Sample records for mixed-effect regression models

  1. Mixed conditional logistic regression for habitat selection studies.

    PubMed

    Duchesne, Thierry; Fortin, Daniel; Courbin, Nicolas

    2010-05-01

    1. Resource selection functions (RSFs) are becoming a dominant tool in habitat selection studies. RSF coefficients can be estimated with unconditional (standard) and conditional logistic regressions. While the advantage of mixed-effects models is recognized for standard logistic regression, mixed conditional logistic regression remains largely overlooked in ecological studies. 2. We demonstrate the significance of mixed conditional logistic regression for habitat selection studies. First, we use spatially explicit models to illustrate how mixed-effects RSFs can be useful in the presence of inter-individual heterogeneity in selection and when the assumption of independence from irrelevant alternatives (IIA) is violated. The IIA hypothesis states that the strength of preference for habitat type A over habitat type B does not depend on the other habitat types also available. Secondly, we demonstrate the significance of mixed-effects models to evaluate habitat selection of free-ranging bison Bison bison. 3. When movement rules were homogeneous among individuals and the IIA assumption was respected, fixed-effects RSFs adequately described habitat selection by simulated animals. In situations violating the inter-individual homogeneity and IIA assumptions, however, RSFs were best estimated with mixed-effects regressions, and fixed-effects models could even provide faulty conclusions. 4. Mixed-effects models indicate that bison did not select farmlands, but exhibited strong inter-individual variations in their response to farmlands. Less than half of the bison preferred farmlands over forests. Conversely, the fixed-effect model simply suggested an overall selection for farmlands. 5. Conditional logistic regression is recognized as a powerful approach to evaluate habitat selection when resource availability changes. This regression is increasingly used in ecological studies, but almost exclusively in the context of fixed-effects models. Fitness maximization can imply differences in trade-offs among individuals, which can yield inter-individual differences in selection and lead to departure from IIA. These situations are best modelled with mixed-effects models. Mixed-effects conditional logistic regression should become a valuable tool for ecological research.

  2. A method for fitting regression splines with varying polynomial order in the linear mixed model.

    PubMed

    Edwards, Lloyd J; Stewart, Paul W; MacDougall, James E; Helms, Ronald W

    2006-02-15

    The linear mixed model has become a widely used tool for longitudinal analysis of continuous variables. The use of regression splines in these models offers the analyst additional flexibility in the formulation of descriptive analyses, exploratory analyses and hypothesis-driven confirmatory analyses. We propose a method for fitting piecewise polynomial regression splines with varying polynomial order in the fixed effects and/or random effects of the linear mixed model. The polynomial segments are explicitly constrained by side conditions for continuity and some smoothness at the points where they join. By using a reparameterization of this explicitly constrained linear mixed model, an implicitly constrained linear mixed model is constructed that simplifies implementation of fixed-knot regression splines. The proposed approach is relatively simple, handles splines in one variable or multiple variables, and can be easily programmed using existing commercial software such as SAS or S-plus. The method is illustrated using two examples: an analysis of longitudinal viral load data from a study of subjects with acute HIV-1 infection and an analysis of 24-hour ambulatory blood pressure profiles.

  3. Mixed-effects Gaussian process functional regression models with application to dose-response curve prediction.

    PubMed

    Shi, J Q; Wang, B; Will, E J; West, R M

    2012-11-20

    We propose a new semiparametric model for functional regression analysis, combining a parametric mixed-effects model with a nonparametric Gaussian process regression model, namely a mixed-effects Gaussian process functional regression model. The parametric component can provide explanatory information between the response and the covariates, whereas the nonparametric component can add nonlinearity. We can model the mean and covariance structures simultaneously, combining the information borrowed from other subjects with the information collected from each individual subject. We apply the model to dose-response curves that describe changes in the responses of subjects for differing levels of the dose of a drug or agent and have a wide application in many areas. We illustrate the method for the management of renal anaemia. An individual dose-response curve is improved when more information is included by this mechanism from the subject/patient over time, enabling a patient-specific treatment regime. Copyright © 2012 John Wiley & Sons, Ltd.

  4. MIXOR: a computer program for mixed-effects ordinal regression analysis.

    PubMed

    Hedeker, D; Gibbons, R D

    1996-03-01

    MIXOR provides maximum marginal likelihood estimates for mixed-effects ordinal probit, logistic, and complementary log-log regression models. These models can be used for analysis of dichotomous and ordinal outcomes from either a clustered or longitudinal design. For clustered data, the mixed-effects model assumes that data within clusters are dependent. The degree of dependency is jointly estimated with the usual model parameters, thus adjusting for dependence resulting from clustering of the data. Similarly, for longitudinal data, the mixed-effects approach can allow for individual-varying intercepts and slopes across time, and can estimate the degree to which these time-related effects vary in the population of individuals. MIXOR uses marginal maximum likelihood estimation, utilizing a Fisher-scoring solution. For the scoring solution, the Cholesky factor of the random-effects variance-covariance matrix is estimated, along with the effects of model covariates. Examples illustrating usage and features of MIXOR are provided.

  5. Bayesian quantile regression-based partially linear mixed-effects joint models for longitudinal data with multiple features.

    PubMed

    Zhang, Hanze; Huang, Yangxin; Wang, Wei; Chen, Henian; Langland-Orban, Barbara

    2017-01-01

    In longitudinal AIDS studies, it is of interest to investigate the relationship between HIV viral load and CD4 cell counts, as well as the complicated time effect. Most of common models to analyze such complex longitudinal data are based on mean-regression, which fails to provide efficient estimates due to outliers and/or heavy tails. Quantile regression-based partially linear mixed-effects models, a special case of semiparametric models enjoying benefits of both parametric and nonparametric models, have the flexibility to monitor the viral dynamics nonparametrically and detect the varying CD4 effects parametrically at different quantiles of viral load. Meanwhile, it is critical to consider various data features of repeated measurements, including left-censoring due to a limit of detection, covariate measurement error, and asymmetric distribution. In this research, we first establish a Bayesian joint models that accounts for all these data features simultaneously in the framework of quantile regression-based partially linear mixed-effects models. The proposed models are applied to analyze the Multicenter AIDS Cohort Study (MACS) data. Simulation studies are also conducted to assess the performance of the proposed methods under different scenarios.

  6. Modelling subject-specific childhood growth using linear mixed-effect models with cubic regression splines.

    PubMed

    Grajeda, Laura M; Ivanescu, Andrada; Saito, Mayuko; Crainiceanu, Ciprian; Jaganath, Devan; Gilman, Robert H; Crabtree, Jean E; Kelleher, Dermott; Cabrera, Lilia; Cama, Vitaliano; Checkley, William

    2016-01-01

    Childhood growth is a cornerstone of pediatric research. Statistical models need to consider individual trajectories to adequately describe growth outcomes. Specifically, well-defined longitudinal models are essential to characterize both population and subject-specific growth. Linear mixed-effect models with cubic regression splines can account for the nonlinearity of growth curves and provide reasonable estimators of population and subject-specific growth, velocity and acceleration. We provide a stepwise approach that builds from simple to complex models, and account for the intrinsic complexity of the data. We start with standard cubic splines regression models and build up to a model that includes subject-specific random intercepts and slopes and residual autocorrelation. We then compared cubic regression splines vis-à-vis linear piecewise splines, and with varying number of knots and positions. Statistical code is provided to ensure reproducibility and improve dissemination of methods. Models are applied to longitudinal height measurements in a cohort of 215 Peruvian children followed from birth until their fourth year of life. Unexplained variability, as measured by the variance of the regression model, was reduced from 7.34 when using ordinary least squares to 0.81 (p < 0.001) when using a linear mixed-effect models with random slopes and a first order continuous autoregressive error term. There was substantial heterogeneity in both the intercept (p < 0.001) and slopes (p < 0.001) of the individual growth trajectories. We also identified important serial correlation within the structure of the data (ρ = 0.66; 95 % CI 0.64 to 0.68; p < 0.001), which we modeled with a first order continuous autoregressive error term as evidenced by the variogram of the residuals and by a lack of association among residuals. The final model provides a parametric linear regression equation for both estimation and prediction of population- and individual-level growth in height. We show that cubic regression splines are superior to linear regression splines for the case of a small number of knots in both estimation and prediction with the full linear mixed effect model (AIC 19,352 vs. 19,598, respectively). While the regression parameters are more complex to interpret in the former, we argue that inference for any problem depends more on the estimated curve or differences in curves rather than the coefficients. Moreover, use of cubic regression splines provides biological meaningful growth velocity and acceleration curves despite increased complexity in coefficient interpretation. Through this stepwise approach, we provide a set of tools to model longitudinal childhood data for non-statisticians using linear mixed-effect models.

  7. Tutorial on Biostatistics: Linear Regression Analysis of Continuous Correlated Eye Data.

    PubMed

    Ying, Gui-Shuang; Maguire, Maureen G; Glynn, Robert; Rosner, Bernard

    2017-04-01

    To describe and demonstrate appropriate linear regression methods for analyzing correlated continuous eye data. We describe several approaches to regression analysis involving both eyes, including mixed effects and marginal models under various covariance structures to account for inter-eye correlation. We demonstrate, with SAS statistical software, applications in a study comparing baseline refractive error between one eye with choroidal neovascularization (CNV) and the unaffected fellow eye, and in a study determining factors associated with visual field in the elderly. When refractive error from both eyes were analyzed with standard linear regression without accounting for inter-eye correlation (adjusting for demographic and ocular covariates), the difference between eyes with CNV and fellow eyes was 0.15 diopters (D; 95% confidence interval, CI -0.03 to 0.32D, p = 0.10). Using a mixed effects model or a marginal model, the estimated difference was the same but with narrower 95% CI (0.01 to 0.28D, p = 0.03). Standard regression for visual field data from both eyes provided biased estimates of standard error (generally underestimated) and smaller p-values, while analysis of the worse eye provided larger p-values than mixed effects models and marginal models. In research involving both eyes, ignoring inter-eye correlation can lead to invalid inferences. Analysis using only right or left eyes is valid, but decreases power. Worse-eye analysis can provide less power and biased estimates of effect. Mixed effects or marginal models using the eye as the unit of analysis should be used to appropriately account for inter-eye correlation and maximize power and precision.

  8. Application of Hierarchical Linear Models/Linear Mixed-Effects Models in School Effectiveness Research

    ERIC Educational Resources Information Center

    Ker, H. W.

    2014-01-01

    Multilevel data are very common in educational research. Hierarchical linear models/linear mixed-effects models (HLMs/LMEs) are often utilized to analyze multilevel data nowadays. This paper discusses the problems of utilizing ordinary regressions for modeling multilevel educational data, compare the data analytic results from three regression…

  9. A Bayesian Semiparametric Latent Variable Model for Mixed Responses

    ERIC Educational Resources Information Center

    Fahrmeir, Ludwig; Raach, Alexander

    2007-01-01

    In this paper we introduce a latent variable model (LVM) for mixed ordinal and continuous responses, where covariate effects on the continuous latent variables are modelled through a flexible semiparametric Gaussian regression model. We extend existing LVMs with the usual linear covariate effects by including nonparametric components for nonlinear…

  10. Tutorial on Biostatistics: Linear Regression Analysis of Continuous Correlated Eye Data

    PubMed Central

    Ying, Gui-shuang; Maguire, Maureen G; Glynn, Robert; Rosner, Bernard

    2017-01-01

    Purpose To describe and demonstrate appropriate linear regression methods for analyzing correlated continuous eye data. Methods We describe several approaches to regression analysis involving both eyes, including mixed effects and marginal models under various covariance structures to account for inter-eye correlation. We demonstrate, with SAS statistical software, applications in a study comparing baseline refractive error between one eye with choroidal neovascularization (CNV) and the unaffected fellow eye, and in a study determining factors associated with visual field data in the elderly. Results When refractive error from both eyes were analyzed with standard linear regression without accounting for inter-eye correlation (adjusting for demographic and ocular covariates), the difference between eyes with CNV and fellow eyes was 0.15 diopters (D; 95% confidence interval, CI −0.03 to 0.32D, P=0.10). Using a mixed effects model or a marginal model, the estimated difference was the same but with narrower 95% CI (0.01 to 0.28D, P=0.03). Standard regression for visual field data from both eyes provided biased estimates of standard error (generally underestimated) and smaller P-values, while analysis of the worse eye provided larger P-values than mixed effects models and marginal models. Conclusion In research involving both eyes, ignoring inter-eye correlation can lead to invalid inferences. Analysis using only right or left eyes is valid, but decreases power. Worse-eye analysis can provide less power and biased estimates of effect. Mixed effects or marginal models using the eye as the unit of analysis should be used to appropriately account for inter-eye correlation and maximize power and precision. PMID:28102741

  11. Logistic Mixed Models to Investigate Implicit and Explicit Belief Tracking.

    PubMed

    Lages, Martin; Scheel, Anne

    2016-01-01

    We investigated the proposition of a two-systems Theory of Mind in adults' belief tracking. A sample of N = 45 participants predicted the choice of one of two opponent players after observing several rounds in an animated card game. Three matches of this card game were played and initial gaze direction on target and subsequent choice predictions were recorded for each belief task and participant. We conducted logistic regressions with mixed effects on the binary data and developed Bayesian logistic mixed models to infer implicit and explicit mentalizing in true belief and false belief tasks. Although logistic regressions with mixed effects predicted the data well a Bayesian logistic mixed model with latent task- and subject-specific parameters gave a better account of the data. As expected explicit choice predictions suggested a clear understanding of true and false beliefs (TB/FB). Surprisingly, however, model parameters for initial gaze direction also indicated belief tracking. We discuss why task-specific parameters for initial gaze directions are different from choice predictions yet reflect second-order perspective taking.

  12. Modeling containment of large wildfires using generalized linear mixed-model analysis

    Treesearch

    Mark Finney; Isaac C. Grenfell; Charles W. McHugh

    2009-01-01

    Billions of dollars are spent annually in the United States to contain large wildland fires, but the factors contributing to suppression success remain poorly understood. We used a regression model (generalized linear mixed-model) to model containment probability of individual fires, assuming that containment was a repeated-measures problem (fixed effect) and...

  13. Access disparities to Magnet hospitals for patients undergoing neurosurgical operations

    PubMed Central

    Missios, Symeon; Bekelis, Kimon

    2017-01-01

    Background Centers of excellence focusing on quality improvement have demonstrated superior outcomes for a variety of surgical interventions. We investigated the presence of access disparities to hospitals recognized by the Magnet Recognition Program of the American Nurses Credentialing Center (ANCC) for patients undergoing neurosurgical operations. Methods We performed a cohort study of all neurosurgery patients who were registered in the New York Statewide Planning and Research Cooperative System (SPARCS) database from 2009–2013. We examined the association of African-American race and lack of insurance with Magnet status hospitalization for neurosurgical procedures. A mixed effects propensity adjusted multivariable regression analysis was used to control for confounding. Results During the study period, 190,535 neurosurgical patients met the inclusion criteria. Using a multivariable logistic regression, we demonstrate that African-Americans had lower admission rates to Magnet institutions (OR 0.62; 95% CI, 0.58–0.67). This persisted in a mixed effects logistic regression model (OR 0.77; 95% CI, 0.70–0.83) to adjust for clustering at the patient county level, and a propensity score adjusted logistic regression model (OR 0.75; 95% CI, 0.69–0.82). Additionally, lack of insurance was associated with lower admission rates to Magnet institutions (OR 0.71; 95% CI, 0.68–0.73), in a multivariable logistic regression model. This persisted in a mixed effects logistic regression model (OR 0.72; 95% CI, 0.69–0.74), and a propensity score adjusted logistic regression model (OR 0.72; 95% CI, 0.69–0.75). Conclusions Using a comprehensive all-payer cohort of neurosurgery patients in New York State we identified an association of African-American race and lack of insurance with lower rates of admission to Magnet hospitals. PMID:28684152

  14. Logistic Regression with Multiple Random Effects: A Simulation Study of Estimation Methods and Statistical Packages.

    PubMed

    Kim, Yoonsang; Choi, Young-Ku; Emery, Sherry

    2013-08-01

    Several statistical packages are capable of estimating generalized linear mixed models and these packages provide one or more of three estimation methods: penalized quasi-likelihood, Laplace, and Gauss-Hermite. Many studies have investigated these methods' performance for the mixed-effects logistic regression model. However, the authors focused on models with one or two random effects and assumed a simple covariance structure between them, which may not be realistic. When there are multiple correlated random effects in a model, the computation becomes intensive, and often an algorithm fails to converge. Moreover, in our analysis of smoking status and exposure to anti-tobacco advertisements, we have observed that when a model included multiple random effects, parameter estimates varied considerably from one statistical package to another even when using the same estimation method. This article presents a comprehensive review of the advantages and disadvantages of each estimation method. In addition, we compare the performances of the three methods across statistical packages via simulation, which involves two- and three-level logistic regression models with at least three correlated random effects. We apply our findings to a real dataset. Our results suggest that two packages-SAS GLIMMIX Laplace and SuperMix Gaussian quadrature-perform well in terms of accuracy, precision, convergence rates, and computing speed. We also discuss the strengths and weaknesses of the two packages in regard to sample sizes.

  15. Logistic Regression with Multiple Random Effects: A Simulation Study of Estimation Methods and Statistical Packages

    PubMed Central

    Kim, Yoonsang; Emery, Sherry

    2013-01-01

    Several statistical packages are capable of estimating generalized linear mixed models and these packages provide one or more of three estimation methods: penalized quasi-likelihood, Laplace, and Gauss-Hermite. Many studies have investigated these methods’ performance for the mixed-effects logistic regression model. However, the authors focused on models with one or two random effects and assumed a simple covariance structure between them, which may not be realistic. When there are multiple correlated random effects in a model, the computation becomes intensive, and often an algorithm fails to converge. Moreover, in our analysis of smoking status and exposure to anti-tobacco advertisements, we have observed that when a model included multiple random effects, parameter estimates varied considerably from one statistical package to another even when using the same estimation method. This article presents a comprehensive review of the advantages and disadvantages of each estimation method. In addition, we compare the performances of the three methods across statistical packages via simulation, which involves two- and three-level logistic regression models with at least three correlated random effects. We apply our findings to a real dataset. Our results suggest that two packages—SAS GLIMMIX Laplace and SuperMix Gaussian quadrature—perform well in terms of accuracy, precision, convergence rates, and computing speed. We also discuss the strengths and weaknesses of the two packages in regard to sample sizes. PMID:24288415

  16. Correlation and simple linear regression.

    PubMed

    Eberly, Lynn E

    2007-01-01

    This chapter highlights important steps in using correlation and simple linear regression to address scientific questions about the association of two continuous variables with each other. These steps include estimation and inference, assessing model fit, the connection between regression and ANOVA, and study design. Examples in microbiology are used throughout. This chapter provides a framework that is helpful in understanding more complex statistical techniques, such as multiple linear regression, linear mixed effects models, logistic regression, and proportional hazards regression.

  17. Logistic Mixed Models to Investigate Implicit and Explicit Belief Tracking

    PubMed Central

    Lages, Martin; Scheel, Anne

    2016-01-01

    We investigated the proposition of a two-systems Theory of Mind in adults’ belief tracking. A sample of N = 45 participants predicted the choice of one of two opponent players after observing several rounds in an animated card game. Three matches of this card game were played and initial gaze direction on target and subsequent choice predictions were recorded for each belief task and participant. We conducted logistic regressions with mixed effects on the binary data and developed Bayesian logistic mixed models to infer implicit and explicit mentalizing in true belief and false belief tasks. Although logistic regressions with mixed effects predicted the data well a Bayesian logistic mixed model with latent task- and subject-specific parameters gave a better account of the data. As expected explicit choice predictions suggested a clear understanding of true and false beliefs (TB/FB). Surprisingly, however, model parameters for initial gaze direction also indicated belief tracking. We discuss why task-specific parameters for initial gaze directions are different from choice predictions yet reflect second-order perspective taking. PMID:27853440

  18. MIXREG: a computer program for mixed-effects regression analysis with autocorrelated errors.

    PubMed

    Hedeker, D; Gibbons, R D

    1996-05-01

    MIXREG is a program that provides estimates for a mixed-effects regression model (MRM) for normally-distributed response data including autocorrelated errors. This model can be used for analysis of unbalanced longitudinal data, where individuals may be measured at a different number of timepoints, or even at different timepoints. Autocorrelated errors of a general form or following an AR(1), MA(1), or ARMA(1,1) form are allowable. This model can also be used for analysis of clustered data, where the mixed-effects model assumes data within clusters are dependent. The degree of dependency is estimated jointly with estimates of the usual model parameters, thus adjusting for clustering. MIXREG uses maximum marginal likelihood estimation, utilizing both the EM algorithm and a Fisher-scoring solution. For the scoring solution, the covariance matrix of the random effects is expressed in its Gaussian decomposition, and the diagonal matrix reparameterized using the exponential transformation. Estimation of the individual random effects is accomplished using an empirical Bayes approach. Examples illustrating usage and features of MIXREG are provided.

  19. [Primary branch size of Pinus koraiensis plantation: a prediction based on linear mixed effect model].

    PubMed

    Dong, Ling-Bo; Liu, Zhao-Gang; Li, Feng-Ri; Jiang, Li-Chun

    2013-09-01

    By using the branch analysis data of 955 standard branches from 60 sampled trees in 12 sampling plots of Pinus koraiensis plantation in Mengjiagang Forest Farm in Heilongjiang Province of Northeast China, and based on the linear mixed-effect model theory and methods, the models for predicting branch variables, including primary branch diameter, length, and angle, were developed. Considering tree effect, the MIXED module of SAS software was used to fit the prediction models. The results indicated that the fitting precision of the models could be improved by choosing appropriate random-effect parameters and variance-covariance structure. Then, the correlation structures including complex symmetry structure (CS), first-order autoregressive structure [AR(1)], and first-order autoregressive and moving average structure [ARMA(1,1)] were added to the optimal branch size mixed-effect model. The AR(1) improved the fitting precision of branch diameter and length mixed-effect model significantly, but all the three structures didn't improve the precision of branch angle mixed-effect model. In order to describe the heteroscedasticity during building mixed-effect model, the CF1 and CF2 functions were added to the branch mixed-effect model. CF1 function improved the fitting effect of branch angle mixed model significantly, whereas CF2 function improved the fitting effect of branch diameter and length mixed model significantly. Model validation confirmed that the mixed-effect model could improve the precision of prediction, as compare to the traditional regression model for the branch size prediction of Pinus koraiensis plantation.

  20. Factors associated with parasite dominance in fishes from Brazil.

    PubMed

    Amarante, Cristina Fernandes do; Tassinari, Wagner de Souza; Luque, Jose Luis; Pereira, Maria Julia Salim

    2016-06-14

    The present study used regression models to evaluate the existence of factors that may influence the numerical parasite dominance with an epidemiological approximation. A database including 3,746 fish specimens and their respective parasites were used to evaluate the relationship between parasite dominance and biotic characteristics inherent to the studied hosts and the parasite taxa. Multivariate, classical, and mixed effects linear regression models were fitted. The calculations were performed using R software (95% CI). In the fitting of the classical multiple linear regression model, freshwater and planktivorous fish species and body length, as well as the species of the taxa Trematoda, Monogenea, and Hirudinea, were associated with parasite dominance. However, the fitting of the mixed effects model showed that the body length of the host and the species of the taxa Nematoda, Trematoda, Monogenea, Hirudinea, and Crustacea were significantly associated with parasite dominance. Studies that consider specific biological aspects of the hosts and parasites should expand the knowledge regarding factors that influence the numerical dominance of fish in Brazil. The use of a mixed model shows, once again, the importance of the appropriate use of a model correlated with the characteristics of the data to obtain consistent results.

  1. The use of copulas to practical estimation of multivariate stochastic differential equation mixed effects models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rupšys, P.

    A system of stochastic differential equations (SDE) with mixed-effects parameters and multivariate normal copula density function were used to develop tree height model for Scots pine trees in Lithuania. A two-step maximum likelihood parameter estimation method is used and computational guidelines are given. After fitting the conditional probability density functions to outside bark diameter at breast height, and total tree height, a bivariate normal copula distribution model was constructed. Predictions from the mixed-effects parameters SDE tree height model calculated during this research were compared to the regression tree height equations. The results are implemented in the symbolic computational language MAPLE.

  2. Using multilevel modeling to assess case-mix adjusters in consumer experience surveys in health care.

    PubMed

    Damman, Olga C; Stubbe, Janine H; Hendriks, Michelle; Arah, Onyebuchi A; Spreeuwenberg, Peter; Delnoij, Diana M J; Groenewegen, Peter P

    2009-04-01

    Ratings on the quality of healthcare from the consumer's perspective need to be adjusted for consumer characteristics to ensure fair and accurate comparisons between healthcare providers or health plans. Although multilevel analysis is already considered an appropriate method for analyzing healthcare performance data, it has rarely been used to assess case-mix adjustment of such data. The purpose of this article is to investigate whether multilevel regression analysis is a useful tool to detect case-mix adjusters in consumer assessment of healthcare. We used data on 11,539 consumers from 27 Dutch health plans, which were collected using the Dutch Consumer Quality Index health plan instrument. We conducted multilevel regression analyses of consumers' responses nested within health plans to assess the effects of consumer characteristics on consumer experience. We compared our findings to the results of another methodology: the impact factor approach, which combines the predictive effect of each case-mix variable with its heterogeneity across health plans. Both multilevel regression and impact factor analyses showed that age and education were the most important case-mix adjusters for consumer experience and ratings of health plans. With the exception of age, case-mix adjustment had little impact on the ranking of health plans. On both theoretical and practical grounds, multilevel modeling is useful for adequate case-mix adjustment and analysis of performance ratings.

  3. Confidence Intervals for Assessing Heterogeneity in Generalized Linear Mixed Models

    ERIC Educational Resources Information Center

    Wagler, Amy E.

    2014-01-01

    Generalized linear mixed models are frequently applied to data with clustered categorical outcomes. The effect of clustering on the response is often difficult to practically assess partly because it is reported on a scale on which comparisons with regression parameters are difficult to make. This article proposes confidence intervals for…

  4. Neither fixed nor random: weighted least squares meta-regression.

    PubMed

    Stanley, T D; Doucouliagos, Hristos

    2017-03-01

    Our study revisits and challenges two core conventional meta-regression estimators: the prevalent use of 'mixed-effects' or random-effects meta-regression analysis and the correction of standard errors that defines fixed-effects meta-regression analysis (FE-MRA). We show how and explain why an unrestricted weighted least squares MRA (WLS-MRA) estimator is superior to conventional random-effects (or mixed-effects) meta-regression when there is publication (or small-sample) bias that is as good as FE-MRA in all cases and better than fixed effects in most practical applications. Simulations and statistical theory show that WLS-MRA provides satisfactory estimates of meta-regression coefficients that are practically equivalent to mixed effects or random effects when there is no publication bias. When there is publication selection bias, WLS-MRA always has smaller bias than mixed effects or random effects. In practical applications, an unrestricted WLS meta-regression is likely to give practically equivalent or superior estimates to fixed-effects, random-effects, and mixed-effects meta-regression approaches. However, random-effects meta-regression remains viable and perhaps somewhat preferable if selection for statistical significance (publication bias) can be ruled out and when random, additive normal heterogeneity is known to directly affect the 'true' regression coefficient. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  5. Forecasting carbon dioxide emissions based on a hybrid of mixed data sampling regression model and back propagation neural network in the USA.

    PubMed

    Zhao, Xin; Han, Meng; Ding, Lili; Calin, Adrian Cantemir

    2018-01-01

    The accurate forecast of carbon dioxide emissions is critical for policy makers to take proper measures to establish a low carbon society. This paper discusses a hybrid of the mixed data sampling (MIDAS) regression model and BP (back propagation) neural network (MIDAS-BP model) to forecast carbon dioxide emissions. Such analysis uses mixed frequency data to study the effects of quarterly economic growth on annual carbon dioxide emissions. The forecasting ability of MIDAS-BP is remarkably better than MIDAS, ordinary least square (OLS), polynomial distributed lags (PDL), autoregressive distributed lags (ADL), and auto-regressive moving average (ARMA) models. The MIDAS-BP model is suitable for forecasting carbon dioxide emissions for both the short and longer term. This research is expected to influence the methodology for forecasting carbon dioxide emissions by improving the forecast accuracy. Empirical results show that economic growth has both negative and positive effects on carbon dioxide emissions that last 15 quarters. Carbon dioxide emissions are also affected by their own change within 3 years. Therefore, there is a need for policy makers to explore an alternative way to develop the economy, especially applying new energy policies to establish a low carbon society.

  6. Applications of MIDAS regression in analysing trends in water quality

    NASA Astrophysics Data System (ADS)

    Penev, Spiridon; Leonte, Daniela; Lazarov, Zdravetz; Mann, Rob A.

    2014-04-01

    We discuss novel statistical methods in analysing trends in water quality. Such analysis uses complex data sets of different classes of variables, including water quality, hydrological and meteorological. We analyse the effect of rainfall and flow on trends in water quality utilising a flexible model called Mixed Data Sampling (MIDAS). This model arises because of the mixed frequency in the data collection. Typically, water quality variables are sampled fortnightly, whereas the rain data is sampled daily. The advantage of using MIDAS regression is in the flexible and parsimonious modelling of the influence of the rain and flow on trends in water quality variables. We discuss the model and its implementation on a data set from the Shoalhaven Supply System and Catchments in the state of New South Wales, Australia. Information criteria indicate that MIDAS modelling improves upon simplistic approaches that do not utilise the mixed data sampling nature of the data.

  7. Robust, Adaptive Functional Regression in Functional Mixed Model Framework.

    PubMed

    Zhu, Hongxiao; Brown, Philip J; Morris, Jeffrey S

    2011-09-01

    Functional data are increasingly encountered in scientific studies, and their high dimensionality and complexity lead to many analytical challenges. Various methods for functional data analysis have been developed, including functional response regression methods that involve regression of a functional response on univariate/multivariate predictors with nonparametrically represented functional coefficients. In existing methods, however, the functional regression can be sensitive to outlying curves and outlying regions of curves, so is not robust. In this paper, we introduce a new Bayesian method, robust functional mixed models (R-FMM), for performing robust functional regression within the general functional mixed model framework, which includes multiple continuous or categorical predictors and random effect functions accommodating potential between-function correlation induced by the experimental design. The underlying model involves a hierarchical scale mixture model for the fixed effects, random effect and residual error functions. These modeling assumptions across curves result in robust nonparametric estimators of the fixed and random effect functions which down-weight outlying curves and regions of curves, and produce statistics that can be used to flag global and local outliers. These assumptions also lead to distributions across wavelet coefficients that have outstanding sparsity and adaptive shrinkage properties, with great flexibility for the data to determine the sparsity and the heaviness of the tails. Together with the down-weighting of outliers, these within-curve properties lead to fixed and random effect function estimates that appear in our simulations to be remarkably adaptive in their ability to remove spurious features yet retain true features of the functions. We have developed general code to implement this fully Bayesian method that is automatic, requiring the user to only provide the functional data and design matrices. It is efficient enough to handle large data sets, and yields posterior samples of all model parameters that can be used to perform desired Bayesian estimation and inference. Although we present details for a specific implementation of the R-FMM using specific distributional choices in the hierarchical model, 1D functions, and wavelet transforms, the method can be applied more generally using other heavy-tailed distributions, higher dimensional functions (e.g. images), and using other invertible transformations as alternatives to wavelets.

  8. Robust, Adaptive Functional Regression in Functional Mixed Model Framework

    PubMed Central

    Zhu, Hongxiao; Brown, Philip J.; Morris, Jeffrey S.

    2012-01-01

    Functional data are increasingly encountered in scientific studies, and their high dimensionality and complexity lead to many analytical challenges. Various methods for functional data analysis have been developed, including functional response regression methods that involve regression of a functional response on univariate/multivariate predictors with nonparametrically represented functional coefficients. In existing methods, however, the functional regression can be sensitive to outlying curves and outlying regions of curves, so is not robust. In this paper, we introduce a new Bayesian method, robust functional mixed models (R-FMM), for performing robust functional regression within the general functional mixed model framework, which includes multiple continuous or categorical predictors and random effect functions accommodating potential between-function correlation induced by the experimental design. The underlying model involves a hierarchical scale mixture model for the fixed effects, random effect and residual error functions. These modeling assumptions across curves result in robust nonparametric estimators of the fixed and random effect functions which down-weight outlying curves and regions of curves, and produce statistics that can be used to flag global and local outliers. These assumptions also lead to distributions across wavelet coefficients that have outstanding sparsity and adaptive shrinkage properties, with great flexibility for the data to determine the sparsity and the heaviness of the tails. Together with the down-weighting of outliers, these within-curve properties lead to fixed and random effect function estimates that appear in our simulations to be remarkably adaptive in their ability to remove spurious features yet retain true features of the functions. We have developed general code to implement this fully Bayesian method that is automatic, requiring the user to only provide the functional data and design matrices. It is efficient enough to handle large data sets, and yields posterior samples of all model parameters that can be used to perform desired Bayesian estimation and inference. Although we present details for a specific implementation of the R-FMM using specific distributional choices in the hierarchical model, 1D functions, and wavelet transforms, the method can be applied more generally using other heavy-tailed distributions, higher dimensional functions (e.g. images), and using other invertible transformations as alternatives to wavelets. PMID:22308015

  9. Application of zero-inflated poisson mixed models in prognostic factors of hepatitis C.

    PubMed

    Akbarzadeh Baghban, Alireza; Pourhoseingholi, Asma; Zayeri, Farid; Jafari, Ali Akbar; Alavian, Seyed Moayed

    2013-01-01

    In recent years, hepatitis C virus (HCV) infection represents a major public health problem. Evaluation of risk factors is one of the solutions which help protect people from the infection. This study aims to employ zero-inflated Poisson mixed models to evaluate prognostic factors of hepatitis C. The data was collected from a longitudinal study during 2005-2010. First, mixed Poisson regression (PR) model was fitted to the data. Then, a mixed zero-inflated Poisson model was fitted with compound Poisson random effects. For evaluating the performance of the proposed mixed model, standard errors of estimators were compared. The results obtained from mixed PR showed that genotype 3 and treatment protocol were statistically significant. Results of zero-inflated Poisson mixed model showed that age, sex, genotypes 2 and 3, the treatment protocol, and having risk factors had significant effects on viral load of HCV patients. Of these two models, the estimators of zero-inflated Poisson mixed model had the minimum standard errors. The results showed that a mixed zero-inflated Poisson model was the almost best fit. The proposed model can capture serial dependence, additional overdispersion, and excess zeros in the longitudinal count data.

  10. Dynamic prediction in functional concurrent regression with an application to child growth.

    PubMed

    Leroux, Andrew; Xiao, Luo; Crainiceanu, Ciprian; Checkley, William

    2018-04-15

    In many studies, it is of interest to predict the future trajectory of subjects based on their historical data, referred to as dynamic prediction. Mixed effects models have traditionally been used for dynamic prediction. However, the commonly used random intercept and slope model is often not sufficiently flexible for modeling subject-specific trajectories. In addition, there may be useful exposures/predictors of interest that are measured concurrently with the outcome, complicating dynamic prediction. To address these problems, we propose a dynamic functional concurrent regression model to handle the case where both the functional response and the functional predictors are irregularly measured. Currently, such a model cannot be fit by existing software. We apply the model to dynamically predict children's length conditional on prior length, weight, and baseline covariates. Inference on model parameters and subject-specific trajectories is conducted using the mixed effects representation of the proposed model. An extensive simulation study shows that the dynamic functional regression model provides more accurate estimation and inference than existing methods. Methods are supported by fast, flexible, open source software that uses heavily tested smoothing techniques. © 2017 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd.

  11. OPC modeling by genetic algorithm

    NASA Astrophysics Data System (ADS)

    Huang, W. C.; Lai, C. M.; Luo, B.; Tsai, C. K.; Tsay, C. S.; Lai, C. W.; Kuo, C. C.; Liu, R. G.; Lin, H. T.; Lin, B. J.

    2005-05-01

    Optical proximity correction (OPC) is usually used to pre-distort mask layouts to make the printed patterns as close to the desired shapes as possible. For model-based OPC, a lithographic model to predict critical dimensions after lithographic processing is needed. The model is usually obtained via a regression of parameters based on experimental data containing optical proximity effects. When the parameters involve a mix of the continuous (optical and resist models) and the discrete (kernel numbers) sets, the traditional numerical optimization method may have difficulty handling model fitting. In this study, an artificial-intelligent optimization method was used to regress the parameters of the lithographic models for OPC. The implemented phenomenological models were constant-threshold models that combine diffused aerial image models with loading effects. Optical kernels decomposed from Hopkin"s equation were used to calculate aerial images on the wafer. Similarly, the numbers of optical kernels were treated as regression parameters. This way, good regression results were obtained with different sets of optical proximity effect data.

  12. pLARmEB: integration of least angle regression with empirical Bayes for multilocus genome-wide association studies.

    PubMed

    Zhang, J; Feng, J-Y; Ni, Y-L; Wen, Y-J; Niu, Y; Tamba, C L; Yue, C; Song, Q; Zhang, Y-M

    2017-06-01

    Multilocus genome-wide association studies (GWAS) have become the state-of-the-art procedure to identify quantitative trait nucleotides (QTNs) associated with complex traits. However, implementation of multilocus model in GWAS is still difficult. In this study, we integrated least angle regression with empirical Bayes to perform multilocus GWAS under polygenic background control. We used an algorithm of model transformation that whitened the covariance matrix of the polygenic matrix K and environmental noise. Markers on one chromosome were included simultaneously in a multilocus model and least angle regression was used to select the most potentially associated single-nucleotide polymorphisms (SNPs), whereas the markers on the other chromosomes were used to calculate kinship matrix as polygenic background control. The selected SNPs in multilocus model were further detected for their association with the trait by empirical Bayes and likelihood ratio test. We herein refer to this method as the pLARmEB (polygenic-background-control-based least angle regression plus empirical Bayes). Results from simulation studies showed that pLARmEB was more powerful in QTN detection and more accurate in QTN effect estimation, had less false positive rate and required less computing time than Bayesian hierarchical generalized linear model, efficient mixed model association (EMMA) and least angle regression plus empirical Bayes. pLARmEB, multilocus random-SNP-effect mixed linear model and fast multilocus random-SNP-effect EMMA methods had almost equal power of QTN detection in simulation experiments. However, only pLARmEB identified 48 previously reported genes for 7 flowering time-related traits in Arabidopsis thaliana.

  13. Testing homogeneity in Weibull-regression models.

    PubMed

    Bolfarine, Heleno; Valença, Dione M

    2005-10-01

    In survival studies with families or geographical units it may be of interest testing whether such groups are homogeneous for given explanatory variables. In this paper we consider score type tests for group homogeneity based on a mixing model in which the group effect is modelled as a random variable. As opposed to hazard-based frailty models, this model presents survival times that conditioned on the random effect, has an accelerated failure time representation. The test statistics requires only estimation of the conventional regression model without the random effect and does not require specifying the distribution of the random effect. The tests are derived for a Weibull regression model and in the uncensored situation, a closed form is obtained for the test statistic. A simulation study is used for comparing the power of the tests. The proposed tests are applied to real data sets with censored data.

  14. Extension of the Haseman-Elston regression model to longitudinal data.

    PubMed

    Won, Sungho; Elston, Robert C; Park, Taesung

    2006-01-01

    We propose an extension to longitudinal data of the Haseman and Elston regression method for linkage analysis. The proposed model is a mixed model having several random effects. As response variable, we investigate the sibship sample mean corrected cross-product (smHE) and the BLUP-mean corrected cross product (pmHE), comparing them with the original squared difference (oHE), the overall mean corrected cross-product (rHE), and the weighted average of the squared difference and the squared mean-corrected sum (wHE). The proposed model allows for the correlation structure of longitudinal data. Also, the model can test for gene x time interaction to discover genetic variation over time. The model was applied in an analysis of the Genetic Analysis Workshop 13 (GAW13) simulated dataset for a quantitative trait simulating systolic blood pressure. Independence models did not preserve the test sizes, while the mixed models with both family and sibpair random effects tended to preserve size well. Copyright 2006 S. Karger AG, Basel.

  15. Regression analysis using dependent Polya trees.

    PubMed

    Schörgendorfer, Angela; Branscum, Adam J

    2013-11-30

    Many commonly used models for linear regression analysis force overly simplistic shape and scale constraints on the residual structure of data. We propose a semiparametric Bayesian model for regression analysis that produces data-driven inference by using a new type of dependent Polya tree prior to model arbitrary residual distributions that are allowed to evolve across increasing levels of an ordinal covariate (e.g., time, in repeated measurement studies). By modeling residual distributions at consecutive covariate levels or time points using separate, but dependent Polya tree priors, distributional information is pooled while allowing for broad pliability to accommodate many types of changing residual distributions. We can use the proposed dependent residual structure in a wide range of regression settings, including fixed-effects and mixed-effects linear and nonlinear models for cross-sectional, prospective, and repeated measurement data. A simulation study illustrates the flexibility of our novel semiparametric regression model to accurately capture evolving residual distributions. In an application to immune development data on immunoglobulin G antibodies in children, our new model outperforms several contemporary semiparametric regression models based on a predictive model selection criterion. Copyright © 2013 John Wiley & Sons, Ltd.

  16. Solving large test-day models by iteration on data and preconditioned conjugate gradient.

    PubMed

    Lidauer, M; Strandén, I; Mäntysaari, E A; Pösö, J; Kettunen, A

    1999-12-01

    A preconditioned conjugate gradient method was implemented into an iteration on a program for data estimation of breeding values, and its convergence characteristics were studied. An algorithm was used as a reference in which one fixed effect was solved by Gauss-Seidel method, and other effects were solved by a second-order Jacobi method. Implementation of the preconditioned conjugate gradient required storing four vectors (size equal to number of unknowns in the mixed model equations) in random access memory and reading the data at each round of iteration. The preconditioner comprised diagonal blocks of the coefficient matrix. Comparison of algorithms was based on solutions of mixed model equations obtained by a single-trait animal model and a single-trait, random regression test-day model. Data sets for both models used milk yield records of primiparous Finnish dairy cows. Animal model data comprised 665,629 lactation milk yields and random regression test-day model data of 6,732,765 test-day milk yields. Both models included pedigree information of 1,099,622 animals. The animal model ¿random regression test-day model¿ required 122 ¿305¿ rounds of iteration to converge with the reference algorithm, but only 88 ¿149¿ were required with the preconditioned conjugate gradient. To solve the random regression test-day model with the preconditioned conjugate gradient required 237 megabytes of random access memory and took 14% of the computation time needed by the reference algorithm.

  17. Solvency supervision based on a total balance sheet approach

    NASA Astrophysics Data System (ADS)

    Pitselis, Georgios

    2009-11-01

    In this paper we investigate the adequacy of the own funds a company requires in order to remain healthy and avoid insolvency. Two methods are applied here; the quantile regression method and the method of mixed effects models. Quantile regression is capable of providing a more complete statistical analysis of the stochastic relationship among random variables than least squares estimation. The estimated mixed effects line can be considered as an internal industry equation (norm), which explains a systematic relation between a dependent variable (such as own funds) with independent variables (e.g. financial characteristics, such as assets, provisions, etc.). The above two methods are implemented with two data sets.

  18. Boosting structured additive quantile regression for longitudinal childhood obesity data.

    PubMed

    Fenske, Nora; Fahrmeir, Ludwig; Hothorn, Torsten; Rzehak, Peter; Höhle, Michael

    2013-07-25

    Childhood obesity and the investigation of its risk factors has become an important public health issue. Our work is based on and motivated by a German longitudinal study including 2,226 children with up to ten measurements on their body mass index (BMI) and risk factors from birth to the age of 10 years. We introduce boosting of structured additive quantile regression as a novel distribution-free approach for longitudinal quantile regression. The quantile-specific predictors of our model include conventional linear population effects, smooth nonlinear functional effects, varying-coefficient terms, and individual-specific effects, such as intercepts and slopes. Estimation is based on boosting, a computer intensive inference method for highly complex models. We propose a component-wise functional gradient descent boosting algorithm that allows for penalized estimation of the large variety of different effects, particularly leading to individual-specific effects shrunken toward zero. This concept allows us to flexibly estimate the nonlinear age curves of upper quantiles of the BMI distribution, both on population and on individual-specific level, adjusted for further risk factors and to detect age-varying effects of categorical risk factors. Our model approach can be regarded as the quantile regression analog of Gaussian additive mixed models (or structured additive mean regression models), and we compare both model classes with respect to our obesity data.

  19. The value of a statistical life: a meta-analysis with a mixed effects regression model.

    PubMed

    Bellavance, François; Dionne, Georges; Lebeau, Martin

    2009-03-01

    The value of a statistical life (VSL) is a very controversial topic, but one which is essential to the optimization of governmental decisions. We see a great variability in the values obtained from different studies. The source of this variability needs to be understood, in order to offer public decision-makers better guidance in choosing a value and to set clearer guidelines for future research on the topic. This article presents a meta-analysis based on 39 observations obtained from 37 studies (from nine different countries) which all use a hedonic wage method to calculate the VSL. Our meta-analysis is innovative in that it is the first to use the mixed effects regression model [Raudenbush, S.W., 1994. Random effects models. In: Cooper, H., Hedges, L.V. (Eds.), The Handbook of Research Synthesis. Russel Sage Foundation, New York] to analyze studies on the value of a statistical life. We conclude that the variability found in the values studied stems in large part from differences in methodologies.

  20. Longitudinal analysis of the strengths and difficulties questionnaire scores of the Millennium Cohort Study children in England using M-quantile random-effects regression.

    PubMed

    Tzavidis, Nikos; Salvati, Nicola; Schmid, Timo; Flouri, Eirini; Midouhas, Emily

    2016-02-01

    Multilevel modelling is a popular approach for longitudinal data analysis. Statistical models conventionally target a parameter at the centre of a distribution. However, when the distribution of the data is asymmetric, modelling other location parameters, e.g. percentiles, may be more informative. We present a new approach, M -quantile random-effects regression, for modelling multilevel data. The proposed method is used for modelling location parameters of the distribution of the strengths and difficulties questionnaire scores of children in England who participate in the Millennium Cohort Study. Quantile mixed models are also considered. The analyses offer insights to child psychologists about the differential effects of risk factors on children's outcomes.

  1. A Tutorial on Multilevel Survival Analysis: Methods, Models and Applications

    PubMed Central

    Austin, Peter C.

    2017-01-01

    Summary Data that have a multilevel structure occur frequently across a range of disciplines, including epidemiology, health services research, public health, education and sociology. We describe three families of regression models for the analysis of multilevel survival data. First, Cox proportional hazards models with mixed effects incorporate cluster-specific random effects that modify the baseline hazard function. Second, piecewise exponential survival models partition the duration of follow-up into mutually exclusive intervals and fit a model that assumes that the hazard function is constant within each interval. This is equivalent to a Poisson regression model that incorporates the duration of exposure within each interval. By incorporating cluster-specific random effects, generalised linear mixed models can be used to analyse these data. Third, after partitioning the duration of follow-up into mutually exclusive intervals, one can use discrete time survival models that use a complementary log–log generalised linear model to model the occurrence of the outcome of interest within each interval. Random effects can be incorporated to account for within-cluster homogeneity in outcomes. We illustrate the application of these methods using data consisting of patients hospitalised with a heart attack. We illustrate the application of these methods using three statistical programming languages (R, SAS and Stata). PMID:29307954

  2. A Tutorial on Multilevel Survival Analysis: Methods, Models and Applications.

    PubMed

    Austin, Peter C

    2017-08-01

    Data that have a multilevel structure occur frequently across a range of disciplines, including epidemiology, health services research, public health, education and sociology. We describe three families of regression models for the analysis of multilevel survival data. First, Cox proportional hazards models with mixed effects incorporate cluster-specific random effects that modify the baseline hazard function. Second, piecewise exponential survival models partition the duration of follow-up into mutually exclusive intervals and fit a model that assumes that the hazard function is constant within each interval. This is equivalent to a Poisson regression model that incorporates the duration of exposure within each interval. By incorporating cluster-specific random effects, generalised linear mixed models can be used to analyse these data. Third, after partitioning the duration of follow-up into mutually exclusive intervals, one can use discrete time survival models that use a complementary log-log generalised linear model to model the occurrence of the outcome of interest within each interval. Random effects can be incorporated to account for within-cluster homogeneity in outcomes. We illustrate the application of these methods using data consisting of patients hospitalised with a heart attack. We illustrate the application of these methods using three statistical programming languages (R, SAS and Stata).

  3. Modeling stream network-scale variation in coho salmon overwinter survival and smolt size

    EPA Science Inventory

    We used multiple regression and hierarchical mixed-effects models to examine spatial patterns of overwinter survival and size at smolting in juvenile coho salmon Oncorhynchus kisutch in relation to habitat attributes across an extensive stream network in southwestern Oregon over ...

  4. Growth and inactivation of Salmonella at low refrigerated storage temperatures and thermal inactivation on raw chicken meat and laboratory media: mixed effect meta-analysis.

    PubMed

    Smadi, Hanan; Sargeant, Jan M; Shannon, Harry S; Raina, Parminder

    2012-12-01

    Growth and inactivation regression equations were developed to describe the effects of temperature on Salmonella concentration on chicken meat for refrigerated temperatures (⩽10°C) and for thermal treatment temperatures (55-70°C). The main objectives were: (i) to compare Salmonella growth/inactivation in chicken meat versus laboratory media; (ii) to create regression equations to estimate Salmonella growth in chicken meat that can be used in quantitative risk assessment (QRA) modeling; and (iii) to create regression equations to estimate D-values needed to inactivate Salmonella in chicken meat. A systematic approach was used to identify the articles, critically appraise them, and pool outcomes across studies. Growth represented in density (Log10CFU/g) and D-values (min) as a function of temperature were modeled using hierarchical mixed effects regression models. The current meta-analysis analysis found a significant difference (P⩽0.05) between the two matrices - chicken meat and laboratory media - for both growth at refrigerated temperatures and inactivation by thermal treatment. Growth and inactivation were significantly influenced by temperature after controlling for other variables; however, no consistent pattern in growth was found. Validation of growth and inactivation equations against data not used in their development is needed. Copyright © 2012 Ministry of Health, Saudi Arabia. Published by Elsevier Ltd. All rights reserved.

  5. Penalized nonparametric scalar-on-function regression via principal coordinates

    PubMed Central

    Reiss, Philip T.; Miller, David L.; Wu, Pei-Shien; Hua, Wen-Yu

    2016-01-01

    A number of classical approaches to nonparametric regression have recently been extended to the case of functional predictors. This paper introduces a new method of this type, which extends intermediate-rank penalized smoothing to scalar-on-function regression. In the proposed method, which we call principal coordinate ridge regression, one regresses the response on leading principal coordinates defined by a relevant distance among the functional predictors, while applying a ridge penalty. Our publicly available implementation, based on generalized additive modeling software, allows for fast optimal tuning parameter selection and for extensions to multiple functional predictors, exponential family-valued responses, and mixed-effects models. In an application to signature verification data, principal coordinate ridge regression, with dynamic time warping distance used to define the principal coordinates, is shown to outperform a functional generalized linear model. PMID:29217963

  6. MANOVA vs nonlinear mixed effects modeling: The comparison of growth patterns of female and male quail

    NASA Astrophysics Data System (ADS)

    Gürcan, Eser Kemal

    2017-04-01

    The most commonly used methods for analyzing time-dependent data are multivariate analysis of variance (MANOVA) and nonlinear regression models. The aim of this study was to compare some MANOVA techniques and nonlinear mixed modeling approach for investigation of growth differentiation in female and male Japanese quail. Weekly individual body weight data of 352 male and 335 female quail from hatch to 8 weeks of age were used to perform analyses. It is possible to say that when all the analyses are evaluated, the nonlinear mixed modeling is superior to the other techniques because it also reveals the individual variation. In addition, the profile analysis also provides important information.

  7. The Bayesian group lasso for confounded spatial data

    USGS Publications Warehouse

    Hefley, Trevor J.; Hooten, Mevin B.; Hanks, Ephraim M.; Russell, Robin E.; Walsh, Daniel P.

    2017-01-01

    Generalized linear mixed models for spatial processes are widely used in applied statistics. In many applications of the spatial generalized linear mixed model (SGLMM), the goal is to obtain inference about regression coefficients while achieving optimal predictive ability. When implementing the SGLMM, multicollinearity among covariates and the spatial random effects can make computation challenging and influence inference. We present a Bayesian group lasso prior with a single tuning parameter that can be chosen to optimize predictive ability of the SGLMM and jointly regularize the regression coefficients and spatial random effect. We implement the group lasso SGLMM using efficient Markov chain Monte Carlo (MCMC) algorithms and demonstrate how multicollinearity among covariates and the spatial random effect can be monitored as a derived quantity. To test our method, we compared several parameterizations of the SGLMM using simulated data and two examples from plant ecology and disease ecology. In all examples, problematic levels multicollinearity occurred and influenced sampling efficiency and inference. We found that the group lasso prior resulted in roughly twice the effective sample size for MCMC samples of regression coefficients and can have higher and less variable predictive accuracy based on out-of-sample data when compared to the standard SGLMM.

  8. Assessing variation in life-history tactics within a population using mixture regression models: a practical guide for evolutionary ecologists.

    PubMed

    Hamel, Sandra; Yoccoz, Nigel G; Gaillard, Jean-Michel

    2017-05-01

    Mixed models are now well-established methods in ecology and evolution because they allow accounting for and quantifying within- and between-individual variation. However, the required normal distribution of the random effects can often be violated by the presence of clusters among subjects, which leads to multi-modal distributions. In such cases, using what is known as mixture regression models might offer a more appropriate approach. These models are widely used in psychology, sociology, and medicine to describe the diversity of trajectories occurring within a population over time (e.g. psychological development, growth). In ecology and evolution, however, these models are seldom used even though understanding changes in individual trajectories is an active area of research in life-history studies. Our aim is to demonstrate the value of using mixture models to describe variation in individual life-history tactics within a population, and hence to promote the use of these models by ecologists and evolutionary ecologists. We first ran a set of simulations to determine whether and when a mixture model allows teasing apart latent clustering, and to contrast the precision and accuracy of estimates obtained from mixture models versus mixed models under a wide range of ecological contexts. We then used empirical data from long-term studies of large mammals to illustrate the potential of using mixture models for assessing within-population variation in life-history tactics. Mixture models performed well in most cases, except for variables following a Bernoulli distribution and when sample size was small. The four selection criteria we evaluated [Akaike information criterion (AIC), Bayesian information criterion (BIC), and two bootstrap methods] performed similarly well, selecting the right number of clusters in most ecological situations. We then showed that the normality of random effects implicitly assumed by evolutionary ecologists when using mixed models was often violated in life-history data. Mixed models were quite robust to this violation in the sense that fixed effects were unbiased at the population level. However, fixed effects at the cluster level and random effects were better estimated using mixture models. Our empirical analyses demonstrated that using mixture models facilitates the identification of the diversity of growth and reproductive tactics occurring within a population. Therefore, using this modelling framework allows testing for the presence of clusters and, when clusters occur, provides reliable estimates of fixed and random effects for each cluster of the population. In the presence or expectation of clusters, using mixture models offers a suitable extension of mixed models, particularly when evolutionary ecologists aim at identifying how ecological and evolutionary processes change within a population. Mixture regression models therefore provide a valuable addition to the statistical toolbox of evolutionary ecologists. As these models are complex and have their own limitations, we provide recommendations to guide future users. © 2016 Cambridge Philosophical Society.

  9. Spatial Assessment of Model Errors from Four Regression Techniques

    Treesearch

    Lianjun Zhang; Jeffrey H. Gove; Jeffrey H. Gove

    2005-01-01

    Fomst modelers have attempted to account for the spatial autocorrelations among trees in growth and yield models by applying alternative regression techniques such as linear mixed models (LMM), generalized additive models (GAM), and geographicalIy weighted regression (GWR). However, the model errors are commonly assessed using average errors across the entire study...

  10. Creep analysis of silicone for podiatry applications.

    PubMed

    Janeiro-Arocas, Julia; Tarrío-Saavedra, Javier; López-Beceiro, Jorge; Naya, Salvador; López-Canosa, Adrián; Heredia-García, Nicolás; Artiaga, Ramón

    2016-10-01

    This work shows an effective methodology to characterize the creep-recovery behavior of silicones before their application in podiatry. The aim is to characterize, model and compare the creep-recovery properties of different types of silicone used in podiatry orthotics. Creep-recovery phenomena of silicones used in podiatry orthotics is characterized by dynamic mechanical analysis (DMA). Silicones provided by Herbitas are compared by observing their viscoelastic properties by Functional Data Analysis (FDA) and nonlinear regression. The relationship between strain and time is modeled by fixed and mixed effects nonlinear regression to compare easily and intuitively podiatry silicones. Functional ANOVA and Kohlrausch-Willians-Watts (KWW) model with fixed and mixed effects allows us to compare different silicones observing the values of fitting parameters and their physical meaning. The differences between silicones are related to the variations of breadth of creep-recovery time distribution and instantaneous deformation-permanent strain. Nevertheless, the mean creep-relaxation time is the same for all the studied silicones. Silicones used in palliative orthoses have higher instantaneous deformation-permanent strain and narrower creep-recovery distribution. The proposed methodology based on DMA, FDA and nonlinear regression is an useful tool to characterize and choose the proper silicone for each podiatry application according to their viscoelastic properties. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Detecting treatment-subgroup interactions in clustered data with generalized linear mixed-effects model trees.

    PubMed

    Fokkema, M; Smits, N; Zeileis, A; Hothorn, T; Kelderman, H

    2017-10-25

    Identification of subgroups of patients for whom treatment A is more effective than treatment B, and vice versa, is of key importance to the development of personalized medicine. Tree-based algorithms are helpful tools for the detection of such interactions, but none of the available algorithms allow for taking into account clustered or nested dataset structures, which are particularly common in psychological research. Therefore, we propose the generalized linear mixed-effects model tree (GLMM tree) algorithm, which allows for the detection of treatment-subgroup interactions, while accounting for the clustered structure of a dataset. The algorithm uses model-based recursive partitioning to detect treatment-subgroup interactions, and a GLMM to estimate the random-effects parameters. In a simulation study, GLMM trees show higher accuracy in recovering treatment-subgroup interactions, higher predictive accuracy, and lower type II error rates than linear-model-based recursive partitioning and mixed-effects regression trees. Also, GLMM trees show somewhat higher predictive accuracy than linear mixed-effects models with pre-specified interaction effects, on average. We illustrate the application of GLMM trees on an individual patient-level data meta-analysis on treatments for depression. We conclude that GLMM trees are a promising exploratory tool for the detection of treatment-subgroup interactions in clustered datasets.

  12. Predicting surface fuel models and fuel metrics using lidar and CIR imagery in a dense mixed conifer forest

    Treesearch

    Marek K. Jakubowksi; Qinghua Guo; Brandon Collins; Scott Stephens; Maggi Kelly

    2013-01-01

    We compared the ability of several classification and regression algorithms to predict forest stand structure metrics and standard surface fuel models. Our study area spans a dense, topographically complex Sierra Nevada mixed-conifer forest. We used clustering, regression trees, and support vector machine algorithms to analyze high density (average 9 pulses/m

  13. Multivariate statistical approach to estimate mixing proportions for unknown end members

    USGS Publications Warehouse

    Valder, Joshua F.; Long, Andrew J.; Davis, Arden D.; Kenner, Scott J.

    2012-01-01

    A multivariate statistical method is presented, which includes principal components analysis (PCA) and an end-member mixing model to estimate unknown end-member hydrochemical compositions and the relative mixing proportions of those end members in mixed waters. PCA, together with the Hotelling T2 statistic and a conceptual model of groundwater flow and mixing, was used in selecting samples that best approximate end members, which then were used as initial values in optimization of the end-member mixing model. This method was tested on controlled datasets (i.e., true values of estimates were known a priori) and found effective in estimating these end members and mixing proportions. The controlled datasets included synthetically generated hydrochemical data, synthetically generated mixing proportions, and laboratory analyses of sample mixtures, which were used in an evaluation of the effectiveness of this method for potential use in actual hydrological settings. For three different scenarios tested, correlation coefficients (R2) for linear regression between the estimated and known values ranged from 0.968 to 0.993 for mixing proportions and from 0.839 to 0.998 for end-member compositions. The method also was applied to field data from a study of end-member mixing in groundwater as a field example and partial method validation.

  14. Random effects coefficient of determination for mixed and meta-analysis models

    PubMed Central

    Demidenko, Eugene; Sargent, James; Onega, Tracy

    2011-01-01

    The key feature of a mixed model is the presence of random effects. We have developed a coefficient, called the random effects coefficient of determination, Rr2, that estimates the proportion of the conditional variance of the dependent variable explained by random effects. This coefficient takes values from 0 to 1 and indicates how strong the random effects are. The difference from the earlier suggested fixed effects coefficient of determination is emphasized. If Rr2 is close to 0, there is weak support for random effects in the model because the reduction of the variance of the dependent variable due to random effects is small; consequently, random effects may be ignored and the model simplifies to standard linear regression. The value of Rr2 apart from 0 indicates the evidence of the variance reduction in support of the mixed model. If random effects coefficient of determination is close to 1 the variance of random effects is very large and random effects turn into free fixed effects—the model can be estimated using the dummy variable approach. We derive explicit formulas for Rr2 in three special cases: the random intercept model, the growth curve model, and meta-analysis model. Theoretical results are illustrated with three mixed model examples: (1) travel time to the nearest cancer center for women with breast cancer in the U.S., (2) cumulative time watching alcohol related scenes in movies among young U.S. teens, as a risk factor for early drinking onset, and (3) the classic example of the meta-analysis model for combination of 13 studies on tuberculosis vaccine. PMID:23750070

  15. A mixed-effects regression model for longitudinal multivariate ordinal data.

    PubMed

    Liu, Li C; Hedeker, Donald

    2006-03-01

    A mixed-effects item response theory model that allows for three-level multivariate ordinal outcomes and accommodates multiple random subject effects is proposed for analysis of multivariate ordinal outcomes in longitudinal studies. This model allows for the estimation of different item factor loadings (item discrimination parameters) for the multiple outcomes. The covariates in the model do not have to follow the proportional odds assumption and can be at any level. Assuming either a probit or logistic response function, maximum marginal likelihood estimation is proposed utilizing multidimensional Gauss-Hermite quadrature for integration of the random effects. An iterative Fisher scoring solution, which provides standard errors for all model parameters, is used. An analysis of a longitudinal substance use data set, where four items of substance use behavior (cigarette use, alcohol use, marijuana use, and getting drunk or high) are repeatedly measured over time, is used to illustrate application of the proposed model.

  16. Assessing Discriminative Performance at External Validation of Clinical Prediction Models

    PubMed Central

    Nieboer, Daan; van der Ploeg, Tjeerd; Steyerberg, Ewout W.

    2016-01-01

    Introduction External validation studies are essential to study the generalizability of prediction models. Recently a permutation test, focusing on discrimination as quantified by the c-statistic, was proposed to judge whether a prediction model is transportable to a new setting. We aimed to evaluate this test and compare it to previously proposed procedures to judge any changes in c-statistic from development to external validation setting. Methods We compared the use of the permutation test to the use of benchmark values of the c-statistic following from a previously proposed framework to judge transportability of a prediction model. In a simulation study we developed a prediction model with logistic regression on a development set and validated them in the validation set. We concentrated on two scenarios: 1) the case-mix was more heterogeneous and predictor effects were weaker in the validation set compared to the development set, and 2) the case-mix was less heterogeneous in the validation set and predictor effects were identical in the validation and development set. Furthermore we illustrated the methods in a case study using 15 datasets of patients suffering from traumatic brain injury. Results The permutation test indicated that the validation and development set were homogenous in scenario 1 (in almost all simulated samples) and heterogeneous in scenario 2 (in 17%-39% of simulated samples). Previously proposed benchmark values of the c-statistic and the standard deviation of the linear predictors correctly pointed at the more heterogeneous case-mix in scenario 1 and the less heterogeneous case-mix in scenario 2. Conclusion The recently proposed permutation test may provide misleading results when externally validating prediction models in the presence of case-mix differences between the development and validation population. To correctly interpret the c-statistic found at external validation it is crucial to disentangle case-mix differences from incorrect regression coefficients. PMID:26881753

  17. Assessing Discriminative Performance at External Validation of Clinical Prediction Models.

    PubMed

    Nieboer, Daan; van der Ploeg, Tjeerd; Steyerberg, Ewout W

    2016-01-01

    External validation studies are essential to study the generalizability of prediction models. Recently a permutation test, focusing on discrimination as quantified by the c-statistic, was proposed to judge whether a prediction model is transportable to a new setting. We aimed to evaluate this test and compare it to previously proposed procedures to judge any changes in c-statistic from development to external validation setting. We compared the use of the permutation test to the use of benchmark values of the c-statistic following from a previously proposed framework to judge transportability of a prediction model. In a simulation study we developed a prediction model with logistic regression on a development set and validated them in the validation set. We concentrated on two scenarios: 1) the case-mix was more heterogeneous and predictor effects were weaker in the validation set compared to the development set, and 2) the case-mix was less heterogeneous in the validation set and predictor effects were identical in the validation and development set. Furthermore we illustrated the methods in a case study using 15 datasets of patients suffering from traumatic brain injury. The permutation test indicated that the validation and development set were homogenous in scenario 1 (in almost all simulated samples) and heterogeneous in scenario 2 (in 17%-39% of simulated samples). Previously proposed benchmark values of the c-statistic and the standard deviation of the linear predictors correctly pointed at the more heterogeneous case-mix in scenario 1 and the less heterogeneous case-mix in scenario 2. The recently proposed permutation test may provide misleading results when externally validating prediction models in the presence of case-mix differences between the development and validation population. To correctly interpret the c-statistic found at external validation it is crucial to disentangle case-mix differences from incorrect regression coefficients.

  18. Modeling stream network-scale variation in Coho salmon overwinter survival and smolt size

    Treesearch

    Joseph L. Ebersole; Mike E. Colvin; Parker J. Wigington; Scott G. Leibowitz; Joan P. Baker; Jana E. Compton; Bruce A. Miller; Michael A. Carins; Bruce P. Hansen; Henry R. La Vigne

    2009-01-01

    We used multiple regression and hierarchical mixed-effects models to examine spatial patterns of overwinter survival and size at smolting in juvenile coho salmon Oncorhynchus kisutch in relation to habitat attributes across an extensive stream network in southwestern Oregon over 3 years. Contributing basin area explained the majority of spatial...

  19. Comparing colon cancer outcomes: The impact of low hospital case volume and case-mix adjustment.

    PubMed

    Fischer, C; Lingsma, H F; van Leersum, N; Tollenaar, R A E M; Wouters, M W; Steyerberg, E W

    2015-08-01

    When comparing performance across hospitals it is essential to consider the noise caused by low hospital case volume and to perform adequate case-mix adjustment. We aimed to quantify the role of noise and case-mix adjustment on standardized postoperative mortality and anastomotic leakage (AL) rates. We studied 13,120 patients who underwent colon cancer resection in 85 Dutch hospitals. We addressed differences between hospitals in postoperative mortality and AL, using fixed (ignoring noise) and random effects (incorporating noise) logistic regression models with general and additional, disease specific, case-mix adjustment. Adding disease specific variables improved the performance of the case-mix adjustment models for postoperative mortality (c-statistic increased from 0.77 to 0.81). The overall variation in standardized mortality ratios was similar, but some individual hospitals changed considerably. For the standardized AL rates the performance of the adjustment models was poor (c-statistic 0.59 and 0.60) and overall variation was small. Most of the observed variation between hospitals was actually noise. Noise had a larger effect on hospital performance than extended case-mix adjustment, although some individual hospital outcome rates were affected by more detailed case-mix adjustment. To compare outcomes between hospitals it is crucial to consider noise due to low hospital case volume with a random effects model. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Random effects coefficient of determination for mixed and meta-analysis models.

    PubMed

    Demidenko, Eugene; Sargent, James; Onega, Tracy

    2012-01-01

    The key feature of a mixed model is the presence of random effects. We have developed a coefficient, called the random effects coefficient of determination, [Formula: see text], that estimates the proportion of the conditional variance of the dependent variable explained by random effects. This coefficient takes values from 0 to 1 and indicates how strong the random effects are. The difference from the earlier suggested fixed effects coefficient of determination is emphasized. If [Formula: see text] is close to 0, there is weak support for random effects in the model because the reduction of the variance of the dependent variable due to random effects is small; consequently, random effects may be ignored and the model simplifies to standard linear regression. The value of [Formula: see text] apart from 0 indicates the evidence of the variance reduction in support of the mixed model. If random effects coefficient of determination is close to 1 the variance of random effects is very large and random effects turn into free fixed effects-the model can be estimated using the dummy variable approach. We derive explicit formulas for [Formula: see text] in three special cases: the random intercept model, the growth curve model, and meta-analysis model. Theoretical results are illustrated with three mixed model examples: (1) travel time to the nearest cancer center for women with breast cancer in the U.S., (2) cumulative time watching alcohol related scenes in movies among young U.S. teens, as a risk factor for early drinking onset, and (3) the classic example of the meta-analysis model for combination of 13 studies on tuberculosis vaccine.

  1. The creation and evaluation of a model to simulate the probability of conception in seasonal-calving pasture-based dairy heifers.

    PubMed

    Fenlon, Caroline; O'Grady, Luke; Butler, Stephen; Doherty, Michael L; Dunnion, John

    2017-01-01

    Herd fertility in pasture-based dairy farms is a key driver of farm economics. Models for predicting nulliparous reproductive outcomes are rare, but age, genetics, weight, and BCS have been identified as factors influencing heifer conception. The aim of this study was to create a simulation model of heifer conception to service with thorough evaluation. Artificial Insemination service records from two research herds and ten commercial herds were provided to build and evaluate the models. All were managed as spring-calving pasture-based systems. The factors studied were related to age, genetics, and time of service. The data were split into training and testing sets and bootstrapping was used to train the models. Logistic regression (with and without random effects) and generalised additive modelling were selected as the model-building techniques. Two types of evaluation were used to test the predictive ability of the models: discrimination and calibration. Discrimination, which includes sensitivity, specificity, accuracy and ROC analysis, measures a model's ability to distinguish between positive and negative outcomes. Calibration measures the accuracy of the predicted probabilities with the Hosmer-Lemeshow goodness-of-fit, calibration plot and calibration error. After data cleaning and the removal of services with missing values, 1396 services remained to train the models and 597 were left for testing. Age, breed, genetic predicted transmitting ability for calving interval, month and year were significant in the multivariate models. The regression models also included an interaction between age and month. Year within herd was a random effect in the mixed regression model. Overall prediction accuracy was between 77.1% and 78.9%. All three models had very high sensitivity, but low specificity. The two regression models were very well-calibrated. The mean absolute calibration errors were all below 4%. Because the models were not adept at identifying unsuccessful services, they are not suggested for use in predicting the outcome of individual heifer services. Instead, they are useful for the comparison of services with different covariate values or as sub-models in whole-farm simulations. The mixed regression model was identified as the best model for prediction, as the random effects can be ignored and the other variables can be easily obtained or simulated.

  2. Wavelet-based functional linear mixed models: an application to measurement error-corrected distributed lag models.

    PubMed

    Malloy, Elizabeth J; Morris, Jeffrey S; Adar, Sara D; Suh, Helen; Gold, Diane R; Coull, Brent A

    2010-07-01

    Frequently, exposure data are measured over time on a grid of discrete values that collectively define a functional observation. In many applications, researchers are interested in using these measurements as covariates to predict a scalar response in a regression setting, with interest focusing on the most biologically relevant time window of exposure. One example is in panel studies of the health effects of particulate matter (PM), where particle levels are measured over time. In such studies, there are many more values of the functional data than observations in the data set so that regularization of the corresponding functional regression coefficient is necessary for estimation. Additional issues in this setting are the possibility of exposure measurement error and the need to incorporate additional potential confounders, such as meteorological or co-pollutant measures, that themselves may have effects that vary over time. To accommodate all these features, we develop wavelet-based linear mixed distributed lag models that incorporate repeated measures of functional data as covariates into a linear mixed model. A Bayesian approach to model fitting uses wavelet shrinkage to regularize functional coefficients. We show that, as long as the exposure error induces fine-scale variability in the functional exposure profile and the distributed lag function representing the exposure effect varies smoothly in time, the model corrects for the exposure measurement error without further adjustment. Both these conditions are likely to hold in the environmental applications we consider. We examine properties of the method using simulations and apply the method to data from a study examining the association between PM, measured as hourly averages for 1-7 days, and markers of acute systemic inflammation. We use the method to fully control for the effects of confounding by other time-varying predictors, such as temperature and co-pollutants.

  3. [Spatial heterogeneity in body condition of small yellow croaker in Yellow Sea and East China Sea based on mixed-effects model and quantile regression analysis].

    PubMed

    Liu, Zun-Lei; Yuan, Xing-Wei; Yan, Li-Ping; Yang, Lin-Lin; Cheng, Jia-Hua

    2013-09-01

    By using the 2008-2010 investigation data about the body condition of small yellow croaker in the offshore waters of southern Yellow Sea (SYS), open waters of northern East China Sea (NECS), and offshore waters of middle East China Sea (MECS), this paper analyzed the spatial heterogeneity of body length-body mass of juvenile and adult small yellow croakers by the statistical approaches of mean regression model and quantile regression model. The results showed that the residual standard errors from the analysis of covariance (ANCOVA) and the linear mixed-effects model were similar, and those from the simple linear regression were the highest. For the juvenile small yellow croakers, their mean body mass in SYS and NECS estimated by the mixed-effects mean regression model was higher than the overall average mass across the three regions, while the mean body mass in MECS was below the overall average. For the adult small yellow croakers, their mean body mass in NECS was higher than the overall average, while the mean body mass in SYS and MECS was below the overall average. The results from quantile regression indicated the substantial differences in the allometric relationships of juvenile small yellow croakers between SYS, NECS, and MECS, with the estimated mean exponent of the allometric relationship in SYS being 2.85, and the interquartile range being from 2.63 to 2.96, which indicated the heterogeneity of body form. The results from ANCOVA showed that the allometric body length-body mass relationships were significantly different between the 25th and 75th percentile exponent values (F=6.38, df=1737, P<0.01) and the 25th percentile and median exponent values (F=2.35, df=1737, P=0.039). The relationship was marginally different between the median and 75th percentile exponent values (F=2.21, df=1737, P=0.051). The estimated body length-body mass exponent of adult small yellow croakers in SYS was 3.01 (10th and 95th percentiles = 2.77 and 3.1, respectively). The estimated body length-body mass relationships were significantly different from the lower and upper quantiles of the exponent (F=3.31, df=2793, P=0.01) and the median and upper quantiles (F=3.56, df=2793, P<0.01), while no significant difference was observed between the lower and median quantiles (F=0.98, df=2793, P=0.43).

  4. The Effects of Baseline Estimation on the Reliability, Validity, and Precision of CBM-R Growth Estimates

    ERIC Educational Resources Information Center

    Van Norman, Ethan R.; Christ, Theodore J.; Zopluoglu, Cengiz

    2013-01-01

    This study examined the effect of baseline estimation on the quality of trend estimates derived from Curriculum Based Measurement of Oral Reading (CBM-R) progress monitoring data. The authors used a linear mixed effects regression (LMER) model to simulate progress monitoring data for schedules ranging from 6-20 weeks for datasets with high and low…

  5. The Pediatric Home Care/Expenditure Classification Model (P/ECM): A Home Care Case-Mix Model for Children Facing Special Health Care Challenges.

    PubMed

    Phillips, Charles D

    2015-01-01

    Case-mix classification and payment systems help assure that persons with similar needs receive similar amounts of care resources, which is a major equity concern for consumers, providers, and programs. Although health service programs for adults regularly use case-mix payment systems, programs providing health services to children and youth rarely use such models. This research utilized Medicaid home care expenditures and assessment data on 2,578 children receiving home care in one large state in the USA. Using classification and regression tree analyses, a case-mix model for long-term pediatric home care was developed. The Pediatric Home Care/Expenditure Classification Model (P/ECM) grouped children and youth in the study sample into 24 groups, explaining 41% of the variance in annual home care expenditures. The P/ECM creates the possibility of a more equitable, and potentially more effective, allocation of home care resources among children and youth facing serious health care challenges.

  6. The Pediatric Home Care/Expenditure Classification Model (P/ECM): A Home Care Case-Mix Model for Children Facing Special Health Care Challenges

    PubMed Central

    Phillips, Charles D.

    2015-01-01

    Case-mix classification and payment systems help assure that persons with similar needs receive similar amounts of care resources, which is a major equity concern for consumers, providers, and programs. Although health service programs for adults regularly use case-mix payment systems, programs providing health services to children and youth rarely use such models. This research utilized Medicaid home care expenditures and assessment data on 2,578 children receiving home care in one large state in the USA. Using classification and regression tree analyses, a case-mix model for long-term pediatric home care was developed. The Pediatric Home Care/Expenditure Classification Model (P/ECM) grouped children and youth in the study sample into 24 groups, explaining 41% of the variance in annual home care expenditures. The P/ECM creates the possibility of a more equitable, and potentially more effective, allocation of home care resources among children and youth facing serious health care challenges. PMID:26740744

  7. Robust and efficient estimation with weighted composite quantile regression

    NASA Astrophysics Data System (ADS)

    Jiang, Xuejun; Li, Jingzhi; Xia, Tian; Yan, Wanfeng

    2016-09-01

    In this paper we introduce a weighted composite quantile regression (CQR) estimation approach and study its application in nonlinear models such as exponential models and ARCH-type models. The weighted CQR is augmented by using a data-driven weighting scheme. With the error distribution unspecified, the proposed estimators share robustness from quantile regression and achieve nearly the same efficiency as the oracle maximum likelihood estimator (MLE) for a variety of error distributions including the normal, mixed-normal, Student's t, Cauchy distributions, etc. We also suggest an algorithm for the fast implementation of the proposed methodology. Simulations are carried out to compare the performance of different estimators, and the proposed approach is used to analyze the daily S&P 500 Composite index, which verifies the effectiveness and efficiency of our theoretical results.

  8. Land use regression models to assess air pollution exposure in Mexico City using finer spatial and temporal input parameters.

    PubMed

    Son, Yeongkwon; Osornio-Vargas, Álvaro R; O'Neill, Marie S; Hystad, Perry; Texcalac-Sangrador, José L; Ohman-Strickland, Pamela; Meng, Qingyu; Schwander, Stephan

    2018-05-17

    The Mexico City Metropolitan Area (MCMA) is one of the largest and most populated urban environments in the world and experiences high air pollution levels. To develop models that estimate pollutant concentrations at fine spatiotemporal scales and provide improved air pollution exposure assessments for health studies in Mexico City. We developed finer spatiotemporal land use regression (LUR) models for PM 2.5 , PM 10 , O 3 , NO 2 , CO and SO 2 using mixed effect models with the Least Absolute Shrinkage and Selection Operator (LASSO). Hourly traffic density was included as a temporal variable besides meteorological and holiday variables. Models of hourly, daily, monthly, 6-monthly and annual averages were developed and evaluated using traditional and novel indices. The developed spatiotemporal LUR models yielded predicted concentrations with good spatial and temporal agreements with measured pollutant levels except for the hourly PM 2.5 , PM 10 and SO 2 . Most of the LUR models met performance goals based on the standardized indices. LUR models with temporal scales greater than one hour were successfully developed using mixed effect models with LASSO and showed superior model performance compared to earlier LUR models, especially for time scales of a day or longer. The newly developed LUR models will be further refined with ongoing Mexico City air pollution sampling campaigns to improve personal exposure assessments. Copyright © 2018. Published by Elsevier B.V.

  9. Mixed effect Poisson log-linear models for clinical and epidemiological sleep hypnogram data

    PubMed Central

    Swihart, Bruce J.; Caffo, Brian S.; Crainiceanu, Ciprian; Punjabi, Naresh M.

    2013-01-01

    Bayesian Poisson log-linear multilevel models scalable to epidemiological studies are proposed to investigate population variability in sleep state transition rates. Hierarchical random effects are used to account for pairings of subjects and repeated measures within those subjects, as comparing diseased to non-diseased subjects while minimizing bias is of importance. Essentially, non-parametric piecewise constant hazards are estimated and smoothed, allowing for time-varying covariates and segment of the night comparisons. The Bayesian Poisson regression is justified through a re-derivation of a classical algebraic likelihood equivalence of Poisson regression with a log(time) offset and survival regression assuming exponentially distributed survival times. Such re-derivation allows synthesis of two methods currently used to analyze sleep transition phenomena: stratified multi-state proportional hazards models and log-linear models with GEE for transition counts. An example data set from the Sleep Heart Health Study is analyzed. Supplementary material includes the analyzed data set as well as the code for a reproducible analysis. PMID:22241689

  10. Multilevel Models for Binary Data

    ERIC Educational Resources Information Center

    Powers, Daniel A.

    2012-01-01

    The methods and models for categorical data analysis cover considerable ground, ranging from regression-type models for binary and binomial data, count data, to ordered and unordered polytomous variables, as well as regression models that mix qualitative and continuous data. This article focuses on methods for binary or binomial data, which are…

  11. The use of cognitive ability measures as explanatory variables in regression analysis.

    PubMed

    Junker, Brian; Schofield, Lynne Steuerle; Taylor, Lowell J

    2012-12-01

    Cognitive ability measures are often taken as explanatory variables in regression analysis, e.g., as a factor affecting a market outcome such as an individual's wage, or a decision such as an individual's education acquisition. Cognitive ability is a latent construct; its true value is unobserved. Nonetheless, researchers often assume that a test score , constructed via standard psychometric practice from individuals' responses to test items, can be safely used in regression analysis. We examine problems that can arise, and suggest that an alternative approach, a "mixed effects structural equations" (MESE) model, may be more appropriate in many circumstances.

  12. Mixed models, linear dependency, and identification in age-period-cohort models.

    PubMed

    O'Brien, Robert M

    2017-07-20

    This paper examines the identification problem in age-period-cohort models that use either linear or categorically coded ages, periods, and cohorts or combinations of these parameterizations. These models are not identified using the traditional fixed effect regression model approach because of a linear dependency between the ages, periods, and cohorts. However, these models can be identified if the researcher introduces a single just identifying constraint on the model coefficients. The problem with such constraints is that the results can differ substantially depending on the constraint chosen. Somewhat surprisingly, age-period-cohort models that specify one or more of ages and/or periods and/or cohorts as random effects are identified. This is the case without introducing an additional constraint. I label this identification as statistical model identification and show how statistical model identification comes about in mixed models and why which effects are treated as fixed and which are treated as random can substantially change the estimates of the age, period, and cohort effects. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  13. Bayesian Nonparametric Inference – Why and How

    PubMed Central

    Müller, Peter; Mitra, Riten

    2013-01-01

    We review inference under models with nonparametric Bayesian (BNP) priors. The discussion follows a set of examples for some common inference problems. The examples are chosen to highlight problems that are challenging for standard parametric inference. We discuss inference for density estimation, clustering, regression and for mixed effects models with random effects distributions. While we focus on arguing for the need for the flexibility of BNP models, we also review some of the more commonly used BNP models, thus hopefully answering a bit of both questions, why and how to use BNP. PMID:24368932

  14. Improving Lidar-based Aboveground Biomass Estimation with Site Productivity for Central Hardwood Forests, USA

    NASA Astrophysics Data System (ADS)

    Shao, G.; Gallion, J.; Fei, S.

