Science.gov

Sample records for mixed waste characterization

  1. Mixed waste characterization reference document

    SciTech Connect

    1997-09-01

    Waste characterization and monitoring are major activities in the management of waste from generation through storage and treatment to disposal. Adequate waste characterization is necessary to ensure safe storage, selection of appropriate and effective treatment, and adherence to disposal standards. For some wastes characterization objectives can be difficult and costly to achieve. The purpose of this document is to evaluate costs of characterizing one such waste type, mixed (hazardous and radioactive) waste. For the purpose of this document, waste characterization includes treatment system monitoring, where monitoring is a supplement or substitute for waste characterization. This document establishes a cost baseline for mixed waste characterization and treatment system monitoring requirements from which to evaluate alternatives. The cost baseline established as part of this work includes costs for a thermal treatment technology (i.e., a rotary kiln incinerator), a nonthermal treatment process (i.e., waste sorting, macronencapsulation, and catalytic wet oxidation), and no treatment (i.e., disposal of waste at the Waste Isolation Pilot Plant (WIPP)). The analysis of improvement over the baseline includes assessment of promising areas for technology development in front-end waste characterization, process equipment, off gas controls, and monitoring. Based on this assessment, an ideal characterization and monitoring configuration is described that minimizes costs and optimizes resources required for waste characterization.

  2. Mixed waste characterization, treatment & disposal focus area

    SciTech Connect

    1996-08-01

    The mission of the Mixed Waste Characterization, Treatment, and Disposal Focus Area (referred to as the Mixed Waste Focus Area or MWFA) is to provide treatment systems capable of treating DOE`s mixed waste in partnership with users, and with continual participation of stakeholders, tribal governments, and regulators. The MWFA deals with the problem of eliminating mixed waste from current and future storage in the DOE complex. Mixed waste is waste that contains both hazardous chemical components, subject to the requirements of the Resource Conservation and Recovery Act (RCRA), and radioactive components, subject to the requirements of the Atomic Energy Act. The radioactive components include transuranic (TRU) and low-level waste (LLW). TRU waste primarily comes from the reprocessing of spent fuel and the use of plutonium in the fabrication of nuclear weapons. LLW includes radioactive waste other than uranium mill tailings, TRU, and high-level waste, including spent fuel.

  3. Development of characterization protocol for mixed liquid radioactive waste classification

    NASA Astrophysics Data System (ADS)

    Zakaria, Norasalwa; Wafa, Syed Asraf; Wo, Yii Mei; Mahat, Sarimah

    2015-04-01

    Mixed liquid organic waste generated from health-care and research activities containing tritium, carbon-14, and other radionuclides posed specific challenges in its management. Often, these wastes become legacy waste in many nuclear facilities and being considered as `problematic' waste. One of the most important recommendations made by IAEA is to perform multistage processes aiming at declassification of the waste. At this moment, approximately 3000 bottles of mixed liquid waste, with estimated volume of 6000 litres are currently stored at the National Radioactive Waste Management Centre, Malaysia and some have been stored for more than 25 years. The aim of this study is to develop a characterization protocol towards reclassification of these wastes. The characterization protocol entails waste identification, waste screening and segregation, and analytical radionuclides profiling using various analytical procedures including gross alpha/ gross beta, gamma spectrometry, and LSC method. The results obtained from the characterization protocol are used to establish criteria for speedy classification of the waste.

  4. Development of characterization protocol for mixed liquid radioactive waste classification

    SciTech Connect

    Zakaria, Norasalwa; Wafa, Syed Asraf; Wo, Yii Mei; Mahat, Sarimah

    2015-04-29

    Mixed liquid organic waste generated from health-care and research activities containing tritium, carbon-14, and other radionuclides posed specific challenges in its management. Often, these wastes become legacy waste in many nuclear facilities and being considered as ‘problematic’ waste. One of the most important recommendations made by IAEA is to perform multistage processes aiming at declassification of the waste. At this moment, approximately 3000 bottles of mixed liquid waste, with estimated volume of 6000 litres are currently stored at the National Radioactive Waste Management Centre, Malaysia and some have been stored for more than 25 years. The aim of this study is to develop a characterization protocol towards reclassification of these wastes. The characterization protocol entails waste identification, waste screening and segregation, and analytical radionuclides profiling using various analytical procedures including gross alpha/ gross beta, gamma spectrometry, and LSC method. The results obtained from the characterization protocol are used to establish criteria for speedy classification of the waste.

  5. Mixed waste characterization, treatment, and disposal focus area. Technology summary

    SciTech Connect

    1995-06-01

    This paper presents details about the technology development programs of the Department of Energy. In this document, waste characterization, thermal treatment processes, non-thermal treatment processes, effluent monitors and controls, development of on-site innovative technologies, and DOE business opportunities are applied to environmental restoration. The focus areas for research are: contaminant plume containment and remediation; mixed waste characterization, treatment, and disposal; high-level waste tank remediation; landfill stabilization; and decontamination and decommissioning.

  6. Strategies for characterizing mixed nuclear wastes: The challenges

    SciTech Connect

    Toste, A.P.

    1993-12-31

    The chemical analysis of nuclear wastes, especially mixed wastes, pose various problems to the analytical chemist. The chemical content may be very complex, particularly when organics are present. This report describes the analysis of two highly radioactive wastes: a neutralized cladding removal waste, and a volume reduction, double-shell slurry waste. The organic content analysis is described.

  7. Radiological, physical, and chemical characterization of additional alpha contaminated and mixed low-level waste for treatment at the advanced mixed waste treatment project

    SciTech Connect

    Hutchinson, D.P.

    1995-07-01

    This document provides physical, chemical, and radiological descriptive information for a portion of mixed waste that is potentially available for private sector treatment. The format and contents are designed to provide treatment vendors with preliminary information on the characteristics and properties for additional candidate portions of the Idaho National Engineering Laboratory (INEL) and offsite mixed wastes not covered in the two previous characterization reports for the INEL-stored low-level alpha-contaminated and transuranic wastes. This report defines the waste, provides background information, briefly reviews the requirements of the Federal Facility Compliance Act (P.L. 102-386), and relates the Site Treatment Plans developed under the Federal Facility Compliance Act to the waste streams described herein. Each waste is summarized in a Waste Profile Sheet with text, charts, and tables of waste descriptive information for a particular waste stream. A discussion of the availability and uncertainty of data for these waste streams precedes the characterization descriptions.

  8. Mixed waste: Proceedings

    SciTech Connect

    Moghissi, A.A.; Blauvelt, R.K.; Benda, G.A.; Rothermich, N.E.

    1993-12-31

    This volume contains the peer-reviewed and edited versions of papers submitted for presentation a the Second International Mixed Waste Symposium. Following the tradition of the First International Mixed Waste Symposium, these proceedings were prepared in advance of the meeting for distribution to participants. The symposium was organized by the Mixed Waste Committee of the American Society of Mechanical Engineers. The topics discussed at the symposium include: stabilization technologies, alternative treatment technologies, regulatory issues, vitrification technologies, characterization of wastes, thermal technologies, laboratory and analytical issues, waste storage and disposal, organic treatment technologies, waste minimization, packaging and transportation, treatment of mercury contaminated wastes and bioprocessing, and environmental restoration. Individual abstracts are catalogued separately for the data base.

  9. Characterization of the solid low level mixed waste inventory for the solid waste thermal treatment activity - III

    SciTech Connect

    Place, B.G., Westinghouse Hanford

    1996-09-24

    The existing thermally treatable, radioactive mixed waste inventory is characterized to support implementation of the commercial, 1214 thermal treatment contract. The existing thermally treatable waste inventory has been identified using a decision matrix developed by Josephson et al. (1996). Similar to earlier waste characterization reports (Place 1993 and 1994), hazardous materials, radionuclides, physical properties, and waste container data are statistically analyzed. In addition, the waste inventory data is analyzed to correlate waste constituent data that are important to the implementation of the commercial thermal treatment contract for obtaining permits and for process design. The specific waste parameters, which were analyzed, include the following: ``dose equivalent`` curie content, polychlorinated biphenyl (PCB) content, identification of containers with PA-related mobile radionuclides (14C, 12 79Se, 99Tc, and U isotopes), tritium content, debris and non-debris content, container free liquid content, fissile isotope content, identification of dangerous waste codes, asbestos containers, high mercury containers, beryllium dust containers, lead containers, overall waste quantities, analysis of container types, and an estimate of the waste compositional split based on the thermal treatment contractor`s proposed process. A qualitative description of the thermally treatable mixed waste inventory is also provided.

  10. Advanced robotics handling and controls applied to Mixed Waste characterization, segregation and treatment

    SciTech Connect

    Grasz, E.; Huber, L.; Horvath, J.; Roberson, P.; Wilhelmsen, K.; Ryon, R.

    1994-11-01

    At Lawrence Livermore National Laboratory under the Mixed Waste Operations program of the Department of Energy Robotic Technology Development Program (RTDP), a key emphasis is developing a total solution to the problem of characterizing, handling and treating complex and potentially unknown mixed waste objects. LLNL has been successful at looking at the problem from a system perspective and addressing some of the key issues including non-destructive evaluation of the waste stream prior to the materials entering the handling workcell, the level of automated material handling required for effective processing of the waste stream objects (both autonomous and tele-operational), and the required intelligent robotic control to carry out the characterization, segregation, and waste treating processes. These technologies were integrated and demonstrated in a prototypical surface decontamination workcell this past year.

  11. Mixed waste minimization/mixed waste avoidance

    SciTech Connect

    Todisco, L.R.

    1994-12-31

    This presentation describes methods for the minimization and volume reduction of low-level radioactive and mixed wastes. Many methods are presented including: source reduction, better waste monitoring activities, waste segregation, recycling, administrative controls, and optimization of waste-generating processes.

  12. Rapid characterization of mixed waste by FTIR-fiber optic method

    SciTech Connect

    Rebagay, T.V., Westinghouse Hanford

    1996-07-26

    Tank waste characterization requires various analytical systems to identify and quantify the chemical composition and water content of Hanford Site high-level waste. Safe long-term storage of the waste depends on its chemical and physical data. An analytical database is also the key to the design and implementation of pre-treatment and disposal processes. To provide a faster, cheaper, and safer technique to monitor the moisture content of tank waste, two types of near-infrared (NIR) diffuse reflectance fiber optic probes interfaced to a Fouiier transform infrared (FTIR) spectrometry system were studied. Lower absorptivities in the NIR region enable longer pathlengths to be used leading to easier nondestructive sampling. Both overtone and combination bands Of Water can be used for moisture measurements. While a previous report` provides evidence for the feasibility of using fiber optic probes, the results were strictly qualitative. In this study, the fiber optic probe is installed in a hot cell making it possible to characterize highly radioactive mixed waste rapidly and quantitatively. In seeking a strategy to identify individual species in the waste with minimal sample preparation, a modular transfer optic system equipped with a mid-infrared diffuse reflectance sampler was assessed. Light pipes were used to present the sample to the FTIR spectrometer. Its performance for obtaining rapid, high quality mid-infrared (MIR) spectra of mixed waste is compared with FTIR- photoacoustic spectroscopy.

  13. Characterization of mixed waste for sorting and inspection using non-intrusive methods

    SciTech Connect

    Roberson, G.P.; Ryon, R.W.; Bull, N.L.

    1994-12-01

    Characterization of mixed wastes (that is, radioactive and otherwise hazardous) requires that all hazardous, non-conforming, and radioactive materials be identified, localized, and quantified. With such information, decisions can be made regarding whether the item is treatable or has been adequately treated. Much of the required information can be gained without taking representative samples and analyzing them in a chemistry laboratory. Non-intrusive methods can be used to provide this information on-line at the waste treatment facility. Ideally, the characterization would be done robotically, and either automatically or semi-automatically in order to improve efficiency and safety. For the FY94 Mixed Waste Operations (MWO) project, a treatable waste item is defined as a homogeneous metal object that has external radioactive or heavy metal hazardous contamination. Surface treatment of some kind would therefore be the treatment method to be investigated. The authors developed sorting and inspection requirements, and assessed viable non-intrusive techniques to meet these requirements. They selected radiography, computed tomography and X-ray fluorescence. They have characterized selected mock waste items, and determined minimum detectable amounts of materials. They have demonstrated the efficiency possible by integrating radiographic with tomographic data. Here, they developed a technique to only use radiographic data where the material is homogeneous (fast), and then switching to tomography in those areas where heterogeneity is detected (slower). They also developed a tomographic technique to quantify the volume of each component of a mixed material. This is useful for such things as determining ash content. Lastly, they have developed a document in MOSAIC, an Internet multi-media browser. This document is used to demonstrate the ability to share data and information world-wide.

  14. Mixed wasted integrated program: Logic diagram

    SciTech Connect

    Mayberry, J.; Stelle, S.; O`Brien, M.; Rudin, M.; Ferguson, J.; McFee, J.

    1994-11-30

    The Mixed Waste Integrated Program Logic Diagram was developed to provide technical alternative for mixed wastes projects for the Office of Technology Development`s Mixed Waste Integrated Program (MWIP). Technical solutions in the areas of characterization, treatment, and disposal were matched to a select number of US Department of Energy (DOE) treatability groups represented by waste streams found in the Mixed Waste Inventory Report (MWIR).

  15. Mixed Waste Focus Area/Characterization Monitoring Sensor Technology Nondestructive Waste Assay Capability Evaluation Project End-User Summary Report

    SciTech Connect

    G. K. Becker; M. E. McIlwain; M. J. Connolly

    1998-11-01

    The Mixed Waste Focus Area (MWFA) in conjunction with the Characterization Monitoring and Sensor Technology (CMST) crosscut program identified the need to objectively evaluate the capability of nondestructive waste assay (NDA) technologies. This was done because of a general lack of NDA technology performance data with respect to a representative cross section of waste form configurations comprising the Department of Energy (DOE) contact-handled alpha contaminated [e.g., transuranic (TRU) waste]. The overall objective of the Capability Evaluation Project (CEP) was to establish a known and unbiased NDA data and information base that can be used to support end-user decisions with regards to technology system selection and to support technology development organizations in identifying technology system deficiencies. The primary performance parameters evaluated in the CEP were measurement bias and relative precision. The performance of a given NDA technology is a direct function of the attributes represented by the waste matrix configuration. Such attributes include matrix density, matrix elemental composition, radionuclidic composition, radionuclide mass loading, and the spatial variation of these components. Analyzing the manner in which bias and precision vary as a function of test sample attribute and NDA technology provides a foundation for deriving performance capability and limitation statements and determines which waste matrix attributes, or combinations of attributes, are compatible or incompatible with existing technologies. The CEP achieved the stated end-user objective. The data indicate that the nondestructive waste assay systems evaluated have a definite capability to perform assay of contact-handled TRU waste packaged in 55-gallon drums. There is, however, a performance envelope where this capability exists, an area near the envelope boundaries where it is questionable, and a realm outside the envelope where the technologies do not perform. Therefore

  16. Advanced robotics technology applied to mixed waste characterization, sorting and treatment

    SciTech Connect

    Wilhelmsen, K.; Hurd, R.; Grasz, E.

    1994-04-01

    There are over one million cubic meters of radioactively contaminated hazardous waste, known as mixed waste, stored at Department of Energy facilities. Researchers at Lawrence Livermore National Laboratory (LLNL) are developing methods to safely and efficiently treat this type of waste. LLNL has automated and demonstrated a means of segregating items in a mixed waste stream. This capability incorporates robotics and automation with advanced multi-sensor information for autonomous and teleoperational handling of mixed waste items with previously unknown characteristics. The first phase of remote waste stream handling was item singulation; the ability to remove individual items of heterogeneous waste directly from a drum, box, bin, or pile. Once objects were singulated, additional multi-sensory information was used for object classification and segregation. In addition, autonomous and teleoperational surface cleaning and decontamination of homogeneous metals has been demonstrated in processing mixed waste streams. The LLNL waste stream demonstration includes advanced technology such as object classification algorithms, identification of various metal types using active and passive gamma scans and RF signatures, and improved teleoperational and autonomous grasping of waste objects. The workcell control program used an off-line programming system as a server to perform both simulation control as well as actual hardware control of the workcell. This paper will discuss the motivation for remote mixed waste stream handling, the overall workcell layout, sensor specifications, workcell supervisory control, 3D vision based automated grasp planning and object classification algorithms.

  17. Geological site characterization for the proposed Mixed Waste Disposal Facility, Los Alamos National Laboratory

    SciTech Connect

    Reneau, S.L.; Raymond, R. Jr.

    1995-12-01

    This report presents the results of geological site characterization studies conducted from 1992 to 1994 on Pajarito Mesa for a proposed Los Alamos National Laboratory Mixed Waste Disposal Facility (MWDF). The MWDF is being designed to receive mixed waste (waste containing both hazardous and radioactive components) generated during Environmental Restoration Project cleanup activities at Los Alamos. As of 1995, there is no Resource Conservation and Recovery Act (RCRA) permitted disposal site for mixed waste at the Laboratory, and construction of the MWDF would provide an alternative to transport of this material to an off-site location. A 2.5 km long part of Pajarito Mesa was originally considered for the MWDF, extending from an elevation of about 2150 to 2225 m (7060 to 7300 ft) in Technical Areas (TAs) 15, 36, and 67 in the central part of the Laboratory, and planning was later concentrated on the western area in TA-67. The mesa top lies about 60 to 75 m (200 to 250 ft) above the floor of Pajarito Canyon on the north, and about 30 m (100 ft) above the floor of Threemile Canyon on the south. The main aquifer used as a water supply for the Laboratory and for Los Alamos County lies at an estimated depth of about 335 m (1100 ft) below the mesa. The chapters of this report focus on surface and near-surface geological studies that provide a basic framework for siting of the MWDF and for conducting future performance assessments, including fulfillment of specific regulatory requirements. This work includes detailed studies of the stratigraphy, mineralogy, and chemistry of the bedrock at Pajarito Mesa by Broxton and others, studies of the geological structure and of mesa-top soils and surficial deposits by Reneau and others, geologic mapping and studies of fracture characteristics by Vaniman and Chipera, and studies of potential landsliding and rockfall along the mesa-edge by Reneau.

  18. Mixed waste management options

    SciTech Connect

    Owens, C.B.; Kirner, N.P.

    1991-12-31

    Disposal fees for mixed waste at proposed commercial disposal sites have been estimated to be $15,000 to $40,000 per cubit foot. If such high disposal fees are imposed, generators may be willing to apply extraordinary treatment or regulatory approaches to properly dispose of their mixed waste. This paper explores the feasibility of several waste management scenarios and attempts to answer the question: Can mixed waste be managed out of existence? Existing data on commercially generated mixed waste streams are used to identify the realm of mixed waste known to be generated. Each waste stream is evaluated from both a regulatory and technical perspective in order to convert the waste into a strictly low-level radioactive or a hazardous waste. Alternative regulatory approaches evaluated in this paper include a delisting petition, no migration petition, and a treatability variance. For each waste stream, potentially available treatment options are identified that could lead to these variances. Waste minimization methodology and storage for decay are also considered. Economic feasibility of each option is discussed broadly.

  19. Guidelines for mixed waste minimization

    SciTech Connect

    Owens, C.

    1992-02-01

    Currently, there is no commercial mixed waste disposal available in the United States. Storage and treatment for commercial mixed waste is limited. Host States and compacts region officials are encouraging their mixed waste generators to minimize their mixed wastes because of management limitations. This document provides a guide to mixed waste minimization.

  20. Real-Time Broad Spectrum Characterization of Hazardous Mixed Waste by Membrane Introduction Mass Spectrometry

    SciTech Connect

    Wilkerson Jr., Charles W.

    2000-12-31

    The goal of this project was to expand the range of chemical species that may be detected by membrane introduction mass spectrometry (MIMS) in environmental, and specifically in Mixed Waste, monitoring and characterization applications. Membrane introduction mass spectrometry (MIMS) functions as a near real-time monitor: there is little to no sample preparation and t analysis time is seconds to minutes. MIMS can be implemented as a flow injection technique, where samples, standards, and method blanks can be sequentially analyzed in a continuous fashion. The membrane acts as an interface between the sample (air or water) and the vacuum of the mass spectrometer. Transport of the analyte through the membrane occurs by the process of pervaporation. This process is described by adsorption to the outer surface of the membrane, diffusion through the membrane, and desorption from the inner membrane surface into a helium gas flow or into vacuum. The driving force for this work is the need for a rapid, sensitive, and broadly applicable tool for characterizing organic and metal-containing contaminants in a variety of DOE (and other) waste streams. In all characterization scenarios, a balance must be struck between evaluation of the hazards and their extent at a waste site, and the resources available for the overall mitigation of that risk. In the case of chemically, physically, and geometrically homogeneous waste, the situation is aided by the ability to reasonably assume that any sample collected is representative of the overall site constituents. However, few real environmental challenges are homogeneous. As a result, detailed sampling plans must be prepared, and chemical analyses must be performed on a number of samples in order to identify areas of contamination and assess further options. For many years, the chemical analysis part of this process has been accomplished by delivering the samples to a (typically) physically remote laboratory, where very detailed, and

  1. Radioactive mixed waste disposal

    SciTech Connect

    Jasen, W.G.; Erpenbeck, E.G.

    1993-02-01

    Various types of waste have been generated during the 50-year history of the Hanford Site. Regulatory changes in the last 20 years have provided the emphasis for better management of these wastes. Interpretations of the Atomic Energy Act of 1954 (AEA), the Resource Conservation and Recovery Act of 1976 (RCRA), and the Hazardous and Solid Waste Amendments (HSWA) have led to the definition of radioactive mixed wastes (RMW). The radioactive and hazardous properties of these wastes have resulted in the initiation of special projects for the management of these wastes. Other solid wastes at the Hanford Site include low-level wastes, transuranic (TRU), and nonradioactive hazardous wastes. This paper describes a system for the treatment, storage, and disposal (TSD) of solid radioactive waste.

  2. Study of kinetics of a PGNAA system for nondestructive characterization of mixed waste

    SciTech Connect

    Petrovic, B.; Haghighat, A.; Dulloo, A.; Congedo, T.V.

    1999-09-01

    Pulsed gamma neutron activation analysis (PGNAA) is a promising method for accurate nondestructive assaying of heavy metals (Cd, Hg, Pb) in mixed waste. A laboratory PGNAA system was developed by the Westinghouse Science and Technology Center (WSTC). The system proved to be very successful in a blind-test performance evaluation study, by the US Department of Energy (DOE) and the Idaho National Engineering and Environmental Laboratory, employing 8-gal drums. The DOE is currently supporting development of a commercial system for characterization of 55-gal drummed mixed waste through joint efforts of the Penn State Transport theory Group (PSTTG), WSTC, and Canberra. A transport theory methodology was established by PSTTG for accurate simulations of such systems. These simulations will be used in support of the design of the full-size system for assaying 55-gal drums and to optimize system performance. Herein the authors introduce the methodology, present results of simulations, and discuss neutron kinetics and its impact on the system performance.

  3. Greater-than-Class C low-level radioactive waste characterization. Appendix E-2: Mixed GTCC LLW assessment

    SciTech Connect

    Kirner, N.P.

    1994-09-01

    Mixed greater-than-Class C low-level radioactive waste (mixed GTCC LLW) is waste that combines two characteristics: it is radioactive, and it is hazardous. This report uses information compiled from Greater-Than-Class C Low-Level Radioactive Waste Characterization: Estimated Volumes, Radionuclide Activities, and Other Characteristics (DOE/LLW 1 14, Revision 1), and applies it to the question of how much and what types of mixed GTCC LLW are generated and are likely to require disposal in facilities jointly regulated by the DOE and the NRC. The report describes how to classify a RCRA hazardous waste, and then applies that classification process to the 41 GTCC LLW waste types identified in the DOE/LLW-114 (Revision 1). Of the 41 GTCC LLW categories identified, only six were identified in this study as potentially requiring regulation as hazardous waste under RCRA. These wastes can be combined into the following three groups: fuel-in decontamination resins, organic liquids, and process waste consisting of lead scrap/shielding from a sealed source manufacturer. For the base case, no mixed GTCC LLW is expected from nuclear utilities or sealed source licensees, whereas only 177 ml of mixed GTCC LLW are expected to be produced by other generators through the year 2035. This relatively small volume represents approximately 40% of the base case estimate for GTCC wastes from other generators. For these other generators, volume estimates for mixed GTCC LLW ranged from less than 1 m{sup 3} to 187 m{sup 3}, depending on assumptions and treatments applied to the wastes.

  4. Protable Analyzer Based on Microfluidic/Nanoengineered electrochemical Sensors for in Situ Characterization of Mixed Wastes

    SciTech Connect

    Joseph Wang, PhD

    2007-11-30

    This project aimed on the development of compact microchip sensing devices for on-site monitoring of pollutants in contaminated DOE sites. As described in this report, we have made a substantial progress, and introduced effective routes for improving the on-site detection of toxic metals and for interfacing microfluidic (Lab-on-Chip) sensing devices with the real world. This activity has been very productive and has already been described in 12 research papers (published in major international journals). The resulting microchip sensor technology should allow testing for toxic metals and other major pollutants to be performed more rapidly, inexpensively, and reliably in a field setting. These new analytical capabilities resulted from the generous DOE support will facilitate the characterization and remediation of mixed waste contaminated sites.

  5. Assessing mixed waste treatment technologies

    SciTech Connect

    Berry, J.B.; Bloom, G.A.; Hart, P.W.

    1994-06-01

    The US Department of Energy (DOE) is responsible for the management and treatment of its mixed low-level wastes (MLLW). As discussed earlier in this conference MLLW are regulated under both the Resource Conservation and Recovery Act and various DOE orders. During the next 5 years, DOE will manage over 1,200,000 m{sup 3} of MLLW and mixed transuranic (MTRU) waste at 50 sites in 22 states (see Table 1). The difference between MLLW and MTRU waste is in the concentration of elements that have a higher atomic weight than uranium. Nearly all of this waste will be located at 13 sites. More than 1400 individual mixed waste streams exist with different chemical and physical matrices containing a wide range of both hazardous and radioactive contaminants. Their containment and packaging vary widely (e.g., drums, bins, boxes, and buried waste). This heterogeneity in both packaging and waste stream constituents makes characterization difficult, which results in costly sampling and analytical procedures and increased risk to workers.

  6. Overview of robotics for Mixed Waste Operations

    SciTech Connect

    Ward, C.R.

    1994-02-01

    The Mixed Waste Operations Robotics program is developing robotics technology to make the handling and treatment of Department of Energy mixed waste; better, faster, safer and cheaper. This technology will provide remote operations and not require humans to be in contact with this radioactive and hazardous waste. The technology includes remote handling and opening of waste containers, remote removal of waste from the containers, remote characterization and sorting of the waste, and remote treatment and disposition of the waste. The initial technology development program culminated in an integrated demonstration in November 1993 and each aspect of this technology is described.

  7. Characterization of plastic blends made from mixed plastics waste of different sources.

    PubMed

    Turku, Irina; Kärki, Timo; Rinne, Kimmo; Puurtinen, Ari

    2017-02-01

    This paper studies the recyclability of construction and household plastic waste collected from local landfills. Samples were processed from mixed plastic waste by injection moulding. In addition, blends of pure plastics, polypropylene and polyethylene were processed as a reference set. Reference samples with known plastic ratio were used as the calibration set for quantitative analysis of plastic fractions in recycled blends. The samples were tested for the tensile properties; scanning electron microscope-energy-dispersive X-ray spectroscopy was used for elemental analysis of the blend surfaces and Fourier transform infrared (FTIR) analysis was used for the quantification of plastics contents.

  8. Spectroscopic characterization of digestates obtained from sludge mixed to increasing amounts of fruit and vegetable wastes

    NASA Astrophysics Data System (ADS)

    Provenzano, Maria Rosaria; Cavallo, Ornella; Malerba, Anna Daniela; Di Maria, Francesco; Ricci, Anna; Gigliotti, Giovanni

    2015-04-01

    Anaerobic digestion (AD) represents an efficient waste-treatment technology during which microorganisms break down biodegradable material in absence of oxygen yielding a biogas containing methane. The aim of this work was to investigate the transformations occurring in the organic matter during the co-digestion of waste mixed sludge (WMS) with an increasing amount of fruit and vegetable wastes (FVW) in a pilot scale apparatus reproducing a full-scale digester in an existing wastewater treatment plant. Samples comprised: sludge, FVW, sludge mixed with 10-20-30-40% FVW. Ingestates and digestates were analyzed by means of emission fluorescence spectroscopy and FTIR associated to Fourier self deconvolution (FSD) of spectra. With increasing the amount of FVW from 10% to 20% at which percentage biogas production reached the maximum value, FTIR spectra and FSD traces of digestates exhibited a decrease of intensity of peaks assigned to polysaccharides and aliphatics and an increase of peak assigned to aromatics as a result of the biodegradation of rapidly degradable materials and concentration of aromatic recalcitrant compounds. Digestates with 30 and 40% FVW exhibited a relative increase of intensity of peaks assigned to aliphatics likely as a result of the increasing amount of rapidly degradable materials and the consequent reduction of the hydraulic retention time. This may cause inhibition of methanogenesis and accumulation of volatile fatty acids. The highest emission fluorescence intensity was observed for the digestate with 20% FVW confirming the concentration of aromatic recalcitrant compounds in the substrate obtained at the highest biogas production.

  9. Portable Analyzer Based on Microfluidics/Nanoengineered Electrochemical Sensors for In-situ Characterization of Mixed Wastes

    SciTech Connect

    Yuehe Lin; Glen E. Fryxell; Wassana Yantasee; Guodong Liu; Zheming Wang

    2006-06-01

    Required characterizations of the DOE's transuranic (TRU) and mixed wastes (MW) before disposing and treatment of the wastes are currently costly and have lengthy turnaround. Research toward developing faster and more sensitive characterization and analysis tools to reduce costs and accelerate throughputs is therefore desirable. This project is aimed at the development of electrochemical sensors, specific to toxic transition metals, uranium, and technetium, that can be integrated into the portable sensor systems. This system development will include fabrication and performance evaluation of electrodes as well as understanding of electrochemically active sites on the electrodes specifically designed for toxic metals, uranium and technetium detection. Subsequently, these advanced measurement units will be incorporated into a microfluidic prototype specifically designed and fabricated for field-deployable characterizations of such species.

  10. Robotics for mixed waste operations, demonstration description

    SciTech Connect

    Ward, C.R.

    1993-11-01

    The Department of Energy (DOE) Office of Technology Development (OTD) is developing technology to aid in the cleanup of DOE sites. Included in the OTD program are the Robotics Technology Development Program and the Mixed Waste Integrated Program. These two programs are working together to provide technology for the cleanup of mixed waste, which is waste that has both radioactive and hazardous constituents. There are over 240,000 cubic meters of mixed low level waste accumulated at DOE sites and the cleanup is expected to generate about 900,000 cubic meters of mixed low level waste over the next five years. This waste must be monitored during storage and then treated and disposed of in a cost effective manner acceptable to regulators and the states involved. The Robotics Technology Development Program is developing robotics technology to make these tasks safer, better, faster and cheaper through the Mixed Waste Operations team. This technology will also apply to treatment of transuranic waste. The demonstration at the Savannah River Site on November 2-4, 1993, showed the progress of this technology by DOE, universities and industry over the previous year. Robotics technology for the handling, characterization and treatment of mixed waste as well robotics technology for monitoring of stored waste was demonstrated. It was shown that robotics technology can make future waste storage and waste treatment facilities better, faster, safer and cheaper.

  11. Mixed Waste Working Group report

    SciTech Connect

    Not Available

    1993-11-09

    The treatment of mixed waste remains one of this country`s most vexing environmental problems. Mixed waste is the combination of radioactive waste and hazardous waste, as defined by the Resource Conservation and Recovery Act (RCRA). The Department of Energy (DOE), as the country`s largest mixed waste generator, responsible for 95 percent of the Nation`s mixed waste volume, is now required to address a strict set of milestones under the Federal Facility Compliance Act of 1992. DOE`s earlier failure to adequately address the storage and treatment issues associated with mixed waste has led to a significant backlog of temporarily stored waste, significant quantities of buried waste, limited permanent disposal options, and inadequate treatment solutions. Between May and November of 1993, the Mixed Waste Working Group brought together stakeholders from around the Nation. Scientists, citizens, entrepreneurs, and bureaucrats convened in a series of forums to chart a course for accelerated testing of innovative mixed waste technologies. For the first time, a wide range of stakeholders were asked to examine new technologies that, if given the chance to be tested and evaluated, offer the prospect for better, safer, cheaper, and faster solutions to the mixed waste problem. In a matter of months, the Working Group has managed to bridge a gap between science and perception, engineer and citizen, and has developed a shared program for testing new technologies.

  12. Portable Analyzer Based on Microfluidics/Nanoengineered Electrochemical Sensors for In-situ Characterization of Mixed Wastes

    SciTech Connect

    Lin, Yuehe; Wang, Joseph

    2004-06-01

    Required characterizations of the DOE's transuranic (TRU) and mixed wastes (MW) before disposing and treatment of the wastes are currently costly and have lengthy turnaround. Research toward developing faster and more sensitive characterization and analysis tools to reduce costs and accelerate throughputs is therefore desirable. This project is aimed at the development of electrochemical sensors, specific to toxic transition metals, uranium, and technetium, that can be integrated into the portable sensor systems. This system development will include fabrication and performance evaluation of electrodes as well as understanding of electrochemically active sites on the electrodes specifically designed for toxic metals, uranium and technetium detection. Subsequently, these advanced measurement units will be incorporated into a microfluidic prototype specifically designed and fabricated for field-deployable characterizations of such species. The electrochemical sensors being invest igated are based on a new class of nanoengineered sorbents, Self-Assembled Monolayer on Mesoporous Supports (SAMMS). SAMMS are highly efficient sorbents due to their interfacial chemistry that can be fine-tuned to selectively sequester a specific target species. Adsorptive stripping voltammetry (AdSV) will be performed on two classes of electrodes: the SAMMS modified carbon paste electrodes, and the SAMMS thin film immobilized on microelectrode arrays. Interfacial chemistry and electrochemistry of metal species on the surfaces of SAMMS-based electrodes will be studied. This fundamental knowledge is required for predicting how the sensors will perform in the real wastes which consist of many interferences/ligands and a spectrum of pH levels. The best electrode for each specific waste constituent will be integrated onto the portable microfluidic platform. Efforts will also be focused on testing the portable microfluidics/electrochemical sensor systems with the selected MW and T RU waste samples

  13. Waste Characterization Methods

    SciTech Connect

    Vigil-Holterman, Luciana R.; Naranjo, Felicia Danielle

    2016-02-02

    This report discusses ways to classify waste as outlined by LANL. Waste Generators must make a waste determination and characterize regulated waste by appropriate analytical testing or use of acceptable knowledge (AK). Use of AK for characterization requires several source documents. Waste characterization documentation must be accurate, sufficient, and current (i.e., updated); relevant and traceable to the waste stream’s generation, characterization, and management; and not merely a list of information sources.

  14. The mixed waste landfill integrated demonstration

    SciTech Connect

    Burford, T.D.; Williams, C.V.

    1994-05-01

    The Mixed Waste Landfill Integrated Demonstration (MWLID) focuses on ``in-situ`` characterization, monitoring, remediation, and containment of landfills in arid environments that contain hazardous and mixed waste. The MWLID mission is to assess, demonstrate, and transfer technologies and systems that lead to faster, better, cheaper, and safer cleanup. Most important, the demonstrated technologies will be evaluated against the baseline of conventional technologies and systems. The comparison will include the cost, efficiency, risk, and feasibility of using these innovative technologies at other sites.

  15. TTP AL921102: An integrated geophysics program for non-intrusive characterization of mixed-Waste landfill sites. Final report

    SciTech Connect

    Hasbrouck, J.C.

    1993-09-01

    This Technical Task conducted for the US Department of Energy Office of Technology Development demonstrates the effectiveness of integrating several surface geophysical techniques to nonintrusively characterize mixed-waste landfill sites. An integrated approach enables an area to be characterized faster and cheaper because repeated access is not necessary and offers data and interpretations not attainable by a single technique. Field demonstrations using the complex galvanic resistivity, spontaneous potential (SP), ground-penetrating radar (GPR), time-domain electromagnetic (TDEM), shear-wave (S-wave) seismic and compressional-wave (P-wave) seismic geophysical techniques were conducted at the Mixed-Waste Landfill Integrated Demonstration (MWLID) test site at the Sandia National Laboratories/New Mexico in Albuquerque. Data were acquired in two areas that have both known and unknown attributes. Although data from numerous profiles were analyzed, three lines were chosen as representative of the landfill site: Line 20E that crosses both the known Chromic Acid and Organics Pits, Line 60E that transectes an essentially barren area, and Line 125E located in an area with unknown subsurface conditions.

  16. Mixed Waste Focus Area -- Waste form initiative

    SciTech Connect

    Nakaoka, R.; Waters, R.; Pohl, P.; Roach, J.

    1998-07-01

    The mission of the US Department of Energy`s (DOE) Mixed Waste Focus Area (MWFA) is to provide acceptable technologies that enable implementation of mixed waste treatment systems which are developed in partnership with end-users, stakeholders, tribal governments, and regulators. To accomplish this mission, a technical baseline was established in 1996 and revised in 1997. The technical baseline forms the basis for determining which technology development activities will be supported by the MWFA. The primary attribute of the technical baseline is a set of prioritized technical deficiencies or roadblocks related to implementation of mixed waste treatment systems. The Waste Form Initiative (WFI) was established to address an identified technical deficiency related to waste form performance. The primary goal of the WFI was to ensure that the mixed low-level waste (MLLW) treatment technologies being developed, currently used, or planned for use by DOE would produce final waste forms that meet the waste acceptance criteria (WAC) of the existing and/or planned MLLW disposal facilities. The WFI was limited to an evaluation of the disposal requirements for the radioactive component of MLLW. Disposal requirements for the hazardous component are dictated by the Resource Conservation and Recovery Act (RCRA), and were not addressed. This paper summarizes the technical basis, strategy, and results of the activities performed as part of the WFI.

  17. Mixed Waste Landfill Integrated Demonstration; Technology summary

    SciTech Connect

    1994-02-01

    The mission of the Mixed Waste Landfill Integrated Demonstration (MWLID) is to demonstrate, in contaminated sites, new technologies for clean-up of chemical and mixed waste landfills that are representative of many sites throughout the DOE Complex and the nation. When implemented, these new technologies promise to characterize and remediate the contaminated landfill sites across the country that resulted from past waste disposal practices. Characterization and remediation technologies are aimed at making clean-up less expensive, safer, and more effective than current techniques. This will be done by emphasizing in-situ technologies. Most important, MWLID`s success will be shared with other Federal, state, and local governments, and private companies that face the important task of waste site remediation. MWLID will demonstrate technologies at two existing landfills. Sandia National Laboratories` Chemical Waste Landfill received hazardous (chemical) waste from the Laboratory from 1962 to 1985, and the Mixed-Waste Landfill received hazardous and radioactive wastes (mixed wastes) over a twenty-nine year period (1959-1988) from various Sandia nuclear research programs. Both landfills are now closed. Originally, however, the sites were selected because of Albuquerque`s and climate and the thick layer of alluvial deposits that overlay groundwater approximately 480 feet below the landfills. This thick layer of ``dry`` soils, gravel, and clays promised to be a natural barrier between the landfills and groundwater.

  18. Vitrification of M-Area Mixed (Hazardous and Radioactive) F006 Wastes: I. Sludge and Supernate Characterization

    SciTech Connect

    Jantzen, C.M.

    2001-10-05

    Technologies are being developed by the US Department of Energy's (DOE) Nuclear Facility sites to convert low-level and mixed (hazardous and radioactive) wastes to a solid stabilized waste form for permanent disposal. One of the alternative technologies is vitrification into a borosilicate glass waste form. The Environmental Protection Agency (EPA) has declared vitrification the Best Demonstrated Available Technology (BDAT) for high-level radioactive mixed waste and produced a Handbook of Vitrification Technologies for Treatment of Hazardous and Radioactive Waste. The DOE Office of Technology Development (OTD) has taken the position that mixed waste needs to be stabilized to the highest level reasonably possible to ensure that the resulting waste forms will meet both current and future regulatory specifications. Stabilization of low level and hazardous wastes in glass are in accord with the 1988 Savannah River Technology Center (SRTC), then the Savannah River Laboratory (SRL), Professional Planning Committee (PPC) recommendation that high nitrate containing (low-level) wastes be incorporated into a low temperature glass (via a sol-gel technology). The investigation into this new technology was considered timely because of the potential for large waste volume reduction compared to solidification into cement.

  19. Remote characterization of mixed waste by infrared spectroscopy: Fiscal year 1995 report

    SciTech Connect

    Rebagay, T.V.; Reich, F.R.; Dodd, D.A.; Lopez, T.; Watts, J.K.; Cash, R.J.

    1995-09-01

    This report summarizes development work completed in FY 1995 on near-infrared (NIR) and Fourier Transform Infrared (FTIR) spectroscopy of determining the moisture content and solid species present in Hanford Site high-level waste. In prior fiscal years, the main emphasis was on identification of cyanide species that might be present in the ferrocyanide waste tanks, but the present thrust has been more focused on determining the moisture content of the waste. If sufficient moisture is present in the waste, propagating reactions in reactive waste are precluded, regardless of its fuel content. A prototype hot cell NIR moisture probe is now ready for hot cell deployment to sense moisture contents and homogeneity in tank waste samples

  20. Bear Creek Valley characterization area mixed wastes passive in situ treatment technology demonstration project - status report

    SciTech Connect

    Watson, D.; Leavitt, M.; Moss, D.

    1997-03-01

    Historical waste disposal activities within the Bear Creek Valley (BCV) Characterization Area (CA), at the U.S. Department of Energy (DOE) Oak Ridge Y-12 plant, have contaminated groundwater and surface water above human health risk levels and impacted the ecology of Bear Creek. Contaminates include nitrate, radioisotopes, metals, volatile organic chemicals (VOCS), and common ions. This paper provides a status report on a technology demonstration project that is investigating the feasibility of using passive in situ treatment systems to remove these contaminants. Although this technology may be applicable to many locations at the Oak Ridge Y-12 Plant, the project focuses on collecting the information needed to take CERCLA removal actions in 1998 at the S-3 Disposal Ponds site. Phase 1 has been completed and included site characterization, laboratory screening of treatment media (sorbents; and iron), and limited field testing of biological treatment systems. Batch tests using different Y-12 Plant waters were conducted to evaluate the removal efficiencies of most of the media. Phase 1 results suggest that the most promising treatment media are Dowex 21 k resin, peat moss, zero-valent iron, and iron oxides. Phase 2 will include in-field column testing of these media to assess loading rates, and concerns with clogging, by-products, and long-term treatment efficiency and media stability. Continued testing of wetlands and algal mats (MATs) will be conducted to determine if they can be used for in-stream polishing of surface water. Hydraulic testing of a shallow trench and horizontal well will also be completed during Phase 2. 4 refs., 3 tabs.

  1. National Institutes of Health: Mixed waste minimization and treatment

    SciTech Connect

    1995-08-01

    The Appalachian States Low-Level Radioactive Waste Commission requested the US Department of Energy`s National Low-Level Waste Management Program (NLLWMP) to assist the biomedical community in becoming more knowledgeable about its mixed waste streams, to help minimize the mixed waste stream generated by the biomedical community, and to identify applicable treatment technologies for these mixed waste streams. As the first step in the waste minimization process, liquid low-level radioactive mixed waste (LLMW) streams generated at the National Institutes of Health (NIH) were characterized and combined into similar process categories. This report identifies possible waste minimization and treatment approaches for the LLMW generated by the biomedical community identified in DOE/LLW-208. In development of the report, on site meetings were conducted with NIH personnel responsible for generating each category of waste identified as lacking disposal options. Based on the meetings and general waste minimization guidelines, potential waste minimization options were identified.

  2. Mixed and Low-Level Treatment Facility Project. Appendix B, Waste stream engineering files, Part 1, Mixed waste streams

    SciTech Connect

    Not Available

    1992-04-01

    This appendix contains the mixed and low-level waste engineering design files (EDFS) documenting each low-level and mixed waste stream investigated during preengineering studies for Mixed and Low-Level Waste Treatment Facility Project. The EDFs provide background information on mixed and low-level waste generated at the Idaho National Engineering Laboratory. They identify, characterize, and provide treatment strategies for the waste streams. Mixed waste is waste containing both radioactive and hazardous components as defined by the Atomic Energy Act and the Resource Conservation and Recovery Act, respectively. Low-level waste is waste that contains radioactivity and is not classified as high-level waste, transuranic waste, spent nuclear fuel, or 11e(2) byproduct material as defined by DOE 5820.2A. Test specimens of fissionable material irradiated for research and development only, and not for the production of power or plutonium, may be classified as low-level waste, provided the concentration of transuranic is less than 100 nCi/g. This appendix is a tool that clarifies presentation format for the EDFS. The EDFs contain waste stream characterization data and potential treatment strategies that will facilitate system tradeoff studies and conceptual design development. A total of 43 mixed waste and 55 low-level waste EDFs are provided.

  3. Mixed waste focus area alternative technologies workshop

    SciTech Connect

    Borduin, L.C.; Palmer, B.A.; Pendergrass, J.A.

    1995-05-24

    This report documents the Mixed Waste Focus Area (MWFA)-sponsored Alternative Technology Workshop held in Salt Lake City, Utah, from January 24--27, 1995. The primary workshop goal was identifying potential applications for emerging technologies within the Options Analysis Team (OAT) ``wise`` configuration. Consistent with the scope of the OAT analysis, the review was limited to the Mixed Low-Level Waste (MLLW) fraction of DOE`s mixed waste inventory. The Los Alamos team prepared workshop materials (databases and compilations) to be used as bases for participant review and recommendations. These materials derived from the Mixed Waste Inventory Report (MWIR) data base (May 1994), the Draft Site Treatment Plan (DSTP) data base, and the OAT treatment facility configuration of December 7, 1994. In reviewing workshop results, the reader should note several caveats regarding data limitations. Link-up of the MWIR and DSTP data bases, while representing the most comprehensive array of mixed waste information available at the time of the workshop, requires additional data to completely characterize all waste streams. A number of changes in waste identification (new and redefined streams) occurred during the interval from compilation of the data base to compilation of the DSTP data base with the end result that precise identification of radiological and contaminant characteristics was not possible for these streams. To a degree, these shortcomings compromise the workshop results; however, the preponderance of waste data was linked adequately, and therefore, these analyses should provide useful insight into potential applications of alternative technologies to DOE MLLW treatment facilities.

  4. Low-level radioactive waste, mixed low-level radioactive waste, and biomedical mixed waste

    SciTech Connect

    1994-12-31

    This document describes the proceedings of a workshop entitled: Low-Level Radioactive Waste, Mixed Low-Level Radioactive Waste, and Biomedical Mixed Waste presented by the National Low-Level Waste Management Program at the University of Florida, October 17-19, 1994. The topics covered during the workshop include technical data and practical information regarding the generation, handling, storage and disposal of low-level radioactive and mixed wastes. A description of low-level radioactive waste activities in the United States and the regional compacts is presented.

  5. Mixed waste minimization in a research environment

    SciTech Connect

    Kirner, N.

    1994-12-31

    This presentation describes minimization efforts and processes for mixed waste generated by research facilities. Waste stream assessment and treatment, and database management for various research-related waste streams is detailed.

  6. DOE-EMSP Project Report FY 04: Portable Analyzer Based on Microfluidics/Nanoengineered Electrochemical Sensors for In-situ Characterization of Mixed Wastes

    SciTech Connect

    Lin, Yuehe; Yantasee, Wassana; Fryxell, Glen E.; Wang, Zheming; Wang, Joseph

    2004-11-02

    Required characterizations of the DOE's transuranic (TRU) and mixed wastes (MW) before disposing and treatment of the wastes are currently costly and have lengthy turnaround. Research toward developing faster and more sensitive characterization and analysis tools to reduce costs and accelerate throughputs is therefore desirable. This project is aimed at the development of electrochemical sensors, specific to toxic transition metals, uranium, and technetium, that can be integrated into the portable sensor systems. This system development will include fabrication and performance evaluation of electrodes as well as understanding of electrochemically active sites on the electrodes specifically designed for toxic metals, uranium and technetium detection. Subsequently, these advanced measurement units will be incorporated into a microfluidic prototype specifically designed and fabricated for field-deployable characterizations of such species. The electrochemical sensors being investigate d are based on a new class of nanoengineered sorbents, Self-Assembled Monolayer on Mesoporous Supports (SAMMS). SAMMS are highly efficient sorbents due to their interfacial chemistry that can be fine-tuned to selectively sequester a specific target species. Adsorptive stripping voltammetry (AdSV) will be performed on two classes of electrodes: the SAMMS modified carbon paste electrodes, and the SAMMS thin film immobilized on microelectrode arrays. Interfacial chemistry and electrochemistry of metal species on the surfaces of SAMMS-based electrodes will be studied. This fundamental knowledge is required for predicting how the sensors will perform in the real wastes which consist of many interferences/ligands and a spectrum of pH levels. The best electrode for each specific waste constituent will be integrated onto the portable microfluidic platform. Efforts will also be focused on testing the portable microfluidics/electrochemical sensor systems with the selected MW and TRU waste samples

  7. Remote waste handling and feed preparation for Mixed Waste Management

    SciTech Connect

    Couture, S.A.; Merrill, R.D.; Densley, P.J.

    1995-05-01

    The Mixed Waste Management Facility (MWMF) at the Lawrence Livermore National Laboratory (LLNL) will serve as a national testbed to demonstrate mature mixed waste handling and treatment technologies in a complete front-end to back-end --facility (1). Remote operations, modular processing units and telerobotics for initial waste characterization, sorting and feed preparation have been demonstrated at the bench scale and have been selected for demonstration in MWMF. The goal of the Feed Preparation design team was to design and deploy a robust system that meets the initial waste preparation flexibility and productivity needs while providing a smooth upgrade path to incorporate technology advances as they occur. The selection of telerobotics for remote handling in MWMF was made based on a number of factors -- personnel protection, waste generation, maturity, cost, flexibility and extendibility. Modular processing units were selected to enable processing flexibility and facilitate reconfiguration as new treatment processes or waste streams are brought on line for demonstration. Modularity will be achieved through standard interfaces for mechanical attachment as well as process utilities, feeds and effluents. This will facilitate reconfiguration of contaminated systems without drilling, cutting or welding of contaminated materials and with a minimum of operator contact. Modular interfaces also provide a standard connection and disconnection method that can be engineered to allow convenient remote operation.

  8. Hanford Site annual dangerous waste report: Volume 4, Waste Management Facility report, Radioactive mixed waste

    SciTech Connect

    1994-12-31

    This report contains information on radioactive mixed wastes at the Hanford Site. Information consists of shipment date, physical state, chemical nature, waste description, handling method and containment vessel, waste number, waste designation and amount of waste.

  9. Hanford Site annual dangerous waste report: Volume 2, Generator dangerous waste report, radioactive mixed waste

    SciTech Connect

    1994-12-31

    This report contains information on radioactive mixed wastes at the Hanford Site. Information consists of shipment date, physical state, chemical nature, waste description, waste number, waste designation, weight, and waste designation.

  10. Treatment methods for radioactive mixed wastes in commercial low-level wastes: technical considerations

    SciTech Connect

    MacKenzie, D.R.; Kempf, C.R.

    1986-01-01

    Treatment options for the management of three generic categories of radioactive mixed waste in commercial low-level wastes (LLW) have been identified and evaluated. These wastes were characterized as part of a BNL study in which LLW generators were surveyed for information on potential chemical hazards in their wastes. The general treatment options available for mixed wastes are destruction, immobilization, and reclamation. Solidification, absorption, incineration, acid digestion, wet-air oxidation, distillation, liquid-liquid wastes. Containment, segregation, decontamination, and solidification or containment of residues, have been considered for lead metal wastes which have themselves been contaminated and are not used for purposes of waste disposal shielding, packaging, or containment. For chromium-containing wastes, solidification, incineration, wet-air oxidation, acid digestion, and containment have been considered. For each of these wastes, the management option evaluation has included an assessment of testing appropriate to determine the effect of the option on both the radiological and potential chemical hazards present.

  11. Requirements for shipment of DOE radioactive mixed waste

    SciTech Connect

    Gablin, K.; No, Hyo; Herman, J.

    1993-08-01

    There are several sources of radioactive mixed waste (RMW) at Argonne National Laboratory which, in the past, were collected at waste tanks and/or sludge tanks. They were eventually pumped out by special pumps and processed in an evaporator located in the waste operations area in Building No. 306. Some of this radioactive mixed waste represents pure elementary mercury. These cleaning tanks must be manually cleaned up because the RMW material was too dense to pump with the equipment in use. The four tanks being discussed in this report are located in Building No. 306. They are the Acid Waste Tank, IMOX/FLOC Tanks, Evaporation Feed Tanks, and Waste Storage Tanks. All of these tanks are characterized and handled separately. This paper discusses the process and the requirements for characterization and the associated paperwork for Argonne Waste to be shipped to Westinghouse Hanford Company for storage.

  12. Mercury removal from solid mixed waste

    SciTech Connect

    Gates, D.D.; Morrissey, M.; Chava, K.K.; Chao, K.

    1994-12-31

    The removal of mercury from mixed wastes is an essential step in eliminating the temporary storage of large inventories of mixed waste throughout the Department of Energy (DOE) complex. Currently thermal treatment has been identified as a baseline technology and is being developed as part of the DOE Mixed Waste Integrated Program (MWIP). Since thermal treatment will not be applicable to all mercury containing mixed waste and the removal of mercury prior to thermal treatment may be desirable, laboratory studies have been initiated at Oak Ridge National Laboratory (ORNL) to develop alternative remediation technologies capable of removing mercury from certain mixed waste. This paper describes laboratory investigations of the KI/I{sub 2} leaching processes to determine the applicability of this process to mercury containing solid mixed waste.

  13. Treatment of mixed waste coolant

    SciTech Connect

    Kidd, S.; Bowers, J.S.

    1995-02-01

    The primary processes used at Lawrence Livermore National Laboratory (LLNL) for treatment of radioactively contaminated machine coolants are industrial waste treatment and in situ carbon adsorption. These two processes simplify approaches to meeting the sanitary sewer discharge limits and subsequent Land Disposal Restriction criteria for hazardous and mixed wastes (40 CFR 268). Several relatively simple technologies are used in industrial water treatment. These technologies are considered Best Demonstrated Available Technologies, or BDAT, by the Environmental Protection Agency. The machine coolants are primarily aqueous and contain water soluble oil consisting of ethanol amine emulsifiers derived from fatty acids, both synthetic and natural. This emulsion carries away metal turnings from a part being machined on a lathe or other machining tool. When the coolant becomes spent, it contains chlorosolvents carried over from other cutting operations as well as a fair amount of tramp oil from machine bearings. This results in a multiphasic aqueous waste that requires treatment of metal and organic contaminants. During treatment, any dissolved metals are oxidized with hydrogen peroxide. Once oxidized, these metals are flocculated with ferric sulfate and precipitated with sodium hydroxide, and then the precipitate is filtered through diatomaceous earth. The emulsion is broken up by acidifying the coolant. Solvents and oils are adsorbed using powdered carbon. This carbon is easily separated from the remaining coolant by vacuum filtration.

  14. Treatment of mixed waste coolant

    SciTech Connect

    Kidd, S.; Bowers, J.S.

    1995-09-01

    The primary processes used at Lawrence Livermore National Laboratory (LLNL) for treatment of radioactively contaminated machine coolants are industrial waste treatment and in situ carbon adsorption. These two processes simplify approaches to meetings the sanitary sewer discharge limits and subsequent Land Disposal REstriction criteria for hazardous and mixed wastes (40 CFR 268). Several relatively simple technologies are used in industrial water treatment. These technologies are considered {open_quotes}Best Demonstrated Available Technologies,{close_quotes} or BDAT, by the Environmental Protection Agency. The machine coolants are primarily aqueous and contain water soluble oil consisting of ethanol amine emulsifiers derived from fatty acids, both synthetic and natural. This emulsion carries away metal turnings from a part being machined on a lathe or other machining tool. When the coolant becomes spent, it contains chlorosolvents carried over from other cutting operations as well as a fair amount of tramp oil from machine bearings. This results in a mutiphasic aqueous waste that requires treatment of metal and organic contaminants. During treatment, any dissolved metals are oxidized with hydrogen peroxide. Once oxidized, these metals are flocculated with ferric sulfate and precipitated with sodium hydroxide, and then the precipitate is filtered through diatomaceous earth. The emulsion is broken up by acidifying the coolant. Solvents and oils are adsorbed using powdered carbon. This carbon is easily separated from the remaining coolant by vacuum filtration.

  15. Mixed waste disposal at Argonne National Laboratory-East

    SciTech Connect

    Wescott, J.

    1996-05-01

    Off-site disposal of mixed waste was severely curtailed at the beginning of FY 96. During FY 95 Argonne National Laboratory-East (ANL-E) conducted a comprehensive characterization and packaging project to remove mixed waste from the ANL-E inventory. The mixed wastes were primarily historic material which had been stored on-site since 1987. The waste consisted of solid debris, sludges, ignitable and corrosive liquids, and water-reactive metal. All of the waste was contaminated with varying degrees of radioactivity. The first step in the characterization process was to review available documentation on the waste. Because of the historic nature of the material, most records were incomplete. Using the records as a guide, the waste was divided into groups that could each be sampled according to the physical nature of the material. Worker safety was an important consideration during the sampling phase, therefore, several precautions were taken to prevent spills or cause unnecessary chemical reactions in the material. Characterization activities were either completed entirely by ANL-E technicians or with assistance from specialized contractors. Once characterization of the waste was complete it was packaged for shipment to other DOE facilities for storage and eventual treatment. Because most of the mixed waste treatment systems were not yet operational, waste was packaged to ensure integrity for a long period of time. Fifty-five cubic meters of mixed waste was characterized and packaged during FY 95. Most of this material was sent off-site. However, the remainder was stored in a configuration that will provide better health and safety protection than previously afforded.

  16. The mixed waste management facility

    SciTech Connect

    Streit, R.D.

    1995-10-01

    During FY96, the Mixed Waste Management Facility (MWMF) Project has the following major objectives: (1) Complete Project Preliminary Design Review (PDR). (2) Complete final design (Title II) of MWMF major systems. (3) Coordinate all final interfaces with the Decontamination and Waste Treatment Facility (DWTF) for facility utilities and facility integration. (4) Begin long-lead procurements. (5) Issue Project Baseline Revision 2-Preliminary Design (PB2), modifying previous baselines per DOE-requested budget profiles and cost reduction. Delete Mediated Electrochemical Oxidation (MEO) as a treatment process for initial demonstration. (6) Complete submittal of, and ongoing support for, applications for air permit. (7) Begin detailed planning for start-up, activation, and operational interfaces with the Laboratory`s Hazardous Waste Management Division (HWM). In achieving these objectives during FY96, the Project will incorporate and implement recent DOE directives to maximize the cost savings associated with the DWTF/MWMF integration (initiated in PB1.2); to reduce FY96 new Budget Authority to {approximately}$10M (reduced from FY97 Validation of $15.3M); and to keep Project fiscal year funding requirements largely uniform at {approximately}$10M/yr. A revised Project Baseline (i.e., PB2), to be issued during the second quarter of FY96, will address the implementation and impact of this guidance from an overall Project viewpoint. For FY96, the impact of this guidance is that completion of final design has been delayed relative to previous baselines (resulting from the delay in the completion of preliminary design); ramp-up in staffing has been essentially eliminated; and procurements have been balanced through the Project to help balance budget needs to funding availability.

  17. Experiences with treatment of mixed waste

    SciTech Connect

    Dziewinski, J.; Marczak, S.; Smith, W.H.; Nuttall, E.

    1996-04-10

    During its many years of research activities involving toxic chemicals and radioactive materials, Los Alamos National Laboratory (Los Alamos) has generated considerable amounts of waste. Much of this waste includes chemically hazardous components and radioisotopes. Los Alamos chose to use an electrochemical process for the treatment of many mixed waste components. The electro-chemical process, which the authors are developing, can treat a great variety of waste using one type of equipment built at a moderate expense. Such a process can extract heavy metals, destroy cyanides, dissolve contamination from surfaces, oxidize toxic organic compounds, separate salts into acids and bases, and reduce the nitrates. All this can be accomplished using the equipment and one crew of trained operating personnel. Results of a treatability study of chosen mixed wastes from Los Alamos Mixed Waste Inventory are presented. Using electrochemical methods cyanide and heavy metals bearing wastes were treated to below disposal limits.

  18. Mixed Waste Integrated Program: A technology assessment for mercury-containing mixed wastes

    SciTech Connect

    Perona, J.J.; Brown, C.H.

    1993-03-01

    The treatment of mixed wastes must meet US Environmental Protection Agency (EPA) standards for chemically hazardous species and also must provide adequate control of the radioactive species. The US Department of Energy (DOE) Office of Technology Development established the Mixed Waste Integrated Program (MWIP) to develop mixed-waste treatment technology in support of the Mixed Low-Level Waste Program. Many DOE mixed-waste streams contain mercury. This report is an assessment of current state-of-the-art technologies for mercury separations from solids, liquids, and gases. A total of 19 technologies were assessed. This project is funded through the Chemical-Physical Technology Support Group of the MWIP.

  19. New treatment technologies for mixed waste

    SciTech Connect

    Bloom, G.

    1994-12-31

    This presentation describes new treatment technologies for mixed and low-level radioactive wastes. Several processes are described including mercury removal techniques, steam reforming from aqueous organic wastes, development of plasma treatment systems, waste vitrification and control and recovery of vapor phase mercury in combustion flue gas. Continuous monitoring of mercury, ammonia, acid gases, and volatile organic compounds and a brief description of final waste form development is presented.

  20. Method and apparatus for reducing mixed waste

    DOEpatents

    Elliott, Michael L.; Perez, Jr., Joseph M.; Chapman, Chris C.; Peters, Richard D.

    1995-01-01

    The present invention is a method and apparatus for in-can waste reduction. The method is mixing waste with combustible material prior to placing the waste into a waste reduction vessel. The combustible portion is ignited, thereby reducing combustible material to ash and non-combustible material to a slag. Further combustion or heating may be used to sinter or melt the ash. The apparatus is a waste reduction vessel having receiving canister connection means on a first end, and a waste/combustible mixture inlet on a second end. An oxygen supply is provided to support combustion of the combustible mixture.

  1. Electrochemical treatment of mixed and hazardous waste

    SciTech Connect

    Dziewinski, J.; Marczak, S.; Smith, W.; Nuttall, E.

    1995-12-31

    Los Alamos National Laboratory (LANL) and The University of New Mexico are jointly developing an electrochemical process for treating hazardous and radioactive wastes. The wastes treatable by the process include toxic metal solutions, cyanide solutions, and various organic wastes that may contain chlorinated organic compounds. The main component of the process is a stack of electrolytic cells with peripheral equipment such as a rectifier, feed system, tanks with feed and treated solutions, and a gas-venting system. During the treatment, toxic metals are deposited on the cathode, cyanides are oxidized on the anode, and organic compounds are anodically oxidized by direct or mediated electrooxidation, depending on their type. Bench scale experimental studies have confirmed the feasibility of applying electrochemical systems to processing of a great variety of hazardous and mixed wastes. The operating parameters have been defined for different waste compositions using surrogate wastes. Mixed wastes are currently treated at bench scale as part of the treatability study.

  2. Waste Characterization Process

    SciTech Connect

    Lambert, Patrick E.

    2014-11-01

    The purpose is to provide guidance to the Radiological Characterization Reviewer to complete the radiological characterization of waste items. This information is used for Department of Transportation (DOT) shipping and disposal, typically at the Nevada National Security Site (NNSS). Complete characterization ensures compliance with DOT shipping laws and NNSS Waste Acceptance Criteria (WAC). The fines for noncompliance can be extreme. This does not include possible bad press, and endangerment to the public, employees and the environment. A Radiological Characterization Reviewer has an important role in the organization. The scope is to outline the characterization process, but does not to include every possible situation. The Radiological Characterization Reviewer position requires a strong background in Health Physics; therefore, these concepts are minimally addressed. The characterization process includes many Excel spreadsheets that were developed by Michael Enghauser known as the WCT software suite. New Excel spreadsheets developed as part of this project include the Ra- 226 Decider and the Density Calculator by Jesse Bland, MicroShield Density Calculator and Molecular Weight Calculator by Pat Lambert.

  3. Nondestructive and quantitative characterization of TRU and LLW mixed-waste using active and passive gamma-ray spectrometry and computed tomography

    SciTech Connect

    Camp, D.C.; Martz, H.E.

    1991-11-12

    The technology being proposed by LLNL is an Active and Passive Computed Tomography (A P CT) Drum Scanner for contact-handled (CH) wastes. It combines the advantages offered by two well-developed nondestructive assay technologies: gamma-ray spectrometry and computed tomography (CT). Coupled together, these two technologies offer to nondestructively and quantitatively characterize mixed- wastes forms. Gamma-ray spectroscopy uses one or more external radiation detectors to passively and nondestructively measure the energy spectrum emitted from a closed container. From the resulting spectrum one can identify most radioactivities detected, be they transuranic isotopes, mixed-fission products, activation products or environmental radioactivities. Spectral libraries exist at LLNL for all four. Active (A) or transmission CT is a well-developed, nondestructive medical and industrial technique that uses an external-radiation beam to map regions of varying attenuation within a container. Passive (P) or emission CT is a technique mainly developed for medical application, e.g., single-photon emission CT. Nondestructive industrial uses of PCT are under development and just coming into use. This report discuses work on the A P CT Drum Scanner at LLNL.

  4. Treatability study of absorbent polymer waste form for mixed waste treatment

    SciTech Connect

    Herrmann, S. D.; Lehto, M. A.; Stewart, N. A.; Croft, A. D.; Kern, P. W.

    2000-02-10

    A treatability study was performed to develop and characterize an absorbent polymer waste form for application to low level (LLW) and mixed low level (MLLW) aqueous wastes at Argonne National Laboratory-West (ANL-W). In this study absorbent polymers proved effective at immobilizing aqueous liquid wastes in order to meet Land Disposal Restrictions for subsurface waste disposal. Treatment of aqueous waste with absorbent polymers provides an alternative to liquid waste solidification via high-shear mixing with clays and cements. Significant advantages of absorbent polymer use over clays and cements include ease of operations and waste volume minimization. Absorbent polymers do not require high-shear mixing as do clays and cements. Granulated absorbent polymer is poured into aqueous solutions and forms a gel which passes the paint filter test as a non-liquid. Pouring versus mixing of a solidification agent not only eliminates the need for a mixing station, but also lessens exposure to personnel and the potential for spread of contamination from treatment of radioactive wastes. Waste minimization is achieved as significantly less mass addition and volume increase is required of and results from absorbent polymer use than that of clays and cements. Operational ease and waste minimization translate into overall cost savings for LLW and MLLW treatment.

