of the solvent. By virtue of the difference in densities, the water sinks to the bottom and the solvent floats to the top. The vesicles, which have almost the same density as that of water, become exchanged into the water instead of floating to the top. As there are excess lipids in the solvent solution, in order for the vesicles to remain in the water, the addition of a second lipid layer to each vesicle is energetically favored. The resulting lipid bilayers present the hydrophilic ends of the lipid molecules to both the inner and outer membrane surfaces. If lipids of a second kind are dissolved in the solvent in sufficient excess before use, then asymmetric liposomes may be formed.
NASA Astrophysics Data System (ADS)
Wang, W. S.; Aggarwal, M. D.; Choi, J.; Gebre, T.; Shields, Angela D.; Penn, Benjamin G.; Frazier, Donald O.
1999-03-01
Single crystals of a new promising nonlinear optical material for the tunable UV harmonic generation, L-pyroglutamic acid 60×20×20 mm 3 in size were obtained from aqueous solution by using the temperature-lowering method. Solubility of L-pyroglutamic acid in different solvents was measured. The single crystals showed different morphological characteristics and growth rate in different solvents with different crystallographic orientations. Methanol or ethanol solutions yielded needle-like crystals. In mixed solution such as methanol/H 2O or ethanol/ H 2O plate-like crystals with a thickness in the direction [0 1 0] were observed. The water as a good solvent, however, produced long prism-like crystals. The two polymorphs of L-pyroglutamic acid (α and β phases) were found for the first time. The growth shapes of α-phase is mainly a prism and β phases is a rhombic plate.The growth rate of α and β phases is mainly a function of the supersaturation of the L-pyroglutamic acid in solution.
NASA Astrophysics Data System (ADS)
Farazandeh, R.; Rounaghi, G. H.; Ebrahimi, M.; Basafa, S.
2017-04-01
The complexation reaction of Cd2+ cation with 2-hydroxy-1,4-naphthoquinone (HNQ) was studied in acetonitrile (AN), 2-PrOH, ethyl acetate (EtOAc), EtOH, dimethylformamide (DMF) and in binary solutions AN-2-PrOH, AN-DMF, AN-EtOH, and AN-EtOAc using conductometric method at 15-45°C. The conductance data show that the stoichiometry of the Cd2+ complex with HNQ in all solvent systems is 1 : 1. In the pure solvents the stability of the complex changes in the order AN > 2-PrOH > EtOH > DMF. The stability of the complex at 25°C in the studied mixtures changes in the following order : AN-EtOAc > AN-2-PrOH > AN-EtOH > AN-DMF. These orders are affected by the nature and composition of the solvent systems and by the temperature. From the temperature dependence data, the thermodynamic functions values (Δ H° and Δ S°) for the complex formation were calculated.
Simulating chemical reactions in ionic liquids using QM/MM methodology.
Acevedo, Orlando
2014-12-18
The use of ionic liquids as a reaction medium for chemical reactions has dramatically increased in recent years due in large part to the numerous reported advances in catalysis and organic synthesis. In some extreme cases, ionic liquids have been shown to induce mechanistic changes relative to conventional solvents. Despite the large interest in the solvents, a clear understanding of the molecular factors behind their chemical impact is largely unknown. This feature article reviews our efforts developing and applying mixed quantum and molecular mechanical (QM/MM) methodology to elucidate the microscopic details of how these solvents operate to enhance rates and alter mechanisms for industrially and academically important reactions, e.g., Diels-Alder, Kemp eliminations, nucleophilic aromatic substitutions, and β-eliminations. Explicit solvent representation provided the medium dependence of the activation barriers and atomic-level characterization of the solute-solvent interactions responsible for the experimentally observed "ionic liquid effects". Technical advances are also discussed, including a linear-scaling pairwise electrostatic interaction alternative to Ewald sums, an efficient polynomial fitting method for modeling proton transfers, and the development of a custom ionic liquid OPLS-AA force field.
Formulating Precursors for Coating Metals and Ceramics
NASA Technical Reports Server (NTRS)
Morales, Wilfredo; Gatica, Jorge E.; Reye, John T.
2005-01-01
A protocol has been devised for formulating low-vapor-pressure precursors for protective and conversion coatings on metallic and ceramic substrates. The ingredients of a precursor to which the protocol applies include additives with phosphate esters, or aryl phosphate esters in solution. Additives can include iron, chromium, and/or other transition metals. Alternative or additional additives can include magnesium compounds to facilitate growth of films on substrates that do not contain magnesium. Formulation of a precursor begins with mixing of the ingredients into a high-vapor-pressure solvent to form a homogeneous solution. Then the solvent is extracted from the solution by evaporation - aided, if necessary, by vacuum and/or slight heating. The solvent is deemed to be completely extracted when the viscosity of the remaining solution closely resembles the viscosity of the phosphate ester or aryl phosphate ester. In addition, satisfactory removal of the solvent can be verified by means of a differential scanning calorimetry essay: the absence of endothermic processes for temperatures below 150 C would indicate that the residual solvent has been eliminated from the solution beyond a detectable dilution level.
[Determination of the solubility parameter of organosolv lignin by inverse gas chromatography].
Yu, Yachen; Li, Kunlan; Ma, Yingchong; Wei, Ligang
2013-02-01
An inverse gas chromatographic (IGC) method has been used to measure the solubility parameters (delta2) of organosolv lignin at the absolute temperatures from 333.15 K to 373.15 K. The test probe solvents were n-octane (n-C8), n-decane (n-C10), n-dodecane (n-C12), and n-tetradecane (n-C14). The specific retention volumes of the solvents (Vg0), the molar enthalpy of sorption (deltaH1S), the partial molar enthalpy of mixing at infinite dilution (deltaH1infinity), the molar enthalpy of vaporization (deltaHv), the activity coefficients at infinite dilution (Omega1- infinity), and Flory-Huggins inter action parameters (chi12infinity) between organosolv lignin and probe solvents were obtained. The results showed that the above four probes are poor solvents for organosolv lignin; at the same temperature, the chi12infinity reduced with the increase of the carbon number of probe solvents. The average solubility parameter of organosolv lignin was determined as 19.03 (J x cm(-3))1/2.
COSOLVENT EFFECTS ON SORPTION ISOTHERM LINEARITY
Sorption-desorption hysteresis, slow desorption kinetics, and other nonideal phenomena have been attributed to the differing sorptive characteristics of the natural organic polymers associated with soils and sediments. In this study, aqueous and mixed solvent systems were used t...
21 CFR 177.1900 - Urea-formaldehyde resins in molded articles.
Code of Federal Regulations, 2010 CFR
2010-04-01
... be mixed with refined wood pulp and the mixture may contain other optional adjuvant substances which... solvent not to exceed 0.5 milligram per square inch of food-contact surface as determined by the methods...
Direct use of methane in coal liquefaction
Sundaram, M.S.; Steinberg, M.
1985-06-19
This invention relates to a process for converting solid carbonaceous material, such as coal, to liquid and gaseous hydrocarbons utilizing methane, generally at a residence time of about 20 to 120 minutes at a temperature of 250 to 750/sup 0/C, preferably 350 to 450/sup 0/C, pressurized up to 6000 psi, and preferably in the 1000 to 2500 psi range, preferably directly utilizing methane 50 to 100% by volume in a mix of methane and hydrogen. A hydrogen donor solvent or liquid vehicle such as tetralin, tetrahydroquinoline, piperidine, and pyrolidine may be used in a slurry mix where the solvent feed is 0 to 100% by weight of the coal or carbonaceous feed. Carbonaceous feed material can either be natural, such as coal, wood, oil shale, petroleum, tar sands, etc., or man-made residual oils, tars, and heavy hydrocarbon residues from other processing systems. 1 fig.
NASA Astrophysics Data System (ADS)
Pouya, Shahram; Blanchard, Gary; Koochesfahani, Manoochehr
2016-11-01
Fluorocarbon solvents are very stable inert fluids with unique physical properties that make them attractive compounds as refrigerant and several medical applications such as contrast enhanced ultrasound imaging. Since they do not mix with typical organic solvents or water, most luminescent (fluorescent or phosphorescent) probes cannot be used as tracers for optical diagnostic techniques. Perfluoropentane, a compound from this family, is used as a simulant fluid by NASA for two-phase heat transfer/mixing experiments under micro-gravity condition due to its low boiling temperature. Here we study the feasibility of employing non-intrusive optical methods for measurements of temperature and/or velocity within Perfluoropentane as the working fluid. Preliminary results of temperature and velocity measurement using Laser Induced Fluorescence and Molecular Tagging Velocimetry are presented. This work was supported by NASA Grant Number NNX16AD52A.
NASA Astrophysics Data System (ADS)
Cazade, Pierre-André; Tran, Halina; Bereau, Tristan; Das, Akshaya K.; Kläsi, Felix; Hamm, Peter; Meuwly, Markus
2015-06-01
The solvent dynamics around fluorinated acetonitrile is characterized by 2-dimensional infrared spectroscopy and atomistic simulations. The lineshape of the linear infrared spectrum is better captured by semiempirical (density functional tight binding) mixed quantum mechanical/molecular mechanics simulations, whereas force field simulations with multipolar interactions yield lineshapes that are significantly too narrow. For the solvent dynamics, a relatively slow time scale of 2 ps is found from the experiments and supported by the mixed quantum mechanical/molecular mechanics simulations. With multipolar force fields fitted to the available thermodynamical data, the time scale is considerably faster—on the 0.5 ps time scale. The simulations provide evidence for a well established CF-HOH hydrogen bond (population of 25%) which is found from the radial distribution function g(r) from both, force field and quantum mechanics/molecular mechanics simulations.
NASA Astrophysics Data System (ADS)
Schubert, Alexander; Falvo, Cyril; Meier, Christoph
2016-08-01
We present mixed quantum-classical simulations on relaxation and dephasing of vibrationally excited carbon monoxide within a protein environment. The methodology is based on a vibrational surface hopping approach treating the vibrational states of CO quantum mechanically, while all remaining degrees of freedom are described by means of classical molecular dynamics. The CO vibrational states form the "surfaces" for the classical trajectories of protein and solvent atoms. In return, environmentally induced non-adiabatic couplings between these states cause transitions describing the vibrational relaxation from first principles. The molecular dynamics simulation yields a detailed atomistic picture of the energy relaxation pathways, taking the molecular structure and dynamics of the protein and its solvent fully into account. Using the ultrafast photolysis of CO in the hemoprotein FixL as an example, we study the relaxation of vibrationally excited CO and evaluate the role of each of the FixL residues forming the heme pocket.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peters, T. B.
An Extraction, Scrub, and Strip (ESS) test was performed on a sample of Salt Waste Processing Facility (SWPF) Caustic-Side Solvent Extraction (CSSX) solvent and salt simulant to determine cesium distribution ratios (D(Cs)), and cesium concentration in the strip effluent (SE) and decontaminated salt solution (DSS) streams; this data will be used by Parsons to help determine if the solvent is qualified for use at the SWPF. The ESS test showed acceptable performance of the solvent for extraction, scrub, and strip operations. The extraction D(Cs) measured 12.9, exceeding the required value of 8. This value is consistent with results from previousmore » ESS tests using similar solvent formulations. Similarly, scrub and strip cesium distribution ratios fell within acceptable ranges.« less
NASA Technical Reports Server (NTRS)
St.clair, A. K.; St.clair, T. L. (Inventor)
1985-01-01
A rubber-toughened, addition-type polyimide composition is disclosed which has excellent high temperature bonding characteristics in the fully cured state and improved peel strength and adhesive fracture resistance physical property characteristics. The process for making the improved adhesive involves preparing the rubber-containing amic acid prepolymer by chemically reacting an amine-terminated elastomer and an aromatic diamine with an aromatic dianhydride with which a reactive chain stopper anhydride has been mixed, and utilizing solvent or mixture of solvents for the reaction.
Anion binding by bambus[6]uril probed in the gas phase and in solution.
Révész, Agnes; Schröder, Detlef; Svec, Jan; Wimmerová, Michaela; Sindelar, Vladimir
2011-10-20
Electrospray ionization mass spectrometry (ESI-MS) is used to probe the binding of small anions to the macrocycle of bambus[6]uril. For the halide ions, the experimental patterns suggest F(-) < Cl(-) < Br(-) < I(-), which is consistent with the order of anion binding found in the condensed phase. Parallel equilibrium studies in the condensed phase establish the association constants of halide anions and bambus[6]uril in mixed solvents. A detailed analysis of the mass spectrometric data is used to shed light on the correlations between the binding constants in the condensed phase and the ion abundances observed using ESI-MS. From the analysis it becomes apparent that ESI-MS can indeed represent the situation in solution to some extent, but the sampling in the gas-phase experiment is not 1:1 compared to that in solution.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, Dale A.
This model description is supplemental to the Lawrence Livermore National Laboratory (LLNL) report LLNL-TR-642494, Technoeconomic Evaluation of MEA versus Mixed Amines for CO2 Removal at Near- Commercial Scale at Duke Energy Gibson 3 Plant. We describe the assumptions and methodology used in the Laboratory’s simulation of its understanding of Huaneng’s novel amine solvent for CO2 capture with 35% mixed amine. The results of that simulation have been described in LLNL-TR-642494. The simulation was performed using ASPEN 7.0. The composition of the Huaneng’s novel amine solvent was estimated based on information gleaned from Huaneng patents. The chemistry of the process wasmore » described using nine equations, representing reactions within the absorber and stripper columns using the ELECTNRTL property method. As a rate-based ASPEN simulation model was not available to Lawrence Livermore at the time of writing, the height of a theoretical plate was estimated using open literature for similar processes. Composition of the flue gas was estimated based on information supplied by Duke Energy for Unit 3 of the Gibson plant. The simulation was scaled at one million short tons of CO2 absorbed per year. To aid stability of the model, convergence of the main solvent recycle loop was implemented manually, as described in the Blocks section below. Automatic convergence of this loop led to instability during the model iterations. Manual convergence of the loop enabled accurate representation and maintenance of model stability.« less
NASA Astrophysics Data System (ADS)
Sun, Hui; Wen, Jiayi; Zhao, Yanxiang; Li, Bo; McCammon, J. Andrew
2015-12-01
Dielectric boundary based implicit-solvent models provide efficient descriptions of coarse-grained effects, particularly the electrostatic effect, of aqueous solvent. Recent years have seen the initial success of a new such model, variational implicit-solvent model (VISM) [Dzubiella, Swanson, and McCammon Phys. Rev. Lett. 96, 087802 (2006) and J. Chem. Phys. 124, 084905 (2006)], in capturing multiple dry and wet hydration states, describing the subtle electrostatic effect in hydrophobic interactions, and providing qualitatively good estimates of solvation free energies. Here, we develop a phase-field VISM to the solvation of charged molecules in aqueous solvent to include more flexibility. In this approach, a stable equilibrium molecular system is described by a phase field that takes one constant value in the solute region and a different constant value in the solvent region, and smoothly changes its value on a thin transition layer representing a smeared solute-solvent interface or dielectric boundary. Such a phase field minimizes an effective solvation free-energy functional that consists of the solute-solvent interfacial energy, solute-solvent van der Waals interaction energy, and electrostatic free energy described by the Poisson-Boltzmann theory. We apply our model and methods to the solvation of single ions, two parallel plates, and protein complexes BphC and p53/MDM2 to demonstrate the capability and efficiency of our approach at different levels. With a diffuse dielectric boundary, our new approach can describe the dielectric asymmetry in the solute-solvent interfacial region. Our theory is developed based on rigorous mathematical studies and is also connected to the Lum-Chandler-Weeks theory (1999). We discuss these connections and possible extensions of our theory and methods.
Sun, Hui; Wen, Jiayi; Zhao, Yanxiang; Li, Bo; McCammon, J Andrew
2015-12-28
Dielectric boundary based implicit-solvent models provide efficient descriptions of coarse-grained effects, particularly the electrostatic effect, of aqueous solvent. Recent years have seen the initial success of a new such model, variational implicit-solvent model (VISM) [Dzubiella, Swanson, and McCammon Phys. Rev. Lett. 96, 087802 (2006) and J. Chem. Phys. 124, 084905 (2006)], in capturing multiple dry and wet hydration states, describing the subtle electrostatic effect in hydrophobic interactions, and providing qualitatively good estimates of solvation free energies. Here, we develop a phase-field VISM to the solvation of charged molecules in aqueous solvent to include more flexibility. In this approach, a stable equilibrium molecular system is described by a phase field that takes one constant value in the solute region and a different constant value in the solvent region, and smoothly changes its value on a thin transition layer representing a smeared solute-solvent interface or dielectric boundary. Such a phase field minimizes an effective solvation free-energy functional that consists of the solute-solvent interfacial energy, solute-solvent van der Waals interaction energy, and electrostatic free energy described by the Poisson-Boltzmann theory. We apply our model and methods to the solvation of single ions, two parallel plates, and protein complexes BphC and p53/MDM2 to demonstrate the capability and efficiency of our approach at different levels. With a diffuse dielectric boundary, our new approach can describe the dielectric asymmetry in the solute-solvent interfacial region. Our theory is developed based on rigorous mathematical studies and is also connected to the Lum-Chandler-Weeks theory (1999). We discuss these connections and possible extensions of our theory and methods.
Sun, Hui; Wen, Jiayi; Zhao, Yanxiang; Li, Bo; McCammon, J. Andrew
2015-01-01
Dielectric boundary based implicit-solvent models provide efficient descriptions of coarse-grained effects, particularly the electrostatic effect, of aqueous solvent. Recent years have seen the initial success of a new such model, variational implicit-solvent model (VISM) [Dzubiella, Swanson, and McCammon Phys. Rev. Lett. 96, 087802 (2006) and J. Chem. Phys. 124, 084905 (2006)], in capturing multiple dry and wet hydration states, describing the subtle electrostatic effect in hydrophobic interactions, and providing qualitatively good estimates of solvation free energies. Here, we develop a phase-field VISM to the solvation of charged molecules in aqueous solvent to include more flexibility. In this approach, a stable equilibrium molecular system is described by a phase field that takes one constant value in the solute region and a different constant value in the solvent region, and smoothly changes its value on a thin transition layer representing a smeared solute-solvent interface or dielectric boundary. Such a phase field minimizes an effective solvation free-energy functional that consists of the solute-solvent interfacial energy, solute-solvent van der Waals interaction energy, and electrostatic free energy described by the Poisson–Boltzmann theory. We apply our model and methods to the solvation of single ions, two parallel plates, and protein complexes BphC and p53/MDM2 to demonstrate the capability and efficiency of our approach at different levels. With a diffuse dielectric boundary, our new approach can describe the dielectric asymmetry in the solute-solvent interfacial region. Our theory is developed based on rigorous mathematical studies and is also connected to the Lum–Chandler–Weeks theory (1999). We discuss these connections and possible extensions of our theory and methods. PMID:26723595
SOLVENT EXTRACTION OF RUTHENIUM
Hyman, H.H.; Leader, G.R.
1959-07-14
The separation of rathenium from aqueous solutions by solvent extraction is described. According to the invention, a nitrite selected from the group consisting of alkali nitrite and alkaline earth nitrite in an equimolecular quantity with regard to the quantity of rathenium present is added to an aqueous solution containing ruthenium tetrantrate to form a ruthenium complex. Adding an organic solvent such as ethyl ether to the resulting mixture selectively extracts the rathenium complex.
Lannan, Ford M; Mamajanov, Irena; Hud, Nicholas V
2012-09-19
Structures formed by human telomere sequence (HTS) DNA are of interest due to the implication of telomeres in the aging process and cancer. We present studies of HTS DNA folding in an anhydrous, high viscosity deep eutectic solvent (DES) comprised of choline choride and urea. In this solvent, the HTS DNA forms a G-quadruplex with the parallel-stranded ("propeller") fold, consistent with observations that reduced water activity favors the parallel fold, whereas alternative folds are favored at high water activity. Surprisingly, adoption of the parallel structure by HTS DNA in the DES, after thermal denaturation and quick cooling to room temperature, requires several months, as opposed to less than 2 min in an aqueous solution. This extended folding time in the DES is, in part, due to HTS DNA becoming kinetically trapped in a folded state that is apparently not accessed in lower viscosity solvents. A comparison of times required for the G-quadruplex to convert from its aqueous-preferred folded state to its parallel fold also reveals a dependence on solvent viscosity that is consistent with Kramers rate theory, which predicts that diffusion-controlled transitions will slow proportionally with solvent friction. These results provide an enhanced view of a G-quadruplex folding funnel and highlight the necessity to consider solvent viscosity in studies of G-quadruplex formation in vitro and in vivo. Additionally, the solvents and analyses presented here should prove valuable for understanding the folding of many other nucleic acids and potentially have applications in DNA-based nanotechnology where time-dependent structures are desired.
The solvent component of macromolecular crystals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weichenberger, Christian X.; Afonine, Pavel V.; Kantardjieff, Katherine
2015-04-30
On average, the mother liquor or solvent and its constituents occupy about 50% of a macromolecular crystal. Ordered as well as disordered solvent components need to be accurately accounted for in modelling and refinement, often with considerable complexity. The mother liquor from which a biomolecular crystal is grown will contain water, buffer molecules, native ligands and cofactors, crystallization precipitants and additives, various metal ions, and often small-molecule ligands or inhibitors. On average, about half the volume of a biomolecular crystal consists of this mother liquor, whose components form the disordered bulk solvent. Its scattering contributions can be exploited in initialmore » phasing and must be included in crystal structure refinement as a bulk-solvent model. Concomitantly, distinct electron density originating from ordered solvent components must be correctly identified and represented as part of the atomic crystal structure model. Herein, are reviewed (i) probabilistic bulk-solvent content estimates, (ii) the use of bulk-solvent density modification in phase improvement, (iii) bulk-solvent models and refinement of bulk-solvent contributions and (iv) modelling and validation of ordered solvent constituents. A brief summary is provided of current tools for bulk-solvent analysis and refinement, as well as of modelling, refinement and analysis of ordered solvent components, including small-molecule ligands.« less
Solvent for urethane adhesives and coatings and method of use
Simandl, Ronald F.; Brown, John D.; Holt, Jerrid S.
2010-08-03
A solvent for urethane adhesives and coatings, the solvent having a carbaldehyde and a cyclic amide as constituents. In some embodiments the solvent consists only of miscible constituents. In some embodiments the carbaldehyde is benzaldehyde and in some embodiments the cyclic amide is N-methylpyrrolidone (M-pyrole). An extender may be added to the solvent. In some embodiments the extender is miscible with the other ingredients, and in some embodiments the extender is non-aqueous. For example, the extender may include isopropanol, ethanol, tetrahydro furfuryl alcohol, benzyl alcohol, Gamma-butyrolactone or a caprolactone. In some embodiments a carbaldehyde and a cyclic amide are heated and used to separate a urethane bonded to a component.
NASA Astrophysics Data System (ADS)
Rumble, Christopher A.; Maroncelli, Mark
2018-05-01
Time-resolved emission techniques were used to study the excited-state intramolecular electron transfer of 9-(4-biphenyl)-10-methylacridinium (BPAc+) in mixtures of 1-butyl-3-methylimidizolium tetrafluoroborate ([Im41][BF4])+ acetonitrile (ACN), a mixture previously shown to be of nearly constant polarity and nearly ideal mixing behavior. Reaction times (τrxn) track solvation times (τsolv) as a function of mixture composition over a range of more than 3 orders of magnitude in τsolv. This same correlation extends to a variety of neat dipolar solvents and ionic liquids. Reaction times are ˜2-fold larger than τsolv over most of the range studied but appear to reach a limiting value of ˜3 ps in the fastest solvents.
Extraction, scrub, and strip test results for the solvent transfer to salt waste processing facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peters, T.
The Savannah River National Laboratory (SRNL) prepared approximately 240 gallons of Caustic-Side Solvent Extraction (CSSX) solvent for use at the Salt Waste Processing Facility (SWPF). An Extraction, Scrub, and Strip (ESS) test was performed on a sample of the prepared solvent using a salt solution prepared by Parsons to determine cesium distribution ratios (D(Cs)), and cesium concentration in the strip effluent (SE) and decontaminated salt solution (DSS) streams. This data will be used by Parsons to help qualify the solvent for use at the SWPF. The ESS test showed acceptable performance of the solvent for extraction, scrub, and strip operations.more » The extraction D(Cs) measured 15.5, exceeding the required value of 8. This value is consistent with results from previous ESS tests using similar solvent formulations. Similarly, scrub and strip cesium distribution ratios fell within acceptable ranges.« less
Mondal, Dibyendu; Sharma, Mukesh; Mukesh, Chandrakant; Gupta, Vishal; Prasad, Kamalesh
2013-10-25
The solubility of DNA in bio-based deep eutectic solvents (DESs) consisting of mixtures of choline chloride with levulinic acid, glycerol, ethylene glycol, sorbitol and resorcinol was investigated. The macromolecule was found to be soluble and chemically and structurally stable in DESs consisting of mixtures containing glycerol and ethylene glycol. Furthermore recyclability of the DESs was demonstrated over three consecutive reuses in DNA dissolution.
Polymer Latex Stability Modification by Exposure to Hydrophobic Solvents.
de Oliveira Cardoso A; Galembeck
1998-08-01
The stability of latex particles toward coagulation in the presence of salt is modified by swelling the latex with toluene and chloroform vapors. Short-term stability was determined by turbidimetric titrations, and the long-term stability was evaluated by adding latex and salt solutions, allowing the mixture to age for 24 or 48 h and determining the characteristics of the supernatant and of the sediment. Nine different latexes were examined, with variable results: in some cases, both apolar solvents stabilize the latex; in other cases, increased stability is induced by only one of the solvents, either toluene or chloroform. There is also coherence, but not a strict correlation, between the solvent effects on short- and long-term stability. For instance, in the case of a core-and-shell styrene-butyl methacrylate latex, chloroform has a small stabilizing effect in the titration experiment, but it prevents the formation of a coagulated latex sediment even 48 h after mixing latex and salt. Two hypotheses are discussed to account for these observations: (i) swelling solvents decrease the particles ability to dissipate the collision kinetic energy, so that particles collide but without joining each other; (ii) the solvents induce the release of trapped charged groups from the particle interior to the interface, enhancing the usual (electrostatic, steric, hydration) stability factors. Copyright 1998 Academic Press.