    2016-12-01

    Sound forest aboveground biomass estimation is required to monitor diverse forest ecosystems and their impacts on the changing climate. Lidar-based regression models provided promised biomass estimations in most forest ecosystems. However, considerable uncertainties of biomass estimations have been reported in the temperate hardwood and hardwood-dominated mixed forests. Varied site productivities in temperate hardwood forests largely diversified height and diameter growth rates, which significantly reduced the correlation between tree height and diameter at breast height (DBH) in mature and complex forests. It is, therefore, difficult to utilize height-based lidar metrics to predict DBH-based field-measured biomass through a simple regression model regardless the variation of site productivity. In this study, we established a multi-dimension nonlinear regression model incorporating lidar metrics and site productivity classes derived from soil features. In the regression model, lidar metrics provided horizontal and vertical structural information and productivity classes differentiated good and poor forest sites. The selection and combination of lidar metrics were discussed. Multiple regression models were employed and compared. Uncertainty analysis was applied to the best fit model. The effects of site productivity on the lidar-based biomass model were addressed.

  15. Correcting for population structure and kinship using the linear mixed model: theory and extensions.

    PubMed

    Hoffman, Gabriel E

    2013-01-01

    Population structure and kinship are widespread confounding factors in genome-wide association studies (GWAS). It has been standard practice to include principal components of the genotypes in a regression model in order to account for population structure. More recently, the linear mixed model (LMM) has emerged as a powerful method for simultaneously accounting for population structure and kinship. The statistical theory underlying the differences in empirical performance between modeling principal components as fixed versus random effects has not been thoroughly examined. We undertake an analysis to formalize the relationship between these widely used methods and elucidate the statistical properties of each. Moreover, we introduce a new statistic, effective degrees of freedom, that serves as a metric of model complexity and a novel low rank linear mixed model (LRLMM) to learn the dimensionality of the correction for population structure and kinship, and we assess its performance through simulations. A comparison of the results of LRLMM and a standard LMM analysis applied to GWAS data from the Multi-Ethnic Study of Atherosclerosis (MESA) illustrates how our theoretical results translate into empirical properties of the mixed model. Finally, the analysis demonstrates the ability of the LRLMM to substantially boost the strength of an association for HDL cholesterol in Europeans.

  16. Cox Regression Models with Functional Covariates for Survival Data.

    PubMed

    Gellar, Jonathan E; Colantuoni, Elizabeth; Needham, Dale M; Crainiceanu, Ciprian M

    2015-06-01

    We extend the Cox proportional hazards model to cases when the exposure is a densely sampled functional process, measured at baseline. The fundamental idea is to combine penalized signal regression with methods developed for mixed effects proportional hazards models. The model is fit by maximizing the penalized partial likelihood, with smoothing parameters estimated by a likelihood-based criterion such as AIC or EPIC. The model may be extended to allow for multiple functional predictors, time varying coefficients, and missing or unequally-spaced data. Methods were inspired by and applied to a study of the association between time to death after hospital discharge and daily measures of disease severity collected in the intensive care unit, among survivors of acute respiratory distress syndrome.

  17. The PX-EM algorithm for fast stable fitting of Henderson's mixed model

    PubMed Central

    Foulley, Jean-Louis; Van Dyk, David A

    2000-01-01

    This paper presents procedures for implementing the PX-EM algorithm of Liu, Rubin and Wu to compute REML estimates of variance covariance components in Henderson's linear mixed models. The class of models considered encompasses several correlated random factors having the same vector length e.g., as in random regression models for longitudinal data analysis and in sire-maternal grandsire models for genetic evaluation. Numerical examples are presented to illustrate the procedures. Much better results in terms of convergence characteristics (number of iterations and time required for convergence) are obtained for PX-EM relative to the basic EM algorithm in the random regression. PMID:14736399

  18. Boosted Regression Tree Models to Explain Watershed Nutrient Concentrations and Biological Condition

    EPA Science Inventory

    Boosted regression tree (BRT) models were developed to quantify the nonlinear relationships between landscape variables and nutrient concentrations in a mesoscale mixed land cover watershed during base-flow conditions. Factors that affect instream biological components, based on ...

  19. Statistical inference methods for sparse biological time series data.

    PubMed

    Ndukum, Juliet; Fonseca, Luís L; Santos, Helena; Voit, Eberhard O; Datta, Susmita

    2011-04-25

    Comparing metabolic profiles under different biological perturbations has become a powerful approach to investigating the functioning of cells. The profiles can be taken as single snapshots of a system, but more information is gained if they are measured longitudinally over time. The results are short time series consisting of relatively sparse data that cannot be analyzed effectively with standard time series techniques, such as autocorrelation and frequency domain methods. In this work, we study longitudinal time series profiles of glucose consumption in the yeast Saccharomyces cerevisiae under different temperatures and preconditioning regimens, which we obtained with methods of in vivo nuclear magnetic resonance (NMR) spectroscopy. For the statistical analysis we first fit several nonlinear mixed effect regression models to the longitudinal profiles and then used an ANOVA likelihood ratio method in order to test for significant differences between the profiles. The proposed methods are capable of distinguishing metabolic time trends resulting from different treatments and associate significance levels to these differences. Among several nonlinear mixed-effects regression models tested, a three-parameter logistic function represents the data with highest accuracy. ANOVA and likelihood ratio tests suggest that there are significant differences between the glucose consumption rate profiles for cells that had been--or had not been--preconditioned by heat during growth. Furthermore, pair-wise t-tests reveal significant differences in the longitudinal profiles for glucose consumption rates between optimal conditions and heat stress, optimal and recovery conditions, and heat stress and recovery conditions (p-values <0.0001). We have developed a nonlinear mixed effects model that is appropriate for the analysis of sparse metabolic and physiological time profiles. The model permits sound statistical inference procedures, based on ANOVA likelihood ratio tests, for testing the significance of differences between short time course data under different biological perturbations.

  20. Application of Linear Mixed-Effects Models in Human Neuroscience Research: A Comparison with Pearson Correlation in Two Auditory Electrophysiology Studies.

    PubMed

    Koerner, Tess K; Zhang, Yang

    2017-02-27

    Neurophysiological studies are often designed to examine relationships between measures from different testing conditions, time points, or analysis techniques within the same group of participants. Appropriate statistical techniques that can take into account repeated measures and multivariate predictor variables are integral and essential to successful data analysis and interpretation. This work implements and compares conventional Pearson correlations and linear mixed-effects (LME) regression models using data from two recently published auditory electrophysiology studies. For the specific research questions in both studies, the Pearson correlation test is inappropriate for determining strengths between the behavioral responses for speech-in-noise recognition and the multiple neurophysiological measures as the neural responses across listening conditions were simply treated as independent measures. In contrast, the LME models allow a systematic approach to incorporate both fixed-effect and random-effect terms to deal with the categorical grouping factor of listening conditions, between-subject baseline differences in the multiple measures, and the correlational structure among the predictor variables. Together, the comparative data demonstrate the advantages as well as the necessity to apply mixed-effects models to properly account for the built-in relationships among the multiple predictor variables, which has important implications for proper statistical modeling and interpretation of human behavior in terms of neural correlates and biomarkers.

  1. Modeling Longitudinal Data Containing Non-Normal Within Subject Errors

    NASA Technical Reports Server (NTRS)

    Feiveson, Alan; Glenn, Nancy L.

    2013-01-01

    The mission of the National Aeronautics and Space Administration’s (NASA) human research program is to advance safe human spaceflight. This involves conducting experiments, collecting data, and analyzing data. The data are longitudinal and result from a relatively few number of subjects; typically 10 – 20. A longitudinal study refers to an investigation where participant outcomes and possibly treatments are collected at multiple follow-up times. Standard statistical designs such as mean regression with random effects and mixed–effects regression are inadequate for such data because the population is typically not approximately normally distributed. Hence, more advanced data analysis methods are necessary. This research focuses on four such methods for longitudinal data analysis: the recently proposed linear quantile mixed models (lqmm) by Geraci and Bottai (2013), quantile regression, multilevel mixed–effects linear regression, and robust regression. This research also provides computational algorithms for longitudinal data that scientists can directly use for human spaceflight and other longitudinal data applications, then presents statistical evidence that verifies which method is best for specific situations. This advances the study of longitudinal data in a broad range of applications including applications in the sciences, technology, engineering and mathematics fields.

  2. Effects of Morphological Family Size for Young Readers

    ERIC Educational Resources Information Center

    Perdijk, Kors; Schreuder, Robert; Baayen, R. Harald; Verhoeven, Ludo

    2012-01-01

    Dutch children, from the second and fourth grade of primary school, were each given a visual lexical decision test on 210 Dutch monomorphemic words. After removing words not recognized by a majority of the younger group, (lexical) decisions were analysed by mixed-model regression methods to see whether morphological Family Size influenced decision…

  3. Estimating daily surface NO2 concentrations from satellite data - a case study over Hong Kong using land use regression models

    NASA Astrophysics Data System (ADS)

    Anand, Jasdeep S.; Monks, Paul S.

    2017-07-01

    Land use regression (LUR) models have been used in epidemiology to determine the fine-scale spatial variation in air pollutants such as nitrogen dioxide (NO2) in cities and larger regions. However, they are often limited in their temporal resolution, which may potentially be rectified by employing the synoptic coverage provided by satellite measurements. In this work a mixed-effects LUR model is developed to model daily surface NO2 concentrations over the Hong Kong SAR during the period 2005-2015. In situ measurements from the Hong Kong Air Quality Monitoring Network, along with tropospheric vertical column density (VCD) data from the OMI, GOME-2A, and SCIAMACHY satellite instruments were combined with fine-scale land use parameters to provide the spatiotemporal information necessary to predict daily surface concentrations. Cross-validation with the in situ data shows that the mixed-effects LUR model using OMI data has a high predictive power (adj. R2 = 0. 84), especially when compared with surface concentrations derived using the MACC-II reanalysis model dataset (adj. R2 = 0. 11). Time series analysis shows no statistically significant trend in NO2 concentrations during 2005-2015, despite a reported decline in NOx emissions. This study demonstrates the utility in combining satellite data with LUR models to derive daily maps of ambient surface NO2 for use in exposure studies.

  4. Modeling Stationary Lithium-Ion Batteries for Optimization and Predictive Control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baker, Kyri A; Shi, Ying; Christensen, Dane T

    Accurately modeling stationary battery storage behavior is crucial to understand and predict its limitations in demand-side management scenarios. In this paper, a lithium-ion battery model was derived to estimate lifetime and state-of-charge for building-integrated use cases. The proposed battery model aims to balance speed and accuracy when modeling battery behavior for real-time predictive control and optimization. In order to achieve these goals, a mixed modeling approach was taken, which incorporates regression fits to experimental data and an equivalent circuit to model battery behavior. A comparison of the proposed battery model output to actual data from the manufacturer validates the modelingmore » approach taken in the paper. Additionally, a dynamic test case demonstrates the effects of using regression models to represent internal resistance and capacity fading.« less

  5. Modeling Stationary Lithium-Ion Batteries for Optimization and Predictive Control: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raszmann, Emma; Baker, Kyri; Shi, Ying

    Accurately modeling stationary battery storage behavior is crucial to understand and predict its limitations in demand-side management scenarios. In this paper, a lithium-ion battery model was derived to estimate lifetime and state-of-charge for building-integrated use cases. The proposed battery model aims to balance speed and accuracy when modeling battery behavior for real-time predictive control and optimization. In order to achieve these goals, a mixed modeling approach was taken, which incorporates regression fits to experimental data and an equivalent circuit to model battery behavior. A comparison of the proposed battery model output to actual data from the manufacturer validates the modelingmore » approach taken in the paper. Additionally, a dynamic test case demonstrates the effects of using regression models to represent internal resistance and capacity fading.« less

  6. The use of cognitive ability measures as explanatory variables in regression analysis

    PubMed Central

    Junker, Brian; Schofield, Lynne Steuerle; Taylor, Lowell J

    2015-01-01

    Cognitive ability measures are often taken as explanatory variables in regression analysis, e.g., as a factor affecting a market outcome such as an individual’s wage, or a decision such as an individual’s education acquisition. Cognitive ability is a latent construct; its true value is unobserved. Nonetheless, researchers often assume that a test score, constructed via standard psychometric practice from individuals’ responses to test items, can be safely used in regression analysis. We examine problems that can arise, and suggest that an alternative approach, a “mixed effects structural equations” (MESE) model, may be more appropriate in many circumstances. PMID:26998417

  7. An overview of longitudinal data analysis methods for neurological research.

    PubMed

    Locascio, Joseph J; Atri, Alireza

    2011-01-01

    The purpose of this article is to provide a concise, broad and readily accessible overview of longitudinal data analysis methods, aimed to be a practical guide for clinical investigators in neurology. In general, we advise that older, traditional methods, including (1) simple regression of the dependent variable on a time measure, (2) analyzing a single summary subject level number that indexes changes for each subject and (3) a general linear model approach with a fixed-subject effect, should be reserved for quick, simple or preliminary analyses. We advocate the general use of mixed-random and fixed-effect regression models for analyses of most longitudinal clinical studies. Under restrictive situations or to provide validation, we recommend: (1) repeated-measure analysis of covariance (ANCOVA), (2) ANCOVA for two time points, (3) generalized estimating equations and (4) latent growth curve/structural equation models.

  8. Predicting daily PM2.5 concentrations in Texas using high-resolution satellite aerosol optical depth.

    PubMed

    Zhang, Xueying; Chu, Yiyi; Wang, Yuxuan; Zhang, Kai

    2018-08-01

    The regulatory monitoring data of particulate matter with an aerodynamic diameter <2.5μm (PM 2.5 ) in Texas have limited spatial and temporal coverage. The purpose of this study is to estimate the ground-level PM 2.5 concentrations on a daily basis using satellite-retrieved Aerosol Optical Depth (AOD) in the state of Texas. We obtained the AOD values at 1-km resolution generated through the Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm based on the images retrieved from the Moderate Resolution Imaging Spectroradiometer (MODIS) satellites. We then developed mixed-effects models based on AODs, land use features, geographic characteristics, and weather conditions, and the day-specific as well as site-specific random effects to estimate the PM 2.5 concentrations (μg/m 3 ) in the state of Texas during the period 2008-2013. The mixed-effects models' performance was evaluated using the coefficient of determination (R 2 ) and square root of the mean squared prediction error (RMSPE) from ten-fold cross-validation, which randomly selected 90% of the observations for training purpose and 10% of the observations for assessing the models' true prediction ability. Mixed-effects regression models showed good prediction performance (R 2 values from 10-fold cross validation: 0.63-0.69). The model performance varied by regions and study years, and the East region of Texas, and year of 2009 presented relatively higher prediction precision (R 2 : 0.62 for the East region; R 2 : 0.69 for the year of 2009). The PM 2.5 concentrations generated through our developed models at 1-km grid cells in the state of Texas showed a decreasing trend from 2008 to 2013 and a higher reduction of predicted PM 2.5 in more polluted areas. Our findings suggest that mixed-effects regression models developed based on MAIAC AOD are a feasible approach to predict ground-level PM 2.5 in Texas. Predicted PM 2.5 concentrations at the 1-km resolution on a daily basis can be used for epidemiological studies to investigate short- and long-term health impact of PM 2.5 in Texas. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Covariate Selection for Multilevel Models with Missing Data

    PubMed Central

    Marino, Miguel; Buxton, Orfeu M.; Li, Yi

    2017-01-01

    Missing covariate data hampers variable selection in multilevel regression settings. Current variable selection techniques for multiply-imputed data commonly address missingness in the predictors through list-wise deletion and stepwise-selection methods which are problematic. Moreover, most variable selection methods are developed for independent linear regression models and do not accommodate multilevel mixed effects regression models with incomplete covariate data. We develop a novel methodology that is able to perform covariate selection across multiply-imputed data for multilevel random effects models when missing data is present. Specifically, we propose to stack the multiply-imputed data sets from a multiple imputation procedure and to apply a group variable selection procedure through group lasso regularization to assess the overall impact of each predictor on the outcome across the imputed data sets. Simulations confirm the advantageous performance of the proposed method compared with the competing methods. We applied the method to reanalyze the Healthy Directions-Small Business cancer prevention study, which evaluated a behavioral intervention program targeting multiple risk-related behaviors in a working-class, multi-ethnic population. PMID:28239457

  10. Solving a mixture of many random linear equations by tensor decomposition and alternating minimization.

    DOT National Transportation Integrated Search

    2016-09-01

    We consider the problem of solving mixed random linear equations with k components. This is the noiseless setting of mixed linear regression. The goal is to estimate multiple linear models from mixed samples in the case where the labels (which sample...

  11. Civic Purpose in Late Adolescence: Factors That Prevent Decline in Civic Engagement after High School

    ERIC Educational Resources Information Center

    Malin, Heather; Han, Hyemin; Liauw, Indrawati

    2017-01-01

    This study investigated the effects of internal and demographic variables on civic development in late adolescence using the construct "civic purpose." We conducted surveys on civic engagement with 480 high school seniors, and surveyed them again 2 years later. Using multivariate regression and linear mixed models, we tested the main…

  12. Curriculum-Based Measurement of Oral Reading: Quality of Progress Monitoring Outcomes

    ERIC Educational Resources Information Center

    Christ, Theodore J.; Zopluoglu, Cengiz; Long, Jeffery D.; Monaghen, Barbara D.

    2012-01-01

    Curriculum-based measurement of oral reading (CBM-R) is frequently used to set student goals and monitor student progress. This study examined the quality of growth estimates derived from CBM-R progress monitoring data. The authors used a linear mixed effects regression (LMER) model to simulate progress monitoring data for multiple levels of…

  13. Composites from southern pine juvenile wood. Part 3. Juvenile and mature wood furnish mixtures

    Treesearch

    A.D. Pugel; E.W. Price; Chung-Yun Hse; T.F. Shupe

    2004-01-01

    Composite panelsmade from mixtures ofmature andjuvenile southern pine (Pinus taeda L.) were evaluated for initial mechanical properties and dimensional stability. The effect that the proportion of juvenile wood had on panel properties was analyzed by regression and rule-of-mixtures models. The mixed furnish data: 1) highlighted the degree to which...

  14. Transformation of Summary Statistics from Linear Mixed Model Association on All-or-None Traits to Odds Ratio.

    PubMed

    Lloyd-Jones, Luke R; Robinson, Matthew R; Yang, Jian; Visscher, Peter M

    2018-04-01

    Genome-wide association studies (GWAS) have identified thousands of loci that are robustly associated with complex diseases. The use of linear mixed model (LMM) methodology for GWAS is becoming more prevalent due to its ability to control for population structure and cryptic relatedness and to increase power. The odds ratio (OR) is a common measure of the association of a disease with an exposure ( e.g. , a genetic variant) and is readably available from logistic regression. However, when the LMM is applied to all-or-none traits it provides estimates of genetic effects on the observed 0-1 scale, a different scale to that in logistic regression. This limits the comparability of results across studies, for example in a meta-analysis, and makes the interpretation of the magnitude of an effect from an LMM GWAS difficult. In this study, we derived transformations from the genetic effects estimated under the LMM to the OR that only rely on summary statistics. To test the proposed transformations, we used real genotypes from two large, publicly available data sets to simulate all-or-none phenotypes for a set of scenarios that differ in underlying model, disease prevalence, and heritability. Furthermore, we applied these transformations to GWAS summary statistics for type 2 diabetes generated from 108,042 individuals in the UK Biobank. In both simulation and real-data application, we observed very high concordance between the transformed OR from the LMM and either the simulated truth or estimates from logistic regression. The transformations derived and validated in this study improve the comparability of results from prospective and already performed LMM GWAS on complex diseases by providing a reliable transformation to a common comparative scale for the genetic effects. Copyright © 2018 by the Genetics Society of America.

  15. Functional Additive Mixed Models

    PubMed Central

    Scheipl, Fabian; Staicu, Ana-Maria; Greven, Sonja

    2014-01-01

    We propose an extensive framework for additive regression models for correlated functional responses, allowing for multiple partially nested or crossed functional random effects with flexible correlation structures for, e.g., spatial, temporal, or longitudinal functional data. Additionally, our framework includes linear and nonlinear effects of functional and scalar covariates that may vary smoothly over the index of the functional response. It accommodates densely or sparsely observed functional responses and predictors which may be observed with additional error and includes both spline-based and functional principal component-based terms. Estimation and inference in this framework is based on standard additive mixed models, allowing us to take advantage of established methods and robust, flexible algorithms. We provide easy-to-use open source software in the pffr() function for the R-package refund. Simulations show that the proposed method recovers relevant effects reliably, handles small sample sizes well and also scales to larger data sets. Applications with spatially and longitudinally observed functional data demonstrate the flexibility in modeling and interpretability of results of our approach. PMID:26347592

  16. Functional Additive Mixed Models.

    PubMed

    Scheipl, Fabian; Staicu, Ana-Maria; Greven, Sonja

    2015-04-01

    We propose an extensive framework for additive regression models for correlated functional responses, allowing for multiple partially nested or crossed functional random effects with flexible correlation structures for, e.g., spatial, temporal, or longitudinal functional data. Additionally, our framework includes linear and nonlinear effects of functional and scalar covariates that may vary smoothly over the index of the functional response. It accommodates densely or sparsely observed functional responses and predictors which may be observed with additional error and includes both spline-based and functional principal component-based terms. Estimation and inference in this framework is based on standard additive mixed models, allowing us to take advantage of established methods and robust, flexible algorithms. We provide easy-to-use open source software in the pffr() function for the R-package refund. Simulations show that the proposed method recovers relevant effects reliably, handles small sample sizes well and also scales to larger data sets. Applications with spatially and longitudinally observed functional data demonstrate the flexibility in modeling and interpretability of results of our approach.

  17. Mixed kernel function support vector regression for global sensitivity analysis

    NASA Astrophysics Data System (ADS)

    Cheng, Kai; Lu, Zhenzhou; Wei, Yuhao; Shi, Yan; Zhou, Yicheng

    2017-11-01

    Global sensitivity analysis (GSA) plays an important role in exploring the respective effects of input variables on an assigned output response. Amongst the wide sensitivity analyses in literature, the Sobol indices have attracted much attention since they can provide accurate information for most models. In this paper, a mixed kernel function (MKF) based support vector regression (SVR) model is employed to evaluate the Sobol indices at low computational cost. By the proposed derivation, the estimation of the Sobol indices can be obtained by post-processing the coefficients of the SVR meta-model. The MKF is constituted by the orthogonal polynomials kernel function and Gaussian radial basis kernel function, thus the MKF possesses both the global characteristic advantage of the polynomials kernel function and the local characteristic advantage of the Gaussian radial basis kernel function. The proposed approach is suitable for high-dimensional and non-linear problems. Performance of the proposed approach is validated by various analytical functions and compared with the popular polynomial chaos expansion (PCE). Results demonstrate that the proposed approach is an efficient method for global sensitivity analysis.

  18. Restricted spatial regression in practice: Geostatistical models, confounding, and robustness under model misspecification

    USGS Publications Warehouse

    Hanks, Ephraim M.; Schliep, Erin M.; Hooten, Mevin B.; Hoeting, Jennifer A.

    2015-01-01

    In spatial generalized linear mixed models (SGLMMs), covariates that are spatially smooth are often collinear with spatially smooth random effects. This phenomenon is known as spatial confounding and has been studied primarily in the case where the spatial support of the process being studied is discrete (e.g., areal spatial data). In this case, the most common approach suggested is restricted spatial regression (RSR) in which the spatial random effects are constrained to be orthogonal to the fixed effects. We consider spatial confounding and RSR in the geostatistical (continuous spatial support) setting. We show that RSR provides computational benefits relative to the confounded SGLMM, but that Bayesian credible intervals under RSR can be inappropriately narrow under model misspecification. We propose a posterior predictive approach to alleviating this potential problem and discuss the appropriateness of RSR in a variety of situations. We illustrate RSR and SGLMM approaches through simulation studies and an analysis of malaria frequencies in The Gambia, Africa.

  19. Spatiotemporal Modeling of Ozone Levels in Quebec (Canada): A Comparison of Kriging, Land-Use Regression (LUR), and Combined Bayesian Maximum Entropy–LUR Approaches

    PubMed Central

    Adam-Poupart, Ariane; Brand, Allan; Fournier, Michel; Jerrett, Michael

    2014-01-01

    Background: Ambient air ozone (O3) is a pulmonary irritant that has been associated with respiratory health effects including increased lung inflammation and permeability, airway hyperreactivity, respiratory symptoms, and decreased lung function. Estimation of O3 exposure is a complex task because the pollutant exhibits complex spatiotemporal patterns. To refine the quality of exposure estimation, various spatiotemporal methods have been developed worldwide. Objectives: We sought to compare the accuracy of three spatiotemporal models to predict summer ground-level O3 in Quebec, Canada. Methods: We developed a land-use mixed-effects regression (LUR) model based on readily available data (air quality and meteorological monitoring data, road networks information, latitude), a Bayesian maximum entropy (BME) model incorporating both O3 monitoring station data and the land-use mixed model outputs (BME-LUR), and a kriging method model based only on available O3 monitoring station data (BME kriging). We performed leave-one-station-out cross-validation and visually assessed the predictive capability of each model by examining the mean temporal and spatial distributions of the average estimated errors. Results: The BME-LUR was the best predictive model (R2 = 0.653) with the lowest root mean-square error (RMSE ;7.06 ppb), followed by the LUR model (R2 = 0.466, RMSE = 8.747) and the BME kriging model (R2 = 0.414, RMSE = 9.164). Conclusions: Our findings suggest that errors of estimation in the interpolation of O3 concentrations with BME can be greatly reduced by incorporating outputs from a LUR model developed with readily available data. Citation: Adam-Poupart A, Brand A, Fournier M, Jerrett M, Smargiassi A. 2014. Spatiotemporal modeling of ozone levels in Quebec (Canada): a comparison of kriging, land-use regression (LUR), and combined Bayesian maximum entropy–LUR approaches. Environ Health Perspect 122:970–976; http://dx.doi.org/10.1289/ehp.1306566 PMID:24879650

  20. Effects of morphological Family Size for young readers.

    PubMed

    Perdijk, Kors; Schreuder, Robert; Baayen, R Harald; Verhoeven, Ludo

    2012-09-01

    Dutch children, from the second and fourth grade of primary school, were each given a visual lexical decision test on 210 Dutch monomorphemic words. After removing words not recognized by a majority of the younger group, (lexical) decisions were analysed by mixed-model regression methods to see whether morphological Family Size influenced decision times over and above several other covariates. The effect of morphological Family Size on decision time was mixed: larger families led to significantly faster decision times for the second graders but not for the fourth graders. Since facilitative effects on decision times had been found for adults, we offer a developmental account to explain the absence of an effect of Family Size on decision times for fourth graders. ©2011 The British Psychological Society.

  1. Use of non-linear mixed-effects modelling and regression analysis to predict the number of somatic coliphages by plaque enumeration after 3 hours of incubation.

    PubMed

    Mendez, Javier; Monleon-Getino, Antonio; Jofre, Juan; Lucena, Francisco

    2017-10-01

    The present study aimed to establish the kinetics of the appearance of coliphage plaques using the double agar layer titration technique to evaluate the feasibility of using traditional coliphage plaque forming unit (PFU) enumeration as a rapid quantification method. Repeated measurements of the appearance of plaques of coliphages titrated according to ISO 10705-2 at different times were analysed using non-linear mixed-effects regression to determine the most suitable model of their appearance kinetics. Although this model is adequate, to simplify its applicability two linear models were developed to predict the numbers of coliphages reliably, using the PFU counts as determined by the ISO after only 3 hours of incubation. One linear model, when the number of plaques detected was between 4 and 26 PFU after 3 hours, had a linear fit of: (1.48 × Counts 3 h + 1.97); and the other, values >26 PFU, had a fit of (1.18 × Counts 3 h + 2.95). If the number of plaques detected was <4 PFU after 3 hours, we recommend incubation for (18 ± 3) hours. The study indicates that the traditional coliphage plating technique has a reasonable potential to provide results in a single working day without the need to invest in additional laboratory equipment.

  2. Application of Linear Mixed-Effects Models in Human Neuroscience Research: A Comparison with Pearson Correlation in Two Auditory Electrophysiology Studies

    PubMed Central

    Koerner, Tess K.; Zhang, Yang

    2017-01-01

    Neurophysiological studies are often designed to examine relationships between measures from different testing conditions, time points, or analysis techniques within the same group of participants. Appropriate statistical techniques that can take into account repeated measures and multivariate predictor variables are integral and essential to successful data analysis and interpretation. This work implements and compares conventional Pearson correlations and linear mixed-effects (LME) regression models using data from two recently published auditory electrophysiology studies. For the specific research questions in both studies, the Pearson correlation test is inappropriate for determining strengths between the behavioral responses for speech-in-noise recognition and the multiple neurophysiological measures as the neural responses across listening conditions were simply treated as independent measures. In contrast, the LME models allow a systematic approach to incorporate both fixed-effect and random-effect terms to deal with the categorical grouping factor of listening conditions, between-subject baseline differences in the multiple measures, and the correlational structure among the predictor variables. Together, the comparative data demonstrate the advantages as well as the necessity to apply mixed-effects models to properly account for the built-in relationships among the multiple predictor variables, which has important implications for proper statistical modeling and interpretation of human behavior in terms of neural correlates and biomarkers. PMID:28264422

  3. Genetic parameters for growth characteristics of free-range chickens under univariate random regression models.

    PubMed

    Rovadoscki, Gregori A; Petrini, Juliana; Ramirez-Diaz, Johanna; Pertile, Simone F N; Pertille, Fábio; Salvian, Mayara; Iung, Laiza H S; Rodriguez, Mary Ana P; Zampar, Aline; Gaya, Leila G; Carvalho, Rachel S B; Coelho, Antonio A D; Savino, Vicente J M; Coutinho, Luiz L; Mourão, Gerson B

    2016-09-01

    Repeated measures from the same individual have been analyzed by using repeatability and finite dimension models under univariate or multivariate analyses. However, in the last decade, the use of random regression models for genetic studies with longitudinal data have become more common. Thus, the aim of this research was to estimate genetic parameters for body weight of four experimental chicken lines by using univariate random regression models. Body weight data from hatching to 84 days of age (n = 34,730) from four experimental free-range chicken lines (7P, Caipirão da ESALQ, Caipirinha da ESALQ and Carijó Barbado) were used. The analysis model included the fixed effects of contemporary group (gender and rearing system), fixed regression coefficients for age at measurement, and random regression coefficients for permanent environmental effects and additive genetic effects. Heterogeneous variances for residual effects were considered, and one residual variance was assigned for each of six subclasses of age at measurement. Random regression curves were modeled by using Legendre polynomials of the second and third orders, with the best model chosen based on the Akaike Information Criterion, Bayesian Information Criterion, and restricted maximum likelihood. Multivariate analyses under the same animal mixed model were also performed for the validation of the random regression models. The Legendre polynomials of second order were better for describing the growth curves of the lines studied. Moderate to high heritabilities (h(2) = 0.15 to 0.98) were estimated for body weight between one and 84 days of age, suggesting that selection for body weight at all ages can be used as a selection criteria. Genetic correlations among body weight records obtained through multivariate analyses ranged from 0.18 to 0.96, 0.12 to 0.89, 0.06 to 0.96, and 0.28 to 0.96 in 7P, Caipirão da ESALQ, Caipirinha da ESALQ, and Carijó Barbado chicken lines, respectively. Results indicate that genetic gain for body weight can be achieved by selection. Also, selection for body weight at 42 days of age can be maintained as a selection criterion. © 2016 Poultry Science Association Inc.

  4. Use of Midlevel Practitioners to Achieve Labor Cost Savings in the Primary Care Practice of an MCO

    PubMed Central

    Roblin, Douglas W; Howard, David H; Becker, Edmund R; Kathleen Adams, E; Roberts, Melissa H

    2004-01-01

    Objective To estimate the savings in labor costs per primary care visit that might be realized from increased use of physician assistants (PAs) and nurse practitioners (NPs) in the primary care practices of a managed care organization (MCO). Study Setting/Data Sources Twenty-six capitated primary care practices of a group model MCO. Data on approximately two million visits provided by 206 practitioners were extracted from computerized visit records for 1997–2000. Computerized payroll ledgers were the source of annual labor costs per practice from 1997–2000. Study Design Likelihood of a visit attended by a PA/NP versus MD was modeled using logistic regression, with practice fixed effects, by department (adult medicine, pediatrics) and year. Parameter estimates and practice fixed effects from these regressions were used to predict the proportion of PA/NP visits per practice per year given a standard case mix. Least squares regressions, with practice fixed effects, were used to estimate the association of this standardized predicted proportion of PA/NP visits with average annual practitioner and total labor costs per visit, controlling for other practice characteristics. Results On average, PAs/NPs attended one in three adult medicine visits and one in five pediatric medicine visits. Likelihood of a PA/NP visit was significantly higher than average among patients presenting with minor acute illness (e.g., acute pharyngitis). In adult medicine, likelihood of a PA/NP visit was lower than average among older patients. Practitioner labor costs per visit and total labor costs per visit were lower (p<.01 and p=.08, respectively) among practices with greater use of PAs/NPs, standardized for case mix. Conclusions Primary care practices that used more PAs/NPs in care delivery realized lower practitioner labor costs per visit than practices that used less. Future research should investigate the cost savings and cost-effectiveness potential of delivery designs that change staffing mix and division of labor among clinical disciplines. PMID:15149481

  5. Determining vehicle operating speed and lateral position along horizontal curves using linear mixed-effects models.

    PubMed

    Fitzsimmons, Eric J; Kvam, Vanessa; Souleyrette, Reginald R; Nambisan, Shashi S; Bonett, Douglas G

    2013-01-01

    Despite recent improvements in highway safety in the United States, serious crashes on curves remain a significant problem. To assist in better understanding causal factors leading to this problem, this article presents and demonstrates a methodology for collection and analysis of vehicle trajectory and speed data for rural and urban curves using Z-configured road tubes. For a large number of vehicle observations at 2 horizontal curves located in Dexter and Ames, Iowa, the article develops vehicle speed and lateral position prediction models for multiple points along these curves. Linear mixed-effects models were used to predict vehicle lateral position and speed along the curves as explained by operational, vehicle, and environmental variables. Behavior was visually represented for an identified subset of "risky" drivers. Linear mixed-effect regression models provided the means to predict vehicle speed and lateral position while taking into account repeated observations of the same vehicle along horizontal curves. Speed and lateral position at point of entry were observed to influence trajectory and speed profiles. Rural horizontal curve site models are presented that indicate that the following variables were significant and influenced both vehicle speed and lateral position: time of day, direction of travel (inside or outside lane), and type of vehicle.

  6. Modeling Linguistic Variables With Regression Models: Addressing Non-Gaussian Distributions, Non-independent Observations, and Non-linear Predictors With Random Effects and Generalized Additive Models for Location, Scale, and Shape

    PubMed Central

    Coupé, Christophe

    2018-01-01

    As statistical approaches are getting increasingly used in linguistics, attention must be paid to the choice of methods and algorithms used. This is especially true since they require assumptions to be satisfied to provide valid results, and because scientific articles still often fall short of reporting whether such assumptions are met. Progress is being, however, made in various directions, one of them being the introduction of techniques able to model data that cannot be properly analyzed with simpler linear regression models. We report recent advances in statistical modeling in linguistics. We first describe linear mixed-effects regression models (LMM), which address grouping of observations, and generalized linear mixed-effects models (GLMM), which offer a family of distributions for the dependent variable. Generalized additive models (GAM) are then introduced, which allow modeling non-linear parametric or non-parametric relationships between the dependent variable and the predictors. We then highlight the possibilities offered by generalized additive models for location, scale, and shape (GAMLSS). We explain how they make it possible to go beyond common distributions, such as Gaussian or Poisson, and offer the appropriate inferential framework to account for ‘difficult’ variables such as count data with strong overdispersion. We also demonstrate how they offer interesting perspectives on data when not only the mean of the dependent variable is modeled, but also its variance, skewness, and kurtosis. As an illustration, the case of phonemic inventory size is analyzed throughout the article. For over 1,500 languages, we consider as predictors the number of speakers, the distance from Africa, an estimation of the intensity of language contact, and linguistic relationships. We discuss the use of random effects to account for genealogical relationships, the choice of appropriate distributions to model count data, and non-linear relationships. Relying on GAMLSS, we assess a range of candidate distributions, including the Sichel, Delaporte, Box-Cox Green and Cole, and Box-Cox t distributions. We find that the Box-Cox t distribution, with appropriate modeling of its parameters, best fits the conditional distribution of phonemic inventory size. We finally discuss the specificities of phoneme counts, weak effects, and how GAMLSS should be considered for other linguistic variables. PMID:29713298

  7. Modeling Linguistic Variables With Regression Models: Addressing Non-Gaussian Distributions, Non-independent Observations, and Non-linear Predictors With Random Effects and Generalized Additive Models for Location, Scale, and Shape.

    PubMed

    Coupé, Christophe

    2018-01-01

    As statistical approaches are getting increasingly used in linguistics, attention must be paid to the choice of methods and algorithms used. This is especially true since they require assumptions to be satisfied to provide valid results, and because scientific articles still often fall short of reporting whether such assumptions are met. Progress is being, however, made in various directions, one of them being the introduction of techniques able to model data that cannot be properly analyzed with simpler linear regression models. We report recent advances in statistical modeling in linguistics. We first describe linear mixed-effects regression models (LMM), which address grouping of observations, and generalized linear mixed-effects models (GLMM), which offer a family of distributions for the dependent variable. Generalized additive models (GAM) are then introduced, which allow modeling non-linear parametric or non-parametric relationships between the dependent variable and the predictors. We then highlight the possibilities offered by generalized additive models for location, scale, and shape (GAMLSS). We explain how they make it possible to go beyond common distributions, such as Gaussian or Poisson, and offer the appropriate inferential framework to account for 'difficult' variables such as count data with strong overdispersion. We also demonstrate how they offer interesting perspectives on data when not only the mean of the dependent variable is modeled, but also its variance, skewness, and kurtosis. As an illustration, the case of phonemic inventory size is analyzed throughout the article. For over 1,500 languages, we consider as predictors the number of speakers, the distance from Africa, an estimation of the intensity of language contact, and linguistic relationships. We discuss the use of random effects to account for genealogical relationships, the choice of appropriate distributions to model count data, and non-linear relationships. Relying on GAMLSS, we assess a range of candidate distributions, including the Sichel, Delaporte, Box-Cox Green and Cole, and Box-Cox t distributions. We find that the Box-Cox t distribution, with appropriate modeling of its parameters, best fits the conditional distribution of phonemic inventory size. We finally discuss the specificities of phoneme counts, weak effects, and how GAMLSS should be considered for other linguistic variables.

  8. Bias and uncertainty of δ13CO2 isotopic mixing models

    Treesearch

    Zachary E. Kayler; Lisa Ganio; Mark Hauck; Thomas G. Pypker; Elizabeth W. Sulzman; Alan C. Mix; Barbara J. Bond

    2009-01-01

    The goal of this study was to evaluate how factorial combinations of two mixing models and two regression approaches (Keeling-OLS, Miller—Tans-OLS, Keeling-GMR, Miller—Tans-GMR) compare in small [CO2] range versus large[CO2] range regimes, with different combinations of...

  9. An Overview of Longitudinal Data Analysis Methods for Neurological Research

    PubMed Central

    Locascio, Joseph J.; Atri, Alireza

    2011-01-01

    The purpose of this article is to provide a concise, broad and readily accessible overview of longitudinal data analysis methods, aimed to be a practical guide for clinical investigators in neurology. In general, we advise that older, traditional methods, including (1) simple regression of the dependent variable on a time measure, (2) analyzing a single summary subject level number that indexes changes for each subject and (3) a general linear model approach with a fixed-subject effect, should be reserved for quick, simple or preliminary analyses. We advocate the general use of mixed-random and fixed-effect regression models for analyses of most longitudinal clinical studies. Under restrictive situations or to provide validation, we recommend: (1) repeated-measure analysis of covariance (ANCOVA), (2) ANCOVA for two time points, (3) generalized estimating equations and (4) latent growth curve/structural equation models. PMID:22203825

  10. Mapping of macro and micro nutrients of mixed pastures using airborne AisaFENIX hyperspectral imagery

    NASA Astrophysics Data System (ADS)

    Pullanagari, R. R.; Kereszturi, Gábor; Yule, I. J.

    2016-07-01

    On-farm assessment of mixed pasture nutrient concentrations is important for animal production and pasture management. Hyperspectral imaging is recognized as a potential tool to quantify the nutrient content of vegetation. However, it is a great challenge to estimate macro and micro nutrients in heterogeneous mixed pastures. In this study, canopy reflectance data was measured by using a high resolution airborne visible-to-shortwave infrared (Vis-SWIR) imaging spectrometer measuring in the wavelength region 380-2500 nm to predict nutrient concentrations, nitrogen (N) phosphorus (P), potassium (K), sulfur (S), zinc (Zn), sodium (Na), manganese (Mn) copper (Cu) and magnesium (Mg) in heterogeneous mixed pastures across a sheep and beef farm in hill country, within New Zealand. Prediction models were developed using four different methods which are included partial least squares regression (PLSR), kernel PLSR, support vector regression (SVR), random forest regression (RFR) algorithms and their performance compared using the test data. The results from the study revealed that RFR produced highest accuracy (0.55 ⩽ R2CV ⩽ 0.78; 6.68% ⩽ nRMSECV ⩽ 26.47%) compared to all other algorithms for the majority of nutrients (N, P, K, Zn, Na, Cu and Mg) described, and the remaining nutrients (S and Mn) were predicted with high accuracy (0.68 ⩽ R2CV ⩽ 0.86; 13.00% ⩽ nRMSECV ⩽ 14.64%) using SVR. The best training models were used to extrapolate over the whole farm with the purpose of predicting those pasture nutrients and expressed through pixel based spatial maps. These spatially registered nutrient maps demonstrate the range and geographical location of often large differences in pasture nutrient values which are normally not measured and therefore not included in decision making when considering more effective ways to utilized pasture.

  11. Estimating surface pCO2 in the northern Gulf of Mexico: Which remote sensing model to use?

    NASA Astrophysics Data System (ADS)

    Chen, Shuangling; Hu, Chuanmin; Cai, Wei-Jun; Yang, Bo

    2017-12-01

    Various approaches and models have been proposed to remotely estimate surface pCO2 in the ocean, with variable performance as they were designed for different environments. Among these, a recently developed mechanistic semi-analytical approach (MeSAA) has shown its advantage for its explicit inclusion of physical and biological forcing in the model, yet its general applicability is unknown. Here, with extensive in situ measurements of surface pCO2, the MeSAA, originally developed for the summertime East China Sea, was tested in the northern Gulf of Mexico (GOM) where river plumes dominate water's biogeochemical properties during summer. Specifically, the MeSAA-predicted surface pCO2 was estimated by combining the dominating effects of thermodynamics, river-ocean mixing and biological activities on surface pCO2. Firstly, effects of thermodynamics and river-ocean mixing (pCO2@Hmixing) were estimated with a two-endmember mixing model, assuming conservative mixing. Secondly, pCO2 variations caused by biological activities (ΔpCO2@bio) was determined through an empirical relationship between sea surface temperature (SST)-normalized pCO2 and MODIS (Moderate Resolution Imaging Spectroradiometer) 8-day composite chlorophyll concentration (CHL). The MeSAA-modeled pCO2 (sum of pCO2@Hmixing and ΔpCO2@bio) was compared with the field-measured pCO2. The Root Mean Square Error (RMSE) was 22.94 μatm (5.91%), with coefficient of determination (R2) of 0.25, mean bias (MB) of - 0.23 μatm and mean ratio (MR) of 1.001, for pCO2 ranging between 316 and 452 μatm. To improve the model performance, a locally tuned MeSAA was developed through the use of a locally tuned ΔpCO2@bio term. A multi-variate empirical regression model was also developed using the same dataset. Both the locally tuned MeSAA and the regression models showed improved performance comparing to the original MeSAA, with R2 of 0.78 and 0.84, RMSE of 12.36 μatm (3.14%) and 10.66 μatm (2.68%), MB of 0.00 μatm and - 0.10 μatm, MR of 1.001 and 1.000, respectively. A sensitivity analysis was conducted to study the uncertainties in the predicted pCO2 as a result of the uncertainties in the input variables of each model. Although the MeSAA was more sensitive to variations in SST and CHL than in sea surface salinity (SSS), and the locally tuned MeSAA and the empirical regression models were more sensitive to changes in SST and SSS than in CHL, generally for these three models the bias induced by the uncertainties in the empirically derived parameters (river endmember total alkalinity (TA) and dissolved inorganic carbon (DIC), biological coefficient of the MeSAA and locally tuned MeSAA models) and environmental variables (SST, SSS, CHL) was within or close to the uncertainty of each model. While all these three models showed that surface pCO2 was positively correlated to SST, the MeSAA showed negative correlation between surface pCO2 and SSS and CHL but the locally tuned MeSAA and the empirical regression showed the opposite. These results suggest that the locally tuned MeSAA worked better in the river-dominated northern GOM than the original MeSAA, with slightly worse statistics but more meaningful physical and biogeochemical interpretations than the empirical regression model. Because data from abnormal upwelling were not used to train the models, they are not applicable for waters with strong upwelling, yet the empirical regression approach showed ability to be further tuned to adapt to such cases.

  12. Spatiotemporal modeling of ozone levels in Quebec (Canada): a comparison of kriging, land-use regression (LUR), and combined Bayesian maximum entropy-LUR approaches.

    PubMed

    Adam-Poupart, Ariane; Brand, Allan; Fournier, Michel; Jerrett, Michael; Smargiassi, Audrey

    2014-09-01

    Ambient air ozone (O3) is a pulmonary irritant that has been associated with respiratory health effects including increased lung inflammation and permeability, airway hyperreactivity, respiratory symptoms, and decreased lung function. Estimation of O3 exposure is a complex task because the pollutant exhibits complex spatiotemporal patterns. To refine the quality of exposure estimation, various spatiotemporal methods have been developed worldwide. We sought to compare the accuracy of three spatiotemporal models to predict summer ground-level O3 in Quebec, Canada. We developed a land-use mixed-effects regression (LUR) model based on readily available data (air quality and meteorological monitoring data, road networks information, latitude), a Bayesian maximum entropy (BME) model incorporating both O3 monitoring station data and the land-use mixed model outputs (BME-LUR), and a kriging method model based only on available O3 monitoring station data (BME kriging). We performed leave-one-station-out cross-validation and visually assessed the predictive capability of each model by examining the mean temporal and spatial distributions of the average estimated errors. The BME-LUR was the best predictive model (R2 = 0.653) with the lowest root mean-square error (RMSE ;7.06 ppb), followed by the LUR model (R2 = 0.466, RMSE = 8.747) and the BME kriging model (R2 = 0.414, RMSE = 9.164). Our findings suggest that errors of estimation in the interpolation of O3 concentrations with BME can be greatly reduced by incorporating outputs from a LUR model developed with readily available data.

  13. Semiparametric regression during 2003–2007*

    PubMed Central

    Ruppert, David; Wand, M.P.; Carroll, Raymond J.

    2010-01-01

    Semiparametric regression is a fusion between parametric regression and nonparametric regression that integrates low-rank penalized splines, mixed model and hierarchical Bayesian methodology – thus allowing more streamlined handling of longitudinal and spatial correlation. We review progress in the field over the five-year period between 2003 and 2007. We find semiparametric regression to be a vibrant field with substantial involvement and activity, continual enhancement and widespread application. PMID:20305800

  14. Real medical benefit assessed by indirect comparison.

    PubMed

    Falissard, Bruno; Zylberman, Myriam; Cucherat, Michel; Izard, Valérie; Meyer, François

    2009-01-01

    Frequently, in data packages submitted for Marketing Approval to the CHMP, there is a lack of relevant head-to-head comparisons of medicinal products that could enable national authorities responsible for the approval of reimbursement to assess the Added Therapeutic Value (ASMR) of new clinical entities or line extensions of existing therapies.Indirect or mixed treatment comparisons (MTC) are methods stemming from the field of meta-analysis that have been designed to tackle this problem. Adjusted indirect comparisons, meta-regressions, mixed models, Bayesian network analyses pool results of randomised controlled trials (RCTs), enabling a quantitative synthesis.The REAL procedure, recently developed by the HAS (French National Authority for Health), is a mixture of an MTC and effect model based on expert opinions. It is intended to translate the efficacy observed in the trials into effectiveness expected in day-to-day clinical practice in France.

  15. Advanced Statistical Analyses to Reduce Inconsistency of Bond Strength Data.

    PubMed

    Minamino, T; Mine, A; Shintani, A; Higashi, M; Kawaguchi-Uemura, A; Kabetani, T; Hagino, R; Imai, D; Tajiri, Y; Matsumoto, M; Yatani, H

    2017-11-01

    This study was designed to clarify the interrelationship of factors that affect the value of microtensile bond strength (µTBS), focusing on nondestructive testing by which information of the specimens can be stored and quantified. µTBS test specimens were prepared from 10 noncarious human molars. Six factors of µTBS test specimens were evaluated: presence of voids at the interface, X-ray absorption coefficient of resin, X-ray absorption coefficient of dentin, length of dentin part, size of adhesion area, and individual differences of teeth. All specimens were observed nondestructively by optical coherence tomography and micro-computed tomography before µTBS testing. After µTBS testing, the effect of these factors on µTBS data was analyzed by the general linear model, linear mixed effects regression model, and nonlinear regression model with 95% confidence intervals. By the general linear model, a significant difference in individual differences of teeth was observed ( P < 0.001). A significantly positive correlation was shown between µTBS and length of dentin part ( P < 0.001); however, there was no significant nonlinearity ( P = 0.157). Moreover, a significantly negative correlation was observed between µTBS and size of adhesion area ( P = 0.001), with significant nonlinearity ( P = 0.014). No correlation was observed between µTBS and X-ray absorption coefficient of resin ( P = 0.147), and there was no significant nonlinearity ( P = 0.089). Additionally, a significantly positive correlation was observed between µTBS and X-ray absorption coefficient of dentin ( P = 0.022), with significant nonlinearity ( P = 0.036). A significant difference was also observed between the presence and absence of voids by linear mixed effects regression analysis. Our results showed correlations between various parameters of tooth specimens and µTBS data. To evaluate the performance of the adhesive more precisely, the effect of tooth variability and a method to reduce variation in bond strength values should also be considered.

  16. Guidance for the utility of linear models in meta-analysis of genetic association studies of binary phenotypes.

    PubMed

    Cook, James P; Mahajan, Anubha; Morris, Andrew P

    2017-02-01

    Linear mixed models are increasingly used for the analysis of genome-wide association studies (GWAS) of binary phenotypes because they can efficiently and robustly account for population stratification and relatedness through inclusion of random effects for a genetic relationship matrix. However, the utility of linear (mixed) models in the context of meta-analysis of GWAS of binary phenotypes has not been previously explored. In this investigation, we present simulations to compare the performance of linear and logistic regression models under alternative weighting schemes in a fixed-effects meta-analysis framework, considering designs that incorporate variable case-control imbalance, confounding factors and population stratification. Our results demonstrate that linear models can be used for meta-analysis of GWAS of binary phenotypes, without loss of power, even in the presence of extreme case-control imbalance, provided that one of the following schemes is used: (i) effective sample size weighting of Z-scores or (ii) inverse-variance weighting of allelic effect sizes after conversion onto the log-odds scale. Our conclusions thus provide essential recommendations for the development of robust protocols for meta-analysis of binary phenotypes with linear models.

  17. Discovering human germ cell mutagens with whole genome sequencing: Insights from power calculations reveal the importance of controlling for between-family variability.

    PubMed

    Webster, R J; Williams, A; Marchetti, F; Yauk, C L

    2018-07-01

    Mutations in germ cells pose potential genetic risks to offspring. However, de novo mutations are rare events that are spread across the genome and are difficult to detect. Thus, studies in this area have generally been under-powered, and no human germ cell mutagen has been identified. Whole Genome Sequencing (WGS) of human pedigrees has been proposed as an approach to overcome these technical and statistical challenges. WGS enables analysis of a much wider breadth of the genome than traditional approaches. Here, we performed power analyses to determine the feasibility of using WGS in human families to identify germ cell mutagens. Different statistical models were compared in the power analyses (ANOVA and multiple regression for one-child families, and mixed effect model sampling between two to four siblings per family). Assumptions were made based on parameters from the existing literature, such as the mutation-by-paternal age effect. We explored two scenarios: a constant effect due to an exposure that occurred in the past, and an accumulating effect where the exposure is continuing. Our analysis revealed the importance of modeling inter-family variability of the mutation-by-paternal age effect. Statistical power was improved by models accounting for the family-to-family variability. Our power analyses suggest that sufficient statistical power can be attained with 4-28 four-sibling families per treatment group, when the increase in mutations ranges from 40 to 10% respectively. Modeling family variability using mixed effect models provided a reduction in sample size compared to a multiple regression approach. Much larger sample sizes were required to detect an interaction effect between environmental exposures and paternal age. These findings inform study design and statistical modeling approaches to improve power and reduce sequencing costs for future studies in this area. Crown Copyright © 2018. Published by Elsevier B.V. All rights reserved.

  18. Symptoms of Depression Depend on Rigid Parenting Attitudes, Gender, and Race in an At-Risk Sample of Early Adolescents

    ERIC Educational Resources Information Center

    Weed, Keri; Morales, Dawn A.; Harjes, Rachel

    2013-01-01

    Trajectories of depressive symptoms were compared between European American and African American boys and girls from ages 8 to 14 in a longitudinal sample of 130 children born to adolescent mothers. Mixed-effects regression modeling was used to analyze individual and group differences in level of depressive symptoms and their changes over time.…

  19. Meta-analytical synthesis of regression coefficients under different categorization scheme of continuous covariates.

    PubMed

    Yoneoka, Daisuke; Henmi, Masayuki

    2017-11-30

    Recently, the number of clinical prediction models sharing the same regression task has increased in the medical literature. However, evidence synthesis methodologies that use the results of these regression models have not been sufficiently studied, particularly in meta-analysis settings where only regression coefficients are available. One of the difficulties lies in the differences between the categorization schemes of continuous covariates across different studies. In general, categorization methods using cutoff values are study specific across available models, even if they focus on the same covariates of interest. Differences in the categorization of covariates could lead to serious bias in the estimated regression coefficients and thus in subsequent syntheses. To tackle this issue, we developed synthesis methods for linear regression models with different categorization schemes of covariates. A 2-step approach to aggregate the regression coefficient estimates is proposed. The first step is to estimate the joint distribution of covariates by introducing a latent sampling distribution, which uses one set of individual participant data to estimate the marginal distribution of covariates with categorization. The second step is to use a nonlinear mixed-effects model with correction terms for the bias due to categorization to estimate the overall regression coefficients. Especially in terms of precision, numerical simulations show that our approach outperforms conventional methods, which only use studies with common covariates or ignore the differences between categorization schemes. The method developed in this study is also applied to a series of WHO epidemiologic studies on white blood cell counts. Copyright © 2017 John Wiley & Sons, Ltd.

  20. Log-normal frailty models fitted as Poisson generalized linear mixed models.

    PubMed

    Hirsch, Katharina; Wienke, Andreas; Kuss, Oliver

    2016-12-01

    The equivalence of a survival model with a piecewise constant baseline hazard function and a Poisson regression model has been known since decades. As shown in recent studies, this equivalence carries over to clustered survival data: A frailty model with a log-normal frailty term can be interpreted and estimated as a generalized linear mixed model with a binary response, a Poisson likelihood, and a specific offset. Proceeding this way, statistical theory and software for generalized linear mixed models are readily available for fitting frailty models. This gain in flexibility comes at the small price of (1) having to fix the number of pieces for the baseline hazard in advance and (2) having to "explode" the data set by the number of pieces. In this paper we extend the simulations of former studies by using a more realistic baseline hazard (Gompertz) and by comparing the model under consideration with competing models. Furthermore, the SAS macro %PCFrailty is introduced to apply the Poisson generalized linear mixed approach to frailty models. The simulations show good results for the shared frailty model. Our new %PCFrailty macro provides proper estimates, especially in case of 4 events per piece. The suggested Poisson generalized linear mixed approach for log-normal frailty models based on the %PCFrailty macro provides several advantages in the analysis of clustered survival data with respect to more flexible modelling of fixed and random effects, exact (in the sense of non-approximate) maximum likelihood estimation, and standard errors and different types of confidence intervals for all variance parameters. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  1. Analyzing Health-Related Quality of Life Data to Estimate Parameters for Cost-Effectiveness Models: An Example Using Longitudinal EQ-5D Data from the SHIFT Randomized Controlled Trial.

    PubMed

    Griffiths, Alison; Paracha, Noman; Davies, Andrew; Branscombe, Neil; Cowie, Martin R; Sculpher, Mark

    2017-03-01

    The aim of this article is to discuss methods used to analyze health-related quality of life (HRQoL) data from randomized controlled trials (RCTs) for decision analytic models. The analysis presented in this paper was used to provide HRQoL data for the ivabradine health technology assessment (HTA) submission in chronic heart failure. We have used a large, longitudinal EuroQol five-dimension questionnaire (EQ-5D) dataset from the Systolic Heart Failure Treatment with the I f Inhibitor Ivabradine Trial (SHIFT) (clinicaltrials.gov: NCT02441218) to illustrate issues and methods. HRQoL weights (utility values) were estimated from a mixed regression model developed using SHIFT EQ-5D data (n = 5313 patients). The regression model was used to predict HRQoL outcomes according to treatment, patient characteristics, and key clinical outcomes for patients with a heart rate ≥75 bpm. Ivabradine was associated with an HRQoL weight gain of 0.01. HRQoL weights differed according to New York Heart Association (NYHA) class (NYHA I-IV, no hospitalization: standard care 0.82-0.46; ivabradine 0.84-0.47). A reduction in HRQoL weight was associated with hospitalizations within 30 days of an HRQoL assessment visit, with this reduction varying by NYHA class [-0.07 (NYHA I) to -0.21 (NYHA IV)]. The mixed model explained variation in EQ-5D data according to key clinical outcomes and patient characteristics, providing essential information for long-term predictions of patient HRQoL in the cost-effectiveness model. This model was also used to estimate the loss in HRQoL associated with hospitalizations. In SHIFT many hospitalizations did not occur close to EQ-5D visits; hence, any temporary changes in HRQoL associated with such events would not be captured fully in observed RCT evidence, but could be predicted in our cost-effectiveness analysis using the mixed model. Given the large reduction in hospitalizations associated with ivabradine this was an important feature of the analysis. The Servier Research Group.

  2. Regression Analysis of Mixed Recurrent-Event and Panel-Count Data with Additive Rate Models

    PubMed Central

    Zhu, Liang; Zhao, Hui; Sun, Jianguo; Leisenring, Wendy; Robison, Leslie L.

    2015-01-01

    Summary Event-history studies of recurrent events are often conducted in fields such as demography, epidemiology, medicine, and social sciences (Cook and Lawless, 2007; Zhao et al., 2011). For such analysis, two types of data have been extensively investigated: recurrent-event data and panel-count data. However, in practice, one may face a third type of data, mixed recurrent-event and panel-count data or mixed event-history data. Such data occur if some study subjects are monitored or observed continuously and thus provide recurrent-event data, while the others are observed only at discrete times and hence give only panel-count data. A more general situation is that each subject is observed continuously over certain time periods but only at discrete times over other time periods. There exists little literature on the analysis of such mixed data except that published by Zhu et al. (2013). In this paper, we consider the regression analysis of mixed data using the additive rate model and develop some estimating equation-based approaches to estimate the regression parameters of interest. Both finite sample and asymptotic properties of the resulting estimators are established, and the numerical studies suggest that the proposed methodology works well for practical situations. The approach is applied to a Childhood Cancer Survivor Study that motivated this study. PMID:25345405

  3. Transdermal Rivastigmine Delivery for Alzheimer Disease: Amenability of Exposure Predictions of Rivastigmine and Metabolite, NAP226-90, by Linear Regression Model Using Limited Samples.

    PubMed

    Srinivas, Nuggehally R

    2016-01-01

    Although an optimized delivery of rivastigmine for management of Alzhiemer disease (AD) is provided by the transdermal patch, it is critical to establish a limited sampling strategy for the measurement of exposure of rivastigmine/NAP226-90. The relationship Cmax versus AUC0-24h for rivastigmine/NAP226-90 was established by regression models. The derived regression equations enabled the prediction AUC0-24h for rivastigmine and NAP226-90. Models were evaluated using statistical criteria. Mixed model was used to predict AUC0-24h for rivastigmine/NAP226-90 from time points such as 8 (C8h), 12 (C12h), and 18 (C18h) hours. Excellent correlation was established for between Cmax and AUC0-24h for rivastigmine and NAP226-90. AUC0-24h predictions of either rivastigmine or NAP226-90 were within 0.8- to 1.25-fold difference. The RMSE in the AUC0-24h predictions ranged from 17.6% to 21.9%, and the R for prediction were greater than 0.96 for both rivastigmine and NAP226-90. Use of mixed model for C8h, C12h, and C18h resulted in AUC0-24h within 1.5-fold difference for rivastigmine or NAP226-90. Cmax of rivastigmine and NAP226-90 was highly correlated with the corresponding AUC0-24h values confirming the role of a time point closer to Cmax for an effective AUC measurement of rivastigmine or the metabolite.

  4. Using mixed treatment comparisons and meta-regression to perform indirect comparisons to estimate the efficacy of biologic treatments in rheumatoid arthritis.

    PubMed

    Nixon, R M; Bansback, N; Brennan, A

    2007-03-15

    Mixed treatment comparison (MTC) is a generalization of meta-analysis. Instead of the same treatment for a disease being tested in a number of studies, a number of different interventions are considered. Meta-regression is also a generalization of meta-analysis where an attempt is made to explain the heterogeneity between the treatment effects in the studies by regressing on study-level covariables. Our focus is where there are several different treatments considered in a number of randomized controlled trials in a specific disease, the same treatment can be applied in several arms within a study, and where differences in efficacy can be explained by differences in the study settings. We develop methods for simultaneously comparing several treatments and adjusting for study-level covariables by combining ideas from MTC and meta-regression. We use a case study from rheumatoid arthritis. We identified relevant trials of biologic verses standard therapy or placebo and extracted the doses, comparators and patient baseline characteristics. Efficacy is measured using the log odds ratio of achieving six-month ACR50 responder status. A random-effects meta-regression model is fitted which adjusts the log odds ratio for study-level prognostic factors. A different random-effect distribution on the log odds ratios is allowed for each different treatment. The odds ratio is found as a function of the prognostic factors for each treatment. The apparent differences in the randomized trials between tumour necrosis factor alpha (TNF- alpha) antagonists are explained by differences in prognostic factors and the analysis suggests that these drugs as a class are not different from each other. Copyright (c) 2006 John Wiley & Sons, Ltd.

  5. Using existing case-mix methods to fund trauma cases.

    PubMed

    Monakova, Julia; Blais, Irene; Botz, Charles; Chechulin, Yuriy; Picciano, Gino; Basinski, Antoni

    2010-01-01

    Policymakers frequently face the need to increase funding in isolated and frequently heterogeneous (clinically and in terms of resource consumption) patient subpopulations. This article presents a methodologic solution for testing the appropriateness of using existing grouping and weighting methodologies for funding subsets of patients in the scenario where a case-mix approach is preferable to a flat-rate based payment system. Using as an example the subpopulation of trauma cases of Ontario lead trauma hospitals, the statistical techniques of linear and nonlinear regression models, regression trees, and spline models were applied to examine the fit of the existing case-mix groups and reference weights for the trauma cases. The analyses demonstrated that for funding Ontario trauma cases, the existing case-mix systems can form the basis for rational and equitable hospital funding, decreasing the need to develop a different grouper for this subset of patients. This study confirmed that Injury Severity Score is a poor predictor of costs for trauma patients. Although our analysis used the Canadian case-mix classification system and cost weights, the demonstrated concept of using existing case-mix systems to develop funding rates for specific subsets of patient populations may be applicable internationally.

  6. Patient satisfaction with ambulatory care in Germany: effects of patient- and medical practice-related factors.

    PubMed

    Auras, Silke; Ostermann, Thomas; de Cruppé, Werner; Bitzer, Eva-Maria; Diel, Franziska; Geraedts, Max

    2016-12-01

    The study aimed to illustrate the effect of the patients' sex, age, self-rated health and medical practice specialization on patient satisfaction. Secondary analysis of patient survey data using multilevel analysis (generalized linear mixed model, medical practice as random effect) using a sequential modelling strategy. We examined the effects of the patients' sex, age, self-rated health and medical practice specialization on four patient satisfaction dimensions: medical practice organization, information, interaction, professional competence. The study was performed in 92 German medical practices providing ambulatory care in general medicine, internal medicine or gynaecology. In total, 9888 adult patients participated in a patient survey using the validated 'questionnaire on satisfaction with ambulatory care-quality from the patient perspective [ZAP]'. We calculated four models for each satisfaction dimension, revealing regression coefficients with 95% confidence intervals (CIs) for all independent variables, and using Wald Chi-Square statistic for each modelling step (model validity) and LR-Tests to compare the models of each step with the previous model. The patients' sex and age had a weak effect (maximum regression coefficient 1.09, CI 0.39; 1.80), and the patients' self-rated health had the strongest positive effect (maximum regression coefficient 7.66, CI 6.69; 8.63) on satisfaction ratings. The effect of medical practice specialization was heterogeneous. All factors studied, specifically the patients' self-rated health, affected patient satisfaction. Adjustment should always be considered because it improves the comparability of patient satisfaction in medical practices with atypically varying patient populations and increases the acceptance of comparisons. © The Author 2016. Published by Oxford University Press in association with the International Society for Quality in Health Care. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com

  7. Pectin methyl esterase and natural microflora of fresh mixed orange and carrot juice treated with pulsed electric fields.

    PubMed

    Rodrigo, D; Barbosa-Cánovas, G V; Martínez, A; Rodrigo, M

    2003-12-01

    The effects of pulsed electric fields (PEFs) on pectin methyl esterase (PME), molds and yeast, and total flora in fresh (nonpasteurized) mixed orange and carrot juice were studied. The PEF effect was more extensive when juices with high levels of initial PME activity were subjected to treatment and when PEF treatment (at 25 kV/cm for 340 micros) was combined with a moderate temperature (63 degrees C), with the maximum level of PME inactivation being 81.4%. These conditions produced 3.7 decimal reductions in molds and yeast and 2.4 decimal reductions in total flora. Experimental inactivation data for PME, molds and yeast, and total flora were fitted to Bigelow, Hülsheger, and Weibull inactivation models by nonlinear regression. The best fit (lowest mean square error) was obtained with the Weibull model.

  8. PharmML in Action: an Interoperable Language for Modeling and Simulation.

    PubMed

    Bizzotto, R; Comets, E; Smith, G; Yvon, F; Kristensen, N R; Swat, M J

    2017-10-01

    PharmML is an XML-based exchange format created with a focus on nonlinear mixed-effect (NLME) models used in pharmacometrics, but providing a very general framework that also allows describing mathematical and statistical models such as single-subject or nonlinear and multivariate regression models. This tutorial provides an overview of the structure of this language, brief suggestions on how to work with it, and use cases demonstrating its power and flexibility. © 2017 The Authors CPT: Pharmacometrics & Systems Pharmacology published by Wiley Periodicals, Inc. on behalf of American Society for Clinical Pharmacology and Therapeutics.

  9. A menu-driven software package of Bayesian nonparametric (and parametric) mixed models for regression analysis and density estimation.

    PubMed

    Karabatsos, George

    2017-02-01

    Most of applied statistics involves regression analysis of data. In practice, it is important to specify a regression model that has minimal assumptions which are not violated by data, to ensure that statistical inferences from the model are informative and not misleading. This paper presents a stand-alone and menu-driven software package, Bayesian Regression: Nonparametric and Parametric Models, constructed from MATLAB Compiler. Currently, this package gives the user a choice from 83 Bayesian models for data analysis. They include 47 Bayesian nonparametric (BNP) infinite-mixture regression models; 5 BNP infinite-mixture models for density estimation; and 31 normal random effects models (HLMs), including normal linear models. Each of the 78 regression models handles either a continuous, binary, or ordinal dependent variable, and can handle multi-level (grouped) data. All 83 Bayesian models can handle the analysis of weighted observations (e.g., for meta-analysis), and the analysis of left-censored, right-censored, and/or interval-censored data. Each BNP infinite-mixture model has a mixture distribution assigned one of various BNP prior distributions, including priors defined by either the Dirichlet process, Pitman-Yor process (including the normalized stable process), beta (two-parameter) process, normalized inverse-Gaussian process, geometric weights prior, dependent Dirichlet process, or the dependent infinite-probits prior. The software user can mouse-click to select a Bayesian model and perform data analysis via Markov chain Monte Carlo (MCMC) sampling. After the sampling completes, the software automatically opens text output that reports MCMC-based estimates of the model's posterior distribution and model predictive fit to the data. Additional text and/or graphical output can be generated by mouse-clicking other menu options. This includes output of MCMC convergence analyses, and estimates of the model's posterior predictive distribution, for selected functionals and values of covariates. The software is illustrated through the BNP regression analysis of real data.

  10. Comparison of four methods for deriving hospital standardised mortality ratios from a single hierarchical logistic regression model.

    PubMed

    Mohammed, Mohammed A; Manktelow, Bradley N; Hofer, Timothy P

    2016-04-01

    There is interest in deriving case-mix adjusted standardised mortality ratios so that comparisons between healthcare providers, such as hospitals, can be undertaken in the controversial belief that variability in standardised mortality ratios reflects quality of care. Typically standardised mortality ratios are derived using a fixed effects logistic regression model, without a hospital term in the model. This fails to account for the hierarchical structure of the data - patients nested within hospitals - and so a hierarchical logistic regression model is more appropriate. However, four methods have been advocated for deriving standardised mortality ratios from a hierarchical logistic regression model, but their agreement is not known and neither do we know which is to be preferred. We found significant differences between the four types of standardised mortality ratios because they reflect a range of underlying conceptual issues. The most subtle issue is the distinction between asking how an average patient fares in different hospitals versus how patients at a given hospital fare at an average hospital. Since the answers to these questions are not the same and since the choice between these two approaches is not obvious, the extent to which profiling hospitals on mortality can be undertaken safely and reliably, without resolving these methodological issues, remains questionable. © The Author(s) 2012.

  11. Stress and health behaviors as potential mediators of the relationship between neighborhood quality and allostatic load.

    PubMed

    Buschmann, Robert N; Prochaska, John D; Cutchin, Malcolm P; Peek, M Kristen

    2018-03-29

    Neighborhood quality is associated with health. Increasingly, researchers are focusing on the mechanisms underlying that association, including the role of stress, risky health behaviors, and subclinical measures such as allostatic load (AL). This study uses mixed-effects regression modeling to examine the association between two objective measures and one subjective measure of neighborhood quality and AL in an ethnically diverse population-based sample (N = 2706) from a medium-sized Texas city. We also examine whether several measures of psychological stress and health behaviors mediate any relationship between neighborhood quality and AL. In this sample, all three separate measures of neighborhood quality were associated with individual AL (P < .01). However, only the subjective measure, perceived neighborhood quality, was associated with AL after adjusting for covariates. In mixed-effects multiple regression models there was no evidence of mediation by either stress or health behaviors. In this study, only one measure of neighborhood quality was related to a measure of health, which contrasts with considerable previous research in this area. In this sample, neighborhood quality may affect AL through other mechanisms, or there may be other health-affecting factors is this area that share that overshadow local neighborhood variation. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. Pre-natal exposures to cocaine and alcohol and physical growth patterns to age 8 years

    PubMed Central

    Lumeng, Julie C.; Cabral, Howard J.; Gannon, Katherine; Heeren, Timothy; Frank, Deborah A.

    2007-01-01

    Two hundred and two primarily African American/Caribbean children (classified by maternal report and infant meconium as 38 heavier, 74 lighter and 89 not cocaine-exposed) were measured repeatedly from birth to age 8 years to assess whether there is an independent effect of prenatal cocaine exposure on physical growth patterns. Children with fetal alcohol syndrome identifiable at birth were excluded. At birth, cocaine and alcohol exposures were significantly and independently associated with lower weight, length and head circumference in cross-sectional multiple regression analyses. The relationship over time of pre-natal exposures to weight, height, and head circumference was then examined by multiple linear regression using mixed linear models including covariates: child’s gestational age, gender, ethnicity, age at assessment, current caregiver, birth mother’s use of alcohol, marijuana and tobacco during the pregnancy and pre-pregnancy weight (for child’s weight) and height (for child’s height and head circumference). The cocaine effects did not persist beyond infancy in piecewise linear mixed models, but a significant and independent negative effect of pre-natal alcohol exposure persisted for weight, height, and head circumference. Catch-up growth in cocaine-exposed infants occurred primarily by 6 months of age for all growth parameters, with some small fluctuations in growth rates in the preschool age range but no detectable differences between heavier versus unexposed nor lighter versus unexposed thereafter. PMID:17412558

  13. Comparison and Contrast of Two General Functional Regression Modeling Frameworks

    PubMed Central

    Morris, Jeffrey S.

    2017-01-01

    In this article, Greven and Scheipl describe an impressively general framework for performing functional regression that builds upon the generalized additive modeling framework. Over the past number of years, my collaborators and I have also been developing a general framework for functional regression, functional mixed models, which shares many similarities with this framework, but has many differences as well. In this discussion, I compare and contrast these two frameworks, to hopefully illuminate characteristics of each, highlighting their respecitve strengths and weaknesses, and providing recommendations regarding the settings in which each approach might be preferable. PMID:28736502

  14. Comparison and Contrast of Two General Functional Regression Modeling Frameworks.

    PubMed

    Morris, Jeffrey S

    2017-02-01

    In this article, Greven and Scheipl describe an impressively general framework for performing functional regression that builds upon the generalized additive modeling framework. Over the past number of years, my collaborators and I have also been developing a general framework for functional regression, functional mixed models, which shares many similarities with this framework, but has many differences as well. In this discussion, I compare and contrast these two frameworks, to hopefully illuminate characteristics of each, highlighting their respecitve strengths and weaknesses, and providing recommendations regarding the settings in which each approach might be preferable.

  15. Isolating the cow-specific part of residual energy intake in lactating dairy cows using random regressions.

    PubMed

    Fischer, A; Friggens, N C; Berry, D P; Faverdin, P

    2018-07-01

    The ability to properly assess and accurately phenotype true differences in feed efficiency among dairy cows is key to the development of breeding programs for improving feed efficiency. The variability among individuals in feed efficiency is commonly characterised by the residual intake approach. Residual feed intake is represented by the residuals of a linear regression of intake on the corresponding quantities of the biological functions that consume (or release) energy. However, the residuals include both, model fitting and measurement errors as well as any variability in cow efficiency. The objective of this study was to isolate the individual animal variability in feed efficiency from the residual component. Two separate models were fitted, in one the standard residual energy intake (REI) was calculated as the residual of a multiple linear regression of lactation average net energy intake (NEI) on lactation average milk energy output, average metabolic BW, as well as lactation loss and gain of body condition score. In the other, a linear mixed model was used to simultaneously fit fixed linear regressions and random cow levels on the biological traits and intercept using fortnight repeated measures for the variables. This method split the predicted NEI in two parts: one quantifying the population mean intercept and coefficients, and one quantifying cow-specific deviations in the intercept and coefficients. The cow-specific part of predicted NEI was assumed to isolate true differences in feed efficiency among cows. NEI and associated energy expenditure phenotypes were available for the first 17 fortnights of lactation from 119 Holstein cows; all fed a constant energy-rich diet. Mixed models fitting cow-specific intercept and coefficients to different combinations of the aforementioned energy expenditure traits, calculated on a fortnightly basis, were compared. The variance of REI estimated with the lactation average model represented only 8% of the variance of measured NEI. Among all compared mixed models, the variance of the cow-specific part of predicted NEI represented between 53% and 59% of the variance of REI estimated from the lactation average model or between 4% and 5% of the variance of measured NEI. The remaining 41% to 47% of the variance of REI estimated with the lactation average model may therefore reflect model fitting errors or measurement errors. In conclusion, the use of a mixed model framework with cow-specific random regressions seems to be a promising method to isolate the cow-specific component of REI in dairy cows.

  16. Bus accident analysis of routes with/without bus priority.

    PubMed

    Goh, Kelvin Chun Keong; Currie, Graham; Sarvi, Majid; Logan, David

    2014-04-01

    This paper summarises findings on road safety performance and bus-involved accidents in Melbourne along roads where bus priority measures had been applied. Results from an empirical analysis of the accident types revealed significant reduction in the proportion of accidents involving buses hitting stationary objects and vehicles, which suggests the effect of bus priority in addressing manoeuvrability issues for buses. A mixed-effects negative binomial (MENB) regression and back-propagation neural network (BPNN) modelling of bus accidents considering wider influences on accident rates at a route section level also revealed significant safety benefits when bus priority is provided. Sensitivity analyses done on the BPNN model showed general agreement in the predicted accident frequency between both models. The slightly better performance recorded by the MENB model results suggests merits in adopting a mixed effects modelling approach for accident count prediction in practice given its capability to account for unobserved location and time-specific factors. A major implication of this research is that bus priority in Melbourne's context acts to improve road safety and should be a major consideration for road management agencies when implementing bus priority and road schemes. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Nurse staffing patterns and hospital efficiency in the United States.

    PubMed

    Bloom, J R; Alexander, J A; Nuchols, B A

    1997-01-01

    The objective of this exploratory study was to assess the effects of four nurse staffing patterns on the efficiency of patient care delivery in the hospital: registered nurses (RNs) from temporary agencies; part-time career RNs; RN rich skill mix; and organizationally experienced RNs. Using Transaction Cost Analysis, four regression models were specified to consider the effect of these staffing plans on personnel and benefit costs and on non-personnel operating costs. A number of additional variables were also included in the models to control for the effect of other organization and environmental determinants of hospital costs. Use of career part-time RNs and experienced staff reduced both personnel and benefit costs, as well as total non-personnel operating costs, while the use of temporary agencies for RNs increased non-personnel operating costs. An RN rich skill mix was not related to either measure of hospital costs. These findings provide partial support of the theory. Implications of our findings for future research on hospital management are discussed.

  18. Exploring the spatially varying innovation capacity of the US counties in the framework of Griliches' knowledge production function: a mixed GWR approach

    NASA Astrophysics Data System (ADS)

    Kang, Dongwoo; Dall'erba, Sandy

    2016-04-01

    Griliches' knowledge production function has been increasingly adopted at the regional level where location-specific conditions drive the spatial differences in knowledge creation dynamics. However, the large majority of such studies rely on a traditional regression approach that assumes spatially homogenous marginal effects of knowledge input factors. This paper extends the authors' previous work (Kang and Dall'erba in Int Reg Sci Rev, 2015. doi: 10.1177/0160017615572888) to investigate the spatial heterogeneity in the marginal effects by using nonparametric local modeling approaches such as geographically weighted regression (GWR) and mixed GWR with two distinct samples of the US Metropolitan Statistical Area (MSA) and non-MSA counties. The results indicate a high degree of spatial heterogeneity in the marginal effects of the knowledge input variables, more specifically for the local and distant spillovers of private knowledge measured across MSA counties. On the other hand, local academic knowledge spillovers are found to display spatially homogenous elasticities in both MSA and non-MSA counties. Our results highlight the strengths and weaknesses of each county's innovation capacity and suggest policy implications for regional innovation strategies.

  19. Improving the Accuracy of Mapping Urban Vegetation Carbon Density by Combining Shadow Remove, Spectral Unmixing Analysis and Spatial Modeling

    NASA Astrophysics Data System (ADS)

    Qie, G.; Wang, G.; Wang, M.

    2016-12-01

    Mixed pixels and shadows due to buildings in urban areas impede accurate estimation and mapping of city vegetation carbon density. In most of previous studies, these factors are often ignored, which thus result in underestimation of city vegetation carbon density. In this study we presented an integrated methodology to improve the accuracy of mapping city vegetation carbon density. Firstly, we applied a linear shadow remove analysis (LSRA) on remotely sensed Landsat 8 images to reduce the shadow effects on carbon estimation. Secondly, we integrated a linear spectral unmixing analysis (LSUA) with a linear stepwise regression (LSR), a logistic model-based stepwise regression (LMSR) and k-Nearest Neighbors (kNN), and utilized and compared the integrated models on shadow-removed images to map vegetation carbon density. This methodology was examined in Shenzhen City of Southeast China. A data set from a total of 175 sample plots measured in 2013 and 2014 was used to train the models. The independent variables statistically significantly contributing to improving the fit of the models to the data and reducing the sum of squared errors were selected from a total of 608 variables derived from different image band combinations and transformations. The vegetation fraction from LSUA was then added into the models as an important independent variable. The estimates obtained were evaluated using a cross-validation method. Our results showed that higher accuracies were obtained from the integrated models compared with the ones using traditional methods which ignore the effects of mixed pixels and shadows. This study indicates that the integrated method has great potential on improving the accuracy of urban vegetation carbon density estimation. Key words: Urban vegetation carbon, shadow, spectral unmixing, spatial modeling, Landsat 8 images

  20. Strengthen forensic entomology in court--the need for data exploration and the validation of a generalised additive mixed model.

    PubMed

    Baqué, Michèle; Amendt, Jens

    2013-01-01

    Developmental data of juvenile blow flies (Diptera: Calliphoridae) are typically used to calculate the age of immature stages found on or around a corpse and thus to estimate a minimum post-mortem interval (PMI(min)). However, many of those data sets don't take into account that immature blow flies grow in a non-linear fashion. Linear models do not supply a sufficient reliability on age estimates and may even lead to an erroneous determination of the PMI(min). According to the Daubert standard and the need for improvements in forensic science, new statistic tools like smoothing methods and mixed models allow the modelling of non-linear relationships and expand the field of statistical analyses. The present study introduces into the background and application of these statistical techniques by analysing a model which describes the development of the forensically important blow fly Calliphora vicina at different temperatures. The comparison of three statistical methods (linear regression, generalised additive modelling and generalised additive mixed modelling) clearly demonstrates that only the latter provided regression parameters that reflect the data adequately. We focus explicitly on both the exploration of the data--to assure their quality and to show the importance of checking it carefully prior to conducting the statistical tests--and the validation of the resulting models. Hence, we present a common method for evaluating and testing forensic entomological data sets by using for the first time generalised additive mixed models.