  5. Certification Plan, Radioactive Mixed Waste Hazardous Waste Handling Facility

    SciTech Connect

    Albert, R.

    1992-06-30

    The purpose of this plan is to describe the organization and methodology for the certification of radioactive mixed waste (RMW) handled in the Hazardous Waste Handling Facility at Lawrence Berkeley Laboratory (LBL). RMW is low-level radioactive waste (LLW) or transuranic (TRU) waste that is co-contaminated with dangerous waste as defined in the Westinghouse Hanford Company (WHC) Solid Waste Acceptance Criteria (WAC) and the Washington State Dangerous Waste Regulations, 173-303-040 (18). This waste is to be transferred to the Hanford Site Central Waste Complex and Burial Grounds in Hanford, Washington. This plan incorporates the applicable elements of waste reduction, which include both up-front minimization and end-product treatment to reduce the volume and toxicity of the waste; segregation of the waste as it applies to certification; an executive summary of the Waste Management Quality Assurance Implementing Management Plan (QAIMP) for the HWHF (Section 4); and a list of the current and planned implementing procedures used in waste certification.

  6. Vitrification of hazardous and mixed wastes

    SciTech Connect

    Jantzen, C.M.; Pickett, J.B.; Ramsey, W.G.

    1992-10-01

    Solidification of hazardous/mixed wastes into glass is being examined at the Savannah River Site. The first hazardous/mixed wastes glassified at SRS have been (1) incinerator and (2) nickel plating line (F006) wastes. Solidification of incinerator blowdown and mixtures of incinerator blowdown and incinerator bottom kiln ash have been achieved in Soda (Na{sub 2}O) - Lime (CaO) - Silica (SiO{sub 2}) glass (SLS) at waste loadings of up to 50 wt%. Solidification of nickel-plating line waste sludges containing depleted uranium have also been achieved in both SLS and borosilicate glasses at waste loadings of 75 wt%. This corresponds to volume reductions of 97% and 81%, respectively. Further studies will examine glassification of: ion exchange zeolites, inorganic filter media, asbestos, glass fiber filters, contaminated soil, cementitious, or other materials in need of remediation.

  7. Vitrification of hazardous and mixed wastes

    SciTech Connect

    Jantzen, C.M.; Pickett, J.B. ); Ramsey, W.G. . Dept. of Ceramic Engineering)

    1992-01-01

    Solidification of hazardous/mixed wastes into glass is being examined at the Savannah River Site. The first hazardous/mixed wastes glassified at SRS have been (1) incinerator and (2) nickel plating line (F006) wastes. Solidification of incinerator blowdown and mixtures of incinerator blowdown and incinerator bottom kiln ash have been achieved in Soda (Na[sub 2]O) - Lime (CaO) - Silica (SiO[sub 2]) glass (SLS) at waste loadings of up to 50 wt%. Solidification of nickel-plating line waste sludges containing depleted uranium have also been achieved in both SLS and borosilicate glasses at waste loadings of 75 wt%. This corresponds to volume reductions of 97% and 81%, respectively. Further studies will examine glassification of: ion exchange zeolites, inorganic filter media, asbestos, glass fiber filters, contaminated soil, cementitious, or other materials in need of remediation.

  8. DOE mixed waste treatment capacity analysis

    SciTech Connect

    Ross, W.A.; Wehrman, R.R.; Young, J.R.; Shaver, S.R.

    1994-06-01

    This initial DOE-wide analysis compares the reported national capacity for treatment of mixed wastes with the calculated need for treatment capacity based on both a full treatment of mixed low-level and transuranic wastes to the Land Disposal Restrictions and on treatment of transuranic wastes to the WIPP waste acceptance criteria. The status of treatment capacity is reported based on a fifty-element matrix of radiation-handling requirements and functional treatment technology categories. The report defines the classifications for the assessment, describes the models used for the calculations, provides results from the analysis, and includes appendices of the waste treatment facilities data and the waste stream data used in the analysis.

  9. Transportable vitrification system demonstration on mixed waste. Revision 1

    SciTech Connect

    Zamecnik, J.R.; Whitehouse, J.C.; Wilson, C.N.; Van Ryn, F.R.

    1998-04-22

    The Transportable Vitrification System (TVS) is a large scale, fully integrated, vitrification system for the treatment of low-level and mixed wastes in the form of sludges, soils, incinerator ash, and many other waste streams. It was demonstrated on surrogate waste at Clemson University and at the Oak Ridge Reservation (ORR) prior to treating actual mixed waste. Treatment of a combination of dried B and C Pond sludge and CNF sludge was successfully demonstrated at ORR in 1997. The demonstration produced 7,616 kg of glass from 7,328 kg of mixed wastes with a 60% reduction in volume. Glass formulations for the wastes treated were developed using a combination of laboratory crucible studies with the actual wastes and small melter studies at Clemson with both surrogate and actual wastes. Initial characterization of the B and C Pond sludge had not shown the presence of carbon or fluoride, which required a modified glass formulation be developed to maintain proper glass redox and viscosity. The CNF sludge challenges the glass formulations due to high levels of phosphate and iron. The demonstration was delayed several times by permitting problems, a glass leak, and electrical problems. The demonstration showed that the two wastes could be successfully vitrified, although the design glass production rate was not achieved. The glass produced met the Universal Treatment Standards and the emissions from the TVS were well within the allowable permit limits.

  10. An Effective Waste Management Process for Segregation and Disposal of Legacy Mixed Waste at Sandia National Laboratories/New Mexico

    SciTech Connect

    Hallman, Anne K.; Meyer, Dann; Rellergert, Carla A.; Schriner, Joseph A.

    1998-06-01

    Sandia National Laboratories/New Mexico (SNL/NM) is a research and development facility that generates many highly diverse, low-volume mixed waste streams. Under the Federal Facility Compliance Act, SNL/NM must treat its mixed waste in storage to meet the Land Disposal Restrictions treatment standards. Since 1989, approximately 70 cubic meters (2500 cubic feet) of heterogeneous, poorly characterized and inventoried mixed waste was placed in storage that could not be treated as specified in the SNL/NM Site Treatment Plan. A process was created to sort the legacy waste into sixteen well- defined, properly characterized, and precisely inventoried mixed waste streams (Treatability Groups) and two low-level waste streams ready for treatment or disposal. From June 1995 through September 1996, the entire volume of this stored mixed waste was sorted and inventoried through this process. This process was planned to meet the technical requirements of the sorting operation and to identify and address the hazards this operation presented. The operations were routinely adapted to safely and efficiently handle a variety of waste matrices, hazards, and radiological conditions. This flexibility was accomplished through administrative and physical controls integrated into the sorting operations. Many Department of Energy facilities are currently facing the prospect of sorting, characterizing, and treating a large inventory of mixed waste. The process described in this paper is a proven method for preparing a diverse, heterogeneous mixed waste volume into segregated, characterized, inventoried, and documented waste streams ready for treatment or disposal.

  11. R D activities at DOE applicable to mixed waste

    SciTech Connect

    Erickson, M.D.; Devgun, J.S.; Brown, J.J.; Beskid, N.J.

    1991-01-01

    The Department of Energy (DOE) has established the Office of Environmental Restoration and Waste Management. Within the new organization, the Office of Technology Development (OTD) is responsible for research, development, demonstration, testing and evaluation (RDDT E) activities aimed at meeting DOE cleanup goals, while minimizing cost and risk. Because of US governmental activities dating back to the Manhattan project, mixed radioactive and hazardous waste is an area of particular concern to DOE. The OTD is responsible for a number of R D activities aimed at improving capabilities to characterize, control, and properly dispose of mixed waste. These activities and their progress to date will be reviewed. In addition, needs for additional R D on managing mixed waste will be presented. 5 refs., 2 tabs.

  12. Mixed Waste Management Facility Preliminary Safety Analysis Report. Chapters 1 to 20

    SciTech Connect

    Not Available

    1994-09-01

    This document provides information on waste management practices, occupational safety, and a site characterization of the Lawrence Livermore National Laboratory. A facility description, safety engineering analysis, mixed waste processing techniques, and auxiliary support systems are included.

  13. Bioprocessing of a stored mixed liquid waste

    SciTech Connect

    Wolfram, J.H.; Rogers, R.D.; Finney, R.

    1995-12-31

    This paper describes the development and results of a demonstration for a continuous bioprocess for mixed waste treatment. A key element of the process is an unique microbial strain which tolerates high levels of aromatic solvents and surfactants. This microorganism is the biocatalysis of the continuous flow system designed for the processing of stored liquid scintillation wastes. During the past year a process demonstration has been conducted on commercial formulation of liquid scintillation cocktails (LSC). Based on data obtained from this demonstration, the Ohio EPA granted the Mound Applied Technologies Lab a treatability permit allowing the limited processing of actual mixed waste. Since August 1994, the system has been successfully processing stored, {open_quotes}hot{close_quotes} LSC waste. The initial LSC waste fed into the system contained 11% pseudocumene and detectable quantities of plutonium. Another treated waste stream contained pseudocumene and tritium. Data from this initial work shows that the hazardous organic solvent, and pseudocumene have been removed due to processing, leaving the aqueous low level radioactive waste. Results to date have shown that living cells are not affected by the dissolved plutonium and that 95% of the plutonium was sorbed to the biomass. This paper discusses the bioprocess, rates of processing, effluent, and the implications of bioprocessing for mixed waste management.

  14. Co-disposal of mixed waste materials

    SciTech Connect

    Phillips, S.J.; Alexander, R.G.; Crane, P.J.; England, J.L.; Kemp, C.J.; Stewart, W.E.

    1993-08-01

    Co-disposal of process waste streams with hazardous and radioactive materials in landfills results in large, use-efficiencies waste minimization and considerable cost savings. Wasterock, produced from nuclear and chemical process waste streams, is segregated, treated, tested to ensure regulatory compliance, and then is placed in mixed waste landfills, burial trenches, or existing environmental restoration sites. Large geotechnical unit operations are used to pretreat, stabilize, transport, and emplace wasterock into landfill or equivalent subsurface structures. Prototype system components currently are being developed for demonstration of co-disposal.

  15. Mixed Low-Level Radioactive Waste (MLLW) Primer

    SciTech Connect

    W. E. Schwinkendorf

    1999-04-01

    This document presents a general overview of mixed low-level waste, including the regulatory definitions and drivers, the manner in which the various kinds of mixed waste are regulated, and a discussion of the waste treatment options.

  16. Hybrid systems process mixed wastes

    SciTech Connect

    Chertow, M.R.

    1989-10-01

    Some technologies, developed recently in Europe, combine several processes to separate and reuse materials from solid waste. These plants have in common, generally, that they are reasonably small, have a composting component for the organic portion, and often have a refuse-derived fuel component for combustible waste. Many European communities also have very effective drop-off center programs for recyclables such as bottles and cans. By maintaining the integrity of several different fractions of the waste, there is a less to landfill and less to burn. The importance of these hybrid systems is that they introduce in one plant an approach that encompasses the key concept of today's solid waste planning; recover as much as possible and landfill as little as possible. The plants also introduce various risks, particularly of finding secure markets. There are a number of companies offering various combinations of materials recovery, composting, and waste combustion. Four examples are included: multiple materials recovery and refuse-derived fuel production in Eden Prairie, Minnesota; multiple materials recovery, composting and refuse-derived fuel production in Perugia, Italy; composting, refuse-derived fuel, and gasification in Tolmezzo, Italy; and a front-end system on a mass burning waste-to-energy plant in Neuchatel, Switzerland.

  17. Using a Consensus Conference to Characterize Regulatory Concerns Regarding Bioremediation of Radionuclides and Heavy Metals in Mixed Waste at DOE Sites

    SciTech Connect

    Denise Lach; Stephanie Sanford

    2006-09-01

    A consensus workshop was developed and convened with ten state regulators to characterize concerns regarding emerging bioremediation technology to be used to clean-up radionuclides and heavy metals in mixed wastes at US DOE sites. Two questions were explored: integrated questions: (1) What impact does participation in a consensus workshop have on the knowledge, attitudes, and practices of state regulators regarding bioremediation technology? (2) How effective is a consensus workshop as a strategy for eliciting and articulating regulators’ concerns regarding the use of bioremediation to clean up radionuclides and heavy metals in mixed wastes at U.S. Department of Energy Sites around the county? State regulators met together for five days over two months to learn about bioremediation technology and develop a consensus report of their recommendations regarding state regulatory concerns. In summary we found that panel members: - quickly grasped the science related to bioremediation and were able to effectively interact with scientists working on complicated issues related to the development and implementation of the technology; - are generally accepting of in situ bioremediation, but concerned about costs, implementation (e.g., institutional controls), and long-term effectiveness of the technology; - are concerned equally about technological and implementation issues; and - believed that the consensus workshop approach to learning about bioremediation was appropriate and useful. Finally, regulators wanted decision makers at US DOE to know they are willing to work with DOE regarding innovative approaches to clean-up at their sites, and consider a strong relationship between states and the DOE as critical to any effective clean-up. They do not want perceive themselves to be and do not want others to perceive them as barriers to successful clean-up at their sites.

  18. Pulp and paper plant wastes valorisation in bituminous mixes.

    PubMed

    Modolo, R; Benta, A; Ferreira, V M; Machado, L M

    2010-04-01

    Nowadays, the increasing amount of wastes is a concerning reality and the environmental aspects has become a major priority. Following this worry, the purpose of this experimental study was to investigate the possibility of using pulp and paper inorganic wastes, named dregs and grits, in bituminous mixtures as aggregate replacement to reduce environmental effects of these wastes disposal. First, the wastes were chemically and physically characterized and also tested primarily taking into account the requirements for aggregates in bituminous mixtures. Then, formulations were prepared replacing aggregates with wastes in different amounts. The mechanical properties of these mixtures containing wastes were compared with reference samples based on standard methods. According to the results it was possible to verify that grits had a good performance and it might be directly tested industrially as an aggregate in road construction. On the other hand, dregs need to be treated before incorporation to guarantee stable mixes in terms of water sensitivity. Copyright 2009 Elsevier Ltd. All rights reserved.

  19. Mixed Waste Encapsulation in Polyester Resins. Treatment for Mixed Wastes Containing Salts. Mixed Waste Focus Area. OST Reference #1685

    SciTech Connect

    None, None

    1999-09-01

    Throughout the Department of Energy (DOE) complex there are large inventories of homogeneous solid mixed wastes, such as treatment residues, fly ashes, and sludges that contain relatively high concentrations (greater than 15% by weight) of salts. The inherent solubility of nitrate, sulfate, and chloride salts makes traditional cement stabilization of these waste streams difficult, expensive, and challenging. Salts can effect the setting rate of cements and can react with cement hydration products to form expansive and cement damaging compounds. Many of these salt wastes are in a dry granular form and are the by-product of treating spent acidic and metal solutions used to recover and reformulate nuclear weapons materials over the past 50 years. At the Idaho National Engineering and Environmental Laboratory (INEEL) alone, there is approximately 8,000 cubic meters of nitrate salts (potassium and sodium nitrate) stored above ground with an earthen cover. Current estimates indicate that over 200 million kg of contaminated salt wastes exist at various DOE sites. Continued primary treatment of waste water coupled with the use of mixed waste incinerators may generate an additional 5 million kg of salt-containing, mixed waste residues each year. One of the obvious treatment solutions for these salt-containing wastes is to immobilize the hazardous components to meet Environmental Protection Agency/Resource Conservation and Recovery Act (EPA/RCRA) Land Disposal Restrictions (LDR), thus rendering the mixed waste to a radioactive waste only classification. One proposed solution is to use thermal treatment via vitrification to immobilize the hazardous component and thereby substantially reduce the volume, as well as provide exceptional durability. However, these melter systems involve expensive capital apparatus with complicated off-gas systems. In addition, the vitrification of high salt waste may cause foaming and usually requires extensive development to specify glass

  20. Comparison of Waste Feed Delivery Small Scale Mixing Demonstration Simulant to Hanford Waste

    SciTech Connect

    Wells, Beric E.; Gauglitz, Phillip A.; Rector, David R.

    2012-07-10

    The Hanford double-shell tank (DST) system provides the staging location for waste that will be transferred to the Hanford Tank Waste Treatment and Immobilization Plant (WTP). Specific WTP acceptance criteria for waste feed delivery describe the physical and chemical characteristics of the waste that must be met before the waste is transferred from the DSTs to the WTP. One of the more challenging requirements relates to the sampling and characterization of the undissolved solids (UDS) in a waste feed DST because the waste contains solid particles that settle and their concentration and relative proportion can change during the transfer of the waste in individual batches. A key uncertainty in the waste feed delivery system is the potential variation in UDS transferred in individual batches in comparison to an initial sample used for evaluating the acceptance criteria. To address this uncertainty, a number of small-scale mixing tests have been conducted as part of Washington River Protection Solutions' Small Scale Mixing Demonstration (SSMD) project to determine the performance of the DST mixing and sampling systems. A series of these tests have used a five-part simulant composed of particles of different size and density and designed to be equal or more challenging than AY-102 waste. This five-part simulant, however, has not been compared with the broad range of Hanford waste, and thus there is an additional uncertainty that this simulant may not be as challenging as the most difficult Hanford waste. The purpose of this study is to quantify how the current five-part simulant compares to all of the Hanford sludge waste, and to suggest alternate simulants that could be tested to reduce the uncertainty in applying the current testing results to potentially more challenging wastes.

  1. Comparison of Waste Feed Delivery Small Scale Mixing Demonstration Simulant to Hanford Waste

    SciTech Connect

    Wells, Beric E.; Gauglitz, Phillip A.; Rector, David R.

    2011-09-01

    The Hanford double-shell tank (DST) system provides the staging location for waste that will be transferred to the Hanford Tank Waste Treatment and Immobilization Plant (WTP). Specific WTP acceptance criteria for waste feed delivery describe the physical and chemical characteristics of the waste that must be met before the waste is transferred from the DSTs to the WTP. One of the more challenging requirements relates to the sampling and characterization of the undissolved solids (UDS) in a waste feed DST because the waste contains solid particles that settle and their concentration and relative proportion can change during the transfer of the waste in individual batches. A key uncertainty in the waste feed delivery system is the potential variation in UDS transferred in individual batches in comparison to an initial sample used for evaluating the acceptance criteria. To address this uncertainty, a number of small-scale mixing tests have been conducted as part of Washington River Protection Solutions' Small Scale Mixing Demonstration (SSMD) project to determine the performance of the DST mixing and sampling systems. A series of these tests have used a five-part simulant composed of particles of different size and density and designed to be equal or more challenging than AY-102 waste. This five-part simulant, however, has not been compared with the broad range of Hanford waste, and thus there is an additional uncertainty that this simulant may not be as challenging as the most difficult Hanford waste. The purpose of this study is to quantify how the current five-part simulant compares to all of the Hanford sludge waste, and to suggest alternate simulants that could be tested to reduce the uncertainty in applying the current testing results to potentially more challenging wastes.

  2. Hanford land disposal restrictions plan for mixed wastes

    SciTech Connect

    Not Available

    1990-10-01

    Since the early 1940s, the Hanford Site has been involved in the production and purification of nuclear defense materials. These production activities have resulted in the generation of large quantities of liquid and solid radioactive mixed waste. This waste is subject to regulation under authority of both the Resource Conservation and Recovery Act of 1976 (RCRA) and the Atomic Energy Act. The State of Washington Department of Ecology (Ecology), the US Environmental Protection Agency (EPA), and the US Department of Energy (DOE) have entered into an agreement, the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) to bring Hanford Site Operations into compliance with dangerous waste regulations. The Tri-Party Agreement was amended to require development of the Hanford Land Disposal Restrictions Plan for Mixed Wastes (this plan) to comply with land disposal restrictions requirements for radioactive mixed waste. The Tri-Party Agreement requires, and the this plan provides, the following sections: Waste Characterization Plan, Storage Report, Treatment Report, Treatment Plan, Waste Minimization Plan, a schedule, depicting the events necessary to achieve full compliance with land disposal restriction requirements, and a process for establishing interim milestones. 34 refs., 28 figs., 35 tabs.

  3. Mixed waste treatment capabilities at Envirocare

    SciTech Connect

    Rafati, A.

    1994-12-31

    This presentation gives an overview of the business achievements and presents a corporate summary for the whole handling company Envirocare located in Clive, Utah. This company operates a permitted low-level radioactive and mixed waste facility which handles waste from the United States Department of Energy, Environmental Protection Agency, Department of Defense, and Fortune 500 companies. A description of business services and treatment capabilities is presented.

  4. MIxed Waste Integrated Program (MWIP): Technology summary

    SciTech Connect

    1994-02-01

    The mission of the Mixed Waste Integrated Program (MWIP) is to develop and demonstrate innovative and emerging technologies for the treatment and management of DOE`s mixed low-level wastes (MLLW) for use by its customers, the Office of Waste Operations (EM-30) and the Office of Environmental Restoration (EM-40). The primary goal of MWIP is to develop and demonstrate the treatment and disposal of actual mixed waste (MMLW and MTRU). The vitrification process and the plasma hearth process are scheduled for demonstration on actual radioactive waste in FY95 and FY96, respectively. This will be accomplished by sequential studies of lab-scale non-radioactive testing followed by bench-scale radioactive testing, followed by field-scale radioactive testing. Both processes create a highly durable final waste form that passes leachability requirements while destroying organics. Material handling technology, and off-gas requirements and capabilities for the plasma hearth process and the vitrification process will be established in parallel.

  5. Mixed low-level waste form evaluation

    SciTech Connect

    Pohl, P.I.; Cheng, Wu-Ching; Wheeler, T.; Waters, R.D.

    1997-03-01

    A scoping level evaluation of polyethylene encapsulation and vitreous waste forms for safe storage of mixed low-level waste was performed. Maximum permissible radionuclide concentrations were estimated for 15 indicator radionuclides disposed of at the Hanford and Savannah River sites with respect to protection of the groundwater and inadvertent intruder pathways. Nominal performance improvements of polyethylene and glass waste forms relative to grout are reported. These improvements in maximum permissible radionuclide concentrations depend strongly on the radionuclide of concern and pathway. Recommendations for future research include improving the current understanding of the performance of polymer waste forms, particularly macroencapsulation. To provide context to these estimates, the concentrations of radionuclides in treated DOE waste should be compared with the results of this study to determine required performance.

  6. DOE complex buried waste characterization assessment

    SciTech Connect

    Kaae, P.S.; Holter, G.M.; Garrett, S.M.K.

    1993-01-01

    The work described in this report was conducted by Pacific Northwest Laboratory to provide information to the Buried Waste Integrated Demonstration (BWID) program. The information in this report is intended to provide a complex-wide planning base for th.e BWID to ensure that BWID activities are appropriately focused to address the range of remediation problems existing across the US Department of Energy (DOE) complex. This report contains information characterizing the 2.1 million m[sup 3] of buried and stored wastes and their associated sites at six major DOE facilities. Approximately 85% of this waste is low-level waste, with about 12% TRU or TRU mixed waste; the remaining 3% is low-level mixed waste. In addition, the report describes soil contamination sites across the complex. Some of the details that would be useful in further characterizing the buried wastes and contaminated soil sites across the DOE complex are either unavailable or difficult to locate. Several options for accessing this information and/or improving the information that is available are identified in the report. This document is a companion to Technology Needs for Remediation: Hanford and Other DOE Sites, PNL-8328 (Stapp 1993).

  7. Mixed waste paper to ethanol fuel

    SciTech Connect

    Not Available

    1991-01-01

    The objectives of this study were to evaluate the use of mixed waste paper for the production of ethanol fuels and to review the available conversion technologies, and assess developmental status, current and future cost of production and economics, and the market potential. This report is based on the results of literature reviews, telephone conversations, and interviews. Mixed waste paper samples from residential and commercial recycling programs and pulp mill sludge provided by Weyerhauser were analyzed to determine the potential ethanol yields. The markets for ethanol fuel and the economics of converting paper into ethanol were investigated.

  8. Ceramic waste form for residues from molten salt oxidation of mixed wastes

    SciTech Connect

    Van Konynenburg, R.A.; Hopper, R.W.; Rard, J.A.

    1995-11-01

    A ceramic waste form based on Synroc-D is under development for the incorporation of the mineral residues from molten salt oxidation treatment of mixed low-level wastes. Samples containing as many as 32 chemical elements have been fabricated, characterized, and leach-tested. Universal Treatment Standards have been satisfied for all regulated elements except and two (lead and vanadium). Efforts are underway to further improve chemical durability.

  9. Treatability Variance for Containerised Liquids in Mixed Debris Waste - 12101

    SciTech Connect

    Alstatt, Catherine M.

    2012-07-01

    The TRU Waste Processing Center (TWPC) is a Department of Energy facility whose mission is to receive and process for appropriate disposal legacy Contact Handled (CH) and Remote Handled (RH) waste, including debris waste stored at various DOE Oak Ridge facilities. Acceptable Knowledge (AK) prepared for the waste characterizes the waste as mixed waste, meaning it is both radioactive and regulated under the Resource Conservation and Recovery Act (RCRA). The AK also indicates that a number of the debris waste packages contain small amounts of containerised liquids. The documentation indicates liquid wastes generated in routine lab operations were typically collected for potential recovery of valuable isotopes. However, during activities associated with decontamination and decommissioning (D and D), some containers with small amounts of liquids were placed into the waste containers with debris waste. Many of these containers now hold from 2.5 milliliters (ml) to 237 ml of liquid; a few contain larger volumes. At least some of these containers were likely empty at the time of generation, but documentation of this condition is lacking. Since WIPP compliant AK is developed on a waste stream basis, rather than an individual container basis, and includes every potential RCRA hazardous constituent within the waste stream, it is insufficient for the purpose of characterizing individual containers of liquid. Debris waste is defined in 40 CFR 268.2(g) as 'solid material exceeding a 60 mm particle size that is intended for disposal and that is: a manufactured object; or plant or animal matter; or natural geologic material'. The definition further states that intact containers of hazardous waste that are not ruptured and that retain at least 75% of their original volume are not debris. The prescribed treatment is removal of intact containers from the debris waste, and treatment of their contents to meet specific Land Disposal Restrictions (LDR) standards. This is true for

  10. Methodology to remediate a mixed waste site

    SciTech Connect

    Berry, J.B.

    1994-08-01

    In response to the need for a comprehensive and consistent approach to the complex issue of mixed waste management, a generalized methodology for remediation of a mixed waste site has been developed. The methodology is based on requirements set forth in the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) and the Resource Conservation and Recovery Act (RCRA) and incorporates ``lessons learned`` from process design, remediation methodologies, and remediation projects. The methodology is applied to the treatment of 32,000 drums of mixed waste sludge at the Oak Ridge K-25 Site. Process technology options are developed and evaluated, first with regard to meeting system requirements and then with regard to CERCLA performance criteria. The following process technology options are investigated: (1) no action, (2) separation of hazardous and radioactive species, (3) dewatering, (4) drying, and (5) solidification/stabilization. The first two options were eliminated from detailed consideration because they did not meet the system requirements. A quantitative evaluation clearly showed that, based on system constraints and project objectives, either dewatering or drying the mixed waste sludge was superior to the solidification/stabilization process option. The ultimate choice between the drying and the dewatering options will be made on the basis of a technical evaluation of the relative merits of proposals submitted by potential subcontractors.

  11. Mixed waste paper as a fuel

    SciTech Connect

    Kersletter, J.D.; Lyons, J.K. )

    1991-10-01

    A successful recycling program requires several components: education and promotion, convenient collection service, and most importantly, a market for collected materials. In Washington state, domestic markets currently have, or are building, the capacity to use most of the glass, newsprint, aluminum, tin cans, and corrugated materials that are collected. Unfortunately, markets for mixed waste paper (MWP), a major component of the state's solid waste stream, have been slow to develop and are unable to absorb the tremendous volumes of material generated. The American Paper Stock Institute classifies MWP as low grade paper such as magazines, books, scrap paper, non-corrugated cardboard (boxboard/chipboard), and construction paper. When viewed as part of a curbside collection program MWP consists primarily of catalogs, binder paper, magazines, brochures, junk mail, cereal boxes, and other household packaging items. A comprehensive analysis of Washington State's solid waste stream showed that during 1988, Washington citizens generated approximately 460,000 tons of mixed waste paper. No small amount, this is equivalent to more than 10% of the total solid waste generated in the state, and is expected to increase. Current projections of MWP generation rates indicated that Washington citizens could discard as much as 960,000 tons of MWP by the year 2010 making it one of the single largest components of the state's solid waste stream. This paper reports on the use of MWP as fuel source.

  12. Stabilization of a mixed waste sludge for land disposal

    SciTech Connect

    Powers, S.E.; Zander, A.K.

    1996-12-31

    A solidification and stabilization technique was developed for a chemically complex mixed waste sludge containing nitrate processing wastes, sewage sludge and electroplating wastewaters, among other wastes. The sludge is originally from a solar evaporation pond and has high concentrations of nitrate salts; cadmium, chromium, and nickel concentrations of concern; and low levels of organic constituents and alpha and beta emitters. Sulfide reduction of nitrate and precipitation of metallic species, followed by evaporation to dryness and solidification of the dry sludge in recycled high density polyethylene with added lime was determined to be a satisfactory preparation for land disposal in a mixed waste repository. The application of post-consumer polyethylene has the added benefit of utilizing another problem-causing waste product. A modified Toxicity Characteristic Leaching Procedure was used to determine required treatment chemical dosages and treatment effectiveness. The waste complexity prohibited use of standard chemical equilibrium methods for prediction of reaction products during treatment. Waste characterization followed by determination of thermodynamic feasibility of oxidation and reduction products. These calculations were shown to be accurate in laboratory testing. 13 refs., 3 figs., 2 tabs.

  13. Mixed waste chemical compatibility with packaging components

    SciTech Connect

    Nigrey, P.J.; Conroy, M.; Blalock, L.B.

    1994-05-01

    In this paper, a chemical compatibility testing program for packaging of mixed wastes at will be described. We will discuss the choice of four y-radiation doses, four time durations, four temperatures and four waste solutions to simulate the hazardous waste components of mixed wastes for testing materials compatibility of polymers. The selected simulant wastes are (1) an aqueous alkaline mixture of sodium nitrate and sodium nitrite; (2) a chlorinated hydrocarbon mixture; (3) a simulant liquid scintillation fluid; and (4) a mixture of ketones. A selection of 10 polymers with anticipated high resistance to one or more of these types of environments are proposed for testing as potential liner or seal materials. These polymers are butadiene acrylonitrile copolymer, cross-linked polyethylene, epichlorhyarin, ethylene-propylene rubber, fluorocarbon, glass-filled tetrafluoroethylene, high-density poly-ethylene, isobutylene-isoprene copolymer, polypropylene, and styrene-butadiene rubber. We will describe the elements of the testing plan along with a metric for establishing time resistance of the packaging materials to radiation and chemicals.

  14. Processing of Oak Ridge Mixed Waste Labpacks

    SciTech Connect

    Estes, C. H.; Franco, P.; Bisaria, A.

    2002-02-26

    The Oak Ridge Site Treatment Plan (STP) issued under a Tennessee Commissioner's Order includes a compliance milestone related to treatment of mixed waste labpacks on the Oak Ridge sites. The treatment plan was written and approved in Fiscal Year 1997. The plan involved approximately 1,100 labpacks and 7,400 on-the-shelf labpackable items stored at three Department of Energy (DOE) sites on the Oak Ridge Reservation (ORR). The labpacks and labpack items consist of liquids and solids with various chemical constituents and radiological concerns. The waste must be processed for shipment to a commercial hazardous waste treatment facility or treatment utilizing a Broad Spectrum mixed waste treatment contract. This paper will describe the labpack treatment plan that was developed as required by the Site Treatment Plan and the operations implemented to process the labpack waste. The paper will discuss the labpack inventory in the treatment plan, treatment and disposal options, processing strategies, project risk assessment, and current project status.

  15. Vitrification development plan for US Department of Energy mixed wastes

    SciTech Connect

    Peters, R.; Lucerna, J.; Plodinec, M.J.

    1993-10-01

    This document is a general plan for conducting vitrification development for application to mixed wastes owned by the US Department of Energy. The emphasis is a description and discussion of the data needs to proceed through various stages of development. These stages are (1) screening at a waste site to determine which streams should be vitrified, (2) waste characterization and analysis, (3) waste form development and treatability studies, (4) process engineering development, (5) flowsheet and technical specifications for treatment processes, and (6) integrated pilot-scale demonstration. Appendices provide sample test plans for various stages of the vitrification development process. This plan is directed at thermal treatments which produce waste glass. However, the study is still applicable to the broader realm of thermal treatment since it deals with issues such as off-gas characterization and waste characterization that are not necessarily specific to vitrification. The purpose is to provide those exploring or considering vitrification with information concerning the kinds of data that are needed, the way the data are obtained, and the way the data are used. This will provide guidance to those who need to prioritize data needs to fit schedules and budgets. Knowledge of data needs also permits managers and planners to estimate resource requirements for vitrification development.

  16. Contamination control aspects of attaching waste drums to the WIPP Waste Characterization Chamber

    SciTech Connect

    Rubick, L.M.; Burke, L.L.

    1998-12-31

    Argonne National Laboratory West (ANL-W) is verifying the characterization and repackaging of contact-handled transuranic (CH-TRU) mixed waste in support of the Waste Isolation Pilot Program (WIPP) project located in Carlsbad, New Mexico. The WIPP Waste Characterization Chamber (WCC) was designed to allow opening of transuranic waste drums for this process. The WCC became operational in March of 1994 and has characterized approximately 240 drums of transuranic waste. The waste drums are internally contaminated with high levels of transuranic radionuclides. Attaching and detaching drums to the glove box posed serious contamination control problems. Prior to characterizing waste, several drum attachment techniques and materials were evaluated. An inexpensive HEPA filter molded into the bagging material helps with venting during detachment. The current techniques and procedures used to attach and detach transuranic waste drums to the WCC are described.

  17. Recommendations for continuous emissions monitoring of mixed waste incinerators

    SciTech Connect

    Quigley, G.P.

    1992-02-01

    Considerable quantities of incinerable mixed waste are being stored in and generated by the DOE complex. Mixed waste is defined as containing a hazardous component and a radioactive component. At the present time, there is only one incinerator in the complex which has the proper TSCA and RCRA permits to handle mixed waste. This report describes monitoring techniques needed for the incinerator.

  18. Mixed Waste Management Facility Groundwater Monitoring Report

    SciTech Connect

    Chase, J.

    1998-03-01

    During fourth quarter 1997, eleven constituents exceeded final Primary Drinking Water Standards (PDWS) in groundwater samples from downgradient monitoring wells at the Mixed Waste Management Facility. No constituents exceeded final PDWS in samples from upgradient monitoring wells. As in previous quarters, tritium and trichloroethylene were the most widespread elevated constituents. The groundwater flow directions and rates in the three hydrostratigraphic units were similar to those of previous quarters.

  19. Comparison of Waste Feed Delivery Small Scale Mixing Demonstration Simulant to Hanford Waste

    SciTech Connect

    Wells, Beric E.; Gauglitz, Phillip A.; Rector, David R.

    2011-08-15

    'The Hanford double-shell tank (DST) system provides the staging location for waste feed delivery to the Hanford Tank Waste Treatment and Immobilization Plant (WTP). Hall (2008) includes WTP acceptance criteria that describe physical and chemical characteristics of the waste that must be certified as acceptable before the waste is transferred from the DSTs to the WTP. One of the more challenging requirements relates to the sampling and characterization of the undissolved solids (UDS) in a waste feed DST. The objectives of Washington River Protection Solutions' (WRPS) Small Scale Mixing Demonstration (SSMD) project are to understand and demonstrate the DST sampling and batch transfer performance at multiple scales using slurry simulants comprised of UDS particles and liquid (Townson 2009). The SSMD project utilizes geometrically scaled DST feed tanks to generate mixing, sampling, and transfer test data. In Phase 2 of the testing, RPP-49740, the 5-part simulant defined in RPP-48358 was used as the waste slurry simulant. The Phase 2 test data are being used to estimate the expected performance of the prototypic systems in the full-scale DSTs. As such, understanding of the how the small-scale systems as well as the simulant relate to the full-scale DSTs and actual waste is required. The focus of this report is comparison of the size and density of the 5-part SSMD simulant to that of the Hanford waste. This is accomplished by computing metrics for particle mobilization, suspension, settling, transfer line intake, and pipeline transfer from the characterization of the 5-part SSMD simulant and characterizations of the Hanford waste. In addition, the effects of the suspending fluid characteristics on the test results are considered, and a computational fluid dynamics tool useful to quantify uncertainties from simulant selections is discussed.'

  20. WRAP Module 1 sampling strategy and waste characterization alternatives study

    SciTech Connect

    Bergeson, C.L.

    1994-09-30

    The Waste Receiving and Processing Module 1 Facility is designed to examine, process, certify, and ship drums and boxes of solid wastes that have a surface dose equivalent of less than 200 mrem/h. These wastes will include low-level and transuranic wastes that are retrievably stored in the 200 Area burial grounds and facilities in addition to newly generated wastes. Certification of retrievably stored wastes processing in WRAP 1 is required to meet the waste acceptance criteria for onsite treatment and disposal of low-level waste and mixed low-level waste and the Waste Isolation Pilot Plant Waste Acceptance Criteria for the disposal of TRU waste. In addition, these wastes will need to be certified for packaging in TRUPACT-II shipping containers. Characterization of the retrievably stored waste is needed to support the certification process. Characterization data will be obtained from historical records, process knowledge, nondestructive examination nondestructive assay, visual inspection of the waste, head-gas sampling, and analysis of samples taken from the waste containers. Sample characterization refers to the method or methods that are used to test waste samples for specific analytes. The focus of this study is the sample characterization needed to accurately identify the hazardous and radioactive constituents present in the retrieved wastes that will be processed in WRAP 1. In addition, some sampling and characterization will be required to support NDA calculations and to provide an over-check for the characterization of newly generated wastes. This study results in the baseline definition of WRAP 1 sampling and analysis requirements and identifies alternative methods to meet these requirements in an efficient and economical manner.

  1. Final Hanford Site Transuranic (TRU) Waste Characterization QA Project Plan

    SciTech Connect

    GREAGER, T.M.

    2000-12-06

    The Quality Assurance Project Plan (QAPjP) has been prepared for waste characterization activities to be conducted by the Transuranic (TRU) Project at the Hanford Site to meet requirements set forth in the Waste Isolation Pilot Plan (WIPP) Hazardous Waste Facility Permit, 4890139088-TSDF, Attachment B, including Attachments B1 through B6 (WAP) (DOE, 1999a). The QAPjP describes the waste characterization requirements and includes test methods, details of planned waste sampling and analysis, and a description of the waste characterization and verification process. In addition, the QAPjP includes a description of the quality assurance/quality control (QA/QC) requirements for the waste characterization program. Before TRU waste is shipped to the WIPP site by the TRU Project, all applicable requirements of the QAPjP shall be implemented. Additional requirements necessary for transportation to waste disposal at WIPP can be found in the ''Quality Assurance Program Document'' (DOE 1999b) and HNF-2600, ''Hanford Site Transuranic Waste Certification Plan.'' TRU mixed waste contains both TRU radioactive and hazardous components, as defined in the WLPP-WAP. The waste is designated and separately packaged as either contact-handled (CH) or remote-handled (RH), based on the radiological dose rate at the surface of the waste container. RH TRU wastes are not currently shipped to the WIPP facility.

  2. Mixed Waste Management Options: 1995 Update. National Low-Level Waste Management Program

    SciTech Connect

    Kirner, N.; Kelly, J.; Faison, G.; Johnson, D.

    1995-05-01

    In the original mixed Waste Management Options (DOE/LLW-134) issued in December 1991, the question was posed, ``Can mixed waste be managed out of existence?`` That study found that most, but not all, of the Nation`s mixed waste can theoretically be managed out of existence. Four years later, the Nation is still faced with a lack of disposal options for commercially generated mixed waste. However, since publication of the original Mixed Waste Management Options report in 1991, limited disposal capacity and new technologies to treat mixed waste have become available. A more detailed estimate of the Nation`s mixed waste also became available when the US Environmental Protection Agency (EPA) and the US Nuclear Regulatory Commission (NRC) published their comprehensive assessment, titled National Profile on Commercially Generated Low-Level Radioactive Mixed Waste (National Profile). These advancements in our knowledge about mixed waste inventories and generation, coupled with greater treatment and disposal options, lead to a more applied question posed for this updated report: ``Which mixed waste has no treatment option?`` Beyond estimating the volume of mixed waste requiring jointly regulated disposal, this report also provides a general background on the Atomic Energy Act (AEA) and the Resource Conservation and Recovery Act (RCRA). It also presents a methodical approach for generators to use when deciding how to manage their mixed waste. The volume of mixed waste that may require land disposal in a jointly regulated facility each year was estimated through the application of this methodology.

  3. Mixed Waste Focus Area: Department of Energy complex needs report

    SciTech Connect

    Roach, J.A.

    1995-11-16

    The Assistant Secretary for the Office of Environmental Management (EM) at the US Department of Energy (DOE) initiated a new approach in August of 1993 to environmental research and technology development. A key feature of this new approach included establishment of the Mixed Waste Characterization, Treatment, and Disposal Focus Area (MWFA). The mission of the MWFA is to identify, develop, and implement needed technologies such that the major environmental management problems related to meeting DOE`s commitments for treatment of mixed wastes under the Federal Facility Compliance Act (FFCA), and in accordance with the Land Disposal Restrictions (LDR) of the Resource Conservation and Recovery Act (RCRA), can be addressed, while cost-effectively expending the funding resources. To define the deficiencies or needs of the EM customers, the MWFA analyzed Proposed Site Treatment Plans (PSTPs), as well as other applicable documents, and conducted site visits throughout the summer of 1995. Representatives from the Office of Waste Management (EM-30), the Office of Environmental Restoration (EM-40), and the Office of Facility Transition and Management (EM-60) at each site visited were requested to consult with the Focus Area to collaboratively define their technology needs. This report documents the needs, deficiencies, technology gaps, and opportunities for expedited treatment activities that were identified during the site visit process. The defined deficiencies and needs are categorized by waste type, namely Wastewaters, Combustible Organics, Sludges/Soils, Debris/Solids, and Unique Wastes, and will be prioritized based on the relative affect the deficiency has on the DOE Complex.

  4. Alternative oxidation technologies for organic mixed waste

    SciTech Connect

    Borduin, L.C.; Fewell, T.

    1998-07-01

    The Mixed Waste Focus Area (MWFA) is currently supporting the development and demonstration of several alternative oxidation technology (AOT) processes for treatment of combustible mixed low-level wastes. AOTs have been defined as technologies that destroy organic material without using open-flame reactions. AOTs include both thermal and nonthermal processes that oxidize organic wastes but operate under significantly different physical and chemical conditions than incinerators. Nonthermal processes currently being studied include Delphi DETOX and acid digestion at the Savannah River Site (SRS), and direct chemical oxidation at Lawrence Livermore National Laboratory (LLNL). All three technologies are at advanced stages of development or are entering the demonstration phase. Nonflame thermal processes include catalytic chemical oxidation, which is being developed and deployed at Lawrence Berkeley National Laboratory (LBNL), and steam reforming, a commercial process being supported by the Department of Energy (DOE). Although testing is complete on some AOT technologies, most require additional support to complete some or all of the identified development objectives. Brief descriptions, status, and planned paths forward for each of the technologies are presented.

  5. Automated system for handling tritiated mixed waste

    SciTech Connect

    Dennison, D.K.; Merrill, R.D.; Reitz, T.C.

    1995-03-01

    Lawrence Livermore National Laboratory (LLNL) is developing a semi system for handling, characterizing, processing, sorting, and repackaging hazardous wastes containing tritium. The system combines an IBM-developed gantry robot with a special glove box enclosure designed to protect operators and minimize the potential release of tritium to the atmosphere. All hazardous waste handling and processing will be performed remotely, using the robot in a teleoperational mode for one-of-a-kind functions and in an autonomous mode for repetitive operations. Initially, this system will be used in conjunction with a portable gas system designed to capture any gaseous-phase tritium released into the glove box. This paper presents the objectives of this development program, provides background related to LLNL`s robotics and waste handling program, describes the major system components, outlines system operation, and discusses current status and plans.

  6. Characterization optimization for the National TRU waste system

    SciTech Connect

    Basabilvazo, George T. ,; Countiss, S.; Moody, D. C.; Jennings, S. G.; Lott, S. A.

    2002-01-01

    On March 26, 1999, the Waste Isolation Pilot Plant (WIPP) received its first shipment of transuranic (TRU) waste. On November 26, 1999, the Hazardous Waste Facility Permit (HWFP) to receive mixed TRU waste at WIPP became effective. Having achieved these two milestones, facilitating and supporting the characterization, transportation, and disposal of TRU waste became the major challenges for the National TRU Waste Program. Significant challenges still remain in the scientific, engineering, regulatory, and political areas that need to be addressed. The National TRU Waste System Optimization Project has been established to identify, develop, and implement cost-effective system optimization strategies that address those significant challenges. Fundamental to these challenges is the balancing and prioritization of potential regulatory changes with potential technological solutions. This paper describes some of the efforts to optimize (to make as functional as possible) characterization activities for TRU waste.

  7. 40 CFR 279.21 - Hazardous waste mixing.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 26 2010-07-01 2010-07-01 false Hazardous waste mixing. 279.21 Section 279.21 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR THE MANAGEMENT OF USED OIL Standards for Used Oil Generators § 279.21 Hazardous waste mixing...

  8. DOE acceptance of commercial mixed waste -- Studies are under way

    SciTech Connect

    Plummer, T.L.; Owens, C.M.

    1993-03-01

    The topic of the Department of Energy acceptance of commercial mixed waste at DOE facilities has been proposed by host States and compact regions that are developing low-level radioactive waste disposal facilities. States support the idea of DOE accepting commercial mixed waste because (a) very little commercial mixed waste is generated compared to generation by DOE facilities (Department of Energy--26,300 cubic meters annually vs. commercial--3400 cubic meters annually); (b) estimated costs for commercial disposal are estimated to be $15,000 to $40,000 per cubic foot; (c) once treatment capability becomes available, 70% of the current levels of commercial mixed waste will be eliminated, (d) some State laws prohibit the development of mixed waste disposal facilities in their States; (e) DOE is developing a nationwide strategy that will include treatment and disposal capacity for its own mixed waste and the incremental burden on the DOE facilities would be minuscule, and (6) no States are developing mixed waste disposal facilities. DOE senior management has repeatedly expressed willingness to consider investigating the feasibility of DOE accepting commercial mixed waste. In January 1991, Leo Duffy of the Department of energy met with members of the Low-Level Radioactive Waste Forum, which led to an agreement to explore such an arrangement. He stated that this seems like a cost-effective way to solve commercial mixed waste management problems.

  9. Treatability study of Tank E-3-1 waste: mixed waste stream SR-W049

    SciTech Connect

    Langton, C.A.

    1997-08-21

    Treatability studies were conducted for tank E-3-1 waste which was previously characterized in WSRC-RP-87-0078. The waste was determined to be mixed waste because it displayed the characteristic of metal toxicity for Hg and Cr and was also contaminated with low levels of radionuclides. Two types of treatments for qualifying this waste suitable for land disposal were evaluated: ion exchange and stabilization with hydraulic materials (portland cement, slag and magnesium phosphate cement). These treatments were selected for testing because: (1) Both treatments can be carried out as in-drum processes., (2) Cement stabilization is the RCRA/LDR best developed available technology (BDAT) for Hg (less than 280 mg/L) and for Cr., and (3) Ion exchange via Mag-Sep is a promising alternative technology for in drum treatment of liquid wastes displaying metal toxicity. Cement stabilization of the E-3-1 material ( supernate and settled solids) resulted in waste forms which passed the TCLP test for both Hg and Cr. However, the ion exchange resins tested were ineffective in removing the Hg from this waste stream. Consequently, cement stabilization is recommended for a treatment of the five drums of the actual waste.

  10. Ecotoxicological characterization of hazardous wastes.

    PubMed

    Wilke, B-M; Riepert, F; Koch, Christine; Kühne, T

    2008-06-01

    In Europe hazardous wastes are classified by 14 criteria including ecotoxicity (H 14). Standardized methods originally developed for chemical and soil testing were adapted for the ecotoxicological characterization of wastes including leachate and solid phase tests. A consensus on which tests should be recommended as mandatory is still missing. Up to now, only a guidance on how to proceed with the preparation of waste materials has been standardized by CEN as EN 14735. In this study, tests including higher plants, earthworms, collembolans, microorganisms, duckweed and luminescent bacteria were selected to characterize the ecotoxicological potential of a boiler slag, a dried sewage sludge, a thin sludge and a waste petrol. In general, the instructions given in EN 14735 were suitable for all wastes used. The evaluation of the different test systems by determining the LC/EC(50) or NOEC-values revealed that the collembolan reproduction and the duckweed frond numbers were the most sensitive endpoints. For a final classification and ranking of wastes the Toxicity Classification System (TCS) using EC/LC(50) values seems to be appropriate.

  11. JET MIXING ANALYSIS FOR SRS HIGH-LEVEL WASTE RECOVERY

    SciTech Connect

    Lee, S.

    2011-07-05

    The process of recovering the waste in storage tanks at the Savannah River Site (SRS) typically requires mixing the contents of the tank to ensure uniformity of the discharge stream. Mixing is accomplished with one to four slurry pumps located within the tank liquid. The slurry pump may be fixed in position or they may rotate depending on the specific mixing requirements. The high-level waste in Tank 48 contains insoluble solids in the form of potassium tetraphenyl borate compounds (KTPB), monosodium titanate (MST), and sludge. Tank 48 is equipped with 4 slurry pumps, which are intended to suspend the insoluble solids prior to transfer of the waste to the Fluidized Bed Steam Reformer (FBSR) process. The FBSR process is being designed for a normal feed of 3.05 wt% insoluble solids. A chemical characterization study has shown the insoluble solids concentration is approximately 3.05 wt% when well-mixed. The project is requesting a Computational Fluid Dynamics (CFD) mixing study from SRNL to determine the solids behavior with 2, 3, and 4 slurry pumps in operation and an estimate of the insoluble solids concentration at the suction of the transfer pump to the FBSR process. The impact of cooling coils is not considered in the current work. The work consists of two principal objectives by taking a CFD approach: (1) To estimate insoluble solids concentration transferred from Tank 48 to the Waste Feed Tank in the FBSR process and (2) To assess the impact of different combinations of four slurry pumps on insoluble solids suspension and mixing in Tank 48. For this work, several different combinations of a maximum of four pumps are considered to determine the resulting flow patterns and local flow velocities which are thought to be associated with sludge particle mixing. Two different elevations of pump nozzles are used for an assessment of the flow patterns on the tank mixing. Pump design and operating parameters used for the analysis are summarized in Table 1. The baseline

  12. TRU Waste Sampling Program: Volume I. Waste characterization

    SciTech Connect

    Clements, T.L. Jr.; Kudera, D.E.

    1985-09-01

    Volume I of the TRU Waste Sampling Program report presents the waste characterization information obtained from sampling and characterizing various aged transuranic waste retrieved from storage at the Idaho National Engineering Laboratory and the Los Alamos National Laboratory. The data contained in this report include the results of gas sampling and gas generation, radiographic examinations, waste visual examination results, and waste compliance with the Waste Isolation Pilot Plant-Waste Acceptance Criteria (WIPP-WAC). A separate report, Volume II, contains data from the gas generation studies.

  13. Surrogate formulations for thermal treatment of low-level mixed waste, Part II: Selected mixed waste treatment project waste streams

    SciTech Connect

    Bostick, W.D.; Hoffmann, D.P.; Chiang, J.M.; Hermes, W.H.; Gibson, L.V. Jr.; Richmond, A.A.; Mayberry, J.; Frazier, G.

    1994-01-01

    This report summarizes the formulation of surrogate waste packages, representing the major bulk constituent compositions for 12 waste stream classifications selected by the US DOE Mixed Waste Treatment Program. These waste groupings include: neutral aqueous wastes; aqueous halogenated organic liquids; ash; high organic content sludges; adsorbed aqueous and organic liquids; cement sludges, ashes, and solids; chloride; sulfate, and nitrate salts; organic matrix solids; heterogeneous debris; bulk combustibles; lab packs; and lead shapes. Insofar as possible, formulation of surrogate waste packages are referenced to authentic wastes in inventory within the DOE; however, the surrogate waste packages are intended to represent generic treatability group compositions. The intent is to specify a nonradiological synthetic mixture, with a minimal number of readily available components, that can be used to represent the significant challenges anticipated for treatment of the specified waste class. Performance testing and evaluation with use of a consistent series of surrogate wastes will provide a means for the initial assessment (and intercomparability) of candidate treatment technology applicability and performance. Originally the surrogate wastes were intended for use with emerging thermal treatment systems, but use may be extended to select nonthermal systems as well.

  14. The 1996 meeting of the national technical workgroup on mixed waste thermal treatment

    SciTech Connect

    1996-12-31

    The National Technical Workgroup on Mixed Waste Thermal Treatment held its annual meeting in Atlanta Georgia on March 12-14, 1996. The National Technical Workgroup (NTW) and this meeting were sponsored under an interagency agreement between EPA and DOE. The 1996 Annual Meeting was hosted by US DOE Oak Ridge Operations in conjunction with Lockheed Martin Energy Systems - Center for Waste Management. A new feature of the annual meeting was the Permit Writer Panel Session which provided an opportunity for the state and federal permit writers to discuss issues and potential solutions to permitting mixed waste treatment systems. In addition, there was substantial discussion on the impacts of the Waste Combustion Performance Standards on mixed waste thermal treatment which are expected to proposed very soon. The 1996 meeting also focussed on two draft technical resource documents produced by NTW on Waste Analysis Plans and Compliance Test Procedures. Issues discussed included public involvement, waste characterization, and emission issues.

  15. Nondestructive Waste Assay Using Gamma-Ray Active & Passive Computed Tomography. Mixed Waste Focus Area. OST Reference Number 2123

    SciTech Connect

    None, None

    1999-09-01

    This project was supported by the Mixed Waste Focus Area (MWFA) and the Federal Environmental Technology Center (FETC) to develop an improved nondestructive assay (NDA) capability that uses gamma-ray computed tomography and gamma-energy spectral analysis techniques to perform waste assay measurements. It was the intent of the Gamma-Ray Active & Passive Computed Tomography (A&PCT) development and demonstration project to enhance the overall utility of waste assay through the implementation of techniques that can accommodate known measurement complications, e.g., waste matrix and radioactive material distribution heterogeneities. This technology can measure the radionuclide content in all types of waste regardless of their classification as low level (LLW), transuranic (TRU) or mixed (MLLW or MTRU). The nondestructive waste assay capability needed to support Department of Energy (DOE) mixed waste characterization needs is necessarily a function of the waste form configurations in inventory. These waste form configurations exhibit a number of variables impacting assay system response that must be accounted for to ensure valid measurement data. Such variables include: matrix density, matrix elemental composition, matrix density distribution, radioactive material radionuclidic/isotopic composition, radioactive material physical/chemical form, and physical distribution in the waste matrix. Existing nondestructive assay technologies have identified capability limits with respect to these variables. Certain combinations of these variables result in waste configurations within the capability of one or more of the existing systems. Other combinations that are prevalent in the inventory are outside of the capability of such systems.

  16. 1998 report on Hanford Site land disposal restrictions for mixed waste

    SciTech Connect

    Black, D.G.

    1998-04-10

    This report was submitted to meet the requirements of Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) Milestone M-26-01H. This milestone requires the preparation of an annual report that covers characterization, treatment, storage, minimization, and other aspects of managing land-disposal-restricted mixed waste at the Hanford Facility. The US Department of Energy, its predecessors, and contractors on the Hanford Facility were involved in the production and purification of nuclear defense materials from the early 1940s to the late 1980s. These production activities have generated large quantities of liquid and solid mixed waste. This waste is regulated under authority of both the Resource Conservation and Recovery Act of l976 and the Atomic Energy Act of 1954. This report covers only mixed waste. The Washington State Department of Ecology, US Environmental Protection Agency, and US Department of Energy have entered into the Tri-Party Agreement to bring the Hanford Facility operations into compliance with dangerous waste regulations. The Tri-Party Agreement required development of the original land disposal restrictions (LDR) plan and its annual updates to comply with LDR requirements for mixed waste. This report is the eighth update of the plan first issued in 1990. The Tri-Party Agreement requires and the baseline plan and annual update reports provide the following information: (1) Waste Characterization Information -- Provides information about characterizing each LDR mixed waste stream. The sampling and analysis methods and protocols, past characterization results, and, where available, a schedule for providing the characterization information are discussed. (2) Storage Data -- Identifies and describes the mixed waste on the Hanford Facility. Storage data include the Resource Conservation and Recovery Act of 1976 dangerous waste codes, generator process knowledge needed to identify the waste and to make LDR determinations, quantities

  17. Bioconversion of mixed solids waste to ethanol.

    PubMed

    Nguyen, Q A; Keller, F A; Tucker, M P; Lombard, C K; Jenkins, B M; Yomogida, D E; Tiangco, V M

    1999-01-01

    A mixed solids waste (MSW) feedstock, comprising construction lumber waste (35% oven-dry basis), almond tree prunings (20%), wheat straw (20%), office waste paper (12.5%), and newsprint (12.5%), was converted to ethanol via dilute-acid pretreatment followed by enzymatic hydrolysis and yeast fermentation. The MSW was pretreated with dilute sulfuric acid (0.4% w/w) at 210 degrees C for 3 min in a 4-L steam explosion reactor, then washed with water to recover the solubilized hemicellulose. The digestibility of water-washed, pretreated MSW was 90% in batch enzymatic hydrolysis at 66 FPU/g cellulose. Using an enzyme-recycle bioreactor system, greater than 90% cellulose hydrolysis was achieved at a net enzyme loading of about 10 FPU/g cellulose. Enzyme recycling using membrane filtration and a fed-batch fermentation technique is a promising option for significantly reducing the cost of enzyme in cellulose hydrolysis. The hexose sugars were readily fermentable using a Saccharomyces cerevisiae yeast strain that was adapted to the hydrolysate. Solid residue after enzyme digestion was subjected to various furnace experiments designed to assess the fouling and slagging characteristics. Results of these analyses suggest the residue to be of a low to moderate slagging and fouling type if burned by itself.

  18. Active and passive computed tomography mixed waste focus area final report

    SciTech Connect

    Jackson, J A; Becker, G K; Camp, D C; Decman, D J; Martz, H E; Roberson, G P

    1998-11-06

    The Mixed Waste Focus Area (MWFA) Characterization Development Strategy delineates an approach to resolve technology deficiencies associated with the characterization of mixed wastes. The intent of this strategy is to ensure the availability of technologies to support the Department of Energy's (DOE) mixed-waste, low-level or transuranic (TRU) contaminated waste characterization management needs. To this end the MWFA has defined and coordinated characterization development programs to ensure that data and test results necessary to evaluate the utility of non-destructive assay technologies are available to meet site contact handled waste management schedules. Requirements used as technology development project benchmarks are based in the National TRU Program Quality Assurance Program Plan. These requirements include the ability to determine total bias and total measurement uncertainty. These parameters must be completely evaluated for waste types to be processed through a given nondestructive waste assay system constituting the foundation of activities undertaken in technology development projects. Once development and testing activities have been completed, Innovative Technology Summary Reports are generated to provide results and conclusions to support EM-30, -40, or -60 end user or customer technology selection. The active and passive computed tomography non-destructive assay system is one of the technologies selected for development by the MWFA. Lawrence Livermore National Laboratory (LLNL) has developed the active and passive computed tomography (A&XT) nondestructive assay (NDA) technology to identify and accurately quantify all detectable radioisotopes in closed containers of waste. This technology will be applicable to all types of waste regardless of their classification-low level, transuranic or mixed. Mixed waste contains radioactivity and hazardous organic species. The scope of our technology is to develop a non-invasive waste-drum scanner that employs

  19. Prospects for vitrification of mixed wastes at ANL-E

    SciTech Connect

    Mazer, J.; No, Hyo

    1993-12-01

    This report summarizes a study evaluating the prospects for vitrification of some of the mixed wastes at ANL-E. This project can be justified on the following basis: Some of ANL-E`s mixed waste streams will be stabilized such that they can be treated as a low-level radioactive waste. The expected volume reduction that results during vitrification will significantly reduce the overall waste volume requiring disposal. Mixed-waste disposal options currently used by ANL-E may not be permissible in the near future without treatment technologies such as vitrification.

  20. Task 1.6 - mixed waste. Topical report, April 1, 1994--September 30, 1995

    SciTech Connect

    1998-12-31

    For fifty years, the United States was involved in a nuclear arms race of immense proportions. During the majority of this period, the push was always to design new weapons, produce more weapons, and increase the size of the arsenal, maintaining an advantage over the opposition in order to protect U.S. interests. Now that the {open_quotes}Cold War{close_quotes} is over, we are faced with the imposing tasks of dismantling, cleaning up, and remediating the wide variety of problems created by this arms race. An overview of the current status of the total remediation effort within the DOE is presented in the DOE publication {open_quotes}ENVIRONMENTAL MANAGEMENT 1995{close_quotes} (EM 1995). Not all radioactive waste is the same though; therefore, a system was devised to categorize the different types of radioactive waste. These categories are as follows: spent fuel; high-level waste; transuranic waste; low-level waste; mixed waste; and uranium-mill tailings. Mixed waste is defined to be material contaminated with any of these categories of radioactive material plus an organic or heavy metal component. However, for this discussion, {open_quotes}mixed waste{close_quote} will pertain only to low-level mixed waste which consists of low-level radioactive waste mixed with organic solvents and or heavy metals. The area of {open_quotes}mixed-waste characterization, treatment, and disposal{close_quotes} is listed on page 6 of the EM 1995 publication as one of five focus areas for technological development, and while no more important than the others, it has become an area of critical concern for DOE. Lacking adequate technologies for treatment and disposal, the DOE stockpiled large quantities of mixed waste during the 1970s and 1980s. Legislative changes and the need for regulatory compliance have now made it expedient to develop methods of achieving final disposition for this stockpiled mixed waste.

  1. [Mixed Waste Focus Area]. Monthly progress report summary

    SciTech Connect

    1994-11-01

    During November 1994, a Call for Proposals to lead the implementation team of the Mixed Waste Focus Area was issued by DOE-HQ. Interested Sites prepared proposals to lead the MWFA and responded to DOE-HQ on December 1, 1994. DOE-ID was selected to lead the MWFA on December 15, 1994. As this report is being published, the Mixed Waste Integrated Program is being transitioned to the Mixed Waste Focus Area. Transition is scheduled to be complete by March 31, 1995. This report contains summaries of individual research projects which demonstrate the development of technology to treat mixed waste throughout the DOE complex.

  2. Accepting Mixed Waste as Alternate Feed Material for Processing and Disposal at a Licensed Uranium Mill

    SciTech Connect

    Frydenland, D. C.; Hochstein, R. F.; Thompson, A. J.

    2002-02-26

    Certain categories of mixed wastes that contain recoverable amounts of natural uranium can be processed for the recovery of valuable uranium, alone or together with other metals, at licensed uranium mills, and the resulting tailings permanently disposed of as 11e.(2) byproduct material in the mill's tailings impoundment, as an alternative to treatment and/or direct disposal at a mixed waste disposal facility. This paper discusses the regulatory background applicable to hazardous wastes, mixed wastes and uranium mills and, in particular, NRC's Alternate Feed Guidance under which alternate feed materials that contain certain types of mixed wastes may be processed and disposed of at uranium mills. The paper discusses the way in which the Alternate Feed Guidance has been interpreted in the past with respect to processing mixed wastes and the significance of recent changes in NRC's interpretation of the Alternate Feed Guidance that sets the stage for a broader range of mixed waste materials to be processed as alternate feed materials. The paper also reviews the le gal rationale and policy reasons why materials that would otherwise have to be treated and/or disposed of as mixed waste, at a mixed waste disposal facility, are exempt from RCRA when reprocessed as alternate feed material at a uranium mill and become subject to the sole jurisdiction of NRC, and some of the reasons why processing mixed wastes as alternate feed materials at uranium mills is preferable to direct disposal. Finally, the paper concludes with a discussion of the specific acceptance, characterization and certification requirements applicable to alternate feed materials and mixed wastes at International Uranium (USA) Corporation's White Mesa Mill, which has been the most active uranium mill in the processing of alternate feed materials under the Alternate Feed Guidance.

  3. Analysis and stabilization of Lawrence Berkeley Laboratory`s multiphase mixed waste

    SciTech Connect

    Crawford, B.A.

    1995-05-19

    Five drums of mixed waste were accepted from LBL during FY 1994; they contain inorganic acids and compounds, as well as organic reagents and radioactive materials. This document defines the work plan for stabilization and characterization of the waste in three of these 5 drums.

  4. Converting mixed waste into durable glass

    SciTech Connect

    Ruller, J.A.; Greenman, W.G.

    1994-12-31

    Radioactive, hazardous and mixed contamination of soils and sediments within the Weapons Complex is widespread and estimated to total billions of cubic meters. The cost to remediate this contamination, as well as the contaminated surface and groundwaters, buildings and facilities has been estimated to be up to $300 billion over the next 30 years and up to $30 billion over the next five years. Progress towards cleaning the Weapons Complex depends upon the development of new remediation technologies. The remediation of contaminated soils and sludges ultimately rests on the immobilization of radioactive and hazardous contaminants into a solid wasteform that is leach resistant to aqueous corrosion and other forms of degradation (such as thermal cycling and biological attack) and is highly durable. In addition, the process to immobilize the contaminants should concentrate the contaminants into the smallest volume to reduce disposal/storage and transportation costs. GTS Duratek and the Vitreous State Laboratory of The Catholic University of America have successfully demonstrated that several different waste streams can be converted into a durable, leach-resistant glass that will also lower waste volumes. In this paper, the authors discuss these successes for soils and sludges from three separate US Department of Energy sites. The sites are: the K-25 facility; the Weldon Spring site; and Fernald, Ohio.

  5. Safety analysis approaches or mixed transuranic waste.

    SciTech Connect

    Courtney, J. C.; Dwight, C. C.; Forrester, R. J.; Lehto, M. A.; Pan, Y. C.