Helou, Rafik; Jaecker, Pierre
2014-05-01
The association between solvents and Alzheimer's disease (AD) has been the subject of several studies. Yet, only few studies have examined the various solvents separately, and the controls have rarely been monitored long enough. For these reasons and others, we believe that further studies are required. The objective of this study was to identify solvents associated with the clinicoradiological diagnostic of AD or mixed-type dementia (MD). A retrospective case-control study was performed in 156 patients followed up at the Memory Diagnostic Center of Bertinot Juel Hospital (France). The inclusion criteria were known occupation(s), a Mini-Mental State Examination (MMSE) score ≥10 at the first visit, a neuropsychological evaluation performed and a diagnosis established in our Memory Diagnostic Center. The diagnostics were crossed with 9 solvents belonging to two classes of solvents. Exposure was evaluated using French national job-exposure matrices. Certain petroleum-based solvents and fuels (i.e. mineral turpentine, diesel fuel, fuel oil and kerosene) were associated with a diagnosis of AD or MD. This association was still significant after adjustment for age, sex and education (adjusted OR: 6.5; 95% CI: 2-20). Occupational exposure to mineral turpentine and heavy fuels may be a risk factor for AD and MD.
NASA Astrophysics Data System (ADS)
Spinozzi, Francesco; Ortore, Maria Grazia; Sinibaldi, Raffaele; Mariani, Paolo; Esposito, Alessandro; Cinelli, Stefania; Onori, Giuseppe
2008-07-01
Folded protein stabilization or destabilization induced by cosolvent in mixed aqueous solutions has been studied by differential scanning microcalorimetry and related to difference in preferential solvation of native and denatured states. In particular, the thermal denaturation of a model system formed by lysozyme dissolved in water in the presence of the stabilizing cosolvent glycerol has been considered. Transition temperatures and enthalpies, heat capacity, and standard free energy changes have been determined when applying a two-state denaturation model to microcalorimetric data. Thermodynamic parameters show an unexpected, not linear, trend as a function of solvent composition; in particular, the lysozyme thermodynamic stability shows a maximum centered at water molar fraction of about 0.6. Using a thermodynamic hydration model based on the exchange equilibrium between glycerol and water molecules from the protein solvation layer to the bulk, the contribution of protein-solvent interactions to the unfolding free energy and the changes of this contribution with solvent composition have been derived. The preferential solvation data indicate that lysozyme unfolding involves an increase in the solvation surface, with a small reduction of the protein-preferential hydration. Moreover, the derived changes in the excess solvation numbers at denaturation show that only few solvent molecules are responsible for the variation of lysozyme stability in relation to the solvent composition.
Viswanathan, N B; Thomas, P A; Pandit, J K; Kulkarni, M G; Mashelkar, R A
1999-03-08
Emulsification-solvent removal methods have been widely used for encapsulating bioactive macromolecules like proteins and polypeptides in biodegradable polymers. We report, a (water-in-oil)-in-oil emulsion technique wherein proteins and polypeptides differing in molecular weight and shape were encapsulated in polymers of current biomedical interest. When an oil was used as the processing medium in combination with a carefully selected mixed solvent system such that a stable (w/o1/o2 emulsion is formed and solvents are removed by a combination of extraction and evaporation, the entrapment efficiency was high and the product nonporous. The entrapment efficiency of globular proteins exceeded 90% while that of fibrous proteins was around 70%. Fracture studies revealed that the polymer matrix was dense. The mechanism of entrapment involved solvent-induced precipitation of the protein as the microspheres were being formed. The principle of the method will find use in preparation of non-porous polymer microparticles with reduced burst effect.
[Determination of solubility parameters of high density polyethylene by inverse gas chromatography].
Wang, Qiang; Chen, Yali; Liu, Ruiting; Shi, Yuge; Zhang, Zhengfang; Tang, Jun
2011-11-01
Inverse gas chromatographic (IGC) technology was used to determine the solubility parameters of high density polyethylene (HDPE) at the absolute temperatures from 303.15 to 343.15 K. Six solvents were applied as test probes including hexane (n-C6), heptane (n-C7), octane (n-C8), nonane (n-C9), chloroform (CHCl3) and ethyl acetate (EtAc). Some thermodynamic parameters were obtained by IGC data analysis such as the specific retention volumes of the solvents (V(0)(g)), the molar enthalpy of sorption (delta H(S)(1)), the partial molar enthalpy of mixing at infinite dilution (delta H(1)(infinity)), the molar enthalpy of vaporization (delta H(v)), the activity coefficients at infinite dilution (omega (1)(infinity)), and Flow-Huggins interaction parameters (X(1,2)(infinity)) between HDPE and probe solvents. The results showed that the above six probes are poor solvents for HDPE. The solubility parameter of HDPE at room temperature (298.15 K) was also derived as 19.00 (J/cm3)(0.5).
Yuan, Zhongcheng; Yang, Yingguo; Wu, Zhongwei; Bai, Sai; Xu, Weidong; Song, Tao; Gao, Xingyu; Gao, Feng; Sun, Baoquan
2016-12-21
Device performance of organometal halide perovskite solar cells significantly depends on the quality and thickness of perovskite absorber films. However, conventional deposition methods often generate pinholes within ∼300 nm-thick perovskite films, which are detrimental to the large area device manufacture. Here we demonstrated a simple solvent retarding process to deposit uniform pinhole free perovskite films with thicknesses up to ∼800 nm. Solvent evaporation during the retarding process facilitated the components separation in the mixed halide perovskite precursors, and hence the final films exhibited pinhole free morphology and large grain sizes. In addition, the increased precursor concentration after solvent-retarding process led to thick perovskite films. Based on the uniform and thick perovskite films prepared by this convenient process, a champion device efficiency up to 16.8% was achieved. We believe that this simple deposition procedure for high quality perovskite films around micrometer thickness has a great potential in the application of large area perovskite solar cells and other optoelectronic devices.
Chemical interaction matrix between reagents in a Purex based process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brahman, R.K.; Hennessy, W.P.; Paviet-Hartmann, P.
2008-07-01
The United States Department of Energy (DOE) is the responsible entity for the disposal of the United States excess weapons grade plutonium. DOE selected a PUREX-based process to convert plutonium to low-enriched mixed oxide fuel for use in commercial nuclear power plants. To initiate this process in the United States, a Mixed Oxide (MOX) Fuel Fabrication Facility (MFFF) is under construction and will be operated by Shaw AREVA MOX Services at the Savannah River Site. This facility will be licensed and regulated by the U.S. Nuclear Regulatory Commission (NRC). A PUREX process, similar to the one used at La Hague,more » France, will purify plutonium feedstock through solvent extraction. MFFF employs two major process operations to manufacture MOX fuel assemblies: (1) the Aqueous Polishing (AP) process to remove gallium and other impurities from plutonium feedstock and (2) the MOX fuel fabrication process (MP), which processes the oxides into pellets and manufactures the MOX fuel assemblies. The AP process consists of three major steps, dissolution, purification, and conversion, and is the center of the primary chemical processing. A study of process hazards controls has been initiated that will provide knowledge and protection against the chemical risks associated from mixing of reagents over the life time of the process. This paper presents a comprehensive chemical interaction matrix evaluation for the reagents used in the PUREX-based process. Chemical interaction matrix supplements the process conditions by providing a checklist of any potential inadvertent chemical reactions that may take place. It also identifies the chemical compatibility/incompatibility of the reagents if mixed by failure of operations or equipment within the process itself or mixed inadvertently by a technician in the laboratories. (aut0010ho.« less
Anwar, Mohammed; Ahmad, Iqbal; Warsi, Musarrat H; Mohapatra, Sharmistha; Ahmad, Niyaz; Akhter, Sohail; Ali, Asgar; Ahmad, Farhan J
2015-10-01
The biomedical applications of curcumin (CUR) are limited due to its poor oral bioavailability. In this work, CUR nanoparticles were successfully prepared by combining the supercritical anti-solvent (SAS) process with Tween 80 as a solubilizing agent and permeation enhancer. Different processing parameters that can govern the mean particle size and size distribution of nanoparticles were well investigated by manipulating the types of solvents, mixing vessel pressure, mixing vessel temperature, CO2 flow rate, solution flow rate and solution concentration. Solid state characterization was done by Fourier Transform infrared spectroscopy, differential scanning calorimetry, dynamic light scattering, scanning electron microscopy, and powder X-ray diffraction study. Solubility and dissolution profile of SAS-processed CUR were found to be significantly increased in comparison with native CUR. Further, a validated ultra-performance liquid chromatographic method with quadrupole-time of flight-mass spectrometry was developed to investigate the pharmacokinetic parameters after a single oral dose (100mg/kg) administration of CUR (before/after SAS-processed) in male Wistar rats. From the plasma concentration vs. time profile graph, oral bioavailability of SAS-processed CUR was found to be increased approximately 11.6-fold (p<0.001) as compared to native CUR. Copyright © 2015 Elsevier B.V. All rights reserved.
Huang, Qing; Al-Azzam, Wasfi; Griebenow, Kai; Schweitzer-Stenner, Reinhard
2003-01-01
The heme structure perturbation of poly(ethylene glycol)-modified horseradish peroxidase (HRP-PEG) dissolved in benzene and toluene has been probed by resonance Raman dispersion spectroscopy. Analysis of the depolarization ratio dispersion of several Raman bands revealed an increase of rhombic B1g distortion with respect to native HRP in water. This finding strongly supports the notion that a solvent molecule has moved into the heme pocket where it stays in close proximity to one of the heme's pyrrole rings. The interactions between the solvent molecule, the heme, and the heme cavity slightly stabilize the hexacoordinate high spin state without eliminating the pentacoordinate quantum mixed spin state that is dominant in the resting enzyme. On the contrary, the model substrate benzohydroxamic acid strongly favors the hexacoordinate quantum mixed spin state and induces a B2g-type distortion owing to its position close to one of the heme methine bridges. These results strongly suggest that substrate binding must have an influence on the heme geometry of HRP and that the heme structure of the enzyme-substrate complex (as opposed to the resting state) must be the key to understanding the chemical reactivity of HRP. PMID:12719258
Sun, Hui; Zhou, Shenggao; Moore, David K; Cheng, Li-Tien; Li, Bo
2016-05-01
We design and implement numerical methods for the incompressible Stokes solvent flow and solute-solvent interface motion for nonpolar molecules in aqueous solvent. The balance of viscous force, surface tension, and van der Waals type dispersive force leads to a traction boundary condition on the solute-solvent interface. To allow the change of solute volume, we design special numerical boundary conditions on the boundary of a computational domain through a consistency condition. We use a finite difference ghost fluid scheme to discretize the Stokes equation with such boundary conditions. The method is tested to have a second-order accuracy. We combine this ghost fluid method with the level-set method to simulate the motion of the solute-solvent interface that is governed by the solvent fluid velocity. Numerical examples show that our method can predict accurately the blow up time for a test example of curvature flow and reproduce the polymodal (e.g., dry and wet) states of hydration of some simple model molecular systems.
Sun, Hui; Zhou, Shenggao; Moore, David K.; Cheng, Li-Tien; Li, Bo
2015-01-01
We design and implement numerical methods for the incompressible Stokes solvent flow and solute-solvent interface motion for nonpolar molecules in aqueous solvent. The balance of viscous force, surface tension, and van der Waals type dispersive force leads to a traction boundary condition on the solute-solvent interface. To allow the change of solute volume, we design special numerical boundary conditions on the boundary of a computational domain through a consistency condition. We use a finite difference ghost fluid scheme to discretize the Stokes equation with such boundary conditions. The method is tested to have a second-order accuracy. We combine this ghost fluid method with the level-set method to simulate the motion of the solute-solvent interface that is governed by the solvent fluid velocity. Numerical examples show that our method can predict accurately the blow up time for a test example of curvature flow and reproduce the polymodal (e.g., dry and wet) states of hydration of some simple model molecular systems. PMID:27365866
Englert, Michael; Vetter, Walter
2015-07-16
Countercurrent chromatography (CCC) is a separation technique in which two immiscible liquid phases are used for the preparative purification of synthetic and natural products. In CCC the number of repetitive mixing and de-mixing processes, the retention of the stationary phase and the mass transfer between the liquid phases are significant parameters that influence the resolution and separation efficiency. Limited mass transfer is the main reason for peak broadening and a low number of theoretical plates along with impaired peak resolution in CCC. Hence, technical improvements with regard to column design and tubing modifications is an important aspect to enhance mixing and mass transfer. In this study we constructed a crimping tool which allowed us to make reproducible, semi-automated modifications of conventional round-shaped tubing. Six crimped tubing modifications were prepared, mounted onto multilayer coils which were subsequently installed in the CCC system. The stationary phase retention of the tubing modifications were compared to the conventional system with unmodified tubing in a hydrophobic, an intermediate and a hydrophilic two-phase solvent system. Generally, the tubing modifications provided higher capabilities to retain the stationary phase depending on the solvent system and flow rates. In the intermediate solvent system the separation efficiency was evaluated with a mixture of six alkyl p-hydroxybenzoates. The peak resolution could be increased up to 50% with one of the tubing modifications compared to the unmodified tubing. Using the most convincing tubing modification at fixed values for the stationary phase retention, a reasonable comparison to the unmodified tubing was achieved. The peak width could be reduced up to 49% and a strong positive impact at increased flow rates regarding peak resolution and theoretical plate number was observed compared to unmodified tubing. It could be concluded that the tubing modification enhanced the interphase mixing and mass transfer of the two phases by additional and more vigorous agitation. Copyright © 2015 Elsevier B.V. All rights reserved.
Caprini, Claudia; Pasquini, Benedetta; Melani, Fabrizio; Del Bubba, Massimo; Giuffrida, Alessandro; Calleri, Enrica; Orlandini, Serena; Furlanetto, Sandra
2018-02-05
An integrated approach involving CE experiments, Molecular Dynamics (MD) simulations and two-dimensional NOE spectroscopy (2D-NOESY) experiments was employed to elucidate the intermolecular interactions and the separation mechanisms involved in a solvent-modified MEKC method for the simultaneous determination of diclofenac sodium and its impurities. The CE findings indicated that the addition of n-butanol (nBuOH) to the SDS micellar solution played a primary role for controlling the partitioning into the mixed micelles and the migration of the analytes and that the presence of nBuOH as cosurfactant was compulsory for achieving the complete separation of the compounds. The different capacity factors of the analytes were calculated and a change in solute association with the mixed micelle when changing the SDS/nBuOH molar ratio was highlighted. The optimal SDS/nBuOH molar ratio for the electrophoretic separation was 1:8. On the other hand, both MD simulations and NMR experiments indicated that the most favorable molar ratio for the formation of mixed SDS/nBuOH micelles was 1:2. These results suggested that probably there is an excess of nBuOH in the background electrolyte, both as free molecules and in form of aggregates, which is able to interact with the analytes, and thus may compete with mixed micelles for the considered compounds. The calculated values of gain in potential energy of the analytes when included in mixed micelles were in agreement with the observed migration order of the compounds. The role of methyl-β-cyclodextrin (MβCyD) in the background electrolyte was also investigated, since the addition of this CyD to the solvent-modified MEKC system was found to be useful to reduce the analysis time. MD simulations and 2D-NOESY spectra highlighted the formation of inclusion complexes with MβCyD not only with the analytes, but also with SDS. MβCyD may lower the availability of both SDS and nBuOH for forming micelles and mostly may compete with the mixed micelle as a second pseudostationary phase. Copyright © 2017 Elsevier B.V. All rights reserved.
Ghanakota, Phani; van Vlijmen, Herman; Sherman, Woody; Beuming, Thijs
2018-04-23
The ability to target protein-protein interactions (PPIs) with small molecule inhibitors offers great promise in expanding the druggable target space and addressing a broad range of untreated diseases. However, due to their nature and function of interacting with protein partners, PPI interfaces tend to extend over large surfaces without the typical pockets of enzymes and receptors. These features present unique challenges for small molecule inhibitor design. As such, determining whether a particular PPI of interest could be pursued with a small molecule discovery strategy requires an understanding of the characteristics of the PPI interface and whether it has hotspots that can be leveraged by small molecules to achieve desired potency. Here, we assess the ability of mixed-solvent molecular dynamic (MSMD) simulations to detect hotspots at PPI interfaces. MSMD simulations using three cosolvents (acetonitrile, isopropanol, and pyrimidine) were performed on a large test set of 21 PPI targets that have been experimentally validated by small molecule inhibitors. We compare MSMD, which includes explicit solvent and full protein flexibility, to a simpler approach that does not include dynamics or explicit solvent (SiteMap) and find that MSMD simulations reveal additional information about the characteristics of these targets and the ability for small molecules to inhibit the PPI interface. In the few cases were MSMD simulations did not detect hotspots, we explore the shortcomings of this technique and propose future improvements. Finally, using Interleukin-2 as an example, we highlight the advantage of the MSMD approach for detecting transient cryptic druggable pockets that exists at PPI interfaces.
Colloidal transport phenomena of milk components during convective droplet drying.
Fu, Nan; Woo, Meng Wai; Chen, Xiao Dong
2011-10-15
Material segregation has been reported for industrial spray-dried milk powders, which indicates potential material migration during drying process. The relevant colloidal transport phenomenon and the underlying mechanism are still under debate. This study extended the glass-filament single droplet drying technique to observe not only the drying behaviour but also the dissolution behaviour of the correspondingly dried single particle. At progressively longer drying stage, a solvent droplet (water or ethanol) was attached to the semi-dried milk particle and the interaction between the solvent and the particle was video-recorded. Based on the different dissolution and wetting behaviours observed, material migration during milk drying was studied. Fresh skim milk and fresh whole milk were investigated using water and ethanol as solvents. Fat started to accumulate on the surface as soon as drying was started. At the initial stage of drying, the fat layer remained thin and the solubility of the semi-dried milk particle was much affected by lactose and protein present underneath the fat layer. Fat kept accumulating at the surface as drying progressed and the accumulation was completed by the middle stage of drying. The results from drying of model milk materials (pure sodium caseinate solution and lactose/sodium caseinate mixed solution) supported the colloidal transport phenomena observed for the milk drying. When mixed with lactose, sodium caseinate did not form an apparent solvent-resistant protein shell during drying. The extended technique of glass-filament single droplet approach provides a powerful tool in examining the solubility of individual particle after drying. Copyright © 2011 Elsevier B.V. All rights reserved.
Xiao, Li; Cai, Qin; Li, Zhilin; Zhao, Hongkai; Luo, Ray
2014-11-25
A multi-scale framework is proposed for more realistic molecular dynamics simulations in continuum solvent models by coupling a molecular mechanics treatment of solute with a fluid mechanics treatment of solvent. This article reports our initial efforts to formulate the physical concepts necessary for coupling the two mechanics and develop a 3D numerical algorithm to simulate the solvent fluid via the Navier-Stokes equation. The numerical algorithm was validated with multiple test cases. The validation shows that the algorithm is effective and stable, with observed accuracy consistent with our design.
Removing oxygen from a solvent extractant in an uranium recovery process
Hurst, Fred J.; Brown, Gilbert M.; Posey, Franz A.
1984-01-01
An improvement in effecting uranium recovery from phosphoric acid solutions is provided by sparging dissolved oxygen contained in solutions and solvents used in a reductive stripping stage with an effective volume of a nonoxidizing gas before the introduction of the solutions and solvents into the stage. Effective volumes of nonoxidizing gases, selected from the group consisting of argon, carbon dioxide, carbon monoxide, helium, hydrogen, nitrogen, sulfur dioxide, and mixtures thereof, displace oxygen from the solutions and solvents thereby reduce deleterious effects of oxygen such as excessive consumption of elemental or ferrous and accumulation of complex iron phosphates or cruds.
VOCs and OVOCs distribution and control policy implications in Pearl River Delta region, China
NASA Astrophysics Data System (ADS)
Louie, Peter K. K.; Ho, Josephine W. K.; Tsang, Roy C. W.; Blake, Donald R.; Lau, Alexis K. H.; Yu, Jian Zhen; Yuan, Zibing; Wang, Xinming; Shao, Min; Zhong, Liuju
2013-09-01
Ambient air measurements of volatile organic compounds (VOCs) and oxygenated volatile organic compounds (OVOCs) were conducted and characterised during a two-year grid study in the Pearl River Delta (PRD) region of southern China. The present grid study pioneered the systematic investigation of the nature and characteristics of complex VOC and OVOC sources at a regional scale. The largest contributing VOCs, accounting over 80% of the total VOCs mixing ratio, were toluene, ethane, ethyne, propane, ethene, butane, benzene, pentane, ethylbenzene, and xylenes. Sub-regional VOC spatial characteristics were identified, namely: i) relatively fresh pollutants, consistent with elevated vehicular and industrial activities, around the PRD estuary; and ii) a concentration gradient with higher mixing ratios of VOCs in the west as compared with the eastern part of PRD. Based on alkyl nitrate aging determination, a high hydroxyl radical (OH) concentration favoured fast hydrocarbon reactions and formation of locally produced ozone. The photochemical reactivity analysis showed aromatic hydrocarbons and alkenes together consisted of around 80% of the ozone formation potential (OFP) among the key VOCs. We also found that the OFP from OVOCs should not be neglected since their OFP contribution was more than one-third of that from VOCs alone. These findings support the choice of current air pollution control policy which focuses on vehicular sources but warrants further controls. Industrial emissions and VOCs emitted by solvents should be the next targets for ground-level ozone abatement.
[Comparison study of different methods for extracting volatile oil from bergamot].
Chen, Fei; Li, Qun-li; Sheng, Liu-qing; Qiu, Jiao-ying
2008-08-01
To test different methods for extracting volatile oil from bergamot. The determination of bergapten was carried out by RP-HPLC. Four different ways of organic solvent extraction, steam-input distillation, distillation of the material mixed with water and press extraction were compared. Bergapten wasnt extracted by ways of steam-input distillation and distillation of the material mixed with water. The steam distillation extraction can be taken to extract volatile oil from bergamot for protecting humans' skins.
Photooxidation of mixed aryl and biarylphosphines.
Zhang, Dong; Celaje, Jeff A; Agua, Alon; Doan, Chad; Stewart, Timothy; Bau, Robert; Selke, Matthias
2010-07-02
Arylphosphines and dialkylbiarylphosphines react with singlet oxygen to form phosphine oxides and phosphinate esters. For mixed arylphosphines, the most electron-rich aryl group migrates to form the phosphinate, while for dialkylbiarylphosphines migration of the alkyl group occurs. Dialkylbiarylphosphines also yield arene epoxides, especially in electron-rich systems. Phosphinate ester formation is increased at high temperature, while protic solvents increase the yield of epoxide. The product distribution provides evidence for Buchwald's recent conformational model for the aerobic oxidation of dialkylbiarylphosphines.
Chen, Y J; Kao, C H; Lin, S J; Tai, C C; Kwan, K S
2000-01-24
A homogeneous series of heterobimetallic complexes of [R-Fc(4-py)Ru(NH3)5](PF6)2 (R = H, Et, Br, acetyl; Fc(4-py) = 4-ferrocenylpyridine) have been prepared and characterized. The mixed-valence species generated in situ using ferrocenium hexafluorophosphate as the oxidant show class II behavior, and the oxidized sites are ruthenium centered. deltaE(1/2), E(1/2)(Fe(III)/Fe(II)) - E(1/2)(Ru(III)/Ru(II)), an upper limit for deltaGo that is an energetic difference between the donor and acceptor sites, changes sharply and linearly with Gutmann solvent donor number (DN) and Hammett substituent constants (sigma). The solvent-dependent and substituent-dependent intervalence transfer bands were found to vary almost exclusively with deltaE(1/2). The activation energy for the optical electron transfer versus deltaE(1/2) plot yields a common nuclear reorganization energy (lambda) of 0.74 +/- 0.04 eV for this series. The equation that allows one to incorporate the effect of both solvent donicity and substituents on optical electron transfer is Eop = lambda + deltaGo, where deltaGo = (deltaGo)intrinsic + (deltaGo)solvent donicity + (deltaGo)substituent effect (deltaGo )intinnsic with a numerical value of 0.083 +/- 0.045 eV was obtained from the intercept of the deltaE(1/2) of [H-Fc(4-py)Ru(NH3)5]2+,3+,4+ versus DN plot. (deltaGo)solvent donicity was obtained from the average slopes of the deltaE(1/2) of [R-Fc-(4-py)Ru(NH3)5]2+,3+,4+ versus DN plot, and (deltaGo)substituent effect was obtained from the average slopes of the corresponding deltaE(1/2) versus sigma plot. The empirical equation allows one to finely tune Eop of this series to Eop = 0.82 + 0.019(DN) + 0.44sigma eV at 298 K, and the discrepancy between the calculated and experimental data is less than 6%.
Hidaka, Hisao; Tsukamoto, Tohru; Mitsutsuka, Yoshihiro; Oyama, Toshiyuki; Serpone, Nick
2015-05-01
Agrochemicals such as the insecticide Fipronil that bear fluoro groups are generally fat-soluble and nearly insoluble in water, so that their photodegradation in a heterogeneous aqueous gallium oxide dispersion presents some challenges. This article examined the photodegradation of this insecticide by solubilizing it through the addition of organic solvents (EtOH, MeOH, THF, 1,4-dioxane and ethylene glycol) to an aqueous medium and then subjecting the insecticide to 254 nm UVC radiation under photocatalytically inert (Ga2O3/N2) and air-equilibrated (Ga2O3/O2) conditions, as well as photochemically in the absence of Ga2O3 but also under inert and air-equilibrated conditions. Defluorination, dechlorination, desulfonation and denitridation of Fipronil were examined in mixed aqueous/organic media (10, 25 and 50 vol% in organic solvent). After 3 h of UVC irradiation (50 vol% mixed media) defluorination with Ga2O3/N2 was ∼65% greater than in aqueous media, and ca. 80% greater than the direct photolysis of Fipronil under inert (N2) conditions; under air-equilibrated conditions both Ga2O3-photocatalyzed and photochemical defluorination were significantly lower than in aqueous media. Dechlorination of Fipronil was ∼160% (Ga2O3/N2) and 140% (photochemically, N2) greater than in aqueous media; under air-equilibrated conditions, both photocatalyzed and photochemical formation of Cl(-) ions in mixed media fell rather short relative to aqueous media. The photocatalyzed (Ga2O3/N2) and photochemical (N2) conversion of the sulfur group in Fipronil to SO4(2(-)) ions was ca. 20% and 30% greater, respectively, in mixed media, while under air-equilibrated conditions photocatalyzed desulfonation was nearly twofold less than in the aqueous phase; direct photolysis showed little variations in mixed media. Denitridation of the nitrogens in Fipronil occurred mostly through the formation of ammonia (as NH4(+)) under all conditions with negligible quantities of NO3(-); again mixed media offered enhanced denitridation, particularly under inert N2 conditions. Time-of-flight electrospray (TOF-MS/ESI(-)) mass spectrometry revealed a fairly large number of intermediates formed in the degradation of Fipronil, particularly under photocatalytic conditions. Only a couple of intermediates were identified in the photodegradation and the presence of Ga2O3 enhanced the complexity of an already cumbersome problem owing to the involvement of organic solvents.