  1. Modeling indoor particulate exposures in inner city school classrooms

    PubMed Central

    Gaffin, Jonathan M.; Petty, Carter R.; Hauptman, Marissa; Kang, Choong-Min; Wolfson, Jack M.; Awad, Yara Abu; Di, Qian; Lai, Peggy S.; Sheehan, William J.; Baxi, Sachin; Coull, Brent A.; Schwartz, Joel D.; Gold, Diane R.; Koutrakis, Petros; Phipatanakul, Wanda

    2016-01-01

    Outdoor air pollution penetrates buildings and contributes to total indoor exposures. We investigated the relationship of indoor to outdoor particulate matter in inner-city school classrooms. The School Inner City Asthma Study investigates the effect of classroom-based environmental exposures on students with asthma in the northeast United States. Mixed-effects linear models were used to determine the relationships between indoor PM2.5 and BC and their corresponding outdoor concentrations, and to develop a model for predicting exposures to these pollutants. The indoor-outdoor sulfur ratio was used as an infiltration factor of outdoor fine particles. Weeklong concentrations of PM2.5 and BC in 199 samples from 136 classrooms (30 school buildings) were compared to those measured at a central monitoring site averaged over the same timeframe. Mixed effects regression models found significant random intercept and slope effects, which indicate that: 1) there are important PM2.5 sources in classrooms; 2) the penetration of outdoor PM2.5 particles varies by school, and 3) the site-specific outside PM2.5 levels (inferred by the models) differ from those observed at the central monitor site. Similar results were found for BC except for lack of indoor sources. The fitted predictions from the sulfur-adjusted models were moderately predictive of observed indoor pollutant levels (Out of sample correlations: PM2.5: r2 = 0.68, BC; r2 = 0.61). Our results suggest that PM2.5 has important classroom sources, which vary by school. Furthermore, using these mixed effects models, classroom exposures can be accurately predicted for dates when central site measures are available but indoor measures are not available. PMID:27599884

  2. Regression analysis of mixed recurrent-event and panel-count data with additive rate models.

    PubMed

    Zhu, Liang; Zhao, Hui; Sun, Jianguo; Leisenring, Wendy; Robison, Leslie L

    2015-03-01

    Event-history studies of recurrent events are often conducted in fields such as demography, epidemiology, medicine, and social sciences (Cook and Lawless, 2007, The Statistical Analysis of Recurrent Events. New York: Springer-Verlag; Zhao et al., 2011, Test 20, 1-42). For such analysis, two types of data have been extensively investigated: recurrent-event data and panel-count data. However, in practice, one may face a third type of data, mixed recurrent-event and panel-count data or mixed event-history data. Such data occur if some study subjects are monitored or observed continuously and thus provide recurrent-event data, while the others are observed only at discrete times and hence give only panel-count data. A more general situation is that each subject is observed continuously over certain time periods but only at discrete times over other time periods. There exists little literature on the analysis of such mixed data except that published by Zhu et al. (2013, Statistics in Medicine 32, 1954-1963). In this article, we consider the regression analysis of mixed data using the additive rate model and develop some estimating equation-based approaches to estimate the regression parameters of interest. Both finite sample and asymptotic properties of the resulting estimators are established, and the numerical studies suggest that the proposed methodology works well for practical situations. The approach is applied to a Childhood Cancer Survivor Study that motivated this study. © 2014, The International Biometric Society.

  3. Study of non-Hodgkin's lymphoma mortality associated with industrial pollution in Spain, using Poisson models

    PubMed Central

    Ramis, Rebeca; Vidal, Enrique; García-Pérez, Javier; Lope, Virginia; Aragonés, Nuria; Pérez-Gómez, Beatriz; Pollán, Marina; López-Abente, Gonzalo

    2009-01-01

    Background Non-Hodgkin's lymphomas (NHLs) have been linked to proximity to industrial areas, but evidence regarding the health risk posed by residence near pollutant industries is very limited. The European Pollutant Emission Register (EPER) is a public register that furnishes valuable information on industries that release pollutants to air and water, along with their geographical location. This study sought to explore the relationship between NHL mortality in small areas in Spain and environmental exposure to pollutant emissions from EPER-registered industries, using three Poisson-regression-based mathematical models. Methods Observed cases were drawn from mortality registries in Spain for the period 1994–2003. Industries were grouped into the following sectors: energy; metal; mineral; organic chemicals; waste; paper; food; and use of solvents. Populations having an industry within a radius of 1, 1.5, or 2 kilometres from the municipal centroid were deemed to be exposed. Municipalities outside those radii were considered as reference populations. The relative risks (RRs) associated with proximity to pollutant industries were estimated using the following methods: Poisson Regression; mixed Poisson model with random provincial effect; and spatial autoregressive modelling (BYM model). Results Only proximity of paper industries to population centres (>2 km) could be associated with a greater risk of NHL mortality (mixed model: RR:1.24, 95% CI:1.09–1.42; BYM model: RR:1.21, 95% CI:1.01–1.45; Poisson model: RR:1.16, 95% CI:1.06–1.27). Spatial models yielded higher estimates. Conclusion The reported association between exposure to air pollution from the paper, pulp and board industry and NHL mortality is independent of the model used. Inclusion of spatial random effects terms in the risk estimate improves the study of associations between environmental exposures and mortality. The EPER could be of great utility when studying the effects of industrial pollution on the health of the population. PMID:19159450

  4. The role of gender in a smoking cessation intervention: a cluster randomized clinical trial.

    PubMed

    Puente, Diana; Cabezas, Carmen; Rodriguez-Blanco, Teresa; Fernández-Alonso, Carmen; Cebrian, Tránsito; Torrecilla, Miguel; Clemente, Lourdes; Martín, Carlos

    2011-05-23

    The prevalence of smoking in Spain is high in both men and women. The aim of our study was to evaluate the role of gender in the effectiveness of a specific smoking cessation intervention conducted in Spain. This study was a secondary analysis of a cluster randomized clinical trial in which the randomization unit was the Basic Care Unit (family physician and nurse who care for the same group of patients). The intervention consisted of a six-month period of implementing the recommendations of a Clinical Practice Guideline. A total of 2,937 current smokers at 82 Primary Care Centers in 13 different regions of Spain were included (2003-2005). The success rate was measured by a six-month continued abstinence rate at the one-year follow-up. A logistic mixed-effects regression model, taking Basic Care Units as random-effect parameter, was performed in order to analyze gender as a predictor of smoking cessation. At the one-year follow-up, the six-month continuous abstinence quit rate was 9.4% in men and 8.5% in women (p = 0.400). The logistic mixed-effects regression model showed that women did not have a higher odds of being an ex-smoker than men after the analysis was adjusted for confounders (OR adjusted = 0.9, 95% CI = 0.7-1.2). Gender does not appear to be a predictor of smoking cessation at the one-year follow-up in individuals presenting at Primary Care Centers. CLINICALTRIALS.GOV IDENTIFIER: NCT00125905.

  5. Medicaid payment rates, case-mix reimbursement, and nursing home staffing--1996-2004.

    PubMed

    Feng, Zhanlian; Grabowski, David C; Intrator, Orna; Zinn, Jacqueline; Mor, Vincent

    2008-01-01

    We examined the impact of state Medicaid payment rates and case-mix reimbursement on direct care staffing levels in US nursing homes. We used a recent time series of national nursing home data from the Online Survey Certification and Reporting system for 1996-2004, merged with annual state Medicaid payment rates and case-mix reimbursement information. A 5-category response measure of total staffing levels was defined according to expert recommended thresholds, and examined in a multinomial logistic regression model. Facility fixed-effects models were estimated separately for Registered Nurse (RN), Licensed Practical Nurse (LPN), and Certified Nurse Aide (CNA) staffing levels measured as average hours per resident day. Higher Medicaid payment rates were associated with increases in total staffing levels to meet a higher recommended threshold. However, these gains in overall staffing were accompanied by a reduction of RN staffing and an increase in both LPN and CNA staffing levels. Under case-mix reimbursement, the likelihood of nursing homes achieving higher recommended staffing thresholds decreased, as did levels of professional staffing. Independent of the effects of state, market, and facility characteristics, there was a significant downward trend in RN staffing and an upward trend in both LPN and CNA staffing. Although overall staffing may increase in response to more generous Medicaid reimbursement, it may not translate into improvements in the skill mix of staff. Adjusting for reimbursement levels and resident acuity, total staffing has not increased after the implementation of case-mix reimbursement.

  6. Response Surface Methodology for the Optimization of Preparation of Biocomposites Based on Poly(lactic acid) and Durian Peel Cellulose

    PubMed Central

    Penjumras, Patpen; Abdul Rahman, Russly; Talib, Rosnita A.; Abdan, Khalina

    2015-01-01

    Response surface methodology was used to optimize preparation of biocomposites based on poly(lactic acid) and durian peel cellulose. The effects of cellulose loading, mixing temperature, and mixing time on tensile strength and impact strength were investigated. A central composite design was employed to determine the optimum preparation condition of the biocomposites to obtain the highest tensile strength and impact strength. A second-order polynomial model was developed for predicting the tensile strength and impact strength based on the composite design. It was found that composites were best fit by a quadratic regression model with high coefficient of determination (R 2) value. The selected optimum condition was 35 wt.% cellulose loading at 165°C and 15 min of mixing, leading to a desirability of 94.6%. Under the optimum condition, the tensile strength and impact strength of the biocomposites were 46.207 MPa and 2.931 kJ/m2, respectively. PMID:26167523

  7. Quantifying the safety effects of horizontal curves on two-way, two-lane rural roads.

    PubMed

    Gooch, Jeffrey P; Gayah, Vikash V; Donnell, Eric T

    2016-07-01

    The objective of this study is to quantify the safety performance of horizontal curves on two-way, two-lane rural roads relative to tangent segments. Past research is limited by small samples sizes, outdated statistical evaluation methods, and unreported standard errors. This study overcomes these drawbacks by using the propensity scores-potential outcomes framework. The impact of adjacent curves on horizontal curve safety is also explored using a cross-sectional regression model of only horizontal curves. The models estimated in the present study used eight years of crash data (2005-2012) obtained from over 10,000 miles of state-owned two-lane rural roads in Pennsylvania. These data included information on roadway geometry (e.g., horizontal curvature, lane width, and shoulder width), traffic volume, roadside hazard rating, and the presence of various low-cost safety countermeasures (e.g., centerline and shoulder rumble strips, curve and intersection warning pavement markings, and aggressive driving pavement dots). Crash prediction is performed by means of mixed effects negative binomial regression using the explanatory variables noted previously, as well as attributes of adjacent horizontal curves. The results indicate that both the presence of a horizontal curve and its degree of curvature must be considered when predicting the frequency of total crashes on horizontal curves. Both are associated with an increase in crash frequency, which is consistent with previous findings in the literature. Mixed effects negative binomial regression models for total crash frequency on horizontal curves indicate that the distance to adjacent curves is not statistically significant. However, the degree of curvature of adjacent curves in close proximity (within 0.75 miles) was found to be statistically significant and negatively correlated with crash frequency on the subject curve. This is logical, as drivers exiting a sharp curve are likely to be driving slower and with more awareness as they approach the next horizontal curve. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Commensurate Priors for Incorporating Historical Information in Clinical Trials Using General and Generalized Linear Models

    PubMed Central

    Hobbs, Brian P.; Sargent, Daniel J.; Carlin, Bradley P.

    2014-01-01

    Assessing between-study variability in the context of conventional random-effects meta-analysis is notoriously difficult when incorporating data from only a small number of historical studies. In order to borrow strength, historical and current data are often assumed to be fully homogeneous, but this can have drastic consequences for power and Type I error if the historical information is biased. In this paper, we propose empirical and fully Bayesian modifications of the commensurate prior model (Hobbs et al., 2011) extending Pocock (1976), and evaluate their frequentist and Bayesian properties for incorporating patient-level historical data using general and generalized linear mixed regression models. Our proposed commensurate prior models lead to preposterior admissible estimators that facilitate alternative bias-variance trade-offs than those offered by pre-existing methodologies for incorporating historical data from a small number of historical studies. We also provide a sample analysis of a colon cancer trial comparing time-to-disease progression using a Weibull regression model. PMID:24795786

  9. Quantitative Analysis of Single and Mix Food Antiseptics Basing on SERS Spectra with PLSR Method

    NASA Astrophysics Data System (ADS)

    Hou, Mengjing; Huang, Yu; Ma, Lingwei; Zhang, Zhengjun

    2016-06-01

    Usage and dosage of food antiseptics are very concerned due to their decisive influence in food safety. Surface-enhanced Raman scattering (SERS) effect was employed in this research to realize trace potassium sorbate (PS) and sodium benzoate (SB) detection. HfO2 ultrathin film-coated Ag NR array was fabricated as SERS substrate. Protected by HfO2 film, the SERS substrate possesses good acid resistance, which enables it to be applicable in acidic environment where PS and SB work. Regression relationship between SERS spectra of 0.3~10 mg/L PS solution and their concentration was calibrated by partial least squares regression (PLSR) method, and the concentration prediction performance was quite satisfactory. Furthermore, mixture solution of PS and SB was also quantitatively analyzed by PLSR method. Spectrum data of characteristic peak sections corresponding to PS and SB was used to establish the regression models of these two solutes, respectively, and their concentrations were determined accurately despite their characteristic peak sections overlapping. It is possible that the unique modeling process of PLSR method prevented the overlapped Raman signal from reducing the model accuracy.

  10. Accelerating Improvement and Narrowing Gaps: Trends in Patients' Experiences with Hospital Care Reflected in HCAHPS Public Reporting.

    PubMed

    Elliott, Marc N; Cohea, Christopher W; Lehrman, William G; Goldstein, Elizabeth H; Cleary, Paul D; Giordano, Laura A; Beckett, Megan K; Zaslavsky, Alan M

    2015-12-01

    Measure HCAHPS improvement in hospitals participating in the second and fifth years of HCAHPS public reporting; determine whether change is greater for some hospital types. Surveys from 4,822,960 adult inpatients discharged July 2007-June 2008 or July 2010-June 2011 from 3,541 U.S. hospitals. Linear mixed-effect regression models with fixed effects for time, patient mix, and hospital characteristics (bedsize, ownership, Census division, teaching status, Critical Access status); random effects for hospitals and hospital-time interactions; fixed-effect interactions of hospital characteristics and patient characteristics (gender, health, education) with time predicted HCAHPS measures correcting for regression-to-the-mean biases. National probability sample of adult inpatients in any of four approved survey modes. HCAHPS scores increased by 2.8 percentage points from 2008 to 2011 in the most positive response category. Among the middle 95 percent of hospitals, changes ranged from a 5.1 percent decrease to a 10.2 percent gain overall. The greatest improvement was in for-profit and larger (200 or more beds) hospitals. Five years after HCAHPS public reporting began, meaningful improvement of patients' hospital care experiences continues, especially among initially low-scoring hospitals, reducing some gaps among hospitals. © Health Research and Educational Trust.

  11. Gene-Based Association Analysis for Censored Traits Via Fixed Effect Functional Regressions.

    PubMed

    Fan, Ruzong; Wang, Yifan; Yan, Qi; Ding, Ying; Weeks, Daniel E; Lu, Zhaohui; Ren, Haobo; Cook, Richard J; Xiong, Momiao; Swaroop, Anand; Chew, Emily Y; Chen, Wei

    2016-02-01

    Genetic studies of survival outcomes have been proposed and conducted recently, but statistical methods for identifying genetic variants that affect disease progression are rarely developed. Motivated by our ongoing real studies, here we develop Cox proportional hazard models using functional regression (FR) to perform gene-based association analysis of survival traits while adjusting for covariates. The proposed Cox models are fixed effect models where the genetic effects of multiple genetic variants are assumed to be fixed. We introduce likelihood ratio test (LRT) statistics to test for associations between the survival traits and multiple genetic variants in a genetic region. Extensive simulation studies demonstrate that the proposed Cox RF LRT statistics have well-controlled type I error rates. To evaluate power, we compare the Cox FR LRT with the previously developed burden test (BT) in a Cox model and sequence kernel association test (SKAT), which is based on mixed effect Cox models. The Cox FR LRT statistics have higher power than or similar power as Cox SKAT LRT except when 50%/50% causal variants had negative/positive effects and all causal variants are rare. In addition, the Cox FR LRT statistics have higher power than Cox BT LRT. The models and related test statistics can be useful in the whole genome and whole exome association studies. An age-related macular degeneration dataset was analyzed as an example. © 2016 WILEY PERIODICALS, INC.

  12. Gene-based Association Analysis for Censored Traits Via Fixed Effect Functional Regressions

    PubMed Central

    Fan, Ruzong; Wang, Yifan; Yan, Qi; Ding, Ying; Weeks, Daniel E.; Lu, Zhaohui; Ren, Haobo; Cook, Richard J; Xiong, Momiao; Swaroop, Anand; Chew, Emily Y.; Chen, Wei

    2015-01-01

    Summary Genetic studies of survival outcomes have been proposed and conducted recently, but statistical methods for identifying genetic variants that affect disease progression are rarely developed. Motivated by our ongoing real studies, we develop here Cox proportional hazard models using functional regression (FR) to perform gene-based association analysis of survival traits while adjusting for covariates. The proposed Cox models are fixed effect models where the genetic effects of multiple genetic variants are assumed to be fixed. We introduce likelihood ratio test (LRT) statistics to test for associations between the survival traits and multiple genetic variants in a genetic region. Extensive simulation studies demonstrate that the proposed Cox RF LRT statistics have well-controlled type I error rates. To evaluate power, we compare the Cox FR LRT with the previously developed burden test (BT) in a Cox model and sequence kernel association test (SKAT) which is based on mixed effect Cox models. The Cox FR LRT statistics have higher power than or similar power as Cox SKAT LRT except when 50%/50% causal variants had negative/positive effects and all causal variants are rare. In addition, the Cox FR LRT statistics have higher power than Cox BT LRT. The models and related test statistics can be useful in the whole genome and whole exome association studies. An age-related macular degeneration dataset was analyzed as an example. PMID:26782979

  13. Numerical simulation of Forchheimer flow to a partially penetrating well with a mixed-type boundary condition

    NASA Astrophysics Data System (ADS)

    Mathias, Simon A.; Wen, Zhang

    2015-05-01

    This article presents a numerical study to investigate the combined role of partial well penetration (PWP) and non-Darcy effects concerning the performance of groundwater production wells. A finite difference model is developed in MATLAB to solve the two-dimensional mixed-type boundary value problem associated with flow to a partially penetrating well within a cylindrical confined aquifer. Non-Darcy effects are incorporated using the Forchheimer equation. The model is verified by comparison to results from existing semi-analytical solutions concerning the same problem but assuming Darcy's law. A sensitivity analysis is presented to explore the problem of concern. For constant pressure production, Non-Darcy effects lead to a reduction in production rate, as compared to an equivalent problem solved using Darcy's law. For fully penetrating wells, this reduction in production rate becomes less significant with time. However, for partially penetrating wells, the reduction in production rate persists for much larger times. For constant production rate scenarios, the combined effect of PWP and non-Darcy flow takes the form of a constant additional drawdown term. An approximate solution for this loss term is obtained by performing linear regression on the modeling results.

  14. Linear mixed-effects models to describe individual tree crown width for China-fir in Fujian Province, southeast China.

    PubMed

    Hao, Xu; Yujun, Sun; Xinjie, Wang; Jin, Wang; Yao, Fu

    2015-01-01

    A multiple linear model was developed for individual tree crown width of Cunninghamia lanceolata (Lamb.) Hook in Fujian province, southeast China. Data were obtained from 55 sample plots of pure China-fir plantation stands. An Ordinary Linear Least Squares (OLS) regression was used to establish the crown width model. To adjust for correlations between observations from the same sample plots, we developed one level linear mixed-effects (LME) models based on the multiple linear model, which take into account the random effects of plots. The best random effects combinations for the LME models were determined by the Akaike's information criterion, the Bayesian information criterion and the -2logarithm likelihood. Heteroscedasticity was reduced by three residual variance functions: the power function, the exponential function and the constant plus power function. The spatial correlation was modeled by three correlation structures: the first-order autoregressive structure [AR(1)], a combination of first-order autoregressive and moving average structures [ARMA(1,1)], and the compound symmetry structure (CS). Then, the LME model was compared to the multiple linear model using the absolute mean residual (AMR), the root mean square error (RMSE), and the adjusted coefficient of determination (adj-R2). For individual tree crown width models, the one level LME model showed the best performance. An independent dataset was used to test the performance of the models and to demonstrate the advantage of calibrating LME models.

  15. Improving satellite-based PM2.5 estimates in China using Gaussian processes modeling in a Bayesian hierarchical setting.

    PubMed

    Yu, Wenxi; Liu, Yang; Ma, Zongwei; Bi, Jun

    2017-08-01

    Using satellite-based aerosol optical depth (AOD) measurements and statistical models to estimate ground-level PM 2.5 is a promising way to fill the areas that are not covered by ground PM 2.5 monitors. The statistical models used in previous studies are primarily Linear Mixed Effects (LME) and Geographically Weighted Regression (GWR) models. In this study, we developed a new regression model between PM 2.5 and AOD using Gaussian processes in a Bayesian hierarchical setting. Gaussian processes model the stochastic nature of the spatial random effects, where the mean surface and the covariance function is specified. The spatial stochastic process is incorporated under the Bayesian hierarchical framework to explain the variation of PM 2.5 concentrations together with other factors, such as AOD, spatial and non-spatial random effects. We evaluate the results of our model and compare them with those of other, conventional statistical models (GWR and LME) by within-sample model fitting and out-of-sample validation (cross validation, CV). The results show that our model possesses a CV result (R 2  = 0.81) that reflects higher accuracy than that of GWR and LME (0.74 and 0.48, respectively). Our results indicate that Gaussian process models have the potential to improve the accuracy of satellite-based PM 2.5 estimates.

  16. Comparative Effects of Methylphenidate and Mixed Salts Amphetamine on Height and Weight in Children with Attention-Deficit/Hyperactivity Disorder

    ERIC Educational Resources Information Center

    Pliszka, Steven R.; Matthews, Thomas L.; Braslow, Kenneth J.; Watson, Melissa A.

    2006-01-01

    Objective: To determine whether methylphenidate (MPH) and mixed salts amphetamine (MSA) have different effects on growth in children with attention-deficit/hyperactivity disorder. Method: Patients treated for at least 1 year with MPH or MSA were identified. A linear regression was performed to determine the effect of stimulant type, patient…

  17. Application of seemingly unrelated regression in medical data with intermittently observed time-dependent covariates.

    PubMed

    Keshavarzi, Sareh; Ayatollahi, Seyyed Mohammad Taghi; Zare, Najaf; Pakfetrat, Maryam

    2012-01-01

    BACKGROUND. In many studies with longitudinal data, time-dependent covariates can only be measured intermittently (not at all observation times), and this presents difficulties for standard statistical analyses. This situation is common in medical studies, and methods that deal with this challenge would be useful. METHODS. In this study, we performed the seemingly unrelated regression (SUR) based models, with respect to each observation time in longitudinal data with intermittently observed time-dependent covariates and further compared these models with mixed-effect regression models (MRMs) under three classic imputation procedures. Simulation studies were performed to compare the sample size properties of the estimated coefficients for different modeling choices. RESULTS. In general, the proposed models in the presence of intermittently observed time-dependent covariates showed a good performance. However, when we considered only the observed values of the covariate without any imputations, the resulted biases were greater. The performances of the proposed SUR-based models in comparison with MRM using classic imputation methods were nearly similar with approximately equal amounts of bias and MSE. CONCLUSION. The simulation study suggests that the SUR-based models work as efficiently as MRM in the case of intermittently observed time-dependent covariates. Thus, it can be used as an alternative to MRM.

  18. Adjusted adaptive Lasso for covariate model-building in nonlinear mixed-effect pharmacokinetic models.

    PubMed

    Haem, Elham; Harling, Kajsa; Ayatollahi, Seyyed Mohammad Taghi; Zare, Najaf; Karlsson, Mats O

    2017-02-01

    One important aim in population pharmacokinetics (PK) and pharmacodynamics is identification and quantification of the relationships between the parameters and covariates. Lasso has been suggested as a technique for simultaneous estimation and covariate selection. In linear regression, it has been shown that Lasso possesses no oracle properties, which means it asymptotically performs as though the true underlying model was given in advance. Adaptive Lasso (ALasso) with appropriate initial weights is claimed to possess oracle properties; however, it can lead to poor predictive performance when there is multicollinearity between covariates. This simulation study implemented a new version of ALasso, called adjusted ALasso (AALasso), to take into account the ratio of the standard error of the maximum likelihood (ML) estimator to the ML coefficient as the initial weight in ALasso to deal with multicollinearity in non-linear mixed-effect models. The performance of AALasso was compared with that of ALasso and Lasso. PK data was simulated in four set-ups from a one-compartment bolus input model. Covariates were created by sampling from a multivariate standard normal distribution with no, low (0.2), moderate (0.5) or high (0.7) correlation. The true covariates influenced only clearance at different magnitudes. AALasso, ALasso and Lasso were compared in terms of mean absolute prediction error and error of the estimated covariate coefficient. The results show that AALasso performed better in small data sets, even in those in which a high correlation existed between covariates. This makes AALasso a promising method for covariate selection in nonlinear mixed-effect models.

  19. Association between percutaneous hemodynamic support device and survival from cardiac arrest in the state of Michigan.

    PubMed

    Pressman, Andrew; Sawyer, Kelly N; Devlin, William; Swor, Robert

    2018-05-01

    The role of circulatory support in the post-cardiac arrest period remains controversial. Our objective was to investigate the association between treatment with a percutaneous hemodynamic support device and outcome after admission for cardiac arrest. We performed a retrospective study of adult patients with admission diagnosis of cardiac arrest or ventricular fibrillation (VF) from the Michigan Inpatient Database, treated between July 1, 2010, and June 30, 2013. Patient demographics, clinical characteristics, treatments, and disposition were electronically abstracted based on ICD-9 codes at the hospital level. Mixed-effects logistic regression models were fit to test the effect of percutaneous hemodynamic support device defined as either percutaneous left ventricular assist device (pLVAD) or intra-aortic balloon pump (IABP) on survival. These models controlled for age, sex, VF, myocardial infarction (MI), and cardiogenic shock with hospital modeled as a random effect. A total of 103 hospitals contributed 4393 patients for analysis, predominately male (58.8%) with a mean age of 64.1years (SD 15.5). On univariate analysis, younger age, male sex, VF as the initial rhythm, acute MI, percutaneous coronary intervention, percutaneous hemodynamic support device, and absence of cardiogenic shock were associated with survival to discharge (each p<0.001). Mixed-effects logistic regressions revealed use of percutaneous hemodynamic support device was significantly associated with survival among all patients (OR 1.8 (1.28-2.54)), and especially in those with acute MI (OR 1.95 (1.31-2.93)) or cardiogenic shock (OR 1.96 (1.29-2.98)). Treatment with percutaneous hemodynamic support device in the post-arrest period may provide left ventricular support and improve outcome. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Evaluation of the effect of yellow konjac flour-κ-carrageenan mixed gels and red koji rice extracts on the properties of restructured meat using response surface methodology.

    PubMed

    Widjanarko, Simon Bambang; Amalia, Qory; Hermanto, Mochamad Bagus; Mubarok, Ahmad Zaki

    2018-05-01

    In the present study, the effect of two independent variables, yellow konjac flour-κ-carrageenan (KFC) mixed gels and red koji rice (RKR) extracts for the development of restructured meat product, was investigated using central composite design of response surface methodology (RSM). The assessed physical characteristics were hardness, water holding capacity (WHC), and color (° hue ) of the restructured meat products. The second order regression models with high R 2 value were significantly fitted to predict the changes in hardness, WHC and color. The results showed that the predicted optimum formula of restructured meat were the addition of KFC mixed gels at 10.21% and RKR extracts at 6.11%. The experiments results validate these optimum formula and found to be not statistically different at 5% level. Thus, the RSM was successfully employed and can be used to optimize the formulation of restructured meat.

  1. Conservative management or gamma knife radiosurgery for vestibular schwannoma: tumor growth, symptoms, and quality of life.

    PubMed

    Breivik, Cathrine Nansdal; Nilsen, Roy Miodini; Myrseth, Erling; Pedersen, Paal Henning; Varughese, Jobin K; Chaudhry, Aqeel Asghar; Lund-Johansen, Morten

    2013-07-01

    There are few reports about the course of vestibular schwannoma (VS) patients following gamma knife radiosurgery (GKRS) compared with the course following conservative management (CM). In this study, we present prospectively collected data of 237 patients with unilateral VS extending outside the internal acoustic canal who received either GKRS (113) or CM (124). The aim was to measure the effect of GKRS compared with the natural course on tumor growth rate and hearing loss. Secondary end points were postinclusion additional treatment, quality of life (QoL), and symptom development. The patients underwent magnetic resonance imaging scans, clinical examination, and QoL assessment by SF-36 questionnaire. Statistics were performed by using Spearman correlation coefficient, Kaplan-Meier plot, Poisson regression model, mixed linear regression models, and mixed logistic regression models. Mean follow-up time was 55.0 months (26.1 standard deviation, range 10-132). Thirteen patients were lost to follow-up. Serviceable hearing was lost in 54 of 71 (76%) (CM) and 34 of 53 (64%) (GKRS) patients during the study period (not significant, log-rank test). There was a significant reduction in tumor volume over time in the GKRS group. The need for treatment following initial GKRS or CM differed at highly significant levels (log-rank test, P < .001). Symptom and QoL development did not differ significantly between the groups. In VS patients, GKRS reduces the tumor growth rate and thereby the incidence rate of new treatment about tenfold. Hearing is lost at similar rates in both groups. Symptoms and QoL seem not to be significantly affected by GKRS.

  2. Investigation on the effect of diaphragm on the combustion characteristics of solid-fuel ramjet

    NASA Astrophysics Data System (ADS)

    Gong, Lunkun; Chen, Xiong; Yang, Haitao; Li, Weixuan; Zhou, Changsheng

    2017-10-01

    The flow field characteristics and the regression rate distribution of solid-fuel ramjet with three-hole diaphragm were investigated by numerical and experimental methods. The experimental data were obtained by burning high-density polyethylene using a connected-pipe facility to validate the numerical model and analyze the combustion efficiency of the solid-fuel ramjet. The three-dimensional code developed in the present study adopted three-order MUSCL and central difference schemes, AUSMPW + flux vector splitting method, and second-order moment turbulence-chemistry model, together with k-ω shear stress transport (SST) turbulence model. The solid fuel surface temperature was calculated with fluid-solid heat coupling method. The numerical results show that strong circumferential flow exists in the region upstream of the diaphragm. The diaphragm can enhance the regression rate of the solid fuel in the region downstream of the diaphragm significantly, which mainly results from the increase of turbulent viscosity. As the diaphragm port area decreases, the regression rate of the solid fuel downstream of the diaphragm increases. The diaphragm can result in more sufficient mixing between the incoming air and fuel pyrolysis gases, while inevitably producing some pressure loss. The experimental results indicate that the effect of the diaphragm on the combustion efficiency of hydrocarbon fuels is slightly negative. It is conjectured that the diaphragm may have some positive effects on the combustion efficiency of the solid fuel with metal particles.

  3. Utility Estimates of Disease-Specific Health States in Prostate Cancer from Three Different Perspectives.

    PubMed

    Gries, Katharine S; Regier, Dean A; Ramsey, Scott D; Patrick, Donald L

    2017-06-01

    To develop a statistical model generating utility estimates for prostate cancer specific health states, using preference weights derived from the perspectives of prostate cancer patients, men at risk for prostate cancer, and society. Utility estimate values were calculated using standard gamble (SG) methodology. Study participants valued 18 prostate-specific health states with the five attributes: sexual function, urinary function, bowel function, pain, and emotional well-being. Appropriateness of model (linear regression, mixed effects, or generalized estimating equation) to generate prostate cancer utility estimates was determined by paired t-tests to compare observed and predicted values. Mixed-corrected standard SG utility estimates to account for loss aversion were calculated based on prospect theory. 132 study participants assigned values to the health states (n = 40 men at risk for prostate cancer; n = 43 men with prostate cancer; n = 49 general population). In total, 792 valuations were elicited (six health states for each 132 participants). The most appropriate model for the classification system was a mixed effects model; correlations between the mean observed and predicted utility estimates were greater than 0.80 for each perspective. Developing a health-state classification system with preference weights for three different perspectives demonstrates the relative importance of main effects between populations. The predicted values for men with prostate cancer support the hypothesis that patients experiencing the disease state assign higher utility estimates to health states and there is a difference in valuations made by patients and the general population.

  4. Dysglycemia, Glycemic Variability, and Outcome After Cardiac Arrest and Temperature Management at 33°C and 36°C.

    PubMed

    Borgquist, Ola; Wise, Matt P; Nielsen, Niklas; Al-Subaie, Nawaf; Cranshaw, Julius; Cronberg, Tobias; Glover, Guy; Hassager, Christian; Kjaergaard, Jesper; Kuiper, Michael; Smid, Ondrej; Walden, Andrew; Friberg, Hans

    2017-08-01

    Dysglycemia and glycemic variability are associated with poor outcomes in critically ill patients. Targeted temperature management alters blood glucose homeostasis. We investigated the association between blood glucose concentrations and glycemic variability and the neurologic outcomes of patients randomized to targeted temperature management at 33°C or 36°C after cardiac arrest. Post hoc analysis of the multicenter TTM-trial. Primary outcome of this analysis was neurologic outcome after 6 months, referred to as "Cerebral Performance Category." Thirty-six sites in Europe and Australia. All 939 patients with out-of-hospital cardiac arrest of presumed cardiac cause that had been included in the TTM-trial. Targeted temperature management at 33°C or 36°C. Nonparametric tests as well as multiple logistic regression and mixed effects logistic regression models were used. Median glucose concentrations on hospital admission differed significantly between Cerebral Performance Category outcomes (p < 0.0001). Hyper- and hypoglycemia were associated with poor neurologic outcome (p = 0.001 and p = 0.054). In the multiple logistic regression models, the median glycemic level was an independent predictor of poor Cerebral Performance Category (Cerebral Performance Category, 3-5) with an odds ratio (OR) of 1.13 in the adjusted model (p = 0.008; 95% CI, 1.03-1.24). It was also a predictor in the mixed model, which served as a sensitivity analysis to adjust for the multiple time points. The proportion of hyperglycemia was higher in the 33°C group compared with the 36°C group. Higher blood glucose levels at admission and during the first 36 hours, and higher glycemic variability, were associated with poor neurologic outcome and death. More patients in the 33°C treatment arm had hyperglycemia.

  5. Regression calibration for models with two predictor variables measured with error and their interaction, using instrumental variables and longitudinal data.

    PubMed

    Strand, Matthew; Sillau, Stefan; Grunwald, Gary K; Rabinovitch, Nathan

    2014-02-10

    Regression calibration provides a way to obtain unbiased estimators of fixed effects in regression models when one or more predictors are measured with error. Recent development of measurement error methods has focused on models that include interaction terms between measured-with-error predictors, and separately, methods for estimation in models that account for correlated data. In this work, we derive explicit and novel forms of regression calibration estimators and associated asymptotic variances for longitudinal models that include interaction terms, when data from instrumental and unbiased surrogate variables are available but not the actual predictors of interest. The longitudinal data are fit using linear mixed models that contain random intercepts and account for serial correlation and unequally spaced observations. The motivating application involves a longitudinal study of exposure to two pollutants (predictors) - outdoor fine particulate matter and cigarette smoke - and their association in interactive form with levels of a biomarker of inflammation, leukotriene E4 (LTE 4 , outcome) in asthmatic children. Because the exposure concentrations could not be directly observed, we used measurements from a fixed outdoor monitor and urinary cotinine concentrations as instrumental variables, and we used concentrations of fine ambient particulate matter and cigarette smoke measured with error by personal monitors as unbiased surrogate variables. We applied the derived regression calibration methods to estimate coefficients of the unobserved predictors and their interaction, allowing for direct comparison of toxicity of the different pollutants. We used simulations to verify accuracy of inferential methods based on asymptotic theory. Copyright © 2013 John Wiley & Sons, Ltd.

  6. Impact of case-mix on comparisons of patient-reported experience in NHS acute hospital trusts in England.

    PubMed

    Raleigh, Veena; Sizmur, Steve; Tian, Yang; Thompson, James

    2015-04-01

    To examine the impact of patient-mix on National Health Service (NHS) acute hospital trust scores in two national NHS patient surveys. Secondary analysis of 2012 patient survey data for 57,915 adult inpatients at 142 NHS acute hospital trusts and 45,263 adult emergency department attendees at 146 NHS acute hospital trusts in England. Changes in trust scores for selected questions, ranks, inter-trust variance and score-based performance bands were examined using three methods: no adjustment for case-mix; the current standardization method with weighting for age, sex and, for inpatients only, admission method; and a regression model adjusting in addition for ethnicity, presence of a long-term condition, proxy response (inpatients only) and previous emergency attendances (emergency department survey only). For both surveys, all the variables examined were associated with patients' responses and affected inter-trust variance in scores, although the direction and strength of impact differed between variables. Inter-trust variance was generally greatest for the unadjusted scores and lowest for scores derived from the full regression model. Although trust scores derived from the three methods were highly correlated (Kendall's tau coefficients 0.70-0.94), up to 14% of trusts had discordant ranks of when the standardization and regression methods were compared. Depending on the survey and question, up to 14 trusts changed performance bands when the regression model with its fuller case-mix adjustment was used rather than the current standardization method. More comprehensive case-mix adjustment of patient survey data than the current limited adjustment reduces performance variation between NHS acute hospital trusts and alters the comparative performance bands of some trusts. Given the use of these data for high-impact purposes such as performance assessment, regulation, commissioning, quality improvement and patient choice, a review of the long-standing method for analysing patient survey data would be timely, and could improve rigour and comparability across the NHS. Performance comparisons need to be perceived as fair and scientifically robust to maintain confidence in publicly reported data, and to support their use by both the public and the NHS. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  7. Modeling recall memory for emotional objects in Alzheimer's disease.

    PubMed

    Sundstrøm, Martin

    2011-07-01

    To examine whether emotional memory (EM) of objects with self-reference in Alzheimer's disease (AD) can be modeled with binomial logistic regression in a free recall and an object recognition test to predict EM enhancement. Twenty patients with AD and twenty healthy controls were studied. Six objects (three presented as gifts) were shown to each participant. Ten minutes later, a free recall and a recognition test were applied. The recognition test had target-objects mixed with six similar distracter objects. Participants were asked to name any object in the recall test and identify each object in the recognition test as known or unknown. The total of gift objects recalled in AD patients (41.6%) was larger than neutral objects (13.3%) and a significant EM recall effect for gifts was found (Wilcoxon: p < .003). EM was not found for recognition in AD patients due to a ceiling effect. Healthy older adults scored overall higher in recall and recognition but showed no EM enhancement due to a ceiling effect. A logistic regression showed that likelihood of emotional recall memory can be modeled as a function of MMSE score (p < .014) and object status (p < .0001) as gift or non-gift. Recall memory was enhanced in AD patients for emotional objects indicating that EM in mild to moderate AD although impaired can be provoked with strong emotional load. The logistic regression model suggests that EM declines with the progression of AD rather than disrupts and may be a useful tool for evaluating magnitude of emotional load.

  8. Estimating ground-level PM(10) in a Chinese city by combining satellite data, meteorological information and a land use regression model.

    PubMed

    Meng, Xia; Fu, Qingyan; Ma, Zongwei; Chen, Li; Zou, Bin; Zhang, Yan; Xue, Wenbo; Wang, Jinnan; Wang, Dongfang; Kan, Haidong; Liu, Yang

    2016-01-01

    Development of exposure assessment model is the key component for epidemiological studies concerning air pollution, but the evidence from China is limited. Therefore, a linear mixed effects (LME) model was established in this study in a Chinese metropolis by incorporating aerosol optical depth (AOD), meteorological information and the land use regression (LUR) model to predict ground PM10 levels on high spatiotemporal resolution. The cross validation (CV) R(2) and the RMSE of the LME model were 0.87 and 19.2 μg/m(3), respectively. The relative prediction error (RPE) of daily and annual mean predicted PM10 concentrations were 19.1% and 7.5%, respectively. This study was the first attempt in China to estimate both short-term and long-term variation of PM10 levels with high spatial resolution in a Chinese metropolis with the LME model. The results suggested that the LME model could provide exposure assessment for short-term and long-term epidemiological studies in China. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Unequal views of inequality: Cross-national support for redistribution 1985-2011.

    PubMed

    VanHeuvelen, Tom

    2017-05-01

    This research examines public views on government responsibility to reduce income inequality, support for redistribution. While individual-level correlates of support for redistribution are relatively well understood, many questions remain at the country-level. Therefore, I examine how country-level characteristics affect aggregate support for redistribution. I test explanations of aggregate support using a unique dataset combining 18 waves of the International Social Survey Programme and European Social Survey. Results from mixed-effects logistic regression and fixed-effects linear regression models show two primary and contrasting effects. States that reduce inequality through bundles of tax and transfer policies are rewarded with more supportive publics. In contrast, economic development has a seemingly equivalent and dampening effect on public support. Importantly, the effect of economic development grows at higher levels of development, potentially overwhelming the amplifying effect of state redistribution. My results therefore suggest a fundamental challenge to proponents of egalitarian politics. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. The role of gender in a smoking cessation intervention: a cluster randomized clinical trial

    PubMed Central

    2011-01-01

    Background The prevalence of smoking in Spain is high in both men and women. The aim of our study was to evaluate the role of gender in the effectiveness of a specific smoking cessation intervention conducted in Spain. Methods This study was a secondary analysis of a cluster randomized clinical trial in which the randomization unit was the Basic Care Unit (family physician and nurse who care for the same group of patients). The intervention consisted of a six-month period of implementing the recommendations of a Clinical Practice Guideline. A total of 2,937 current smokers at 82 Primary Care Centers in 13 different regions of Spain were included (2003-2005). The success rate was measured by a six-month continued abstinence rate at the one-year follow-up. A logistic mixed-effects regression model, taking Basic Care Units as random-effect parameter, was performed in order to analyze gender as a predictor of smoking cessation. Results At the one-year follow-up, the six-month continuous abstinence quit rate was 9.4% in men and 8.5% in women (p = 0.400). The logistic mixed-effects regression model showed that women did not have a higher odds of being an ex-smoker than men after the analysis was adjusted for confounders (OR adjusted = 0.9, 95% CI = 0.7-1.2). Conclusions Gender does not appear to be a predictor of smoking cessation at the one-year follow-up in individuals presenting at Primary Care Centers. ClinicalTrials.gov Identifier NCT00125905. PMID:21605389

  11. GWAS with longitudinal phenotypes: performance of approximate procedures

    PubMed Central

    Sikorska, Karolina; Montazeri, Nahid Mostafavi; Uitterlinden, André; Rivadeneira, Fernando; Eilers, Paul HC; Lesaffre, Emmanuel

    2015-01-01

    Analysis of genome-wide association studies with longitudinal data using standard procedures, such as linear mixed model (LMM) fitting, leads to discouragingly long computation times. There is a need to speed up the computations significantly. In our previous work (Sikorska et al: Fast linear mixed model computations for genome-wide association studies with longitudinal data. Stat Med 2012; 32.1: 165–180), we proposed the conditional two-step (CTS) approach as a fast method providing an approximation to the P-value for the longitudinal single-nucleotide polymorphism (SNP) effect. In the first step a reduced conditional LMM is fit, omitting all the SNP terms. In the second step, the estimated random slopes are regressed on SNPs. The CTS has been applied to the bone mineral density data from the Rotterdam Study and proved to work very well even in unbalanced situations. In another article (Sikorska et al: GWAS on your notebook: fast semi-parallel linear and logistic regression for genome-wide association studies. BMC Bioinformatics 2013; 14: 166), we suggested semi-parallel computations, greatly speeding up fitting many linear regressions. Combining CTS with fast linear regression reduces the computation time from several weeks to a few minutes on a single computer. Here, we explore further the properties of the CTS both analytically and by simulations. We investigate the performance of our proposal in comparison with a related but different approach, the two-step procedure. It is analytically shown that for the balanced case, under mild assumptions, the P-value provided by the CTS is the same as from the LMM. For unbalanced data and in realistic situations, simulations show that the CTS method does not inflate the type I error rate and implies only a minimal loss of power. PMID:25712081

  12. Using Case-Mix Adjustment Methods To Measure the Effectiveness of Substance Abuse Treatment: Three Examples Using Client Employment Outcomes.

    ERIC Educational Resources Information Center

    Koenig, Lane; Fields, Errol L.; Dall, Timothy M.; Ameen, Ansari Z.; Harwood, Henrick J.

    This report demonstrates three applications of case-mix methods using regression analysis. The results are used to assess the relative effectiveness of substance abuse treatment providers. The report also examines the ability of providers to improve client employment outcomes, an outcome domain relatively unexamined in the assessment of provider…

  13. Paying for Primary Care: The Factors Associated with Physician Self-selection into Payment Models.

    PubMed

    Rudoler, David; Deber, Raisa; Barnsley, Janet; Glazier, Richard H; Dass, Adrian Rohit; Laporte, Audrey

    2015-09-01

    To determine the factors associated with primary care physician self-selection into different payment models, we used a panel of eight waves of administrative data for all primary care physicians who practiced in Ontario between 2003/2004 and 2010/2011. We used a mixed effects logistic regression model to estimate physicians' choice of three alternative payment models: fee for service, enhanced fee for service, and blended capitation. We found that primary care physicians self-selected into payment models based on existing practice characteristics. Physicians with more complex patient populations were less likely to switch into capitation-based payment models where higher levels of effort were not financially rewarded. These findings suggested that investigations aimed at assessing the impact of different primary care reimbursement models on outcomes, including costs and access, should first account for potential selection effects. Copyright © 2015 John Wiley & Sons, Ltd.

  14. Assessing the impact of local meteorological variables on surface ozone in Hong Kong during 2000-2015 using quantile and multiple line regression models

    NASA Astrophysics Data System (ADS)

    Zhao, Wei; Fan, Shaojia; Guo, Hai; Gao, Bo; Sun, Jiaren; Chen, Laiguo

    2016-11-01

    The quantile regression (QR) method has been increasingly introduced to atmospheric environmental studies to explore the non-linear relationship between local meteorological conditions and ozone mixing ratios. In this study, we applied QR for the first time, together with multiple linear regression (MLR), to analyze the dominant meteorological parameters influencing the mean, 10th percentile, 90th percentile and 99th percentile of maximum daily 8-h average (MDA8) ozone concentrations in 2000-2015 in Hong Kong. The dominance analysis (DA) was used to assess the relative importance of meteorological variables in the regression models. Results showed that the MLR models worked better at suburban and rural sites than at urban sites, and worked better in winter than in summer. QR models performed better in summer for 99th and 90th percentiles and performed better in autumn and winter for 10th percentile. And QR models also performed better in suburban and rural areas for 10th percentile. The top 3 dominant variables associated with MDA8 ozone concentrations, changing with seasons and regions, were frequently associated with the six meteorological parameters: boundary layer height, humidity, wind direction, surface solar radiation, total cloud cover and sea level pressure. Temperature rarely became a significant variable in any season, which could partly explain the peak of monthly average ozone concentrations in October in Hong Kong. And we found the effect of solar radiation would be enhanced during extremely ozone pollution episodes (i.e., the 99th percentile). Finally, meteorological effects on MDA8 ozone had no significant changes before and after the 2010 Asian Games.

  15. Constrained inference in mixed-effects models for longitudinal data with application to hearing loss.

    PubMed

    Davidov, Ori; Rosen, Sophia

    2011-04-01

    In medical studies, endpoints are often measured for each patient longitudinally. The mixed-effects model has been a useful tool for the analysis of such data. There are situations in which the parameters of the model are subject to some restrictions or constraints. For example, in hearing loss studies, we expect hearing to deteriorate with time. This means that hearing thresholds which reflect hearing acuity will, on average, increase over time. Therefore, the regression coefficients associated with the mean effect of time on hearing ability will be constrained. Such constraints should be accounted for in the analysis. We propose maximum likelihood estimation procedures, based on the expectation-conditional maximization either algorithm, to estimate the parameters of the model while accounting for the constraints on them. The proposed methods improve, in terms of mean square error, on the unconstrained estimators. In some settings, the improvement may be substantial. Hypotheses testing procedures that incorporate the constraints are developed. Specifically, likelihood ratio, Wald, and score tests are proposed and investigated. Their empirical significance levels and power are studied using simulations. It is shown that incorporating the constraints improves the mean squared error of the estimates and the power of the tests. These improvements may be substantial. The methodology is used to analyze a hearing loss study.

  16. Generalized Linear Mixed Model Analysis of Urban-Rural Differences in Social and Behavioral Factors for Colorectal Cancer Screening

    PubMed Central

    Wang, Ke-Sheng; Liu, Xuefeng; Ategbole, Muyiwa; Xie, Xin; Liu, Ying; Xu, Chun; Xie, Changchun; Sha, Zhanxin

    2017-01-01

    Objective: Screening for colorectal cancer (CRC) can reduce disease incidence, morbidity, and mortality. However, few studies have investigated the urban-rural differences in social and behavioral factors influencing CRC screening. The objective of the study was to investigate the potential factors across urban-rural groups on the usage of CRC screening. Methods: A total of 38,505 adults (aged ≥40 years) were selected from the 2009 California Health Interview Survey (CHIS) data - the latest CHIS data on CRC screening. The weighted generalized linear mixed-model (WGLIMM) was used to deal with this hierarchical structure data. Weighted simple and multiple mixed logistic regression analyses in SAS ver. 9.4 were used to obtain the odds ratios (ORs) and their 95% confidence intervals (CIs). Results: The overall prevalence of CRC screening was 48.1% while the prevalence in four residence groups - urban, second city, suburban, and town/rural, were 45.8%, 46.9%, 53.7% and 50.1%, respectively. The results of WGLIMM analysis showed that there was residence effect (p<0.0001) and residence groups had significant interactions with gender, age group, education level, and employment status (p<0.05). Multiple logistic regression analysis revealed that age, race, marital status, education level, employment stats, binge drinking, and smoking status were associated with CRC screening (p<0.05). Stratified by residence regions, age and poverty level showed associations with CRC screening in all four residence groups. Education level was positively associated with CRC screening in second city and suburban. Infrequent binge drinking was associated with CRC screening in urban and suburban; while current smoking was a protective factor in urban and town/rural groups. Conclusions: Mixed models are useful to deal with the clustered survey data. Social factors and behavioral factors (binge drinking and smoking) were associated with CRC screening and the associations were affected by living areas such as urban and rural regions. PMID:28952708

  17. Generalized Linear Mixed Model Analysis of Urban-Rural Differences in Social and Behavioral Factors for Colorectal Cancer Screening

    PubMed

    Wang, Ke-Sheng; Liu, Xuefeng; Ategbole, Muyiwa; Xie, Xin; Liu, Ying; Xu, Chun; Xie, Changchun; Sha, Zhanxin

    2017-09-27

    Objective: Screening for colorectal cancer (CRC) can reduce disease incidence, morbidity, and mortality. However, few studies have investigated the urban-rural differences in social and behavioral factors influencing CRC screening. The objective of the study was to investigate the potential factors across urban-rural groups on the usage of CRC screening. Methods: A total of 38,505 adults (aged ≥40 years) were selected from the 2009 California Health Interview Survey (CHIS) data - the latest CHIS data on CRC screening. The weighted generalized linear mixed-model (WGLIMM) was used to deal with this hierarchical structure data. Weighted simple and multiple mixed logistic regression analyses in SAS ver. 9.4 were used to obtain the odds ratios (ORs) and their 95% confidence intervals (CIs). Results: The overall prevalence of CRC screening was 48.1% while the prevalence in four residence groups - urban, second city, suburban, and town/rural, were 45.8%, 46.9%, 53.7% and 50.1%, respectively. The results of WGLIMM analysis showed that there was residence effect (p<0.0001) and residence groups had significant interactions with gender, age group, education level, and employment status (p<0.05). Multiple logistic regression analysis revealed that age, race, marital status, education level, employment stats, binge drinking, and smoking status were associated with CRC screening (p<0.05). Stratified by residence regions, age and poverty level showed associations with CRC screening in all four residence groups. Education level was positively associated with CRC screening in second city and suburban. Infrequent binge drinking was associated with CRC screening in urban and suburban; while current smoking was a protective factor in urban and town/rural groups. Conclusions: Mixed models are useful to deal with the clustered survey data. Social factors and behavioral factors (binge drinking and smoking) were associated with CRC screening and the associations were affected by living areas such as urban and rural regions. Creative Commons Attribution License

  18. Multilevel modeling and panel data analysis in educational research (Case study: National examination data senior high school in West Java)

    NASA Astrophysics Data System (ADS)

    Zulvia, Pepi; Kurnia, Anang; Soleh, Agus M.

    2017-03-01

    Individual and environment are a hierarchical structure consist of units grouped at different levels. Hierarchical data structures are analyzed based on several levels, with the lowest level nested in the highest level. This modeling is commonly call multilevel modeling. Multilevel modeling is widely used in education research, for example, the average score of National Examination (UN). While in Indonesia UN for high school student is divided into natural science and social science. The purpose of this research is to develop multilevel and panel data modeling using linear mixed model on educational data. The first step is data exploration and identification relationships between independent and dependent variable by checking correlation coefficient and variance inflation factor (VIF). Furthermore, we use a simple model approach with highest level of the hierarchy (level-2) is regency/city while school is the lowest of hierarchy (level-1). The best model was determined by comparing goodness-of-fit and checking assumption from residual plots and predictions for each model. Our finding that for natural science and social science, the regression with random effects of regency/city and fixed effects of the time i.e multilevel model has better performance than the linear mixed model in explaining the variability of the dependent variable, which is the average scores of UN.

  19. A comparison of regression methods for model selection in individual-based landscape genetic analysis.

    PubMed

    Shirk, Andrew J; Landguth, Erin L; Cushman, Samuel A

    2018-01-01

    Anthropogenic migration barriers fragment many populations and limit the ability of species to respond to climate-induced biome shifts. Conservation actions designed to conserve habitat connectivity and mitigate barriers are needed to unite fragmented populations into larger, more viable metapopulations, and to allow species to track their climate envelope over time. Landscape genetic analysis provides an empirical means to infer landscape factors influencing gene flow and thereby inform such conservation actions. However, there are currently many methods available for model selection in landscape genetics, and considerable uncertainty as to which provide the greatest accuracy in identifying the true landscape model influencing gene flow among competing alternative hypotheses. In this study, we used population genetic simulations to evaluate the performance of seven regression-based model selection methods on a broad array of landscapes that varied by the number and type of variables contributing to resistance, the magnitude and cohesion of resistance, as well as the functional relationship between variables and resistance. We also assessed the effect of transformations designed to linearize the relationship between genetic and landscape distances. We found that linear mixed effects models had the highest accuracy in every way we evaluated model performance; however, other methods also performed well in many circumstances, particularly when landscape resistance was high and the correlation among competing hypotheses was limited. Our results provide guidance for which regression-based model selection methods provide the most accurate inferences in landscape genetic analysis and thereby best inform connectivity conservation actions. Published 2017. This article is a U.S. Government work and is in the public domain in the USA.

  20. Rural Hospital Ownership: Medical Service Provision, Market Mix, and Spillover Effects

    PubMed Central

    Horwitz, Jill R; Nichols, Austin

    2011-01-01

    Objective To test whether nonprofit, for-profit, or government hospital ownership affects medical service provision in rural hospital markets, either directly or through the spillover effects of ownership mix. Data Sources/Study Setting Data are from the American Hospital Association, U.S. Census, CMS Healthcare Cost Report Information System and Prospective Payment System Minimum Data File, and primary data collection for geographic coordinates. The sample includes all nonfederal, general medical, and surgical hospitals located outside of metropolitan statistical areas and within the continental United States from 1988 to 2005. Study Design We estimate multivariate regression models to examine the effects of (1) hospital ownership and (2) hospital ownership mix within rural hospital markets on profitable versus unprofitable medical service offerings. Principal Findings Rural nonprofit hospitals are more likely than for-profit hospitals to offer unprofitable services, many of which are underprovided services. Nonprofits respond less than for-profits to changes in service profitability. Nonprofits with more for-profit competitors offer more profitable services and fewer unprofitable services than those with fewer for-profit competitors. Conclusions Rural hospital ownership affects medical service provision at the hospital and market levels. Nonprofit hospital regulation should reflect both the direct and spillover effects of ownership. PMID:21639860

  1. Rural hospital ownership: medical service provision, market mix, and spillover effects.

    PubMed

    Horwitz, Jill R; Nichols, Austin

    2011-10-01

    To test whether nonprofit, for-profit, or government hospital ownership affects medical service provision in rural hospital markets, either directly or through the spillover effects of ownership mix. Data are from the American Hospital Association, U.S. Census, CMS Healthcare Cost Report Information System and Prospective Payment System Minimum Data File, and primary data collection for geographic coordinates. The sample includes all nonfederal, general medical, and surgical hospitals located outside of metropolitan statistical areas and within the continental United States from 1988 to 2005. We estimate multivariate regression models to examine the effects of (1) hospital ownership and (2) hospital ownership mix within rural hospital markets on profitable versus unprofitable medical service offerings. Rural nonprofit hospitals are more likely than for-profit hospitals to offer unprofitable services, many of which are underprovided services. Nonprofits respond less than for-profits to changes in service profitability. Nonprofits with more for-profit competitors offer more profitable services and fewer unprofitable services than those with fewer for-profit competitors. Rural hospital ownership affects medical service provision at the hospital and market levels. Nonprofit hospital regulation should reflect both the direct and spillover effects of ownership. © Health Research and Educational Trust.

  2. Spatial regression methods capture prediction uncertainty in species distribution model projections through time

    Treesearch

    Alan K. Swanson; Solomon Z. Dobrowski; Andrew O. Finley; James H. Thorne; Michael K. Schwartz

    2013-01-01

    The uncertainty associated with species distribution model (SDM) projections is poorly characterized, despite its potential value to decision makers. Error estimates from most modelling techniques have been shown to be biased due to their failure to account for spatial autocorrelation (SAC) of residual error. Generalized linear mixed models (GLMM) have the ability to...

  3. Brief Intervention Decreases Drinking Frequency in HIV-Infected, Heavy Drinking Women: Results of a Randomized Controlled Trial

    PubMed Central

    Chander, Geetanjali; Hutton, Heidi E.; Lau, Bryan; Xu, Xiaoqiang; McCaul, Mary E.

    2015-01-01

    Objective Hazardous alcohol use by HIV-infected women is associated with poor HIV outcomes and HIV transmission risk behaviors. We examined the effectiveness of brief alcohol intervention (BI) among hazardous drinking women receiving care in an urban, HIV clinic. Methods Women were randomized to a 2-session BI or usual care. Outcomes assessed at baseline, 3, 6 and 12 months included 90-day frequency of any alcohol use and heavy/binge drinking (≥4 drinks per occasion), and average drinks per drinking episode. Secondary outcomes included HIV medication and appointment adherence, HIV1-RNA suppression, and days of unprotected vaginal sex. We examined intervention effectiveness using generalized mixed effect models and quantile regression. Results Of 148 eligible women, 74 were randomized to each arm. In mixed effects models, 90-day drinking frequency decreased among intervention group compared to control, with women in the intervention condition less likely to have a drinking day (OR: 0.42 (95% CI: 0.23–0.75). Heavy/binge drinking days and drinks per drinking day did not differ significantly between groups. Quantile regression demonstrated a decrease in drinking frequency in the middle to upper ranges of the distribution of drinking days and heavy/binge drinking days that differed significantly between intervention and control conditions. At follow-up, the intervention group had significantly fewer episodes of unprotected vaginal sex. No intervention effects were observed for other outcomes. Conclusions Brief alcohol intervention reduces frequency of alcohol use and unprotected vaginal sex among HIV-infected women. More intensive services may be needed to lower drinks per drinking day and enhance care for more severely affected drinkers. PMID:25967270

  4. Bayesian kernel machine regression for estimating the health effects of multi-pollutant mixtures.

    PubMed

    Bobb, Jennifer F; Valeri, Linda; Claus Henn, Birgit; Christiani, David C; Wright, Robert O; Mazumdar, Maitreyi; Godleski, John J; Coull, Brent A

    2015-07-01

    Because humans are invariably exposed to complex chemical mixtures, estimating the health effects of multi-pollutant exposures is of critical concern in environmental epidemiology, and to regulatory agencies such as the U.S. Environmental Protection Agency. However, most health effects studies focus on single agents or consider simple two-way interaction models, in part because we lack the statistical methodology to more realistically capture the complexity of mixed exposures. We introduce Bayesian kernel machine regression (BKMR) as a new approach to study mixtures, in which the health outcome is regressed on a flexible function of the mixture (e.g. air pollution or toxic waste) components that is specified using a kernel function. In high-dimensional settings, a novel hierarchical variable selection approach is incorporated to identify important mixture components and account for the correlated structure of the mixture. Simulation studies demonstrate the success of BKMR in estimating the exposure-response function and in identifying the individual components of the mixture responsible for health effects. We demonstrate the features of the method through epidemiology and toxicology applications. © The Author 2014. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  5. Solving large mixed linear models using preconditioned conjugate gradient iteration.

    PubMed

    Strandén, I; Lidauer, M

    1999-12-01

    Continuous evaluation of dairy cattle with a random regression test-day model requires a fast solving method and algorithm. A new computing technique feasible in Jacobi and conjugate gradient based iterative methods using iteration on data is presented. In the new computing technique, the calculations in multiplication of a vector by a matrix were recorded to three steps instead of the commonly used two steps. The three-step method was implemented in a general mixed linear model program that used preconditioned conjugate gradient iteration. Performance of this program in comparison to other general solving programs was assessed via estimation of breeding values using univariate, multivariate, and random regression test-day models. Central processing unit time per iteration with the new three-step technique was, at best, one-third that needed with the old technique. Performance was best with the test-day model, which was the largest and most complex model used. The new program did well in comparison to other general software. Programs keeping the mixed model equations in random access memory required at least 20 and 435% more time to solve the univariate and multivariate animal models, respectively. Computations of the second best iteration on data took approximately three and five times longer for the animal and test-day models, respectively, than did the new program. Good performance was due to fast computing time per iteration and quick convergence to the final solutions. Use of preconditioned conjugate gradient based methods in solving large breeding value problems is supported by our findings.

  6. A longitudinal analysis of the influence of the neighborhood built environment on walking for transportation: the RESIDE study.

    PubMed

    Knuiman, Matthew W; Christian, Hayley E; Divitini, Mark L; Foster, Sarah A; Bull, Fiona C; Badland, Hannah M; Giles-Corti, Billie

    2014-09-01

    The purpose of the present analysis was to use longitudinal data collected over 7 years (from 4 surveys) in the Residential Environments (RESIDE) Study (Perth, Australia, 2003-2012) to more carefully examine the relationship of neighborhood walkability and destination accessibility with walking for transportation that has been seen in many cross-sectional studies. We compared effect estimates from 3 types of logistic regression models: 2 that utilize all available data (a population marginal model and a subject-level mixed model) and a third subject-level conditional model that exclusively uses within-person longitudinal evidence. The results support the evidence that neighborhood walkability (especially land-use mix and street connectivity), local access to public transit stops, and variety in the types of local destinations are important determinants of walking for transportation. The similarity of subject-level effect estimates from logistic mixed models and those from conditional logistic models indicates that there is little or no bias from uncontrolled time-constant residential preference (self-selection) factors; however, confounding by uncontrolled time-varying factors, such as health status, remains a possibility. These findings provide policy makers and urban planners with further evidence that certain features of the built environment may be important in the design of neighborhoods to increase walking for transportation and meet the health needs of residents. © The Author 2014. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  7. A comparison of different ways of including baseline counts in negative binomial models for data from falls prevention trials.

    PubMed

    Zheng, Han; Kimber, Alan; Goodwin, Victoria A; Pickering, Ruth M

    2018-01-01

    A common design for a falls prevention trial is to assess falling at baseline, randomize participants into an intervention or control group, and ask them to record the number of falls they experience during a follow-up period of time. This paper addresses how best to include the baseline count in the analysis of the follow-up count of falls in negative binomial (NB) regression. We examine the performance of various approaches in simulated datasets where both counts are generated from a mixed Poisson distribution with shared random subject effect. Including the baseline count after log-transformation as a regressor in NB regression (NB-logged) or as an offset (NB-offset) resulted in greater power than including the untransformed baseline count (NB-unlogged). Cook and Wei's conditional negative binomial (CNB) model replicates the underlying process generating the data. In our motivating dataset, a statistically significant intervention effect resulted from the NB-logged, NB-offset, and CNB models, but not from NB-unlogged, and large, outlying baseline counts were overly influential in NB-unlogged but not in NB-logged. We conclude that there is little to lose by including the log-transformed baseline count in standard NB regression compared to CNB for moderate to larger sized datasets. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Nursing home performance under case-mix reimbursement: responding to heavy-care incentives and market changes.

    PubMed Central

    Davis, M A; Freeman, J W; Kirby, E C

    1998-01-01

    OBJECTIVE: To examine the effect of case mix-adjusted reimbursement policy and market factors on nursing home performance. DATA SOURCES AND STUDY SETTING: Data from Medicaid certification inspection surveys, Medicaid cost reports, and the Kentucky State Center for Health Statistics for the years 1989 and 1991, to examine changes in nursing home performance stemming from the adoption of case mix-adjusted reimbursement in 1990. STUDY DESIGN: In addition to cross-sectional regressions, a first-difference approach to fixed-effects regression analyses was employed to control for facility differences that were essentially fixed during the survey years and to estimate the effects of time-varying predictors on changes in facility expenditures, efficiency, and profitability. PRINCIPAL FINDINGS: Facilities that increased the proportion of Medicaid residents and eliminated excess capacity experienced higher profitability gains during the beginning phase of case-mix reimbursement. Having a heavy-care resident population was positively related to expenditures prior to reimbursement reform, and it was negatively related to expenditures after the case-mix reimbursement policy was introduced. While facility-level changes in case mix had no reliable influence on costs or profits, nursing homes showing an increased prevalence of poor-quality nursing practices exhibited increases in efficiency and profitability. At the market level, reductions in excess or empty nursing home beds were accompanied by a significant growth in home health services. Moreover, nursing homes located in markets with expanding home health services exhibited higher increases in costs per case-mix unit. CONCLUSIONS: Characteristics of the reimbursement system appear to reward a cost minimization orientation with potentially detrimental effects on quality of care. These effects, exacerbated by a supply-constrained market, may be mitigated by policies that encourage the expansion of home health service availability. PMID:9776938

  9. Nursing home performance under case-mix reimbursement: responding to heavy-care incentives and market changes.

    PubMed

    Davis, M A; Freeman, J W; Kirby, E C

    1998-10-01

    To examine the effect of case mix-adjusted reimbursement policy and market factors on nursing home performance. Data from Medicaid certification inspection surveys, Medicaid cost reports, and the Kentucky State Center for Health Statistics for the years 1989 and 1991, to examine changes in nursing home performance stemming from the adoption of case mix-adjusted reimbursement in 1990. In addition to cross-sectional regressions, a first-difference approach to fixed-effects regression analyses was employed to control for facility differences that were essentially fixed during the survey years and to estimate the effects of time-varying predictors on changes in facility expenditures, efficiency, and profitability. Facilities that increased the proportion of Medicaid residents and eliminated excess capacity experienced higher profitability gains during the beginning phase of case-mix reimbursement. Having a heavy-care resident population was positively related to expenditures prior to reimbursement reform, and it was negatively related to expenditures after the case-mix reimbursement policy was introduced. While facility-level changes in case mix had no reliable influence on costs or profits, nursing homes showing an increased prevalence of poor-quality nursing practices exhibited increases in efficiency and profitability. At the market level, reductions in excess or empty nursing home beds were accompanied by a significant growth in home health services. Moreover, nursing homes located in markets with expanding home health services exhibited higher increases in costs per case-mix unit. Characteristics of the reimbursement system appear to reward a cost minimization orientation with potentially detrimental effects on quality of care. These effects, exacerbated by a supply-constrained market, may be mitigated by policies that encourage the expansion of home health service availability.

  10. A low-cost, tablet-based option for prehospital neurologic assessment: The iTREAT Study.

    PubMed

    Chapman Smith, Sherita N; Govindarajan, Prasanthi; Padrick, Matthew M; Lippman, Jason M; McMurry, Timothy L; Resler, Brian L; Keenan, Kevin; Gunnell, Brian S; Mehndiratta, Prachi; Chee, Christina Y; Cahill, Elizabeth A; Dietiker, Cameron; Cattell-Gordon, David C; Smith, Wade S; Perina, Debra G; Solenski, Nina J; Worrall, Bradford B; Southerland, Andrew M

    2016-07-05

    In this 2-center study, we assessed the technical feasibility and reliability of a low cost, tablet-based mobile telestroke option for ambulance transport and hypothesized that the NIH Stroke Scale (NIHSS) could be performed with similar reliability between remote and bedside examinations. We piloted our mobile telemedicine system in 2 geographic regions, central Virginia and the San Francisco Bay Area, utilizing commercial cellular networks for videoconferencing transmission. Standardized patients portrayed scripted stroke scenarios during ambulance transport and were evaluated by independent raters comparing bedside to remote mobile telestroke assessments. We used a mixed-effects regression model to determine intraclass correlation of the NIHSS between bedside and remote examinations (95% confidence interval). We conducted 27 ambulance runs at both sites and successfully completed the NIHSS for all prehospital assessments without prohibitive technical interruption. The mean difference between bedside (face-to-face) and remote (video) NIHSS scores was 0.25 (1.00 to -0.50). Overall, correlation of the NIHSS between bedside and mobile telestroke assessments was 0.96 (0.92-0.98). In the mixed-effects regression model, there were no statistically significant differences accounting for method of evaluation or differences between sites. Utilizing a low-cost, tablet-based platform and commercial cellular networks, we can reliably perform prehospital neurologic assessments in both rural and urban settings. Further research is needed to establish the reliability and validity of prehospital mobile telestroke assessment in live patients presenting with acute neurologic symptoms. © 2016 American Academy of Neurology.

  11. A low-cost, tablet-based option for prehospital neurologic assessment

    PubMed Central

    Chapman Smith, Sherita N.; Govindarajan, Prasanthi; Padrick, Matthew M.; Lippman, Jason M.; McMurry, Timothy L.; Resler, Brian L.; Keenan, Kevin; Gunnell, Brian S.; Mehndiratta, Prachi; Chee, Christina Y.; Cahill, Elizabeth A.; Dietiker, Cameron; Cattell-Gordon, David C.; Smith, Wade S.; Perina, Debra G.; Solenski, Nina J.; Worrall, Bradford B.

    2016-01-01

    Objectives: In this 2-center study, we assessed the technical feasibility and reliability of a low cost, tablet-based mobile telestroke option for ambulance transport and hypothesized that the NIH Stroke Scale (NIHSS) could be performed with similar reliability between remote and bedside examinations. Methods: We piloted our mobile telemedicine system in 2 geographic regions, central Virginia and the San Francisco Bay Area, utilizing commercial cellular networks for videoconferencing transmission. Standardized patients portrayed scripted stroke scenarios during ambulance transport and were evaluated by independent raters comparing bedside to remote mobile telestroke assessments. We used a mixed-effects regression model to determine intraclass correlation of the NIHSS between bedside and remote examinations (95% confidence interval). Results: We conducted 27 ambulance runs at both sites and successfully completed the NIHSS for all prehospital assessments without prohibitive technical interruption. The mean difference between bedside (face-to-face) and remote (video) NIHSS scores was 0.25 (1.00 to −0.50). Overall, correlation of the NIHSS between bedside and mobile telestroke assessments was 0.96 (0.92–0.98). In the mixed-effects regression model, there were no statistically significant differences accounting for method of evaluation or differences between sites. Conclusions: Utilizing a low-cost, tablet-based platform and commercial cellular networks, we can reliably perform prehospital neurologic assessments in both rural and urban settings. Further research is needed to establish the reliability and validity of prehospital mobile telestroke assessment in live patients presenting with acute neurologic symptoms. PMID:27281534

  12. Developing a case mix classification for child and adolescent mental health services: the influence of presenting problems, complexity factors and service providers on number of appointments.

    PubMed

    Martin, Peter; Davies, Roger; Macdougall, Amy; Ritchie, Benjamin; Vostanis, Panos; Whale, Andy; Wolpert, Miranda

    2017-09-01

    Case-mix classification is a focus of international attention in considering how best to manage and fund services, by providing a basis for fairer comparison of resource utilization. Yet there is little evidence of the best ways to establish case mix for child and adolescent mental health services (CAMHS). To develop a case mix classification for CAMHS that is clinically meaningful and predictive of number of appointments attended and to investigate the influence of presenting problems, context and complexity factors and provider variation. We analysed 4573 completed episodes of outpatient care from 11 English CAMHS. Cluster analysis, regression trees and a conceptual classification based on clinical best practice guidelines were compared regarding their ability to predict number of appointments, using mixed effects negative binomial regression. The conceptual classification is clinically meaningful and did as well as data-driven classifications in accounting for number of appointments. There was little evidence for effects of complexity or context factors, with the possible exception of school attendance problems. Substantial variation in resource provision between providers was not explained well by case mix. The conceptually-derived classification merits further testing and development in the context of collaborative decision making.

  13. Taking Effective Treatments to Scale: Organizational Effects on Outcomes of Multisystemic Therapy for Youth with Co-occurring Substance Use

    PubMed Central

    Schoenwald, Sonja K.; Chapman, Jason E.; Henry, David B.; Sheidow, Ashli J.

    2012-01-01

    A prospective multi-site study examined organizational climate and structure effects on the behavior and functioning of delinquent youth with and without co-occurring substance treated with an evidence-based treatment for serious antisocial behavior (i.e., Multisystemic Therapy). Participants were 1979 youth treated by 429 therapists across 45 provider organizations in North America. Results of Mixed Effects Regression Models showed some aspects of climate and structure had no effects, some had similar effects, and some had slightly differential and sometimes counter-intuitive effects on the outcomes of these youth. Implications are considered for research to increase the array and availability of effective treatments for youth with co-occurring substance use across service sectors. PMID:22844190

  14. Water mass mixing: The dominant control on the zinc distribution in the North Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Roshan, Saeed; Wu, Jingfeng

    2015-07-01

    Dissolved zinc (dZn) concentration was determined in the North Atlantic during the U.S. GEOTRACES 2010 and 2011 cruise (GOETRACES GA03). A relatively poor linear correlation (R2 = 0.756) was observed between dZn and silicic acid (Si), the slope of which was 0.0577 nM/µmol/kg. We attribute the relatively poor dZn-Si correlation to the following processes: (a) differential regeneration of zinc relative to silicic acid, (b) mixing of multiple water masses that have different Zn/Si, and (c) zinc sources such as sedimentary or hydrothermal. To quantitatively distinguish these possibilities, we use the results of Optimum Multi-Parameter Water Mass Analysis by Jenkins et al. (2015) to model the zinc distribution below 500 m. We hypothesized two scenarios: conservative mixing and regenerative mixing. The first scenario (conservative) could be modeled to results in a correlation with observations with a R2 = 0.846. In the second scenario, we took a Si-related regeneration into account, which could model the observations with a R2 = 0.867. Through this regenerative mixing scenario, we estimated a Zn/Si = 0.0548 nM/µmol/kg that may be more realistic than linear regression slope due to accounting for process b. However, this did not improve the model substantially (R2 = 0.867 versus0.846), which may indicate the insignificant effect of remineralization on the zinc distribution in this region. The relative weakness in the model-observation correlation (R2~0.85 for both scenarios) implies that processes (a) and (c) may be plausible. Furthermore, dZn in the upper 500 m exhibited a very poor correlation with apparent oxygen utilization, suggesting a minimal role for the organic matter-associated remineralization process.

  15. The Calibration of AVHRR/3 Visible Dual Gain Using Meteosat-8 as a MODIS Calibration Transfer Medium

    NASA Technical Reports Server (NTRS)

    Avey, Lance; Garber, Donald; Nguyen, Louis; Minnis, Patrick

    2007-01-01

    This viewgraph presentation reviews the NOAA-17 AVHRR visible channels calibrated against MET-8/MODIS using dual gain regression methods. The topics include: 1) Motivation; 2) Methodology; 3) Dual Gain Regression Methods; 4) Examples of Regression methods; 5) AVHRR/3 Regression Strategy; 6) Cross-Calibration Method; 7) Spectral Response Functions; 8) MET8/NOAA-17; 9) Example of gain ratio adjustment; 10) Effect of mixed low/high count FOV; 11) Monitor dual gains over time; and 12) Conclusions

  16. A model for predicting thermal properties of asphalt mixtures from their constituents

    NASA Astrophysics Data System (ADS)

    Keller, Merlin; Roche, Alexis; Lavielle, Marc

    Numerous theoretical and experimental approaches have been developed to predict the effective thermal conductivity of composite materials such as polymers, foams, epoxies, soils and concrete. None of such models have been applied to asphalt concrete. This study attempts to develop a model to predict the thermal conductivity of asphalt concrete from its constituents that will contribute to the asphalt industry by reducing costs and saving time on laboratory testing. The necessity to do the laboratory testing would be no longer required when a mix for the pavement is created with desired thermal properties at the design stage by selecting correct constituents. This thesis investigated six existing predictive models for applicability to asphalt mixtures, and four standard mathematical techniques were used to develop a regression model to predict the effective thermal conductivity. The effective thermal conductivities of 81 asphalt specimens were used as the response variables, and the thermal conductivities and volume fractions of their constituents were used as the predictors. The conducted statistical analyses showed that the measured values of thermal conductivities of the mixtures are affected by the bitumen and aggregate content, but not by the air content. Contrarily, the predicted data for some investigated models are highly sensitive to air voids, but not to bitumen and/or aggregate content. Additionally, the comparison of the experimental with analytical data showed that none of the existing models gave satisfactory results; on the other hand, two regression models (Exponential 1* and Linear 3*) are promising for asphalt concrete.

  17. Nursing home case-mix reimbursement in Mississippi and South Dakota.

    PubMed

    Arling, Greg; Daneman, Barry

    2002-04-01

    To evaluate the effects of nursing home case-mix reimbursement on facility case mix and costs in Mississippi and South Dakota. Secondary data from resident assessments and Medicaid cost reports from 154 Mississippi and 107 South Dakota nursing facilities in 1992 and 1994, before and after implementation of new case-mix reimbursement systems. The study relied on a two-wave panel design to examine case mix (resident acuity) and direct care costs in 1-year periods before and after implementation of a nursing home case-mix reimbursement system. Cross-lagged regression models were used to assess change in case mix and costs between periods while taking into account facility characteristics. Facility-level measures were constructed from Medicaid cost reports and Minimum Data Set-Plus assessment records supplied by each state. Resident case mix was based on the RUG-III classification system. Facility case-mix scores and direct care costs increased significantly between periods in both states. Changes in facility costs and case mix were significantly related in a positive direction. Medicare utilization and the rate of hospitalizations from the nursing facility also increased significantly between periods, particularly in Mississippi. The case-mix reimbursement systems appeared to achieve their intended goals: improved access for heavy-care residents and increased direct care expenditures in facilities with higher acuity residents. However, increases in Medicare utilization may have influenced facility case mix or costs, and some facilities may have been unprepared to care for higher acuity residents, as indicated by increased rates of hospitalization.

  18. Using empirical Bayes predictors from generalized linear mixed models to test and visualize associations among longitudinal outcomes.

    PubMed

    Mikulich-Gilbertson, Susan K; Wagner, Brandie D; Grunwald, Gary K; Riggs, Paula D; Zerbe, Gary O

    2018-01-01

    Medical research is often designed to investigate changes in a collection of response variables that are measured repeatedly on the same subjects. The multivariate generalized linear mixed model (MGLMM) can be used to evaluate random coefficient associations (e.g. simple correlations, partial regression coefficients) among outcomes that may be non-normal and differently distributed by specifying a multivariate normal distribution for their random effects and then evaluating the latent relationship between them. Empirical Bayes predictors are readily available for each subject from any mixed model and are observable and hence, plotable. Here, we evaluate whether second-stage association analyses of empirical Bayes predictors from a MGLMM, provide a good approximation and visual representation of these latent association analyses using medical examples and simulations. Additionally, we compare these results with association analyses of empirical Bayes predictors generated from separate mixed models for each outcome, a procedure that could circumvent computational problems that arise when the dimension of the joint covariance matrix of random effects is large and prohibits estimation of latent associations. As has been shown in other analytic contexts, the p-values for all second-stage coefficients that were determined by naively assuming normality of empirical Bayes predictors provide a good approximation to p-values determined via permutation analysis. Analyzing outcomes that are interrelated with separate models in the first stage and then associating the resulting empirical Bayes predictors in a second stage results in different mean and covariance parameter estimates from the maximum likelihood estimates generated by a MGLMM. The potential for erroneous inference from using results from these separate models increases as the magnitude of the association among the outcomes increases. Thus if computable, scatterplots of the conditionally independent empirical Bayes predictors from a MGLMM are always preferable to scatterplots of empirical Bayes predictors generated by separate models, unless the true association between outcomes is zero.

  19. [Key physical parameters of hawthorn leaf granules by stepwise regression analysis method].

    PubMed

    Jiang, Qie-Ying; Zeng, Rong-Gui; Li, Zhe; Luo, Juan; Zhao, Guo-Wei; Lv, Dan; Liao, Zheng-Gen

    2017-05-01

    The purpose of this study was to investigate the effect of key physical properties of hawthorn leaf granule on its dissolution behavior. Hawthorn leaves extract was utilized as a model drug. The extract was mixed with microcrystalline cellulose or starch with the same ratio by using different methods. Appropriate amount of lubricant and disintegrating agent was added into part of the mixed powder, and then the granules were prepared by using extrusion granulation and high shear granulation. The granules dissolution behavior was evaluated by using equilibrium dissolution quantity and dissolution rate constant of the hypericin as the indicators. Then the effect of physical properties on dissolution behavior was analyzed through the stepwise regression analysis method. The equilibrium dissolution quantity of hypericin and adsorption heat constant in hawthorn leaves were positively correlated with the monolayer adsorption capacity and negatively correlated with the moisture absorption rate constant. The dissolution rate constants were decreased with the increase of Hausner rate, monolayer adsorption capacity and adsorption heat constant, and were increased with the increase of Carr index and specific surface area. Adsorption heat constant, monolayer adsorption capacity, moisture absorption rate constant, Carr index and specific surface area were the key physical properties of hawthorn leaf granule to affect its dissolution behavior. Copyright© by the Chinese Pharmaceutical Association.

  20. College quality and hourly wages: evidence from the self-revelation model, sibling models and instrumental variables.