    1999-02-10

    Argonne National Laboratory (ANL) has completed a survey of assumptions and techniques used for safety analyses at seven sites that handle or store mixed transuranic (TRU) waste operated by contractors for the US Department of Energy (DOE). While approaches to estimating on-site and off-site consequences of hypothetical accidents differ, there are commonalities in all of the safety studies. This paper identifies key parameters and methods used to estimate the radiological consequences associated with release of waste forms under abnormal conditions. Specific facilities are identified by letters with their safety studies listed in a bibliography rather than as specific references so that similarities and differences are emphasized in a nonjudgmental manner. References are provided for specific parameters used to project consequences associated with compromise of barriers and dispersion of potentially hazardous materials. For all of the accidents and sites, estimated dose commitments are well below guidelines even using highly conservative assumptions. Some of the studies quantified the airborne concentrations of toxic materials; this paper only addresses these analyses briefly, as an entire paper could be dedicated to this subject.

  6. Mediated electrochemical oxidation of mixed wastes

    SciTech Connect

    Chiba, Z.

    1993-04-01

    The Mediated Electrochemical Oxidation (MEO) process was studied for destroying low-level combustible mixed wastes at Rocky Flats Plant. Tests were performed with non-radioactive surrogate materials: Trimsol for contaminated cutting oils, and reagent-grade cellulose for contaminated cellulosic wastes. Extensive testing was carried out on Trimsol in both small laboratory-scale apparatus and on a large-scale system incorporating an industrial-size electrochemical cell. Preliminary tests were also carried out in the small-scale system with cellulose. Operating and system parameters that were studied were: use of a silver-nitric acid versus a cobalt-sulfuric acid system, effect of electrolyte temperature, effect of acid concentration, and effect of current density. Destruction and coulombic efficiencies were calculated using data obtained from continuous carbon dioxide monitors and total organic carbon (TOC) analysis of electrolyte samples. For Trimsol, the best performance was achieved with the silver-nitrate system at high acid concentrations, temperatures, and current densities. Destruction efficiencies of 99% or greater, and coulombic efficiencies up to 70% were obtained. For the cellulose, high destruction efficiencies and reasonable coulombic efficiencies were obtained for both silver-nitrate and cobalt-sulfate systems.

  7. Commercial treatability study capabilities for application to the US Department of Energy`s anticipated mixed waste streams

    SciTech Connect

    1996-07-01

    The U.S. Department of Energy (DOE) has established the Mixed Waste Focus Area (MWFA), which represents a national effort to develop and coordinate treatment solutions for mixed waste among all DOE facilities. The hazardous waste component of mixed waste is regulated under the Resource Conservation and Recovery Act (RCRA), while the radioactive component is regulated under the Atomic Energy Act, as implemented by the DOE, making mixed waste one of the most complex types of waste for the DOE to manage. The MWFA has the mission to support technologies that meet the needs of the DOE`s waste management efforts to characterize, treat, and dispose of mixed waste being generated and stored throughout the DOE complex. The technologies to be supported must meet all regulatory requirements, provide cost and risk improvements over available technologies, and be acceptable to the public. The most notable features of the DOE`s mixed-waste streams are the wide diversity of waste matrices, volumes, radioactivity levels, and RCRA-regulated hazardous contaminants. Table 1-1 is constructed from data from the proposed site treatment plans developed by each DOE site and submitted to DOE Headquarters. The table shows the number of mixed-waste streams and their corresponding volumes. This table illustrates that the DOE has a relatively small number of large-volume mixed-waste streams and a large number of small-volume mixed-waste streams. There are 1,033 mixed-waste streams with volumes less than 1 cubic meter; 1,112 mixed-waste streams with volumes between 1 and 1,000 cubic meters; and only 61 mixed-waste streams with volumes exceeding 1,000 cubic meters.

  8. 40 CFR 279.21 - Hazardous waste mixing.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 27 2011-07-01 2011-07-01 false Hazardous waste mixing. 279.21 Section 279.21 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR THE MANAGEMENT OF USED OIL Standards for Used Oil Generators § 279.21 Hazardous waste...

  9. 40 CFR 279.21 - Hazardous waste mixing.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 27 2014-07-01 2014-07-01 false Hazardous waste mixing. 279.21 Section 279.21 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR THE MANAGEMENT OF USED OIL Standards for Used Oil Generators § 279.21 Hazardous waste...

  10. Systems engineering identification and control of mixed waste technology development

    SciTech Connect

    Beitel, G.A.

    1997-08-01

    The Department of Energy (DOE) established the Mixed Waste Characterization, Treatment, and Disposal Focus Area (MWFA) to develop technologies required to meet the Department`s commitments for treatment of mixed low-level and transuranic wastes. Waste treatment includes all necessary steps from generation through disposal. Systems engineering was employed to reduce programmatic risk, that is, risk of failure to meet technical commitments within cost and schedule. Customer needs (technology deficiencies) are identified from Site Treatment Plans, Consent Orders, ten year plans, Site Technical Coordinating Groups, Stakeholders, and Site Visits. The Technical Baseline, a prioritized list of technology deficiencies, forms the basis for determining which technology development activities will be supported by the MWFA. Technology Development Requirements Documents are prepared for each technology selected for development. After technologies have been successfully developed and demonstrated, they are documented in a Technology Performance Report. The Technology Performance Reports are available to any of the customers or potential users of the technology, thus closing the loop between problem identification and product development. This systematic approach to technology development and its effectiveness after 3 years is discussed in this paper.

  11. Low level mixed waste thermal treatment technical basis report

    SciTech Connect

    Place, B.G.

    1994-12-01

    Detailed characterization of the existing and projected Hanford Site Radioactive Mixed Waste (RMW) inventory was initiated in 1993 (Place 1993). This report presents an analysis of the existing and projected RMW inventory. The subject characterization effort continues to be in support of the following engineering activities related to thermal treatment of Hanford Site RMW: (1) Contracting for commercial thermal treatment; (2) Installation and operation of an onsite thermal treatment facility (Project W-242); (3) Treatment at another Department of Energy (DOE) site. The collation of this characterization information (data) has emphasized the establishment of a common data base for the entire existing RMW inventory so that the specification of feed streams destined for different treatment facilities can be coordinated.

  12. Mixed Waste Salt Encapsulation Using Polysiloxane - Final Report

    SciTech Connect

    Miller, C.M.; Loomis, G.G.; Prewett, S.W.

    1997-11-01

    A proof-of-concept experimental study was performed to investigate the use of Orbit Technologies polysiloxane grouting material for encapsulation of U.S. Department of Energy mixed waste salts leading to a final waste form for disposal. Evaporator pond salt residues and other salt-like material contaminated with both radioactive isotopes and hazardous components are ubiquitous in the DOE complex and may exceed 250,000,000 kg of material. Current treatment involves mixing low waste percentages (less than 10% by mass salt) with cement or costly thermal treatment followed by cementation to the ash residue. The proposed technology involves simple mixing of the granular salt material (with relatively high waste loadings-greater than 50%) in a polysiloxane-based system that polymerizes to form a silicon-based polymer material. This study involved a mixing study to determine optimum waste loadings and compressive strengths of the resultant monoliths. Following the mixing study, durability testing was performed on promising waste forms. Leaching studies including the accelerated leach test and the toxicity characteristic leaching procedure were also performed on a high nitrate salt waste form. In addition to this testing, the waste form was examined by scanning electron microscope. Preliminary cost estimates for applying this technology to the DOE complex mixed waste salt problem is also given.

  13. 40 CFR 194.24 - Waste characterization.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Waste characterization. 194.24 Section... PROGRAMS CRITERIA FOR THE CERTIFICATION AND RE-CERTIFICATION OF THE WASTE ISOLATION PILOT PLANT'S... General Requirements § 194.24 Waste characterization. (a) Any compliance application shall describe the...

  14. Monitoring of a RCRA Mixed Waste Management Facility

    SciTech Connect

    Gordon, D.E.; Stevens, C.B.; Tuckfield, R.C.

    1989-12-31

    Since startup of the Savannah River Site (SRS) in 1953, solid radioactive waste materials have been disposed of in a centrally located facility known as the Radioactive Waste Burial Grounds. These burial grounds comprise three distinct disposal sites which include the original set of burial trenches for solid low level radioactive wastes (643-G), the currently operating Low Level Radioactive Waste Disposal Facility (643-7G), and the Mixed Waste Management Facility (643-28G) located within 643-7G. The Mixed Waste Management Facility (MWMF) has been used to dispose of various low level radioactive waste materials just as the other portions of the Radioactive Waste Burial Grounds. Some of the waste materials in the MWMF have been classified as mixed waste under the Resource Conservation and Recovery Act (RCRA). Because the MWMF contains mixed wastes, a closure plan for the facility was developed and submitted to the South Carolina Department of Health and Environmental Control (SCDHEC) to comply with RCRA requirements. This paper discusses the various aspects of the groundwater monitoring program developed to satisfy regulatory requirements for post-closure care and provides some initial results on groundwater quality.

  15. Monitoring of a RCRA Mixed Waste Management Facility

    SciTech Connect

    Gordon, D.E.; Stevens, C.B.; Tuckfield, R.C.

    1989-01-01

    Since startup of the Savannah River Site (SRS) in 1953, solid radioactive waste materials have been disposed of in a centrally located facility known as the Radioactive Waste Burial Grounds. These burial grounds comprise three distinct disposal sites which include the original set of burial trenches for solid low level radioactive wastes (643-G), the currently operating Low Level Radioactive Waste Disposal Facility (643-7G), and the Mixed Waste Management Facility (643-28G) located within 643-7G. The Mixed Waste Management Facility (MWMF) has been used to dispose of various low level radioactive waste materials just as the other portions of the Radioactive Waste Burial Grounds. Some of the waste materials in the MWMF have been classified as mixed waste under the Resource Conservation and Recovery Act (RCRA). Because the MWMF contains mixed wastes, a closure plan for the facility was developed and submitted to the South Carolina Department of Health and Environmental Control (SCDHEC) to comply with RCRA requirements. This paper discusses the various aspects of the groundwater monitoring program developed to satisfy regulatory requirements for post-closure care and provides some initial results on groundwater quality.

  16. Mixed waste focus area technical baseline report. Volume 2

    SciTech Connect

    1997-04-01

    As part of its overall program, the MWFA uses a national mixed waste data set to develop approaches for treating mixed waste that cannot be treated using existing capabilities at DOE or commercial facilities. The current data set was originally compiled under the auspices of the 1995 Mixed Waste Inventory Report. The data set has been updated over the past two years based on Site Treatment Plan revisions and clarifications provided by individual sites. The current data set is maintained by the MWFA staff and is known as MWFA97. In 1996, the MWFA developed waste groupings, process flow diagrams, and treatment train diagrams to systematically model the treatment of all mixed waste in the DOE complex. The purpose of the modeling process was to identify treatment gaps and corresponding technology development needs for the DOE complex. Each diagram provides the general steps needed to treat a specific type of waste. The NWFA categorized each MWFA97 waste stream by waste group, treatment train, and process flow. Appendices B through F provide the complete listing of waste streams by waste group, treatment train, and process flow. The MWFA97 waste strewn information provided in the appendices is defined in Table A-1.

  17. Mixed and Low-Level Waste Treatment Facility project

    SciTech Connect

    Not Available

    1992-04-01

    Mixed and low-level wastes generated at the Idaho National Engineering Laboratory (INEL) are required to be managed according to applicable State and Federal regulations, and Department of Energy Orders that provide for the protection of human health and the environment. The Mixed and Low-Level Waste Treatment Facility Project was chartered in 1991, by the Department of Energy to provide treatment capability for these mixed and low-level waste streams. The first project task consisted of conducting engineering studies to identify the waste streams, their potential treatment strategies, and the requirements that would be imposed on the waste streams and the facilities used to process them. The engineering studies, initiated in July 1991, identified 37 mixed waste streams, and 55 low-level waste streams. This report documents the waste stream information and potential treatment strategies, as well as the regulatory requirements for the Department of Energy-owned treatment facility option. The total report comprises three volumes and two appendices. This report consists of Volume 1, which explains the overall program mission, the guiding assumptions for the engineering studies, and summarizes the waste stream and regulatory information, and Volume 2, the Waste Stream Technical Summary which, encompasses the studies conducted to identify the INEL's waste streams and their potential treatment strategies.

  18. The Mixed Waste Management Facility. Preliminary design review

    SciTech Connect

    1995-12-31

    This document presents information about the Mixed Waste Management Facility. Topics discussed include: cost and schedule baseline for the completion of the project; evaluation of alternative options; transportation of radioactive wastes to the facility; capital risk associated with incineration; radioactive waste processing; scaling of the pilot-scale system; waste streams to be processed; molten salt oxidation; feed preparation; initial operation to demonstrate selected technologies; floorplans; baseline revisions; preliminary design baseline; cost reduction; and project mission and milestones.

  19. Mixed waste management at the National Institutes of Health

    SciTech Connect

    Walker, W.J.

    1994-12-31

    This article is an overview of the operations of the National Institutes of Health and describes what kind of wastes are generated from its various research programs. Chemical, radioactive, biohazardous, and mixed wastes are generated from seven major processes including: liquid scintillation counting, gel fixing and washing, liquid chromatography, filter and blot washing, protein precipitation, autoradiography, and radioimmunoassay. A description of waste minimization techniques and current waste disposal procedures is included.

  20. Hybrid Microwave Treatment of SRS TRU and Mixed Wastes

    SciTech Connect

    Wicks, G.G.

    1999-11-18

    A new process, using hybrid microwave energy, has been developed as part of the Strategic Research and Development program and successfully applied to treatment of a wide variety of non-radioactive materials, representative of SRS transuranic (TRU) and mixed wastes. Over 35 simulated (non-radioactive) TRU and mixed waste materials were processed individually, as well as in mixed batches, using hybrid microwave energy, a new technology now being patented by Westinghouse Savannah River Company (WSRC).

  1. EPA/DOE joint efforts on mixed waste treatment

    SciTech Connect

    Lee, C.C.; Huffman, G.L.; Nalesnik, R.P.

    1995-12-31

    Under the requirements of the Federal Facility Compliance Act (FFCA), the Department of Energy (DOE) is directed to develop treatment plans for their stockpile of wastes generated at their various sites. As a result, DOE is facing the monumental problem associated with the treatment and ultimate disposal of their mixed (radioactive and hazardous) waste. Meanwhile, the Environmental Protection Agency (EPA) issued a final {open_quotes}Hazardous Waste Combustion Strategy{close_quotes} in November 1994. Under the Combustion Strategy, EPA permit writers have been given the authority to use the Omnibus Provision of the Resource Conservation and Recovery Act (RCRA) to impose more stringent emission limits for waste combustors prior to the development of new regulations. EPA and DOE established a multi-year Interagency Agreement (IAG) in 1991. The main objective of the IAG (and of the second IAG that was added in 1993) is to conduct a research program on thermal technologies for treating mixed waste and to establish permit procedures for these technologies particularly under the new requirements of the above-mentioned EPA Combustion Strategy. The objective of this Paper is to summarize the results of the EPA/DOE joint efforts on mixed waste treatment since the establishment of the original Interagency Agreement. Specifically, this Paper will discuss six activities that have been underway; namely: (1) National Technical Workgroup (NTW) on Mixed Waste Treatment, (2) State-of-the-Art Assessment of APC (Air Pollution Control) and Monitoring Technologies for the Rocky Flats Fluidized Bed Unit, (3) Initial Study of Permit {open_quotes}Roadmap{close_quotes} Development for Mixed Waste Treatment, (4) Risk Assessment Approach for a Mixed Waste Thermal Treatment Facility, (5) Development and Application of Technology Selection Criteria for Mixed Waste Thermal Treatment, and (6) Performance Testing of Mixed Waste Incineration: In-Situ Chlorine Capture in a Fluidized Bed Unit.

  2. Key regulatory drivers affecting shipments of mixed transuranic waste from Los Alamos National Laboratory to the Waste Isolation Pilot Plant

    SciTech Connect

    Schumann, P.B.; Bacigalupa, G.A.; Kosiewicz, S.T.; Sinkule, B.J.

    1997-02-01

    A number of key regulatory drivers affect the nature, scope, and timing of Los Alamos National Laboratory`s (LANL`s) plans for mixed transuranic (MTRU) waste shipments to the Waste Isolation Pilot Plant (WIPP), which are planned to commence as soon as possible following WIPP`s currently anticipated November, 1997 opening date. This paper provides an overview of some of the key drivers at LANL, particularly emphasizing those associated with the hazardous waste component of LANL`s MTRU waste (MTRU, like any mixed waste, contains both a radioactive and a hazardous waste component). The key drivers discussed here derive from the federal Resource Conservation and Recovery Act (RCRA) and its amendments, including the Federal Facility Compliance Act (FFCAU), and from the New Mexico Hazardous Waste Act (NMHWA). These statutory provisions are enforced through three major mechanisms: facility RCRA permits; the New Mexico Hazardous Waste Management Regulations, set forth in the New Mexico Administrative Code, Title 20, Chapter 4, Part 1: and compliance orders issued to enforce these requirements. General requirements in all three categories will apply to MTRU waste management and characterization activities at both WIPP and LANL. In addition, LANL is subject to facility-specific requirements in its RCRA hazardous waste facility permit, permit conditions as currently proposed in RCRA Part B permit applications presently being reviewed by the New Mexico Environment Department (NNED), and facility-specific compliance orders related to MTRU waste management. Likewise, permitting and compliance-related requirements specific to WIPP indirectly affect LANL`s characterization, packaging, record-keeping, and transportation requirements for MTRU waste. LANL must comply with this evolving set of regulatory requirements to begin shipments of MTRU waste to WIPP in a timely fashion.

  3. FY94 Office of Technology Development Mixed Waste Operations Robotics Demonstration

    SciTech Connect

    Kriikku, E.M.

    1994-08-30

    The Department of Energy (DOE) Office of Technology Development (OTD) develops technologies to help solve waste management and environmental problems at DOE sites. The OTD includes the Robotics Technology Development Program (RTDP) and the Mixed Waste Integrated Program (MWIP). Together these programs will provide technologies for DOE mixed waste cleanup projects. Mixed waste contains both radioactive and hazardous constituents. DOE sites currently store over 240,000 cubic meters of low level mixed waste and cleanup activities will generate several hundred thousand more cubic meters. Federal and state regulations require that this waste must be processed before final disposal. The OTD RTDP Mixed Waste Operations (MWO) team held several robotic demonstrations at the Savannah River Site (SRS) during November of 1993. Over 330 representatives from DOE, Government Contractors, industry, and universities attended. The MWO team includes: Fernald Environmental Management Project (FEMP), Idaho National Engineering Laboratory (INEL), Lawrence Livermore National Laboratory (LLNL), Oak Ridge National Engineering Laboratory (ORNL), Sandia National Laboratory (SNL), and Savannah River Technology Center (SRTC). SRTC is the lead site for MWO and provides the technical coordinator. The primary demonstration objective was to show that robotic technologies can make DOE waste facilities run better, faster, more cost effective, and safer. To meet the primary objective, the demonstrations successfully showed the following remote waste drum processing activities: non-destructive drum examination, drum transportation, drum opening, removing waste from a drum, characterize and sort waste items, scarify metal waste, and inspect stored drums. To further meet the primary objective, the demonstrations successfully showed the following remote waste box processing activities: swing free crane control, workcell modeling, and torch standoff control.

  4. Radiological, physical, and chemical characterization of transuranic wastes stored at the Idaho National Engineering Laboratory

    SciTech Connect

    Apel, M.L.; Becker, G.K.; Ragan, Z.K.; Frasure, J.; Raivo, B.D.; Gale, L.G.; Pace, D.P.

    1994-03-01

    This document provides radiological, physical and chemical characterization data for transuranic radioactive wastes and transuranic radioactive and hazardous (i.e., mixed) wastes stored at the Idaho National Engineering Laboratory and considered for treatment under the Private Sector Participation Initiative Program (PSPI). Waste characterization data are provided in the form of INEL Waste Profile Sheets. These documents provide, for each content code, information on waste identification, waste description, waste storage configuration, physical/chemical waste composition, radionuclide and associated alpha activity waste characterization data, and hazardous constituents present in the waste. Information is provided for 139 waste streams which represent an estimated total volume of 39,380{sup 3} corresponding to a total mass of approximately 19,000,000 kg. In addition, considerable information concerning alpha, beta, gamma, and neutron source term data specific to Rocky Flats Plant generated waste forms stored at the INEL are provided to assist in facility design specification.

  5. A perspective of hazardous waste and mixed waste treatment technology at the Savannah River Site

    SciTech Connect

    England, J.L.; Venkatesh, S.; Bailey, L.L.; Langton, C.A.; Hay, M.S.; Stevens, C.B.; Carroll, S.J.

    1991-01-01

    Treatment technologies for the preparation and treatment of heavy metal mixed wastes, contaminated soils, and mixed mercury wastes are being considered at the Savannah River Site (SRS), a DOE nuclear material processing facility operated by Westinghouse Savannah River Company (WSRC). The proposed treatment technologies to be included at the Hazardous Waste/Mixed Waste Treatment Building at SRS are based on the regulatory requirements, projected waste volumes, existing technology, cost effectiveness, and project schedule. Waste sorting and size reduction are the initial step in the treatment process. After sorting/size reduction the wastes would go to the next applicable treatment module. For solid heavy metal mixed wastes the proposed treatment is macroencapsulation using a thermoplastic polymer. This process reduces the leachability of hazardous constituents from the waste and allows easy verification of the coating integrity. Stabilization and solidification in a cement matrix will treat a wide variety of wastes (i.e. soils, decontamination water). Some pretreatments may be required (i.e. Ph adjustment) before stabilization. Other pretreatments such as soil washing can reduce the amount of waste to be stabilized. Radioactive contaminated mercury waste at the SRS comes in numerous forms (i.e. process equipment, soils, and lab waste) with the required treatment of high mercury wastes being roasting/retorting and recovery. Any unrecyclable radioactive contaminated elemental mercury would be amalgamated, utilizing a batch system, before disposal.

  6. A perspective of hazardous waste and mixed waste treatment technology at the Savannah River Site

    SciTech Connect

    England, J.L.; Venkatesh, S.; Bailey, L.L.; Langton, C.A.; Hay, M.S.; Stevens, C.B.; Carroll, S.J.

    1991-12-31

    Treatment technologies for the preparation and treatment of heavy metal mixed wastes, contaminated soils, and mixed mercury wastes are being considered at the Savannah River Site (SRS), a DOE nuclear material processing facility operated by Westinghouse Savannah River Company (WSRC). The proposed treatment technologies to be included at the Hazardous Waste/Mixed Waste Treatment Building at SRS are based on the regulatory requirements, projected waste volumes, existing technology, cost effectiveness, and project schedule. Waste sorting and size reduction are the initial step in the treatment process. After sorting/size reduction the wastes would go to the next applicable treatment module. For solid heavy metal mixed wastes the proposed treatment is macroencapsulation using a thermoplastic polymer. This process reduces the leachability of hazardous constituents from the waste and allows easy verification of the coating integrity. Stabilization and solidification in a cement matrix will treat a wide variety of wastes (i.e. soils, decontamination water). Some pretreatments may be required (i.e. Ph adjustment) before stabilization. Other pretreatments such as soil washing can reduce the amount of waste to be stabilized. Radioactive contaminated mercury waste at the SRS comes in numerous forms (i.e. process equipment, soils, and lab waste) with the required treatment of high mercury wastes being roasting/retorting and recovery. Any unrecyclable radioactive contaminated elemental mercury would be amalgamated, utilizing a batch system, before disposal.

  7. Mixed Waste Treatment Project: Computer simulations of integrated flowsheets

    SciTech Connect

    Dietsche, L.J.

    1993-12-01

    The disposal of mixed waste, that is waste containing both hazardous and radioactive components, is a challenging waste management problem of particular concern to DOE sites throughout the United States. Traditional technologies used for the destruction of hazardous wastes need to be re-evaluated for their ability to handle mixed wastes, and in some cases new technologies need to be developed. The Mixed Waste Treatment Project (MWTP) was set up by DOE`s Waste Operations Program (EM30) to provide guidance on mixed waste treatment options. One of MWTP`s charters is to develop flowsheets for prototype integrated mixed waste treatment facilities which can serve as models for sites developing their own treatment strategies. Evaluation of these flowsheets is being facilitated through the use of computer modelling. The objective of the flowsheet simulations is to provide mass and energy balances, product compositions, and equipment sizing (leading to cost) information. The modelled flowsheets need to be easily modified to examine how alternative technologies and varying feed streams effect the overall integrated process. One such commercially available simulation program is ASPEN PLUS. This report contains details of the Aspen Plus program.

  8. Municipal solid waste combustion: Fuel testing and characterization

    SciTech Connect

    Bushnell, D.J.; Canova, J.H.; Dadkhah-Nikoo, A.

    1990-10-01

    The objective of this study is to screen and characterize potential biomass fuels from waste streams. This will be accomplished by determining the types of pollutants produced while burning selected municipal waste, i.e., commercial mixed waste paper residential (curbside) mixed waste paper, and refuse derived fuel. These materials will be fired alone and in combination with wood, equal parts by weight. The data from these experiments could be utilized to size pollution control equipment required to meet emission standards. This document provides detailed descriptions of the testing methods and evaluation procedures used in the combustion testing and characterization project. The fuel samples will be examined thoroughly from the raw form to the exhaust emissions produced during the combustion test of a densified sample.

  9. Polymer solidification of mixed wastes at the Rocky Flats Plant

    SciTech Connect

    Faucette, A.M.; Logsdon, B.W.; Lucerna, J.J.; Yudnich, R.J.

    1994-02-01

    The Rocky Flats Plant is pursuing polymer solidification as a viable treatment option for several mixed waste streams that are subject to land disposal restrictions within the Resource Conservation and Recovery Act provisions. Tests completed to date using both surrogate and actual wastes indicate that polyethylene microencapsulation is a viable treatment option for several mixed wastes at the Rocky Flats Plant, including nitrate salts, sludges, and secondary wastes such as ash. Treatability studies conducted on actual salt waste demonstrated that the process is capable of producing waste forms that comply with all applicable regulatory criteria, including the Toxicity Characteristic Leaching Procedure. Tests have also been conducted to evaluate the feasibility of macroencapsulating certain debris wastes in polymers. Several methods and plastics have been tested for macroencapsulation, including post-consumer recycle and regrind polyethylene.

  10. Recycling of mixed wastes using Quantum-CEP{trademark}

    SciTech Connect

    Sameski, B.

    1997-02-01

    The author describes the process that M4 Environmental Management, Inc., is commercializing for the treatment of mixed wastes. He summarizes the types of wastes which the process can be applied to, the products which come out of the process, and examples of various waste streams which have been processed. The process is presently licensed to treat mixed wastes and the company has in place contracts for such services. The process uses a molten metal bath to catalyze reactions which break the incoming products down to an atomic level, and allow different process steams to be tapped at the output end.

  11. Characterization, minimization and disposal of radioactive, hazardous, and mixed wastes during cleanup and rransition of the Tritium Research Laboratory (TRL) at Sandia National Laboratories/California (SNL/CA)

    SciTech Connect

    Garcia, T.B.; Gorman, T.P.

    1996-12-01

    This document provides an outline of waste handling practices used during the Sandia National Laboratory/California (SNL/CA), Tritium Research Laboratory (TRL) Cleanup and Transition project. Here we provide background information concerning the history of the TRL and the types of operations that generated the waste. Listed are applicable SNL/CA site-wide and TRL local waste handling related procedures. We describe personnel training practices and outline methods of handling and disposal of compactible and non-compactible low level waste, solidified waste water, hazardous wastes and mixed wastes. Waste minimization, reapplication and recycling practices are discussed. Finally, we provide a description of the process followed to remove the highly contaminated decontamination systems. This document is intended as both a historical record and as a reference to other facilities who may be involved in similar work.

  12. Wastes characterization using APSTNG technology

    SciTech Connect

    Rhodes, E.A.; Dickerman, C.E.

    1996-03-01

    The associated-particle sealed-tube neutron generator (APSTNG) interrogates the inspected object with 14-MeV neutrons from d-t reaction and detects the alpha-particle associated with each neutron inside a cone encompassing the region of interest. Gamma-ray spectra from resulting neutron reactions inside the inspected volume identify fissionable materials and many nuclides. Flight times from detection times of the gamma rays and alpha particles separate the prompt and delayed gamma-ray spectra and can yield coarse tomographic images from a single orientation. The high-energy neutrons and gamma rays penetrate large objects and dense materials. The gamma-ray detector and neutron generator can be on the same side of the interrogated objects, so walls and other confined areas can be inspected as well as sealed containers. No collimators or radiation shielding are needed. The neutron generator is simple and small. Commercial electronics are used. A complete system could be transported in a van. Laboratory and limited field tests indicate APSTNG could be useful in analyzing radioactive waste in drums, walls, soils, and processing systems, particularly for unknown or heterogeneous configurations that may attenuate radiation. Toxic chemicals could be identified in mixed waste, and the ability to detect pockets of water may address criticality concerns.

  13. GEOTECHNICAL/GEOCHEMICAL CHARACTERIZATION OF ADVANCED COAL PROCESS WASTE STREAMS

    SciTech Connect

    Edwin S. Olson; Charles J. Moretti

    1999-11-01

    Thirteen solid wastes, six coals and one unreacted sorbent produced from seven advanced coal utilization processes were characterized for task three of this project. The advanced processes from which samples were obtained included a gas-reburning sorbent injection process, a pressurized fluidized-bed coal combustion process, a coal-reburning process, a SO{sub x}, NO{sub x}, RO{sub x}, BOX process, an advanced flue desulfurization process, and an advanced coal cleaning process. The waste samples ranged from coarse materials, such as bottom ashes and spent bed materials, to fine materials such as fly ashes and cyclone ashes. Based on the results of the waste characterizations, an analysis of appropriate waste management practices for the advanced process wastes was done. The analysis indicated that using conventional waste management technology should be possible for disposal of all the advanced process wastes studied for task three. However, some wastes did possess properties that could present special problems for conventional waste management systems. Several task three wastes were self-hardening materials and one was self-heating. Self-hardening is caused by cementitious and pozzolanic reactions that occur when water is added to the waste. All of the self-hardening wastes setup slowly (in a matter of hours or days rather than minutes). Thus these wastes can still be handled with conventional management systems if care is taken not to allow them to setup in storage bins or transport vehicles. Waste self-heating is caused by the exothermic hydration of lime when the waste is mixed with conditioning water. If enough lime is present, the temperature of the waste will rise until steam is produced. It is recommended that self-heating wastes be conditioned in a controlled manner so that the heat will be safely dissipated before the material is transported to an ultimate disposal site. Waste utilization is important because an advanced process waste will not require

  14. Sulfur polymer cement stabilization of elemental mercury mixed waste

    SciTech Connect

    Melamed, D.; Fuhrmann, M.; Kalb, P.; Patel, B.

    1998-04-01

    Elemental mercury, contaminated with radionuclides, is a problem throughout the Department of Energy (DOE) complex. This report describes the development and testing of a process to immobilize elemental mercury, contaminated with radionuclides, in a form that is non-dispersible, will meet EPA leaching criteria, and has low mercury vapor pressure. In this stabilization and solidification process (patent pending) elemental mercury is mixed with an excess of powdered sulfur polymer cement (SPC) and additives in a vessel and heated to {approximately}35 C, for several hours, until all of the mercury is converted into mercuric sulfide (HgS). Additional SPC is then added and the mixture raised to 135 C, resulting in a homogeneous molten liquid which is poured into a suitable mold where is cools and solidifies. The final stabilized and solidified waste forms were characterized by powder X-ray diffraction, as well as tested for leaching behavior and mercury vapor pressure. During this study the authors have processed the entire inventory of mixed mercury waste stored at Brookhaven National Laboratory (BNL).

  15. Mixed Waste Management Facility closure at the Savannah River Site

    SciTech Connect

    Bittner, M.F.

    1991-08-01

    The Mixed Waste Management Facility of the Savannah River Plant received hazardous and solid low level radioactive wastes from 1972 until 1986. Because this facility did not have a permit to receive hazardous wastes, a Resource Conservation and Recovery Act closure was performed between 1987 and 1990. This closure consisted of dynamic compaction of the waste trenches and placement of a 3-foot clay cap, a 2-foot soil cover, and a vegetative layer. Operations of the waste disposal facility, tests performed to complete the closure design, and the construction of the closure cap are discussed herein.

  16. 183-H Basin Mixed Waste Analysis and Testing Report

    SciTech Connect

    1995-04-01

    The purpose of this sampling and analysis report is to provide data necessary to support treatment and disposal options for the low-level mixed waste from the 183-H solar evaporation ponds. In 1973, four of the 16 flocculation and sedimentation basins were designated for use as solar evaporation basins to provide waste reduction by natural evaporation of liquid chemical wastes from the 300 Area fuel fabrication facilities. The primary purpose of this effort is to gather chemical and bulk property data for the waste in the drums/boxes of sediment removed from the basin at Central Waste Complex.

  17. Microbial Transformation of TRU and Mixed Waste: Actinide Speciation and Waste Volume

    SciTech Connect

    Halada, Gary P

    2008-04-10

    In order to understand the susceptibility of transuranic and mixed waste to microbial degradation (as well as any mechanism which depends upon either complexation and/or redox of metal ions), it is essential to understand the association of metal ions with organic ligands present in mixed wastes. These ligands have been found in our previous EMSP study to limit electron transfer reactions and strongly affect transport and the eventual fate of radionuclides in the environment. As transuranic waste (and especially mixed waste) will be retained in burial sites and in legacy containment for (potentially) many years while awaiting treatment and removal (or remaining in place under stewardship agreements at government subsurface waste sites), it is also essential to understand the aging of mixed wastes and its implications for remediation and fate of radionuclides. Mixed waste containing actinides and organic materials are especially complex and require extensive study. The EMSP program described in this report is part of a joint program with the Environmental Sciences Department at Brookhaven National Laboratory. The Stony Brook University portion of this award has focused on the association of uranium (U(VI)) and transuranic analogs (Ce(III) and Eu(III)) with cellulosic materials and related compounds, with development of implications for microbial transformation of mixed wastes. The elucidation of the chemical nature of mixed waste is essential for the formulation of remediation and encapsulation technologies, for understanding the fate of contaminant exposed to the environment, and for development of meaningful models for contaminant storage and recovery.

  18. 40 CFR 279.21 - Hazardous waste mixing.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) STANDARDS FOR THE MANAGEMENT OF USED OIL Standards for Used Oil Generators § 279.21 Hazardous waste mixing... rebuttable presumption for used oil of § 279.10(b)(1)(ii) applies to used oil managed by generators. Under...

  19. 40 CFR 279.21 - Hazardous waste mixing.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) STANDARDS FOR THE MANAGEMENT OF USED OIL Standards for Used Oil Generators § 279.21 Hazardous waste mixing... rebuttable presumption for used oil of § 279.10(b)(1)(ii) applies to used oil managed by generators. Under...

  20. Laboratory stabilization/solidification of surrogate and actual mixed-waste sludge in glass and grout

    SciTech Connect

    Spence, R.D.; Gilliam, T.M.; Mattus, C.H.; Mattus, A.J.

    1998-03-03

    Grouting and vitrification are currently the most likely stabilization/solidification technologies for mixed wastes. Grouting has been used to stabilize and solidify hazardous and low-level waste for decades. Vitrification has long been developed as a high-level-waste alternative and has been under development recently as an alternative treatment technology for low-level mixed waste. Laboratory testing has been performed to develop grout and vitrification formulas for mixed-waste sludges currently stored in underground tanks at Oak Ridge National Laboratory (ORNL) and to compare these waste forms. Envelopes, or operating windows, for both grout and soda-lime-silica glass formulations for a surrogate sludge were developed. One formulation within each envelope was selected for testing the sensitivity of performance to variations ({+-}10 wt%) in the waste form composition and variations in the surrogate sludge composition over the range previously characterized in the sludges. In addition, one sludge sample of an actual mixed-waste tank was obtained, a surrogate was developed for this sludge sample, and grout and glass samples were prepared and tested in the laboratory using both surrogate and the actual sludge. The sensitivity testing of a surrogate tank sludge in selected glass and grout formulations is discussed in this paper, along with the hot-cell testing of an actual tank sludge sample.

  1. Dangerous Waste Characteristics of Contact-Handled Transuranic Mixed Wastes from the Hanford Tanks

    SciTech Connect

    Tingey, Joel M.; Bryan, Garry H.; Deschane, Jaquetta R.

    2004-08-31

    This report summarizes existing analytical data from samples taken from the Hanford tanks designated as potentially containing transuranic mixed process wastes. Process knowledge of the wastes transferred to these tanks has been reviewed to determine whether the dangerous waste characteristics now assigned to all Hanford underground storage tanks are applicable to these particular wastes. Supplemental technologies are being examined to accelerate the Hanford tank waste cleanup mission and accomplish waste treatment safely and efficiently. To date, 11 Hanford waste tanks have been designated as potentially containing contact-handled (CH) transuranic mixed (TRUM) wastes. The CH-TRUM wastes are found in single-shell tanks B-201 through B-204, T-201 through T-204, T-104, T-110, and T-111. Methods and equipment to solidify and package the CH-TRUM wastes are part of the supplemental technologies being evaluated. The resulting packages and wastes must be acceptable for disposal at the Waste Isolation Pilot Plant (WIPP). The dangerous waste characteristics being considered include ignitability, corrosivity, reactivity, and toxicity arising from the presence of 2,4,5-trichlorophenol at levels above the dangerous waste threshold. The analytical data reviewed include concentrations of sulfur, sulfate, cyanide, 2,4,5-trichlorophenol, total organic carbon, and oxalate; the composition of the tank headspace, pH, and mercury. Differential scanning calorimetry results were used to determine the energetics of the wastes as a function of temperature.

  2. Hanford Site radioactive mixed waste thermal treatment initiative

    SciTech Connect

    Place, B.G.; Riddelle, J.G.

    1993-03-01

    This paper is a progress report of current Westinghouse Hanford Company engineering activities related to the implementation of a program for the thermal treatment of the Hanford Site radioactive mixed waste. Topics discussed include a site-specific engineering study, the review of private sector capability in thermal treatment, and thermal treatment of some of the Hanford Site radioactive mixed waste at other US Department of Energy sites.

  3. Decontamination Study for Mixed Waste Storage Tanks RCRA Closure

    SciTech Connect

    Leaphart, D.M.; Reed, S.R.; Rankin, W.N.

    1995-03-01

    The Savannah River Site (SRS) plans to close six underground tanks storing mixed waste under RCRA regulations. In support of this closure effort, a study was performed to determine the optimal method of decontaminating these tanks to meet the closure requirements. Items consaidered in the evaluation of the decontamination methods included effectiveness, compatibility with existing waste residues, possible cleaning solution disposal methods, and cost.

  4. Mixed waste treatment model: Basis and analysis

    SciTech Connect

    Palmer, B.A.

    1995-09-01

    The Department of Energy`s Programmatic Environmental Impact Statement (PEIS) required treatment system capacities for risk and cost calculation. Los Alamos was tasked with providing these capacities to the PEIS team. This involved understanding the Department of Energy (DOE) Complex waste, making the necessary changes to correct for problems, categorizing the waste for treatment, and determining the treatment system requirements. The treatment system requirements depended on the incoming waste, which varied for each PEIS case. The treatment system requirements also depended on the type of treatment that was desired. Because different groups contributing to the PEIS needed specific types of results, we provided the treatment system requirements in a variety of forms. In total, some 40 data files were created for the TRU cases, and for the MLLW case, there were 105 separate data files. Each data file represents one treatment case consisting of the selected waste from various sites, a selected treatment system, and the reporting requirements for such a case. The treatment system requirements in their most basic form are the treatment process rates for unit operations in the desired treatment system, based on a 10-year working life and 20-year accumulation of the waste. These results were reported in cubic meters and for the MLLW case, in kilograms as well. The treatment system model consisted of unit operations that are linked together. Each unit operation`s function depended on the input waste streams, waste matrix, and contaminants. Each unit operation outputs one or more waste streams whose matrix, contaminants, and volume/mass may have changed as a result of the treatment. These output streams are then routed to the appropriate unit operation for additional treatment until the output waste stream meets the treatment requirements for disposal. The total waste for each unit operation was calculated as well as the waste for each matrix treated by the unit.

  5. Mercury separation from mixed wastes. Annual report

    SciTech Connect

    Taylor, P.A.; Klasson, K.T.; Corder, S.L.; Carlson, T.R.; McCandless, K.R.

    1995-11-01

    This is an assessment of new sorbents for removing Hg from wastes at US DOE sites. Four aqueous wastes were used for the laboratory tests: a simulant of a high-salt, acidic waste currently stored at INEL, a simulant of a high-salt, alkaline waste stored at Savannah River (SRS), a dilute LiOH solution stored at Y-12, and a low-salt, neutral groundwater generated at Y-12. Eight adsorbents covering a wide range of cost and capability were tested. Screening tests identified the most promising adsorbents, and column tests were performed using at least two adsorbents for each waste stream. No one adsorbent is effective in all of these waste streams. Based on loading capacity and compatibility, the most effect adsorbents to date are SuperLig 618 for the INEL tank waste simulant, Mersorb and Ionac SR-3 for the SRS tank waste simulant, Durasil 70 and Ionac SR-3 for the LiOH solution, and Ionac SR-3, followed by Ionac SR-4 and Mersorb, for the Y-12 groundwater.

  6. Stabilization Using Phosphate Bonded Ceramics. Salt Containing Mixed Waste Treatment. Mixed Waste Focus Area. OST Reference No. 117

    SciTech Connect

    None, None

    1999-09-01

    Throughout the Department of Energy (DOE) complex there are large inventories of homogeneous mixed waste solids, such as wastewater treatment residues, fly ashes, and sludges that contain relatively high concentrations (greater than 15% by weight) of salts. The inherent solubility of salts (e.g., nitrates, chlorides, and sulfates) makes traditional treatment of these waste streams difficult, expensive, and challenging. One alternative is low-temperature stabilization by chemically bonded phosphate ceramics (CBPCs). The process involves reacting magnesium oxide with monopotassium phosphate with the salt waste to produce a dense monolith. The ceramic makes a strong environmental barrier, and the metals are converted to insoluble, low-leaching phosphate salts. The process has been tested on a variety of surrogates and actual mixed waste streams, including soils, wastewater, flyashes, and crushed debris. It has also been demonstrated at scales ranging from 5 to 55 gallons. In some applications, the CBPC technology provides higher waste loadings and a more durable salt waste form than the baseline method of cementitious grouting. Waste form test specimens were subjected to a variety of performance tests. Results of waste form performance testing concluded that CBPC forms made with salt wastes meet or exceed both RCRA and recommended Nuclear Regulatory Commission (NRC) low-level waste (LLW) disposal criteria. Application of a polymer coating to the CBPC may decrease the leaching of salt anions, but continued waste form evaluations are needed to fully assess the deteriorating effects of this leaching, if any, over time.

  7. Chemical treatment of mixed waste at the FEMP

    SciTech Connect

    Honigford, L.; Sattler, J.; Dilday, D.; Cook, D.

    1996-05-01

    The Chemical Treatment Project is one in a series of projects implemented by the Fernald Environmental Management Project (FEMP) to treat mixed waste. The projects were initiated to address concerns regarding treatment capacity for mixed waste and to comply with requirements established by the Federal Facility Compliance Act. The Chemical Treatment Project is designed to utilize commercially available mobile technologies to perform treatment at the FEMP site. The waste in the Project consists of a variety of waste types with a wide range of hazards and physical characteristics. The treatment processes to be established for the waste types will be developed by a systematic approach including waste streams evaluation, projectization of the waste streams, and categorization of the stream. This information is utilized to determine the proper train of treatment which will be required to lead the waste to its final destination (i.e., disposal). This approach allows flexibility to manage a wide variety of waste in a cheaper, faster manner than designing a single treatment technology diverse enough to manage all the waste streams.

  8. Chemical treatment of mixed waste can be done.....Today!

    SciTech Connect

    Honigford, L.; Dilday, D.; Cook, D.; Sattler, J.

    1996-02-01

    The Chemical Treatment Project is one in a series of projects implemented by the FEMP to treat mixed waste. The projects were initiated to address concerns regarding treatment capacity for mixed waste and to comply with requirements established by the Federal Facility Compliance Act. The Chemical Treatment Project is designed to utilize commercially available mobile technologies to perform treatment at the FEMP site. The waste in the Project consists of a variety of waste types with a wide range of hazards and physical characteristics. The treatment processes to be established for the waste types will be developed by a systematic approach including waste streams evaluation, projectization of the waste streams, and categorization of the stream. This information is utilized to determine the proper train of treatment which will be required to lead the waste to its final destination (i.e., disposal). This approach allows flexibility to manage a wide variety of waste in a cheaper, faster manner than designing a single treatment technology diverse enough to manage all the waste streams.

  9. Commercial Submersible Mixing Pump For SRS Tank Waste Removal - 15223

    SciTech Connect

    Hubbard, Mike; Herbert, James E.; Scheele, Patrick W.

    2015-01-12

    The Savannah River Site Tank Farms have 45 active underground waste tanks used to store and process nuclear waste materials. There are 4 different tank types, ranging in capacity from 2839 m3 to 4921 m3 (750,000 to 1,300,000 gallons). Eighteen of the tanks are older style and do not meet all current federal standards for secondary containment. The older style tanks are the initial focus of waste removal efforts for tank closure and are referred to as closure tanks. Of the original 51 underground waste tanks, six of the original 24 older style tanks have completed waste removal and are filled with grout. The insoluble waste fraction that resides within most waste tanks at SRS requires vigorous agitation to suspend the solids within the waste liquid in order to transfer this material for eventual processing into glass filled canisters at the Defense Waste Processing Facility (DWPF). SRS suspends the solid waste by use of recirculating mixing pumps. Older style tanks generally have limited riser openings which will not support larger mixing pumps, since the riser access is typically 58.4 cm (23 inches) in diameter. Agitation for these tanks has been provided by four long shafted standard slurry pumps (SLP) powered by an above tank 112KW (150 HP) electric motor. The pump shaft is lubricated and cooled in a pressurized water column that is sealed from the surrounding waste in the tank. Closure of four waste tanks has been accomplished utilizing long shafted pump technology combined with heel removal using multiple technologies. Newer style waste tanks at SRS have larger riser openings, allowing the processing of waste solids to be accomplished with four large diameter SLPs equipped with 224KW (300 HP) motors. These tanks are used to process the waste from closure tanks for DWPF. In addition to the SLPs, a 224KW (300 HP) submersible mixer pump (SMP) has also been developed and deployed within older style tanks. The SMPs are product cooled and

  10. DOE complex buried waste characterization assessment. Buried Waste Integrated Demonstration Program

    SciTech Connect

    Kaae, P.S.; Holter, G.M.; Garrett, S.M.K.

    1993-01-01

    The work described in this report was conducted by Pacific Northwest Laboratory to provide information to the Buried Waste Integrated Demonstration (BWID) program. The information in this report is intended to provide a complex-wide planning base for th.e BWID to ensure that BWID activities are appropriately focused to address the range of remediation problems existing across the US Department of Energy (DOE) complex. This report contains information characterizing the 2.1 million m{sup 3} of buried and stored wastes and their associated sites at six major DOE facilities. Approximately 85% of this waste is low-level waste, with about 12% TRU or TRU mixed waste; the remaining 3% is low-level mixed waste. In addition, the report describes soil contamination sites across the complex. Some of the details that would be useful in further characterizing the buried wastes and contaminated soil sites across the DOE complex are either unavailable or difficult to locate. Several options for accessing this information and/or improving the information that is available are identified in the report. This document is a companion to Technology Needs for Remediation: Hanford and Other DOE Sites, PNL-8328 (Stapp 1993).

  11. Macroencapsulated and elemental lead mixed waste sites report

    SciTech Connect

    Kalia, A.; Jacobson, R.

    1996-09-01

    The purpose of this study was to compile a list of the Macroencapsulated (MACRO) and Elemental Lead (EL) Mixed Wastes sites that will be treated and require disposal at the Nevada Test Site within the next five to ten years. The five sites selected were: Hanford Site, Richland, Washington; Idaho National Engineering Laboratory (INEL), Idaho Falls, Idaho; Oak Ridge National Laboratory (ORNL), Oak Ridge, Tennessee; Rocky Flats Environmental Technology (RF), Golden, Colorado; and Savannah River (SRS), Charleston, South Carolina. A summary of total lead mixed waste forms at the five selected DOE sites is described in Table E-1. This table provides a summary of total waste and grand total of the current inventory and five-year projected generation of lead mixed waste for each site. This report provides conclusions and recommendations for further investigations. The major conclusions are: (1) the quantity of lead mixed current inventory waste is 500.1 m{sup 3} located at the INEL, and (2) the five sites contain several other waste types contaminated with mercury, organics, heavy metal solids, and mixed sludges.

  12. Technical area status report for low-level mixed waste final waste forms. Volume 2, Appendices

    SciTech Connect

    Mayberry, J.L.; Huebner, T.L.; Ross, W.; Nakaoka, R.; Schumacher, R.; Cunnane, J.; Singh, D.; Darnell, R.; Greenhalgh, W.

    1993-08-01

    This report presents information on low-level mixed waste forms.The descriptions of the low-level mixed waste (LLMW) streams that are considered by the Mixed Waste Integrated Program (MWIP) are given in Appendix A. This information was taken from descriptions generated by the Mixed Waste Treatment Program (MWTP). Appendix B provides a list of characteristic properties initially considered by the Final Waste Form (FWF) Working Group (WG). A description of facilities available to test the various FWFs discussed in Volume I of DOE/MWIP-3 are given in Appendix C. Appendix D provides a summary of numerous articles that were reviewed on testing of FWFS. Information that was collected by the tests on the characteristic properties considered in this report are documented in Appendix D. The articles reviewed are not a comprehensive list, but are provided to give an indication of the data that are available.

  13. Advanced Mixed Waste Treatment Project (AMWTP) Final Environmental Impact Statement

    SciTech Connect

    1999-02-12

    The AMWTP Final EIS assesses the potential environmental impacts associated with alternatives related to the construction and operation of a proposed waste treatment facility at the INEEL. The alternatives analyzed were: the No Action Alternative, the Proposed Action, the Non-Thermal Treatment Alternative, and the Treatment and Storage Alternative. The Proposed Action is the Preferred Alternative. Under the Proposed Action/Preferred Alternative, the AMWTP facility would treat transuranic waste, alpha-contaminated low-level mixed waste, and low-level mixed waste in preparation for disposal. After treatment, transuranic waste would be disposed of at the Waste Isolation Pilot Plant in New Mexico. Low-level mixed waste would be disposed of at an approved disposal facility depending on decisions to be based on DOE's Final Waste Management Programmatic Environmental Impact Statement. Evaluation of impacts on land use, socioeconomics, cultural resources, aesthetic and scenic resources, geology, air resources, water resources, ecological resources, noise, traffic and transportation, occupational and public health and safety, INEEL services, and environmental justice were included in the assessment.

  14. Polyethylene macroencapsulation - mixed waste focus area. OST reference No. 30

    SciTech Connect

    1998-02-01

    The lead waste inventory throughout the US Department of Energy (DOE) complex has been estimated between 17 million and 24 million kilograms. Decontamination of at least a portion of the lead is viable but at a substantial cost. Because of various problems with decontamination and its limited applicability and the lack of a treatment and disposal method, the current practice is indefinite storage, which is costly and often unacceptable to regulators. Macroencapsulation is an approved immobilization technology used to treat radioactively contaminated lead solids and mixed waste debris. (Mixed waste is waste materials containing both radioactive and hazardous components). DOE has funded development of a polyethylene extrusion macroencapsulation process at Brookhaven National Laboratory (BNL) that produces a durable, leach-resistant waste form. This innovative macroencapsulation technology uses commercially available single-crew extruders to melt, convey, and extrude molten polyethylene into a waste container in which mixed waste lead and debris are suspended or supported. After cooling to room temperature, the polyethylene forms a low-permeability barrier between the waste and the leaching media.

  15. Active and passive computed tomography mixed waste focus area final report

    SciTech Connect

    Roberson, G P

    1998-08-19

    The Mixed Waste Focus Area (MWFA) Characterization Development Strategy delineates an approach to resolve technology deficiencies associated with the characterization of mixed wastes. The intent of this strategy is to ensure the availability of technologies to support the Department of Energy's (DOE) mixed waste low-level or transuranic (TRU) contaminated waste characterization management needs. To this end the MWFA has defined and coordinated characterization development programs to ensure that data and test results necessary to evaluate the utility of non-destructive assay technologies are available to meet site contact handled waste management schedules. Requirements used as technology development project benchmarks are based in the National TRU Program Quality Assurance Program Plan. These requirements include the ability to determine total bias and total measurement uncertainty. These parameters must be completely evaluated for waste types to be processed through a given nondestructive waste assay system constituting the foundation of activities undertaken in technology development projects. Once development and testing activities have been completed, Innovative Technology Summary Reports are generated to provide results and conclusions to support EM-30, -40, or -60 end user/customer technology selection. The Active and Passive Computed Tomography non-destructive assay system is one of the technologies selected for development by the MWFA. Lawrence Livermore National Laboratory's (LLNL) is developing the Active and Passive Computed Tomography (A&PCT) nondestructive assay (NDA) technology to identify and accurately quantify all detectable radioisotopes in closed containers of waste. This technology will be applicable to all types of waste regardless of .their classification; low level, transuranic or provide results and conclusions to support EM-30, -40, or -60 end user/customer technology selection. The Active and Passive Computed Tomography non

  16. Photochemical oxidation: A solution for the mixed waste dilemma

    SciTech Connect

    Prellberg, J.W.; Thornton, L.M.; Cheuvront, D.A.

    1995-12-31

    Numerous technologies are available to remove organic contamination from water or wastewater. A variety of techniques also exist that are used to neutralize radioactive waste. However, few technologies can satisfactorily address the treatment of mixed organic/radioactive waste without creating unacceptable secondary waste products or resulting in extremely high treatment costs. An innovative solution to the mixed waste problem is on-site photochemical oxidation. Liquid-phase photochemical oxidation has a long- standing history of successful application to the destruction of organic compounds. By using photochemical oxidation, the organic contaminants are destroyed on-site leaving the water, with radionuclides, that can be reused or disposed of as appropriate. This technology offers advantages that include zero air emissions, no solid or liquid waste formation, and relatively low treatment cost. Discussion of the photochemical process will be described, and several case histories from recent design testing, including cost analyses for the resulting full-scale installations, will be presented as examples.

  17. Mixed waste management facility FY94 plan

    SciTech Connect

    Streit, R.

    1994-01-01

    This document is a progress report detailing the different aspects of the project plan. Included are the topics of quality assurance, safety and cost as they relate to the processing and storage of hazardous materials and radioactive waste.

  18. Thermal and chemical remediation of mixed waste

    DOEpatents

    Nelson, P.A.; Swift, W.M.

    1994-08-09

    A process and system for treating organic waste materials without venting gaseous emissions to the atmosphere. A fluidized bed including lime particles is operated at a temperature of at least 500 C by blowing gas having 20%/70% oxygen upwardly through the bed particles at a rate sufficient to fluidize same. A toxic organic waste material is fed into the fluidized bed where the organic waste material reacts with the lime forming CaCO[sub 3]. The off gases are filtered and cooled to condense water which is separated. A portion of the calcium carbonate formed during operation of the fluidized bed is replaced with lime particles. The off gases from the fluidized bed after drying are recirculated until the toxic organic waste material in the bed is destroyed. 3 figs.

  19. Thermal and chemical remediation of mixed waste

    DOEpatents

    Nelson, Paul A.; Swift, William M.

    1994-01-01

    A process and system for treating organic waste materials without venting gaseous emissions to the atmosphere. A fluidized bed including lime particles is operated at a temperature of at least 500.degree. C. by blowing gas having 20%/70% oxygen upwardly through the bed particles at a rate sufficient to fluidize same. A toxic organic waste material is fed into the fluidized bed where the organic waste material reacts with the lime forming CaCO.sub.3. The off gases are filtered and cooled to condense water which is separated. A portion of the calcium carbonate formed during operation of the fluidized bed is replaced with lime particles. The off gases from the fluidized bed after drying are recirculated until the toxic organic waste material in the bed is destroyed.

  20. Pretest characterization of WIPP experimental waste

    SciTech Connect

    Johnson, J.; Davis, H.; Drez, P.E.; Devarakonda, M.

    1991-12-31

    The Waste Isolation Pilot Plant (WIPP) near Carlsbad, New Mexico, is an underground repository designed for the storage and disposal of transuranic (TRU) wastes from US Department of Energy (DOE) facilities across the country. The Performance Assessment (PA) studies for WIPP address compliance of the repository with applicable regulations, and include full-scale experiments to be performed at the WIPP site. These experiments are the bin-scale and alcove tests to be conducted by Sandia National Laboratories (SNL). Prior to conducting these experiments, the waste to be used in these tests needs to be characterized to provide data on the initial conditions for these experiments. This characterization is referred to as the Pretest Characterization of WIPP Experimental Waste, and is also expected to provide input to other programmatic efforts related to waste characterization. The purpose of this paper is to describe the pretest waste characterization activities currently in progress for the WIPP bin-scale waste, and to discuss the program plan and specific analytical protocols being developed for this characterization. The relationship between different programs and documents related to waste characterization efforts is also highlighted in this paper.

  1. Uncertainty quantification applied to the radiological characterization of radioactive waste.

    PubMed

    Zaffora, B; Magistris, M; Saporta, G; Chevalier, J-P

    2017-09-01

    This paper describes the process adopted at the European Organization for Nuclear Research (CERN) to quantify uncertainties affecting the characterization of very-low-level radioactive waste. Radioactive waste is a by-product of the operation of high-energy particle accelerators. Radioactive waste must be characterized to ensure its safe disposal in final repositories. Characterizing radioactive waste means establishing the list of radionuclides together with their activities. The estimated activity levels are compared to the limits given by the national authority of the waste disposal. The quantification of the uncertainty affecting the concentration of the radionuclides is therefore essential to estimate the acceptability of the waste in the final repository but also to control the sorting, volume reduction and packaging phases of the characterization process. The characterization method consists of estimating the activity of produced radionuclides either by experimental methods or statistical approaches. The uncertainties are estimated using classical statistical methods and uncertainty propagation. A mixed multivariate random vector is built to generate random input parameters for the activity calculations. The random vector is a robust tool to account for the unknown radiological history of legacy waste. This analytical technique is also particularly useful to generate random chemical compositions of materials when the trace element concentrations are not available or cannot be measured. The methodology was validated using a waste population of legacy copper activated at CERN. The methodology introduced here represents a first approach for the uncertainty quantification (UQ) of the characterization process of waste produced at particle accelerators. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Permitting mixed waste treatment, storage and disposal facilities: A mixed bag

    SciTech Connect

    Ranek, N.L.; Coalgate, J.L.

    1995-07-01

    The Federal Facility Compliance Act of 1992 (FFCAct) requires the U.S. Department of Energy (DOE) to make a comprehensive national inventory of its mixed wastes (i.e., wastes that contain both a hazardous component that meets the Resource Conservation and Recovery Act (RCRA) definition of hazardous waste and a radioactive component consisting of source, special nuclear, or byproduct material regulated under the Atomic Energy Act (AEA)), and of its mixed waste treatment technologies and facilities. It also requires each DOE facility that stores or generates mixed waste to develop a treatment plan that includes, in part, a schedule for constructing units to treat those wastes that can be treated using existing technologies. Inherent in constructing treatment units for mixed wastes is, of course, permitting. This paper identifies Federal regulatory program requirements that are likely to apply to new DOE mixed waste treatment units. The paper concentrates on showing how RCRA permitting requirements interrelate with the permitting or licensing requirements of such other laws as the Atomic Energy Act, the Clean Water Act, and the Clean Air Act. Documentation needed to support permit applications under these laws are compared with RCRA permit application documentation. National Environmental Policy Act (NEPA) documentation requirements are also addressed, and throughout the paper, suggestions are made for managing the permitting process.

  3. Stability High Salt Content Waste Using Sol Gel Process. Mixed Waste Focus Area. OST Reference Number 0236

    SciTech Connect

    None, None

    1999-09-01

    salt waste components. The toxicity characterization leaching procedure (TCLP), Compressive Strength (ASTM C 39-94) and leachability tests (ANSI/ANS 16.1) confirm the efficacy of this approach, indicating that polyceram-based salt waste forms have the potential to provide end users with unique capabilities for disposing of salt-containing mixed wastes.

  4. The Advantages of Fixed Facilities in Characterizing TRU Wastes

    SciTech Connect

    FRENCH, M.S.

    2000-02-08

    In May 1998 the Hanford Site started developing a program for characterization of transuranic (TRU) waste for shipment to the Waste Isolation Pilot Plant (WIPP) in New Mexico. After less than two years, Hanford will have a program certified by the Carlsbad Area Office (CAO). By picking a simple waste stream, taking advantage of lessons learned at the other sites, as well as communicating effectively with the CAO, Hanford was able to achieve certification in record time. This effort was further simplified by having a centralized program centered on the Waste Receiving and Processing (WRAP) Facility that contains most of the equipment required to characterize TRU waste. The use of fixed facilities for the characterization of TRU waste at sites with a long-term clean-up mission can be cost effective for several reasons. These include the ability to control the environment in which sensitive instrumentation is required to operate and ensuring that calibrations and maintenance activities are scheduled and performed as an operating routine. Other factors contributing to cost effectiveness include providing approved procedures and facilities for handling hazardous materials and anticipated contingencies and performing essential evolutions, and regulating and smoothing the work load and environmental conditions to provide maximal efficiency and productivity. Another advantage is the ability to efficiently provide characterization services to other sites in the Department of Energy (DOE) Complex that do not have the same capabilities. The Waste Receiving and Processing (WRAP) Facility is a state-of-the-art facility designed to consolidate the operations necessary to inspect, process and ship waste to facilitate verification of contents for certification to established waste acceptance criteria. The WRAP facility inspects, characterizes, treats, and certifies transuranic (TRU), low-level and mixed waste at the Hanford Site in Washington state. Fluor Hanford operates the $89

  5. EVALUATION OF HDPE CONTAINERS FOR MACROENCAPSULATION OF MIXED WASTE DEBRIS

    SciTech Connect

    Eaton, David; Carlson, Tim; Gardner, Brad; Bushmaker, Robert; Battleson, Dan; Shaw, Mark; Bierce, Lawrence

    2003-02-27

    Macroencapsulation is currently available at facilities permitted by the U.S. Environmental Protection agency for the treatment of radioactively contaminated hazardous waste. The U.S. Department of Energy is evaluating the use of high-density polyethylene containers to provide a simpler means of meeting macroencapsulation requirements. Macroencapsulation is used for the purpose of isolating waste from the disposal environment in order to meet the Land Disposal Restriction treatment standards for debris-like waste. The containers being evaluated have the potential of providing a long-term reduction in the leachability and subsequent mobility of both the hazardous and radioactive contaminants in this waste while at the same allowing treatment by the generator as the waste is being generated. While the testing discussed in this paper shows that further developmental work is necessary, these tests also indicate that these containers have the potential to reduce the cost, schedule, and complexity of meeting the treatment standard for mixed waste debris.

  6. Cementitious Stabilization of Mixed Wastes with High Salt Loadings

    SciTech Connect

    Spence, R.D.; Burgess, M.W.; Fedorov, V.V.; Downing, D.J.

    1999-04-01

    Salt loadings approaching 50 wt % were tolerated in cementitious waste forms that still met leach and strength criteria, addressing a Technology Deficiency of low salt loadings previously identified by the Mixed Waste Focus Area. A statistical design quantified the effect of different stabilizing ingredients and salt loading on performance at lower loadings, allowing selection of the more effective ingredients for studying the higher salt loadings. In general, the final waste form needed to consist of 25 wt % of the dry stabilizing ingredients to meet the criteria used and 25 wt % water to form a workable paste, leaving 50 wt % for waste solids. The salt loading depends on the salt content of the waste solids but could be as high as 50 wt % if all the waste solids are salt.

  7. Characterization of Oversized Crates containing Nuclear Waste

    SciTech Connect

    Berg, Randal K.; Haggard, Daniel L.; Hilliard, Jim; Mozhayev, Andrey V.

    2007-11-01

    The 212-N Building at the Hanford Site held fifteen large crates containing glove boxes and process equipment associated with the development and fabrication of mixed oxide (MOX) fuel. The gloveboxes and associated equipment originated from the 308 Building of the Hanford Site and had been placed in the crates after a process upset in the 1960s. The crates were transported to the 212-N Building and had been in storage since 1972. In an effort to reduce the hazard categorization of 212-N the crates were removed from the building and Nondestructive Assay (NDA) was performed to characterize the crate contents meeting both Safeguards and Waste Management interests. A measurement system consisting of four configurable neutron slab detectors and high purity germanium (HPGe) detectors was deployed. Since no viable information regarding the waste matrix and configuration was available it was essential to correct for attenuation with a series of transmission measurements using californium and europium sources for both neutron and gamma applications. The gamma and neutron results obtained during this measurement campaign are compared and discussed in the paper.

  8. Demonstration of Mixed Waste Debris Macroencapsulation Using Sulfur Polymer Cement

    SciTech Connect

    Mattus, C.H.

    1998-07-01

    This report covers work performed during FY 1997 as part of the Evaluation of Sulfur Polymer Cement Fast-Track System Project. The project is in support of the ``Mercury Working Group/Mercury Treatment Demonstrations - Oak Ridge`` and is described in technical task plan (TTP) OR-16MW-61. Macroencapsulation is the treatment technology required for debris by the U.S. Environmental Protection Agency Land Disposal Restrictions (LDR) under the Resource Conservation and Recovery Act. Based upon the results of previous work performed at Oak Ridge, the concept of using sulfur polymer cement (SPC) for this purpose was submitted to the Mixed Waste Focus Area (MWFA). Because of the promising properties of the material, the MWFA accepted this Quick Win project, which was to demonstrate the feasibility of macroencapsulation of actual mixed waste debris stored on the Oak Ridge Reservation. The waste acceptance criteria from Envirocare, Utah, were chosen as a standard for the determination of the final waste form produced. During this demonstration, it was shown that SPC was a good candidate for macroencapsulation of mixed waste debris, especially when the debris pieces were dry. The matrix was found to be quite easy to use and, once the optimum operating conditions were identified, very straightforward to replicate for batch treatment. The demonstration was able to render LDR compliant more than 400 kg of mixed wastes stored at the Oak Ridge National Laboratory.