Freitas, Sergio; Merkle, Hans P; Gander, Bruno
2005-02-02
The therapeutic benefit of microencapsulated drugs and vaccines brought forth the need to prepare such particles in larger quantities and in sufficient quality suitable for clinical trials and commercialisation. Very commonly, microencapsulation processes are based on the principle of so-called "solvent extraction/evaporation". While initial lab-scale experiments are frequently performed in simple beaker/stirrer setups, clinical trials and market introduction require more sophisticated technologies, allowing for economic, robust, well-controllable and aseptic production of microspheres. To this aim, various technologies have been examined for microsphere preparation, among them are static mixing, extrusion through needles, membranes and microfabricated microchannel devices, dripping using electrostatic forces and ultrasonic jet excitation. This article reviews the current state of the art in solvent extraction/evaporation-based microencapsulation technologies. Its focus is on process-related aspects, as described in the scientific and patent literature. Our findings will be outlined according to the four major substeps of microsphere preparation by solvent extraction/evaporation, namely, (i) incorporation of the bioactive compound, (ii) formation of the microdroplets, (iii) solvent removal and (iv) harvesting and drying the particles. Both, well-established and more advanced technologies will be reviewed.
Gao, Jiajia; Wang, Hui; Qu, Jingang; Wang, Huili; Wang, Xuedong
2017-01-15
In traditional ionic liquids (ILs)-based microextraction, ILs are often used as extraction and dispersive solvents; however, their functional effects are not fully utilized. Herein, we developed a novel ionic liquid 1-butyl-3-methylimidazolium naphthoic acid salt ([C4MIM][NPA]) with strong acidity. It was used as a mixed dispersive solvent with conventional [C2MIM][BF4] in "functionalized ionic liquid-based non-organic solvent microextraction (FIL-NOSM)" for determination of tetracycline antibiotics (TCs) in milk and eggs. Utilization of [C4MIM][NPA] in FIL-NOSM method increased extraction recoveries (ERs) of TCs by more than 20% and eliminated the pH adjustment step because of its strong acidity. Under optimized conditions based on central composite design, the ERs of four TCs were 94.1-102.1%, and the limitsofdetection were 0.08-1.12μgkg(-1) in milk and egg samples. This proposed method provides high extraction efficiency, less pretreatment time and requires non-organic solvents for determination of trace TC concentrations in complex animal-based food matrices. Copyright © 2016 Elsevier Ltd. All rights reserved.
Binh, Nguyen Duy; Oanh, Nguyen Thi Kim; Parkpian, Preeda
2014-01-01
Decomposition of 2,3,7,8-Tetrachlorodibenzo-p-dioxin (2,3,7,8-TCDD) present in soil under ultraviolet (UV) illumination (350-400nm) was investigated using a combination of nontoxic solvents mixed in soil and nanoscale anatase TiO2 (nTiO2) distributed on 2mm top soil surface. Three types of UV-exposure experiments were conducted: intermittent exposure (8 h/day) for 90 days and 120 days, sequential intermittent (120 days) and continuous (24 h/day) for the next 55 days, and continuous exposure for 55 days. The influence of several factors on dioxin photodegradation efficiency was investigated, including the UV absorption by the targeted dioxin, presence of catalytic nTiO2 on soil surface, solvent evaporation rate, as well as vertical gradients of solvents added into the soil columns. Results of dioxin analysis for the soil samples collected at the end of every experiment condition show that the photodegradation enhanced by the nTiO2 presence on the soil surface considerably increased the dioxin removal. Higher removal efficiencies were found for treatments with 15%wt of nTiO2 mixed in the 2-mm surface soil as compared to the 5%wt nTiO2 treatments. The highest removal efficiency (79.6%) was for the sequential intermittent-continuous UV-exposure experiment with nTiO2. Dechlorinated products of 2,3,7,8-TCDD were generally not detected which suggests degradation of targeted dioxin by C-Cl cleavage was negligible. Further modifications to improve removal efficiencies were proposed. Large-scale engineered systems may employ this integrated treatment approach which can also incorporate the reuse of the top soil containing nTiO2 and solvent vapours. With the utilization of natural sunlight such systems would be promisingly suitable for tropical conditions.
Dai, Sheng [Knoxville, TN; Luo, Huimin [Knoxville, TN
2008-09-09
Ionic compounds which are liquids at room temperature are formed by the method of mixing a neutral organic liqand with the salt of a metal cation and its conjugate anion. The liquids are hydrophobic, conductive and stable and have uses as solvents and in electrochemical devices.
Dai, Sheng [Knoxville, TN; Luo, Huimin [Knoxville, TN
2011-11-01
Ionic compounds which are liquids at room temperature are formed by the method of mixing a neutral organic ligand with the salt of a metal cation and its conjugate anion. The liquids are hydrophobic, conductive and stable and have uses as solvents and in electrochemical devices.
Soft wheat quality characteristics required for making baking powder biscuits
USDA-ARS?s Scientific Manuscript database
Fifteen soft wheat varieties were evaluated for their grain, milling, flour and dough mixing characteristics, as well as their solvent retention capacities (SRCs), pasting properties and suitability for making baking powder biscuits, to identify wheat quality characteristics required for making bisc...
GREENER CHEMICAL SYNTHETIC APPROACHES TO HETEROCYCLES, NOBLE NANOMETALS, AND NANOCOMPOSITES
An efficient and sustainable approach to rapid organic synthesis using ‘greener’ conditions, especially in the context of multi-component condensation reactions that are amenable to building libraries of compounds, is described. The use of solvent-free mechanochemical mixing, or ...
‘Greener’ Chemical Syntheses Using Mechanochemical Mixing or Microwave and Ultrasound Irradiation
Various emerging ‘greener’ strategic pathways researched primarily in the author’s own laboratory are summarized. They include solvent-free mechanochemical methods and microwave (MW) exposure of neat reactants (undiluted) catalyzed by the surfaces of less-expensive and recyclabl...
Lithium-Ion Electrolytes with Fluoroester Co-Solvents
NASA Technical Reports Server (NTRS)
Smart, Marshall C. (Inventor); Smith, Kiah (Inventor); Bhalla, Pooja (Inventor); Bugga, Ratnakumar V. (Inventor); Prakash, G. K. Surya (Inventor)
2014-01-01
An embodiment lithium-ion battery comprising a lithium-ion electrolyte of ethylene carbonate; ethyl methyl carbonate; and at least one solvent selected from the group consisting of trifluoroethyl butyrate, ethyl trifluoroacetate, trifluoroethyl acetate, methyl pentafluoropropionate, and 2,2,2-trifluoroethyl propionate. Other embodiments are described and claimed.
Influence of Mixed Solvent on the Electrochemical Property of Hybrid Capacitor.
Lee, Byunggwan; Yoon, J R
2015-11-01
The hybrid capacitors (2245 size, cylindrical type) were prepared by using activated carbon cathode and Li4Ti5O12 anode. In order to improve the cell operation at high temperature range, propylene carbonate (PC) was used in combination with acetonitrile (AN) with volume ratio of 7:3, 5:5, and 3:7, respectively. We investigated the electrochemical behavior of the hybrid capacitors that enabled cell operation with stability at high temperature. The organic electrolyte of hybrid capacitor containing PC and AN with a volume ratio 7:3 intended to exhibit highly reversible cycle performance with good capacity retention at 60 degrees C after 2200 cycles. From this study, it has been found that the very strong influence of the solvent nature on the characteristics of hybrid capacitor, and the difference in performance associated with the two solvents.
Process for preparing lubricating oil from used waste lubricating oil
Whisman, Marvin L.; Reynolds, James W.; Goetzinger, John W.; Cotton, Faye O.
1978-01-01
A re-refining process is described by which high-quality finished lubricating oils are prepared from used waste lubricating and crankcase oils. The used oils are stripped of water and low-boiling contaminants by vacuum distillation and then dissolved in a solvent of 1-butanol, 2-propanol and methylethyl ketone, which precipitates a sludge containing most of the solid and liquid contaminants, unspent additives, and oxidation products present in the used oil. After separating the purified oil-solvent mixture from the sludge and recovering the solvent for recycling, the purified oil is preferably fractional vacuum-distilled, forming lubricating oil distillate fractions which are then decolorized and deodorized to prepare blending stocks. The blending stocks are blended to obtain a lubricating oil base of appropriate viscosity before being mixed with an appropriate additive package to form the finished lubricating oil product.
High performance hydrophobic solvent, carbon dioxide capture
Nulwala, Hunaid; Luebke, David
2017-05-09
Methods and compositions useful, for example, for physical solvent carbon capture. A method comprising: contacting at least one first composition comprising carbon dioxide with at least one second composition to at least partially dissolve the carbon dioxide of the first composition in the second composition, wherein the second composition comprises at least one siloxane compound which is covalently modified with at least one non-siloxane group comprising at least one heteroatom. Polydimethylsiloxane (PDMS) materials and ethylene-glycol based materials have high carbon dioxide solubility but suffer from various problems. PDMS is hydrophobic but suffers from low selectivity. Ethylene-glycol based systems have good solubility and selectivity, but suffer from high affinity to water. Solvents were developed which keep the desired combinations of properties, and result in a simplified, overall process for carbon dioxide removal from a mixed gas stream.
[Evaluation of exposure of auto painters to organic solvents in the city of Bogota].
Palma, Marien; Briceño, Leonardo; Idrovo, Álvaro J; Varona, Marcela
2015-08-01
Painters of automobiles are exposed to pure and mixed solvents that have been associated with neurological effects and carcinogenic mutations. To characterize the health and work conditions of individuals who are occupationally exposed to organic solvents used in sheet metal and auto body shops in Bogota. Descriptive, cross-sectional study that characterizes the health and work conditions of individuals exposed to organic solvents in sheet metal and auto body shops in Bogota. A group exposed to the solvents was compared to an unexposed group. Air concentrations of benzene, toluene and xylene (BTX) were determined, individual questionnaires were administered and phenylmercapturic, hippuric and ortho- and para-methylhippuric acids were measured in urine. The results of the measurements and the questionnaires were correlated to determine the exposure panorama. For the three BTX metabolites, statistically significant differences (p<0.001) were found between the population exposed to the solvents and the unexposed population. For the exposed population, positive correlations were found between toluene in air and hippuric acid in urine (rho=0.82) and between xylene in air and o-methylhippuric acid in urine (rho=0.76). Hippuric acid values exceeded permissible levels in 11 workers and p-methylhippuric acid exceeded permissible levels in 8 workers. None of the phenylmercapturic values exceeded the limit. Auto painters are exposed to high levels of organic solvents at the workplace and do not have adequate industrial health and safety conditions to perform their jobs.
Pattern Effects of Soil on Photovoltaic Surfaces
Burton, Patrick D.; Hendrickson, Alex; Ulibarri, Stephen Seth; ...
2016-06-06
The texture or patterning of soil on PV surfaces may influence light capture at various angles of incidence (AOI). Accumulated soil can be considered a microshading element, which changes with respect to AOI. Laboratory deposition of simulated soil was used to prepare test coupons for simultaneous AOI and soiling loss experiments. A mixed solvent deposition technique was used to consistently deposit patterned test soils onto glass slides. Transmission decreased as soil loading and AOI increased. Dense aggregates significantly decreased transmission. But, highly dispersed particles are less prone to secondary scattering, improving overall light collection. In order to test AOI losses on relevant systems, uniform simulated soil coatings were applied to split reference cells to further examine this effect. Finally, the measured optical transmission and area coverage correlated closely to the observedmore » $$I_{{rm SC}}$$. Angular losses were significant at angles as low as 25°.« less
Rationally designed peptide nanosponges for cell-based cancer therapy.
Wang, Hongwang; Yapa, Asanka S; Kariyawasam, Nilusha L; Shrestha, Tej B; Kalubowilage, Madumali; Wendel, Sebastian O; Yu, Jing; Pyle, Marla; Basel, Matthew T; Malalasekera, Aruni P; Toledo, Yubisela; Ortega, Raquel; Thapa, Prem S; Huang, Hongzhou; Sun, Susan X; Smith, Paul E; Troyer, Deryl L; Bossmann, Stefan H
2017-11-01
A novel type of supramolecular aggregate, named a "nanosponge" was synthesized through the interaction of novel supramolecular building blocks with trigonal geometry. The cholesterol-(K/D) n DEVDGC) 3 -trimaleimide unit consists of a trigonal maleimide linker to which homopeptides (either K or D) of variable lengths (n=5, 10, 15, 20) and a consensus sequence for executioner caspases (DEVDGC) are added via Michael addition. Upon mixing in aqueous buffer cholesterol-(K) n DEVDGC) 3 -trimaleimides and a 1:1 mixture of cholesterol-(K/D) n DEVDGC) 3 -trimaleimides form stable nanosponges, whereas cholesterol-(D) n DEVDGC) 3 -trimaleimide is unable to form supramolecular aggregates with itself. The structure of the novel nanosponges was investigated through explicit solvent and then coarse-grained molecular dynamics (MD) simulations. The nanosponges are between 80 nm and several micrometers in diameters and virtually non-toxic to monocyte/macrophage-like cells. Copyright © 2017 Elsevier Inc. All rights reserved.
Stafford, Helen A.; Lester, Hope H.
1980-01-01
The procyanidins (the most common type of proanthocyanidin or condensed tannin) from cell suspension cultures derived from cotyledons of Douglas Fir have been compared with those isolated from leaves of strawberry and avocado. Seventy per cent methanol (v/v) extracts from 100 milligrams fresh weight samples were analyzed by a combination of C18-reversed-phase columns with high-performance liquid chromatography, and normal phase paper chromatography. (−)-Epicatechin and its oligomers were generally retarded longer on C18 columns than the corresponding units made of (+)-catechin when eluted with solvents made up of 5% acetic acid alone or mixed with methanol up to 15% (v/v). Douglas fir preparations contained the most complex set of procyanidins and consisted of oligomers of catechin and epicatechin, whereas strawberry and avocado contained mainly (+)-catechin and (−)-epicatechin derivatives, respectively. PMID:16661581
Mimicking biological stress-strain behaviour with synthetic elastomers
NASA Astrophysics Data System (ADS)
Vatankhah-Varnosfaderani, Mohammad; Daniel, William F. M.; Everhart, Matthew H.; Pandya, Ashish A.; Liang, Heyi; Matyjaszewski, Krzysztof; Dobrynin, Andrey V.; Sheiko, Sergei S.
2017-09-01
Despite the versatility of synthetic chemistry, certain combinations of mechanical softness, strength, and toughness can be difficult to achieve in a single material. These combinations are, however, commonplace in biological tissues, and are therefore needed for applications such as medical implants, tissue engineering, soft robotics, and wearable electronics. Present materials synthesis strategies are predominantly Edisonian, involving the empirical mixing of assorted monomers, crosslinking schemes, and occluded swelling agents, but this approach yields limited property control. Here we present a general strategy for mimicking the mechanical behaviour of biological materials by precisely encoding their stress-strain curves in solvent-free brush- and comb-like polymer networks (elastomers). The code consists of three independent architectural parameters—network strand length, side-chain length and grafting density. Using prototypical poly(dimethylsiloxane) elastomers, we illustrate how this parametric triplet enables the replication of the strain-stiffening characteristics of jellyfish, lung, and arterial tissues.
Method of forming supported doped palladium containing oxidation catalysts
Mohajeri, Nahid
2014-04-22
A method of forming a supported oxidation catalyst includes providing a support comprising a metal oxide or a metal salt, and depositing first palladium compound particles and second precious metal group (PMG) metal particles on the support while in a liquid phase including at least one solvent to form mixed metal comprising particles on the support. The PMG metal is not palladium. The mixed metal particles on the support are separated from the liquid phase to provide the supported oxidation catalyst.
Photooxidation of Mixed Aryl and Biarylphosphines
Zhang, Dong; Celaje, Jeff A.; Agua, Alon; Doan, Chad; Stewart, Timothy; Bau, Robert; Selke, Matthias
2010-01-01
Aryl phosphines and dialkylbiaryl phosphines react with singlet oxygen to form phosphinate esters. For mixed arylphosphines, the most electron-rich aryl group migrates to form the phosphinate, while for dialkylbiaryl phosphines migration of the alkyl group occurs. Dialkylbiaryl phosphines also yield arene epoxides, especially in electron rich systems. Phosphinate ester formation is increased at high temperature while protic solvents increase the yield of epoxide. The product distribution provides evidence for Buchwald’s recent conformational model for the aerobic oxidation of dialkylbiaryl phosphines. PMID:20527907
Trace elements retained in washed nuclear fuel reprocessing solvents
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gray, L.W.; MacMurdo, K.W.
1979-09-01
Analysis of purified TBP extractant from solvent extraction processes at Savannah River Plant showed several stable elements and several long-lived radioisotopes. Stable elements Al, Na, Br, Ce, Hg, and Sm are found in trace quantities in the solvent. The only stable metallic element consistently found in the solvent was Al, with a concentration which varies from about 30 ppM to about 10 ppM. The halogens Br and Cl appear to be found in the solvent systems as organo halides. Radionuclides found were principally /sup 106/Ru, /sup 129/I, /sup 3/H, /sup 235/U, and /sup 239/Pu. The /sup 129/I concentration was aboutmore » 1 ppM in the first solvent extraction cycle of each facility. In the other cycles, /sup 129/I concentration varied from about 0.1 to 0.5 ppM. Both /sup 129/I and /sup 3/H appear to be in the organic solvent as a result of exchange with hydrogen.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peters, T. B.
An Extraction, Scrub, and Strip (ESS) test was performed on a sample of Salt Waste Processing Facility (SWPF) Caustic-Side Solvent Extraction (CSSX) solvent and salt simulant to determine cesium distribution ratios (D( Cs)), and cesium concentration in the strip effluent (SE) and decontaminated salt solution (DSS) streams; this data will be used by Parsons to help determine if the solvent is qualified for use at the SWPF. The ESS test showed acceptable performance of the solvent for extraction, scrub, and strip operations. The extraction D( Cs) measured 12.5, exceeding the required value of 8. This value is consistent with resultsmore » from previous ESS tests using similar solvent formulations. Similarly, scrub and strip cesium distribution ratios fell within acceptable ranges. This revision was created to correct an error. The previous revision used an incorrect set of temperature correction coefficients which resulted in slight deviations from the correct D( Cs) results.« less
Mills, M.S.; Thurman, E.M.; Pedersen, M.J.
1993-01-01
Silica- and styrene-divinylbenzene-based mixed-mode resins that contain C8, C18 and sulphonated cation-exchange groups were compared for their efficiency in isolation of neutral triazine compounds from water and of the basic drug, benzoylecgonine, from urine. The triazine compounds were isolated by a combination of Van der Waals and hydrogen-bonding interactions, and benzoylecgonine was isolated by Van der Waals interactions and cation exchange. All analytes were eluted with a polar organic solvent contaning 2% ammonium hydroxide. Larger recoveries (95%) were achieved on copolymerized mixed-mode resins where C18 and sulfonic acid are in closer proximity than on 'blended' mixed-mode resins (60-70% recovery).
NASA Astrophysics Data System (ADS)
Zhou, Shiqi
2004-07-01
A universal formalism, which enables calculation of solvent-mediated potential (SMP) between two equal or non-equal solute particles with any shape immersed in solvent reservior consisting of atomic particle and/or polymer chain or their mixture, is proposed by importing a density functional theory externally into OZ equation systems. Only if size asymmetry of the solvent bath components is moderate, the present formalism can calculate the SMP in any complex fluids at the present development stage of statistical mechanics, and therefore avoids all of limitations of previous approaches for SMP. Preliminary calculation indicates the reliability of the present formalism.
Xiao, Li; Cai, Qin; Li, Zhilin; Zhao, Hongkai; Luo, Ray
2014-01-01
A multi-scale framework is proposed for more realistic molecular dynamics simulations in continuum solvent models by coupling a molecular mechanics treatment of solute with a fluid mechanics treatment of solvent. This article reports our initial efforts to formulate the physical concepts necessary for coupling the two mechanics and develop a 3D numerical algorithm to simulate the solvent fluid via the Navier-Stokes equation. The numerical algorithm was validated with multiple test cases. The validation shows that the algorithm is effective and stable, with observed accuracy consistent with our design. PMID:25404761
Seong, Mi Hye; Kyong, Jin Burm; Lee, Young Hoon; Kevill, Dennis N.
2009-01-01
The specific rates of solvolysis of ethyl fluoroformate have been measured at 24.2 °C in 21 pure and binary solvents. These give a satisfactory correlation over the full range of solvents when the extended Grunwald-Winstein equation is applied. The sensitivities to changes in the NT solvent nucleophilicity scale and the YCl solvent ionizing power scale, and the kF/kCl values are very similar to those for solvolyses of n-octyl fluoroformate, consistent with the addition step of an addition-elimination pathway being rate-determining. For methanolysis, a solvent deuterium isotope effect of 3.10 is compatible with the incorporation of general-base catalysis into the substitution process. For five representative solvents, studies were made at several temperatures and activation parameters determined. The results are also compared with those reported earlier for ethyl chloroformate and mechanistic conclusions are drawn. PMID:19399229
INFLUENCE OF ORGANIC COSOLVENTS ON THE SORPTION KINETICS OF HYDROPHOBIC ORGANIC CHEMICALS
A quantitative examination of the kinetics of sorption of hydrophobic organic chemicals by soils from mixed solvents reveals that the reverse sorption rate constant (k2) increases log-linearly with increasing volume fraction of organic cosolvent (fc). This relationship was expec...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schubert, Alexander, E-mail: schubert@irsamc.ups-tlse.fr; Meier, Christoph; Falvo, Cyril
2016-08-07
We present mixed quantum-classical simulations on relaxation and dephasing of vibrationally excited carbon monoxide within a protein environment. The methodology is based on a vibrational surface hopping approach treating the vibrational states of CO quantum mechanically, while all remaining degrees of freedom are described by means of classical molecular dynamics. The CO vibrational states form the “surfaces” for the classical trajectories of protein and solvent atoms. In return, environmentally induced non-adiabatic couplings between these states cause transitions describing the vibrational relaxation from first principles. The molecular dynamics simulation yields a detailed atomistic picture of the energy relaxation pathways, taking themore » molecular structure and dynamics of the protein and its solvent fully into account. Using the ultrafast photolysis of CO in the hemoprotein FixL as an example, we study the relaxation of vibrationally excited CO and evaluate the role of each of the FixL residues forming the heme pocket.« less
NASA Astrophysics Data System (ADS)
Li, Yue; Zuo, Hong-Fen; Guo, Yuan-Ru; Miao, Ting-Ting; Pan, Qing-Jiang
2016-05-01
With the assistance of sodium lignosulfonate, hierarchical nanoflake-array-flower nanostructure of ZnO has been fabricated by a facile precipitation method in mixed solvents. The sodium lignosulfonate amount used in our synthetic route is able to fine-tune ZnO morphology and an abundance of pores have been observed in the nanoflake-array-flower ZnO, which result in specific surface area reaching as high as 82.9 m2 · g-1. The synthesized ZnO exhibits superior photocatalytic activity even under low-power UV illumination (6 W). It is conjectured that both nanoflake-array structure and plenty of pores embedded in ZnO flakes may provide scaffold microenvironments to enhance photocatalytic activity. Additionally, this catalyst can be used repeatedly without a significant loss in photocatalytic activity. The low-cost, simple synthetic approach as well as high photocatalytic and recycling efficiency of our ZnO nanomaterials allows for application to treat wastewater containing organic pollutants in an effective way.
Simultaneous Recovery of Carotenes and Tocols from Crude Palm Olein Using Ethyl Lactate and Ethanol
NASA Astrophysics Data System (ADS)
Leng Kua, Yin; Gan, Suyin; Morris, Andrew; Kiat Ng, Hoon
2018-04-01
This paper demonstrates the use of ethyl lactate and ethanol as green and safe solvents to extract phytonutrients such as carotenes and tocols from crude palm olein (CPO) before they are lost during oil refining process. The effects of mixing time (10-40 min), temperature (10-30°C) and proportion of CPO (20-60%) were studied in terms of the extraction of individual carotenes (α- and β-carotene) and tocols (α-tocopherol/T, α-, γ- and δ-tocotrienol/T3) in a temperature-controlled mixer-settler system. The optimal extraction conditions were found at 20°C, 10 min of mixing, 50% of CPO using 3:2 v/v ethyl lactate/ethanol as the solvents. After four stages of extraction, 42.2% of carotenes, 86.7% of tocols and 44.4% of oil were recovered into an oil concentrate of 717.5 mg/L of carotenes and 1496.2 mg/L of tocols.
Consideration of some dilute-solution phenomena based on an expression for the Gibbs free energy
NASA Astrophysics Data System (ADS)
Jonah, D. A.
1986-07-01
Rigorous expressions based on the Lennard-Jones (6 12) potential, are presented for the Gibbs and Helmholtz free energy of a dilute mixture. These expressions give the free energy of the mixture in terms of the thermodynamic properties of the pure solvent, thereby providing a convenient means of correlating dilute mixture behavior with that of the pure solvent. Expressions for the following dilute binary solution properties are derived: Henry's constant, limiting activity coefficients with their derivatives, solid solubilities in supercritical gases, and mixed second virial coefficients. The Henry's constant expression suggests a linear temperature dependence; application to solubility data for various gases in methane and water shows a good agreement between theory and experiment. In the thermodynamic modeling of supercritical fluid extraction, we have demonstrated how to predict new solubility-pressure isotherms from a given isotherm, with encouraging results. The mixed second virial coefficient expression has also been applied to experimental data; the agreement with theory is good.
Murphy, Ryan P; Kelley, Elizabeth G; Rogers, Simon A; Sullivan, Millicent O; Epps, Thomas H
2014-11-18
Chain exchange between block polymer micelles in highly selective solvents, such as water, is well-known to be arrested under quiescent conditions, yet this work demonstrates that simple agitation methods can induce rapid chain exchange in these solvents. Aqueous solutions containing either pure poly(butadiene- b -ethylene oxide) or pure poly(butadiene- b -ethylene oxide- d 4 ) micelles were combined and then subjected to agitation by vortex mixing, concentric cylinder Couette flow, or nitrogen gas sparging. Subsequently, the extent of chain exchange between micelles was quantified using small angle neutron scattering. Rapid vortex mixing induced chain exchange within minutes, as evidenced by a monotonic decrease in scattered intensity, whereas Couette flow and sparging did not lead to measurable chain exchange over the examined time scale of hours. The linear kinetics with respect to agitation time suggested a surface-limited exchange process at the air-water interface. These findings demonstrate the strong influence of processing conditions on block polymer solution assemblies.