    PubMed

    Borgen, Nicolai T

    2014-11-01

    This paper addresses the recent discussion on confounding in the returns to college quality literature using the Norwegian case. The main advantage of studying Norway is the quality of the data. Norwegian administrative data provide information on college applications, family relations and a rich set of control variables for all Norwegian citizens applying to college between 1997 and 2004 (N = 141,319) and their succeeding wages between 2003 and 2010 (676,079 person-year observations). With these data, this paper uses a subset of the models that have rendered mixed findings in the literature in order to investigate to what extent confounding biases the returns to college quality. I compare estimates obtained using standard regression models to estimates obtained using the self-revelation model of Dale and Krueger (2002), a sibling fixed effects model and the instrumental variable model used by Long (2008). Using these methods, I consistently find increasing returns to college quality over the course of students' work careers, with positive returns only later in students' work careers. I conclude that the standard regression estimate provides a reasonable estimate of the returns to college quality. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Safety analysis of urban signalized intersections under mixed traffic.

    PubMed

    S, Anjana; M V L R, Anjaneyulu

    2015-02-01

    This study examined the crash causative factors of signalized intersections under mixed traffic using advanced statistical models. Hierarchical Poisson regression and logistic regression models were developed to predict the crash frequency and severity of signalized intersection approaches. The prediction models helped to develop general safety countermeasures for signalized intersections. The study shows that exclusive left turn lanes and countdown timers are beneficial for improving the safety of signalized intersections. Safety is also influenced by the presence of a surveillance camera, green time, median width, traffic volume, and proportion of two wheelers in the traffic stream. The factors that influence the severity of crashes were also identified in this study. As a practical application, the safe values of deviation of green time provided from design green time, with varying traffic volume, is presented in this study. This is a useful tool for setting the appropriate green time for a signalized intersection approach with variations in the traffic volume. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. IMPACT: Investigating the impact of Models of Practice for Allied health Care in subacuTe settings. A protocol for a quasi-experimental mixed methods study of cost effectiveness and outcomes for patients exposed to different models of allied health care.

    PubMed

    Coker, Freya; Williams, Cylie M; Taylor, Nicholas F; Caspers, Kirsten; McAlinden, Fiona; Wilton, Anita; Shields, Nora; Haines, Terry P

    2018-05-10

    This protocol considers three allied health staffing models across public health subacute hospitals. This quasi-experimental mixed-methods study, including qualitative process evaluation, aims to evaluate the impact of additional allied health services in subacute care, in rehabilitation and geriatric evaluation management settings, on patient, health service and societal outcomes. This health services research will analyse outcomes of patients exposed to different allied health models of care at three health services. Each health service will have a control ward (routine care) and an intervention ward (additional allied health). This project has two parts. Part 1: a whole of site data extraction for included wards. Outcome measures will include: length of stay, rate of readmissions, discharge destinations, community referrals, patient feedback and staff perspectives. Part 2: Functional Independence Measure scores will be collected every 2-3 days for the duration of 60 patient admissions.Data from part 1 will be analysed by linear regression analysis for continuous outcomes using patient-level data and logistic regression analysis for binary outcomes. Qualitative data will be analysed using a deductive thematic approach. For part 2, a linear mixed model analysis will be conducted using therapy service delivery and days since admission to subacute care as fixed factors in the model and individual participant as a random factor. Graphical analysis will be used to examine the growth curve of the model and transformations. The days since admission factor will be used to examine non-linear growth trajectories to determine if they lead to better model fit. Findings will be disseminated through local reports and to the Department of Health and Human Services Victoria. Results will be presented at conferences and submitted to peer-reviewed journals. The Monash Health Human Research Ethics committee approved this multisite research (HREC/17/MonH/144 and HREC/17/MonH/547). © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  3. Penalized spline estimation for functional coefficient regression models.

    PubMed

    Cao, Yanrong; Lin, Haiqun; Wu, Tracy Z; Yu, Yan

    2010-04-01

    The functional coefficient regression models assume that the regression coefficients vary with some "threshold" variable, providing appreciable flexibility in capturing the underlying dynamics in data and avoiding the so-called "curse of dimensionality" in multivariate nonparametric estimation. We first investigate the estimation, inference, and forecasting for the functional coefficient regression models with dependent observations via penalized splines. The P-spline approach, as a direct ridge regression shrinkage type global smoothing method, is computationally efficient and stable. With established fixed-knot asymptotics, inference is readily available. Exact inference can be obtained for fixed smoothing parameter λ, which is most appealing for finite samples. Our penalized spline approach gives an explicit model expression, which also enables multi-step-ahead forecasting via simulations. Furthermore, we examine different methods of choosing the important smoothing parameter λ: modified multi-fold cross-validation (MCV), generalized cross-validation (GCV), and an extension of empirical bias bandwidth selection (EBBS) to P-splines. In addition, we implement smoothing parameter selection using mixed model framework through restricted maximum likelihood (REML) for P-spline functional coefficient regression models with independent observations. The P-spline approach also easily allows different smoothness for different functional coefficients, which is enabled by assigning different penalty λ accordingly. We demonstrate the proposed approach by both simulation examples and a real data application.

  4. The association of health-related fitness with indicators of academic performance in Texas schools.

    PubMed

    Welk, Gregory J; Jackson, Allen W; Morrow, James R; Haskell, William H; Meredith, Marilu D; Cooper, Kenneth H

    2010-09-01

    This study examined the associations between indicators of health-related physical fitness (cardiovascular fitness and body mass index) and academic performance (Texas Assessment of Knowledge and Skills). Partial correlations were generally stronger for cardiovascular fitness than body mass index and consistently stronger in the middle school grades. Mixed-model regression analyses revealed modest associations between fitness and academic achievement after controlling for potentially confounding variables. The effects of fitness on academic achievement were positive but small. A separate logistic regression analysis indicated that higher fitness rates increased the odds of schools achieving exemplary/recognized school status within the state. School fitness attainment is an indicator of higher performing schools. Direction of causality cannot be inferred due to the cross-sectional nature of the data.

  5. Three novel approaches to structural identifiability analysis in mixed-effects models.

    PubMed

    Janzén, David L I; Jirstrand, Mats; Chappell, Michael J; Evans, Neil D

    2016-05-06

    Structural identifiability is a concept that considers whether the structure of a model together with a set of input-output relations uniquely determines the model parameters. In the mathematical modelling of biological systems, structural identifiability is an important concept since biological interpretations are typically made from the parameter estimates. For a system defined by ordinary differential equations, several methods have been developed to analyse whether the model is structurally identifiable or otherwise. Another well-used modelling framework, which is particularly useful when the experimental data are sparsely sampled and the population variance is of interest, is mixed-effects modelling. However, established identifiability analysis techniques for ordinary differential equations are not directly applicable to such models. In this paper, we present and apply three different methods that can be used to study structural identifiability in mixed-effects models. The first method, called the repeated measurement approach, is based on applying a set of previously established statistical theorems. The second method, called the augmented system approach, is based on augmenting the mixed-effects model to an extended state-space form. The third method, called the Laplace transform mixed-effects extension, is based on considering the moment invariants of the systems transfer function as functions of random variables. To illustrate, compare and contrast the application of the three methods, they are applied to a set of mixed-effects models. Three structural identifiability analysis methods applicable to mixed-effects models have been presented in this paper. As method development of structural identifiability techniques for mixed-effects models has been given very little attention, despite mixed-effects models being widely used, the methods presented in this paper provides a way of handling structural identifiability in mixed-effects models previously not possible. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  6. An empirical model for dissolution profile and its application to floating dosage forms.

    PubMed

    Weiss, Michael; Kriangkrai, Worawut; Sungthongjeen, Srisagul

    2014-06-02

    A sum of two inverse Gaussian functions is proposed as a highly flexible empirical model for fitting of in vitro dissolution profiles. The model was applied to quantitatively describe theophylline release from effervescent multi-layer coated floating tablets containing different amounts of the anti-tacking agents talc or glyceryl monostearate. Model parameters were estimated by nonlinear regression (mixed-effects modeling). The estimated parameters were used to determine the mean dissolution time, as well as to reconstruct the time course of release rate for each formulation, whereby the fractional release rate can serve as a diagnostic tool for classification of dissolution processes. The approach allows quantification of dissolution behavior and could provide additional insights into the underlying processes. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Mixed and Mixture Regression Models for Continuous Bounded Responses Using the Beta Distribution

    ERIC Educational Resources Information Center

    Verkuilen, Jay; Smithson, Michael

    2012-01-01

    Doubly bounded continuous data are common in the social and behavioral sciences. Examples include judged probabilities, confidence ratings, derived proportions such as percent time on task, and bounded scale scores. Dependent variables of this kind are often difficult to analyze using normal theory models because their distributions may be quite…

  8. A Growth Model for Academic Program Life Cycle (APLC): A Theoretical and Empirical Analysis

    ERIC Educational Resources Information Center

    Acquah, Edward H. K.

    2010-01-01

    Academic program life cycle concept states each program's life flows through several stages: introduction, growth, maturity, and decline. A mixed-influence diffusion growth model is fitted to enrolment data on academic programs to analyze the factors determining progress of academic programs through their life cycles. The regression analysis yield…

  9. The effects of climate change on harp seals (Pagophilus groenlandicus).

    PubMed

    Johnston, David W; Bowers, Matthew T; Friedlaender, Ari S; Lavigne, David M

    2012-01-01

    Harp seals (Pagophilus groenlandicus) have evolved life history strategies to exploit seasonal sea ice as a breeding platform. As such, individuals are prepared to deal with fluctuations in the quantity and quality of ice in their breeding areas. It remains unclear, however, how shifts in climate may affect seal populations. The present study assesses the effects of climate change on harp seals through three linked analyses. First, we tested the effects of short-term climate variability on young-of-the year harp seal mortality using a linear regression of sea ice cover in the Gulf of St. Lawrence against stranding rates of dead harp seals in the region during 1992 to 2010. A similar regression of stranding rates and North Atlantic Oscillation (NAO) index values was also conducted. These analyses revealed negative correlations between both ice cover and NAO conditions and seal mortality, indicating that lighter ice cover and lower NAO values result in higher mortality. A retrospective cross-correlation analysis of NAO conditions and sea ice cover from 1978 to 2011 revealed that NAO-related changes in sea ice may have contributed to the depletion of seals on the east coast of Canada during 1950 to 1972, and to their recovery during 1973 to 2000. This historical retrospective also reveals opposite links between neonatal mortality in harp seals in the Northeast Atlantic and NAO phase. Finally, an assessment of the long-term trends in sea ice cover in the breeding regions of harp seals across the entire North Atlantic during 1979 through 2011 using multiple linear regression models and mixed effects linear regression models revealed that sea ice cover in all harp seal breeding regions has been declining by as much as 6 percent per decade over the time series of available satellite data.

  10. The Effects of Climate Change on Harp Seals (Pagophilus groenlandicus)

    PubMed Central

    Johnston, David W.; Bowers, Matthew T.; Friedlaender, Ari S.; Lavigne, David M.

    2012-01-01

    Harp seals (Pagophilus groenlandicus) have evolved life history strategies to exploit seasonal sea ice as a breeding platform. As such, individuals are prepared to deal with fluctuations in the quantity and quality of ice in their breeding areas. It remains unclear, however, how shifts in climate may affect seal populations. The present study assesses the effects of climate change on harp seals through three linked analyses. First, we tested the effects of short-term climate variability on young-of-the year harp seal mortality using a linear regression of sea ice cover in the Gulf of St. Lawrence against stranding rates of dead harp seals in the region during 1992 to 2010. A similar regression of stranding rates and North Atlantic Oscillation (NAO) index values was also conducted. These analyses revealed negative correlations between both ice cover and NAO conditions and seal mortality, indicating that lighter ice cover and lower NAO values result in higher mortality. A retrospective cross-correlation analysis of NAO conditions and sea ice cover from 1978 to 2011 revealed that NAO-related changes in sea ice may have contributed to the depletion of seals on the east coast of Canada during 1950 to 1972, and to their recovery during 1973 to 2000. This historical retrospective also reveals opposite links between neonatal mortality in harp seals in the Northeast Atlantic and NAO phase. Finally, an assessment of the long-term trends in sea ice cover in the breeding regions of harp seals across the entire North Atlantic during 1979 through 2011 using multiple linear regression models and mixed effects linear regression models revealed that sea ice cover in all harp seal breeding regions has been declining by as much as 6 percent per decade over the time series of available satellite data. PMID:22238591

  11. The impact of green stormwater infrastructure installation on surrounding health and safety.

    PubMed

    Kondo, Michelle C; Low, Sarah C; Henning, Jason; Branas, Charles C

    2015-03-01

    We investigated the health and safety effects of urban green stormwater infrastructure (GSI) installments. We conducted a difference-in-differences analysis of the effects of GSI installments on health (e.g., blood pressure, cholesterol and stress levels) and safety (e.g., felonies, nuisance and property crimes, narcotics crimes) outcomes from 2000 to 2012 in Philadelphia, Pennsylvania. We used mixed-effects regression models to compare differences in pre- and posttreatment measures of outcomes for treatment sites (n=52) and randomly chosen, matched control sites (n=186) within multiple geographic extents surrounding GSI sites. Regression-adjusted models showed consistent and statistically significant reductions in narcotics possession (18%-27% less) within 16th-mile, quarter-mile, half-mile (P<.001), and eighth-mile (P<.01) distances from treatment sites and at the census tract level (P<.01). Narcotics manufacture and burglaries were also significantly reduced at multiple scales. Nonsignificant reductions in homicides, assaults, thefts, public drunkenness, and narcotics sales were associated with GSI installation in at least 1 geographic extent. Health and safety considerations should be included in future assessments of GSI programs. Subsequent studies should assess mechanisms of this association.

  12. The Impact of Green Stormwater Infrastructure Installation on Surrounding Health and Safety

    PubMed Central

    Low, Sarah C.; Henning, Jason; Branas, Charles C.

    2015-01-01

    Objectives. We investigated the health and safety effects of urban green stormwater infrastructure (GSI) installments. Methods. We conducted a difference-in-differences analysis of the effects of GSI installments on health (e.g., blood pressure, cholesterol and stress levels) and safety (e.g., felonies, nuisance and property crimes, narcotics crimes) outcomes from 2000 to 2012 in Philadelphia, Pennsylvania. We used mixed-effects regression models to compare differences in pre- and posttreatment measures of outcomes for treatment sites (n = 52) and randomly chosen, matched control sites (n = 186) within multiple geographic extents surrounding GSI sites. Results. Regression-adjusted models showed consistent and statistically significant reductions in narcotics possession (18%–27% less) within 16th-mile, quarter-mile, half-mile (P < .001), and eighth-mile (P < .01) distances from treatment sites and at the census tract level (P < .01). Narcotics manufacture and burglaries were also significantly reduced at multiple scales. Nonsignificant reductions in homicides, assaults, thefts, public drunkenness, and narcotics sales were associated with GSI installation in at least 1 geographic extent. Conclusions. Health and safety considerations should be included in future assessments of GSI programs. Subsequent studies should assess mechanisms of this association. PMID:25602887

  13. The Weight of Euro Coins: Its Distribution Might Not Be as Normal as You Would Expect

    ERIC Educational Resources Information Center

    Shkedy, Ziv; Aerts, Marc; Callaert, Herman

    2006-01-01

    Classical regression models, ANOVA models and linear mixed models are just three examples (out of many) in which the normal distribution of the response is an essential assumption of the model. In this paper we use a dataset of 2000 euro coins containing information (up to the milligram) about the weight of each coin, to illustrate that the…

  14. Transient modeling in simulation of hospital operations for emergency response.

    PubMed

    Paul, Jomon Aliyas; George, Santhosh K; Yi, Pengfei; Lin, Li

    2006-01-01

    Rapid estimates of hospital capacity after an event that may cause a disaster can assist disaster-relief efforts. Due to the dynamics of hospitals, following such an event, it is necessary to accurately model the behavior of the system. A transient modeling approach using simulation and exponential functions is presented, along with its applications in an earthquake situation. The parameters of the exponential model are regressed using outputs from designed simulation experiments. The developed model is capable of representing transient, patient waiting times during a disaster. Most importantly, the modeling approach allows real-time capacity estimation of hospitals of various sizes and capabilities. Further, this research is an analysis of the effects of priority-based routing of patients within the hospital and the effects on patient waiting times determined using various patient mixes. The model guides the patients based on the severity of injuries and queues the patients requiring critical care depending on their remaining survivability time. The model also accounts the impact of prehospital transport time on patient waiting time.

  15. [Influence of sample surface roughness on mathematical model of NIR quantitative analysis of wood density].

    PubMed

    Huang, An-Min; Fei, Ben-Hua; Jiang, Ze-Hui; Hse, Chung-Yun

    2007-09-01

    Near infrared spectroscopy is widely used as a quantitative method, and the main multivariate techniques consist of regression methods used to build prediction models, however, the accuracy of analysis results will be affected by many factors. In the present paper, the influence of different sample roughness on the mathematical model of NIR quantitative analysis of wood density was studied. The result of experiments showed that if the roughness of predicted samples was consistent with that of calibrated samples, the result was good, otherwise the error would be much higher. The roughness-mixed model was more flexible and adaptable to different sample roughness. The prediction ability of the roughness-mixed model was much better than that of the single-roughness model.

  16. Conditional random slope: A new approach for estimating individual child growth velocity in epidemiological research.

    PubMed

    Leung, Michael; Bassani, Diego G; Racine-Poon, Amy; Goldenberg, Anna; Ali, Syed Asad; Kang, Gagandeep; Premkumar, Prasanna S; Roth, Daniel E

    2017-09-10

    Conditioning child growth measures on baseline accounts for regression to the mean (RTM). Here, we present the "conditional random slope" (CRS) model, based on a linear-mixed effects model that incorporates a baseline-time interaction term that can accommodate multiple data points for a child while also directly accounting for RTM. In two birth cohorts, we applied five approaches to estimate child growth velocities from 0 to 12 months to assess the effect of increasing data density (number of measures per child) on the magnitude of RTM of unconditional estimates, and the correlation and concordance between the CRS and four alternative metrics. Further, we demonstrated the differential effect of the choice of velocity metric on the magnitude of the association between infant growth and stunting at 2 years. RTM was minimally attenuated by increasing data density for unconditional growth modeling approaches. CRS and classical conditional models gave nearly identical estimates with two measures per child. Compared to the CRS estimates, unconditional metrics had moderate correlation (r = 0.65-0.91), but poor agreement in the classification of infants with relatively slow growth (kappa = 0.38-0.78). Estimates of the velocity-stunting association were the same for CRS and classical conditional models but differed substantially between conditional versus unconditional metrics. The CRS can leverage the flexibility of linear mixed models while addressing RTM in longitudinal analyses. © 2017 The Authors American Journal of Human Biology Published by Wiley Periodicals, Inc.

  17. Oil Extraction and Indigenous Livelihoods in the Northern Ecuadorian Amazon

    PubMed Central

    Bozigar, Matthew; Gray, Clark L.; Bilsborrow, Richard E.

    2015-01-01

    Globally, the extraction of minerals and fossil fuels is increasingly penetrating into isolated regions inhabited by indigenous peoples, potentially undermining their livelihoods and well-being. To provide new insight to this issue, we draw on a unique longitudinal dataset collected in the Ecuadorian Amazon over an 11-year period from 484 indigenous households with varying degrees of exposure to oil extraction. Fixed and random effects regression models of the consequences of oil activities for livelihood outcomes reveal mixed and multidimensional effects. These results challenge common assumptions about these processes and are only partly consistent with hypotheses drawn from the Dutch disease literature. PMID:26543302

  18. Multivariate generalized hidden Markov regression models with random covariates: Physical exercise in an elderly population.

    PubMed

    Punzo, Antonio; Ingrassia, Salvatore; Maruotti, Antonello

    2018-04-22

    A time-varying latent variable model is proposed to jointly analyze multivariate mixed-support longitudinal data. The proposal can be viewed as an extension of hidden Markov regression models with fixed covariates (HMRMFCs), which is the state of the art for modelling longitudinal data, with a special focus on the underlying clustering structure. HMRMFCs are inadequate for applications in which a clustering structure can be identified in the distribution of the covariates, as the clustering is independent from the covariates distribution. Here, hidden Markov regression models with random covariates are introduced by explicitly specifying state-specific distributions for the covariates, with the aim of improving the recovering of the clusters in the data with respect to a fixed covariates paradigm. The hidden Markov regression models with random covariates class is defined focusing on the exponential family, in a generalized linear model framework. Model identifiability conditions are sketched, an expectation-maximization algorithm is outlined for parameter estimation, and various implementation and operational issues are discussed. Properties of the estimators of the regression coefficients, as well as of the hidden path parameters, are evaluated through simulation experiments and compared with those of HMRMFCs. The method is applied to physical activity data. Copyright © 2018 John Wiley & Sons, Ltd.

  19. The statistical analysis of multi-environment data: modeling genotype-by-environment interaction and its genetic basis

    PubMed Central

    Malosetti, Marcos; Ribaut, Jean-Marcel; van Eeuwijk, Fred A.

    2013-01-01

    Genotype-by-environment interaction (GEI) is an important phenomenon in plant breeding. This paper presents a series of models for describing, exploring, understanding, and predicting GEI. All models depart from a two-way table of genotype by environment means. First, a series of descriptive and explorative models/approaches are presented: Finlay–Wilkinson model, AMMI model, GGE biplot. All of these approaches have in common that they merely try to group genotypes and environments and do not use other information than the two-way table of means. Next, factorial regression is introduced as an approach to explicitly introduce genotypic and environmental covariates for describing and explaining GEI. Finally, QTL modeling is presented as a natural extension of factorial regression, where marker information is translated into genetic predictors. Tests for regression coefficients corresponding to these genetic predictors are tests for main effect QTL expression and QTL by environment interaction (QEI). QTL models for which QEI depends on environmental covariables form an interesting model class for predicting GEI for new genotypes and new environments. For realistic modeling of genotypic differences across multiple environments, sophisticated mixed models are necessary to allow for heterogeneity of genetic variances and correlations across environments. The use and interpretation of all models is illustrated by an example data set from the CIMMYT maize breeding program, containing environments differing in drought and nitrogen stress. To help readers to carry out the statistical analyses, GenStat® programs, 15th Edition and Discovery® version, are presented as “Appendix.” PMID:23487515

  20. Prediction of forest fires occurrences with area-level Poisson mixed models.

    PubMed

    Boubeta, Miguel; Lombardía, María José; Marey-Pérez, Manuel Francisco; Morales, Domingo

    2015-05-01

    The number of fires in forest areas of Galicia (north-west of Spain) during the summer period is quite high. Local authorities are interested in analyzing the factors that explain this phenomenon. Poisson regression models are good tools for describing and predicting the number of fires per forest areas. This work employs area-level Poisson mixed models for treating real data about fires in forest areas. A parametric bootstrap method is applied for estimating the mean squared errors of fires predictors. The developed methodology and software are applied to a real data set of fires in forest areas of Galicia. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Restructuring in response to case mix reimbursement in nursing homes: A contingency approach

    PubMed Central

    Zinn, Jacqueline; Feng, Zhanlian; Mor, Vincent; Intrator, Orna; Grabowski, David

    2013-01-01

    Background Resident-based case mix reimbursement has become the dominant mechanism for publicly funded nursing home care. In 1998 skilled nursing facility reimbursement changed from cost-based to case mix adjusted payments under the Medicare Prospective Payment System for the costs of all skilled nursing facility care provided to Medicare recipients. In addition, as of 2004, 35 state Medicaid programs had implemented some form of case mix reimbursement. Purpose The purpose of the study is to determine if the implementation of Medicare and Medicaid case mix reimbursement increased the administrative burden on nursing homes, as evidenced by increased levels of nurses in administrative functions. Methodology/Approach The primary data for this study come from the Centers for Medicare and Medicaid Services Online Survey Certification and Reporting database from 1997 through 2004, a national nursing home database containing aggregated facility-level information, including staffing, organizational characteristics and resident conditions, on all Medicare/Medicaid certified nursing facilities in the country. We conducted multivariate regression analyses using a facility fixed-effects model to examine the effects of the implementation of Medicaid case mix reimbursement and Medicare Prospective Payment System on changes in the level of total administrative nurse staffing in nursing homes. Findings Both Medicaid case mix reimbursement and Medicare Prospective Payment System increased the level of administrative nurse staffing, on average by 5.5% and 4.0% respectively. However, lack of evidence for a substitution effect suggests that any decline in direct care staffing after the introduction of case mix reimbursement is not attributable to a shift from clinical nursing resources to administrative functions. Practice Implications Our findings indicate that the administrative burden posed by case mix reimbursement has resource implications for all freestanding facilities. At the margin, the increased administrative burden imposed by case mix may become a factor influencing a range of decisions, including resident admission and staff hiring. PMID:18360162

  2. Restructuring in response to case mix reimbursement in nursing homes: a contingency approach.

    PubMed

    Zinn, Jacqueline; Feng, Zhanlian; Mor, Vincent; Intrator, Orna; Grabowski, David

    2008-01-01

    Resident-based case mix reimbursement has become the dominant mechanism for publicly funded nursing home care. In 1998 skilled nursing facility reimbursement changed from cost-based to case mix adjusted payments under the Medicare Prospective Payment System for the costs of all skilled nursing facility care provided to Medicare recipients. In addition, as of 2004, 35 state Medicaid programs had implemented some form of case mix reimbursement. The purpose of the study is to determine if the implementation of Medicare and Medicaid case mix reimbursement increased the administrative burden on nursing homes, as evidenced by increased levels of nurses in administrative functions. The primary data for this study come from the Centers for Medicare and Medicaid Services Online Survey Certification and Reporting database from 1997 through 2004, a national nursing home database containing aggregated facility-level information, including staffing, organizational characteristics and resident conditions, on all Medicare/Medicaid certified nursing facilities in the country. We conducted multivariate regression analyses using a facility fixed-effects model to examine the effects of the implementation of Medicaid case mix reimbursement and Medicare Prospective Payment System on changes in the level of total administrative nurse staffing in nursing homes. Both Medicaid case mix reimbursement and Medicare Prospective Payment System increased the level of administrative nurse staffing, on average by 5.5% and 4.0% respectively. However, lack of evidence for a substitution effect suggests that any decline in direct care staffing after the introduction of case mix reimbursement is not attributable to a shift from clinical nursing resources to administrative functions. Our findings indicate that the administrative burden posed by case mix reimbursement has resource implications for all freestanding facilities. At the margin, the increased administrative burden imposed by case mix may become a factor influencing a range of decisions, including resident admission and staff hiring.

  3. Mobile phone use during driving: Effects on speed and effectiveness of driver compensatory behaviour.

    PubMed

    Choudhary, Pushpa; Velaga, Nagendra R

    2017-09-01

    This study analysed and modelled the effects of conversation and texting (each with two difficulty levels) on driving performance of Indian drivers in terms of their mean speed and accident avoiding abilities; and further explored the relationship between speed reduction strategy of the drivers and their corresponding accident frequency. 100 drivers of three different age groups (young, mid-age and old-age) participated in the simulator study. Two sudden events of Indian context: unexpected crossing of pedestrians and joining of parked vehicles from road side, were simulated for estimating the accident probabilities. Generalized linear mixed models approach was used for developing linear regression models for mean speed and binary logistic regression models for accident probability. The results of the models showed that the drivers significantly compensated the increased workload by reducing their mean speed by 2.62m/s and 5.29m/s in the presence of conversation and texting tasks respectively. The logistic models for accident probabilities showed that the accident probabilities increased by 3 and 4 times respectively when the drivers were conversing or texting on a phone during driving. Further, the relationship between the speed reduction patterns and their corresponding accident frequencies showed that all the drivers compensated differently; but, among all the drivers, only few drivers, who compensated by reducing the speed by 30% or more, were able to fully offset the increased accident risk associated with the phone use. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Evaluating large-scale propensity score performance through real-world and synthetic data experiments.

    PubMed

    Tian, Yuxi; Schuemie, Martijn J; Suchard, Marc A

    2018-06-22

    Propensity score adjustment is a popular approach for confounding control in observational studies. Reliable frameworks are needed to determine relative propensity score performance in large-scale studies, and to establish optimal propensity score model selection methods. We detail a propensity score evaluation framework that includes synthetic and real-world data experiments. Our synthetic experimental design extends the 'plasmode' framework and simulates survival data under known effect sizes, and our real-world experiments use a set of negative control outcomes with presumed null effect sizes. In reproductions of two published cohort studies, we compare two propensity score estimation methods that contrast in their model selection approach: L1-regularized regression that conducts a penalized likelihood regression, and the 'high-dimensional propensity score' (hdPS) that employs a univariate covariate screen. We evaluate methods on a range of outcome-dependent and outcome-independent metrics. L1-regularization propensity score methods achieve superior model fit, covariate balance and negative control bias reduction compared with the hdPS. Simulation results are mixed and fluctuate with simulation parameters, revealing a limitation of simulation under the proportional hazards framework. Including regularization with the hdPS reduces commonly reported non-convergence issues but has little effect on propensity score performance. L1-regularization incorporates all covariates simultaneously into the propensity score model and offers propensity score performance superior to the hdPS marginal screen.

  5. Composition and structure of Pinus koraiensis mixed forest respond to spatial climatic changes.

    PubMed

    Zhang, Jingli; Zhou, Yong; Zhou, Guangsheng; Xiao, Chunwang

    2014-01-01

    Although some studies have indicated that climate changes can affect Pinus koraiensis mixed forest, the responses of composition and structure of Pinus koraiensis mixed forests to climatic changes are unknown and the key climatic factors controlling the composition and structure of Pinus koraiensis mixed forest are uncertain. Field survey was conducted in the natural Pinus koraiensis mixed forests along a latitudinal gradient and an elevational gradient in Northeast China. In order to build the mathematical models for simulating the relationships of compositional and structural attributes of the Pinus koraiensis mixed forest with climatic and non-climatic factors, stepwise linear regression analyses were performed, incorporating 14 dependent variables and the linear and quadratic components of 9 factors. All the selected new models were computed under the +2°C and +10% precipitation and +4°C and +10% precipitation scenarios. The Max Temperature of Warmest Month, Mean Temperature of Warmest Quarter and Precipitation of Wettest Month were observed to be key climatic factors controlling the stand densities and total basal areas of Pinus koraiensis mixed forest. Increased summer temperatures and precipitations strongly enhanced the stand densities and total basal areas of broadleaf trees but had little effect on Pinus koraiensis under the +2°C and +10% precipitation scenario and +4°C and +10% precipitation scenario. These results show that the Max Temperature of Warmest Month, Mean Temperature of Warmest Quarter and Precipitation of Wettest Month are key climatic factors which shape the composition and structure of Pinus koraiensis mixed forest. Although the Pinus koraiensis would persist, the current forests dominated by Pinus koraiensis in the region would all shift and become broadleaf-dominated forests due to the dramatic increase of broadleaf trees under the future global warming and increased precipitation.

  6. Empirical Behavioral Models to Support Alternative Tools for the Analysis of Mixed-Priority Pedestrian-Vehicle Interaction in a Highway Capacity Context

    PubMed Central

    Rouphail, Nagui M.

    2011-01-01

    This paper presents behavioral-based models for describing pedestrian gap acceptance at unsignalized crosswalks in a mixed-priority environment, where some drivers yield and some pedestrians cross in gaps. Logistic regression models are developed to predict the probability of pedestrian crossings as a function of vehicle dynamics, pedestrian assertiveness, and other factors. In combination with prior work on probabilistic yielding models, the results can be incorporated in a simulation environment, where they can more fully describe the interaction of these two modes. The approach is intended to supplement HCM analytical procedure for locations where significant interaction occurs between drivers and pedestrians, including modern roundabouts. PMID:21643488

  7. Variability in case-mix adjusted in-hospital cardiac arrest rates.

    PubMed

    Merchant, Raina M; Yang, Lin; Becker, Lance B; Berg, Robert A; Nadkarni, Vinay; Nichol, Graham; Carr, Brendan G; Mitra, Nandita; Bradley, Steven M; Abella, Benjamin S; Groeneveld, Peter W

    2012-02-01

    It is unknown how in-hospital cardiac arrest (IHCA) rates vary across hospitals and predictors of variability. Measure variability in IHCA across hospitals and determine if hospital-level factors predict differences in case-mix adjusted event rates. Get with the Guidelines Resuscitation (GWTG-R) (n=433 hospitals) was used to identify IHCA events between 2003 and 2007. The American Hospital Association survey, Medicare, and US Census were used to obtain detailed information about GWTG-R hospitals. Adult patients with IHCA. Case-mix-adjusted predicted IHCA rates were calculated for each hospital and variability across hospitals was compared. A regression model was used to predict case-mix adjusted event rates using hospital measures of volume, nurse-to-bed ratio, percent intensive care unit beds, palliative care services, urban designation, volume of black patients, income, trauma designation, academic designation, cardiac surgery capability, and a patient risk score. We evaluated 103,117 adult IHCAs at 433 US hospitals. The case-mix adjusted IHCA event rate was highly variable across hospitals, median 1/1000 bed days (interquartile range: 0.7 to 1.3 events/1000 bed days). In a multivariable regression model, case-mix adjusted IHCA event rates were highest in urban hospitals [rate ratio (RR), 1.1; 95% confidence interval (CI), 1.0-1.3; P=0.03] and hospitals with higher proportions of black patients (RR, 1.2; 95% CI, 1.0-1.3; P=0.01) and lower in larger hospitals (RR, 0.54; 95% CI, 0.45-0.66; P<0.0001). Case-mix adjusted IHCA event rates varied considerably across hospitals. Several hospital factors associated with higher IHCA event rates were consistent with factors often linked with lower hospital quality of care.

  8. Performance of the score systems Acute Physiology and Chronic Health Evaluation II and III at an interdisciplinary intensive care unit, after customization

    PubMed Central

    Markgraf, Rainer; Deutschinoff, Gerd; Pientka, Ludger; Scholten, Theo; Lorenz, Cristoph

    2001-01-01

    Background: Mortality predictions calculated using scoring scales are often not accurate in populations other than those in which the scales were developed because of differences in case-mix. The present study investigates the effect of first-level customization, using a logistic regression technique, on discrimination and calibration of the Acute Physiology and Chronic Health Evaluation (APACHE) II and III scales. Method: Probabilities of hospital death for patients were estimated by applying APACHE II and III and comparing these with observed outcomes. Using the split sample technique, a customized model to predict outcome was developed by logistic regression. The overall goodness-of-fit of the original and the customized models was assessed. Results: Of 3383 consecutive intensive care unit (ICU) admissions over 3 years, 2795 patients could be analyzed, and were split randomly into development and validation samples. The discriminative powers of APACHE II and III were unchanged by customization (areas under the receiver operating characteristic [ROC] curve 0.82 and 0.85, respectively). Hosmer-Lemeshow goodness-of-fit tests showed good calibration for APACHE II, but insufficient calibration for APACHE III. Customization improved calibration for both models, with a good fit for APACHE III as well. However, fit was different for various subgroups. Conclusions: The overall goodness-of-fit of APACHE III mortality prediction was improved significantly by customization, but uniformity of fit in different subgroups was not achieved. Therefore, application of the customized model provides no advantage, because differences in case-mix still limit comparisons of quality of care. PMID:11178223

  9. The Relationship Between Oxygen Reserve Index and Arterial Partial Pressure of Oxygen During Surgery

    PubMed Central

    Dorotta, Ihab L.; Wells, Briana; Juma, David; Applegate, Patricia M.

    2016-01-01

    BACKGROUND: The use of intraoperative pulse oximetry (Spo2) enhances hypoxia detection and is associated with fewer perioperative hypoxic events. However, Spo2 may be reported as 98% when arterial partial pressure of oxygen (Pao2) is as low as 70 mm Hg. Therefore, Spo2 may not provide advance warning of falling arterial oxygenation until Pao2 approaches this level. Multiwave pulse co-oximetry can provide a calculated oxygen reserve index (ORI) that may add to information from pulse oximetry when Spo2 is >98%. This study evaluates the ORI to Pao2 relationship during surgery. METHODS: We studied patients undergoing scheduled surgery in which arterial catheterization and intraoperative arterial blood gas analysis were planned. Data from multiple pulse co-oximetry sensors on each patient were continuously collected and stored on a research computer. Regression analysis was used to compare ORI with Pao2 obtained from each arterial blood gas measurement and changes in ORI with changes in Pao2 from sequential measurements. Linear mixed-effects regression models for repeated measures were then used to account for within-subject correlation across the repeatedly measured Pao2 and ORI and for the unequal time intervals of Pao2 determination over elapsed surgical time. Regression plots were inspected for ORI values corresponding to Pao2 of 100 and 150 mm Hg. ORI and Pao2 were compared using mixed-effects models with a subject-specific random intercept. RESULTS: ORI values and Pao2 measurements were obtained from intraoperative data collected from 106 patients. Regression analysis showed that the ORI to Pao2 relationship was stronger for Pao2 to 240 mm Hg (r2 = 0.536) than for Pao2 over 240 mm Hg (r2 = 0.0016). Measured Pao2 was ≥100 mm Hg for all ORI over 0.24. Measured Pao2 was ≥150 mm Hg in 96.6% of samples when ORI was over 0.55. A random intercept variance component linear mixed-effects model for repeated measures indicated that Pao2 was significantly related to ORI (β[95% confidence interval] = 0.002 [0.0019–0.0022]; P < 0.0001). A similar analysis indicated a significant relationship between change in Pao2 and change in ORI (β [95% confidence interval] = 0.0044 [0.0040–0.0048]; P < 0.0001). CONCLUSIONS: These findings suggest that ORI >0.24 can distinguish Pao2 ≥100 mm Hg when Spo2 is over 98%. Similarly, ORI > 0.55 appears to be a threshold to distinguish Pao2 ≥150 mm Hg. The usefulness of these values should be evaluated prospectively. Decreases in ORI to near 0.24 may provide advance indication of falling Pao2 approaching 100 mm Hg when Spo2 is >98%. The clinical utility of interventions based on continuous ORI monitoring should be studied prospectively. PMID:27007078

  10. The Relationship Between Oxygen Reserve Index and Arterial Partial Pressure of Oxygen During Surgery.

    PubMed

    Applegate, Richard L; Dorotta, Ihab L; Wells, Briana; Juma, David; Applegate, Patricia M

    2016-09-01

    The use of intraoperative pulse oximetry (SpO2) enhances hypoxia detection and is associated with fewer perioperative hypoxic events. However, SpO2 may be reported as 98% when arterial partial pressure of oxygen (PaO2) is as low as 70 mm Hg. Therefore, SpO2 may not provide advance warning of falling arterial oxygenation until PaO2 approaches this level. Multiwave pulse co-oximetry can provide a calculated oxygen reserve index (ORI) that may add to information from pulse oximetry when SpO2 is >98%. This study evaluates the ORI to PaO2 relationship during surgery. We studied patients undergoing scheduled surgery in which arterial catheterization and intraoperative arterial blood gas analysis were planned. Data from multiple pulse co-oximetry sensors on each patient were continuously collected and stored on a research computer. Regression analysis was used to compare ORI with PaO2 obtained from each arterial blood gas measurement and changes in ORI with changes in PaO2 from sequential measurements. Linear mixed-effects regression models for repeated measures were then used to account for within-subject correlation across the repeatedly measured PaO2 and ORI and for the unequal time intervals of PaO2 determination over elapsed surgical time. Regression plots were inspected for ORI values corresponding to PaO2 of 100 and 150 mm Hg. ORI and PaO2 were compared using mixed-effects models with a subject-specific random intercept. ORI values and PaO2 measurements were obtained from intraoperative data collected from 106 patients. Regression analysis showed that the ORI to PaO2 relationship was stronger for PaO2 to 240 mm Hg (r = 0.536) than for PaO2 over 240 mm Hg (r = 0.0016). Measured PaO2 was ≥100 mm Hg for all ORI over 0.24. Measured PaO2 was ≥150 mm Hg in 96.6% of samples when ORI was over 0.55. A random intercept variance component linear mixed-effects model for repeated measures indicated that PaO2 was significantly related to ORI (β[95% confidence interval] = 0.002 [0.0019-0.0022]; P < 0.0001). A similar analysis indicated a significant relationship between change in PaO2 and change in ORI (β [95% confidence interval] = 0.0044 [0.0040-0.0048]; P < 0.0001). These findings suggest that ORI >0.24 can distinguish PaO2 ≥100 mm Hg when SpO2 is over 98%. Similarly, ORI > 0.55 appears to be a threshold to distinguish PaO2 ≥150 mm Hg. The usefulness of these values should be evaluated prospectively. Decreases in ORI to near 0.24 may provide advance indication of falling PaO2 approaching 100 mm Hg when SpO2 is >98%. The clinical utility of interventions based on continuous ORI monitoring should be studied prospectively.

  11. Effects of photochemical oxidation on the mixing state and light absorption of black carbon in the urban atmosphere of China

    NASA Astrophysics Data System (ADS)

    Wang, Qiyuan; Huang, Rujin; Zhao, Zhuzi; Cao, Junji; Ni, Haiyan; Tie, Xuexi; Zhu, Chongshu; Shen, Zhenxing; Wang, Meng; Dai, Wenting; Han, Yongming; Zhang, Ningning; Prévôt, André S. H.

    2017-04-01

    The relationship between the refractory black carbon (rBC) aerosol mixing state and the atmospheric oxidation capacity was investigated to assess the possible influence of oxidants on the particles’ light absorption effects at two large cities in China. The number fraction of thickly-coated rBC particles (F rBC) was positively correlated with a measure of the oxidant concentrations (OX = O3 + NO2), indicating an enhancement of coated rBC particles under more oxidizing conditions. The slope of a linear regression of F rBC versus OX was 0.58% ppb-1 for Beijing and 0.84% ppb-1 for Xi’an, and these relationships provide some insights into the evolution of rBC mixing state in relation to atmospheric oxidation processes. The mass absorption cross-section of rBC (MACrBC) increased with OX during the daytime at Xi’an, at a rate of 0.26 m2 g-1 ppb-1, suggesting that more oxidizing conditions lead to internal mixing that enhances the light-absorbing capacity of rBC particles. Understanding the dependence of the increasing rates of F rBC and MACrBC as a function of OX may lead to improvements of climate models that deal with the warming effects, but more studies in different cities and seasons are needed to gauge the broader implications of these findings.

  12. Self-rated health: small area large area comparisons amongst older adults at the state, district and sub-district level in India.

    PubMed

    Hirve, Siddhivinayak; Vounatsou, Penelope; Juvekar, Sanjay; Blomstedt, Yulia; Wall, Stig; Chatterji, Somnath; Ng, Nawi

    2014-03-01

    We compared prevalence estimates of self-rated health (SRH) derived indirectly using four different small area estimation methods for the Vadu (small) area from the national Study on Global AGEing (SAGE) survey with estimates derived directly from the Vadu SAGE survey. The indirect synthetic estimate for Vadu was 24% whereas the model based estimates were 45.6% and 45.7% with smaller prediction errors and comparable to the direct survey estimate of 50%. The model based techniques were better suited to estimate the prevalence of SRH than the indirect synthetic method. We conclude that a simplified mixed effects regression model can produce valid small area estimates of SRH. © 2013 Published by Elsevier Ltd.

  13. BDNF Val66Met predicts cognitive decline in the Wisconsin Registry for Alzheimer's Prevention

    PubMed Central

    Boots, Elizabeth A.; Schultz, Stephanie A.; Clark, Lindsay R.; Racine, Annie M.; Darst, Burcu F.; Koscik, Rebecca L.; Carlsson, Cynthia M.; Gallagher, Catherine L.; Hogan, Kirk J.; Bendlin, Barbara B.; Asthana, Sanjay; Sager, Mark A.; Hermann, Bruce P.; Christian, Bradley T.; Dubal, Dena B.; Engelman, Corinne D.; Johnson, Sterling C.

    2017-01-01

    Objective: To examine the influence of the brain-derived neurotrophic factor (BDNF) Val66Met polymorphism on longitudinal cognitive trajectories in a large, cognitively healthy cohort enriched for Alzheimer disease (AD) risk and to understand whether β-amyloid (Aβ) burden plays a moderating role in this relationship. Methods: One thousand twenty-three adults (baseline age 54.94 ± 6.41 years) enrolled in the Wisconsin Registry for Alzheimer's Prevention underwent BDNF genotyping and cognitive assessment at up to 5 time points (average follow-up 6.92 ± 3.22 years). A subset (n = 140) underwent 11C-Pittsburgh compound B (PiB) scanning. Covariate-adjusted mixed-effects regression models were used to elucidate the effect of BDNF on cognitive trajectories in 4 cognitive domains, including verbal learning and memory, speed and flexibility, working memory, and immediate memory. Secondary mixed-effects regression models were conducted to examine whether Aβ burden, indexed by composite PiB load, modified any observed BDNF-related cognitive trajectories. Results: Compared to BDNF Val/Val homozygotes, Met carriers showed steeper decline in verbal learning and memory (p = 0.002) and speed and flexibility (p = 0.017). In addition, Aβ burden moderated the relationship between BDNF and verbal learning and memory such that Met carriers with greater Aβ burden showed even steeper cognitive decline (p = 0.033). Conclusions: In a middle-aged cohort with AD risk, carriage of the BDNF Met allele was associated with steeper decline in episodic memory and executive function. This decline was exacerbated by greater Aβ burden. These results suggest that the BDNF Val66Met polymorphism may play an important role in cognitive decline and could be considered as a target for novel AD therapeutics. PMID:28468845

  14. Establishing a composite endpoint for measuring the effectiveness of geriatric interventions based on older persons' and informal caregivers' preference weights: a vignette study.

    PubMed

    Hofman, Cynthia S; Makai, Peter; Boter, Han; Buurman, Bianca M; de Craen, Anton J M; Olde Rikkert, Marcel G M; Donders, Rogier A R T; Melis, René J F

    2014-04-18

    The Older Persons and Informal Caregivers Survey Minimal Dataset's (TOPICS-MDS) questionnaire which measures relevant outcomes for elderly people was successfully incorporated into over 60 research projects of the Dutch National Care for the Elderly Programme. A composite endpoint (CEP) for this instrument would be helpful to compare effectiveness of the various intervention projects. Therefore, our aim is to establish a CEP for the TOPICS-MDS questionnaire, based on the preferences of elderly persons and informal caregivers. A vignette study was conducted with 200 persons (124 elderly and 76 informal caregivers) as raters. The vignettes described eight TOPICS-MDS outcomes of older persons (morbidity, functional limitations, emotional well-being, pain experience, cognitive functioning, social functioning, self-perceived health and self-perceived quality of life) and the raters assessed the general well-being (GWB) of these vignette cases on a numeric rating scale (0-10). Mixed linear regression analyses were used to derive the preference weights of the TOPICS-MDS outcomes (dependent variable: GWB scores; fixed factors: the eight outcomes; unstandardized coefficients: preference weights). The mixed regression model that combined the eight outcomes showed that the weights varied from 0.01 for social functioning to 0.16 for self-perceived health. A model that included "informal caregiver" showed that the interactions between this variable and each of the eight outcomes were not significant (p > 0.05). A preference-weighted CEP for TOPICS-MDS questionnaire was established based on the preferences of older persons and informal caregivers. With this CEP optimal comparing the effectiveness of interventions in older persons can be realized.

  15. BDNF Val66Met predicts cognitive decline in the Wisconsin Registry for Alzheimer's Prevention.

    PubMed

    Boots, Elizabeth A; Schultz, Stephanie A; Clark, Lindsay R; Racine, Annie M; Darst, Burcu F; Koscik, Rebecca L; Carlsson, Cynthia M; Gallagher, Catherine L; Hogan, Kirk J; Bendlin, Barbara B; Asthana, Sanjay; Sager, Mark A; Hermann, Bruce P; Christian, Bradley T; Dubal, Dena B; Engelman, Corinne D; Johnson, Sterling C; Okonkwo, Ozioma C

    2017-05-30

    To examine the influence of the brain-derived neurotrophic factor ( BDNF ) Val66Met polymorphism on longitudinal cognitive trajectories in a large, cognitively healthy cohort enriched for Alzheimer disease (AD) risk and to understand whether β-amyloid (Aβ) burden plays a moderating role in this relationship. One thousand twenty-three adults (baseline age 54.94 ± 6.41 years) enrolled in the Wisconsin Registry for Alzheimer's Prevention underwent BDNF genotyping and cognitive assessment at up to 5 time points (average follow-up 6.92 ± 3.22 years). A subset (n = 140) underwent 11 C-Pittsburgh compound B (PiB) scanning. Covariate-adjusted mixed-effects regression models were used to elucidate the effect of BDNF on cognitive trajectories in 4 cognitive domains, including verbal learning and memory, speed and flexibility, working memory, and immediate memory. Secondary mixed-effects regression models were conducted to examine whether Aβ burden, indexed by composite PiB load, modified any observed BDNF -related cognitive trajectories. Compared to BDNF Val/Val homozygotes, Met carriers showed steeper decline in verbal learning and memory ( p = 0.002) and speed and flexibility ( p = 0.017). In addition, Aβ burden moderated the relationship between BDNF and verbal learning and memory such that Met carriers with greater Aβ burden showed even steeper cognitive decline ( p = 0.033). In a middle-aged cohort with AD risk, carriage of the BDNF Met allele was associated with steeper decline in episodic memory and executive function. This decline was exacerbated by greater Aβ burden. These results suggest that the BDNF Val66Met polymorphism may play an important role in cognitive decline and could be considered as a target for novel AD therapeutics. © 2017 American Academy of Neurology.

  16. Evaluating differential effects using regression interactions and regression mixture models

    PubMed Central

    Van Horn, M. Lee; Jaki, Thomas; Masyn, Katherine; Howe, George; Feaster, Daniel J.; Lamont, Andrea E.; George, Melissa R. W.; Kim, Minjung

    2015-01-01

    Research increasingly emphasizes understanding differential effects. This paper focuses on understanding regression mixture models, a relatively new statistical methods for assessing differential effects by comparing results to using an interactive term in linear regression. The research questions which each model answers, their formulation, and their assumptions are compared using Monte Carlo simulations and real data analysis. The capabilities of regression mixture models are described and specific issues to be addressed when conducting regression mixtures are proposed. The paper aims to clarify the role that regression mixtures can take in the estimation of differential effects and increase awareness of the benefits and potential pitfalls of this approach. Regression mixture models are shown to be a potentially effective exploratory method for finding differential effects when these effects can be defined by a small number of classes of respondents who share a typical relationship between a predictor and an outcome. It is also shown that the comparison between regression mixture models and interactions becomes substantially more complex as the number of classes increases. It is argued that regression interactions are well suited for direct tests of specific hypotheses about differential effects and regression mixtures provide a useful approach for exploring effect heterogeneity given adequate samples and study design. PMID:26556903

  17. Systematic Review and Meta-Analysis: Dose-Response Relationship of Selective Serotonin Reuptake Inhibitors in Major Depressive Disorder.

    PubMed

    Jakubovski, Ewgeni; Varigonda, Anjali L; Freemantle, Nicholas; Taylor, Matthew J; Bloch, Michael H

    2016-02-01

    Previous studies suggested that the treatment response to selective serotonin reuptake inhibitors (SSRIs) in major depressive disorder follows a flat response curve within the therapeutic dose range. The present study was designed to clarify the relationship between dosage and treatment response in major depressive disorder. The authors searched PubMed for randomized placebo-controlled trials examining the efficacy of SSRIs for treating adults with major depressive disorder. Trials were also required to assess improvement in depression severity at multiple time points. Additional data were collected on treatment response and all-cause and side effect-related discontinuation. All medication doses were transformed into imipramine-equivalent doses. The longitudinal data were analyzed with a mixed-regression model. Endpoint and tolerability analyses were analyzed using meta-regression and stratified subgroup analysis by predefined SSRI dose categories in order to assess the effect of SSRI dosing on the efficacy and tolerability of SSRIs for major depressive disorder. Forty studies involving 10,039 participants were included. Longitudinal modeling (dose-by-time interaction=0.0007, 95% CI=0.0001-0.0013) and endpoint analysis (meta-regression: β=0.00053, 95% CI=0.00018-0.00088, z=2.98) demonstrated a small but statistically significant positive association between SSRI dose and efficacy. Higher doses of SSRIs were associated with an increased likelihood of dropouts due to side effects (meta-regression: β=0.00207, 95% CI=0.00071-0.00342, z=2.98) and decreased likelihood of all-cause dropout (meta-regression: β=-0.00093, 95% CI=-0.00165 to -0.00021, z=-2.54). Higher doses of SSRIs appear slightly more effective in major depressive disorder. This benefit appears to plateau at around 250 mg of imipramine equivalents (50 mg of fluoxetine). The slightly increased benefits of SSRIs at higher doses are somewhat offset by decreased tolerability at high doses.

  18. A comparison of methods for the analysis of binomial clustered outcomes in behavioral research.

    PubMed

    Ferrari, Alberto; Comelli, Mario

    2016-12-01

    In behavioral research, data consisting of a per-subject proportion of "successes" and "failures" over a finite number of trials often arise. This clustered binary data are usually non-normally distributed, which can distort inference if the usual general linear model is applied and sample size is small. A number of more advanced methods is available, but they are often technically challenging and a comparative assessment of their performances in behavioral setups has not been performed. We studied the performances of some methods applicable to the analysis of proportions; namely linear regression, Poisson regression, beta-binomial regression and Generalized Linear Mixed Models (GLMMs). We report on a simulation study evaluating power and Type I error rate of these models in hypothetical scenarios met by behavioral researchers; plus, we describe results from the application of these methods on data from real experiments. Our results show that, while GLMMs are powerful instruments for the analysis of clustered binary outcomes, beta-binomial regression can outperform them in a range of scenarios. Linear regression gave results consistent with the nominal level of significance, but was overall less powerful. Poisson regression, instead, mostly led to anticonservative inference. GLMMs and beta-binomial regression are generally more powerful than linear regression; yet linear regression is robust to model misspecification in some conditions, whereas Poisson regression suffers heavily from violations of the assumptions when used to model proportion data. We conclude providing directions to behavioral scientists dealing with clustered binary data and small sample sizes. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. A Two-Step Approach for Analysis of Nonignorable Missing Outcomes in Longitudinal Regression: an Application to Upstate KIDS Study.

    PubMed

    Liu, Danping; Yeung, Edwina H; McLain, Alexander C; Xie, Yunlong; Buck Louis, Germaine M; Sundaram, Rajeshwari

    2017-09-01

    Imperfect follow-up in longitudinal studies commonly leads to missing outcome data that can potentially bias the inference when the missingness is nonignorable; that is, the propensity of missingness depends on missing values in the data. In the Upstate KIDS Study, we seek to determine if the missingness of child development outcomes is nonignorable, and how a simple model assuming ignorable missingness would compare with more complicated models for a nonignorable mechanism. To correct for nonignorable missingness, the shared random effects model (SREM) jointly models the outcome and the missing mechanism. However, the computational complexity and lack of software packages has limited its practical applications. This paper proposes a novel two-step approach to handle nonignorable missing outcomes in generalized linear mixed models. We first analyse the missing mechanism with a generalized linear mixed model and predict values of the random effects; then, the outcome model is fitted adjusting for the predicted random effects to account for heterogeneity in the missingness propensity. Extensive simulation studies suggest that the proposed method is a reliable approximation to SREM, with a much faster computation. The nonignorability of missing data in the Upstate KIDS Study is estimated to be mild to moderate, and the analyses using the two-step approach or SREM are similar to the model assuming ignorable missingness. The two-step approach is a computationally straightforward method that can be conducted as sensitivity analyses in longitudinal studies to examine violations to the ignorable missingness assumption and the implications relative to health outcomes. © 2017 John Wiley & Sons Ltd.

  20. Inverse sampling regression for pooled data.

    PubMed

    Montesinos-López, Osval A; Montesinos-López, Abelardo; Eskridge, Kent; Crossa, José

    2017-06-01

    Because pools are tested instead of individuals in group testing, this technique is helpful for estimating prevalence in a population or for classifying a large number of individuals into two groups at a low cost. For this reason, group testing is a well-known means of saving costs and producing precise estimates. In this paper, we developed a mixed-effect group testing regression that is useful when the data-collecting process is performed using inverse sampling. This model allows including covariate information at the individual level to incorporate heterogeneity among individuals and identify which covariates are associated with positive individuals. We present an approach to fit this model using maximum likelihood and we performed a simulation study to evaluate the quality of the estimates. Based on the simulation study, we found that the proposed regression method for inverse sampling with group testing produces parameter estimates with low bias when the pre-specified number of positive pools (r) to stop the sampling process is at least 10 and the number of clusters in the sample is also at least 10. We performed an application with real data and we provide an NLMIXED code that researchers can use to implement this method.

  1. No increase in small-solute transport in peritoneal dialysis patients treated without hypertonic glucose for fifty-four months.

    PubMed

    Pagniez, Dominique; Duhamel, Alain; Boulanger, Eric; Lessore de Sainte Foy, Celia; Beuscart, Jean-Baptiste

    2017-08-31

    Glucose is widely used as an osmotic agent in peritoneal dialysis (PD), but exerts untoward effects on the peritoneum. The potential protective effect of a reduced exposure to hypertonic glucose has never been investigated. The cohort of PD patients attending our center which tackled the challenge of a restricted use of hypertonic glucose solutions has been prospectively followed since 1992. Small-solute transport was assessed using an equivalent of the glucose peritoneal equilibration test after 6 months, and then every year. Study was stopped on July 1st, 2008, before use of biocompatible solutions. Repeated measures in patients treated with PD for 54 months were analyzed by using (1) the slopes of the linear regression for D 4 /D 0 ratios over time computed for each individual, and (2) a linear mixed model. In the study period, 44 patients were treated for a total of 2376 months, 2058 without hypertonic glucose. There was one episode of peritoneal infection every 18 patient-months. The mean of slopes of the linear regression for D 4 /D 0 ratios was found to be significantly positive (Student's test, p < .001) and the results of the mixed model reflected a similar significant increase for D 4 /D 0 ratios over time. These results reflected a significant decrease of small-solute transport. In this large series, minimizing the use of hypertonic glucose solutions was associated in patients on long term PD with an overall decrease of small-solute transport within 54 months, despite a high rate of peritoneal infection.

  2. Extending existing structural identifiability analysis methods to mixed-effects models.

    PubMed

    Janzén, David L I; Jirstrand, Mats; Chappell, Michael J; Evans, Neil D

    2018-01-01

    The concept of structural identifiability for state-space models is expanded to cover mixed-effects state-space models. Two methods applicable for the analytical study of the structural identifiability of mixed-effects models are presented. The two methods are based on previously established techniques for non-mixed-effects models; namely the Taylor series expansion and the input-output form approach. By generating an exhaustive summary, and by assuming an infinite number of subjects, functions of random variables can be derived which in turn determine the distribution of the system's observation function(s). By considering the uniqueness of the analytical statistical moments of the derived functions of the random variables, the structural identifiability of the corresponding mixed-effects model can be determined. The two methods are applied to a set of examples of mixed-effects models to illustrate how they work in practice. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Solid precipitation measurement intercomparison in Bismarck, North Dakota, from 1988 through 1997

    USGS Publications Warehouse

    Ryberg, Karen R.; Emerson, Douglas G.; Macek-Rowland, Kathleen M.

    2009-01-01

    A solid precipitation measurement intercomparison was recommended by the World Meteorological Organization (WMO) and was initiated after approval by the ninth session of the Commission for Instruments and Methods of Observation. The goal of the intercomparison was to assess national methods of measuring solid precipitation against methods whose accuracy and reliability were known. A field study was started in Bismarck, N. Dak., during the 1988-89 winter as part of the intercomparison. The last official field season of the WMO intercomparison was 1992-93; however, the Bismarck site continued to operate through the winter of 1996-97. Precipitation events at Bismarck were categorized as snow, mixed, or rain on the basis of descriptive notes recorded as part of the solid precipitation intercomparison. The rain events were not further analyzed in this study. Catch ratios (CRs) - the ratio of the precipitation catch at each gage to the true precipitation measurement (the corrected double fence intercomparison reference) - were calculated. Then, regression analysis was used to develop equations that model the snow and mixed precipitation CRs at each gage as functions of wind speed and temperature. Wind speed at the gages, functions of temperature, and upper air conditions (wind speed and air temperature at 700 millibars pressure) were used as possible explanatory variables in the multiple regression analysis done for this study. The CRs were modeled by using multiple regression analysis for the Tretyakov gage, national shielded gage, national unshielded gage, AeroChem gage, national gage with double fence, and national gage with Wyoming windshield. As in earlier studies by the WMO, wind speed and air temperature were found to influence the CR of the Tretyakov gage. However, in this study, the temperature variable represented the average upper air temperature over the duration of the event. The WMO did not use upper air conditions in its analysis. The national shielded and unshielded gages where found to be influenced by functions of wind speed only, as in other studies, but the upper air wind speed was used as an explanatory variable in this study. The AeroChem gage was not used in the WMO intercomparison study for 1987-93. The AeroChem gage had a highly varied CR at Bismarck, and a number of variables related to wind speed and temperature were used in the model for the CR. Despite extensive efforts to find a model for the national gage with double fence, no statistically significant regression model was found at the 0.05 level of statistical significance. The national gage with Wyoming windshield had a CR modeled by temperature and wind speed variables, and the regression relation had the highest coefficient of determination (R2 = 0.572) and adjusted coefficient of multiple determination (R2a = 0.476) of all of the models identified for any gage. Three of the gage CRs evaluated could be compared with those in the WMO intercomparison study for 1987-93. The WMO intercomparison had the advantage of a much larger dataset than this study. However, the data in this study represented a longer time period. Snow precipitation catch is highly varied depending on the equipment used and the weather conditions. Much of the variation is not accounted for in the WMO equations or in the equations developed in this study, particularly for unshielded gages. Extensive attempts at regression analysis were made with the mixed precipitation data, but it was concluded that the sample sizes were not large enough to model the CRs. However, the data could be used to test the WMO intercomparison equations. The mixed precipitation equations for the Tretyakov and national shielded gages are similar to those for snow in that they are more likely to underestimate precipitation when observed amounts were small and overestimate precipitation when observed amounts were relatively large. Mixed precipitation is underestimated by the WMO adjustment and t

  4. Comparison of linear and non-linear models for predicting energy expenditure from raw accelerometer data.

    PubMed

    Montoye, Alexander H K; Begum, Munni; Henning, Zachary; Pfeiffer, Karin A

    2017-02-01

    This study had three purposes, all related to evaluating energy expenditure (EE) prediction accuracy from body-worn accelerometers: (1) compare linear regression to linear mixed models, (2) compare linear models to artificial neural network models, and (3) compare accuracy of accelerometers placed on the hip, thigh, and wrists. Forty individuals performed 13 activities in a 90 min semi-structured, laboratory-based protocol. Participants wore accelerometers on the right hip, right thigh, and both wrists and a portable metabolic analyzer (EE criterion). Four EE prediction models were developed for each accelerometer: linear regression, linear mixed, and two ANN models. EE prediction accuracy was assessed using correlations, root mean square error (RMSE), and bias and was compared across models and accelerometers using repeated-measures analysis of variance. For all accelerometer placements, there were no significant differences for correlations or RMSE between linear regression and linear mixed models (correlations: r  =  0.71-0.88, RMSE: 1.11-1.61 METs; p  >  0.05). For the thigh-worn accelerometer, there were no differences in correlations or RMSE between linear and ANN models (ANN-correlations: r  =  0.89, RMSE: 1.07-1.08 METs. Linear models-correlations: r  =  0.88, RMSE: 1.10-1.11 METs; p  >  0.05). Conversely, one ANN had higher correlations and lower RMSE than both linear models for the hip (ANN-correlation: r  =  0.88, RMSE: 1.12 METs. Linear models-correlations: r  =  0.86, RMSE: 1.18-1.19 METs; p  <  0.05), and both ANNs had higher correlations and lower RMSE than both linear models for the wrist-worn accelerometers (ANN-correlations: r  =  0.82-0.84, RMSE: 1.26-1.32 METs. Linear models-correlations: r  =  0.71-0.73, RMSE: 1.55-1.61 METs; p  <  0.01). For studies using wrist-worn accelerometers, machine learning models offer a significant improvement in EE prediction accuracy over linear models. Conversely, linear models showed similar EE prediction accuracy to machine learning models for hip- and thigh-worn accelerometers and may be viable alternative modeling techniques for EE prediction for hip- or thigh-worn accelerometers.

  5. Multi-disease analysis of maternal antibody decay using non-linear mixed models accounting for censoring.

    PubMed

    Goeyvaerts, Nele; Leuridan, Elke; Faes, Christel; Van Damme, Pierre; Hens, Niel

    2015-09-10

    Biomedical studies often generate repeated measures of multiple outcomes on a set of subjects. It may be of interest to develop a biologically intuitive model for the joint evolution of these outcomes while assessing inter-subject heterogeneity. Even though it is common for biological processes to entail non-linear relationships, examples of multivariate non-linear mixed models (MNMMs) are still fairly rare. We contribute to this area by jointly analyzing the maternal antibody decay for measles, mumps, rubella, and varicella, allowing for a different non-linear decay model for each infectious disease. We present a general modeling framework to analyze multivariate non-linear longitudinal profiles subject to censoring, by combining multivariate random effects, non-linear growth and Tobit regression. We explore the hypothesis of a common infant-specific mechanism underlying maternal immunity using a pairwise correlated random-effects approach and evaluating different correlation matrix structures. The implied marginal correlation between maternal antibody levels is estimated using simulations. The mean duration of passive immunity was less than 4 months for all diseases with substantial heterogeneity between infants. The maternal antibody levels against rubella and varicella were found to be positively correlated, while little to no correlation could be inferred for the other disease pairs. For some pairs, computational issues occurred with increasing correlation matrix complexity, which underlines the importance of further developing estimation methods for MNMMs. Copyright © 2015 John Wiley & Sons, Ltd.

  6. Polythermal investigation of viscosity of solution of metal carboxylates in VIK-grade mixed carboxylic acids: Yttrium and gadolinium carboxylates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mezhov, E.A.; Samatov, A.V.; Troyanovskii, L.V.

    Kinematic viscosities have been measured for solutions of yttrium and gadolinium carboxylates in grade VIK mixed carboxylic acids (MCA). It has been established that the optimal fluidity of these metal carboxylate solutions for application to articles is reached at 333 K. A regression model has been developed to describe the concentration and temperature dependences of the viscosity of yttrium- and gadolinium-containing MCA solutions. 2 refs., 3 tabs.

  7. Introduction to the use of regression models in epidemiology.

    PubMed

    Bender, Ralf

    2009-01-01

    Regression modeling is one of the most important statistical techniques used in analytical epidemiology. By means of regression models the effect of one or several explanatory variables (e.g., exposures, subject characteristics, risk factors) on a response variable such as mortality or cancer can be investigated. From multiple regression models, adjusted effect estimates can be obtained that take the effect of potential confounders into account. Regression methods can be applied in all epidemiologic study designs so that they represent a universal tool for data analysis in epidemiology. Different kinds of regression models have been developed in dependence on the measurement scale of the response variable and the study design. The most important methods are linear regression for continuous outcomes, logistic regression for binary outcomes, Cox regression for time-to-event data, and Poisson regression for frequencies and rates. This chapter provides a nontechnical introduction to these regression models with illustrating examples from cancer research.

  8. A Unified Analysis of Structured Sonar-terrain Data using Bayesian Functional Mixed Models.

    PubMed

    Zhu, Hongxiao; Caspers, Philip; Morris, Jeffrey S; Wu, Xiaowei; Müller, Rolf

    2018-01-01

    Sonar emits pulses of sound and uses the reflected echoes to gain information about target objects. It offers a low cost, complementary sensing modality for small robotic platforms. While existing analytical approaches often assume independence across echoes, real sonar data can have more complicated structures due to device setup or experimental design. In this paper, we consider sonar echo data collected from multiple terrain substrates with a dual-channel sonar head. Our goals are to identify the differential sonar responses to terrains and study the effectiveness of this dual-channel design in discriminating targets. We describe a unified analytical framework that achieves these goals rigorously, simultaneously, and automatically. The analysis was done by treating the echo envelope signals as functional responses and the terrain/channel information as covariates in a functional regression setting. We adopt functional mixed models that facilitate the estimation of terrain and channel effects while capturing the complex hierarchical structure in data. This unified analytical framework incorporates both Gaussian models and robust models. We fit the models using a full Bayesian approach, which enables us to perform multiple inferential tasks under the same modeling framework, including selecting models, estimating the effects of interest, identifying significant local regions, discriminating terrain types, and describing the discriminatory power of local regions. Our analysis of the sonar-terrain data identifies time regions that reflect differential sonar responses to terrains. The discriminant analysis suggests that a multi- or dual-channel design achieves target identification performance comparable with or better than a single-channel design.

  9. A Unified Analysis of Structured Sonar-terrain Data using Bayesian Functional Mixed Models

    PubMed Central

    Zhu, Hongxiao; Caspers, Philip; Morris, Jeffrey S.; Wu, Xiaowei; Müller, Rolf

    2017-01-01

    Sonar emits pulses of sound and uses the reflected echoes to gain information about target objects. It offers a low cost, complementary sensing modality for small robotic platforms. While existing analytical approaches often assume independence across echoes, real sonar data can have more complicated structures due to device setup or experimental design. In this paper, we consider sonar echo data collected from multiple terrain substrates with a dual-channel sonar head. Our goals are to identify the differential sonar responses to terrains and study the effectiveness of this dual-channel design in discriminating targets. We describe a unified analytical framework that achieves these goals rigorously, simultaneously, and automatically. The analysis was done by treating the echo envelope signals as functional responses and the terrain/channel information as covariates in a functional regression setting. We adopt functional mixed models that facilitate the estimation of terrain and channel effects while capturing the complex hierarchical structure in data. This unified analytical framework incorporates both Gaussian models and robust models. We fit the models using a full Bayesian approach, which enables us to perform multiple inferential tasks under the same modeling framework, including selecting models, estimating the effects of interest, identifying significant local regions, discriminating terrain types, and describing the discriminatory power of local regions. Our analysis of the sonar-terrain data identifies time regions that reflect differential sonar responses to terrains. The discriminant analysis suggests that a multi- or dual-channel design achieves target identification performance comparable with or better than a single-channel design. PMID:29749977

  10. Evaluating Differential Effects Using Regression Interactions and Regression Mixture Models

    ERIC Educational Resources Information Center

    Van Horn, M. Lee; Jaki, Thomas; Masyn, Katherine; Howe, George; Feaster, Daniel J.; Lamont, Andrea E.; George, Melissa R. W.; Kim, Minjung

    2015-01-01

    Research increasingly emphasizes understanding differential effects. This article focuses on understanding regression mixture models, which are relatively new statistical methods for assessing differential effects by comparing results to using an interactive term in linear regression. The research questions which each model answers, their…

  11. Predicting Upscaled Behavior of Aqueous Reactants in Heterogeneous Porous Media

    NASA Astrophysics Data System (ADS)

    Wright, E. E.; Hansen, S. K.; Bolster, D.; Richter, D. H.; Vesselinov, V. V.

    2017-12-01

    When modeling reactive transport, reaction rates are often overestimated due to the improper assumption of perfect mixing at the support scale of the transport model. In reality, fronts tend to form between participants in thermodynamically favorable reactions, leading to segregation of reactants into islands or fingers. When such a configuration arises, reactions are limited to the interface between the reactive solutes. Closure methods for estimating control-volume-effective reaction rates in terms of quantities defined at the control volume scale do not presently exist, but their development is crucial for effective field-scale modeling. We attack this problem through a combination of analytical and numerical means. Specifically, we numerically study reactive transport through an ensemble of realizations of two-dimensional heterogeneous porous media. We then employ regression analysis to calibrate an analytically-derived relationship between reaction rate and various dimensionless quantities representing conductivity-field heterogeneity and the respective strengths of diffusion, reaction and advection.

  12. Bayesian inference for two-part mixed-effects model using skew distributions, with application to longitudinal semicontinuous alcohol data.

    PubMed

    Xing, Dongyuan; Huang, Yangxin; Chen, Henian; Zhu, Yiliang; Dagne, Getachew A; Baldwin, Julie

    2017-08-01

    Semicontinuous data featured with an excessive proportion of zeros and right-skewed continuous positive values arise frequently in practice. One example would be the substance abuse/dependence symptoms data for which a substantial proportion of subjects investigated may report zero. Two-part mixed-effects models have been developed to analyze repeated measures of semicontinuous data from longitudinal studies. In this paper, we propose a flexible two-part mixed-effects model with skew distributions for correlated semicontinuous alcohol data under the framework of a Bayesian approach. The proposed model specification consists of two mixed-effects models linked by the correlated random effects: (i) a model on the occurrence of positive values using a generalized logistic mixed-effects model (Part I); and (ii) a model on the intensity of positive values using a linear mixed-effects model where the model errors follow skew distributions including skew- t and skew-normal distributions (Part II). The proposed method is illustrated with an alcohol abuse/dependence symptoms data from a longitudinal observational study, and the analytic results are reported by comparing potential models under different random-effects structures. Simulation studies are conducted to assess the performance of the proposed models and method.

  13. A predictive model for early mortality after surgical treatment of heart valve or prosthesis infective endocarditis. The EndoSCORE.

    PubMed

    Di Mauro, Michele; Dato, Guglielmo Mario Actis; Barili, Fabio; Gelsomino, Sandro; Santè, Pasquale; Corte, Alessandro Della; Carrozza, Antonio; Ratta, Ester Della; Cugola, Diego; Galletti, Lorenzo; Devotini, Roger; Casabona, Riccardo; Santini, Francesco; Salsano, Antonio; Scrofani, Roberto; Antona, Carlo; Botta, Luca; Russo, Claudio; Mancuso, Samuel; Rinaldi, Mauro; De Vincentiis, Carlo; Biondi, Andrea; Beghi, Cesare; Cappabianca, Giangiuseppe; Tarzia, Vincenzo; Gerosa, Gino; De Bonis, Michele; Pozzoli, Alberto; Nicolini, Francesco; Benassi, Filippo; Rosato, Francesco; Grasso, Elena; Livi, Ugolino; Sponga, Sandro; Pacini, Davide; Di Bartolomeo, Roberto; De Martino, Andrea; Bortolotti, Uberto; Onorati, Francesco; Faggian, Giuseppe; Lorusso, Roberto; Vizzardi, Enrico; Di Giammarco, Gabriele; Marinelli, Daniele; Villa, Emmanuel; Troise, Giovanni; Picichè, Marco; Musumeci, Francesco; Paparella, Domenico; Margari, Vito; Tritto, Francesco; Damiani, Girolamo; Scrascia, Giuseppe; Zaccaria, Salvatore; Renzulli, Attilio; Serraino, Giuseppe; Mariscalco, Giovanni; Maselli, Daniele; Foschi, Massimiliano; Parolari, Alessandro; Nappi, Giannantonio

    2017-08-15

    The aim of this large retrospective study was to provide a logistic risk model along an additive score to predict early mortality after surgical treatment of patients with heart valve or prosthesis infective endocarditis (IE). From 2000 to 2015, 2715 patients with native valve endocarditis (NVE) or prosthesis valve endocarditis (PVE) were operated on in 26 Italian Cardiac Surgery Centers. The relationship between early mortality and covariates was evaluated with logistic mixed effect models. Fixed effects are parameters associated with the entire population or with certain repeatable levels of experimental factors, while random effects are associated with individual experimental units (centers). Early mortality was 11.0% (298/2715); At mixed effect logistic regression the following variables were found associated with early mortality: age class, female gender, LVEF, preoperative shock, COPD, creatinine value above 2mg/dl, presence of abscess, number of treated valve/prosthesis (with respect to one treated valve/prosthesis) and the isolation of Staphylococcus aureus, Fungus spp., Pseudomonas Aeruginosa and other micro-organisms, while Streptococcus spp., Enterococcus spp. and other Staphylococci did not affect early mortality, as well as no micro-organisms isolation. LVEF was found linearly associated with outcomes while non-linear association between mortality and age was tested and the best model was found with a categorization into four classes (AUC=0.851). The following study provides a logistic risk model to predict early mortality in patients with heart valve or prosthesis infective endocarditis undergoing surgical treatment, called "The EndoSCORE". Copyright © 2017. Published by Elsevier B.V.

  14. The Relative Effectiveness of Women-Only and Mixed-Gender Treatment for Substance-Abusing Women

    PubMed Central

    Prendergast, Michael L.; Messina, Nena P.; Hall, Elizabeth A.; Warda, Umme S.

    2011-01-01

    Following research indicating that the treatment needs of women are different from those of men, researchers and clinicians have argued that drug treatment programs for women should be designed to take their needs into account. Such programs tend to admit only women and incorporate philosophies and activities that are based on a social, peer-based model that is responsive to their needs. To assess the relative effectiveness of women-only (WO) outpatient programs compared to mixed-gender (MG) outpatient programs, 291 study volunteers were recruited (152 WO, 139 MG), and a 1-year follow-up was completed with 259 women (135 WO, 124 MG). Using bivariate, logistic regression, and generalized estimating equation analysis, the following four outcomes were examined: drug and alcohol use, criminal activity, arrests, and employment. In both groups, women showed improvement in the four outcome measures. Comparison of the groups on outcomes yielded mixed results; women who participated in WO treatment reported significantly less substance use and criminal activity than women in MG treatment, but there were no differences in arrest or employment status at follow up compared with those in MG treatment. PMID:21315540

  15. Acculturation, childhood trauma and the cortisol awakening response in Mexican-American adults.

    PubMed

    Mangold, Deborah; Wand, Gary; Javors, Martin; Mintz, James

    2010-09-01

    Exposure to chronic and traumatic stress has been associated with the dysregulation of crucial stress response systems. Acculturation has been associated with unique forms of chronic psychosocial stress. The purpose of this study was to examine the effects of exposure to early traumatic stress and acculturation on dysregulation of the cortisol awakening response (CAR) in Mexican-American adults. Salivary cortisol samples were collected at awakening and 30, 45, and 60 min thereafter, on two consecutive weekdays from 59 healthy Mexican-American adult males (26) and females (33), ages 18-38 years. Participants were assessed for level of acculturation and exposure to early trauma. Data were analyzed using a mixed effects regression model with repeated measures at four time points. Mixed effects regression results indicated a significant Early Trauma x Time interaction (p=.0029) and a significant Acculturation x Time interaction (p=.0015), after controlling for age and sex. Subsequent analyses of the interaction of Trauma x Acculturation x Time showed that more than minimal exposure to either risk factor was associated with attenuation of the awakening cortisol response (p=.0002). Higher levels of acculturation with greater Anglo-orientation were associated with attenuation of the CAR in Mexican-American adults. Both moderate and higher levels of exposure to early trauma were associated with an attenuated CAR. However, greater exposure to both risk factors was only incrementally worse than exposure to either one. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  16. Growth rate characteristics of acidophilic heterotrophic organisms from mine waste rock piles

    NASA Astrophysics Data System (ADS)

    Yacob, T. W.; Silverstein, J.; Jenkins, J.; Andre, B. J.; Rajaram, H.

    2010-12-01

    Autotrophic iron oxidizing bacteria play a key role in pyrite oxidation and generation of acid mine drainage AMD. Scarcity of organic substrates in many disturbed sites insures that IOB have sufficient oxygen and other nutrients for growth. It is proposed that addition of organic carbon substrate to waste rock piles will result in enrichment of heterotrophic microorganisms limiting the role of IOB in AMD generation. Previous researchers have used the acidophilic heterotroph Acidiphilium cryptum as a model to study the effects of organic substrate addition on the pyrite oxidation/AMD cycle. In order to develop a quantitative model of effects such as competition for oxygen, it is necessary to use growth and substrate consumption rate expressions, and one approach is to choose a model strain such as A. cryptum for kinetic studies. However we have found that the growth rate characteristics of A. cryptum may not provide an accurate model of the remediation effects of organic addition to subsurface mined sites. Fluorescent in-situ hybridization (FISH) assays of extracts of mine waste rock enriched with glucose and yeast extract did not produce countable numbers of cells in the Acidiphilium genus, with a detection limit of3 x 104 cells/gram rock, despite evidence of the presence of well established heterotrophic organisms. However, an MPN enrichment produced heterotrophic population estimates of 1x107 and 1x109 cells/gram rock. Growth rate studies of A. cryptum showed that cultures took 120 hours to degrade 50% of an initial glucose concentration of 2,000 mg/L. However a mixed culture enriched from mine waste rock consumed 100% of the same amount of glucose in 24 hours. Substrate consumption data for the mixed culture were fit to a Monod growth model: {dS}/{dt} = μ_{max}S {( {X_0}/{Y} + S_0 -S )}/{(K_s +S)} Kinetic parameters were estimated utilizing a non linear regression method coupled with an ODE solver. The maximum specific growth rate of the mixed population with μ max was calculated to be 0.13 hr-1 and a yield of 0.52 g cells/g glucose and Ks of 0.2 g/L glucose. The effect of pH on growth was compared for A. cryptum and the mixed population. It was found that the mixed culture had a higher tolerance for extremely low pH conditions, with no growth at pH = 1; whereas no growth of A cryptum was observed at pH = 1.5. Both A. cryptum and the mixed cultures grew within a pH range of 2.5 - 6. A phospholipid fatty acid analysis (PLFA) of the mixed culture indicated that both eukaryotic and prokaryotic organisms are present at a ratio of approximately 1:1, indicating that organisms such as fungi may be important in carbon cycling in these acidic subsurface formations. The results from this research show that utilization of mixed wild cultures for environmental modeling may yield better results than selection of a single strain to represent populations in a quantitative model.

  17. An optimal proportion of mixing broad-leaved forest for enhancing the effective productivity of moso bamboo.

    PubMed

    Cheng, Xiao-Fei; Shi, Pei-Jian; Hui, Cang; Wang, Fu-Sheng; Liu, Guo-Hua; Li, Bai-Lian

    2015-04-01

    Moso bamboos (Phyllostachys edulis) are important forestry plants in southern China, with substantial roles to play in regional economic and ecological systems. Mixing broad-leaved forests and moso bamboos is a common management practice in China, and it is fundamental to elucidate the interactions between broad-leaved trees and moso bamboos for ensuring the sustainable provision of ecosystem services. We examine how the proportion of broad-leaved forest in a mixed managed zone, topology, and soil profile affects the effective productivity of moso bamboos (i.e., those with significant economic value), using linear regression and generalized additive models. Bamboo's diameter at breast height follows a Weibull distribution. The importance of these variables to bamboo productivity is, respectively, slope (25.9%), the proportion of broad-leaved forest (24.8%), elevation (23.3%), gravel content by volume (16.6%), slope location (8.3%), and soil layer thickness (1.2%). Highest productivity is found on the 25° slope, with a 600-m elevation, and 30% broad-leaved forest. As such, broad-leaved forest in the upper slope can have a strong influence on the effective productivity of moso bamboo, ranking only after slope and before elevation. These factors can be considered in future management practice.

  18. The effects of green areas on air surface temperature of the Kuala Lumpur city using WRF-ARW modelling and Remote Sensing technique

    NASA Astrophysics Data System (ADS)

    Isa, N. A.; Mohd, W. M. N. Wan; Salleh, S. A.; Ooi, M. C. G.