  9. Carbon dioxide and ammonia emissions during composting of mixed paper, yard waste and food waste.

    PubMed

    Komilis, Dimitris P; Ham, Robert K

    2006-01-01

    The objective of the work was to provide a method to predict CO2 and NH3 yields during composting of the biodegradable fraction of municipal solid wastes (MSW). The compostable portion of MSW was simulated using three principal biodegradable components, namely mixed paper wastes, yard wastes and food wastes. Twelve laboratory runs were carried out at thermophilic temperatures based on the principles of mixture experimental and full factorial designs. Seeded mixed paper (MXP), seeded yard waste (YW) and seeded food waste (FW), each composted individually, produced 150, 220 and 370 g CO2-C, and 2.0, 4.4 and 34 g NH3-N per dry kg of initial substrate, respectively. Several experimental runs were also carried out with different mixtures of these three substrates. The effect of seeding was insignificant during composting of food wastes and yard wastes, while seeding was necessary for composting of mixed paper. Polynomial equations were developed to predict CO2 and NH3 (in amounts of mass per dry kg of MSW) from mixtures of MSW. No interactions among components were found to be significant when predicting CO2 yields, while the interaction of food wastes and mixed paper was found to be significant when predicting NH3 yields.

  10. Thermal and chemical remediation of mixed wastes

    DOEpatents

    Nelson, P.A.; Swift, W.M.

    1997-12-16

    A process is described for treating organic waste materials without venting gaseous emissions to the atmosphere which includes oxidizing the organic waste materials at an elevated temperature not less than about 500 C with a gas having an oxygen content in the range of from about 20% to about 70% to produce an oxidation product containing CO{sub 2} gas. The gas is then filtered to remove particulates, and then contacted with an aqueous absorbent solution of alkali metal carbonates or alkanolamines to absorb a portion of the CO{sub 2} gas from the particulate-free oxidation product. The CO{sub 2} absorbent is thereafter separated for further processing. A process and system are also disclosed in which the waste materials are contacted with a reactive medium such as lime and product treatment as described. 8 figs.

  11. Thermal and chemical remediation of mixed wastes

    DOEpatents

    Nelson, Paul A.; Swift, William M.

    1997-01-01

    A process for treating organic waste materials without venting gaseous emissions to the atmosphere which includes oxidizing the organic waste materials at an elevated temperature not less than about 500.degree. C. with a gas having an oxygen content in the range of from about 20% to about 70% to produce an oxidation product containing CO.sub.2 gas. The gas is then filtered to remove particulates, and then contacted with an aqueous absorbent solution of alkali metal carbonates or alkanolamines to absorb a portion of the CO.sub.2 gas from the particulate-free oxidation product. The CO.sub.2 absorbent is thereafter separated for further processing. A process and system are also disclosed in which the waste materials are contacted with a reactive medium such as lime and product treatment as described.

  12. Measurements and Models for Hazardous chemical and Mixed Wastes

    SciTech Connect

    Laurel A. Watts; Cynthia D. Holcomb; Stephanie L. Outcalt; Beverly Louie; Michael E. Mullins; Tony N. Rogers

    2002-08-21

    Mixed solvent aqueous waste of various chemical compositions constitutes a significant fraction of the total waste produced by industry in the United States. Not only does the chemical process industry create large quantities of aqueous waste, but the majority of the waste inventory at the DOE sites previously used for nuclear weapons production is mixed solvent aqueous waste. In addition, large quantities of waste are expected to be generated in the clean-up of those sites. In order to effectively treat, safely handle, and properly dispose of these wastes, accurate and comprehensive knowledge of basic thermophysical properties is essential. The goal of this work is to develop a phase equilibrium model for mixed solvent aqueous solutions containing salts. An equation of state was sought for these mixtures that (a) would require a minimum of adjustable parameters and (b) could be obtained from a available data or data that were easily measured. A model was developed to predict vapor composition and pressure given the liquid composition and temperature. It is based on the Peng-Robinson equation of state, adapted to include non-volatile and salt components. The model itself is capable of predicting the vapor-liquid equilibria of a wide variety of systems composed of water, organic solvents, salts, nonvolatile solutes, and acids or bases. The representative system o water + acetone + 2-propanol + NaNo3 was selected to test and verify the model. Vapor-liquid equilibrium and phase density measurements were performed for this system and its constituent binaries.

  13. Risk assessment of mixed waste sites

    SciTech Connect

    Montague, D.F.; Holton, G.A.; King, C.M.

    1987-12-31

    As part of its ongoing efforts to ensure environmental regulation compliance at DOE facilities, DOE published on April 26, 1985, a notice of intent to write an Environmental Impact Statement on Waste Management Activities for Groundwater Protection (Groundwater EIS) at the Savannah River Plant (SRP). To perform a human health risk assessment of each waste site for each closure action considered, DuPont organized a project team led by personnel from the Savannah River Laboratory (SRL) and supported by outside contractors specializing in risk assessment work. As part of that team, JBF Associates, Inc. (JBFA) performed an atmospheric containment transport analysis and human health risk assessment of nonradioactive contaminants from SRP waste sites. For each waste site, three closure actions were examined: (1) excavate the site, backfill it, and cap it followed by regular groundwater monitoring (Option 1); (2) backfill and cap the site followed by regular groundwater monitoring (Option 2); and (3) no remedial action, regular groundwater monitoring, and some site maintenance work (Option 3). The human health risk assessment performed by JBFA estimated the public and worker risks from contaminants released to the atmosphere from each waste site for each closure option. This paper first presents the methodology JBFA used to estimate the public and worker risks attributable to the inhalation and ingestion of airborne, nonradioactive contaminants. Following the description of the analysis methodology, the authors present the risk results for the waste sites that were due to atmospherically released nonradioactive contaminants. Both worker risks and public risks are presented. Finally, the authors present the results and conclusions derived from their analysis of the risk from airborne, nonradioactive contaminants.

  14. Effects of simulant mixed waste on EPDM and butyl rubber

    SciTech Connect

    Nigrey, P.J.; Dickens, T.G.

    1997-11-01

    The authors have developed a Chemical Compatibility Testing Program for the evaluation of plastic packaging components which may be used in transporting mixed waste forms. In this program, they have screened 10 plastic materials in four liquid mixed waste simulants. These plastics were butadiene-acrylonitrile copolymer (Nitrile) rubber, cross-linked polyethylene, epichlorohydrin rubber, ethylene-propylene (EPDM) rubber, fluorocarbons (Viton and Kel-F{trademark}), polytetrafluoro-ethylene (Teflon), high-density polyethylene, isobutylene-isoprene copolymer (Butyl) rubber, polypropylene, and styrene-butadiene (SBR) rubber. The selected simulant mixed wastes were (1) an aqueous alkaline mixture of sodium nitrate and sodium nitrite; (2) a chlorinated hydrocarbon mixture; (3) a simulant liquid scintillation fluid; and (4) a mixture of ketones. The screening testing protocol involved exposing the respective materials to approximately 3 kGy of gamma radiation followed by 14-day exposures to the waste simulants at 60 C. The rubber materials or elastomers were tested using Vapor Transport Rate measurements while the liner materials were tested using specific gravity as a metric. The authors have developed a chemical compatibility program for the evaluation of plastic packaging components which may be incorporated in packaging for transporting mixed waste forms. From the data analyses performed to date, they have identified the thermoplastic, polychlorotrifluoroethylene, as having the greatest chemical compatibility after having been exposed to gamma radiation followed by exposure to the Hanford Tank simulant mixed waste. The most striking observation from this study was the poor performance of polytetrafluoroethylene under these conditions. In the evaluation of the two elastomeric materials they have concluded that while both materials exhibit remarkable resistance to these environmental conditions, EPDM has a greater resistance to this corrosive simulant mixed waste.

  15. CHARACTERIZING PULSATING MIXING OF SLURRIES

    SciTech Connect

    Bamberger, Judith A.; Meyer, Perry A.

    2007-12-01

    This paper describes the physical properties for defining the operation of a pulse jet mixing system. Pulse jet mixing operates with no moving parts located in the vessel to be mixed. Pulse tubes submerged in the vessel provide a pulsating flow due to a controlled combination of applied pressure to expel the fluid from the pulse tube nozzle followed by suction to refill the pulse tube through the same nozzle. For mixing slurries nondimensional parameters to define mixing operation include slurry properties, geometric properties and operational parameters. Primary parameters include jet Reynolds number and Froude number; alternate parameters may include particle Galileo number, particle Reynolds number, settling velocity ratio, and hindered settling velocity ratio. Rating metrics for system performance include just suspended velocity, concentration distribution as a function of elevation, and blend time.

  16. 1996 Hanford site report on land disposal restrictions for mixed waste

    SciTech Connect

    Black, D.G.

    1996-04-01

    This report was submitted to meet the requirements of Hanford Federal Facility Agreement and Consent Order milestone M-26-OIF. This milestone requires the preparation of an annual report that covers characterization, treatment, storage, minimization, and other aspects of land disposal-restricted mixed waste management at the Hanford Site.

  17. 1999 Report on Hanford Site land disposal restriction for mixed waste

    SciTech Connect

    BLACK, D.G.

    1999-03-25

    This report was submitted to meet the requirements of Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) Milestone M-26-011. This milestone requires the preparation of an annual report that covers characterization, treatment, storage, minimization, and other aspects of managing land-disposal-restricted mixed waste at the Hanford Facility.

  18. Use of selected waste materials in concrete mixes.

    PubMed

    Batayneh, Malek; Marie, Iqbal; Asi, Ibrahim

    2007-01-01

    A modern lifestyle, alongside the advancement of technology has led to an increase in the amount and type of waste being generated, leading to a waste disposal crisis. This study tackles the problem of the waste that is generated from construction fields, such as demolished concrete, glass, and plastic. In order to dispose of or at least reduce the accumulation of certain kinds of waste, it has been suggested to reuse some of these waste materials to substitute a percentage of the primary materials used in the ordinary portland cement concrete (OPC). The waste materials considered to be recycled in this study consist of glass, plastics, and demolished concrete. Such recycling not only helps conserve natural resources, but also helps solve a growing waste disposal crisis. Ground plastics and glass were used to replace up to 20% of fine aggregates in concrete mixes, while crushed concrete was used to replace up to 20% of coarse aggregates. To evaluate these replacements on the properties of the OPC mixes, a number of laboratory tests were carried out. These tests included workability, unit weight, compressive strength, flexural strength, and indirect tensile strength (splitting). The main findings of this investigation revealed that the three types of waste materials could be reused successfully as partial substitutes for sand or coarse aggregates in concrete mixtures.

  19. Use of selected waste materials in concrete mixes

    SciTech Connect

    Batayneh, Malek Marie, Iqbal; Asi, Ibrahim

    2007-07-01

    A modern lifestyle, alongside the advancement of technology has led to an increase in the amount and type of waste being generated, leading to a waste disposal crisis. This study tackles the problem of the waste that is generated from construction fields, such as demolished concrete, glass, and plastic. In order to dispose of or at least reduce the accumulation of certain kinds of waste, it has been suggested to reuse some of these waste materials to substitute a percentage of the primary materials used in the ordinary portland cement concrete (OPC). The waste materials considered to be recycled in this study consist of glass, plastics, and demolished concrete. Such recycling not only helps conserve natural resources, but also helps solve a growing waste disposal crisis. Ground plastics and glass were used to replace up to 20% of fine aggregates in concrete mixes, while crushed concrete was used to replace up to 20% of coarse aggregates. To evaluate these replacements on the properties of the OPC mixes, a number of laboratory tests were carried out. These tests included workability, unit weight, compressive strength, flexural strength, and indirect tensile strength (splitting). The main findings of this investigation revealed that the three types of waste materials could be reused successfully as partial substitutes for sand or coarse aggregates in concrete mixtures.

  20. Guidelines for generators of hazardous chemical waste at LBL and Guidelines for generators of radioactive and mixed waste at LBL

    SciTech Connect

    Not Available

    1991-07-01

    The purpose of this document is to provide the acceptance criteria for the transfer of hazardous chemical, radioactive, and mixed waste to Lawrence Berkeley Laboratory's (LBL) Hazardous Waste Handling Facility (HWHF). These guidelines describe how a generator of wastes can meet LBL's acceptance criteria for hazardous chemical, radioactive, and mixed waste. 9 figs.

  1. Selection of analytical methods for mixed waste analysis at the Hanford Site

    SciTech Connect

    Morant, P.M.

    1994-09-01

    This document describes the process that the US Department of Energy (DOE), Richland Operations Office (RL) and contractor laboratories use to select appropriate or develop new or modified analytical methods. These methods are needed to provide reliable mixed waste characterization data that meet project-specific quality assurance (QA) requirements while also meeting health and safety standards for handling radioactive materials. This process will provide the technical basis for DOE`s analysis of mixed waste and support requests for regulatory approval of these new methods when they are used to satisfy the regulatory requirements of the Hanford Federal Facility Agreement and Consent Order (Tri-party Agreement) (Ecology et al. 1992).

  2. Demonstration of ATG Process for Stabilizing Mercury (<260 ppm) Contaminated Mixed Waste. Mixed Waste Focus Area. OST Reference # 2407

    SciTech Connect

    None, None

    1999-09-01

    Mercury contaminated wastes in many forms are present at various U. S. Department of Energy (DOE) sites. Based on efforts led by the Mixed Waste Focus Area (MWFA) and its Mercury Working Group (HgWG), the inventory of wastes contaminated with <260 ppm mercury and with radionuclides stored at various DOE sites is estimated to be approximately 6,000 m3). At least 26 different DOE sites have this type of mixed low-level waste in their storage facilities. Extraction methods are required to remove mercury from waste containing >260 ppm levels, but below 260 ppm Hg contamination levels the U. S. Environmental Protection Agency (EPA) does not require removal of mercury from the waste. Steps must still be taken, however, to ensure that the final waste form does not leach mercury in excess of the limit for mercury prescribed in the Resource Conservation and Recovery Act (RCRA) when subjected to the Toxicity Characteristic Leaching Procedure (TCLP). At this time, the limit is 0.20 mg/L. However, in the year 2000, the more stringent Universal Treatment Standard (UTS) of 0.025 mg/L will be used as the target endpoint. Mercury contamination in the wastes at DOE sites presents a challenge because it exists in various forms, such as soil, sludges, and debris, as well as in different chemical species of mercury. Stabilization is of interest for radioactively contaminated mercury waste (<260 ppm Hg) because of its success with particular wastes, such as soils, and its promise of applicability to a broad range of wastes. However, stabilization methods must be proven to be adequate to meet treatment standards. It must also be proven feasible in terms of economics, operability, and safety. To date, no standard method of stabilization has been developed and proven for such varying waste types as those within the DOE complex.

  3. Electrochemical treatment of mixed (hazardous and radioactive) wastes

    SciTech Connect

    Dziewinski, J.; Zawodzinski, C.; Smith, W.H.

    1995-02-01

    Electrochemical treatment technologies for mixed hazardous waste are currently under development at Los Alamos National Laboratory. For a mixed waste containing toxic components such as heavy metals and cyanides in addition to a radioactive component, the toxic components can be removed or destroyed by electrochemical technologies allowing for recovery of the radioactive component prior to disposal of the solution. Mixed wastes with an organic component can be treated by oxidizing the organic compound to carbon dioxide and then recovering the radioactive component. The oxidation can be done directly at the anode or indirectly using an electron transfer mediator. This work describes the destruction of isopropanol, acetone and acetic acid at greater than 90% current efficiency using cobalt +3 or silver +2 as the electron transfer mediator. Also described is the destruction of cellulose based cheesecloth rags with electrochemically generated cobalt +3, at an overall efficiency of approximately 20%.

  4. Glassy slags as novel waste forms for remediating mixed wastes with high metal contents

    SciTech Connect

    Feng, X.; Wronkiewicz, D.J.; Bates, J.K.; Brown, N.R.; Buck, E.C.; Gong, M.; Ebert, W.L.

    1994-03-01

    Argonne National Laboratory (ANL) is developing a glassy slag final waste form for the remediation of low-level radioactive and mixed wastes with high metal contents. This waste form is composed of various crystalline and metal oxide phases embedded in a silicate glass phase. This work indicates that glassy slag shows promise as final waste form because (1) it has similar or better chemical durability than high-level nuclear waste (HLW) glasses, (2) it can incorporate large amounts of metal wastes, (3) it can incorporate waste streams having low contents of flux components (boron and alkalis), (4) it has less stringent processing requirements (e.g., viscosity and electric conductivity) than glass waste forms, (5) its production can require little or no purchased additives, which can result in greater reduction in waste volume and overall treatment costs. By using glassy slag waste forms, minimum additive waste stabilization approach can be applied to a much wider range of waste streams than those amenable only to glass waste forms.

  5. A literature review of mixed waste components: Sensitivities and effects upon solidification/stabilization in cement-based matrices

    SciTech Connect

    Mattus, C.H.; Gilliam, T.M.

    1994-03-01

    The US DOE Oak Ridge Field Office has signed a Federal Facility Compliance Agreement (FFCA) regarding Oak Ridge Reservation (ORR) mixed wastes subject to the land disposal restriction (LDR) provisions of the Resource conservation and Recovery Act. The LDR FFCA establishes an aggressive schedule for conducting treatability studies and developing treatment methods for those ORR mixed (radioactive and hazardous) wastes listed in Appendix B to the Agreement. A development, demonstration, testing, and evaluation program has been initiated to provide those efforts necessary to identify treatment methods for all of the wastes that meet Appendix B criteria. The program has assembled project teams to address treatment development needs in a variety of areas, including that of final waste forms (i.e., stabilization/solidification processes). A literature research has been performed, with the objective of determining waste characterization needs to support cement-based waste-form development. The goal was to determine which waste species are problematic in terms of consistent production of an acceptable cement-based waste form and at what concentrations these species become intolerable. The report discusses the following: hydration mechanisms of Portland cement; mechanisms of retardation and acceleration of cement set-factors affecting the durability of waste forms; regulatory limits as they apply to mixed wastes; review of inorganic species that interfere with the development of cement-based waste forms; review of radioactive species that can be immobilized in cement-based waste forms; and review of organic species that may interfere with various waste-form properties.

  6. Testing protocols for evaluating monolithic waste forms containing mixed wastes

    SciTech Connect

    Gilliam, T.M.; Sams, T.L.; Pitt, W.W.

    1986-01-01

    Test protocols have been presented which can be used as a guide in cement-based grout formulation development studies. Based on experience at ORNL, these six tests are generally sufficient to develop a grout product which will meet all applicable DOE, NRC, and EPA performance criteria. As such, these tests can be used to minimize the time required to tailor a grout to be compatible with both the waste stream and the process disposal scenario. 9 refs.

  7. Mixed and Low-Level Waste Treatment Facility Project

    SciTech Connect

    Not Available

    1992-04-01

    Mixed and low-level wastes generated at the Idaho National Engineering Laboratory (INEL) are required to be managed according to applicable State and Federal regulations, and Department of Energy Orders that provide for the protection of human health and the environment. The Mixed and Low-Level Waste Treatment Facility Project was chartered in 1991, by the Department of Energy to provide treatment capability for these mixed and low-level waste streams. The first project task consisted of conducting engineering studies to identify the waste streams, their potential treatment strategies, and the requirements that would be imposed on the waste streams and the facilities used to process them. This report documents those studies so the project can continue with an evaluation of programmatic options, system tradeoff studies, and the conceptual design phase of the project. This report, appendix B, comprises the engineering design files for this project study. The engineering design files document each waste steam, its characteristics, and identified treatment strategies.

  8. Treatment of mixed radioactive liquid wastes at Argonne National Laboratory

    SciTech Connect

    Vandegrift, G.F.; Chamberlain, D.B.; Conner, C.

    1994-03-01

    Aqueous mixed waste at Argonne National Laboratory (ANL) is traditionally generated in small volumes with a wide variety of compositions. A cooperative effort at ANL between Waste Management (WM) and the Chemical Technology Division (CMT) was established, to develop, install, and implement a robust treatment operation to handle the majority of such wastes. For this treatment, toxic metals in mixed-waste solutions are precipitated in a semiautomated system using Ca(OH){sub 2} and, for some metals, Na{sub 2}S additions. This step is followed by filtration to remove the precipitated solids. A filtration skid was built that contains several filter types which can be used, as appropriate, for a variety of suspended solids. When supernatant liquid is separated from the toxic-metal solids by decantation and filtration, it will be a low-level waste (LLW) rather than a mixed waste. After passing a Toxicity Characteristic Leaching Procedure (TCLP) test, the solids may also be treated as LLW.

  9. Mixed and Low-Level Waste Treatment Facility project

    SciTech Connect

    Not Available

    1992-04-01

    Mixed and low-level wastes generated at the Idaho National Engineering Laboratory (INEL) are required to be managed according to applicable State and Federal regulations, and Department of Energy Orders that provide for the protection of human health and the environment. The Mixed and Low-Level Waste Treatment Facility Project was chartered in 1991, by the Department of Energy to provide treatment capability for these mixed and low-level waste streams. The first project task consisted of conducting engineering studies to identify the waste streams, their potential treatment strategies, and the requirements that would be imposed on the waste streams and the facilities used to process them. This report, Appendix A, Environmental Regulatory Planning Documentation, identifies the regulatory requirements that would be imposed on the operation or construction of a facility designed to process the INEL's waste streams. These requirements are contained in five reports that discuss the following topics: (1) an environmental compliance plan and schedule, (2) National Environmental Policy Act requirements, (3) preliminary siting requirements, (4) regulatory justification for the project, and (5) health and safety criteria.

  10. Treatability study of aqueous, land disposal restricted mixed wastes

    SciTech Connect

    Haefner, D.R.

    1992-12-01

    Treatment studies have been completed on two aqueous waste streams at the Mixed Waste Storage Facility that are classified as land disposal restricted. Both wastes had mercury and lead as characteristic hazardous constituents. Samples from one of these wastes, composed of mercury and lead sulfide particles along with dissolved mercury and lead, was successfully treated by decanting, filtering, and ion exchanging. The effluent water had an average level of 0.003 and 0.025 mg/L of mercury and lead, respectively. These values are well below the targeted RCRA limits of 0.2 mg/L mercury and 5.0 mg/L lead. An acidic stream, containing the same hazardous metals, was also successfully treated using a treatment process of precipitation, filtering, and then ion exchange. Treatment of another waste was not completely successful, presumably because of the interference of a chelating agent.

  11. A Canadian Solution for Management of Mixed Liquid Waste - 13384

    SciTech Connect

    Suryanarayan, Sriram; Husain, Aamir

    2013-07-01

    Mixed liquid wastes (MLW) from Canadian nuclear facilities consist of solvents, PCB (Poly Chlorinated Biphenyls) and non-PCB contaminated oils and aqueous wastes. Historically, MLW drums were shipped to a licensed US facility for destruction via incineration. This option is relatively expensive considering the significant logistics and destruction costs involved. In addition, commercial waste destruction facilities in US cannot accept PCB wastes from non-US jurisdictions. Because of this, Kinectrics has recently developed a novel and flexible process for disposing both PCB as well as non-PCB contaminated MLW within Canada. This avoids the need for cross-border shipments which significantly reduces the complexity and cost for waste disposal. This paper presents an overview of the various approaches and activities undertaken to date by Kinectrics for successfully processing and disposing the MLW drums. A summary of the results, challenges and how they were overcome are also presented. (authors)

  12. Toxic emission control systems for mixed waste storage tanks

    SciTech Connect

    Robinson, J.D. ); Hansen, G.E. )

    1993-02-01

    The use of emission control systems on mixed waste storage tanks is a critical issue as characterization and remediation of tanks becomes a leading priority at DOE sites. The current tank ventilation systems, where installed, are designed primarily for the control of radionuclides with no treatment systems incorporated for toxic emissions. Many of the tanks also lack ammonia treatment systems, although ammonia, due to its noxious odor, is controlled in some applications. The need for emission control systems has become apparent by the numerous occurrences of occupational employee exposure and the buildup of toxic and/or flammable materials in the vapor space of tanks. This paper will focus on two alternate systems for the control of toxic emissions, and will provide a discussion of the key issues which must be addressed for each system. The contents of this paper are the results of two efforts being performed by Engineering-Science, Inc., under the contract to Battelle Environmental Management Operations (EMO), for the Westinghouse Hanford Company. These efforts are for the study, design, fabrication, installation, and testing of new modular exhaust units for the 241-C-103 Tank and for several tanks which are candidates for the Rotary Mode Core Sampling (RMCS) characterization. If one exhaust system can be used in several applications, during high activity and personnel exposure periods, then a tremendous savings to the capital investment needs, the annual operating budget, and decontamination and decommissioning costs can be realized.

  13. Recycling-oriented characterization of polyolefin packaging waste.

    PubMed

    Hu, Bin; Serranti, Silvia; Fraunholcz, Norbert; Di Maio, Francesco; Bonifazi, Giuseppe

    2013-03-01

    Packaging waste is one of the main sources of secondary polyolefins. It is essential to characterize polyolefins derived from this waste stream in such way, that not only mechanical sorting methods can effectively separate, but also that on-line sensor systems can quantitatively assess their distribution. The characterization methodology is hierarchical, relating all properties of waste particles in any phase of the processing ultimately to the input End-Of-Life products. The present paper documents a pre-concentrate obtained by hand picking of mixed Romanian household waste. Investigations have been addressed to identify the composition of this polyolefin waste stream, to study the polyolefin density distribution, to distinguish the polymer manufacturing methods (i.e. injection molding and blow molding) by flake physical properties and finally to perform all the required characterization and identification by hyperspectral imaging. On the basis of these analyses, polyolefins from packaging wastes can be recycled by density separation and their rheological properties and wall thickness indicate the molding procedures. Hyperspectral imaging based procedures have been also applied to set up quality control actions for recycled products. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Mixed waste landfill cell construction at energy solutions LLC: a regulator's perspective

    SciTech Connect

    Lukes, G.C.; Willoughby, O.H.

    2007-07-01

    A small percentage of the property that EnergySolutions' (formerly Envirocare) operates at Clive, Utah is permitted by the State of Utah as a treatment, storage and disposal facility for mixed waste. Mixed Waste is defined as a hazardous waste (Title 40 Code of Federal Regulations Part 261.3) that also has a radioactive component. Typically, the waste EnergySolutions receives at its mixed waste facility is contaminated with heavy metals and organic compounds while also contaminated with radioactivity. For EnergySolutions, the largest generator of mixed waste is the United States Department of Energy. However, EnergySolutions also accepts a wide variety of mixed waste from other generators. For many wastes, EnergySolutions goes through the process of characterization and acceptance (if appropriate) of the waste, treating the waste (if necessary), confirmation that the waste meets Land Disposal Restriction, and disposal of the waste in its mixed waste landfill cell (MWLC). EnergySolutions originally received its State-issued Part B (RCRA) permit in 1990. The Permit allows a mixed waste landfill cell footprint that covers roughly 10 hectares and includes 20 individual 'sumps'. EnergySolutions chose to build small segments of the landfill cell as waste receipts dictated. Nearly 16 years later, EnergySolutions has just completed its Phase V construction project. 18 of the 20 sumps in the original design have been constructed. The last two sumps are anticipated to be its Phase VI construction project. Further expansion of its mixed waste disposal landfill capacity beyond the current design would require a permit modification request and approval by the Executive Secretary of the Utah Solid and Hazardous Waste Control Board. Construction of the landfill cell is governed by the Construction Quality Assurance/Quality Control manual of its State-issued Permit. The construction of each sump is made up of (from the bottom up): a foundation; three feet of engineered clay

  15. Final Hanford Site Transuranic (TRU) Waste Characterization QA Project Plan

    SciTech Connect

    GREAGER, T.M.

    1999-09-09

    The Transuranic Waste Characterization Quality Assurance Program Plan required each US Department of Energy (DOE) site that characterizes transuranic waste to be sent the Waste Isolation Pilot Plan that addresses applicable requirements specified in the QAPP.

  16. Cementation and solidification of miscellaneous mixed wastes at the Rocky Flats Environmental Technology Site

    SciTech Connect

    Phillips, J.A.; Semones, G.B.

    1995-02-01

    The Rocky Flats Environmental Technology Site produces a variety of wastes which are amenable to micro-encapsulation in cement Portland cement is an inexpensive and readily available material for this application. The Waste Projects (WP) group at Rocky Flats evaluated cementation to determine its effectiveness in encapsulating several wastes. These included waste analytical laboratory solutions, incinerator ash, hydroxide precipitation sludge, and an acidic solution from the Delphi process (a chemical oxidation technology being evaluated as an alternative to incineration). WP prepared surrogate wastes and conducted designed experiments to optimize the cement formulation for the waste streams. These experiments used a Taguchi or factorial experimental design, interactions between the variables were also considered in the testing. Surrogate waste samples were spiked with various levels of each of six Resource Conservation and Recovery Act (RCRA) listed metals (Cd, Cr, Ba, Pb, Ni, and Ag), cemented using the optimized formulation, and analyzed for leach resistance using the Toxicity Characteristic Leaching Procedure (TCLP). The metal spike levels chosen were based on characterization data, and also based on an estimate of the highest levels of contaminants suspected in the waste. This paper includes laboratory test results for each waste studied. These include qualitative observations as well as quantitative data from TCLP analyses and environmental cycling studies. The results from these experiments show that cement stabilization of the different wastes can produce final waste forms which meet the current RCRA Land Disposal Restriction (LDR) requirements. Formulations that resulted in LDR compliant waste forms are provided. The volume increases associated with cementation are also lower than anticipated. Future work will include verification studies with actual mixed radioactive waste as well as additional formulation development studies on other waste streams.

  17. Transuranic waste characterization sampling and analysis plan

    SciTech Connect

    1994-12-31

    Los Alamos National Laboratory (the Laboratory) is located approximately 25 miles northwest of Santa Fe, New Mexico, situated on the Pajarito Plateau. Technical Area 54 (TA-54), one of the Laboratory`s many technical areas, is a radioactive and hazardous waste management and disposal area located within the Laboratory`s boundaries. The purpose of this transuranic waste characterization, sampling, and analysis plan (CSAP) is to provide a methodology for identifying, characterizing, and sampling approximately 25,000 containers of transuranic waste stored at Pads 1, 2, and 4, Dome 48, and the Fiberglass Reinforced Plywood Box Dome at TA-54, Area G, of the Laboratory. Transuranic waste currently stored at Area G was generated primarily from research and development activities, processing and recovery operations, and decontamination and decommissioning projects. This document was created to facilitate compliance with several regulatory requirements and program drivers that are relevant to waste management at the Laboratory, including concerns of the New Mexico Environment Department.

  18. Guidelines for generators of hazardous chemical waste at LBL and guidelines for generators of radioactive and mixed waste at LBL

    SciTech Connect

    Not Available

    1991-09-01

    In part one of this document the Governing Documents and Definitions sections provide general guidelines and regulations applying to the handling of hazardous chemical wastes. The remaining sections provide details on how you can prepare your waste properly for transport and disposal. They are correlated with the steps you must take to properly prepare your waste for pickup. The purpose of the second part of this document is to provide the acceptance criteria for the transfer of radioactive and mixed waste to LBL's Hazardous Waste Handling Facility (HWHF). These guidelines describe how you, as a generator of radioactive or mixed waste, can meet LBL's acceptance criteria for radioactive and mixed waste.

  19. Guidelines for generators to meet HWHF acceptance requirements for hazardous, radioactive, and mixed wastes at Berkeley Lab. Revision 3

    SciTech Connect

    Albert, R.

    1996-06-01

    This document provides performance standards that one, as a generator of hazardous chemical, radioactive, or mixed wastes at the Berkeley Lab, must meet to manage their waste to protect Berkeley Lab staff and the environment, comply with waste regulations and ensure the continued safe operation of the workplace, have the waste transferred to the correct Waste Handling Facility, and enable the Environment, Health and Safety (EH and S) Division to properly pick up, manage, and ultimately send the waste off site for recycling, treatment, or disposal. If one uses and generates any of these wastes, one must establish a Satellite Accumulation Area and follow the guidelines in the appropriate section of this document. Topics include minimization of wastes, characterization of the wastes, containers, segregation, labeling, empty containers, and spill cleanup and reporting.

  20. Mixing Processes in High-Level Waste Tanks - Final Report

    SciTech Connect

    Peterson, P.F.

    1999-05-24

    The mixing processes in large, complex enclosures using one-dimensional differential equations, with transport in free and wall jets is modeled using standard integral techniques. With this goal in mind, we have constructed a simple, computationally efficient numerical tool, the Berkeley Mechanistic Mixing Model, which can be used to predict the transient evolution of fuel and oxygen concentrations in DOE high-level waste tanks following loss of ventilation, and validate the model against a series of experiments.

  1. RCRA closure of mixed waste impoundments

    SciTech Connect

    Blaha, F.J.; Greengard, T.C.; Arndt, M.B.

    1989-11-01

    A case study of a RCRA closure action at the Rocky Flats Plant is presented. Closure of the solar evaporation ponds involves removal and immobilization of a mixed hazardous/radioactive sludge, treatment of impounded water, groundwater monitoring, plume delineation, and collection and treatment of contaminated groundwater. The site closure is described within the context of regulatory negotiations, project schedules, risk assessment, clean versus dirty closure, cleanup levels, and approval of closure plans and reports. Lessons learned at Rocky Flats are summarized.

  2. Steam Reforming of Low-Level Mixed Waste

    SciTech Connect

    1998-01-01

    Under DOE Contract No. DE-AR21-95MC32091, Steam Reforming of Low-Level Mixed Waste, ThermoChem has successfully designed, fabricated and operated a nominal 90 pound per hour Process Development Unit (PDU) on various low-level mixed waste surrogates. The design construction, and testing of the PDU as well as performance and economic projections for a 500- lb/hr demonstration and commercial system are described. The overall system offers an environmentally safe, non-incinerating, cost-effective, and publicly acceptable method of processing LLMW. The steam-reforming technology was ranked the No. 1 non-incineration technology for destruction of hazardous organic wastes in a study commissioned by the Mixed Waste Focus Area published April 1997.1 The ThermoChem steam-reforming system has been developed over the last 13 years culminating in this successful test campaign on LLMW surrogates. Six surrogates were successfidly tested including a 750-hour test on material simulating a PCB- and Uranium- contaminated solid waste found at the Portsmouth Gaseous Diffusion Plant. The test results indicated essentially total (>99.9999oA) destruction of RCRA and TSCA hazardous halogenated organics, significant levels of volume reduction (> 400 to 1), and retention of radlonuclides in the volume-reduced solids. Cost studies have shown the steam-reforming system to be very cost competitive with more conventional and other emerging technologies.

  3. Electromagnetic mixed waste processing system for asbestos decontamination

    SciTech Connect

    Kasevich, R.S.; Vaux, W.; Ulerich, N.; Nocito, T.

    1996-12-31

    The overall objective of this three-phase program is to develop an integrated process for treating asbestos-containing material that is contaminated with radioactive and hazardous constituents. The integrated process will attempt to minimize processing and disposal costs. The objectives of Phase 1 were to establish the technical feasibility of asbestos decomposition, inorganic radionuclide nd heavy metal removal, and organic volatilization. Phase 1 resulted in the successful bench-scale demonstration of the elements required to develop a mixed waste treatment process for asbestos-containing material (ACM) contaminated with radioactive metals, heavy metals, and organics. Using the Phase 1 data, a conceptual process was developed. The Phase 2 program, currently in progress, is developing an integrated system design for ACM waste processing. The Phase 3 program will target demonstration of the mixed waste processing system at a DOE facility. The electromagnetic mixed waste processing system employs patented technologies to convert DOE asbestos to a non-hazardous, radionuclide-free, stable waste. The dry, contaminated asbestos is initially heated with radiofrequency energy to remove organic volatiles. Second,the radionuclides are removed by solvent extraction coupled with ion exchange solution treatment. Third, the ABCOV method converts the asbestos to an amorphous silica suspension at low temperature (100{degrees}C). Finally the amorphous silica is solidified for disposal.

  4. Environmental Protection Agency update on mixed waste regulations

    SciTech Connect

    Wolfe, A.

    1989-11-01

    This paper is divided into discussion of the following four basic areas: (1) dual regulation; (2) the state role; (3) an overview of current agency activities; and (4) current issues. The first area, dual regulation of mixed waste, requires the cooperation between regulatory agencies, whether federal or state, for managing the chemical and radioactive aspects of mixed waste. Dual or joint regulation of mixed waste is now a well established fact. The second area is state involvement. Dual regulation involves not only the EPA, DOE, and NRC, but also state authorities. The Resource Conservation and Recovery Act (RCRA) is implemented for the most part by the individual states. Congress intended that the states be the primary implementers of RCRA and created provisions in the Act to authorize state programs. The third area discussed in this paper is concerned with EPA`s progress on current issues. EPA has progressed on several promises to create strong centralized guidance. Fourth and finally, there are many issues outstanding and some may have direct specific significant impact on DOE facility operations. Perhaps the biggest outstanding issue is how the land disposal restrictions will affect the treatment, storage, and disposal of mixed waste at DOE facilities.

  5. The mixed waste management facility, FY95 plan

    SciTech Connect

    Streit, R.

    1994-12-01

    This document contains the Fiscal Year 1995 Plan for the Mixed Waste Management Facility (MWMF) at Lawrence Livermore National Laboratory. Major objectives to be completed during FY 1995 for the MWMF project are listed and described. This report also contains a budget plan, project task summaries, a milestone control log, and a responsibility assignment matrix for the MWMF project.

  6. Mixed Waste Management Facility groundwater monitoring report, First quarter 1994

    SciTech Connect

    Not Available

    1994-06-01

    During first quarter 1994, nine constituents exceeded final Primary Drinking Water Standards in groundwater samples from downgradient monitoring wells at the Mixed Waste Management Facility, the Old Burial Ground, the E-Area Vaults, the proposed Hazardous Waste/Mixed Waste Disposal Vaults, and the F-Area Sewage Sludge Application Site. As in previous quarters, tritium and trichloroethylene were the most widespread elevated constituents. Chloroethene (vinyl chloride), copper, 1,1-dichloroethylene, lead, mercury, nonvolatile beta, or tetrachloroethylene also exceeded standards in one or more wells. Elevated constituents were found in numerous Aquifer Zone IIB{sub 2} (Water Table) and Aquifer Zone IIB{sub 1}, (Barnwell/McBean) wells and in one Aquifer Unit IIA (Congaree) well. The groundwater flow directions and rates in the three hydrostratigraphic units were similar to those of previous quarters.

  7. Mixed and low-level waste treatment facility project

    SciTech Connect

    Not Available

    1992-04-01

    The technology information provided in this report is only the first step toward the identification and selection of process systems that may be recommended for a proposed mixed and low-level waste treatment facility. More specific information on each technology will be required to conduct the system and equipment tradeoff studies that will follow these preengineering studies. For example, capacity, maintainability, reliability, cost, applicability to specific waste streams, and technology availability must be further defined. This report does not currently contain all needed information; however, all major technologies considered to be potentially applicable to the treatment of mixed and low-level waste are identified and described herein. Future reports will seek to improve the depth of information on technologies.

  8. Thermoplastic encapsulation of commercial reactor low level radioactive, hazardous and mixed wastes

    SciTech Connect

    Kalb, P.D.; Lageraaen, P.R.

    1995-05-01

    Conventional hydraulic cement solidification is the primary technology employed by the U.S. Department of Energy (DOE) and commercial nuclear facilities for treatment of low-level radioactive (LLW), hazardous and mixed wastes. The extensive use of cement as a solidification binder has been based on its availability, relative low cost, processability, and high alkalinity (beneficial for immobilizing toxic metals). However, a chemical hydration reaction necessary to set and cure the waste form limits the type and quantity of waste that can be incorporated due to possible interferences between the waste and binder material. Alternative encapsulation technologies have been sought under DOE sponsorship that provide increases in waste stream compatibility, waste loading potential, and waste form performance at lower costs. The Environmental & Waste Technology Center (E&WTC) at Brookhaven National Laboratory (BNL) has developed several low temperature encapsulation processes for improved treatment of commercial reactor and DOE waste streams, using low-density polyethylene and sulfur polymer. Process development studies have shown successful process applicability to a wide range of wastes including evaporator concentrates, such as sodium sulfate and borate salts, incinerator ash and ion exchange resins. Waste form performance studies have been conducted to characterize waste form behavior under disposal conditions in accordance with testing criteria specified by the Nuclear Regulatory Commission (NRC) and the Environmental Protection Agency (EPA). Based on processing and performance considerations, dramatic waste loading improvements compared with conventional hydraulic cement have been achieved. For example, the polyethylene process has been shown to encapsulate up to 70 dry wt% evaporator salt concentrates, compared with a maximum of about 12 dry wt% for the best hydraulic cement formation.

  9. Measurement and Model for Hazardous Chemical and Mixed Waste

    SciTech Connect

    Michael E. Mullins; Tony N. Rogers; Stephanie L. Outcalt; Beverly Louie; Laurel A. Watts; Cynthia D. Holcomb

    2002-07-30

    Mixed solvent aqueous waste of various chemical compositions constitutes a significant fraction of the total waste produced by industry in the United States. Not only does the chemical process industry create large quantities of aqueous waste, but the majority of the waste inventory at the Department of Energy (DOE) sites previously used for nuclear weapons production is mixed solvent aqueous waste. In addition, large quantities of waste are expected to be generated in the clean-up of those sites. In order to effectively treat, safely handle, and properly dispose of these wastes, accurate and comprehensive knowledge of basic thermophysical properties is essential. The goal of this work is to develop a phase equilibrium model for mixed solvent aqueous solutions containing salts. An equation of state was sought for these mixtures that (a) would require a minimum of adjustable parameters and (b) could be obtained from a available data or data that were easily measured. A model was developed to predict vapor composition and pressure given the liquid composition and temperature. It is based on the Peng-Robinson equation of state, adapted to include non-volatile and salt components. The model itself is capable of predicting the vapor-liquid equilibria of a wide variety of systems composed of water, organic solvents, salts, nonvolatile solutes, and acids or bases. The representative system of water + acetone + 2-propanol + NaNO3 was selected to test and verify the model. Vapor-liquid equilibrium and phase density measurements were performed for this system and its constituent binaries.

  10. Effluent testing for the Oak Ridge mixed waste incinerator: Emissions test for August 27, 1990

    SciTech Connect

    Bostick, W.D.; Bunch, D.H.; Gibson, L.V.; Hoffmann, D.P.; Shoemaker, J.L.

    1990-12-01

    On August 27, 1990, a special emissions test was performed at the K-1435 Toxic Substance Control Act Mixed Waste Incinerator. A sampling and analysis plan was implemented to characterize the incinerator waste streams during a 6 hour burn of actual mixed waste. The results of this characterization are summarized in the present report. Significant among the findings is the observation that less than 3% of the uranium fed to the incinerator kiln was discharged as stack emission. This value is consistent with the estimate of 4% or less derived from long-term mass balance of previous operating experience and with the value assumed in the original Environmental Impact Statement. Approximately 1.4% of the total uranium fed to the incinerator kiln appeared in the aqueous scrubber blowdown; about 85% of the total uranium in the aqueous waste was insoluble (i.e., removable by filtration). The majority of the uranium fed to the incinerator kiln appeared in the ash material, apparently associated with phosphorous as a sparingly-soluble species. Many other metals of potential regulatory concern also appeared to concentrate in the ash as sparingly-soluble species, with minimal partition to the aqueous waste. The aqueous waste was discharged to the Central Neutralization Facility where it was effectively treated by coprecipitation with iron. The treated, filtered aqueous effluent met Environmental Protection Agency interim primary drinking water standards for regulated metals.

  11. 1997 Hanford site report on land disposal restrictions for mixed waste

    SciTech Connect

    Black, D.G.

    1997-04-07

    The baseline land disposal restrictions (LDR) plan was prepared in 1990 in accordance with the Hanford Federal Facility Agreement and Consent Order (commonly referred to as the Tn-Party Agreement) Milestone M-26-00 (Ecology et al, 1989). The text of this milestone is below. ''LDR requirements include limitations on storage of specified hazardous wastes (including mixed wastes). In accordance with approved plans and schedules, the U.S. Department of Energy (DOE) shall develop and implement technologies necessary to achieve full compliance with LDR requirements for mixed wastes at the Hanford Site. LDR plans and schedules shall be developed with consideration of other action plan milestones and will not become effective until approved by the U.S. Environmental Protection Agency (EPA) (or Washington State Department of Ecology [Ecology]) upon authorization to administer LDRs pursuant to Section 3006 of the Resource Conservation and Recovery Act of 1976 (RCRA). Disposal of LDR wastes at any time is prohibited except in accordance with applicable LDR requirements for nonradioactive wastes at all times. The plan will include, but not be limited to, the following: Waste characterization plan; Storage report; Treatment report; Treatment plan; Waste minimization plan; A schedule depicting the events necessary to achieve full compliance with LDR requirements; and A process for establishing interim milestones.

  12. 1993 report on Hanford Site land disposal restrictions for mixed wastes

    SciTech Connect

    Black, D.

    1993-04-01

    Since the early 1940s, the contractors at the Hanford Site have been involved in the production and purification of nuclear defense materials. These production activities have resulted in the generation of large quantities of liquid and solid radioactive mixed waste (RMW). This waste is subject to regulation under authority of both the Resource Conservation and Recovery Act of 1976{sup 2}(RCRA) and Atomic Energy Act{sup 3}. This report covers mixed waste only. Hazardous waste that is not contaminated with radionuclides is not addressed in this report. The Washington State Department of Ecology, US Environmental Protection Agency, and US Department of Energy have entered into an agreement, the Hanford Federal Facility Agreement and Consent Order{sup 1} (commonly referred to as the Tri-Party Agreement) to bring the Hanford Site operations into compliance with dangerous waste regulations. The Tri-Party Agreement required development of the original land disposal restrictions (LDR) plan and its annual updates to comply with LDR requirements for RMW. This report is the third update of the plan first issued in 1990. The Tri-Party Agreement requires, and the baseline plan and annual update reports provide, the information that follows: Waste characterization information; storage data; treatment information; waste reduction information; schedule; and progress.

  13. Treatment technology analysis for mixed waste containers and debris

    SciTech Connect

    Gehrke, R.J.; Brown, C.H.; Langton, C.A.; Askew, N.M.; Kan, T.; Schwinkendorf, W.E.

    1994-03-01

    A team was assembled to develop technology needs and strategies for treatment of mixed waste debris and empty containers in the Department of Energy (DOE) complex, and to determine the advantages and disadvantages of applying the Debris and Empty Container Rules to these wastes. These rules issued by the Environmental Protection Agency (EPA) apply only to the hazardous component of mixed debris. Hazardous debris that is subjected to regulations under the Atomic Energy Act because of its radioactivity (i.e., mixed debris) is also subject to the debris treatment standards. The issue of treating debris per the Resource Conservation and Recovery Act (RCRA) at the same time or in conjunction with decontamination of the radioactive contamination was also addressed. Resolution of this issue requires policy development by DOE Headquarters of de minimis concentrations for radioactivity and release of material to Subtitle D landfills or into the commercial sector. The task team recommends that, since alternate treatment technologies (for the hazardous component) are Best Demonstrated Available Technology (BDAT): (1) funding should focus on demonstration, testing, and evaluation of BDAT on mixed debris, (2) funding should also consider verification of alternative treatments for the decontamination of radioactive debris, and (3) DOE should establish criteria for the recycle/reuse or disposal of treated and decontaminated mixed debris as municipal waste.

  14. Deep geologic disposal of mixed waste in bedded salt: The Waste Isolation Pilot Plant

    SciTech Connect

    Rempe, N.T.

    1993-12-01

    Mixed waste (i.e., waste that contains both chemically hazardous and radioactive components) poses a moral, political, and technical challenge to present and future generations. But an international consensus is emerging that harmful byproducts and residues can be permanently isolated from the biosphere in a safe and environmentally responsible manner by deep geologic disposal. To investigate and demonstrate such disposal for transuranic mixed waste, derived from defense-related activities, the US Department of Energy has prepared the Waste Isolation Pilot Plant (WIPP) near Carlsbad, New Mexico. This research and development facility was excavated approximately at the center of a 600 m thick sequence of salt (halite) beds, 655 m below the surface. Proof of the long-term tectonic and hydrological stability of the region is supplied by the fact that these salt beds have remained essentially undisturbed since they were deposited during the Late Permian age, approximately 225 million years ago. Plutonium-239, the main radioactive component of transuranic mixed waste, has a half-life of 24,500 years. Even ten half-lives of this isotope - amounting to about a quarter million years, the time during which its activity will decline to background level represent only 0.11 percent of the history of the repository medium. Therefore, deep geologic disposal of transuranic mixed waste in Permian bedded salt appears eminently feasible.

  15. Characterization of municipal waste in Kampala, Uganda.

    PubMed

    Komakech, Allan J; Banadda, Noble E; Kinobe, Joel R; Kasisira, Levi; Sundberg, Cecilia; Gebresenbet, Girma; Vinnerås, Björn

    2014-03-01

    In Kampala, Uganda, about 28,000 tons of waste is collected and delivered to a landfill every month. Kampala Capital City Authority (KCCA) records show that this represents approximately 40% of the waste generated in the city. The remaining uncollected waste is normally dumped in unauthorized sites, causing health and environmental problems. However, the organic fraction of domestic waste can provide an opportunity to improve livelihoods and incomes through fertilizer and energy production. This study characterized the municipal waste generated in Kampala and delivered to Kiteezi landfill between July 2011 and June 2012, that is, covering the dry and wet months. On each sampling day, waste was randomly selected from five trucks, sorted and weighed into different physical fractions. Samples of the organic waste from each truck were analyzed for total solids, major nutrients, and energy content. During the wet months, the waste consisted of 88.5% organics, 3.8% soft plastics, 2.8% hard plastics, 2.2% paper, 0.9% glass, 0.7% textiles and leather 0.2% metals, and 1.0% others. During the dry months, the waste consisted of 94.8% organics, 2.4% soft plastics, 1.0% hard plastics, 0.7% papers, 0.3% glass, 0.3% textile and leather, 0.1% metals, and 0.3% others. The organic waste on average had a moisture content of 71.1% and contained 1.89% nitrogen, 0.27% phosphorus, and 1.95% potassium. The waste had an average gross energy content of 17.3 MJ/kg. It was concluded that the organic waste generated can be a suitable source of some plant nutrients that are useful especially in urban agriculture. The result of the waste characterization in Kampala was found to be significantly different from that obtained for other Sub-Saharan African (SSA) cities, showing that studies assuming average values for the waste fractions are likely to result in erroneous results. Furthermore, no reduction in organic fraction of the waste was noticed when compared with a study done two decades ago in

  16. Preparation of radioactive ''mixed'' waste samples for measurement of RCRA (Resource Conservation and Recovery Act) organic compounds. [Mixed waste containing alpha-, beta-, or gamma-emitting radionuclides

    SciTech Connect

    Tomkins, B.A.; Caton, J.E.

    1987-01-01

    A radioactive ''mixed'' waste typically contains alpha-, beta-, or gamma-emitting radionuclides and varying quantities of semivolatile or volatile organic species, some or all of which may be named specifically by the Resource Conservation and Recovery Act (RCRA). Because there are no acceptable means available currently for disposing of these mixed wastes, they are presently stored above-ground in sealed drums. For this reason, analytical procedures which can determine RCRA organics in radioactive waste are necessary for deciding the proper approach for disposal. An important goal of this work is the development of methods for preparing mixed waste samples in a manner which allows the RCRA organics to be measured in conventional organic analysis laboratories without special precautions. Analytical procedures developed for handling mixed waste samples must satisfy not only the usual constraints present in any trace-level organic chemical determination, but also those needed to insure the protection of the operator from radioactive contamination. Consequently, procedures should be designed to use the least amount of radioactive sample commensurate with achieving acceptable sensitivity with the RCRA analytical methods. Furthermore, the unusual laboratory glassware which would normally be used should be replaced with disposable materials wherever possible, in order to reduce the ''clean-up'' time required, and thereby reduce the operator's exposure to radioactivity. Actual sample handling should be reduced to the absolute minimum. Finally, the final isolate must exhibit a sufficiently low level of alpha, beta, or gamma activity to permit detailed characterization in a conventional organic analysis laboratory. 4 refs., 5 tabs.

  17. Mixed food waste as renewable feedstock in succinic acid fermentation.

    PubMed

    Sun, Zheng; Li, Mingji; Qi, Qingsheng; Gao, Cuijuan; Lin, Carol Sze Ki

    2014-11-01

    Mixed food waste, which was directly collected from restaurants without pretreatments, was used as a valuable feedstock in succinic acid (SA) fermentation in the present study. Commercial enzymes and crude enzymes produced from Aspergillus awamori and Aspergillus oryzae were separately used in hydrolysis of food waste, and their resultant hydrolysates were evaluated. For hydrolysis using the fungal mixture comprising A. awamori and A. oryzae, a nutrient-complete food waste hydrolysate was generated, which contained 31.9 g L(-1) glucose and 280 mg L(-1) free amino nitrogen. Approximately 80-90 % of the solid food waste was also diminished. In a 2.5 L fermentor, 29.9 g L(-1) SA was produced with an overall yield of 0.224 g g(-1) substrate using food waste hydrolysate and recombinant Escherichia coli. This is comparable to many similar studies using various wastes or by-products as substrates. Results of this study demonstrated the enormous potential of food waste as renewable resource in the production of bio-based chemicals and materials via microbial bioconversion.

  18. MIXING MODELING ANALYSIS FOR SRS SALT WASTE DISPOSITION

    SciTech Connect

    Lee, S.

    2011-01-18

    Nuclear waste at Savannah River Site (SRS) waste tanks consists of three different types of waste forms. They are the lighter salt solutions referred to as supernate, the precipitated salts as salt cake, and heavier fine solids as sludge. The sludge is settled on the tank floor. About half of the residual waste radioactivity is contained in the sludge, which is only about 8 percentage of the total waste volume. Mixing study to be evaluated here for the Salt Disposition Integration (SDI) project focuses on supernate preparations in waste tanks prior to transfer to the Salt Waste Processing Facility (SWPF) feed tank. The methods to mix and blend the contents of the SRS blend tanks were evalutaed to ensure that the contents are properly blended before they are transferred from the blend tank such as Tank 50H to the SWPF feed tank. The work consists of two principal objectives to investigate two different pumps. One objective is to identify a suitable pumping arrangement that will adequately blend/mix two miscible liquids to obtain a uniform composition in the tank with a minimum level of sludge solid particulate in suspension. The other is to estimate the elevation in the tank at which the transfer pump inlet should be located where the solid concentration of the entrained fluid remains below the acceptance criterion (0.09 wt% or 1200 mg/liter) during transfer operation to the SWPF. Tank 50H is a Waste Tank that will be used to prepare batches of salt feed for SWPF. The salt feed must be a homogeneous solution satisfying the acceptance criterion of the solids entrainment during transfer operation. The work described here consists of two modeling areas. They are the mixing modeling analysis during miscible liquid blending operation, and the flow pattern analysis during transfer operation of the blended liquid. The modeling results will provide quantitative design and operation information during the mixing/blending process and the transfer operation of the blended

  19. Characterization of Savannah River Plant waste glass

    SciTech Connect

    Plodinec, M J

    1985-01-01

    The objective of the glass characterization programs at the Savannah River Laboratory (SRL) is to ensure that glass containing Savannah River Plant high-level waste can be permanently stored in a federal repository, in an environmentally acceptable manner. To accomplish this objective, SRL is carrying out several experimental programs, including: fundamental studies of the reactions between waste glass and water, particularly repository groundwater; experiments in which candidate repository environments are simulated as accurately as possible; burial tests of simulated waste glass in candidate repository geologies; large-scale tests of glass durability; and determination of the effects of process conditions on glass quality. In this paper, the strategy and current status of each of these programs is discussed. The results indicate that waste packages containing SRP waste glass will satisfy emerging regulatory criteria.

  20. Hydrometallurgical Treatment for Mixed Waste Battery Material

    NASA Astrophysics Data System (ADS)

    Ma, L. W.; Xi, X. L.; Zhang, Z. Z.; Huang, Z. Q.; Chen, J. P.

    2017-02-01

    Hydrometallurgical experiments are generally required to assess the appropriate treatment process before the establishment of the industrial recovery process for waste battery materials. The effects of acid systems and oxidants in metal leaching were studied. The comprehensive leaching effects of the citric acid were superior to the sulfuric acid. The potassium permanganate inhibits the dissolution of metals. Thermodynamic calculations showed that metals precipitate more easily in sulfuric acid system than in citric acid system. The Fe precipitation efficiency in sulfuric acid system was 90% at pH 3.5, but with considerable losses of Co (30%) and Ni (40%). The proper pH and organic/aqueous (O/A) ratio for Fe and Zn removal with Di-(2-ethylhexyl) phosphoric acid extraction were 2 and 0.5, respectively; while for the removal of Cu and Mn, the best pH and O/A ratio were 3 and 0.75, respectively. Crude manganese carbonate and a cobalt-nickel enriched liquid were obtained by selective precipitation in raffinate using an ammonium bicarbonate solution. In citric acid systems, the precipitation efficiency of Co, Ni, Mn, Fe, Cu and Zn were less than 20% at pH 7. The proper pH and O/A ratio for the separation of the metals in two groups (Ni/Co/Cu and Mn/Fe/Zn) were 1.5 and 2. The cobalt-nickel-copper enriched liquid was finally obtained.

  1. Analysis of waste treatment requirements for DOE mixed wastes: Technical basis

    SciTech Connect

    1995-02-01

    The risks and costs of managing DOE wastes are a direct function of the total quantities of 3wastes that are handled at each step of the management process. As part of the analysis of the management of DOE low-level mixed wastes (LLMW), a reference scheme has been developed for the treatment of these wastes to meet EPA criteria. The treatment analysis in a limited form was also applied to one option for treatment of transuranic wastes. The treatment requirements in all cases analyzed are based on a reference flowsheet which provides high level treatment trains for all LLMW. This report explains the background and basis for that treatment scheme. Reference waste stream chemical compositions and physical properties including densities were established for each stream in the data base. These compositions are used to define the expected behavior for wastes as they pass through the treatment train. Each EPA RCRA waste code was reviewed, the properties, chemical composition, or characteristics which are of importance to waste behavior in treatment were designated. Properties that dictate treatment requirements were then used to develop the treatment trains and identify the unit operations that would be included in these trains. A table was prepared showing a correlation of the waste physical matrix and the waste treatment requirements as a guide to the treatment analysis. The analysis of waste treatment loads is done by assigning wastes to treatment steps which would achieve RCRA compliant treatment. These correlation`s allow one to examine the treatment requirements in a condensed manner and to see that all wastes and contaminant sets are fully considered.

  2. A procedure to estimate proximate analysis of mixed organic wastes.

    PubMed

    Zaher, U; Buffiere, P; Steyer, J P; Chen, S

    2009-04-01

    In waste materials, proximate analysis measuring the total concentration of carbohydrate, protein, and lipid contents from solid wastes is challenging, as a result of the heterogeneous and solid nature of wastes. This paper presents a new procedure that was developed to estimate such complex chemical composition of the waste using conventional practical measurements, such as chemical oxygen demand (COD) and total organic carbon. The procedure is based on mass balance of macronutrient elements (carbon, hydrogen, nitrogen, oxygen, and phosphorus [CHNOP]) (i.e., elemental continuity), in addition to the balance of COD and charge intensity that are applied in mathematical modeling of biological processes. Knowing the composition of such a complex substrate is crucial to study solid waste anaerobic degradation. The procedure was formulated to generate the detailed input required for the International Water Association (London, United Kingdom) Anaerobic Digestion Model number 1 (IWA-ADM1). The complex particulate composition estimated by the procedure was validated with several types of food wastes and animal manures. To make proximate analysis feasible for validation, the wastes were classified into 19 types to allow accurate extraction and proximate analysis. The estimated carbohydrates, proteins, lipids, and inerts concentrations were highly correlated to the proximate analysis; correlation coefficients were 0.94, 0.88, 0.99, and 0.96, respectively. For most of the wastes, carbohydrate was the highest fraction and was estimated accurately by the procedure over an extended range with high linearity. For wastes that are rich in protein and fiber, the procedure was even more consistent compared with the proximate analysis. The new procedure can be used for waste characterization in solid waste treatment design and optimization.

  3. Microstructural characterization of nuclear-waste ceramics

    SciTech Connect

    Ryerson, F.J.; Clarke, D.R.

    1982-09-22

    Characterization of nuclear waste ceramics requires techniques possessing high spatial and x-ray resolution. XRD, SEM, electron microprobe, TEM and analytical EM techniques are applied to ceramic formulations designed to immobilize both commercial and defense-related reactor wastes. These materials are used to address the strengths and limitations of the techniques above. An iterative approach combining all these techniques is suggested. 16 figures, 2 tables.

  4. Tank farm waste characterization Technology Program Plan

    SciTech Connect

    Hohl, T.M.; Schull, K.E.; Bensky, M.S.; Sasaki, L.M.

    1989-03-01

    This document presents technological and analytical methods development activities required to characterize, process, and dispose of Hanford Site wastes stored in underground waste tanks in accordance with state and federal environmental regulations. The document also lists the need date, current (fiscal year 1989) funding, and estimate of future funding for each task. Also identified are the impact(s) if an activity is not completed. The document integrates these needs to minimize duplication of effort between the various programs involved.

  5. Handling 78,000 drums of mixed-waste sludge

    SciTech Connect

    Berry, J.B.; Harrington, E.S.; Mattus, A.J.

    1991-01-01

    The Oak Ridge Gaseous Diffusion Plant (now known as the Oak Ridge K-25 Site) closed two mixed-waste surface impoundments by removing the sludge and contaminated pond-bottom clay and attempting to process it into durable, nonleachable, concrete monoliths. Interim, controlled, above-ground storage included delisting the stabilized sludge from hazardous to nonhazardous and disposing of the delisted monoliths as Class 1 radioactive waste. Because of schedule constraints and process design and control deficiencies, {approximately}46,000 drums of material in various stages of solidification and {approximately}32,000 barrels of unprocessed sludge are stored. The abandoned treatment facility still contains {approximately}16,000 gal of raw sludge. Such storage of mixed waste does not comply with the Resource Conservation and Recovery Act (RCRA) guidelines. This paper describes actions that are under way to bring the storage of {approximately}78,000 drums of mixed waste into compliance with RCRA. Remediation of this problem by treatment to meet regulatory requirements is the focus of the discussion. 3 refs., 2 figs., 4 tabs.

  6. Steam reforming of low-level mixed waste

    SciTech Connect

    Voelker, G.E.; Steedman, W.G.; Chandran, R.R.

    1996-12-31

    The U.S. department of Energy (DOE) is responsible for the treatment and disposal of an inventory of approximately 160,000 tons of Low-Level Mixed Waste (LLMW). Most of this LLMW is stored in drums, barrels and steel boxes at 20 different sites throughout the DOE complex. The basic objective of low-level mixed waste treatment systems is to completely destroy the hazardous constituents and to simultaneously isolate and capture the radionuclides in a superior final waste form such as glass. The DOE is sponsoring the development of advanced technologies that meet this objective while achieving maximum volume reduction, low-life cycle costs and maximum operational safety. ThermoChem, Inc. is in the final stages of development of a steam-reforming system capable of treating a wide variety of DOE low-level mixed waste that meets these objectives. The design, construction, and testing of a nominal 1 ton/day Process Development Unit is described.

  7. VAC*TRAX - thermal desorption for mixed wastes

    SciTech Connect

    McElwee, M.J.; Palmer, C.R.

    1995-10-01

    The patented VAC*TRAX process was designed in response to the need to remove organic constituents from mixed waste, waste that contains both a hazardous (RCRA or TSCA regulated) component and a radioactive component. Separation of the mixed waste into its hazardous and radioactive components allows for ultimate disposal of the material at existing, permitted facilities. The VAC*TRAX technology consists of a jacketed vacuum dryer followed by a condensing train. Solids are placed in the dryer and indirectly heated to temperatures as high as 2600{degrees}C, while a strong vacuum (down to 50 mm Hg absolute pressure) is applied to the system and the dryer is purged with a nitrogen carrier gas. The organic contaminants in the solids are thermally desorbed, swept up in the carrier gas and into the condensing train where they are cooled and recovered. The dryer is fitted with a filtration system that keeps the radioactive constituents from migrating to the condensate. As such, the waste is separated into hazardous liquid and radioactive solid components, allowing for disposal of these streams at a permitted incinerator or a radioactive materials landfill, respectively. The VAC*TRAX system is designed to be highly mobile, while minimizing the operational costs with a simple, robust process. These factors allow for treatment of small waste streams at a reasonable cost.

  8. Plastic scintillators: a powerful tool to reduce mixed waste

    SciTech Connect

    Tarancon, A.; Bagan, H.; Garcia, J.F.; Rauret, G.

    2008-07-01

    Wastes containing radioactive and organic compounds (mixed wastes) are difficult to dispose because of the regulations established for nuclear and hazardous wastes. Mixed wastes originate mainly in the emulsions generated in beta emitter determinations by Liquid Scintillation techniques. The use of plastic scintillators instead of liquid cocktails may facilitate the segregation, after measurement, of sample and scintillator without introducing additional wastes in the measurement step. In this study, we compare the capability of Plastic Scintillation (PS) versus Liquid Scintillation (LS) and Cerenkov (C) techniques to determine beta emitters in routine measurements. Results obtained show that high and medium energy beta emitters (Sr-90/Y-90 and C-14) can be quantified in aqueous samples by using PS with similar relative errors (< 5%) as those obtained by LS or C, for any activity level considered. For low energy emitters (H-3), best results using PS are achieved for medium activity levels. Additionally, measurements performed in solutions including alpha (Pu-238) and beta-gamma (Cs-134) emitters confirm the capability of PS to extent the application of this technique to the determination of these types of isotopes. (authors)

  9. Mixed low-level waste minimization at Los Alamos

    SciTech Connect

    Starke, T.P.

    1998-12-01

    During the first six months of University of California 98 Fiscal Year (July--December) Los Alamos National Laboratory has achieved a 57% reduction in mixed low-level waste generation. This has been accomplished through a systems approach that identified and minimized the largest MLLW streams. These included surface-contaminated lead, lead-lined gloveboxes, printed circuit boards, and activated fluorescent lamps. Specific waste minimization projects have been initiated to address these streams. In addition, several chemical processing equipment upgrades are being implemented. Use of contaminated lead is planned for several high energy proton beam stop applications and stainless steel encapsulated lead is being evaluated for other radiological control area applications. INEEL is assisting Los Alamos with a complete systems analysis of analytical chemistry derived mixed wastes at the CMR building and with a minimum life-cycle cost standard glovebox design. Funding for waste minimization upgrades has come from several sources: generator programs, waste management, the generator set-aside program, and Defense Programs funding to INEEL.

  10. VAC*TRAX - Thermal desorption for mixed wastes

    SciTech Connect

    McElwee, M.J.; Palmer, C.R.