Photochemistry of Metal-Metal Bonded Transition Element Complexes
1980-12-12
longest-lived metal - metal bonded complex in 298 K fluid solution is of tl.e order of _10-6 a in lifetime (7). Thus, excited state reactions of any kind must...may be greater since cage escape of Re(CO)5 radicals may be less thin unity. There is a solvent viscosity effect on the disappearance quantum yield of...M2 (CO) 1 0 in the presence of 12,consistent with a solvent cage effect (11). In polar solvents (pyridine, THF, alcohols, etc.) the photochemistry of
Method of preparation of removable syntactic foam
Arnold, C. Jr.; Derzon, D.K.; Nelson, J.S.; Rand, P.B.
1995-07-11
Easily removable, environmentally safe, low-density, syntactic foams are disclosed which are prepared by mixing insoluble microballoons with a solution of water and/or alcohol-soluble polymer to produce a pourable slurry, optionally vacuum filtering the slurry in varying degrees to remove unwanted solvent and solute polymer, and drying to remove residual solvent. The properties of the foams can be controlled by the concentration and physical properties of the polymer, and by the size and properties of the microballoons. The suggested solute polymers are non-toxic and soluble in environmentally safe solvents such as water or low-molecular weight alcohols. The syntactic foams produced by this process are particularly useful in those applications where ease of removability is beneficial, and could find use in packaging recoverable electronic components, in drilling and mining applications, in building trades, in art works, in the entertainment industry for special effects, in manufacturing as temporary fixtures, in agriculture as temporary supports and containers and for delivery of fertilizer, in medicine as casts and splints, as temporary thermal barriers, as temporary protective covers for fragile objects, as filters for particulate matter, which matter may be easily recovered upon exposure to a solvent, as in-situ valves (for one-time use) which go from maximum to minimum impedance when solvent flows through, and for the automatic opening or closing of spring-loaded, mechanical switches upon exposure to a solvent, among other applications. 1 fig.
Method of preparation of removable syntactic foam
Arnold, Jr., Charles; Derzon, Dora K.; Nelson, Jill S.; Rand, Peter B.
1995-01-01
Easily removable, environmentally safe, low-density, syntactic foams are disclosed which are prepared by mixing insoluble microballoons with a solution of water and/or alcohol-soluble polymer to produce a pourable slurry, optionally vacuum filtering the slurry in varying degrees to remove unwanted solvent and solute polymer, and drying to remove residual solvent. The properties of the foams can be controlled by the concentration and physical properties of the polymer, and by the size and properties of the microballoons. The suggested solute polymers are non-toxic and soluble in environmentally safe solvents such as water or low-molecular weight alcohols. The syntactic foams produced by this process are particularly useful in those applications where ease of removability is beneficial, and could find use in packaging recoverable electronic components, in drilling and mining applications, in building trades, in art works, in the entertainment industry for special effects, in manufacturing as temporary fixtures, in agriculture as temporary supports and containers and for delivery of fertilizer, in medicine as casts and splints, as temporary thermal barriers, as temporary protective covers for fragile objects, as filters for particulate matter, which matter may be easily recovered upon exposure to a solvent, as in-situ valves (for one-time use) which go from maximum to minimum impedance when solvent flows through, and for the automatic opening or closing of spring-loaded, mechanical switches upon exposure to a solvent, among other applications.
Dai, Yuntao; Rozema, Evelien; Verpoorte, Robert; Choi, Young Hae
2016-02-19
Natural deep eutectic solvents (NADES) have attracted a great deal of attention in recent times as promising green media. They are generally composed of neutral, acidic or basic compounds that form liquids of high viscosity when mixed in certain molar ratio. Despite their potential, viscosity and acid or basic nature of some ingredients may affect the extraction capacity and stabilizing ability of the target compounds. To investigate these effects, extraction with a series of NADES was employed for the analysis of anthocyanins in flower petals of Catharanthus roseus in combination with HPLC-DAD-based metabolic profiling. Along with the extraction yields of anthocyanins their stability in NADES was also studied. Multivariate data analysis indicates that the lactic acid-glucose (LGH), and 1,2-propanediol-choline chloride (PCH) NADES present a similar extraction power for anthocyanins as conventional organic solvents. Furthermore, among the NADES employed, LGH exhibits an at least three times higher stabilizing capacity for cyanidins than acidified ethanol, which facilitates their extraction and analysis process. Comparing NADES to the conventional organic solvents, in addition to their reduced environmental impact, they proved to provide higher stability for anthocyanins, and therefore have a great potential as possible alternatives to those organic solvents in health related areas such as food, pharmaceuticals and cosmetics. Copyright © 2016 Elsevier B.V. All rights reserved.
Prasad, Tilak; Shabeena, E A; Vinod, D; Kumary, T V; Anil Kumar, P R
2015-01-01
The electrospinning technique allows engineering biomimetic scaffolds within micro to nanoscale range mimicking natural extracellular matrix (ECM). Chitosan (CS) and polycaprolactone (PCL) were dissolved in a modified solvent mixture consisting of formic acid and acetone (3:7) and mixed in different weight ratios to get chitosan-polycaprolactone [CS-PCL] blend solutions. The CS-PCL blend polymer was electrospun in the same solvent system and compared with PCL. The physicochemical characterization of the electrospun fibrous mats was done using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), tensile test, swelling properties, water contact angle (WCA) analysis, surface profilometry and thermo gravimetric analysis (TGA). The CS-PCL fibrous mat showed decreased hydrophobicity. The CS-PCL mats also showed improved swelling property, tensile strength, thermal stability and surface roughness. The cytocompatibility of the CS-PCL and PCL fibrous mats were examined using mouse fibroblast (L-929) cell line by direct contact and cellular activity with extract of materials confirmed non-cytotoxic nature. The potential of CS-PCL and PCL fibrous mats as skin tissue engineering scaffolds were assessed by cell adhesion, viability, proliferation and actin distribution using human keratinocytes (HaCaT) and L-929 cell lines. Results indicate that CS-PCL is a better scaffold for attachment and proliferation of keratinocytes and is a potential material for skin tissue engineering.
Shen, Lie; Yang, Hui; Ying, Jia; Qiao, Fei; Peng, Mao
2009-11-01
A novel biocomposite of carbon fiber (CF) reinforced hydroxyapatite (HA)/polylactide (PLA) was prepared by hot pressing a prepreg which consisting of PLA, HA and CF. The prepreg was manufactured by solvent impregnation process. Polymer resin PLA dissolved with chloroform was mixed with HA. After reinforcement CF bundle was impregnated in the mixture, the solvent was dried completely and subsequently hot-pressed uniaxially under a pressure of 40 MPa at 170 degrees C for 20 min. A study was carried out to investigate change in mechanical properties of CF/HA/PLA composites before and after degradation in vitro. The composites have excellent mechanical properties. A peak showed in flexural strength, flexural modulus and shear strength aspects, reaching up 430 MPa, 22 GPa, 212 MPa, respectively, as the HA content increased. Degraded in vitro for 3 months, the flexural strength and flexural modulus of the CF/HA/PLA fell 13.2% and 5.4%, respectively, while the shear strength of the CF/HA/PLA composites remains at the 190 MPa level. The SEM photos showed that there were gaps between the PLA matrix and CF after degradation. Water uptake increased to 5%, but the mass loss rate was only 1.6%. The pH values of the PBS dropped less than 0.1. That's because the alkaline of HA neutralize the acid degrades from PLA, which can prevent the body from the acidity harm.
NASA Astrophysics Data System (ADS)
Sadigh Vishkaee, Teherh; Fazaeli, Reza
2018-06-01
Quantum chemical calculations using MPW1PW91 method were applied to analyze the solvent effect on the structural, spectral, and thermochemical parameters for a platinum-based anticancer drug trans-(NHC)PtI2Py complex. The solvent effects were examined by the self-consistent reaction field theory (SCRF) based on Polarizable Continuum Model (PCM). The linear correlations between the solvation energies, HOMO-LUMO gaps, IR-active stretching vibration of Pt-N bonds and N-H of NHC ligand with dielectric constants of solvents were studied. The wave numbers of these IR-active stretching vibrations in different solvents were correlated with the Kirkwood-Bauer-Magat equation (KBM). The thermodynamic activation parameter such free energy of solvation, enthalpy of solvation were also calculated.
Solubilities of carbon dioxide in aqueous potassium carbonate solutions mixed with physical solvents
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, S.B.; Lee, H.; Lee, K.H.
1998-09-01
The removal of acidic gases such as CO{sub 2}, H{sub 2}S, and COS from gas streams is a very important operation for petrochemical, oil refineries, ammonia manufacture, coal gasification, and natural gas purification plants. Here, the solubilities of carbon dioxide in aqueous potassium carbonate (K{sub 2}CO{sub 3}) solutions mixed with physical solvents were measured at 298.2 and 323.2 K with a CO{sub 2} partial-pressure range of 5 kPa to 2 MPa. 1,2-propanediol and propylene carbonate were selected as physical solvents. The aqueous solutions treated in this study were 5 mass% K{sub 2}CO{sub 3}-15 mass% 1,2-propanediol and propylene carbonate were selectedmore » as physical solvents. The aqueous solutions treated in this study were 5 mass% K{sub 2}CO{sub 3}-15 mass% propylene carbonate. The experimental solubility results were presented by the mole ratio of CO{sub 2} and K{sub 2}CO{sub 3} contained in the liquid mixture. The addition of 1,2-propanediol to 5 mass% K{sub 2}CO{sub 3} solution lowered the solubility of CO{sub 2} at constant temperature and pressure conditions when CO{sub 2} partial-pressure range of 5 kPa to 2 MPa. In the case of propylene carbonate the addition of propylene carbonate increased the experimental solubilities in the region of low CO{sub 2} partial pressures and decreased as the CO{sub 2} partial pressure was increased above atmospheric. The solubilities of CO{sub 2} decreased with increasing temperature in the range of 298.2 to 323.2 K.« less
Degradation of palm oil empty fruit bunch (EFB) into bio-oil in sub-and supercritical solvents
NASA Astrophysics Data System (ADS)
Sarwono, Rakhman; Pusfitasari, Eka Dian
2017-01-01
Hydrothemal Liquefaction (HTL) of empty fruit bunch (EFB) of palm oil in different solvents (water, ethanol and hexane) were comparatively investigated. Experiments were carried out in an autoclave in different EFB loading of 9%, 11%, and 13%. The temperature operation was 350 oC, without any catalysts and reaction time of 5 hours. The efficiency of above solvents in terms of conversion rate, soluble liquid and carbon products were found in this experiments. The water solvent gave higher conversion rate of 35 - 36.5 %, while hexane gave conversion of 17 - 25.25 %, and ethanol gave the lower conversion rate of 12.65 - 30.3%, respectively. Increasing the EFB load decreased the conversion rate for ethanol and hexane solvents, for water there are no significant change in the conversion rate. The bio-oil as soluble liquid produced were in order of water, ethanol, and hexane solvents, respectively. The chemical properties of bio-oil products were significantly affected by the type of liquefaction solvent. The compositional of bio-oil consists of mostly of a mixture of organic acids, ketones, and esters. The hexane and ethanol solvents resulted mostly organic acids. In water solvent resulted 2-pentanone, 4-hydroxy-4-methyl and others substances. According to the bio-oil results, organic solvents resulted higher HHV compared to water solvent. The higher heating value (HHV) of the carbon products were also comparatively, ethanol solvent resulted soluble liquid with higher HHV compared to the water solvent.
Biodiesel production from ethanolysis of palm oil using deep eutectic solvent (DES) as co-solvent
NASA Astrophysics Data System (ADS)
Manurung, R.; Winarta, A.; Taslim; Indra, L.
2017-06-01
Biodiesel produced from ethanolysis is more renewable and have better properties (higher oxidation stability, lower cloud and pour point) compared to methanolysis, but it has a disadvantage such as complicated purification. To improve ethanolysis process, deep eutectic solvent (DES) can be prepared from choline chloride and glycerol and used as co-solvent in ethanolysis. The deep eutectic solvent is formed from a quaternary ammonium salt (choline chloride) and a hydrogen bond donor (Glycerol), it is a non-toxic, biodegradable solvent compared to a conventional volatile organic solvent such as hexane. The deep eutectic solvent is prepared by mixing choline chloride and glycerol with molar ratio 1:2 at temperature 80 °C, stirring speed 300 rpm for 1 hour. The DES is characterized by its density and viscosity. The ethanolysis is performed at a reaction temperature of 70 °C, ethanol to oil molar ratio of 9:1, potassium hydroxide as catalyst concentration of 1.2 wt. DES as co-solvent with concentration 0.5 to 3 wt. stirring speed 400 rpm, and a reaction time 1 hour. The obtained biodiesel is then characterized by its density, viscosity, and ester content. The oil - ethanol phase condition is observed in the reaction tube. The oil - ethanol phase with DES tends to form meniscus compared to without DES, showed that oil and ethanol become more slightly miscible, which favors the reaction. Using DES as co-solvent in ethanolysis showed increasing in yield and easier purification. The esters properties meet the international standards ASTM D6751, with the highest yield achieved 83,67 with 99,77 conversion at DES concentration 2 . Increasing DES concentration above 2 in ethanolysis decrease the conversion and yield, because of the excessive glycerol in the systems makes the reaction equilibrium moves to the reactant side.
Wet calcining of trona (sodium sesquicarbonate) and bicarbonate in a mixed solvent
NASA Astrophysics Data System (ADS)
Gärtner, R. S.; Witkamp, G. J.
2002-04-01
Trona ore is used in large amounts for the production of soda ash. A key step in this process is the conversion of trona (sodium sesquicarbonate: Na 2CO 3·NaHCO 3·2H 2O) into soda (sodium carbonate anhydrate: Na 2CO 3). Currently, this conversion is done industrially by calcining of the raw ore in rotary calciners at ca. 120°C or higher (Natural Soda Ash—Occurrences, Processing, and Use, Van Nostrand Reinhold, New York, 1991, p. 267). Trona can however be converted at lower temperatures by using a "wet calcining" technique. In this technique, trona is contacted with an organic or mixed organic-aqueous solvent at a conversion temperature that depends on the water activity of the used solvent. In pure ethylene glycol this temperature can be as low as 55°C. The conversion by "wet calcining" occurs very similar to that in the regular dry calcining process via a solid phase conversion. The anhydrate crystals form directly from the solid trona. This produces pseudomorphs (J. Chem. Eng. Data 8(3) (1963) 301), i.e. agglomerates of fine anhydrate crystals (1-10 μm). At high temperatures, dense, finely pored agglomerates are formed, while the outer shape of the agglomerate retains the prism shape of the trona crystal. At low conversion temperatures, loosely packed or even unstable agglomerates are found.
Nandy, Debdurlav; Mitra, Rajib K; Paul, Bidyut K
2007-06-01
The phase diagrams of the pseudo-quaternary systems poly(oxyethylene) (10) stearyl ether (Brij-76)/1-butanol/isooctane/water (with equal amounts of oil and water in the presence of two nonaqueous polar solvents (NPS), ethylene glycol (EG), and tetraethylene glycol (TEG)), have been constructed at 30 degrees C. Regular fish-tail diagrams were obtained up to psi (weight fraction of EG or TEG in the mixture of polar solvents) equal to 0.5, confirming the establishment of hydrophile-lipophile balance (HLB) of the systems. The maximum solubilization capacity passed through a minimum at psi=0.2. No HLB was obtained at higher psi. The usual fish-tail diagrams were also obtained in temperature-induced phase mapping at fixed W(1) (weight fraction of 1-butanol in total amphiphile). Solubilization capacity and HLB temperature (T(HLB)) decreased with increasing psi at a fixed W(1), the effect being more pronounced for TEG than EG. A correlation between HLB temperature (T(HLB)) and HLB number (N(HLB)) of mixed amphiphiles (Brij-76+Bu) in pseudo-quaternary systems (in the presence of water and partial substitution of water with both NPS) has been established. The novelty of the work with respect to possible applications has been discussed.
Cheng, Ni; Hu, Qiongzheng; Bi, Yanhui; Xu, Wenwen; Gong, Yanjun; Yu, Li
2014-08-05
The self-assembly behavior of an imidazolium-based catanionic surfactant, 1-butyl-3-methylimidazolium dodecylsulfate ([C4mim][C12H25SO4]), was investigated in water-ethylammonium nitrate (EAN) mixed solvents with different volume ratios. It is particular interesting that this simple surfactant could not only form lyotropic liquid crystals (LLC) with multimesophases, i.e., normal hexagonal (H1), lamellar liquid crystal (Lα), and reverse bicontinuous cubic phase (V2), in the water-rich environment but also act as an efficient low-molecular-weight gelator (LMWG) which gelated EAN-abundant binary media in a broad concentration range. The peculiar nanodisk cluster morphology of gels composed of similar bilayer units was first observed. FT-IR spectra and density functional theory (DFT) calculations reveal that strong H bonding and electrostatic interactions between EAN and the headgroups of [C4mim][C12H25SO4] are primarily responsible for gelation. The self-assembled gels displayed excellent mechanical strength and a thermoreversible sol-gel transition. It is for the first time that a rich variety of controllable ordered aggregates could be observed only by simply modulating the concentration of a single imidazolium-based catanionic surfactant or the ratio of mixed solvents. This environmentally friendly system is expected to have broad applications in various fields, such as materials science, drug delivery systems, and supramolecular chemistry.
Solvent-Induced Shift of Spectral Lines in Polar–Polarizable Solvents
Matyushov, Dmitry V.; Newton, Marshall D.
2017-03-09
Solvent-induced shift of optical transition lines is traditionally described by the Lippert- McRae equation given in terms of the Onsager theory for dipole solvation. It splits the overall shift into the equilibrium solvation by induced dipoles and the reaction field by the permanent dipoles in equilibrium with the chromophore in the ground state. Here we have reconsidered this classical problem from the perspective of microscopic solvation theories. A microscopic solvation functional is derived and continuum solvation is consistently introduced by taking the limit of zero wavevector in the reciprocal-space solvation susceptibility functions. We show that the phenomenological expression for themore » reaction field of permanent dipoles in the Lippert-McRae equation is not consistent with the microscopic theory. The main deficiency of the Lippert- McRae equation equation is the use of additivity of the response by permanent and induced dipoles of the liquid. An alternative closed-form equation for the spectral shift is derived. Its continuum limit allows a new, non-additive functionality for the solvent-induced shift in terms of the high-frequency and static dielectric constants. Finally, the main qualitative outcome of the theory is a significantly weaker dependence of the spectral shift on the polarizability of the solvent than predicted by the Lippert-McRae formula.« less
Solvent-Induced Shift of Spectral Lines in Polar-Polarizable Solvents.
Matyushov, Dmitry V; Newton, Marshall D
2017-03-23
Solvent-induced shift of optical transition lines is traditionally described by the Lippert-McRae equation given in terms of the Onsager theory for dipole solvation. It splits the overall shift into the equilibrium solvation by induced dipoles and the reaction field by the permanent dipoles in equilibrium with the chromophore in the ground state. We have reconsidered this classical problem from the perspective of microscopic solvation theories. A microscopic solvation functional is derived, and continuum solvation is consistently introduced by taking the limit of zero wavevector in the reciprocal-space solvation susceptibility functions. We show that the phenomenological expression for the reaction field of permanent dipoles in the Lippert-McRae equation is not consistent with the microscopic theory. The main deficiency of the Lippert-McRae equation is the use of additivity of the response by permanent and induced dipoles of the liquid. An alternative closed-form equation for the spectral shift is derived. Its continuum limit allows a new, nonadditive functionality for the solvent-induced shift in terms of the high-frequency and static dielectric constants. The main qualitative outcome of the theory is a significantly weaker dependence of the spectral shift on the polarizability of the solvent than predicted by the Lippert-McRae formula.
SBIR reports on the chemistry of lithium battery technology
NASA Astrophysics Data System (ADS)
Kilroy, W. P.
1989-11-01
The following contents are included: Identification of an Improved Mixed Solvent Electrolyte for a Lithium Secondary Battery; Catalyzed Cathodes for Lithium-Thionyl Chloride Batteries; Improved Lithium/Thionyl Chloride Cells Using New Electrolyte Salts; Development of Calcium Primary Cells With Improved Anode Stability and Energy Density.
Palm ethyl ester purification by using Choline Chloride - 1,2 propanediol as deep eutectic solvent
NASA Astrophysics Data System (ADS)
Manurung, R.; Alhamdi, M. A.; Syahputra, A.
2018-02-01
Deep eutectic solvent (DES) has gained more attention for using in biodiesel production because of environmental benefits and process improvements. This study was aimed to test the potency and effectiveness of Deep Eutectic Solvent (DES) based choline chloride: 1.2-propanediol as co-solvent in biodiesel purification. The method used in preparing DES synthesis process was conducted by mixing choline chloride: 1.2-propanediol with mole ratio variation such as: 1:2 ; 1:2.5 ; 1:3 ; and 1:3.5 (mole/mole). The temperature of DES synthesis was at 80 °C with 300 rpm stirring speed for 60 minutes. Variation of DES concentration base on percentage palm oil used: 1, 3, and 5 %. DES possible to increase the ethyl ester yield of biodiesel in the purification process. The best result of yield was 89.95% with the 9:1 molar ratio ethanol: oil and 5% of DES. The operation condition was at 70 °C of temperature reaction, 400 rpm of stirring speed, and 90 minutes of reaction time.
Solvent-Free Manufacturing of Electrodes for Lithium-ion Batteries
NASA Astrophysics Data System (ADS)
Ludwig, Brandon; Zheng, Zhangfeng; Shou, Wan; Wang, Yan; Pan, Heng
2016-03-01
Lithium ion battery electrodes were manufactured using a new, completely dry powder painting process. The solvents used for conventional slurry-cast electrodes have been completely removed. Thermal activation time has been greatly reduced due to the time and resource demanding solvent evaporation process needed with slurry-cast electrode manufacturing being replaced by a hot rolling process. It has been found that thermal activation time to induce mechanical bonding of the thermoplastic polymer to the remaining active electrode particles is only a few seconds. Removing the solvent and drying process allows large-scale Li-ion battery production to be more economically viable in markets such as automotive energy storage systems. By understanding the surface energies of various powders which govern the powder mixing and binder distribution, bonding tests of the dry-deposited particles onto the current collector show that the bonding strength is greater than slurry-cast electrodes, 148.8 kPa as compared to 84.3 kPa. Electrochemical tests show that the new electrodes outperform conventional slurry processed electrodes, which is due to different binder distribution.
Zhang, Yuping; Ma, Yao; Deng, Mengyu; Shang, Hongxing; Liang, Chunshuang; Jiang, Shimei
2015-07-07
Two novel low molecular weight organogelators (LMOGs) 1 and 2 composed of a cholesteryl group, an amide group and various terminal cyanostilbene moieties were synthesized. They could form stable gels in p-xylene. In particular, 2 with more extended π-conjugation length showed remarkable gelation ability in many aromatic solvents, chloroform and chloroform-containing mixed solvents at a relatively low concentration. FT-IR and XRD spectra indicated that the difference between 1 and 2 in the gelation properties may result from the deviation of the intermolecular hydrogen bonding and π–π stacking as driving forces for the formation of the gels. Significantly, 2 can function as an efficient room-temperature phase-selective gelator (PSG) for potential application in the separation and recovery of various aromatic solvents from its mixture with water. Meanwhile, the gelator can be easily recovered and reused several times. Furthermore, the phase-selective gelation properties of 2 can provide a simple and feasible approach for the removal of the rhodamine B (RhB) dye from water.
Measurement of the linear viscoelastic behavior of antimisting kerosene
NASA Technical Reports Server (NTRS)
Ferry, J. D.
1983-01-01
Measurements of dynamic viscoelastic properties in very small oscillating shear deformations was made on solutions of a jet fuel, Jet A, containing an antimisting polymeric additive, FM-9. A few measurements were also made on solutions of FM-9 in a mixed solvent of mineral oil, Tetralin, and 0-terphenyl. Two samples of FM-9 had approximate number-average molecular weights of 12,000,000 and 8,100,000 as deduced from analysis of the measurements. The ranges of variables were 2.42 to 4.03 g/1 in concentration (0.3 to 0.5% by weight), 1 to 35 in temperature, 1.3 to 9.4 cp in solvent viscosity, and 103 to 6100 Hz in frequency. Measurements in the Jet A solvent were made both with and without a modifying carrier. The results were compared with the Zimm theory and the viscoelastic behavior was found to resemble rather closely that of ordinary non-polar polymers in theta solvents. The relation of the results to the antithixotropic behavior of such solutions a high shear rates is discussed in terms of intramolecular and intermolecular interactions.
Assessment of the impact of TOA partitioning on DWPF off-gas flammability
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daniel, W. E.
2013-06-01
An assessment has been made to evaluate the impact on the DWPF melter off-gas flammability of increasing the amount of TOA in the current solvent used in the Modular Caustic-Side Solvent Extraction Process Unit (MCU) process. The results of this study showed that the concentrations of nonvolatile carbon of the current solvent limit (150 ppm) in the Slurry Mix Evaporator (SME) product would be about 7% higher and the nonvolatile hydrogen would be 2% higher than the actual current solvent (126 ppm) with an addition of up to 3 ppm of TOA when the concentration of Isopar L in themore » effluent transfer is controlled below 87 ppm and the volume of MCU effluent transfer to DWPF is limited to 15,000 gallons per Sludge Receipt and Adjustment Tank (SRAT)/SME cycle. Therefore, the DWPF melter off-gas flammability assessment is conservative for up to an additional 3 ppm of TOA in the effluent based on these assumptions. This report documents the calculations performed to reach this conclusion.« less
Jacobs, Ian E.; Aasen, Erik W.; Oliveira, Julia L.; ...
2016-03-23
Doping polymeric semiconductors often drastically reduces the solubility of the polymer, leading to difficulties in processing doped films. Here, we compare optical, electrical, and morphological properties of P3HT films doped with F4TCNQ, both from mixed solutions and using sequential solution processing with orthogonal solvents. We demonstrate that sequential doping occurs rapidly (<1 s), and that the film doping level can be precisely controlled by varying the concentration of the doping solution. Furthermore, the choice of sequential doping solvent controls whether dopant anions are included or excluded from polymer crystallites. Atomic force microscopy (AFM) reveals that sequential doping produces significantly moremore » uniform films on the nanoscale than the mixed-solution method. In addition, we show that mixed-solution doping induces the formation of aggregates even at low doping levels, resulting in drastic changes to film morphology. Sequentially coated films show 3–15 times higher conductivities at a given doping level than solution-doped films, with sequentially doped films processed to exclude dopant anions from polymer crystallites showing the highest conductivities. In conclusion, we propose a mechanism for doping induced aggregation in which the shift of the polymer HOMO level upon aggregation couples ionization and solvation energies. To show that the methodology is widely applicable, we demonstrate that several different polymer:dopant systems can be prepared by sequential doping.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jacobs, Ian E.; Aasen, Erik W.; Oliveira, Julia L.