    2018-02-01

    Matured trees contain high concentration of chlorophyll that encourages the process of photosynthesis. This process produces oxygen as a by-product and releases it into the atmosphere and helps in lowering the ambient temperature. This study attempts to analyse the effect of green area on air surface temperature of the Kuala Lumpur city. The air surface temperatures of two different dates which are, in March 2006 and March 2016 were simulated using the Weather Research and Forecasting (WRF) model. The green area in the city was extracted using the Normalized Difference Vegetation Index (NDVI) from two Landsat satellite images. The relationship between the air surface temperature and the green area were analysed using linear regression models. From the study, it was found that, the green area was significantly affecting the distribution of air temperature within the city. A strong negative correlation was identified through this study which indicated that higher NDVI values tend to have lower air surface temperature distribution within the focus study area. It was also found that, different urban setting in mixed built-up and vegetated areas resulted in different distributions of air surface temperature. Future studies should focus on analysing the air surface temperature within the area of mixed built-up and vegetated area.

  19. An Efficient Test for Gene-Environment Interaction in Generalized Linear Mixed Models with Family Data.

    PubMed

    Mazo Lopera, Mauricio A; Coombes, Brandon J; de Andrade, Mariza

    2017-09-27

    Gene-environment (GE) interaction has important implications in the etiology of complex diseases that are caused by a combination of genetic factors and environment variables. Several authors have developed GE analysis in the context of independent subjects or longitudinal data using a gene-set. In this paper, we propose to analyze GE interaction for discrete and continuous phenotypes in family studies by incorporating the relatedness among the relatives for each family into a generalized linear mixed model (GLMM) and by using a gene-based variance component test. In addition, we deal with collinearity problems arising from linkage disequilibrium among single nucleotide polymorphisms (SNPs) by considering their coefficients as random effects under the null model estimation. We show that the best linear unbiased predictor (BLUP) of such random effects in the GLMM is equivalent to the ridge regression estimator. This equivalence provides a simple method to estimate the ridge penalty parameter in comparison to other computationally-demanding estimation approaches based on cross-validation schemes. We evaluated the proposed test using simulation studies and applied it to real data from the Baependi Heart Study consisting of 76 families. Using our approach, we identified an interaction between BMI and the Peroxisome Proliferator Activated Receptor Gamma ( PPARG ) gene associated with diabetes.

  20. Techniques for Estimating Emissions Factors from Forest Burning: ARCTAS and SEAC4RS Airborne Measurements Indicate which Fires Produce Ozone

    NASA Technical Reports Server (NTRS)

    Chatfield, Robert B.; Andreae, Meinrat O.

    2016-01-01

    Previous studies of emission factors from biomass burning are prone to large errors since they ignore the interplay of mixing and varying pre-fire background CO2 levels. Such complications severely affected our studies of 446 forest fire plume samples measured in the Western US by the science teams of NASA's SEAC4RS and ARCTAS airborne missions. Consequently we propose a Mixed Effects Regression Emission Technique (MERET) to check techniques like the Normalized Emission Ratio Method (NERM), where use of sequential observations cannot disentangle emissions and mixing. We also evaluate a simpler "consensus" technique. All techniques relate emissions to fuel burned using C(burn) = delta C(tot) added to the fire plume, where C(tot) approximately equals (CO2 = CO). Mixed-effects regression can estimate pre-fire background values of C(tot) (indexed by observation j) simultaneously with emissions factors indexed by individual species i, delta, epsilon lambda tau alpha-x(sub I)/C(sub burn))I,j. MERET and "consensus" require more than emissions indicators. Our studies excluded samples where exogenous CO or CH4 might have been fed into a fire plume, mimicking emission. We sought to let the data on 13 gases and particulate properties suggest clusters of variables and plume types, using non-negative matrix factorization (NMF). While samples were mixtures, the NMF unmixing suggested purer burn types. Particulate properties (b scant, b abs, SSA, AAE) and gas-phase emissions were interrelated. Finally, we sought a simple categorization useful for modeling ozone production in plumes. Two kinds of fires produced high ozone: those with large fuel nitrogen as evidenced by remnant CH3CN in the plumes, and also those from very intense large burns. Fire types with optimal ratios of delta-NOy/delta- HCHO associate with the highest additional ozone per unit Cburn, Perhaps these plumes exhibit limited NOx binding to reactive organics. Perhaps these plumes exhibit limited NOx binding to reactive organics

  1. Techniques for Estimating Emissions Factors from Forest Burning: ARCTAS and SEAC4RS Airborne Measurements Indicate Which Fires Produce Ozone

    NASA Technical Reports Server (NTRS)

    Chatfield, Robert B.; Andreae, Meinrat O.

    2015-01-01

    Previous studies of emission factors from biomass burning are prone to large errors since they ignore the interplay of mixing and varying pre-fire background CO2 levels. Such complications severely affected our studies of 446 forest fire plume samples measured in the Western US by the science teams of NASA's SEAC4RS and ARCTAS airborne missions. Consequently we propose a Mixed Effects Regression Emission Technique (MERET) to check techniques like the Normalized Emission Ratio Method (NERM), where use of sequential observations cannot disentangle emissions and mixing. We also evaluate a simpler "consensus" technique. All techniques relate emissions to fuel burned using C(sub burn) = delta C(sub tot) added to the fire plume, where C(sub tot) approximately equals (CO2 + CO). Mixed-effects regression can estimate pre-fire background values of Ctot (indexed by observation j) simultaneously with emissions factors indexed by individual species i, delta epsilon lambda tau alpha-x(sub i)/(C(sub burn))i,j., MERET and "consensus" require more than two emissions indicators. Our studies excluded samples where exogenous CO or CH4 might have been fed into a fire plume, mimicking emission. We sought to let the data on 13 gases and particulate properties suggest clusters of variables and plume types, using non-negative matrix factorization (NMF). While samples were mixtures, the NMF unmixing suggested purer burn types. Particulate properties (bscat, babs, SSA, AAE) and gas-phase emissions were interrelated. Finally, we sought a simple categorization useful for modeling ozone production in plumes. Two kinds of fires produced high ozone: those with large fuel nitrogen as evidenced by remnant CH3CN in the plumes, and also those from very intense large burns. Fire types with optimal ratios of delta-NOy/delta- HCHO associate with the highest additional ozone per unit Cburn, Perhaps these plumes exhibit limited NOx binding to reactive organics. Perhaps these plumes exhibit limited NOx binding to reactive organics.

  2. Predicting chemical bioavailability using microarray gene expression data and regression modeling: A tale of three explosive compounds.

    PubMed

    Gong, Ping; Nan, Xiaofei; Barker, Natalie D; Boyd, Robert E; Chen, Yixin; Wilkins, Dawn E; Johnson, David R; Suedel, Burton C; Perkins, Edward J

    2016-03-08

    Chemical bioavailability is an important dose metric in environmental risk assessment. Although many approaches have been used to evaluate bioavailability, not a single approach is free from limitations. Previously, we developed a new genomics-based approach that integrated microarray technology and regression modeling for predicting bioavailability (tissue residue) of explosives compounds in exposed earthworms. In the present study, we further compared 18 different regression models and performed variable selection simultaneously with parameter estimation. This refined approach was applied to both previously collected and newly acquired earthworm microarray gene expression datasets for three explosive compounds. Our results demonstrate that a prediction accuracy of R(2) = 0.71-0.82 was achievable at a relatively low model complexity with as few as 3-10 predictor genes per model. These results are much more encouraging than our previous ones. This study has demonstrated that our approach is promising for bioavailability measurement, which warrants further studies of mixed contamination scenarios in field settings.

  3. Alternative High School Students: Prevalence and Correlates of Overweight

    ERIC Educational Resources Information Center

    Kubik, Martha Y.; Davey, Cynthia; Fulkerson, Jayne A.; Sirard, John; Story, Mary; Arcan, Chrisa

    2009-01-01

    Objective: To determine prevalence and correlates of overweight among adolescents attending alternative high schools (AHS). Methods: AHS students (n=145) from 6 schools completed surveys and anthropometric measures. Cross-sectional associations were assessed using mixed model multivariate logistic regression. Results: Among students, 42% were…

  4. Analysis and generation of groundwater concentration time series

    NASA Astrophysics Data System (ADS)

    Crăciun, Maria; Vamoş, Călin; Suciu, Nicolae

    2018-01-01

    Concentration time series are provided by simulated concentrations of a nonreactive solute transported in groundwater, integrated over the transverse direction of a two-dimensional computational domain and recorded at the plume center of mass. The analysis of a statistical ensemble of time series reveals subtle features that are not captured by the first two moments which characterize the approximate Gaussian distribution of the two-dimensional concentration fields. The concentration time series exhibit a complex preasymptotic behavior driven by a nonstationary trend and correlated fluctuations with time-variable amplitude. Time series with almost the same statistics are generated by successively adding to a time-dependent trend a sum of linear regression terms, accounting for correlations between fluctuations around the trend and their increments in time, and terms of an amplitude modulated autoregressive noise of order one with time-varying parameter. The algorithm generalizes mixing models used in probability density function approaches. The well-known interaction by exchange with the mean mixing model is a special case consisting of a linear regression with constant coefficients.

  5. Enhanced index tracking modeling in portfolio optimization with mixed-integer programming z approach

    NASA Astrophysics Data System (ADS)

    Siew, Lam Weng; Jaaman, Saiful Hafizah Hj.; Ismail, Hamizun bin

    2014-09-01

    Enhanced index tracking is a popular form of portfolio management in stock market investment. Enhanced index tracking aims to construct an optimal portfolio to generate excess return over the return achieved by the stock market index without purchasing all of the stocks that make up the index. The objective of this paper is to construct an optimal portfolio using mixed-integer programming model which adopts regression approach in order to generate higher portfolio mean return than stock market index return. In this study, the data consists of 24 component stocks in Malaysia market index which is FTSE Bursa Malaysia Kuala Lumpur Composite Index from January 2010 until December 2012. The results of this study show that the optimal portfolio of mixed-integer programming model is able to generate higher mean return than FTSE Bursa Malaysia Kuala Lumpur Composite Index return with only selecting 30% out of the total stock market index components.

  6. Assessing spatial inequalities in accessing community pharmacies: a mixed geographically weighted approach.

    PubMed

    Domnich, Alexander; Arata, Lucia; Amicizia, Daniela; Signori, Alessio; Gasparini, Roberto; Panatto, Donatella

    2016-11-16

    Geographical accessibility is an important determinant for the utilisation of community pharmacies. The present study explored patterns of spatial accessibility with respect to pharmacies in Liguria, Italy, a region with particular geographical and demographic features. Municipal density of pharmacies was proxied as the number of pharmacies per capita and per km2, and spatial autocorrelation analysis was performed to identify spatial clusters. Both non-spatial and spatial models were constructed to predict the study outcome. Spatial autocorrelation analysis showed a highly significant clustered pattern in the density of pharmacies per capita (I=0.082) and per km2 (I=0.295). Potentially under-supplied areas were mostly located in the mountainous hinterland. Ordinary least-squares (OLS) regressions established a significant positive relationship between the density of pharmacies and income among municipalities located at high altitudes, while no such association was observed in lower-lying areas. However, residuals of the OLS models were spatially auto-correlated. The best-fitting mixed geographically weighted regression (GWR) models outperformed the corresponding OLS models. Pharmacies per capita were best predicted by two local predictors (altitude and proportion of immigrants) and two global ones (proportion of elderly residents and income), while the local terms population, mean altitude and rural status and the global term income functioned as independent variables predicting pharmacies per km2. The density of pharmacies in Liguria was found to be associated with both socio-economic and landscape factors. Mapping of mixed GWR results would be helpful to policy-makers.

  7. Phylogenetically diverse macrophyte community promotes species diversity of mobile epi-benthic invertebrates

    NASA Astrophysics Data System (ADS)

    Nakamoto, Kenta; Hayakawa, Jun; Kawamura, Tomohiko; Kodama, Masafumi; Yamada, Hideaki; Kitagawa, Takashi; Watanabe, Yoshiro

    2018-07-01

    Various aspects of plant diversity such as species diversity and phylogenetic diversity enhance the species diversity of associated animals in terrestrial systems. In marine systems, however, the effects of macrophyte diversity on the species diversity of associated animals have received little attention. Here, we sampled in a subtropical seagrass-seaweed mixed bed to elucidate the effect of the macrophyte phylogenetic diversity based on the taxonomic relatedness as well as the macrophyte species diversity on species diversity of mobile epi-benthic invertebrates. Using regression analyses for each macrophyte parameter as well as multiple regression analyses, we found that the macrophyte phylogenetic diversity (taxonomic diversity index: Delta) positively influenced the invertebrate species richness and diversity index (H‧). Although the macrophyte species richness and H‧ also positively influenced the invertebrate species richness, the best fit model for invertebrate species richness did not include them, suggesting that the macrophyte species diversity indirectly influenced invertebrate species diversity. Possible explanations of the effects of macrophyte Delta on the invertebrate species diversity were the niche complementarity effect and the selection effect. This is the first study which demonstrates that macrophyte phylogenetic diversity has a strong effect on the species diversity of mobile epi-benthic invertebrates.

  8. Trends in stratospheric ozone profiles using functional mixed models

    NASA Astrophysics Data System (ADS)

    Park, A. Y.; Guillas, S.; Petropavlovskikh, I.

    2013-05-01

    This paper is devoted to the modeling of altitude-dependent patterns of ozone variations over time. Umkher ozone profiles (quarter of Umkehr layer) from 1978 to 2011 are investigated at two locations: Boulder (USA) and Arosa (Switzerland). The study consists of two statistical stages. First we approximate ozone profiles employing an appropriate basis. To capture primary modes of ozone variations without losing essential information, a functional principal component analysis is performed as it penalizes roughness of the function and smooths excessive variations in the shape of the ozone profiles. As a result, data driven basis functions are obtained. Secondly we estimate the effects of covariates - month, year (trend), quasi biennial oscillation, the Solar cycle, arctic oscillation and the El Niño/Southern Oscillation cycle - on the principal component scores of ozone profiles over time using generalized additive models. The effects are smooth functions of the covariates, and are represented by knot-based regression cubic splines. Finally we employ generalized additive mixed effects models incorporating a more complex error structure that reflects the observed seasonality in the data. The analysis provides more accurate estimates of influences and trends, together with enhanced uncertainty quantification. We are able to capture fine variations in the time evolution of the profiles such as the semi-annual oscillation. We conclude by showing the trends by altitude over Boulder. The strongly declining trends over 2003-2011 for altitudes of 32-64 hPa show that stratospheric ozone is not yet fully recovering.

  9. Seasonal and Regional Variability in North Pacific Upper-Ocean Turbulence

    NASA Astrophysics Data System (ADS)

    Najjar, R.; Creedon, R.; Cronin, M. F.

    2016-02-01

    Turbulent diffusion at marine mixed layer base (MLB) plays a fundamental role in the transport of energy between the upper and abyssal ocean. Recent investigations of North Pacific mooring data at Ocean Climate Stations (OCS) Papa (50.1N,144.9W) and KEO (32.3N,144.6E) suggest seasonal and regional variability in thermal diffusivity (κT). In this investigation, it is hypothesized that these observed differences in κT are directly associated with synoptic variability in net surface heat flux (Q0), surface wind stress (τ), mixed layer depth (h), and density stratification at MLB (∂zσ|-h). To test this hypothesis, daily-averaged time series of κT are regressed against those of Q0, τ, h, and ∂zσ|-h at both Papa and KEO over a six year time period (2007-2013). Seasonality of each time series is removed before regression to capture synoptic variability of each variable. Preliminary results of the regression analysis suggest statistically significant correlations between κT and all forcing parameters at both mooring sites. These correlations have well-determined orders of magnitude and signs consistent with the hypothesis. As a result, differences in κT between Papa and KEO may be recast in terms of differences in their correlation coefficients. In order to continue investigation of these parameters and their effects on mean seasonal differences between the two regions, these results will be compared with turbulence predicted by the K-Profile Parameterization ocean turbulence model.

  10. A comparative study of generalized linear mixed modelling and artificial neural network approach for the joint modelling of survival and incidence of Dengue patients in Sri Lanka

    NASA Astrophysics Data System (ADS)

    Hapugoda, J. C.; Sooriyarachchi, M. R.

    2017-09-01

    Survival time of patients with a disease and the incidence of that particular disease (count) is frequently observed in medical studies with the data of a clustered nature. In many cases, though, the survival times and the count can be correlated in a way that, diseases that occur rarely could have shorter survival times or vice versa. Due to this fact, joint modelling of these two variables will provide interesting and certainly improved results than modelling these separately. Authors have previously proposed a methodology using Generalized Linear Mixed Models (GLMM) by joining the Discrete Time Hazard model with the Poisson Regression model to jointly model survival and count model. As Aritificial Neural Network (ANN) has become a most powerful computational tool to model complex non-linear systems, it was proposed to develop a new joint model of survival and count of Dengue patients of Sri Lanka by using that approach. Thus, the objective of this study is to develop a model using ANN approach and compare the results with the previously developed GLMM model. As the response variables are continuous in nature, Generalized Regression Neural Network (GRNN) approach was adopted to model the data. To compare the model fit, measures such as root mean square error (RMSE), absolute mean error (AME) and correlation coefficient (R) were used. The measures indicate the GRNN model fits the data better than the GLMM model.

  11. The long-term differential achievement effects of school socioeconomic composition in primary education: A propensity score matching approach.

    PubMed

    Belfi, Barbara; Haelermans, Carla; De Fraine, Bieke

    2016-12-01

    The effects of school socio-economic composition on student achievement growth trajectories have been a hot topic of discussion among politicians around the world for many years. However, the bulk of research investigating school socio-economic composition effects has been limited in important ways. In an attempt to overcome the flaws in earlier research on school socio-economic composition effects, this study used data from a large sample, followed students throughout primary education, addressed selection bias problems, identified the grade(s) in which school socio-economic composition mattered the most, and studied the differential effects of school socio-economic composition by individual socio-economic status (SES). In a longitudinal design with seven occasions of data collection, the authors drew on a sample of N = 3,619 students (age at T1 about 5 years, age at T7 about 12 years) from 151 primary schools in Flanders (the northern part of Belgium). Students in low-, medium-, high-, and mixed-SES schools were matched using propensity scores. To compare students' achievement growth trajectories in the different school compositions, multilevel regression modelling with repeated measurements was applied. The results showed that students had more positive achievement growth in high-SES as compared to low-SES and mixed-SES schools. In two of the three comparisons, students in mixed-SES schools showed the lowest math development. The negative effects of mixed-SES schools on math achievement growth were the strongest for high-SES students. Our findings contribute to the ongoing discussion on the effects of school socio-economic composition on student achievement growth. © 2016 The British Psychological Society.

  12. Experimental study and simulation of phosphorus purification effects of bioretention systems on urban surface runoff

    PubMed Central

    Liang, Zheng; Li, Yajiao; Li, Peng; Jiang, Chunbo

    2018-01-01

    Excessive phosphorus (P) contributes to eutrophication by degrading water quality and limiting human use of water resources. Identifying economic and convenient methods to control soluble reactive phosphorus (SRP) pollution in urban runoff is the key point of rainwater management strategies. Through three series of different tests involving influencing factors, continuous operation and intermittent operation, this study explored the purification effects of bioretention tanks under different experimental conditions, it included nine intermittent tests, single field continuous test with three groups of different fillers (Fly ash mixed with sand, Blast furnace slag, and Soil), and eight intermittent tests with single filler (Blast furnace slag mixed with sand). Among the three filler combinations studied, the filler with fly ash mixed with sand achieved the best pollution reduction efficiency. The setting of the submerged zone exerted minimal influence on the P removal of the three filler combinations. An extension of the dry period slightly promoted the P purification effect. The combination of fly ash mixed with sand demonstrated a positive purification effect on SRP during short- or long-term simulated rainfall duration. Blast furnace slag also presented a positive purification effect in the short term, although its continuous purification effect on SRP was poor in the long term. The purification abilities of soil in the short and long terms were weak. Under intermittent operations across different seasons, SRP removal was unstable, and effluent concentration processes were different. The purification effect of the bioretention system on SRP was predicted through partial least squares regression (PLS) modeling analysis. The event mean concentration removal of SRP was positively related to the adsorption capacity of filler and rainfall interval time and negatively related to submerged zones, influent concentration and volume. PMID:29742120

  13. Small financial incentives increase smoking cessation in homeless smokers: a pilot study.

    PubMed

    Businelle, Michael S; Kendzor, Darla E; Kesh, Anshula; Cuate, Erica L; Poonawalla, Insiya B; Reitzel, Lorraine R; Okuyemi, Kolawole S; Wetter, David W

    2014-03-01

    Although over 70% of homeless individuals smoke, few studies have examined the effectiveness of smoking cessation interventions in this vulnerable population. The purpose of this pilot study was to compare the effectiveness of shelter-based smoking cessation clinic usual care (UC) to an adjunctive contingency management (CM) treatment that offered UC plus small financial incentives for smoking abstinence. Sixty-eight homeless individuals in Dallas, Texas (recruited in 2012) were assigned to UC (n=58) or UC plus financial incentives (CM; n=10) groups and were followed for 5 consecutive weeks (1 week pre-quit through 4 weeks post-quit). A generalized linear mixed model regression analysis was conducted to compare biochemically-verified abstinence rates between groups. An additional model examined the interaction between time and treatment group. The participants were primarily male (61.8%) and African American (58.8%), and were 49 years of age on average. There was a significant effect of treatment group on abstinence overall, and effects varied over time. Follow-up logistic regression analyses indicated that CM participants were significantly more likely than UC participants to be abstinent on the quit date (50% vs. 19% abstinent) and at 4 weeks post-quit (30% vs. 1.7% abstinent). Offering small financial incentives for smoking abstinence may be an effective way to facilitate smoking cessation in homeless individuals. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Proton-pump inhibitor use does not affect semen quality in subfertile men.

    PubMed

    Keihani, Sorena; Craig, James R; Zhang, Chong; Presson, Angela P; Myers, Jeremy B; Brant, William O; Aston, Kenneth I; Emery, Benjamin R; Jenkins, Timothy G; Carrell, Douglas T; Hotaling, James M

    2018-01-01

    Proton-pump inhibitors (PPIs) are among the most widely used drugs worldwide. PPI use has recently been linked to adverse changes in semen quality in healthy men; however, the effects of PPI use on semen parameters remain largely unknown specifically in cases with male factor infertility. We examined whether PPI use was associated with detrimental effects on semen parameters in a large population of subfertile men. We retrospectively reviewed data from 12 257 subfertile men who had visited our fertility clinic from 2003 to 2013. Patients who reported using any PPIs for >3 months before semen sample collection were included; 7698 subfertile men taking no medication served as controls. Data were gathered on patient age, medication use, and conventional semen parameters; patients taking any known spermatotoxic medication were excluded. Linear mixed-effect regression models were used to test the effect of PPI use on semen parameters adjusting for age. A total of 248 patients (258 samples) used PPIs for at least 3 months before semen collection. In regression models, PPI use (either as the only medication or when used in combination with other nonspermatotoxic medications) was not associated with statistically significant changes in semen parameters. To our knowledge, this is the largest study to compare PPI use with semen parameters in subfertile men. Using PPIs was not associated with detrimental effects on semen quality in this retrospective study.

  15. Exploring the effects of coexisting amyloid in subcortical vascular cognitive impairment.

    PubMed

    Dao, Elizabeth; Hsiung, Ging-Yuek Robin; Sossi, Vesna; Jacova, Claudia; Tam, Roger; Dinelle, Katie; Best, John R; Liu-Ambrose, Teresa

    2015-10-12

    Mixed pathology, particularly Alzheimer's disease with cerebrovascular lesions, is reported as the second most common cause of dementia. Research on mixed dementia typically includes people with a primary AD diagnosis and hence, little is known about the effects of co-existing amyloid pathology in people with vascular cognitive impairment (VCI). The purpose of this study was to understand whether individual differences in amyloid pathology might explain variations in cognitive impairment among individuals with clinical subcortical VCI (SVCI). Twenty-two participants with SVCI completed an (11)C Pittsburgh compound B (PIB) position emission tomography (PET) scan to quantify global amyloid deposition. Cognitive function was measured using: 1) MOCA; 2) ADAS-Cog; 3) EXIT-25; and 4) specific executive processes including a) Digits Forward and Backwards Test, b) Stroop-Colour Word Test, and c) Trail Making Test. To assess the effect of amyloid deposition on cognitive function we conducted Pearson bivariate correlations to determine which cognitive measures to include in our regression models. Cognitive variables that were significantly correlated with PIB retention values were entered in a hierarchical multiple linear regression analysis to determine the unique effect of amyloid on cognitive function. We controlled for age, education, and ApoE ε4 status. Bivariate correlation results showed that PIB binding was significantly correlated with ADAS-Cog (p < 0.01) and MOCA (p < 0.01); increased PIB binding was associated with worse cognitive function on both cognitive measures. PIB binding was not significantly correlated with the EXIT-25 or with specific executive processes (p > 0.05). Regression analyses controlling for age, education, and ApoE ε4 status indicated an independent association between PIB retention and the ADAS-Cog (adjusted R-square change of 15.0%, Sig F Change = 0.03). PIB retention was also independently associated with MOCA scores (adjusted R-Square Change of 27.0%, Sig F Change = 0.02). We found that increased global amyloid deposition was significantly associated with greater memory and executive dysfunctions as measured by the ADAS-Cog and MOCA. Our findings point to the important role of co-existing amyloid deposition for cognitive function in those with a primary SVCI diagnosis. As such, therapeutic approaches targeting SVCI must consider the potential role of amyloid for the optimal care of those with mixed dementia. NCT01027858.

  16. Modeling the spatial distribution of African buffalo (Syncerus caffer) in the Kruger National Park, South Africa

    PubMed Central

    Hughes, Kristen; Budke, Christine M.; Ward, Michael P.; Kerry, Ruth; Ingram, Ben

    2017-01-01

    The population density of wildlife reservoirs contributes to disease transmission risk for domestic animals. The objective of this study was to model the African buffalo distribution of the Kruger National Park. A secondary objective was to collect field data to evaluate models and determine environmental predictors of buffalo detection. Spatial distribution models were created using buffalo census information and archived data from previous research. Field data were collected during the dry (August 2012) and wet (January 2013) seasons using a random walk design. The fit of the prediction models were assessed descriptively and formally by calculating the root mean square error (rMSE) of deviations from field observations. Logistic regression was used to estimate the effects of environmental variables on the detection of buffalo herds and linear regression was used to identify predictors of larger herd sizes. A zero-inflated Poisson model produced distributions that were most consistent with expected buffalo behavior. Field data confirmed that environmental factors including season (P = 0.008), vegetation type (P = 0.002), and vegetation density (P = 0.010) were significant predictors of buffalo detection. Bachelor herds were more likely to be detected in dense vegetation (P = 0.005) and during the wet season (P = 0.022) compared to the larger mixed-sex herds. Static distribution models for African buffalo can produce biologically reasonable results but environmental factors have significant effects and therefore could be used to improve model performance. Accurate distribution models are critical for the evaluation of disease risk and to model disease transmission. PMID:28902858

  17. Acute Effects of Nitrogen Dioxide on Cardiovascular Mortality in Beijing: An Exploration of Spatial Heterogeneity and the District-specific Predictors

    NASA Astrophysics Data System (ADS)

    Luo, Kai; Li, Runkui; Li, Wenjing; Wang, Zongshuang; Ma, Xinming; Zhang, Ruiming; Fang, Xin; Wu, Zhenglai; Cao, Yang; Xu, Qun

    2016-12-01

    The exploration of spatial variation and predictors of the effects of nitrogen dioxide (NO2) on fatal health outcomes is still sparse. In a multilevel case-crossover study in Beijing, China, we used mixed Cox proportional hazard model to examine the citywide effects and conditional logistic regression to evaluate the district-specific effects of NO2 on cardiovascular mortality. District-specific predictors that could be related to the spatial pattern of NO2 effects were examined by robust regression models. We found that a 10 μg/m3 increase in daily mean NO2 concentration was associated with a 1.89% [95% confidence interval (CI): 1.33-2.45%], 2.07% (95% CI: 1.23-2.91%) and 1.95% (95% CI: 1.16-2.72%) increase in daily total cardiovascular (lag03), cerebrovascular (lag03) and ischemic heart disease (lag02) mortality, respectively. For spatial variation of NO2 effects across 16 districts, significant effects were only observed in 5, 4 and 2 districts for the above three outcomes, respectively. Generally, NO2 was likely having greater adverse effects on districts with larger population, higher consumption of coal and more civilian vehicles. Our results suggested independent and spatially varied effects of NO2 on total and subcategory cardiovascular mortalities. The identification of districts with higher risk can provide important insights for reducing NO2 related health hazards.

  18. Landscape factors influencing the spatial distribution and abundance of mosquito vector Culex quinquefasciatus (Diptera: Culicidae) in a mixed residential-agricultural community in Hawai'i

    USGS Publications Warehouse

    Reiter, M.E.; Lapointe, D.A.

    2007-01-01

    Mosquito-borne avian diseases, principally avian malaria (Plasmodium relictum Grassi and Feletti) and avian pox (Avipoxvirus sp.) have been implicated as the key limiting factor associated with recent declines of endemic avifauna in the Hawaiian Island archipelago. We present data on the relative abundance, infection status, and spatial distribution of the primary mosquito vector Culex quinquefasciatus Say (Diptera: Culicidae) across a mixed, residential-agricultural community adjacent to Hawai'i Volcanoes National Park on Hawai'i Island. We modeled the effect of agriculture and forest fragmentation in determining relative abundance of adult Cx. quinquefasciatus in Volcano Village, and we implement our statistical model in a geographic information system to generate a probability of mosquito capture prediction surface for the study area. Our model was based on biweekly captures of adult mosquitoes from 20 locations within Volcano Village from October 2001 to April 2003. We used mixed effects logistic regression to model the probability of capturing a mosquito, and we developed a set of 17 competing models a priori to specifically evaluate the effect of agriculture and fragmentation (i.e., residential landscapes) at two spatial scales. In total, 2,126 mosquitoes were captured in CO 2-baited traps with an average probability of 0.27 (SE = 0.10) of capturing one or more mosquitoes per trap night. Twelve percent of mosquitoes captured were infected with P. relictum. Our data indicate that agricultural lands and forest fragmentation significantly increase the probability of mosquito capture. The prediction surface identified areas along the Hawai'i Volcanoes National Park boundary that may have high relative abundance of the vector. Our data document the potential of avian malaria transmission in residential-agricultural landscapes and support the need for vector management that extends beyond reserve boundaries and considers a reserve's spatial position in a highly heterogeneous landscape.

  19. Quantifying the effect of mixing on the mean age of air in CCMVal-2 and CCMI-1 models

    NASA Astrophysics Data System (ADS)

    Dietmüller, Simone; Eichinger, Roland; Garny, Hella; Birner, Thomas; Boenisch, Harald; Pitari, Giovanni; Mancini, Eva; Visioni, Daniele; Stenke, Andrea; Revell, Laura; Rozanov, Eugene; Plummer, David A.; Scinocca, John; Jöckel, Patrick; Oman, Luke; Deushi, Makoto; Kiyotaka, Shibata; Kinnison, Douglas E.; Garcia, Rolando; Morgenstern, Olaf; Zeng, Guang; Stone, Kane Adam; Schofield, Robyn

    2018-05-01

    The stratospheric age of air (AoA) is a useful measure of the overall capabilities of a general circulation model (GCM) to simulate stratospheric transport. Previous studies have reported a large spread in the simulation of AoA by GCMs and coupled chemistry-climate models (CCMs). Compared to observational estimates, simulated AoA is mostly too low. Here we attempt to untangle the processes that lead to the AoA differences between the models and between models and observations. AoA is influenced by both mean transport by the residual circulation and two-way mixing; we quantify the effects of these processes using data from the CCM inter-comparison projects CCMVal-2 (Chemistry-Climate Model Validation Activity 2) and CCMI-1 (Chemistry-Climate Model Initiative, phase 1). Transport along the residual circulation is measured by the residual circulation transit time (RCTT). We interpret the difference between AoA and RCTT as additional aging by mixing. Aging by mixing thus includes mixing on both the resolved and subgrid scale. We find that the spread in AoA between the models is primarily caused by differences in the effects of mixing and only to some extent by differences in residual circulation strength. These effects are quantified by the mixing efficiency, a measure of the relative increase in AoA by mixing. The mixing efficiency varies strongly between the models from 0.24 to 1.02. We show that the mixing efficiency is not only controlled by horizontal mixing, but by vertical mixing and vertical diffusion as well. Possible causes for the differences in the models' mixing efficiencies are discussed. Differences in subgrid-scale mixing (including differences in advection schemes and model resolutions) likely contribute to the differences in mixing efficiency. However, differences in the relative contribution of resolved versus parameterized wave forcing do not appear to be related to differences in mixing efficiency or AoA.

  20. Collaborative Project. 3D Radiative Transfer Parameterization Over Mountains/Snow for High-Resolution Climate Models. Fast physics and Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liou, Kuo-Nan

    2016-02-09

    Under the support of the aforementioned DOE Grant, we have made two fundamental contributions to atmospheric and climate sciences: (1) Develop an efficient 3-D radiative transfer parameterization for application to intense and intricate inhomogeneous mountain/snow regions. (2) Innovate a stochastic parameterization for light absorption by internally mixed black carbon and dust particles in snow grains for understanding and physical insight into snow albedo reduction in climate models. With reference to item (1), we divided solar fluxes reaching mountain surfaces into five components: direct and diffuse fluxes, direct- and diffuse-reflected fluxes, and coupled mountain-mountain flux. “Exact” 3D Monte Carlo photon tracingmore » computations can then be performed for these solar flux components to compare with those calculated from the conventional plane-parallel (PP) radiative transfer program readily available in climate models. Subsequently, Parameterizations of the deviations of 3D from PP results for five flux components are carried out by means of the multiple linear regression analysis associated with topographic information, including elevation, solar incident angle, sky view factor, and terrain configuration factor. We derived five regression equations with high statistical correlations for flux deviations and successfully incorporated this efficient parameterization into WRF model, which was used as the testbed in connection with the Fu-Liou-Gu PP radiation scheme that has been included in the WRF physics package. Incorporating this 3D parameterization program, we conducted simulations of WRF and CCSM4 to understand and evaluate the mountain/snow effect on snow albedo reduction during seasonal transition and the interannual variability for snowmelt, cloud cover, and precipitation over the Western United States presented in the final report. With reference to item (2), we developed in our previous research a geometric-optics surface-wave approach (GOS) for the computation of light absorption and scattering by complex and inhomogeneous particles for application to aggregates and snow grains with external and internal mixing structures. We demonstrated that a small black (BC) particle on the order of 1 μm internally mixed with snow grains could effectively reduce visible snow albedo by as much as 5–10%. Following this work and within the context of DOE support, we have made two key accomplishments presented in the attached final report.« less

  1. The nonlinear relations of the approximate number system and mathematical language to early mathematics development.

    PubMed

    Purpura, David J; Logan, Jessica A R

    2015-12-01

    Both mathematical language and the approximate number system (ANS) have been identified as strong predictors of early mathematics performance. Yet, these relations may be different depending on a child's developmental level. The purpose of this study was to evaluate the relations between these domains across different levels of ability. Participants included 114 children who were assessed in the fall and spring of preschool on a battery of academic and cognitive tasks. Children were 3.12 to 5.26 years old (M = 4.18, SD = .58) and 53.6% were girls. Both mixed-effect and quantile regressions were conducted. The mixed-effect regressions indicated that mathematical language, but not the ANS, nor other cognitive domains, predicted mathematics performance. However, the quantile regression analyses revealed a more nuanced relation among domains. Specifically, it was found that mathematical language and the ANS predicted mathematical performance at different points on the ability continuum. These dual nonlinear relations indicate that different mechanisms may enhance mathematical acquisition dependent on children's developmental abilities. (c) 2015 APA, all rights reserved).

  2. Subjective Social Status and Self-Reported Health Among US-born and Immigrant Latinos.

    PubMed

    Garza, Jeremiah R; Glenn, Beth A; Mistry, Rashmita S; Ponce, Ninez A; Zimmerman, Frederick J

    2017-02-01

    Subjective social status is associated with a range of health outcomes. Few studies have tested the relevance of subjective social status among Latinos in the U.S.; those that have yielded mixed results. Data come from the Latino subsample of the 2003 National Latino and Asian American Study (N = 2554). Regression models adjusted for socioeconomic and demographic factors. Stratified analyses tested whether nativity status modifies the effect of subjective social status on health. Subjective social status was associated with better health. Income and education mattered more for health than subjective social status among U.S.-born Latinos. However, the picture was mixed among immigrant Latinos, with subjective social status more strongly predictive than income but less so than education. Subjective social status may tap into stressful immigrant experiences that affect one's perceived self-worth and capture psychosocial consequences and social disadvantage left out by conventional socioeconomic measures.

  3. Linear mixed-effects modeling approach to FMRI group analysis

    PubMed Central

    Chen, Gang; Saad, Ziad S.; Britton, Jennifer C.; Pine, Daniel S.; Cox, Robert W.

    2013-01-01

    Conventional group analysis is usually performed with Student-type t-test, regression, or standard AN(C)OVA in which the variance–covariance matrix is presumed to have a simple structure. Some correction approaches are adopted when assumptions about the covariance structure is violated. However, as experiments are designed with different degrees of sophistication, these traditional methods can become cumbersome, or even be unable to handle the situation at hand. For example, most current FMRI software packages have difficulty analyzing the following scenarios at group level: (1) taking within-subject variability into account when there are effect estimates from multiple runs or sessions; (2) continuous explanatory variables (covariates) modeling in the presence of a within-subject (repeated measures) factor, multiple subject-grouping (between-subjects) factors, or the mixture of both; (3) subject-specific adjustments in covariate modeling; (4) group analysis with estimation of hemodynamic response (HDR) function by multiple basis functions; (5) various cases of missing data in longitudinal studies; and (6) group studies involving family members or twins. Here we present a linear mixed-effects modeling (LME) methodology that extends the conventional group analysis approach to analyze many complicated cases, including the six prototypes delineated above, whose analyses would be otherwise either difficult or unfeasible under traditional frameworks such as AN(C)OVA and general linear model (GLM). In addition, the strength of the LME framework lies in its flexibility to model and estimate the variance–covariance structures for both random effects and residuals. The intraclass correlation (ICC) values can be easily obtained with an LME model with crossed random effects, even at the presence of confounding fixed effects. The simulations of one prototypical scenario indicate that the LME modeling keeps a balance between the control for false positives and the sensitivity for activation detection. The importance of hypothesis formulation is also illustrated in the simulations. Comparisons with alternative group analysis approaches and the limitations of LME are discussed in details. PMID:23376789

  4. Linear mixed-effects modeling approach to FMRI group analysis.

    PubMed

    Chen, Gang; Saad, Ziad S; Britton, Jennifer C; Pine, Daniel S; Cox, Robert W

    2013-06-01

    Conventional group analysis is usually performed with Student-type t-test, regression, or standard AN(C)OVA in which the variance-covariance matrix is presumed to have a simple structure. Some correction approaches are adopted when assumptions about the covariance structure is violated. However, as experiments are designed with different degrees of sophistication, these traditional methods can become cumbersome, or even be unable to handle the situation at hand. For example, most current FMRI software packages have difficulty analyzing the following scenarios at group level: (1) taking within-subject variability into account when there are effect estimates from multiple runs or sessions; (2) continuous explanatory variables (covariates) modeling in the presence of a within-subject (repeated measures) factor, multiple subject-grouping (between-subjects) factors, or the mixture of both; (3) subject-specific adjustments in covariate modeling; (4) group analysis with estimation of hemodynamic response (HDR) function by multiple basis functions; (5) various cases of missing data in longitudinal studies; and (6) group studies involving family members or twins. Here we present a linear mixed-effects modeling (LME) methodology that extends the conventional group analysis approach to analyze many complicated cases, including the six prototypes delineated above, whose analyses would be otherwise either difficult or unfeasible under traditional frameworks such as AN(C)OVA and general linear model (GLM). In addition, the strength of the LME framework lies in its flexibility to model and estimate the variance-covariance structures for both random effects and residuals. The intraclass correlation (ICC) values can be easily obtained with an LME model with crossed random effects, even at the presence of confounding fixed effects. The simulations of one prototypical scenario indicate that the LME modeling keeps a balance between the control for false positives and the sensitivity for activation detection. The importance of hypothesis formulation is also illustrated in the simulations. Comparisons with alternative group analysis approaches and the limitations of LME are discussed in details. Published by Elsevier Inc.

  5. Do Mixed-Flora Preoperative Urine Cultures Matter?

    PubMed

    Polin, Michael R; Kawasaki, Amie; Amundsen, Cindy L; Weidner, Alison C; Siddiqui, Nazema Y

    2017-06-01

    To determine whether mixed-flora preoperative urine cultures, as compared with no-growth preoperative urine cultures, are associated with a higher prevalence of postoperative urinary tract infections (UTIs). This was a retrospective cohort study. Women who underwent urogynecologic surgery were included if their preoperative clean-catch urine culture result was mixed flora or no growth. Women were excluded if they received postoperative antibiotics for reasons other than treatment of a UTI. Women were divided into two cohorts based on preoperative urine culture results-mixed flora or no growth; the prevalence of postoperative UTI was compared between cohorts. Baseline characteristics were compared using χ 2 or Student t tests. A logistic regression analysis then was performed. We included 282 women who were predominantly postmenopausal, white, and overweight. There were many concomitant procedures; 46% underwent a midurethral sling procedure and 68% underwent pelvic organ prolapse surgery. Preoperative urine cultures resulted as mixed flora in 192 (68%) and no growth in 90 (32%) patients. Overall, 14% were treated for a UTI postoperatively. There was no difference in the proportion of patients treated for a postoperative UTI between the two cohorts (25 mixed flora vs 13 no growth, P = 0.77). These results remained when controlling for potentially confounding variables in a logistic regression model (adjusted odds ratio 0.92, 95% confidence interval 0.43-1.96). In women with mixed-flora compared with no-growth preoperative urine cultures, there were no differences in the prevalence of postoperative UTI. The clinical practice of interpreting mixed-flora cultures as negative is appropriate.

  6. Sensitivity of Chemical Shift-Encoded Fat Quantification to Calibration of Fat MR Spectrum

    PubMed Central

    Wang, Xiaoke; Hernando, Diego; Reeder, Scott B.

    2015-01-01

    Purpose To evaluate the impact of different fat spectral models on proton density fat-fraction (PDFF) quantification using chemical shift-encoded (CSE) MRI. Material and Methods Simulations and in vivo imaging were performed. In a simulation study, spectral models of fat were compared pairwise. Comparison of magnitude fitting and mixed fitting was performed over a range of echo times and fat fractions. In vivo acquisitions from 41 patients were reconstructed using 7 published spectral models of fat. T2-corrected STEAM-MRS was used as reference. Results Simulations demonstrate that imperfectly calibrated spectral models of fat result in biases that depend on echo times and fat fraction. Mixed fitting is more robust against this bias than magnitude fitting. Multi-peak spectral models showed much smaller differences among themselves than when compared to the single-peak spectral model. In vivo studies show all multi-peak models agree better (for mixed fitting, slope ranged from 0.967–1.045 using linear regression) with reference standard than the single-peak model (for mixed fitting, slope=0.76). Conclusion It is essential to use a multi-peak fat model for accurate quantification of fat with CSE-MRI. Further, fat quantification techniques using multi-peak fat models are comparable and no specific choice of spectral model is shown to be superior to the rest. PMID:25845713

  7. Bio hydrogen production from cassava starch by anaerobic mixed cultures: Multivariate statistical modeling

    NASA Astrophysics Data System (ADS)

    Tien, Hai Minh; Le, Kien Anh; Le, Phung Thi Kim

    2017-09-01

    Bio hydrogen is a sustainable energy resource due to its potentially higher efficiency of conversion to usable power, high energy efficiency and non-polluting nature resource. In this work, the experiments have been carried out to indicate the possibility of generating bio hydrogen as well as identifying effective factors and the optimum conditions from cassava starch. Experimental design was used to investigate the effect of operating temperature (37-43 °C), pH (6-7), and inoculums ratio (6-10 %) to the yield hydrogen production, the COD reduction and the ratio of volume of hydrogen production to COD reduction. The statistical analysis of the experiment indicated that the significant effects for the fermentation yield were the main effect of temperature, pH and inoculums ratio. The interaction effects between them seem not significant. The central composite design showed that the polynomial regression models were in good agreement with the experimental results. This result will be applied to enhance the process of cassava starch processing wastewater treatment.

  8. A Parameter Subset Selection Algorithm for Mixed-Effects Models

    DOE PAGES

    Schmidt, Kathleen L.; Smith, Ralph C.

    2016-01-01

    Mixed-effects models are commonly used to statistically model phenomena that include attributes associated with a population or general underlying mechanism as well as effects specific to individuals or components of the general mechanism. This can include individual effects associated with data from multiple experiments. However, the parameterizations used to incorporate the population and individual effects are often unidentifiable in the sense that parameters are not uniquely specified by the data. As a result, the current literature focuses on model selection, by which insensitive parameters are fixed or removed from the model. Model selection methods that employ information criteria are applicablemore » to both linear and nonlinear mixed-effects models, but such techniques are limited in that they are computationally prohibitive for large problems due to the number of possible models that must be tested. To limit the scope of possible models for model selection via information criteria, we introduce a parameter subset selection (PSS) algorithm for mixed-effects models, which orders the parameters by their significance. In conclusion, we provide examples to verify the effectiveness of the PSS algorithm and to test the performance of mixed-effects model selection that makes use of parameter subset selection.« less

  9. Identification of usual interstitial pneumonia pattern using RNA-Seq and machine learning: challenges and solutions.

    PubMed

    Choi, Yoonha; Liu, Tiffany Ting; Pankratz, Daniel G; Colby, Thomas V; Barth, Neil M; Lynch, David A; Walsh, P Sean; Raghu, Ganesh; Kennedy, Giulia C; Huang, Jing

    2018-05-09

    We developed a classifier using RNA sequencing data that identifies the usual interstitial pneumonia (UIP) pattern for the diagnosis of idiopathic pulmonary fibrosis. We addressed significant challenges, including limited sample size, biological and technical sample heterogeneity, and reagent and assay batch effects. We identified inter- and intra-patient heterogeneity, particularly within the non-UIP group. The models classified UIP on transbronchial biopsy samples with a receiver-operating characteristic area under the curve of ~ 0.9 in cross-validation. Using in silico mixed samples in training, we prospectively defined a decision boundary to optimize specificity at ≥85%. The penalized logistic regression model showed greater reproducibility across technical replicates and was chosen as the final model. The final model showed sensitivity of 70% and specificity of 88% in the test set. We demonstrated that the suggested methodologies appropriately addressed challenges of the sample size, disease heterogeneity and technical batch effects and developed a highly accurate and robust classifier leveraging RNA sequencing for the classification of UIP.

  10. Contributions of Kansas rangeland burning to ambient O3: Analysis of data from 2001 to 2016.

    PubMed

    Liu, Zifei; Liu, Yang; Murphy, James P; Maghirang, Ronaldo

    2018-03-15

    Prescribed range/pasture burning is a common practice in Kansas to enhance the nutritional value of native grasses and control invading weeds, trees, and brush. A major concern associated with the burning is the contribution of smoke to elevated ground level ambient ozone (O 3 ). The objective of this study is to estimate contributions of Kansas rangeland burning to ambient O 3 mixing ratios through regression analysis (1) between observed O 3 data and available satellite burn activity data from 2001 to 2016; and (2) between observed O 3 data and the smoke contributions to PM 2.5 which were resolved from receptor modeling. Positive correlations were observed between ambient O 3 levels and the acres burned each year estimated from satellite imagery. When burned acres in April were larger than or equal to 1.9 million, O 3 >70ppb occurred at least at one of the ten monitoring sites in Kansas. Statistical regression models of daily maximum 8-hour O 3 mixing ratios were developed at each of the ten monitoring sites using meteorological predictors. The O 3 model residuals that were not explained by the meteorological effect models were affected by PM 2.5 contributors including sulfate/industrial sources and emissions that generated secondary organic particles, such as rangeland burning, which were derived from receptor modeling. The average O 3 model residual on the high O 3 days in April was 21±9ppb, which was likely associated with smoke emissions from burning. Research will continue to obtain daily satellite burn activity data and to correlate burn data with daily O 3 data, so that modeling of O 3 levels can be improved under influences of daily burn activities. Less frequency of high O 3 days was observed in April since 2011, which may be partly due to implementation of the Flint Hills Smoke Management Plan which promoted better timing of burns. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. On-road heavy-duty diesel particulate matter emissions modeled using chassis dynamometer data.

    PubMed

    Kear, Tom; Niemeier, D A

    2006-12-15

    This study presents a model, derived from chassis dynamometer test data, for factors (operational correction factors, or OCFs) that correct (g/mi) heavy-duty diesel particle emission rates measured on standard test cycles for real-world conditions. Using a random effects mixed regression model with data from 531 tests of 34 heavy-duty vehicles from the Coordinating Research Council's E55/E59 research project, we specify a model with covariates that characterize high power transient driving, time spent idling, and average speed. Gram per mile particle emissions rates were negatively correlated with high power transient driving, average speed, and time idling. The new model is capable of predicting relative changes in g/mi on-road heavy-duty diesel particle emission rates for real-world driving conditions that are not reflected in the driving cycles used to test heavy-duty vehicles.

  12. Longitudinal data analysis in support of functional stability concepts for leachate management at closed municipal landfills

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gibbons, Robert D., E-mail: rdg@uchicago.edu; Morris, Jeremy W.F., E-mail: jmorris@geosyntec.com; Prucha, Christopher P., E-mail: cprucha@wm.com

    2014-09-15

    Highlights: • Longitudinal data analysis using a mixed-effects regression model. • Dataset consisted of a total of 1402 samples from 101 closed municipal landfills. • Target analytes and classes generally showed predictable degradation trends. • Validates historical studies focused on macro organic indicators such as BOD. • BOD can serve as “gateway” indicator for planning leachate management. - Abstract: Landfill functional stability provides a target that supports no environmental threat at the relevant point of exposure in the absence of active control systems. With respect to leachate management, this study investigates “gateway” indicators for functional stability in terms of themore » predictability of leachate characteristics, and thus potential threat to water quality posed by leachate emissions. Historical studies conducted on changes in municipal solid waste (MSW) leachate concentrations over time (longitudinal analysis) have concentrated on indicator compounds, primarily chemical oxygen demand (COD) and biochemical oxygen demand (BOD). However, validation of these studies using an expanded database and larger constituent sets has not been performed. This study evaluated leachate data using a mixed-effects regression model to determine the extent to which leachate constituent degradation can be predicted based on waste age or operational practices. The final dataset analyzed consisted of a total of 1402 samples from 101 MSW landfills. Results from the study indicated that all leachate constituents exhibit a decreasing trend with time in the post-closure period, with 16 of the 25 target analytes and aggregate classes exhibiting a statistically significant trend consistent with well-studied indicators such as BOD. Decreasing trends in BOD concentration after landfill closure can thus be considered representative of trends for many leachate constituents of concern.« less

  13. Reading is fundamentally similar across disparate writing systems: A systematic characterization of how words and characters influence eye movements in Chinese reading

    PubMed Central

    Li, Xingshan; Bicknell, Klinton; Liu, Pingping; Wei, Wei; Rayner, Keith

    2013-01-01

    While much previous work on reading in languages with alphabetic scripts has suggested that reading is word-based, reading in Chinese has been argued to be less reliant on words. This is primarily because in the Chinese writing system words are not spatially segmented, and characters are themselves complex visual objects. Here, we present a systematic characterization of the effects of a wide range of word and character properties on eye movements in Chinese reading, using a set of mixed-effects regression models. The results reveal a rich pattern of effects of the properties of the current, previous, and next words on a range of reading measures, which is strikingly similar to the pattern of effects of word properties reported in spaced alphabetic languages. This finding provides evidence that reading shares a word-based core and may be fundamentally similar across languages with highly dissimilar scripts. We show that these findings are robust to the inclusion of character properties in the regression models, and are equally reliable when dependent measures are defined in terms of characters rather than words, providing strong evidence that word properties have effects in Chinese reading above and beyond characters. This systematic characterization of the effects of word and character properties in Chinese advances our knowledge of the processes underlying reading and informs the future development of models of reading. More generally, however, this work suggests that differences in script may not alter the fundamental nature of reading. PMID:23834023

  14. Suicidality in pediatric bipolar disorder: predictor or outcome of family processes and mixed mood presentation?

    PubMed Central

    Algorta, Guillermo Pérez; Youngstrom, Eric A; Frazier, Thomas W; Freeman, Andrew J; Youngstrom, Jennifer Kogos; Findling, Robert L

    2011-01-01

    Objective Pediatric bipolar disorder (PBD) involves a potent combination of mood dysregulation and interpersonal processes, placing these youth at significantly greater risk of suicide. We examined the relationship between suicidal behavior, mood symptom presentation, family functioning, and quality of life (QoL) in youth with PBD. Methods Participants were 138 youths aged 5–18 years presenting to outpatient clinics with DSM-IV diagnoses of bipolar I disorder (n = 27), bipolar II disorder (n = 18), cyclothymic disorder (n = 48), and bipolar disorder not otherwise specified (n = 45). Results Twenty PBD patients had lifetime suicide attempts, 63 had past or current suicide ideation, and 55 were free of suicide ideation and attempts. Attempters were older than nonattempters. Suicide ideation and attempts were linked to higher depressive symptoms, and rates were even higher in youths meeting criteria for the mixed specifier proposed for DSM-5. Both suicide ideation and attempts were associated with lower youth QoL and poorer family functioning. Parent effects (with suicidality treated as outcome) and child effects (where suicide was the predictor of poor family functioning) showed equally strong evidence in regression models, even after adjusting for demographics. Conclusions These findings underscore the strong association between mixed features and suicidality in PBD, as well as the association between QoL, family functioning, and suicidality. It is possible that youths are not just a passive recipient of family processes, and their illness may play an active role in disrupting family functioning. Replication with longitudinal data and qualitative methods should investigate both child and parent effect models. PMID:21320255

  15. Suicidality in pediatric bipolar disorder: predictor or outcome of family processes and mixed mood presentation?

    PubMed

    Algorta, Guillermo Pérez; Youngstrom, Eric A; Frazier, Thomas W; Freeman, Andrew J; Youngstrom, Jennifer Kogos; Findling, Robert L

    2011-02-01

    Pediatric bipolar disorder (PBD) involves a potent combination of mood dysregulation and interpersonal processes, placing these youth at significantly greater risk of suicide. We examined the relationship between suicidal behavior, mood symptom presentation, family functioning, and quality of life (QoL) in youth with PBD. Participants were 138 youths aged 5-18 years presenting to outpatient clinics with DSM-IV diagnoses of bipolar I disorder (n=27), bipolar II disorder (n=18), cyclothymic disorder (n=48), and bipolar disorder not otherwise specified (n=45). Twenty PBD patients had lifetime suicide attempts, 63 had past or current suicide ideation, and 55 were free of suicide ideation and attempts. Attempters were older than nonattempters. Suicide ideation and attempts were linked to higher depressive symptoms, and rates were even higher in youths meeting criteria for the mixed specifier proposed for DSM-5. Both suicide ideation and attempts were associated with lower youth QoL and poorer family functioning. Parent effects (with suicidality treated as outcome) and child effects (where suicide was the predictor of poor family functioning) showed equally strong evidence in regression models, even after adjusting for demographics. These findings underscore the strong association between mixed features and suicidality in PBD, as well as the association between QoL, family functioning, and suicidality. It is possible that youths are not just a passive recipient of family processes, and their illness may play an active role in disrupting family functioning. Replication with longitudinal data and qualitative methods should investigate both child and parent effect models. © 2011 John Wiley and Sons A/S.

  16. Combining data visualization and statistical approaches for interpreting measurements and meta-data: Integrating heatmaps, variable clustering, and mixed regression models

    EPA Science Inventory

    The advent of new higher throughput analytical instrumentation has put a strain on interpreting and explaining the results from complex studies. Contemporary human, environmental, and biomonitoring data sets are comprised of tens or hundreds of analytes, multiple repeat measures...

  17. Effects of Precipitation on Ocean Mixed-Layer Temperature and Salinity as Simulated in a 2-D Coupled Ocean-Cloud Resolving Atmosphere Model

    NASA Technical Reports Server (NTRS)

    Li, Xiaofan; Sui, C.-H.; Lau, K-M.; Adamec, D.

    1999-01-01

    A two-dimensional coupled ocean-cloud resolving atmosphere model is used to investigate possible roles of convective scale ocean disturbances induced by atmospheric precipitation on ocean mixed-layer heat and salt budgets. The model couples a cloud resolving model with an embedded mixed layer-ocean circulation model. Five experiment are performed under imposed large-scale atmospheric forcing in terms of vertical velocity derived from the TOGA COARE observations during a selected seven-day period. The dominant variability of mixed-layer temperature and salinity are simulated by the coupled model with imposed large-scale forcing. The mixed-layer temperatures in the coupled experiments with 1-D and 2-D ocean models show similar variations when salinity effects are not included. When salinity effects are included, however, differences in the domain-mean mixed-layer salinity and temperature between coupled experiments with 1-D and 2-D ocean models could be as large as 0.3 PSU and 0.4 C respectively. Without fresh water effects, the nocturnal heat loss over ocean surface causes deep mixed layers and weak cooling rates so that the nocturnal mixed-layer temperatures tend to be horizontally-uniform. The fresh water flux, however, causes shallow mixed layers over convective areas while the nocturnal heat loss causes deep mixed layer over convection-free areas so that the mixed-layer temperatures have large horizontal fluctuations. Furthermore, fresh water flux exhibits larger spatial fluctuations than surface heat flux because heavy rainfall occurs over convective areas embedded in broad non-convective or clear areas, whereas diurnal signals over whole model areas yield high spatial correlation of surface heat flux. As a result, mixed-layer salinities contribute more to the density differences than do mixed-layer temperatures.

  18. No compelling positive association between ovarian hormones and wearing red clothing when using multinomial analyses.

    PubMed

    Blake, Khandis R; Dixson, Barnaby J W; O'Dean, Siobhan M; Denson, Thomas F

    2017-04-01

    Several studies report that wearing red clothing enhances women's attractiveness and signals sexual proceptivity to men. The associated hypothesis that women will choose to wear red clothing when fertility is highest, however, has received mixed support from empirical studies. One possible cause of these mixed findings may be methodological. The current study aimed to replicate recent findings suggesting a positive association between hormonal profiles associated with high fertility (high estradiol to progesterone ratios) and the likelihood of wearing red. We compared the effect of the estradiol to progesterone ratio on the probability of wearing: red versus non-red (binary logistic regression); red versus neutral, black, blue, green, orange, multi-color, and gray (multinomial logistic regression); and each of these same colors in separate binary models (e.g., green versus non-green). Red versus non-red analyses showed a positive trend between a high estradiol to progesterone ratio and wearing red, but the effect only arose for younger women and was not robust across samples. We found no compelling evidence for ovarian hormones increasing the probability of wearing red in the other analyses. However, we did find that the probability of wearing neutral was positively associated with the estradiol to progesterone ratio, though the effect did not reach conventional levels of statistical significance. Findings suggest that although ovarian hormones may affect younger women's preference for red clothing under some conditions, the effect is not robust when differentiating amongst other colors of clothing. In addition, the effect of ovarian hormones on clothing color preference may not be specific to the color red. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Mortality risk prediction in burn injury: Comparison of logistic regression with machine learning approaches.

    PubMed

    Stylianou, Neophytos; Akbarov, Artur; Kontopantelis, Evangelos; Buchan, Iain; Dunn, Ken W

    2015-08-01

    Predicting mortality from burn injury has traditionally employed logistic regression models. Alternative machine learning methods have been introduced in some areas of clinical prediction as the necessary software and computational facilities have become accessible. Here we compare logistic regression and machine learning predictions of mortality from burn. An established logistic mortality model was compared to machine learning methods (artificial neural network, support vector machine, random forests and naïve Bayes) using a population-based (England & Wales) case-cohort registry. Predictive evaluation used: area under the receiver operating characteristic curve; sensitivity; specificity; positive predictive value and Youden's index. All methods had comparable discriminatory abilities, similar sensitivities, specificities and positive predictive values. Although some machine learning methods performed marginally better than logistic regression the differences were seldom statistically significant and clinically insubstantial. Random forests were marginally better for high positive predictive value and reasonable sensitivity. Neural networks yielded slightly better prediction overall. Logistic regression gives an optimal mix of performance and interpretability. The established logistic regression model of burn mortality performs well against more complex alternatives. Clinical prediction with a small set of strong, stable, independent predictors is unlikely to gain much from machine learning outside specialist research contexts. Copyright © 2015 Elsevier Ltd and ISBI. All rights reserved.

  20. Extended Mixed-Efects Item Response Models with the MH-RM Algorithm

    ERIC Educational Resources Information Center

    Chalmers, R. Philip

    2015-01-01

    A mixed-effects item response theory (IRT) model is presented as a logical extension of the generalized linear mixed-effects modeling approach to formulating explanatory IRT models. Fixed and random coefficients in the extended model are estimated using a Metropolis-Hastings Robbins-Monro (MH-RM) stochastic imputation algorithm to accommodate for…

  1. Probe-specific mixed-model approach to detect copy number differences using multiplex ligation-dependent probe amplification (MLPA)

    PubMed Central

    González, Juan R; Carrasco, Josep L; Armengol, Lluís; Villatoro, Sergi; Jover, Lluís; Yasui, Yutaka; Estivill, Xavier

    2008-01-01

    Background MLPA method is a potentially useful semi-quantitative method to detect copy number alterations in targeted regions. In this paper, we propose a method for the normalization procedure based on a non-linear mixed-model, as well as a new approach for determining the statistical significance of altered probes based on linear mixed-model. This method establishes a threshold by using different tolerance intervals that accommodates the specific random error variability observed in each test sample. Results Through simulation studies we have shown that our proposed method outperforms two existing methods that are based on simple threshold rules or iterative regression. We have illustrated the method using a controlled MLPA assay in which targeted regions are variable in copy number in individuals suffering from different disorders such as Prader-Willi, DiGeorge or Autism showing the best performace. Conclusion Using the proposed mixed-model, we are able to determine thresholds to decide whether a region is altered. These threholds are specific for each individual, incorporating experimental variability, resulting in improved sensitivity and specificity as the examples with real data have revealed. PMID:18522760

  2. Stand level height-diameter mixed effects models: parameters fitted using loblolly pine but calibrated for sweetgum

    Treesearch

    Curtis L. Vanderschaaf

    2008-01-01

    Mixed effects models can be used to obtain site-specific parameters through the use of model calibration that often produces better predictions of independent data. This study examined whether parameters of a mixed effect height-diameter model estimated using loblolly pine plantation data but calibrated using sweetgum plantation data would produce reasonable...

  3. Estimation of Chinese surface NO2 concentrations combining satellite data and Land Use Regression

    NASA Astrophysics Data System (ADS)

    Anand, J.; Monks, P.

    2016-12-01

    Monitoring surface-level air quality is often limited by in-situ instrument placement and issues arising from harmonisation over long timescales. Satellite instruments can offer a synoptic view of regional pollution sources, but in many cases only a total or tropospheric column can be measured. In this work a new technique of estimating surface NO2 combining both satellite and in-situ data is presented, in which a Land Use Regression (LUR) model is used to create high resolution pollution maps based on known predictor variables such as population density, road networks, and land cover. By employing a mixed effects approach, it is possible to take advantage of the spatiotemporal variability in the satellite-derived column densities to account for daily and regional variations in surface NO2 caused by factors such as temperature, elevation, and wind advection. In this work, surface NO2 maps are modelled over the North China Plain and Pearl River Delta during high-pollution episodes by combining in-situ measurements and tropospheric columns from the Ozone Monitoring Instrument (OMI). The modelled concentrations show good agreement with in-situ data and surface NO2 concentrations derived from the MACC-II global reanalysis.

  4. Dough performance, quality and shelf life of flat bread supplemented with fractions of germinated date seed.

    PubMed

    Hejri-Zarifi, Sudiyeh; Ahmadian-Kouchaksaraei, Zahra; Pourfarzad, Amir; Khodaparast, Mohammad Hossein Haddad

    2014-12-01

    Germinated palm date seeds were milled into two fractions: germ and residue. Dough rheological characteristics, baking (specific volume and sensory evaluation), and textural properties (at first day and during storage for 5 days) were determined in Barbari flat bread. Germ and residue fractions were incorporated at various levels ranged in 0.5-3 g/100 g of wheat flour. Water absorption, arrival time and gelatination temperature were decreased by germ fraction but accompanied by an increasing effect on the mixing tolerance index and degree of softening in most levels. Although improvement in dough stability was monitored but specific volume of bread was not affected by both fractions. Texture analysis of bread samples during 5 days of storage indicated that both fractions of germinated date seeds were able to diminish bread staling. Avrami non-linear regression equation was chosen as useful mathematical model to properly study bread hardening kinetics. In addition, principal component analysis (PCA) allowed discriminating among dough and bread specialties. Partial least squares regression (PLSR) models were applied to determine the relationships between sensory and instrumental data.

  5. surrosurv: An R package for the evaluation of failure time surrogate endpoints in individual patient data meta-analyses of randomized clinical trials.

    PubMed

    Rotolo, Federico; Paoletti, Xavier; Michiels, Stefan

    2018-03-01

    Surrogate endpoints are attractive for use in clinical trials instead of well-established endpoints because of practical convenience. To validate a surrogate endpoint, two important measures can be estimated in a meta-analytic context when individual patient data are available: the R indiv 2 or the Kendall's τ at the individual level, and the R trial 2 at the trial level. We aimed at providing an R implementation of classical and well-established as well as more recent statistical methods for surrogacy assessment with failure time endpoints. We also intended incorporating utilities for model checking and visualization and data generating methods described in the literature to date. In the case of failure time endpoints, the classical approach is based on two steps. First, a Kendall's τ is estimated as measure of individual level surrogacy using a copula model. Then, the R trial 2 is computed via a linear regression of the estimated treatment effects; at this second step, the estimation uncertainty can be accounted for via measurement-error model or via weights. In addition to the classical approach, we recently developed an approach based on bivariate auxiliary Poisson models with individual random effects to measure the Kendall's τ and treatment-by-trial interactions to measure the R trial 2 . The most common data simulation models described in the literature are based on: copula models, mixed proportional hazard models, and mixture of half-normal and exponential random variables. The R package surrosurv implements the classical two-step method with Clayton, Plackett, and Hougaard copulas. It also allows to optionally adjusting the second-step linear regression for measurement-error. The mixed Poisson approach is implemented with different reduced models in addition to the full model. We present the package functions for estimating the surrogacy models, for checking their convergence, for performing leave-one-trial-out cross-validation, and for plotting the results. We illustrate their use in practice on individual patient data from a meta-analysis of 4069 patients with advanced gastric cancer from 20 trials of chemotherapy. The surrosurv package provides an R implementation of classical and recent statistical methods for surrogacy assessment of failure time endpoints. Flexible simulation functions are available to generate data according to the methods described in the literature. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Validation of ACG Case-mix for equitable resource allocation in Swedish primary health care.

    PubMed

    Zielinski, Andrzej; Kronogård, Maria; Lenhoff, Håkan; Halling, Anders

    2009-09-18

    Adequate resource allocation is an important factor to ensure equity in health care. Previous reimbursement models have been based on age, gender and socioeconomic factors. An explanatory model based on individual need of primary health care (PHC) has not yet been used in Sweden to allocate resources. The aim of this study was to examine to what extent the ACG case-mix system could explain concurrent costs in Swedish PHC. Diagnoses were obtained from electronic PHC records of inhabitants in Blekinge County (approx. 150,000) listed with public PHC (approx. 120,000) for three consecutive years, 2004-2006. The inhabitants were then classified into six different resource utilization bands (RUB) using the ACG case-mix system. The mean costs for primary health care were calculated for each RUB and year. Using linear regression models and log-cost as dependent variable the adjusted R2 was calculated in the unadjusted model (gender) and in consecutive models where age, listing with specific PHC and RUB were added. In an additional model the ACG groups were added. Gender, age and listing with specific PHC explained 14.48-14.88% of the variance in individual costs for PHC. By also adding information on level of co-morbidity, as measured by the ACG case-mix system, to specific PHC the adjusted R2 increased to 60.89-63.41%. The ACG case-mix system explains patient costs in primary care to a high degree. Age and gender are important explanatory factors, but most of the variance in concurrent patient costs was explained by the ACG case-mix system.

  7. Valid statistical approaches for analyzing sholl data: Mixed effects versus simple linear models.

    PubMed

    Wilson, Machelle D; Sethi, Sunjay; Lein, Pamela J; Keil, Kimberly P

    2017-03-01

    The Sholl technique is widely used to quantify dendritic morphology. Data from such studies, which typically sample multiple neurons per animal, are often analyzed using simple linear models. However, simple linear models fail to account for intra-class correlation that occurs with clustered data, which can lead to faulty inferences. Mixed effects models account for intra-class correlation that occurs with clustered data; thus, these models more accurately estimate the standard deviation of the parameter estimate, which produces more accurate p-values. While mixed models are not new, their use in neuroscience has lagged behind their use in other disciplines. A review of the published literature illustrates common mistakes in analyses of Sholl data. Analysis of Sholl data collected from Golgi-stained pyramidal neurons in the hippocampus of male and female mice using both simple linear and mixed effects models demonstrates that the p-values and standard deviations obtained using the simple linear models are biased downwards and lead to erroneous rejection of the null hypothesis in some analyses. The mixed effects approach more accurately models the true variability in the data set, which leads to correct inference. Mixed effects models avoid faulty inference in Sholl analysis of data sampled from multiple neurons per animal by accounting for intra-class correlation. Given the widespread practice in neuroscience of obtaining multiple measurements per subject, there is a critical need to apply mixed effects models more widely. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Gender differences in the causal direction between workplace harassment and drinking.

    PubMed

    Freels, Sally A; Richman, Judith A; Rospenda, Kathleen M

    2005-08-01

    Data from a longitudinal study of university employees across four waves is used to determine the extent to which workplace harassment predicts drinking or conversely the extent to which drinking predicts workplace harassment, and to address gender differences in these relationships. Mixed effects regression models are used to test the effects of 1) harassment at the previous wave on drinking at the current wave, adjusting for drinking at the previous wave, and 2) drinking at the previous wave on harassment at the current wave, adjusting for harassment at the previous wave. For males, drinking at the previous wave predicts sexual harassment at the current wave, whereas for females, sexual harassment at the previous wave predicts drinking at the current wave.

  9. Traditional Masculinity as a Risk Factor for Suicidal Ideation: Cross-Sectional and Prospective Evidence from a Study of Young Adults.

    PubMed

    Coleman, Daniel

    2015-01-01

    Traditional masculinity is hypothesized to be associated with suicidal ideation, and traditional masculinity is predicted to interact with stressors, intensifying suicidal ideation. Cross-sectional and prospective data from a study of 2,431 young adults was analyzed using hierarchical regression main effects and interaction models. Traditional masculinity was associated with suicidal ideation, second only in strength to depression, including when controlling for other risk factors. Prospective effects were substantially weaker. There was mixed evidence for traditional masculinity by stress interactions. The results provide preliminary support for the role of traditional masculinity in suicidal ideation, but the relationship should be tested in studies of suicide attempts and mortality. Implications for prevention and intervention are explored.

  10. Freedom Solo Versus Trifecta Bioprotheses: Clinical and Hemodynamic Evaluation after Propensity Score Matching.

    PubMed

    J Cerqueira, Rui; Melo, Renata; Moreira, Soraia; A Saraiva, Francisca; Andrade, Marta; Salgueiro, Elson; Almeida, Jorge; J Amorim, Mário; Pinho, Paulo; Lourenço, André; F Leite-Moreira, Adelino

    2017-01-01

    To compare stentless Freedom Solo and stented Trifecta aortic bioprostheses regarding hemodynamic profile, left ventricular mass regression, early and late postoperative outcomes and survival. Longitudinal cohort study of consecutive patients undergoing aortic valve replacement (from 2009 to 2016) with either Freedom Solo or Trifecta at one centre. Local databases and national records were queried. Postoperative echocardiography (3-6 months) was obtained for hemodynamic profile (mean transprosthetic gradient and effective orifice area) and left ventricle mass determination. After propensity score matching (21 covariates), Kaplan-Meier analysis and cumulative incidence analysis were performed for survival and combined outcome of structural valve deterioration and endocarditis, respectively. Hemodynamics and left ventricle mass regression were assessed by a mixed- -effects model including propensity score as a covariate. From a total sample of 397 Freedom Solo and 525 Trifecta patients with a median follow-up time of 4.0 (2.2- 6.0) and 2.4 (1.4-3.7) years, respectively, a matched sample of 329 pairs was obtained. Well-balanced matched groups showed no difference in survival (hazard ratio=1.04, 95% confidence interval=0.69-1.56) or cumulative hazards of combined outcome (subhazard ratio=0.54, 95% confidence interval=0.21-1.39). Although Trifecta showed improved hemodynamic profile compared to Freedom Solo, no differences were found in left ventricle mass regression. Trifecta has a slightly improved hemodynamic profile compared to Freedom Solo but this does not translate into differences in the extent of mass regression, postoperative outcomes or survival, which were good and comparable for both bioprostheses. Long-term follow-up is needed for comparisons with older models of bioprostheses.

  11. Breeding value accuracy estimates for growth traits using random regression and multi-trait models in Nelore cattle.

    PubMed

    Boligon, A A; Baldi, F; Mercadante, M E Z; Lobo, R B; Pereira, R J; Albuquerque, L G

    2011-06-28

    We quantified the potential increase in accuracy of expected breeding value for weights of Nelore cattle, from birth to mature age, using multi-trait and random regression models on Legendre polynomials and B-spline functions. A total of 87,712 weight records from 8144 females were used, recorded every three months from birth to mature age from the Nelore Brazil Program. For random regression analyses, all female weight records from birth to eight years of age (data set I) were considered. From this general data set, a subset was created (data set II), which included only nine weight records: at birth, weaning, 365 and 550 days of age, and 2, 3, 4, 5, and 6 years of age. Data set II was analyzed using random regression and multi-trait models. The model of analysis included the contemporary group as fixed effects and age of dam as a linear and quadratic covariable. In the random regression analyses, average growth trends were modeled using a cubic regression on orthogonal polynomials of age. Residual variances were modeled by a step function with five classes. Legendre polynomials of fourth and sixth order were utilized to model the direct genetic and animal permanent environmental effects, respectively, while third-order Legendre polynomials were considered for maternal genetic and maternal permanent environmental effects. Quadratic polynomials were applied to model all random effects in random regression models on B-spline functions. Direct genetic and animal permanent environmental effects were modeled using three segments or five coefficients, and genetic maternal and maternal permanent environmental effects were modeled with one segment or three coefficients in the random regression models on B-spline functions. For both data sets (I and II), animals ranked differently according to expected breeding value obtained by random regression or multi-trait models. With random regression models, the highest gains in accuracy were obtained at ages with a low number of weight records. The results indicate that random regression models provide more accurate expected breeding values than the traditionally finite multi-trait models. Thus, higher genetic responses are expected for beef cattle growth traits by replacing a multi-trait model with random regression models for genetic evaluation. B-spline functions could be applied as an alternative to Legendre polynomials to model covariance functions for weights from birth to mature age.

  12. Daily Kilometer-Scale MODIS Satellite Maps of PM2.5 Describe Wintertime Episodes

    NASA Technical Reports Server (NTRS)

    Chatfield, Robert B.; Sorek Hamer, Meytar; Lyapustin, Alexei; Wang, Yujie

    2017-01-01

    The San Joaquin Valley (SJV) suffers from severe health-endangering episodes of PM2.5 aerosol loadings in wintertime; episodes last approximately 5 days and differ in geographical distribution and composition. PM2.5 stations are scattered; consequently the use of remote sensing to map variable regional patterns of these varying respirable aerosol concentrations is desirable. High-precision AOT retrievals can capture column particulate loading. However,PM2.5 mapping is challenging due to several reasons: particularly thin mixed layers (ML) and thus relatively low aerosol optical thickness (AOT) close to current measurement limits, variable and a typical composition of the aerosols, and complex surface bidirectional reflectance. However, the West does present some advantages in analysis. Air basins are isolated from long-distance transport, and experience predominant strong meteorological subsidence. Thus these Western basin regions have fewer problematic cases of overriding aerosol layers detached from the surface. To counter such local overriding, Chu et al. have described an approach for the Eastern US, and He et al have described a synoptic classification approach useful in Shanghai. The Bay Area Air Quality Management District (BAAQMD) expands our experience with the use of AOT, with lower PM2.5 and several isolated sub-basins. We have prepared daily maps of episodes in each region. We present also a sequence of increasingly detailed statistical models, AOT initially appears to contribute little information; however, inclusion of weather information reveals its utility. Lyapustin and Wang's MultiAngle Implementation of Atmospheric Correction (MAIAC) retrieval for AOT provided the most useful operational remote sensing information for these regions. It provides high (1-km) spatial resolution maps and a high percentage of availability. Empirical regression methods have found that random effects regression models (aka mixed effects models, ME) employing AOT provide good estimates of ground PM2.5 concentrations.Here, we attempt to extend these methods and evaluate the usefulness of AOT with greater physical analysis, based on DISCOVER-AQ4 experience.

  13. Evaluation of bull fertility in dairy and beef cattle using cow field data.

    PubMed

    Berry, D P; Evans, R D; Mc Parland, S

    2011-01-01

    A successful outcome to a given service is a combination of both male and female fertility. Despite this, most national evaluations for fertility are generally confined to female fertility with evaluations for male fertility commonly undertaken by individual breeding organisations and generally not made public. The objective of this study was to define a pertinent male fertility trait for seasonal calving production systems, and to develop a multiple regression mixed model that may be used to evaluate male fertility at a national level. The data included in the study after editing consisted of 361,412 artificial inseminations from 206,683 cow-lactations (134,911 cows) in 2,843 commercial dairy and beef herds. Fixed effects associated with whether a successful pregnancy ensued (pregnant = 1) or not (pregnant = 0) from a given service were year by month of service, day of the week, days since calving, cow parity, level of calving difficulty experienced, whether or not the previous calving was associated with perinatal mortality, and age of the service bull at the date of insemination. Non-additive genetic effects such as heterosis and recombination loss as well as inbreeding level of the service bull, dam or mating were not associated with a successful pregnancy; there was no difference in pregnancy rate between fresh or frozen semen. Random effects included in the model were the additive genetic effect of the cow, as well as a within lactation and across lactation permanent environmental effect of the cow; pedigree group effects based on cow breed were also included via the relationship matrix. Temporal differences in the AI technician and service bull were also included as random effects. A difference in five percentage units in male fertility was evident between the average effects of different dairy and beef breeds. The correlation between raw pregnancy rates for bulls with more than 100 services (n = 431) and service bull solutions from the mixed model analysis was 0.66. The correlation between the raw pregnancy rates of 288 technicians with more than 100 services and their respective solutions from the mixed model was 0.35. These low to moderate correlations suggest considerable re-ranking among both service bulls and technicians and suggest possibly a benefit of using a statistical model to better estimate the performance of both service bulls and technicians. Copyright © 2011 Elsevier Inc. All rights reserved.

  14. Estimating the Prevalence of Childhood Obesity in Alaska Using Partial, Nonrandom Measurement Data

    PubMed Central

    Boles, Myde; Fink, Karol; Topol, Rebecca; Fenaughty, Andrea

    2016-01-01

    Although monitoring childhood obesity prevalence is critical for state public health programs to assess trends and the effectiveness of interventions, few states have comprehensive body mass index measurement systems in place. In some states, however, assorted school districts collect measurements on student height and weight as part of annual health screenings. To estimate childhood obesity prevalence in Alaska, we created a logistic regression model using such annual measurements along with public data on demographics and socioeconomic status. Our mixed-effects model-generated prevalence estimates validated well against weighted estimates, with 95% confidence intervals overlapping between methodologies among 7 of 8 participating school districts. Our methodology accounts for variation in school-level and student-level demographic factors across the state, and the approach we describe can be applied by other states that have existing nonrandom student measurement data to estimate childhood obesity prevalence. PMID:27010843

  15. Inferential Processing among Adequate and Struggling Adolescent Comprehenders and Relations to Reading Comprehension

    PubMed Central

    Barth, Amy E.; Barnes, Marcia; Francis, David J.; Vaughn, Sharon; York, Mary

    2015-01-01

    Separate mixed model analyses of variance (ANOVA) were conducted to examine the effect of textual distance on the accuracy and speed of text consistency judgments among adequate and struggling comprehenders across grades 6–12 (n = 1203). Multiple regressions examined whether accuracy in text consistency judgments uniquely accounted for variance in comprehension. Results suggest that there is considerable growth across the middle and high school years, particularly for adequate comprehenders in those text integration processes that maintain local coherence. Accuracy in text consistency judgments accounted for significant unique variance for passage-level, but not sentence-level comprehension, particularly for adequate comprehenders. PMID:26166946

  16. Association Between Cardiovascular and Intraocular Pressure Changes in a 14-day 6 deg Head Down Tilt (HDT) Bed Rest Study: Possible Implications in Retinal Anatomy

    NASA Technical Reports Server (NTRS)

    Cromwell, R. L.; Zanello, S. B.; Yarbough, P. O.; Ploutz-Snyder, R.; Taibbi, G.; Brewer, J. L.; Vizzeri, G.

    2013-01-01

    Mean IOP significantly increased while at 6deg HDT and returned towards pre-bed rest values upon leaving bed rest. While mean IOP increased during bed rest, it remained within the normal limits for subject safety. A diuretic shift and cardiovascular deconditioning occurs during in-bed rest, as expected. There was no demonstrable correlation between the largest change in IOP (pre/post) and cardiovascular measure changes (pre/post). Additional mixed effects linear regression modeling may reveal some subclinical physiological changes that might assist in describing the VIIP syndrome pathophysiology.

  17. Evaluation of the Food and Agriculture Sector Criticality Assessment Tool (FASCAT) and the Collected Data.

    PubMed

    Huff, Andrew G; Hodges, James S; Kennedy, Shaun P; Kircher, Amy

    2015-08-01

    To protect and secure food resources for the United States, it is crucial to have a method to compare food systems' criticality. In 2007, the U.S. government funded development of the Food and Agriculture Sector Criticality Assessment Tool (FASCAT) to determine which food and agriculture systems were most critical to the nation. FASCAT was developed in a collaborative process involving government officials and food industry subject matter experts (SMEs). After development, data were collected using FASCAT to quantify threats, vulnerabilities, consequences, and the impacts on the United States from failure of evaluated food and agriculture systems. To examine FASCAT's utility, linear regression models were used to determine: (1) which groups of questions posed in FASCAT were better predictors of cumulative criticality scores; (2) whether the items included in FASCAT's criticality method or the smaller subset of FASCAT items included in DHS's risk analysis method predicted similar criticality scores. Akaike's information criterion was used to determine which regression models best described criticality, and a mixed linear model was used to shrink estimates of criticality for individual food and agriculture systems. The results indicated that: (1) some of the questions used in FASCAT strongly predicted food or agriculture system criticality; (2) the FASCAT criticality formula was a stronger predictor of criticality compared to the DHS risk formula; (3) the cumulative criticality formula predicted criticality more strongly than weighted criticality formula; and (4) the mixed linear regression model did not change the rank-order of food and agriculture system criticality to a large degree. © 2015 Society for Risk Analysis.