    1995-12-01

    The patented VAC*TRAX process was designed in response to the need to remove organic constituents from mixed waste, waste that contains both a hazardous (RCRA or TSCA regulated) component and a radioactive component. Separation of the mixed waste into its hazardous and radioactive components allows for ultimate disposal of the material at existing, permitted facilities. The VAC*TRAX technology consists of a jacketed vacuum dryer followed by a condensing train. Solids are placed in the dryer and indirectly heated to temperatures as high as 260{degrees}C, while a strong vacuum (down to 50 mm Hg absolute pressure) is applied to the system and the dryer is purged with a nitrogen carrier gas. The organic contaminants in the solids are thermally desorbed, swept up in the carrier gas and into the condensing train where they are cooled and recovered. The dryer is fitted with a filtration system that keeps the radioactive constituents from migrating to the condensate. As such, the waste is separated into hazardous liquid and radioactive solid components, allowing for disposal of these streams at a permitted incinerator or a radioactive materials landfill, respectively. The VAC*TRAX system is designed to be highly mobile, while minimizing the operational costs with a simple, robust process. These factors allow for treatment of small waste streams at a reasonable cost. This paper describes the VAC*TRAX thermal desorption process, as well as results from the pilot testing program. Also, the design and application of the full-scale treatment system is presented. Materials tested to date include spiked soil and debris, power plant trash and sludge contaminated with solvents, PCB contaminated soil, solvent-contaminated uranium mill-tailings, and solvent and PCB-contaminated sludge and trash. Over 70 test runs have been performed using the pilot VAC*TRAX system, with more than 80% of the tests using mixed waste as the feed material.

  11. Listed waste determination report. Environmental characterization

    SciTech Connect

    Not Available

    1993-06-01

    On September 23, 1988, the US Environmental Protection Agency (EPA) published a notice clarifying interim status requirements for the management of radioactive mixed waste thereby subjecting the Idaho National Engineering Laboratory (INEL) and other applicable Department of Energy (DOE) sites to regulation under the Resource Conservation and Recovery Act (RCRA). Therefore, the DOE was required to submit a Part A Permit application for each treatment, storage, and disposal (TSD) unit within the INEL, defining the waste codes and processes to be regulated under RCRA. The September 1990 revised Part A Permit application, that was approved by the State of Idaho identified 101 potential acute and toxic hazardous waste codes (F-, P-, and U- listed wastes according to 40 CFR 261.31 and 40 CFR 261.33) for some TSD units at the Idaho Chemical Processing Plant. Most of these waste were assumed to have been introduced into the High-level Liquid Waste TSD units via laboratory drains connected to the Process Equipment Waste (PEW) evaporator (PEW system). At that time, a detailed and systematic evaluation of hazardous chemical use and disposal practices had not been conducted to determine if F-, P-, or Unlisted waste had been disposed to the PEW system. The purpose of this investigation was to perform a systematic and detailed evaluation of the use and disposal of the 101 F-, P-, and Unlisted chemicals found in the approved September 1990 Part A Permit application. This investigation was aimed at determining which listed wastes, as defined in 40 CFR 261.31 (F-listed) and 261.33 (P & Unlisted) were discharged to the PEW system. Results of this investigation will be used to support revisions to the RCRA Part A Permit application.

  12. Closure of a mixed waste landfill: Lessons learned

    SciTech Connect

    Phifer, M.A.

    1990-12-31

    Much experience has been gained during the closure of the Mixed Waste Management Facility (MWMF) at the Savannah River Site (SRS) and many lessons were learned. This knowledge was applied to other closures at SRS yielding decreased costs, schedule enhancement, and increased overall project efficiency. The next major area of experience to be gained at SRS in the field of waste site closures will be in the upkeep, maintenance, and monitoring of clay caps. Further test programs will be required to address these requirements.

  13. Closure of a mixed waste landfill: Lessons learned

    SciTech Connect

    Phifer, M.A.

    1990-01-01

    Much experience has been gained during the closure of the Mixed Waste Management Facility (MWMF) at the Savannah River Site (SRS) and many lessons were learned. This knowledge was applied to other closures at SRS yielding decreased costs, schedule enhancement, and increased overall project efficiency. The next major area of experience to be gained at SRS in the field of waste site closures will be in the upkeep, maintenance, and monitoring of clay caps. Further test programs will be required to address these requirements.

  14. Mixed waste treatment with a mediated electrochemical process

    SciTech Connect

    Hickman, R.G.; Gray, L.W.; Chiba, Z.

    1991-05-17

    The process described in this paper is intended to convert mixed waste containing toxic organic compounds (not heavy metals) to ordinary radioactive waste, which is treatable. The process achieves its goal by oxidizing hydrocarbons to CO{sub 2} and H{sub 2}O. Other atoms that may be present in the toxic organic generally are converted to nonhazardous anions such as sulfate and phosphate. This electro chemical conversion is performed at conditions of temperature and pressure that are just moderately above ambient conditions. Gaseous hydroxides and oxyhydroxides that are formed by many radionuclides during incineration cannot form in this process. 1 ref., 3 figs.

  15. Radioactive and mixed waste - risk as a basis for waste classification. Symposium proceedings No. 2

    SciTech Connect

    1995-06-21

    The management of risks from radioactive and chemical materials has been a major environmental concern in the United states for the past two or three decades. Risk management of these materials encompasses the remediation of past disposal practices as well as development of appropriate strategies and controls for current and future operations. This symposium is concerned primarily with low-level radioactive wastes and mixed wastes. Individual reports were processed separately for the Department of Energy databases.

  16. Interim report: Waste management facilities cost information for mixed low-level waste

    SciTech Connect

    Feizollahi, F.; Shropshire, D.

    1994-03-01

    This report contains preconceptual designs and planning level life-cycle cost estimates for treating alpha and nonalpha mixed low-level radioactive waste. This report contains information on twenty-seven treatment, storage, and disposal modules that can be integrated to develop total life cycle costs for various waste management options. A procedure to guide the US Department of Energy and its contractor personnel in the use of estimating data is also summarized in this report.

  17. Waste Management Facilities cost information for mixed low-level waste. Revision 1

    SciTech Connect

    Shropshire, D.; Sherick, M.; Biadgi, C.

    1995-06-01

    This report contains preconceptual designs and planning level life-cycle cost estimates for managing mixed low-level waste. The report`s information on treatment, storage, and disposal modules can be integrated to develop total life-cycle costs for various waste management options. A procedure to guide the US Department of Energy and its contractor personnel in the use of cost estimation data is also summarized in this report.

  18. 1995 Report on Hanford site land disposal restrictions for mixed waste

    SciTech Connect

    Black, D.G.

    1995-04-01

    This report was submitted to meet the requirements of Hanford Federal Facility Agreement and Consent Order Milestone M-26-01E. This milestone requires the preparation of an annual report that covers characterization, treatment, storage, minimization, and other aspects of land disposal restricted mixed waste at the Hanford Site. The U.S. Department of Energy, its predecessors, and contractors at the Hanford Site were involved in the production and purification of nuclear defense materials from the early 1940s to the late 1980s. These production activities have generated large quantities of liquid and solid radioactive mixed waste. This waste is subject to regulation under authority of both the Resource Conservation and Recovery Act of 1976 and Atomic Energy Act of 1954. This report covers mixed waste only. The Washington State Department of Ecology, U.S. Environmental Protection Agency, and U.S. Department of Energy have entered into an agreement, the Hanford Federal Facility Agreement and Consent Order (commonly referred to as the Tri-Party Agreement) to bring the Hanford Site operations into compliance with dangerous waste regulations. The Tri-Party Agreement required development of the original land disposal restrictions (LDRs) plan and its annual updates to comply with LDR requirements for radioactive mixed waste. This report is the fifth update of the plan first issued in 1990. Tri-Party Agreement negotiations completed in 1993 and approved in January 1994 changed and added many new milestones. Most of the changes were related to the Tank Waste Remediation System and these changes are incorporated into this report.

  19. Radiological, physical, and chemical characterization of low-level alpha contaminated wastes stored at the Idaho National Engineering Laboratory

    SciTech Connect

    Apel, M.L.; Becker, G.K.; Ragan, Z.K.; Frasure, J.; Raivo, B.D.; Gale, L.G.; Pace, D.P.

    1994-03-01

    This document provides radiological, physical, and chemical characterization data for low-level alpha-contaminated radioactive and low-level alpha-contaminated radioactive and hazardous (i.e., mixed) wastes stored at the Idaho National Engineering Laboratory and considered for treatment under the Private Sector Participation Initiative Program. Waste characterization data are provided in the form of INEL Waste Profile Sheets. These documents provide, for each content code, information on waste identification, waste description, waste storage configuration, physical/chemical waste composition, radionuclide and associated alpha activity waste characterization data, and hazardous constituents present in the waste. Information is provided for 97 waste streams which represent an estimated total volume of 25,450 m 3 corresponding to a total mass of approximately 12,000,000 kg. In addition, considerable information concerning alpha, beta, gamma, and neutron source term data specific to Rocky Flats-generated waste forms stored at the INEL are provided to assist in facility design specification.

  20. Development of radiological profiles for U.S. Department of Energy low-level mixed wastes

    SciTech Connect

    Wilkins, B.D.; Meshkov, N.K.; Dolak, D.A.; Wang, Y.Y.

    1995-03-01

    Radiological profiles have been developed by Argonne National Laboratory for low-level mixed wastes (LLMWs) that are under the management of the US Department of Energy (DOE). These profiles have been used in the Office of Environmental Management Programmatic Environmental Impact Statement (EM PEIS) to support the analysis of environmental and health risks associated with the various waste management strategies. The radiological characterization of DOE LLMWs is generally inadequate and has made it difficult to develop a site- and waste-stream-dependent radiological profile for LLMWs. On the basis of the operational history of the DOE sites, a simple model was developed to generate site-dependent and waste-stream-independent radiological profiles for LLMWs. This paper briefly discusses the assumptions used in this model and the uncertainties in the results.

  1. Cost avoidance realized through transportation and disposal of Fernald mixed low-level waste

    SciTech Connect

    Sparks, A.K.; Dilday, D.R.; Rast, D.M.

    1995-11-01

    Currently, Department of Energy (DOE) facilities are undergoing a transformation from shipping radiologically contaminated waste within the DOE structure for disposal to now include Mixed Low Level Waste (MLLW) shipments to a permitted commercial disposal facility (PCDF) final disposition. Implementing this change can be confusing and is perceived as being more difficult than it actually is. Lack of experience and disposal capacity, sometimes and/or confusing regulatory guidance, and expense of transportation and disposal of MLLW ar contributing factors to many DOE facilities opting to simply store their MLLW. Fernald Environmental Restoration Management Company (FERMCO) established itself as a leader i addressing MLLW transportation and disposal by being one of the first DOE facilities to ship mixed waste to a PCDF (Envirocare of Utah) for disposal. FERMCO`s proactive approach in establishing a MLLW Disposal Program produces long-term cost savings while generating interim mixed waste storage space to support FERMCO`s cleanup mission. FERMCO`s goal for all MLLW shipments was to develop a cost efficient system to accurately characterize, sample and analyze the waste, prepare containers and shipping paperwork, and achieve regulatory compliance while satisfying disposal facility waste acceptance criteria (WAC). This goal required the ability to evolve with the regulations, to address waste streams of varying matrices and contaminants, and to learn from each MLLW shipment campaign. These efforts have produced a successful MLLW Disposal Program at the Fernald Environmental Management Project (FEMP). FERMCO has a massed lessons learned from development of this fledgling program which may be applied complex-wide to ultimately save facilities time and money traditionally wasted by maintaining the status quo.

  2. Electromagnetic mixed waste processing system for asbestos decontamination

    SciTech Connect

    Kasevich, R.S.; Nocito, T.; Vaux, W.G.; Snyder, T.

    1994-12-31

    DOE sites contain a broad spectrum of asbestos materials (cloth, pipe lagging, sprayed insulation and other substances) which are contaminated with a combination of hazardous and radioactive wastes due to its use during the development of the US nuclear weapons complex. These wastes consist of cutting oils, lubricants, solvents, PCBs, heavy metals and radioactive contaminants. The radioactive contaminants are the activation, decay, and fission products of DOE operations. To allow disposal, the asbestos must be converted chemically, followed by removing and separating the hazardous and radioactive materials to prevent the formation of mixed wastes and to allow for both sanitary disposal and effective decontamination. Currently, no technology exists that can meet these sanitary and other objectives. An attempt was made to apply techniques that have already proved successful in the mining, oil, and metals processing industries to the development of a multi-stage process to remove and separate hazardous chemical radioactive materials from asbestos. This process uses three methods: ABCOV chemicals which converts the asbestos to a sanitary waste; dielectric heating to volatilize the organic materials; and electrochemical processing for the removal of heavy metals, RCRA wastes and radionuclides. This process will result in the destruction of over 99% of the asbestos; limit radioactive metal contamination to 0.2 Bq alpha per gram and 1 Bq beta and gamma per gram; reduce hazardous organics to levels compatible with current EPA policy for RCRA delisting; and achieve TCLP limits for all solidified waste.

  3. Molten salt processing of mixed wastes with offgas condensation

    SciTech Connect

    Cooper, J.F.; Brummond, W.; Celeste, J.; Farmer, J.; Hoenig, C.; Krikorian, O.H.; Upadhye, R. ); Gay, R.L.; Stewart, A.; Yosim, S. . Energy Systems Group)

    1991-05-13

    We are developing an advanced process for treatment of mixed wastes in molten salt media at temperatures of 700--1000{degrees}C. Waste destruction has been demonstrated in a single stage oxidation process, with destruction efficiencies above 99.9999% for many waste categories. The molten salt provides a heat transfer medium, prevents thermal surges, and functions as an in situ scrubber to transform the acid-gas forming components of the waste into neutral salts and immobilizes potentially fugitive materials by a combination of particle wetting, encapsulation and chemical dissolution and solvation. Because the offgas is collected and assayed before release, and wastes containing toxic and radioactive materials are treated while immobilized in a condensed phase, the process avoids the problems sometimes associated with incineration processes. We are studying a potentially improved modification of this process, which treats oxidizable wastes in two stages: pyrolysis followed by catalyzed molten salt oxidation of the pyrolysis gases at ca. 700{degrees}C. 15 refs., 5 figs., 1 tab.

  4. Case studies of corrosion of mixed waste and transuranic waste drums

    SciTech Connect

    Kosiewicz, S.T.

    1993-12-01

    This paper presents three case studies of corrosion of waste drums at the Los Alamos National Laboratory (LANL). Corrosion was not anticipated by the waste generators, but occurred because of subtle chemical or physical mechanisms. In one case, drums of a cemented transuranic (TRU) sludge experienced general and pitting corrosion. In the second instance, a chemical from a commercial paint stripper migrated from its primary containment drums to chemically attack overpack drums made of mild carbon steel. In the third case, drums of mixed low level waste (MLLW) soil corroded drum packaging even though the waste appeared to be dry when it was placed in the drums. These case studies are jointly discussed as ``lessons learned`` to enhance awareness of subtle mechanisms that can contribute to the corrosion of radioactive waste drums during interim storage.

  5. The mixed waste management facility: Cost-benefit for the Mixed Waste Management Facility at Lawrence Livermore National Laboratory

    SciTech Connect

    Brinker, S.D.; Streit, R.D.

    1996-04-01

    The Mixed Waste Management Facility, or MWMF, has been proposed as a national testbed facility for the demonstration and evaluation of technologies that are alternatives to incineration for the treatment of mixed low-level waste. The facility design will enable evaluation of technologies at pilot scale, including all aspects of the processes, from receiving and feed preparation to the preparation of final forms for disposal. The MWMF will reduce the risk of deploying such technologies by addressing the following: (1) Engineering development and scale-up. (2) Process integration and activation of the treatment systems. (3) Permitting and stakeholder issues. In light of the severe financial constraints imposed on the DOE and federal programs, DOE/HQ requested a study to assess the cost benefit for the MWMF given other potential alternatives to meet waste treatment needs. The MVVMF Project was asked to consider alternatives specifically associated with commercialization and privatization of the DOE site waste treatment operations and the acceptability (or lack of acceptability) of incineration as a waste treatment process. The result of this study will be one of the key elements for a DOE decision on proceeding with the MWMF into Final Design (KD-2) vs. proceeding with other options.

  6. Accelerator Production of Tritium Waste Characterization and Certification Challenges

    SciTech Connect

    Ades, M.J.; England, J.L.; Nowacki, P.L.; Hane, R.; Tempel, K.L.; Pitcher, E.; Cohen, H.S.

    1998-06-01

    This paper summaries the processes and methods APT used for the identification and classification of the waste streams, the characterization and certification of the waste streams, and waste minimization.

  7. Dual regulation of Department of Energy mixed waste

    SciTech Connect

    Dever, G.L.

    1989-01-01

    The purposes of this paper are to discuss the US Department of Energy's (DOE's) experience with dual regulation under the Resource Conservation and Recovery Act (RCRA), as amended, and the Atomic Energy Act (AEA), as amended, of mixed waste and to describe one mechanism for the resolution of inconsistencies that may arise. To date, the department has not identified any unresolvable inconsistency between the AEA and RCRA, although technical differences are being discussed among DOE, EPA, and state regulators at several locations. As long as the flexibilities of RCRA are explored with careful consideration of the radiological hazard of each mixed-waste stream, the potential for inconsistencies between AEA and RCRA that DOE must resolve is expected to remain small.

  8. Electromagnetic mixed waste processing system for asbestos decontamination

    SciTech Connect

    Kasevich, R.S.; Vaux, W.G.; Nocito, T.

    1995-12-01

    DOE sites contain a broad spectrum of asbestos materials (cloth, pipe lagging, sprayed insulation and other substances) which are contaminated with a combination of hazardous and radioactive wastes due to its use during the development of the U.S. nuclear weapons complex. These wastes consist of cutting oils, lubricants, solvents, PCB`s, heavy metals and radioactive contaminants. The radioactive contaminants are the activation, decay and fission products of DOE operations. The asbestos must be converted by removing and separating the hazardous and radioactive materials to prevent the formation of mixed wastes and to allow for both sanitary disposal and effective decontamination. Currently, no technology exists that can meet these sanitary and other objectives.

  9. Electromagnetic mixed waste processing system for asbestos decontamination

    SciTech Connect

    Kasevich, R.S.; Vaux, W.G.; Nocito, T.

    1995-10-01

    DOE sites contain a broad spectrum of asbestos materials (cloth, pipe lagging, sprayed insulation and other substances) which are contaminated with a combination of hazardous and radioactive wastes due to its use during the development of the U.S. nuclear weapons complex. These wastes consist of cutting oils, lubricants, solvents, PCB`s, heavy metals and radioactive contaminants. The radioactive contaminants are the activation, decay and fission products of DOE operations. The asbestos must be converted by removing and separating the hazardous and radioactive materials to prevent the formation of mixed wastes and to allow for both sanitary disposal and effective decontamination. Currently, no technology exists that can meet these sanitary and other objectives.

  10. Process Knowledge Characterization of Radioactive Waste at the Classified Waste Landfill Remediation Project Sandia National Laboratories, Albuquerque, New Mexico

    SciTech Connect

    DOTSON,PATRICK WELLS; GALLOWAY,ROBERT B.; JOHNSON JR,CARL EDWARD

    1999-11-03

    This paper discusses the development and application of process knowledge (PK) to the characterization of radioactive wastes generated during the excavation of buried materials at the Sandia National Laboratories/New Mexico (SNL/NM) Classified Waste Landfill (CWLF). The CWLF, located in SNL/NM Technical Area II, is a 1.5-acre site that received nuclear weapon components and related materials from about 1950 through 1987. These materials were used in the development and testing of nuclear weapon designs. The CWLF is being remediated by the SNL/NM Environmental Restoration (ER) Project pursuant to regulations of the New Mexico Environment Department. A goal of the CWLF project is to maximize the amount of excavated materials that can be demilitarized and recycled. However, some of these materials are radioactively contaminated and, if they cannot be decontaminated, are destined to require disposal as radioactive waste. Five major radioactive waste streams have been designated on the CWLF project, including: unclassified soft radioactive waste--consists of soft, compatible trash such as paper, plastic, and plywood; unclassified solid radioactive waste--includes scrap metal, other unclassified hardware items, and soil; unclassified mixed waste--contains the same materials as unclassified soft or solid radioactive waste, but also contains one or more Resource Conservation and Recovery Act (RCRA) constituents; classified radioactive waste--consists of classified artifacts, usually weapons components, that contain only radioactive contaminants; and classified mixed waste--comprises radioactive classified material that also contains RCRA constituents. These waste streams contain a variety of radionuclides that exist both as surface contamination and as sealed sources. To characterize these wastes, the CWLF project's waste management team is relying on data obtained from direct measurement of radionuclide activity content to the maximum extent possible and, in cases where

  11. Compatibility of packaging components with simulant mixed waste

    SciTech Connect

    Nigrey, P.J.; Dickens, T.G.

    1996-04-01

    The purpose of hazardous and radioactive materials packaging is to enable these materials to be transported without posing a threat to the health or property of the general public. To achieve this aim, regulations in the US have been written establishing general design requirements for such packagings. While no regulations have been written specifically for mixed waste packaging, regulations for the constituents of mixed wastes, i.e., hazardous and radioactive substances, have been codified by the US Department of Transportation (US DOT, 49 CFR 173) and the US Nuclear Regulatory Commission (NRC, 10 CFR 71). Based on these national requirements, a Chemical Compatibility Testing Program was developed in the Transportation Systems Department at Sandia National Laboratories (SNL). The program provides a basis to assure any regulatory body that the issue of packaging material compatibility towards hazardous and radioactive materials has been addressed. In this paper, the authors present the results of the second phase of this testing program. The first phase screened five liner materials and six seal materials towards four simulant mixed wastes. This phase involved the comprehensive testing of five candidate liner materials to an aqueous Hanford Tank simulant mixed waste. The comprehensive testing protocol involved exposing the respective materials a matrix of four gamma radiation doses ({approximately} 1, 3, 6, and 40 kGy), three temperatures (18, 50, and 60 C), and four exposure times (7, 14, 28, and 180 days). Following their exposure to these combinations of conditions, the materials were evaluated by measuring five material properties. These properties were specific gravity, dimensional changes, hardness, stress cracking, and mechanical properties.

  12. Review of LLNL Mixed Waste Streams for the Application of Potential Waste Reduction Controls

    SciTech Connect

    Belue, A; Fischer, R P

    2007-01-08

    In July 2004, LLNL adopted the International Standard ISO 14001 as a Work Smart Standard in lieu of DOE Order 450.1. In support of this new requirement the Director issued a new environmental policy that was documented in Section 3.0 of Document 1.2, ''ES&H Policies of LLNL'', in the ES&H Manual. In recent years the Environmental Management System (EMS) process has become formalized as LLNL adopted ISO 14001 as part of the contract under which the laboratory is operated for the Department of Energy (DOE). On May 9, 2005, LLNL revised its Integrated Safety Management System Description to enhance existing environmental requirements to meet ISO 14001. Effective October 1, 2005, each new project or activity is required to be evaluated from an environmental aspect, particularly if a potential exists for significant environmental impacts. Authorizing organizations are required to consider the management of all environmental aspects, the applicable regulatory requirements, and reasonable actions that can be taken to reduce negative environmental impacts. During 2006, LLNL has worked to implement the corrective actions addressing the deficiencies identified in the DOE/LSO audit. LLNL has begun to update the present EMS to meet the requirements of ISO 14001:2004. The EMS commits LLNL--and each employee--to responsible stewardship of all the environmental resources in our care. The generation of mixed radioactive waste was identified as a significant environmental aspect. Mixed waste for the purposes of this report is defined as waste materials containing both hazardous chemical and radioactive constituents. Significant environmental aspects require that an Environmental Management Plan (EMP) be developed. The objective of the EMP developed for mixed waste (EMP-005) is to evaluate options for reducing the amount of mixed waste generated. This document presents the findings of the evaluation of mixed waste generated at LLNL and a proposed plan for reduction.

  13. Steam reforming of low-level mixed waste. Final report

    SciTech Connect

    1998-06-01

    ThermoChem has successfully designed, fabricated and operated a nominal 90 pound per hour Process Development Unit (PDU) on various low-level mixed waste surrogates. The design, construction, and testing of the PDU as well as performance and economic projections for a 300-lb/hr demonstration and commercial system are described. The overall system offers an environmentally safe, non-incinerating, cost-effective, and publicly acceptable method of processing LLMW. The steam-reforming technology was ranked the No. 1 non-incineration technology for destruction of hazardous organic wastes in a study commissioned by the Mixed Waste Focus Area and published in April 1997. The ThermoChem steam-reforming system has been developed over the last 13 years culminating in this successful test campaign on LLMW surrogates. Six surrogates were successfully tested including a 750-hour test on material simulating a PCB- and Uranium-contaminated solid waste found at the Portsmouth Gaseous Diffusion Plant. The test results indicated essentially total (> 99.9999%) destruction of RCRA and TSCA hazardous halogenated organics, significant levels of volume reduction (> 400 to 1), and retention of radionuclides in the volume-reduced solids. Economic evaluations have shown the steam-reforming system to be very cost competitive with more conventional and other emerging technologies.

  14. A process for treatment of mixed waste containing chemical plating wastes

    SciTech Connect

    Anast, K.R.; Dziewinski, J.; Lussiez, G.

    1995-02-01

    The Waste Treatment and Minimization Group at Los Alamos National Laboratory has designed and will be constructing a transportable treatment system to treat low-level radioactive mixed waste generated during plating operations. The chemical and plating waste treatment system is composed of two modules with six submodules, which can be trucked to user sites to treat a wide variety of aqueous waste solutions. The process is designed to remove the hazardous components from the waste stream, generating chemically benign, disposable liquids and solids with low level radioactivity. The chemical and plating waste treatment system is designed as a multifunctional process capable of treating several different types of wastes. At this time, the unit has been the designated treatment process for these wastes: Destruction of free cyanide and metal-cyanide complexes from spent plating solutions; destruction of ammonia in solution from spent plating solutions; reduction of Cr{sup VI} to Cr{sup III} from spent plating solutions, precipitation, solids separation, and immobilization; heavy metal precipitation from spent plating solutions, solids separation, and immobilization, and acid or base neutralization from unspecified solutions.

  15. Processing of solid mixed waste containing radioactive and hazardous materials

    DOEpatents

    Gotovchikov, Vitaly T.; Ivanov, Alexander V.; Filippov, Eugene A.

    1998-05-12

    Apparatus for the continuous heating and melting of a solid mixed waste bearing radioactive and hazardous materials to form separate metallic, slag and gaseous phases for producing compact forms of the waste material to facilitate disposal includes a copper split water-cooled (cold) crucible as a reaction vessel for receiving the waste material. The waste material is heated by means of the combination of a plasma torch directed into the open upper portion of the cold crucible and an electromagnetic flux produced by induction coils disposed about the crucible which is transparent to electromagnetic fields. A metallic phase of the waste material is formed in a lower portion of the crucible and is removed in the form of a compact ingot suitable for recycling and further processing. A glass-like, non-metallic slag phase containing radioactive elements is also formed in the crucible and flows out of the open upper portion of the crucible into a slag ingot mold for disposal. The decomposition products of the organic and toxic materials are incinerated and converted to environmentally safe gases in the melter.

  16. Processing of solid mixed waste containing radioactive and hazardous materials

    DOEpatents

    Gotovchikov, V.T.; Ivanov, A.V.; Filippov, E.A.

    1998-05-12

    Apparatus for the continuous heating and melting of a solid mixed waste bearing radioactive and hazardous materials to form separate metallic, slag and gaseous phases for producing compact forms of the waste material to facilitate disposal includes a copper split water-cooled (cold) crucible as a reaction vessel for receiving the waste material. The waste material is heated by means of the combination of a plasma torch directed into the open upper portion of the cold crucible and an electromagnetic flux produced by induction coils disposed about the crucible which is transparent to electromagnetic fields. A metallic phase of the waste material is formed in a lower portion of the crucible and is removed in the form of a compact ingot suitable for recycling and further processing. A glass-like, non-metallic slag phase containing radioactive elements is also formed in the crucible and flows out of the open upper portion of the crucible into a slag ingot mold for disposal. The decomposition products of the organic and toxic materials are incinerated and converted to environmentally safe gases in the melter. 6 figs.

  17. Chemical recycling of mixed waste plastics by selective pyrolysis

    SciTech Connect

    Tatsumoto, K.; Meglen, R.; Evans, R.

    1995-05-01

    The goal of this work is to use selective pyrolysis to produce high-value chemicals from waste plastics mixtures. Selectivity is achieved by exploiting differences in reaction rates, catalysis, and coreactants. Target wastes are molecular mixtures such as; blends or composites, or mixtures from manufactured products such as; carpets and post-consumer mixed-plastic wastes. The experimental approach has been to use small-scale experiments using molecular beam mass spectrometry (MBMS), which provides rapid analysis of reaction products and permits rapid screening of process parameters. Rapid screening experiments permit exploration of many potential waste stream applications for the selective pyrolysis process. After initial screening, small-scale, fixed-bed and fluidized-bed reactors are used to provide products for conventional chemical analysis, to determine material balances, and to test the concept under conditions that will be used at a larger scale. Computer assisted data interpretation and intelligent chemical processing are used to extract process-relevant information from these experiments. An important element of this project employs technoeconomic assessments and market analyses of durables, the availability of other wastes, and end-product uses to identify target applications that have the potential for economic success.

  18. ENVIROCARE OF UTAH: EXPANDING WASTE ACCEPTANCE CRITERIA TO PROVIDE LOW-LEVEL AND MIXED WASTE DISPOSAL OPTIONS

    SciTech Connect

    Rogers, B.; Loveland, K.

    2003-02-27

    Envirocare of Utah operates a low-level radioactive waste disposal facility 80 miles west of Salt Lake City in Clive, Utah. Accepted waste types includes NORM, 11e2 byproduct material, Class A low-level waste, and mixed waste. Since 1988, Envirocare has offered disposal options for environmental restoration waste for both government and commercial remediation projects. Annual waste receipts exceed 12 million cubic feet. The waste acceptance criteria (WAC) for the Envirocare facility have significantly expanded to accommodate the changing needs of restoration projects and waste generators since its inception, including acceptable physical waste forms, radiological acceptance criteria, RCRA requirements and treatment capabilities, PCB acceptance, and liquids acceptance. Additionally, there are many packaging, transportation, and waste management options for waste streams acceptable at Envirocare. Many subcontracting vehicles are also available to waste generators for both government and commercial activities.

  19. Mixed and low-level waste treatment facility project. Volume 3, Waste treatment technologies (Draft)

    SciTech Connect

    Not Available

    1992-04-01

    The technology information provided in this report is only the first step toward the identification and selection of process systems that may be recommended for a proposed mixed and low-level waste treatment facility. More specific information on each technology will be required to conduct the system and equipment tradeoff studies that will follow these preengineering studies. For example, capacity, maintainability, reliability, cost, applicability to specific waste streams, and technology availability must be further defined. This report does not currently contain all needed information; however, all major technologies considered to be potentially applicable to the treatment of mixed and low-level waste are identified and described herein. Future reports will seek to improve the depth of information on technologies.

  20. Evaluation of mixing systems for biogasification of municipal solid waste

    NASA Astrophysics Data System (ADS)

    1981-06-01

    Two mixing systems were tested for the efficiencies prevention of the formation of fibrous mats and stringers during the anaerobic digestion of a slurried mixture of preprocessed municipal solid waste and sewage sludge in the production of methane gas. The first system was a mechanical agitation, a vessel centered rotary shaft with four blades at each of two levels to drive the slurry downward. The second system included three equidistantly placed gas gun assemblies that each produced bubbles at a constant rate to draw the slurry upward. The microbial culture was healthy in most tests, however, the mixing systems were not effective in preventing excessive fibrous mat and stringer formations. The energy recovered was only 50% of the energy available in the solid waste, and only four times greater than the mixing energy expended for that test. The solids accumulations were generally the same for the two mixing systems when they had common test conditions. In all tests, the percent solids for the top level were higher than those for the middle and bottom levels.

  1. Characterization of 618-11 solid waste burial ground, disposed waste, and description of the waste generating facilities

    SciTech Connect

    Hladek, K.L.

    1997-10-07

    The 618-11 (Wye or 318-11) burial ground received transuranic (TRTJ) and mixed fission solid waste from March 9, 1962, through October 2, 1962. It was then closed for 11 months so additional burial facilities could be added. The burial ground was reopened on September 16, 1963, and continued operating until it was closed permanently on December 31, 1967. The burial ground received wastes from all of the 300 Area radioactive material handling facilities. The purpose of this document is to characterize the 618-11 solid waste burial ground by describing the site, burial practices, the disposed wastes, and the waste generating facilities. This document provides information showing that kilogram quantities of plutonium were disposed to the drum storage units and caissons, making them transuranic (TRU). Also, kilogram quantities of plutonium and other TRU wastes were disposed to the three trenches, which were previously thought to contain non-TRU wastes. The site burial facilities (trenches, caissons, and drum storage units) should be classified as TRU and the site plutonium inventory maintained at five kilograms. Other fissile wastes were also disposed to the site. Additionally, thousands of curies of mixed fission products were also disposed to the trenches, caissons, and drum storage units. Most of the fission products have decayed over several half-lives, and are at more tolerable levels. Of greater concern, because of their release potential, are TRU radionuclides, Pu-238, Pu-240, and Np-237. TRU radionuclides also included slightly enriched 0.95 and 1.25% U-231 from N-Reactor fuel, which add to the fissile content. The 618-11 burial ground is located approximately 100 meters due west of Washington Nuclear Plant No. 2. The burial ground consists of three trenches, approximately 900 feet long, 25 feet deep, and 50 feet wide, running east-west. The trenches constitute 75% of the site area. There are 50 drum storage units (five 55-gallon steel drums welded together

  2. IMPROVEMENT EFFECT OF PLAYGROUND SURFACE BY WASTE CRUSHED SHELL MIXING

    NASA Astrophysics Data System (ADS)

    Shigematsu, Hiroaki; Oda, Kenichi; Higuchi, Emiko; Takano, Morihiro; Tasaki, Hiroshi

    If sandy soil with appropriate gradation is compacted, hard and dense ground will be generated. Even if the soil material is hard enough against shock load, the permeability of the soil decreases significantly. This paper examines the improvement effect of playground surface by waste crushed shell mixing technique. The following conclusions are obtained from the present study: 1. The maximum dry density of the sandy soil increases gradually by mixing the crushed shell. However, if the crushed shell is put into the soil too much, the density decreases conversely. 2. Although the density of the soil sample becomes high by mixing the crushed shell, the coefficient of permeability increases. 3. The soil particles once attached to the shell is not washed away easily. 4. The crushed shell doesn't change the quality of groundwater so much. 5. This repair method is applicable to improvement of playground surface.

  3. Russian technology advancements for waste mixing and retrieval

    SciTech Connect

    GIBBONS, P.W.

    2002-01-21

    Engineers at the Mining and Chemical Combine nuclear facility, located in Zheleznogorsk, Russia, have developed a pulsating mixer/sluicer to mobilize a layer of consolidated, hardened sludge at the bottom of their 12-m-diameter by 30-m-high nuclear waste tanks. This waste has resisted mobilization by conventional sluicing jets. The new pulsating mixer/sluicer draws tank liquid into a pressure vessel, then expels it at elevated pressure either through a set of submerged mixing jets or a steerable through-air jet. Four versions (or generations) of this technology have been developed. Following testing of three other Russian mobilization and transfer systems at Pacific Northwest National Laboratory, a first generation of the new pulsating mixer/sluicer was identified for possible waste retrieval applications in U.S. high-level waste tanks (1). A second-generation pulsating mixer/sluicer was developed and successfully deployed in Tank TH-4 at the Oak Ridge Reservation, located in Tennessee, US (2). A thud-generation pulsating mixed/sluicer with a dual nozzle design was developed and is being tested for possible use by the Hanford Site's River Protection Project to retrieve waste from Tank 241-S-102, a single-shell tank containing radioactive saltcake and sludge. In cooperation with the U.S. Department of Energy Tanks Focus Area, the Mining and Chemical Combine is conducting cold (that is, nonradioactive) tests and demonstrations of the third-generation system in 2001 and 2002. This work is being conducted through the Tank Retrieval and Closure Demonstration Center, which is sponsored by the National Nuclear Safety Administration's Office of Arms Control and Nonproliferation (NN-40). A fourth-generation dual-nozzle pulsating mixer/sluicer is undergoing cold testing for use at the Mining and Chemical Combine to retrieve radioactive sludge there in 2004.

  4. Electrolytic decontamination of metal low level waste (LLW) and mixed low level waste (MLLW)

    SciTech Connect

    1998-11-01

    Metal objects resulting from ER activities were decontaminated using electrolytic methods. The project involved about 500 kg of ballistic test projectiles, 23 augers and drill heads, and 50 pieces of shrapnel containing lead. All objects were free-released and either reclaimed as scrap metal or reused. Electrolytic decontamination was proven to be an effective method to decontaminate metal waste objects to free-release standards. A cost analysis showed the process to be economical, especially when applied to decontamination of mixed waste, TRU waste, or when the recovered materials could be reused or recycled. The cost of decontamination of scrap iron is approximately equal to the cost of its land disposal as low level waste.

  5. Neutron pulse simulation in nuclear waste for waste characterization

    SciTech Connect

    Toffer, H.; Watson, W.T.; Roetman, V.E.

    1993-12-01

    The numerical simulations discussed in this paper show how analysis with computer-generated illustrations can be used to explain the concepts and advantages of pulsed neutron systems for tank waste evaluations. Furthermore, the analysis-illustration approach lends itself to parametric studies evaluating design features of hardware before it is fabricated. Nuclear material characteristics of hazardous or toxic simulants can be evaluated before preparing them or finding nontoxic or nonhazardous substitutes that will exhibit similar nuclear properties. Pulsed neutron systems hold significant promise for partial characterization of tank waste. The device could operate in a high background gamma radiation field and provide important information on moisture concentrations, fissionable material contents, and material interfaces quickly and at considerably less cost than obtainable from sample analyses.

  6. Physical sampling for site and waste characterization

    SciTech Connect

    Bonnough, T.L.

    1994-06-01

    Physical sampling plays a basic role in site and waste characterization program effort. The term ``physical sampling`` used here means collecting tangible, physical samples of soil, water, air, waste streams, or other materials. The industry defines the term ``physical sampling`` broadly to include measurements of physical conditions such as temperature, wind conditions, and pH which are also often taken in a sample collection effort. Most environmental compliance actions are supported by the results of taking, recording, and analyzing physical samples and the measuring of physical conditions taken in association with sample collecting.

  7. Characterization of Radionuclides in Purex Waste Sludges from the F-Area High Level Waste Tanks (U)

    SciTech Connect

    Obryant, R

    2005-06-13

    Sludge-contaminated waste consists of waste contaminated with both insoluble species (the sludge fraction) and entrained supernate. The WCS is based on the assumption that approximately 70% of the weight of what is commonly referred to as sludge is interstitial supernate; the remaining approximately 30% consists of the insoluble species (Reference 1). Development of a method for characterization of sludge-contaminated waste must consider both fractions. Separate waste cuts may contain sludge and supernate fractions in varying proportions due to the nature of the job generating the waste and the variability in waste handling techniques. Development of a distribution representative of all sludge-contaminated waste cuts must allow for varying fractions of sludge and supernate contamination. This document will develop a radionuclide distribution in accordance with the methodology outlined in WSRC 1S SRS Waste Acceptance Criteria Manual, Procedure 2.02, Revision 8 for the sludge fraction of sludge-contaminated waste generated in the F-Area Tank Farm This distribution was based on the assumption that sludge-contaminated waste from F-Area Tank Farm Waste Tanks could be co-mingled, and the actual contamination present on waste in a series of containers from these tanks will be representative of the mean radionuclide distribution. The original characterization was based primarily on process knowledge and fill histories (Reference 6). A single, comprehensive characterization for supernate has been developed previously (Reference 9). This document also describes the methodology for application of radionuclide distributions representative of the sludge and supernate fractions of sludge-contaminated waste to individual waste packages. Most of the waste contaminated with sludge from the F-Area Tank Farm will be categorized as Low Level Waste (LLW) and disposed of in the E-area trenches. The waste does, however, have the potential to be categorized as TRU and/or mixed waste

  8. Carbon bed mercury emissions control for mixed waste treatment.

    PubMed

    Soelberg, Nick; Enneking, Joe

    2010-11-01

    Mercury has various uses in nuclear fuel reprocessing and other nuclear processes, and so it is often present in radioactive and mixed (radioactive and hazardous) wastes. Compliance with air emission regulations such as the Hazardous Waste Combustor (HWC) Maximum Achievable Control Technology (MACT) standards can require off-gas mercury removal efficiencies up to 99.999% for thermally treating some mixed waste streams. Test programs have demonstrated this level of off-gas mercury control using fixed beds of granular sulfur-impregnated activated carbon. Other results of these tests include (1) the depth of the mercury control mass transfer zone was less than 15-30 cm for the operating conditions of these tests; (2) MERSORB carbon can sorb mercury up to 19 wt % of the carbon mass; and (3) the spent carbon retained almost all (98.3-99.99%) of the mercury during Toxicity Characteristic Leachability Procedure (TCLP) tests, but when even a small fraction of the total mercury dissolves, the spent carbon can fail the TCLP test when the spent carbon contains high mercury concentrations.

  9. Thermoplastic encapsulation of waste surrogates by high-shear mixing

    SciTech Connect

    Lageraaen, P.R.; Kalb, P.D.; Patel, B.R.

    1995-12-01

    Brookhaven National Laboratory (BNL) has developed a robust, extrusion-based polyethylene encapsulation process applicable to a wide range of solid and aqueous low-level radioactive, hazardous and mixed wastes. However, due to the broad range of physical and chemical properties of waste materials, pretreatment of these wastes is often required to make them amenable to processing with polyethylene. As part of the scope of work identified in FY95 {open_quotes}Removal and Encapsulation of Heavy Metals from Ground Water,{close_quotes} EPA SERDP No. 387, that specifies a review of potential thermoplastic processing techniques, and in order to investigate possible pretreatment alternatives, BNL conducted a vendor test of the Draiswerke Gelimat (thermokinetic) mixer on April 25, 1995 at their test facility in Mahwah, NJ. The Gelimat is a batch operated, high-shear, high-intensity fluxing mixer that is often used for mixing various materials and specifically in the plastics industry for compounding additives such as stabilizers and/or colorants with polymers.

  10. TRU waste inventory collection and work off plans for the centralization of TRU waste characterization/certification at INL - on your mark - get set - 9410

    SciTech Connect

    Mctaggert, Jerri Lynne; Lott, Sheila A; Gadbury, Casey

    2008-01-01

    The U.S. Department of Energy (DOE) amended the Record of Decision (ROD) for the Waste Management Program: Treatment and Storage of Transuranic Waste to centralize transuranic (TRU) waste characterization/certification from fourteen TRU waste sites. This centralization will allow for treatment, characterization and certification ofTRU waste from the fourteen sites, thirteen of which are sites with small quantities ofTRU waste, at the Idaho National Laboratory (INL) prior to shipping the waste to the Waste Isolation Pilot Plant (WIPP) for disposal. Centralization of this TRU waste will avoid the cost of building treatment, characterization, certification, and shipping capabilities at each of the small quantity sites that currently do not have existing facilities. Advanced Mixed Waste Treatment Project (AMWTP) and Idaho Nuclear Technology and Engineering Center (INTEC) will provide centralized shipping facilities, to WIPP, for all of the small quantity sites. Hanford, the one large quantity site identified in the ROD, has a large number of waste in containers that are overpacked into larger containers which are inefficient for shipment to and disposal at WIPP. The AMWTF at the INL will reduce the volume of much of the CH waste and make it much more efficient to ship and dispose of at WIPP. In addition, the INTEC has a certified remote handled (RH) TRU waste characterization/certification program at INL to disposition TRU waste from the sites identified in the ROD.

  11. Improvement of permeability of waste sludge by mixing with slag or construction and demolition waste.

    PubMed

    Asakura, Hiroshi; Endo, Kazuto; Yamada, Masato; Inoue, Yuzo; Ono, Yusaku

    2009-06-01

    To determine the allowable ratio of waste sludge required to ensure an aerobic zone in the landfill, we investigated sludge permeability, which involved mixing sludge, the major landfill waste in Japan, at different mixing ratios with other wastes (slag and construction and demolition waste (C&D)). We measured parameters of sample permeability and analyzed parameters that exert a large influence on oxygen penetration depth with a simulation model accounting for both diffusion and convection driven by temperature gradients. We also determined the critical volumetric contents in which gas and/or water permeability change significantly when sludge is mixed with sand or gravel. From the results of the simulations, gas permeability of the layer, the difference between inside and outside temperatures and the oxygen consumption rate exert a large influence on the resulting oxygen penetration depth. The allowable ratio of sludge required to ensure an aerobic zone in the landfill was determined by considering the balance of the above three parameters. By keeping volumetric sludge content to below 25%, air convection and oxygen penetration depth of several meters were achieved in the modeling.

  12. Genetic Engineering of a Radiation-Resistant Bacterium for Biodegradation of Mixed Wastes

    SciTech Connect

    Lidstrom, Mary E.

    2002-06-10

    The mixture of toxic chemicals, heavy metals, halogenated solvents and radionuclides in many DOE waste materials presents a challenging problem for separating the different species and disposing of individual contaminants. One approach for dealing with mixed wastes is to genetically engineer the radiation-resistant bacterium, Deinococcus radiodurans to survive in and detoxify DOE's mixed waste streams, and to develop process parameters for treating mixed wastes with such constructed strains. The goal for this project is to develop a suite of genetic tools for Deinococcus radiodurans and to use these tools to construct and test stable strains for detoxification of haloorganics in mixed wastes.

  13. Genetic Engineering of a Radiation-Resistant Bacterium for Biodegradation of Mixed Wastes

    SciTech Connect

    Lidstrom, Mary E.

    2001-06-11

    The mixture of toxic chemicals, heavy metals, halogenated solvents and radionuclides in many DOE waste materials presents a challenging problem for separating the different species and disposing of individual contaminants. One approach for dealing with mixed wastes is to genetically engineer the radiation-resistant bacterium, Deinococcus radiodurans to survive in and detoxify DOE's mixed waste streams, and to develop process parameters for treating mixed wastes with such constructed strains. The goal for this project is to develop a suite of genetic tools for Deinococcus radiodurans and to use these tools to construct and test stable strains for detoxification of haloorganics in mixed wastes.

  14. High level waste characterization in support of low level waste certification. I. HLW supernate radionuclide characterization

    SciTech Connect

    Jamison, M.E.; d`Entremont, P.D.; Clemmons, J.S.; Bess, C.E.; Brown, D.F.

    1994-07-08

    High Level Waste Programs has radioactive waste storage, treatment and processing facilities that are located in the F and H Areas at the Savannah River Site. These facilities include the Effluent Treatment Facility (ETF), F and H Area Tank Farms, Extended Sludge Processing (ESP), and In-Tank Precipitation (ITP). Job wastes are generated from operation, maintenance, and construction activities inside radiological areas. These items may have been contaminated with radioactive supernate, salt, and sludge material. Most of these wastes will be disposed of in the E-area Vaults. Therefore, an isotopic and hazardous characterization must be performed. The characterization of HLW supernate radionuclides is discussed in Chapter I. The characterization for salt and sludge phases, which can also contaminate LLW, will be included in other Chapters.

  15. Evaluation of mixing systems for biogasification of municipal solid waste

    SciTech Connect

    Swartzbaugh, J T; Smith, R B

    1981-01-01

    Two specially selected mixing systems were tested and evaluated to determine how effectively they could prevent the formation of fibrous mats and stringers during the anaerobic digestion of a slurried mixture of preprocessed municipal slide waste and sewage sludge to produce methane gas. The tests were conducted in a modified 10.7 m (35 ft) diameter, nominal 378,000 liter (100,000 gal) capacity concrete vessel in the Franklin, Ohio, environmental complex. This complex included two plants that collectively provided the solid waste/sewage sludge feedstock. One of the two mixing systems was a mechanical agitator--a vessel-centered rotary shaft with four blades at each of two levels to drive the slurry downward. The second system included three equidistantly placed gas gun assemblies that each produced bubbles at a constant rate to draw the slurry upward. The solids accumulations were generally the same for the two mixing systems when they had common test conditions. In all tests, the percent solids for the top level were higher than those for the middle and bottom levels. As the feed ratio and the percent solids in the feedstock were increased, this differential became progressively more pronounced. Moreover, the percent of volatile solids (in a given amount of total solids) for the top level became disproportionately higher than those for the other two levels.

  16. METHODS FOR DETERMINING AGITATOR MIXING REQUIREMENTS FOR A MIXING & SAMPLING FACILITY TO FEED WTP (WASTE TREATMENT PLANT)

    SciTech Connect

    GRIFFIN PW

    2009-08-27

    The following report is a summary of work conducted to evaluate the ability of existing correlative techniques and alternative methods to accurately estimate impeller speed and power requirements for mechanical mixers proposed for use in a mixing and sampling facility (MSF). The proposed facility would accept high level waste sludges from Hanford double-shell tanks and feed uniformly mixed high level waste to the Waste Treatment Plant. Numerous methods are evaluated and discussed, and resulting recommendations provided.

  17. Waste lubricating oil removal in a batch reactor by mixed bacterial consortium: a kinetic study.

    PubMed

    Bhattacharya, Munna; Guchhait, Sugata; Biswas, Dipa; Datta, Sriparna

    2015-11-01

    The growth kinetics and biodegradation of two waste lubricating oil samples including waste engine oil (WEO) and waste transformer oil (WTO) were studied using pure isolates and mixed culture of Ochrobactrum sp. C1 and Bacillus sp. K1. The mixed culture significantly influenced degradation efficiency of the pure isolates through bioaugmentation process. In particular, the mixed culture was capable of growing on various n-alkanes and polycyclic aromatic hydrocarbons and was able to tolerate unusually high concentrations of waste lubricants (WEO-86.0 g/L and WTO-81.5 g/L). The initial concentration of waste lubricating oils has been varied in the range of 1-10 % (v/v). Under this experimental range, the bacterial growth has been observed to follow Haldane-type kinetics characterizing the presence of substrate inhibition. Haldane model was used to fit the exponential growth data and the following kinetic parameters were obtained: μ max = 0.078 h(-1), K S = 23.101 g/L, K i = 43.844 g/L for WEO; and μ max = 0.044 h(-1), K S = 10.662 g/L, K i = 58.310 g/L for WTO. The values of intrinsic kinetic parameters, like specific growth rate μ max, half saturation constant, K S, inhibition constant, K i and the maximum substrate concentration, S max and growth yield coefficient Y x/s , have been determined using each model hydrocarbon and their mixture as limiting substrate. Relative changes in the values of the kinetic parameters have been correlated to the number of carbon atoms present in n-alkanes. The metabolites from degradation of model hydrocarbon compounds have been identified by GC-MS to elucidate the possible pathway of waste lubricating oil degradation process.

  18. Mixing characterization in a slab tank

    SciTech Connect

    Stoots, C.M.; Gavlak, A.M.; Calabrese, R.V.; Kyser, E.A.; Tatterson, G.B.

    1989-01-01

    Due to safety requirements, slab tanks are often used to process radioactive materials. The configuration is that of a slit or a tank of rectangular cross section with very low aspect ratio. Due to its nonconventional geometry, very little is known about the slab tank mixing environment. To better understand it, experiments have been performed in a full scale standard configuration equipped with two stirrer shafts, each containing several axial impellers. To characterize the velocity field, mean and RMS turbulent velocities have been measured at several impeller speeds with a two-component Laser Doppler Anemometer (LDA). The LDA data have been supplemented with flow visualization, circulation time, and mixing time studies. Since the slab tank is often used as a precipitator, solids suspension studies have also been performed. The results of the various experiments will be presented and will be interpreted to elucidate slab tank dynamics. The implication to mixing efficiency will also be discussed.

  19. Study of the Technical Feasibility of Increasing the Amount of Recycled Concrete Waste Used in Ready-Mix Concrete Production

    PubMed Central

    Ferreiro-Cabello, Javier; López-González, Luis M.

    2017-01-01

    The construction industry generates a considerable amount of waste. Faced with this undesirable situation, the ready-mix concrete sector, in particular, has invested energy and resources into reusing its own waste in its production process as it works towards the goal of more sustainable construction. This study examines the feasibility of incorporating two types of concrete waste, which currently end up in landfill, into the production process of ready-mix concrete: the waste generated during the initial production stage (ready-mix concrete waste), and waste created when demolition waste is treated to obtain artificial aggregate. The first phase of the study’s methodology corroborates the suitability of the recycled aggregate through characterization tests. After this phase, the impact of incorporating different percentages of recycled coarse aggregate is evaluated by examining the performance of the produced concrete. The replacement rate varied between 15% and 50%. The results indicate that recycled aggregates are, indeed, suitable to be incorporated into ready-mix concrete production. The impact on the final product’s performance is different for the two cases examined herein. Incorporating aggregates from generic concrete blocks led to a 20% decrease in the produced concrete’s strength performance. On the other hand, using recycled aggregates made from the demolition waste led to a smaller decrease in the concrete’s performance: about 8%. The results indicate that with adequate management and prior treatment, the waste from these plants can be re-incorporated into their production processes. If concrete waste is re-used, concrete production, in general, becomes more sustainable for two reasons: less waste ends up as landfill and the consumption of natural aggregates is also reduced. PMID:28773183

  20. Study of the Technical Feasibility of Increasing the Amount of Recycled Concrete Waste Used in Ready-Mix Concrete Production.

    PubMed

    Fraile-Garcia, Esteban; Ferreiro-Cabello, Javier; López-Ochoa, Luis M; López-González, Luis M

    2017-07-18

    The construction industry generates a considerable amount of waste. Faced with this undesirable situation, the ready-mix concrete sector, in particular, has invested energy and resources into reusing its own waste in its production process as it works towards the goal of more sustainable construction. This study examines the feasibility of incorporating two types of concrete waste, which currently end up in landfill, into the production process of ready-mix concrete: the waste generated during the initial production stage (ready-mix concrete waste), and waste created when demolition waste is treated to obtain artificial aggregate. The first phase of the study's methodology corroborates the suitability of the recycled aggregate through characterization tests. After this phase, the impact of incorporating different percentages of recycled coarse aggregate is evaluated by examining the performance of the produced concrete. The replacement rate varied between 15% and 50%. The results indicate that recycled aggregates are, indeed, suitable to be incorporated into ready-mix concrete production. The impact on the final product's performance is different for the two cases examined herein. Incorporating aggregates from generic concrete blocks led to a 20% decrease in the produced concrete's strength performance. On the other hand, using recycled aggregates made from the demolition waste led to a smaller decrease in the concrete's performance: about 8%. The results indicate that with adequate management and prior treatment, the waste from these plants can be re-incorporated into their production processes. If concrete waste is re-used, concrete production, in general, becomes more sustainable for two reasons: less waste ends up as landfill and the consumption of natural aggregates is also reduced.

  1. Effects of mixed waste simulants on transportation packaging plastic components

    SciTech Connect

    Nigrey, P.J.; Dickens, T.G.

    1994-12-31

    The purpose of hazardous and radioactive materials packaging is to, enable these materials to be transported without posing a threat to the health or property of the general public. To achieve this aim, regulations have been written establishing general design requirements for such packagings. While no regulations have been written specifically for mixed waste packaging, regulations for the constituents of mixed wastes, i.e., hazardous and radioactive substances, have been codified. The design requirements for both hazardous and radioactive materials packaging specify packaging compatibility, i.e., that the materials of the packaging and any contents be chemically compatible with each other. Furthermore, Type A and Type B packaging design requirements stipulate that there be no significant chemical, galvanic, or other reaction between the materials and contents of the package. Based on these requirements, a Chemical Compatibility Testing Program was developed in the Transportation Systems Department at Sandia National Laboratories (SNL). The program, supported by the US Department of Energy`s (DOE) Transportation Management Division, EM-261 provides the means to assure any regulatory body that the issue of packaging material compatibility towards hazardous and radioactive materials has been addressed. In this paper, we describe the general elements of the testing program and the experimental results of the screening tests. The implications of the results of this testing are discussed in the general context of packaging development. Additionally, we present the results of the first phase of this experimental program. This phase involved the screening of five candidate liner and six seal materials against four simulant mixed wastes.

  2. Overview of non-thermal mixed waste treatment technologies: Treatment of mixed waste (ex situ); Technologies and short descriptions

    SciTech Connect

    1995-07-01

    This compendium contains brief summaries of new and developing non- thermal treatment technologies that are candidates for treating hazardous or mixed (hazardous plus low-level radioactive) wastes. It is written to be all-encompassing, sometimes including concepts that presently constitute little more than informed ``ideas``. It bounds the universe of existing technologies being thought about or considered for application on the treatment of such wastes. This compendium is intended to be the very first step in a winnowing process to identify non-thermal treatment systems that can be fashioned into complete ``cradle-to-grave`` systems for study. The purpose of the subsequent systems paper studies is to investigate the cost and likely performance of such systems treating a representative sample of U.S. Department of Energy (DOE) mixed low level wastes (MLLW). The studies are called Integrated Non-thermal Treatment Systems (INTS) Studies and are being conducted by the Office of Science and Technology (OST) of the Environmental Management (EM) of the US Department of Energy. Similar studies on Integrated Thermal Treatment Systems have recently been published. These are not designed nor intended to be a ``downselection`` of such technologies; rather, they are simply a systems evaluation of the likely costs and performance of various non- thermal technologies that have been arranged into systems to treat sludges, organics, metals, soils, and debris prevalent in MLLW.

  3. 1994 Report on Hanford Site land disposal restrictions for mixed waste

    SciTech Connect

    Black, D.G.

    1994-04-01

    The baseline land disposal restrictions (LDR) plan was prepared in 1990 in accordance with the Hanford Federal Facility Agreement and Consent Order (commonly referred to as the Tri-Party Agreement) Milestone M-26-00 (Ecology et al. 1992). The text of this milestone is below. LDR requirements include limitations on storage of specified hazardous wastes (including mixed wastes). In accordance with approved plans and schedules, the US Department of Energy (DOE) shall develop and implement technologies necessary to achieve full compliance with LDR requirements for mixed wastes at the Hanford Site. LDR plans and schedules shall be developed with consideration at other action plan milestones and will not become effective until approved by the US Environmental Protection Agency (EPA) (or Washington State Department of Ecology [Ecology]) upon authorization to administer LDRs pursuant to Section 3006 of the Resource Conservation and Recovery Act of 1976 (RCRA). Disposal of LDR wastes at any time is prohibited except in accordance with applicable LDR requirements for nonradioactive wastes at all times. The plan will include, but not be limited to, the following: waste characterization plan; storage report; treatment report; treatment plan; waste minimization plan; a schedule depicting the events necessary to achieve full compliance with LDR requirements; a process for establishing interim milestones. The original plan was published in October 1990. This is the fourth of a series of annual updates required by Tri-Party Agreement Milestone M-26-01. A Tri-Party Agreement change request approved in March 1992 changed the annual due date from October to April and consolidated this report with a similar one prepared under Milestone M-25-00. The reporting period for this report is from April 1, 1993, to March 31, 1994.

  4. Russian Technology Advancements for Waste Mixing and Retrieval

    SciTech Connect

    Gibbons, P. W.; Albert, T. E.; Barakov, B.

    2002-02-26

    Engineers at the Mining and Chemical Combine nuclear facility, located in Zheleznogorsk, Russia, have developed a pulsating mixer/sluicer to mobilize a layer of consolidated, hardened sludge at the bottom of their 12-m-diameter by 30-m-high nuclear waste tanks. This waste has resisted mobilization by conventional sluicing jets. The new pulsating mixer/sluicer draws tank liquid into a pressure vessel, then expels it at elevated pressure either through a set of submerged mixing jets or a steerable through-air jet. Four versions (or generations) of this technology have been developed. Following testing of three other Russian mobilization and transfer systems at Pacific Northwest National Laboratory, a first generation of the new pulsating mixer/sluicer was identified for possible waste retrieval applications in U.S. high-level waste tanks (1). A second-generation pulsating mixer/sluicer was developed and successfully deployed in Tank TH-4 at the Oak Ridge Reservation, located in Tennessee, United States (2). A third-generation pulsating mixer/sluicer with a dual nozzle design was developed and is being tested for possible use by the Hanford Site's River Protection Project to retrieve waste from Tank 241-S-102, a single-shell tank containing radioactive saltcake and sludge. In cooperation with the U.S. Department of Energy Tanks Focus Area, the Mining and Chemical Combine is conducting cold (that is, nonradioactive) tests and demonstrations of the third-generation system in 2001 and 2002. This work is being conducted through the Tank Retrieval and Closure Demonstration Center, which is sponsored by the National Nuclear Safety Administration's Office of Arms Control and Nonproliferation (NN-40). A fourth-generation dual-nozzle pulsating mixer/sluicer is undergoing cold testing for use at the Mining and Chemical Combine to retrieve radioactive sludge there in 2004.

  5. The Effect of Congress' Mandate to Create Greater Efficiencies in the Characterization of Transuranic Waste through the Waste Isolation Pilot Plant (WIPP) Hazardous Waste Facility Permit

    SciTech Connect

    Johnson, G.J.; Kehrman, R.F.

    2008-07-01

    have been successfully permitted for disposal at WIPP. Changes made pursuant to Section 311 helped to facilitate approval of the proposed RH TRU modifications. For example, the three scenarios for use in AK Sufficiency Determination Requests, described herein, are essential to securing approval of some RH TRU waste streams for eventual disposal at WIPP. Thus, even if characterization rates do not increase significantly, options for disposal of RH TRU waste, which may not have been possible without Section 311, are now available and the TRU waste disposal mission is being accomplished as mandated by Congress in the LWA. Also, with the Section 311 modification, the Permittees commenced room-based VOC monitoring in the WIPP repository, which is also a positive impact of Section 311. Permit changes pursuant to Section 311 were a good beginning, but much more is need to encourage more efficient methodologies in waste characterization activities for TRU mixed waste destined for WIPP. Although the Permittees now have more flexibility in characterizing waste for disposal at WIPP, the processes are still lengthy, cumbersome, and paper-intensive. As the generator sites continue to characterize waste under Section 311, more data will likely be compiled and evaluated to assess the longer term cost and technical impacts of Section 311. Also, further refinements in TRU waste characterization requirements through Permit modifications are likely in future years to eliminate, improve, and clarify remaining unnecessary and redundant Permit provisions. Continuous improvements to the TRU waste characterization program are bound to occur, resulting in even greater efficiencies in the characterization and ultimate disposal of TRU waste. (authors)

  6. A strategy for analysis of TRU waste characterization needs

    SciTech Connect

    Leigh, C.D.; Chu, M.S.Y.; Arvizu, J.S.; Marcinkiewicz, C.J.

    1994-03-01

    Regulatory compliance and effective management of the nation`s TRU waste requires knowledge about the constituents present in the waste. With limited resources, the DOE needs a cost-effective characterization program. In addition, the DOE needs a method for predicting the present and future analytical requirements for waste characterization. Thus, a strategy for predicting the present and future waste characterization needs that uses current knowledge of the TRU inventory and prioritization of the data needs is presented.

  7. Waste analysis plan for 222-S dangerous and mixed waste storage area

    SciTech Connect

    Warwick, G.J.

    1994-08-30

    The 222-S Laboratory Complex, in the southeast corner of the 200 West Area, consists of the 222-S Laboratory, the 222-SA Standards Laboratory, and several ancillary facilities. Currently, 222-S Laboratory activities are in supporting efforts to characterize the waste stored in the 200 Areas single shell and double shell tanks. Besides this work, the laboratory also provides analytical services for waste-management processing plants, Tank Farms, B Plant, 242-A Evaporator Facility, Plutonium-Uranium Extraction Plant, Plutonium Finishing Plant, Uranium-Oxide Plant, Waste Encapsulation Storage Facility, environmental monitoring and surveillance programs, and activities involving essential materials and research and development. One part of the 222-SA Laboratory prepares nonradioactive standards for the 200 Area laboratories. The other section of the laboratory is used for cold (nonradioactive) process development work and standards preparation. The 219-S Waste Handling Facility has three storage tanks in which liquid acid waste from 222-S can be received, stored temporarily, and neutralized. From this facility, neutralized waste, containing radionuclides, is transferred to the Tank Farms. A 700-gallon sodium-hydroxide supply tank is also located in this facility. This plan provides the methods used to meet the acceptance criteria required by the 204-AR Waste Receiving Facility.

  8. Characterization of urban solid waste in Chihuahua, Mexico.

    PubMed

    Gomez, Guadalupe; Meneses, Montserrat; Ballinas, Lourdes; Castells, Francesc

    2008-12-01

    The characterization of urban solid waste generation is fundamental for adequate decision making in the management strategy of urban solid waste in a city. The objective of this study is to characterize the waste generated in the households of Chihuahua city, and to compare the results obtained in areas of the city with three different socioeconomic levels. In order to identify the different socioeconomic trends in waste generation and characterization, 560 samples of solid waste were collected during 1 week from 80 households in Chihuahua and were hand sorted and classified into 15 weighted fractions. The average waste generation in Chihuahua calculated in this study was 0.676 kg per capita per day in April 2006. The main fractions were: organic (48%), paper (16%) and plastic (12%). Results show an increased waste generation associated with the socioeconomic level. The characterization in amount and composition of urban waste is the first step needed for the successful implementation of an integral waste management system.

  9. Characterization of urban solid waste in Chihuahua, Mexico

    SciTech Connect

    Gomez, Guadalupe; Meneses, Montserrat; Ballinas, Lourdes; Castells, Francesc

    2008-12-15

    The characterization of urban solid waste generation is fundamental for adequate decision making in the management strategy of urban solid waste in a city. The objective of this study is to characterize the waste generated in the households of Chihuahua city, and to compare the results obtained in areas of the city with three different socioeconomic levels. In order to identify the different socioeconomic trends in waste generation and characterization, 560 samples of solid waste were collected during 1 week from 80 households in Chihuahua and were hand sorted and classified into 15 weighted fractions. The average waste generation in Chihuahua calculated in this study was 0.676 kg per capita per day in April 2006. The main fractions were: organic (48%), paper (16%) and plastic (12%). Results show an increased waste generation associated with the socioeconomic level. The characterization in amount and composition of urban waste is the first step needed for the successful implementation of an integral waste management system.