Doping polymeric semiconductors often drastically reduces the solubility of the polymer, leading to difficulties in processing doped films. Here, we compare optical, electrical, and morphological properties of P3HT films doped with F4TCNQ, both from mixed solutions and using sequential solution processing with orthogonal solvents. We demonstrate that sequential doping occurs rapidly (<1 s), and that the film doping level can be precisely controlled by varying the concentration of the doping solution. Furthermore, the choice of sequential doping solvent controls whether dopant anions are included or excluded from polymer crystallites. Atomic force microscopy (AFM) reveals that sequential doping produces significantly moremore » uniform films on the nanoscale than the mixed-solution method. In addition, we show that mixed-solution doping induces the formation of aggregates even at low doping levels, resulting in drastic changes to film morphology. Sequentially coated films show 3–15 times higher conductivities at a given doping level than solution-doped films, with sequentially doped films processed to exclude dopant anions from polymer crystallites showing the highest conductivities. In conclusion, we propose a mechanism for doping induced aggregation in which the shift of the polymer HOMO level upon aggregation couples ionization and solvation energies. To show that the methodology is widely applicable, we demonstrate that several different polymer:dopant systems can be prepared by sequential doping.« less
McIntyre, J C; Hundley, P; Behnke, W D
1987-01-01
Fluorescence techniques have been employed to study the interaction of porcine and equine colipase with pure taurodeoxycholate and mixed micelles. Nitrotyrosine-55 of porcine colipase is obtained by modification with tetranitromethane (low excess, in the presence of taurodeoxycholate) of the protein followed by gel filtration and ion-exchange chromatography. Verification of the residue modified was obtained by h.p.l.c. peptide purification and sequence analysis. Reduction and quantitative reaction with dansyl chloride yields a fluorescent derivative that is twice as active in conjunction with lipase as is native colipase and that exhibits a strong emission band at 550 nm. Addition of micellar concentrations of taurodeoxycholate causes a 4.3-fold increase in the emission maximum as well as a 70 nm blue shift to 480 nm. Inclusion of oleic acid to form a mixed micelle reduces these spectral effects. Scatchard analysis of the data yield a Kd of 6.8 X 10(-4) M and a single colipase-binding site for taurodeoxycholate micelles. The data, by analogy to a phospholipase system, are consistent with a direct insertion of dansyl-NH-tyrosine-55 into the micelle. The presence of a single tryptophan residue (Trp-52) in equine colipase provides an intrinsic fluorescent probe for studying protein-micelle interaction. The emission maximum of horse colipase at 345 nm indicates a solvent-accessible tryptophan residue which becomes less so on binding of micelles. A blue shift of 8 nm and a 2-fold increase in amplitude is indicative of a more hydrophobic environment for tryptophan induced by taurodeoxycholate micelles. There is also a decrease in KSV for acrylamide quenching in the presence of micelles, which further supports a loss of solvent accessibility. The most dramatic pH effects are observed with KI quenching, and may indicate the presence of negative charges near Trp-52. PMID:3663193
Automated solid-phase extraction workstations combined with quantitative bioanalytical LC/MS.
Huang, N H; Kagel, J R; Rossi, D T
1999-03-01
An automated solid-phase extraction workstation was used to develop, characterize and validate an LC/MS/MS method for quantifying a novel lipid-regulating drug in dog plasma. Method development was facilitated by workstation functions that allowed wash solvents of varying organic composition to be mixed and tested automatically. Precision estimates for this approach were within 9.8% relative standard deviation (RSD) across the calibration range. Accuracy for replicate determinations of quality controls was between -7.2 and +6.2% relative error (RE) over 5-1,000 ng/ml(-1). Recoveries were evaluated for a wide variety of wash solvents, elution solvents and sorbents. Optimized recoveries were generally > 95%. A sample throughput benchmark for the method was approximately equal 8 min per sample. Because of parallel sample processing, 100 samples were extracted in less than 120 min. The approach has proven useful for use with LC/MS/MS, using a multiple reaction monitoring (MRM) approach.
NASA Astrophysics Data System (ADS)
Naumov, V. V.; Kovaleva, Yu. A.; Isaeva, V. A.; Usacheva, T. R.; Sharnin, V. A.
2014-06-01
The heat effects of the complexation reactions of nickel(II) with a glycylglycinate ion in a water-dimethylsulfoxide solvent in a range of compositions of 0.00-0.60 molar parts of dimethylsulfoxide (DMSO) (an ionic strength of 0.1 was maintained using sodium perchlorate) were determined by means of calorimetry at 298.15 K. It is established that the exothermicity of complexation reactions rises by the first two steps and falls upon the addition of a third glycylglycinate anion with an increase in the concentration of DMSO. It is shown that the formation of mono- and bis-glycylglycinate complexes of nickel(II) in a water-DMSO solvent is determined mostly by the enthalpic contribution. It is concluded that the formation of tris-ligand complexes is more associated with the entropic contribution.
Effect of solvent on crystallization behavior of xylitol
NASA Astrophysics Data System (ADS)
Hao, Hongxun; Hou, Baohong; Wang, Jing-Kang; Lin, Guangyu
2006-04-01
Effect of organic solvents content on crystallization behavior of xylitol was studied. Solubility and crystallization kinetics of xylitol in methanol-water system were experimentally determined. It was found that the solubility of xylitol at various methanol content all increases with increase of temperature. But it decreases when increasing methanol content at constant temperature. Based on the theory of population balance, the nucleation and growth rates of xylitol in methanol-water mixed solvents were calculated by moments method. From a series of experimental population density data of xylitol gotten from a batch-operated crystallizer, parameters of crystal nucleation and growth rate equations at different methanol content were got by the method of nonlinear least-squares. By analyzing, it was found that the content of methanol had an apparent effect on nucleation and growth rate of xylitol. At constant temperature, the nucleation and growth rate of xylitol all decrease with increase of methanol content.
Nanocellular foam with solid flame retardant
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Liang; Kelly-Rowley, Anne M.; Bunker, Shana P.
Prepare nanofoam by (a) providing an aqueous solution of a flame retardant dissolved in an aqueous solvent, wherein the flame retardant is a solid at 23.degree. C. and 101 kiloPascals pressure when in neat form; (b) providing a fluid polymer composition selected from a solution of polymer dissolved in a water-miscible solvent or a latex of polymer particles in a continuous aqueous phase; (c) mixing the aqueous solution of flame retardant with the fluid polymer composition to form a mixture; (d) removing water and, if present, solvent from the mixture to produce a polymeric composition having less than 74 weight-percentmore » flame retardant based on total polymeric composition weight; (e) compound the polymeric composition with a matrix polymer to form a matrix polymer composition; and (f) foam the matrix polymer composition into nanofoam having a porosity of at least 60 percent.« less
Dynamic nuclear polarization in solid samples by electrical-discharge-induced radicals
NASA Astrophysics Data System (ADS)
Katz, Itai; Blank, Aharon
2015-12-01
Dynamic nuclear polarization (DNP) is a method for enhancing nuclear magnetic resonance (NMR) signals that has many potential applications in chemistry and medicine. Traditionally, DNP signal enhancement is achieved through the use of exogenous radicals mixed in a solution with the molecules of interest. Here we show that proton DNP signal enhancements can be obtained for solid samples without the use of solvent and exogenous radicals. Radicals are generated primarily on the surface of a solid sample using electrical discharges. These radicals are found suitable for DNP. They are stable under moderate vacuum conditions, yet readily annihilate upon compound dissolution or air exposure. This feature makes them attractive for use in medical applications, where the current variety of radicals used for DNP faces regulatory problems. In addition, this solvent-free method may be found useful for analytical NMR of solid samples which cannot tolerate solvents, such as certain pharmaceutical products.
An insight into non-emissive excited states in conjugated polymers
NASA Astrophysics Data System (ADS)
Hu, Zhongjian; Willard, Adam P.; Ono, Robert J.; Bielawski, Christopher W.; Rossky, Peter J.; vanden Bout, David A.
2015-09-01
Conjugated polymers in the solid state usually exhibit low fluorescence quantum yields, which limit their applications in many areas such as light-emitting diodes. Despite considerable research efforts, the underlying mechanism still remains controversial and elusive. Here, the nature and properties of excited states in the archetypal polythiophene are investigated via aggregates suspended in solvents with different dielectric constants (ε). In relatively polar solvents (ε>~ 3), the aggregates exhibit a low fluorescence quantum yield (QY) of 2-5%, similar to bulk films, however, in relatively nonpolar solvents (ε<~ 3) they demonstrate much higher fluorescence QY up to 20-30%. A series of mixed quantum-classical atomistic simulations illustrate that dielectric induced stabilization of nonradiative charge-transfer (CT) type states can lead to similar drastic reduction in fluorescence QY as seen experimentally. Fluorescence lifetime measurement reveals that the CT-type states exist as a competitive channel of the formation of emissive exciton-type states.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Basha, Omar M.; Keller, Murphy J.; Luebke, David R.
The Ionic Liquid (IL) [hmim][Tf 2N] was used as a physical solvent in an Aspen Plus simulation, employing the Peng-Robinson Equation of State (P-R EOS) with Boston-Mathias (BM) alpha function and standard mixing rules, to develop a conceptual process for CO 2 capture from a shifted warm fuel gas stream produced from Pittsburgh # 8 coal for a 400 MWe power plant. The physical properties of the IL, including density, viscosity, surface tension, vapor pressure and heat capacity were obtained from literature and modeled as a function of temperature. Also, available experimental solubility values for CO 2, H 2, Hmore » 2S, CO, and CH 4 in this IL were compiled and their binary interaction parameters (Δ ij and l ij) were optimized and correlated as functions of temperature. The Span-Wager Equation-of-State EOS was also employed to generate CO 2 solubilities in [hmim][Tf 2N] at high pressures (up to 10 MPa) and temperatures (up to 510 K). The conceptual process developed consisted of 4 adiabatic absorbers (2.4 m ID, 30 m high) arranged in parallel and packed with Plastic Pall Rings of 0.025 m for CO 2 capture; 3 flash drums arranged in series for solvent (IL) regeneration with the pressure-swing option; and a pressure-intercooling system for separating and pumping CO 2 up to 153 bar to the sequestration sites. The compositions of all process streams, CO 2 capture efficiency, and net power were calculated using Aspen Plus simulator. The results showed that, based on the composition of the inlet gas stream to the absorbers, 95.67 mol% of CO 2 was captured and sent to sequestration sites; 99.5 mol% of H 2 was separated and sent to turbines; the solvent exhibited a minimum loss of 0.31 mol%; and the net power balance of the entire system was 30.81 MW. These results indicated that [hmim][Tf 2N] IL could be used as a physical solvent for CO 2 capture from warm shifted fuel gas streams with high efficiency.« less
Signal intensity of lanthanum carbonate on magnetic resonance images: phantom study.
Nakamura, Shinichi; Awai, Kazuo; Komi, Masanori; Morita, Kosuke; Namimoto, Tomohiro; Yanaga, Yumi; Utsunomiya, Daisuke; Date, Shuji; Yamashita, Yasuyuki
2011-06-01
Lanthanum carbonate (LC) is used to treat hyperphosphatemia. The purpose of this study was to investigate the signal intensity (SI) of LC on magnetic resonance imaging (MRI) scans of phantoms. LC tablets were thoroughly ground and mixed with distilled water or edible agar (0.05, 0.25, 0.5, and 2.5 mg/ml) in plastic bottles. Four intact tablets were placed in plastic bottles that did or did not contain distilled water or agar. Two radiologists consensually evaluated T1- and T2-weighted images (WIs) obtained with 1.5- and 3.0-T MRI systems for the SI of unground and ground tablets. On T1- and T2WI, the SIs of the LC suspensions and the solvents alone were similar; the SIs of unground tablets alone and of the air were also similar. Unground tablets in phantoms filled with solvent exhibited lower SI than the solvent. Ground tablets in suspension were not visualized on MRI or computed tomography. These results remained unchanged regardless of differences in magnetic field strength or the solvent used. Ground LC had no contrast enhancement effect on T1WI; on T2WI it did not affect the SI of the solvent. Unground LC tablets may be visualized as a "filling defect" on MRI.
NASA Astrophysics Data System (ADS)
Dubey, Ashish; Reza, Khan M.; Gaml, Eman; Adhikari, Nirmal; Qiao, Qiquan
2016-09-01
Smooth, compact and defect free morphology of perovskite is highly desired for enhanced device performance. Several routes such as thermal annealing, use of solvent mixtures, growth under controlled humidity has been adopted to obtain crystalline, smooth and defect free perovskite film. Herein we showed direct use of water (H2O) as co-solvent in precursor solution and have optimized the water content required to obtain smooth and dense film. Varying concentration of water was used in precursor solution of CH3NH3I and PbI2 mixed in γ-butyrolactone (GBL) and dimethylsulfoxide (DMSO). Perovskite films were crystallized using toluene assisted solvent engineering method using GBL:DMSO:H2O as solvent mixture. The amount of water was varied from 1% to 25%, which resulted in change in film morphology and perovskite crystallinity. It was concluded that an appropriate amount of water is required to assist the crystallization process to obtain smooth pin-hole free morphology. The change in morphology led to improved fill factor in the device, with highest efficiency 14%, which was significantly higher than devices made from perovskite film without adding water. We also showed that addition of up to 25% by volume of water does not significantly change the device performance.
NASA Astrophysics Data System (ADS)
Minnick, David L.
Lignocellulose is the most abundant biopolymer on earth making it a promising feedstock for the production of renewable chemicals and fuels. However, utilization of biomass remains a challenge as recalcitrance of cellulose and hemicellulose hinder separation and conversion of these carbohydrates. For instance, the complex inter- and intra- molecular hydrogen bonding network of cellulose renders it insoluble in nearly all aqueous and organic solvents. Alternatively, select ionic liquids (ILs) dissolve significant quantities. Through an ionic liquid mediated dissolution and precipitation process cellulose crystallinity is significantly reduced consequently enhancing subsequent chemical and biochemical reaction processes. Therefore, understanding the thermodynamics of ionic liquid - cellulose mixtures is imperative to developing an IL based biomass processing system. This dissertation illustrates solid-liquid phase equilibrium results for the dissolution and precipitation of cellulose in various IL/cosolvent, IL/antisolvent, and IL/mixed solvent systems with the ionic liquid 1-ethyl-3-methylimidazolium diethyl phosphate ([EMIm][DEP]). Molecular interactions between the ionic liquid, organic solvents, and cellulose are assessed by spectroscopic techniques including Kamlet-Taft solvatochromic analysis, FTIR, and NMR. Additionally, this dissertation discusses how preferential solvation of the IL cation and anion by co- and anti-solvents impact the ability of IL ions to interact with cellulose thus affecting the cellulose dissolution capacity of the various IL-solvent mixtures.
Low density microcellular foams
LeMay, James D.
1992-01-01
Disclosed is a process of producing microcellular from which comprises the steps of: (a) selecting a multifunctional epoxy oligomer resin; (b) mixing said epoxy resin with a non-reactive diluent to form a resin-diluent mixture; (c) forming a diluent containing cross-linked epoxy gel from said resin-diluent mixture; (d) replacing said diluent with a solvent therefore; (e) replacing said solvent with liquid carbon dioxide; and (f) vaporizing off said liquid carbon dioxide under supercritical conditions, whereby a foam having a density in the range of 35-150 mg/cc and cell diameters less than about 1 .mu.m is produced. Also disclosed are the foams produced by the process.
Low density microcellular foams
LeMay, J.D.
1991-11-19
Disclosed is a process of producing microcellular foam which comprises the steps of: (a) selecting a multifunctional epoxy oligomer resin; (b) mixing said epoxy resin with a non-reactive diluent to form a resin-diluent mixture; (c) forming a diluent containing cross-linked epoxy gel from said resin-diluent mixture; (d) replacing said diluent with a solvent therefore; (e) replacing said solvent with liquid carbon dioxide; and (f) vaporizing off said liquid carbon dioxide under supercritical conditions, whereby a foam having a density in the range of 35-150 mg/cc and cell diameters less than about 1 [mu]m is produced. Also disclosed are the foams produced by the process. 8 figures.
Low density microcellular foams
LeMay, James D.
1991-01-01
Disclosed is a process of producing microcellular foam which comprises the steps of: (a) selecting a multifunctional epoxy oligomer resin; (b) mixing said epoxy resin with a non-reactive diluent to form a resin-diluent mixture; (c) forming a diluent containing cross-linked epoxy gel from said resin-diluent mixture; (d) replacing said diluent with a solvent therefore; (e) replacing said solvent with liquid carbon dioxide; and (f) vaporizing off said liquid carbon dioxide under supercritical conditions, whereby a foam having a density in the range of 35-150 mg/cc and cell diameters less than about 1 .mu.m is produced. Also disclosed are the foams produced by the process.
Molecular Level Coating of Metal Oxide Particles
NASA Technical Reports Server (NTRS)
McDaniel, Patricia R. (Inventor); St.Clair, Terry L. (Inventor)
2002-01-01
Polymer encapsulated metal oxide particles are prepared by combining a polyamide acid in a polar osmotic solvent with a metal alkoxide solution. The polymer was imidized and the metal oxide formed simultaneously in a refluxing organic solvent. The resulting polymer-metal oxide is an intimately mixed commingled blend, possessing, synergistic properties of both the polymer and preceramic metal oxide. The encapsulated metal oxide particles have multiple uses including, being useful in the production of skin lubricating creams, weather resistant paints, as a filler for paper. making ultraviolet light stable filled printing ink, being extruded into fibers or ribbons, and coatings for fibers used in the production of composite structural panels.
Molecular Level Coating for Metal Oxide Particles
NASA Technical Reports Server (NTRS)
McDaniel, Patricia R. (Inventor); Saint Clair, Terry L. (Inventor)
2000-01-01
Polymer encapsulated metal oxide particles are prepared by combining a polyamide acid in a polar aprotic solvent with a metal alkoxide solution. The polymer was imidized and the metal oxide formed simultaneously in a refluxing organic solvent. The resulting polymer-metal oxide is an intimately mixed commingled blend, possessing synergistic properties of both the polymer and preceramic metal oxide. The encapsulated metal oxide particles have multiple uses including, being useful in the production of skin lubricating creams, weather resistant paints, as a filler for paper, making ultraviolet light stable filled printing ink, being extruded into fibers or ribbons, and coatings for fibers used in the production of composite structural panels.
Method for removing organic liquids from aqueous solutions and mixtures
Hrubesh, Lawrence W.; Coronado, Paul R.; Dow, Jerome P.
2004-03-23
A method for removing organic liquids from aqueous solutions and mixtures. The method employs any porous material preferably in granular form and having small pores and a large specific surface area, that is hydrophobic so that liquid water does not readily wet its surface. In this method, organics, especially organic solvents that mix with and are more volatile than water, are separated from aqueous solution by preferentially evaporating across the liquid/solid boundary formed at the surfaces of the hydrophobic porous materials. Also, organic solvents that are immiscible with water, preferentially wet the surfaces of the hydrophobic material and are drawn within the porous materials by capillary action.
NASA Astrophysics Data System (ADS)
Mezhevoi, I. N.; Badelin, V. G.; Tyunina, E. Yu.; Kamkina, S. V.
2018-03-01
The integral enthalpies of dissolution of L-tryptophan and L-asparagine in aqueous solutions of sodium dodecyl sulfate (surfactant) at surfactant concentrations of up to 0.05 mol/kg of the solvent are determined and estimated calorimetrically. Standard values of the enthalpies of dissolution and transfer of amino acids from water to a mixed solvent are calculated. The calculated enthalpy coefficients of pair interactions between amino acids and surfactant molecules have positive values. Hydrophobic interactions between amino acids and surfactants have the dominant effect on the enthalpy characteristics of the interaction in a three-component solution.
MALE REPRODUCTIVE EFFECTS OF SOLVENT AND FUEL EXPOSURE DURING AIRCRAFT MAINTENANCE
Few studies have addressed the effects of mixed, low level exposures to complex mixtures on a man's reproductive potential. In this prospective study, each subject was evaluated prior to first exposure and at 15 and 30 weeks after exposures had begun. A total of 50 men working ...
ERIC Educational Resources Information Center
Franzen, Stefan
2011-01-01
Determination of the solubility limit of a strongly colored organometallic reagent in a mixed-solvent system provides an example of quantitative solubility measurement appropriate to understand polymer, nanoparticle, and other macromolecular aggregation processes. The specific example chosen involves a solution of tris(dibenzylideneacetone)…
BUILDING DEFINED MIXED CULTURES TO BIODEGRADE DIVERSE MIXTURES OF CHLORINATED SOLVENTS
The major accomplishment that I can think of is the education of a Master’s student who is now out in practice working for a consulting engineering firm. This project allowed him to develop expertise with biological treatment systems, which are widely used...
Method for selective dehalogenation of halogenated polyaromatic compounds
Farcasiu, Malvina; Petrosius, Steven C.
1994-01-01
A method for dehalogenating halogenated polyaromatic compounds is provided wherein the polyaromatic compounds are mixed with a hydrogen donor solvent and a carbon catalyst in predetermined proportions, the mixture is maintained at a predetermined pressure, and the mixture is heated to a predetermined temperature and for a predetermined time.
A series of miscible displacement experiments was conducted to investigate the significance of intraorganic matter diffusion (IOMD) as the rate-limiting step in sorption of organic and inorganic solutes during steady water flow in soil columns. Displacement studies were performed...
Using Asymmetric Flow Field-Flow Fractionation (AF4) to Determine C60 Colloidal Size Distributions
The formation of aqueous fullerene suspensions by solvent exchange, sonication, or extended mixing in water is widely reported. Commonly used methods for determining the size of these aggregates rely on static and dynamic light scattering, electron microscopy (EM), or atomic forc...
Mixing with microwaves: solvent-free and catalyst-free synthesis of pyrazoles and diazepines
A simple and facile condensation of hydrazines/hydrazides and diamines with 1,3-diketones/β-ketoester leads to the preparation of pyrazoles and diazepines in high yields. This eco-friendly protocol is accelerated by microwave heating and efficiently carried out without any r...
ERIC Educational Resources Information Center
Kairouz, Vanessa; Collins, Shawn K.
2018-01-01
An undergraduate teaching laboratory experiment involving a continuous flow, bleach-mediated oxidation of aldehydes under biphasic conditions was developed that allowed students to explore concepts of mixing or mass transport, solvent sustainability, biphasic reactions, phase transfer catalysis, and continuous flow chemistry.
Upadhyay, Ganesh; Devi, Th Gomti; Singh, Ranjan K; Singh, A; Alapati, P R
2013-05-15
The isotropic and anisotropic Raman peak frequencies of S=O stretching mode of Dimethyl sulfoxide (DMSO) have been discussed in different chemical and isotopic solvent molecules using different mechanisms. The shifting of peak frequency in further dilution of DMSO with solvent molecule is observed for all solvents. Transition dipole - transition dipole interaction and hydrogen bonding may play a major role in shifting of peak frequencies. The non-coincidence effect (NCE) of DMSO was determined for all the solvents and compared with four theoretical models such as McHale's model, Mirone's modification of McHale's model, Logan's model and Onsager-Fröhlich dielectric continuum model respectively. Most of the theoretical models are largely consistent with our experimental data. Copyright © 2013. Published by Elsevier B.V.
The development of phytosterol-lecithin mixed micelles and organogels.
Matheson, Andrew B; Dalkas, Georgios; Gromov, Andrei; Euston, Stephen R; Clegg, Paul S
2017-12-13
We demonstrate that by mixing the phytosterol-ester oryzanol with lecithin in an organic solvent, both components may be dispersed at much higher concentrations than they may be individually. Dynamic light scattering and molecular dynamics simulations show that the mechanism for this is the formation of r ∼ 4 nm mixed micelles. Infrared spectroscopy and simulations suggest that these micelles are formed due in part to hydrogen bonding of the phosphate of the lecithin head-group, and the phenol group of the oryzanol. Rheology shows that by mixing these materials at an equimolar ratio, highly viscous suspensions are created. Furthermore, by adding water to these samples, a solid-like gel may be formed which offers mechanical properties close to those desired for a margarine type spread, whilst still solubilizing the oryzanol.
The origin of consistent protein structure refinement from structural averaging.
Park, Hahnbeom; DiMaio, Frank; Baker, David
2015-06-02
Recent studies have shown that explicit solvent molecular dynamics (MD) simulation followed by structural averaging can consistently improve protein structure models. We find that improvement upon averaging is not limited to explicit water MD simulation, as consistent improvements are also observed for more efficient implicit solvent MD or Monte Carlo minimization simulations. To determine the origin of these improvements, we examine the changes in model accuracy brought about by averaging at the individual residue level. We find that the improvement in model quality from averaging results from the superposition of two effects: a dampening of deviations from the correct structure in the least well modeled regions, and a reinforcement of consistent movements towards the correct structure in better modeled regions. These observations are consistent with an energy landscape model in which the magnitude of the energy gradient toward the native structure decreases with increasing distance from the native state. Copyright © 2015 Elsevier Ltd. All rights reserved.
Semiautomated solid-phase extraction manifold with a solvent-level sensor.
Orlando, R M; Rath, S; Rohwedder, J J R
2013-11-15
A semiautomated solid-phase extraction manifold for multiple extractions is presented. The manifold utilizes commercial solid-phase syringe cartridges and automatically introduces and elutes all the solvents during the extraction, reducing the typical workload and stress of the analyst. The manifold consists of a peristaltic pump with solenoid valves in a flow circuit that contains transmissive photomicrosensors. The photomicrosensors were used to control the solvent dispenser and the solvent level inside the cartridge. As solvent-level sensors, the photomicrosensors determined the exact time the solvent reached the top frit to avoid sorbent drying and accurately perform the solvent exchange. The repeatability of the manifold to introduce a particular volume of solvent into the cartridges was measured, and the precisions were between 0.05 and 2.89% (RSD). To evaluate the manifold, the amount of two fluoroquinolones in a fortified blank milk sample was determined. The results of the intra- and inter-day precision of multiple extractions from the fortified milk samples resulted in precisions better than 9.0% (RSD) and confirmed that the arrangement of the semiautomated manifold could adequately be used in solid-phase extraction with commercial cartridges. Copyright © 2013 Elsevier B.V. All rights reserved.
Sarsfield, N.F.
1949-06-21
This patent pertains to a process for recovering fluorocarbons from a liquid mixture of hydrocarbons with partially and completely fluorinated products thereof. It consists of contacting the mxture in the cold with a liquid which is a solvent for the hydrocarbons and which is a nonsolvent for the fluorocarbons, extracting the hydrocarbons, separating the fluorocarbon-containing layer from the solvent-containing layer, and submitting the fluorocarbon layer to fractlonal distillation, to isolate the desired fluorocarbon fraction. Suitable solvents wnich may be used in the process include the lower aliphatic alcohols, and the lower aliphatic ketones.