  18. Pattern or process? Evaluating the peninsula effect as a determinant of species richness in coastal dune forests

    PubMed Central

    Olivier, Pieter I.; van Aarde, Rudi J.

    2017-01-01

    The peninsula effect predicts that the number of species should decline from the base of a peninsula to the tip. However, evidence for the peninsula effect is ambiguous, as different analytical methods, study taxa, and variations in local habitat or regional climatic conditions influence conclusions on its presence. We address this uncertainty by using two analytical methods to investigate the peninsula effect in three taxa that occupy different trophic levels: trees, millipedes, and birds. We surveyed 81 tree quadrants, 102 millipede transects, and 152 bird points within 150 km of coastal dune forest that resemble a habitat peninsula along the northeast coast of South Africa. We then used spatial (trend surface analyses) and non-spatial regressions (generalized linear mixed models) to test for the presence of the peninsula effect in each of the three taxa. We also used linear mixed models to test if climate (temperature and precipitation) and/or local habitat conditions (water availability associated with topography and landscape structural variables) could explain gradients in species richness. Non-spatial models suggest that the peninsula effect was present in all three taxa. However, spatial models indicated that only bird species richness declined from the peninsula base to the peninsula tip. Millipede species richness increased near the centre of the peninsula, while tree species richness increased near the tip. Local habitat conditions explained species richness patterns of birds and trees, but not of millipedes, regardless of model type. Our study highlights the idiosyncrasies associated with the peninsula effect—conclusions on the presence of the peninsula effect depend on the analytical methods used and the taxon studied. The peninsula effect might therefore be better suited to describe a species richness pattern where the number of species decline from a broader habitat base to a narrow tip, rather than a process that drives species richness. PMID:28376096

  19. Effects of desiccation stress on adult female longevity in Aedes aegypti and Ae. albopictus (Diptera: Culicidae): results of a systematic review and pooled survival analysis.

    PubMed

    Schmidt, Chris A; Comeau, Genevieve; Monaghan, Andrew J; Williamson, Daniel J; Ernst, Kacey C

    2018-04-25

    Transmission dynamics of mosquito-borne viruses such as dengue, Zika and chikungunya are affected by the longevity of the adult female mosquito. Environmental conditions influence the survival of adult female Aedes mosquitoes, the primary vectors of these viruses. While the association of temperature with Aedes mortality has been relatively well-explored, the role of humidity is less established. The current study's goals were to compile knowledge of the influence of humidity on adult survival in the important vector species Aedes aegypti and Ae. albopictus, and to quantify this relationship while accounting for the modifying effect of temperature. We performed a systematic literature review to identify studies reporting experimental results informing the relationships among temperature, humidity and adult survival in Ae. aegypti and Ae. albopictus. Using a novel simulation approach to harmonize disparate survival data, we conducted pooled survival analyses via stratified and mixed effects Cox regression to estimate temperature-dependent associations between humidity and mortality risk for these species across a broad range of temperatures and vapor pressure deficits. After screening 1517 articles, 17 studies (one in semi-field and 16 in laboratory settings) met inclusion criteria and collectively reported results for 192 survival experiments. We review and synthesize relevant findings from these studies. Our stratified model estimated a strong temperature-dependent association of humidity with mortality in both species, though associations were not significant for Ae. albopictus in the mixed effects model. Lowest mortality risks were estimated around 27.5 °C and 21.5 °C for Ae. aegypti and Ae. albopictus, respectively, and mortality increased non-linearly with decreasing humidity. Aedes aegypti had a survival advantage relative to Ae. albopictus in the stratified model under most conditions, but species differences were not significant in the mixed effects model. Humidity is associated with mortality risk in adult female Ae. aegypti in controlled settings. Data are limited at low humidities, temperature extremes, and for Ae. albopictus, and further studies should be conducted to reduce model uncertainty in these contexts. Desiccation is likely an important factor in Aedes population dynamics and viral transmission in arid regions. Models of Aedes-borne virus transmission may be improved by more comprehensively representing humidity effects.

  20. Kinship and nonrelative foster care: the effect of placement type on child well-being.

    PubMed

    Font, Sarah A

    2014-01-01

    This study uses a national sample of 1,215 children, ages 6-17, who spent some time in formal kinship or nonrelative foster care to identify the effect of placement type on academic achievement, behavior, and health. Several identification strategies are used to reduce selection bias, including ordinary least squares, change score models, propensity score weighting, and instrumental variables regression. The results consistently estimate a negative effect of kin placements on reading scores, but kin placements appear to have no effect on child health, and findings on children's math and cognitive skills test scores and behavioral problems are mixed. Estimated declines in both academic achievement and behavioral problems are concentrated among children who are lower functioning at baseline. © 2014 The Author. Child Development © 2014 Society for Research in Child Development, Inc.

  1. Predicting seasonal influenza transmission using functional regression models with temporal dependence.

    PubMed

    Oviedo de la Fuente, Manuel; Febrero-Bande, Manuel; Muñoz, María Pilar; Domínguez, Àngela

    2018-01-01

    This paper proposes a novel approach that uses meteorological information to predict the incidence of influenza in Galicia (Spain). It extends the Generalized Least Squares (GLS) methods in the multivariate framework to functional regression models with dependent errors. These kinds of models are useful when the recent history of the incidence of influenza are readily unavailable (for instance, by delays on the communication with health informants) and the prediction must be constructed by correcting the temporal dependence of the residuals and using more accessible variables. A simulation study shows that the GLS estimators render better estimations of the parameters associated with the regression model than they do with the classical models. They obtain extremely good results from the predictive point of view and are competitive with the classical time series approach for the incidence of influenza. An iterative version of the GLS estimator (called iGLS) was also proposed that can help to model complicated dependence structures. For constructing the model, the distance correlation measure [Formula: see text] was employed to select relevant information to predict influenza rate mixing multivariate and functional variables. These kinds of models are extremely useful to health managers in allocating resources in advance to manage influenza epidemics.

  2. Mixed geographically weighted regression (MGWR) model with weighted adaptive bi-square for case of dengue hemorrhagic fever (DHF) in Surakarta

    NASA Astrophysics Data System (ADS)

    Astuti, H. N.; Saputro, D. R. S.; Susanti, Y.

    2017-06-01

    MGWR model is combination of linear regression model and geographically weighted regression (GWR) model, therefore, MGWR model could produce parameter estimation that had global parameter estimation, and other parameter that had local parameter in accordance with its observation location. The linkage between locations of the observations expressed in specific weighting that is adaptive bi-square. In this research, we applied MGWR model with weighted adaptive bi-square for case of DHF in Surakarta based on 10 factors (variables) that is supposed to influence the number of people with DHF. The observation unit in the research is 51 urban villages and the variables are number of inhabitants, number of houses, house index, many public places, number of healthy homes, number of Posyandu, area width, level population density, welfare of the family, and high-region. Based on this research, we obtained 51 MGWR models. The MGWR model were divided into 4 groups with significant variable is house index as a global variable, an area width as a local variable and the remaining variables vary in each. Global variables are variables that significantly affect all locations, while local variables are variables that significantly affect a specific location.

  3. Boosted Regression Tree Models to Explain Watershed ...

    EPA Pesticide Factsheets

    Boosted regression tree (BRT) models were developed to quantify the nonlinear relationships between landscape variables and nutrient concentrations in a mesoscale mixed land cover watershed during base-flow conditions. Factors that affect instream biological components, based on the Index of Biotic Integrity (IBI), were also analyzed. Seasonal BRT models at two spatial scales (watershed and riparian buffered area [RBA]) for nitrite-nitrate (NO2-NO3), total Kjeldahl nitrogen, and total phosphorus (TP) and annual models for the IBI score were developed. Two primary factors — location within the watershed (i.e., geographic position, stream order, and distance to a downstream confluence) and percentage of urban land cover (both scales) — emerged as important predictor variables. Latitude and longitude interacted with other factors to explain the variability in summer NO2-NO3 concentrations and IBI scores. BRT results also suggested that location might be associated with indicators of sources (e.g., land cover), runoff potential (e.g., soil and topographic factors), and processes not easily represented by spatial data indicators. Runoff indicators (e.g., Hydrological Soil Group D and Topographic Wetness Indices) explained a substantial portion of the variability in nutrient concentrations as did point sources for TP in the summer months. The results from our BRT approach can help prioritize areas for nutrient management in mixed-use and heavily impacted watershed

  4. Real longitudinal data analysis for real people: building a good enough mixed model.

    PubMed

    Cheng, Jing; Edwards, Lloyd J; Maldonado-Molina, Mildred M; Komro, Kelli A; Muller, Keith E

    2010-02-20

    Mixed effects models have become very popular, especially for the analysis of longitudinal data. One challenge is how to build a good enough mixed effects model. In this paper, we suggest a systematic strategy for addressing this challenge and introduce easily implemented practical advice to build mixed effects models. A general discussion of the scientific strategies motivates the recommended five-step procedure for model fitting. The need to model both the mean structure (the fixed effects) and the covariance structure (the random effects and residual error) creates the fundamental flexibility and complexity. Some very practical recommendations help to conquer the complexity. Centering, scaling, and full-rank coding of all the predictor variables radically improve the chances of convergence, computing speed, and numerical accuracy. Applying computational and assumption diagnostics from univariate linear models to mixed model data greatly helps to detect and solve the related computational problems. Applying computational and assumption diagnostics from the univariate linear models to the mixed model data can radically improve the chances of convergence, computing speed, and numerical accuracy. The approach helps to fit more general covariance models, a crucial step in selecting a credible covariance model needed for defensible inference. A detailed demonstration of the recommended strategy is based on data from a published study of a randomized trial of a multicomponent intervention to prevent young adolescents' alcohol use. The discussion highlights a need for additional covariance and inference tools for mixed models. The discussion also highlights the need for improving how scientists and statisticians teach and review the process of finding a good enough mixed model. (c) 2009 John Wiley & Sons, Ltd.

  5. Scale model performance test investigation of mixed flow exhaust systems for an energy efficient engine /E3/ propulsion system

    NASA Technical Reports Server (NTRS)

    Kuchar, A. P.; Chamberlin, R.

    1983-01-01

    As part of the NASA Energy Efficient Engine program, scale-model performance tests of a mixed flow exhaust system were conducted. The tests were used to evaluate the performance of exhaust system mixers for high-bypass, mixed-flow turbofan engines. The tests indicated that: (1) mixer penetration has the most significant affect on both mixing effectiveness and mixer pressure loss; (2) mixing/tailpipe length improves mixing effectiveness; (3) gap reduction between the mixer and centerbody increases high mixing effectiveness; (4) mixer cross-sectional shape influences mixing effectiveness; (5) lobe number affects mixing degree; and (6) mixer aerodynamic pressure losses are a function of secondary flows inherent to the lobed mixer concept.

  6. EEG spectral analysis in primary insomnia: NREM period effects and sex differences.

    PubMed

    Buysse, Daniel J; Germain, Anne; Hall, Martica L; Moul, Douglas E; Nofzinger, Eric A; Begley, Amy; Ehlers, Cindy L; Thompson, Wesley; Kupfer, David J

    2008-12-01

    To compare NREM EEG power in primary insomnia (PI) and good sleeper controls (GSC), examining both sex and NREM period effects; to examine relationships between EEG power, clinical characteristics, and self-reports of sleep. Overnight polysomnographic study. Sleep laboratory. PI (n=48; 29 women) and GSC (n=25; 15 women). None. EEG power from 1-50 Hz was computed for artifact-free sleep epochs across four NREM periods. Repeated measures mixed effect models contrasted differences between groups, EEG frequency bands, and NREM periods. EEG power-frequency curves were modeled using regressions with fixed knot splines. Mixed models showed no significant group (PI vs. GSC) differences; marginal sex differences (delta and theta bands); significant differences across NREM periods; and group*sex and group*NREM period interactions, particularly in beta and gamma bands. Modeled power-frequency curves showed no group difference in whole-night NREM, but PI had higher power than GSC from 18-40 Hz in the first NREM period. Among women, PI had higher 16 to 44-Hz power than GSC in the first 3 NREM periods, and higher 3 to 5-Hz power across all NREM periods. PI and GSC men showed no consistent differences in EEG power. High-frequency EEG power was not related to clinical or subjective sleep ratings in PI. Women with PI, but not men, showed increased high-frequency and low-frequency EEG activity during NREM sleep compared to GSC, particularly in early NREM periods. Sex and NREM period may moderate quantitative EEG differences between PI and GSC.

  7. The effectiveness of nutrition education and labeling in Dutch supermarkets.

    PubMed

    Steenhuis, Ingrid; van Assema, Patricia; van Breukelen, Gerard; Glanz, Karen

    2004-01-01

    Nutrition education and labeling may help consumers to eat less fat. The purpose of this study is to assess the effect of nutrition education with and without shelf labeling on reduced fat intake in Dutch supermarkets. The design consisted of a randomized, pretest-posttest, experimental control group design. In total, 2203 clients of 13 supermarkets were included in the sample. Total fat intake of clients and behavioral determinants of eating less fat were measured by a questionnaire. A mixed-effect regression model was used for the analysis. No significant effects were found for the educational intervention, alone or with the labeling, on total fat intake and the psychosocial determinants of eating less fat. Nutrition education and labeling of low-fat food products in supermarkets did not prove to be effective strategies. The fact that the supermarket is a highly competitive environment may have accounted for this lack of effect.

  8. Multivariate meta-analysis using individual participant data

    PubMed Central

    Riley, R. D.; Price, M. J.; Jackson, D.; Wardle, M.; Gueyffier, F.; Wang, J.; Staessen, J. A.; White, I. R.

    2016-01-01

    When combining results across related studies, a multivariate meta-analysis allows the joint synthesis of correlated effect estimates from multiple outcomes. Joint synthesis can improve efficiency over separate univariate syntheses, may reduce selective outcome reporting biases, and enables joint inferences across the outcomes. A common issue is that within-study correlations needed to fit the multivariate model are unknown from published reports. However, provision of individual participant data (IPD) allows them to be calculated directly. Here, we illustrate how to use IPD to estimate within-study correlations, using a joint linear regression for multiple continuous outcomes and bootstrapping methods for binary, survival and mixed outcomes. In a meta-analysis of 10 hypertension trials, we then show how these methods enable multivariate meta-analysis to address novel clinical questions about continuous, survival and binary outcomes; treatment–covariate interactions; adjusted risk/prognostic factor effects; longitudinal data; prognostic and multiparameter models; and multiple treatment comparisons. Both frequentist and Bayesian approaches are applied, with example software code provided to derive within-study correlations and to fit the models. PMID:26099484

  9. A preliminary case-mix classification system for Medicare home health clients.

    PubMed

    Branch, L G; Goldberg, H B

    1993-04-01

    In this study, a hierarchical case-mix model was developed for grouping Medicare home health beneficiaries homogeneously, based on the allowed charges for their home care. Based on information from a two-page form from 2,830 clients from ten states and using the classification and regression trees method, a four-component model was developed that yielded 11 case-mix groups and explained 22% of the variance for the test sample of 1,929 clients. The four components are rehabilitation, special care, skilled-nurse monitoring, and paralysis; each are categorized as present or absent. The range of mean-allowed charges for the 11 groups in the total sample was $473 to $2,562 with a mean of $847. Of the six groups with mean charges above $1,000, none exceeded 5.2% of clients; thus, the high-cost groups are relatively rare.

  10. Estimating the numerical diapycnal mixing in an eddy-permitting ocean model

    NASA Astrophysics Data System (ADS)

    Megann, Alex

    2018-01-01

    Constant-depth (or "z-coordinate") ocean models such as MOM4 and NEMO have become the de facto workhorse in climate applications, having attained a mature stage in their development and are well understood. A generic shortcoming of this model type, however, is a tendency for the advection scheme to produce unphysical numerical diapycnal mixing, which in some cases may exceed the explicitly parameterised mixing based on observed physical processes, and this is likely to have effects on the long-timescale evolution of the simulated climate system. Despite this, few quantitative estimates have been made of the typical magnitude of the effective diapycnal diffusivity due to numerical mixing in these models. GO5.0 is a recent ocean model configuration developed jointly by the UK Met Office and the National Oceanography Centre. It forms the ocean component of the GC2 climate model, and is closely related to the ocean component of the UKESM1 Earth System Model, the UK's contribution to the CMIP6 model intercomparison. GO5.0 uses version 3.4 of the NEMO model, on the ORCA025 global tripolar grid. An approach to quantifying the numerical diapycnal mixing in this model, based on the isopycnal watermass analysis of Lee et al. (2002), is described, and the estimates thereby obtained of the effective diapycnal diffusivity in GO5.0 are compared with the values of the explicit diffusivity used by the model. It is shown that the effective mixing in this model configuration is up to an order of magnitude higher than the explicit mixing in much of the ocean interior, implying that mixing in the model below the mixed layer is largely dominated by numerical mixing. This is likely to have adverse consequences for the representation of heat uptake in climate models intended for decadal climate projections, and in particular is highly relevant to the interpretation of the CMIP6 class of climate models, many of which use constant-depth ocean models at ¼° resolution

  11. Exposure to lithium through drinking water and calcium homeostasis during pregnancy: A longitudinal study.

    PubMed

    Harari, Florencia; Åkesson, Agneta; Casimiro, Esperanza; Lu, Ying; Vahter, Marie

    2016-05-01

    There is increasing evidence of adverse health effects due to elevated lithium exposure through drinking water but the impact on calcium homeostasis is unknown. This study aimed at elucidating if lithium exposure through drinking water during pregnancy may impair the maternal calcium homeostasis. In a population-based mother-child cohort in the Argentinean Andes (n=178), with elevated lithium concentrations in the drinking water (5-1660μg/L), blood lithium concentrations (correlating significantly with lithium in water, urine and plasma) were measured repeatedly during pregnancy by inductively coupled plasma mass spectrometry and used as exposure biomarker. Markers of calcium homeostasis included: plasma 25-hydroxyvitamin D3, serum parathyroid hormone (PTH), and calcium, phosphorus and magnesium concentrations in serum and urine. The median maternal blood lithium concentration was 25μg/L (range 1.9-145). In multivariable-adjusted mixed-effects linear regression models, blood lithium was inversely associated with 25-hydroxyvitamin D3 (-6.1nmol/L [95%CI -9.5; -2.6] for a 25μg/L increment in blood lithium). The estimate increased markedly with increasing percentiles of 25-hydroxyvitamin D3. In multivariable-adjusted mixed-effects logistic regression models, the odds ratio of having 25-hydroxyvitamin D3<30nmol/L (19% of the women) was 4.6 (95%CI 1.1; 19.3) for a 25μg/L increment in blood lithium. Blood lithium was also positively associated with serum magnesium, but not with serum calcium and PTH, and inversely associated with urinary calcium and magnesium. In conclusion, our study suggests that lithium exposure through drinking water during pregnancy may impair the calcium homeostasis, particularly vitamin D. The results reinforce the need for better control of lithium in drinking water, including bottled water. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  12. Evaluating risk factors for endemic human Salmonella Enteritidis infections with different phage types in Ontario, Canada using multinomial logistic regression and a case-case study approach

    PubMed Central

    2012-01-01

    Background Identifying risk factors for Salmonella Enteritidis (SE) infections in Ontario will assist public health authorities to design effective control and prevention programs to reduce the burden of SE infections. Our research objective was to identify risk factors for acquiring SE infections with various phage types (PT) in Ontario, Canada. We hypothesized that certain PTs (e.g., PT8 and PT13a) have specific risk factors for infection. Methods Our study included endemic SE cases with various PTs whose isolates were submitted to the Public Health Laboratory-Toronto from January 20th to August 12th, 2011. Cases were interviewed using a standardized questionnaire that included questions pertaining to demographics, travel history, clinical symptoms, contact with animals, and food exposures. A multinomial logistic regression method using the Generalized Linear Latent and Mixed Model procedure and a case-case study design were used to identify risk factors for acquiring SE infections with various PTs in Ontario, Canada. In the multinomial logistic regression model, the outcome variable had three categories representing human infections caused by SE PT8, PT13a, and all other SE PTs (i.e., non-PT8/non-PT13a) as a referent category to which the other two categories were compared. Results In the multivariable model, SE PT8 was positively associated with contact with dogs (OR=2.17, 95% CI 1.01-4.68) and negatively associated with pepper consumption (OR=0.35, 95% CI 0.13-0.94), after adjusting for age categories and gender, and using exposure periods and health regions as random effects to account for clustering. Conclusions Our study findings offer interesting hypotheses about the role of phage type-specific risk factors. Multinomial logistic regression analysis and the case-case study approach are novel methodologies to evaluate associations among SE infections with different PTs and various risk factors. PMID:23057531

  13. Modeling optimal treatment strategies in a heterogeneous mixing model.

    PubMed

    Choe, Seoyun; Lee, Sunmi

    2015-11-25

    Many mathematical models assume random or homogeneous mixing for various infectious diseases. Homogeneous mixing can be generalized to mathematical models with multi-patches or age structure by incorporating contact matrices to capture the dynamics of the heterogeneously mixing populations. Contact or mixing patterns are difficult to measure in many infectious diseases including influenza. Mixing patterns are considered to be one of the critical factors for infectious disease modeling. A two-group influenza model is considered to evaluate the impact of heterogeneous mixing on the influenza transmission dynamics. Heterogeneous mixing between two groups with two different activity levels includes proportionate mixing, preferred mixing and like-with-like mixing. Furthermore, the optimal control problem is formulated in this two-group influenza model to identify the group-specific optimal treatment strategies at a minimal cost. We investigate group-specific optimal treatment strategies under various mixing scenarios. The characteristics of the two-group influenza dynamics have been investigated in terms of the basic reproduction number and the final epidemic size under various mixing scenarios. As the mixing patterns become proportionate mixing, the basic reproduction number becomes smaller; however, the final epidemic size becomes larger. This is due to the fact that the number of infected people increases only slightly in the higher activity level group, while the number of infected people increases more significantly in the lower activity level group. Our results indicate that more intensive treatment of both groups at the early stage is the most effective treatment regardless of the mixing scenario. However, proportionate mixing requires more treated cases for all combinations of different group activity levels and group population sizes. Mixing patterns can play a critical role in the effectiveness of optimal treatments. As the mixing becomes more like-with-like mixing, treating the higher activity group in the population is almost as effective as treating the entire populations since it reduces the number of disease cases effectively but only requires similar treatments. The gain becomes more pronounced as the basic reproduction number increases. This can be a critical issue which must be considered for future pandemic influenza interventions, especially when there are limited resources available.

  14. Development, Discouragement, or Diversion? New Evidence on the Effects of College Remediation Policy

    ERIC Educational Resources Information Center

    Scott-Clayton, Judith; Rodriguez, Olga

    2015-01-01

    Half of all college students will enroll in remedial coursework but evidence of its effectiveness is mixed. Using a regression-discontinuity design with data from a large urban community college system, we make three contributions. First, we articulate three alternative hypotheses regarding the potential impacts of remediation. Second, in addition…

  15. Neighborhood income and major depressive disorder in a large Dutch population: results from the LifeLines Cohort study.

    PubMed

    Klijs, Bart; Kibele, Eva U B; Ellwardt, Lea; Zuidersma, Marij; Stolk, Ronald P; Wittek, Rafael P M; Mendes de Leon, Carlos M; Smidt, Nynke

    2016-08-11

    Previous studies are inconclusive on whether poor socioeconomic conditions in the neighborhood are associated with major depressive disorder. Furthermore, conceptual models that relate neighborhood conditions to depressive disorder have not been evaluated using empirical data. In this study, we investigated whether neighborhood income is associated with major depressive episodes. We evaluated three conceptual models. Conceptual model 1: The association between neighborhood income and major depressive episodes is explained by diseases, lifestyle factors, stress and social participation. Conceptual model 2: A low individual income relative to the mean income in the neighborhood is associated with major depressive episodes. Conceptual model 3: A high income of the neighborhood buffers the effect of a low individual income on major depressive disorder. We used adult baseline data from the LifeLines Cohort Study (N = 71,058) linked with data on the participants' neighborhoods from Statistics Netherlands. The current presence of a major depressive episode was assessed using the MINI neuropsychiatric interview. The association between neighborhood income and major depressive episodes was assessed using a mixed effect logistic regression model adjusted for age, sex, marital status, education and individual (equalized) income. This regression model was sequentially adjusted for lifestyle factors, chronic diseases, stress, and social participation to evaluate conceptual model 1. To evaluate conceptual models 2 and 3, an interaction term for neighborhood income*individual income was included. Multivariate regression analysis showed that a low neighborhood income is associated with major depressive episodes (OR (95 % CI): 0.82 (0.73;0.93)). Adjustment for diseases, lifestyle factors, stress, and social participation attenuated this association (ORs (95 % CI): 0.90 (0.79;1.01)). Low individual income was also associated with major depressive episodes (OR (95 % CI): 0.72 (0.68;0.76)). The interaction of individual income*neighborhood income on major depressive episodes was not significant (p = 0.173). Living in a low-income neighborhood is associated with major depressive episodes. Our results suggest that this association is partly explained by chronic diseases, lifestyle factors, stress and poor social participation, and thereby partly confirm conceptual model 1. Our results do not support conceptual model 2 and 3.

  16. Pharmacodynamics and effectiveness of topical nitroglycerin at lowering blood pressure during autonomic dysreflexia.

    PubMed

    Solinsky, R; Bunnell, A E; Linsenmeyer, T A; Svircev, J N; Engle, A; Burns, S P

    2017-10-01

    Secondary analysis of prospectively collected observational data assessing the safety of an autonomic dysreflexia (AD) management protocol. To estimate the time to onset of action, time to full clinical effect (sustained systolic blood pressure (SBP) <160 mm Hg) and effectiveness of nitroglycerin ointment at lowering blood pressure for patients with spinal cord injuries experiencing AD. US Veterans Affairs inpatient spinal cord injury (SCI) unit. Episodes of AD recalcitrant to nonpharmacologic interventions that were given one to two inches of 2% topical nitroglycerin ointment were recorded. Pharmacodynamics as above and predictive characteristics (through a mixed multivariate logistic regression model) were calculated. A total of 260 episodes of pharmacologically managed AD were recorded in 56 individuals. Time to onset of action for nitroglycerin ointment was 9-11 min. Time to full clinical effect was 14-20 min. Topical nitroglycerin controlled SBP <160 mm Hg in 77.3% of pharmacologically treated AD episodes with the remainder requiring additional antihypertensive medications. A multivariate logistic regression model was unable to identify statistically significant factors to predict which patients would respond to nitroglycerin ointment (odds ratios 95% confidence intervals 0.29-4.93). The adverse event rate, entirely attributed to hypotension, was 3.6% with seven of the eight events resolving with close observation alone and one episode requiring normal saline. Nitroglycerin ointment has a rapid onset of action and time to full clinical effect with high efficacy and relatively low adverse event rate for patients with SCI experiencing AD.

  17. Proximal sensing of within-field mycotoxin variation - a case study in Northeast Germany

    NASA Astrophysics Data System (ADS)

    Mueller, Marina; Koszinski, Sylvia; Bangs, Donovan E.; Wehrhan, Marc; Ullrich, Andreas; Verch, Gernot; Brenning, Alexander

    2017-04-01

    Fusarium head blight is a global problem in agriculture that results in yield losses and, more seriously, produces harmful toxins that enter the food chain. This study (Müller et al. 2016) builds on previous research identifying within-field humidity as an important factor in infection processes by Fusarium fungi and its mycotoxin production. Environmental variables describing topographic control of humidity (topographic wetness index TWI), soil texture and related moisture by electrical conductivity (ECa), and canopy humidity by density (normalized difference vegetation index NDVI) were explored in their relationship to the fungal infection rates and mycotoxin accumulation. Field studies at four sites in NE German Lowlands were performed in 2009 and 2011. Sites differed slightly in soil textural properties and, more pronounced, mean annual precipitation. Sampling positions were selected by usage of NDVI values range from remote sensing data base. Environmental data included elevation and its derivatives like topographic wetness index (TWI) from a DEM25, electrical conductivity distribution maps (5 x 5 m) based on EM38DD survey and, orthorectified RapidEye imagery (5 x 5 m2) with resulting NDVI distributions across the field sites. Grain yield, fungal infection rate, microbiological characteristics and mycotoxin accumulation were determined at 223 field positions. Statistical analysis incorporated Spearman rank order correlations and three regression methods (censored regression models, linear mixed-effects models and spatial linear mixed-effects models). Kriging was used to visualize the spatial patterns and trends. All analyses were performed by R software. In 2011, a more wet year than 2009, high Fusarium infection rates and a high concentration of mycotoxins were stated, the latter once exceeding EU threshold values. For both years associations between NDVI and microbiological variables were found, but being more pronounced and more often significant for 2011 than for 2009. ECa was only related with deoxynivalenol concentration (DON) and abundance of trichothecene-producing fusaria (tri6 gene copy number) in 2009 and, to DON and zearalenone (ZEA) in 2011. In contrast to former findings no correlations were found between TWI and mycological data. NDVI and, less importantly, ECa were essential predictors in all three regression models. Mycotoxins DON and ZEA distribution maps could be interpolated by kriging with internal drift based on these two proximal predictor variables. Providing spatial patterns of mycotoxigenic fungi and its effects may be used to infer mycotoxin hot spots, to develop models for risk assessment and, to manage plant and crop treatments or even harvest. Müller, M.E.H., Koszinski, S., Bangs, D.E. et al. Precision Agric (2016) 17: 698. doi:10.1007/s11119-016-9444-y

  18. The effects of mixed layer dynamics on ice growth in the central Arctic

    NASA Astrophysics Data System (ADS)

    Kitchen, Bruce R.

    1992-09-01

    The thermodynamic model of Thorndike (1992) is coupled to a one dimensional, two layer ocean entrainment model to study the effect of mixed layer dynamics on ice growth and the variation in the ocean heat flux into the ice due to mixed layer entrainment. Model simulations show the existence of a negative feedback between the ice growth and the mixed layer entrainment, and that the underlying ocean salinity has a greater effect on the ocean beat flux than does variations in the underlying ocean temperature. Model simulations for a variety of surface forcings and initial conditions demonstrate the need to include mixed layer dynamics for realistic ice prediction in the arctic.

  19. Modelling of upper ocean mixing by wave-induced turbulence

    NASA Astrophysics Data System (ADS)

    Ghantous, Malek; Babanin, Alexander

    2013-04-01

    Mixing of the upper ocean affects the sea surface temperature by bringing deeper, colder water to the surface. Because even small changes in the surface temperature can have a large impact on weather and climate, accurately determining the rate of mixing is of central importance for forecasting. Although there are several mixing mechanisms, one that has until recently been overlooked is the effect of turbulence generated by non-breaking, wind-generated surface waves. Lately there has been a lot of interest in introducing this mechanism into models, and real gains have been made in terms of increased fidelity to observational data. However our knowledge of the mechanism is still incomplete. We indicate areas where we believe the existing models need refinement and propose an alternative model. We use two of the models to demonstrate the effect on the mixed layer of wave-induced turbulence by applying them to a one-dimensional mixing model and a stable temperature profile. Our modelling experiment suggests a strong effect on sea surface temperature due to non-breaking wave-induced turbulent mixing.

  20. Using FTIR spectroscopy to model alkaline pretreatment and enzymatic saccharification of six lignocellulosic biomasses.

    PubMed

    Sills, Deborah L; Gossett, James M

    2012-04-01

    Fourier transform infrared, attenuated total reflectance (FTIR-ATR) spectroscopy, combined with partial least squares (PLS) regression, accurately predicted solubilization of plant cell wall constituents and NaOH consumption through pretreatment, and overall sugar productions from combined pretreatment and enzymatic hydrolysis. PLS regression models were constructed by correlating FTIR spectra of six raw biomasses (two switchgrass cultivars, big bluestem grass, a low-impact, high-diversity mixture of prairie biomasses, mixed hardwood, and corn stover), plus alkali loading in pretreatment, to nine dependent variables: glucose, xylose, lignin, and total solids solubilized in pretreatment; NaOH consumed in pretreatment; and overall glucose and xylose conversions and yields from combined pretreatment and enzymatic hydrolysis. PLS models predicted the dependent variables with the following values of coefficient of determination for cross-validation (Q²): 0.86 for glucose, 0.90 for xylose, 0.79 for lignin, and 0.85 for total solids solubilized in pretreatment; 0.83 for alkali consumption; 0.93 for glucose conversion, 0.94 for xylose conversion, and 0.88 for glucose and xylose yields. The sugar yield models are noteworthy for their ability to predict overall saccharification through combined pretreatment and enzymatic hydrolysis per mass dry untreated solids without a priori knowledge of the composition of solids. All wavenumbers with significant variable-important-for-projection (VIP) scores have been attributed to chemical features of lignocellulose, demonstrating the models were based on real chemical information. These models suggest that PLS regression can be applied to FTIR-ATR spectra of raw biomasses to rapidly predict effects of pretreatment on solids and on subsequent enzymatic hydrolysis. Copyright © 2011 Wiley Periodicals, Inc.

  1. Nondestructive prediction of the drug content of an aspirin suppository by near-infrared spectroscopy.

    PubMed

    Otsuka, Eri; Abe, Hiroyuki; Aburada, Masaki; Otsuka, Makoto

    2010-07-01

    A suppository dosage form has a rapid effect on therapeutics, because it dissolves in the rectum, is absorbed in the bloodstream, and passes the hepatic metabolism. However, the dosage form is unstable, because a suppository is made in a semisolid form, and so it is not easy to mix the bulk drug powder in the base. This article describes a nondestructive method of determining the drug content of suppositories using near-infrared spectrometry (NIR) combined with chemometrics. Suppositories (aspirin content: 1.8, 2.7, 4.5, 7.3, and 9.1%, w/w) were produced by mixing an aspirin bulk powder with hard fat at 50 degrees C and pouring the melt mixture into a plastic mold (2.25 mL). NIR spectra of 12 calibration and 12 validation sample sets were recorded 5 times. A total of 60 spectral data were used as a calibration set to establish a calibration model to predict drug content with a partial least-squares (PLS) regression analysis. NIR data of the suppository samples were divided into two wave number ranges, 4000-12500 cm(-1) (LR), and 5900-6300 cm(-1) (SR). Calibration models for the aspirin content of the suppositories were calculated based on LR and SR ranges of second-derivative NIR spectra using PLS. The models for LR and SR consisted of five and one principal components (PC), respectively. The plots of predicted values against actual values gave a straight line with regression coefficient constants of 0.9531 and 0.9749, respectively. The mean bias and mean accuracy of the calibration models were calculated based on the SR of variation data sets, and were lower than those of LR, respectively. Limiting the wave number of spectral data sets is useful to help understand the calibration model because of noise cancellation and to measure objective functions.

  2. Synergistic drug-cytokine induction of hepatocellular death as an in vitro approach for the study of inflammation-associated idiosyncratic drug hepatotoxicity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cosgrove, Benjamin D.; Cell Decision Processes Center, Massachusetts Institute of Technology, Cambridge, MA; Biotechnology Process Engineering Center, Massachusetts Institute of Technology, Cambridge, MA

    Idiosyncratic drug hepatotoxicity represents a major problem in drug development due to inadequacy of current preclinical screening assays, but recently established rodent models utilizing bacterial LPS co-administration to induce an inflammatory background have successfully reproduced idiosyncratic hepatotoxicity signatures for certain drugs. However, the low-throughput nature of these models renders them problematic for employment as preclinical screening assays. Here, we present an analogous, but high-throughput, in vitro approach in which drugs are administered to a variety of cell types (primary human and rat hepatocytes and the human HepG2 cell line) across a landscape of inflammatory contexts containing LPS and cytokines TNF,more » IFN{gamma}, IL-1{alpha}, and IL-6. Using this assay, we observed drug-cytokine hepatotoxicity synergies for multiple idiosyncratic hepatotoxicants (ranitidine, trovafloxacin, nefazodone, nimesulide, clarithromycin, and telithromycin) but not for their corresponding non-toxic control compounds (famotidine, levofloxacin, buspirone, and aspirin). A larger compendium of drug-cytokine mix hepatotoxicity data demonstrated that hepatotoxicity synergies were largely potentiated by TNF, IL-1{alpha}, and LPS within the context of multi-cytokine mixes. Then, we screened 90 drugs for cytokine synergy in human hepatocytes and found that a significantly larger fraction of the idiosyncratic hepatotoxicants (19%) synergized with a single cytokine mix than did the non-hepatotoxic drugs (3%). Finally, we used an information theoretic approach to ascertain especially informative subsets of cytokine treatments for most highly effective construction of regression models for drug- and cytokine mix-induced hepatotoxicities across these cell systems. Our results suggest that this drug-cytokine co-treatment approach could provide a useful preclinical tool for investigating inflammation-associated idiosyncratic drug hepatotoxicity.« less

  3. Mixed effects versus fixed effects modelling of binary data with inter-subject variability.

    PubMed

    Murphy, Valda; Dunne, Adrian

    2005-04-01

    The question of whether or not a mixed effects model is required when modelling binary data with inter-subject variability and within subject correlation was reported in this journal by Yano et al. (J. Pharmacokin. Pharmacodyn. 28:389-412 [2001]). That report used simulation experiments to demonstrate that, under certain circumstances, the use of a fixed effects model produced more accurate estimates of the fixed effect parameters than those produced by a mixed effects model. The Laplace approximation to the likelihood was used when fitting the mixed effects model. This paper repeats one of those simulation experiments, with two binary observations recorded for every subject, and uses both the Laplace and the adaptive Gaussian quadrature approximations to the likelihood when fitting the mixed effects model. The results show that the estimates produced using the Laplace approximation include a small number of extreme outliers. This was not the case when using the adaptive Gaussian quadrature approximation. Further examination of these outliers shows that they arise in situations in which the Laplace approximation seriously overestimates the likelihood in an extreme region of the parameter space. It is also demonstrated that when the number of observations per subject is increased from two to three, the estimates based on the Laplace approximation no longer include any extreme outliers. The root mean squared error is a combination of the bias and the variability of the estimates. Increasing the sample size is known to reduce the variability of an estimator with a consequent reduction in its root mean squared error. The estimates based on the fixed effects model are inherently biased and this bias acts as a lower bound for the root mean squared error of these estimates. Consequently, it might be expected that for data sets with a greater number of subjects the estimates based on the mixed effects model would be more accurate than those based on the fixed effects model. This is borne out by the results of a further simulation experiment with an increased number of subjects in each set of data. The difference in the interpretation of the parameters of the fixed and mixed effects models is discussed. It is demonstrated that the mixed effects model and parameter estimates can be used to estimate the parameters of the fixed effects model but not vice versa.

  4. Many-level multilevel structural equation modeling: An efficient evaluation strategy.

    PubMed

    Pritikin, Joshua N; Hunter, Michael D; von Oertzen, Timo; Brick, Timothy R; Boker, Steven M

    2017-01-01

    Structural equation models are increasingly used for clustered or multilevel data in cases where mixed regression is too inflexible. However, when there are many levels of nesting, these models can become difficult to estimate. We introduce a novel evaluation strategy, Rampart, that applies an orthogonal rotation to the parts of a model that conform to commonly met requirements. This rotation dramatically simplifies fit evaluation in a way that becomes more potent as the size of the data set increases. We validate and evaluate the implementation using a 3-level latent regression simulation study. Then we analyze data from a state-wide child behavioral health measure administered by the Oklahoma Department of Human Services. We demonstrate the efficiency of Rampart compared to other similar software using a latent factor model with a 5-level decomposition of latent variance. Rampart is implemented in OpenMx, a free and open source software.

  5. An R2 statistic for fixed effects in the linear mixed model.

    PubMed

    Edwards, Lloyd J; Muller, Keith E; Wolfinger, Russell D; Qaqish, Bahjat F; Schabenberger, Oliver

    2008-12-20

    Statisticians most often use the linear mixed model to analyze Gaussian longitudinal data. The value and familiarity of the R(2) statistic in the linear univariate model naturally creates great interest in extending it to the linear mixed model. We define and describe how to compute a model R(2) statistic for the linear mixed model by using only a single model. The proposed R(2) statistic measures multivariate association between the repeated outcomes and the fixed effects in the linear mixed model. The R(2) statistic arises as a 1-1 function of an appropriate F statistic for testing all fixed effects (except typically the intercept) in a full model. The statistic compares the full model with a null model with all fixed effects deleted (except typically the intercept) while retaining exactly the same covariance structure. Furthermore, the R(2) statistic leads immediately to a natural definition of a partial R(2) statistic. A mixed model in which ethnicity gives a very small p-value as a longitudinal predictor of blood pressure (BP) compellingly illustrates the value of the statistic. In sharp contrast to the extreme p-value, a very small R(2) , a measure of statistical and scientific importance, indicates that ethnicity has an almost negligible association with the repeated BP outcomes for the study.

  6. A statistical human rib cage geometry model accounting for variations by age, sex, stature and body mass index.

    PubMed

    Shi, Xiangnan; Cao, Libo; Reed, Matthew P; Rupp, Jonathan D; Hoff, Carrie N; Hu, Jingwen

    2014-07-18

    In this study, we developed a statistical rib cage geometry model accounting for variations by age, sex, stature and body mass index (BMI). Thorax CT scans were obtained from 89 subjects approximately evenly distributed among 8 age groups and both sexes. Threshold-based CT image segmentation was performed to extract the rib geometries, and a total of 464 landmarks on the left side of each subject׳s ribcage were collected to describe the size and shape of the rib cage as well as the cross-sectional geometry of each rib. Principal component analysis and multivariate regression analysis were conducted to predict rib cage geometry as a function of age, sex, stature, and BMI, all of which showed strong effects on rib cage geometry. Except for BMI, all parameters also showed significant effects on rib cross-sectional area using a linear mixed model. This statistical rib cage geometry model can serve as a geometric basis for developing a parametric human thorax finite element model for quantifying effects from different human attributes on thoracic injury risks. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Evaluating lake phytoplanton response to human disturbance and climate change using satellite imagery

    NASA Astrophysics Data System (ADS)

    Novitski, Linda Nicole

    Accurate and cost-effective assessment of water quality is necessary for proper management and restoration of inland water bodies susceptible to algal bloom conditions. Landsat and MODIS satellite images were used to create chlorophyll and Secchi depth predictive models for algal assessment of Great Lakes and other lakes of the United States. Boosted regression tree (BRT) models using satellite imagery are both easy to use and can have high predictive performance. BRT models inferred chlorophyll and Secchi depth more accurately than linear regression models for all study locations. Inferred chlorophyll of inner Saginaw Bay was subsequently used in ecological models to help understand the ecological drivers of algal blooms in this ecosystem. For small lakes (non-Great Lakes), the best national Landsat model for ln-transformed chlorophyll was the BRT model and had a cross-validation R 2 of 0.44 and a 0.76 ln-transformed mug/L RMSE. The best national Landsat model for Secchi depth was also a BRT model that had an adjusted R 2 of 0.52 and a 0.80 m RMSE. We assessed the applicability of the national chlorophyll model for ecological analysis by comparing the total phosphorus- chlorophyll relationship with chlorophyll determined from sampling or remote sensing, which showed the total phosphorus- chlorophyll relationship had an adjusted R2 = 0.58 and 1.02 ln-transformed microg/L RMSE with sampled chlorophyll versus an adjusted R2 = 0.56 and 1.04 ln-transformed mug/L RMSE with chlorophyll determined by the boosted regression tree remote sensing model. For Great Lakes models, the MODIS BRT model predicted chlorophyll most accurately of the three BRT models and compared well to other models in the literature. BRT models for Landsat ETM+ and TM more accurately predicted chlorophyll than the MSS model and all Landsat models had favorable results when compared to the literature. BRT chlorophyll predictive models are useful in helping to understand historical, long-term chlorophyll trends and to inform us of how climate change may alter ecosystems in the future. In inner Saginaw Bay, annual average and upper quartile Landsat-derived chlorophyll decreased from 7.44 to 6.62 and 8.38 to 7.38 mug/L between 1973-1982, and annual upper quartile of 8-day phosphorus loads increased from 5.29 to 6.79 kg between 1973-2012. Simple linear and multiple regression models and Wilcoxon rank test results for MODIS and Landsat-derived chlorophyll indicate that distance from the Saginaw River mouth influences chlorophyll concentration in Saginaw Bay; Landsat-derived surface water temperature and phosphorus loads to a lesser extent. Mixed-effect models for MODIS and Landsat-derived chlorophyll were related to chlorophyll better than simple linear or multiple regressions, with random effects of pixel and sample date contributing substantially to predictive power (NSE=0.35-70), though phosphorus loads, distance to Saginaw River mouth, and water were significant fixed effects in most models. Water quality changes in Saginaw Bay between 1972-2012 were influenced by phosphorus loading and distance to the Saginaw River's mouth. Landsat and MODIS imagery are complementary platforms because of the long history of Landsat operation and the finer spectral resolution and image frequency of MODIS. Remote sensing water quality assessment tools can be valuable for limnological study, ecological assessment, and water resource management.

  8. Does the presence and mix of destinations influence walking and physical activity?

    PubMed

    King, Tania Louise; Bentley, Rebecca Jodie; Thornton, Lukar Ezra; Kavanagh, Anne Marie

    2015-09-17

    Local destinations have previously been shown to be associated with higher levels of both physical activity and walking, but little is known about how specific destinations are related to activity. This study examined associations between types and mix of destinations and both walking frequency and physical activity. The sample consisted of 2349 residents of 50 urban areas in metropolitan Melbourne, Australia. Using geographic information systems, seven types of destinations were examined within three network buffers (400 meters (m), 800 m and 1200 m) of respondents' homes. Multilevel logistic regression was used to estimate effects of each destination type separately, as well as destination mix (variety) on: 1) likelihood of walking for at least 10 min ≥ 4/week; 2) likelihood of being sufficiently physically active. All models were adjusted for potential confounders. All destination types were positively associated with walking frequency, and physical activity sufficiency at 1200 m. For the 800 m buffer: all destinations except transport stops and sports facilities were significantly associated with physical activity, while all except sports facilities were associated with walking frequency; at 400 m, café/takeaway food stores and transport stops were associated with walking frequency and physical activity sufficiency, and sports facilities were also associated with walking frequency. Strongest associations for both outcomes were observed for community resources and small food stores at both 800 m and 1200 m. For all buffer distances: greater mix was associated with greater walking frequency. Inclusion of walking in physical activity models led to attenuation of associations. The results of this analysis indicate that there is an association between destinations and both walking frequency and physical activity sufficiency, and that this relationship varies by destination type. It is also clear that greater mix of destinations positively predicts walking frequency and physical activity sufficiency.

  9. Model Selection with the Linear Mixed Model for Longitudinal Data

    ERIC Educational Resources Information Center

    Ryoo, Ji Hoon

    2011-01-01

    Model building or model selection with linear mixed models (LMMs) is complicated by the presence of both fixed effects and random effects. The fixed effects structure and random effects structure are codependent, so selection of one influences the other. Most presentations of LMM in psychology and education are based on a multilevel or…

  10. Application of mixing-controlled combustion models to gas turbine combustors

    NASA Technical Reports Server (NTRS)

    Nguyen, Hung Lee

    1990-01-01

    Gas emissions were studied from a staged Rich Burn/Quick-Quench Mix/Lean Burn combustor were studied under test conditions encountered in High Speed Research engines. The combustor was modeled at conditions corresponding to different engine power settings, and the effect of primary dilution airflow split on emissions, flow field, flame size and shape, and combustion intensity, as well as mixing, was investigated. A mathematical model was developed from a two-equation model of turbulence, a quasi-global kinetics mechanism for the oxidation of propane, and the Zeldovich mechanism for nitric oxide formation. A mixing-controlled combustion model was used to account for turbulent mixing effects on the chemical reaction rate. This model assumes that the chemical reaction rate is much faster than the turbulent mixing rate.

  11. Quantitation of active pharmaceutical ingredients and excipients in powder blends using designed multivariate calibration models by near-infrared spectroscopy.

    PubMed

    Li, Weiyong; Worosila, Gregory D

    2005-05-13

    This research note demonstrates the simultaneous quantitation of a pharmaceutical active ingredient and three excipients in a simulated powder blend containing acetaminophen, Prosolv and Crospovidone. An experimental design approach was used in generating a 5-level (%, w/w) calibration sample set that included 125 samples. The samples were prepared by weighing suitable amount of powders into separate 20-mL scintillation vials and were mixed manually. Partial least squares (PLS) regression was used in calibration model development. The models generated accurate results for quantitation of Crospovidone (at 5%, w/w) and magnesium stearate (at 0.5%, w/w). Further testing of the models demonstrated that the 2-level models were as effective as the 5-level ones, which reduced the calibration sample number to 50. The models had a small bias for quantitation of acetaminophen (at 30%, w/w) and Prosolv (at 64.5%, w/w) in the blend. The implication of the bias is discussed.

  12. Modeling the soil water retention curves of soil-gravel mixtures with regression method on the Loess Plateau of China.

    PubMed

    Wang, Huifang; Xiao, Bo; Wang, Mingyu; Shao, Ming'an

    2013-01-01

    Soil water retention parameters are critical to quantify flow and solute transport in vadose zone, while the presence of rock fragments remarkably increases their variability. Therefore a novel method for determining water retention parameters of soil-gravel mixtures is required. The procedure to generate such a model is based firstly on the determination of the quantitative relationship between the content of rock fragments and the effective saturation of soil-gravel mixtures, and then on the integration of this relationship with former analytical equations of water retention curves (WRCs). In order to find such relationships, laboratory experiments were conducted to determine WRCs of soil-gravel mixtures obtained with a clay loam soil mixed with shale clasts or pebbles in three size groups with various gravel contents. Data showed that the effective saturation of the soil-gravel mixtures with the same kind of gravels within one size group had a linear relation with gravel contents, and had a power relation with the bulk density of samples at any pressure head. Revised formulas for water retention properties of the soil-gravel mixtures are proposed to establish the water retention curved surface models of the power-linear functions and power functions. The analysis of the parameters obtained by regression and validation of the empirical models showed that they were acceptable by using either the measured data of separate gravel size group or those of all the three gravel size groups having a large size range. Furthermore, the regression parameters of the curved surfaces for the soil-gravel mixtures with a large range of gravel content could be determined from the water retention data of the soil-gravel mixtures with two representative gravel contents or bulk densities. Such revised water retention models are potentially applicable in regional or large scale field investigations of significantly heterogeneous media, where various gravel sizes and different gravel contents are present.

  13. Modeling the Soil Water Retention Curves of Soil-Gravel Mixtures with Regression Method on the Loess Plateau of China

    PubMed Central

    Wang, Huifang; Xiao, Bo; Wang, Mingyu; Shao, Ming'an

    2013-01-01

    Soil water retention parameters are critical to quantify flow and solute transport in vadose zone, while the presence of rock fragments remarkably increases their variability. Therefore a novel method for determining water retention parameters of soil-gravel mixtures is required. The procedure to generate such a model is based firstly on the determination of the quantitative relationship between the content of rock fragments and the effective saturation of soil-gravel mixtures, and then on the integration of this relationship with former analytical equations of water retention curves (WRCs). In order to find such relationships, laboratory experiments were conducted to determine WRCs of soil-gravel mixtures obtained with a clay loam soil mixed with shale clasts or pebbles in three size groups with various gravel contents. Data showed that the effective saturation of the soil-gravel mixtures with the same kind of gravels within one size group had a linear relation with gravel contents, and had a power relation with the bulk density of samples at any pressure head. Revised formulas for water retention properties of the soil-gravel mixtures are proposed to establish the water retention curved surface models of the power-linear functions and power functions. The analysis of the parameters obtained by regression and validation of the empirical models showed that they were acceptable by using either the measured data of separate gravel size group or those of all the three gravel size groups having a large size range. Furthermore, the regression parameters of the curved surfaces for the soil-gravel mixtures with a large range of gravel content could be determined from the water retention data of the soil-gravel mixtures with two representative gravel contents or bulk densities. Such revised water retention models are potentially applicable in regional or large scale field investigations of significantly heterogeneous media, where various gravel sizes and different gravel contents are present. PMID:23555040

  14. [New method of mixed gas infrared spectrum analysis based on SVM].

    PubMed

    Bai, Peng; Xie, Wen-Jun; Liu, Jun-Hua

    2007-07-01

    A new method of infrared spectrum analysis based on support vector machine (SVM) for mixture gas was proposed. The kernel function in SVM was used to map the seriously overlapping absorption spectrum into high-dimensional space, and after transformation, the high-dimensional data could be processed in the original space, so the regression calibration model was established, then the regression calibration model with was applied to analyze the concentration of component gas. Meanwhile it was proved that the regression calibration model with SVM also could be used for component recognition of mixture gas. The method was applied to the analysis of different data samples. Some factors such as scan interval, range of the wavelength, kernel function and penalty coefficient C that affect the model were discussed. Experimental results show that the component concentration maximal Mean AE is 0.132%, and the component recognition accuracy is higher than 94%. The problems of overlapping absorption spectrum, using the same method for qualitative and quantitative analysis, and limit number of training sample, were solved. The method could be used in other mixture gas infrared spectrum analyses, promising theoretic and application values.

  15. Modeling the outcomes of nursing home care.

    PubMed

    Rohrer, J E; Hogan, A J

    1987-01-01

    In this exploratory analysis using data on 290 patients, we use regression analysis to model patient outcomes in two Veterans Administration nursing homes. We find resource use, as measured with minutes of nursing time, to be associated with outcomes when case mix is controlled. Our results suggest that, under case-based reimbursement systems, nursing homes could increase their revenues by withholding unskilled and psychosocial care and discouraging physicians' visits. Implications for nursing home policy are discussed.

  16. Micro-epidemiological structuring of Plasmodium falciparum parasite populations in regions with varying transmission intensities in Africa.

    PubMed Central

    Omedo, Irene; Mogeni, Polycarp; Bousema, Teun; Rockett, Kirk; Amambua-Ngwa, Alfred; Oyier, Isabella; C. Stevenson, Jennifer; Y. Baidjoe, Amrish; de Villiers, Etienne P.; Fegan, Greg; Ross, Amanda; Hubbart, Christina; Jeffreys, Anne; N. Williams, Thomas; Kwiatkowski, Dominic; Bejon, Philip

    2017-01-01

    Background: The first models of malaria transmission assumed a completely mixed and homogeneous population of parasites.  Recent models include spatial heterogeneity and variably mixed populations. However, there are few empiric estimates of parasite mixing with which to parametize such models. Methods: Here we genotype 276 single nucleotide polymorphisms (SNPs) in 5199 P. falciparum isolates from two Kenyan sites (Kilifi county and Rachuonyo South district) and one Gambian site (Kombo coastal districts) to determine the spatio-temporal extent of parasite mixing, and use Principal Component Analysis (PCA) and linear regression to examine the relationship between genetic relatedness and distance in space and time for parasite pairs. Results: Using 107, 177 and 82 SNPs that were successfully genotyped in 133, 1602, and 1034 parasite isolates from The Gambia, Kilifi and Rachuonyo South district, respectively, we show that there are no discrete geographically restricted parasite sub-populations, but instead we see a diffuse spatio-temporal structure to parasite genotypes.  Genetic relatedness of sample pairs is predicted by relatedness in space and time. Conclusions: Our findings suggest that targeted malaria control will benefit the surrounding community, but unfortunately also that emerging drug resistance will spread rapidly through the population. PMID:28612053

  17. Distribution, occupancy, and habitat correlates of American martens (Martes americana) in Rocky Mountain National Park, Colorado

    USGS Publications Warehouse

    Baldwin, R.A.; Bender, L.C.

    2008-01-01

    A clear understanding of habitat associations of martens (Martes americana) is necessary to effectively manage and monitor populations. However, this information was lacking for martens in most of their southern range, particularly during the summer season. We studied the distribution and habitat correlates of martens from 2004 to 2006 in Rocky Mountain National Park (RMNP) across 3 spatial scales: site-specific, home-range, and landscape. We used remote-sensored cameras from early August through late October to inventory occurrence of martens and modeled occurrence as a function of habitat and landscape variables using binary response (BR) and binomial count (BC) logistic regression, and occupancy modeling (OM). We also assessed which was the most appropriate modeling technique for martens in RMNP. Of the 3 modeling techniques, OM appeared to be most appropriate given the explanatory power of derived models and its incorporation of detection probabilities, although the results from BR and BC provided corroborating evidence of important habitat correlates. Location of sites in the western portion of the park, riparian mixed-conifer stands, and mixed-conifer with aspen patches were most frequently positively correlated with occurrence of martens, whereas more xeric and open sites were avoided. Additionally, OM yielded unbiased occupancy values ranging from 91% to 100% and 20% to 30% for the western and eastern portions of RMNP, respectively. ?? 2008 American Society of Mammalogists.

  18. Sedentary Activity and Body Composition of Middle School Girls: The Trial of Activity for Adolescent Girls

    ERIC Educational Resources Information Center

    Pratt, Charlotte; Webber, Larry S.; Baggett, Chris D.; Ward, Dianne; Pate, Russell R.; Murray, David; Lohman, Timothy; Lytle, Leslie; Elder, John P.

    2008-01-01

    This study describes the relationships between sedentary activity and body composition in 1,458 sixth-grade girls from 36 middle schools across the United States. Multivariate associations between sedentary activity and body composition were examined with regression analyses using general linear mixed models. Mean age, body mass index, and…

  19. A Cross-National Study of the Relationship between Elderly Suicide Rates and Urbanization

    ERIC Educational Resources Information Center

    Shah, Ajit

    2008-01-01

    There is mixed evidence of a relationship between suicide rates in the general population and urbanization, and a paucity of studies examining this relationship in the elderly. A cross-national study with curve estimation regression model analysis, was undertaken to examine the a priori hypothesis that the relationship between elderly suicide…

  20. The Effects of Social Capital Elements on Job Satisfaction and Motivation Levels of Teachers

    ERIC Educational Resources Information Center

    Boydak Özan, Mukadder; Yavuz Özdemir, Tuncay; Yaras, Zübeyde

    2017-01-01

    The purpose of this study is to examine the effects of social capital elements' on job satisfaction and motivation levels of teachers. The mixed method was used in the study. The quantitative data were analyzed through Correlation and Multiple Regression analyses. An interview form developed by the researchers was used for analyzing the…

  1. Climate change at upper treeline: How do trees on the edge react to increasing temperatures?

    NASA Astrophysics Data System (ADS)

    Jochner, Matthias; Bugmann, Harald; Nötzli, Magdalena; Bigler, Christof

    2017-04-01

    Treeline ecotones are thought to be particularly sensitive to climate warming, and an alteration of their growth conditions may have important implications for the ecosystem services they supply in mountain regions. We use a novel approach to quantify effects of a changing climate on tree growth, using case studies in the European Alps. We compiled tree-ring data from almost 600 trees of four species at treeline in three climate regions of Switzerland. Temperature loggers installed along transects provided data for a precise interpolation of temperatures experienced by the sampled trees. To assess the influence of temperature on annual growth, we used linear mixed-effects models, allowing us to quantify effect sizes and to account for between-tree growth variability. After removing biological growth trends, we isolated temporal trends of ring-width indices. Furthermore, we fitted non-linear regression models to radial growth rates of individual years with temperature and tree age as predicting covariates for a fine-scale investigation of the temperature dependency of tree growth. For all species, climate-growth linear mixed-effects models indicated strong positive responses of ring-width indices to temperature in early summer and previous year's autumn, featuring considerable between-tree variability. All species showed positive ring-width index trends at treeline but different interactions with elevation: Larix decidua exhibited a declining ring-width index trend with decreasing elevation, whereas Picea abies, Pinus cembra and Pinus mugo showed increasing and/or stable trends. Not only reflected our findings the effects of ameliorated growth conditions, they might have also revealed suspected negative and positive feedbacks of climate change on growth, and increased the knowledge about the functional form and parameterization of the temperature dependency of tree growth.

  2. Routine Laboratory Blood Tests May Diagnose Significant Fibrosis in Liver Transplant Recipients with Chronic Hepatitis C: A 10 Year Experience.

    PubMed

    Sheen, Victoria; Nguyen, Heajung; Jimenez, Melissa; Agopian, Vatche; Vangala, Sitaram; Elashoff, David; Saab, Sammy

    2016-03-28

    The aims of our study were to determine whether routine blood tests, the aspartate aminotransferase (AST) to Platelet Ratio Index (APRI) and Fibrosis 4 (Fib-4) scores, were associated with advanced fibrosis and to create a novel model in liver transplant recipients with chronic hepatitis C virus (HCV). We performed a cross sectional study of patients at The University of California at Los Angeles (UCLA) Medical Center who underwent liver transplantation for HCV. We used linear mixed effects models to analyze association between fibrosis severity and individual biochemical markers and mixed effects logistic regression to construct diagnostic models for advanced fibrosis (METAVIR F3-4). Cross-validation was used to estimate a receiving operator characteristic (ROC) curve for the prediction models and to estimate the area under the curve (AUC). The mean (± standard deviation [SD]) age of our cohort was 55 (±7.7) years, and almost three quarter were male. The mean (±SD) time from transplant to liver biopsy was 19.9 (±17.1) months. The mean (±SD) APRI and Fib-4 scores were 3 (±12) and 7 (±14), respectively. Increased fibrosis was associated with lower platelet count and alanine aminotransferase (ALT) values and higher total bilirubin and Fib-4 scores. We developed a model that takes into account age, gender, platelet count, ALT, and total bilirubin, and this model outperformed APRI and Fib-4 with an AUC of 0.68 (p < 0.001). Our novel prediction model diagnosed the presence of advanced fibrosis more reliably than APRI and Fib-4 scores. This noninvasive calculation may be used clinically to identify liver transplant recipients with HCV with significant liver damage.

  3. Random regression analyses using B-splines functions to model growth from birth to adult age in Canchim cattle.

    PubMed

    Baldi, F; Alencar, M M; Albuquerque, L G

    2010-12-01

    The objective of this work was to estimate covariance functions using random regression models on B-splines functions of animal age, for weights from birth to adult age in Canchim cattle. Data comprised 49,011 records on 2435 females. The model of analysis included fixed effects of contemporary groups, age of dam as quadratic covariable and the population mean trend taken into account by a cubic regression on orthogonal polynomials of animal age. Residual variances were modelled through a step function with four classes. The direct and maternal additive genetic effects, and animal and maternal permanent environmental effects were included as random effects in the model. A total of seventeen analyses, considering linear, quadratic and cubic B-splines functions and up to seven knots, were carried out. B-spline functions of the same order were considered for all random effects. Random regression models on B-splines functions were compared to a random regression model on Legendre polynomials and with a multitrait model. Results from different models of analyses were compared using the REML form of the Akaike Information criterion and Schwarz' Bayesian Information criterion. In addition, the variance components and genetic parameters estimated for each random regression model were also used as criteria to choose the most adequate model to describe the covariance structure of the data. A model fitting quadratic B-splines, with four knots or three segments for direct additive genetic effect and animal permanent environmental effect and two knots for maternal additive genetic effect and maternal permanent environmental effect, was the most adequate to describe the covariance structure of the data. Random regression models using B-spline functions as base functions fitted the data better than Legendre polynomials, especially at mature ages, but higher number of parameters need to be estimated with B-splines functions. © 2010 Blackwell Verlag GmbH.

  4. Effects of Nursing Home Residency on Diabetes Care in Individuals with Dementia: An Explorative Analysis Based on German Claims Data

    PubMed Central

    Schwarzkopf, Larissa; Holle, Rolf; Schunk, Michaela

    2017-01-01

    Aims This claims data-based study compares the intensity of diabetes care in community dwellers and nursing home residents with dementia. Methods Delivery of diabetes-related medical examinations (DRMEs) was compared via logistic regression in 1,604 community dwellers and 1,010 nursing home residents with dementia. The intra-individual effect of nursing home transfer was evaluated within mixed models. Results Delivery of DRMEs decreases with increasing care dependency, with more community-living individuals receiving DRMEs. Moreover, DRME provision decreases after nursing home transfer. Conclusion Dementia patients receive fewer DRMEs than recommended, especially in cases of higher care dependency and particularly in nursing homes. This suggests lacking awareness regarding the specific challenges of combined diabetes and dementia care. PMID:28413415

  5. Flow of nanofluid past a Riga plate

    NASA Astrophysics Data System (ADS)

    Ahmad, Adeel; Asghar, Saleem; Afzal, Sumaira

    2016-03-01

    This paper studies the mixed convection boundary layer flow of a nanofluid past a vertical Riga plate in the presence of strong suction. The mathematical model incorporates the Brownian motion and thermophoresis effects due to nanofluid and the Grinberg-term for the wall parallel Lorentz force due to Riga plate. The analytical solution of the problem is presented using the perturbation method for small Brownian and thermophoresis diffusion parameters. The numerical solution is also presented to ensure the reliability of the asymptotic method. The comparison of the two solutions shows an excellent agreement. The correlation expressions for skin friction, Nusselt number and Sherwood number are developed by performing linear regression on the obtained numerical data. The effects of nanofluid and the Lorentz force due to Riga plate, on the skin friction are discussed.

  6. Decision-case mix model for analyzing variation in cesarean rates.

    PubMed

    Eldenburg, L; Waller, W S

    2001-01-01

    This article contributes a decision-case mix model for analyzing variation in c-section rates. Like recent contributions to the literature, the model systematically takes into account the effect of case mix. Going beyond past research, the model highlights differences in physician decision making in response to obstetric factors. Distinguishing the effects of physician decision making and case mix is important in understanding why c-section rates vary and in developing programs to effect change in physician behavior. The model was applied to a sample of deliveries at a hospital where physicians exhibited considerable variation in their c-section rates. Comparing groups with a low versus high rate, the authors' general conclusion is that the difference in physician decision tendencies (to perform a c-section), in response to specific obstetric factors, is at least as important as case mix in explaining variation in c-section rates. The exact effects of decision making versus case mix depend on how the model application defines the obstetric condition of interest and on the weighting of deliveries by their estimated "risk of Cesarean." The general conclusion is supported by an additional analysis that uses the model's elements to predict individual physicians' annual c-section rates.

  7. The Balanced Budget Act (1997) and the supplyof nursing home subacute care.

    PubMed

    Qaseem, Amir; Weech-Maldonado, Robert; Mkanta, William

    2007-01-01

    This article examines the impact of the Medicare prospective payment system (PPS) on the supply of subacute care services by nursing homes. A quasi-experimental interrupted time-series design using Heckman's two-stage regression model is employed to test for changes before and after the implementation of Medicare PPS. Our findings suggest that the change in Medicare reimbursement from cost-based to PPS under the Balanced Budget Act of 1997 resulted in a decrease of 1.7 percent in the supply of subacute care beds by nursing homes. However, this was a one-time, short-term negative effect. The supply of nursing home subacute care remained stable in the long-term. Other environmental factors, such as Medicare hospital discharges, hospital-based subacute care, Medicare managed care penetration, availability of home health, and per capita income were associated with nursing home subacute care supply. Organizational-level factors, such as occupancy rate, RN staff mix, and Medicare payer mix were also predictors of nursing home subacute care supply.

  8. Choice and Constraint in the Negotiation of the Grandparent Role: A Mixed-Methods Study.

    PubMed

    McGarrigle, Christine A; Timonen, Virpi; Layte, Richard

    2018-01-01

    Few studies have examined how the allocation and consequences of grandchild care vary across different socioeconomic groups. We analyze qualitative data alongside data from The Irish Longitudinal Study on Ageing (TILDA), in a convergent mixed-methods approach. Regression models examined characteristics associated with grandchild care, and the relationship between grandchild care and depressive symptoms and well-being. Qualitative data shed light on processes and choices that explain patterns of grandchild care provision. Tertiary-educated grandparents provided less intensive grandchild care compared with primary educated. Qualitative data indicated that this pattern stems from early boundary-drawing among higher educated grandparents while lower socioeconomic groups were constrained and less able to say no. Intensive grandchild care was associated with more depressive symptoms and lower well-being and was moderated by participation in social activities and level of education attainment. The effect of grandchild care on well-being of grandparents depends on whether it is provided by choice or obligation.

  9. Choice and Constraint in the Negotiation of the Grandparent Role: A Mixed-Methods Study

    PubMed Central

    McGarrigle, Christine A.; Timonen, Virpi; Layte, Richard

    2018-01-01

    Few studies have examined how the allocation and consequences of grandchild care vary across different socioeconomic groups. We analyze qualitative data alongside data from The Irish Longitudinal Study on Ageing (TILDA), in a convergent mixed-methods approach. Regression models examined characteristics associated with grandchild care, and the relationship between grandchild care and depressive symptoms and well-being. Qualitative data shed light on processes and choices that explain patterns of grandchild care provision. Tertiary-educated grandparents provided less intensive grandchild care compared with primary educated. Qualitative data indicated that this pattern stems from early boundary-drawing among higher educated grandparents while lower socioeconomic groups were constrained and less able to say no. Intensive grandchild care was associated with more depressive symptoms and lower well-being and was moderated by participation in social activities and level of education attainment. The effect of grandchild care on well-being of grandparents depends on whether it is provided by choice or obligation. PMID:29372176

  10. Using the simplified case mix tool (sCMT) to identify cost in special care dental services to support commissioning.

    PubMed

    Duane, B G; Freeman, R; Richards, D; Crosbie, S; Patel, P; White, S; Humphris, G

    2017-03-01

    To commission dental services for vulnerable (special care) patient groups effectively, consistently and fairly an evidence base is needed of the costs involved. The simplified Case Mixed Tool (sCMT) can assess treatment mode complexity for these patient groups. To determine if the sCMT can be used to identify costs of service provision. Patients (n=495) attending the Sussex Community NHS Trust Special Care Dental Service for care were assessed using the sCMT. sCMT score and costs (staffing, laboratory fees, etc.) besides patient age, whether a new patient and use of general anaesthetic/intravenous sedation. Statistical analysis (adjusted linear regression modelling) compared sCMT score and costs then sensitivity analyses of the costings to age, being a new patient and sedation use were undertaken. Regression tables were produced to present estimates of service costs. Costs increased with sCMT total scale and single item values in a predictable manner in all analyses except for 'cooperation'. Costs increased with the use of IV sedation; with each rising level of the sCMT, and with complexity in every sCMT category, except cooperation. Costs increased with increase in complexity of treatment mode as measured by sCMT scores. Measures such as the sCMT can provide predictions of the resource allocations required when commissioning special care dental services. Copyright© 2017 Dennis Barber Ltd.

  11. Incorporating real-time traffic and weather data to explore road accident likelihood and severity in urban arterials.

    PubMed

    Theofilatos, Athanasios

    2017-06-01

    The effective treatment of road accidents and thus the enhancement of road safety is a major concern to societies due to the losses in human lives and the economic and social costs. The investigation of road accident likelihood and severity by utilizing real-time traffic and weather data has recently received significant attention by researchers. However, collected data mainly stem from freeways and expressways. Consequently, the aim of the present paper is to add to the current knowledge by investigating accident likelihood and severity by exploiting real-time traffic and weather data collected from urban arterials in Athens, Greece. Random Forests (RF) are firstly applied for preliminary analysis purposes. More specifically, it is aimed to rank candidate variables according to their relevant importance and provide a first insight on the potential significant variables. Then, Bayesian logistic regression as well finite mixture and mixed effects logit models are applied to further explore factors associated with accident likelihood and severity respectively. Regarding accident likelihood, the Bayesian logistic regression showed that variations in traffic significantly influence accident occurrence. On the other hand, accident severity analysis revealed a generally mixed influence of traffic variations on accident severity, although international literature states that traffic variations increase severity. Lastly, weather parameters did not find to have a direct influence on accident likelihood or severity. The study added to the current knowledge by incorporating real-time traffic and weather data from urban arterials to investigate accident occurrence and accident severity mechanisms. The identification of risk factors can lead to the development of effective traffic management strategies to reduce accident occurrence and severity of injuries in urban arterials. Copyright © 2017 Elsevier Ltd and National Safety Council. All rights reserved.

  12. Comparison of Marker-Based Genomic Estimated Breeding Values and Phenotypic Evaluation for Selection of Bacterial Spot Resistance in Tomato.

    PubMed

    Liabeuf, Debora; Sim, Sung-Chur; Francis, David M

    2018-03-01

    Bacterial spot affects tomato crops (Solanum lycopersicum) grown under humid conditions. Major genes and quantitative trait loci (QTL) for resistance have been described, and multiple loci from diverse sources need to be combined to improve disease control. We investigated genomic selection (GS) prediction models for resistance to Xanthomonas euvesicatoria and experimentally evaluated the accuracy of these models. The training population consisted of 109 families combining resistance from four sources and directionally selected from a population of 1,100 individuals. The families were evaluated on a plot basis in replicated inoculated trials and genotyped with single nucleotide polymorphisms (SNP). We compared the prediction ability of models developed with 14 to 387 SNP. Genomic estimated breeding values (GEBV) were derived using Bayesian least absolute shrinkage and selection operator regression (BL) and ridge regression (RR). Evaluations were based on leave-one-out cross validation and on empirical observations in replicated field trials using the next generation of inbred progeny and a hybrid population resulting from selections in the training population. Prediction ability was evaluated based on correlations between GEBV and phenotypes (r g ), percentage of coselection between genomic and phenotypic selection, and relative efficiency of selection (r g /r p ). Results were similar with BL and RR models. Models using only markers previously identified as significantly associated with resistance but weighted based on GEBV and mixed models with markers associated with resistance treated as fixed effects and markers distributed in the genome treated as random effects offered greater accuracy and a high percentage of coselection. The accuracy of these models to predict the performance of progeny and hybrids exceeded the accuracy of phenotypic selection.

  13. Bayesian function-on-function regression for multilevel functional data.

    PubMed

    Meyer, Mark J; Coull, Brent A; Versace, Francesco; Cinciripini, Paul; Morris, Jeffrey S

    2015-09-01

    Medical and public health research increasingly involves the collection of complex and high dimensional data. In particular, functional data-where the unit of observation is a curve or set of curves that are finely sampled over a grid-is frequently obtained. Moreover, researchers often sample multiple curves per person resulting in repeated functional measures. A common question is how to analyze the relationship between two functional variables. We propose a general function-on-function regression model for repeatedly sampled functional data on a fine grid, presenting a simple model as well as a more extensive mixed model framework, and introducing various functional Bayesian inferential procedures that account for multiple testing. We examine these models via simulation and a data analysis with data from a study that used event-related potentials to examine how the brain processes various types of images. © 2015, The International Biometric Society.

  14. Functional Mixed Effects Model for Small Area Estimation.

    PubMed

    Maiti, Tapabrata; Sinha, Samiran; Zhong, Ping-Shou

    2016-09-01

    Functional data analysis has become an important area of research due to its ability of handling high dimensional and complex data structures. However, the development is limited in the context of linear mixed effect models, and in particular, for small area estimation. The linear mixed effect models are the backbone of small area estimation. In this article, we consider area level data, and fit a varying coefficient linear mixed effect model where the varying coefficients are semi-parametrically modeled via B-splines. We propose a method of estimating the fixed effect parameters and consider prediction of random effects that can be implemented using a standard software. For measuring prediction uncertainties, we derive an analytical expression for the mean squared errors, and propose a method of estimating the mean squared errors. The procedure is illustrated via a real data example, and operating characteristics of the method are judged using finite sample simulation studies.

  15. Posttraumatic Stress Disorder Symptom Clusters and the Interpersonal Theory of Suicide in a Large Military Sample.

    PubMed

    Pennings, Stephanie M; Finn, Joseph; Houtsma, Claire; Green, Bradley A; Anestis, Michael D

    2017-10-01

    Prior studies examining posttraumatic stress disorder (PTSD) symptom clusters and the components of the interpersonal theory of suicide (ITS) have yielded mixed results, likely stemming in part from the use of divergent samples and measurement techniques. This study aimed to expand on these findings by utilizing a large military sample, gold standard ITS measures, and multiple PTSD factor structures. Utilizing a sample of 935 military personnel, hierarchical multiple regression analyses were used to test the association between PTSD symptom clusters and the ITS variables. Additionally, we tested for indirect effects of PTSD symptom clusters on suicidal ideation through thwarted belongingness, conditional on levels of perceived burdensomeness. Results indicated that numbing symptoms are positively associated with both perceived burdensomeness and thwarted belongingness and hyperarousal symptoms (dysphoric arousal in the 5-factor model) are positively associated with thwarted belongingness. Results also indicated that hyperarousal symptoms (anxious arousal in the 5-factor model) were positively associated with fearlessness about death. The positive association between PTSD symptom clusters and suicidal ideation was inconsistent and modest, with mixed support for the ITS model. Overall, these results provide further clarity regarding the association between specific PTSD symptom clusters and suicide risk factors. © 2016 The American Association of Suicidology.

  16. 12-step participation and outcomes over 7 years among adolescent substance use patients with and without psychiatric comorbidity.

    PubMed

    Chi, Felicia W; Sterling, Stacy; Campbell, Cynthia I; Weisner, Constance

    2013-01-01

    This study examines the associations between 12-step participation and outcomes over 7 years among 419 adolescent substance use patients with and without psychiatric comorbidities. Although level of participation decreased over time for both groups, comorbid adolescents participated in 12-step groups at comparable or higher levels across time points. Results from mixed-effects logistic regression models indicated that for both groups, 12-step participation was associated with both alcohol and drug abstinence at follow-ups, increasing the likelihood of either by at least 3 times. Findings highlight the potential benefits of 12-step participation in maintaining long-term recovery for adolescents with and without psychiatric disorders.

  17. Mixed models and reduced/selective integration displacement models for nonlinear analysis of curved beams

    NASA Technical Reports Server (NTRS)

    Noor, A. K.; Peters, J. M.

    1981-01-01

    Simple mixed models are developed for use in the geometrically nonlinear analysis of deep arches. A total Lagrangian description of the arch deformation is used, the analytical formulation being based on a form of the nonlinear deep arch theory with the effects of transverse shear deformation included. The fundamental unknowns comprise the six internal forces and generalized displacements of the arch, and the element characteristic arrays are obtained by using Hellinger-Reissner mixed variational principle. The polynomial interpolation functions employed in approximating the forces are one degree lower than those used in approximating the displacements, and the forces are discontinuous at the interelement boundaries. Attention is given to the equivalence between the mixed models developed herein and displacement models based on reduced integration of both the transverse shear and extensional energy terms. The advantages of mixed models over equivalent displacement models are summarized. Numerical results are presented to demonstrate the high accuracy and effectiveness of the mixed models developed and to permit a comparison of their performance with that of other mixed models reported in the literature.

  18. Examining the influence of link function misspecification in conventional regression models for developing crash modification factors.

    PubMed

    Wu, Lingtao; Lord, Dominique

    2017-05-01

    This study further examined the use of regression models for developing crash modification factors (CMFs), specifically focusing on the misspecification in the link function. The primary objectives were to validate the accuracy of CMFs derived from the commonly used regression models (i.e., generalized linear models or GLMs with additive linear link functions) when some of the variables have nonlinear relationships and quantify the amount of bias as a function of the nonlinearity. Using the concept of artificial realistic data, various linear and nonlinear crash modification functions (CM-Functions) were assumed for three variables. Crash counts were randomly generated based on these CM-Functions. CMFs were then derived from regression models for three different scenarios. The results were compared with the assumed true values. The main findings are summarized as follows: (1) when some variables have nonlinear relationships with crash risk, the CMFs for these variables derived from the commonly used GLMs are all biased, especially around areas away from the baseline conditions (e.g., boundary areas); (2) with the increase in nonlinearity (i.e., nonlinear relationship becomes stronger), the bias becomes more significant; (3) the quality of CMFs for other variables having linear relationships can be influenced when mixed with those having nonlinear relationships, but the accuracy may still be acceptable; and (4) the misuse of the link function for one or more variables can also lead to biased estimates for other parameters. This study raised the importance of the link function when using regression models for developing CMFs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Two levels ARIMAX and regression models for forecasting time series data with calendar variation effects

    NASA Astrophysics Data System (ADS)

    Suhartono, Lee, Muhammad Hisyam; Prastyo, Dedy Dwi

    2015-12-01

    The aim of this research is to develop a calendar variation model for forecasting retail sales data with the Eid ul-Fitr effect. The proposed model is based on two methods, namely two levels ARIMAX and regression methods. Two levels ARIMAX and regression models are built by using ARIMAX for the first level and regression for the second level. Monthly men's jeans and women's trousers sales in a retail company for the period January 2002 to September 2009 are used as case study. In general, two levels of calendar variation model yields two models, namely the first model to reconstruct the sales pattern that already occurred, and the second model to forecast the effect of increasing sales due to Eid ul-Fitr that affected sales at the same and the previous months. The results show that the proposed two level calendar variation model based on ARIMAX and regression methods yields better forecast compared to the seasonal ARIMA model and Neural Networks.

  20. Prediction models for clustered data: comparison of a random intercept and standard regression model

    PubMed Central

    2013-01-01

    Background When study data are clustered, standard regression analysis is considered inappropriate and analytical techniques for clustered data need to be used. For prediction research in which the interest of predictor effects is on the patient level, random effect regression models are probably preferred over standard regression analysis. It is well known that the random effect parameter estimates and the standard logistic regression parameter estimates are different. Here, we compared random effect and standard logistic regression models for their ability to provide accurate predictions. Methods Using an empirical study on 1642 surgical patients at risk of postoperative nausea and vomiting, who were treated by one of 19 anesthesiologists (clusters), we developed prognostic models either with standard or random intercept logistic regression. External validity of these models was assessed in new patients from other anesthesiologists. We supported our results with simulation studies using intra-class correlation coefficients (ICC) of 5%, 15%, or 30%. Standard performance measures and measures adapted for the clustered data structure were estimated. Results The model developed with random effect analysis showed better discrimination than the standard approach, if the cluster effects were used for risk prediction (standard c-index of 0.69 versus 0.66). In the external validation set, both models showed similar discrimination (standard c-index 0.68 versus 0.67). The simulation study confirmed these results. For datasets with a high ICC (≥15%), model calibration was only adequate in external subjects, if the used performance measure assumed the same data structure as the model development method: standard calibration measures showed good calibration for the standard developed model, calibration measures adapting the clustered data structure showed good calibration for the prediction model with random intercept. Conclusion The models with random intercept discriminate better than the standard model only if the cluster effect is used for predictions. The prediction model with random intercept had good calibration within clusters. PMID:23414436

  1. Prediction models for clustered data: comparison of a random intercept and standard regression model.

    PubMed

    Bouwmeester, Walter; Twisk, Jos W R; Kappen, Teus H; van Klei, Wilton A; Moons, Karel G M; Vergouwe, Yvonne

    2013-02-15

    When study data are clustered, standard regression analysis is considered inappropriate and analytical techniques for clustered data need to be used. For prediction research in which the interest of predictor effects is on the patient level, random effect regression models are probably preferred over standard regression analysis. It is well known that the random effect parameter estimates and the standard logistic regression parameter estimates are different. Here, we compared random effect and standard logistic regression models for their ability to provide accurate predictions. Using an empirical study on 1642 surgical patients at risk of postoperative nausea and vomiting, who were treated by one of 19 anesthesiologists (clusters), we developed prognostic models either with standard or random intercept logistic regression. External validity of these models was assessed in new patients from other anesthesiologists. We supported our results with simulation studies using intra-class correlation coefficients (ICC) of 5%, 15%, or 30%. Standard performance measures and measures adapted for the clustered data structure were estimated. The model developed with random effect analysis showed better discrimination than the standard approach, if the cluster effects were used for risk prediction (standard c-index of 0.69 versus 0.66). In the external validation set, both models showed similar discrimination (standard c-index 0.68 versus 0.67). The simulation study confirmed these results. For datasets with a high ICC (≥15%), model calibration was only adequate in external subjects, if the used performance measure assumed the same data structure as the model development method: standard calibration measures showed good calibration for the standard developed model, calibration measures adapting the clustered data structure showed good calibration for the prediction model with random intercept. The models with random intercept discriminate better than the standard model only if the cluster effect is used for predictions. The prediction model with random intercept had good calibration within clusters.