  10. Characterizing soils for hazardous waste site assessments.

    PubMed

    Breckenridge, R P; Keck, J F; Williams, J R

    1994-04-01

    This paper provides a review and justification of the minimum data needed to characterize soils for hazardous waste site assessments and to comply with the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA). Scientists and managers within the regulatory agency and the liable party need to know what are the important soil characteristics needed to make decisions about risk assessment, what areas need remediation and what remediation options are available. If all parties involved in characterizing a hazardous waste site can agree on the required soils data set prior to starting a site investigation, data can be collected in a more efficient and less costly manner. Having the proper data will aid in reaching decisions on how to address concerns at, and close-out, hazardous waste sites.This paper was prepared to address two specific concerns related to soil characterization for CERCLA remedial response. The first concern is the applicability of traditional soil classification methods to CERCLA soil characterization. The second is the identification of soil characterization data type required for CERCLA risk assessment and analysis of remedial alternatives. These concerns are related, in that the Data Quality Objective (DQO) process addresses both. The DQO process was developed in part to assist CERCLA decision-makers in identifying the data types, data quality, and data quantity required to support decisions that must be made during the remedial investigation/feasibility study (RI/FS) process. Data Quality Objectives for Remedial Response Activities: Development Process (US EPA, 1987a) is a guidebook on developing DQOs. This process as it relates to CERCLA soil characterization is discussed in the Data Quality Objective Section of this paper.

  11. TRU waste inventory collection and work-off plans for the centralization of TRU waste characterization at INL - on your mark - get set - 9410

    SciTech Connect

    Mctaggert, Jerri Lynne; Lott, Sheila; Gadbury, Casey

    2009-01-01

    The U.S. Department of Energy (DOE) amended the Record of Decision (ROD) for the Waste Management Program: Treatment and Storage ofTransuranic Waste to centralize transuranic (TRU) waste characterization/certification from fourteen TRU waste sites. This centralization will allow for treatment, characterization and certification ofTRU waste from the fourteen sites, thirteen of which are sites with small quantities ofTRU waste, at the Idaho National Laboratory (INL) prior to shipping the waste to the Waste Isolation Pilot Plant (WIPP) for disposal. Centralization ofthis TRU waste will avoid the cost ofbuilding treatment, characterization, certification, and shipping capabilities at each ofthe small quantity sites that currently do not have existing facilities. Advanced Mixed Waste Treatment Project (AMWTP) and Idaho Nuclear Technology and Engineering Center (INTEC) will provide centralized shipping facilities, to WIPP, for all ofthe small quantity sites. Hanford, the one large quantity site identified in the ROD, has a large number ofwaste in containers that are overpacked into larger containers which are inefficient for shipment to and disposal at WIPP. The AMWTP at the INL will reduce the volume ofmuch of the CH waste and make it much more efficient to ship and dispose of at WIPP. In addition, the INTEC has a certified remote handled (RH) TRU waste characterization/certification program at INL to disposition TRU waste from the sites identified in the ROD.

  12. DEVELOPMENT AND DEMONSTRATION OF POLYMER MICROENCAPSULATION OF MIXED WASTE USING KINETIC MIXER PROCESSING

    SciTech Connect

    LAGERAAEN,P.R.; KALB,P.D.; MILIAN,L.W.; ADAMS,J.W.

    1997-11-01

    Thermokinetic mixing was investigated as an alternative processing method for polyethylene microencapsulation, a technology well demonstrated for treatment of hazardous, low-level radioactive and low-level mixed wastes. Polyethylene encapsulation by extrusion has been previously shown to be applicable to a wide range of waste types but often pretreatment of the wastes is necessary due to process limitations regarding the maximum waste moisture content and particle size distribution. Development testing was conducted with kinetic mixing in order to demonstrate technology viability and show improved process applicability in these areas. Testing to establish process capabilities and relevant operating parameters was performed with waste surrogates including an aqueous evaporator concentrate and soil. Using a pilot-scale kinetic mixer which was installed and modified for this program, the maximum waste moisture content and particle size was determined. Following process development with surrogate wastes, the technology was successfully demonstrated at BNL using actual mixed waste.

  13. Transportable Vitrification System: Operational experience gained during vitrification of simulated mixed waste

    SciTech Connect

    Whitehouse, J.C.; Burket, P.R.; Crowley, D.A.; Hansen, E.K.; Jantzen, C.M.; Smith, M.E.; Singer, R.P.; Young, S.R.; Zamecnik, J.R.; Overcamp, T.J.; Pence, I.W. Jr.

    1996-11-21

    The Transportable Vitrification System (TVS) is a large-scale, fully-integrated, transportable, vitrification system for the treatment of low-level nuclear and mixed wastes in the form of sludges, soils, incinerator ash, and similar waste streams. The TVS was built to demonstrate the vitrification of actual mixed waste at U. S. Department of Energy (DOE) sites. Currently, Westinghouse Savannah River Company (WSRC) is working with Lockheed Martin Energy Systems (LMES) to apply field scale vitrification to actual mixed waste at Oak Ridge Reservation`s (ORR) K-25 Site. Prior to the application of the TVS to actual mixed waste it was tested on simulated K-25 B and C Pond waste at Clemson University. This paper describes the results of that testing and preparations for the demonstration on actual mixed waste.

  14. Characterization of Fernald Silo 3 Waste

    SciTech Connect

    Langton, C.A.

    2001-04-04

    This report summarizes characterization results for uranium residues from the Fernald Environmental Management Project (FEMP) Operable Unit (OU-4). These residues are currently stored in a one-million-gallon concrete silo, Silo 3, at the DOE Fernald Site, Ohio. Characterization of the Silo 3 waste is the first part of a three part study requested by Rocky Mountain Remedial Services (RMRS) through a Work for others Agreement, WFO-00-007, between the Westinghouse Savannah River Company (WSRC) and RMRS. Parts 2 and 3 of this effort include bench- and pilot-scale testing.

  15. Guidance for Low-Level Radioactive Waste (LLRW) and Mixed Waste (MW) Treatment and Handling

    DTIC Science & Technology

    2007-11-02

    arsenic, barium, cad- mium, chromium , mercury, and selenium do not decay away. Their toxicity remains forever. (2) Joint jurisdiction. Disposal of...Ammonia and Ammonium salts Oxalic acid (and oxaltes) Ferric salts Citric acid (and citrates) “Oxidizing agentsŕ Picolinic acid (and picolinates ...The metal most often treated with reduction techniques is chromium , which often is present in a waste solution or mixed solution as chromium (VI) which

  16. Concrete disposal vaults: An alternative to Hazardous Waste/Mixed Waste earthen landfills

    SciTech Connect

    Freitag, A.A.; Stewart, D.E.; Peterson, S.L.

    1992-01-01

    The Hazardous Waste/Mixed Waste (HW/MW) Disposal Facility is a new facility planned for on site processing and disposal of existing and future solid hazardous and/or mixed wastes generated at Savannah River Site (SRS). The first phase of the project is the completion of engineered above grade concrete disposal vaults which are to be permitted as hazardous waste disposal facilities and designed in accordance with the Resource Conservation and Recovery Act (RCRA) and appropriate US Department of Energy (DOE) Orders. The RCRA minimum performance standards promulgated in 40 CFR 264 and 265 are based on double lined earthen landfills. The regulations allow for alternative design and operational practices provided that the alternative design and operating practices, together with location characteristics, will prevent the migration of any hazardous constituents into the groundwater or surface water at least as effectively as the specified double lined earthen system. The engineered concrete vault structure for SRS is designed to comply and/or exceed the performance standards of the RCRA regulations and the associated RCRA technical guidance documents issued by the US Environmental Protection Agency (EPA).

  17. Concrete disposal vaults: An alternative to Hazardous Waste/Mixed Waste earthen landfills

    SciTech Connect

    Freitag, A.A.; Stewart, D.E.; Peterson, S.L.

    1992-04-01

    The Hazardous Waste/Mixed Waste (HW/MW) Disposal Facility is a new facility planned for on site processing and disposal of existing and future solid hazardous and/or mixed wastes generated at Savannah River Site (SRS). The first phase of the project is the completion of engineered above grade concrete disposal vaults which are to be permitted as hazardous waste disposal facilities and designed in accordance with the Resource Conservation and Recovery Act (RCRA) and appropriate US Department of Energy (DOE) Orders. The RCRA minimum performance standards promulgated in 40 CFR 264 and 265 are based on double lined earthen landfills. The regulations allow for alternative design and operational practices provided that the alternative design and operating practices, together with location characteristics, will prevent the migration of any hazardous constituents into the groundwater or surface water at least as effectively as the specified double lined earthen system. The engineered concrete vault structure for SRS is designed to comply and/or exceed the performance standards of the RCRA regulations and the associated RCRA technical guidance documents issued by the US Environmental Protection Agency (EPA).

  18. Development of Simulants to Support Mixing Tests for High Level Waste and Low Activity Waste

    SciTech Connect

    EIBLING, RUSSELLE.

    2004-06-01

    The objectives of this study were to develop two different types of simulants to support vendor agitator design studies and mixing studies. The initial simulant development task was to develop rheologically-bounding physical simulants and the final portion was to develop a nominal chemical simulant which is designed to match, as closely as possible, the actual sludge from a tank. The physical simulants to be developed included a lower and upper rheologically bounded: pretreated low activity waste (LAW) physical simulant; LAW melter feed physical simulant; pretreated high level waste (HLW) physical simulant; HLW melter feed physical simulant. The nominal chemical simulant, hereafter referred to as the HLW Precipitated Hydroxide simulant, is designed to represent the chemical/physical composition of the actual washed and leached sludge sample. The objective was to produce a simulant which matches not only the chemical composition but also the physical properties of the actual waste sample. The HLW Precipitated Hydroxide simulant could then be used for mixing tests to validate mixing, homogeneity and representative sampling and transferring issues. The HLW Precipitated Hydroxide simulant may also be used for integrated nonradioactive testing of the WTP prior to radioactive operation.

  19. Environmental assessment for the Radioactive and Mixed Waste Management Facility: Sandia National Laboratories/New Mexico

    SciTech Connect

    Not Available

    1993-06-01

    The Department of Energy (DOE) has prepared an environmental assessment (EA) (DOE/EA-0466) under the National Environmental Policy Act (NEPA) of 1969 for the proposed completion of construction and subsequent operation of a central Radioactive and Mixed Waste Management Facility (RMWMF), in the southeastern portion of Technical Area III at Sandia National Laboratory, Albuquerque (SNLA). The RMWMF is designed to receive, store, characterize, conduct limited bench-scale treatment of, repackage, and certify low-level waste (LLW) and mixed waste (MW) (as necessary) for shipment to an offsite disposal or treatment facility. The RMWMF was partially constructed in 1989. Due to changing regulatory requirements, planned facility upgrades would be undertaken as part of the proposed action. These upgrades would include paving of road surfaces and work areas, installation of pumping equipment and lines for surface impoundment, and design and construction of air locks and truck decontamination and water treatment systems. The proposed action also includes an adjacent corrosive and reactive metals storage area, and associated roads and paving. LLW and MW generated at SNLA would be transported from the technical areas to the RMWMF in containers approved by the Department of Transportation. The RMWMF would not handle nonradioactive hazardous waste. Based on the analysis in the EA, the proposed completion of construction and operation of the RMWMF does not constitute a major Federal action significantly affecting the quality of the human environment within the meaning of NEPA. Therefore, preparation of an environmental impact statement for the proposed action is not required.

  20. Final Hanford Site Transuranic (TRU) Waste Characterization QA Project Plan

    SciTech Connect

    GREAGER, T.M.

    1999-12-14

    The Transuranic Waste Characterization Quality Assurance Program Plan required each U.S. Department of Energy (DOE) site that characterizes transuranic waste to be sent the Waste Isolation Pilot Plan that addresses applicable requirements specified in the quality assurance project plan (QAPP).

  1. Treatability study for the bench-scale solidification of nonincinerable LDR low-level mixed waste

    SciTech Connect

    Gering, K. L.

    1993-01-01

    The focus of this report is the solidification of nonincinerable, land disposal restricted (LDR) low-level mixed waste generated at the Idaho National Engineering Laboratory. Benchscale solidification was performed on samples of this mixed waste, which was done under a Resource Conservation and Recovery Act treatability study. Waste forms included liquids, sludges, and solids, and treatment techniques included the use of conventional Portland cement and sulphur polymer cement (SPC). A total of 113 monoliths were made under the experimental design matrix for this study; 8 of these were blank'' monoliths (contained no waste). Thus, 105 monoliths were used to solidify 21.6 kg of mixed waste; 92 were made with Portland cement systems, and 13 were made with SPC. Recipes for all monoliths are given, and suggested recipes (as based on the minimized leaching of toxic components) are summarized. In most cases, the results presented herein indicate that solidification was successful in immobilizing toxic metals, thereby transforming low-level mixed waste into low-level nonhazardous waste. The ultimate goal of this project is to use appropriate solidification techniques, as described in the literature, to transform low-level mixed waste to low-level nonhazardous waste by satisfying pertinent disposal requirements for this waste. Disposal requirements consider the toxicity characteristic leaching procedure tests, a free liquids test, and radiological analyses. This work is meaningful in that it will provide a basis for the disposal of waste that is currently categorized as LDR low-level mixed waste.

  2. Treatability study for the bench-scale solidification of nonincinerable LDR low-level mixed waste

    SciTech Connect

    Gering, K.L.

    1993-01-01

    The focus of this report is the solidification of nonincinerable, land disposal restricted (LDR) low-level mixed waste generated at the Idaho National Engineering Laboratory. Benchscale solidification was performed on samples of this mixed waste, which was done under a Resource Conservation and Recovery Act treatability study. Waste forms included liquids, sludges, and solids, and treatment techniques included the use of conventional Portland cement and sulphur polymer cement (SPC). A total of 113 monoliths were made under the experimental design matrix for this study; 8 of these were ``blank`` monoliths (contained no waste). Thus, 105 monoliths were used to solidify 21.6 kg of mixed waste; 92 were made with Portland cement systems, and 13 were made with SPC. Recipes for all monoliths are given, and suggested recipes (as based on the minimized leaching of toxic components) are summarized. In most cases, the results presented herein indicate that solidification was successful in immobilizing toxic metals, thereby transforming low-level mixed waste into low-level nonhazardous waste. The ultimate goal of this project is to use appropriate solidification techniques, as described in the literature, to transform low-level mixed waste to low-level nonhazardous waste by satisfying pertinent disposal requirements for this waste. Disposal requirements consider the toxicity characteristic leaching procedure tests, a free liquids test, and radiological analyses. This work is meaningful in that it will provide a basis for the disposal of waste that is currently categorized as LDR low-level mixed waste.

  3. Microbial Transformation of TRU and Mixed Wastes: Actinide Speciation and Waste Volume Reduction

    SciTech Connect

    Halada, Gary P.

    2004-12-01

    I. To characterize the biodegradation of cellulosic materials using Fourier Transform Infrared (FTIR) Spectroscopy. II. To develop an electrochemical/spectroscopic methodology to characterize TRU waste microbial transformation III. To develop molecular models of TRU complexes in order to understand microbial transformation In all cases, objectives are designed to compliment the efforts from other team members, and will be periodically coordinated through the lead P.I. at Brookhaven National Laboratory (BNL), A.J. Francis.

  4. Low-temperature setting phosphate ceramics for stabilization of DOE problem low level mixed-waste: I. Material and waste form development

    SciTech Connect

    Singh, D.; Wagh, A.; Knox, L.; Mayberry, J.

    1994-03-01

    Chemically bonded phosphate ceramics are proposed as candidates for solidification and stabilization of some of the {open_quotes}problem{close_quotes} DOE low-level mixed wastes at low-temperatures. Development of these materials is crucial for stabilization of waste streams which have volatile species and any use of high-temperature technology leads to generation of off-gas secondary waste streams. Several phosphates of Mg, Al, and Zr have been investigated as candidate materials. Monoliths of these phosphates were synthesized using chemical routes at room or slightly elevated temperatures. Detailed physical and chemical characterizations have been conducted on some of these phosphates to establish their durability. Magnesium ammonium phosphate has shown to possess excellent mechanical and as well chemical properties. These phosphates were also used to stabilize a surrogate ash waste with a loading ranging from 25-35 wt.%. Characterization of the final waste forms show that waste immobilization is due to both chemical stabilization and physical encapsulation of the surrogate waste which is desirable for waste immobilization.

  5. Zero-Release Mixed Waste Process Facility Design and Testing

    SciTech Connect

    Richard D. Boardman; John A. Deldebbio; Robert J. Kirkham; Martin K. Clemens; Robert Geosits; Ping Wan

    2004-02-01

    A zero-release offgas cleaning system for mixed-waste thermal treatment processes has been evaluated through experimental scoping tests and process modeling. The principles can possibly be adapted to a fluidized-bed calcination or stream reforming process, a waste melter, a rotarykiln process, and possibly other waste treatment thermal processes. The basic concept of a zero-release offgas cleaning system is to recycle the bulk of the offgas stream to the thermal treatment process. A slip stream is taken off the offgas recycle to separate and purge benign constituents that may build up in the gas, such as water vapor, argon, nitrogen, and CO2. Contaminants are separated from the slip stream and returned to the thermal unit for eventual destruction or incorporation into the waste immobilization media. In the current study, a standard packed-bed scrubber, followed by gas separation membranes, is proposed for removal of contaminants from the offgas recycle slipstream. The scrub solution is continuously regenerated by cooling and precipitating sulfate, nitrate, and other salts that reach a solubility limit in the scrub solution. Mercury is also separated by the scrubber. A miscible chemical oxidizing agent was shown to effectively oxidize mercury and also NO, thus increasing their removal efficiency. The current study indicates that the proposed process is a viable option for reducing offgas emissions. Consideration of the proposed closed-system offgas cleaning loop is warranted when emissions limits are stringent, or when a reduction in the total gas emissions volume is desired. Although the current closed-loop appears to be technically feasible, economical considerations must be also be evaluated on a case-by-case basis.

  6. The Challenges of Creating a Real-Time Data Management System for TRU-Mixed Waste at the Advanced Mixed Waste Treatment Plant

    SciTech Connect

    Paff, S. W; Doody, S.

    2003-02-25

    This paper discusses the challenges associated with creating a data management system for waste tracking at the Advanced Mixed Waste Treatment Plant (AMWTP) at the Idaho National Engineering Lab (INEEL). The waste tracking system combines data from plant automation systems and decision points. The primary purpose of the system is to provide information to enable the plant operators and engineers to assess the risks associated with each container and determine the best method of treating it. It is also used to track the transuranic (TRU) waste containers as they move throughout the various processes at the plant. And finally, the goal of the system is to support paperless shipments of the waste to the Waste Isolation Pilot Plant (WIPP). This paper describes the approach, methodologies, the underlying design of the database, and the challenges of creating the Data Management System (DMS) prior to completion of design and construction of a major plant. The system was built utilizing an Oracle database platform, and Oracle Forms 6i in client-server mode. The underlying data architecture is container-centric, with separate tables and objects for each type of analysis used to characterize the waste, including real-time radiography (RTR), non-destructive assay (NDA), head-space gas sampling and analysis (HSGS), visual examination (VE) and coring. The use of separate tables facilitated the construction of automatic interfaces with the analysis instruments that enabled direct data capture. Movements are tracked using a location system describing each waste container's current location and a history table tracking the container's movement history. The movement system is designed to interface both with radio-frequency bar-code devices and the plant's integrated control system (ICS). Collections of containers or information, such as batches, were created across the various types of analyses, which enabled a single, cohesive approach to be developed for verification and

  7. DOE's Remote-Handled TRU Waste Characterization Program: Implementation Plan

    EPA Pesticide Factsheets

    Remote-handled (RH) transuranic (TRU) waste characterization, which involves obtaining chemical, radiological, and physical data, is a primary component of ensuring compliance of the Waste Isolation Pilot Plant (WIPP) with regulatory requirements.

  8. Radioisotope Characterization of HB Line Low Activity Waste

    SciTech Connect

    Snyder, S.J.

    1999-08-05

    The purpose of this document is to provide a physical, chemical, hazardous and radiological characterization of Low-Level Waste (LLW) generated in HB-Line as required by the 1S Manual, Savannah River Site Waste Acceptance Criteria Manual.

  9. Advanced Mixed Waste Treatment Project melter system preliminary design technical review meeting

    SciTech Connect

    Eddy, T.L.; Raivo, B.D.; Soelberg, N.R.; Wiersholm, O.

    1995-02-01

    The Idaho National Engineering Laboratory Advanced Mixed Waste Treatment Project sponsored a plasma are melter technical design review meeting to evaluate high-temperature melter system configurations for processing heterogeneous alpha-contaminated low-level radioactive waste (ALLW). Thermal processing experts representing Department of Energy contractors, the Environmental Protection Agency, and private sector companies participated in the review. The participants discussed issues and evaluated alternative configurations for three areas of the melter system design: plasma torch melters and graphite arc melters, offgas treatment options, and overall system configuration considerations. The Technical Advisory Committee for the review concluded that graphite arc melters are preferred over plasma torch melters for processing ALLW. Initiating involvement of stakeholders was considered essential at this stage of the design. For the offgas treatment system, the advisory committee raised the question whether to a use wet-dry or a dry-wet system. The committee recommended that the waste stream characterization, feed preparation, and the control system are essential design tasks for the high-temperature melter treatment system. The participants strongly recommended that a complete melter treatment system be assembled to conduct tests with nonradioactive surrogate waste material. A nonradioactive test bed would allow for inexpensive design and operational changes prior to assembling a system for radioactive waste treatment operations.

  10. Integrated process analysis of treatment systems for mixed low level waste

    SciTech Connect

    Cooley, C.R.; Schwinkendorf, W.E. |; Bechtold, T.E.

    1997-10-01

    Selection of technologies to be developed for treatment of DOE`s mixed low level waste (MLLW) requires knowledge and understanding of the expected costs, schedules, risks, performance, and reliability of the total engineered systems that use these technologies. Thus, an integrated process analysis program was undertaken to identify the characteristics and needs of several thermal and nonthermal systems. For purposes of comparison, all systems were conceptually designed for a single facility processing the same amount of waste at the same rate. Thirty treatment systems were evaluated ranging from standard incineration to innovative thermal systems and innovative nonthermal chemical treatment. Treating 236 million pounds of waste in 20 years through a central treatment was found to be the least costly option with total life cycle cost ranging from $2.1 billion for a metal melting system to $3.9 billion for a nonthermal acid digestion system. Little cost difference exists among nonthermal systems or among thermal systems. Significant cost savings could be achieved by working towards maximum on line treatment time per year; vitrifying the final waste residue; decreasing front end characterization segregation and sizing requirements; using contaminated soil as the vitrifying agent; and delisting the final vitrified waste form from Resource Conservation and Recovery Act (RCRA) Land Disposal Restriction (LDR) requirements.

  11. Mixed Waste Focus Area Working Group: An Integrated Approach to Mercury Waste Treatment and Disposal. Revision 1

    SciTech Connect

    Morris, M.I.; Conley, T.B.; Osborne-Lee, I.W.

    1997-09-08

    May 1996, the U.S. Department of Energy (DOE) Mixed Waste Focus Area (MWFA) initiated the Mercury Work Group (HgWG). The HgWG was established to address and resolve the issues associated with Mercury- contaminated mixed wastes (MWs). During the initial technical baseline development process of the MWFA, three of the top four technology deficiencies identified were related to (1) amalgamation, (2) stabilization, and (3) separation and removal for the treatment of mercury and mercury-contaminated mixed waste (MW). The HgWG is assisting the MWFA in soliciting, identifying, initiating, and managing efforts to address these needs.

  12. Advanced Off-Gas Control System Design For Radioactive And Mixed Waste Treatment

    SciTech Connect

    Nick Soelberg

    2005-09-01

    Treatment of radioactive and mixed wastes is often required to destroy or immobilize hazardous constituents, reduce waste volume, and convert the waste to a form suitable for final disposal. These kinds of treatments usually evolve off-gas. Air emission regulations have become increasingly stringent in recent years. Mixed waste thermal treatment in the United States is now generally regulated under the Hazardous Waste Combustor (HWC) Maximum Achievable Control Technology (MACT) standards. These standards impose unprecedented requirements for operation, monitoring and control, and emissions control. Off-gas control technologies and system designs that were satisfactorily proven in mixed waste operation prior to the implementation of new regulatory standards are in some cases no longer suitable in new mixed waste treatment system designs. Some mixed waste treatment facilities have been shut down rather than have excessively restrictive feed rate limits or facility upgrades to comply with the new standards. New mixed waste treatment facilities in the U. S. are being designed to operate in compliance with the HWC MACT standards. Activities have been underway for the past 10 years at the INL and elsewhere to identify, develop, demonstrate, and design technologies for enabling HWC MACT compliance for mixed waste treatment facilities. Some specific off-gas control technologies and system designs have been identified and tested to show that even the stringent HWC MACT standards can be met, while minimizing treatment facility size and cost.

  13. Treatment of Organic-Contaminated Mixed Waste Utilizing the Oak Ridge Broad Spectrum Contracts

    SciTech Connect

    Estes, C. H.; Heacker, F. K.; Cunningham, J.; Westich, B.

    2003-02-25

    To meet the requirements of the State of Tennessee's Department of Environment and Conservation Commissioner's Order for treatment of mixed low level wastes, Oak Ridge has utilized commercial treatment companies to treat and dispose mixed waste. Over the past year, Oak Ridge has shipped organic-contaminated mixed waste for treatment to meet milestones under the Site Treatment Plan. Oak Ridge has established contracts with commercial treatment companies accessible by all DOE sites for treatment of a wide range of mixed wastes. The paper will describe and summarize the activities involved in treating and disposing of organic-contaminated mixed waste utilizing DOE complex-wide contracts and the treatment and disposal activities required. This paper will describe the case history of treatment of several organic-contaminated mixed wastes from the Oak Ridge Reservation requiring treatment prior to disposal. The paper will include waste category information, implementation activities, and contract access. The paper will discuss the specifics of the mixed waste treatment including waste characteristics, treatment process and equipment utilized, and treatment results. Additional information will be provided on task order development, waste profiling, treatment pricing, and the disposal process.

  14. Mixed wastes management at Fernald: Making it happen quickly, economically and compliantly

    SciTech Connect

    Witzeman, J.T.; Rast, D.M.

    1996-02-09

    At the end of calender year 1992, the Fernald Environmental Management Project (FEMP) had approximately 12,500 drums of mixed low-level waste in storage and the Fernald Environmental Restoration Management Corporation (FERMCO) had just begun to develop an aggressive project based program to treat and dispose of this mixed waste. By 1996 the FERMCO mixed waste management program had reduced the aforementioned 12,500 drums of waste once in inventory to approximately 5800 drums. Projects are currently in progress to completely eliminate the FEMP inventory of mixed waste. As a result of these initiatives and aggressive project management, the FEMP has become a model for mixed waste handling, treatment and disposal for DOE facilities. Mixed waste management has traditionally been viewed as a singular and complex environmental problem. FERMCO has adopted the viewpoint that treatment and disposal of mixed waste is an engineering project, to be executed in a disciplined fashion with timely and economic results. This approach allows the larger mixed waste management problem to be divided into manageable fractions and managed by project. Each project is managed by problem solving experts, project managers, in lieu of environmental experts. In the project approach, environmental regulations become project requirements for individual resolution, as opposed to what had formerly been viewed as technically unachievable environmental standards.

  15. Physical and chemical methods for the characterization of hazardous wastes

    NASA Astrophysics Data System (ADS)

    Francis, C. W.; Maskarinec, M. P.; Lee, D. W.

    Numerous test methods have been proposed and developed to evaluate the hazards associated with handling and disposal of wastes in landfills. The major concern is the leaching of toxic constituents from the wastes. The fate of hazardous constituents in landfilled wastes is highly dependent on the physical and chemical characteristics of the waste. Thus, the primary objective in the selection of waste characterization procedures should be focused on those methods that gauge the fate of the waste's hazardous constituents in a specific landfill environment. Waste characterization in the United States has centered around the characteristics of ignitability, corrosivity, reactivity, and toxicity. The strategy employed in the development of most regulatory waste characterization procedures has been a pass or fail approach, usually tied to some form of a mismanagement scenario for that waste. For example, USEPA has chosen the disposal of a waste in a municipal waste landfill as a mismanagement scenario for the development of the waste leaching tests to determine the toxicity characteristic. Many wastes, such as large-volume utility wastes or mining wastes, are not disposed of in municipal waste landfills. As a consequence, more effort is needed in the development of waste leaching tests that determine the long-term leaching characteristics of that waste in the landfill environment in which the waste is to be disposed. Waste leaching models also need to be developed and tested as to their ability to simulate actual disposal environments. These models need to be compared with laboratory leaching tests, and, if practical, coupled with groundwater transport models.

  16. Evaluation of prospective hazardous waste treatment technologies for use in processing low-level mixed wastes at Rocky Flats

    SciTech Connect

    McGlochlin, S.C.; Harder, R.V.; Jensen, R.T.; Pettis, S.A.; Roggenthen, D.K.

    1990-09-18

    Several technologies for destroying or decontaminating hazardous wastes were evaluated (during early 1988) as potential processes for treating low-level mixed wastes destined for destruction in the Fluidized Bed Incinerator. The processes that showed promise were retained for further consideration and placed into one (or more) of three categories based on projected availability: short, intermediate, and long-term. Three potential short-term options were identified for managing low-level mixed wastes generated or stored at the Rocky Flats Plant (operated by Rockwell International in 1988). These options are: (1) Continue storing at Rocky Flats, (2) Ship to Nevada Test Site for landfill disposal, or (3) Ship to the Idaho National Engineering Laboratory for incineration in the Waste Experimental Reduction Facility. The third option is preferable because the wastes will be destroyed. Idaho National Engineering Laboratory has received interim status for processing solid and liquid low-level mixed wastes. However, low-level mixed wastes will continue to be stored at Rocky Flats until the Department of Energy approval is received to ship to the Nevada Test Site or Idaho National Engineering Laboratory. Potential intermediate and long-term processes were identified; however, these processes should be combined into complete waste treatment systems'' that may serve as alternatives to the Fluidized Bed Incinerator. Waste treatment systems will be the subject of later work. 59 refs., 2 figs.

  17. High Resolution Sensor for Nuclear Waste Characterization

    SciTech Connect

    Shah, Kanai; Higgins, William; Van Loef, Edgar V

    2006-01-23

    Gamma ray spectrometers are an important tool in the characterization of radioactive waste. Important requirements for gamma ray spectrometers used in this application include good energy resolution, high detection efficiency, compact size, light weight, portability, and low power requirements. None of the available spectrometers satisfy all of these requirements. The goal of the Phase I research was to investigate lanthanum halide and related scintillators for nuclear waste clean-up. LaBr3:Ce remains a very promising scintillator with high light yield and fast response. CeBr3 is attractive because it is very similar to LaBr3:Ce in terms of scintillation properties and also has the advantage of much lower self-radioactivity, which may be important in some applications. CeBr3 also shows slightly higher light yield at higher temperatures than LaBr3 and may be easier to produce with high uniformity in large volume since it does not require any dopants. Among the mixed lanthanum halides, the light yield of LaBrxI3-x:Ce is lower and the difference in crystal structure of the binaries (LaBr3 and LaI3) makes it difficult to grow high quality crystals of the ternary as the iodine concentration is increased. On the other hand, LaBrxCl3-x:Ce provides excellent performance. Its light output is high and it provides fast response. The crystal structures of the two binaries (LaBr3 and LaCl3) are very similar. Overall, its scintillation properties are very similar to those for LaBr3:Ce. While the gamma-ray stopping efficiency of LaBrxCl3-x:Ce is lower than that for LaBr3:Ce (primarily because the density of LaCl3 is lower than that of LaBr3), it may be easier to grow large crystals of LaBrxCl3-x:Ce than LaBr3:Ce since in some instances (for example, CdxZn1-xTe), the ternary compounds provide increased flexibility in the crystal lattice. Among the new dopants, Eu2+ and Pr3+, tried in LaBr3 host crystals, the Eu2+ doped samples exhibited low light output. This was mostly because a

  18. Results of Hazardous and Mixed Waste Excavation from the Chemical Waste Landfill

    SciTech Connect

    Young, S. G.; Schofield, D. P.; Kwiecinski, D.; Edgmon, C. L.; Methvin, R.

    2002-02-27

    This paper describes the results of the excavation of a 1.9-acre hazardous and mixed waste landfill operated for 23 years at Sandia National Laboratories, Albuquerque, New Mexico. Excavation of the landfill was completed in 2 1/2 years without a single serious accident or injury. Approximately 50,000 cubic yards of soil contaminated with volatile and semi-volatile organics, metals, polychlorinated biphenyl compounds, and radioactive constituents was removed. In addition, over 400 cubic yards of buried debris was removed, including bulk debris, unknown chemicals, compressed gas cylinders, thermal and chemical batteries, explosive and ordnance debris, pyrophoric materials and biohazardous waste. Removal of these wastes included negotiation of multiple regulations and guidances encompassed in the Resource Conservation and Recovery Act (RCRA), the Toxic Substances Control Act (TSCA), and risk assessment methodology. RCRA concepts that were addressed include the area of contamination, permit modification, emergency treatment provision, and listed waste designation. These regulatory decisions enabled the project to overcome logistical and programmatic needs such as increased operational area, the ability to implement process improvements while maintaining a record of decisions and approvals.

  19. The Design and Construction of the Advanced Mixed Waste Treatment Facility

    SciTech Connect

    Harrop, G.

    2003-02-27

    The Advanced Mixed Treatment Project (AMWTP) privatized contract was awarded to BNFL Inc. in December 1996 and construction of the main facility commenced in August 2000. The purpose of the advanced mixed waste treatment facility is to safely treat plutonium contaminated waste, currently stored in drums and boxes, for final disposal at the Waste Isolation Pilot Plant (WIPP). The plant is being built at the Idaho National Engineering and Environmental Laboratory. Construction was completed in 28 months, to satisfy the Settlement Agreement milestone of December 2002. Commissioning of the related retrieval and characterization facilities is currently underway. The first shipment of pre-characterized waste is scheduled for March 2003, with AMWTP characterized and certified waste shipments from June 2003. To accommodate these challenging delivery targets BNFL adopted a systematic and focused construction program that included the use of a temporary structure to allow winter working, proven design and engineering principles and international procurement policies to help achieve quality and schedule. The technology involved in achieving the AMWTP functional requirements is primarily based upon a BNFL established pedigree of plant and equipment; applied in a manner that suits the process and waste. This technology includes the use of remotely controlled floor mounted and overhead power manipulators, a high power shredder and a 2000-ton force supercompactor with the attendant glove box suite, interconnections and automated material handling. The characterization equipment includes real-time radiography (RTR) units, drum and box assay measurement systems, drum head space gas sampling / analysis and drum venting, drum coring and sampling capabilities. The project adopted a particularly stringent and intensive pre-installation testing philosophy to ensure that equipment would work safely and reliably at the required throughput. This testing included the complete off site

  20. Mixed Waste Management Facility (MWMF) groundwater monitoring report

    SciTech Connect

    Thompson, C.Y.

    1992-12-01

    During third quarter 1992, 12 constituents exceeded the US Environmental Protection Agency Primary Drinking Water Standards (PDWS) in one or more groundwater samples from monitoring wells at the Mixed Waste Management Facility and adjacent facilities. Tritium and trichloroethylene were the most widespread constituents: 57 (48%) and 23 (19%) of the 119 monitoring wells contained elevated tritium and trichloroethylene levels, respectively. Elevated constituents were found primarily in Aquifer Zone IIB[sub 2] (Water Table) and Aquifer Zone IIB[sub 1] (Barnwell/McBean). Elevated constituents also occurred in five Aquifer Unit IIA (Congaree) wells. Upgradient wells BGO 1D and 2D and HSB 85A, 85B, and 85C did not contain any constituents that exceeded the PDWS. Downgradient wells in the three hydrostratigraphic units contained elevated levels of tritium, trichloroethylene, tetrachloroethylene, chloroethene, antimony, 1,1-dichloroethylene, gross alpha, lead, nonvolatile beta, thallium, total alpha-emitting radium (radium-224 and radium-226), or cadmium.

  1. Mixed Waste Management Facility (MWMF) groundwater monitoring report

    SciTech Connect

    Thompson, C.Y.

    1992-06-01

    During first quarter 1992, tritium, trichloroethylene, tetrachloroethylene, lead, antimony, I,I-dichloroethylene, 1,2-dichloroethane, gross alpha, mercury, nickel, nitrate, nonvolatile beta, and total alpha-emitting radium (radium-224 and radium-226) exceeded the US Environmental Protection Agency Primary Drinking Water Standards (PDWS) in groundwater samples from monitoring wells at the Mixed Waste Management Facility (MWMF) and adjacent facilities. Tritium and trichloroethylene were the most widespread constituents; 57 (49%) of the 116 monitored wells contained elevated tritium activities, and 21 (18%) wells exhibited elevated trichloroethylene concentrations Sixty-one downgradient wells screened in Aquifer Zone IIB2 (Water Table), Aquifer Zone IIB[sub 2] (Barnwell/McBean), and Aquifer Unit IIA (Congaree) contained constituents that exceeded the PDWS during first quarter 1992. Upgradient wells BGO 1D and HSB 85A, BC, and 85C did not contain any constituents that exceeded the PDWS. Upgradient well BGO 2D contained elevated tritium.

  2. Soil washing results for mixed waste pond soils at Hanford

    SciTech Connect

    Gerber, M.A.

    1991-09-01

    Soil washing technology was assessed as a means for remediating soil contaminated with mixed wastes primarily composed of heavy metals and radionuclides. The soils at the US Department of Energy's Hanford Site are considered suitable for soil washing because of their relatively low quantities of silt and clay. However, in a limited number of soil washing experiments using soils from different locations in the north pond of the 300 Area, the degree of decontamination achieved for the coarse fraction of the soil varied considerably. Part of this variation appears to be due to the presence of a discrete layer of contaminated sediment found in some of the samples. 7 refs., 2 figs., 4 tabs.

  3. Trial Burn Activities for a Mixed Waste Incinerator

    SciTech Connect

    Birk, M.B.

    1998-05-01

    The Consolidated Incineration Facility (CIF) is located on the Savannah River Site (SRS), owned by the U. S. Department of Energy and managed by BNFL, Inc. for the Westinghouse Savannah River Company. SRS received permits from the South Carolina Department of Health and Environmental Control (SCDHEC) and the U. S. Environmental Protection Agency (EPA), Region IV to construct and operate the CIF, a hazardous, radioactive mixed waste incinerator. This paper presents the results of the trial burn conducted on the CIF in April 1997 which is the initial demonstration of compliance with the permits. The incinerator is currently operating under approved post-trial burn conditions while the trial burn results are being evaluated. A final operating permit is expected the fall of 1998.

  4. Progress and Lessons Learned in Transuranic Waste Disposition at The Department of Energy's Advanced Mixed Waste Treatment Project

    SciTech Connect

    J.D. Mousseau; S.C. Raish; F.M. Russo

    2006-05-18

    This paper provides an overview of the Department of Energy's (DOE) Advanced Mixed Waste Treatment Project (AMWTP) located at the Idaho National Laboratory (INL) and operated by Bechtel BWXT Idaho, LLC(BBWI) It describes the results to date in meeting the 6,000-cubic-meter Idaho Settlement Agreement milestone that was due December 31, 2005. The paper further describes lessons that have been learned from the project in the area of transuranic (TRU) waste processing and waste certification. Information contained within this paper would be beneficial to others who manage TRU waste for disposal at the Waste Isolation Pilot Plant (WIPP).

  5. Method for acid oxidation of radioactive, hazardous, and mixed organic waste materials

    DOEpatents

    Pierce, Robert A.; Smith, James R.; Ramsey, William G.; Cicero-Herman, Connie A.; Bickford, Dennis F.

    1999-01-01

    The present invention is directed to a process for reducing the volume of low level radioactive and mixed waste to enable the waste to be more economically stored in a suitable repository, and for placing the waste into a form suitable for permanent disposal. The invention involves a process for preparing radioactive, hazardous, or mixed waste for storage by contacting the waste starting material containing at least one organic carbon-containing compound and at least one radioactive or hazardous waste component with nitric acid and phosphoric acid simultaneously at a contacting temperature in the range of about 140.degree. C. to about 210 .degree. C. for a period of time sufficient to oxidize at least a portion of the organic carbon-containing compound to gaseous products, thereby producing a residual concentrated waste product containing substantially all of said radioactive or inorganic hazardous waste component; and immobilizing the residual concentrated waste product in a solid phosphate-based ceramic or glass form.

  6. Chemical tailoring of steam to remediate underground mixed waste contaminents

    DOEpatents

    Aines, Roger D.; Udell, Kent S.; Bruton, Carol J.; Carrigan, Charles R.

    1999-01-01

    A method to simultaneously remediate mixed-waste underground contamination, such as organic liquids, metals, and radionuclides involves chemical tailoring of steam for underground injection. Gases or chemicals are injected into a high pressure steam flow being injected via one or more injection wells to contaminated soil located beyond a depth where excavation is possible. The injection of the steam with gases or chemicals mobilizes contaminants, such as metals and organics, as the steam pushes the waste through the ground toward an extraction well having subatmospheric pressure (vacuum). The steam and mobilized contaminants are drawn in a substantially horizontal direction to the extraction well and withdrawn to a treatment point above ground. The heat and boiling action of the front of the steam flow enhance the mobilizing effects of the chemical or gas additives. The method may also be utilized for immobilization of metals by using an additive in the steam which causes precipitation of the metals into clusters large enough to limit their future migration, while removing any organic contaminants.

  7. Direct chemical oxidation of mixed or toxic wastes

    SciTech Connect

    Balazs, G B; Cooper, J F; Farmer, J C; Lewis, P

    1999-05-01

    Direct Chemical Oxidation (DCO) is an ambient-pressure, low-temperature (<100 C), and aqueous-based process for general-purpose destruction of the organic fraction of hazardous or mixed waste. It uses the peroxydisulfate anion (S{sub 2}O{sub 8}{sup 2{minus}}) in acid or base solutions. The byproduct of the oxidation reaction, typically sodium or ammonium hydrogen sulfate, may be recycled electrolytically to produce the oxidant. The oxidation kinetic reaction is first order with respect to the peroxydisulfate concentration, expressed in equivalents. The rate constant is constant for nearly all dissolved organic compounds: k{sub a} = 0.01 {+-} 0.005 min{sup {minus}1}. This reflects a common rate-determining step, which is the decomposition of the peroxydisulfate anion into the chemically active derivative, the sulfate radical anion, SO{sub 4}{sup {minus}}. This decomposition is promoted in DCO by raising the operating temperature into the range of 80-100 C. Rates are given for approximately 30 substances with diverse functional groups at low concentrations, and for a number of solid and liquid wastes typical of nuclear and chemical industries. The process has been scale up for treatment studies on chlorinated hydrocarbons, in which the hydrolysis of solvent mixtures was followed by oxidation of products in a series of stirred tank reactors. Cost estimates, safety considerations, and a comprehensive bibliography are given.

  8. Force Provider Solid Waste Characterization Study

    DTIC Science & Technology

    2004-08-01

    energy converter (WEC) and/or composter . For a five-day period in June 2000, the solid waste generated by soldiers at the Force Provider Training Module...MATERIALS REDUCTION WASTE DISPOSAL MILITARY FACILITIES SANITARY ENGINEERING DISPOSAL FORCE PROVIDER FIELD FEEDING COMPOSTS WASTES GARBAGE WASTE RECYCLING...waste reduction through onsite waste-to-energy conversion and/or composting . The work was performed by Hughes Associates, Inc., 3610 Commerce

  9. Composition and process for the encapsulation and stabilization of radioactive hazardous and mixed wastes

    DOEpatents

    Kalb, P.D.; Colombo, P.

    1997-07-15

    The present invention provides a composition and process for disposal of radioactive, hazardous and mixed wastes. The present invention preferably includes a process for multibarrier encapsulation of radioactive, hazardous and mixed wastes by combining substantially simultaneously dry waste powder, a non-biodegradable thermoplastic polymer and an anhydrous additive in an extruder to form a homogeneous molten matrix. The molten matrix may be directed in a ``clean`` polyethylene liner, allowed to cool, thus forming a monolithic waste form which provides a multibarrier to the dispersion of wastes into the environment. 2 figs.

  10. Composition and process for the encapsulation and stabilization of radioactive, hazardous and mixed wastes

    DOEpatents

    Kalb, P.D.; Colombo, P.

    1999-07-20

    The present invention provides a composition and process for disposal of radioactive, hazardous and mixed wastes. The present invention preferably includes a process for multibarrier encapsulation of radioactive, hazardous and mixed wastes by combining substantially simultaneously dry waste powder, a non-biodegradable thermoplastic polymer and an anhydrous additive in an extruder to form a homogeneous molten matrix. The molten matrix may be directed in a clean'' polyethylene liner, allowed to cool, thus forming a monolithic waste form which provides a multibarrier to the dispersion of wastes into the environment. 2 figs.

  11. Composition and process for the encapsulation and stabilization of radioactive, hazardous and mixed wastes

    DOEpatents

    Kalb, P.D.; Colombo, P.

    1998-03-24

    The present invention provides a composition and process for disposal of radioactive, hazardous and mixed wastes. The present invention preferably includes a process for multibarrier encapsulation of radioactive, hazardous and mixed wastes by combining substantially simultaneously dry waste powder, a non-biodegradable thermoplastic polymer and an anhydrous additive in an extruder to form a homogeneous molten matrix. The molten matrix may be directed in a ``clean`` polyethylene liner, allowed to cool, thus forming a monolithic waste form which provides a multibarrier to the dispersion of wastes into the environment. 2 figs.

  12. Composition and process for the encapsulation and stabilization of radioactive, hazardous and mixed wastes

    DOEpatents

    Kalb, Paul D.; Colombo, Peter

    1998-03-24

    The present invention provides a composition and process for disposal of radioactive, hazardous and mixed wastes. The present invention preferably includes a process for multibarrier encapsulation of radioactive, hazardous and mixed wastes by combining substantially simultaneously dry waste powder, a non-biodegradable thermoplastic polymer and an anhydrous additive in an extruder to form a homogenous molten matrix. The molten matrix may be directed in a "clean" polyethylene liner, allowed to cool, thus forming a monolithic waste form which provides a multibarrier to the dispersion of wastes into the environment.

  13. Composition and process for the encapsulation and stabilization of radioactive, hazardous and mixed wastes

    DOEpatents

    Kalb, Paul D.; Colombo, Peter

    1999-07-20

    The present invention provides a composition and process for disposal of radioactive, hazardous and mixed wastes. The present invention preferably includes a process for multibarrier encapsulation of radioactive, hazardous and mixed wastes by combining substantially simultaneously dry waste powder, a non-biodegradable thermoplastic polymer and an anhydrous additive in an extruder to form a homogenous molten matrix. The molten matrix may be directed in a "clean" polyethylene liner, allowed to cool, thus forming a monolithic waste form which provides a multibarrier to the dispersion of wastes into the environment.

  14. Composition and process for the encapsulation and stabilization of radioactive hazardous and mixed wastes

    DOEpatents

    Kalb, Paul D.; Colombo, Peter

    1997-01-01

    The present invention provides a composition and process for disposal of radioactive, hazardous and mixed wastes. The present invention preferably includes a process for multibarrier encapsulation of radioactive, hazardous and mixed wastes by combining substantially simultaneously dry waste powder, a non-biodegradable thermoplastic polymer and an anhydrous additive in an extruder to form a homogenous molten matrix. The molten matrix may be directed in a "clean" polyethylene liner, allowed to cool, thus forming a monolithic waste form which provides a multibarrier to the dispersion of wastes into the environment.

  15. Project report for the commercial disposal of mixed low-level waste debris

    SciTech Connect

    Andrews, G.; Balls, V.; Shea, T.; Thiesen, T.

    1994-05-01

    This report summarizes the basis for the commercial disposal of Idaho National Engineering Laboratory (INEL) mixed low-level waste (MLLW) debris and the associated activities. Mixed waste is radioactive waste plus hazardous waste as defined by the Resource Conservation and Recovery Act (RCRA). The critical factors for this project were DOE 5820.2A exemption, contracting mechanism, NEPA documentation, sampling and analysis, time limitation and transportation of waste. This report also will provide a guide or a starting place for future use of Envirocare of Utah or other private sector disposal/treatment facilities, and the lessons learned during this project.

  16. Method for stabilizing low-level mixed wastes at room temperature

    SciTech Connect

    Wagh, A.S.; Singh, D.

    1997-07-08

    A method to stabilize solid and liquid waste at room temperature is provided comprising combining solid waste with a starter oxide to obtain a powder, contacting the powder with an acid solution to create a slurry, said acid solution containing the liquid waste, shaping the now-mixed slurry into a predetermined form, and allowing the now-formed slurry to set. The invention also provides for a method to encapsulate and stabilize waste containing cesium comprising combining the waste with Zr(OH){sub 4} to create a solid-phase mixture, mixing phosphoric acid with the solid-phase mixture to create a slurry, subjecting the slurry to pressure; and allowing the now pressurized slurry to set. Lastly, the invention provides for a method to stabilize liquid waste, comprising supplying a powder containing magnesium, sodium and phosphate in predetermined proportions, mixing said powder with the liquid waste, such as tritium, and allowing the resulting slurry to set. 4 figs.

  17. Method for stabilizing low-level mixed wastes at room temperature

    DOEpatents

    Wagh, Arun S.; Singh, Dileep

    1997-01-01

    A method to stabilize solid and liquid waste at room temperature is provided comprising combining solid waste with a starter oxide to obtain a powder, contacting the powder with an acid solution to create a slurry, said acid solution containing the liquid waste, shaping the now-mixed slurry into a predetermined form, and allowing the now-formed slurry to set. The invention also provides for a method to encapsulate and stabilize waste containing cesium comprising combining the waste with Zr(OH).sub.4 to create a solid-phase mixture, mixing phosphoric acid with the solid-phase mixture to create a slurry, subjecting the slurry to pressure; and allowing the now pressurized slurry to set. Lastly, the invention provides for a method to stabilize liquid waste, comprising supplying a powder containing magnesium, sodium and phosphate in predetermined proportions, mixing said powder with the liquid waste, such as tritium, and allowing the resulting slurry to set.

  18. Method for stabilizing low-level mixed wastes at room temperature

    DOEpatents

    Wagh, A.S.; Singh, D.

    1997-07-08

    A method to stabilize solid and liquid waste at room temperature is provided comprising combining solid waste with a starter oxide to obtain a powder, contacting the powder with an acid solution to create a slurry, said acid solution containing the liquid waste, shaping the now-mixed slurry into a predetermined form, and allowing the now-formed slurry to set. The invention also provides for a method to encapsulate and stabilize waste containing cesium comprising combining the waste with Zr(OH){sub 4} to create a solid-phase mixture, mixing phosphoric acid with the solid-phase mixture to create a slurry, subjecting the slurry to pressure; and allowing the now pressurized slurry to set. Lastly, the invention provides for a method to stabilize liquid waste, comprising supplying a powder containing magnesium, sodium and phosphate in predetermined proportions, mixing said powder with the liquid waste, such as tritium, and allowing the resulting slurry to set. 4 figs.

  19. Mixed Waste Focus Area mercury contamination product line: An integrated approach to mercury waste treatment and disposal

    SciTech Connect

    Hulet, G.A.; Conley, T.B.; Morris, M.I.

    1998-07-01

    The US Department of Energy (DOE) Mixed Waste Focus Area (MWFA) is tasked with ensuring that solutions are available for the mixed waste treatment problems of the DOE complex. During the MWFA`s initial technical baseline development process, three of the top four technology deficiencies identified were related to the need for amalgamation, stabilization, and separation/removal technologies for the treatment of mercury and mercury-contaminated mixed waste. The focus area grouped mercury-waste-treatment activities into the mercury contamination product line under which development, demonstration, and deployment efforts are coordinated to provide tested technologies to meet the site needs. The Mercury Working Group (HgWG), a selected group of representatives from DOE sites with significant mercury waste inventories, is assisting the MWFA in soliciting, identifying, initiating, and managing efforts to address these areas. Based on the scope and magnitude of the mercury mixed waste problem, as defined by HgWG, solicitations and contract awards have been made to the private sector to demonstrate amalgamation and stabilization processes using actual mixed wastes. Development efforts are currently being funded under the product line that will address DOE`s needs for separation/removal processes. This paper discusses the technology selection process, development activities, and the accomplishments of the MWFA to date through these various activities.

  20. Mixed Waste Management Facility FSS Well Data Groundwater Monitoring Report. Fourth Quarter 1994 and 1994 summary

    SciTech Connect

    Chase, J.A.

    1995-03-01

    During fourth quarter 1994, ten constituents exceeded final Primary Drinking Water Standards (PDWS) in groundwater samples from downgradient monitoring wells at the Mixed Waste Management Facility, the Old Burial Ground, the E-Area Vaults, the proposed Hazardous Waste/Mixed Waste Disposal Vaults, and the F-Area Sewage Sludge Application Site. No constituent exceeded final PDWS in samples from the upgradient monitoring wells. The groundwater flow directions and rates in the three hydrostratigraphic units were similar to those of previous quarters.

  1. A preliminary evaluation of alternatives for disposal of INEL low-level waste and low-level mixed waste

    SciTech Connect

    Smith, T.H.; Roesener, W.S.; Jorgenson-Waters, M.J.

    1993-07-01

    The Mixed and Low-Level Waste Disposal Facility (MLLWDF) project was established in 1992 by the US Department of Energy Idaho Operations Office to provide enhanced disposal capabilities for Idaho National Engineering Laboratory (INEL) low-level mixed waste and low-level waste. This Preliminary Evaluation of Alternatives for Disposal of INEL Low-Level Waste and Low-Level Mixed Waste identifies and evaluates-on a preliminary, overview basis-the alternatives for disposal of that waste. Five disposal alternatives, ranging from of no-action`` to constructing and operating the MLLWDF, are identified and evaluated. Several subalternatives are formulated within the MLLWDF alternative. The subalternatives involve various disposal technologies as well as various scenarios related to the waste volumes and waste forms to be received for disposal. The evaluations include qualitative comparisons of the projected isolation performance for each alternative, and facility, health and safety, environmental, institutional, schedule, and rough order-of-magnitude life-cycle cost comparisons. The performance of each alternative is evaluated against lists of ``musts`` and ``wants.`` Also included is a discussion of other key considerations for decisionmaking. The analysis of results indicated further study is necessary to obtain the best estimate of long-term future waste volume and characteristics from the INEL Environmental Restoration activities and the expanded INEL Decontamination and Decommissioning Program.

  2. Stochastic Indicators for Waste Site Characterization

    NASA Astrophysics Data System (ADS)

    Christakos, George; Hristopulos, Dionissios T.

    1996-08-01

    Site characterization is an important prerequisite of risk assessment and remediation strategies. Evaluation of the health effects of groundwater and soil contamination depends on the adequate analysis of spatial heterogeneity, exceedance levels, and uncertainties. In this work we formulate and calculate stochastic indicators that provide a rigorous characterization of exposure levels in sites with heterogeneous contaminant distributions and offer valuable information for a cost-effective cleanup analysis. These site indicators are general and can be used for different types and distributions of groundwater and soil contaminants. Important properties of the stochastic indicators are examined which can evaluate the potential for contamination at large scales, and improve understanding of threatened and damaged ecosystems. Analytically tractable formulas are derived that allow the practical estimation of site indicators on the basis of experimental data. Scale and modeling effects on contaminant level analysis are examined in terms of the stochastic indicators. Site cleanup costs depend directly on inferred characteristics of the stochastic indicators, which thus can play an important role in waste site management. Applications are discussed that offer insight regarding certain aspects of stochastic site characterization. Analytical methods of site characterization are compared to numerical simulations. It is shown that the latter can provide a practical alternative to the former, but they could lead to inaccurate results if they are not interpreted carefully.

  3. Depth profile characterization with noncollinear beam mixing

    SciTech Connect

    Freed, Shaun L. E-mail: jeong.na@wyle.com; Na, Jeong K. E-mail: jeong.na@wyle.com

    2015-03-31

    Noncollinear beam mixing is an ultrasonic approach to quantify elastic nonlinearity within a subsurface volume of material. The technique requires interaction between two beams of specific frequency, angle, and vibration mode to generate a third beam propagating from the intersection volume. The subsurface depth to interaction zone is controlled by changing the separation distance between the two input transducers, and the amplitude of the third generated beam is proportional to the elastic nonlinearity within the interaction zone. Therefore, depth profiling is possible if a suitable parameter is established to normalize the detected signal independent of propagation distances and input amplitudes. This foundational effort has been conducted toward developing such a parameter for depth profile measurements in homogeneous aluminum that includes corrective terms for attenuation, beam overlap noise, beam spread, and input amplitudes. Experimental and analytical results are provided, and suggested applications and improvements are discussed toward characterizing subsurface material property profiles.

  4. Depth profile characterization with noncollinear beam mixing

    NASA Astrophysics Data System (ADS)

    Freed, Shaun L.; Na, Jeong K.

    2015-03-01

    Noncollinear beam mixing is an ultrasonic approach to quantify elastic nonlinearity within a subsurface volume of material. The technique requires interaction between two beams of specific frequency, angle, and vibration mode to generate a third beam propagating from the intersection volume. The subsurface depth to interaction zone is controlled by changing the separation distance between the two input transducers, and the amplitude of the third generated beam is proportional to the elastic nonlinearity within the interaction zone. Therefore, depth profiling is possible if a suitable parameter is established to normalize the detected signal independent of propagation distances and input amplitudes. This foundational effort has been conducted toward developing such a parameter for depth profile measurements in homogeneous aluminum that includes corrective terms for attenuation, beam overlap noise, beam spread, and input amplitudes. Experimental and analytical results are provided, and suggested applications and improvements are discussed toward characterizing subsurface material property profiles.

  5. Life Cycle Assessment of Mixed Municipal Solid Waste: Multi-input versus multi-output perspective.

    PubMed

    Fiorentino, G; Ripa, M; Protano, G; Hornsby, C; Ulgiati, S

    2015-12-01

    This paper analyses four strategies for managing the Mixed Municipal Solid Waste (MMSW) in terms of their environmental impacts and potential advantages by means of Life Cycle Assessment (LCA) methodology. To this aim, both a multi-input and a multi-output approach are applied to evaluate the effect of these perspectives on selected impact categories. The analyzed management options include direct landfilling with energy recovery (S-1), Mechanical-Biological Treatment (MBT) followed by Waste-to-Energy (WtE) conversion (S-2), a combination of an innovative MBT/MARSS (Material Advanced Recovery Sustainable Systems) process and landfill disposal (S-3), and finally a combination of the MBT/MARSS process with WtE conversion (S-4). The MARSS technology, developed within an European LIFE PLUS framework and currently implemented at pilot plant scale, is an innovative MBT plant having the main goal to yield a Renewable Refined Biomass Fuel (RRBF) to be used for combined heat and power production (CHP) under the regulations enforced for biomass-based plants instead of Waste-to-Energy systems, for increased environmental performance. The four scenarios are characterized by different resource investment for plant and infrastructure construction and different quantities of matter, heat and electricity recovery and recycling. Results, calculated per unit mass of waste treated and per unit exergy delivered, under both multi-input and multi-output LCA perspectives, point out improved performance for scenarios characterized by increased matter and energy recovery. Although none of the investigated scenarios is capable to provide the best performance in all the analyzed impact categories, the scenario S-4 shows the best LCA results in the human toxicity and freshwater eutrophication categories, i.e. the ones with highest impacts in all waste management processes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Nondestructive characterization of low-level transuranic waste

    SciTech Connect

    Barna, B.A.; Reinhardt, W.W.

    1981-10-01

    The use of nondestructive evaluation (NDE) methods is proposed for characterization of transuranic (TRU) waste stored at the Radioactive Waste Management Complex. These NDE methods include real-time x-ray radiography, real-time neutron radiography, x-ray and neutron computed tomography, thermal imaging, container weighing, visual examination, and acoustic measurements. An integrated NDE system is proposed for characterization and certification of TRU waste destined for eventual shipment to the Waste Isolation Pilot Plant in New Mexico. Methods for automating both the classification waste and control of a complete nondestructive evaluation/nondestructive assay system are presented. Feasibility testing of the different NDE methods, including real-time x-ray radiography, and development of automated waste classification techniques are covered as part of a five year effort designed to yield a production waste characterization system.

  7. Chemical compatibility screening results of plastic packaging to mixed waste simulants

    SciTech Connect

    Nigrey, P.J.; Dickens, T.G.

    1995-12-01

    We have developed a chemical compatibility program for evaluating transportation packaging components for transporting mixed waste forms. We have performed the first phase of this experimental program to determine the effects of simulant mixed wastes on packaging materials. This effort involved the screening of 10 plastic materials in four liquid mixed waste simulants. The testing protocol involved exposing the respective materials to {approximately}3 kGy of gamma radiation followed by 14 day exposures to the waste simulants of 60 C. The seal materials or rubbers were tested using VTR (vapor transport rate) measurements while the liner materials were tested using specific gravity as a metric. For these tests, a screening criteria of {approximately}1 g/m{sup 2}/hr for VTR and a specific gravity change of 10% was used. It was concluded that while all seal materials passed exposure to the aqueous simulant mixed waste, EPDM and SBR had the lowest VTRs. In the chlorinated hydrocarbon simulant mixed waste, only VITON passed the screening tests. In both the simulant scintillation fluid mixed waste and the ketone mixture simulant mixed waste, none of the seal materials met the screening criteria. It is anticipated that those materials with the lowest VTRs will be evaluated in the comprehensive phase of the program. For specific gravity testing of liner materials the data showed that while all materials with the exception of polypropylene passed the screening criteria, Kel-F, HDPE, and XLPE were found to offer the greatest resistance to the combination of radiation and chemicals.

  8. Characterization of waste streams and suspect waste from largest Los Alamos National Laboratory generators

    SciTech Connect

    Soukup, J.D.; Erpenbeck, G.J.

    1995-12-31

    A detailed waste stream characterization of 4 primary generators of low level waste at LANL was performed to aid in waste minimization efforts. Data was compiled for these four generators from 1988 to the present for analyses. Prior waste minimization efforts have focused on identifying waste stream processes and performing source materials substitutions or reductions where applicable. In this historical survey, the generators surveyed included an accelerator facility, the plutonium facility, a chemistry and metallurgy research facility, and a radiochemistry research facility. Of particular interest in waste minimization efforts was the composition of suspect low level waste in which no radioactivity is detected through initial survey. Ultimately, this waste is disposed of in the LANL low level permitted waste disposal pits (thus filling a scarce and expensive resource with sanitary waste). Detailed analyses of the waste streams from these 4 facilities, have revealed that suspect low level waste comprises approximately 50% of the low level waste by volume and 47% by weight. However, there are significant differences in suspect waste density when one considers the radioactive contamination. For the 2 facilities that deal primarily with beta emitting activation and spallation products (the radiochemistry and accelerator facilities), the suspect waste is much lower density than all low level waste coming from those facilities. For the 2 facilities that perform research on transuranics (the chemistry and metallurgy research and plutonium facilities), suspect waste is higher in density than all the low level waste from those facilities. It is theorized that the low density suspect waste is composed primarily of compactable lab trash, most of which is not contaminated but can be easily surveyed. The high density waste is theorized to be contaminated with alpha emitting radionuclides, and in this case, the suspect waste demonstrates fundamental limits in detection.

  9. Mixed waste focus area integrated technical baseline report. Phase I, Volume 2: Revision 0

    SciTech Connect

    1996-01-16

    This document (Volume 2) contains the Appendices A through J for the Mixed Waste Focus Area Integrated Technical Baseline Report Phase I for the Idaho National Engineering Laboratory. Included are: Waste Type Managers` Resumes, detailed information on wastewater, combustible organics, debris, unique waste, and inorganic homogeneous solids and soils, and waste data information. A detailed list of technology deficiencies and site needs identification is also provided.

  10. Characterization of mixed-phase clouds

    NASA Astrophysics Data System (ADS)

    Vidaurre Fallas, German

    Mixed-phase, ice, and liquid water clouds were characterized using two constant temperature sensors for approximately 81 hours of flight on the NCAR C130 aircraft during the Alliance Icing Research Study II in northeastern U.S. and southeastern Canada. Temperatures ranged from +5 to -45 °C; liquid water content (LWC) and ice content (IWC) were measured in concentrations below 1.25 and 0.45 g/m3 respectively. In addition, break-up of cloud particles due to impact at low velocity (terminal velocity) and with the aircraft instruments at high velocity was studied using data from convective and stratiform cloud particles replicated in formvar solution on the UND Citation aircraft (typical air speed 130 m/s) and video-recorded following impact on the NCAR C130 (typical air speed 130 m/s) and NASA DC-8 (typical air speed 200 m/s). Measurements of electrical power were accomplished simultaneously every second to maintain near constant temperature during accretion and evaporation of only water on a cylindrical sensor and water and ice on a re-entrant sensor. Both sensors have identical collection efficiency. Liquid water content decreased as temperature decreased; ice content remained almost constant. The ratio of ice content to liquid water plus ice content showed a minimum value at -10°C and increased as temperature decreased. The ratio was at a minimum in the occurrence frequency between 0.1 and 0.9 throughout the range of temperatures. Liquid, glaciated and mixed-phase regions alternated within clouds. Mixed-phase regions were narrow, extending for a few hundreds of meters and occasionally even less. Particles with a surface energy to impacting kinetic energy ratio larger than 10 break during impact. Shape and preferred orientation of the crystal at the moment of impact determine break-up severity. Physical details of the impact determines the transformation of impacting kinetic energy: (1) converting to thermal energy through viscous dissipation of deforming liquid

  11. Waste sampling and characterization facility (WSCF)

    SciTech Connect

    Not Available

    1994-10-01

    The Waste Sampling and Characterization Facility (WSCF) complex consists of the main structure (WSCF) and four support structures located in the 600 Area of the Hanford site east of the 200 West area and south of the Hanford Meterology Station. WSCF is to be used for low level sample analysis, less than 2 mRem. The Laboratory features state-of-the-art analytical and low level radiological counting equipment for gaseous, soil, and liquid sample analysis. In particular, this facility is to be used to perform Resource Conservation and Recovery Act (RCRA) of 1976 and Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) of 1980 sample analysis in accordance with U.S. Environmental Protection Agency Protocols, room air and stack monitoring sample analysis, waste water treatment process support, and contractor laboratory quality assurance checks. The samples to be analyzed contain very low concentrations of radioisotopes. The main reason that WSCF is considered a Nuclear Facility is due to the storage of samples at the facility. This maintenance Implementation Plan has been developed for maintenace functions associate with the WSCF.

  12. Collection and Segregation of Radioactive Waste. Principals for Characterization and Classification of Radioactive Waste

    SciTech Connect

    Dziewinska, K.M.