Evaluation of Solvent Alternatives for Cleaning of Oxygen Systems
NASA Technical Reports Server (NTRS)
Beeson, Harold; Biesinger, Paul; Delgado, Rafael; Antin, Neil
1999-01-01
The NASA White Sands Test Facility (WSTF) in a joint program with the Naval Sea Systems Command has evaluated a number of solvents as alternatives to the use of chlorofluorocarbons currently utilized for cleaning of oxygen systems. Particular attention has been given to the cleaning of gauges and instrumentation used in oxygen service, since there have been no identified aqueous alternatives. The requirements identified as selection criteria, include toxicity, physical properties consistent with application, flammability, oxygen compatibility, and cleaning ability. This paper provides a summary of results and recommendations for solvents evaluated to date.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Law, J.D.; Tillotson, R.D.; Todd, T.A.
2002-09-19
The Caustic-Side Solvent Extraction (CSSX) process has been selected for the separation of cesium from Savannah River Site high-level waste. The solvent composition used in the CSSX process was recently optimized so that the solvent is no longer supersaturated with respect to the calixarene crown ether extractant. Hydraulic performance and mass transfer efficiency testing of a single stage of 5.5-cm ORNL-designed centrifugal contactor has been performed for the CSSX process with the optimized solvent. Maximum throughputs of the 5.5-cm centrifugal contactor, as a function of contactor rotor speed, have been measured for the extraction, scrub, strip, and wash sections ofmore » the CSSX flowsheet at the baseline organic/aqueous flow ratios (O/A) of the process, as well as at O/A's 20% higher and 20% lower than the baseline. Maximum throughputs are comparable to the design throughput of the contactor, as well as with throughputs obtained previously in a 5-cm centrifugal contactor with the non-optimized CSSX solvent formulation. The 20% variation in O/A had minimal effect on contactor throughput. Additionally, mass transfer efficiencies have been determined for the extraction and strip sections of the flowsheet. Efficiencies were lower than the process goal of greater than or equal to 80%, ranging from 72 to 75% for the extraction section and from 36 to 60% in the strip section. Increasing the mixing intensity and/or the solution level in the mixing zone of the centrifugal contactor (residence time) could potentially increase efficiencies. Several methods are available to accomplish this including (1) increasing the size of the opening in the bottom of the rotor, resulting in a contactor which is partially pumping instead of fully pumping, (2) decreasing the number of vanes in the contactor, (3) increasing the vane height, or (4) adding vanes on the rotor and baffles on the housing of the contactor. The low efficiency results obtained stress the importance of proper design of a centrifugal contactor for use in the CSSX process. A prototype of any centrifugal contactors designed for future pilot-scale or full-scale processing should be thoroughly tested prior to implementation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Law, Jack Douglas; Tillotson, Richard Dean; Todd, Terry Allen
2002-09-01
The Caustic-Side Solvent Extraction (CSSX) process has been selected for the separation of cesium from Savannah River Site high-level waste. The solvent composition used in the CSSX process was recently optimized so that the solvent is no longer supersaturated with respect to the calixarene crown ether extractant. Hydraulic performance and mass transfer efficiency testing of a single stage of 5.5-cm ORNL-designed centrifugal contactor has been performed for the CSSX process with the optimized solvent. Maximum throughputs of the 5.5-cm centrifugal contactor, as a function of contactor rotor speed, have been measured for the extraction, scrub, strip, and wash sections ofmore » the CSSX flowsheet at the baseline organic/aqueous flow ratios (O/A) of the process, as well as at O/A’s 20% higher and 20% lower than the baseline. Maximum throughputs are comparable to the design throughput of the contactor, as well as with throughputs obtained previously in a 5-cm centrifugal contactor with the non-optimized CSSX solvent formulation. The 20% variation in O/A had minimal effect on contactor throughput. Additionally, mass transfer efficiencies have been determined for the extraction and strip sections of the flowsheet. Efficiencies were lower than the process goal of greater than or equal to 80%, ranging from 72 to 75% for the extraction section and from 36 to 60% in the strip section. Increasing the mixing intensity and/or the solution level in the mixing zone of the centrifugal contactor (residence time) could potentially increase efficiencies. Several methods are available to accomplish this including (1) increasing the size of the opening in the bottom of the rotor, resulting in a contactor which is partially pumping instead of fully pumping, (2) decreasing the number of vanes in the contactor, (3) increasing the vane height, or (4) adding vanes on the rotor and baffles on the housing of the contactor. The low efficiency results obtained stress the importance of proper design of a centrifugal contactor for use in the CSSX process. A prototype of any centrifugal contactors designed for future pilot-scale or full-scale processing should be thoroughly tested prior to implementation.« less
Kato, Megumi; Yamazaki, Taichi; Kato, Hisashi; Yamanaka, Noriko; Takatsu, Akiko; Ihara, Toshihide
2017-01-01
To prepare metrologically traceable amino acid mixed standard solutions, it is necessary to determine the stability of each amino acid present in the mixed solutions. In the present study, we prepared amino acid mixed solutions using certified reference standards of 17 proteinogenic amino acids, and examined the stability of each of these amino acids in 0.1 N HCl. We found that the concentration of glutamic acid decreased significantly during storage. LC/MS analysis indicated that the instability of glutamic acid was due to the partial degradation of glutamic acid to pyroglutamic acid in 0.1 N HCl. Using accelerated degradation tests, we investigated several solvent compositions to improve the stability of glutamic acid in amino acid mixed solution, and determined that the change of the pH by diluting the mixed solution improved the stability of glutamic acid.
Uchiyama, Shigehisa; Matsushima, Erika; Tokunaga, Hiroshi; Otsubo, Yasufumi; Ando, Masanori
2006-05-26
A new method is described for the determination of orthophthalaldehyde in air which is used for the disinfection of various instruments (e.g. endoscopes) in hospital. Orthophthalaldehyde in air was collected with a silica gel cartridge impregnated with acidified 2,4-dinitrophenylhydrazine (DNPH-cartridge) and derivatives were analyzed by high-performance liquid chromatography (HPLC). In this study, the derivatization was examined by comparing the process with three phthalaldehyde isomers (ortho-, iso- and tere-). In the case of iso- and tere-phthalaldehyde, derivatives synthesized with excess of aldehyde consisted mainly of mono-derivatives, and derivatives synthesized with excess of DNPH consisted mainly of bis-derivative. In the case of orthophthalaldehyde, derivative consisted of only bis-derivative and mono-derivative was never observed under any conditions. Orthophthalaldehyde was completely retained by the DNPH-cartridge during air sampling, however, the derivatization reaction was incomplete and unreacted orthophthalaldehyde was flushed from the cartridge during the subsequent solvent extraction process. Unreacted orthophthalaldehyde and DNPH reacted again in the extraction solvent solution. Immediately after the solvent extraction, both mono- and bis-DNPhydrazone derivatives of orthophthalaldehyde were present in the solution. However, over time, the mono-derivative decreased and bis-derivative increased until only the bis-derivative was left allowing accurate determination of the orthophthalaldehyde concentration. The transformation of mono-derivative to bis-derivative was faster in polar aprotic solvents such as acetonitrile, dimethyl sulfoxide and ethyl acetate. Transformation was found to occur most quickly in acetonitrile solvent and was completed in 4 h in this case. It was possible to measure orthophthalaldehyde in air as bis-derivative using a DNPH impregnated silica cartridge and HPLC analysis.
Kholiya, Faisal; Bhatt, Nidhi; Rathod, Meena R; Meena, Ramavatar; Prasad, Kamalesh
2015-07-14
Several deep eutectic solvents prepared by the complexation of choline chloride as the hydrogen bond acceptor and hydrogen bond donors such as urea, thiourea, ethylene glycol, and glycerol were employed to partition glaucarubinone, an antimalarial compound present in roots of the plant, Simarouba glauca. Among all the solvents, the deep eutectic solvent consisting of the mixture of choline chloride and urea the most suitable to partition the antimalarial compound from the extract selectively. Analytical tools such as high-performance liquid chromatography and electrospray ionization mass spectrometry were used for characterizations, and glaucarubinone extracted from the roots of the plant by conventional solvent extraction method was used as a reference for comparison. The hydrogen and noncovalent bonds formed between glaucarubinone and the deep eutectic solvents could be responsible for the selective partition of the drug molecule. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Synthesis of substantially monodispersed colloids
NASA Technical Reports Server (NTRS)
Stoeva, Savka (Inventor); Klabunde, Kenneth J. (Inventor); Sorensen, Christopher (Inventor)
2003-01-01
A method of forming ligated nanoparticles of the formula Y(Z).sub.x where Y is a nanoparticle selected from the group consisting of elemental metals having atomic numbers ranging from 21-34, 39-52, 57-83 and 89-102, all inclusive, the halides, oxides and sulfides of such metals, and the alkali metal and alkaline earth metal halides, and Z represents ligand moieties such as the alkyl thiols. In the method, a first colloidal dispersion is formed made up of nanoparticles solvated in a molar excess of a first solvent (preferably a ketone such as acetone), a second solvent different than the first solvent (preferably an organic aryl solvent such as toluene) and a quantity of ligand moieties; the first solvent is then removed under vacuum and the ligand moieties ligate to the nanoparticles to give a second colloidal dispersion of the ligated nanoparticles solvated in the second solvent. If substantially monodispersed nanoparticles are desired, the second dispersion is subjected to a digestive ripening process. Upon drying, the ligated nanoparticles may form a three-dimensional superlattice structure.
Ammonothermal Growth of Chalcogenide Single Crystal Materials
1997-11-05
chalcogenide with an acidic mineraiizer 15 in presence of liquid ammonia solvent at high pressures and at temperatures in the range of about 300 to 550°C...demonstrates growth of binary CaS single crystals in a medium consisting of CaS powder and NH4I acid mineraiizer in ammonia solvent in a fused quartz
NASA Astrophysics Data System (ADS)
Monajjemi, M.; Razavian, M. H.; Mollaamin, F.; Naderi, F.; Honarparvar, B.
2008-12-01
Quantum-chemical solvent effect theories describe the electronic structure of a molecular subsystem embedded in a solvent or other molecular environment. The solvation of biomolecules is important in molecular biology, since numerous processes involve proteins interacting in changing solvent-solute systems. In this theoretical study, we focus on mRNA-tRNA base pairs as a fundamental step in protein synthesis influenced by hydrogen bonding between two antiparallel trinucleotides, namely, the mRNA codon and tRNA anticodon. We use the mean reaction field theories, which describe electrostatic and polarization interactions between solute and solvent in the AAA, UUU, AAG, and UUC triplex sequences optimized in various solvent media such as water, dimethylsulfoxide, methanol, ethanol, and cyclopean using the self-consistent reaction field model. This process depends on either the reaction potential function of the solvent or charge transfer operators that appear in solute-solvent interaction. Because of codon and anticodon biological criteria, we performed nonempirical quantum-mechanical calculations at the BLYP and B3LYP/3-21G, 6-31G, and 6-31G* levels of theory in the gas phase and five solvents at three temperatures. Finally, to obtain more information, we calculated thermochemical parameters to find that the dielectric constant of solvents plays an important role in the displacement of amino acid sequences on codon-anticodon residues in proteins, which can cause some mutations in humans.
Interfacial free energy governs single polystyrene chain collapse in water and aqueous solutions.
Li, Isaac T S; Walker, Gilbert C
2010-05-12
The hydrophobic interaction is significantly responsible for driving protein folding and self-assembly. To understand it, the thermodynamics, the role of water structure, the dewetting process surrounding hydrophobes, and related aspects have undergone extensive investigations. Here, we examine the hypothesis that polymer-solvent interfacial free energy is adequate to describe the energetics of the collapse of a hydrophobic homopolymer chain at fixed temperature, which serves as a much simplified model for studying the hydrophobic collapse of a protein. This implies that changes in polymer-solvent interfacial free energy should be directly proportional to the force to extend a collapsed polymer into a bad solvent. To test this hypothesis, we undertook single-molecule force spectroscopy on a collapsed, single, polystyrene chain in water-ethanol and water-salt mixtures where we measured the monomer solvation free energy from an ensemble average conformations. Different proportions within the binary mixture were used to create solvents with different interfacial free energies with polystyrene. In these mixed solvents, we observed a linear correlation between the interfacial free energy and the force required to extend the chain into solution, which is a direct measure of the solvation free energy per monomer on a single chain at room temperature. A simple analytical model compares favorably with the experimental results. This knowledge supports a common assumption that explicit water solvent may not be necessary for cases whose primary concerns are hydrophobic interactions and hydrophobic hydration.
Solvatochromism of 9,10-phenanthrenequinone: An electronic and resonance Raman spectroscopic study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ravi Kumar, Venkatraman; Rajkumar, Nagappan; Umapathy, Siva, E-mail: umapathy@ipc.iisc.ernet.in
2015-01-14
Solvent effects play a vital role in various chemical, physical, and biological processes. To gain a fundamental understanding of the solute-solvent interactions and their implications on the energy level re-ordering and structure, UV-VIS absorption, resonance Raman spectroscopic, and density functional theory calculation studies on 9,10-phenanthrenequinone (PQ) in different solvents of diverse solvent polarity has been carried out. The solvatochromic analysis of the absorption spectra of PQ in protic dipolar solvents suggests that the longest (1n-π{sup 1}*; S{sub 1} state) and the shorter (1π-π{sup 1}*; S{sub 2} state) wavelength band undergoes a hypsochromic and bathochromic shift due to intermolecular hydrogen bondmore » weakening and strengthening, respectively. It also indicates that hydrogen bonding plays a major role in the differential solvation of the S{sub 2} state relative to the ground state. Raman excitation profiles of PQ (400–1800 cm{sup −1}) in various solvents followed their corresponding absorption spectra therefore the enhancements on resonant excitation are from single-state rather than mixed states. The hyperchromism of the longer wavelength band is attributed to intensity borrowing from the nearby allowed electronic transition through vibronic coupling. Computational calculation with C{sub 2ν} symmetry constraint on the S{sub 2} state resulted in an imaginary frequency along the low-frequency out-of-plane torsional modes involving the C=O site and therefore, we hypothesize that this mode could be involved in the vibronic coupling.« less
Method of preparation of removable syntactic foam
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arnold, C. Jr.; Derzon, D.K.; Nelson, J.S.
1995-07-11
Easily removable, environmentally safe, low-density, syntactic foams are disclosed which are prepared by mixing insoluble microballoons with a solution of water and/or alcohol-soluble polymer to produce a pourable slurry, optionally vacuum filtering the slurry in varying degrees to remove unwanted solvent and solute polymer, and drying to remove residual solvent. The properties of the foams can be controlled by the concentration and physical properties of the polymer, and by the size and properties of the microballoons. The suggested solute polymers are non-toxic and soluble in environmentally safe solvents such as water or low-molecular weight alcohols. The syntactic foams produced bymore » this process are particularly useful in those applications where ease of removability is beneficial, and could find use in packaging recoverable electronic components, in drilling and mining applications, in building trades, in art works, in the entertainment industry for special effects, in manufacturing as temporary fixtures, in agriculture as temporary supports and containers and for delivery of fertilizer, in medicine as casts and splints, as temporary thermal barriers, as temporary protective covers for fragile objects, as filters for particulate matter, which matter may be easily recovered upon exposure to a solvent, as in-situ valves (for one-time use) which go from maximum to minimum impedance when solvent flows through, and for the automatic opening or closing of spring-loaded, mechanical switches upon exposure to a solvent, among other applications. 1 fig.« less
Molecular Dynamics Analysis of Lysozyme Protein in Ethanol-Water Mixed Solvent Environment
NASA Astrophysics Data System (ADS)
Ochije, Henry Ikechukwu
Effect of protein-solvent interaction on the protein structure is widely studied using both experimental and computational techniques. Despite such extensive studies molecular level understanding of proteins and some simple solvents is still not fully understood. This work focuses on detailed molecular dynamics simulations to study of solvent effect on lysozyme protein, using water, alcohol and different concentrations of water-alcohol mixtures as solvents. The lysozyme protein structure in water, alcohol and alcohol-water mixture (0-12% alcohol) was studied using GROMACS molecular dynamics simulation code. Compared to water environment, the lysozome structure showed remarkable changes in solvents with increasing alcohol concentration. In particular, significant changes were observed in the protein secondary structure involving alpha helices. The influence of alcohol on the lysozyme protein was investigated by studying thermodynamic and structural properties. With increasing ethanol concentration we observed a systematic increase in total energy, enthalpy, root mean square deviation (RMSD), and radius of gyration. a polynomial interpolation approach. Using the resulting polynomial equation, we could determine above quantities for any intermediate alcohol percentage. In order to validate this approach, we selected an intermediate ethanol percentage and carried out full MD simulation. The results from MD simulation were in reasonably good agreement with that obtained using polynomial approach. Hence, the polynomial approach based method proposed here eliminates the need for computationally intensive full MD analysis for the concentrations within the range (0-12%) studied in this work.
NASA Astrophysics Data System (ADS)
Darwish, Abdalla M.; Moore, Shaelynn; Mohammed, Aziz; Alexander, Deonte'; Bastian, Tyler; Dorlus, Wydglif; Sarkisov, Sergey S.; Patel, Darayas N.; Mele, Paolo; Koplitz, Brent
2016-09-01
There has been an explosive interest in the technique of laser assisted deposition of polymer nano-composite films exploiting the matrix assisted pulsed laser evaporation (MAPLE) with regard to the polymer host as can be judged form recent publications.1-4 In MAPLE, a frozen solution of a polymer in a relatively volatile solvent is used as a laser target. The solvent and concentration are selected so that first, the polymer of interest can dissolve to form a dilute, particulate free solution, second, the majority of the laser energy is initially absorbed by the solvent molecules and not by the solute molecules, and third, there is no photochemical reaction between the solvent and the solute. The light-material interaction in MAPLE can be described as a photothermal process. The photon energy absorbed by the solvent is converted to thermal energy that causes the polymer to be heated but the solvent to vaporize. As the surface solvent molecules are evaporated into the gas phase, polymer molecules are exposed at the gas-target matrix interface. The polymer molecules attain sufficient kinetic energy through collective collisions with the evaporating solvent molecules, to be transferred into the gas phase. By careful optimization of the MAPLE deposition conditions (laser wavelength, repetition rate, solvent type, concentration, temperature, and background gas and gas pressure), this process can occur without any significant polymer decomposition. The MAPLE process proceeds layer-by-layer, depleting the target of solvent and polymer in the same concentration as the starting matrix. When a substrate is positioned directly in the path of the plume, a coating starts to form from the evaporated polymer molecules, while the volatile solvent molecules are evacuated by the pump from the deposition chamber. In case of fabrication of polymer nanocomposites, MAPLE targets are usually prepared as nano-colloids of the additives of interest in the initial polymer solutions. Mixing the components of different nature, organic polymers and inorganic dopants, in the same target at a certain proportion and exposing them to the same laser beam not necessarily brings good quality nano-composite films. The laser pulse energy and wavelength cannot be optimized for each component individually. Also, the mixing proportion in the composite film is dictated by the initial proportion of the target and thus cannot be changed in the process. These limitations were removed in the recently proposed method of multi-beam and multi-target deposition (in its doublebeam/ dual-target variation) using a MAPLE polymer target and one inorganic target, each being concurrently exposed to laser beams of different wavelengths.5-14 Using the method, nano-composite films of polymer poly(methyl methacrylate) known as PMMA doped with a rare earth (RE) inorganic upconversion phosphor compounds were prepared. Also, a nano-composite film of thermoelectric film of inorganic aluminum-doped ZnO known as AZO was impregnated with PMMA nano-fillers with the purpose of improving electrical conductivity and thermoelectric performance.10, 14 The polymer target was a frozen (to a temperature of liquid nitrogen) PMMA solution in chlorobenzene exposed to a 1064- nm laser beam from a Q-switched Nd:YAG pulsed laser. The inorganic targets were the pellets made of the compressed micro-powders of highly efficient RE-doped NaYF4 or the sintered powder of AZO concurrently ablated with the
UV-Vis spectroscopy and solvatochromism of the tyrosine kinase inhibitor AG-1478
NASA Astrophysics Data System (ADS)
Khattab, Muhammad; Wang, Feng; Clayton, Andrew H. A.
2016-07-01
The effect of twenty-one solvents on the UV-Vis spectrum of the tyrosine kinase inhibitor AG-1478 was investigated. The absorption spectrum in the range 300-360 nm consisted of two partially overlapping bands at approximately 340 nm and 330 nm. The higher energy absorption band was more sensitive to solvent and exhibited a peak position that varied from 327 nm to 336 nm, while the lower energy absorption band demonstrated a change in peak position from 340 nm to 346 nm in non-chlorinated solvents. The fluorescence spectrum of AG-1478 was particularly sensitive to solvent. The wavelength of peak intensity varied from 409 nm to 495 nm with the corresponding Stokes shift in the range of 64 nm to 155 nm (4536 cm- 1 to 9210 cm- 1). We used a number of methods to assess the relationship between spectroscopic properties and solvent properties. The detailed analysis revealed that for aprotic solvents, the peak position of the emission spectrum in wavenumber scale correlated with the polarity (dielectric constant or ET(30)) of the solvent. In protic solvents, a better correlation was observed between the hydrogen bonding power of the solvent and the position of the emission spectrum. Moreover, the fluorescence quantum yields were larger in aprotic solvents as compared to protic solvents. This analysis underscores the importance of polarity and hydrogen-bonding environment on the spectroscopic properties of AG-1478. These studies will assume relevance in understanding the interaction of AG-1478 in vitro and in vivo.
NASA Astrophysics Data System (ADS)
Johnson, Brian K.
This dissertation provides a method and the understanding required to produce nanoparticles of organic actives using Flash NanoPrecipitation . The process comprises mixing a solvent phase containing molecularly dissolved amphiphilic block copolymer and an organic active with an anti-solvent. One block of the copolymer precipitates to alter the nucleation and growth of the organic active while the other remains in solution for particle stabilization. A custom built confined impinging jets (CIJ) mixer provides optimum micromixing at the laboratory or full scale within milliseconds. Comparison to other reactor designs is provided. The resulting nanoparticles have functional surfaces tailored to meet the needs of pharmaceutical or specialty chemical formulations. Example beta-carotene nanoparticles with a polyethylene oxide surface are produced at high concentration, high yield, low stabilizer content, and a size suitable for sterile filtration or larger. The technical challenges in nanoparticle production are explained via the characteristic times for mixing, copolymer aggregation, and organic active particle formation. The time for Flash NanoPrecipitation is shown to depend strongly on the time for copolymer aggregation, and control of the organic nucleation versus growth is critical to achieve nanoparticles. Mixing operating lines explain the impact of solubility differences between the colloidal stabilizer and the organic active as function of mixing rate. Techniques to measure the solubility of the copolymer and DeltaG° , DeltaH°, and DeltaS° of micellization are demonstrated. An analytical CIJ mixer is developed by quantifying the characteristic time and physical mechanism of mixing. The methodology described to find an absolute mixing lifetime is also applied to a vortex mixer at a spectrum of flow ratios away from one. Dimensional analysis using the process Damkohler number, defined as the ratio of the mixing to the process time, is applied to precipitation to quantify the induction time through knowledge of the mixing lifetime. Copolymer aggregation without an organic active to kinetically frozen nanoparticles occurs by a "fusion only" mechanism. By analogy to classical precipitation kinetics, the interfacial free energy of a diblock copolymer nanoparticle is determined for the first time. The composite dissertation provides a clear picture of Flash NanoPrecipitation for future research and applications.
A molecularly based theory for electron transfer reorganization energy.
Zhuang, Bilin; Wang, Zhen-Gang
2015-12-14
Using field-theoretic techniques, we develop a molecularly based dipolar self-consistent-field theory (DSCFT) for charge solvation in pure solvents under equilibrium and nonequilibrium conditions and apply it to the reorganization energy of electron transfer reactions. The DSCFT uses a set of molecular parameters, such as the solvent molecule's permanent dipole moment and polarizability, thus avoiding approximations that are inherent in treating the solvent as a linear dielectric medium. A simple, analytical expression for the free energy is obtained in terms of the equilibrium and nonequilibrium electrostatic potential profiles and electric susceptibilities, which are obtained by solving a set of self-consistent equations. With no adjustable parameters, the DSCFT predicts activation energies and reorganization energies in good agreement with previous experiments and calculations for the electron transfer between metallic ions. Because the DSCFT is able to describe the properties of the solvent in the immediate vicinity of the charges, it is unnecessary to distinguish between the inner-sphere and outer-sphere solvent molecules in the calculation of the reorganization energy as in previous work. Furthermore, examining the nonequilibrium free energy surfaces of electron transfer, we find that the nonequilibrium free energy is well approximated by a double parabola for self-exchange reactions, but the curvature of the nonequilibrium free energy surface depends on the charges of the electron-transferring species, contrary to the prediction by the linear dielectric theory.
NASA Astrophysics Data System (ADS)
Minezawa, Noriyuki; Kato, Shigeki
2007-02-01
The authors present an implementation of the three-dimensional reference interaction site model self-consistent-field (3D-RISM-SCF) method. First, they introduce a robust and efficient algorithm for solving the 3D-RISM equation. The algorithm is a hybrid of the Newton-Raphson and Picard methods. The Jacobian matrix is analytically expressed in a computationally useful form. Second, they discuss the solute-solvent electrostatic interaction. For the solute to solvent route, the electrostatic potential (ESP) map on a 3D grid is constructed directly from the electron density. The charge fitting procedure is not required to determine the ESP. For the solvent to solute route, the ESP acting on the solute molecule is derived from the solvent charge distribution obtained by solving the 3D-RISM equation. Matrix elements of the solute-solvent interaction are evaluated by the direct numerical integration. A remarkable reduction in the computational time is observed in both routes. Finally, the authors implement the first derivatives of the free energy with respect to the solute nuclear coordinates. They apply the present method to "solute" water and formaldehyde in aqueous solvent using the simple point charge model, and the results are compared with those from other methods: the six-dimensional molecular Ornstein-Zernike SCF, the one-dimensional site-site RISM-SCF, and the polarizable continuum model. The authors also calculate the solvatochromic shifts of acetone, benzonitrile, and nitrobenzene using the present method and compare them with the experimental and other theoretical results.