  2. Eliciting mixed emotions: a meta-analysis comparing models, types, and measures.

    PubMed

    Berrios, Raul; Totterdell, Peter; Kellett, Stephen

    2015-01-01

    The idea that people can experience two oppositely valenced emotions has been controversial ever since early attempts to investigate the construct of mixed emotions. This meta-analysis examined the robustness with which mixed emotions have been elicited experimentally. A systematic literature search identified 63 experimental studies that instigated the experience of mixed emotions. Studies were distinguished according to the structure of the underlying affect model-dimensional or discrete-as well as according to the type of mixed emotions studied (e.g., happy-sad, fearful-happy, positive-negative). The meta-analysis using a random-effects model revealed a moderate to high effect size for the elicitation of mixed emotions (d IG+ = 0.77), which remained consistent regardless of the structure of the affect model, and across different types of mixed emotions. Several methodological and design moderators were tested. Studies using the minimum index (i.e., the minimum value between a pair of opposite valenced affects) resulted in smaller effect sizes, whereas subjective measures of mixed emotions increased the effect sizes. The presence of more women in the samples was also associated with larger effect sizes. The current study indicates that mixed emotions are a robust, measurable and non-artifactual experience. The results are discussed in terms of the implications for an affect system that has greater versatility and flexibility than previously thought.

  3. Methods for calculating confidence and credible intervals for the residual between-study variance in random effects meta-regression models

    PubMed Central

    2014-01-01

    Background Meta-regression is becoming increasingly used to model study level covariate effects. However this type of statistical analysis presents many difficulties and challenges. Here two methods for calculating confidence intervals for the magnitude of the residual between-study variance in random effects meta-regression models are developed. A further suggestion for calculating credible intervals using informative prior distributions for the residual between-study variance is presented. Methods Two recently proposed and, under the assumptions of the random effects model, exact methods for constructing confidence intervals for the between-study variance in random effects meta-analyses are extended to the meta-regression setting. The use of Generalised Cochran heterogeneity statistics is extended to the meta-regression setting and a Newton-Raphson procedure is developed to implement the Q profile method for meta-analysis and meta-regression. WinBUGS is used to implement informative priors for the residual between-study variance in the context of Bayesian meta-regressions. Results Results are obtained for two contrasting examples, where the first example involves a binary covariate and the second involves a continuous covariate. Intervals for the residual between-study variance are wide for both examples. Conclusions Statistical methods, and R computer software, are available to compute exact confidence intervals for the residual between-study variance under the random effects model for meta-regression. These frequentist methods are almost as easily implemented as their established counterparts for meta-analysis. Bayesian meta-regressions are also easily performed by analysts who are comfortable using WinBUGS. Estimates of the residual between-study variance in random effects meta-regressions should be routinely reported and accompanied by some measure of their uncertainty. Confidence and/or credible intervals are well-suited to this purpose. PMID:25196829

  4. Effect of electrode positions on the mixing characteristics of an electroosmotic micromixer.

    PubMed

    Seo, H S; Kim, Y J

    2014-08-01

    In this study, an electrokinetic microchannel with a ring-type mixing chamber is introduced for fast mixing. The modeled micromixer that is used for the study of the electroosmotic effect takes two fluids from different inlets and combines them in a ring-type mixing chamber and, then, they are mixed by the electric fields at the electrodes. In order to compare the mixing performance in the modeled micromixer, we numerically investigated the flow characteristics with different positions of the electrodes in the mixing chamber using the commercial code, COMSOL. In addition, we discussed the concentration distributions of the dissolved substances in the flow fields and compared the mixing efficiency in the modeled micromixer with different electrode positions and operating conditions, such as the frequencies and electric potentials at the electrodes.

  5. One-dimensional modelling of upper ocean mixing by turbulence due to wave orbital motion

    NASA Astrophysics Data System (ADS)

    Ghantous, M.; Babanin, A. V.

    2014-02-01

    Mixing of the upper ocean affects the sea surface temperature by bringing deeper, colder water to the surface. Because even small changes in the surface temperature can have a large impact on weather and climate, accurately determining the rate of mixing is of central importance for forecasting. Although there are several mixing mechanisms, one that has until recently been overlooked is the effect of turbulence generated by non-breaking, wind-generated surface waves. Lately there has been a lot of interest in introducing this mechanism into ocean mixing models, and real gains have been made in terms of increased fidelity to observational data. However, our knowledge of the mechanism is still incomplete. We indicate areas where we believe the existing parameterisations need refinement and propose an alternative one. We use two of the parameterisations to demonstrate the effect on the mixed layer of wave-induced turbulence by applying them to a one-dimensional mixing model and a stable temperature profile. Our modelling experiment suggests a strong effect on sea surface temperature due to non-breaking wave-induced turbulent mixing.

  6. Quantification of dead vegetation fraction in mixed pastures using AisaFENIX imaging spectroscopy data

    NASA Astrophysics Data System (ADS)

    Pullanagari, R. R.; Kereszturi, G.; Yule, I. J.

    2017-06-01

    New Zealand farming relies heavily on grazed pasture for feeding livestock; therefore it is important to provide high quality palatable grass in order to maintain profitable and sustainable grassland management. The presence of non-photosynthetic vegetation (NPV) such as dead vegetation in pastures severely limits the quality and productivity of pastures. Quantifying the fraction of dead vegetation in mixed pastures is a great challenge even with remote sensing approaches. In this study, a high spatial resolution with pixel resolution of 1 m and spectral resolution of 3.5-5.6 nm imaging spectroscopy data from AisaFENIX (380-2500 nm) was used to assess the fraction of dead vegetation component in mixed pastures on a hill country farm in New Zealand. We used different methods to retrieve dead vegetation fraction from the spectra; narrow band vegetation indices, full spectrum based partial least squares (PLS) regression and feature selection based PLS regression. Among all approaches, feature selection based PLS model exhibited better performance in terms of prediction accuracy (R2CV = 0.73, RMSECV = 6.05, RPDCV = 2.25). The results were consistent with validation data, and also performed well on the external test data (R2 = 0.62, RMSE = 8.06, RPD = 2.06). In addition, statistical tests were conducted to ascertain the effect of topographical variables such as slope and aspect on the accumulation of the dead vegetation fraction. Steep slopes (>25°) had a significantly (p < 0.05) higher amount of dead vegetation. In contrast, aspect showed non-significant impact on dead vegetation accumulation. The results from the study indicate that AisaFENIX imaging spectroscopy data could be a useful tool for mapping the dead vegetation fraction accurately.

  7. Competing regression models for longitudinal data.

    PubMed

    Alencar, Airlane P; Singer, Julio M; Rocha, Francisco Marcelo M

    2012-03-01

    The choice of an appropriate family of linear models for the analysis of longitudinal data is often a matter of concern for practitioners. To attenuate such difficulties, we discuss some issues that emerge when analyzing this type of data via a practical example involving pretest-posttest longitudinal data. In particular, we consider log-normal linear mixed models (LNLMM), generalized linear mixed models (GLMM), and models based on generalized estimating equations (GEE). We show how some special features of the data, like a nonconstant coefficient of variation, may be handled in the three approaches and evaluate their performance with respect to the magnitude of standard errors of interpretable and comparable parameters. We also show how different diagnostic tools may be employed to identify outliers and comment on available software. We conclude by noting that the results are similar, but that GEE-based models may be preferable when the goal is to compare the marginal expected responses. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Trends in stratospheric ozone profiles using functional mixed models

    NASA Astrophysics Data System (ADS)

    Park, A.; Guillas, S.; Petropavlovskikh, I.

    2013-11-01

    This paper is devoted to the modeling of altitude-dependent patterns of ozone variations over time. Umkehr ozone profiles (quarter of Umkehr layer) from 1978 to 2011 are investigated at two locations: Boulder (USA) and Arosa (Switzerland). The study consists of two statistical stages. First we approximate ozone profiles employing an appropriate basis. To capture primary modes of ozone variations without losing essential information, a functional principal component analysis is performed. It penalizes roughness of the function and smooths excessive variations in the shape of the ozone profiles. As a result, data-driven basis functions (empirical basis functions) are obtained. The coefficients (principal component scores) corresponding to the empirical basis functions represent dominant temporal evolution in the shape of ozone profiles. We use those time series coefficients in the second statistical step to reveal the important sources of the patterns and variations in the profiles. We estimate the effects of covariates - month, year (trend), quasi-biennial oscillation, the solar cycle, the Arctic oscillation, the El Niño/Southern Oscillation cycle and the Eliassen-Palm flux - on the principal component scores of ozone profiles using additive mixed effects models. The effects are represented as smooth functions and the smooth functions are estimated by penalized regression splines. We also impose a heteroscedastic error structure that reflects the observed seasonality in the errors. The more complex error structure enables us to provide more accurate estimates of influences and trends, together with enhanced uncertainty quantification. Also, we are able to capture fine variations in the time evolution of the profiles, such as the semi-annual oscillation. We conclude by showing the trends by altitude over Boulder and Arosa, as well as for total column ozone. There are great variations in the trends across altitudes, which highlights the benefits of modeling ozone profiles.

  9. A New Hybrid Spatio-temporal Model for Estimating Daily Multi-year PM2.5 Concentrations Across Northeastern USA Using High Resolution Aerosol Optical Depth Data

    NASA Technical Reports Server (NTRS)

    Kloog, Itai; Chudnovsky, Alexandra A.; Just, Allan C.; Nordio, Francesco; Koutrakis, Petros; Coull, Brent A.; Lyapustin, Alexei; Wang, Yujie; Schwartz, Joel

    2014-01-01

    The use of satellite-based aerosol optical depth (AOD) to estimate fine particulate matter PM(sub 2.5) for epidemiology studies has increased substantially over the past few years. These recent studies often report moderate predictive power, which can generate downward bias in effect estimates. In addition, AOD measurements have only moderate spatial resolution, and have substantial missing data. We make use of recent advances in MODIS satellite data processing algorithms (Multi-Angle Implementation of Atmospheric Correction (MAIAC), which allow us to use 1 km (versus currently available 10 km) resolution AOD data.We developed and cross validated models to predict daily PM(sub 2.5) at a 1X 1 km resolution across the northeastern USA (New England, New York and New Jersey) for the years 2003-2011, allowing us to better differentiate daily and long term exposure between urban, suburban, and rural areas. Additionally, we developed an approach that allows us to generate daily high-resolution 200 m localized predictions representing deviations from the area 1 X 1 km grid predictions. We used mixed models regressing PM(sub 2.5) measurements against day-specific random intercepts, and fixed and random AOD and temperature slopes. We then use generalized additive mixed models with spatial smoothing to generate grid cell predictions when AOD was missing. Finally, to get 200 m localized predictions, we regressed the residuals from the final model for each monitor against the local spatial and temporal variables at each monitoring site. Our model performance was excellent (mean out-of-sample R(sup 2) = 0.88). The spatial and temporal components of the out-of-sample results also presented very good fits to the withheld data (R(sup 2) = 0.87, R(sup)2 = 0.87). In addition, our results revealed very little bias in the predicted concentrations (Slope of predictions versus withheld observations = 0.99). Our daily model results show high predictive accuracy at high spatial resolutions and will be useful in reconstructing exposure histories for epidemiological studies across this region.

  10. A New Hybrid Spatio-Temporal Model For Estimating Daily Multi-Year PM2.5 Concentrations Across Northeastern USA Using High Resolution Aerosol Optical Depth Data.

    PubMed

    Kloog, Itai; Chudnovsky, Alexandra A; Just, Allan C; Nordio, Francesco; Koutrakis, Petros; Coull, Brent A; Lyapustin, Alexei; Wang, Yujie; Schwartz, Joel

    2014-10-01

    The use of satellite-based aerosol optical depth (AOD) to estimate fine particulate matter (PM 2.5 ) for epidemiology studies has increased substantially over the past few years. These recent studies often report moderate predictive power, which can generate downward bias in effect estimates. In addition, AOD measurements have only moderate spatial resolution, and have substantial missing data. We make use of recent advances in MODIS satellite data processing algorithms (Multi-Angle Implementation of Atmospheric Correction (MAIAC), which allow us to use 1 km (versus currently available 10 km) resolution AOD data. We developed and cross validated models to predict daily PM 2.5 at a 1×1km resolution across the northeastern USA (New England, New York and New Jersey) for the years 2003-2011, allowing us to better differentiate daily and long term exposure between urban, suburban, and rural areas. Additionally, we developed an approach that allows us to generate daily high-resolution 200 m localized predictions representing deviations from the area 1×1 km grid predictions. We used mixed models regressing PM 2.5 measurements against day-specific random intercepts, and fixed and random AOD and temperature slopes. We then use generalized additive mixed models with spatial smoothing to generate grid cell predictions when AOD was missing. Finally, to get 200 m localized predictions, we regressed the residuals from the final model for each monitor against the local spatial and temporal variables at each monitoring site. Our model performance was excellent (mean out-of-sample R 2 =0.88). The spatial and temporal components of the out-of-sample results also presented very good fits to the withheld data (R 2 =0.87, R 2 =0.87). In addition, our results revealed very little bias in the predicted concentrations (Slope of predictions versus withheld observations = 0.99). Our daily model results show high predictive accuracy at high spatial resolutions and will be useful in reconstructing exposure histories for epidemiological studies across this region.

  11. A New Hybrid Spatio-Temporal Model For Estimating Daily Multi-Year PM2.5 Concentrations Across Northeastern USA Using High Resolution Aerosol Optical Depth Data

    PubMed Central

    Kloog, Itai; Chudnovsky, Alexandra A.; Just, Allan C.; Nordio, Francesco; Koutrakis, Petros; Coull, Brent A.; Lyapustin, Alexei; Wang, Yujie; Schwartz, Joel

    2017-01-01

    Background The use of satellite-based aerosol optical depth (AOD) to estimate fine particulate matter (PM2.5) for epidemiology studies has increased substantially over the past few years. These recent studies often report moderate predictive power, which can generate downward bias in effect estimates. In addition, AOD measurements have only moderate spatial resolution, and have substantial missing data. Methods We make use of recent advances in MODIS satellite data processing algorithms (Multi-Angle Implementation of Atmospheric Correction (MAIAC), which allow us to use 1 km (versus currently available 10 km) resolution AOD data. We developed and cross validated models to predict daily PM2.5 at a 1×1km resolution across the northeastern USA (New England, New York and New Jersey) for the years 2003–2011, allowing us to better differentiate daily and long term exposure between urban, suburban, and rural areas. Additionally, we developed an approach that allows us to generate daily high-resolution 200 m localized predictions representing deviations from the area 1×1 km grid predictions. We used mixed models regressing PM2.5 measurements against day-specific random intercepts, and fixed and random AOD and temperature slopes. We then use generalized additive mixed models with spatial smoothing to generate grid cell predictions when AOD was missing. Finally, to get 200 m localized predictions, we regressed the residuals from the final model for each monitor against the local spatial and temporal variables at each monitoring site. Results Our model performance was excellent (mean out-of-sample R2=0.88). The spatial and temporal components of the out-of-sample results also presented very good fits to the withheld data (R2=0.87, R2=0.87). In addition, our results revealed very little bias in the predicted concentrations (Slope of predictions versus withheld observations = 0.99). Conclusion Our daily model results show high predictive accuracy at high spatial resolutions and will be useful in reconstructing exposure histories for epidemiological studies across this region. PMID:28966552

  12. The time-course of lexical activation in Japanese morphographic word recognition: evidence for a character-driven processing model.

    PubMed

    Miwa, Koji; Libben, Gary; Dijkstra, Ton; Baayen, Harald

    2014-01-01

    This lexical decision study with eye tracking of Japanese two-kanji-character words investigated the order in which a whole two-character word and its morphographic constituents are activated in the course of lexical access, the relative contributions of the left and the right characters in lexical decision, the depth to which semantic radicals are processed, and how nonlinguistic factors affect lexical processes. Mixed-effects regression analyses of response times and subgaze durations (i.e., first-pass fixation time spent on each of the two characters) revealed joint contributions of morphographic units at all levels of the linguistic structure with the magnitude and the direction of the lexical effects modulated by readers' locus of attention in a left-to-right preferred processing path. During the early time frame, character effects were larger in magnitude and more robust than radical and whole-word effects, regardless of the font size and the type of nonwords. Extending previous radical-based and character-based models, we propose a task/decision-sensitive character-driven processing model with a level-skipping assumption: Connections from the feature level bypass the lower radical level and link up directly to the higher character level.

  13. Antibiotic rotation strategies to reduce antimicrobial resistance in Gram-negative bacteria in European intensive care units: study protocol for a cluster-randomized crossover controlled trial.

    PubMed

    van Duijn, Pleun J; Bonten, Marc J M

    2014-07-10

    Intensive care units (ICU) are epicenters for the emergence of antibiotic-resistant Gram-negative bacteria (ARGNB) because of high rates of antibiotic usage, rapid patient turnover, immunological susceptibility of acutely ill patients, and frequent contact between healthcare workers and patients, facilitating cross-transmission.Antibiotic stewardship programs are considered important to reduce antibiotic resistance, but the effectiveness of strategies such as, for instance, antibiotic rotation, have not been determined rigorously. Interpretation of available studies on antibiotic rotation is hampered by heterogeneity in implemented strategies and suboptimal study designs. In this cluster-randomized, crossover trial the effects of two antibiotic rotation strategies, antibiotic mixing and cycling, on the prevalence of ARGNB in ICUs are determined. Antibiotic mixing aims to create maximum antibiotic heterogeneity, and cycling aims to create maximum antibiotic homogeneity during consecutive periods. This is an open cluster-randomized crossover study of mixing and cycling of antibiotics in eight ICUs in five European countries. During cycling (9 months) third- or fourth-generation cephalosporins, piperacillin-tazobactam and carbapenems will be rotated during consecutive 6-week periods as the primary empiric treatment in patients suspected of infection caused by Gram-negative bacteria. During mixing (9 months), the same antibiotics will be rotated for each consecutive antibiotic course. Both intervention periods will be preceded by a baseline period of 4 months. ICUs will be randomized to consecutively implement either the mixing and then cycling strategy, or vice versa. The primary outcome is the ICU prevalence of ARGNB, determined through monthly point-prevalence screening of oropharynx and perineum. Secondary outcomes are rates of acquisition of ARGNB, bacteremia and appropriateness of therapy, length of stay in the ICU and ICU mortality. Results will be adjusted for intracluster correlation, and patient- and ICU-level variables of case-mix and infection-prevention measures using advanced regression modeling. This trial will determine the effects of antibiotic mixing and cycling on the unit-wide prevalence of ARGNB in ICUs. ClinicalTrials.gov NCT01293071 December 2010.

  14. Spatially resolved regression analysis of pre-treatment FDG, FLT and Cu-ATSM PET from post-treatment FDG PET: an exploratory study

    PubMed Central

    Bowen, Stephen R; Chappell, Richard J; Bentzen, Søren M; Deveau, Michael A; Forrest, Lisa J; Jeraj, Robert

    2012-01-01

    Purpose To quantify associations between pre-radiotherapy and post-radiotherapy PET parameters via spatially resolved regression. Materials and methods Ten canine sinonasal cancer patients underwent PET/CT scans of [18F]FDG (FDGpre), [18F]FLT (FLTpre), and [61Cu]Cu-ATSM (Cu-ATSMpre). Following radiotherapy regimens of 50 Gy in 10 fractions, veterinary patients underwent FDG PET/CT scans at three months (FDGpost). Regression of standardized uptake values in baseline FDGpre, FLTpre and Cu-ATSMpre tumour voxels to those in FDGpost images was performed for linear, log-linear, generalized-linear and mixed-fit linear models. Goodness-of-fit in regression coefficients was assessed by R2. Hypothesis testing of coefficients over the patient population was performed. Results Multivariate linear model fits of FDGpre to FDGpost were significantly positive over the population (FDGpost~0.17 FDGpre, p=0.03), and classified slopes of RECIST non-responders and responders to be different (0.37 vs. 0.07, p=0.01). Generalized-linear model fits related FDGpre to FDGpost by a linear power law (FDGpost~FDGpre0.93, p<0.001). Univariate mixture model fits of FDGpre improved R2 from 0.17 to 0.52. Neither baseline FLT PET nor Cu-ATSM PET uptake contributed statistically significant multivariate regression coefficients. Conclusions Spatially resolved regression analysis indicates that pre-treatment FDG PET uptake is most strongly associated with three-month post-treatment FDG PET uptake in this patient population, though associations are histopathology-dependent. PMID:22682748

  15. Incremental Net Effects in Multiple Regression

    ERIC Educational Resources Information Center

    Lipovetsky, Stan; Conklin, Michael

    2005-01-01

    A regular problem in regression analysis is estimating the comparative importance of the predictors in the model. This work considers the 'net effects', or shares of the predictors in the coefficient of the multiple determination, which is a widely used characteristic of the quality of a regression model. Estimation of the net effects can be a…

  16. Analysis of baseline, average, and longitudinally measured blood pressure data using linear mixed models.

    PubMed

    Hossain, Ahmed; Beyene, Joseph

    2014-01-01

    This article compares baseline, average, and longitudinal data analysis methods for identifying genetic variants in genome-wide association study using the Genetic Analysis Workshop 18 data. We apply methods that include (a) linear mixed models with baseline measures, (b) random intercept linear mixed models with mean measures outcome, and (c) random intercept linear mixed models with longitudinal measurements. In the linear mixed models, covariates are included as fixed effects, whereas relatedness among individuals is incorporated as the variance-covariance structure of the random effect for the individuals. The overall strategy of applying linear mixed models decorrelate the data is based on Aulchenko et al.'s GRAMMAR. By analyzing systolic and diastolic blood pressure, which are used separately as outcomes, we compare the 3 methods in identifying a known genetic variant that is associated with blood pressure from chromosome 3 and simulated phenotype data. We also analyze the real phenotype data to illustrate the methods. We conclude that the linear mixed model with longitudinal measurements of diastolic blood pressure is the most accurate at identifying the known single-nucleotide polymorphism among the methods, but linear mixed models with baseline measures perform best with systolic blood pressure as the outcome.

  17. VoxelStats: A MATLAB Package for Multi-Modal Voxel-Wise Brain Image Analysis.

    PubMed

    Mathotaarachchi, Sulantha; Wang, Seqian; Shin, Monica; Pascoal, Tharick A; Benedet, Andrea L; Kang, Min Su; Beaudry, Thomas; Fonov, Vladimir S; Gauthier, Serge; Labbe, Aurélie; Rosa-Neto, Pedro

    2016-01-01

    In healthy individuals, behavioral outcomes are highly associated with the variability on brain regional structure or neurochemical phenotypes. Similarly, in the context of neurodegenerative conditions, neuroimaging reveals that cognitive decline is linked to the magnitude of atrophy, neurochemical declines, or concentrations of abnormal protein aggregates across brain regions. However, modeling the effects of multiple regional abnormalities as determinants of cognitive decline at the voxel level remains largely unexplored by multimodal imaging research, given the high computational cost of estimating regression models for every single voxel from various imaging modalities. VoxelStats is a voxel-wise computational framework to overcome these computational limitations and to perform statistical operations on multiple scalar variables and imaging modalities at the voxel level. VoxelStats package has been developed in Matlab(®) and supports imaging formats such as Nifti-1, ANALYZE, and MINC v2. Prebuilt functions in VoxelStats enable the user to perform voxel-wise general and generalized linear models and mixed effect models with multiple volumetric covariates. Importantly, VoxelStats can recognize scalar values or image volumes as response variables and can accommodate volumetric statistical covariates as well as their interaction effects with other variables. Furthermore, this package includes built-in functionality to perform voxel-wise receiver operating characteristic analysis and paired and unpaired group contrast analysis. Validation of VoxelStats was conducted by comparing the linear regression functionality with existing toolboxes such as glim_image and RMINC. The validation results were identical to existing methods and the additional functionality was demonstrated by generating feature case assessments (t-statistics, odds ratio, and true positive rate maps). In summary, VoxelStats expands the current methods for multimodal imaging analysis by allowing the estimation of advanced regional association metrics at the voxel level.

  18. Mixing with applications to inertial-confinement-fusion implosions

    NASA Astrophysics Data System (ADS)

    Rana, V.; Lim, H.; Melvin, J.; Glimm, J.; Cheng, B.; Sharp, D. H.

    2017-01-01

    Approximate one-dimensional (1D) as well as 2D and 3D simulations are playing an important supporting role in the design and analysis of future experiments at National Ignition Facility. This paper is mainly concerned with 1D simulations, used extensively in design and optimization. We couple a 1D buoyancy-drag mix model for the mixing zone edges with a 1D inertial confinement fusion simulation code. This analysis predicts that National Ignition Campaign (NIC) designs are located close to a performance cliff, so modeling errors, design features (fill tube and tent) and additional, unmodeled instabilities could lead to significant levels of mix. The performance cliff we identify is associated with multimode plastic ablator (CH) mix into the hot-spot deuterium and tritium (DT). The buoyancy-drag mix model is mode number independent and selects implicitly a range of maximum growth modes. Our main conclusion is that single effect instabilities are predicted not to lead to hot-spot mix, while combined mode mixing effects are predicted to affect hot-spot thermodynamics and possibly hot-spot mix. Combined with the stagnation Rayleigh-Taylor instability, we find the potential for mix effects in combination with the ice-to-gas DT boundary, numerical effects of Eulerian species CH concentration diffusion, and ablation-driven instabilities. With the help of a convenient package of plasma transport parameters developed here, we give an approximate determination of these quantities in the regime relevant to the NIC experiments, while ruling out a variety of mix possibilities. Plasma transport parameters affect the 1D buoyancy-drag mix model primarily through its phenomenological drag coefficient as well as the 1D hydro model to which the buoyancy-drag equation is coupled.

  19. Mixing with applications to inertial-confinement-fusion implosions.

    PubMed

    Rana, V; Lim, H; Melvin, J; Glimm, J; Cheng, B; Sharp, D H

    2017-01-01

    Approximate one-dimensional (1D) as well as 2D and 3D simulations are playing an important supporting role in the design and analysis of future experiments at National Ignition Facility. This paper is mainly concerned with 1D simulations, used extensively in design and optimization. We couple a 1D buoyancy-drag mix model for the mixing zone edges with a 1D inertial confinement fusion simulation code. This analysis predicts that National Ignition Campaign (NIC) designs are located close to a performance cliff, so modeling errors, design features (fill tube and tent) and additional, unmodeled instabilities could lead to significant levels of mix. The performance cliff we identify is associated with multimode plastic ablator (CH) mix into the hot-spot deuterium and tritium (DT). The buoyancy-drag mix model is mode number independent and selects implicitly a range of maximum growth modes. Our main conclusion is that single effect instabilities are predicted not to lead to hot-spot mix, while combined mode mixing effects are predicted to affect hot-spot thermodynamics and possibly hot-spot mix. Combined with the stagnation Rayleigh-Taylor instability, we find the potential for mix effects in combination with the ice-to-gas DT boundary, numerical effects of Eulerian species CH concentration diffusion, and ablation-driven instabilities. With the help of a convenient package of plasma transport parameters developed here, we give an approximate determination of these quantities in the regime relevant to the NIC experiments, while ruling out a variety of mix possibilities. Plasma transport parameters affect the 1D buoyancy-drag mix model primarily through its phenomenological drag coefficient as well as the 1D hydro model to which the buoyancy-drag equation is coupled.

  20. Solutions for Determining the Significance Region Using the Johnson-Neyman Type Procedure in Generalized Linear (Mixed) Models

    ERIC Educational Resources Information Center

    Lazar, Ann A.; Zerbe, Gary O.

    2011-01-01

    Researchers often compare the relationship between an outcome and covariate for two or more groups by evaluating whether the fitted regression curves differ significantly. When they do, researchers need to determine the "significance region," or the values of the covariate where the curves significantly differ. In analysis of covariance (ANCOVA),…

  1. An analysis of the adoption of managerial innovation: cost accounting systems in hospitals.

    PubMed

    Glandon, G L; Counte, M A

    1995-11-01

    The adoption of new medical technologies has received significant attention in the hospital industry, in part, because of its observed relation to hospital cost increases. However, few comprehensive studies exist regarding the adoption of non-medical technologies in the hospital setting. This paper develops and tests a model of the adoption of a managerial innovation, new to the hospital industry, that of cost accounting systems based upon standard costs. The conceptual model hypothesizes that four organizational context factors (size, complexity, ownership and slack resources) and two environmental factors (payor mix and interorganizational dependency) influence hospital adoption of cost accounting systems. Based on responses to a mail survey of hospitals in the Chicago area and AHA annual survey information for 1986, a sample of 92 hospitals was analyzed. Greater hospital size, complexity, slack resources, and interorganizational dependency all were associated with adoption. Payor mix had no significant influence and the hospital ownership variables had a mixed influence. The logistic regression model was significant overall and explained over 15% of the variance in the adoption decision.

  2. Case-mix groups for VA hospital-based home care.

    PubMed

    Smith, M E; Baker, C R; Branch, L G; Walls, R C; Grimes, R M; Karklins, J M; Kashner, M; Burrage, R; Parks, A; Rogers, P

    1992-01-01

    The purpose of this study is to group hospital-based home care (HBHC) patients homogeneously by their characteristics with respect to cost of care to develop alternative case mix methods for management and reimbursement (allocation) purposes. Six Veterans Affairs (VA) HBHC programs in Fiscal Year (FY) 1986 that maximized patient, program, and regional variation were selected, all of which agreed to participate. All HBHC patients active in each program on October 1, 1987, in addition to all new admissions through September 30, 1988 (FY88), comprised the sample of 874 unique patients. Statistical methods include the use of classification and regression trees (CART software: Statistical Software; Lafayette, CA), analysis of variance, and multiple linear regression techniques. The resulting algorithm is a three-factor model that explains 20% of the cost variance (R2 = 20%, with a cross validation R2 of 12%). Similar classifications such as the RUG-II, which is utilized for VA nursing home and intermediate care, the VA outpatient resource allocation model, and the RUG-HHC, utilized in some states for reimbursing home health care in the private sector, explained less of the cost variance and, therefore, are less adequate for VA home care resource allocation.

  3. Model free simulations of a high speed reacting mixing layer

    NASA Technical Reports Server (NTRS)

    Steinberger, Craig J.

    1992-01-01

    The effects of compressibility, chemical reaction exothermicity and non-equilibrium chemical modeling in a combusting plane mixing layer were investigated by means of two-dimensional model free numerical simulations. It was shown that increased compressibility generally had a stabilizing effect, resulting in reduced mixing and chemical reaction conversion rate. The appearance of 'eddy shocklets' in the flow was observed at high convective Mach numbers. Reaction exothermicity was found to enhance mixing at the initial stages of the layer's growth, but had a stabilizing effect at later times. Calculations were performed for a constant rate chemical rate kinetics model and an Arrhenius type kinetics prototype. The Arrhenius model was found to cause a greater temperature increase due to reaction than the constant kinetics model. This had the same stabilizing effect as increasing the exothermicity of the reaction. Localized flame quenching was also observed when the Zeldovich number was relatively large.

  4. Do School Budgets Matter? The Effect of Budget Referenda on Student Dropout Rates

    ERIC Educational Resources Information Center

    Lee, Kyung-Gon; Polachek, Solomon W.

    2018-01-01

    This paper analyzes how changes in school expenditures affect dropout rates based on data from 466 school districts in New York during the 2003/04 to the 2007/08 school years. Past traditional regression approaches show mixed results in part because school expenditures are likely endogenous, so that one cannot disentangle cause and effect. The…

  5. Development, Discouragement, or Diversion? New Evidence on the Effects of College Remediation. NBER Working Paper No. 18328

    ERIC Educational Resources Information Center

    Scott-Clayton, Judith; Rodriguez, Olga

    2012-01-01

    Half of all college students take at least one remedial course as part of their postsecondary experience, despite mixed evidence on the effectiveness of this intervention. Using a regression-discontinuity design with data from a large urban community college system, we extend the research on remediation in three ways. First, we articulate three…

  6. Assessing intrinsic and specific vulnerability models ability to indicate groundwater vulnerability to groups of similar pesticides: A comparative study

    USGS Publications Warehouse

    Douglas, Steven; Dixon, Barnali; Griffin, Dale W.

    2018-01-01

    With continued population growth and increasing use of fresh groundwater resources, protection of this valuable resource is critical. A cost effective means to assess risk of groundwater contamination potential will provide a useful tool to protect these resources. Integrating geospatial methods offers a means to quantify the risk of contaminant potential in cost effective and spatially explicit ways. This research was designed to compare the ability of intrinsic (DRASTIC) and specific (Attenuation Factor; AF) vulnerability models to indicate groundwater vulnerability areas by comparing model results to the presence of pesticides from groundwater sample datasets. A logistic regression was used to assess the relationship between the environmental variables and the presence or absence of pesticides within regions of varying vulnerability. According to the DRASTIC model, more than 20% of the study area is very highly vulnerable. Approximately 30% is very highly vulnerable according to the AF model. When groundwater concentrations of individual pesticides were compared to model predictions, the results were mixed. Model predictability improved when concentrations of the group of similar pesticides were compared to model results. Compared to the DRASTIC model, the AF model more accurately predicts the distribution of the number of contaminated wells within each vulnerability class.

  7. Analysis and modeling of subgrid scalar mixing using numerical data

    NASA Technical Reports Server (NTRS)

    Girimaji, Sharath S.; Zhou, YE

    1995-01-01

    Direct numerical simulations (DNS) of passive scalar mixing in isotropic turbulence is used to study, analyze and, subsequently, model the role of small (subgrid) scales in the mixing process. In particular, we attempt to model the dissipation of the large scale (supergrid) scalar fluctuations caused by the subgrid scales by decomposing it into two parts: (1) the effect due to the interaction among the subgrid scales; and (2) the effect due to interaction between the supergrid and the subgrid scales. Model comparisons with DNS data show good agreement. This model is expected to be useful in the large eddy simulations of scalar mixing and reaction.

  8. Estimation of Standard Error of Regression Effects in Latent Regression Models Using Binder's Linearization. Research Report. ETS RR-07-09

    ERIC Educational Resources Information Center

    Li, Deping; Oranje, Andreas

    2007-01-01

    Two versions of a general method for approximating standard error of regression effect estimates within an IRT-based latent regression model are compared. The general method is based on Binder's (1983) approach, accounting for complex samples and finite populations by Taylor series linearization. In contrast, the current National Assessment of…

  9. Effectiveness and cost effectiveness of television, radio and print advertisements in promoting the New York smokers' quitline.

    PubMed

    Farrelly, Matthew C; Hussin, Altijani; Bauer, Ursula E

    2007-12-01

    This study assessed the relative effectiveness and cost effectiveness of television, radio and print advertisements to generate calls to the New York smokers' quitline. Regression analysis was used to link total county level monthly quitline calls to television, radio and print advertising expenditures. Based on regression results, standardised measures of the relative effectiveness and cost effectiveness of expenditures were computed. There was a positive and statistically significant relation between call volume and expenditures for television (p<0.01) and radio (p<0.001) advertisements and a marginally significant effect for expenditures on newspaper advertisements (p<0.065). The largest effect was for television advertising. However, because of differences in advertising costs, for every $1000 increase in television, radio and newspaper expenditures, call volume increased by 0.1%, 5.7% and 2.8%, respectively. Television, radio and print media all effectively increased calls to the New York smokers' quitline. Although increases in expenditures for television were the most effective, their relatively high costs suggest they are not currently the most cost effective means to promote a quitline. This implies that a more efficient mix of media would place greater emphasis on radio than television. However, because the current study does not adequately assess the extent to which radio expenditures would sustain their effectiveness with substantial expenditure increases, it is not feasible to determine a more optimal mix of expenditures.

  10. New methodology for modeling annual-aircraft emissions at airports

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woodmansey, B.G.; Patterson, J.G.

    An as-accurate-as-possible estimation of total-aircraft emissions are an essential component of any environmental-impact assessment done for proposed expansions at major airports. To determine the amount of emissions generated by aircraft using present models it is necessary to know the emission characteristics of all engines that are on all planes using the airport. However, the published data base does not cover all engine types and, therefore, a new methodology is needed to assist in estimating annual emissions from aircraft at airports. Linear regression equations relating quantity of emissions to aircraft weight using a known-fleet mix are developed in this paper. Total-annualmore » emissions for CO, NO[sub x], NMHC, SO[sub x], CO[sub 2], and N[sub 2]O are tabulated for Toronto's international airport for 1990. The regression equations are statistically significant for all emissions except for NMHC from large jets and NO[sub x] and NMHC for piston-engine aircraft. This regression model is a relatively simple, fast, and inexpensive method of obtaining an annual-emission inventory for an airport.« less

  11. Effects of a Web-Based Computer-Tailored Game to Reduce Binge Drinking Among Dutch Adolescents: A Cluster Randomized Controlled Trial

    PubMed Central

    Crutzen, Rik; Mercken, Liesbeth; Candel, Math; de Vries, Hein

    2016-01-01

    Background Binge drinking among Dutch adolescents is among the highest in Europe. Few interventions so far have focused on adolescents aged 15 to 19 years. Because binge drinking increases significantly during those years, it is important to develop binge drinking prevention programs for this group. Web-based computer-tailored interventions can be an effective tool for reducing this behavior in adolescents. Embedding the computer-tailored intervention in a serious game may make it more attractive to adolescents. Objective The aim was to assess whether a Web-based computer-tailored intervention is effective in reducing binge drinking in Dutch adolescents aged 15 to 19 years. Secondary outcomes were reduction in excessive drinking and overall consumption during the previous week. Personal characteristics associated with program adherence were also investigated. Methods A cluster randomized controlled trial was conducted among 34 Dutch schools. Each school was randomized into either an experimental (n=1622) or a control (n=1027) condition. Baseline assessment took place in January and February 2014. At baseline, demographic variables and alcohol use were assessed. Follow-up assessment of alcohol use took place 4 months later (May and June 2014). After the baseline assessment, participants in the experimental condition started with the intervention consisting of a game about alcohol in which computer-tailored feedback regarding motivational characteristics was embedded. Participants in the control condition only received the baseline questionnaire. Both groups received the 4-month follow-up questionnaire. Effects of the intervention were assessed using logistic regression mixed models analyses for binge and excessive drinking and linear regression mixed models analyses for weekly consumption. Factors associated with intervention adherence in the experimental condition were explored by means of a linear regression model. Results In total, 2649 adolescents participated in the baseline assessment. At follow-up, 824 (31.11%) adolescents returned. The intervention was effective in reducing binge drinking among adolescents aged 15 years (P=.03) and those aged 16 years when they participated in at least 2 intervention sessions (P=.04). Interaction effects between excessive drinking and educational level (P=.08) and between weekly consumption and age (P=.09) were found; however, in-depth analyses revealed no significant subgroup effects for both interaction effects. Additional analyses revealed that prolonged use of the intervention was associated with stronger effects for binge drinking. Yet, overall adherence to the intervention was low. Analyses revealed that being Protestant, female, younger, a nonbinge drinker, and having a higher educational background were associated with adherence. Conclusions The intervention was effective for adolescents aged 15 and 16 years concerning binge drinking. Prevention messages may be more effective for those at the start of their drinking career, whereas other methods may be needed for those with a longer history of alcohol consumption. Despite using game elements, intervention completion was low. Trial Registration Dutch Trial Register: NTR4048; http://www.trialregister.nl/trialreg/admin/rctview.asp?TC=4048 (Archived by WebCite® at http://www.webcitation.org/6eSJD3FiY) PMID:26842694

  12. Effects of a Web-Based Computer-Tailored Game to Reduce Binge Drinking Among Dutch Adolescents: A Cluster Randomized Controlled Trial.

    PubMed

    Jander, Astrid; Crutzen, Rik; Mercken, Liesbeth; Candel, Math; de Vries, Hein

    2016-02-03

    Binge drinking among Dutch adolescents is among the highest in Europe. Few interventions so far have focused on adolescents aged 15 to 19 years. Because binge drinking increases significantly during those years, it is important to develop binge drinking prevention programs for this group. Web-based computer-tailored interventions can be an effective tool for reducing this behavior in adolescents. Embedding the computer-tailored intervention in a serious game may make it more attractive to adolescents. The aim was to assess whether a Web-based computer-tailored intervention is effective in reducing binge drinking in Dutch adolescents aged 15 to 19 years. Secondary outcomes were reduction in excessive drinking and overall consumption during the previous week. Personal characteristics associated with program adherence were also investigated. A cluster randomized controlled trial was conducted among 34 Dutch schools. Each school was randomized into either an experimental (n=1622) or a control (n=1027) condition. Baseline assessment took place in January and February 2014. At baseline, demographic variables and alcohol use were assessed. Follow-up assessment of alcohol use took place 4 months later (May and June 2014). After the baseline assessment, participants in the experimental condition started with the intervention consisting of a game about alcohol in which computer-tailored feedback regarding motivational characteristics was embedded. Participants in the control condition only received the baseline questionnaire. Both groups received the 4-month follow-up questionnaire. Effects of the intervention were assessed using logistic regression mixed models analyses for binge and excessive drinking and linear regression mixed models analyses for weekly consumption. Factors associated with intervention adherence in the experimental condition were explored by means of a linear regression model. In total, 2649 adolescents participated in the baseline assessment. At follow-up, 824 (31.11%) adolescents returned. The intervention was effective in reducing binge drinking among adolescents aged 15 years (P=.03) and those aged 16 years when they participated in at least 2 intervention sessions (P=.04). Interaction effects between excessive drinking and educational level (P=.08) and between weekly consumption and age (P=.09) were found; however, in-depth analyses revealed no significant subgroup effects for both interaction effects. Additional analyses revealed that prolonged use of the intervention was associated with stronger effects for binge drinking. Yet, overall adherence to the intervention was low. Analyses revealed that being Protestant, female, younger, a nonbinge drinker, and having a higher educational background were associated with adherence. The intervention was effective for adolescents aged 15 and 16 years concerning binge drinking. Prevention messages may be more effective for those at the start of their drinking career, whereas other methods may be needed for those with a longer history of alcohol consumption. Despite using game elements, intervention completion was low. Dutch Trial Register: NTR4048; http://www.trialregister.nl/trialreg/admin/rctview.asp?TC=4048 (Archived by WebCite® at http://www.webcitation.org/6eSJD3FiY).

  13. Removing Batch Effects from Longitudinal Gene Expression - Quantile Normalization Plus ComBat as Best Approach for Microarray Transcriptome Data

    PubMed Central

    Müller, Christian; Schillert, Arne; Röthemeier, Caroline; Trégouët, David-Alexandre; Proust, Carole; Binder, Harald; Pfeiffer, Norbert; Beutel, Manfred; Lackner, Karl J.; Schnabel, Renate B.; Tiret, Laurence; Wild, Philipp S.; Blankenberg, Stefan

    2016-01-01

    Technical variation plays an important role in microarray-based gene expression studies, and batch effects explain a large proportion of this noise. It is therefore mandatory to eliminate technical variation while maintaining biological variability. Several strategies have been proposed for the removal of batch effects, although they have not been evaluated in large-scale longitudinal gene expression data. In this study, we aimed at identifying a suitable method for batch effect removal in a large study of microarray-based longitudinal gene expression. Monocytic gene expression was measured in 1092 participants of the Gutenberg Health Study at baseline and 5-year follow up. Replicates of selected samples were measured at both time points to identify technical variability. Deming regression, Passing-Bablok regression, linear mixed models, non-linear models as well as ReplicateRUV and ComBat were applied to eliminate batch effects between replicates. In a second step, quantile normalization prior to batch effect correction was performed for each method. Technical variation between batches was evaluated by principal component analysis. Associations between body mass index and transcriptomes were calculated before and after batch removal. Results from association analyses were compared to evaluate maintenance of biological variability. Quantile normalization, separately performed in each batch, combined with ComBat successfully reduced batch effects and maintained biological variability. ReplicateRUV performed perfectly in the replicate data subset of the study, but failed when applied to all samples. All other methods did not substantially reduce batch effects in the replicate data subset. Quantile normalization plus ComBat appears to be a valuable approach for batch correction in longitudinal gene expression data. PMID:27272489

  14. Developing A New Predictive Dispersion Equation Based on Tidal Average (TA) Condition in Alluvial Estuaries

    NASA Astrophysics Data System (ADS)

    Anak Gisen, Jacqueline Isabella; Nijzink, Remko C.; Savenije, Hubert H. G.

    2014-05-01

    Dispersion mathematical representation of tidal mixing between sea water and fresh water in The definition of dispersion somehow remains unclear as it is not directly measurable. The role of dispersion is only meaningful if it is related to the appropriate temporal and spatial scale of mixing, which are identified as the tidal period, tidal excursion (longitudinal), width of estuary (lateral) and mixing depth (vertical). Moreover, the mixing pattern determines the salt intrusion length in an estuary. If a physically based description of the dispersion is defined, this would allow the analytical solution of the salt intrusion problem. The objective of this study is to develop a predictive equation for estimating the dispersion coefficient at tidal average (TA) condition, which can be applied in the salt intrusion model to predict the salinity profile for any estuary during different events. Utilizing available data of 72 measurements in 27 estuaries (including 6 recently studied estuaries in Malaysia), regressions analysis has been performed with various combinations of dimensionless parameters . The predictive dispersion equations have been developed for two different locations, at the mouth D0TA and at the inflection point D1TA (where the convergence length changes). Regressions have been carried out with two separated datasets: 1) more reliable data for calibration; and 2) less reliable data for validation. The combination of dimensionless ratios that give the best performance is selected as the final outcome which indicates that the dispersion coefficient is depending on the tidal excursion, tidal range, tidal velocity amplitude, friction and the Richardson Number. A limitation of the newly developed equation is that the friction is generally unknown. In order to compensate this problem, further analysis has been performed adopting the hydraulic model of Cai et. al. (2012) to estimate the friction and depth. Keywords: dispersion, alluvial estuaries, mixing, salt intrusion, predictive equation

  15. Evaluating Effects of Developmental Education for College Students Using a Regression Discontinuity Design

    ERIC Educational Resources Information Center

    Moss, Brian G.; Yeaton, William H.

    2013-01-01

    Background: Annually, American colleges and universities provide developmental education (DE) to millions of underprepared students; however, evaluation estimates of DE benefits have been mixed. Objectives: Using a prototypic exemplar of DE, our primary objective was to investigate the utility of a replicative evaluative framework for assessing…

  16. Waste management under multiple complexities: Inexact piecewise-linearization-based fuzzy flexible programming

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun Wei; Huang, Guo H., E-mail: huang@iseis.org; Institute for Energy, Environment and Sustainable Communities, University of Regina, Regina, Saskatchewan, S4S 0A2

    2012-06-15

    Highlights: Black-Right-Pointing-Pointer Inexact piecewise-linearization-based fuzzy flexible programming is proposed. Black-Right-Pointing-Pointer It's the first application to waste management under multiple complexities. Black-Right-Pointing-Pointer It tackles nonlinear economies-of-scale effects in interval-parameter constraints. Black-Right-Pointing-Pointer It estimates costs more accurately than the linear-regression-based model. Black-Right-Pointing-Pointer Uncertainties are decreased and more satisfactory interval solutions are obtained. - Abstract: To tackle nonlinear economies-of-scale (EOS) effects in interval-parameter constraints for a representative waste management problem, an inexact piecewise-linearization-based fuzzy flexible programming (IPFP) model is developed. In IPFP, interval parameters for waste amounts and transportation/operation costs can be quantified; aspiration levels for net system costs, as well as tolerancemore » intervals for both capacities of waste treatment facilities and waste generation rates can be reflected; and the nonlinear EOS effects transformed from objective function to constraints can be approximated. An interactive algorithm is proposed for solving the IPFP model, which in nature is an interval-parameter mixed-integer quadratically constrained programming model. To demonstrate the IPFP's advantages, two alternative models are developed to compare their performances. One is a conventional linear-regression-based inexact fuzzy programming model (IPFP2) and the other is an IPFP model with all right-hand-sides of fussy constraints being the corresponding interval numbers (IPFP3). The comparison results between IPFP and IPFP2 indicate that the optimized waste amounts would have the similar patterns in both models. However, when dealing with EOS effects in constraints, the IPFP2 may underestimate the net system costs while the IPFP can estimate the costs more accurately. The comparison results between IPFP and IPFP3 indicate that their solutions would be significantly different. The decreased system uncertainties in IPFP's solutions demonstrate its effectiveness for providing more satisfactory interval solutions than IPFP3. Following its first application to waste management, the IPFP can be potentially applied to other environmental problems under multiple complexities.« less

  17. Associations between homocysteine metabolism related SNPs and carotid intima-media thickness: a Chinese sib pair study.

    PubMed

    Sun, Kexin; Song, Jing; Liu, Kuo; Fang, Kai; Wang, Ling; Wang, Xueyin; Li, Jing; Tang, Xun; Wu, Yiqun; Qin, Xueying; Wu, Tao; Gao, Pei; Chen, Dafang; Hu, Yonghua

    2017-04-01

    Carotid intima-media thickness (CIMT) is a good surrogate for atherosclerosis. Hyperhomocysteinemia is an independent risk factor for cardiovascular diseases. We aim to investigate the relationships between homocysteine (Hcy) related biochemical indexes and CIMT, the associations between Hcy related SNPs and CIMT, as well as the potential gene-gene interactions. The present study recruited full siblings (186 eligible families with 424 individuals) with no history of cardiovascular events from a rural area of Beijing. We examined CIMT, intima-media thickness for common carotid artery (CCA-IMT) and carotid bifurcation, tested plasma levels for Hcy, vitamin B6 (VB6), vitamin B12 (VB12) and folic acid (FA), and genotyped 9 SNPs on MTHFR, MTR, MTRR, BHMT, SHMT1, CBS genes. Associations between SNPs and biochemical indexes and CIMT indexes were analyzed using family-based association test analysis. We used multi-level mixed-effects regression model to verify SNP-CIMT associations and to explore the potential gene-gene interactions. VB6, VB12 and FA were negatively correlated with CIMT indexes (p < 0.05). rs2851391 T allele was associated with decreased plasma VB12 levels (p = 0.036). In FABT, CBS rs2851391 was significantly associated with CCA-IMT (p = 0.021) and CIMT (p = 0.019). In multi-level mixed-effects regression model, CBS rs2851391 was positively significantly associated with CCA-IMT (Coef = 0.032, se = 0.009, raw p < 0.001) after Bonferoni correction (corrected α = 0.0056). Gene-gene interactions were found between CBS rs2851391 and BHMT rs10037045 for CCA-IMT (p = 0.011), as well as between CBS rs2851391 and MTR rs1805087 for CCA-IMT (p = 0.007) and CIMT (p = 0.022). Significant associations are found between Hcy metabolism related genetic polymorphisms, biochemical indexes and CIMT indexes. There are complex interactions between genetic polymorphisms for CCA-IMT and CIMT.

  18. Comparison of marginal bone loss and implant success between axial and tilted implants in maxillary All-on-4 treatment concept rehabilitations after 5 years of follow-up.

    PubMed

    Hopp, Milena; de Araújo Nobre, Miguel; Maló, Paulo

    2017-10-01

    There is need for more scientific and clinical information on longer-term outcomes of tilted implants compared to implants inserted in an axial position. Comparison of marginal bone loss and implant success after a 5-year follow-up between axial and tilted implants inserted for full-arch maxillary rehabilitation. The retrospective clinical study included 891 patients with 3564 maxillary implants rehabilitated according to the All-on-4 treatment concept. The follow-up time was 5 years. Linear mixed-effect models were performed to analyze the influence of implant orientation (axial/tilted) on marginal bone loss and binary logistic regression to assess the effect of patient characteristics on occurrence of marginal bone loss >2.8 mm. Only those patients with measurements of at least one axial and one tilted implant available were analyzed. This resulted in a data set of 2379 implants (1201 axial, 1178 tilted) in 626 patients (=reduced data set). Axial and tilted implants showed comparable mean marginal bone losses of 1.14 ± 0.71 and 1.19 ± 0.82 mm, respectively. Mixed model analysis indicated that marginal bone loss levels at 5 years follow up was not significantly affected by the orientation (axial/tilted) of the implants in the maxillary bone. Smoking and female gender were associated with marginal bone loss >2.8 mm in a logistic regression analysis. Five-year implant success rates were 96%. The occurrence of implant failure showed to be statistically independent from orientation. Within the limitations of this study and considering a follow-up time of 5 years, it can be concluded that tilted implants behave similarly with regards to marginal bone loss and implant success in comparison to axial implants in full-arch rehabilitation of the maxilla. Longer-term outcomes (10 years +) are needed to verify this result. © 2017 Wiley Periodicals, Inc.

  19. Prevalence, Risk Factors and Consequent Effect of Dystocia in Holstein Dairy Cows in Iran

    PubMed Central

    Atashi, Hadi; Abdolmohammadi, Alireza; Dadpasand, Mohammad; Asaadi, Anise

    2012-01-01

    The objective of this research was to determine the prevalence, risk factors and consequent effect of dystocia on lactation performance in Holstein dairy cows in Iran. The data set consisted of 55,577 calving records on 30,879 Holstein cows in 30 dairy herds for the period March 2000 to April 2009. Factors affecting dystocia were analyzed using multivariable logistic regression models through the maximum likelihood method in the GENMOD procedure. The effect of dystocia on lactation performance and factors affecting calf birth weight were analyzed using mixed linear model in the MIXED procedure. The average incidence of dystocia was 10.8% and the mean (SD) calf birth weight was 42.13 (5.42) kg. Primiparous cows had calves with lower body weight and were more likely to require assistance at parturition (p<0.05). Female calves had lower body weight, and had a lower odds ratio for dystocia than male calves (p<0.05). Twins had lower birth weight, and had a higher odds ratio for dystocia than singletons (p<0.05). Cows which gave birth to a calf with higher weight at birth experienced more calving difficulty (OR (95% CI) = 1.1(1.08–1.11). Total 305-d milk, fat and protein yield was 135 (23), 3.16 (0.80) and 6.52 (1.01) kg less, in cows that experienced dystocia at calving compared with those that did not (p<0.05). PMID:25049584

  20. A vine copula mixed effect model for trivariate meta-analysis of diagnostic test accuracy studies accounting for disease prevalence.

    PubMed

    Nikoloulopoulos, Aristidis K

    2017-10-01

    A bivariate copula mixed model has been recently proposed to synthesize diagnostic test accuracy studies and it has been shown that it is superior to the standard generalized linear mixed model in this context. Here, we call trivariate vine copulas to extend the bivariate meta-analysis of diagnostic test accuracy studies by accounting for disease prevalence. Our vine copula mixed model includes the trivariate generalized linear mixed model as a special case and can also operate on the original scale of sensitivity, specificity, and disease prevalence. Our general methodology is illustrated by re-analyzing the data of two published meta-analyses. Our study suggests that there can be an improvement on trivariate generalized linear mixed model in fit to data and makes the argument for moving to vine copula random effects models especially because of their richness, including reflection asymmetric tail dependence, and computational feasibility despite their three dimensionality.

  1. Hydraulic conductivity of fly ash-sewage sludge mixes for use in landfill cover liners.

    PubMed

    Herrmann, Inga; Svensson, Malin; Ecke, Holger; Kumpiene, Jurate; Maurice, Christian; Andreas, Lale; Lagerkvist, Anders

    2009-08-01

    Secondary materials could help meeting the increasing demand of landfill cover liner materials. In this study, the effect of compaction energy, water content, ash ratio, freezing, drying and biological activity on the hydraulic conductivity of two fly ash-sewage sludge mixes was investigated using a 2(7-1) fractional factorial design. The aim was to identify the factors that influence hydraulic conductivity, to quantify their effects and to assess how a sufficiently low hydraulic conductivity can be achieved. The factors compaction energy and drying, as well as the factor interactions material x ash ratio and ash ratio x compaction energy affected hydraulic conductivity significantly (alpha=0.05). Freezing on five freeze-thaw cycles did not affect hydraulic conductivity. Water content affected hydraulic conductivity only initially. The hydraulic conductivity data were modelled using multiple linear regression. The derived models were reliable as indicated by R(adjusted)(2) values between 0.75 and 0.86. Independent on the ash ratio and the material, hydraulic conductivity was predicted to be between 1.7 x 10(-11)m s(-1) and 8.9 x 10(-10)m s(-1) if the compaction energy was 2.4 J cm(-3), the ash ratio between 20% and 75% and drying did not occur. Thus, the investigated materials met the limit value for non-hazardous waste landfills of 10(-9)m s(-1).

  2. Accounting for spatial effects in land use regression for urban air pollution modeling.

    PubMed

    Bertazzon, Stefania; Johnson, Markey; Eccles, Kristin; Kaplan, Gilaad G

    2015-01-01

    In order to accurately assess air pollution risks, health studies require spatially resolved pollution concentrations. Land-use regression (LUR) models estimate ambient concentrations at a fine spatial scale. However, spatial effects such as spatial non-stationarity and spatial autocorrelation can reduce the accuracy of LUR estimates by increasing regression errors and uncertainty; and statistical methods for resolving these effects--e.g., spatially autoregressive (SAR) and geographically weighted regression (GWR) models--may be difficult to apply simultaneously. We used an alternate approach to address spatial non-stationarity and spatial autocorrelation in LUR models for nitrogen dioxide. Traditional models were re-specified to include a variable capturing wind speed and direction, and re-fit as GWR models. Mean R(2) values for the resulting GWR-wind models (summer: 0.86, winter: 0.73) showed a 10-20% improvement over traditional LUR models. GWR-wind models effectively addressed both spatial effects and produced meaningful predictive models. These results suggest a useful method for improving spatially explicit models. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  3. Olfactory-visual congruence effects stable across ages: yellow is warmer when it is pleasantly lemony.

    PubMed

    Guerdoux, Estelle; Trouillet, Raphaël; Brouillet, Denis

    2014-07-01

    This study aimed to examine the age-related differences in the olfactory-visual cross-correspondences and the extent to which they are moderated by the odors pleasantness. Sixty participants aged from 20- to 75- years (young, middle-aged and older adults) performed a priming task to explore the influence of six olfactory primes (lemon, orange, rose, thyme, mint and fish) on the categorization (cool vs. warm) of six subsequent color targets (yellow, orange, pink, malachite green, grass-green, and blue-gray). We tested mixed effects models. Response times were regressed on covariates models using both fixed effects (Groups of age, olfactory Pleasantness and multimodal Condition) and cross-random effects (Subject, Color and Odor). The random effects coding for Odor (p < .001) and Color (p = .001) were significant. There was a significant interaction effect ( p= .004) between Condition × Pleasantness, but not with Groups of age. The compatibility effect (i.e., when odors and colors were congruent, the targets processing were facilitated) was as much enhanced as the olfactory primes were pleasant. Cross-correspondences between olfaction and vision may be robust in aging. They should be considered alongside spatiotemporal but also emotional congruency.

  4. On the validity of effective formulations for transport through heterogeneous porous media

    NASA Astrophysics Data System (ADS)

    de Dreuzy, Jean-Raynald; Carrera, Jesus

    2016-04-01

    Geological heterogeneity enhances spreading of solutes and causes transport to be anomalous (i.e., non-Fickian), with much less mixing than suggested by dispersion. This implies that modeling transport requires adopting either stochastic approaches that model heterogeneity explicitly or effective transport formulations that acknowledge the effects of heterogeneity. A number of such formulations have been developed and tested as upscaled representations of enhanced spreading. However, their ability to represent mixing has not been formally tested, which is required for proper reproduction of chemical reactions and which motivates our work. We propose that, for an effective transport formulation to be considered a valid representation of transport through heterogeneous porous media (HPM), it should honor mean advection, mixing and spreading. It should also be flexible enough to be applicable to real problems. We test the capacity of the multi-rate mass transfer (MRMT) model to reproduce mixing observed in HPM, as represented by the classical multi-Gaussian log-permeability field with a Gaussian correlation pattern. Non-dispersive mixing comes from heterogeneity structures in the concentration fields that are not captured by macrodispersion. These fine structures limit mixing initially, but eventually enhance it. Numerical results show that, relative to HPM, MRMT models display a much stronger memory of initial conditions on mixing than on dispersion because of the sensitivity of the mixing state to the actual values of concentration. Because MRMT does not restitute the local concentration structures, it induces smaller non-dispersive mixing than HPM. However long-lived trapping in the immobile zones may sustain the deviation from dispersive mixing over much longer times. While spreading can be well captured by MRMT models, in general non-dispersive mixing cannot.

  5. Dissecting HIV Virulence: Heritability of Setpoint Viral Load, CD4+ T-Cell Decline, and Per-Parasite Pathogenicity.

    PubMed

    Bertels, Frederic; Marzel, Alex; Leventhal, Gabriel; Mitov, Venelin; Fellay, Jacques; Günthard, Huldrych F; Böni, Jürg; Yerly, Sabine; Klimkait, Thomas; Aubert, Vincent; Battegay, Manuel; Rauch, Andri; Cavassini, Matthias; Calmy, Alexandra; Bernasconi, Enos; Schmid, Patrick; Scherrer, Alexandra U; Müller, Viktor; Bonhoeffer, Sebastian; Kouyos, Roger; Regoes, Roland R

    2018-01-01

    Pathogen strains may differ in virulence because they attain different loads in their hosts, or because they induce different disease-causing mechanisms independent of their load. In evolutionary ecology, the latter is referred to as "per-parasite pathogenicity". Using viral load and CD4+ T-cell measures from 2014 HIV-1 subtype B-infected individuals enrolled in the Swiss HIV Cohort Study, we investigated if virulence-measured as the rate of decline of CD4+ T cells-and per-parasite pathogenicity are heritable from donor to recipient. We estimated heritability by donor-recipient regressions applied to 196 previously identified transmission pairs, and by phylogenetic mixed models applied to a phylogenetic tree inferred from HIV pol sequences. Regressing the CD4+ T-cell declines and per-parasite pathogenicities of the transmission pairs did not yield heritability estimates significantly different from zero. With the phylogenetic mixed model, however, our best estimate for the heritability of the CD4+ T-cell decline is 17% (5-30%), and that of the per-parasite pathogenicity is 17% (4-29%). Further, we confirm that the set-point viral load is heritable, and estimate a heritability of 29% (12-46%). Interestingly, the pattern of evolution of all these traits differs significantly from neutrality, and is most consistent with stabilizing selection for the set-point viral load, and with directional selection for the CD4+ T-cell decline and the per-parasite pathogenicity. Our analysis shows that the viral genotype affects virulence mainly by modulating the per-parasite pathogenicity, while the indirect effect via the set-point viral load is minor. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  6. Dissecting HIV Virulence: Heritability of Setpoint Viral Load, CD4+ T-Cell Decline, and Per-Parasite Pathogenicity

    PubMed Central

    Bertels, Frederic; Marzel, Alex; Leventhal, Gabriel; Mitov, Venelin; Fellay, Jacques; Günthard, Huldrych F; Böni, Jürg; Yerly, Sabine; Klimkait, Thomas; Aubert, Vincent; Battegay, Manuel; Rauch, Andri; Cavassini, Matthias; Calmy, Alexandra; Bernasconi, Enos; Schmid, Patrick; Scherrer, Alexandra U; Müller, Viktor; Bonhoeffer, Sebastian; Kouyos, Roger; Regoes, Roland R

    2018-01-01

    Abstract Pathogen strains may differ in virulence because they attain different loads in their hosts, or because they induce different disease-causing mechanisms independent of their load. In evolutionary ecology, the latter is referred to as “per-parasite pathogenicity”. Using viral load and CD4+ T-cell measures from 2014 HIV-1 subtype B-infected individuals enrolled in the Swiss HIV Cohort Study, we investigated if virulence—measured as the rate of decline of CD4+ T cells—and per-parasite pathogenicity are heritable from donor to recipient. We estimated heritability by donor–recipient regressions applied to 196 previously identified transmission pairs, and by phylogenetic mixed models applied to a phylogenetic tree inferred from HIV pol sequences. Regressing the CD4+ T-cell declines and per-parasite pathogenicities of the transmission pairs did not yield heritability estimates significantly different from zero. With the phylogenetic mixed model, however, our best estimate for the heritability of the CD4+ T-cell decline is 17% (5–30%), and that of the per-parasite pathogenicity is 17% (4–29%). Further, we confirm that the set-point viral load is heritable, and estimate a heritability of 29% (12–46%). Interestingly, the pattern of evolution of all these traits differs significantly from neutrality, and is most consistent with stabilizing selection for the set-point viral load, and with directional selection for the CD4+ T-cell decline and the per-parasite pathogenicity. Our analysis shows that the viral genotype affects virulence mainly by modulating the per-parasite pathogenicity, while the indirect effect via the set-point viral load is minor. PMID:29029206

  7. Employing the Gini coefficient to measure participation inequality in treatment-focused Digital Health Social Networks.

    PubMed

    van Mierlo, Trevor; Hyatt, Douglas; Ching, Andrew T

    2016-01-01

    Digital Health Social Networks (DHSNs) are common; however, there are few metrics that can be used to identify participation inequality. The objective of this study was to investigate whether the Gini coefficient, an economic measure of statistical dispersion traditionally used to measure income inequality, could be employed to measure DHSN inequality. Quarterly Gini coefficients were derived from four long-standing DHSNs. The combined data set included 625,736 posts that were generated from 15,181 actors over 18,671 days. The range of actors (8-2323), posts (29-28,684), and Gini coefficients (0.15-0.37) varied. Pearson correlations indicated statistically significant associations between number of actors and number of posts (0.527-0.835, p  < .001), and Gini coefficients and number of posts (0.342-0.725, p  < .001). However, the association between Gini coefficient and number of actors was only statistically significant for the addiction networks (0.619 and 0.276, p  < .036). Linear regression models had positive but mixed R 2 results (0.333-0.527). In all four regression models, the association between Gini coefficient and posts was statistically significant ( t  = 3.346-7.381, p  < .002). However, unlike the Pearson correlations, the association between Gini coefficient and number of actors was only statistically significant in the two mental health networks ( t  = -4.305 and -5.934, p  < .000). The Gini coefficient is helpful in measuring shifts in DHSN inequality. However, as a standalone metric, the Gini coefficient does not indicate optimal numbers or ratios of actors to posts, or effective network engagement. Further, mixed-methods research investigating quantitative performance metrics is required.

  8. MIXED-STATUS FAMILIES AND WIC UPTAKE: THE EFFECTS OF RISK OF DEPORTATION ON PROGRAM USE

    PubMed Central

    Vargas, Edward D.; Pirog, Maureen A.

    2016-01-01

    Objective Develop and test measures of risk of deportation and mixed-status families on WIC uptake. Mixed-status is a situation in which some family members are U.S. citizens and other family members are in the U.S. without proper authorization. Methods Estimate a series of logistic regressions to estimate WIC uptake by merging data from Fragile Families and Child Well-being Survey with deportation data from U.S.-Immigration Customs and Enforcement. Results The findings of this study suggest that risk of deportation is negatively associated with WIC uptake and among mixed-status families; Mexican origin families are the most sensitive when it comes to deportations and program use. Conclusion Our analysis provides a typology and framework to study mixed-status families and evaluate their usage of social services by including an innovative measure of risk of deportation. PMID:27642194

  9. Case-Mix Adjusting Performance Measures in a Veteran Population: Pharmacy- and Diagnosis-Based Approaches

    PubMed Central

    Liu, Chuan-Fen; Sales, Anne E; Sharp, Nancy D; Fishman, Paul; Sloan, Kevin L; Todd-Stenberg, Jeff; Nichol, W Paul; Rosen, Amy K; Loveland, Susan

    2003-01-01

    Objective To compare the rankings for health care utilization performance measures at the facility level in a Veterans Health Administration (VHA) health care delivery network using pharmacy- and diagnosis-based case-mix adjustment measures. Data Sources/Study Setting The study included veterans who used inpatient or outpatient services in Veterans Integrated Service Network (VISN) 20 during fiscal year 1998 (October 1997 to September 1998; N=126,076). Utilization and pharmacy data were extracted from VHA national databases and the VISN 20 data warehouse. Study Design We estimated concurrent regression models using pharmacy or diagnosis information in the base year (FY1998) to predict health service utilization in the same year. Utilization measures included bed days of care for inpatient care and provider visits for outpatient care. Principal Findings Rankings of predicted utilization measures across facilities vary by case-mix adjustment measure. There is greater consistency within the diagnosis-based models than between the diagnosis- and pharmacy-based models. The eight facilities were ranked differently by the diagnosis- and pharmacy-based models. Conclusions Choice of case-mix adjustment measure affects rankings of facilities on performance measures, raising concerns about the validity of profiling practices. Differences in rankings may reflect differences in comparability of data capture across facilities between pharmacy and diagnosis data sources, and unstable estimates due to small numbers of patients in a facility. PMID:14596393

  10. Analysis of energy expenditure in diet-induced obese rats

    PubMed Central

    Assaad, Houssein; Yao, Kang; Tekwe, Carmen D.; Feng, Shuo; Bazer, Fuller W.; Zhou, Lan; Carroll, Raymond J.; Meininger, Cynthia J.; Wu, Guoyao

    2014-01-01

    Development of obesity in animals is affected by energy intake, dietary composition, and metabolism. Useful models for studying this metabolic problem are Sprague-Dawley rats fed low-fat (LF) or high-fat (HF) diets beginning at 28 days of age. Through experimental design, their dietary intakes of energy, protein, vitamins, and minerals per kg body weight (BW) do not differ in order to eliminate confounding factors in data interpretation. The 24-h energy expenditure of rats is measured using indirect calorimetry. A regression model is constructed to accurately predict BW gain based on diet, initial BW gain, and the principal component scores of respiratory quotient and heat production. Time-course data on metabolism (including energy expenditure) are analyzed using a mixed effect model that fits both fixed and random effects. Cluster analysis is employed to classify rats as normal-weight or obese. HF-fed rats are heavier than LF-fed rats, but rates of their heat production per kg non-fat mass do not differ. We conclude that metabolic conversion of dietary lipids into body fat primarily contributes to obesity in HF-fed rats. PMID:24896330

  11. Multivariate meta-analysis using individual participant data.

    PubMed

    Riley, R D; Price, M J; Jackson, D; Wardle, M; Gueyffier, F; Wang, J; Staessen, J A; White, I R

    2015-06-01

    When combining results across related studies, a multivariate meta-analysis allows the joint synthesis of correlated effect estimates from multiple outcomes. Joint synthesis can improve efficiency over separate univariate syntheses, may reduce selective outcome reporting biases, and enables joint inferences across the outcomes. A common issue is that within-study correlations needed to fit the multivariate model are unknown from published reports. However, provision of individual participant data (IPD) allows them to be calculated directly. Here, we illustrate how to use IPD to estimate within-study correlations, using a joint linear regression for multiple continuous outcomes and bootstrapping methods for binary, survival and mixed outcomes. In a meta-analysis of 10 hypertension trials, we then show how these methods enable multivariate meta-analysis to address novel clinical questions about continuous, survival and binary outcomes; treatment-covariate interactions; adjusted risk/prognostic factor effects; longitudinal data; prognostic and multiparameter models; and multiple treatment comparisons. Both frequentist and Bayesian approaches are applied, with example software code provided to derive within-study correlations and to fit the models. © 2014 The Authors. Research Synthesis Methods published by John Wiley & Sons, Ltd.

  12. Mixed Single/Double Precision in OpenIFS: A Detailed Study of Energy Savings, Scaling Effects, Architectural Effects, and Compilation Effects

    NASA Astrophysics Data System (ADS)

    Fagan, Mike; Dueben, Peter; Palem, Krishna; Carver, Glenn; Chantry, Matthew; Palmer, Tim; Schlacter, Jeremy

    2017-04-01

    It has been shown that a mixed precision approach that judiciously replaces double precision with single precision calculations can speed-up global simulations. In particular, a mixed precision variation of the Integrated Forecast System (IFS) of the European Centre for Medium-Range Weather Forecasts (ECMWF) showed virtually the same quality model results as the standard double precision version (Vana et al., Single precision in weather forecasting models: An evaluation with the IFS, Monthly Weather Review, in print). In this study, we perform detailed measurements of savings in computing time and energy using a mixed precision variation of the -OpenIFS- model. The mixed precision variation of OpenIFS is analogous to the IFS variation used in Vana et al. We (1) present results for energy measurements for simulations in single and double precision using Intel's RAPL technology, (2) conduct a -scaling- study to quantify the effects that increasing model resolution has on both energy dissipation and computing cycles, (3) analyze the differences between single core and multicore processing, and (4) compare the effects of different compiler technologies on the mixed precision OpenIFS code. In particular, we compare intel icc/ifort with gnu gcc/gfortran.

  13. Modelling ventricular fibrillation coarseness during cardiopulmonary resuscitation by mixed effects stochastic differential equations.

    PubMed

    Gundersen, Kenneth; Kvaløy, Jan Terje; Eftestøl, Trygve; Kramer-Johansen, Jo

    2015-10-15

    For patients undergoing cardiopulmonary resuscitation (CPR) and being in a shockable rhythm, the coarseness of the electrocardiogram (ECG) signal is an indicator of the state of the patient. In the current work, we show how mixed effects stochastic differential equations (SDE) models, commonly used in pharmacokinetic and pharmacodynamic modelling, can be used to model the relationship between CPR quality measurements and ECG coarseness. This is a novel application of mixed effects SDE models to a setting quite different from previous applications of such models and where using such models nicely solves many of the challenges involved in analysing the available data. Copyright © 2015 John Wiley & Sons, Ltd.

  14. Analysis of data collected from right and left limbs: Accounting for dependence and improving statistical efficiency in musculoskeletal research.

    PubMed

    Stewart, Sarah; Pearson, Janet; Rome, Keith; Dalbeth, Nicola; Vandal, Alain C

    2018-01-01

    Statistical techniques currently used in musculoskeletal research often inefficiently account for paired-limb measurements or the relationship between measurements taken from multiple regions within limbs. This study compared three commonly used analysis methods with a mixed-models approach that appropriately accounted for the association between limbs, regions, and trials and that utilised all information available from repeated trials. Four analysis were applied to an existing data set containing plantar pressure data, which was collected for seven masked regions on right and left feet, over three trials, across three participant groups. Methods 1-3 averaged data over trials and analysed right foot data (Method 1), data from a randomly selected foot (Method 2), and averaged right and left foot data (Method 3). Method 4 used all available data in a mixed-effects regression that accounted for repeated measures taken for each foot, foot region and trial. Confidence interval widths for the mean differences between groups for each foot region were used as a criterion for comparison of statistical efficiency. Mean differences in pressure between groups were similar across methods for each foot region, while the confidence interval widths were consistently smaller for Method 4. Method 4 also revealed significant between-group differences that were not detected by Methods 1-3. A mixed effects linear model approach generates improved efficiency and power by producing more precise estimates compared to alternative approaches that discard information in the process of accounting for paired-limb measurements. This approach is recommended in generating more clinically sound and statistically efficient research outputs. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Modelling daily PM2.5 concentrations at high spatio-temporal resolution across Switzerland.

    PubMed

    de Hoogh, Kees; Héritier, Harris; Stafoggia, Massimo; Künzli, Nino; Kloog, Itai

    2018-02-01

    Spatiotemporal resolved models were developed predicting daily fine particulate matter (PM 2.5 ) concentrations across Switzerland from 2003 to 2013. Relatively sparse PM 2.5 monitoring data was supplemented by imputing PM 2.5 concentrations at PM 10 sites, using PM 2.5 /PM 10 ratios at co-located sites. Daily PM 2.5 concentrations were first estimated at a 1 × 1km resolution across Switzerland, using Multiangle Implementation of Atmospheric Correction (MAIAC) spectral aerosol optical depth (AOD) data in combination with spatiotemporal predictor data in a four stage approach. Mixed effect models (1) were used to predict PM 2.5 in cells with AOD but without PM 2.5 measurements (2). A generalized additive mixed model with spatial smoothing was applied to generate grid cell predictions for those grid cells where AOD was missing (3). Finally, local PM 2.5 predictions were estimated at each monitoring site by regressing the residuals from the 1 × 1km estimate against local spatial and temporal variables using machine learning techniques (4) and adding them to the stage 3 global estimates. The global (1 km) and local (100 m) models explained on average 73% of the total,71% of the spatial and 75% of the temporal variation (all cross validated) globally and on average 89% (total) 95% (spatial) and 88% (temporal) of the variation locally in measured PM 2.5 concentrations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Poisson Mixture Regression Models for Heart Disease Prediction.

    PubMed

    Mufudza, Chipo; Erol, Hamza

    2016-01-01

    Early heart disease control can be achieved by high disease prediction and diagnosis efficiency. This paper focuses on the use of model based clustering techniques to predict and diagnose heart disease via Poisson mixture regression models. Analysis and application of Poisson mixture regression models is here addressed under two different classes: standard and concomitant variable mixture regression models. Results show that a two-component concomitant variable Poisson mixture regression model predicts heart disease better than both the standard Poisson mixture regression model and the ordinary general linear Poisson regression model due to its low Bayesian Information Criteria value. Furthermore, a Zero Inflated Poisson Mixture Regression model turned out to be the best model for heart prediction over all models as it both clusters individuals into high or low risk category and predicts rate to heart disease componentwise given clusters available. It is deduced that heart disease prediction can be effectively done by identifying the major risks componentwise using Poisson mixture regression model.

  17. Poisson Mixture Regression Models for Heart Disease Prediction

    PubMed Central

    Erol, Hamza

    2016-01-01

    Early heart disease control can be achieved by high disease prediction and diagnosis efficiency. This paper focuses on the use of model based clustering techniques to predict and diagnose heart disease via Poisson mixture regression models. Analysis and application of Poisson mixture regression models is here addressed under two different classes: standard and concomitant variable mixture regression models. Results show that a two-component concomitant variable Poisson mixture regression model predicts heart disease better than both the standard Poisson mixture regression model and the ordinary general linear Poisson regression model due to its low Bayesian Information Criteria value. Furthermore, a Zero Inflated Poisson Mixture Regression model turned out to be the best model for heart prediction over all models as it both clusters individuals into high or low risk category and predicts rate to heart disease componentwise given clusters available. It is deduced that heart disease prediction can be effectively done by identifying the major risks componentwise using Poisson mixture regression model. PMID:27999611

  18. The relationship of California's Medicaid reimbursement system to nurse staffing levels.

    PubMed

    Mukamel, Dana B; Kang, Taewoon; Collier, Eric; Harrington, Charlene

    2012-10-01

    Policy initiatives at the Federal and state level are aimed at increasing staffing in nursing homes. These include direct staffing standards, public reporting, and financial incentives. To examine the impact of California's Medicaid reimbursement for nursing homes which includes incentives directed at staffing. Two-stage limited-information maximum-likelihood regressions were used to model the relationship between staffing [registered nurses (RNs), licensed practical nurses, and certified nursing assistants hours per resident day] and the Medicaid payment rate, accounting for the specific structure of the payment system, endogeneity of payment and case-mix, and controlling for facility and market characteristics. A total of 927 California free-standing nursing homes in 2006. The model included facility characteristics (case-mix, size, ownership, and chain affiliation), market competition and excess demand, labor supply and wages, unemployment, and female employment. The instrumental variable for Medicaid reimbursement was the peer group payment rate for 7 geographical market areas, and the instrumental variables for resident case-mix were the average county revenues for professional therapy establishments and the percent of county population aged 65 and over. Consistent with the rate incentives and rational expectation behavior, expected nursing home reimbursement rates in 2008 were associated with increased RN staffing levels in 2006 but had no relationship with licensed practical nurse and certified nursing assistant staffing. The effect was estimated at 2 minutes per $10 increase in rate. The incentives in the Medicaid system impacted only RN staffing suggesting the need to improve the state's rate setting methodology.

  19. No causal impact of serum vascular endothelial growth factor level on temporal changes in body mass index in Japanese male workers: a five-year longitudinal study.

    PubMed

    Imatoh, Takuya; Kamimura, Seiichiro; Miyazaki, Motonobu

    2017-03-01

    It has been reported that adipocytes secrete vascular endothelial growth factor. Therefore, we conducted a 5-year longitudinal epidemiological study to further elucidate the association between vascular endothelial growth factor levels and temporal changes in body mass index. Our study subjects were Japanese male workers, who had regular health check-ups. Vascular endothelial growth factor levels were measured at baseline. To examine the association between vascular endothelial growth factor levels and overweight, we calculated the odds ratio using a multivariate logistic regression model. Moreover, linear mixed effect models were used to assess the association between vascular endothelial growth factor level and temporal changes in body mass index during the 5-year follow-up period. Vascular endothelial growth factor levels were marginally higher in subjects with a body mass index greater than 25 kg/m 2 compared with in those with a body mass index less than 25 kg/m 2 (505.4 vs. 465.5 pg/mL, P = 0.1) and were weakly correlated with leptin levels (β: 0.05, P = 0.07). In multivariate logistic regression, subjects in the highest vascular endothelial growth factor quantile were significantly associated with an increased risk for overweight compared with those in the lowest quantile (odds ratio 1.65, 95 % confidential interval: 1.10-2.50). Moreover P for trend was significant (P for trend = 0.003). However, the linear mixed effect model revealed that vascular endothelial growth factor levels were not associated with changes in body mass index over a 5-year period (quantile 2, β: 0.06, P = 0.46; quantile 3, β: -0.06, P = 0.45; quantile 4, β: -0.10, P = 0.22; quantile 1 as reference). Our results suggested that high vascular endothelial growth factor levels were significantly associated with overweight in Japanese males but high vascular endothelial growth factor levels did not necessarily cause obesity.

  20. The moderating role of team resources in translating nursing teams' accountability into learning and performance: a cross-sectional study.