    1998-09-28

    Radioactive wastes are generated by all activities which utilize radioactive materials as part of their processes. Generally such activities include all steps in the nuclear fuel cycle (for power generation) and non-fuel cycle activities. The increasing production of radioisotopes in a Member State without nuclear power must be accompanied by a corresponding development of a waste management system. An overall waste management scheme consists of the following steps: segregation, minimization, treatment, conditioning, storage, transport, and disposal. To achieve a satisfactory overall management strategy, all steps have to be complementary and compatible. Waste segregation and minimization are of great importance mainly because they lead to cost reduction and reduction of dose commitments to the personnel that handle the waste. Waste characterization plays a significant part in the waste segregation and waste classification processes, it implicates required waste treatment process including the need for the safety assessment of treatment conditioning and storage facilities.

  13. Transuranic waste characterization sampling and analysis methods manual

    SciTech Connect

    1995-05-01

    The Transuranic Waste Characterization Sampling and Analysis Methods Manual (Methods Manual) provides a unified source of information on the sampling and analytical techniques that enable Department of Energy (DOE) facilities to comply with the requirements established in the current revision of the Transuranic Waste Characterization Quality Assurance Program Plan (QAPP) for the Waste Isolation Pilot Plant (WIPP) Transuranic (TRU) Waste Characterization Program (the Program). This Methods Manual includes all of the testing, sampling, and analytical methodologies accepted by DOE for use in implementing the Program requirements specified in the QAPP.

  14. Virtual environmental applications for buried waste characterization technology evaluation report

    SciTech Connect

    1995-05-01

    The project, Virtual Environment Applications for Buried Waste Characterization, was initiated in the Buried Waste Integrated Demonstration Program in fiscal year 1994. This project is a research and development effort that supports the remediation of buried waste by identifying and examining the issues, needs, and feasibility of creating virtual environments using available characterization and other data. This document describes the progress and results from this project during the past year.

  15. Synthesis and characterization of carboxymethyl cellulose from office waste paper: A greener approach towards waste management

    SciTech Connect

    Joshi, Gyanesh; Naithani, Sanjay; Varshney, V.K.; Bisht, Surendra S.; Rana, Vikas; Gupta, P.K.

    2015-04-15

    Highlights: • Carboxymethyl cellulose (CMC) was successfully prepared from waste paper. • CMC had maximum degree of substitution (DS) 1.07. • Rheological studies of CMC (DS, 1.07) showed non-Newtonian pseudoplastic behavior. • Characterization of CMC was done by FT-IR and NMR techniques. • Morphology of prepared CMC was studied by SEM. - Abstract: In the present study, functionalization of mixed office waste (MOW) paper has been carried out to synthesize carboxymethyl cellulose, a most widely used product for various applications. MOW was pulped and deinked prior to carboxymethylation. The deinked pulp yield was 80.62 ± 2.0% with 72.30 ± 1.50% deinkability factor. The deinked pulp was converted to CMC by alkalization followed by etherification using NaOH and ClCH{sub 2}COONa respectively, in an alcoholic medium. Maximum degree of substitution (DS) (1.07) of prepared CMC was achieved at 50 °C with 0.094 M and 0.108 M concentrations of NaOH and ClCH{sub 2}COONa respectively for 3 h reaction time. The rheological characteristics of 1–3% aqueous solution of optimized CMC product showed the non-Newtonian pseudoplastic behavior. Fourier transform infra red (FTIR), nuclear magnetic resonance (NMR) and scanning electron microscope (SEM) study were used to characterize the CMC product.

  16. Numerical Modeling of Mixing of Chemically Reacting, Non-Newtonian Slurry for Tank Waste Retrieval

    SciTech Connect

    Yuen, David A.; Onishi, Yasuo; Rustad, James R.; Michener, Thomas E.; Felmy, Andrew R.; Ten, Arkady A.; Hier, Catherine A.

    2000-06-01

    Many highly radioactive wastes will be retrieved by installing mixer pumps that inject high-speed jets to stir up the sludge, saltcake, and supernatant liquid in the tank, blending them into a slurry. This slurry will then be pumped out of the tank into a waste treatment facility. Our objectives are to investigate interactions-chemical reactions, waste rheology, and slurry mixing-occurring during the retrieval operation and to provide a scientific basis for the waste retrieval decision-making process. Specific objectives are to: (1) Evaluate numerical modeling of chemically active, non-Newtonian tank waste mixing, coupled with chemical reactions and realistic rheology; (2) Conduct numerical modeling analysis of local and global mixing of non-Newtonian and Newtonian slurries; and (3) Provide the bases to develop a scientifically justifiable, decision-making support tool for the tank waste retrieval operation.

  17. Proposed research and development plan for mixed low-level waste forms

    SciTech Connect

    O`Holleran, T.O.; Feng, X.; Kalb, P.

    1996-12-01

    The objective of this report is to recommend a waste form program plan that addresses waste form issues for mixed low-level waste (MLLW). The report compares the suitability of proposed waste forms for immobilizing MLLW in preparation for permanent near-surface disposal and relates them to their impact on the U.S. Department of Energy`s mixed waste mission. Waste forms are classified into four categories: high-temperature waste forms, hydraulic cements, encapsulants, and specialty waste forms. Waste forms are evaluated concerning their ability to immobilize MLLW under certain test conditions established by regulatory agencies and research institutions. The tests focused mainly on leach rate and compressive strength. Results indicate that all of the waste forms considered can be tailored to give satisfactory performance immobilizing large fractions of the Department`s MLLW inventory. Final waste form selection will ultimately be determined by the interaction of other, often nontechnical factors, such as economics and politics. As a result of this report, three top-level programmatic needs have been identified: (1) a basic set of requirements for waste package performance and disposal; (2) standardized tests for determining waste form performance and suitability for disposal; and (3) engineering experience operating production-scale treatment and disposal systems for MLLW.

  18. Demonstration of NFS DeHg Process for Stabilizing Mercury (<260 ppm) Contaminated Mixed Waste. Mixed Waste Focus Area. OST Reference Number 2229

    SciTech Connect

    None, None

    1999-09-01

    Mercury-contaminated wastes in many forms are present at various U. S. Department of Energy (DOE) sites. Based on efforts led by the Mixed Waste Focus Area (MWFA) and its Mercury Working Group (HgWG), the inventory of wastes contaminated with < 260 ppm mercury and with radionuclides stored at various DOE sites is estimated to be approximately 6,000 m3 (Conley, Morris, Osborne-Lee, and Hulet 1998). At least 26 different DOE sites have this type of mixed low-level waste in their storage facilities. Extraction methods are required to remove mercury from waste containing >260 ppm levels, but below 260 ppm Hg contamination levels, the U. S. Environmental Protection Agency (EPA) does not require removal of mercury from the waste. Steps must still be taken, however, to ensure that the final waste form does not leach mercury in excess of the limit for mercury prescribed in the Resource Conservation and Recovery Act (RCRA) when subjected to the Toxicity Characteristic Leaching Procedure (TCLP). At this time, the limit is 0.20mg/L. However, in the year 2000, the more stringent Universal Treatment Standard (UTS) of 0.025 mg/L will be used as the target endpoint. Mercury contamination in the wastes at DOE sites presents a challenge because it exists in various forms, such as soil, sludges, and debris. Stabilization is of interest for radioactively contaminated mercury waste (<260 ppm Hg) because of its success with particular wastes, such as soils, and its promise of applicability to a broad range of wastes. However, stabilization methods must be proven to be adequate to meet treatment standards and to be feasible in terms of economics, operability, and safety. To date, no standard method of stabilization has been developed and proven for such varying waste types as those within the DOE complex.

  19. Biological treatment of concentrated hazardous, toxic, andradionuclide mixed wastes without dilution

    SciTech Connect

    Stringfellow, William T.; Komada, Tatsuyuki; Chang, Li-Yang

    2004-06-15

    Approximately 10 percent of all radioactive wastes produced in the U. S. are mixed with hazardous or toxic chemicals and therefore can not be placed in secure land disposal facilities. Mixed wastes containing hazardous organic chemicals are often incinerated, but volatile radioactive elements are released directly into the biosphere. Some mixed wastes do not currently have any identified disposal option and are stored locally awaiting new developments. Biological treatment has been proposed as a potentially safer alternative to incineration for the treatment of hazardous organic mixed wastes, since biological treatment would not release volatile radioisotopes and the residual low-level radioactive waste would no longer be restricted from land disposal. Prior studies have shown that toxicity associated with acetonitrile is a significant limiting factor for the application of biotreatment to mixed wastes and excessive dilution was required to avoid inhibition of biological treatment. In this study, we demonstrate that a novel reactor configuration, where the concentrated toxic waste is drip-fed into a complete-mix bioreactor containing a pre-concentrated active microbial population, can be used to treat a surrogate acetonitrile mixed waste stream without excessive dilution. Using a drip-feed bioreactor, we were able to treat a 90,000 mg/L acetonitrile solution to less than 0.1 mg/L final concentration using a dilution factor of only 3.4. It was determined that the acetonitrile degradation reaction was inhibited at a pH above 7.2 and that the reactor could be modeled using conventional kinetic and mass balance approaches. Using a drip-feed reactor configuration addresses a major limiting factor (toxic inhibition) for the biological treatment of toxic, hazardous, or radioactive mixed wastes and suggests that drip-feed bioreactors could be used to treat other concentrated toxic waste streams, such as chemical warfare materiel.

  20. Electromagnetic mixed-waste processing system for asbestos decontamination

    SciTech Connect

    1995-04-01

    The first phase of a program to develop and demonstrate a cost-effective, integrated process for remediation of asbestos-containing material that is contaminated with organics, heavy metals, and radioactive compounds was successfully completed. Laboratory scale tests were performed to demonstrate initial process viability for asbestos conversion, organics removal, and radionuclide and heavy metal removal. All success criteria for the laboratory tests were met. (1) Ohio DSI demonstrated greater than 99% asbestos conversion to amorphous solids using their commercial process. (2) KAI demonstrated 90% removal of organics from the asbestos suspension. (3) Westinghouse STC achieved the required metals removal criteria on a laboratory scale (e.g., 92% removal of uranium from solution, resin loadings of 0.6 equivalents per liter, and greater than 50% regeneration of resin in a batch test.) Using the information gained in the laboratory tests, the process was reconfigured to provide the basis for the mixed waste remediation system. An integrated process is conceptually developed, and a Phase 2 program plan is proposed to provide the bench-scale development needed in order to refine the design basis for a pilot processing system.

  1. Disposal of mixed waste: Technical, institutional, and policy factors

    SciTech Connect

    Waters, R.D.; Gruebel, M.M.; Letourneau, M.J.; Case, J.T.

    1996-03-01

    In conjunction with the affected States as part of their interactions required by the Federal Facilities Compliance Act, the Department of Energy has been developing a process for a disposal configuration for its mixed low-level waste (MLLW). This effort, spanning more than two years, has reduced the potential disposal sites from 49 to 15. The remaining 15 sites have been subjected to a performance evaluation to determine their strengths and weaknesses for disposal of MLLW. The process has included institutional and policy factors as well as strictly technical analyses, and technical analyses must be supported by technical analyses, and technical analyses must be performed within a framework which includes some institutional considerations, with the institutional considerations selected for inclusion largely a matter of policy. While the disposal configuration process is yet to be completed, the experience to date offers a viable approach for solving some of these issues. Additionally, several factors remain to be addressed before an MLLW disposal configuration can be developed.

  2. Separating mixed waste plastics in a flotation column

    SciTech Connect

    Biddulph, M.W.; Chow, P.S.; Cloke, M.

    1996-12-31

    This paper describes efforts to develop a continuous separation technique for mixed waste plastics to facilitate subsequent recycling. Selective wetting of the surfaces is used as the separating criterion, and Critical Surface Tension values for various commercial plastic materials have been determined. This has demonstrated the feasibility of the technique. Although the technique has been applied using solvent systems, the method investigated here is the use of surface active agents. Previously batch systems have been reported, but the development of a continuous process requires a much better understanding of dynamic surface tension effects. Detailed studies of the effects of air bubble size and particle size have been made using very high speed video techniques. From these observations, the collision behavior of a bubble against the plastic surface was found to be markedly affected by bubble size, impact velocity, roughness of surface and the surface tension of the surfactant solution, and permanent adhesion to the surface required a contact time for film thinning, rupturing and forming the contact angle. The experiments demonstrated the desirability of small bubbles and low impact velocities. Recovery was influenced significantly by particle size. Actual separations have been achieved in a bench top apparatus, and extended to a water elutriator 4.3 metres in height and 15 cm diameter. A mathematical model has been fitted to the behavior of particles in the column, and the effective axial diffusivity is quite similar to the {open_quotes}free stream{close_quotes} single fluid values. 10 refs., 7 figs.

  3. Mixed Waste Management Facility groundwater monitoring report: Third quarter 1994

    SciTech Connect

    Not Available

    1994-12-01

    Currently, 125 wells monitor groundwater quality in the uppermost aquifer beneath the Mixed Waste Management Facility (MWMF) at the Savannah River Site. Samples from the wells are analyzed for selected heavy metals, herbicides/pesticides, indicator parameters, radionuclides, volatile organic compounds, and other constituents. As in previous quarters, tritium and trichloroethylene were the most widespread elevated constituents during third quarter 1994. Sixty-four (51%) of the 125 monitoring wells contained elevated tritium activities. Trichloroethylene concentrations exceeded the final PDWS in 22 (18%) wells. Chloroethene, 1,1-dichloroethylene, and tetrachloroethylene, elevated in one or more wells during third quarter 1994, also occurred in elevated levels during second quarter 1994. These constituents generally were elevated in the same wells during both quarters. Gross alpha, which was elevated in only one well during second quarter 1994, was elevated again during third quarter. Mercury, which was elevated during first quarter 1994, was elevated again in one well. Dichloromethane was elevated in two wells for the first time in several quarters.

  4. Mixed Waste Management Facility groundwater monitoring report. Second quarter 1994

    SciTech Connect

    Chase, J.A.

    1994-09-01

    Currently, 125 wells monitor groundwater quality in the uppermost aquifer beneath the Mixed Waste Management Facility (MWMF) at the Savannah River Site. Samples from the wells are analyzed for selected heavy metals, indicator parameters, radionuclides, volatile organic compounds, and other constituents. During second quarter 1994, chloroethene (vinyl chloride), 1,1-dichloroethylene, gross alpha, lead, tetrachloroethylene, trichloroethylene, or tritium exceeded final Primary Drinking Water Standards (PDWS) in approximately half of the downgradient wells at the MWMF. Consistent with historical trends, elevated constituent levels were found primarily in Aquifer Zone. As in previous quarters, tritium and trichloroethylene were the most widespread elevated constituents during second quarter 1994. Sixty-two of the 125 monitoring wells contained elevated tritium activities. Trichloroethylene concentrations exceeded the final PDWS in 23 wells. Chloroethene, 1,1-dichloroethylene, lead, and tetrachloroethylene, elevated in one or more wells during second quarter 1994, also occurred in elevated levels during first quarter 1994. These constituents generally were elevated in the same wells during both quarters. Gross alpha, which was not elevated in any well during first quarter 1994, was elevated in one well during second quarter. Copper, mercury, and nonvolatile beta were elevated during first quarter 1994 but not during second quarter.

  5. Environmental Assessment Idaho National Engineering Laboratory, low-level and mixed waste processing

    SciTech Connect

    Not Available

    1994-06-01

    The Department of Energy (DOE) has prepared an environmental assessment (EA), DOE/EA-0843, for the Idaho National Engineering Laboratory (INEL) low-level and mixed waste processing. The original proposed action, as reviewed in this EA, was (1) to incinerate INEL`s mixed low-level waste (MLLW) at the Waste Experimental Reduction Facility (WERF); (2) reduce the volume of INEL generated low-level waste (LLW) through sizing, compaction, and stabilization at the WERF; and (3) to ship INEL LLW to a commercial incinerator for supplemental LLW volume reduction.

  6. Transuranic Waste Characterization Quality Assurance Program Plan

    SciTech Connect

    1995-04-30

    This quality assurance plan identifies the data necessary, and techniques designed to attain the required quality, to meet the specific data quality objectives associated with the DOE Waste Isolation Pilot Plant (WIPP). This report specifies sampling, waste testing, and analytical methods for transuranic wastes.

  7. Characterization of household waste in Greenland

    SciTech Connect

    Eisted, Rasmus; Christensen, Thomas H.

    2011-07-15

    The composition of household waste in Greenland was investigated for the first time. About 2 tonnes of household waste was sampled as every 7th bag collected during 1 week along the scheduled collection routes in Sisimiut, the second largest town in Greenland with about 5400 inhabitants. The collection bags were sorted manually into 10 material fractions. The household waste composition consisted primarily of biowaste (43%) and the combustible fraction (30%), including anything combustible that did not belong to other clean fractions as paper, cardboard and plastic. Paper (8%) (dominated by magazine type paper) and glass (7%) were other important material fractions of the household waste. The remaining approximately 10% constituted of steel (1.5%), aluminum (0.5%), plastic (2.4%), wood (1.0%), non-combustible waste (1.8%) and household hazardous waste (1.2%). The high content of biowaste and the low content of paper make Greenlandic waste much different from Danish household waste. The moisture content, calorific value and chemical composition (55 elements, of which 22 were below detection limits) were determined for each material fraction. These characteristics were similar to what has been found for material fractions in Danish household waste. The chemical composition and the calorific value of the plastic fraction revealed that this fraction was not clean but contained a lot of biowaste. The established waste composition is useful in assessing alternative waste management schemes for household waste in Greenland.

  8. Characterization of household waste in Greenland.

    PubMed

    Eisted, Rasmus; Christensen, Thomas H

    2011-07-01

    The composition of household waste in Greenland was investigated for the first time. About 2tonnes of household waste was sampled as every 7th bag collected during 1 week along the scheduled collection routes in Sisimiut, the second largest town in Greenland with about 5400 inhabitants. The collection bags were sorted manually into 10 material fractions. The household waste composition consisted primarily of biowaste (43%) and the combustible fraction (30%), including anything combustible that did not belong to other clean fractions as paper, cardboard and plastic. Paper (8%) (dominated by magazine type paper) and glass (7%) were other important material fractions of the household waste. The remaining approximately 10% constituted of steel (1.5%), aluminum (0.5%), plastic (2.4%), wood (1.0%), non-combustible waste (1.8%) and household hazardous waste (1.2%). The high content of biowaste and the low content of paper make Greenlandic waste much different from Danish household waste. The moisture content, calorific value and chemical composition (55 elements, of which 22 were below detection limits) were determined for each material fraction. These characteristics were similar to what has been found for material fractions in Danish household waste. The chemical composition and the calorific value of the plastic fraction revealed that this fraction was not clean but contained a lot of biowaste. The established waste composition is useful in assessing alternative waste management schemes for household waste in Greenland.

  9. Solid waste generation and characterization in the University of Lagos for a sustainable waste management.

    PubMed

    Adeniran, A E; Nubi, A T; Adelopo, A O

    2017-09-01

    Waste characterization is the first step to any successful waste management policy. In this paper, the characterization and the trend of solid waste generated in University of Lagos, Nigeria was carried out using ASTM D5231-92 and Resource Conservation Reservation Authority RCRA Waste Sampling Draft Technical Guidance methods. The recyclable potential of the waste is very high constituting about 75% of the total waste generated. The estimated average daily solid waste generation in Unilag Akoka campus was estimated to be 32.2tons. The solid waste characterization was found to be: polythene bags 24% (7.73tons/day), paper 15% (4.83tons/day), organic matters 15%, (4.83tons/day), plastic 9% (2.90tons/day), inert materials 8% (2.58tons/day), sanitary 7% (2.25tons/day), textile 7% (2.25tons/day), others 6% (1.93tons/day), leather 4% (1.29tons/day) metals 3% (0.97tons/day), glass 2% (0.64tons/day) and e-waste 0% (0.0tons/day). The volume and distribution of polythene bags generated on campus had a positive significant statistical correlation with the distribution of commercial and academic structures on campus. Waste management options to optimize reuse, recycling and reduce waste generation were discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Mixed waste storage facility CDR review, Paducah Gaseous Diffusion Plant; Solid waste landfill CDR review, Paducah Gaseous Diffusion Plant

    SciTech Connect

    1998-08-01

    This report consists of two papers reviewing the waste storage facility and the landfill projects proposed for the Paducah Gaseous Diffusion Plant complex. The first paper is a review of DOE`s conceptual design report for a mixed waste storage facility. This evaluation is to review the necessity of constructing a separate mixed waste storage facility. The structure is to be capable of receiving, weighing, sampling and the interim storage of wastes for a five year period beginning in 1996. The estimated cost is assessed at approximately $18 million. The review is to help comprehend and decide whether a new storage building is a feasible approach to the PGDP mixed waste storage problem or should some alternate approach be considered. The second paper reviews DOE`s conceptual design report for a solid waste landfill. This solid waste landfill evaluation is to compare costs and the necessity to provide a new landfill that would meet State of Kentucky regulations. The assessment considered funding for a ten year storage facility, but includes a review of other facility needs such as a radiation detection building, compactor/baler machinery, material handling equipment, along with other personnel and equipment storage buildings at a cost of approximately $4.1 million. The review is to help discern whether a landfill only or the addition of compaction equipment is prudent.

  11. Site characterization data for Solid Waste Storage Area 6

    SciTech Connect

    Boegly, W.J. Jr.

    1984-12-01

    Currently, the only operating shallow land burial site for low-level radioactive waste at the Oak Ridge National Laboratory (ORNL) is Solid Waste Storage Area No. 6 (SWSA-6). In 1984, the US Department of Energy (DOE) issued Order 5820.2, Radioactive Waste Management, which establishes policies and guidelines by which DOE manages its radioactive waste, waste by-products, and radioactively contaminated surplus facilities. The ORNL Operations Division has given high priority to characterization of SWSA-6 because of the need for continued operation under DOE 5820.2. The purpose of this report is to compile existing information on the geologic and hydrologic cond

  12. In situ chemical characterization of waste sludges using FTIR-based fiber optic sensors

    SciTech Connect

    Rebagay, T.V.; Dodd, D.A.; Jeppson, D.W.; Lockrem, L.L.; Blewett, G.R.

    1994-02-01

    The characterization of unknown mixed wastes is a mandatory step in today`s climate of strict environmental regulations. Cleaning up the nuclear and chemical wastes that have accumulated for 50 years at the Hanford Site is the largest single cleanup task in the United States today. The wastes are stored temporarily in carbon steel single- and double-shell tanks that are buried in tank farms at the Site. In the 1950s, a process to scavenge radioactive cesium and other soluble radionuclides in the wastes was developed to create additional tank space for waste storage. This scavenging process involved treatment of the wastes with alkali cyanoferrates and nickel sulfate to precipitate {sup 137}Cs in the presence of nitrate oxidant. Recent safety issues have focused on the stability of cyanoferrate-bearing wastes with large quantities of nitrates and nitrites. Nitrate has been partially converted to nitrite as a result of radiolysis during more than 35 years of storage. The major safety issue is the possibility of the presence of local hot spots enriched in {sup 137}Cs and {sup 90}Sr that under optimum conditions can self-heat causing dry out and a potential runaway reaction of the cyanoferrates with the nitrates/nitrites). For waste tank safety, accurate data of the concentration and distribution of cyanoferrates in the tanks are needed. Because of the extensive sampling required and the highly restricted activities allowed in the tank farms, simulated tank wastes are used to provide an initial basis for identifying and quantifying realistic concerns prior to waste remediation. Fiber optics provide a tool for the remote and in situ characterization of hazardous and toxic materials. This study is focused on near-infrared (NIR) and mid-infrared (MIR) fiber optic sensors for in situ chemical characterization of Hanford Site waste sludges.

  13. National profile on commercially generated low-level radioactive mixed waste

    SciTech Connect

    Klein, J.A.; Mrochek, J.E.; Jolley, R.L.; Osborne-Lee, I.W.; Francis, A.A.; Wright, T.

    1992-12-01

    This report details the findings and conclusions drawn from a survey undertaken as part of a joint US Nuclear Regulatory Commission and US Environmental Protection Agency-sponsored project entitled ``National Profile on Commercially Generated Low-Level Radioactive Mixed Waste.`` The overall objective of the work was to compile a national profile on the volumes, characteristics, and treatability of commercially generated low-level mixed waste for 1990 by five major facility categories-academic, industrial, medical, and NRC-/Agreement State-licensed goverment facilities and nuclear utilities. Included in this report are descriptions of the methodology used to collect and collate the data, the procedures used to estimate the mixed waste generation rate for commercial facilities in the United States in 1990, and the identification of available treatment technologies to meet applicable EPA treatment standards (40 CFR Part 268) and, if possible, to render the hazardous component of specific mixed waste streams nonhazardous. The report also contains information on existing and potential commercial waste treatment facilities that may provide treatment for specific waste streams identified in the national survey. The report does not include any aspect of the Department of Energy`s (DOES) management of mixed waste and generally does not address wastes from remedial action activities.

  14. Initial Investigation of Waste Feed Delivery Tank Mixing and Sampling Issues

    SciTech Connect

    Fort, James A.; Bamberger, Judith A.; Meyer, Perry A.; Stewart, Charles W.

    2007-10-01

    The Hanford tank farms contractor will deliver waste to the Waste Treatment Plant (WTP) from a staging double-shell tank. The WTP broadly classifies waste it receives in terms of “Envelopes,” each with different limiting properties and composition ranges. Envelope A, B, and C wastes are liquids that can include up to 4% entrained solids that can be pumped directly from the staging DST without mixing. Envelope D waste contains insoluble solids and must be mixed before transfer. The mixing and sampling issues lie within Envelope D solid-liquid slurries. The question is how effectively these slurries are mixed and how representative the grab samples are that are taken immediately after mixing. This report summarizes the current state of knowledge concerning jet mixing of wastes in underground storage tanks. Waste feed sampling requirements are listed, and their apparent assumption of uniformity by lack of a requirement for sample representativeness is cited as a significant issue. The case is made that there is not an adequate technical basis to provide such a sampling regimen because not enough is known about what can be achieved in mixing and distribution of solids by use of the baseline submersible mixing pump system. A combined mixing-sampling test program is recommended to fill this gap. Historical Pacific Northwest National Laboratory project and tank farms contractor documents are used to make this case. A substantial investment and progress are being made to understand mixing issues at the WTP. A summary of the key WTP activities relevant to this project is presented in this report. The relevant aspects of the WTP mixing work, together with a previously developed scaled test strategy for determining solids suspension with submerged mixer pumps (discussed in Section 3) provide a solid foundation for developing a path forward.

  15. Vitrification as a low-level radioactive mixed waste treatment technology at Argonne National Laboratory

    SciTech Connect

    Mazer, J.J.; No, Hyo J.

    1995-08-01

    Argonne National Laboratory-East (ANL-E) is developing plans to use vitrification to treat low-level radioactive mixed wastes (LLMW) generated onsite. The ultimate objective of this project is to install a full-scale vitrification system at ANL-E capable of processing the annual generation and historic stockpiles of selected LLMW streams. This project is currently in the process of identifying a range of processible glass compositions that can be produced from actual mixed wastes and additives, such as boric acid or borax. During the formulation of these glasses, there has been an emphasis on maximizing the waste content in the glass (70 to 90 wt %), reducing the overall final waste volume, and producing a stabilized low-level radioactive waste glass. Crucible glass studies with actual mixed waste streams have produced alkali borosilicate glasses that pass the Toxic Characteristic Leaching Procedure (TCLP) test. These same glass compositions, spiked with toxic metals well above the expected levels in actual wastes, also pass the TCLP test. These results provide compelling evidence that the vitrification system and the glass waste form will be robust enough to accommodate expected variations in the LLMW streams from ANL-E. Approximately 40 crucible melts will be studied to establish a compositional envelope for vitrifying ANL-E mixed wastes. Also being determined is the identity of volatilized metals or off-gases that will be generated.

  16. Hazardous Waste/Mixed Waste Treatment Building Safety Information Document (SID)

    SciTech Connect

    Fatell, L.B.; Woolsey, G.B.

    1993-04-15

    This Safety Information Document (SID) provides a description and analysis of operations for the Hazardous Waste/Mixed Waste Disposal Facility Treatment Building (the Treatment Building). The Treatment Building has been classified as a moderate hazard facility, and the level of analysis performed and the methodology used are based on that classification. Preliminary design of the Treatment Building has identified the need for two separate buildings for waste treatment processes. The term Treatment Building applies to all these facilities. The evaluation of safety for the Treatment Building is accomplished in part by the identification of hazards associated with the facility and the analysis of the facility`s response to postulated events involving those hazards. The events are analyzed in terms of the facility features that minimize the causes of such events, the quantitative determination of the consequences, and the ability of the facility to cope with each event should it occur. The SID presents the methodology, assumptions, and results of the systematic evaluation of hazards associated with operation of the Treatment Building. The SID also addresses the spectrum of postulated credible events, involving those hazards, that could occur. Facility features important to safety are identified and discussed in the SID. The SID identifies hazards and reports the analysis of the spectrum of credible postulated events that can result in the following consequences: Personnel exposure to radiation; Radioactive material release to the environment; Personnel exposure to hazardous chemicals; Hazardous chemical release to the environment; Events leading to an onsite/offsite fatality; and Significant damage to government property. The SID addresses the consequences to the onsite and offsite populations resulting from postulated credible events and the safety features in place to control and mitigate the consequences.

  17. Integrated chemical/biological treatment of paint stripper mixed waste: Metals toxicity and separation

    SciTech Connect

    Vanderberg-Twary, L.; Grumbine, R.K.; Foreman, T.; Hanners, J.L.; Brainard, J.R.; Sauer, N.N.; Unkefer, P.J.

    1995-05-01

    The DOE complex has generated vast quantities of complex heterogeneous mixed wastes. Paint stripper waste (PSW) is a complex waste that arose from decontamination and decommissioning activities. It contains paint stripper, cheesecloth, cellulose-based paints with Pb and Cr, and suspect Pu. Los Alamos National Laboratory has 150--200 barrels of PSW and other national laboratories such as Rocky Flats Plant have many more barrels of heterogeneous waste. Few technologies exist that can treat this complex waste. Our approach to solving this problem is the integration of two established technologies: biodegradation and metals chelation.

  18. Experimental characterization of jet static forces impacting waste tank components

    SciTech Connect

    Bamberger, J.A.; Bates, J.M. ); Waters, E.D. )

    1990-06-01

    Westinghouse Hanford Company plans to install mixer pumps in doubleshell waste tanks to mobilize and suspend settled sludge to allow eventual retrieval for treatment and permanent storage. The mixer pumps produce high momentum, horizontally directed jets that impact and mobilize the sludge and mix it into slurry for removal. There is concern that the force of the jet may damage tank internal components in its path. Scaled experiments were conducted to characterize the velocity profiles of the floor jet and to quantify the drag coefficients and impact forces for three tank components: radiation dry well, air lift circulator, and steam coil. Jet impact forces were measured on the scaled models at a 4 to 1 range of hydraulically scaled flow rates and a scaled range of distances between discharge nozzle and test component. The test were designed to provide hydraulic similarity between test conditions and expected actual waste tank conditions by using equal Reynolds number the jet maximum velocity impacted the test component. Forces measured on the models were used to calculate expected forces on the full scale components. Correlations of force on the test article versus distance from the nozzle were derived for the radiation dry well and air lift circulator based on the velocity correlation and drag parameter. The force data were also used to derive equivalent drag parameters which accounted for component shape factors including variation of jet impact area on the test article with distance from the nozzle. 8 refs., 44 figs., 42 tabs.

  19. Characterization of the BVEST waste tanks located at ORNL

    SciTech Connect

    Keller, J.M.; Giaquinto, J.M.; Meeks, A.M.

    1997-01-01

    During the fall of 1996 there was a major effort to sample and analyze the Active Liquid Low-Level Waste (LLLW) tanks at ORNL which include the Melton Valley Storage Tanks (MVST) and the Bethel Valley Evaporator Service Tanks (BVEST). The characterization data summarized in this report was needed to address waste processing options, address concerns dealing with the performance assessment (PA) data for the Waste Isolation Pilot Plant (WIPP), evaluate the waste characteristics with respect to the waste acceptance criteria (WAC) for WIPP and Nevada Test Site (NTS), address criticality concerns, and meet DOT requirements for transporting the waste. This report discusses the analytical characterization data for the supernatant and sludge in the BVEST waste tanks W-21, W-22, and W-23. The isotopic data presented in this report supports the position that fissile isotopes of uranium and plutonium were denatured as required by the administrative controls stated in the ORNL LLLW waste acceptance criteria (WAC). In general, the BVEST sludge was found to be hazardous based on RCRA characteristics and the transuranic alpha activity was well above the 100 nCi/g limit for TRU waste. The characteristics of the BVEST sludge relative to the WIPP WAC limits for fissile gram equivalent, plutonium equivalent activity, and thermal power from decay heat were estimated from the data in this report and found to be far below the upper boundary for any of the remote-handled transuranic waste (RH-TRU) requirements for disposal of the waste in WIPP.

  20. B Plant complex hazardous, mixed and low level waste certification plan

    SciTech Connect

    Beam, T.G.

    1994-11-01

    This plan describes the administrative steps and handling methodology for certification of hazardous waste, mixed waste, and low level waste generated at B Plant Complex. The plan also provides the applicable elements of waste reduction and pollution prevention, including up front minimization and end product reduction of volume and/or toxicity. The plan is written to satisfy requirements for Hanford Site waste generators to have a waste certification program in place at their facility. This plan, as described, applies only to waste which is generated at, or is the responsibility of, B Plant Complex. The scope of this plan is derived from the requirements found in WHC-EP-0063, Hanford Site Solid Waste Acceptance Criteria.

  1. Chromium leaching from a silicone foam-encapsulated mixed waste surrogate

    SciTech Connect

    Miller, C.M.; Duirk, S.E.; Gardner, K.H.

    2000-02-01

    This study assessed chromium leaching from silicone foam-encapsulated salt waste, using a surrogate formulated after Department of Energy complex mixed waste. Two commercial formulations of silicone foam (Wacker ELEKTROGUARD 2100 and General Electric RTV-664) were evaluated as a function of waste load (28--48 wt%). Chromium leaching was formulation specific and increased with increasing waste load as measured by the Toxicity Characteristic Leaching Procedure (TCLP). Chromium release followed transport controlled dissolution at all waste loads under TCLP (cut samples) and Accelerated Leach Test (ALT) (molded samples) conditions. Aqueous and surface complexation modeling was also used to describe reduced chromium effective diffusivity due to iron oxide addition. Comparison of modeling and measured diffusivities as a function of waste load demonstrated that the total available iron surface site concentration increased with increasing waste load, consistent with pore differences measured by image analysis. These results provide a basis for further work on modeling and engineering waste encapsulation using silicone foam.

  2. Characterization recommendations for waste sites at the Savannah River Plant

    SciTech Connect

    Carlton, W.H.; Gordon, D.E.; Johnson, W.F.; Kaback, D.S.; Looney, B.B.; Nichols, R.L.; Shedrow, C.B.

    1987-11-01

    One hundred and sixty six disposal facilities that received or may have received waste materials resulting from operations at the Savannah River Plant (SRP) have been identified. These waste range from innocuous solid and liquid materials (e.g., wood piles) to process effluents that contain hazardous and/or radioactive constituents. The waste sites have been grouped into 45 categories according the the type of waste materials they received. Waste sites are located with SRP coordinates, a local Department of Energy (DOE) grid system whose grid north is 36 degrees 22 minutes west of true north. DOE policy is to close all waste sites at SRP in a manner consistent with protecting human health and environment and complying with applicable environmental regulations (DOE 1984). A uniform, explicit characterization program for SRP waste sites will provide a sound technical basis for developing closure plans. Several elements are summarized in the following individual sections including (1) a review of the history, geohydrology, and available characterization data for each waste site and (2) recommendations for additional characterization necessary to prepare a reasonable closure plan. Many waste sites have been fully characterized, while others have not been investigated at all. The approach used in this report is to evaluate available groundwater quality and site history data. For example, groundwater data are compared to review criteria to help determine what additional information is required. The review criteria are based on regulatory and DOE guidelines for acceptable concentrations of constituents in groundwater and soil.

  3. Mixed Waste Management Facility Groundwater Monitoring Report, Fourth Quarter 1998 and 1998 Summary

    SciTech Connect

    Chase, J.

    1999-04-29

    During fourth quarter 1998, ten constituents exceeded final Primary Drinking Water Standards (PDWS) in groundwater samples from downgradient monitoring wells at the Mixed Waste Management Facility. No constituents exceeded final PDWS in samples from the upgradient monitoring wells.

  4. Overview of Nevada Test Site Radioactive and Mixed Waste Disposal Operations

    SciTech Connect

    J.T. Carilli; S.K. Krenzien; R.G. Geisinger; S.J. Gordon; B. Quinn

    2009-03-01

    The U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office Environmental Management Program is responsible for carrying out the disposal of on-site and off-site generated low-level radioactive waste (LLW) and low-level radioactive mixed waste (MW) at the Nevada Test Site (NTS). Core elements of this mission are ensuring safe and cost-effective disposal while protecting workers, the public, and the environment. This paper focuses on the impacts of new policies, processes, and opportunities at the NTS related to LLW and MW. Covered topics include: the first year of direct funding for NTS waste disposal operations; zero tolerance policy for non-compliant packages; the suspension of mixed waste disposal; waste acceptance changes; DOE Consolidated Audit Program (DOECAP) auditing; the 92-Acre Area closure plan; new eligibility requirements for generators; and operational successes with unusual waste streams.

  5. ASPEN computer simulations of the mixed waste treatment project baseline flowsheet

    SciTech Connect

    Dietsche, L.J.; Upadhye, R.S.; Camp, D.W.; Pendergrass, J.A.; Borduin, L.C.; Thompson, T.K.

    1994-07-05

    The treatment and disposal of mixed waste (i.e., waste containing both hazardous and radioactive components) is a challenging waste- management problem of particular concern to Department of Energy (DOE) sites throughout the United States. Traditional technologies used for destroying hazardous wastes must be re- evaluated for their ability to handle mixed wastes, and, in some cases, new technologies must be developed. The Mixed Waste Treatment Project (MWTP), a collaborative effort between Lawrence Livermore National Laboratory (LLNL), Los Alamos National Laboratory, and Pacific Northwest Laboratory (PNL), was established by the DOE`s Waste Operations Program (EM-30) to develop and analyze alternative mixed waste treatment approaches. One of the MWTP`s initiatives, and the objective of this study, was to develop flowsheets for prototype, integrated, mixed-waste treatment facilities that can serve as models for sites developing their own treatment strategies. Evaluation of these flowsheets is being facilitated through the use of computer modeling. The objectives of the flowsheet simulations are to compare process effectiveness and costs of alternative flowsheets and to determine if commercial process-simulation software could be used on the large, complex process of an integrated mixed waste processing facility. Flowsheet modeling is needed to evaluate many aspects of proposed flowsheet designs. A major advantage of modeling the complete flowsheet is the ability to define the internal recycle streams, thereby making it possible to evaluate the impact of one operation on the whole plant. Many effects that can be seen only in this way. Modeling also can be used to evaluate sensitivity and range of operating conditions, radioactive criticality, and relative costs of different flowsheet designs. Further, the modeled flowsheets must be easily modified so that one can examine how alternative technologies and varying feed streams affect the overall integrated process.

  6. Alternative disposal options for alpha-mixed low-level waste

    SciTech Connect

    Loomis, G.G.; Sherick, M.J.

    1995-12-01

    This paper presents several disposal options for the Department of Energy alpha-mixed low-level waste. The mixed nature of the waste favors thermally treating the waste to either an iron-enriched basalt or glass waste form, at which point a multitude of reasonable disposal options, including in-state disposal, are a possibility. Most notably, these waste forms will meet the land-ban restrictions. However, the thermal treatment of this waste involves considerable waste handling and complicated/expensive offgas systems with secondary waste management problems. In the United States, public perception of offgas systems in the radioactive incinerator area is unfavorable. The alternatives presented here are nonthermal in nature and involve homogenizing the waste with cryogenic techniques followed by complete encapsulation with a variety of chemical/grouting agents into retrievable waste forms. Once encapsulated, the waste forms are suitable for transport out of the state or for actual in-state disposal. This paper investigates variances that would have to be obtained and contrasts the alternative encapsulation idea with the thermal treatment option.

  7. Treatability studies for polyethylene encapsulation of INEL low-level mixed wastes. Final report

    SciTech Connect

    Lageraaen, P.R.; Patel, B.R.; Kalb, P.D.; Adams, J.W.

    1995-10-01

    Treatability studies for polyethylene encapsulation of Idaho National Engineering Laboratory (INEL) low-level mixed wastes were conducted at Brookhaven National Laboratory. The treatability work, which included thermal screening and/or processibility testing, was performed on priority candidate wastes identified by INEL to determine the applicability of polyethylene encapsulation for the solidification and stabilization of these mixed wastes. The candidate wastes selected for this preliminary study were Eutectic Salts, Ion Exchange Resins, Activated Carbons, Freon Contaminated Rags, TAN TURCO Decon 4502, ICPP Sodium Bearing Liquid Waste, and HTRE-3 Acid Spill Clean-up. Thermal screening was conducted for some of these wastes to determine the thermal stability of the wastes under expected pretreatment and processing conditions. Processibility testing to determine whether the wastes were amenable to extrusion processing included monitoring feed consistency, extruder output consistency, waste production homogeneity, and waste form performance. Processing parameters were not optimized within the scope of this study. However, based on the treatability results, polyethylene encapsulation does appear applicable as a primary or secondary treatment for most of these wastes.

  8. Alternative disposal options for alpha-mixed low-level waste

    SciTech Connect

    Loomis, G.G.; Sherick, M.J.

    1995-12-31

    This paper presents several disposal options for the Department of Energy alpha-mixed low-level waste. The mixed nature of the waste favors thermally treating the waste to either an iron-enriched basalt or glass waste form, at which point a multitude of reasonable disposal options, including in-state disposal, are a possibility. Most notably, these waste forms will meet the land-ban restrictions. However, the thermal treatment of this waste involves considerable waste handling and complicated/expensive offgas, systems with secondary waste management problems. In the United States, public perception of off gas systems in the radioactive incinerator area is unfavorable. The alternatives presented here are nonthermal in nature and involve homogenizing the waste with cryogenic techniques followed by complete encapsulation with a variety of chemical/grouting agents into retrievable waste forms. Once encapsulated, the waste forms are suitable for transport out of the state or for actual in-state disposal. This paper investigates variances that would have to be obtained and contrasts the alternative encapsulation idea with the thermal treatment option.

  9. Systematic approach to radioactive waste characterization at Belgoprocess

    SciTech Connect

    Huys, T.; Gielen, P.

    2007-07-01

    Belgoprocess is capable of processing almost every type of low and medium level radioactive waste and thereby covering a large segment from the back-end of the nuclear fuel cycle. Waste from numerous producers is treated and conditioned into a stable end product. Such processes lead inevitably to the generation of a large number of different waste streams. Each of these streams is uniquely defined by its radiological and physicochemical characteristics. From regulatory point of view and in order to select appropriate processing and conditioning techniques it is essential to characterize each of these waste streams. Because of the labour-intensive nature of the work and to keep a trustworthy traceability, Belgoprocess has decided to automate this task as far as possible. Therefore it has developed a system that seamlessly integrates waste-accounting and radiological characterization into one system. The use of generic methodologies, isotope vectors and a measurement database makes it possible to characterize most waste packages without elaborate knowledge of radiological characterization. A nuclear engineer develops generic methodologies and defines isotope vectors and appropriate measurements. These combinations are documented in procedures and used by the waste-accounting team to characterize the waste packages. The whole system is designed and programmed in such a way that it offers maximum flexibility and traceability. For example, changes in characterization of the previously processed and conditioned waste will propagate through the system until the changes reach the end product. This kind of systematic approach to radioactive waste characterization is found to be very fruitful. (authors)

  10. Stress-strain response of plastic waste mixed soil.

    PubMed

    Babu, G L Sivakumar; Chouksey, Sandeep Kumar

    2011-03-01

    Recycling plastic waste from water bottles has become one of the major challenges worldwide. The present study provides an approach for the use plastic waste as reinforcement material in soil. The experimental results in the form of stress-strain-pore water pressure response are presented. Based on experimental test results, it is observed that the strength of soil is improved and compressibility reduced significantly with addition of a small percentage of plastic waste to the soil. The use of the improvement in strength and compressibility response due to inclusion of plastic waste can be advantageously used in bearing capacity improvement and settlement reduction in the design of shallow foundations.

  11. Mixed waste treatment using the ChemChar thermolytic detoxification technique

    SciTech Connect

    Kuchynka, D.

    1995-10-01

    The diversity of mixed waste matrices contained at Department of Energy sites that require treatment preclude a single, universal treatment technology capable of handling sludges, solids, heterogeneous debris, aqueous and organic liquids and soils. This report describes the ChemChar thermolytic detoxification process. The process is a thermal, chemically reductive technology that converts the organic portion of mixed wastes to a synthesis gas, while simultaneously absorbing volatile inorganics on a carbon-based char.

  12. Vitrification of low-level radioactive mixed waste at Argonne National Laboratory

    SciTech Connect

    Mazer, J.J.; Rosine, S.D.; No, H.J.

    1995-06-01

    Argonne National Laboratory-East (ANL-E) is proceeding with plans to use vitrification to treat low-level radioactive mixed wastes (LLMW) generated on-site. The objective is to install a full-scale vitrification system at ANL-E capable of processing the entire annual generation of selected LLMW streams. Crucible glass studies with actual mixed waste streams have produced sodium borosilicate glasses under conditions achievable in commercially available melters. These same glass compositions, spiked with toxic metals above the expected levels in actual wastes, pass the Toxicity Characteristic Leaching Procedure (TCLP) test. Earlier evaluations of the likely off-gases that will result from vitrification indicated that the primary off-gases will include compounds of SO{sub x}, NO{sub x}, and CO{sub 2}. These evaluations are being experimentally confirmed with a mass spectrometer analysis of the gases evolved from samples of the ANL-E wastes. The composition of the melter feed can be adjusted to minimize volatilization of some components, if necessary. The full-scale melter will be designed to handle the annual generation of at least three LLMW waste streams: evaporator concentrator bottoms sludge (ECB), storage tank sludge (STS), and HEPA filter media. Each waste stream is mixed waste by virtue of its failure to pass the TCLP test with respect to toxic metal leaching. Additional LLMW streams under consideration for vitrification include historical mixed waste glass from past operations and spent abrasive from a planned decontamination facility.

  13. Degradation of hazardous chemicals in liquid radioactive wastes from biomedical research using a mixed microbial population

    SciTech Connect

    Wolfram, J.H.; Radtke, M.; Wey, J.E.; Rogers, R.D.; Rau, E.H.

    1997-10-01

    As the costs associated with treatment of mixed wastes by conventional methods increase, new technologies will be investigated as alternatives. This study examines the potential of using a selected mixed population of microorganisms to treat hazardous chemical compounds in liquid low level radioactive wastes from biomedical research procedures. Microorganisms were isolated from various waste samples and enriched against compounds known to occur in the wastes. Individual isolates were tested for their ability to degrade methanol, ethanol, phenol, toluene, phthalates, acetonitrile, chloroform, and trichloroacetic acid. Following these tests, the organisms were combined in a media with a mixture of the different compounds. Three compounds: methanol, acetonitrile, and pseudocumene, were combined at 500 microliter/liter each. Degradation of each compound was shown to occur (75% or greater) under batch conditions with the mixed population. Actual wastes were tested by adding an aliquot to the media, determining the biomass increase, and monitoring the disappearance of the compounds. The compounds in actual waste were degraded, but at different rates than the batch cultures that did not have waste added. The potential of using bioprocessing methods for treating mixed wastes from biomedical research is discussed.

  14. Bench-scale operation of the DETOX wet oxidation process for mixed waste

    SciTech Connect

    Dhooge, P.M.

    1993-01-01

    Waste matrices containing organics, radionuclides, and metals pose difficult problems in waste treatment and disposal when the organic compounds and/or metals are considered to be hazardous. A means of destroying hazardous organic components while safely containing and concentrating metals would be extremely useful in mixed waste volume reduction or conversion to a radioactive-only form. Previous studies have found the DETOX, a patented process utilizing a novel catalytic wet oxidation by iron(III) oxidant, cold have successful application to mixed wastes, and to many other waste types. This paper describes the results of bench scale studies of DETOX applied to the components of liquid mixed wastes, with the goal of establishing parameters for the design of a prototype waste treatment unit. Apparent organic reaction rate orders, and the dependence of apparent reaction rate on the contact area, were measured for vacuum pump oil, scintillation fluids, and trichloroethylene. It was found that reaction rate was proportional to contact area above about 2.% w/w loading of organic. Oxidations in a 4 liter. volume, mixed bench top reactor have given destruction efficiencies of 99.9999+% for common organics. Reaction rates achieved in the mixedbench top reactor were one to two orders of magnitude greater than had been achieved in unmixed reactions; a thoroughly mixed reactor should be capable of oxidizing 10. to 100.+ grams of organic per liter-hour,depending on the nature and concentration of the organic.

  15. Bench-scale operation of the DETOX wet oxidation process for mixed waste

    SciTech Connect

    Dhooge, P.M.

    1993-03-01

    Waste matrices containing organics, radionuclides, and metals pose difficult problems in waste treatment and disposal when the organic compounds and/or metals are considered to be hazardous. A means of destroying hazardous organic components while safely containing and concentrating metals would be extremely useful in mixed waste volume reduction or conversion to a radioactive-only form. Previous studies have found the DETOX, a patented process utilizing a novel catalytic wet oxidation by iron(III) oxidant, cold have successful application to mixed wastes, and to many other waste types. This paper describes the results of bench scale studies of DETOX applied to the components of liquid mixed wastes, with the goal of establishing parameters for the design of a prototype waste treatment unit. Apparent organic reaction rate orders, and the dependence of apparent reaction rate on the contact area, were measured for vacuum pump oil, scintillation fluids, and trichloroethylene. It was found that reaction rate was proportional to contact area above about 2.% w/w loading of organic. Oxidations in a 4 liter. volume, mixed bench top reactor have given destruction efficiencies of 99.9999+% for common organics. Reaction rates achieved in the mixedbench top reactor were one to two orders of magnitude greater than had been achieved in unmixed reactions; a thoroughly mixed reactor should be capable of oxidizing 10. to 100.+ grams of organic per liter-hour,depending on the nature and concentration of the organic.

  16. Solid waste characterization and recycling potential for a university campus.

    PubMed

    Armijo de Vega, Carolina; Ojeda Benítez, Sara; Ramírez Barreto, Ma Elizabeth

    2008-01-01

    Integrated waste management systems are one of the greatest challenges for sustainable development. For these systems to be successful, the first step is to carry out waste characterization studies. In this paper are reported the results of a waste characterization study performed in the Campus Mexicali I of the Autonomous University of Baja California (UABC). The aim of this study was to set the basis for implementation of a recovery, reduction and recycling waste management program at the campus. It was found that the campus Mexicali I produces 1ton of solid wastes per day; more than 65% of these wastes are recyclable or potentially recyclable. These results showed that a program for segregation and recycling is feasible on a University Campus. The study also showed that the local market for recyclable waste, under present conditions - number of recycling companies and amounts of recyclables accepted - can absorb all of these wastes. Some alternatives for the potentially recyclables wastes are discussed. Finally some strategies that could be used to reduce waste at the source are discussed as well.

  17. Solid waste characterization and recycling potential for a university campus

    SciTech Connect

    Armijo de Vega, Carolina Ojeda Benitez, Sara; Ramirez Barreto, Ma. Elizabeth

    2008-07-01

    Integrated waste management systems are one of the greatest challenges for sustainable development. For these systems to be successful, the first step is to carry out waste characterization studies. In this paper are reported the results of a waste characterization study performed in the Campus Mexicali I of the Autonomous University of Baja California (UABC). The aim of this study was to set the basis for implementation of a recovery, reduction and recycling waste management program at the campus. It was found that the campus Mexicali I produces 1 ton of solid wastes per day; more than 65% of these wastes are recyclable or potentially recyclable. These results showed that a program for segregation and recycling is feasible on a University Campus. The study also showed that the local market for recyclable waste, under present conditions - number of recycling companies and amounts of recyclables accepted - can absorb all of these wastes. Some alternatives for the potentially recyclables wastes are discussed. Finally some strategies that could be used to reduce waste at the source are discussed as well.

  18. Updating and testing of a Finnish method for mixed municipal solid waste composition studies.

    PubMed

    Liikanen, M; Sahimaa, O; Hupponen, M; Havukainen, J; Sorvari, J; Horttanainen, M

    2016-06-01

    More efficient recycling of municipal solid waste (MSW) is an essential precondition for turning Europe into a circular economy. Thus, the recycling of MSW must increase significantly in several member states, including Finland. This has increased the interest in the composition of mixed MSW. Due to increased information needs, a method for mixed MSW composition studies was introduced in Finland in order to improve the national comparability of composition study results. The aim of this study was to further develop the method so that it corresponds to the information needed about the composition of mixed MSW and still works in practice. A survey and two mixed MSW composition studies were carried out in the study. According to the responses of the survey, the intensification of recycling, the landfill ban on organic waste and the producer responsibility for packaging waste have particularly influenced the need for information about the composition of mixed MSW. The share of biowaste in mixed MSW interested the respondents most. Additionally, biowaste proved to be the largest waste fraction in mixed MSW in the composition studies. It constituted over 40% of mixed MSW in both composition studies. For these reasons, the classification system of the method was updated by further defining the classifications of biowaste. The classifications of paper as well as paperboard and cardboard were also updated. The updated classification system provides more information on the share of avoidable food waste and waste materials suitable for recycling in mixed MSW. The updated method and the information gained from the composition studies are important in ensuring that the method will be adopted by municipal waste management companies and thus used widely in Finland.

  19. A Survey of Mixed-Waste HEPA Filters in the DOE Complex

    SciTech Connect

    Felicione, F. S.; Barber, D. B.; Carney, K. P.

    2002-02-28

    A brief investigation was made to determine the quantities of spent, mixed-waste HEPA filters within the DOE Complex. The quantities of both the mixed-waste filters that are currently being generated, as well as the legacy mixed-waste filters being stored and awaiting disposition were evaluated. Seven DOE sites representing over 89% of the recent HEPA filter usage were identified. These sites were then contacted to determine the number of these filters that were likely destined to become mixed waste and to survey the legacy-filter quantities. Inquiries into the disposition plans for the filters were also made. It was determined that the seven sites surveyed possess approximately 500 m3 of legacy mixed-waste HEPA filters that will require processing, with an annual generation rate of approximately 25 m3. No attempt was made to extrapolate the results of this survey to the entire DOE Complex. These results were simply considered to be the lower bound of the totality of mixed-waste HEPA filters throughout the Complex. The quantities determined encourage the development of new treatment technologies for these filters, and provide initial data on which an appropriate capacity for a treatment process may be based.

  20. Transuranic contaminated waste form characterization and data base

    SciTech Connect

    Kniazewycz, B.G.; McArthur, W.C.

    1980-07-01

    This volume contains appendices A to F. The properties of transuranium (TRU) radionuclides are described. Immobilization of TRU wastes by bituminization, urea-formaldehyde polymers, and cements is discussed. Research programs at DOE facilities engaged in TRU waste characterization and management studies are described.

  1. Understanding hydrothermal carbonization of mixed feedstocks for waste conversion

    NASA Astrophysics Data System (ADS)

    Lu, Xiaowei

    Hydrothermal carbonization (HTC) is an environmentally beneficial means to convert waste materials to value-added solid and liquid products with minimal greenhouse gas emission. Research is lacking on understanding the influence of critical process conditions on product formation and environmental implication associated with HTC of waste streams. This work was conducted to determine how reaction conditions and heterogeneous compound mixtures (representative of municipal wastes) influence hydrothermal carbonization processes. The specific experiments include: (1) determine how carbonization product properties are manipulated by controlling feedstock composition, process conditions, and catalyst addition; (2) determine if carbonization of heterogeneous mixtures follows similar pathways as that with pure feedstocks; and (3) evaluate and compare the carbon and energy-related implications associated with carbonization products with those associated with other common waste management processes for solid waste.

  2. Environmental assessment: Solid waste retrieval complex, enhanced radioactive and mixed waste storage facility, infrastructure upgrades, and central waste support complex, Hanford Site, Richland, Washington

    SciTech Connect

    1995-09-01

    The U.S. Department of Energy (DOE) needs to take action to: retrieve transuranic (TRU) waste because interim storage waste containers have exceeded their 20-year design life and could fail causing a radioactive release to the environment provide storage capacity for retrieved and newly generated TRU, Greater-than-Category 3 (GTC3), and mixed waste before treatment and/or shipment to the Waste Isolation Pilot Project (WIPP); and upgrade the infrastructure network in the 200 West Area to enhance operational efficiencies and reduce the cost of operating the Solid Waste Operations Complex. This proposed action would initiate the retrieval activities (Retrieval) from Trench 4C-T04 in the 200 West Area including the construction of support facilities necessary to carry out the retrieval operations. In addition, the proposed action includes the construction and operation of a facility (Enhanced Radioactive Mixed Waste Storage Facility) in the 200 West Area to store newly generated and the retrieved waste while it awaits shipment to a final disposal site. Also, Infrastructure Upgrades and a Central Waste Support Complex are necessary to support the Hanford Site`s centralized waste management area in the 200 West Area. The proposed action also includes mitigation for the loss of priority shrub-steppe habitat resulting from construction. The estimated total cost of the proposed action is $66 million.

  3. Numerical Modeling of Mixing of Chemically Reacting, Non-Newtonian Slurry for Tank Waste Retrieval

    SciTech Connect

    Yuen, D.A.; Onishi, Y.

    2001-09-30

    In the U.S. Department of Energy (DOE) complex, 100 million gallons of radioactive and chemical wastes from plutonium production are stored in 281 underground storage tanks. Retrieval of the wastes from the tanks is the first step in its ultimate treatment and disposal. Because billions of dollars are being spent on this effort, waste retrieval demands a strong scientific basis for its successful completion. As will be discussed in Section 4.2, complex interactions among waste chemical reactions, rheology, and mixing of solid and liquid tank waste (and possibly with a solvent) will occur in DSTs during the waste retrieval (mixer pump) operations. The ultimate goal of this study was to develop the ability to simulate the complex chemical and rheological changes that occur in the waste during processing for retrieval. This capability would serve as a scientific assessment tool allowing a priori evaluation of the consequences of proposed waste retrieval operations. Hanford tan k waste is a multiphase, multicomponent, high-ionic strength, and highly basic mixture of liquids and solids. Wastes stored in the 4,000-m3 DSTs will be mixed by 300-hp mixer pumps that inject high-speed (18.3 m/s) jets to stir up the sludge and supernatant liquid for retrieval. During waste retrieval operations, complex interactions occur among waste mixing, chemical reactions, and associated rheology. Thus, to determine safe and cost-effective operational parameters for waste retrieval, decisions must rely on new scientific knowledge to account for physical mixing of multiphase flows, chemical reactions, and waste rheology. To satisfy this need, we integrated a computational fluid dynamics code with state-of-the-art equilibrium and kinetic chemical models and non-Newtonian rheology (Onishi et al. 1999). This development is unique and holds great promise for addressing the complex phenomena of tank waste retrieval. The current model is, however, applicable only to idealized tank waste

  4. Transuranic waste characterization sampling and analysis methods manual. Revision 1

    SciTech Connect

    Suermann, J.F.

    1996-04-01

    This Methods Manual provides a unified source of information on the sampling and analytical techniques that enable Department of Energy (DOE) facilities to comply with the requirements established in the current revision of the Transuranic Waste Characterization Quality Assurance Program Plan (QAPP) for the Waste Isolation Pilot Plant (WIPP) Transuranic (TRU) Waste Characterization Program (the Program) and the WIPP Waste Analysis Plan. This Methods Manual includes all of the testing, sampling, and analytical methodologies accepted by DOE for use in implementing the Program requirements specified in the QAPP and the WIPP Waste Analysis Plan. The procedures in this Methods Manual are comprehensive and detailed and are designed to provide the necessary guidance for the preparation of site-specific procedures. With some analytical methods, such as Gas Chromatography/Mass Spectrometry, the Methods Manual procedures may be used directly. With other methods, such as nondestructive characterization, the Methods Manual provides guidance rather than a step-by-step procedure. Sites must meet all of the specified quality control requirements of the applicable procedure. Each DOE site must document the details of the procedures it will use and demonstrate the efficacy of such procedures to the Manager, National TRU Program Waste Characterization, during Waste Characterization and Certification audits.

  5. Characterization of wastes from construction and demolition sector.

    PubMed

    Somasundaram, Swarnalatha; Jeon, Tae-Wan; Kang, Young-Yeul; Kim, Woo-Il; Jeong, Seong-Kyeong; Kim, Yong-Jun; Yeon, Jin-Mo; Shin, Sun Kyoung

    2015-01-01

    In Republic of Korea, construction and demolition (C&D) waste accounts for 49.9% of the total waste. In the present work, the mineralogical composition, the concentrations of 11 heavy metals, 19 PAH, and 7 polychlorinated biphenyl (PCB) congeners present in the 6 broad category (9 subcategories) of C&D hazardous waste were discussed along with their leaching characteristics. In concrete/mixed cement waste, the concentrations of As, Cr(6+), Hg, and Zn were in the range of 1.76-7.86, ND-1.63, 0.026-0.047, and 110.90-280.17 mg/kg, respectively. The asphalt waste sample A1 possessed relatively high concentrations of phenanthrene, fluoranthene, pyrene, benz(a)anthracene, benzo(a)pyrene, and indeno(1,2,3-cd)pyrene comparing to the other samples and it contains 0.08-0.1% of coal tar. Hazardous nature of the C&D wastes greatly depends on the source of the collection. Zn concentration was above 1000 mg/kg for road asphalt waste samples A4 and A5. Total PCB concentration were high in the soil waste sample S1 (130 μg/kg) as it was the excavated soil obtained from the premises of an oil station. Leaching of As, Ba, CN(-), and F(-) were observed in most of the C&D waste samples.

  6. EVALUATION OF RISKS AND WASTE CHARACTERIZATION REQUIREMENTS FOR THE TRANSURANIC WASTE EMPLACED IN WIPP DURING 1999

    SciTech Connect

    Channell, J.K.; Walker, B.A.

    2000-05-01

    Specifically this report: 1. Compares requirements of the WAP that are pertinent from a technical viewpoint with the WIPP pre-Permit waste characterization program, 2. Presents the results of a risk analysis of the currently emplaced wastes. Expected and bounding risks from routine operations and possible accidents are evaluated; and 3. Provides conclusions and recommendations.

  7. Characterization of Mixing Between Water and Biofuels

    NASA Astrophysics Data System (ADS)

    Cotel, Aline; Green, Erica; Acevedo, Marina; Otero, Margarita; Demond, Avery

    2012-11-01

    Currently, gasoline containing ethanol is considered to be among the best alternatives to gasoline. However, the potential environmental impact of a spill of ethanol-based biofuels on aquatic environments is an area of open discussion and research. Since these fuels are a combination of a miscible fluid (ethanol) and an immiscible fluid (gasoline), models used for traditional gasoline fuels (immiscible in water) are not applicable. Preliminary experiments show that when a solution of ethanol and glycol is mixed with water, a third mixed fluid is formed. Two distinct mixing regimes were observed. An exothermic reaction also occurred between ethanol and water. In the first regime, a turbulent wake is created between the ethanol/glycol and water layers causing the ethanol and glycol solution to entrain and mix into with the water phase. Because the mixed fluid is denser than either parent fluid, a dramatic overturning is possible. The amount of mixing was found to be dependent upon the initial ratio of ethanol to glycol in the parent fluid. The second regime begins when the turbulent wake has dissipated and the internal wave created by the plate has begun to settle, typically within the first minute. At this point, Bénard-like cells, similar to those typically seen in Rayleigh-Bénard convection, form at the interface and relatively slow mass transfer is evident. The cells at the interface show distinct features of interfacial turbulence, including small transverse waves, denoting that instabilities exist there. Funding from UM-OVPR and NSF Advance.

  8. Mixed Waste Management Facility (MWMF) groundwater monitoring report. Second quarter 1993

    SciTech Connect

    Not Available

    1993-09-01

    Groundwater monitoring continued at the Savannah River Plant. During second quarter 1993, nine constituents exceeded final Primary Drinking Water Standards in groundwater samples from downgradient monitoring wells at the Mixed Waste Management Facility, the Old Burial Ground, the E-Area Vaults, and the proposed Hazardous Waste/Mixed Waste Disposal Vaults. As in previous quarters, tritium and trichloroethylene were the most widespread constituents. Chloroethene (vinyl chloride), dichloromethane (methylene chloride), 1,1-dichloroethylene, gross alpha, lead, nonvolatile beta, or tetrachloroethylene also exceeded standards in one or more wells. The groundwater flow directions and rates in the three hydrostratigraphic units were similar to those of previous quarters.

  9. Department of Energy Idaho Operations Office evaluation of feasibility studies for private sector treatment of alpha and TRU mixed wastes

    SciTech Connect

    1995-05-01

    The Idaho National Engineering Laboratory (INEL) is currently storing a large quantity of alpha contaminated mixed low level waste which will require treatment prior to disposal. The DOE Idaho Operations Office (DOE-ID) recognized that current knowledge and funding were insufficient to directly pursue services for the requisite treatment. Therefore, it was decided that private sector studies would be funded to clarify cost, regulatory, technology, and contractual issues associated with procuring treatment services. This report analyzes the three private sector studies procured and recommends a path forward for DOE in procuring retrieval, assay, characterization, and treatment services for INEL transuranic and alpha contaminated mixed low level waste. This report was prepared by a team of subject matter experts from the INEL referred to as the DOE-ID Evaluation Team.

  10. Opportunities for artificial intelligence application in computer- aided management of mixed waste incinerator facilities

    SciTech Connect

    Rivera, A.L.; Ferrada, J.J.; Singh, S.P.N.

    1992-01-01

    The Department of Energy/Oak Ridge Field Office (DOE/OR) operates a mixed waste incinerator facility at the Oak Ridge K-25 Site. It is designed for the thermal treatment of incinerable liquid, sludge, and solid waste regulated under the Toxic Substances Control Act (TSCA) and the Resource Conservation and Recovery Act (RCRA). This facility, known as the TSCA Incinerator, services seven DOE/OR installations. This incinerator was recently authorized for production operation in the United States for the processing of mixed (radioactively contaminated-chemically hazardous) wastes as regulated under TSCA and RCRA. Operation of the TSCA Incinerator is highly constrained as a result of the regulatory, institutional, technical, and resource availability requirements. These requirements impact the characteristics and disposition of incinerator residues, limits the quality of liquid and gaseous effluents, limit the characteristics and rates of waste feeds and operating conditions, and restrict the handling of the waste feed inventories. This incinerator facility presents an opportunity for applying computer technology as a technical resource for mixed waste incinerator operation to facilitate promoting and sustaining a continuous performance improvement process while demonstrating compliance. Demonstrated computer-aided management systems could be transferred to future mixed waste incinerator facilities.