Minezawa, Noriyuki; Kato, Shigeki
2007-02-07
The authors present an implementation of the three-dimensional reference interaction site model self-consistent-field (3D-RISM-SCF) method. First, they introduce a robust and efficient algorithm for solving the 3D-RISM equation. The algorithm is a hybrid of the Newton-Raphson and Picard methods. The Jacobian matrix is analytically expressed in a computationally useful form. Second, they discuss the solute-solvent electrostatic interaction. For the solute to solvent route, the electrostatic potential (ESP) map on a 3D grid is constructed directly from the electron density. The charge fitting procedure is not required to determine the ESP. For the solvent to solute route, the ESP acting on the solute molecule is derived from the solvent charge distribution obtained by solving the 3D-RISM equation. Matrix elements of the solute-solvent interaction are evaluated by the direct numerical integration. A remarkable reduction in the computational time is observed in both routes. Finally, the authors implement the first derivatives of the free energy with respect to the solute nuclear coordinates. They apply the present method to "solute" water and formaldehyde in aqueous solvent using the simple point charge model, and the results are compared with those from other methods: the six-dimensional molecular Ornstein-Zernike SCF, the one-dimensional site-site RISM-SCF, and the polarizable continuum model. The authors also calculate the solvatochromic shifts of acetone, benzonitrile, and nitrobenzene using the present method and compare them with the experimental and other theoretical results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Jian Zhi; Rajput, Nav Nidhi; Wan, Chuan
There is increasing evidence that the solvation structure of the active components in a liquid electrolyte solution strongly impacts the performance in electrochemical applications. In this work, the nanoscale solvation structures and dynamics of Mg(BH4)2 and Mg(TFSI)2 dissolved in diglyme (DGM) at various concentrations and ratios of Mg(BH4)2/Mg(TFSI)2 were investigated using a combination of natural abundance 25Mg NMR, quantum chemistry calculations of 25Mg NMR chemical shifts, classical molecular dynamics (MD) calculations, and electrochemical performance tests. By mixing two competing Mg salts, we were able to reduce the strong covalent interactions between Mg2+ and BH4– anions. A small increase is observedmore » in the coordination number of Mg-TFSI and a significant increase in the interaction of Mg2+ ions with glymes. Through a combination of NMR, DFT and MD simulations, various stable species around 1 nm in size were detected in the mixed salt solution, which play key roles in the enhanced electrochemical performance of the mixed electrolyte. It is established that for the neat Mg(TFSI)2 in DGM electrolyte at dilute concentrations the TFSI- is fully dissociated from Mg2+. At higher concentrations, Mg2+ and TFSI- are only partially dissociated as contact ion pairs are formed. In contrast, at 0.01 M Mg(BH4)2 (saturated concentration) in DGM, the first solvation shell of a Mg2+ ion contains two BH4- anions and one DGM molecule, while the second solvation shell consists of five to six DGM molecules. An exchange mechanism between the solvation structures in the combined electrolyte containing both Mg(BH4)2 and Mg(TFSI)2 in DGM was found to result in the observation of a single 25Mg NMR peak. This exchange is responsible for an increase in uncoordinated anions, as well as improved stability and ionic conductivity as compared to single anion solution. Solvent molecule rearrangement and direct Mg-ion exchange between the basic solvation structures are hypothesized as likely reasons for the exchange. We elucidate that the solvent rearrangement is energetically much more favorable than direct Mg-ion hopping and is thus suggested as the dominant exchange mechanism.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Jian Z.; Rajput, Nav Nidhi; Wan, Chuan
There is increasing evidence that the solvation structure of the active components in a liquid electrolyte solution strongly impacts the performance in electrochemical applications. In this work, the nanoscale solvation structures and dynamics of Mg(BH4)2 and Mg(TFSI)2 dissolved in diglyme (DGM) at various concentrations and ratios of Mg(BH4)2/Mg(TFSI)2 were investigated using a combination of natural abundance 25Mg NMR, quantum chemistry calculations of 25Mg NMR chemical shifts, classical molecular dynamics (MD) calculations, and electrochemical performance tests. By mixing two competing Mg salts, we were able to reduce the strong covalent interactions between Mg2+ and BH4– anions. A small increase is observedmore » in the coordination number of Mg-TFSI and a significant increase in the interaction of Mg2+ ions with glymes. Through a combination of NMR, DFT and MD simulations, various stable species around 1 nm in size were detected in the mixed salt solution, which play key roles in the enhanced electrochemical performance of the mixed electrolyte. It is established that for the neat Mg(TFSI)2 in DGM electrolyte at dilute concentrations the TFSI- is fully dissociated from Mg2+. At higher concentrations, Mg2+ and TFSI- are only partially dissociated as contact ion pairs are formed. In contrast, at 0.01 M Mg(BH4)2 (saturated concentration) in DGM, the first solvation shell of a Mg2+ ion contains two BH4- anions and one DGM molecule, while the second solvation shell consists of five to six DGM molecules. An exchange mechanism between the solvation structures in the combined electrolyte containing both Mg(BH4)2 and Mg(TFSI)2 in DGM was found to result in the observation of a single 25Mg NMR peak. This exchange is responsible for an increase in uncoordinated anions, as well as improved stability and ionic conductivity as compared to single anion solution. Solvent molecule rearrangement and direct Mg-ion exchange between the basic solvation structures are hypothesized as likely reasons for the exchange. We elucidate that the solvent rearrangement is energetically much more favorable than direct Mg-ion hopping and is thus suggested as the dominant exchange mechanism.« less
Yang, Eui Yeol; Oh, Se Young
2014-08-01
In the present work, we have fabricated organic photovoltaic cells consisting of ITO/PEDOT:PSS/P3HT:PCBM/DMDCNQI/Al using a dip-coating method with various solvent systems. We have investigated solvent effects (such as solubility, viscosity and vapor pressure) in deposition of a thin DMDCNQI buffer layer on the performance of organic photovoltaic cells. The solvent system which had low viscosity and good solubility properties, made a dense and uniform DMDCNQI ultra thin film, resulting in a high performance device. In particular, a prepared organic photovoltaic cell was fabricated using a cosolvent system (methanol:methylenechloride = 3:1) and showed a maximum power conversion efficiency of 4.53%.
A picoliter-volume mixer for microfluidic analytical systems.
He, B; Burke, B J; Zhang, X; Zhang, R; Regnier, F E
2001-05-01
Mixing confluent liquid streams is an important, but difficult operation in microfluidic systems. This paper reports the construction and characterization of a 100-pL mixer for liquids transported by electroosmotic flow. Mixing was achieved in a microfabricated device with multiple intersecting channels of varying lengths and a bimodal width distribution. All channels running parallel to the direction of flow were 5 microm in width whereas larger 27-microm-width channels ran back and forth through the parallel channel network at a 45 degrees angle. The channel network composing the mixer was approximately 10 microm deep. It was observed that little mixing of the confluent solvent streams occurred in the 100-microm-wide, 300-microm-long mixer inlet channel where mixing would be achieved almost exclusively by diffusion. In contrast, after passage through the channel network in the approximately 200-microm-length static mixer bed, mixing was complete as determined by confocal microscopy and CCD detection. Theoretical simulations were also performed in an attempt to describe the extent of mixing in microfabricated systems.
Glass/polymer composites and methods of making
Samuels, W. D.; Exarhos, Gregory J.
1995-01-01
The present invention relates to new glass/polymer composites and methods for making them. More specifically, the invention is glass/polymer composites having phases that are at the molecular level and thereby practicably indistinguishable. The invention further discloses making molecular phase glass/polymer composites by mixing a glass and a polymer in a compatible solvent.
Glass/polymer composites and methods of making
Samuels, W.D.; Exarhos, G.J.
1995-06-06
The present invention relates to new glass/polymer composites and methods for making them. More specifically, the invention is glass/polymer composites having phases that are at the molecular level and thereby practicably indistinguishable. The invention further discloses making molecular phase glass/polymer composites by mixing a glass and a polymer in a compatible solvent.
University Students' Conceptions of Bonding in Melting and Dissolving Phenomena
ERIC Educational Resources Information Center
Smith, K. Christopher; Nakhleh, Mary B.
2011-01-01
Undergraduate and graduate students' predictions and submicroscopic level explanations for the melting of four materials (salt, chalk, sugar, and butter), and for the mixing of these solutes in two solvents (water and cooking oil) were collected. Twenty-three undergraduate students and seven graduate students participated in the study, and data…
Separation of the rare earths by anion-exchange in the presence of lactic acid
NASA Technical Reports Server (NTRS)
Faris, J. P.
1969-01-01
Investigation of adsorption of rare earths and a few other elements to an anion-exchange resin from mixed solvents containing lactic acid shows that the lanthanides are absorbed more strongly than from the alpha-hydroxyisobutryric acid system, but with less separation between adjacent members of the series.
46. BUILDING NO. 519, ETHER AND ALCOHOL RECOVERY HOUSE, INTERIOR, ...
46. BUILDING NO. 519, ETHER AND ALCOHOL RECOVERY HOUSE, INTERIOR, CONTROL PANEL LEVEL (2ND DECK) OF ETHER AND ALCOHOL STILL BUILDING, LOOKING NORTH, SHOWING TWO ALCOHOL DISTILLATION TOWERS BEHIND 'MIXED SOLVENT UNIT' CONTROL PANEL. - Picatinny Arsenal, 500 Area, Powder Factory & Power House, State Route 15 near I-80, Dover, Morris County, NJ
21 CFR 352.70 - Standard sunscreen.
Code of Federal Regulations, 2013 CFR
2013-04-01
... test product to be considered valid, the SPF of the standard sunscreen must fall within the standard... Percent by weight Preparation A Lanolin 5.00 Homosalate 8.00 White petrolatum 2.50 Stearic acid 4.00... volume with the assay solvent and mix well to make a 1-percent solution. (3) Preparation of the test...
21 CFR 352.70 - Standard sunscreen.
Code of Federal Regulations, 2014 CFR
2014-04-01
... test product to be considered valid, the SPF of the standard sunscreen must fall within the standard... Percent by weight Preparation A Lanolin 5.00 Homosalate 8.00 White petrolatum 2.50 Stearic acid 4.00... volume with the assay solvent and mix well to make a 1-percent solution. (3) Preparation of the test...
21 CFR 352.70 - Standard sunscreen.
Code of Federal Regulations, 2012 CFR
2012-04-01
... test product to be considered valid, the SPF of the standard sunscreen must fall within the standard... Percent by weight Preparation A Lanolin 5.00 Homosalate 8.00 White petrolatum 2.50 Stearic acid 4.00... volume with the assay solvent and mix well to make a 1-percent solution. (3) Preparation of the test...
Transesterification of Waste Olive Oil by "Candida" Lipase
ERIC Educational Resources Information Center
Shen, Xiangping; Vasudevan, Palligarnai T.
2008-01-01
Biodiesel was produced by transesterification of waste olive oil with methanol and Novozym [R] 435. The effect of the molar ratio of methanol to triolein, mode of methanol addition, reaction temperature, and mixing speed on biodiesel yield was determined. The effect of different acyl acceptors and/or solvents on biodiesel yield was also evaluated.…
40 CFR 60.711 - Definitions, symbols, and cross reference tables.
Code of Federal Regulations, 2011 CFR
2011-07-01
... audio or video recording or information storage. (14) Natural draft opening means any opening in a room... control device. (18) Utilize refers to the use of solvent that is delivered to coating mix preparation... participate in atmospheric photochemical reactions or that are measured by Method 18, 24, 25, or 25A or an...
40 CFR 60.711 - Definitions, symbols, and cross reference tables.
Code of Federal Regulations, 2013 CFR
2013-07-01
... audio or video recording or information storage. (14) Natural draft opening means any opening in a room... control device. (18) Utilize refers to the use of solvent that is delivered to coating mix preparation... participate in atmospheric photochemical reactions or that are measured by Method 18, 24, 25, or 25A or an...
40 CFR 60.711 - Definitions, symbols, and cross reference tables.
Code of Federal Regulations, 2012 CFR
2012-07-01
... audio or video recording or information storage. (14) Natural draft opening means any opening in a room... control device. (18) Utilize refers to the use of solvent that is delivered to coating mix preparation... participate in atmospheric photochemical reactions or that are measured by Method 18, 24, 25, or 25A or an...
40 CFR 60.711 - Definitions, symbols, and cross reference tables.
Code of Federal Regulations, 2010 CFR
2010-07-01
... audio or video recording or information storage. (14) Natural draft opening means any opening in a room... control device. (18) Utilize refers to the use of solvent that is delivered to coating mix preparation... participate in atmospheric photochemical reactions or that are measured by Method 18, 24, 25, or 25A or an...
40 CFR 60.711 - Definitions, symbols, and cross reference tables.
Code of Federal Regulations, 2014 CFR
2014-07-01
... audio or video recording or information storage. (14) Natural draft opening means any opening in a room... control device. (18) Utilize refers to the use of solvent that is delivered to coating mix preparation... participate in atmospheric photochemical reactions or that are measured by Method 18, 24, 25, or 25A or an...
Kelly, A L; Gough, T; Dhumal, R S; Halsey, S A; Paradkar, A
2012-04-15
The purpose of this work was to explore NIR spectroscopy as a PAT tool to monitor the formation of ibuprofen and nicotinamide cocrystals during extrusion based solvent free continuous cocrystallization (SFCC). Drug and co-former were gravimetrically fed into a heated co-rotating twin screw extruder to form cocrystals. Real-time process monitoring was performed using a high temperature NIR probe in the extruder die to assess cocrystal content and subsequently compared to off-line powder X-ray diffraction measurements. The effect of processing variables, such as temperature and mixing intensity, on the extent of cocrystal formation was investigated. NIR spectroscopy was sensitive to cocrystal formation with the appearance of new peaks and peak shifts, particularly in the 4800-5200 cm(-1) wave-number region. PXRD confirmed an increased conversion of the mixture into cocrystal with increase in barrel temperature and screw mixing intensity. A decrease in screw rotation speed also provided improved cocrystal yield due to the material experiencing longer residence times within the process. A partial least squares analysis in this region of NIR spectrum correlated well with PXRD data, providing a best fit with cocrystal conversion when a limited range of process conditions were considered, for example a single set temperature. The study suggests that NIR spectroscopy could be used to monitor cocrystal purity on an industrial scale using this continuous, solvent-free process. Copyright © 2011 Elsevier B.V. All rights reserved.
Hu, Bing; Han, Lingyu; Gao, Zhiming; Zhang, Ke; Al-Assaf, Saphwan; Nishinari, Katsuyoshi; Phillips, Glyn O; Yang, Jixin; Fang, Yapeng
2018-05-14
Effects of temperature and solvent condition on phase separation-induced molecular fractionation of gum arabic/hyaluronan (GA/HA) mixed solutions were investigated. Two gum arabic samples (EM10 and STD) with different molecular weights and polydispersity indices were used. Phase diagrams, including cloud and binodal curves, were established by visual observation and GPC-RI methods. The molecular parameters of control and fractionated GA, from upper and bottom phases, were measured by GPC-MALLS. Fractionation of GA increased the content of arabinogalactan-protein complex (AGP) from ca. 11% to 18% in STD/HA system and 28% to 55% in EM10/HA system. The phase separation-induced molecular fractionation was further studied as a function of temperature and solvent condition (varying ionic strength and ethanol content). Increasing salt concentration (from 0.5 to 5 mol/L) greatly reduced the extent of phase separation-induced fractionation. This effect may be ascribed to changes in the degree of ionization and shielding of the acid groups. Increasing temperature (from 4 °C to 80 °C) also exerted a significant influence on phase separation-induced fractionation. The best temperature for GA/HA mixture system was 40 °C while higher temperature negatively affected the fractionation due to denaturation and possibly degradation in mixed solutions. Increasing the ethanol content up to 30% showed almost no effect on the phase separation induced fractionation. Copyright © 2018 Elsevier B.V. All rights reserved.
PES-Kaolin Mixed Matrix Membranes for Arsenic Removal from Water
Russo, Francesca; Rezzouk, Lina
2017-01-01
The aim of this work was the fabrication and the characterization of mixed matrix membranes (MMMs) for arsenic (As) removal from water. Membrane separation was combined with an adsorption process by incorporating the kaolin (KT2) Algerian natural clay in polymeric membranes. The effects of casting solution composition was explored using different amounts of polyethersufone (PES) as a polymer, polyvinyl-pyrrolidone (PVP K17) and polyethylene glycol (PEG 200) as pore former agents, N-methyl pyrrolidone (NMP) as a solvent, and kaolin. Membranes were prepared by coupling Non-solvent Induced Phase Separation and Vapour Induced Phase Separation (NIPS and VIPS, respectively). The influence of the exposure time to controlled humid air and temperature was also investigated. The MMMs obtained were characterized in terms of morphology, pore size, porosity, thickness, contact angle and pure water permeability. Adsorption membrane-based tests were carried out in order to assess the applicability of the membranes produced for As removal from contaminated water. Among the investigated kaolin concentrations (ranging from 0 wt % to 5 wt %), a content of 1.25 wt % led to the MMM with the most promising performance. PMID:28974009
Andersen, Stephen J; Berton, Jan K E T; Naert, Pieter; Gildemyn, Sylvia; Rabaey, Korneel; Stevens, Christian V
2016-08-23
Ionic liquids can both act as a solvent and mediate esterification to valorize low-titer volatile fatty acids and generate organic solvents from renewable carbon sources including biowaste and CO2 . In this study, four phosphonium ionic liquids were tested for single-stage extraction of acetic acid from a dilute stream and esterification to ethyl acetate with added ethanol and heat. The esterification proceeded with a maximum conversion of 85.9±1.3 % after 30 min at 75 °C at a 1:1 stoichiometric ratio of reactants. Extraction and esterification can be tailored using mixed-anion ionic liquids; this is demonstrated herein using a common trihexyl(tetradecyl)phosphonium cation and a mixed chloride and bis(trifluoromethylsulfonyl)imide anion ionic liquid. As a further proof-of-concept, ethyl acetate was generated from an ionic liquid-driven esterification of an acetic acid extractant generated using CO2 as the only carbon source by microbial electrosynthesis. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Solvent-induced dimensional changes in EDTA-demineralized dentin matrix.
Pashley, D H; Agee, K A; Nakajima, M; Tay, F R; Carvalho, R M; Terada, R S; Harmon, F J; Lee, W K; Rueggeberg, F A
2001-08-01
The purpose of this study was to test the null hypothesis that the re-expansion of dried matrix and the shrinkage of moist, demineralized dentin is not influenced by polar solvents. Dentin disks were prepared from midcoronal dentin of extracted human third molars. After complete demineralization in 0.5M of EDTA (pH 7), the specimens were placed in the well of a device that measures changes in matrix height in real time. Dry, collapsed matrices were created by blowing dry N(2) on the specimens until they shrank to a stable plateau. Polar solvents [water, methanol, ethanol, n-propanol, n-butanol, formamide, ethylene glycol, hydroxyethyl methacrylate (HEMA), or mixtures of water-HEMA] as model primers then were added and the degree of re-expansion measured. These same solvents also were applied to moist, expanded matrices and the solvent-induced shrinkages measured. Regression analysis was used to test the correlations between matrix height and Hansen's dispersive, polar, hydrogen bonding, and total solubility parameters (delta(d), delta(p), delta(h), delta(t)). The results indicate that water-free polar solvents of low hydrogen bonding (H-bond) ability (e.g., neat HEMA) do not re-expand dried matrices and that they shrink moist matrices. When HEMA was mixed with progressively higher water concentrations, the model water-HEMA primers expanded the dried matrix in proportion to their water concentrations and they produced less shrinkage of moist matrices. Solvents with higher H-bonding capacities (methanol, ethanol, ethylene glycol, formamide, and water) re-expanded the dried matrix in proportion to their solubility parameters for H-bonding (delta(h)). They also induced small transient shrinkages of moist matrices, which slowly re-expanded. The results require rejection of the null hypothesis. Copyright 2001 John Wiley & Sons, Inc. J Biomed Mater Res 56: 273-281, 2001
NASA Astrophysics Data System (ADS)
Taslim, Indra, Leonardo; Manurung, Renita; Winarta, Agus; Ramadhani, Debbie Aditia
2017-03-01
Biodiesel is usually produced from transesterification using methanol or ethanol as alcohol. However, biodiesel produced using methanol has several disadvantages because methanol is toxic and not entirely bio-based as it is generally produced from petroleum, natural gas and coal. On the other hand, ethanol also has several disadvantages such as lower reactivity in transesterification process and formation of stable emulsion between ester and glycerol. To improve ethanolysis process, deep eutectic solvent (DES) was prepared from choline chloride and ethylene glycol to be used as co-solvent in ethanolysis. Deep eutectic solvent was prepared by mixing choline chloride and ethylene glycol at molar ratio of 1:2, temperature of 80 °C, and stirring speed of 300 rpm for 1 hour. The DES was characterized by its density and viscosity. The ethanolysis of DPO / Degummed Palm Oil was performed at 70 °C, ethanol to oil molar ratio of 9:1, catalyst (potassium hydroxide) concentration of 0.75 wt.% concentration, co-solvent (DES) concentration of 1, 2, 3, 4, 5 and 6 wt.%, stirring speed of 600 rpm, and reaction time of 1 hour. The obtained biodiesel was then characterized by its density, viscosity and ester content. The oil - ethanol phase condition was observed in reaction tube. The oil - ethanol phase with DES tends to form meniscus compared to that without DES. Which implied that oil and ethanol become more slightly miscible, which favours the reaction. Using DES as co-solvent in ethanolysis resulted in an increase in yield and easier purification. The esters properties met the international standards ASTM D6751, with highest yield achieved at 81.72 % with 99.35 % ethyl ester contents at 4% DES concentration.
NASA Astrophysics Data System (ADS)
Mapunda, Edgar C.; Mamba, Bhekie B.; Msagati, Titus A. M.
2017-08-01
Rapid population increase, growth in industrial and agricultural sectors and global climate change have added significant pressure on conventional freshwater resources. Tapping freshwater from non-conventional water sources such as desalination and wastewater recycling is considered as sustainable alternative to the fundamental challenges of water scarcity. However, affordable and sustainable technologies need to be applied for the communities to benefit from the treatment of non-conventional water source. Membrane distillation is a potential desalination technology which can be used sustainably for this purpose. In this work multi-walled carbon nanotube embedded polyvinylidene fluoride membranes for application in membrane distillation desalination were prepared via non-solvent induced phase separation method. The casting solution was prepared using mixed solvents (N, N-dimethylacetamide and triethyl phosphate) at varying ratios to study the effect of solvent composition on membrane morphological structures. Membrane morphological features were studied using a number of techniques including scanning electron microscope, atomic force microscope, SAXSpace tensile strength analysis, membrane thickness, porosity and contact angle measurements. It was revealed that membrane hydrophobicity, thickness, tensile strength and surface roughness were increasing as the composition of N, N-dimethylacetamide in the solvent was increasing with maximum values obtained between 40 and 60% N, N-dimethylacetamide. Internal morphological structures were changing from cellular structures to short finger-like and sponge-like pores and finally to large macro void type of pores when the amount of N, N-dimethylacetamide in the solvent was changed from low to high respectively. Multi-walled carbon nanotube embedded polyvinylidene fluoride membranes of desired morphological structures and physical properties can be synthesized by regulating the composition of solvents used to prepare the casting solution.
Kuroda, Noritaka; Hird, Nick; Cork, David G
2006-01-01
During further improvement of a high-throughput, solution-phase synthesis system, new workup tools and apparatus for parallel liquid-liquid extraction and evaporation have been developed. A combination of in-house design and collaboration with external manufacturers has been used to address (1) environmental issues concerning solvent emissions and (2) sample tracking errors arising from manual intervention. A parallel liquid-liquid extraction unit, containing miniature high-speed magnetic stirrers for efficient mixing of organic and aqueous phases, has been developed for use on a multichannel liquid handler. Separation of the phases is achieved by dispensing them into a newly patented filter tube containing a vertical hydrophobic porous membrane, which allows only the organic phase to pass into collection vials positioned below. The vertical positioning of the membrane overcomes the hitherto dependence on the use of heavier-than-water, bottom-phase, organic solvents such as dichloromethane, which are restricted due to environmental concerns. Both small (6-mL) and large (60-mL) filter tubes were developed for parallel phase separation in library and template synthesis, respectively. In addition, an apparatus for parallel solvent evaporation was developed to (1) remove solvent from the above samples with highly efficient recovery and (2) avoid the movement of individual samples between their collection on a liquid handler and registration to prevent sample identification errors. The apparatus uses a diaphragm pump to achieve a dynamic circulating closed system with a heating block for the rack of 96 sample vials and an efficient condenser to trap the solvents. Solvent recovery is typically >98%, and convenient operation and monitoring has made the apparatus the first choice for removal of volatile solvents.
Liquid precursor inks for deposition of In--Se, Ga--Se and In--Ga--Se
Curtis, Calvin J.; Hersh, Peter A.; Miedaner, Alexander; Habas, Susan; van Hest, Maikel; Ginley, David S.
2015-08-11
An ink includes a solution of selenium in ethylene diamine solvent and a solution of at least one metal salt selected from the group consisting of an indium salt or a gallium salt in at least one solvent including an organic amide. The organic amide can include dimethylformamide. The organic amide can include N-methylpyrrolidone.
Atlı Şekeroğlu, Zülal; Kefelioğlu, Haluk; Kontaş Yedier, Seval; Şekeroğlu, Vedat; Delmecioğlu, Berrin
2017-03-01
There has been considerable debate about the relationship between epilepsy and cancer. Oxcarbazepine (OXC) is used for treating certain types of seizures in patients with epilepsy. There have been no detailed investigations about genotoxicity of OXC and its metabolites. Therefore, the aim of this study is to investigate the cytotoxic and genotoxic effects of OXC and its metabolites on cultured human lymphocytes. The cytotoxicity and genotoxicity of OXC on human peripheral blood lymphocytes were examined in vitro by sister chromatid exchange (SCE), chromosomal aberration (CA) and micronucleus (MN) tests. Cultures were treated with 125, 250 and 500 μg/ml of OXC in the presence (3 h treatment) and absence (24 h and 48 h treatment) of a metabolic activator (S9 mix). Dimethyl sulfoxide (DMSO) was used as a solvent control. OXC showed cytotoxic activities due to significant decreases in mitotic index (MI), proliferation index (PI) and nuclear division index (NDI) in the absence of S9 mix when compared with solvent control. Metabolites of OXC also significantly reduced MI and PI in cultures with S9 mix. OXC significantly increased the CAs, aberrant cells, SCE and MN values in the presence and absence of S9 mix. Our results indicated that both OXC and its metabolites have cytotoxic, cytostatic and genotoxic potential on human peripheral blood lymphocyte cultures under the experimental conditions. Further studies are necessary to elucidate the relationship between cytotoxic, cytostatic and genotoxic effects, and to make a possible risk assessment in patients receiving therapy with this drug.