    PubMed

    Rashkovits, Sarit; Drach-Zahavy, Anat

    2017-05-01

    The aim of this study was to test the moderated-mediation model suggesting that nursing teams' accountability affects team effectiveness by enhancing team learning when relevant resources are available to the team. Disappointing evidence regarding improvement in nurses' safe and quality care elevate the need in broadening our knowledge regarding the factors that enhance constant learning in nursing teams. Accountability is considered as crucial for team learning and quality of care but empirical findings have shown mixed evidence. A cross-sectional design. Forty-four nursing teams participated in the study. Data were collected in 2013-2014: Head nurses completed validated questionnaires, regarding team resources for learning (time availability, team autonomy and team performance feedback), and nursing teams' effectiveness; and nurses answered questionnaires regarding teams' accountability and learning (answers were aggregated to the team level). The model was tested using a moderated-mediation analysis with resources as moderating variables, and team learning as the mediator in the team accountability-team effectiveness link. The results of a mixed linear regression show that, as expected, nursing teams' accountability was positively linked to nursing teams' learning, when time availability, and team autonomy were high rather than low, and team performance feedback was low rather than high. Nurturing team accountability is not enough for achieving team learning and subsequent team effectiveness. Rather there is a need to provide nursing teams with adequate time, autonomy, and be cautious with performance feedback, as the latter may motivate nurses to repeat routine work strategies rather than explore improved ones. © 2016 John Wiley & Sons Ltd.

  1. Genetic contribution to patent ductus arteriosus in the premature newborn.

    PubMed

    Bhandari, Vineet; Zhou, Gongfu; Bizzarro, Matthew J; Buhimschi, Catalin; Hussain, Naveed; Gruen, Jeffrey R; Zhang, Heping

    2009-02-01

    The most common congenital heart disease in the newborn population, patent ductus arteriosus, accounts for significant morbidity in preterm newborns. In addition to prematurity and environmental factors, we hypothesized that genetic factors play a significant role in this condition. The objective of this study was to quantify the contribution of genetic factors to the variance in liability for patent ductus arteriosus in premature newborns. A retrospective study (1991-2006) from 2 centers was performed by using zygosity data from premature twins born at < or =36 weeks' gestational age and surviving beyond 36 weeks' postmenstrual age. Patent ductus arteriosus was diagnosed by echocardiography at each center. Mixed-effects logistic regression was used to assess the effect of specific covariates. Latent variable probit modeling was then performed to estimate the heritability of patent ductus arteriosus, and mixed-effects probit modeling was used to quantify the genetic component. We obtained data from 333 dizygotic twin pairs and 99 monozygotic twin pairs from 2 centers (Yale University and University of Connecticut). Data on chorioamnionitis, antenatal steroids, gestational age, body weight, gender, respiratory distress syndrome, patent ductus arteriosus, necrotizing enterocolitis, oxygen supplementation, and bronchopulmonary dysplasia were comparable between monozygotic and dizygotic twins. We found that gestational age, respiratory distress syndrome, and institution were significant covariates for patent ductus arteriosus. After controlling for specific covariates, genetic factors or the shared environment accounted for 76.1% of the variance in liability for patent ductus arteriosus. Preterm patent ductus arteriosus is highly familial (contributed to by genetic and environmental factors), with the effect being mainly environmental, after controlling for known confounders.

  2. [Study on the multilevel and longitudinal association between red meat consumption and changes in body mass index, body weight and risk of incident overweight among Chinese adults].

    PubMed

    Wang, Zhi-hong; Zhang, Bing; Wang, Hui-jun; Zhang, Ji-guo; DU, Wen-wen; Su, Chang; Zhang, Ji; Zhai, Feng-ying

    2013-07-01

    To examine the longitudinal association between red meat consumption and changes in body mass index(BMI), body weight and overweight risk in Chinese adults. Data from the open, prospective cohort study 'China Health and Nutrition Survey' (CHNS), 18 006 adults(47.5% males)were chosen as the study subjects who participated in at least one wave of survey between 1991 and 2009. Three-level(community-individual-measure occasion) mixed effect modeling was performed to investigate the effect of red meat consumption on BMI, body weight changes and risk of overweight. The average daily red meat intake was assessed using consecutive 3 d 24 h recalls. In general, participants with higher red meat intake appeared to be those with younger age, higher personal income and higher education level, lower physical activities, higher total energy intake, smokers and alcohol drinkers. 3-level mixed-effects linear regression models showed that red meat intake was positively associated with changes in BMI and body weight. Compared to those who consumed no red meat, men and women in the highest quartile of red meat intake showed an increase of 0.17(95% CI:0.08-0.26, P < 0.0001)and 0.12 kg/m(2) (95%CI:0.02-0.22, P < 0.05) on BMI and increase of 596 g (95%CI:329-864, P < 0.0001) and 400 g (95%CI:164-636, P < 0.0001) on body weight, respectively, after adjustment for potential confounders (age, income, education, smoking, alcohol, physical activity level, community urbanization index and total energy intake). After adjustment for above confounders and baseline BMI, results from the 3-level mixed effect logistic model indicated that the odds ratios of being overweight in males and females who had the highest quartile of red meat intake were 1.21 (95%CI:1.01-1.46, P < 0.05)and 1.18(95% CI:1.01-1.37, P < 0.05) in comparison with non-consumers of red meat, respectively. Higher red meat intake was associated with increased BMI and body weight, as well as increased overweight risk.

  3. An Evaluation of the Relationship among Urine, Air, and Hand Measures of Exposure to Bisphenol A (BPA) in US Manufacturing Workers.

    PubMed

    Hines, Cynthia J; Christianson, Annette L; Jackson, Matthew V; Ye, Xiaoyun; Pretty, Jack R; Arnold, James E; Calafat, Antonia M

    2018-06-13

    Exposure to bisphenol A (BPA) can be assessed using external and internal exposure measures. We examined the relationship between two measures of external BPA exposure (air and hand-wipe samples) and one of internal exposure (total BPA in urine) for a group of US manufacturing workers. During 2013-2014, we recruited 78 workers from six US companies that made BPA or made products with BPA. We quantified BPA in seven urine samples, two full-shift air samples and in pre- and end-shift hand-wipe samples collected from workers over 2 consecutive days. We examined correlations between creatinine-corrected urinary concentrations of total BPA (total BPACR) and BPA levels in air and hand wipes using Pearson's correlation coefficient. We also applied mixed-effects regression models to examine the relationship between total BPACR with BPA in air (urine~air model) and with BPA in end-shift hand wipes (urine~hand model), separately and together (urine~air+hand model), after adjusting for covariates. End-shift total BPACR strongly correlated with BPA in air (rp = 0.79, P < 0.0001) and nearly as strongly with BPA in end-shift hand wipes (rp = 0.75, P < 0.0001). In mixed-effect models, BPA air concentration and end-shift hand-wipe BPA level were significantly and positively associated with end-shift total BPACR (P < 0.0001 each). We found a significant effect of the Day 1 BPA air concentration on Day 2 total BPACR (P = 0.0104). When BPA air concentration and end-shift hand-wipe BPA level were in the same model, the air concentration (P < 0.0001) was more significant than the hand-wipe level (P = 0.0106). BPA levels in air and end-shift hand wipes strongly correlated with total BPACR, suggesting that both inhalation and dermal contract were likely exposure routes; however, inhalation, on average, appeared to be a more dominant exposure route than dermal contact for these manufacturing workers.

  4. Regression Model for MODTRAN with Applications to Inactivation of Microbes Suspended in the Atmosphere by Solar Ultraviolet Radiation

    DTIC Science & Technology

    2012-05-01

    mixed vegetation): 0.007 (0.017) For materials tested, • The albedo levels of old grass, dead grass, burnt grass, and maple leaf at 300 nm were...as 0.016-0.017 over vegetation, 0.04-0.05 over bare fertile soil, and 0.07-0.10 over concrete (autobahn, Germany). The albedo over dry bright sand

  5. Effect of prospective reimbursement on nursing home costs.

    PubMed Central

    Coburn, A F; Fortinsky, R; McGuire, C; McDonald, T P

    1993-01-01

    OBJECTIVE. This study evaluates the effect of Maine's Medicaid nursing home prospective payment system on nursing home costs and access to care for public patients. DATA SOURCES/STUDY SETTING. The implementation of a facility-specific prospective payment system for nursing homes provided the opportunity for longitudinal study of the effect of that system. Data sources included audited Medicaid nursing home cost reports, quality-of-care data from state facility survey and licensure files, and facility case-mix information from random, stratified samples of homes and residents. Data were obtained for six years (1979-1985) covering the three-year period before and after implementation of the prospective payment system. STUDY DESIGN. This study used a pre-post, longitudinal analytical design in which interrupted, time-series regression models were estimated to test the effects of prospective payment and other factors, e.g., facility characteristics, nursing home market factors, facility case mix, and quality of care, on nursing home costs. PRINCIPAL FINDINGS. Prospective payment contributed to an estimated $3.03 decrease in total variable costs in the third year from what would have been expected under the previous retrospective cost-based payment system. Responsiveness to payment system efficiency incentives declined over the study period, however, indicating a growing problem in achieving further cost reductions. Some evidence suggested that cost reductions might have reduced access for public patients. CONCLUSIONS. Study findings are consistent with the results of other studies that have demonstrated the effectiveness of prospective payment systems in restraining nursing home costs. Potential policy trade-offs among cost containment, access, and quality assurance deserve further consideration, particularly by researchers and policymakers designing the new generation of case mix-based and other nursing home payment systems. PMID:8463109

  6. Effect of prospective reimbursement on nursing home costs.

    PubMed

    Coburn, A F; Fortinsky, R; McGuire, C; McDonald, T P

    1993-04-01

    This study evaluates the effect of Maine's Medicaid nursing home prospective payment system on nursing home costs and access to care for public patients. The implementation of a facility-specific prospective payment system for nursing homes provided the opportunity for longitudinal study of the effect of that system. Data sources included audited Medicaid nursing home cost reports, quality-of-care data from state facility survey and licensure files, and facility case-mix information from random, stratified samples of homes and residents. Data were obtained for six years (1979-1985) covering the three-year period before and after implementation of the prospective payment system. This study used a pre-post, longitudinal analytical design in which interrupted, time-series regression models were estimated to test the effects of prospective payment and other factors, e.g., facility characteristics, nursing home market factors, facility case mix, and quality of care, on nursing home costs. Prospective payment contributed to an estimated $3.03 decrease in total variable costs in the third year from what would have been expected under the previous retrospective cost-based payment system. Responsiveness to payment system efficiency incentives declined over the study period, however, indicating a growing problem in achieving further cost reductions. Some evidence suggested that cost reductions might have reduced access for public patients. Study findings are consistent with the results of other studies that have demonstrated the effectiveness of prospective payment systems in restraining nursing home costs. Potential policy trade-offs among cost containment, access, and quality assurance deserve further consideration, particularly by researchers and policymakers designing the new generation of case mix-based and other nursing home payment systems.

  7. An investigation of the predictors of photoprotection and UVR dose to the face in patients with XP: a protocol using observational mixed methods

    PubMed Central

    Walburn, Jessica; Sarkany, Robert; Norton, Sam; Foster, Lesley; Morgan, Myfanwy; Sainsbury, Kirby; Araújo-Soares, Vera; Anderson, Rebecca; Garrood, Isabel; Heydenreich, Jakob; Sniehotta, Falko F; Vieira, Rute; Wulf, Hans Christian; Weinman, John

    2017-01-01

    Introduction Xeroderma pigmentosum (XP) is a rare genetic condition caused by defective nucleotide excision repair and characterised by skin cancer, ocular and neurological involvement. Stringent ultraviolet protection is the only way to prevent skin cancer. Despite the risks, some patients’ photoprotection is poor, with a potentially devastating impact on their prognosis. The aim of this research is to identify disease-specific and psychosocial predictors of photoprotection behaviour and ultraviolet radiation (UVR) dose to the face. Methods and analysis Mixed methods research based on 45 UK patients will involve qualitative interviews to identify individuals’ experience of XP and the influences on their photoprotection behaviours and a cross-sectional quantitative survey to assess biopsychosocial correlates of these behaviours at baseline. This will be followed by objective measurement of UVR exposure for 21 days by wrist-worn dosimeter and daily recording of photoprotection behaviours and psychological variables for up to 50 days in the summer months. This novel methodology will enable UVR dose reaching the face to be calculated and analysed as a clinically relevant endpoint. A range of qualitative and quantitative analytical approaches will be used, reflecting the mixed methods (eg, cross-sectional qualitative interviews, n-of-1 studies). Framework analysis will be used to analyse the qualitative interviews; mixed-effects longitudinal models will be used to examine the association of clinical and psychosocial factors with the average daily UVR dose; dynamic logistic regression models will be used to investigate participant-specific psychosocial factors associated with photoprotection behaviours. Ethics and dissemination This research has been approved by Camden and King’s Cross Research Ethics Committee 15/LO/1395. The findings will be published in peer-reviewed journals and presented at national and international scientific conferences. PMID:28827277

  8. Effect of Rice Husk Ash and Fly Ash on the workability of concrete mixture in the High-Rise Construction

    NASA Astrophysics Data System (ADS)

    Van Tang, Lam; Bulgakov, Boris; Bazhenova, Sofia; Aleksandrova, Olga; Pham, Anh Ngoc; Dinh Vu, Tho

    2018-03-01

    The dense development of high-rise construction in urban areas requires a creation of new concretes with essential properties and innovative technologies for preparing concrete mixtures. Besides, it is necessary to develop new ways of presenting concrete mixture and keeping their mobility. This research uses the mathematical method of two-factors rotatable central compositional planning to imitate the effect of amount of rice husk (RHA) and fly ash of thermal power plants (FA) on the workability of high-mobility concrete mixtures. The results of this study displays regression equation of the second order dependence of the objective functions - slump cone and loss of concrete mixture mobility due to the input factors - the amounts RHA (x1) and FA (x2), as well as the surface expression image of these regression equations. An analysis of the regression equations also shows that the amount of RHA and FA had a significant influence on the concrete mixtures mobility. In fact, the particles of RHA and FA will play the role as peculiar "sliding bearings" between the grains of cement leading to the dispersion of cement in the concrete mixture. Therefore, it is possible to regulate the concrete mixture mobility when transporting fresh concrete to the formwork during the high-rise buildings construction in the hot and humid climate of Vietnam. Although the average value of slump test of freshly mixed concrete, measured 60 minutes later after the mixing completion, decreased from 18.2 to 10.52 cm, this value still remained within the allowable range to maintain the mixing and and the delivery of concrete mixture by pumping.

  9. Multiresponse semiparametric regression for modelling the effect of regional socio-economic variables on the use of information technology

    NASA Astrophysics Data System (ADS)

    Wibowo, Wahyu; Wene, Chatrien; Budiantara, I. Nyoman; Permatasari, Erma Oktania

    2017-03-01

    Multiresponse semiparametric regression is simultaneous equation regression model and fusion of parametric and nonparametric model. The regression model comprise several models and each model has two components, parametric and nonparametric. The used model has linear function as parametric and polynomial truncated spline as nonparametric component. The model can handle both linearity and nonlinearity relationship between response and the sets of predictor variables. The aim of this paper is to demonstrate the application of the regression model for modeling of effect of regional socio-economic on use of information technology. More specific, the response variables are percentage of households has access to internet and percentage of households has personal computer. Then, predictor variables are percentage of literacy people, percentage of electrification and percentage of economic growth. Based on identification of the relationship between response and predictor variable, economic growth is treated as nonparametric predictor and the others are parametric predictors. The result shows that the multiresponse semiparametric regression can be applied well as indicate by the high coefficient determination, 90 percent.

  10. Restricted maximum likelihood estimation of genetic principal components and smoothed covariance matrices

    PubMed Central

    Meyer, Karin; Kirkpatrick, Mark

    2005-01-01

    Principal component analysis is a widely used 'dimension reduction' technique, albeit generally at a phenotypic level. It is shown that we can estimate genetic principal components directly through a simple reparameterisation of the usual linear, mixed model. This is applicable to any analysis fitting multiple, correlated genetic effects, whether effects for individual traits or sets of random regression coefficients to model trajectories. Depending on the magnitude of genetic correlation, a subset of the principal component generally suffices to capture the bulk of genetic variation. Corresponding estimates of genetic covariance matrices are more parsimonious, have reduced rank and are smoothed, with the number of parameters required to model the dispersion structure reduced from k(k + 1)/2 to m(2k - m + 1)/2 for k effects and m principal components. Estimation of these parameters, the largest eigenvalues and pertaining eigenvectors of the genetic covariance matrix, via restricted maximum likelihood using derivatives of the likelihood, is described. It is shown that reduced rank estimation can reduce computational requirements of multivariate analyses substantially. An application to the analysis of eight traits recorded via live ultrasound scanning of beef cattle is given. PMID:15588566

  11. Effective Stochastic Model for Reactive Transport

    NASA Astrophysics Data System (ADS)

    Tartakovsky, A. M.; Zheng, B.; Barajas-Solano, D. A.

    2017-12-01

    We propose an effective stochastic advection-diffusion-reaction (SADR) model. Unlike traditional advection-dispersion-reaction models, the SADR model describes mechanical and diffusive mixing as two separate processes. In the SADR model, the mechanical mixing is driven by random advective velocity with the variance given by the coefficient of mechanical dispersion. The diffusive mixing is modeled as a fickian diffusion with the effective diffusion coefficient. Both coefficients are given in terms of Peclet number (Pe) and the coefficient of molecular diffusion. We use the experimental results of to demonstrate that for transport and bimolecular reactions in porous media the SADR model is significantly more accurate than the traditional dispersion model, which overestimates the mass of the reaction product by as much as 25%.

  12. A comparative study of kinetic and connectionist modeling for shelf-life prediction of Basundi mix.

    PubMed

    Ruhil, A P; Singh, R R B; Jain, D K; Patel, A A; Patil, G R

    2011-04-01

    A ready-to-reconstitute formulation of Basundi, a popular Indian dairy dessert was subjected to storage at various temperatures (10, 25 and 40 °C) and deteriorative changes in the Basundi mix were monitored using quality indices like pH, hydroxyl methyl furfural (HMF), bulk density (BD) and insolubility index (II). The multiple regression equations and the Arrhenius functions that describe the parameters' dependence on temperature for the four physico-chemical parameters were integrated to develop mathematical models for predicting sensory quality of Basundi mix. Connectionist model using multilayer feed forward neural network with back propagation algorithm was also developed for predicting the storage life of the product employing artificial neural network (ANN) tool box of MATLAB software. The quality indices served as the input parameters whereas the output parameters were the sensorily evaluated flavour and total sensory score. A total of 140 observations were used and the prediction performance was judged on the basis of per cent root mean square error. The results obtained from the two approaches were compared. Relatively lower magnitudes of percent root mean square error for both the sensory parameters indicated that the connectionist models were better fitted than kinetic models for predicting storage life.

  13. Numerical investigation on the regression rate of hybrid rocket motor with star swirl fuel grain

    NASA Astrophysics Data System (ADS)

    Zhang, Shuai; Hu, Fan; Zhang, Weihua

    2016-10-01

    Although hybrid rocket motor is prospected to have distinct advantages over liquid and solid rocket motor, low regression rate and insufficient efficiency are two major disadvantages which have prevented it from being commercially viable. In recent years, complex fuel grain configurations are attractive in overcoming the disadvantages with the help of Rapid Prototyping technology. In this work, an attempt has been made to numerically investigate the flow field characteristics and local regression rate distribution inside the hybrid rocket motor with complex star swirl grain. A propellant combination with GOX and HTPB has been chosen. The numerical model is established based on the three dimensional Navier-Stokes equations with turbulence, combustion, and coupled gas/solid phase formulations. The calculated fuel regression rate is compared with the experimental data to validate the accuracy of numerical model. The results indicate that, comparing the star swirl grain with the tube grain under the conditions of the same port area and the same grain length, the burning surface area rises about 200%, the spatially averaged regression rate rises as high as about 60%, and the oxidizer can combust sufficiently due to the big vortex around the axis in the aft-mixing chamber. The combustion efficiency of star swirl grain is better and more stable than that of tube grain.

  14. Eliciting mixed emotions: a meta-analysis comparing models, types, and measures

    PubMed Central

    Berrios, Raul; Totterdell, Peter; Kellett, Stephen

    2015-01-01

    The idea that people can experience two oppositely valenced emotions has been controversial ever since early attempts to investigate the construct of mixed emotions. This meta-analysis examined the robustness with which mixed emotions have been elicited experimentally. A systematic literature search identified 63 experimental studies that instigated the experience of mixed emotions. Studies were distinguished according to the structure of the underlying affect model—dimensional or discrete—as well as according to the type of mixed emotions studied (e.g., happy-sad, fearful-happy, positive-negative). The meta-analysis using a random-effects model revealed a moderate to high effect size for the elicitation of mixed emotions (dIG+ = 0.77), which remained consistent regardless of the structure of the affect model, and across different types of mixed emotions. Several methodological and design moderators were tested. Studies using the minimum index (i.e., the minimum value between a pair of opposite valenced affects) resulted in smaller effect sizes, whereas subjective measures of mixed emotions increased the effect sizes. The presence of more women in the samples was also associated with larger effect sizes. The current study indicates that mixed emotions are a robust, measurable and non-artifactual experience. The results are discussed in terms of the implications for an affect system that has greater versatility and flexibility than previously thought. PMID:25926805

  15. Effect of Landscape Pattern on Insect Species Density within Urban Green Spaces in Beijing, China

    PubMed Central

    Su, Zhimin; Li, Xiaoma; Zhou, Weiqi; Ouyang, Zhiyun

    2015-01-01

    Urban green space is an important refuge of biodiversity in urban areas. Therefore, it is crucial to understand the relationship between the landscape pattern of green spaces and biodiversity to mitigate the negative effects of urbanization. In this study, we collected insects from 45 green patches in Beijing during July 2012 using suction sampling. The green patches were dominated by managed lawns, mixed with scattered trees and shrubs. We examined the effects of landscape pattern on insect species density using hierarchical partitioning analysis and partial least squares regression. The results of the hierarchical partitioning analysis indicated that five explanatory variables, i.e., patch area (with 19.9% independent effects), connectivity (13.9%), distance to nearest patch (13.8%), diversity for patch types (11.0%), and patch shape (8.3%), significantly contributed to insect species density. With the partial least squares regression model, we found species density was negatively related to patch area, shape, connectivity, diversity for patch types and proportion of impervious surface at the significance level of p < 0.05 and positively related to proportion of vegetated land. Regression tree analysis further showed that the highest species density was found in green patches with an area <500 m2. Our results indicated that improvement in habitat quality, such as patch area and connectivity that are typically thought to be important for conservation, did not actually increase species density. However, increasing compactness (low-edge) of patch shape and landscape composition did have the expected effect. Therefore, it is recommended that the composition of the surrounding landscape should be considered simultaneously with planned improvements in local habitat quality. PMID:25793897

  16. Effect of landscape pattern on insect species density within urban green spaces in Beijing, China.

    PubMed

    Su, Zhimin; Li, Xiaoma; Zhou, Weiqi; Ouyang, Zhiyun

    2015-01-01

    Urban green space is an important refuge of biodiversity in urban areas. Therefore, it is crucial to understand the relationship between the landscape pattern of green spaces and biodiversity to mitigate the negative effects of urbanization. In this study, we collected insects from 45 green patches in Beijing during July 2012 using suction sampling. The green patches were dominated by managed lawns, mixed with scattered trees and shrubs. We examined the effects of landscape pattern on insect species density using hierarchical partitioning analysis and partial least squares regression. The results of the hierarchical partitioning analysis indicated that five explanatory variables, i.e., patch area (with 19.9% independent effects), connectivity (13.9%), distance to nearest patch (13.8%), diversity for patch types (11.0%), and patch shape (8.3%), significantly contributed to insect species density. With the partial least squares regression model, we found species density was negatively related to patch area, shape, connectivity, diversity for patch types and proportion of impervious surface at the significance level of p < 0.05 and positively related to proportion of vegetated land. Regression tree analysis further showed that the highest species density was found in green patches with an area <500 m2. Our results indicated that improvement in habitat quality, such as patch area and connectivity that are typically thought to be important for conservation, did not actually increase species density. However, increasing compactness (low-edge) of patch shape and landscape composition did have the expected effect. Therefore, it is recommended that the composition of the surrounding landscape should be considered simultaneously with planned improvements in local habitat quality.

  17. Sample size adjustments for varying cluster sizes in cluster randomized trials with binary outcomes analyzed with second-order PQL mixed logistic regression.

    PubMed

    Candel, Math J J M; Van Breukelen, Gerard J P

    2010-06-30

    Adjustments of sample size formulas are given for varying cluster sizes in cluster randomized trials with a binary outcome when testing the treatment effect with mixed effects logistic regression using second-order penalized quasi-likelihood estimation (PQL). Starting from first-order marginal quasi-likelihood (MQL) estimation of the treatment effect, the asymptotic relative efficiency of unequal versus equal cluster sizes is derived. A Monte Carlo simulation study shows this asymptotic relative efficiency to be rather accurate for realistic sample sizes, when employing second-order PQL. An approximate, simpler formula is presented to estimate the efficiency loss due to varying cluster sizes when planning a trial. In many cases sampling 14 per cent more clusters is sufficient to repair the efficiency loss due to varying cluster sizes. Since current closed-form formulas for sample size calculation are based on first-order MQL, planning a trial also requires a conversion factor to obtain the variance of the second-order PQL estimator. In a second Monte Carlo study, this conversion factor turned out to be 1.25 at most. (c) 2010 John Wiley & Sons, Ltd.

  18. Promoting participation in physical activity using framed messages: an application of prospect theory.

    PubMed

    Latimer, Amy E; Rench, Tara A; Rivers, Susan E; Katulak, Nicole A; Materese, Stephanie A; Cadmus, Lisa; Hicks, Althea; Keany Hodorowski, Julie; Salovey, Peter

    2008-11-01

    Messages designed to motivate participation in physical activity usually emphasize the benefits of physical activity (gain-framed) as well as the costs of inactivity (loss-framed). The framing implications of prospect theory suggest that the effectiveness of these messages could be enhanced by providing gain-framed information only. We compared the effectiveness of gain-, loss-, and mixed-framed messages for promoting moderate to vigorous physical activity. Randomized trial. Sedentary, healthy callers to the US National Cancer Institute's Cancer Information Service (N=322) received gain-, loss-, or mixed-framed messages on three occasions (baseline, Week 1, and Week 5). Social cognitive variables and self-reported physical activity were assessed at baseline, Week 2, and Week 9. Separate regression analyses were conducted to examine message effects at each assessment point. At Week 2, gain- and mixed-framed messages resulted in stronger intentions and greater self-efficacy than loss-framed messages. At Week 9, gain-framed messages resulted in greater physical activity participation than loss- or mixed-framed messages. Social cognitive variables at Week 2 did not mediate the Week 9 framing effects on physical activity participation. Using gain-framed messages exclusively may be a means of increasing the efficacy of physical activity materials.

  19. Political democracy, economic liberalization, and macro-sociological models of intergenerational mobility.

    PubMed

    Gugushvili, Alexi

    2017-08-01

    Building on the previously investigated macro-sociological models which analyze the consequences of economic development, income inequality, and international migration on social mobility, this article studies the specific contextual covariates of intergenerational reproduction of occupational status in post-communist societies. It is theorized that social mobility is higher in societies with democratic political regimes and less liberalized economies. The outlined hypotheses are tested by using micro- and macro-level datasets for 21 post-communist societies which are fitted into multilevel mixed-effects linear regressions. The derived findings suggest that factors specific to transition societies, conventional macro-level variables, and the legacy of the Soviet Union explain variation in intergenerational social mobility, but the results vary depending which birth cohorts survey participants belong to and whether or not they stem from advantaged or disadvantaged social origins. These findings are robust to various alternative data, sample, and method specifications. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Random regression analyses using B-splines to model growth of Australian Angus cattle

    PubMed Central

    Meyer, Karin

    2005-01-01

    Regression on the basis function of B-splines has been advocated as an alternative to orthogonal polynomials in random regression analyses. Basic theory of splines in mixed model analyses is reviewed, and estimates from analyses of weights of Australian Angus cattle from birth to 820 days of age are presented. Data comprised 84 533 records on 20 731 animals in 43 herds, with a high proportion of animals with 4 or more weights recorded. Changes in weights with age were modelled through B-splines of age at recording. A total of thirteen analyses, considering different combinations of linear, quadratic and cubic B-splines and up to six knots, were carried out. Results showed good agreement for all ages with many records, but fluctuated where data were sparse. On the whole, analyses using B-splines appeared more robust against "end-of-range" problems and yielded more consistent and accurate estimates of the first eigenfunctions than previous, polynomial analyses. A model fitting quadratic B-splines, with knots at 0, 200, 400, 600 and 821 days and a total of 91 covariance components, appeared to be a good compromise between detailedness of the model, number of parameters to be estimated, plausibility of results, and fit, measured as residual mean square error. PMID:16093011

  1. Association of total mixed ration particle fractions retained on the Penn State Particle Separator with milk, fat, and protein yield lactation curves at the cow level.

    PubMed

    Caccamo, M; Ferguson, J D; Veerkamp, R F; Schadt, I; Petriglieri, R; Azzaro, G; Pozzebon, A; Licitra, G

    2014-01-01

    As part of a larger project aiming to develop management evaluation tools based on results from test-day (TD) models, the objective of this study was to examine the effect of physical composition of total mixed rations (TMR) tested quarterly from March 2006 through December 2008 on milk, fat, and protein yield curves for 25 herds in Ragusa, Sicily. A random regression sire-maternal grandsire model was used to estimate variance components for milk, fat, and protein yields fitted on a full data set, including 241,153 TD records from 9,809 animals in 42 herds recorded from 1995 through 2008. The model included parity, age at calving, year at calving, and stage of pregnancy as fixed effects. Random effects were herd × test date, sire and maternal grandsire additive genetic effect, and permanent environmental effect modeled using third-order Legendre polynomials. Model fitting was carried out using ASREML. Afterward, for the 25 herds involved in the study, 9 particle size classes were defined based on the proportions of TMR particles on the top (19-mm) and middle (8-mm) screen of the Penn State Particle Separator. Subsequently, the model with estimated variance components was used to examine the influence of TMR particle size class on milk, fat, and protein yield curves. An interaction was included with the particle size class and days in milk. The effect of the TMR particle size class was modeled using a ninth-order Legendre polynomial. Lactation curves were predicted from the model while controlling for TMR chemical composition (crude protein content of 15.5%, neutral detergent fiber of 40.7%, and starch of 19.7% for all classes), to have pure estimates of particle distribution not confounded by nutrient content of TMR. We found little effect of class of particle proportions on milk yield and fat yield curves. Protein yield was greater for sieve classes with 10.4 to 17.4% of TMR particles retained on the top (19-mm) sieve. Optimal distributions different from those recommended may reflect regional differences based on climate and types and quality of forages fed. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  2. Mixed Effects Modeling Using Stochastic Differential Equations: Illustrated by Pharmacokinetic Data of Nicotinic Acid in Obese Zucker Rats.

    PubMed

    Leander, Jacob; Almquist, Joachim; Ahlström, Christine; Gabrielsson, Johan; Jirstrand, Mats

    2015-05-01

    Inclusion of stochastic differential equations in mixed effects models provides means to quantify and distinguish three sources of variability in data. In addition to the two commonly encountered sources, measurement error and interindividual variability, we also consider uncertainty in the dynamical model itself. To this end, we extend the ordinary differential equation setting used in nonlinear mixed effects models to include stochastic differential equations. The approximate population likelihood is derived using the first-order conditional estimation with interaction method and extended Kalman filtering. To illustrate the application of the stochastic differential mixed effects model, two pharmacokinetic models are considered. First, we use a stochastic one-compartmental model with first-order input and nonlinear elimination to generate synthetic data in a simulated study. We show that by using the proposed method, the three sources of variability can be successfully separated. If the stochastic part is neglected, the parameter estimates become biased, and the measurement error variance is significantly overestimated. Second, we consider an extension to a stochastic pharmacokinetic model in a preclinical study of nicotinic acid kinetics in obese Zucker rats. The parameter estimates are compared between a deterministic and a stochastic NiAc disposition model, respectively. Discrepancies between model predictions and observations, previously described as measurement noise only, are now separated into a comparatively lower level of measurement noise and a significant uncertainty in model dynamics. These examples demonstrate that stochastic differential mixed effects models are useful tools for identifying incomplete or inaccurate model dynamics and for reducing potential bias in parameter estimates due to such model deficiencies.

  3. Cleaning products and short-term respiratory effects among female cleaners with asthma.

    PubMed

    Vizcaya, David; Mirabelli, Maria C; Gimeno, David; Antó, Josep-Maria; Delclos, George L; Rivera, Marcela; Orriols, Ramon; Arjona, Lourdes; Burgos, Felip; Zock, Jan-Paul

    2015-11-01

    We evaluated the short-term effects of exposure to cleaning products on lung function and respiratory symptoms among professional cleaning women. Twenty-one women with current asthma and employed as professional cleaners participated in a 15-day panel study. During 312 person-days of data collection, participants self-reported their use of cleaning products and respiratory symptoms in daily diaries and recorded their forced expiratory volume in 1 s (FEV1) and peak expiratory flow (PEF) three times per day using a handheld spirometer. We evaluated associations of cleaning product use with upper and lower respiratory tract symptoms using Poisson mixed regression models and with changes in FEV1 and PEF using linear mixed regression analyses. Participants reported using an average of 2.4 cleaning products per day, with exposure to at least one strong irritant (eg, ammonia, bleach, hydrochloric acid) on 56% of person-days. Among participants without atopy, lower respiratory tract symptoms were associated with the use of hydrochloric acid and detergents. Measurements of FEV1 and PEF taken in the evening were 174 mL (95% CI 34 to 314) and 37 L/min (CI 4 to 70), respectively, lower on days when three or more sprays were used. Evening and next morning FEV1 were both lower following the use of hydrochloric acid (-616 and -526 mL, respectively) and solvents (-751 and -1059 mL, respectively). Diurnal variation in FEV1 and PEF increased on days when ammonia and lime-scale removers were used. The use of specific cleaning products at work, mainly irritants and sprays, may exacerbate asthma. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  4. Effects of Olanzapine, Risperidone and Haloperidol on Prepulse Inhibition in Schizophrenia Patients: A Double-Blind, Randomized Controlled Trial

    PubMed Central

    Wynn, Jonathan K.; Green, Michael F.; Sprock, Joyce; Light, Gregory A.; Widmark, Clifford; Reist, Christopher; Erhart, Stephen; Marder, Stephen R.; Mintz, Jim; Braff, David L.

    2009-01-01

    Prepulse inhibition (PPI), whereby the startle eyeblink response is inhibited by a relatively weak non-startling stimulus preceding the powerful startle eliciting stimulus, is a measure of sensorimotor gating and has been shown to be deficient in schizophrenia patients. There is considerable interest in whether conventional and/or atypical antipsychotic medications can “normalize” PPI deficits in schizophrenia patients. 51 schizophrenia patients participated in a randomized, double-blind controlled trial on the effects of three commonly-prescribed antipsychotic medications (risperidone, olanzapine, or haloperidol) on PPI, startle habituation, and startle reactivity. Patients were tested at baseline, Week 4 and Week 8. Mixed model regression analyses revealed that olanzapine significantly improved PPI from Week 4 to Week 8, and that at Week 8 patients receiving olanzapine produced significantly greater PPI than those receiving risperidone, but not haloperidol. There were no effects of medication on startle habituation or startle reactivity. These results support the conclusion that olanzapine effectively increased PPI in schizophrenia patients, but that risperidone and haloperidol had no such effects. The results are discussed in terms of animal models, neural substrates, and treatment implications. PMID:17662577

  5. Semiparametric mixed-effects analysis of PK/PD models using differential equations.

    PubMed

    Wang, Yi; Eskridge, Kent M; Zhang, Shunpu

    2008-08-01

    Motivated by the use of semiparametric nonlinear mixed-effects modeling on longitudinal data, we develop a new semiparametric modeling approach to address potential structural model misspecification for population pharmacokinetic/pharmacodynamic (PK/PD) analysis. Specifically, we use a set of ordinary differential equations (ODEs) with form dx/dt = A(t)x + B(t) where B(t) is a nonparametric function that is estimated using penalized splines. The inclusion of a nonparametric function in the ODEs makes identification of structural model misspecification feasible by quantifying the model uncertainty and provides flexibility for accommodating possible structural model deficiencies. The resulting model will be implemented in a nonlinear mixed-effects modeling setup for population analysis. We illustrate the method with an application to cefamandole data and evaluate its performance through simulations.

  6. Modelling of capital asset pricing by considering the lagged effects

    NASA Astrophysics Data System (ADS)

    Sukono; Hidayat, Y.; Bon, A. Talib bin; Supian, S.

    2017-01-01

    In this paper the problem of modelling the Capital Asset Pricing Model (CAPM) with the effect of the lagged is discussed. It is assumed that asset returns are analysed influenced by the market return and the return of risk-free assets. To analyse the relationship between asset returns, the market return, and the return of risk-free assets, it is conducted by using a regression equation of CAPM, and regression equation of lagged distributed CAPM. Associated with the regression equation lagged CAPM distributed, this paper also developed a regression equation of Koyck transformation CAPM. Results of development show that the regression equation of Koyck transformation CAPM has advantages, namely simple as it only requires three parameters, compared with regression equation of lagged distributed CAPM.

  7. Multiple component end-member mixing model of dilution: hydrochemical effects of construction water at Yucca Mountain, Nevada, USA

    NASA Astrophysics Data System (ADS)

    Lu, Guoping; Sonnenthal, Eric L.; Bodvarsson, Gudmundur S.

    2008-12-01

    The standard dual-component and two-member linear mixing model is often used to quantify water mixing of different sources. However, it is no longer applicable whenever actual mixture concentrations are not exactly known because of dilution. For example, low-water-content (low-porosity) rock samples are leached for pore-water chemical compositions, which therefore are diluted in the leachates. A multicomponent, two-member mixing model of dilution has been developed to quantify mixing of water sources and multiple chemical components experiencing dilution in leaching. This extended mixing model was used to quantify fracture-matrix interaction in construction-water migration tests along the Exploratory Studies Facility (ESF) tunnel at Yucca Mountain, Nevada, USA. The model effectively recovers the spatial distribution of water and chemical compositions released from the construction water, and provides invaluable data on the matrix fracture interaction. The methodology and formulations described here are applicable to many sorts of mixing-dilution problems, including dilution in petroleum reservoirs, hydrospheres, chemical constituents in rocks and minerals, monitoring of drilling fluids, and leaching, as well as to environmental science studies.

  8. Mixing and non-equilibrium chemical reaction in a compressible mixing layer. M.S. Thesis Final Report

    NASA Technical Reports Server (NTRS)

    Steinberger, Craig J.

    1991-01-01

    The effects of compressibility, chemical reaction exothermicity, and non-equilibrium chemical modeling in a reacting plane mixing layer were investigated by means of two dimensional direct numerical simulations. The chemical reaction was irreversible and second order of the type A + B yields Products + Heat. The general governing fluid equations of a compressible reacting flow field were solved by means of high order finite difference methods. Physical effects were then determined by examining the response of the mixing layer to variation of the relevant non-dimensionalized parameters. The simulations show that increased compressibility generally results in a suppressed mixing, and consequently a reduced chemical reaction conversion rate. Reaction heat release was found to enhance mixing at the initial stages of the layer growth, but had a stabilizing effect at later times. The increased stability manifested itself in the suppression or delay of the formation of large coherent structures within the flow. Calculations were performed for a constant rate chemical kinetics model and an Arrhenius type kinetic prototype. The choice of the model was shown to have an effect on the development of the flow. The Arrhenius model caused a greater temperature increase due to reaction than the constant kinetic model. This had the same effect as increasing the exothermicity of the reaction. Localized flame quenching was also observed when the Zeldovich number was relatively large.

  9. Horses Auto-Recruit Their Lungs by Inspiratory Breath Holding Following Recovery from General Anaesthesia

    PubMed Central

    Mosing, Martina; Waldmann, Andreas D.; MacFarlane, Paul; Iff, Samuel; Auer, Ulrike; Bohm, Stephan H.; Bettschart-Wolfensberger, Regula; Bardell, David

    2016-01-01

    This study evaluated the breathing pattern and distribution of ventilation in horses prior to and following recovery from general anaesthesia using electrical impedance tomography (EIT). Six horses were anaesthetised for 6 hours in dorsal recumbency. Arterial blood gas and EIT measurements were performed 24 hours before (baseline) and 1, 2, 3, 4, 5 and 6 hours after horses stood following anaesthesia. At each time point 4 representative spontaneous breaths were analysed. The percentage of the total breath length during which impedance remained greater than 50% of the maximum inspiratory impedance change (breath holding), the fraction of total tidal ventilation within each of four stacked regions of interest (ROI) (distribution of ventilation) and the filling time and inflation period of seven ROI evenly distributed over the dorso-ventral height of the lungs were calculated. Mixed effects multi-linear regression and linear regression were used and significance was set at p<0.05. All horses demonstrated inspiratory breath holding until 5 hours after standing. No change from baseline was seen for the distribution of ventilation during inspiration. Filling time and inflation period were more rapid and shorter in ventral and slower and longer in most dorsal ROI compared to baseline, respectively. In a mixed effects multi-linear regression, breath holding was significantly correlated with PaCO2 in both the univariate and multivariate regression. Following recovery from anaesthesia, horses showed inspiratory breath holding during which gas redistributed from ventral into dorsal regions of the lungs. This suggests auto-recruitment of lung tissue which would have been dependent and likely atelectic during anaesthesia. PMID:27331910

  10. Effect of Blockage and Location on Mixing of Swirling Coaxial Jets in a Non-expanding Circular Confinement

    NASA Astrophysics Data System (ADS)

    Patel, V. K.; Singh, S. N.; Seshadri, V.

    2013-06-01

    A study is conducted to evolve an effective design concept to improve mixing in a combustor chamber to reduce the amount of intake air. The geometry used is that of a gas turbine combustor model. For simplicity, both the jets have been considered as air jets and effect of heat release and chemical reaction has not been modeled. Various contraction shapes and blockage have been investigated by placing them downstream at different locations with respect to inlet to obtain better mixing. A commercial CFD code `Fluent 6.3' which is based on finite volume method has been used to solve the flow in the combustor model. Validation is done with the experimental data available in literature using standard k-ω turbulence model. The study has shown that contraction and blockage at optimum location enhances the mixing process. Further, the effect of swirl in the jets has also investigated.

  11. Progress Report on SAM Reduced-Order Model Development for Thermal Stratification and Mixing during Reactor Transients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, R.

    This report documents the initial progress on the reduced-order flow model developments in SAM for thermal stratification and mixing modeling. Two different modeling approaches are pursued. The first one is based on one-dimensional fluid equations with additional terms accounting for the thermal mixing from both flow circulations and turbulent mixing. The second approach is based on three-dimensional coarse-grid CFD approach, in which the full three-dimensional fluid conservation equations are modeled with closure models to account for the effects of turbulence.

  12. On the validity of effective formulations for transport through heterogeneous porous media

    NASA Astrophysics Data System (ADS)

    de Dreuzy, J.-R.; Carrera, J.

    2015-11-01

    Geological heterogeneity enhances spreading of solutes, and causes transport to be anomalous (i.e., non-Fickian), with much less mixing than suggested by dispersion. This implies that modeling transport requires adopting either stochastic approaches that model heterogeneity explicitly or effective transport formulations that acknowledge the effects of heterogeneity. A number of such formulations have been developed and tested as upscaled representations of enhanced spreading. However, their ability to represent mixing has not been formally tested, which is required for proper reproduction of chemical reactions and which motivates our work. We propose that, for an effective transport formulation to be considered a valid representation of transport through Heterogeneous Porous Media (HPM), it should honor mean advection, mixing and spreading. It should also be flexible enough to be applicable to real problems. We test the capacity of the Multi-Rate Mass Transfer (MRMT) to reproduce mixing observed in HPM, as represented by the classical multi-Gaussian log-permeability field with a Gaussian correlation pattern. Non-dispersive mixing comes from heterogeneity structures in the concentration fields that are not captured by macrodispersion. These fine structures limit mixing initially, but eventually enhance it. Numerical results show that, relative to HPM, MRMT models display a much stronger memory of initial conditions on mixing than on dispersion because of the sensitivity of the mixing state to the actual values of concentration. Because MRMT does not restitute the local concentration structures, it induces smaller non-dispersive mixing than HPM. However long-lived trapping in the immobile zones may sustain the deviation from dispersive mixing over much longer times. While spreading can be well captured by MRMT models, non-dispersive mixing cannot.

  13. Prediction of hemoglobin in blood donors using a latent class mixed-effects transition model.

    PubMed

    Nasserinejad, Kazem; van Rosmalen, Joost; de Kort, Wim; Rizopoulos, Dimitris; Lesaffre, Emmanuel

    2016-02-20

    Blood donors experience a temporary reduction in their hemoglobin (Hb) value after donation. At each visit, the Hb value is measured, and a too low Hb value leads to a deferral for donation. Because of the recovery process after each donation as well as state dependence and unobserved heterogeneity, longitudinal data of Hb values of blood donors provide unique statistical challenges. To estimate the shape and duration of the recovery process and to predict future Hb values, we employed three models for the Hb value: (i) a mixed-effects models; (ii) a latent-class mixed-effects model; and (iii) a latent-class mixed-effects transition model. In each model, a flexible function was used to model the recovery process after donation. The latent classes identify groups of donors with fast or slow recovery times and donors whose recovery time increases with the number of donations. The transition effect accounts for possible state dependence in the observed data. All models were estimated in a Bayesian way, using data of new entrant donors from the Donor InSight study. Informative priors were used for parameters of the recovery process that were not identified using the observed data, based on results from the clinical literature. The results show that the latent-class mixed-effects transition model fits the data best, which illustrates the importance of modeling state dependence, unobserved heterogeneity, and the recovery process after donation. The estimated recovery time is much longer than the current minimum interval between donations, suggesting that an increase of this interval may be warranted. Copyright © 2015 John Wiley & Sons, Ltd.

  14. Modeling of molecular diffusion and thermal conduction with multi-particle interaction in compressible turbulence

    NASA Astrophysics Data System (ADS)

    Tai, Y.; Watanabe, T.; Nagata, K.

    2018-03-01

    A mixing volume model (MVM) originally proposed for molecular diffusion in incompressible flows is extended as a model for molecular diffusion and thermal conduction in compressible turbulence. The model, established for implementation in Lagrangian simulations, is based on the interactions among spatially distributed notional particles within a finite volume. The MVM is tested with the direct numerical simulation of compressible planar jets with the jet Mach number ranging from 0.6 to 2.6. The MVM well predicts molecular diffusion and thermal conduction for a wide range of the size of mixing volume and the number of mixing particles. In the transitional region of the jet, where the scalar field exhibits a sharp jump at the edge of the shear layer, a smaller mixing volume is required for an accurate prediction of mean effects of molecular diffusion. The mixing time scale in the model is defined as the time scale of diffusive effects at a length scale of the mixing volume. The mixing time scale is well correlated for passive scalar and temperature. Probability density functions of the mixing time scale are similar for molecular diffusion and thermal conduction when the mixing volume is larger than a dissipative scale because the mixing time scale at small scales is easily affected by different distributions of intermittent small-scale structures between passive scalar and temperature. The MVM with an assumption of equal mixing time scales for molecular diffusion and thermal conduction is useful in the modeling of the thermal conduction when the modeling of the dissipation rate of temperature fluctuations is difficult.

  15. Logistic regression for dichotomized counts.

    PubMed

    Preisser, John S; Das, Kalyan; Benecha, Habtamu; Stamm, John W

    2016-12-01

    Sometimes there is interest in a dichotomized outcome indicating whether a count variable is positive or zero. Under this scenario, the application of ordinary logistic regression may result in efficiency loss, which is quantifiable under an assumed model for the counts. In such situations, a shared-parameter hurdle model is investigated for more efficient estimation of regression parameters relating to overall effects of covariates on the dichotomous outcome, while handling count data with many zeroes. One model part provides a logistic regression containing marginal log odds ratio effects of primary interest, while an ancillary model part describes the mean count of a Poisson or negative binomial process in terms of nuisance regression parameters. Asymptotic efficiency of the logistic model parameter estimators of the two-part models is evaluated with respect to ordinary logistic regression. Simulations are used to assess the properties of the models with respect to power and Type I error, the latter investigated under both misspecified and correctly specified models. The methods are applied to data from a randomized clinical trial of three toothpaste formulations to prevent incident dental caries in a large population of Scottish schoolchildren. © The Author(s) 2014.

  16. Contraception After Delivery Among Publicly Insured Women in Texas: Use Compared With Preference.

    PubMed

    Potter, Joseph E; Coleman-Minahan, Kate; White, Kari; Powers, Daniel A; Dillaway, Chloe; Stevenson, Amanda J; Hopkins, Kristine; Grossman, Daniel

    2017-08-01

    To assess women's preferences for contraception after delivery and to compare use with preferences. In a prospective cohort study of women aged 18-44 years who wanted to delay childbearing for at least 2 years, we interviewed 1,700 participants from eight hospitals in Texas immediately postpartum and at 3 and 6 months after delivery. At 3 months, we assessed contraceptive preferences by asking what method women would like to be using at 6 months. We modeled preference for highly effective contraception and use given preference according to childbearing intentions using mixed-effects logistic regression testing for variability across hospitals and differences between those with and without immediate postpartum long-acting reversible contraception (LARC) provision. Approximately 80% completed both the 3- and 6-month interviews (1,367/1,700). Overall, preferences exceeded use for both-LARC: 40.8% (n=547) compared with 21.9% (n=293) and sterilization: 36.1% (n=484) compared with 17.5% (n=235). In the mixed-effects logistic regression models, several demographic variables were associated with a preference for LARC among women who wanted more children, but there was no significant variability across hospitals. For women who wanted more children and had a LARC preference, use of LARC was higher in the hospital that offered immediate postpartum provision (P<.035) as it was for U.S.-born women (odds ratio [OR] 2.08, 95% CI 1.17-3.69) and women with public prenatal care providers (OR 2.04, 95% CI 1.13-3.69). In the models for those who wanted no more children, there was no significant variability in preferences for long-acting or permanent methods across hospitals. However, use given preference varied across hospitals (P<.001) and was lower for black women (OR 0.26, 95% CI 0.12-0.55) and higher for U.S.-born women (OR 2.32, 95% CI 1.36-3.96), those 30 years of age and older (OR 1.82, 95% CI 1.07-3.09), and those with public prenatal care providers (OR 2.04, 95% CI 1.18-3.51). Limited use of long-acting and permanent contraceptive methods after delivery is associated with indicators of health care provider and system-level barriers. Expansion of immediate postpartum LARC provision as well as contraceptive coverage for undocumented women could reduce the gap between preference and use.

  17. Association of antidiabetic medication use, cognitive decline, and risk of cognitive impairment in older people with type 2 diabetes: Results from the population-based Mayo Clinic Study of Aging.

    PubMed

    Wennberg, Alexandra M V; Hagen, Clinton E; Edwards, Kelly; Roberts, Rosebud O; Machulda, Mary M; Knopman, David S; Petersen, Ronald C; Mielke, Michelle M

    2018-06-05

    To determine the cross-sectional and longitudinal associations between diabetes treatment type and cognitive outcomes among type II diabetics. We examined the association between metformin use, as compared to other diabetic treatment (ie, insulin, other oral medications, and diet/exercise) and cognitive test performance and mild cognitive impairment (MCI) diagnosis among 508 cognitively unimpaired at baseline type II diabetics enrolled in the Mayo Clinic Study of Aging. We created propensity scores to adjust for treatment effects. We used multivariate linear and logistic regression models to investigate the cross-sectional association between treatment type and cognitive test z scores, respectively. Mixed effects models and competing risk regression models were used to determine the longitudinal association between treatment type and change in cognitive test z scores and risk of developing incident MCI. In linear regression analyses adjusted for age, sex, education, body mass index, APOE ε4, insulin treatment, medical comorbidities, number of medications, duration of diabetes, and propensity score, we did not observe an association between metformin use and cognitive test performance. Additionally, we did not observe an association between metformin use and cognitive test performance over time (median = 3.7-year follow-up). Metformin was associated with an increased risk of MCI (subhazard ratio (SHR) = 2.75; 95% CI = 1.64, 4.63, P < .001). Similarly, other oral medications (SHR = 1.96; 95% CI = 1.19, 3.25; P = .009) and insulin (SHR = 3.17; 95% CI = 1.27, 7.92; P = .014) use were also associated with risk of MCI diagnosis. These findings suggest that metformin use, as compared to management of diabetes with other treatments, is not associated with cognitive test performance. However, metformin was associated with incident MCI diagnosis. Copyright © 2018 John Wiley & Sons, Ltd.

  18. The Effects of Floods on the Incidence of Bacillary Dysentery in Baise (Guangxi Province, China) from 2004 to 2012.

    PubMed

    Liu, Xuena; Liu, Zhidong; Zhang, Ying; Jiang, Baofa

    2017-02-12

    Research shows potential effects of floods on intestinal infections. Baise, a city in Guangxi Province (China) had experienced several floods between 2004 and 2012 due to heavy and constant precipitation. This study aimed to examine the relationship between floods and the incidence of bacillary dysentery in Baise. A mixed generalized additive model and Spearman correlation were applied to analyze the relationship between monthly incidence of bacillary dysentery and 14 flood events with two severity levels. Data collected from 2004 to 2010 were utilized to estimate the parameters, whereas data from 2011 to 2012 were used to validate the model. There were in total 9255 cases of bacillary dysentery included in our analyses. According to the mixed generalized additive model, the relative risks (RR) of moderate and severe floods on the incidence of bacillary dysentery were 1.40 (95% confidence interval (CI): 1.16-1.69) and 1.78 (95% CI: 1.61-1.97), respectively. The regression analysis also indicated that the flood duration was negatively associated with the incidence of bacillary dysentery (with RR: 0.57, 95% CI: 0.40-0.86). Therfore, this research suggests that floods exert a significant part in enhancing the risk of bacillary dysentery in Baise. Moreover, severe floods have a higher proportional contribution to the incidence of bacillary dysentery than moderate floods. In addition, short-term floods may contribute more to the incidence of bacillary dysentery than a long-term flood. The findings from this research will provide more evidence to reduce health risks related to floods.

  19. The Effects of Floods on the Incidence of Bacillary Dysentery in Baise (Guangxi Province, China) from 2004 to 2012

    PubMed Central

    Liu, Xuena; Liu, Zhidong; Zhang, Ying; Jiang, Baofa

    2017-01-01

    Research shows potential effects of floods on intestinal infections. Baise, a city in Guangxi Province (China) had experienced several floods between 2004 and 2012 due to heavy and constant precipitation. This study aimed to examine the relationship between floods and the incidence of bacillary dysentery in Baise. A mixed generalized additive model and Spearman correlation were applied to analyze the relationship between monthly incidence of bacillary dysentery and 14 flood events with two severity levels. Data collected from 2004 to 2010 were utilized to estimate the parameters, whereas data from 2011 to 2012 were used to validate the model. There were in total 9255 cases of bacillary dysentery included in our analyses. According to the mixed generalized additive model, the relative risks (RR) of moderate and severe floods on the incidence of bacillary dysentery were 1.40 (95% confidence interval (CI): 1.16–1.69) and 1.78 (95% CI: 1.61–1.97), respectively. The regression analysis also indicated that the flood duration was negatively associated with the incidence of bacillary dysentery (with RR: 0.57, 95% CI: 0.40–0.86). Therfore, this research suggests that floods exert a significant part in enhancing the risk of bacillary dysentery in Baise. Moreover, severe floods have a higher proportional contribution to the incidence of bacillary dysentery than moderate floods. In addition, short-term floods may contribute more to the incidence of bacillary dysentery than a long-term flood. The findings from this research will provide more evidence to reduce health risks related to floods. PMID:28208681

  20. Effectiveness and cost effectiveness of television, radio and print advertisements in promoting the New York smokers' quitline

    PubMed Central

    Farrelly, Matthew C; Hussin, Altijani; Bauer, Ursula E

    2007-01-01

    Objectives This study assessed the relative effectiveness and cost effectiveness of television, radio and print advertisements to generate calls to the New York smokers' quitline. Methods Regression analysis was used to link total county level monthly quitline calls to television, radio and print advertising expenditures. Based on regression results, standardised measures of the relative effectiveness and cost effectiveness of expenditures were computed. Results There was a positive and statistically significant relation between call volume and expenditures for television (p<0.01) and radio (p<0.001) advertisements and a marginally significant effect for expenditures on newspaper advertisements (p<0.065). The largest effect was for television advertising. However, because of differences in advertising costs, for every $1000 increase in television, radio and newspaper expenditures, call volume increased by 0.1%, 5.7% and 2.8%, respectively. Conclusions Television, radio and print media all effectively increased calls to the New York smokers' quitline. Although increases in expenditures for television were the most effective, their relatively high costs suggest they are not currently the most cost effective means to promote a quitline. This implies that a more efficient mix of media would place greater emphasis on radio than television. However, because the current study does not adequately assess the extent to which radio expenditures would sustain their effectiveness with substantial expenditure increases, it is not feasible to determine a more optimal mix of expenditures. PMID:18048625

  1. Associations of Family and Peer Experiences with Masculinity Attitude Trajectories at the Individual and Group Level in Adolescent and Young Adult Males

    PubMed Central

    Marcell, Arik V.; Eftim, Sorina E.; Sonenstein, Freya L.; Pleck, Joseph H.

    2013-01-01

    Data were drawn from 845 males in the National Survey of Adolescent Males who were initially aged 15–17, and followed-up 2.5 and 4.5 years later, to their early twenties. Mixed-effects regression models (MRM) and semiparametric trajectory analyses (STA) modeled patterns of change in masculinity attitudes at the individual and group levels, guided by gender intensification theory and cognitive-developmental theory. Overall, men’s masculinity attitudes became significantly less traditional between middle adolescence and early adulthood. In MRM analyses using time-varying covariates, maintaining paternal coresidence and continuing to have first sex in uncommitted heterosexual relationships were significantly associated with masculinity attitudes remaining relatively traditional. The STA modeling identified three distinct patterns of change in masculinity attitudes. A traditional-liberalizing trajectory of masculinity attitudes was most prevalent, followed by traditional-stable and nontraditional-stable trajectories. Implications for gender intensification and cognitive-developmental approaches to masculinity attitudes are discussed. PMID:24187483

  2. The Mixed Effects Trend Vector Model

    ERIC Educational Resources Information Center

    de Rooij, Mark; Schouteden, Martijn

    2012-01-01

    Maximum likelihood estimation of mixed effect baseline category logit models for multinomial longitudinal data can be prohibitive due to the integral dimension of the random effects distribution. We propose to use multidimensional unfolding methodology to reduce the dimensionality of the problem. As a by-product, readily interpretable graphical…

  3. Consequences of kriging and land use regression for PM2.5 predictions in epidemiologic analyses: Insights into spatial variability using high-resolution satellite data

    PubMed Central

    Alexeeff, Stacey E.; Schwartz, Joel; Kloog, Itai; Chudnovsky, Alexandra; Koutrakis, Petros; Coull, Brent A.

    2016-01-01

    Many epidemiological studies use predicted air pollution exposures as surrogates for true air pollution levels. These predicted exposures contain exposure measurement error, yet simulation studies have typically found negligible bias in resulting health effect estimates. However, previous studies typically assumed a statistical spatial model for air pollution exposure, which may be oversimplified. We address this shortcoming by assuming a realistic, complex exposure surface derived from fine-scale (1km x 1km) remote-sensing satellite data. Using simulation, we evaluate the accuracy of epidemiological health effect estimates in linear and logistic regression when using spatial air pollution predictions from kriging and land use regression models. We examined chronic (long-term) and acute (short-term) exposure to air pollution. Results varied substantially across different scenarios. Exposure models with low out-of-sample R2 yielded severe biases in the health effect estimates of some models, ranging from 60% upward bias to 70% downward bias. One land use regression exposure model with greater than 0.9 out-of-sample R2 yielded upward biases up to 13% for acute health effect estimates. Almost all models drastically underestimated the standard errors. Land use regression models performed better in chronic effects simulations. These results can help researchers when interpreting health effect estimates in these types of studies. PMID:24896768

  4. The Energy Content and Composition of Meals Consumed after an Overnight Fast and Their Effects on Diet Induced Thermogenesis: A Systematic Review, Meta-Analyses and Meta-Regressions

    PubMed Central

    Quatela, Angelica; Callister, Robin; Patterson, Amanda; MacDonald-Wicks, Lesley

    2016-01-01

    This systematic review investigated the effects of differing energy intakes, macronutrient compositions, and eating patterns of meals consumed after an overnight fast on Diet Induced Thermogenesis (DIT). The initial search identified 2482 records; 26 papers remained once duplicates were removed and inclusion criteria were applied. Studies (n = 27) in the analyses were randomized crossover designs comparing the effects of two or more eating events on DIT. Higher energy intake increased DIT; in a mixed model meta-regression, for every 100 kJ increase in energy intake, DIT increased by 1.1 kJ/h (p < 0.001). Meals with a high protein or carbohydrate content had a higher DIT than high fat, although this effect was not always significant. Meals with medium chain triglycerides had a significantly higher DIT than long chain triglycerides (meta-analysis, p = 0.002). Consuming the same meal as a single bolus eating event compared to multiple small meals or snacks was associated with a significantly higher DIT (meta-analysis, p = 0.02). Unclear or inconsistent findings were found by comparing the consumption of meals quickly or slowly, and palatability was not significantly associated with DIT. These findings indicate that the magnitude of the increase in DIT is influenced by the energy intake, macronutrient composition, and eating pattern of the meal. PMID:27792142

  5. Impact of correlation of predictors on discrimination of risk models in development and external populations.

    PubMed

    Kundu, Suman; Mazumdar, Madhu; Ferket, Bart

    2017-04-19

    The area under the ROC curve (AUC) of risk models is known to be influenced by differences in case-mix and effect size of predictors. The impact of heterogeneity in correlation among predictors has however been under investigated. We sought to evaluate how correlation among predictors affects the AUC in development and external populations. We simulated hypothetical populations using two different methods based on means, standard deviations, and correlation of two continuous predictors. In the first approach, the distribution and correlation of predictors were assumed for the total population. In the second approach, these parameters were modeled conditional on disease status. In both approaches, multivariable logistic regression models were fitted to predict disease risk in individuals. Each risk model developed in a population was validated in the remaining populations to investigate external validity. For both approaches, we observed that the magnitude of the AUC in the development and external populations depends on the correlation among predictors. Lower AUCs were estimated in scenarios of both strong positive and negative correlation, depending on the direction of predictor effects and the simulation method. However, when adjusted effect sizes of predictors were specified in the opposite directions, increasingly negative correlation consistently improved the AUC. AUCs in external validation populations were higher or lower than in the derivation cohort, even in the presence of similar predictor effects. Discrimination of risk prediction models should be assessed in various external populations with different correlation structures to make better inferences about model generalizability.

  6. NIMROD: a program for inference via a normal approximation of the posterior in models with random effects based on ordinary differential equations.

    PubMed

    Prague, Mélanie; Commenges, Daniel; Guedj, Jérémie; Drylewicz, Julia; Thiébaut, Rodolphe

    2013-08-01

    Models based on ordinary differential equations (ODE) are widespread tools for describing dynamical systems. In biomedical sciences, data from each subject can be sparse making difficult to precisely estimate individual parameters by standard non-linear regression but information can often be gained from between-subjects variability. This makes natural the use of mixed-effects models to estimate population parameters. Although the maximum likelihood approach is a valuable option, identifiability issues favour Bayesian approaches which can incorporate prior knowledge in a flexible way. However, the combination of difficulties coming from the ODE system and from the presence of random effects raises a major numerical challenge. Computations can be simplified by making a normal approximation of the posterior to find the maximum of the posterior distribution (MAP). Here we present the NIMROD program (normal approximation inference in models with random effects based on ordinary differential equations) devoted to the MAP estimation in ODE models. We describe the specific implemented features such as convergence criteria and an approximation of the leave-one-out cross-validation to assess the model quality of fit. In pharmacokinetics models, first, we evaluate the properties of this algorithm and compare it with FOCE and MCMC algorithms in simulations. Then, we illustrate NIMROD use on Amprenavir pharmacokinetics data from the PUZZLE clinical trial in HIV infected patients. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  7. Did Rev-1 small ruminants vaccination helped improve cattle brucellosis prevalence status in Algeria?

    PubMed

    Kardjadj, Moustafa

    2017-12-01

    In 2006, the Algerian authorities started the Rev-1 vaccination of sheep and goats; consequently, there was a significant improvement of small ruminant brucellosis sanitary status. In this paper, we attempt to study the effect of Rev-1 small ruminants' vaccination on cattle brucellosis prevalence in Algeria. Our results showed an overall cattle herd seroprevalence of 12% (9 positive herds of 75). The risk factor analysis using a logistic regression model indicated that the presence of small ruminants along with cattle in the herd (mixed herds) decreased the odds for brucellosis seropositivity by 1.69 [95% CI 0.54-2.84; P = 0.042] compared to the cattle herds only. Likewise, the present study showed that the presence of Rev-1 vaccinated small ruminants in the herd decreased also the odds for brucellosis seropositivity by 4.10 [95% CI 3.20-5.00; P = 0.003] compared to other herds. This result lead to the assumption that the small ruminants Rev-1 vaccination diminish Brucella microbisme pressure in the mixed herds and help decrease the cattle brucellosis prevalence in these herds.

  8. Growth in stature in fragile X families: A mixed longitudinal study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loesch, D.Z.; Huggins, R.M.; Hoang, N.H.

    1995-09-11

    The effect of fragile X on growth in stature was estimated in individuals aged 5-20 years from 50 fragile X families. The multivariate normal model for pedigree analysis was applied to the mixed longitudinal data, which varied with regard to intervals between the measurements and their number in individual subjects, totalling 349 measurement data points from fragile X families, and 292 data points from unrelated normal subjects. The results of genetic and regression analysis showed that, in fragile X boys and girls, total pubertal height gain is impaired, whereas the rate of growth during the preadolescent period is increased, comparedmore » with the growth rate of nonfragile X subjects. Moreover, the growth parameters in fragile X males were found to be correlated with the size of CGG trinucleotide expansion. The hypothesis of premature activation of the hypothalamo-pituitary gonadal axis is postulated as the cause of growth impairment in fragile X boys and girls, which should be verified by data on the timing of pubertal stages, hormone levels, and bone maturation. 33 refs., 2 figs., 3 tabs.« less

  9. Exact Analysis of Squared Cross-Validity Coefficient in Predictive Regression Models

    ERIC Educational Resources Information Center

    Shieh, Gwowen

    2009-01-01

    In regression analysis, the notion of population validity is of theoretical interest for describing the usefulness of the underlying regression model, whereas the presumably more important concept of population cross-validity represents the predictive effectiveness for the regression equation in future research. It appears that the inference…

  10. Blood biomarkers in male and female participants after an Ironman-distance triathlon.

    PubMed

    Danielsson, Tom; Carlsson, Jörg; Schreyer, Hendrik; Ahnesjö, Jonas; Ten Siethoff, Lasse; Ragnarsson, Thony; Tugetam, Åsa; Bergman, Patrick

    2017-01-01

    While overall physical activity is clearly associated with a better short-term and long-term health, prolonged strenuous physical activity may result in a rise in acute levels of blood-biomarkers used in clinical practice for diagnosis of various conditions or diseases. In this study, we explored the acute effects of a full Ironman-distance triathlon on biomarkers related to heart-, liver-, kidney- and skeletal muscle damage immediately post-race and after one week's rest. We also examined if sex, age, finishing time and body composition influenced the post-race values of the biomarkers. A sample of 30 subjects was recruited (50% women) to the study. The subjects were evaluated for body composition and blood samples were taken at three occasions, before the race (T1), immediately after (T2) and one week after the race (T3). Linear regression models were fitted to analyse the independent contribution of sex and finishing time controlled for weight, body fat percentage and age, on the biomarkers at the termination of the race (T2). Linear mixed models were fitted to examine if the biomarkers differed between the sexes over time (T1-T3). Being male was a significant predictor of higher post-race (T2) levels of myoglobin, CK, and creatinine levels and body weight was negatively associated with myoglobin. In general, the models were unable to explain the variation of the dependent variables. In the linear mixed models, an interaction between time (T1-T3) and sex was seen for myoglobin and creatinine, in which women had a less pronounced response to the race. Overall women appear to tolerate the effects of prolonged strenuous physical activity better than men as illustrated by their lower values of the biomarkers both post-race as well as during recovery.

  11. A mixed-methods exploration of implementation of a comprehensive school healthy eating model one year after scale-up.

    PubMed

    Naylor, Patti-Jean; McKay, Heather A; Valente, Maria; Mâsse, Louise C

    2016-04-01

    To study the implementation of a school-based healthy eating (HE) model one year after scale-up in British Columbia (BC). Specifically, to examine implementation of Action Schools! BC (AS! BC) and its influence on implementation of classroom HE activities, and to explore factors associated with implementation. Diffusion of Innovations, Social Cognitive and Organizational Change theories guided our approach. We used a mixed-methods research design including focus group interviews (seven schools, sixty-two implementers) and a cross-sectional multistage survey to principals (n 36, 92 % response rate) and teachers of grades 4 to 7 (n 168, 70 % response rate). Self-reported implementation of classroom HE activities and reported use of specific AS! BC HE activities were primary implementation measures. Thematic analysis of focus group data and multilevel mixed-effect logistic regression analyses of survey data were conducted. Elementary schools across BC, Canada. Thirty-nine school districts, thirty-six principals, 168 grade 4 to 7 teachers. Forty-two per cent of teachers in registered schools were implementing AS! BC HE in their classrooms. Users were 6·25 times more likely to have delivered a HE lesson in the past week. Implementation facilitators were school champions, technical support and access to resources; barriers were lack of time, loss of leadership or momentum. Implementation predictors were teacher training, self-efficacy, experience with the physical activity component of AS! BC, supportive school climate and parental post-secondary education. Our findings reinforce that continued teacher training and support are important public health investments that contribute to successful implementation of school-based HE models after scale-up.

  12. Retrieval of forest biomass for tropical deciduous mixed forest using ALOS PALSAR mosaic imagery and field plot data

    NASA Astrophysics Data System (ADS)

    Ningthoujam, Ramesh K.; Joshi, P. K.; Roy, P. S.

    2018-07-01

    Tropical forest is an important ecosystem rich in biodiversity and structural complexity with high woody biomass content. Longer wavelength radar data at L-band sensor provides improved forest biomass (AGB) information due to its higher penetration level and sensitivity to canopy structure. The study presents a regression based woody biomass estimation for tropical deciduous mixed forest dominated by Shorea robusta using ALOS PALSAR mosaic (HH, HV) and field data at the lower Himalayan belt of Northern India. For the purpose of understanding the scattering mechanisms at L-band from this forest type, Michigan Microwave Canopy Scattering model (MIMICS-I) was parameterized with field data to simulate backscatter across polarization and incidence range. Regression analysis between field measured forest biomass and L-band backscatter data from PALSAR mosaic show retrieval of woody biomass up to 100 Mg ha-1 with error between 92 and 94 Mg ha-1 and coefficient of determination (r2) between 0.53 and 0.55 for HH and HH + HV polarized channel at 0.25 ha resolution. This positive relationship could be due to strong volume scattering from ground/trunk interaction at HH-polarized while in combination with direct canopy scattering for HV-polarization at ALOS specific incidence angles as predicted by MIMICS-I model. This study has found that L-band SAR data from currently ALOS-1/-2 and upcoming joint NASA-ISRO SAR (NISAR) are suitable for mapping forest biomass ≤100 Mg ha-1 at 25 m resolution in far incidence range in dense deciduous mixed forest of Northern India.

  13. Impact of new technologies on stress, attrition and well-being in emergency call centers: the NextGeneration 9-1-1 study protocol.

    PubMed

    Baseman, Janet; Revere, Debra; Painter, Ian; Stangenes, Scott; Lilly, Michelle; Beaton, Randal; Calhoun, Rebecca; Meischke, Hendrika

    2018-05-04

    Our public health emergency response system relies on the "first of the first responders"-the emergency call center workforce that handles the emergency needs of a public in distress. Call centers across the United States have been preparing for the "Next Generation 9-1-1" initiative, which will allow citizens to place 9-1-1 calls using a variety of digital technologies. The impacts of this initiative on a workforce that is already highly stressed is unknown. There is concern that these technology changes will increase stress, reduce job performance, contribute to maladaptive coping strategies, lower employee retention, or change morale in the workplace. Understanding these impacts to inform approaches for mitigating the health and performance risks associated with new technologies is crucial for ensuring the 911 system fulfills its mission of providing optimal emergency response to the public. Our project is an observational, prospective cohort study framed by the first new technology that will be implemented: text-to-911 calling. Emergency center call takers will be recruited nationwide. Data will be collected by online surveys distributed at each center before text-to-911 implementation; within the first month of implementation; and 6 months after implementation. Primary outcome measures are stress as measured by the Calgary Symptoms of Stress Index, use of sick leave, job performance, and job satisfaction. Primary analyses will use mixed effects regression models and mixed effects logistic regression models to estimate the change in outcome variables associated with text-to-911 implementation. Multiple secondary analyses will examine effects of stress on absenteeism; associations between technology attitudes and stress; effects of implementation on attitudes towards technology; and mitigating effects of job demands, job satisfaction, attitudes towards workplace technology and workplace support on change in stress. Our public health dependence on this workforce for our security and safety makes it imperative that the impact of technological changes such as text-to-911 are researched so appropriate intervention efforts to can be developed. Failing to protect our 9-1-1 call takers from predictable health risks would be similar to knowingly exposing field emergency responders to a toxic situation without following OSHA required training and practice standards assuring their protection.

  14. The effect of skill mix in non-nursing assistants on work engagements among home visiting nurses in Japan.

    PubMed

    Naruse, Takashi; Taguchi, Atsuko; Kuwahara, Yuki; Nagata, Satoko; Sakai, Mahiro; Watai, Izumi; Murashima, Sachiyo

    2015-05-01

    This study evaluated the effect of a skill-mix programme intervention on work engagement in home visiting nurses. A skill-mix programme in which home visiting nurses are assisted by non-nursing workers is assumed to foster home visiting nurses' work engagement. Pre- and post-intervention evaluations of work engagement were conducted using self-administered questionnaires. A skill-mix programme was introduced in the intervention group of home visiting nurses. After 6 months, their pre- and post-intervention work engagement ratings were compared with those of a control group. Baseline questionnaires were returned by 174 home visiting nurses (44 in the intervention group, 130 in the control group). Post-intervention questionnaires were returned by 38 and 97 home visiting nurses from each group. The intervention group's average work engagement scores were 2.2 at baseline and 2.3 at post-intervention; the control group's were 3.3 and 2.6. Generalised linear regression showed significant between-group differences in score changes. The skill-mix programme might foster home visiting nurses' work engagement by improving the quality of care for each client. Future research is needed to explain the exact mechanisms that underlie its effectiveness. In order to improve the efficiency of services provided by home visiting nurses and foster their work engagement, skill-mix programmes might be beneficial. © 2014 John Wiley & Sons Ltd.

  15. REVEAL: An Extensible Reduced Order Model Builder for Simulation and Modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agarwal, Khushbu; Sharma, Poorva; Ma, Jinliang

    2013-04-30

    Many science domains need to build computationally efficient and accurate representations of high fidelity, computationally expensive simulations. These computationally efficient versions are known as reduced-order models. This paper presents the design and implementation of a novel reduced-order model (ROM) builder, the REVEAL toolset. This toolset generates ROMs based on science- and engineering-domain specific simulations executed on high performance computing (HPC) platforms. The toolset encompasses a range of sampling and regression methods that can be used to generate a ROM, automatically quantifies the ROM accuracy, and provides support for an iterative approach to improve ROM accuracy. REVEAL is designed to bemore » extensible in order to utilize the core functionality with any simulator that has published input and output formats. It also defines programmatic interfaces to include new sampling and regression techniques so that users can ‘mix and match’ mathematical techniques to best suit the characteristics of their model. In this paper, we describe the architecture of REVEAL and demonstrate its usage with a computational fluid dynamics model used in carbon capture.« less

  16. Conditional Monte Carlo randomization tests for regression models.

    PubMed

    Parhat, Parwen; Rosenberger, William F; Diao, Guoqing

    2014-08-15

    We discuss the computation of randomization tests for clinical trials of two treatments when the primary outcome is based on a regression model. We begin by revisiting the seminal paper of Gail, Tan, and Piantadosi (1988), and then describe a method based on Monte Carlo generation of randomization sequences. The tests based on this Monte Carlo procedure are design based, in that they incorporate the particular randomization procedure used. We discuss permuted block designs, complete randomization, and biased coin designs. We also use a new technique by Plamadeala and Rosenberger (2012) for simple computation of conditional randomization tests. Like Gail, Tan, and Piantadosi, we focus on residuals from generalized linear models and martingale residuals from survival models. Such techniques do not apply to longitudinal data analysis, and we introduce a method for computation of randomization tests based on the predicted rate of change from a generalized linear mixed model when outcomes are longitudinal. We show, by simulation, that these randomization tests preserve the size and power well under model misspecification. Copyright © 2014 John Wiley & Sons, Ltd.

  17. Estimation of aboveground biomass in Mediterranean forests by statistical modelling of ASTER fraction images

    NASA Astrophysics Data System (ADS)

    Fernández-Manso, O.; Fernández-Manso, A.; Quintano, C.

    2014-09-01

    Aboveground biomass (AGB) estimation from optical satellite data is usually based on regression models of original or synthetic bands. To overcome the poor relation between AGB and spectral bands due to mixed-pixels when a medium spatial resolution sensor is considered, we propose to base the AGB estimation on fraction images from Linear Spectral Mixture Analysis (LSMA). Our study area is a managed Mediterranean pine woodland (Pinus pinaster Ait.) in central Spain. A total of 1033 circular field plots were used to estimate AGB from Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) optical data. We applied Pearson correlation statistics and stepwise multiple regression to identify suitable predictors from the set of variables of original bands, fraction imagery, Normalized Difference Vegetation Index and Tasselled Cap components. Four linear models and one nonlinear model were tested. A linear combination of ASTER band 2 (red, 0.630-0.690 μm), band 8 (short wave infrared 5, 2.295-2.365 μm) and green vegetation fraction (from LSMA) was the best AGB predictor (Radj2=0.632, the root-mean-squared error of estimated AGB was 13.3 Mg ha-1 (or 37.7%), resulting from cross-validation), rather than other combinations of the above cited independent variables. Results indicated that using ASTER fraction images in regression models improves the AGB estimation in Mediterranean pine forests. The spatial distribution of the estimated AGB, based on a multiple linear regression model, may be used as baseline information for forest managers in future studies, such as quantifying the regional carbon budget, fuel accumulation or monitoring of management practices.

  18. Predictive modeling of hazardous waste landfill total above-ground biomass using passive optical and LIDAR remotely sensed data

    NASA Astrophysics Data System (ADS)

    Hadley, Brian Christopher

    This dissertation assessed remotely sensed data and geospatial modeling technique(s) to map the spatial distribution of total above-ground biomass present on the surface of the Savannah River National Laboratory's (SRNL) Mixed Waste Management Facility (MWMF) hazardous waste landfill. Ordinary least squares (OLS) regression, regression kriging, and tree-structured regression were employed to model the empirical relationship between in-situ measured Bahia (Paspalum notatum Flugge) and Centipede [Eremochloa ophiuroides (Munro) Hack.] grass biomass against an assortment of explanatory variables extracted from fine spatial resolution passive optical and LIDAR remotely sensed data. Explanatory variables included: (1) discrete channels of visible, near-infrared (NIR), and short-wave infrared (SWIR) reflectance, (2) spectral vegetation indices (SVI), (3) spectral mixture analysis (SMA) modeled fractions, (4) narrow-band derivative-based vegetation indices, and (5) LIDAR derived topographic variables (i.e. elevation, slope, and aspect). Results showed that a linear combination of the first- (1DZ_DGVI), second- (2DZ_DGVI), and third-derivative of green vegetation indices (3DZ_DGVI) calculated from hyperspectral data recorded over the 400--960 nm wavelengths of the electromagnetic spectrum explained the largest percentage of statistical variation (R2 = 0.5184) in the total above-ground biomass measurements. In general, the topographic variables did not correlate well with the MWMF biomass data, accounting for less than five percent of the statistical variation. It was concluded that tree-structured regression represented the optimum geospatial modeling technique due to a combination of model performance and efficiency/flexibility factors.

  19. A Practical Guide to Conducting a Systematic Review and Meta-analysis of Health State Utility Values.

    PubMed

    Petrou, Stavros; Kwon, Joseph; Madan, Jason

    2018-05-10

    Economic analysts are increasingly likely to rely on systematic reviews and meta-analyses of health state utility values to inform the parameter inputs of decision-analytic modelling-based economic evaluations. Beyond the context of economic evaluation, evidence from systematic reviews and meta-analyses of health state utility values can be used to inform broader health policy decisions. This paper provides practical guidance on how to conduct a systematic review and meta-analysis of health state utility values. The paper outlines a number of stages in conducting a systematic review, including identifying the appropriate evidence, study selection, data extraction and presentation, and quality and relevance assessment. The paper outlines three broad approaches that can be used to synthesise multiple estimates of health utilities for a given health state or condition, namely fixed-effect meta-analysis, random-effects meta-analysis and mixed-effects meta-regression. Each approach is illustrated by a synthesis of utility values for a hypothetical decision problem, and software code is provided. The paper highlights a number of methodological issues pertinent to the conduct of meta-analysis or meta-regression. These include the importance of limiting synthesis to 'comparable' utility estimates, for example those derived using common utility measurement approaches and sources of valuation; the effects of reliance on limited or poorly reported published data from primary utility assessment studies; the use of aggregate outcomes within analyses; approaches to generating measures of uncertainty; handling of median utility values; challenges surrounding the disentanglement of utility estimates collected serially within the context of prospective observational studies or prospective randomised trials; challenges surrounding the disentanglement of intervention effects; and approaches to measuring model validity. Areas of methodological debate and avenues for future research are highlighted.

  20. Psychological recovery after intensive care: Outcomes of a long-term quasi-experimental study of structured nurse-led follow-up.

    PubMed

    Jónasdóttir, Rannveig J; Jónsdóttir, Helga; Gudmundsdottir, Berglind; Sigurdsson, Gisli H

    2018-02-01

    To compare psychological recovery of patients receiving structured nurse-led follow-up and patients receiving usual care after intensive care discharge. Quasi-experimental study. Single centre, university hospital, mixed intensive care patient population. Symptoms of post-traumatic stress disorder, anxiety and depression measured three and four times over 12 months after intensive care discharge. Disturbing memories of the intensive care stay and psychological reactions (that one's life was in danger, threat to physical integrity, intense fear, helplessness, horror) three months after intensive care. A mixed effect model tested differences between the groups over time and regression model predicted post-traumatic stress at three months. The experimental group had significantly more symptoms of post-traumatic stress and anxiety than the control group over the 12 months. Patients from both groups had severe symptoms of post-traumatic stress. Patients with post-traumatic stress at three months had disturbing memories and psychological reactions. The structured nurse-led follow-up did not improve patients' measured outcomes of psychological recovery after intensive care. Patients with severe symptoms of post-traumatic stress are of concern. Emphasis needs to be placed on disturbing memories of the intensive care stay and psychological reactions when constructing intensive care nurse-led follow-up. Copyright © 2017 Elsevier Ltd. All rights reserved.

Top