  11. Opportunities for artificial intelligence application in computer- aided management of mixed waste incinerator facilities

    SciTech Connect

    Rivera, A.L.; Ferrada, J.J.; Singh, S.P.N.

    1992-05-01

    The Department of Energy/Oak Ridge Field Office (DOE/OR) operates a mixed waste incinerator facility at the Oak Ridge K-25 Site. It is designed for the thermal treatment of incinerable liquid, sludge, and solid waste regulated under the Toxic Substances Control Act (TSCA) and the Resource Conservation and Recovery Act (RCRA). This facility, known as the TSCA Incinerator, services seven DOE/OR installations. This incinerator was recently authorized for production operation in the United States for the processing of mixed (radioactively contaminated-chemically hazardous) wastes as regulated under TSCA and RCRA. Operation of the TSCA Incinerator is highly constrained as a result of the regulatory, institutional, technical, and resource availability requirements. These requirements impact the characteristics and disposition of incinerator residues, limits the quality of liquid and gaseous effluents, limit the characteristics and rates of waste feeds and operating conditions, and restrict the handling of the waste feed inventories. This incinerator facility presents an opportunity for applying computer technology as a technical resource for mixed waste incinerator operation to facilitate promoting and sustaining a continuous performance improvement process while demonstrating compliance. Demonstrated computer-aided management systems could be transferred to future mixed waste incinerator facilities.

  12. Characterization of the MVST waste tanks located at ORNL

    SciTech Connect

    Keller, J.M.; Giaquinto, J.M.; Meeks, A.M.

    1996-12-01

    During the fall of 1996 there was a major effort to sample and analyze the Active Liquid Low-Level Waste (LLLW) tanks at ORNL which include the Melton Valley Storage Tanks (MVST) and the Bethel Valley Evaporator Service Tanks (BVEST). The characterization data summarized in this report was needed to address waste processing options, address concerns of the performance assessment (PA) data for the Waste Isolation Pilot Plant (WIPP), evaluate the characteristics with respect to the waste acceptance criteria (WAC) for WIPP and Nevada Test Site (NTS), address criticality concerns, and meet DOT requirements for transporting the waste. This report only discusses the analytical characterization data for the MVST waste tanks. The isotopic data presented in this report support the position that fissile isotopes of uranium and plutonium were ``denatured`` as required by administrative controls. In general, MVST sludge was found to be both hazardous by RCRA characteristics and the transuranic alpha activity was well about the limit for TRU waste. The characteristics of the MVST sludge relative to the WIPP WAC limits for fissile gram equivalent, plutonium equivalent activity, and thermal power from decay heat, were estimated from the data in this report and found to be far below the upper boundary for any of the remote-handled transuranic waste requirements for disposal of the waste in WIPP.

  13. Effects of specimen size and mix ratio on the nickel migration behavior of landfill waste mixed mortar.

    PubMed

    Haque, M Aminul

    2017-04-01

    Landfill solid waste management system poses the potential source of silent wide-spread heavy metals like nickel poisoning in the entire ecosystem of nearby environment. Nickel containing demolish solid wastes are disposed at landfill zones to a great extent from where nickel migrate into the food chain through the surface water body as well as groundwater. Consequently, nickel exposure may cause different environmental problems. From this sense, it may be an attractive proposal to recycle the waste as a sustainable product. Herein is presented a long-term feasibility study on potential leaching behavioral pattern of nickel from different sizes and mixes based solidified landfill waste mixed mortar block. The calculated results revealed the larger sizes block entrapped more nickel content than the smaller in relation to the available for leaching. Moreover, the specimen bearing the higher amount of waste resulted the significant nickel immobilization within the crystalline structure. The study observed the fixation results 97.72%-99.35%, 97.08%-99.11%, 96.19%-98.58% and 95.86%-91.6% under the stabilizing agent to fine aggregate mixing combination 1:1, 1:1.5, 1:2 and 1:2.5 respectively where 30% of the total volume of fine aggregate was replaced by landfill waste. Although, mechanical strength test of all surrogate waste forms was also conducted that showed acceptable performance for land disposal, the current research pointing out that constructed green products were non-hazardous except the specimens having mixture ratio 1:2.5 because nickel ion release mechanism was observed under this ratio by surface decay or physical erosion of the monolithic matrices. Furthermore, semi-empirical based dominant leaching mechanism models were justified against the goodness of fit statistical parameters for interpreting the experimental observations of nickel transport profile where the adopted models possessed strong potential for predicting Ni content with high accuracy

  14. CHARACTERIZING TRITIUM WASTE USING HELIUM RATIOS

    SciTech Connect

    Ovink, R.W.; McMahon, W.J.; Borghese, J.V.; Olsen, K.B.

    2003-02-27

    When routine sampling revealed greatly elevated tritium levels (3.14 x 105 Bq/L [8.5-million pCi/liter]) in the groundwater near a solid waste landfill at the Hanford Site, an innovative technique was used to assess the extent of the plume. Helium-3/helium-4 ratios, relative to ambient air-in-soil gas samples, were used to identify the tritium source and initially delineate the extent of the groundwater tritium plume. This approach is a modification of a technique developed in the late 1960s to age-date deep ocean water as part of the GEOSECS ocean monitoring program. Poreda, et al. (1) and Schlosser, et al. (2) applied this modified technique to shallow aquifers. A study was also conducted to demonstrate the concept of using helium-3 as a tool to locate vadose zone sources of tritium and tracking groundwater tritium plumes at Hanford (3). Seventy sampling points were installed around the perimeter and along four transects downgradient of the burial ground. Soil gas samples were collected, analyzed for helium isotopes, and helium-3/helium-4 ratios were calculated for these 70 points. The helium ratios indicated a vadose zone source of tritium along the northern edge of the burial ground that is likely the source of tritium in the groundwater. The helium ratios also indicate the groundwater plume is traveling east-northeast from the burial ground and that no up-gradient tritium sources are affecting the burial ground. Based on the helium ratio results, six downgradient groundwater sampling locations were identified to verify the tritium plume extent and groundwater tritium concentrations. The tritium results from the initial groundwater samples confirmed that elevated helium ratios were indicative of tritium contamination in the local groundwater. The measurement of helium isotopes in soil gas provided a rapid and cost- effective technique to define the shape and extent of tritium contamination from the burial ground. Using this soil gas sampling approach, the

  15. Mixed Waste Integrated Program: Demonstrating technologies to meet the requirements of the Federal Facility Compliance Act

    SciTech Connect

    Berry, J.B.

    1994-07-01

    Mixed waste is defined as ``waste contaminated with chemically hazardous [governed by the Resource Conservation and Recovery Act (RCRA)] and radioactive species [governed by US Department of energy (DOE) orders].`` The Mixed Waste Integrated Program (MWIP) is responding to the need for DOE mixed-waste treatment technologies tat meet these dual regulatory requirements. MWIP is developing emerging and innovative treatment technologies to determine process feasibility. Technology demonstrations of fixed-hearth plasma arc and vitrification systems will be used to determine whether these processes are superior to existing technologies in reducing risk, minimizing life-cycle cost, and improving process performance. MWIP also provides a forum for stakeholder and customer involvement in the technology development process.

  16. Feasibility of using biological degradation for the on-sitetreatment of mixed wastes

    SciTech Connect

    Stringfellow, William T.; Komada, Tatsuyuki; Chang, Li-Yang

    2004-04-20

    This research was conducted to investigate the feasibility of applying microbial biodegradation as a treatment technology for wastes containing radioactive elements and organic solvents (mixed wastes). In this study, we focused our efforts on the treatment of wastes generated by biomedical research as the result of purifying tritium labeled compounds by high-performance liquid chromatography (HPLC). These wastes are typically 80 percent water with 20 percent acetonitrile or methanol or a mixture of both. The objective was to determine the potential of using biodegradation to treat the solvent component of tritiated mixed waste to a concentration below the land disposal restriction standard (1mg/L for acetonitrile). Once the standard is reached, the remaining radioactive waste is no longer classified as a mixed waste and it can then be solidified and placed in a secure landfill. This investigation focused on treating a 10 percent acetonitrile solution, which was used as a non-radioactive surrogate for HPLC waste, in a bioreactor. The results indicated that the biodegradation process could treat this solution down to less than 1 mg/L to meet the land disposal restriction standard.

  17. Characterization and process technology capabilities for Hanford tank waste disposal

    SciTech Connect

    Buelt, J.L.; Weimer, W.C.; Schrempf, R.E.

    1996-03-01

    The purpose of this document is to describe the Paciflc Northwest National Laboratory`s (the Laboratory) capabilities in characterization and unit process and system testing that are available to support Hanford tank waste processing. This document is organized into two parts. The first section discusses the Laboratory`s extensive experience in solving the difficult problems associated with the characterization of Hanford tank wastes, vitrified radioactive wastes, and other very highly radioactive and/or heterogeneous materials. The second section of this document discusses the Laboratory`s radioactive capabilities and facilities for separations and waste form preparation/testing that can be used to Support Hanford tank waste processing design and operations.

  18. Ceramicrete stabilization of low-level mixed wastes - a complete story

    SciTech Connect

    Wagh, A.S.; Singh, D.; Jeong, S.Y.; Strain, R.V.

    1997-03-01

    During the last three years, Ceramicrete (chemically bonded phosphate ceramics) have been investigated at Argonne-East for low-temperature stabilization and solidification of U.S. Department of Energy (DOE`s) mixed wastes, for which conventional high-temperature treatments cannot be used because of volatiles and pyrophorics present in these wastes. This paper summarizes the development of Ceramicrete and provides the current technology status. We discuss our early investigations with surrogates that are typical of DOE mixed wastes, subsequent testing with actual waste streams, and scale-up of the process to an operational level. Current efforts include testing the process at an operational level for an ash waste stream from the Idaho National Engineering Laboratory and obtaining sufficient information to prepare a technology performance report.

  19. Low-level and mixed radioactive waste in-drum solidification.

    SciTech Connect

    Wescott, J.; Nelson, R.; Wagh, A.; Singh, D.; Environmental Management Operations

    1998-01-01

    Argonne National Laboratory-East (ANL-E) has begun production-scale testing of a low-level and mixed radioactive waste solidification system. This system will be used to treat low-level and mixed radioactive waste to meet land burial requirements. The system can use any of several types of solidification media, including a chemically-bonded phosphate ceramic developed by ANL-E scientists. The final waste product will consist of a solidified mass in a standard 208-L drum. The system uses commercial equipment and incorporates several process control features to ensure proper treatment. This paper will discuss the waste types requiring treatment, the system configuration, and operation results for these waste streams.

  20. Nevada test site low-level and mixed waste repository design in the unsaturated zone

    SciTech Connect

    Kawamura, T.A.; Warren, D.M.; USDOE Nevada Operations Office, Las Vegas, NV )

    1989-01-01

    The Area 5 Radioactive Waste Management Site (RWMS) at the Nevada Test Site (NTS) is used for shallow land disposal of Low-Level Radioactive (LLW) and for retrievable disposal of Mixed Wastes (MW) from various Department of Energy (DOE) facilities. The site is situated in southern Nevada, one of the most arid regions of the United States. Design considerations include vadose zone monitoring in lieu of groundwater monitoring, stringent waste acceptance and packaging criteria, a waste examination and real-time radiography facility, and trench design. 4 refs.

  1. Disposal of low-level and low-level mixed waste: audit report

    SciTech Connect

    1998-09-03

    The Department of Energy (Department) is faced with the legacy of thousands of contaminated areas and buildings and large volumes of `backlog` waste requiring disposal. Waste management and environmental restoration activities have become central to the Department`s mission. One of the Department`s priorities is to clean up former nuclear weapons sites and find more effective and timely methods for disposing of nuclear waste. This audit focused on determining if the Department was disposing of low-level and low-level mixed waste in the most cost-effective manner.

  2. Latex-modified grouts for in-situ stabilization of buried transuranic/mixed waste

    SciTech Connect

    Allan, M.L.

    1996-06-01

    The Department of Applied Science at Brookhaven national Laboratory was requested to investigate latex-modified grouts for in-situ stabilization of buried TRU/mixed waste for INEL. The waste exists in shallow trenches that were backfilled with soil. The objective was to formulate latex-modified grouts for use with the jet grouting technique to enable in-situ stabilization of buried waste. The stabilized waste was either to be left in place or retrieved for further processing. Grouting prior to retrieval reduces the potential release of contaminants. Rheological properties of latex-modified grouts were investigated and compared with those of conventional neat cement grouts used for jet grouting.

  3. A preliminary evaluation of alternatives for treatment of INEL Low-Level Waste and low-level mixed waste

    SciTech Connect

    Smith, T.H.; Roesener, W.S.; Jorgensen-Waters, M.J.; Edinborough, C.R.

    1992-06-01

    The Mixed and Low-Level Waste Treatment Facility (MLLWTF) project was established in 1991 by the US Department of Energy Idaho Field Office to provide treatment capabilities for Idaho National Engineering Laboratory (INEL) low-level mixed waste and low-level waste. This report identifies and evaluates the alternatives for treating that waste. Twelve treatment alternatives, ranging from ``no-action`` to constructing and operating the MLLWTF, are identified and evaluated. Evaluations include facility performance, environmental, safety, institutional, schedule, and rough order-of-magnitude cost comparisons. The performance of each alternative is evaluated against lists of ``musts`` and ``wants.`` Also included is a discussion of other key considerations for decision making. Analysis of results indicated further study is necessary to obtain the best estimate of future waste volumes and characteristics from the expanded INEL Decontamination and Decommissioning Program. It is also recommended that conceptual design begin as scheduled on the MLLWTF, maximum treatment alternative while re-evaluating the waste volume projections.

  4. CHARACTERIZATION OF TANK 17 RESIDUAL WASTE

    SciTech Connect

    D'Entremont, P; Thomas Caldwell, T

    1997-09-22

    Plans are to close Tank 17, a type IV waste tank in the F-area Tank Farm, by filling it with pumpable backfills. Most of the waste was removed from the tank in the late 1980s, and the remainder of the waste was removed in a short spray washing campaign that began on 11 April 1997. More details on the planned closure can be found in the Closure Plan for the High-Level Waste (HLW) Tanks and the specific closure module for Tank 17. To show that closure of the tank is environmentally sound, a performance evaluation has been performed for Tank 17. The performance evaluation projected the concentration of contaminants at various locations and times after closure. This report documents the basis for the inventories of contaminants that were used in the Tank 17 performance evaluation.

  5. Waste characterization activities at the Lawrence Livermore National Laboratory

    SciTech Connect

    Roberson, G.P.; Martz, H.E.; Haskins, J.J.

    1995-06-28

    Radioactive and hazardous wastes are generated at many national laboratories, military sites, fuel fabrication and enrichment plants, reactors, and many other facilities. At all of these sites, wastes must be separated, categorized, possibly treated, and packed into containers for shipment to waste-storage or disposal sites. Prior to treatment, storage or, shipment, the containers must be characterized to determine the ultimate disposition of the contained waste. Comprehensive and accurate nondestructive evaluation (NDE) and nondestructive assay (NDA) methods can be used to characterize most waste containers in a safe and cost-effective manner without opening them. The Lawrence Livermore National Laboratory (LLNL) is investigating and developing the application of x-ray and {gamma}-ray methods to nonintrusively characterize waste containers and/or items. X-ray NDE methods are being investigated to determine whether they can be used to identify hazardous and nonconforming materials. A {gamma}-ray NDA method is used to identify the radioactive sources within a container and to accurately quantify their strength. In this paper we describe five waste characterization projects being conducted at LLNL that apply both the NDE and NDA methods and present results.

  6. Mixed Waste Treatment Using the ChemChar Thermolytic Detoxification Technique

    SciTech Connect

    Kuchynka, D.J.

    1997-01-01

    This R and D program addresses the treatment of mixed waste employing the ChemChar Thermolytic Detoxification process. Surrogate mixed waste streams will be treated in a four inch diameter, continuous feed, adiabatic reactor with the goal of meeting all regulatory treatment levels for the contaminants in the surrogates with the concomitant production of contaminant free by-products. Successful completion of this program will show that organic contaminants in mixed waste surrogates will be converted to a clean, energy rich synthesis gas capable of being used, without further processing, for power or heat generation. The inorganic components in the surrogates will be found to be adsorbed on a macroporous coal char activated carbon substrate which is mixed with the waste prior to treatment. These contaminants include radioactive metal surrogate species, RCRA hazardous metals and any acid gases formed during the treatment process. The program has three main tasks that will be performed to meet the above objectives. The first task is the design and construction of the four inch reactor at Mirage Systems in Sunnyvale, CA. The second task is production and procurement of the activated carbon char employed in the ChemChartest runs and identification of two surrogate mixed wastes. The last task is testing and operation of the reactor on char/surrogate waste mixtures to be performed at the University of Missouri. The deliverables for the project are a Design Review Report, Operational Test Plan, Topical Report and Final Report. This report contains only the results of the design and construction carbon production-surrogate waste identification tasks.Treatment of the surrogate mixed wastes has just begun and will not be reported in this version of the Final Report. The latter will be reported in the final version of the Final Report.

  7. Survey of commercial firms with mixed-waste treatability study capability

    SciTech Connect

    McFee, J.; McNeel, K.; Eaton, D.; Kimmel, R.

    1996-04-01

    According to the data developed for the Proposed Site Treatment Plans, the US Department of Energy (DOE) mixed low-level and mixed transuranic waste inventory was estimated at 230,000 m{sup 3} and embodied in approximately 2,000 waste streams. Many of these streams are unique and may require new technologies to facilitate compliance with Resource Conservation and Recovery Act disposal requirements. Because most waste streams are unique, a demonstration of the selected technologies is justified. Evaluation of commercially available or innovative technologies in a treatability study is a cost-effective method of providing a demonstration of the technology and supporting decisions on technology selection. This paper summarizes a document being prepared by the Mixed Waste Focus Area of the DOE Office of Science and Technology (EM-50). The document will provide DOE waste managers with a list of commercial firms (and universities) that have mixed-waste treatability study capabilities and with the specifics regarding the technologies available at those facilities. In addition, the document will provide a short summary of key points of the relevant regulations affecting treatability studies and will compile recommendations for successfully conducting an off-site treatability study. Interim results of the supplier survey are tabulated in this paper. The tabulation demonstrates that treatment technologies in 17 of the US Environmental Protection Agency`s technology categories are available at commercial facilities. These technologies include straightforward application of standard technologies, such as pyrolysis, as well as proprietary technologies developed specifically for mixed waste. The paper also discusses the key points of the management of commercial mixed-waste treatability studies.

  8. A testing program to evaluate the effects of simulant mixed wastes on plastic transportation packaging components

    SciTech Connect

    Nigrey, P.J.; Dickens, T.G.; Dickman, P.T.

    1997-08-01

    Based on regulatory requirements for Type A and B radioactive material packaging, a Testing Program was developed to evaluate the effects of mixed wastes on plastic materials which could be used as liners and seals in transportation containers. The plastics evaluated in this program were butadiene-acrylonitrile copolymer (Nitrile rubber), cross-linked polyethylene, epichlorohydrin, ethylene-propylene rubber (EPDM), fluorocarbons, high-density polyethylene (HDPE), butyl rubber, polypropylene, polytetrafluoroethylene, and styrene-butadiene rubber (SBR). These plastics were first screened in four simulant mixed wastes. The liner materials were screened using specific gravity measurements and seal materials by vapor transport rate (VTR) measurements. For the screening of liner materials, Kel-F, HDPE, and XLPE were found to offer the greatest resistance to the combination of radiation and chemicals. The tests also indicated that while all seal materials passed exposure to the aqueous simulant mixed waste, EPDM and SBR had the lowest VTRs. In the chlorinated hydrocarbon simulant mixed waste, only Viton passed the screening tests. In both the simulant scintillation fluid mixed waste and the ketone mixture waste, none of the seal materials met the screening criteria. Those materials which passed the screening tests were subjected to further comprehensive testing in each of the simulant wastes. The materials were exposed to four different radiation doses followed by exposure to a simulant mixed waste at three temperatures and four different exposure times (7, 14, 28, 180 days). Materials were tested by measuring specific gravity, dimensional, hardness, stress cracking, VTR, compression set, and tensile properties. The second phase of this Testing Program involving the comprehensive testing of plastic liner has been completed and for seal materials is currently in progress.

  9. A portable system for the treatment of water-reactive mixed waste

    SciTech Connect

    Dziewinski, J.; Munger, D.

    1995-02-01

    Many of the wastes generated by the DOE complex are both hazardous and radioactive. Mixed wastes must be treated to remove the hazardous waste component before they are disposed as radioactive waste. This paper discusses the development of a treatment process for mixed wastes that exhibit the reactive hazardous characteristic. Specifically, these wastes react readily and violently with water. Wastes such as lithium hydride (LiH), sodium metal, and potassium metal are the primary wastes in this category. Besides their tendency to react with water, the wastes also produce alkaline hydroxides and hydrogen gas as products of the reactions. If in aqueous form and if the pH exceeds 12.5, the alkaline hydroxides must be further processed to lower the pH to the range of 2--12.5 to remove the corrosive hazardous characteristic. The hydrogen gas formed during treatment is not considered a RCRA hazardous waste, but the hydrogen poses a substantial safety hazard because it can form explosive mixtures with air. Tritium may also be substituted for hydrogen in the LiH. If tritium is present, special processing may be necessary to avoid exhausting tritium into the environment. Because of the requirement to control environmental exposure to radioactivity contained in the wastes, the process design requires a reaction within enclosed vessels. These vessels require inert gas purging with subsequent off-gas scrubbing and high-efficiency particulate air (HEPA) filtration before discharge to the atmosphere. The process described involves directly immersing the water-reactive waste in a volume of water, controlling the reaction rate by the rate of addition of the waste to the reactor. The possibility of explosion is avoided by excluding oxygen.

  10. Characterization of Radionuclides in Waste Sludges from High Level Waste Tanks 40, 42, and 51

    SciTech Connect

    O'Bryant, R.F.

    2000-06-28

    This document will develop a radionuclide distribution for the sludge fraction of sludge-contaminated waste stored in High Level Waste Tanks 40, 42 and 51 in accordance with the methodology outlined in WAC 2.02 (Rev. 4). A single, comprehensive characterization for supernate has been developed previously (Reference 5). This distribution is based on the assumption that sludge-contaminated waste from tanks 40, 42 and 51 may be co-mingled, and the actual contamination present on waste in a series of containers from these tanks will be representative of the mean radionuclide distribution. This document also describes the methodology for application of radionuclide distributions representative of the sludge and supernate fractions of sludge-contaminated waste to individual waste packages.

  11. Performance Demonstration Program Plan for Nondestructive Assay of Drummed Wastes for the TRU Waste Characterization Program

    SciTech Connect

    N /A

    2009-04-01

    Each testing and analytical facility performing waste characterization activities for the Waste Isolation Pilot Plant (WIPP) participates in the Performance Demonstration Program (PDP) to comply with the Transuranic Waste Acceptance Criteria for the Waste Isolation Pilot Plant (WAC) (DOE/WIPP-02-3122) and the Quality Assurance Program Document (QAPD) (CBFO-94-1012). The PDP serves as a quality control check for data generated in the characterization of waste destined for WIPP. Single blind audit samples are prepared and distributed to each of the facilities participating in the PDP. The PDP evaluates analyses of simulated headspace gases, constituents of the Resource Conservation and Recovery Act (RCRA), and transuranic (TRU) radionuclides using nondestructive assay (NDA) techniques.

  12. Performance Demonstration Program Plan for Nondestructive Assay of Boxed Wastes for the TRU Waste Characterization Program

    SciTech Connect

    None, None

    2009-10-01

    Each testing and analytical facility performing waste characterization activities for the Waste Isolation Pilot Plant (WIPP) participates in the Performance Demonstration Program (PDP) to comply with the Transuranic Waste Acceptance Criteria for the Waste Isolation Pilot Plant (WAC) (DOE/WIPP-02-3122) and the Quality Assurance Program Document (QAPD) (CBFO-94-1012). The PDP serves as a quality control check for data generated in the characterization of waste destined for WIPP. Single-blind audit samples are prepared and distributed to each of the facilities participating in the PDP. Different PDPs evaluate the analyses of simulated headspace gases (HSGs), constituents of the Resource Conservation and Recovery Act (RCRA), and transuranic (TRU) radionuclides using nondestructive assay (NDA) techniques.

  13. Reactive Additive Stabilization Process (RASP) for hazardous and mixed waste vitrification

    SciTech Connect

    Jantzen, C.M.; Pickett, J.B.; Ramsey, W.G.

    1993-07-01

    Solidification of hazardous/mixed wastes into glass is being examined at the Savannah River Site (SRS) for (1) nickel plating line (F006) sludges and (2) incinerator wastes. Vitrification of these wastes using high surface area additives, the Reactive Additive Stabilization Process (RASP), has been determined to greatly enhance the dissolution and retention of hazardous, mixed, and heavy metal species in glass. RASP lowers melt temperatures (typically 1050-- 1150{degrees}C), thereby minimizing volatility concerns during vitrification. RASP maximizes waste loading (typically 50--75 wt% on a dry oxide basis) by taking advantage of the glass forming potential of the waste. RASP vitrification thereby minimizes waste disposal volume (typically 86--97 vol. %), and maximizes cost savings. Solidification of the F006 plating line sludges containing depleted uranium has been achieved in both soda-lime-silica (SLS) and borosilicate glasses at 1150{degrees}C up to waste loadings of 75 wt%. Solidification of incinerator blowdown and mixtures of incinerator blowdown and bottom kiln ash have been achieved in SLS glass at 1150{degrees}C up to waste loadings of 50% using RASP. These waste loadings correspond to volume reductions of 86 and 94 volume %, respectively, with large associated savings in storage costs.

  14. SEPARATION AND EXTRACTION OF PLUTONIUM IN MIXED WASTE

    SciTech Connect

    Arthur E. Desrosiers, ScD, CHP; Robert Kaiser, ScD; Jason Antkowiak; Justin Desrosiers; Josh Jondro; Adam Kulczyk

    2002-12-13

    The Sonatol process uses ultrasonic agitation in fluorinated surfactant solutions to remove radioactive particles from surfaces. Filtering the suspended particles allows the solutions to be reused indefinitely. The current work applies the Sonatol process to the decontamination of heterogeneous legacy Pu-238 waste that exhibits excessive hydrogen gas generation, which prevents transportation of the waste to the Waste Isolation Pilot Plant. Bartlett Services, Inc. (BSI) designed and fabricated a prototype decontamination system within a replica of a Savannah River Site glovebox. In Phase I, BSI conducted cold testing with surrogate waste material to verify that the equipment, operating procedures, and test protocols would support testing with Pu-238 in Phase II. The surrogate waste material is representative of known constituents of legacy job control waste. Two sub-micron sized Pu-238 simulants were added to the surrogate waste so that decontamination could be tested. The first simulant was an Osram Sylvania Phosphor 2284C powder that fluoresces under ultraviolet light. The use of the fluorescent simulant allows rapid, inexpensive system startup testing because residuals can be assayed using a digital camera. The results of digital pixel analysis (DPA) are available immediately and do not require use of licensed material. The second simulant, which was used for integrated cold testing, was a cerium oxide powder that was activated in a research reactor neutron flux and assayed by photon spectroscopy. The surrogate transuranic (TRU) waste material was contaminated with Pu-238 simulants and loaded into the cleaning chamber, where the surrogates were ultrasonically agitated and rinsed. The decontaminated materials were then assayed for surface contamination by DPA to establish optimum operating parameters and provide process quality control. Selected samples were sent to the Massachusetts Institute of Technology for neutron activation analysis (NAA). NAA testing

  15. Characterization of waste streams on the Oak Ridge Reservation

    SciTech Connect

    Rivera, A.L.; Osborne-Lee, I.W.; Jackson, A.M.; Butcher, B.T. Jr.; Van Cleve, J.E. Jr.

    1987-01-01

    The Oak Ridge Reservation (ORR) plants generate solid low-level waste (LLW) that must be disposed of or stored on-site. The available disposal capacity of the current sites is projected to be fully utilized during the next decade. An LLW disposal strategy has been developed by the Low-Level Waste Disposal Development and Demonstration (LLWDDD) Program as a framework for bringing new, regulator-approved disposal capacity to the ORR. An increasing level of waste stream characterization will be needed to maintain the ability to effectively manage solid LLW by the facilities on the ORR under the new regulatory scenario. In this paper, current practices for solid LLW stream characterization, segregation, and certification are described. In addition, the waste stream characterization requirements for segregation and certification under the LLWDDD Program strategy are also examined. 6 refs., 3 figs., 4 tabs.

  16. Management of data quality of high level waste characterization

    SciTech Connect

    Winters, W.I., Westinghouse Hanford

    1996-06-12

    Over the past 10 years, the Hanford Site has been transitioning from nuclear materials production to Site cleanup operations. High-level waste characterization at the Hanford Site provides data to support present waste processing operations, tank safety programs, and future waste disposal programs. Quality elements in the high-level waste characterization program will be presented by following a sample through the data quality objective, sampling, laboratory analysis and data review process. Transition from production to cleanup has resulted in changes in quality systems and program; the changes, as well as other issues in these quality programs, will be described. Laboratory assessment through quality control and performance evaluation programs will be described, and data assessments in the laboratory and final reporting in the tank characterization reports will be discussed.

  17. Treatment of DOE and commercial mixed waste by the private sector

    SciTech Connect

    Garrison, T.W.; Apel, M.L.; Owens, C.M.

    1993-03-01

    This paper presents a conceptual approach for private sector treatment of mixed low-level radioactive waste generated by the US Department of Energy and commercial industries. This approach focuses on MLLW treatment technologies and capacities available through the private sector in the near term. Wastestream characterization data for 108 MLLW streams at the Idaho National Engineering Laboratory (INEL) were collected and combined with similar data for MLLWs generated through commercial practices. These data were then provided to private treatment facilities and vendors to determine if, and to what extent, they could successfully treat these wastes. Data obtained from this project have provided an initial assessment of private sector capability and capacity to treat a variety of MLLW streams. This information will help formulate plans for future treatment of these and similar wastestreams at DOE facilities. This paper presents details of the MLLW data-gathering efforts used in this research, private sector assessment methods employed, and results of this assessment. Advantages of private sector treatment, as well as barriers to its present use, are also addressed.

  18. USE OF RECYCLED POLYMERS FOR ENCAPSULATION OF RADIOACTIVE, HAZARDOUS AND MIXED WASTES

    SciTech Connect

    LAGERRAAEN,P.R.; KALB,P.D.

    1997-11-01

    Polyethylene encapsulation is a waste treatment technology developed at Brookhaven National Laboratory using thermoplastic polymers to safely and effectively solidify hazardous, radioactive and mixed wastes for disposal. Over 13 years of development and demonstration with surrogate wastes as well as actual waste streams on both bench and full scale have shown this to be a viable and robust technology with wide application. Process development efforts have previously focused on the use of virgin polymer feedstocks. In order to potentially improve process economics and serve to lessen the municipal waste burden, recycled polymers were investigated for use as encapsulating agents. Recycled plastics included low-density polyethylene, linear low-density polyethylene, high-density polyethylene and polypropylene, and were used as a direct substitute for or blended together with virgin resin. Impacts on processing and final waste form performance were examined.

  19. Stabilization of liquid low-level and mixed wastes: a treatability study

    SciTech Connect

    Carson, S.; Cheng, Yu-Cheng; Yellowhorse, L.; Peterson, P.

    1996-02-01

    A treatability study has been conducted on liquid low-level and mixed wastes using the stabilization agents Aquaset, Aquaset II, Aquaset II-H, Petroset, Petroset-H, and Petroset and Petroset II. A total of 40 different waste types with activities ranging from 10{sup {minus}14} to 10{sup {minus}4} curies/ml have been stabilized. Reported data for each waste include its chemical and radiological composition and the optimum composition or range of compositions (weight of agent/volume of waste) for each stabilization agent used. All wastes were successfully stabilized with one or more of the stabilization agents and all final waste forms passed the Paint Filter Liquids Test (EPA Method 9095).

  20. The Mixed Waste Management Facility closure and expansion at the Savannah River Site

    SciTech Connect

    Bittner, M.F.; Frye-O`Bryant, R.C.

    1992-07-01

    Process wastes containing radioactive and hazardous constituents have been generated throughout the operational history of the Savannah River Site. Solid wastes containing low level radionuclides were buried in Low Level Radioactive Disposal Facility (LLRWDF). Until 1986, waste containing lead and cadmium was disposed of in the Mixed Waste Management Facility (MWMF) portion of LLRWDF. Between 1986 and 1990, waste containing F-listed hazardous rags were buried. Current Resource Conservation and Recovery Act (RCRA) regulations prohibit the disposal of these hazardous wastes at nonpermitted facilities. This paper describes the closure activities for the MWMF, completed in 1990 and plans proposed for the expansion of this closure to include the LLRWDF suspect solvent rag trenches.

  1. The Mixed Waste Management Facility closure and expansion at the Savannah River Site

    SciTech Connect

    Bittner, M.F.; Frye-O'Bryant, R.C.

    1992-01-01

    Process wastes containing radioactive and hazardous constituents have been generated throughout the operational history of the Savannah River Site. Solid wastes containing low level radionuclides were buried in Low Level Radioactive Disposal Facility (LLRWDF). Until 1986, waste containing lead and cadmium was disposed of in the Mixed Waste Management Facility (MWMF) portion of LLRWDF. Between 1986 and 1990, waste containing F-listed hazardous rags were buried. Current Resource Conservation and Recovery Act (RCRA) regulations prohibit the disposal of these hazardous wastes at nonpermitted facilities. This paper describes the closure activities for the MWMF, completed in 1990 and plans proposed for the expansion of this closure to include the LLRWDF suspect solvent rag trenches.

  2. Mixed and Low-Level Waste Treatment Facility Project. Appendix B, Waste stream engineering files: Part 2, Low-level waste streams

    SciTech Connect

    Not Available

    1992-04-01

    Mixed and low-level wastes generated at the Idaho National Engineering Laboratory (INEL) are required to be managed according to applicable State and Federal regulations, and Department of Energy Orders that provide for the protection of human health and the environment. The Mixed and Low-Level Waste Treatment Facility Project was chartered in 1991, by the Department of Energy to provide treatment capability for these mixed and low-level waste streams. The first project task consisted of conducting engineering studies to identify the waste streams, their potential treatment strategies, and the requirements that would be imposed on the waste streams and the facilities used to process them. This report documents those studies so the project can continue with an evaluation of programmatic options, system tradeoff studies, and the conceptual design phase of the project. This report, appendix B, comprises the engineering design files for this project study. The engineering design files document each waste steam, its characteristics, and identified treatment strategies.

  3. Mixed Waste Treatment Cost Analysis for a Range of GeoMelt Vitrification Process Configurations

    SciTech Connect

    Thompson, L. E.

    2002-02-27

    GeoMelt is a batch vitrification process used for contaminated site remediation and waste treatment. GeoMelt can be applied in several different configurations ranging from deep subsurface in situ treatment to aboveground batch plants. The process has been successfully used to treat a wide range of contaminated wastes and debris including: mixed low-level radioactive wastes; mixed transuranic wastes; polychlorinated biphenyls; pesticides; dioxins; and a range of heavy metals. Hypothetical cost estimates for the treatment of mixed low-level radioactive waste were prepared for the GeoMelt subsurface planar and in-container vitrification methods. The subsurface planar method involves in situ treatment and the in-container vitrification method involves treatment in an aboveground batch plant. The projected costs for the subsurface planar method range from $355-$461 per ton. These costs equate to 18-20 cents per pound. The projected cost for the in-container method is $1585 per ton. This cost equates to 80 cents per pound. These treatment costs are ten or more times lower than the treatment costs for alternative mixed waste treatment technologies according to a 1996 study by the US Department of Energy.

  4. Treatment of M-area mixed wastes at the Savannah River Site

    SciTech Connect

    Not Available

    1994-06-01

    The Department of Energy has prepared this environmental assessment, DOE/EA-0918, to assess the potential environmental impacts of the treatment of mixed wastes currently stored in the M-Area at the Savannah River Site, near Aiken, South Carolina. DOE is proposing to treat and stabilize approximately 700,000 gallons of mixed waste currently stored in the Interim Treatment/Storage Facility (IT/SF) and Mixed Waste Storage Shed (MWSS). This waste material is proposed to be stabilized using a vitrification process and temporarily stored until final disposal is available by the year 2005. This document has been prepared to assess the potential environmental impacts attributable to the treatment and stabilization of M-area mixed wastes, the closure of the interim storage area, and storage of the vitrified waste until disposal in onsite RCRA vaults. Based on the analyses in the environmental assessment, the Department of Energy has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, the preparation of an environmental impact statement is not required, and the Department of Energy is issuing this finding of no significant impact.

  5. The need for mixed waste treatment options within the US Department of Energy

    SciTech Connect

    McCulla, W.H.; French, D.M.

    1992-12-31

    The United States Department of Energy (DOE) has generated and stored significant amounts of low-level mixed wastes consisting of radioactive materials mixed with hazardous chemical substances in various forms. The DOE is in the process of beginning a cleanup of these mixed wastes at many of its facilities. Many of these waste streams had been previously disposed of by methods acceptable at the time but with the passage of very stringent laws affecting migration of hazardous components, now the disposal areas constitute remediation sites. Disposal of low level radioactive waste potentially containing hazardous materials have also fallen under land disposal restrictions and currently no mixed waste is going to low level disposal facilities. The paper will address why the DOE is just now starting to comply with environmental laws, why there is a need to find more effective and less expensive means of cleaning up wastes, how the DOE is organizing to accomplish this cleanup, and several plasma technology development efforts in the DOE Complex that show promise of meeting these needs.

  6. Comparison of modified sulfur cement and hydraulic cement for encapsulation of radioactive and mixed wastes

    SciTech Connect

    Kalb, P.D.; Heiser, J.H. III; Colombo, P.

    1990-01-01

    The majority of solidification/stabilization systems for low-level radioactive waste (LLW) and mixed waste, both in the commercial sector and at Department of Energy (DOE) facilities, utilize hydraulic cement (such as portland cement) to encapsulate waste materials and yield a monolithic solid waste form for disposal. A new and innovative process utilizing modified sulfur cement developed by the US Bureau of Mines has been applied at Brookhaven National Laboratory (BNL) for the encapsulation of many of these problem'' wastes. Modified sulfur cement is a thermoplastic material, and as such, it can be heated above it's melting point (120{degree}C), combined with dry waste products to form a homogeneous mixture, and cooled to form a monolithic solid product. Under sponsorship of the DOE, research and development efforts at BNL have successfully applied the modified sulfur cement process for treatment of a range of LLWs including sodium sulfate salts, boric acid salts, and incinerator bottom ash and for mixed waste contaminated incinerator fly ash. Process development studies were conducted to determine optimal waste loadings for each waste type. Property evaluation studies were conducted to test waste form behavior under disposal conditions by applying relevant performance testing criteria established by the Nuclear Regulatory Commission (for LLW) and the Environmental Protection Agency (for hazardous wastes). Based on both processing and performance considerations, significantly greater waste loadings were achieved using modified sulfur cement when compared with hydraulic cement. Technology demonstration of the modified sulfur cement encapsulation system using production-scale equipment is scheduled for FY 1991. 12 refs., 8 figs., 3 tabs.

  7. Municipal Solid Waste Combustion : Fuel Testing and Characterization : Task 1 Report, May 30, 1990-October 1, 1990.

    SciTech Connect

    Bushnell, Dwight J.; Canova, Joseph H.; Dadkhah-Nikoo, Abbas.

    1990-10-01

    The objective of this study is to screen and characterize potential biomass fuels from waste streams. This will be accomplished by determining the types of pollutants produced while burning selected municipal waste, i.e., commercial mixed waste paper residential (curbside) mixed waste paper, and refuse derived fuel. These materials will be fired alone and in combination with wood, equal parts by weight. The data from these experiments could be utilized to size pollution control equipment required to meet emission standards. This document provides detailed descriptions of the testing methods and evaluation procedures used in the combustion testing and characterization project. The fuel samples will be examined thoroughly from the raw form to the exhaust emissions produced during the combustion test of a densified sample.

  8. Equipping a glovebox for waste form testing and characterization of plutonium bearing materials

    SciTech Connect

    Noy, M.; Johnson, S.G.; Musick, C.A.; Moschetti, T.L.

    1997-09-01

    The recent decision by the Department of Energy to pursue a hybrid option for the disposition of weapons plutonium has created the need for additional facilities that can examine and characterize waste forms that contain Pu. This hybrid option consists of the placement of plutonium into stable waste forms and also into mixed oxide fuel for commercial reactors. Glass and glass-ceramic waste forms have a long history of being effective hosts for containing radionuclides, including plutonium. The types of tests necessary to characterize the performance of candidate waste forms include: static leaching experiments on both monolithic and crushed waste forms, microscopic examination, and density determination. Frequently, the respective candidate waste forms must first be produced using elevated temperatures and/or high pressures. The desired operations in the glovebox include, but are not limited to the following: (1) production of vitrified/sintered samples, (2) sampling of glass from crucibles or other vessels, (3) preparing samples for microscopic inspection and monolithic and crushed static leach tests, and (4) performing and analyzing leach tests in situ. This paper will describe the essential equipment and modifications that are necessary to successfully accomplish the goal of outfitting a glovebox for these functions.

  9. Physical sampling for site and waste characterization

    SciTech Connect

    Bonnough, T.L.

    1996-08-01

    Physical sampling plays a basic role in high-level radioactive waste management program effort. The term ``physical sampling`` used here means collecting tangible, physical samples of soil, water, air, waste streams, or other materials. The industry defines the term ``physical sampling`` broadly to include measurements of physical conditions such as temperature, wind conditions, and pH, which are also often taken in a sample collection effort. Most environmental compliance actions are supported by the results of taking, recording, and analyzing physical samples and the measurements of physical conditions taken in association with sample collecting. Therefore, the when and how to take samples is needed to be known and planned.

  10. Forward Operating Bases Solid Waste Characterization

    DTIC Science & Technology

    2010-06-17

    0.2% Other Metals 11 4.8 0.2% Corrugated Paper 349 158 6.0% Other Paper 179 81 3.1% Scrap Wood 4,151 1,883 72% Kitchen Food Waste 328 149 5.7% Post...consumer Food Waste 51 23 0.9% WWTP Sludge (dry weight) [2] 70 32 1.2% Saw Dust 47 21 0.8% Grass Clippings 39 18 0.7% Glass 40 18 0.7% Textiles 25 11 0.4

  11. Tellurite glass as a waste form for a simulated mixed chloride waste stream: Candidate materials selection and initial testing

    SciTech Connect

    Riley, Brian J.; Rieck, Bennett T.; McCloy, John S.; Crum, Jarrod V.; Sundaram, S. K.; Vienna, John D.

    2012-02-02

    Tellurite glasses have been researched widely for the last 60 years since they were first introduced by Stanworth. These glasses have been primarily used in research applications as glass host materials for lasers and as non-linear optical materials, though many other uses exist in the literature. Tellurite glasses have long since been used as hosts for various, and even sometimes mixed, halogens (i.e., multiple chlorides or even chlorides and iodides). Thus, it was reasonable to expect that these types of glasses could be used as a waste form to immobilize a combination of mixed chlorides present in the electrochemical separations process involved with fuel separations and processing from nuclear reactors. Many of the properties related to waste forms (e.g., chemical durability, maximum chloride loading) for these materials are unknown and thus, in this study, several different types of tellurite glasses were made and their properties studied to determine if such a candidate waste form could be fabricated with these glasses. One of the formulations studied was a lead tellurite glass, which had a low sodium release and is on-par with high-level waste silicate glass waste forms.

  12. Application of value of information of tank waste characterization: A new paradigm for defining tank waste characterization requirements

    SciTech Connect

    Fassbender, L.L.; Brewster, M.E.; Brothers, A.J.

    1996-11-01

    This report presents the rationale for adopting a recommended characterization strategy that uses a risk-based decision-making framework for managing the Tank Waste Characterization program at Hanford. The risk-management/value-of-information (VOI) strategy that is illustrated explicitly links each information-gathering activity to its cost and provides a mechanism to ensure that characterization funds are spent where they can produce the largest reduction in risk. The approach was developed by tailoring well-known decision analysis techniques to specific tank waste characterization applications. This report illustrates how VOI calculations are performed and demonstrates that the VOI approach can definitely be used for real Tank Waste Remediation System (TWRS) characterization problems.

  13. In-situ stabilization of TRU/mixed waste project at the INEEL

    SciTech Connect

    Milian, L.W.; Heiser, J.H.; Adams, J.W.; Rutenkroeger, S.P.

    1997-08-01

    Throughout the DOE complex, buried waste poses a threat to the environment by means of contaminant transport. Many of the sites contain buried waste that is untreated, prior to disposal, or insufficiently treated, by today`s standards. One option to remedy these disposal problems is to stabilize the waste in situ. This project was in support of the Transuranic/Mixed Buried Waste - Arid Soils product line of the Landfill Focus Area, which is managed currently by the Idaho National Engineering Laboratory (BNL) provided the analytical laboratory and technical support for the various stabilization activities that will be performed as part of the In Situ Stabilization of TRU/Mixed Waste project at the INEL. More specifically, BNL was involved in laboratory testing that included the evaluation of several grouting materials and their compatibility, interaction, and long-term durability/performance, following the encapsulation of various waste materials. The four grouting materials chosen by INEL were: TECT 1, a two component, high density cementious grout, WAXFIX, a two component, molten wax product, Carbray 100, a two component elastomeric epoxy, and phosphate cement, a two component ceramic. A simulated waste stream comprised of sodium nitrate, Canola oil, and INEL soil was used in this study. Seven performance and durability tests were conducted on grout/waste specimens: compressive strength, wet-dry cycling, thermal analysis, base immersion, solvent immersion, hydraulic conductivity, and accelerated leach testing.

  14. Direct chemical oxidation of hazardous and mixed wastes

    SciTech Connect

    Cooper, J.F.; Wang, F.; Farmer, J.

    1995-04-11

    Direct Chemical Oxidation (DCO) refers to the use of continuously-regenerated peroxydisulfate (with possible hydrogen peroxide supplements) to effect total destruction of organic wastes in aqueous media. The process does not involve toxic catalysts or the cogeneration of secondary wastes. Peroxydisulfate (S{sub 2}O{sub 8}{sup -2}) is one the strongest known chemical oxidants. It is routinely used in laboratory total carbon analyzers--uncatalyzed at 100{degrees}C, or catalyzed by UV, platinum or dissolved transition metal ions--and detects by oxidative destruction to 0.01 ppm levels. We report: (1) development of a waste treatment approach grounded in industrial electrolysis practice and in reaction rate data for Pt-initiated S{sub 2}O{sub 8}{sup -2} oxidation at 100{degrees}C; (2) tests of an electrochemical cell generating 1.5 N peroxydisulfate solutions; (3) lower-limit rate data for destruction of surrogates for chemical warfare agents and compounds with functional groups resisting oxidation; and (4) destruction of a Dowex{reg_sign} ion exchange resin, such as used in nuclear processing. This technique is particularly suited for applications in analytical laboratories or in manufacturing industries where the waste generation is low in volume, highly toxic or fugitive, or changing. The process may be tailored for destruction of very small to bulk quantities of chemical warfare agents.

  15. (Low-level waste disposal facility siting and site characterization)

    SciTech Connect

    Mezga, L.J.; Ketelle, R.H.; Pin, F.G.; Van Hoesen, S.D.

    1985-10-25

    A US team consisting of representatives of Oak Ridge National Laboratory (ORNL), Savannah River Plant (SRP), Savannah river Laboratory (SRL), and the Department of Energy Office of Defense Waste and Byproducts Management participated in the fourth meeting held under the US/French Radioactive Waste Management Agreement between the US Department of Energy and the Commissariat a l'Energie Atomique. This meeting, held at Agence Nationale pour les Gestion des Dechets Radioactifs' (ANDRA's) Headquarters in Paris, was a detailed, technical topical workshop focusing on Low-Level Waste Disposal Facility Siting and Site Characterization.'' The meeting also included a visit to the Centre de la Manche waste management facility operated by ANDRA to discuss and observe the French approach to low-level waste management. The final day of the meeting was spent at the offices of Societe Generale pour les Techniques Nouvelles (SGN) discussing potential areas of future cooperation and exchange. 20 figs.

  16. Application of remote Raman screening to processing of mixed wastes in drums

    SciTech Connect

    Crawford, B.A.; Jewett, J.R.; Parker, K.E.; Petersen, C.A.

    1993-02-01

    Disposal of transuranic and low-level drum waste involves decisions based on transportation restrictions, Waste Isolation Pilot Project - Waste Acceptance Criteria, and regulation resulting from the Resource Conservation and Recovery Act of 1976 and the Washington State Department of Ecology. To support the decisions made concerning final disposition of these wastes, characterization protocols must be established that ultimately aid in defining the environmental impact. Under current methods, Intensive and expensive laboratory analyses are requested to support these decisions. Alternative screening analyses have been investigated to support characterization and reduce costs and sample turn-around times. One promising screening technique involves application of remote Raman spectroscopy for identification of unknown salts, sludges, and solids in wastes. Raman spectroscopy when used with real-time radiography and visual documentation expands the information base available for making real-time decisions for treatment of diverse drummed radioactive solid waste in a waste processing facility. Fourier Transform Raman spectroscopy has been successfully employed to identify oxidizing reagent waste solutions disposed on vermiculite. In addition, it has been proven that low concentrations of material in binary salt mixtures can be detected by using fiber optic remote Fourier Transform Raman spectroscopy. Development of an extensive solid waste libraryis a key element in the deployment of this technology in the process environment of solid waste drums and barrels.

  17. Microbubble cloud characterization by nonlinear frequency mixing.

    PubMed

    Cavaro, M; Payan, C; Moysan, J; Baqué, F

    2011-05-01

    In the frame of the fourth generation forum, France decided to develop sodium fast nuclear reactors. French Safety Authority requests the associated monitoring of argon gas into sodium. This implies to estimate the void fraction, and a histogram indicating the bubble population. In this context, the present letter studies the possibility of achieving an accurate determination of the histogram with acoustic methods. A nonlinear, two-frequency mixing technique has been implemented, and a specific optical device has been developed in order to validate the experimental results. The acoustically reconstructed histograms are in excellent agreement with those obtained using optical methods.

  18. Method for immobilizing mixed waste chloride salts containing radionuclides and other hazardous wastes

    DOEpatents

    Lewis, Michele A.; Johnson, Terry R.

    1993-01-01

    The invention is a method for the encapsulation of soluble radioactive waste chloride salts containing radionuclides such as strontium, cesium and hazardous wastes such as barium so that they may be permanently stored without future threat to the environment. The process consists of contacting the salts containing the radionuclides and hazardous wastes with certain zeolites which have been found to ion exchange with the radionuclides and to occlude the chloride salts so that the resulting product is leach resistant.

  19. Method for immobilizing mixed waste chloride salts containing radionuclides and other hazardous wastes

    DOEpatents

    Lewis, Michele A.; Johnson, Terry R.

    1993-09-07

    The invention is a method for the encapsulation of soluble radioactive waste chloride salts containing radionuclides such as strontium, cesium and hazardous wastes such as barium so that they may be permanently stored without future threat to the environment. The process consists of contacting the salts containing the radionuclides and hazardous wastes with certain zeolites which have been found to ion exchange with the radionuclides and to occlude the chloride salts so that the resulting product is leach resistant.

  20. Speciation and Characterization of E-Waste, Using Analytical Techniques

    NASA Astrophysics Data System (ADS)

    López, C. Cortés; Cruz, V. E. Reyes; Rodríguez, M. A. Veloz; Ávila, J. Hernández; Badillo, J. Flores; Murcia, J. A. Cobos

    Electronic waste (e-waste), have a high potential as a source of precious metals, since they can contain metals like silver, gold, platinum, copper, zinc, nickel, tin and others. In this paper some e-waste were characterized using several analytical techniques as Scanning Electron Microscopy (SEM), X-ray diffraction (XRD) and inductively coupled plasma (ICP) in addition to the thermodynamic study by Pourbaix diagrams of silver (Ag), gold (Au), platinum (Pt), copper (Cu), nickel (Ni), tin (Sn) and zinc (Zn); considering an average low concentration of HNO3 (10% v/v). With results of the characterization was determined that the e-waste is an ideal source for the recovery of valuable metals. Similarly, the thermodynamic studies showed that it is possible to obtain all metallic species except Pt, in a potential window of 1.45V to 2.0V vs SCE.

  1. Microbial community dynamics in mesophilic anaerobic co-digestion of mixed waste.

    PubMed

    Supaphol, Savaporn; Jenkins, Sasha N; Intomo, Pichamon; Waite, Ian S; O'Donnell, Anthony G

    2011-03-01

    This paper identifies key components of the microbial community involved in the mesophilic anaerobic co-digestion (AD) of mixed waste at Rayong Biogas Plant, Thailand. The AD process is separated into three stages: front end treatment (FET); feed holding tank and the main anaerobic digester. The study examines how the microbial community structure was affected by the different stages and found that seeding the waste at the beginning of the process (FET) resulted in community stability. Also, co-digestion of mixed waste supported different bacterial and methanogenic pathways. Typically, acetoclastic methanogenesis was the major pathway catalysed by Methanosaeta but hydrogenotrophs were also supported. Finally, the three-stage AD process means that hydrolysis and acidogenesis is initiated prior to entering the main digester which helps improve the bioconversion efficiency. This paper demonstrates that both resource availability (different waste streams) and environmental factors are key drivers of microbial community dynamics in mesophilic, anaerobic co-digestion.

  2. US Department of Energy interim mixed waste inventory report: Waste streams, treatment capacities and technologies: Volume 2, Site specific---California through Idaho. [Waste mixtures of hazardous materials and low-level radioactive wastes or transuranic wastes

    SciTech Connect

    Not Available

    1993-04-01

    The Department of Energy (DOE) has prepared this report to provide an inventory of its mixed wastes and treatment capacities and technologies in response to Section 105(a) of the Federal Facility Compliance act (FFCAct) of 1992 (Pub. L. No. 102-386). As required by the FFCAct-1992, this report provide site-specific information on DOE's mixed waste streams and a general review of available and planned treatment facilities for mixed wastes for the following sites: eight California facilities which are Energy Technology engineering Center, General Atomics, General Electric Vallecitos Nuclear Center, Lawrence Berkeley Laboratory, Lawrence Livermore National Laboratory, Laboratory for Energy-Related Health Research, Mare Island Naval Shipyard, and Sandia national Laboratories; Grand Junction Project Office; Rocky Flats Plant; Knolls Atomic Power Laboratory-Windsor Site; Pinellas Plant; Pearl Harbor Naval Shipyard; Argonne National Laboratory-West; and Idaho National Engineering Laboratory.

  3. Guidelines for generators of hazardous chemical waste at LBL and guidelines for generators of radioactive and mixed waste at LBL. Revision 1

    SciTech Connect

    Not Available

    1991-09-01

    In part one of this document the Governing Documents and Definitions sections provide general guidelines and regulations applying to the handling of hazardous chemical wastes. The remaining sections provide details on how you can prepare your waste properly for transport and disposal. They are correlated with the steps you must take to properly prepare your waste for pickup. The purpose of the second part of this document is to provide the acceptance criteria for the transfer of radioactive and mixed waste to LBL`s Hazardous Waste Handling Facility (HWHF). These guidelines describe how you, as a generator of radioactive or mixed waste, can meet LBL`s acceptance criteria for radioactive and mixed waste.

  4. Task 1.6 -- Mixed waste treatment. Semi-annual report, January 1--June 30, 1995

    SciTech Connect

    Rindt, J.R.

    1997-08-01

    Mixed-waste sites make up the majority of contaminated sites, yet remediation techniques used at such sites often target only the most prevalent contaminant. A better understanding of site situation (i.e., most common types of contamination), current remediation techniques, and combinations of techniques would provide insight into areas in which further research should be performed. The first half of this task program year consisted of a survey of common types of mixed-wastes sites and a detailed literature search of the remediation techniques and combinations of techniques that were currently available. From this information, an assessment of each of the techniques was made and combined into various ways appropriate to mixed-waste protocol. This activity provided insight into areas in which further research should be performed.

  5. Characterization plan for the immobilized low-activity waste borehole

    SciTech Connect

    Reidel, S.P.; Reynolds, K.D.

    1998-03-01

    The US Department of Energy`s (DOE`s) Hanford Site has the most diverse and largest amounts of radioactive tank waste in the US. High-level radioactive waste has been stored at Hanford in large underground tanks since 1944. Approximately 209,000 m{sup 3} (54 Mgal) of waste are currently stored in 177 tanks. Vitrification and onsite disposal of low activity tank waste (LAW) are embodied in the strategy described in the Tri-Party Agreement. The tank waste is to be retrieved, separated into low- and high-level fractions, and then immobilized by private vendors. The DOE will receive the vitrified waste from private vendors and dispose of the low-activity fraction in the Hanford Site 200 East Area. The Immobilized Low-Activity Waste Disposal Complex (ILAWDC) is part of the disposal complex. This report is a plan to drill the first characterization borehole and collect data at the ILAWDC. This plan updates and revises the deep borehole portion of the characterization plan for the ILAWDC by Reidel and others (1995). It describes data collection activities for determining the physical and chemical properties of the vadose zone and the saturated zone at and in the immediate vicinity of the proposed ILAWDC. These properties then will be used to develop a conceptual geohydrologic model of the ILAWDC site in support of the Hanford ILAW Performance Assessment.

  6. Synthesis and characterization of carboxymethyl cellulose from office waste paper: a greener approach towards waste management.

    PubMed

    Joshi, Gyanesh; Naithani, Sanjay; Varshney, V K; Bisht, Surendra S; Rana, Vikas; Gupta, P K

    2015-04-01

    In the present study, functionalization of mixed office waste (MOW) paper has been carried out to synthesize carboxymethyl cellulose, a most widely used product for various applications. MOW was pulped and deinked prior to carboxymethylation. The deinked pulp yield was 80.62 ± 2.0% with 72.30 ± 1.50% deinkability factor. The deinked pulp was converted to CMC by alkalization followed by etherification using NaOH and ClCH2COONa respectively, in an alcoholic medium. Maximum degree of substitution (DS) (1.07) of prepared CMC was achieved at 50 °C with 0.094 M and 0.108 M concentrations of NaOH and ClCH2COONa respectively for 3h reaction time. The rheological characteristics of 1-3% aqueous solution of optimized CMC product showed the non-Newtonian pseudoplastic behavior. Fourier transform infra red (FTIR), nuclear magnetic resonance (NMR) and scanning electron microscope (SEM) study were used to characterize the CMC product. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Greater-than-Class C low-level waste characterization

    SciTech Connect

    Piscitella, R.R.

    1991-12-31

    In 1985, Public Law 99-240 (Low-Level Radioactive Waste Policy Amendments Act of 1985) made the Department of Energy (DOE) responsible for the disposal of greater-than-Class C low-level radioactive waste (GTCC LLW). DOE strategies for storage and disposal of GTCC LLW required characterization of volumes, radionuclide activities, and waste forms. Data from existing literature, disposal records, and original research were used to estimate characteristics, project volumes, and determine radionuclide activities to the years 2035 and 2055. Twenty-year life extensions for 70% of the operating nuclear reactors were assumed to calculate the GTCC LLW available in 2055. The following categories of GTCC LLW were addressed: Nuclear Utilities Waste; Potential Sealed Sources GTCC LLW; DOE-Held Potential GTCC LLW; and Other Generator Waste. It was determined that the largest volume of these wastes, approximately 57%, is generated by nuclear utilities. The Other Generator Waste category contributes approximately 10% of the total GTCC LLW volume projected to the year 2035. DOE-Held Potential GTCC LLW accounts for nearly 33% of all waste projected to the year 2035. Potential Sealed Sources GTCC LLW is less than 0.2% of the total projected volume. The base case total projected volume of GTCC LLW for all categories was 3,250 cubic meters. This was substantially less than previous estimates.

  8. Production of Caproic Acid from Mixed Organic Waste: An Environmental Life Cycle Perspective

    PubMed Central

    2017-01-01

    Caproic acid is an emerging platform chemical with diverse applications. Recently, a novel biorefinery process, that is, chain elongation, was developed to convert mixed organic waste and ethanol into renewable caproic acids. In the coming years, this process may become commercialized, and continuing to improve on the basis of numerous ongoing technological and microbiological studies. This study aims to analyze the environmental performance of caproic acid production from mixed organic waste via chain elongation at this current, early stage of technological development. To this end, a life cycle assessment (LCA) was performed to evaluate the environmental impact of producing 1 kg caproic acid from organic waste via chain elongation, in both a lab-scale and a pilot-scale system. Two mixed organic waste were used as substrates: the organic fraction of municipal solid waste (OFMSW) and supermarket food waste (SFW). Ethanol use was found to be the dominant cause of environmental impact over the life cycle. Extraction solvent recovery was found to be a crucial uncertainty that may have a substantial influence on the life-cycle impacts. We recommend that future research and industrial producers focus on the reduction of ethanol use in chain elongation and improve the recovery efficiency of the extraction solvent. PMID:28513150

  9. Production of Caproic Acid from Mixed Organic Waste: An Environmental Life Cycle Perspective.

    PubMed

    Chen, Wei-Shan; Strik, David P B T B; Buisman, Cees J N; Kroeze, Carolien

    2017-06-20

    Caproic acid is an emerging platform chemical with diverse applications. Recently, a novel biorefinery process, that is, chain elongation, was developed to convert mixed organic waste and ethanol into renewable caproic acids. In the coming years, this process may become commercialized, and continuing to improve on the basis of numerous ongoing technological and microbiological studies. This study aims to analyze the environmental performance of caproic acid production from mixed organic waste via chain elongation at this current, early stage of technological development. To this end, a life cycle assessment (LCA) was performed to evaluate the environmental impact of producing 1 kg caproic acid from organic waste via chain elongation, in both a lab-scale and a pilot-scale system. Two mixed organic waste were used as substrates: the organic fraction of municipal solid waste (OFMSW) and supermarket food waste (SFW). Ethanol use was found to be the dominant cause of environmental impact over the life cycle. Extraction solvent recovery was found to be a crucial uncertainty that may have a substantial influence on the life-cycle impacts. We recommend that future research and industrial producers focus on the reduction of ethanol use in chain elongation and improve the recovery efficiency of the extraction solvent.

  10. Process for the encapsulation and stabilization of radioactive, hazardous and mixed wastes

    DOEpatents

    Colombo, Peter; Kalb, Paul D.; Heiser, III, John H.

    1997-11-14

    The present invention provides a method for encapsulating and stabilizing radioactive, hazardous and mixed wastes in a modified sulfur cement composition. The waste may be incinerator fly ash or bottom ash including radioactive contaminants, toxic metal salts and other wastes commonly found in refuse. The process may use glass fibers mixed into the composition to improve the tensile strength and a low concentration of anhydrous sodium sulfide to reduce toxic metal solubility. The present invention preferably includes a method for encapsulating radioactive, hazardous and mixed wastes by combining substantially anhydrous wastes, molten modified sulfur cement, preferably glass fibers, as well as anhydrous sodium sulfide or calcium hydroxide or sodium hydroxide in a heated double-planetary orbital mixer. The modified sulfur cement is preheated to about 135.degree..+-.5.degree. C., then the remaining substantially dry components are added and mixed to homogeneity. The homogeneous molten mixture is poured or extruded into a suitable mold. The mold is allowed to cool, while the mixture hardens, thereby immobilizing and encapsulating the contaminants present in the ash.

  11. Mixed waste landfill corrective measures study final report Sandia National Laboratories, Albuquerque, New Mexico.

    SciTech Connect

    Peace, Gerald L.; Goering, Timothy James

    2004-03-01

    The Mixed Waste Landfill occupies 2.6 acres in the north-central portion of Technical Area 3 at Sandia National Laboratories, Albuquerque, New Mexico. The landfill accepted low-level radioactive and mixed waste from March 1959 to December 1988. This report represents the Corrective Measures Study that has been conducted for the Mixed Waste Landfill. The purpose of the study was to identify, develop, and evaluate corrective measures alternatives and recommend the corrective measure(s) to be taken at the site. Based upon detailed evaluation and risk assessment using guidance provided by the U.S. Environmental Protection Agency and the New Mexico Environment Department, the U.S. Department of Energy and Sandia National Laboratories recommend that a vegetative soil cover be deployed as the preferred corrective measure for the Mixed Waste Landfill. The cover would be of sufficient thickness to store precipitation, minimize infiltration and deep percolation, support a healthy vegetative community, and perform with minimal maintenance by emulating the natural analogue ecosystem. There would be no intrusive remedial activities at the site and therefore no potential for exposure to the waste. This alternative poses minimal risk to site workers implementing institutional controls associated with long-term environmental monitoring as well as routine maintenance and surveillance of the site.

  12. Engineering development and demonstration of DETOX{sup SM} wet oxidation for mixed waste treatment

    SciTech Connect

    Dhooge, P.M.; Goldblatt, S.D.; Moslander, J.E.; Robertson, D.T.; Rogers, T.W.; Zigmond, J.A.

    1997-12-01

    DETOX{sup SM}, a catalyzed chemical oxidation process, is under development for treatment of hazardous and mixed wastes at Department of Energy sites. To support this effort, developmental engineering studies have been formed for aspects of the process to help ensure safe and effective operation. Subscale agitation studies have been preformed to identify a suitable mixing head and speed for the primary reaction vessel agitator. Mechanisms for feeding solid waste materials to the primary reaction vessel have been investigated. Filtration to remove solid field process residue, and the use of various filtration aids, has been studied. Extended compatibility studies on the materials of construction have been performed. Due to a change to Rocky Flats Environmental Technology Site (RFETS) for the mixed waste portion of the demonstration, types of wastes suitable and appropriate for treatment at RFETS had to be chosen. A Prototype unit has been fabricated and will be demonstrated on hazardous and mixed wastes at Savannah River Site (SRS) and RFETS during 1997 and 1998. The unit is in shakedown testing at present. Data validation and an engineering evaluation will be performed during the demonstration.

  13. TWRS privatization support project waste characterization database development

    SciTech Connect

    1995-11-01

    Pacific Northwest National Laboratory requested support from ICF Kaiser Hanford Company in assembling radionuclide and chemical analyte sample data and inventory estimates for fourteen Hanford underground storage tanks: 241-AN-102, -104, -105, -106, and -107, 241-AP-102, -104, and -105, 241-AW-101, -103, and -105, 241 AZ-101 and -102; and 241