Synthesis of oxidized guar gum by dry method and its application in reactive dye printing.
Gong, Honghong; Liu, Mingzhu; Zhang, Bing; Cui, Dapeng; Gao, Chunmei; Ni, Boli; Chen, Jiucun
2011-12-01
The aim of this study was to prepare oxidized guar gum with a simple dry method, basing on guar gum, hydrogen peroxide and a small amount of solvent. To obtain a product with suitable viscosity for reactive dye printing, the effects of various factors such as the amount of oxidant and solvent, reaction temperature and time were studied with respect to the viscosity of reaction products. The product was characterized by Fourier transform infrared spectroscopy, size exclusion chromatography, scanning electron microscopy and differential scanning calorimetry. The hydrated rate of guar gum and oxidized guar gum was estimated through measuring the required time when their solutions (1%, w/v) reached the maximum viscosity. The effects of the salt concentration and pH on viscosity of the resultant product were studied. The mixed paste containing oxidized guar gum and carboxymethyl starch was prepared and its viscosity was determined by the viscometer. The rheological property of the mixed paste was appraised by the printing viscosity index. In addition, the applied effect of mixed paste in reactive dye printing was examined by assessing the fabric stiffness, color yield and sharp edge to the printed image in comparison with sodium alginate. And the results indicated that the mixed paste could partially replace sodium alginate as thickener in reactive dye printing. The study also showed that the method was low cost and eco-friendly and the product would have an extensive application in reactive dye printing. Copyright © 2011 Elsevier B.V. All rights reserved.
Inorganic metal oxide/organic polymer nanocomposites and method thereof
Gash, Alexander E.; Satcher, Joe H.; Simpson, Randy
2004-03-30
A synthetic method for preparation of hybrid inorganic/organic energetic nanocomposites is disclosed herein. The method employs the use of stable metal inorganic salts and organic solvents as well as an organic polymer with good solubility in the solvent system to produce novel nanocomposite energetic materials. In addition, fuel metal powders (particularly those that are oxophillic) can be incorporated into composition. This material has been characterized by thermal methods, energy-filtered transmission electron microscopy (EFTEM), N.sub.2 adsoprtion/desorption methods, and Fourier-Transform (FT-IR) spectroscopy. According to these characterization methods the organic polymer phase fills the nanopores of the composite material, providing superb mixing of the component phases in the energetic nanocomposite.
Inorganic Metal Oxide/Organic Polymer Nanocomposites And Method Thereof
Gash, Alexander E.; Satcher, Joe H.; Simpson, Randy
2004-11-16
A synthetic method for preparation of hybrid inorganic/organic energetic nanocomposites is disclosed herein. The method employs the use of stable metal in organic salts and organic solvents as well as an organic polymer with good solubility in the solvent system to produce novel nanocomposite energetic materials. In addition, fuel metal powders (particularly those that are oxophilic) can be incorporated into composition. This material has been characterized by thermal methods, energy-filtered transmission electron microscopy (EFTEM), N.sub.2 adsoprtion/desorption methods, and Fourier-Transform (FT-IR) spectroscopy. According to these characterization methods the organic polymer phase fills the nanopores of the material, providing superb mixing of the component phases in the energetic nanocomposite.
NASA Astrophysics Data System (ADS)
Kuz'mina, I. A.; Usacheva, T. R.; Kuz'mina, K. I.; Volkova, M. A.; Sharnin, V. A.
2015-01-01
The Gibbs energies of the transfer of 18-crown-6 ether from methanol to its mixtures with acetonitrile (χAN = 0.0-1.0 mole fraction) are determined by means of interphase distribution at 298 K. The effect the solvent composition has on the thermodynamic characteristics of the solvation of 18-crown-6 ether is analyzed. An increase in the content of acetonitrile in the mixed solvent enhances the solvation of crown ether due to changes in the energy of the solution. Resolvation of the macrocycle is assumed to be complete at acetonitrile concentrations higher than 0.6 mole fraction.
NASA Astrophysics Data System (ADS)
Dong, Shuwen; Yan, Shuang; Gao, Wenyuan; Liu, Guishan; Hao, Hongshun
2018-07-01
A facile and economic procedure was provided to synthesize α-Fe2O3 nanofibers. In this procedure, porous α-Fe2O3 nanofibers were obtained by a single-polymer/binary-solvent system, while solid α-Fe2O3 nanofibers were prepared by a single-polymer/single-solvent system. The crystal structure and morphology of both samples were characterized by x-ray diffraction, scanning electron microscopy, transmission electron microscopy and nitrogen adsorption/desorption isotherms. The formation mechanism of porous structure was based on solvent evaporation-induced phase separation by the use of mixed solvents with different volatility. Furthermore, ethanol-sensing performance of the porous α-Fe2O3 nanofibers was evaluated and compared with solid α-Fe2O3 nanofibers. Results from gas-sensing measurements reveal that porous α-Fe2O3 nanofibers exhibit higher sensitivity and slightly longer recovery time than solid α-Fe2O3 nanofibers. Over all, the gas sensor based on porous α-Fe2O3 nanofibers shows excellent ethanol-sensing capability with high sensitivity and ultrafast response/recovery behaviors, indicating its potential application as a real-time monitoring gas sensor.
Zhang, Wei-Nong; Liu, Da-Chuan
2005-01-01
A new process for the preparation of soybean protein concentrate (SPC) by directly extracting full-fat soy flour with a mixture of hexane and aqueous ethanol was established. Compared with conventional methods, it has some advantages, such as saving energy and reducing protein denaturation caused by heat action during solvent recovery, because this process saves one step of solvent recovery. The effects of aqueous ethanol concentration and the mixure ratio (hexane to ethanol) on the degree of protein denaturation and product quality were investigated, on the basis of which the orthogonal tests were performed. The optimum technical parameters were obtained by analyzing the results of the orthogonal tests with statistical methods. We found that SPC can be obtained by extracting full-fat soy flour under the following conditions: mixture ratio hexane: 90% ethanol, 9:1, v/v; extraction temperature, 45 degrees C; ratio of solid to solvents, (1:2 w/v); and 5 repeated extractions (15 min each time). The results of quality analysis showed that solubility of the product was improved significantly [nitrogen solubility index (NSI) 46.6%] compared with that for ethanol washing of protein concentrate (NSI 8.7%).
Influence of solvent species on the charge-discharge characteristics of a natural graphite electrode
NASA Astrophysics Data System (ADS)
Fujimoto, Masahisa; Shoji, Yoshihiro; Kida, Yoshinori; Ohshita, Ryuji; Nohma, Toshiyuki; Nishio, Koji
The charge-discharge characteristics of a natural graphite electrode are examined in a mixed solvent composed of ethylene carbonate (EC) and propylene carbonate (PC). The characteristics are influenced largely by the solvent species. Natural graphite electrode displays good charge-discharge characteristics in an electrolyte containing EC with a high volume fraction. In an electrolyte containing PC, however, the electrode cannot be charged and the solvent is decomposed. X-ray photoelectron spectroscopy is used to obtain information about the surface of natural graphite. A thin LiF layer, the decomposition product of lithium hexafluorophosphate (LiPF 6), is formed on the surface of the natural graphite charged to 0.5 V (vs. Li/Li +) in an electrolyte containing a high volume fraction of EC. On the other hand, LiF and a carbonate compound are formed in the bulk and on the surface of natural graphite when the volume fraction of PC is high. These results suggest that the thin LiF layer, which is produced at a potential higher than 0.5 V (vs. Li/Li +) on the surface of natural graphite, enables the lithium ions to intercalate into the natural graphite without further decomposition of the electrolyte.
NASA Astrophysics Data System (ADS)
Dong, Shuwen; Yan, Shuang; Gao, Wenyuan; Liu, Guishan; Hao, Hongshun
2018-04-01
A facile and economic procedure was provided to synthesize α-Fe2O3 nanofibers. In this procedure, porous α-Fe2O3 nanofibers were obtained by a single-polymer/binary-solvent system, while solid α-Fe2O3 nanofibers were prepared by a single-polymer/single-solvent system. The crystal structure and morphology of both samples were characterized by x-ray diffraction, scanning electron microscopy, transmission electron microscopy and nitrogen adsorption/desorption isotherms. The formation mechanism of porous structure was based on solvent evaporation-induced phase separation by the use of mixed solvents with different volatility. Furthermore, ethanol-sensing performance of the porous α-Fe2O3 nanofibers was evaluated and compared with solid α-Fe2O3 nanofibers. Results from gas-sensing measurements reveal that porous α-Fe2O3 nanofibers exhibit higher sensitivity and slightly longer recovery time than solid α-Fe2O3 nanofibers. Over all, the gas sensor based on porous α-Fe2O3 nanofibers shows excellent ethanol-sensing capability with high sensitivity and ultrafast response/recovery behaviors, indicating its potential application as a real-time monitoring gas sensor.
Li, Wenzhe; Fan, Jiandong; Li, Jiangwei; Niu, Guangda; Mai, Yaohua; Wang, Liduo
2016-11-09
Currently, the potential mechanism of the solvent-assisted crystallization for mixed cations perovskite thin film (FA x MA 1-x PbI 3 ) prepared via two-step solution-process still remains obscure. Here, we clarified the molecular-competing-reacted process of NH 2 CH═NH 2 I (FAI) and CH 3 NH 3 I (MAI) with PbI 2 (DMSO) x complex in dimethyl sulfoxide (DMSO) and diethyl ether (DE) catalytic solvent system in the sequential two-step solution-process. The microscopic dynamics was characterized via the characterizations of in situ photoluminescence spectra. In addition, we found that the thermal stability of the perovskite films suffered from the residual solvent with high boiling point, for example, DMSO. The further DE treatment could promote the volatility process of DMSO and accelerate the crystallization process of perovskite films. The highest PCE over 19% with slight hysteresis effect was eventually obtained with a reproducible FA 0.88 MA 0.12 PbI 3 solar cell, which displayed a constant power output within 100 s upon light soaking and stable PCE output within 30 d in the thermal stability test.
NASA Astrophysics Data System (ADS)
Shibata, Yosei; Matsuzaki, Tomoya; Ishinabe, Takahiro; Fujikake, Hideo
2018-06-01
In this study, we analyzed organic semiconducting single crystals composed of benzothienobenzothiophene derivatives (2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene, C8-BTBT) grown by nematic-phase liquid crystal (LC) solvent. As a result, we clarified that the crystal b-axis direction of the C8-BTBT single crystals was consistent with the LC alignment direction. By optical evaluation and simulation based on density functional theory, we found that the C8-BTBT single crystals in LC solvent exhibited a novel molecular conformation having alkyl chains oriented toward the b-axis.
Process for extracting technetium from alkaline solutions
Moyer, Bruce A.; Sachleben, Richard A.; Bonnesen, Peter V.
1995-01-01
A process for extracting technetium values from an aqueous alkaline solution containing at least one alkali metal hydroxide and at least one alkali metal nitrate, the at least one alkali metal nitrate having a concentration of from about 0.1 to 6 molar. The solution is contacted with a solvent consisting of a crown ether in a diluent for a period of time sufficient to selectively extract the technetium values from the aqueous alkaline solution. The solvent containing the technetium values is separated from the aqueous alkaline solution and the technetium values are stripped from the solvent.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bautista, J.A.; Connors, R.E.; Raju, B.B.
1999-10-14
The spectroscopic properties and dynamic behavior of peridinin in several different solvents were studied by steady-state absorption, fluorescence, and transient optical spectroscopy. The lifetime of the lowest excited singlet state of peridinin is found to be strongly dependent on solvent polarity and ranges from 7 ps in the strongly polar solvent trifluoroethanol to 172 ps in the nonpolar solvents cyclohexane and benzene. The lifetimes show no obvious correlation with solvent polarizability, and hydrogen bonding of the solvent molecules to peridinin is not an important factor in determining the dynamic behavior of the lowest excited singlet state. The wavelengths of emissionmore » maxima, the quantum yields of fluorescence, and the transient absorption spectra are also affected by the solvent environment. A model consistent with the data and supported by preliminary semiempirical calculations invokes the presence of a charge transfer state in the excited state manifold of peridinin to account for the observations. The charge transfer state most probably results from the presence of the lactone ring in the {pi}-electron conjugation of peridinin analogous to previous findings on aminocoumarins and related compounds. The behavior of peridinin reported here is highly unusual for carotenoids, which generally show little dependence of the spectral properties and lifetimes of the lowest excited singlet state on the solvent environment.« less
Quantifying Volatile Organic Compound Emissions from Solvents and their Impacts on Urban Air Quality
NASA Astrophysics Data System (ADS)
Mcdonald, B. C.; De Gouw, J. A.; Gilman, J.; Ahmadov, R.; Cappa, C. D.; Frost, G. J.; Goldstein, A. H.; Jathar, S.; Jimenez, J. L.; Kim, S. W.; McKeen, S. A.; Roberts, J. M.; Trainer, M.
2016-12-01
Solvents, which consist of personal care products, paints, degreasing agents, and other chemical products, are an important anthropogenic source of volatile organic compound (VOC) emissions. Yet there are many unresolved questions related to their emission rates, chemical composition, and relative importance on urban air quality problems. Using atmospheric measurements of speciated VOCs collected at a ground site located in the Los Angeles basin during the California Nexus (CalNex) Study in 2010, and utilizing data on the composition of solvent emissions from the California Air Resources Board (CARB), we are able to reconcile solvent emissions with ambient observations. Our analysis indicates that solvent emissions are underestimated by a factor of 2-3 in the CARB inventory. We then estimate the reactivity of solvent emissions with the hydroxyl (OH) radical, and also estimate the propensity of solvent emissions to form secondary organic aerosol (SOA). Solvents contain significant fractions of oxygenated compounds, including intermediate volatility compounds, which if released to the atmosphere are potentially reactive and can lead to the formation of SOA. Overall, our results suggest that in the Los Angeles basin, solvents are now the largest anthropogenic source of VOC emissions, OH reactivity, and SOA formation, and larger than the contribution from motor vehicles. This suggests that more research is needed in better constraining this potentially important source of urban VOC emissions.
Li, B O; Liu, Yuan
A phase-field free-energy functional for the solvation of charged molecules (e.g., proteins) in aqueous solvent (i.e., water or salted water) is constructed. The functional consists of the solute volumetric and solute-solvent interfacial energies, the solute-solvent van der Waals interaction energy, and the continuum electrostatic free energy described by the Poisson-Boltzmann theory. All these are expressed in terms of phase fields that, for low free-energy conformations, are close to one value in the solute phase and another in the solvent phase. A key property of the model is that the phase-field interpolation of dielectric coefficient has the vanishing derivative at both solute and solvent phases. The first variation of such an effective free-energy functional is derived. Matched asymptotic analysis is carried out for the resulting relaxation dynamics of the diffused solute-solvent interface. It is shown that the sharp-interface limit is exactly the variational implicit-solvent model that has successfully captured capillary evaporation in hydrophobic confinement and corresponding multiple equilibrium states of underlying biomolecular systems as found in experiment and molecular dynamics simulations. Our phase-field approach and analysis can be used to possibly couple the description of interfacial fluctuations for efficient numerical computations of biomolecular interactions.
NASA Astrophysics Data System (ADS)
Almandoz, M. C.; Sancho, M. I.; Blanco, S. E.
2014-01-01
The solvatochromic behavior of sulfamethoxazole (SMX) was investigated using UV-vis spectroscopy and DFT methods in neat and binary solvent mixtures. The spectral shifts of this solute were correlated with the Kamlet and Taft parameters (α, β and π*). Multiple lineal regression analysis indicates that both specific hydrogen-bond interaction and non specific dipolar interaction play an important role in the position of the absorption maxima in neat solvents. The simulated absorption spectra using TD-DFT methods were in good agreement with the experimental ones. Binary mixtures consist of cyclohexane (Cy)-ethanol (EtOH), acetonitrile (ACN)-dimethylsulfoxide (DMSO), ACN-dimethylformamide (DMF), and aqueous mixtures containing as co-solvents DMSO, ACN, EtOH and MeOH. Index of preferential solvation was calculated as a function of solvent composition and non-ideal characteristics are observed in all binary mixtures. In ACN-DMSO and ACN-DMF mixtures, the results show that the solvents with higher polarity and hydrogen bond donor ability interact preferentially with the solute. In binary mixtures containing water, the SMX molecules are solvated by the organic co-solvent (DMSO or EtOH) over the whole composition range. Synergistic effect is observed in the case of ACN-H2O and MeOH-H2O, indicating that at certain concentrations solvents interact to form association complexes, which should be more polar than the individual solvents of the mixture.
Koch, Markus; Saphiannikova, Marina; Santer, Svetlana; Guskova, Olga
2017-09-21
This study focuses on comparing physical properties of photoisomers of an azobenzene star with benzene-1,3,5-tricarboxamide core. Three azobenzene arms of the molecule undergo a reversible trans-cis isomerization upon UV-vis light illumination giving rise to multiple states from the planar all-trans one, via two mixed states to the kinked all-cis isomer. Employing density functional theory, we characterize the structural and photophysical properties of each state indicating a role the planar core plays in the coupling between azobenzene chromophores. To characterize the light-triggered switching of solvophilicity/solvophobicity of the star, the difference in solvation free energy is calculated for the transfer of an azobenzene star from its gas phase to implicit or explicit solvents. For the latter case, classical all-atom molecular dynamics simulations of aqueous solutions of azobenzene star are performed employing the polymer consistent force field to shed light on the thermodynamics of explicit hydration as a function of the isomerization state and on the structuring of water around the star. From the analysis of two contributions to the free energy of hydration, the nonpolar van der Waals and the electrostatic terms, it is concluded that isomerization specificity largely determines the polarity of the molecule and the solute-solvent electrostatic interactions. This convertible hydrophilicity/hydrophobicity together with readjustable occupied volume and the surface area accessible to water, affects the self-assembly/disassembly of the azobenzene star with a flat core triggered by light.
[Study of new blended chemical absorbents to absorb CO2].
Wang, Jin-Lian; Fang, Meng-Xiang; Yan, Shui-Ping; Luo, Zhong-Yang; Cen, Ke-Fa
2007-11-01
Three kinds of blended absorbents were investigated on bench-scale experimental bench according to absorption rate and regeneration grade to select a reasonable additive concentration. The results show that, among methyldiethanolamine (MDEA) and piperazine (PZ) mixtures, comparing MDEA : PZ = 1 : 0.4 (m : m) with MDEA : PZ = 1 : 0.2 (m : m), the absorption rate is increased by about 70% at 0.2 mol x mol(-1). When regeneration lasting for 40 min, regeneration grade of blended absorbents with PZ concentration of 0.2, 0.4, and 0.8 is decreased to 83.06%, 77.77% and 76.67% respectively while 91.04% for PZ concentration of 0. MDEA : PZ = 1 : 0.4(m : m) is a suitable ratio for MDEA/PZ mixtures as absorption and regeneration properties of the blended absorbents are all improved. The aqueous blends with 10% primary amines and 2% tertiary amines could keep high CO2 absorption rate, and lower regeneration energy consumption. Adding 2% 2-Amino-2-methyl-1-propanol (AMP) to 10% diethanolamine (DEA), the blended amine solvents have an advantage in absorption and regeneration properties over other DEA/AMP mixtures. Blended solvents, which consist of a mixture of primary amines with a small amount of tertiary amines, have the highest absorption rate among the three. And mixed absorbents of secondary amines and a small amount of sterically hindered amines have the best regeneration property. To combine absorption and regeneration properties, blends with medium activator addition to tertiary amines are competitive.
Mixed-Salt/Ester Electrolytes for Low-Temperature Li+ Cells
NASA Technical Reports Server (NTRS)
Smart, Marshall; Bugga, Ratnakumar
2006-01-01
Electrolytes comprising, variously, LiPF6 or LiPF6 plus LiBF4 dissolved at various concentrations in mixtures of alkyl carbonates and alkyl esters have been found to afford improved low-temperature performance in rechargeable lithium-ion electrochemical cells. These and other electrolytes have been investigated in a continuing effort to extend the lower limit of operating temperatures of such cells. This research at earlier stages, and the underlying physical and chemical principles, were reported in numerous previous NASA Tech Briefs articles, the most recent being Ester-Based Electrolytes for Low-Temperature Li-Ion Cells (NPO-41097), NASA Tech Briefs, Vol. 29, No. 12 (December 2005), page 59. The ingredients of the solvent mixtures include ethylene carbonate (EC), ethyl methyl carbonate (EMC), methyl butyrate (MB), and methyl propionate (MP). The electrolytes were placed in Li-ion cells containing carbon anodes and LiNi0.8Co0.2O2 cathodes, and the electrical performances of the cells were measured over a range of temperatures down to 60 C. The electrolytes that yielded the best low-temperature performances were found to consist, variously, of 1.0 M LiPF6 + 0.4 M LiBF4 or 1.4 LiPF6 in 1EC + 1EMC + 8MP or 1EC + 1EMC + 8MB, where the concentrations of the salts are given in molar units and the proportions of the solvents are by relative volume.
Equilibrium water and solute uptake in silicone hydrogels.
Liu, D E; Dursch, T J; Oh, Y; Bregante, D T; Chan, S Y; Radke, C J
2015-05-01
Equilibrium water content of and solute partitioning in silicone hydrogels (SiHys) are investigated using gravimetric analysis, fluorescence confocal laser-scanning microscopy (FCLSM), and back extraction with UV/Vis-absorption spectrophotometry. Synthesized silicone hydrogels consist of silicone monomer, hydrophilic monomer, cross-linking agent, and triblock-copolymer macromer used as an amphiphilic compatibilizer to prevent macrophase separation. In all cases, immiscibility of the silicone and hydrophilic polymers results in microphase-separated morphologies. To investigate solute uptake in each of the SiHy microphases, equilibrium partition coefficients are obtained for two hydrophilic solutes (i.e., theophylline and caffeine dissolved in aqueous phosphate-buffered saline) and two oleophilic solutes (i.e., Nile Red and Bodipy Green dissolved in silicone oil), respectively. Measured water contents and aqueous-solute partition coefficients increase linearly with increasing solvent-free hydrophilic-polymer volume fraction. Conversely, oleophilic-solute partition coefficients decrease linearly with rising solvent-free hydrophilic-polymer volume fraction (i.e., decreasing hydrophobic silicone-polymer fraction). We quantitatively predict equilibrium SiHy water and solute uptake assuming that water and aqueous solutes reside only in hydrophilic microdomains, whereas oleophilic solutes partition predominately into silicone microdomains. Predicted water contents and solute partition coefficients are in excellent agreement with experiment. Our new procedure permits a priori estimation of SiHy water contents and solute partition coefficients based solely on properties of silicone and hydrophilic homopolymer hydrogels, eliminating the need for further mixed-polymer-hydrogel experiments. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Thermodynamics of DL-alanine solvation in water-dimethylsulfoxide mixtures at 298.15 K
NASA Astrophysics Data System (ADS)
Roy, S.; Mahali, K.; Mondal, S.; Dolui, B. K.
2015-04-01
In this study we mainly discuss the transfer Gibbs free energy Δ G {/t 0}( i) and Δ S {/t 0}( i)entropy of DL-alanine at 298.15 K and consequently the involved chemical transfer free energy (Δ G {/t,ch 0}( i)) and entropy ( TΔ S {/t,ch 0}( i)) in aqueous mixtures of dimethylsulfoxide are discussed to clarify the solvation chemistry of DL-alanine. For the evaluation of these energy terms, solubility of this amino acid has been measured by formol titrimetry at five equidistant temperatures i.e., from 288.15 to 308.15 K in different composition of this mixed solvent system. The various solvent parameters as well as thermodynamic parameters like molar volume, density, dipole moment and solvent diameter of this solvent system have also been reported here. The chemical effects of the transfer Gibbs energies (Δ G {/t,ch 0}( i)) and entropies of transfer ( TΔ S {/t,ch 0}( i)) have been obtained after elimination of cavity effect and dipole-dipole interaction effects from the total transfer energies. Here the chemical contribution of transfer energetics of DL-alanine is mainly guided by the composite effects of increased dispersion interaction, basicity effect and decreased acidity, hydrogen bonding effects, hydrophilic hydration and hydrophobic hydration of aqueous DMSO mixtures as compared to that of reference solvent, water.
Farajzadeh, Mir Ali; Sattari Dabbagh, Masoumeh; Yadeghari, Adeleh
2017-05-01
In this study, a gas-assisted dispersive liquid-phase microextraction method using a deep eutectic solvent as the extraction solvent combined with gas chromatography and flame ionization detection was developed for the extraction and determination of some pesticide residues in vegetable and fruit juice samples. In this method, choline chloride and 4-chlorophenol at a molar ratio of 1:2 were mixed. By heating and vortexing, a clear, water-immiscible, and homogeneous liquid was formed. The obtained deep eutectic solvent was added to an aqueous solution of the analytes in a conical test tube. Air was bubbled into the aqueous solution and a cloudy solution was obtained. During this step, the analytes were extracted into the fine droplets of the extraction solvent. After centrifugation, an aliquot of the settled phase was injected into the separation system. Under the optimum extraction conditions, enrichment factors, and extraction recoveries were obtained in the ranges of 247-355 and 49-71%, respectively. The obtained values for the limits of detection and quantification were in the ranges of 0.24-1.4 and 0.71-4.2 μg/L, respectively. The proposed method is simple, fast, efficient, and inexpensive. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Parejas, Almudena; Montes, Vicente; Hidalgo-Carrillo, Jesús; Sánchez-López, Elena; Marinas, Alberto; Urbano, Francisco J
2017-12-18
Two series of catalysts were prepared by sol-gel and microemulsion synthetic procedure (SG and ME, respectively). Each series includes both pure Mg and Zr solids as well as Mg-Zr mixed solids with 25%, 50% and 75% nominal Zr content. The whole set of catalysts was characterized from thermal, structural and surface chemical points of view and subsequently applied to the liquid-phase xylose dehydration to furfural. Reactions were carried out in either a high-pressure autoclave or in an atmospheric pressure multi-reactor under a biphasic (organic/water) reaction mixture. Butan-2-ol and toluene were essayed as organic solvents. Catalysts prepared by microemulsion retained part of the surfactant used in the synthetic procedure, mainly associated with the Zr part of the solid. The MgZr-SG solid presented the highest surface acidity while the Mg3Zr-SG one exhibited the highest surface basicity among mixed systems. Xylose dehydration in the high-pressure system and with toluene/water solvent mixture led to the highest furfural yield. Moreover, the yield of furfural increases with the Zr content of the catalyst. Therefore, the catalysts constituted of pure ZrO₂ (especially Zr-SG) are the most suitable to carry out the process under study although MgZr mixed solids could be also suitable for overall processes with additional reaction steps.